Sample records for facility allowing flexible

  1. Flexibility in the HCFC Allowance System

    EPA Pesticide Factsheets

    The rule that established the HCFC allowance system also created an allowance transfer mechanism to provide flexibility. This fact sheet highlights the flexibilities incorporated into the HCFC allowance system.

  2. Flexible Educational Facilities. An Annotated Reference List.

    ERIC Educational Resources Information Center

    Wakefield, Howard E.

    These references on flexible educational facilities are abstracted by the ERIC Clearinghouse on Educational Facilities. College material includes an experimental learning center, a college health center, a fine arts center, and university library design. References on schools include secondary school design, flexible high school design, standard…

  3. Fuel Flexible Gas Turbine Combustor Flametube Facility Upgraded

    NASA Technical Reports Server (NTRS)

    Little, James E.; Nemets, Steve A.; Tornabene, Robert T.; Smith, Timothy D.; Frankenfeld, Bruce J.

    2004-01-01

    In fiscal year 2003, test cell 23 of the Research Combustion Laboratory (RCL 23) at the NASA Glenn Research Center was upgraded with the addition of gaseous hydrogen as a working propellant and the addition of a 450-psig air-supply system. Test flexibility was further enhanced by upgrades to the facility control systems. RCL 23 can now test with gaseous hydrogen flow rates up to 0.05 lbm/sec and jet fuel flow rates up to 0.62 lbm/sec. Research airflow rates up to 3 lbm/sec are possible with the 450-psig supply system over a range of inlet temperatures. Nonvitiated, heated air is supplied from a shell and tube heat exchanger. The maximum nonvitiated facility air temperature is 1100 F at 1.5 lbm/sec. Research-section exhaust temperatures are limited to 3200 F because of material and cooling capacity limits. A variety of support systems are available depending on the research hardware configuration. Test section ignition can be provided via either a hydrogen air torch system or an electronic spark system. Emissions measurements are obtained with either pneumatically or electromechanically actuated gas sample probes, and the electromechanical system allows for radial measurements at a user-specified axial location for measurement of emissions profiles. Gas analysis data can be obtained for a variety of species, including carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NO and NOx), oxygen (O2), unburnt hydrocarbons, and unburnt hydrogen. Facility control is accomplished with a programmable logic control system. Facility operations have been upgraded to a system based on graphical user interface control screens. A data system is available for real-time acquisition and monitoring of both measurements in engineering units and performance calculations. The upgrades have made RCL 23 a highly flexible facility for research into low emissions gas turbine combustor concepts, and the flame tube configuration inherently allows for a variety of fuel nozzle

  4. Flexible drive allows blind machining and welding in hard-to-reach areas

    NASA Technical Reports Server (NTRS)

    Harvey, D. E.; Rohrberg, R. G.

    1966-01-01

    Flexible power and control unit performs welding and machining operations in confined areas. A machine/weld head is connected to the unit by a flexible transmission shaft, and a locking- indexing collar is incorporated onto the head to allow it to be placed and held in position.

  5. Pavement testing facility : effects of tire pressure on flexible pavement response performance

    DOT National Transportation Integrated Search

    1989-08-01

    The effects of tire pressure on flexible pavement response and performance were evaluated using data from the first phase of research at the Federal Highway Administration's Pavement Testing Facility. The Accelerated Loading Facility testing machine ...

  6. Flexible Querying of Lifelong Learner Metadata

    ERIC Educational Resources Information Center

    Poulovassilis, A.; Selmer, P.; Wood, P. T.

    2012-01-01

    This paper discusses the provision of flexible querying facilities over heterogeneous data arising from lifelong learners' educational and work experiences. A key aim of such querying facilities is to allow learners to identify possible choices for their future learning and professional development by seeing what others have done. We motivate and…

  7. A survey of experiments and experimental facilities for control of flexible structures

    NASA Technical Reports Server (NTRS)

    Sparks, Dean W., Jr.; Juang, Jer-Nan; Klose, Gerhard J.

    1989-01-01

    This paper presents a survey of U.S. ground experiments and facilities dedicated to the study of active control of flexible structures. The facilities will be briefly described in terms of capability, configuration, size and instrumentation. Topics on the experiments include vibration suppression, slewing and system identification. Future research directions, particularly of the NASA Langley Research Center's Controls/Structures Interaction (CSI) ground test program, will be discussed.

  8. 50 CFR 86.30 - Must I allow the public to use the grant-funded facilities?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Must I allow the public to use the grant-funded facilities? 86.30 Section 86.30 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE... INFRASTRUCTURE GRANT (BIG) PROGRAM Public Use of the Facility § 86.30 Must I allow the public to use the grant...

  9. 48 CFR 235.015-70 - Special use allowances for research facilities acquired by educational institutions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... research facilities acquired by educational institutions. 235.015-70 Section 235.015-70 Federal Acquisition... CONTRACTING RESEARCH AND DEVELOPMENT CONTRACTING 235.015-70 Special use allowances for research facilities acquired by educational institutions. (a) Definitions. As used in this subsection— (1) Research facility...

  10. 40 CFR 35.2025 - Allowance and advance of allowance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... advance of allowance. (a) Allowance. Step 2+3 and Step 3 grant agreements will include an allowance for facilities planning and design of the project and Step 7 agreements will include an allowance for facility... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Allowance and advance of allowance. 35...

  11. 48 CFR 235.015-70 - Special use allowances for research facilities acquired by educational institutions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., acquired for the purpose of conducting scientific research under contracts with departments and agencies of... research facilities acquired by educational institutions. 235.015-70 Section 235.015-70 Federal Acquisition... CONTRACTING RESEARCH AND DEVELOPMENT CONTRACTING 235.015-70 Special use allowances for research facilities...

  12. 48 CFR 235.015-70 - Special use allowances for research facilities acquired by educational institutions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., acquired for the purpose of conducting scientific research under contracts with departments and agencies of... research facilities acquired by educational institutions. 235.015-70 Section 235.015-70 Federal Acquisition... CONTRACTING RESEARCH AND DEVELOPMENT CONTRACTING 235.015-70 Special use allowances for research facilities...

  13. 48 CFR 235.015-70 - Special use allowances for research facilities acquired by educational institutions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., acquired for the purpose of conducting scientific research under contracts with departments and agencies of... research facilities acquired by educational institutions. 235.015-70 Section 235.015-70 Federal Acquisition... CONTRACTING RESEARCH AND DEVELOPMENT CONTRACTING 235.015-70 Special use allowances for research facilities...

  14. The role of body image psychological flexibility on the treatment of eating disorders in a residential facility.

    PubMed

    Bluett, E J; Lee, E B; Simone, M; Lockhart, G; Twohig, M P; Lensegrav-Benson, Tera; Quakenbush-Roberts, Benita

    2016-12-01

    The purpose of this study was to test whether pre-treatment levels of psychological flexibility would longitudinally predict quality of life and eating disorder risk in patients at a residential treatment facility for eating disorders. Data on body image psychological flexibility, quality of life, and eating disorder risk were collected from 63 adolescent and 50 adult, female, residential patients (N=113) diagnosed with an eating disorder. These same measures were again collected at post-treatment. Sequential multiple regression analyses were performed to test whether pre-treatment levels of psychological flexibility longitudinally predicted quality of life and eating disorder risk after controlling for age and baseline effects. Pre-treatment psychological flexibility significantly predicted post-treatment quality of life with approximately 19% of the variation being attributable to age and pre-treatment psychological flexibility. Pre-treatment psychological flexibility also significantly predicted post-treatment eating disorder risk with nearly 30% of the variation attributed to age and pre-treatment psychological flexibility. This study suggests that levels of psychological flexibility upon entering treatment for an eating disorder longitudinally predict eating disorder outcome and quality of life. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. 41 CFR 102-74.190 - Are portable heaters, fans and other such devices allowed in Government-controlled facilities?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., fans and other such devices allowed in Government-controlled facilities? 102-74.190 Section 102-74.190... § 102-74.190 Are portable heaters, fans and other such devices allowed in Government-controlled facilities? Federal agencies are prohibited from operating portable heaters, fans, and other such devices in...

  16. Facile, Low-Cost, UV-Curing Approach to Prepare Highly Conductive Composites for Flexible Electronics Applications

    NASA Astrophysics Data System (ADS)

    Li, Fucheng; Chen, Shilong; Wei, Yong; Liu, Konghua; Lin, Yong; Liu, Lan

    2016-07-01

    We present a facile approach to prepare high-performance ultraviolet (UV)-curable polyurethane-acrylate-based flexible electrical conductive adhesive (PUA-FECA) for flexible electronics applications. PUA is employed as the polymer matrix so that the ECA is flexible and UV-curable at room temperature in just a few minutes. The effects of the PUA-FECA formulation and curing procedure on the electrical properties have been studied. Very low volume resistivity (5.08 × 10-4 Ω cm) is obtained by incorporating 70 wt.% microsized Ag-coated Cu flakes. Moreover, by simply standing the PUA-FECA paste for 4 h before exposure to UV light, the bulk resistivity of the PUA-FECA is dramatically decreased to 3.62 × 10-4 Ω cm. This can be attributed to rearrangement of Ag-coated Cu flakes in the matrix while standing. PUA-FECA also presents stable electrical conductivity during rolling and compression, excellent adhesion, and good processability, making it easily scalable to large-scale fabrication and enabling screen-printing on various low-cost flexible substrates such as office paper and polyethylene terephthalate film.

  17. Flexibility as a management principle in dementia care: the Adards example.

    PubMed

    Cohen-Mansfield, Jiska; Bester, Allan

    2006-08-01

    Flexibility is an essential ingredient of person-centered care. We illustrate the potential impact of flexibility by portraying a nursing home that uses flexibility in its approach to residents and staff members. The paper describes the management strategies, principles, and environmental features used by the Adards nursing home in Australia. Adards' flexibility in daily work and task scheduling promotes both resident and staff autonomy, which in turn allows for higher staffing levels, lower staff turnover, and more typical life experiences for residents than is found in many long-term-care facilities in the United States. The article provides an example and a basis for future discussion on this topic, with the hope that it will prompt other institutions to expand the level of flexibility in their policies and procedures.

  18. A survey of experiments and experimental facilities for active control of flexible structures

    NASA Technical Reports Server (NTRS)

    Sparks, Dean W., Jr.; Horner, Garnett C.; Juang, Jer-Nan; Klose, Gerhard

    1989-01-01

    A brief survey of large space structure control related experiments and facilities was presented. This survey covered experiments performed before and up to 1982, and those of the present period (1982-...). Finally, the future planned experiments and facilities in support of the control-structure interaction (CSI) program were reported. It was stated that new, improved ground test facilities are needed to verify the new CSI design techniques that will allow future space structures to perform planned NASA missions.

  19. MYRRHA: A multipurpose nuclear research facility

    NASA Astrophysics Data System (ADS)

    Baeten, P.; Schyns, M.; Fernandez, Rafaël; De Bruyn, Didier; Van den Eynde, Gert

    2014-12-01

    MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) is a multipurpose research facility currently being developed at SCK•CEN. MYRRHA is based on the ADS (Accelerator Driven System) concept where a proton accelerator, a spallation target and a subcritical reactor are coupled. MYRRHA will demonstrate the ADS full concept by coupling these three components at a reasonable power level to allow operation feedback. As a flexible irradiation facility, the MYRRHA research facility will be able to work in both critical as subcritical modes. In this way, MYRRHA will allow fuel developments for innovative reactor systems, material developments for GEN IV and fusion reactors, and radioisotope production for medical and industrial applications. MYRRHA will be cooled by lead-bismuth eutectic and will play an important role in the development of the Pb-alloys technology needed for the LFR (Lead Fast Reactor) GEN IV concept. MYRRHA will also contribute to the study of partitioning and transmutation of high-level waste. Transmutation of minor actinides (MA) can be completed in an efficient way in fast neutron spectrum facilities, so both critical reactors and subcritical ADS are potential candidates as dedicated transmutation systems. However critical reactors heavily loaded with fuel containing large amounts of MA pose reactivity control problems, and thus safety problems. A subcritical ADS operates in a flexible and safe manner, even with a core loading containing a high amount of MA leading to a high transmutation rate. In this paper, the most recent developments in the design of the MYRRHA facility are presented.

  20. Alternative Work Schedules: Many Agencies Do Not Allow Employees the Full Flexibility Permitted by Law. Report to Congressional Committees.

    ERIC Educational Resources Information Center

    General Accounting Office, Washington, DC. General Government Div.

    A review was conducted of the extent to which selected federal agencies are allowing employees to use alternative work schedules (AWS) as authorized by the Federal Employees Flexible and Compressed Work Schedules Act. The statute permits, rather than requires, agencies to institute AWS programs. The study surveyed the policies and practices of 59…

  1. 40 CFR Appendix B to Subpart I of... - Allowance for Facilities Planning and Design

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Design B Appendix B to Subpart I of Part 35 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Pt. 35, Subpt. I, App. B Appendix B to Subpart I of Part 35—Allowance for Facilities Planning and... initial award amount of all prime subagreements for building the project. b. The initial amounts approved...

  2. 40 CFR Appendix B to Subpart I of... - Allowance for Facilities Planning and Design

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Design B Appendix B to Subpart I of Part 35 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Pt. 35, Subpt. I, App. B Appendix B to Subpart I of Part 35—Allowance for Facilities Planning and... initial award amount of all prime subagreements for building the project. b. The initial amounts approved...

  3. CFD Analysis of Flexible Thermal Protection System Shear Configuration Testing in the LCAT Facility

    NASA Technical Reports Server (NTRS)

    Ferlemann, Paul G.

    2014-01-01

    This paper documents results of computational analysis performed after flexible thermal protection system shear configuration testing in the LCAT facility. The primary objectives were to predict the shear force on the sample and the sensitivity of all surface properties to the shape of the sample. Bumps of 0.05, 0.10,and 0.15 inches were created to approximate the shape of some fabric samples during testing. A large amount of information was extracted from the CFD solutions for comparison between runs and also current or future flight simulations.

  4. 40 CFR Appendix B to Subpart I of... - Allowance for Facilities Planning and Design

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Allowance for Facilities Planning and Design B Appendix B to Subpart I of Part 35 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works Pt. 35, Subpt. I, App. B Appendix B to...

  5. 48 CFR 235.015-70 - Special use allowances for research facilities acquired by educational institutions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... performance of DoD contracts; (2) Existing facilities, either Government or nongovernment, cannot meet program... effort which results in the special use allowance being excessive compared to the Government research... Defense contracts. FAR 31.3 governs how much the Government will reimburse the institution for the...

  6. Fuel-Flexible Gas Turbine Combustor Flametube Facility

    NASA Technical Reports Server (NTRS)

    Little, James E.; Nemets, Stephen A.; Tornabene, Robert T.; Smith, Timothy D.; Frankenfield, Bruce J.; Manning, Stephen D.; Thompson, William K.

    2004-01-01

    Facility modifications have been completed to an existing combustor flametube facility to enable testing with gaseous hydrogen propellants at the NASA Glenn Research Center. The purpose of the facility is to test a variety of fuel nozzle and flameholder hardware configurations for use in aircraft combustors. Facility capabilities have been expanded to include testing with gaseous hydrogen, along with the existing hydrocarbon-based jet fuel. Modifications have also been made to the facility air supply to provide heated air up to 350 psig, 1100 F, and 3.0 lbm/s. The facility can accommodate a wide variety of flametube and fuel nozzle configurations. Emissions and performance data are obtained via a variety of gas sample probe configurations and emissions measurement equipment.

  7. Description of the Spacecraft Control Laboratory Experiment (SCOLE) facility

    NASA Technical Reports Server (NTRS)

    Williams, Jeffrey P.; Rallo, Rosemary A.

    1987-01-01

    A laboratory facility for the study of control laws for large flexible spacecraft is described. The facility fulfills the requirements of the Spacecraft Control Laboratory Experiment (SCOLE) design challenge for a laboratory experiment, which will allow slew maneuvers and pointing operations. The structural apparatus is described in detail sufficient for modelling purposes. The sensor and actuator types and characteristics are described so that identification and control algorithms may be designed. The control implementation computer and real-time subroutines are also described.

  8. Description of the Spacecraft Control Laboratory Experiment (SCOLE) facility

    NASA Technical Reports Server (NTRS)

    Williams, Jeffrey P.; Rallo, Rosemary A.

    1987-01-01

    A laboratory facility for the study of control laws for large flexible spacecraft is described. The facility fulfills the requirements of the Spacecraft Control Laboratory Experiment (SCOLE) design challenge for laboratory experiments, which will allow slew maneuvers and pointing operations. The structural apparatus is described in detail sufficient for modelling purposes. The sensor and actuator types and characteristics are described so that identification and control algorithms may be designed. The control implementation computer and real-time subroutines are also described.

  9. Formation of Nanoparticle Stripe Patterns via Flexible-Blade Flow Coating

    NASA Astrophysics Data System (ADS)

    Lee, Dong Yun; Kim, Hyun Suk; Parkos, Cassandra; Lee, Cheol Hee; Emrick, Todd; Crosby, Alfred

    2011-03-01

    We present the controlled formation of nanostripe patterns of nanoparticles on underlying substrates by flexible-blade flow coating. This technique exploits the combination of convective flow of confined nanoparticle solutions and programmed translation of a substrate to fabricate nanoparticle-polymer line assemblies with width below 300 nm, thickness of a single nanoparticle, and lengths exceeding 10 cm. We demonstrate how the incorporation of a flexible blade into this technique allows capillary forces to self-regulate the uniformity of convective flow processes across large lateral lengths. Furthermore, we exploit solvent mixture dynamics to enhance intra-assembly particle packing and dimensional range. This facile technique opens up a new paradigm for integration of nanoscale patterns over large areas for various applications.

  10. Tricobalt tetroxide nanoplate arrays on flexible conductive fabric substrate: Facile synthesis and application for electrochemical supercapacitors

    NASA Astrophysics Data System (ADS)

    Nagaraju, Goli; Ko, Yeong Hwan; Yu, Jae Su

    2015-06-01

    Tricobalt tetroxide (Co3O4) nanoplate arrays (NPAs) were synthesized on flexible conductive fabric substrate (FCFs) by a facile two-electrode system based electrochemical deposition method, followed by a simple heat treatment process. Initially, cobalt hydroxide (Co(OH)2) NPAs were electrochemically deposited on FCFs by applying an external voltage of -1.5 V for 30 min. Then, the Co3O4 NPAs on FCFs was obtained by thermal treatment of as-deposited Co(OH)2 NPAs on FCFs at 200 °C for 2 h. From the analysis of morphological and crystal properties, the Co3O4 NPAs were well integrated and uniformly covered over the entire surface of substrate with good crystallinity in the cubic phase. Additionally, the fabricated sample was directly used as a binder-free electrode to examine the feasibility for electrochemical supercapacitors using cyclic voltammetry and galvanic charge-discharge measurements in 1 M KOH electrolyte solution. The Co3O4 NPAs coated FCFs electrode exhibited a maximum specific capacitance of 145.6 F/g at a current density of 1 A/g and an excellent rate capability after 1000 cycles at a current density of 3 A/g. This facile fabrication method for integrating the Co3O4 nanostructures on FCFs could be a promising approach for advanced flexible electronic and energy-storage device applications.

  11. Facile fabrication of ultrathin hybrid membrane for highly flexible supercapacitors via in-situ phase separation of polyethersulfone

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaoning; Ran, Fen; Shen, Kuiwen; Yang, Yunlong; Wu, Jiayu; Niu, Xiaoqin; Kong, Lingbin; Kang, Long; Chen, Shaowei

    2016-10-01

    In this article, a facile method based on in-situ phase-separation was developed for the fabrication of ultrathin hybrid membranes for highly flexible supercapacitors. The structures and morphologies of the prepared electrodes were characterized by scanning electron microscopy (SEM), Fourier-transformed infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) measurements; and the electrochemical behaviors were examined in 2 M KOH solution. SEM and FTIR characterizations reveal that activated carbon was imbedded into the polymer membrane of polyethersulfone to form a uniform and flexible hybrid membrane. When the thin polymer-carbon membrane (PCM) was used as an electrode material for supercapacitor, a high specific capacitance of 169.4 Fg-1 was obtained at a current density of 0.5 Ag-1 along with good long-term cycle life of 94.6% capacity retention after 2000 charging-discharging cycles. Benefiting from these merits, the as-fabricated PCM//PCM cell shows an excellent electrochemical property. These results suggest a promising route towards the fabrication of highly flexible electrodes for high-performance supercapacitors.

  12. DOE LeRC photovoltaic systems test facility

    NASA Technical Reports Server (NTRS)

    Cull, R. C.; Forestieri, A. F.

    1978-01-01

    The facility was designed and built and is being operated as a national facility to serve the needs of the entire DOE National Photovoltaic Program. The object of the facility is to provide a place where photovoltaic systems may be assembled and electrically configured, without specific physical configuration, for operation and testing to evaluate their performance and characteristics. The facility as a breadboard system allows investigation of operational characteristics and checkout of components, subsystems and systems before they are mounted in field experiments or demonstrations. The facility as currently configured consist of 10 kW of solar arrays built from modules, two inverter test stations, a battery storage system, interface with local load and the utility grid, and instrumentation and control necessary to make a flexible operating facility. Expansion to 30 kW is planned for 1978. Test results and operating experience are summaried to show the variety of work that can be done with this facility.

  13. A facile approach to fabricate flexible all-solid-state supercapacitors based on MnFe2O4/graphene hybrids

    NASA Astrophysics Data System (ADS)

    Cai, Weihua; Lai, Ting; Dai, Wanlin; Ye, Jianshan

    2014-06-01

    A critical challenge for the construction of flexible electrochemical capacitors is the preparation of flexible electrodes with large specific capacitance and robust mechanical strength. Here, we demonstrate a facile approach to make high performance and flexible electrodes by dropping MnFe2O4/graphene hybrid inks onto flexible graphite sheets (as current collectors and substrates) and drying under an infrared lamp. MnFe2O4/graphene hybrid inks are synthesized by immobilizing the MnFe2O4 microspheres on the graphene nanosheets via a simple solvothermal route. Electrochemical studies show that MnFe2O4/graphene exhibits a high capacitance of 300 F g-1 at a current density of 0.3 A g-1. In addition, the excellent electrochemical performance of a supercapacitor consisting of a sandwich structure of two pieces of MnFe2O4/graphene hybrids modified electrodes separated by polyvinyl alcohol (PVA)-H2SO4 gel electrolyte is further explored. Our studies reveal that the flexible supercapacitor device with 227 μm thickness can achieve a maximum specific capacitance of 120 F g-1 at a current density of 0.1 A g-1 and excellent cycle performance retaining 105% capacitance after 5000 cycles. This research may offer a method for the fabrication of lightweight, stable, flexible and high performance energy storage devices.

  14. The Light Microscopy Module: An On-Orbit Multi-User Microscope Facility

    NASA Technical Reports Server (NTRS)

    Motil, Susan M.; Snead, John H.

    2002-01-01

    The Light Microscopy Module (LMM) is planned as a remotely controllable on-orbit microscope subrack facility, allowing flexible scheduling and operation of fluids and biology experiments within the Fluids and Combustion Facility (FCF) Fluids Integrated Rack (FIR) on the International Space Station (ISS). The LMM will be the first integrated payload with the FIR to conduct four fluid physics experiments. A description of the LMM diagnostic capabilities, including video microscopy, interferometry, laser tweezers, confocal, and spectrophotometry, will be provided.

  15. Flexible ocean upwelling pipe

    DOEpatents

    Person, Abraham

    1980-01-01

    In an ocean thermal energy conversion facility, a cold water riser pipe is releasably supported at its upper end by the hull of the floating facility. The pipe is substantially vertical and has its lower end far below the hull above the ocean floor. The pipe is defined essentially entirely of a material which has a modulus of elasticity substantially less than that of steel, e.g., high density polyethylene, so that the pipe is flexible and compliant to rather than resistant to applied bending moments. The position of the lower end of the pipe relative to the hull is stabilized by a weight suspended below the lower end of the pipe on a flexible line. The pipe, apart from the weight, is positively buoyant. If support of the upper end of the pipe is released, the pipe sinks to the ocean floor, but is not damaged as the length of the line between the pipe and the weight is sufficient to allow the buoyant pipe to come to a stop within the line length after the weight contacts the ocean floor, and thereafter to float submerged above the ocean floor while moored to the ocean floor by the weight. The upper end of the pipe, while supported by the hull, communicates to a sump in the hull in which the water level is maintained below the ambient water level. The sump volume is sufficient to keep the pipe full during heaving of the hull, thereby preventing collapse of the pipe.

  16. Flexible Space Can Save the Day.

    ERIC Educational Resources Information Center

    Anderson, Steve

    1991-01-01

    Describes how the North Indiana Conference of the United Methodist Church has designed new conference lodges and improved existing facilities to increase flexible space at its camps and conference centers. Outlines the flexible use of bedrooms/dormitories and activity rooms. Includes floor plans. (SV)

  17. Open building and flexibility in healthcare: strategies for shaping spaces for social aspects.

    PubMed

    Capolongo, Stefano; Buffoli, Maddalena; Nachiero, Dario; Tognolo, Chiara; Zanchi, Eleonora; Gola, Marco

    2016-01-01

    The fast development of technology and medicine influences the functioning of healthcare facilities as health promoter for the society, making the flexibility a fundamental requirement. Among the many ways to ensure adaptability, one that allows change without increasing the building's overall size is the Open Building approach. Starting from the analysis of the State-of-the-Art and many case-studies, eight parameters of evaluation were defined, appraising their relative importance through a weighting system defined with several experts. The resulting evaluation tool establishes in what measure healthcare facilities follow the Open Building principles. The tool is tested to ten case-studies, chosen for their flexible features, in order to determine his effectiveness and to identify projects' weaknesses and strengths. The results suggest that many Open Building's principles are already in use but, only through a good design thinking, it will be possible to guarantee architectures for health adaptable for future social challenges.

  18. Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection

    NASA Astrophysics Data System (ADS)

    Zang, Yaping; Zhang, Fengjiao; Huang, Dazhen; Gao, Xike; di, Chong-An; Zhu, Daoben

    2015-03-01

    The utilization of organic devices as pressure-sensing elements in artificial intelligence and healthcare applications represents a fascinating opportunity for the next-generation electronic products. To satisfy the critical requirements of these promising applications, the low-cost construction of large-area ultra-sensitive organic pressure devices with outstanding flexibility is highly desired. Here we present flexible suspended gate organic thin-film transistors (SGOTFTs) as a model platform that enables ultra-sensitive pressure detection. More importantly, the unique device geometry of SGOTFTs allows the fine-tuning of their sensitivity by the suspended gate. An unprecedented sensitivity of 192 kPa-1, a low limit-of-detection pressure of <0.5 Pa and a short response time of 10 ms were successfully realized, allowing the real-time detection of acoustic waves. These excellent sensing properties of SGOTFTs, together with their advantages of facile large-area fabrication and versatility in detecting various pressure signals, make SGOTFTs a powerful strategy for spatial pressure mapping in practical applications.

  19. Advanced High-Temperature Flexible TPS for Inflatable Aerodynamic Decelerators

    NASA Technical Reports Server (NTRS)

    DelCorso, Joseph A.; Cheatwood, F. McNeil; Bruce, Walter E., III; Hughes, Stephen J.; Calomino, Anthony M.

    2011-01-01

    Typical entry vehicle aeroshells are limited in size by the launch vehicle shroud. Inflatable aerodynamic decelerators allow larger aeroshell diameters for entry vehicles because they are not constrained to the launch vehicle shroud diameter. During launch, the hypersonic inflatable aerodynamic decelerator (HIAD) is packed in a stowed configuration. Prior to atmospheric entry, the HIAD is deployed to produce a drag device many times larger than the launch shroud diameter. The large surface area of the inflatable aeroshell provides deceleration of high-mass entry vehicles at relatively low ballistic coefficients. Even for these low ballistic coefficients there is still appreciable heating, requiring the HIAD to employ a thermal protection system (TPS). This TPS must be capable of surviving the heat pulse, and the rigors of fabrication handling, high density packing, deployment, and aerodynamic loading. This paper provides a comprehensive overview of flexible TPS tests and results, conducted over the last three years. This paper also includes an overview of each test facility, the general approach for testing flexible TPS, the thermal analysis methodology and results, and a comparison with 8-foot High Temperature Tunnel, Laser-Hardened Materials Evaluation Laboratory, and Panel Test Facility test data. Results are presented for a baseline TPS layup that can withstand a 20 W/cm2 heat flux, silicon carbide (SiC) based TPS layup, and polyimide insulator TPS layup. Recent work has focused on developing material layups expected to survive heat flux loads up to 50 W/cm2 (which is adequate for many potential applications), future work will consider concepts capable of withstanding more than 100 W/cm2 incident radiant heat flux. This paper provides an overview of the experimental setup, material layup configurations, facility conditions, and planned future flexible TPS activities.

  20. Flexible Multi-Shock Shield

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L. (Inventor); Crews, Jeanne L. (Inventor)

    2005-01-01

    Flexible multi-shock shield system and method are disclosed for defending against hypervelocity particles. The flexible multi-shock shield system and method may include a number of flexible bumpers or shield layers spaced apart by one or more resilient support layers, all of which may be encapsulated in a protective cover. Fasteners associated with the protective cover allow the flexible multi-shock shield to be secured to the surface of a structure to be protected.

  1. A facile one-step approach for the fabrication of polypyrrole nanowire/carbon fiber hybrid electrodes for flexible high performance solid-state supercapacitors

    NASA Astrophysics Data System (ADS)

    Huang, Sanqing; Han, Yichuan; Lyu, Siwei; Lin, Wenzhen; Chen, Peishan; Fang, Shaoli

    2017-10-01

    Wearable electronics are in high demand, requiring that all the components are flexible. Here we report a facile approach for the fabrication of flexible polypyrrole nanowire (NPPy)/carbon fiber (CF) hybrid electrodes with high electrochemical activity using a low-cost, one-step electrodeposition method. The structure of the NPPy/CF electrodes can be easily controlled by the applied electrical potential and electrodeposition time. Our NPPy/CF-based electrodes showed high flexibility, conductivity, and stability, making them ideal for flexible all-solid-state fiber supercapacitors. The resulting NPPy/CF-based supercapacitors provided a high specific capacitance of 148.4 F g-1 at 0.128 A g-1, which is much higher than for supercapacitors based on polypyrrole film/CF (38.3 F g-1) and pure CF (0.6 F g-1) under the same conditions. The NPPy/CF-based supercapacitors also showed high bending and cycling stability, retaining 84% of the initial capacitance after 500 bending cycles, and 91% of the initial capacitance after 5000 charge/discharge cycles.

  2. A facile one-step approach for the fabrication of polypyrrole nanowire/carbon fiber hybrid electrodes for flexible high performance solid-state supercapacitors.

    PubMed

    Huang, Sanqing; Han, Yichuan; Lyu, Siwei; Lin, Wenzhen; Chen, Peishan; Fang, Shaoli

    2017-10-27

    Wearable electronics are in high demand, requiring that all the components are flexible. Here we report a facile approach for the fabrication of flexible polypyrrole nanowire (NPPy)/carbon fiber (CF) hybrid electrodes with high electrochemical activity using a low-cost, one-step electrodeposition method. The structure of the NPPy/CF electrodes can be easily controlled by the applied electrical potential and electrodeposition time. Our NPPy/CF-based electrodes showed high flexibility, conductivity, and stability, making them ideal for flexible all-solid-state fiber supercapacitors. The resulting NPPy/CF-based supercapacitors provided a high specific capacitance of 148.4 F g -1 at 0.128 A g -1 , which is much higher than for supercapacitors based on polypyrrole film/CF (38.3 F g -1 ) and pure CF (0.6 F g -1 ) under the same conditions. The NPPy/CF-based supercapacitors also showed high bending and cycling stability, retaining 84% of the initial capacitance after 500 bending cycles, and 91% of the initial capacitance after 5000 charge/discharge cycles.

  3. Facile synthesis of amorphous FeOOH/MnO2 composites as screen-printed electrode materials for all-printed solid-state flexible supercapacitors

    NASA Astrophysics Data System (ADS)

    Lu, Qiang; Liu, Li; Yang, Shuanglei; Liu, Jun; Tian, Qingyong; Yao, Weijing; Xue, Qingwen; Li, Mengxiao; Wu, Wei

    2017-09-01

    More convenience and intelligence life lead by flexible/wearable electronics requires innovation and hommization of power sources. Here, amorphous FeOOH/MnO2 composite as screen-printed electrode materials for supercapacitors (SCs) is synthesized by a facile method, and solid-state flexible SCs with aesthetic design are fabricated by fully screen-printed process on different substrates, including PET, paper and textile. The amorphous FeOOH/MnO2 composite shows a high specific capacitance and a good rate capability (350.2 F g-1 at a current density of 0.5 A g-1 and 159.5 F g-1 at 20 A g-1). It also possesses 95.6% capacitance retention even after 10 000 cycles. Moreover, the all-printed solid-state flexible SC device exhibits a high area specific capacitance of 5.7 mF cm-2 and 80% capacitance retention even after 2000 cycles. It also shows high mechanical flexibility. Simultaneously, these printed SCs on different substrates in series are capable to light up a 1.9 V yellow light emitting diode (LED), even after bending and stretching.

  4. 36 CFR § 1280.102 - When do NARA regional records services facilities allow other groups to use their public areas...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... their public areas for events? (a) Although NARA regional records services facility auditoriums and... allow use of any auditoriums or other public spaces for any activities that involve: (1) Profit making...

  5. Flexible manufacturing of aircraft engine parts

    NASA Astrophysics Data System (ADS)

    Hassan, Ossama M.; Jenkins, Douglas M.

    1992-06-01

    GE Aircraft Engines, a major supplier of jet engines for commercial and military aircraft, has developed a fully integrated manufacturing facility to produce aircraft engine components in flexible manufacturing cells. This paper discusses many aspects of the implementation including process technologies, material handling, software control system architecture, socio-technical systems and lessons learned. Emphasis is placed on the appropriate use of automation in a flexible manufacturing system.

  6. Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection

    PubMed Central

    Zang, Yaping; Zhang, Fengjiao; Huang, Dazhen; Gao, Xike; Di, Chong-an; Zhu, Daoben

    2015-01-01

    The utilization of organic devices as pressure-sensing elements in artificial intelligence and healthcare applications represents a fascinating opportunity for the next-generation electronic products. To satisfy the critical requirements of these promising applications, the low-cost construction of large-area ultra-sensitive organic pressure devices with outstanding flexibility is highly desired. Here we present flexible suspended gate organic thin-film transistors (SGOTFTs) as a model platform that enables ultra-sensitive pressure detection. More importantly, the unique device geometry of SGOTFTs allows the fine-tuning of their sensitivity by the suspended gate. An unprecedented sensitivity of 192 kPa−1, a low limit-of-detection pressure of <0.5 Pa and a short response time of 10 ms were successfully realized, allowing the real-time detection of acoustic waves. These excellent sensing properties of SGOTFTs, together with their advantages of facile large-area fabrication and versatility in detecting various pressure signals, make SGOTFTs a powerful strategy for spatial pressure mapping in practical applications. PMID:25872157

  7. [Flexible ENT endoscopy--video technic].

    PubMed

    Rasinger, G A; Horak, F

    1985-02-01

    This study discusses the solutions to the problem of documenting moving processes in the field of otolaryngology. A flexible bronchoscope and video equipment connected to it are presented as a specific solution of the problem, with ample of observations. A technical comparison is used as the basis for a discussion of the pros and cons of the video and film techniques. A successful arrangement of examination facilities illustrates the future of flexible-endoscope techniques in the field of otolaryngology.

  8. Aligning Ag Nanowires by a Facile Bioinspired Directional Liquid Transfer: Toward Anisotropic Flexible Conductive Electrodes.

    PubMed

    Meng, Lili; Bian, Ruixin; Guo, Cheng; Xu, Bojie; Liu, Huan; Jiang, Lei

    2018-06-01

    Recent years have witnessed the booming development of transparent flexible electrodes (TFEs) for their applications in electronics and optoelectronic devices. Various strategies have thus been developed for preparing TFEs with higher flexibility and conductivity. However, little work has focused on TFEs with anisotropic conductivity. Here, a facile strategy of directional liquid transfer is proposed, guided by a conical fibers array (CFA), based on which silver nanowires (AgNWs) are aligned on a soft poly(ethylene terephthalate) substrate in large scale. After further coating a second thin layer of the conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), a TFE with notable anisotropic conductivity and excellent optical transmittance of 95.2% is prepared. It is proposed that the CFA enables fine control over the receding of the three-phase contact line during the dewetting process, where AgNWs are guided and aligned by the as-generated directional stress. Moreover, anisotropic electrochemical deposition is enabled where the Cu nanoparticles deposit only on the oriented AgNWs, leading to a surface with anisotropic wetting behavior. Importantly, the approach enables alignment of AgNWs via multiple directions at one step. It is envisioned that the as-developed approach will provide an optional approach for simple and low-cost preparation of TFE with various functions. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Soft tissue models: easy and inexpensive flexible 3D printing as a help in surgical planning of cardiovascular disorders

    NASA Astrophysics Data System (ADS)

    Starosolski, Zbigniew; Ezon, David S.; Krishnamurthy, Rajesh; Dodd, Nicholas; Heinle, Jeffrey; Mckenzie, Dean E.; Annapragada, Ananth

    2017-03-01

    We developed a technology that allows a simple desktop 3D printer with dual extruder to fabricate 3D flexible models of Major AortoPulmonary Collateral Arteries. The study was designed to assess whether the flexible 3D printed models could help during surgical planning phase. Simple FDM 3D printers are inexpensive, versatile in use and easy to maintain, but complications arise when the designed model is complex and has tubular structures with small diameter less than 2mm. The advantages of FDM printers are cost and simplicity of use. We use precisely selected materials to overcome the obstacles listed above. Dual extruder allows to use two different materials while printing, which is especially important in the case of fragile structures like pulmonary vessels and its supporting structures. The latter should not be removed by hand to avoid a truncation of the model. We utilize the water soluble PVA as a supporting structure and Poro-Lay filament for flexible model of AortoPulmonary collateral arteries. Poro-Lay filament is different as compared to all the other flexible ones like polymer-based. Poro-Lay is rigid while printing and this allows printing of structures small in diameter. It achieves flexibility after washing out of printed model with water. It becomes soft in touch and gelatinous. Using both PVA and Poro-Lay gives a huge advantage allowing to wash out the supporting structures and achieve flexibility in one washing operation, saving time and avoiding human error with cleaning the model. We evaluated 6 models for MAPCAS surgical planning study. This approach is also cost-effective - an average cost of materials for print is less than $15; models are printed in facility without any delays. Flexibility of 3D printed models approximate soft tissues properly, mimicking Aortopulmonary collateral arteries. Second utilization models has educational value for both residents and patients' family. Simplification of 3D flexible process could help in other models

  10. Flexible wings in flapping flight

    NASA Astrophysics Data System (ADS)

    Moret, Lionel; Thiria, Benjamin; Zhang, Jun

    2007-11-01

    We study the effect of passive pitching and flexible deflection of wings on the forward flapping flight. The wings are flapped vertically in water and are allowed to move freely horizontally. The forward speed is chosen by the flapping wing itself by balance of drag and thrust. We show, that by allowing the wing to passively pitch or by adding a flexible extension at its trailing edge, the forward speed is significantly increased. Detailed measurements of wing deflection and passive pitching, together with flow visualization, are used to explain our observations. The advantage of having a wing with finite rigidity/flexibility is discussed as we compare the current results with our biological inspirations such as birds and fish.

  11. Phenotypic flexibility at the molecular and organismal level allows desert-dwelling rodents to cope with seasonal water availability.

    PubMed

    Gallardo, Pedro A; Cortes, Arturo; Bozinovic, Francisco

    2005-01-01

    We examined the phenotypic flexibility of field urine osmolality (Uosm) in response to seasonal rainfall and the experimental expression of renal aquaporins (AQPs) in the leaf-eared mouse Phyllotis darwini, a South American desert-dwelling rodent, through an integrative study at both the cellular and the organismal level. Field Uosm was higher in summer than in winter. Fall and winter Uosm were not significantly different. During a rainy year, winter Uosm was 2,140 +/- 82.3 mOsm kg(-1); the corresponding value in a dry year was 2,569 +/- 61.3 mOsm kg(-1). During the summer, the mean Uosm in a rainy year was 3,321 +/- 71.5 mOsm kg(-1), and in a dry year it was 3,604 +/- 107.2 mOsm kg(-1). The distribution of AQP-2, AQP-3, and AQP-4 was similar to that described for mouse and rat kidneys and confined to principal cells in cortex and inner medullary collecting-duct cells. AQP-4 immunoreactivity was unaltered by the state of water balance. Relative to water loading, dehydration induced an increase in AQP-2 immunoreactivity and protein abundance. Although more discrete, AQP-3 immunolabeling was also increased by dehydration. We now reveal how the integration of flexible renal mechanisms acting at the cellular and organismal level allow a small desert-dwelling mammal to cope with seasonal and yearly (El Nino) water availability in its semiarid habitat.

  12. Flexible Training's Intrusion on Work/Life Balance

    ERIC Educational Resources Information Center

    Takiya, Seema; Archbold, Jennifer; Berge, Zane

    2005-01-01

    With more companies allowing "flextime", more access to elearning, and telecomuting, the line between workplace flexibility and work-life balance begins to blur. Companies "sell" to employees the flexibility of being able to complete training programs from the comfort of the participant's home, allowing them to learn at their own speed. In many…

  13. Experimental demonstration of the control of flexible structures

    NASA Technical Reports Server (NTRS)

    Schaechter, D. B.; Eldred, D. B.

    1984-01-01

    The Large Space Structure Technology Flexible Beam Experiment employs a pinned-free flexible beam to demonstrate such required methods as dynamic and adaptive control, as well as various control law design approaches and hardware requirements. An attempt is made to define the mechanization difficulties that may inhere in flexible structures. Attention is presently given to analytical work performed in support of the test facility's development, the final design's specifications, the control laws' synthesis, and experimental results obtained.

  14. Ballistocraft: a novel facility for microgravity research.

    PubMed

    Mesland, D; Paris, D; Huijser, R; Lammertse, P; Postema, R

    1995-05-01

    One of ESA's aims is to provide the microgravity research community with various microgravity exposure facilities. Those facilities include drop towers, sounding rockets, and parabolic flights on board aircraft, in addition to orbital spacecraft. Microgravity flights are usually achieved using large aircraft like the French 'Caravelle' that offer a large payload volume and where a person can be present to perform the experiments and to participate as a human test-subject. However, the microgravity community is also very interested in a flexible, complementary facility that would allow frequent and repetitive exposure to microgravity for a laboratory-type of payload. ESA has therefore undertaken a study of the potential of using a 'ballistocraft', a small unmanned aircraft, to provide a low-cost facility for short-duration (30-40 seconds) microgravity experimentation. Fokker Space & Systems performed the study under an ESA contract, supported by Dutch national funding. To assess the ballistocraft, a simple breadboard of the facility was built and flight tests were performed. The ability of the on-board controller to achieve automated parabolic flights was demonstrated, and the performance of the controller in one-g level flights, and in flights with both zero-g and partial-g setpoints, was evaluated. The partial-g flights are a unique and valuable feature of the facility.

  15. Hardware demonstration of flexible beam control

    NASA Technical Reports Server (NTRS)

    Schaechter, D. B.

    1980-01-01

    An experiment employing a pinned-free flexible beam has been constructed to demonstrate and verify several facets of the control of flexible structures. The desired features of the experiment are to demonstrate active shape control, active dynamic control, adaptive control, various control law design approaches, and associated hardware requirements and mechanization difficulties. This paper contains the analytical work performed in support of the facility development, the final design specifications, control law synthesis, and some preliminary results.

  16. Ultraviolet Free Electron Laser Facility preliminary design report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ben-Zvi, I.

    1993-02-01

    This document, the Preliminary Design Report (PDR) for the Brookhaven Ultraviolet Free Electron Laser (UV FEL) facility, describes all the elements of a facility proposed to meet the needs of a research community which requires ultraviolet sources not currently available as laboratory based lasers. Further, for these experiments, the requisite properties are not extant in either the existing second or upcoming third generation synchrotron light sources. This document is the result of our effort at BNL to identify potential users, determine the requirements of their experiments, and to design a facility which can not only satisfy the existing need, butmore » have adequate flexibility for possible future extensions as need dictates and as evolving technology allows. The PDR is comprised of three volumes. In this, the first volume, background for the development of the proposal is given, including descriptions of the UV FEL facility, and representative examples of the science it was designed to perform. Discussion of the limitations and potential directions for growth are also included. A detailed description of the facility design is then provided, which addresses the accelerator, optical, and experimental systems. Information regarding the conventional construction for the facility is contained in an addendum to volume one (IA).« less

  17. Selective wetting-induced micro-electrode patterning for flexible micro-supercapacitors.

    PubMed

    Kim, Sung-Kon; Koo, Hyung-Jun; Lee, Aeri; Braun, Paul V

    2014-08-13

    Selective wetting-induced micro-electrode patterning is used to fabricate flexible micro-supercapacitors (mSCs). The resulting mSCs exhibit high performance, mechanical stability, stable cycle life, and hold great promise for facile integration into flexible devices requiring on-chip energy storage. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Flexible transparent electrode

    NASA Astrophysics Data System (ADS)

    Demiryont, Hulya; Shannon, Kenneth C., III; Moorehead, David; Bratcher, Matthew

    2011-06-01

    This paper presents the properties of the EclipseTECTM transparent conductor. EclipseTECTM is a room temperature deposited nanostructured thin film coating system comprised of metal-oxide semiconductor elements. The system possesses metal-like conductivity and glass-like transparency in the visible region. These highly conductive TEC films exhibit high shielding efficiency (35dB at 1 to 100GHz). EclipseTECTM can be deposited on rigid or flexible substrates. For example, EclipseTECTM deposited on polyethylene terephthalate (PET) is extremely flexible that can be rolled around a 9mm diameter cylinder with little or no reduction in electrical conductivity and that can assume pre-extension states after an applied stress is relieved. The TEC is colorless and has been tailored to have high visible transmittance which matches the eye sensitivity curve and allows the viewing of true background colors through the coating. EclipseTECTM is flexible, durable and can be tailored at the interface for applications such as electron- or hole-injecting OLED electrodes as well as electrodes in flexible displays. Tunable work function and optical design flexibility also make EclipseTECTM well-suited as a candidate for grid electrode replacement in next-generation photovoltaic cells.

  19. Titanium dioxide@polypyrrole core-shell nanowires for all solid-state flexible supercapacitors

    NASA Astrophysics Data System (ADS)

    Yu, Minghao; Zeng, Yinxiang; Zhang, Chong; Lu, Xihong; Zeng, Chenghui; Yao, Chenzhong; Yang, Yangyi; Tong, Yexiang

    2013-10-01

    Herein, we developed a facile two-step process to synthesize TiO2@PPy core-shell nanowires (NWs) on carbon cloth and reported their improved electrochemical performance for flexible supercapacitors (SCs). The fabricated solid-state SC device based on TiO2@PPy core-shell NWs not only has excellent flexibility, but also exhibits remarkable electrochemical performance.Herein, we developed a facile two-step process to synthesize TiO2@PPy core-shell nanowires (NWs) on carbon cloth and reported their improved electrochemical performance for flexible supercapacitors (SCs). The fabricated solid-state SC device based on TiO2@PPy core-shell NWs not only has excellent flexibility, but also exhibits remarkable electrochemical performance. Electronic supplementary information (ESI) available: Experimental details, XRD pattern, FT-IR absorption spectrum and CV curves of TiO2@PPy NWs, and SEM images of the PPy. See DOI: 10.1039/c3nr03578f

  20. Strategic benefits of master facility plans.

    PubMed

    Shannon, K

    1996-02-01

    In recent years, many healthcare executives have stopped developing master facility plans due to some basic misconceptions about them, namely that master facility plans are too rigid or require major capital commitment. By getting past these misconceptions, healthcare executives can help their organizations develop and implement master facility plans that serve as flexible, reliable blueprints in guiding the organizations toward achieving their strategic, operational, and financial goals.

  1. Optimized flexible cover films for improved conversion efficiency in thin film flexible solar cells

    NASA Astrophysics Data System (ADS)

    Guterman, Sidney; Wen, Xin; Gudavalli, Ganesh; Rhajbhandari, Pravakar; Dhakal, Tara P.; Wilt, David; Klotzkin, David

    2018-05-01

    Thin film solar cell technologies are being developed for lower cost and flexible applications. For such technologies, it is desirable to have inexpensive, flexible cover strips. In this paper, we demonstrate that transparent silicone cover glass adhesive can be doped with TiO2 nanoparticles to achieve an optimal refractive index and maximize the performance of the cell. Cells covered with the film doped with nanoparticles at the optimal concentration demonstrated a ∼1% increase in photocurrent over the plain (undoped) film. In addition, fused silica beads can be incorporated into the flexible cover slip to realize a built-in pseudomorphic glass diffuser layer as well. This additional degree of freedom in engineering flexible solar cell covers allows maximal performance from a given cell for minimal increased cost.

  2. A phase II flexible screening design allowing for interim analysis and comparison with historical control.

    PubMed

    Wu, Wenting; Bot, Brian; Hu, Yan; Geyer, Susan M; Sargent, Daniel J

    2013-07-01

    Sargent and Goldberg [1] proposed a randomized phase II flexible screening design (SG design) which took multiple characteristics of candidate regimens into consideration in selecting a regimen for further phase III testing. In this paper, we extend the SG design by including provisions for an interim analysis and/or a comparison to a historical control. By including a comparison with a historical control, a modified SG design not only identifies a more promising treatment but also assures that the regimen has a clinically meaningful level of efficacy as compared to a historical control. By including an interim analysis, a modified SG design could reduce the number of patients exposed to inferior treatment regimens. When compared to the original SG design, the modified designs increase the sample size moderately, but expand the utility of the flexible screening design substantially. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Campania Region's Educational Quality Facilities Project

    ERIC Educational Resources Information Center

    Ponti, Giorgio

    2009-01-01

    This article describes the Educational Quality Facilities project undertaken by Italy's Campania Region to provide quality facilities to all of its communities basing new spaces on the "Flexible Learning Module". The objectives of the five-year project are to: build and equip new educational spaces; improve the quality of existing…

  4. Automatic flexible endoscope reprocessors.

    PubMed

    Muscarella, L F

    2000-04-01

    Reprocessing medical instruments is a complex and controversial discipline. If all instruments were constructed of materials not damaged by heat, pressure, and moisture, instrument reprocessing would be greatly simplified. As the number of novel and complex instruments entering the market continues to increase, periodic review of the health care facility's instrument reprocessing protocols to ensure their safety and effectiveness is important. This article reviews the advantages and the limitations of automatic flexible endoscope reprocessors.

  5. Extension of drop experiments with the MIKROBA balloon drop facility

    NASA Astrophysics Data System (ADS)

    Sommer, K.; Kretzschmar, K.; Dorn, C.

    1992-12-01

    The German balloon drop facility MIKROBA extends the worldwide available drop experiment opportunities to the presently highest usable experimentation time span of 55 s at microgravity conditions better than 0.001 g. The microgravity period is started with the typical quasi-deal step function from 1 to 0 g. MIKROBA allows flexible experiment design, short access time, and easy hands-on payload integration. The transport to the operational height is realized by soft energies and technologies compatible with the earth's environment. Balloon campaigns are not restricted to a certain test range, i.e., several suitable sites are available all over the world. MIKROBA combines negligible mechanical loads at the mission start, typical of all drop facilities, with extremely low drop deceleration loads (less than g), due to the implemented three-stage parachute and airbag recovery subsystem.

  6. Continuous fabrication of nanostructure arrays for flexible surface enhanced Raman scattering substrate

    PubMed Central

    Zhang, Chengpeng; Yi, Peiyun; Peng, Linfa; Lai, Xinmin; Chen, Jie; Huang, Meizhen; Ni, Jun

    2017-01-01

    Surface-enhanced Raman spectroscopy (SERS) has been a powerful tool for applications including single molecule detection, analytical chemistry, electrochemistry, medical diagnostics and bio-sensing. Especially, flexible SERS substrates are highly desirable for daily-life applications, such as real-time and in situ Raman detection of chemical and biological targets, which can be used onto irregular surfaces. However, it is still a major challenge to fabricate the flexible SERS substrate on large-area substrates using a facile and cost-effective technique. The roll-to-roll ultraviolet nanoimprint lithography (R2R UV-NIL) technique provides a solution for the continuous fabrication of flexible SERS substrate due to its high-speed, large-area, high-resolution and high-throughput. In this paper, we presented a facile and cost-effective method to fabricate flexible SERS substrate including the fabrication of polymer nanostructure arrays and the metallization of the polymer nanostructure arrays. The polymer nanostructure arrays were obtained by using R2R UV-NIL technique and anodic aluminum oxide (AAO) mold. The functional SERS substrates were then obtained with Au sputtering on the surface of the polymer nanostructure arrays. The obtained SERS substrates exhibit excellent SERS and flexibility performance. This research can provide a beneficial direction for the continuous production of the flexible SERS substrates. PMID:28051175

  7. 50 CFR 85.41 - Allowable costs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    .... Preliminary costs may include such items as feasibility surveys, engineering design, biological reconnaissance... symbols designating pumpout and dump stations, are allowable costs. (b) Grants or facilities designed to...

  8. 50 CFR 85.41 - Allowable costs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    .... Preliminary costs may include such items as feasibility surveys, engineering design, biological reconnaissance... symbols designating pumpout and dump stations, are allowable costs. (b) Grants or facilities designed to...

  9. 50 CFR 85.41 - Allowable costs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    .... Preliminary costs may include such items as feasibility surveys, engineering design, biological reconnaissance... symbols designating pumpout and dump stations, are allowable costs. (b) Grants or facilities designed to...

  10. 50 CFR 85.41 - Allowable costs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... Preliminary costs may include such items as feasibility surveys, engineering design, biological reconnaissance... symbols designating pumpout and dump stations, are allowable costs. (b) Grants or facilities designed to...

  11. 50 CFR 85.41 - Allowable costs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... Preliminary costs may include such items as feasibility surveys, engineering design, biological reconnaissance... symbols designating pumpout and dump stations, are allowable costs. (b) Grants or facilities designed to...

  12. 34 CFR 608.40 - What are allowable costs and what are the limitations on allowable costs?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... BLACK COLLEGES AND UNIVERSITIES PROGRAM What Conditions Must a Grantee Meet? § 608.40 What are allowable... classroom, library, laboratory, or other instructional facility; or (2) Use an indirect cost rate to...

  13. Flexible Learning Strategies in First through Fourth-Year Courses

    ERIC Educational Resources Information Center

    Cassidy, Alice; Fu, Guopeng; Valley, Will; Lomas, Cyprien; Jovel, Eduardo; Riseman, Andrew

    2016-01-01

    Flexible Learning (FL) is a pedagogical approach allowing for flexibility of time, place, and audience, including but not solely focused on the use of technologies. We describe Flexible Learning as a pedagogical approach in four courses framed by three key themes: 1) objectives and aspects of course design, 2) evaluation and assessment, and 3)…

  14. Flexible MEMS: A novel technology to fabricate flexible sensors and electronics

    NASA Astrophysics Data System (ADS)

    Tu, Hongen

    This dissertation presents the design and fabrication techniques used to fabricate flexible MEMS (Micro Electro Mechanical Systems) devices. MEMS devices and CMOS(Complementary Metal-Oxide-Semiconductor) circuits are traditionally fabricated on rigid substrates with inorganic semiconductor materials such as Silicon. However, it is highly desirable that functional elements like sensors, actuators or micro fluidic components to be fabricated on flexible substrates for a wide variety of applications. Due to the fact that flexible substrate is temperature sensitive, typically only low temperature materials, such as polymers, metals, and organic semiconductor materials, can be directly fabricated on flexible substrates. A novel technology based on XeF2(xenon difluoride) isotropic silicon etching and parylene conformal coating, which is able to monolithically incorporate high temperature materials and fluidic channels, was developed at Wayne State University. The technology was first implemented in the development of out-of-plane parylene microneedle arrays that can be individually addressed by integrated flexible micro-channels. These devices enable the delivery of chemicals with controlled temporal and spatial patterns and allow us to study neurotransmitter-based retinal prosthesis. The technology was further explored by adopting the conventional SOI-CMOS processes. High performance and high density CMOS circuits can be first fabricated on SOI wafers, and then be integrated into flexible substrates. Flexible p-channel MOSFETs (Metal-Oxide-Semiconductor Field-Effect-Transistors) were successfully integrated and tested. Integration of pressure sensors and flow sensors based on single crystal silicon has also been demonstrated. A novel smart yarn technology that enables the invisible integration of sensors and electronics into fabrics has been developed. The most significant advantage of this technology is its post-MEMS and post-CMOS compatibility. Various high

  15. Microscope-Based Fluid Physics Experiments in the Fluids and Combustion Facility on ISS

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Motil, Susan M.; Snead, John H.; Malarik, Diane C.

    2000-01-01

    At the NASA Glenn Research Center, the Microgravity Science Program is planning to conduct a large number of experiments on the International Space Station in both the Fluid Physics and Combustion Science disciplines, and is developing flight experiment hardware for use within the International Space Station's Fluids and Combustion Facility. Four fluids physics experiments that require an optical microscope will be sequentially conducted within a subrack payload to the Fluids Integrated Rack of the Fluids and Combustion Facility called the Light Microscopy Module, which will provide the containment, changeout, and diagnostic capabilities to perform the experiments. The Light Microscopy Module is planned as a fully remotely controllable on-orbit microscope facility, allowing flexible scheduling and control of experiments within International Space Station resources. This paper will focus on the four microscope-based experiments, specifically, their objectives and the sample cell and instrument hardware to accommodate their requirements.

  16. Facile template-free synthesis of vertically aligned polypyrrole nanosheets on nickel foams for flexible all-solid-state asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Yang, Xiangwen; Lin, Zhixing; Zheng, Jingxu; Huang, Yingjuan; Chen, Bin; Mai, Yiyong; Feng, Xinliang

    2016-04-01

    This paper reports a novel and remarkably facile approach towards vertically aligned nanosheets on three-dimensional (3D) Ni foams. Conducting polypyrrole (PPy) sheets were grown on Ni foam through the volatilization of the environmentally friendly solvent from an ethanol-water solution of pyrrole (Py), followed by the polymerization of the coated Py in ammonium persulfate (APS) solution. The PPy-decorated Ni foams and commercial activated carbon (AC) modified Ni foams were employed as the two electrodes for the assembly of flexible all-solid-state asymmetric supercapacitors. The sheet-like structure of PPy and the macroporous feature of the Ni foam, which render large electrode-electrolyte interfaces, resulted in good capacitive performance of the supercapacitors. Moreover, a high energy density of ca. 14 Wh kg-1 and a high power density of 6.2 kW kg-1 were achieved for the all-solid-state asymmetric supercapacitors due to the wide cell voltage window.This paper reports a novel and remarkably facile approach towards vertically aligned nanosheets on three-dimensional (3D) Ni foams. Conducting polypyrrole (PPy) sheets were grown on Ni foam through the volatilization of the environmentally friendly solvent from an ethanol-water solution of pyrrole (Py), followed by the polymerization of the coated Py in ammonium persulfate (APS) solution. The PPy-decorated Ni foams and commercial activated carbon (AC) modified Ni foams were employed as the two electrodes for the assembly of flexible all-solid-state asymmetric supercapacitors. The sheet-like structure of PPy and the macroporous feature of the Ni foam, which render large electrode-electrolyte interfaces, resulted in good capacitive performance of the supercapacitors. Moreover, a high energy density of ca. 14 Wh kg-1 and a high power density of 6.2 kW kg-1 were achieved for the all-solid-state asymmetric supercapacitors due to the wide cell voltage window. Electronic supplementary information (ESI) available: ESI

  17. Science Facilities Design Guidelines.

    ERIC Educational Resources Information Center

    Maryland State Dept. of Education, Baltimore.

    These guidelines, presented in five chapters, propose a framework to support the planning, designing, constructing, and renovating of school science facilities. Some program issues to be considered in the articulation of a science program include environmental concerns, interdisciplinary approaches, space flexibility, and electronic…

  18. Flexible Retrieval: When True Inferences Produce False Memories

    ERIC Educational Resources Information Center

    Carpenter, Alexis C.; Schacter, Daniel L.

    2017-01-01

    Episodic memory involves flexible retrieval processes that allow us to link together distinct episodes, make novel inferences across overlapping events, and recombine elements of past experiences when imagining future events. However, the same flexible retrieval and recombination processes that underpin these adaptive functions may also leave…

  19. Flexible Mechanical Conveyors for Regolith Extraction and Transport

    NASA Technical Reports Server (NTRS)

    Walton, Otis R.; Vollmer, Hubert J.

    2013-01-01

    A report describes flexible mechanical conveying systems for transporting fine cohesive regolith under microgravity and vacuum conditions. They are totally enclosed, virtually dust-free, and can include enough flexibility in the conveying path to enable an expanded range of extraction and transport scenarios, including nonlinear drill-holes and excavation of enlarged subsurface openings without large entry holes. The design of the conveyors is a modification of conventional screw conveyors such that the central screw-shaft and the outer housing or conveyingtube have a degree of bending flexibility, allowing the conveyors to become nonlinear conveying systems that can convey around gentle bends. The central flexible shaft is similar to those used in common tools like a weed whacker, consisting of multiple layers of tightly wound wires around a central wire core. Utilization of compliant components (screw blade or outer wall) increases the robustness of the conveying, allowing an occasional oversized particle to pass hough the conveyor without causing a jam or stoppage

  20. Facile fabrication of microfluidic surface-enhanced Raman scattering devices via lift-up lithography

    NASA Astrophysics Data System (ADS)

    Wu, Yuanzi; Jiang, Ye; Zheng, Xiaoshan; Jia, Shasha; Zhu, Zhi; Ren, Bin; Ma, Hongwei

    2018-04-01

    We describe a facile and low-cost approach for a flexibly integrated surface-enhanced Raman scattering (SERS) substrate in microfluidic chips. Briefly, a SERS substrate was fabricated by the electrostatic assembling of gold nanoparticles, and shaped into designed patterns by subsequent lift-up soft lithography. The SERS micro-pattern could be further integrated within microfluidic channels conveniently. The resulting microfluidic SERS chip allowed ultrasensitive in situ SERS monitoring from the transparent glass window. With its advantages in simplicity, functionality and cost-effectiveness, this method could be readily expanded into optical microfluidic fabrication for biochemical applications.

  1. Flexible robotics: a new paradigm.

    PubMed

    Aron, Monish; Haber, Georges-Pascal; Desai, Mihir M; Gill, Inderbir S

    2007-05-01

    The use of robotics in urologic surgery has seen exponential growth over the last 5 years. Existing surgical robots operate rigid instruments on the master/slave principle and currently allow extraluminal manipulations and surgical procedures. Flexible robotics is an entirely novel paradigm. This article explores the potential of flexible robotic platforms that could permit endoluminal and transluminal surgery in the future. Computerized catheter-control systems are being developed primarily for cardiac applications. This development is driven by the need for precise positioning and manipulation of the catheter tip in the three-dimensional cardiovascular space. Such systems employ either remote navigation in a magnetic field or a computer-controlled electromechanical flexible robotic system. We have adapted this robotic system for flexible ureteropyeloscopy and have to date completed the initial porcine studies. Flexible robotics is on the horizon. It has potential for improved scope-tip precision, superior operative ergonomics, and reduced occupational radiation exposure. In the near future, in urology, we believe that it holds promise for endoluminal therapeutic ureterorenoscopy. Looking further ahead, within the next 3-5 years, it could enable transluminal surgery.

  2. Fluid Intelligence Allows Flexible Recruitment of the Parieto-Frontal Network in Analogical Reasoning

    PubMed Central

    Preusse, Franziska; Elke, van der Meer; Deshpande, Gopikrishna; Krueger, Frank; Wartenburger, Isabell

    2011-01-01

    Fluid intelligence is the ability to think flexibly and to understand abstract relations. People with high fluid intelligence (hi-fluIQ) perform better in analogical reasoning tasks than people with average fluid intelligence (ave-fluIQ). Although previous neuroimaging studies reported involvement of parietal and frontal brain regions in geometric analogical reasoning (which is a prototypical task for fluid intelligence), however, neuroimaging findings on geometric analogical reasoning in hi-fluIQ are sparse. Furthermore, evidence on the relation between brain activation and intelligence while solving cognitive tasks is contradictory. The present study was designed to elucidate the cerebral correlates of geometric analogical reasoning in a sample of hi-fluIQ and ave-fluIQ high school students. We employed a geometric analogical reasoning task with graded levels of task difficulty and confirmed the involvement of the parieto-frontal network in solving this task. In addition to characterizing the brain regions involved in geometric analogical reasoning in hi-fluIQ and ave-fluIQ, we found that blood oxygenation level dependency (BOLD) signal changes were greater for hi-fluIQ than for ave-fluIQ in parietal brain regions. However, ave-fluIQ showed greater BOLD signal changes in the anterior cingulate cortex and medial frontal gyrus than hi-fluIQ. Thus, we showed that a similar network of brain regions is involved in geometric analogical reasoning in both groups. Interestingly, the relation between brain activation and intelligence is not mono-directional, but rather, it is specific for each brain region. The negative brain activation–intelligence relationship in frontal brain regions in hi-fluIQ goes along with a better behavioral performance and reflects a lower demand for executive monitoring compared to ave-fluIQ individuals. In conclusion, our data indicate that flexibly modulating the extent of regional cerebral activity is characteristic for fluid intelligence

  3. Titanium dioxide@polypyrrole core-shell nanowires for all solid-state flexible supercapacitors.

    PubMed

    Yu, Minghao; Zeng, Yinxiang; Zhang, Chong; Lu, Xihong; Zeng, Chenghui; Yao, Chenzhong; Yang, Yangyi; Tong, Yexiang

    2013-11-21

    Herein, we developed a facile two-step process to synthesize TiO2@PPy core-shell nanowires (NWs) on carbon cloth and reported their improved electrochemical performance for flexible supercapacitors (SCs). The fabricated solid-state SC device based on TiO2@PPy core-shell NWs not only has excellent flexibility, but also exhibits remarkable electrochemical performance.

  4. High loading MnO2 nanowires on graphene paper: facile electrochemical synthesis and use as flexible electrode for tracking hydrogen peroxide secretion in live cells.

    PubMed

    Dong, Shuang; Xi, Jiangbo; Wu, Yanan; Liu, Hongwei; Fu, Chaoyang; Liu, Hongfang; Xiao, Fei

    2015-01-01

    Recent progress in flexible and lightweight electrochemical sensor systems requires the development of paper-like electrode materials. Here, we report a facile and green synthesis of a new type of MnO2 nanowires-graphene nanohybrid paper by one-step electrochemical method. This strategy demonstrates a collection of unique features including the effective electrochemical reduction of graphene oxide (GO) paper and the high loading of MnO2 nanowires on electrochemical reduced GO (ERGO) paper. When used as flexible electrode for nonenzymatic detection of hydrogen peroxide (H2O2), MnO2-ERGO paper exhibits high electrocatalytic activity toward the redox of H2O2 as well as excellent stability, selectivity and reproducibility. The amperometric responses are linearly proportional to H2O2 concentration in the range 0.1-45.4 mM, with a detection limit of 10 μM (S/N=3) and detection sensitivity of 59.0 μA cm(-2) mM(-1). These outstanding sensing performances enable the practical application of MnO2-ERGO paper electrode for the real-time tracking H2O2 secretion by live cells macrophages. Therefore, the proposed graphene-based nanohybrid paper electrode with intrinsic flexibility, tailorable shapes and adjustable properties can contribute to the full realization of high-performance flexible electrode material used in point-of-care testing devices and portable instruments for in-vivo clinical diagnostics and on-site environmental monitoring. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Investigation of a robust tendon-sheath mechanism for flexible membrane wing application in mini-UAV

    NASA Astrophysics Data System (ADS)

    Lee, Shian; Tjahjowidodo, Tegoeh; Lee, Hsuchew; Lai, Benedict

    2017-02-01

    Two inherent issues manifest themselves in flying mini-unmanned aerial vehicles (mini-UAV) in the dense area at tropical climate regions, namely disturbances from gusty winds and limited space for deployment tasks. Flexible membrane wing (FMW) UAVs are seen to be potentials to mitigate these problems. FMWs are adaptable to gusty airflow as the wings are able to flex according to the gust load to reduce the effective angle-of-attack, thus, reducing the aerodynamic loads on the wing. On the other hand, the flexible structure is allowing the UAV to fold in a compact package, and later on, the mini-UAV can be deployed instantly from the storage tube, e.g. through a catapult mechanism. This paper discusses the development of an FMW UAV actuated by a tendon-sheath mechanism (TSM). This approach allows the wing to morph to generate a rolling moment, while still allowing the wing to fold. Dynamic characteristics of the mechanism that exhibits the strong nonlinear phenomenon of friction on TSM are modeled and compensated for. A feed-forward controller was implemented based on the identified nonlinear behavior to control the warping position of the wing. The proposed strategy is validated experimentally in a wind tunnel facility by creating a gusty environment that is imitating a realistic gusty condition based upon the results of computational fluid dynamics (CFD) simulation. The results demonstrate a stable and robust wing-warping actuation, even in gusty conditions. Accurate wing-warping can be achieved via the TSM, while also allowing the wings to fold.

  6. Flexible and mechanical strain resistant large area SERS active substrates

    NASA Astrophysics Data System (ADS)

    Singh, J. P.; Chu, Hsiaoyun; Abell, Justin; Tripp, Ralph A.; Zhao, Yiping

    2012-05-01

    We report a cost effective and facile way to synthesize flexible, uniform, and large area surface enhanced Raman scattering (SERS) substrates using an oblique angle deposition (OAD) technique. The flexible SERS substrates consist of 1 μm long, tilted silver nanocolumnar films deposited on flexible polydimethylsiloxane (PDMS) and polyethylene terephthalate (PET) sheets using OAD. The SERS enhancement activity of these flexible substrates was determined using 10-5 M trans-1,2-bis(4-pyridyl) ethylene (BPE) Raman probe molecules. The in situ SERS measurements on these flexible substrates under mechanical (tensile/bending) strain conditions were performed. Our results show that flexible SERS substrates can withstand a tensile strain (ε) value as high as 30% without losing SERS performance, whereas the similar bending strain decreases the SERS performance by about 13%. A cyclic tensile loading test on flexible PDMS SERS substrates at a pre-specified tensile strain (ε) value of 10% shows that the SERS intensity remains almost constant for more than 100 cycles. These disposable and flexible SERS substrates can be integrated with biological substances and offer a novel and practical method to facilitate biosensing applications.

  7. Defining the flexibility window in ordered aluminosilicate zeolites

    PubMed Central

    Wells, Stephen A.; Leung, Ka Ming; Edwards, Peter P.; Tucker, Matt G.

    2017-01-01

    The flexibility window in zeolites was originally identified using geometric simulation as a hypothetical property of SiO2 systems. The existence of the flexibility window in hypothetical structures may help us to identify those we might be able to synthesize in the future. We have previously found that the flexibility window in silicates is connected to phase transitions under pressure, structure amorphization and other physical behaviours and phenomena. We here extend the concept to ordered aluminosilicate systems using softer ‘bar’ constraints that permit additional flexibility around aluminium centres. Our experimental investigation of pressure-induced amorphization in sodalites is consistent with the results of our modelling. The softer constraints allow us to identify a flexibility window in the anomalous case of goosecreekite. PMID:28989777

  8. Computational Control of Flexible Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Sharpe, Lonnie, Jr.; Shen, Ji Yao

    1994-01-01

    The main objective of this project is to establish a distributed parameter modeling technique for structural analysis, parameter estimation, vibration suppression and control synthesis of large flexible aerospace structures. This report concentrates on the research outputs produced in the last two years of the project. The main accomplishments can be summarized as follows. A new version of the PDEMOD Code had been completed. A theoretical investigation of the NASA MSFC two-dimensional ground-based manipulator facility by using distributed parameter modelling technique has been conducted. A new mathematical treatment for dynamic analysis and control of large flexible manipulator systems has been conceived, which may provide a embryonic form of a more sophisticated mathematical model for future modified versions of the PDEMOD Codes.

  9. 0-6621 : developing a mixture-based specification for flexible base.

    DOT National Transportation Integrated Search

    2012-08-01

    The Texas Department of Transportation : (TxDOT) currently utilizes Item 247, Flexible : Base, to specify a foundation course of flexible : base utilized in a pavement. Base materials are : not allowed to be used by the contractors until : the ...

  10. Kistler reusable vehicle facility design and operational approach

    NASA Astrophysics Data System (ADS)

    Fagan, D.; McInerney, F.; Johnston, C.; Tolson, B.

    Kistler Aerospace Corporation is designing and developing the K-1, the world's first fully reusable aerospace vehicle to deliver satellites into orbit. The K-1 vehicle test program will be conducted in Woomera, Australia, with commercial operations scheduled to begin shortly afterwards. Both stages of the K-1 will return to the launch site utilizing parachutes and airbags for a soft landing within 24 h after launch. The turnaround flow of the two stages will cycle from landing site to a maintenance/refurbishment facility and through the next launch in only 9 days. Payload processing will occur in a separate facility in parallel with recovery and refurbishment operations. The vehicle design and on-board checkout capability of the avionics system eliminates the need for an abundance of ground checkout equipment. Payload integration, vehicle assembly, and K-1 transport to the launch pad will be performed horizontally, simplifying processing and reducing infrastructure requirements. This simple, innovative, and cost-effective approach will allow Kistler to offer its customers flexible, low-cost, and on-demand launch services.

  11. A flexible and disposable battery powered by bacteria using eyeliner coated paper electrodes.

    PubMed

    Veerubhotla, Ramya; Das, Debabrata; Pradhan, Debabrata

    2017-08-15

    Herein, an environment friendly paper-based biobattery is demonstrated that yields a power of 12.5W/m 3 . Whatman filter papers were used not only as support for electrode fabrication but also as separator of the biobattery. To provide electrical conductivity to the paper-based cathode and anode, commercially available eyeliner containing carbon nanoparticles and Fe 3 O 4 was directly employed as conductive ink without any binder. With an instant start-up, the as-fabricated biocompatible electrodes could hold bacteria in an active form at the anode allowing chemical oxidation of organic fuel producing current. The facile process delineated here can be employed for the tailored electrode fabrication of various flexible energy harnessing devices. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Flexible collapse-resistant and length-stable vaccum hose

    DOEpatents

    Kashy, David H.

    2003-08-19

    A hose for containing a vacuum, which hose has an impermeable flexible tube capable of holding a vacuum and a braided or interwoven flexible interior wall, said wall providing support to said interior wall of said impermeable flexible tube. Optionally, an exterior braided or woven wall may be provided to the hose for protection or to allow the hose to be used as a pressure hose. The hose may delimit a vacuum space through which may travel a thermal transfer line containing, for example, cryogenic fluid.

  13. Facile and Reliable in Situ Polymerization of Poly(Ethyl Cyanoacrylate)-Based Polymer Electrolytes toward Flexible Lithium Batteries.

    PubMed

    Cui, Yanyan; Chai, Jingchao; Du, Huiping; Duan, Yulong; Xie, Guangwen; Liu, Zhihong; Cui, Guanglei

    2017-03-15

    Polycyanoacrylate is a very promising matrix for polymer electrolyte, which possesses advantages of strong binding and high electrochemical stability owing to the functional nitrile groups. Herein, a facile and reliable in situ polymerization strategy of poly(ethyl cyanoacrylate) (PECA) based gel polymer electrolytes (GPE) via a high efficient anionic polymerization was introduced consisting of PECA and 4 M LiClO 4 in carbonate solvents. The in situ polymerized PECA gel polymer electrolyte achieved an excellent ionic conductivity (2.7 × 10 -3 S cm -1 ) at room temperature, and exhibited a considerable electrochemical stability window up to 4.8 V vs Li/Li + . The LiFePO 4 /PECA-GPE/Li and LiNi 1.5 Mn 0.5 O 4 /PECA-GPE/Li batteries using this in-situ-polymerized GPE delivered stable charge/discharge profiles, considerable rate capability, and excellent cycling performance. These results demonstrated this reliable in situ polymerization process is a very promising strategy to prepare high performance polymer electrolytes for flexible thin-film batteries, micropower lithium batteries, and deformable lithium batteries for special purpose.

  14. Building 21st Century Schools: Designing Smarter, Sleeker High-Tech Facilities.

    ERIC Educational Resources Information Center

    Cutshall, Sandy

    2003-01-01

    The demand for high-tech programs in tandem with traditional classes challenges school districts to provide flexible facilities for career and technical education. Some districts partner with local businesses to develop state-of-the art facilities and deal with costs, upkeep, and upgrading. Some high-tech educational facilities are themselves…

  15. The dynamics of a flexible bladed disc on a flexible rotor in a two-rotor system

    NASA Technical Reports Server (NTRS)

    Gallardo, V. C.; Stallone, M. J.

    1984-01-01

    This paper describes the development of the analysis of the transient dynamic response of a bladed disk on a flexible rotor. The rotating flexible bladed disk is considered as a module in a complete turbine engine structure. The analysis of the flexible bladed disk (FBD) module is developed for the non-equilibrated one-diameter axial mode. The FBD motion is considered as a sum of two standing axial waves constrained to the rotor. The FBD is coupled inertially and gyroscopically to its rotor support, and indirectly through connecting elements, to the adjacent rotor and/or other supporting structures. Incorporated in the basic Turbine Engine Transient Response Analysis program (TETRA), the FBD module is demonstrated with a two-rotor model where the FBD can be excited into resonance by an unbalance in the adjacent rotor and at a frequency equal to the differential rotor speed. The FBD module also allows the analysis of two flexible bladed disks in the same rotor.

  16. Clean Air Markets - Allowances Query Wizard

    EPA Pesticide Factsheets

    The Allowances Query Wizard is part of a suite of Clean Air Markets-related tools that are accessible at http://camddataandmaps.epa.gov/gdm/index.cfm. The Allowances module allows the user to view allowance data associated with EPA's emissions trading programs. Allowance data can be specified and organized using the Allowance Query Wizard to find allowances information associated with specific accounts, companies, transactions, programs, facilities, representatives, allowance type, or by date. Quick Reports and Prepackaged Datasets are also available for data that are commonly requested.EPA's Clean Air Markets Division (CAMD) includes several market-based regulatory programs designed to improve air quality and ecosystems. The most well-known of these programs are EPA's Acid Rain Program and the NOx Programs, which reduce emissions of sulfur dioxide (SO2) and nitrogen oxides (NOx)-compounds that adversely affect air quality, the environment, and public health. CAMD also plays an integral role in the development and implementation of the Clean Air Interstate Rule (CAIR).

  17. Hierarchical porous graphene/polyaniline composite film with superior rate performance for flexible supercapacitors.

    PubMed

    Meng, Yuena; Wang, Kai; Zhang, Yajie; Wei, Zhixiang

    2013-12-23

    A highly flexible graphene free-standing film with hierarchical structure is prepared by a facile template method. With a porous structure, the film can be easily bent and cut, and forms a composite with another material as a scaffold. The 3D graphene film exhibits excellent rate capability and its capacitance is further improved by forming a composite with polyaniline nanowire arrays. The flexible hierarchical composite proves to be an excellent electrode material for flexible supercapacitors. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. A facile method for high yield synthesis of carbon nano onions for designing binder-free flexible supercapacitor

    NASA Astrophysics Data System (ADS)

    Mohapatra, Debananda; Badrayyana, Subramanya; Parida, Smrutiranjan

    2017-05-01

    Carbon nano onion (CNO) is a promising material for diverse application areas such as energy devices, catalysis, lubrication, biology and gas storage, etc. However, its implementation is fraught with the production of high-quality powders in bulk quantity. Herein, we report a facile scalable and one-step "wick-and-oil" flame synthesis of pure and water dispersible CNO nanopowder. Other forms of carbon did not contaminate the as-prepared CNO; hence, a post processing purification procedure was not necessary. Brunauer Emmett Teller (BET) specific surface area of as-prepared CNO was 218 m2/g, which is higher as compared to other reported flame synthesis methods. Locally available daily used cotton wipe has been used for fabrication of such an ideal electrode by "dipping and drying" process providing outstanding strechability and mechanical flexibility with strong adhesion between CNOs and porous wipe. The specific capacitance 102.16 F/g, energy density 14.18 Wh/kg and power density 2448 W/kg at 20 mV/s scan rate are the highest values that ever recorded and reported so far in symmetrical two electrode cell configuration with 1M Na2SO4 electrolyte; indicating a very good synthesis conditions employed with optimum pore size in agreement with electrolyte ion size. This free standing CNOs electrode also showed an excellent cyclic performance and stability retaining 95% original capacity after 5000 charge -discharge cycles. Simple preparation of high-purity CNOs and excellent electrochemical behavior of functionalized CNOs make them a promising electrode material for supercapacitor applications. Furthermore, this unique method not only affords binder free - freestanding electrode, but also provide a general way of fabricating such multifunctional promising CNOs based nanocomposites for their potential device applications in flexible solar cells and lithium ion batteries.

  19. The Family, Flexible Work and Social Cohesion at Risk.

    ERIC Educational Resources Information Center

    Carnoy, Martin

    1999-01-01

    Because of women's increased participation in the labor market, there is an increasing pressure on families. Women are expected to provide stability, focus on child development, and bolster colleagues against unemployment and retraining, whereas society is expected to provide child care facilities and flexible education. (JOW)

  20. Can flexibility help you float?

    NASA Astrophysics Data System (ADS)

    Burton, L. J.; Bush, J. W. M.

    2012-10-01

    We consider the role of flexibility in the weight-bearing characteristics of bodies floating at an interface. Specifically, we develop a theoretical model for a two-dimensional thin floating plate that yields the maximum stable plate load and optimal stiffness for weight support. Plates small relative to the capillary length are primarily supported by surface tension, and their weight-bearing potential does not benefit from flexibility. Above a critical size comparable to the capillary length, flexibility assists interfacial flotation. For plates on the order of and larger than the capillary length, deflection from an initially flat shape increases the force resulting from hydrostatic pressure, allowing the plate to support a greater load. In this large plate limit, the shape that bears the most weight is a semicircle, which displaces the most fluid above the plate for a fixed plate length. Exact results for maximum weight-bearing plate shapes are compared to analytic approximations made in the limits of large and small plate sizes. The value of flexibility for floating to a number of biological organisms is discussed in light of our study.

  1. Direct Laser Writing of Porous-Carbon/Silver Nanocomposite for Flexible Electronics.

    PubMed

    Rahimi, Rahim; Ochoa, Manuel; Ziaie, Babak

    2016-07-06

    In this Research Article, we demonstrate a facile method for the fabrication of porous-carbon/silver nanocomposites using direct laser writing on polymeric substrates. Our technique uses a combination of CO2 laser-induced carbonization and selective silver deposition on a polyimide sheet to create flexible highly conductive traces. The localized laser irradiation selectively converts the polyimide to a highly porous and conductive carbonized film with superhydrophilic wettability. The resulting pattern allows for selective trapping of aqueous silver ionic ink solutions into the carbonized regions, which are converted to silver nanoparticle fillers upon an annealing step. Elemental and surface morphology analysis via XRD and SEM reveals a uniform coating of Ag nanoparticles on the porous carbon. The Ag/C composite lowers the sheet resistance of the original laser carbonized polyimide from 50 to 0.02 Ω/□. The resulting patterns are flexible and electromechanically robust with less than 0.6 Ω variation in resistance after >15000 bending flexion cycles at a radius of curvature of 5 mm. Furthermore, using this technique, we demonstrate the fabrication of a wireless resonant pressure sensor capable of detecting pressures ranging from 0 to 97 kPa with an average sensitivity of -26 kHz/kPa.

  2. Abrasion-Resistant Coating for Flexible Insulation

    NASA Technical Reports Server (NTRS)

    Mui, D.; Headding, R. E.

    1986-01-01

    Ceramic coating increases durability and heat resistance of flexible high-temperature insulation. Coating compatible with quartz-fabric insulation allowing it to remain flexible during and after repeated exposures to temperatures of 1,800 degree F (982 degree C). Prevents fabric from becoming brittle while increasing resistance to aerodynamic abrasion and loading. Coating consists of penetrating precoat and topcoat. Major ingredients high-purity colloidal silica binder and ground silica filler, which ensure stability and compatibility with fabric at high temperatures. Both precoat and topcoat cured at room temperature.

  3. Flexible sequential designs for multi-arm clinical trials.

    PubMed

    Magirr, D; Stallard, N; Jaki, T

    2014-08-30

    Adaptive designs that are based on group-sequential approaches have the benefit of being efficient as stopping boundaries can be found that lead to good operating characteristics with test decisions based solely on sufficient statistics. The drawback of these so called 'pre-planned adaptive' designs is that unexpected design changes are not possible without impacting the error rates. 'Flexible adaptive designs' on the other hand can cope with a large number of contingencies at the cost of reduced efficiency. In this work, we focus on two different approaches for multi-arm multi-stage trials, which are based on group-sequential ideas, and discuss how these 'pre-planned adaptive designs' can be modified to allow for flexibility. We then show how the added flexibility can be used for treatment selection and sample size reassessment and evaluate the impact on the error rates in a simulation study. The results show that an impressive overall procedure can be found by combining a well chosen pre-planned design with an application of the conditional error principle to allow flexible treatment selection. Copyright © 2014 John Wiley & Sons, Ltd.

  4. 42 CFR 413.89 - Bad debts, charity, and courtesy allowances.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... SERVICES; OPTIONAL PROSPECTIVELY DETERMINED PAYMENT RATES FOR SKILLED NURSING FACILITIES Specific... allowable costs. (e) Criteria for allowable bad debt. A bad debt must meet the following criteria to be... amount of allowable bad debt (as defined in paragraph (e) of this section) is reduced: (i) For cost...

  5. 42 CFR 413.89 - Bad debts, charity, and courtesy allowances.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... SERVICES; OPTIONAL PROSPECTIVELY DETERMINED PAYMENT RATES FOR SKILLED NURSING FACILITIES Specific... allowable costs. (e) Criteria for allowable bad debt. A bad debt must meet the following criteria to be... amount of allowable bad debt (as defined in paragraph (e) of this section) is reduced: (i) For cost...

  6. Wearable and flexible electronics for continuous molecular monitoring.

    PubMed

    Yang, Yiran; Gao, Wei

    2018-04-03

    Wearable biosensors have received tremendous attention over the past decade owing to their great potential in predictive analytics and treatment toward personalized medicine. Flexible electronics could serve as an ideal platform for personalized wearable devices because of their unique properties such as light weight, low cost, high flexibility and great conformability. Unlike most reported flexible sensors that mainly track physical activities and vital signs, the new generation of wearable and flexible chemical sensors enables real-time, continuous and fast detection of accessible biomarkers from the human body, and allows for the collection of large-scale information about the individual's dynamic health status at the molecular level. In this article, we review and highlight recent advances in wearable and flexible sensors toward continuous and non-invasive molecular analysis in sweat, tears, saliva, interstitial fluid, blood, wound exudate as well as exhaled breath. The flexible platforms, sensing mechanisms, and device and system configurations employed for continuous monitoring are summarized. We also discuss the key challenges and opportunities of the wearable and flexible chemical sensors that lie ahead.

  7. Flexible Biomanufacturing Processes that Address the Needs of the Future.

    PubMed

    Diel, Bernhard; Manzke, Christian; Peuker, Thorsten

    2014-01-01

    : As the age of the blockbuster drug recedes, the business model for the biopharmaceutical industry is evolving at an ever-increasing pace. The personalization of medicine, the emergence of biosimilars and biobetters, and the need to provide vaccines globally are just some of the factors forcing biomanufacturers to rethink how future manufacturing capability is implemented. One thing is clear: the traditional manufacturing strategy of constructing large-scale, purpose-built, capital-intensive facilities will no longer meet the industry's emerging production and economic requirements. Therefore, the authors of this chapter describe the new approach for designing and implementing flexible production processes for monoclonal antibodies and focus on the points to consider as well as the lessons learned from past experience in engineering such systems. A conceptual integrated design is presented that can be used as a blueprint for next-generation biomanufacturing facilities. In addition, this chapter discusses the benefits of the new approach with respect to flexibility, cost, and schedule. The concept presented here can be applied to other biopharmaceutical manufacturing processes and facilities, including-but not limited to-vaccine manufacturing, multiproduct and/or multiprocess capability, clinical manufacturing, and so on.

  8. Stretchable and semitransparent conductive hybrid hydrogels for flexible supercapacitors.

    PubMed

    Hao, Guang-Ping; Hippauf, Felix; Oschatz, Martin; Wisser, Florian M; Leifert, Annika; Nickel, Winfried; Mohamed-Noriega, Nasser; Zheng, Zhikun; Kaskel, Stefan

    2014-07-22

    Conductive polymers showing stretchable and transparent properties have received extensive attention due to their enormous potential in flexible electronic devices. Here, we demonstrate a facile and smart strategy for the preparation of structurally stretchable, electrically conductive, and optically semitransparent polyaniline-containing hybrid hydrogel networks as electrode, which show high-performances in supercapacitor application. Remarkably, the stability can extend up to 35,000 cycles at a high current density of 8 A/g, because of the combined structural advantages in terms of flexible polymer chains, highly interconnected pores, and excellent contact between the host and guest functional polymer phase.

  9. Protein Flexibility Facilitates Quaternary Structure Assembly and Evolution

    PubMed Central

    Marsh, Joseph A.; Teichmann, Sarah A.

    2014-01-01

    The intrinsic flexibility of proteins allows them to undergo large conformational fluctuations in solution or upon interaction with other molecules. Proteins also commonly assemble into complexes with diverse quaternary structure arrangements. Here we investigate how the flexibility of individual protein chains influences the assembly and evolution of protein complexes. We find that flexibility appears to be particularly conducive to the formation of heterologous (i.e., asymmetric) intersubunit interfaces. This leads to a strong association between subunit flexibility and homomeric complexes with cyclic and asymmetric quaternary structure topologies. Similarly, we also observe that the more nonhomologous subunits that assemble together within a complex, the more flexible those subunits tend to be. Importantly, these findings suggest that subunit flexibility should be closely related to the evolutionary history of a complex. We confirm this by showing that evolutionarily more recent subunits are generally more flexible than evolutionarily older subunits. Finally, we investigate the very different explorations of quaternary structure space that have occurred in different evolutionary lineages. In particular, the increased flexibility of eukaryotic proteins appears to enable the assembly of heteromeric complexes with more unique components. PMID:24866000

  10. RosettaRemodel: A Generalized Framework for Flexible Backbone Protein Design

    PubMed Central

    Huang, Po-Ssu; Ban, Yih-En Andrew; Richter, Florian; Andre, Ingemar; Vernon, Robert; Schief, William R.; Baker, David

    2011-01-01

    We describe RosettaRemodel, a generalized framework for flexible protein design that provides a versatile and convenient interface to the Rosetta modeling suite. RosettaRemodel employs a unified interface, called a blueprint, which allows detailed control over many aspects of flexible backbone protein design calculations. RosettaRemodel allows the construction and elaboration of customized protocols for a wide range of design problems ranging from loop insertion and deletion, disulfide engineering, domain assembly, loop remodeling, motif grafting, symmetrical units, to de novo structure modeling. PMID:21909381

  11. Highly flexible, all solid-state micro-supercapacitors from vertically aligned carbon nanotubes.

    PubMed

    Hsia, Ben; Marschewski, Julian; Wang, Shuang; In, Jung Bin; Carraro, Carlo; Poulikakos, Dimos; Grigoropoulos, Costas P; Maboudian, Roya

    2014-02-07

    We report a highly flexible planar micro-supercapacitor with interdigitated finger electrodes of vertically aligned carbon nanotubes (VACNTs). The planar electrode structures are patterned on a thin polycarbonate substrate with a facile, maskless laser-assisted dry transfer method. Sputtered Ni is used to reduce the in-plane resistance of the VACNT electrodes. An ionogel, an ionic liquid in a semi-solid matrix, is used as an electrolyte to form a fully solid-state device. We measure a specific capacitance of 430 μF cm(-2) for a scan rate of 0.1 V s(-1) and achieve rectangular cyclic voltammograms at high scan rates of up to 100 V s(-1). Minimal change in capacitance is observed under bending. Mechanical fatigue tests with more than 1000 cycles confirm the high flexibility and durability of the novel material combination chosen for this device. Our results indicate that this scalable and facile fabrication technique shows promise for application in integrated energy storage for all solid-state flexible microdevices.

  12. Unsteady transonic potential flow over a flexible fuselage

    NASA Technical Reports Server (NTRS)

    Gibbons, Michael D.

    1993-01-01

    A flexible fuselage capability has been developed and implemented within version 1.2 of the CAP-TSD code. The capability required adding time dependent terms to the fuselage surface boundary conditions and the fuselage surface pressure coefficient. The new capability will allow modeling the effect of a flexible fuselage on the aeroelastic stability of complex configurations. To assess the flexible fuselage capability several steady and unsteady calculations have been performed for slender fuselages with circular cross-sections. Steady surface pressures are compared with experiment at transonic flight conditions. Unsteady cross-sectional lift is compared with other analytical results at a low subsonic speed and a transonic case has been computed. The comparisons demonstrate the accuracy of the flexible fuselage modifications.

  13. Flexible Work Hours and Other Job Factors in Parental Time with Children

    ERIC Educational Resources Information Center

    Baxter, Jennifer

    2011-01-01

    Flexible working hours are typically seen to be advantageous to working parents, as the flexible hours more easily allow responsibilities of care and employment be balanced. But do flexible work hours actually mean that parents can spend more time with their children? This article explores this for parents of young children in Australia. The…

  14. Evaluation of the flexibility of protective gloves.

    PubMed

    Harrabi, Lotfi; Dolez, Patricia I; Vu-Khanh, Toan; Lara, Jaime

    2008-01-01

    Two mechanical methods have been developed for the characterization of the flexibility of protective gloves, a key factor affecting their degree of usefulness for workers. The principle of the first method is similar to the ASTM D 4032 standard relative to fabric stiffness and simulates the deformations encountered by gloves that are not tight fitted to the hand. The second method characterizes the flexibility of gloves that are worn tight fitted. Its validity was theoretically verified for elastomer materials. Both methods should prove themselves as valuable tools for protective glove manufacturers, allowing for the characterization of their existing products in terms of flexibility and the development of new ones better fitting workers' needs.

  15. Highly Conductive Transparent and Flexible Electrodes Including Double-Stacked Thin Metal Films for Transparent Flexible Electronics.

    PubMed

    Han, Jun Hee; Kim, Do-Hong; Jeong, Eun Gyo; Lee, Tae-Woo; Lee, Myung Keun; Park, Jeong Woo; Lee, Hoseung; Choi, Kyung Cheol

    2017-05-17

    To keep pace with the era of transparent and deformable electronics, electrode functions should be improved. In this paper, an innovative structure is suggested to overcome the trade-off between optical and electrical properties that commonly arises with transparent electrodes. The structure of double-stacked metal films showed high conductivity (<3 Ω/sq) and high transparency (∼90%) simultaneously. A proper space between two metal films led to high transmittance by an optical phenomenon. The principle of parallel connection allowed the electrode to have high conductivity. In situ fabrication was possible because the only materials composing the electrode were silver and WO 3 , which can be deposited by thermal evaporation. The electrode was flexible enough to withstand 10 000 bending cycles with a 1 mm bending radius. Furthermore, a few μm scale patterning of the electrode was easily implemented by using photolithography, which is widely employed industrially for patterning. Flexible organic light-emitting diodes and a transparent flexible thin-film transistor were successfully fabricated with the proposed electrode. Various practical applications of this electrode to new transparent flexible electronics are expected.

  16. Flexible, planar-integrated, all-solid-state fiber supercapacitors with an enhanced distributed-capacitance effect.

    PubMed

    Liu, Bin; Tan, Dongsheng; Wang, Xianfu; Chen, Di; Shen, Guozhen

    2013-06-10

    Flexible and highly efficient energy storage units act as one of the key components in portable electronics. In this work, by planar-integrated assembly of hierarchical ZnCo₂O₄ nanowire arrays/carbon fibers electrodes, a new class of flexible all-solid-state planar-integrated fiber supercapacitors are designed and produced via a low-cost and facile method. The as-fabricated flexible devices exhibit high-efficiency, enhanced capacity, long cycle life, and excellent electrical stability. An enhanced distributed-capacitance effect is experimentally observed for the device. This strategy enables highly flexible new structured supercapacitors with maximum functionality and minimized size, thus making it possible to be readily applied in flexible/portable photoelectronic devices. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Highlights of experience with a flexible walled test section in the NASA Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen W. D.; Ray, Edward J.

    1988-01-01

    The unique combination of adaptive wall technology with a contonuous flow cryogenic wind tunnel is described. This powerful combination allows wind tunnel users to carry out 2-D tests at flight Reynolds numbers with wall interference essentially eliminated. Validation testing was conducted to support this claim using well tested symmetrical and cambered airfoils at transonic speeds and high Reynolds numbers. The test section hardware has four solid walls, with the floor and ceiling flexible. The method of adapting/shaping the floor and ceiling to eliminate top and bottom wall interference at its source is outlined. Data comparisons for different size models tested and others in several sophisticated 2-D wind tunnels are made. In addition, the effects of Reynolds number, testing at high lift with associated large flexible wall movements, the uniqueness of the adapted wall shapes, and the effects of sidewall boundary layer control are examined. The 0.3-m TCT is now the most advanced 2-D research facility anywhere.

  18. Sensitive and Flexible Polymeric Strain Sensor for Accurate Human Motion Monitoring

    PubMed Central

    Khan, Hassan; Kottapalli, Ajay; Asadnia, Mohsen

    2018-01-01

    Flexible electronic devices offer the capability to integrate and adapt with human body. These devices are mountable on surfaces with various shapes, which allow us to attach them to clothes or directly onto the body. This paper suggests a facile fabrication strategy via electrospinning to develop a stretchable, and sensitive poly (vinylidene fluoride) nanofibrous strain sensor for human motion monitoring. A complete characterization on the single PVDF nano fiber has been performed. The charge generated by PVDF electrospun strain sensor changes was employed as a parameter to control the finger motion of the robotic arm. As a proof of concept, we developed a smart glove with five sensors integrated into it to detect the fingers motion and transfer it to a robotic hand. Our results shows that the proposed strain sensors are able to detect tiny motion of fingers and successfully run the robotic hand. PMID:29389851

  19. Flexible ultrasonic pipe inspection apparatus

    DOEpatents

    Jenkins, C.F.; Howard, B.D.

    1998-06-23

    A flexible, modular ultrasonic pipe inspection apparatus, comprises a flexible, hollow shaft that carries a plurality of modules, including at least one rotatable ultrasonic transducer, a motor/gear unit, and a position/signal encoder. The modules are connected by flexible knuckle joints that allow each module of the apparatus to change its relative orientation with respect to a neighboring module, while the shaft protects electrical wiring from kinking or buckling while the apparatus moves around a tight corner. The apparatus is moved through a pipe by any suitable means, including a tether or drawstring attached to the nose or tail, differential hydraulic pressure, or a pipe pig. The rotational speed of the ultrasonic transducer and the forward velocity of the apparatus are coordinated so that the beam sweeps out the entire interior surface of the pipe, enabling the operator to accurately assess the condition of the pipe wall and determine whether or not leak-prone corrosion damage is present. 7 figs.

  20. Flexible ultrasonic pipe inspection apparatus

    DOEpatents

    Jenkins, Charles F.; Howard, Boyd D.

    1998-01-01

    A flexible, modular ultrasonic pipe inspection apparatus, comprising a flexible, hollow shaft that carries a plurality of modules, including at least one rotatable ultrasonic transducer, a motor/gear unit, and a position/signal encoder. The modules are connected by flexible knuckle joints that allow each module of the apparatus to change its relative orientation with respect to a neighboring module, while the shaft protects electrical wiring from kinking or buckling while the apparatus moves around a tight corner. The apparatus is moved through a pipe by any suitable means, including a tether or drawstring attached to the nose or tail, differential hydraulic pressure, or a pipe pig. The rotational speed of the ultrasonic transducer and the forward velocity of the apparatus are coordinated so that the beam sweeps out the entire interior surface of the pipe, enabling the operator to accurately assess the condition of the pipe wall and determine whether or not leak-prone corrosion damage is present.

  1. Polymer-metal hybrid transparent electrodes for flexible electronics

    NASA Astrophysics Data System (ADS)

    Kang, Hongkyu; Jung, Suhyun; Jeong, Soyeong; Kim, Geunjin; Lee, Kwanghee

    2015-03-01

    Despite nearly two decades of research, the absence of ideal flexible and transparent electrodes has been the largest obstacle in realizing flexible and printable electronics for future technologies. Here we report the fabrication of ‘polymer-metal hybrid electrodes’ with high-performance properties, including a bending radius <1 mm, a visible-range transmittance>95% and a sheet resistance <10 Ω sq-1. These features arise from a surface modification of the plastic substrates using an amine-containing nonconjugated polyelectrolyte, which provides ideal metal-nucleation sites with a surface-density on the atomic scale, in combination with the successive deposition of a facile anti-reflective coating using a conducting polymer. The hybrid electrodes are fully functional as universal electrodes for high-end flexible electronic applications, such as polymer solar cells that exhibit a high power conversion efficiency of 10% and polymer light-emitting diodes that can outperform those based on transparent conducting oxides.

  2. Polymer-metal hybrid transparent electrodes for flexible electronics

    PubMed Central

    Kang, Hongkyu; Jung, Suhyun; Jeong, Soyeong; Kim, Geunjin; Lee, Kwanghee

    2015-01-01

    Despite nearly two decades of research, the absence of ideal flexible and transparent electrodes has been the largest obstacle in realizing flexible and printable electronics for future technologies. Here we report the fabrication of ‘polymer-metal hybrid electrodes’ with high-performance properties, including a bending radius <1 mm, a visible-range transmittance>95% and a sheet resistance <10 Ω sq−1. These features arise from a surface modification of the plastic substrates using an amine-containing nonconjugated polyelectrolyte, which provides ideal metal-nucleation sites with a surface-density on the atomic scale, in combination with the successive deposition of a facile anti-reflective coating using a conducting polymer. The hybrid electrodes are fully functional as universal electrodes for high-end flexible electronic applications, such as polymer solar cells that exhibit a high power conversion efficiency of 10% and polymer light-emitting diodes that can outperform those based on transparent conducting oxides. PMID:25790133

  3. Cryogenic Controls for Fermilab's Srf Cavities and Test Facility

    NASA Astrophysics Data System (ADS)

    Norris, B.; Bossert, R.; Klebaner, A.; Lackey, S.; Martinez, A.; Pei, L.; Soyars, W.; Sirotenko, V.

    2008-03-01

    A new superconducting radio frequency (SRF) cavities test facility is now operational at Fermilab's Meson Detector Building (MDB). The Cryogenic Test Facility (CTF), located in a separate building 500 m away, supplies the facility with cryogens. The design incorporates ambient temperature pumping for superfluid helium production, as well as three 0.6 kW at 4.5 K refrigerators, five screw compressors, a helium purifier, helium and nitrogen inventory, cryogenic distribution system, and a variety of test cryostats. To control and monitor the vastly distributed cryogenic system, a flexible scheme has been developed. Both commercial and experimental physics tools are used. APACS+™, a process automation control system from Siemens-Moore, is at the heart of the design. APACS+™ allows engineers to configure an ever evolving test facility while maintaining control over the plant and distribution system. APACS+™ nodes at CTF and MDB are coupled by a fiber optic network. DirectLogic205 PLCs by KOYO® are used as the field level interface to most I/O. The top layer of this system uses EPICS (Experimental Physics and Industrial Control System) as a SCADA/HMI. Utilities for graphical display, control loop setting, real time/historical plotting and alarming have been implemented by using the world-wide library of applications for EPICS. OPC client/server technology is used to bridge across each different platform. This paper presents this design and its successful implementation.

  4. Flexible working hours and well-being in Finland.

    PubMed

    Kandolin, I; Härmä, M; Toivanen, M

    2001-12-01

    Flexibility of working hours became more prevalent in the 1990s in Finland. According to a representative survey on Finnish wage and salary earners (n = 1790) at the beginning of 2000, a great majority of male (76%) and female (65%) employees regularly worked overtime and/or had irregular working hours every month. These employees were flexible in meeting the needs of their companies/employers. Individual flexibility of working hours was far less common, only one third of male and female employees were able to regulate their working hours. A better balance between company-controlled and individual flexibility would, however, improve the well-being of employees. Employees working overtime without being allowed to regulate their working hours felt more symptoms of distress and had more conflicts in combining workplace and family roles than those who could individually determine their working hours flexibly. An investment in individually determined flexibility, for example by means of participatory planning, would improve the well-being of employees, and thus also improve the productivity of the organization.

  5. Flexible pipe crawling device having articulated two axis coupling

    DOEpatents

    Zollinger, William T.

    1994-01-01

    An apparatus for moving through the linear and non-linear segments of piping systems. The apparatus comprises a front leg assembly, a rear leg assembly, a mechanism for extension and retraction of the front and rear leg assembles with respect to each other, such as an air cylinder, and a pivoting joint. One end of the flexible joint attaches to the front leg assembly and the other end to the air cylinder, which is also connected to the rear leg assembly. The air cylinder allows the front and rear leg assemblies to progress through a pipe in "inchworm" fashion, while the joint provides the flexibility necessary for the pipe crawler to negotiate non-linear piping segments. The flexible connecting joint is coupled with a spring-force suspension system that urges alignment of the front and rear leg assemblies with respect to each other. The joint and suspension system cooperate to provide a firm yet flexible connection between the front and rear leg assemblies to allow the pivoting of one with respect to the other while moving around a non-linear pipe segment, but restoring proper alignment coming out of the pipe bend.

  6. Flexible pipe crawling device having articulated two axis coupling

    DOEpatents

    Zollinger, W.T.

    1994-05-10

    An apparatus is described for moving through the linear and non-linear segments of piping systems. The apparatus comprises a front leg assembly, a rear leg assembly, a mechanism for extension and retraction of the front and rear leg assembles with respect to each other, such as an air cylinder, and a pivoting joint. One end of the flexible joint attaches to the front leg assembly and the other end to the air cylinder, which is also connected to the rear leg assembly. The air cylinder allows the front and rear leg assemblies to progress through a pipe in inchworm' fashion, while the joint provides the flexibility necessary for the pipe crawler to negotiate non-linear piping segments. The flexible connecting joint is coupled with a spring-force suspension system that urges alignment of the front and rear leg assemblies with respect to each other. The joint and suspension system cooperate to provide a firm yet flexible connection between the front and rear leg assemblies to allow the pivoting of one with respect to the other while moving around a non-linear pipe segment, but restoring proper alignment coming out of the pipe bend. 4 figures.

  7. How Common is Common Use Facilities at Airports

    NASA Astrophysics Data System (ADS)

    Barbeau, Addison D.

    This study looked at common use airports across the country and at the implementation of common use facailities at airports. Common use consists of several elements that maybe installed at an airport. One of the elements is the self-service kiosks that allow passengers to have a faster check-in process, therefore moving them more quickly within the airport. Another element is signage and the incorporation of each airline's logo. Another aspect of common useis an airport regaining control of terminal gates by reducing the number of gates that are exclusively leased to a specific air carrier. This research focused on the current state of the common use facilities across the United States and examines the advantages and disadvantages of this approach. The research entailed interviews with personnel at a wide range of airports and found that each airport is in a different stage of implementation; some have fully implemented the common use concept while others are in the beginning stages of implementation. The questions were tailored to determine what the advantages and disadvantages are of a common use facility. The most common advantages reported included flexibility and cost. In the commom use system the airport reserves the right to move any airline to a different gate at any time for any reason. In turn, this helps reduce gates delays at that facility. For the airports that were interviewed no major disadvantages were reported. One down side of common use facilities for the airport involved is the major capital cost that is required to move to a common use system.

  8. Flexible working motivates all staff.

    PubMed

    2001-04-01

    A recent survey has demolished the myth that work-life balance is only of interest to women with children. The survey, commissioned by Lloyds TSB on behalf of the Employers for Work Life Balance organisation, shows that young workers and men are equally interested in flexible working arrangements that allow them to pursue interests outside of work.

  9. Communication satellites to enter a new age of flexibility

    NASA Astrophysics Data System (ADS)

    Balty, Cédric; Gayrard, Jean-Didier; Agnieray, Patrick

    2009-07-01

    To cope with the economical and technical evolutions of the communication market and to better compete with or complement terrestrial networks, satellite operators are requiring more flexible satellites. It allows a better fleet planning potential and back-up policy, a more standardized and efficient procurement process, mission adaptation to market evolution and the possibility of early entry in new markets. New technologies that are developed either for terrestrial networks or for space defense applications would become soon available to satellite and equipment manufacturers. A skilful mix of these new technologies with the older and more mature ones should boost satellite performances and bring flexibility to the new generation of communication satellites. This paper reviews the economical and technical environment of the space communication business for the next decade. It identifies the needs and levels of flexibility that are required by the market but also allowed by technologies, in both a top-down and bottom-up approach.

  10. Turning Potential Flexibility Into Flexible Performance: Moderating Effect of Self-Efficacy and Use of Flexible Cognition

    PubMed Central

    Liu, Ru-De; Wang, Jia; Star, Jon R.; Zhen, Rui; Jiang, Rong-Huan; Fu, Xin-Chen

    2018-01-01

    This study examined the relationship between two types of mathematical flexibility – potential flexibility, which indicates individuals’ knowledge of multiple strategies and strategy efficiency, and practical flexibility, which refers to individuals’ flexible performances when solving math problems. Both types of flexibility were assessed in the domain of linear equation solving. Furthermore, two types of beliefs – self-efficacy and use of flexible cognition (UFC) – were investigated as potential moderators between potential and practical flexibility. 121 8th grade students from China took part in this study. Results indicate that potential flexibility positively predicted practical flexibility. Additionally, self-efficacy and UFC might moderate the relationship between these two types of flexibility, suggesting that potential flexibility may lead to different degrees of practical flexibility depending on different levels of beliefs. Implications of these findings for research on mathematical flexibility and for educational practice are discussed. PMID:29780344

  11. Carbon nanotubes/holey graphene hybrid film as binder-free electrode for flexible supercapacitors.

    PubMed

    Deng, Lingjuan; Gu, Yuanzi; Gao, Yihong; Ma, Zhanying; Fan, Guang

    2017-05-15

    The practical application of graphene (GR) has still been hindered because of its unsatisfied physical and chemical properties resulting from the irreversible agglomerates. Preparation of GR-based materials with designed porosities is essential for its practical application. In this work, a facile and scalable method is developed to synthesize carbon nanotubes/holey graphene (CNT/HGR) flexible film using functional CNT and HGR as precursors. Owing to the existence of the small amount CNT, the CNT-5/HGR flexible film with a 3D conductive interpenetrated architecture exhibit significantly improved ion diffusion rate compared to that of the HGR. Moreover, CNT-5/HGR flexible film can be used as binder-free supercapacitor electrodes with ultrahigh specific capacitances of 268Fg -1 , excellent rate capabilities, and superior cycling stabilities. CNT-5/HGR flexible film could be used to fabricate high-performance flexible supercapacitors electrodes. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Genesis of a flexible turning center

    NASA Astrophysics Data System (ADS)

    Sanclemente, Paul; French, Robert D.

    GE - Aircraft Engines has designed, built, and is operating a flexible turning center for jet engine hardware. Although the plant is in the forefront of manufacturing technology development, it was intended from the start to be a production facility. So while there was much to learn from being involved in all phases of the project, meeting production schedules was, and is, key to its success. This paper reviews the early history of the project and ends with a view of its recent production status.

  13. Graphene-based flexible and stretchable thin film transistors.

    PubMed

    Yan, Chao; Cho, Jeong Ho; Ahn, Jong-Hyun

    2012-08-21

    Graphene has been attracting wide attention owing to its superb electronic, thermal and mechanical properties. These properties allow great applications in the next generation of optoelectronics, where flexibility and stretchability are essential. In this context, the recent development of graphene growth/transfer and its applications in field-effect transistors are involved. In particular, we provide a detailed review on the state-of-the-art of graphene-based flexible and stretchable thin film transistors. We address the principles of fabricating high-speed graphene analog transistors and the key issues of producing an array of graphene-based transistors on flexible and stretchable substrates. It provides a platform for future work to focus on understanding and realizing high-performance graphene-based transistors.

  14. Nanoparticle Selective Laser Processing for a Flexible Display Fabrication

    NASA Astrophysics Data System (ADS)

    Seung Hwan Ko,; Heng Pan,; Daeho Lee,; Costas P. Grigoropoulos,; Hee K. Park,

    2010-05-01

    To demonstrate a first step for a novel fabrication method of a flexible display, nanomaterial based laser processing schemes to demonstrate organic light emitting diode (OLED) pixel transfer and organic field effect transistor (OFET) fabrication on a polymer substrate without using any conventional vacuum or photolithography processes were developed. The unique properties of nanomaterials allow laser induced forward transfer of organic light emitting material at low laser energy while maintaining good fluorescence and also allow high resolution transistor electrode patterning at plastic compatible low temperature. These novel processes enable an environmentally friendly and cost effective process as well as a low temperature manufacturing sequence to realize inexpensive, large area, flexible electronics on polymer substrates.

  15. Rapid Stencil Mask Fabrication Enabled One-Step Polymer-Free Graphene Patterning and Direct Transfer for Flexible Graphene Devices

    PubMed Central

    Yong, Keong; Ashraf, Ali; Kang, Pilgyu; Nam, SungWoo

    2016-01-01

    We report a one-step polymer-free approach to patterning graphene using a stencil mask and oxygen plasma reactive-ion etching, with a subsequent polymer-free direct transfer for flexible graphene devices. Our stencil mask is fabricated via a subtractive, laser cutting manufacturing technique, followed by lamination of stencil mask onto graphene grown on Cu foil for patterning. Subsequently, micro-sized graphene features of various shapes are patterned via reactive-ion etching. The integrity of our graphene after patterning is confirmed by Raman spectroscopy. We further demonstrate the rapid prototyping capability of a stretchable, crumpled graphene strain sensor and patterned graphene condensation channels for potential applications in sensing and heat transfer, respectively. We further demonstrate that the polymer-free approach for both patterning and transfer to flexible substrates allows the realization of cleaner graphene features as confirmed by water contact angle measurements. We believe that our new method promotes rapid, facile fabrication of cleaner graphene devices, and can be extended to other two dimensional materials in the future. PMID:27118249

  16. Flexibility.

    ERIC Educational Resources Information Center

    Humphrey, L. Dennis

    1981-01-01

    Flexibility is an important aspect of all sports and recreational activities. Flexibility can be developed and maintained by stretching exercises. Exercises designed to develop flexibility in ankle joints, knees, hips, and the lower back are presented. (JN)

  17. Behavioral Flexibility and Response Selection Are Impaired after Limited Exposure to Oxycodone

    ERIC Educational Resources Information Center

    Seip-Cammack, Katharine M.; Shapiro, Matthew L.

    2014-01-01

    Behavioral flexibility allows individuals to adapt to situations in which rewards and goals change. Potentially addictive drugs may impair flexible decision-making by altering brain mechanisms that compute reward expectancies, thereby facilitating maladaptive drug use. To investigate this hypothesis, we tested the effects of oxycodone exposure on…

  18. A strong and flexible electronic vessel for real-time monitoring of temperature, motions and flow.

    PubMed

    Zhang, Wei; Hou, Chengyi; Li, Yaogang; Zhang, Qinghong; Wang, Hongzhi

    2017-11-23

    Flexible and multifunctional sensors that continuously detect physical information are urgently required to fabricate wearable materials for health monitoring. This study describes the fabrication and performance of a strong and flexible vessel-like sensor. This electronic vessel consists of a self-supported braided cotton hose substrate, single-walled carbon nanotubes (SWCNTs)/ZnO@polyvinylidene fluoride (PVDF) function arrays and a flexible PVDF function fibrous membrane, and it possesses high mechanical property and accurate physical sensing. The rationally designed tubular structure facilities the detection of the applied temperature and strain and the frequency, pressure, and temperature of pulsed fluids. Therefore, the flexible electronic vessel holds promising potential for applications in wearable or implantable materials for the monitoring of health.

  19. Examining Increased Flexibility in Assessment Formats

    ERIC Educational Resources Information Center

    Irwin, Brian; Hepplestone, Stuart

    2012-01-01

    There have been calls in the literature for changes to assessment practices in higher education, to increase flexibility and give learners more control over the assessment process. This article explores the possibilities of allowing student choice in the format used to present their work, as a starting point for changing assessment, based on…

  20. Apollo experience report: Real-time auxiliary computing facility development

    NASA Technical Reports Server (NTRS)

    Allday, C. E.

    1972-01-01

    The Apollo real time auxiliary computing function and facility were an extension of the facility used during the Gemini Program. The facility was expanded to include support of all areas of flight control, and computer programs were developed for mission and mission-simulation support. The scope of the function was expanded to include prime mission support functions in addition to engineering evaluations, and the facility became a mandatory mission support facility. The facility functioned as a full scale mission support activity until after the first manned lunar landing mission. After the Apollo 11 mission, the function and facility gradually reverted to a nonmandatory, offline, on-call operation because the real time program flexibility was increased and verified sufficiently to eliminate the need for redundant computations. The evaluation of the facility and function and recommendations for future programs are discussed in this report.

  1. Highly transparent and flexible circuits through patterning silver nanowires into microfluidic channels.

    PubMed

    Sun, Jing; Zhou, Wenhui; Yang, Haibo; Zhen, Xue; Ma, Longfei; Williams, Dirk; Sun, Xudong; Lang, Ming-Fei

    2018-05-10

    The development of flexible and transparent devices requires completely transparent and flexible circuits (TFCs). To overcome the disadvantages of the previously reported TFCs that are partially transparent, lacking pattern control, or labor consuming, we achieve true TFCs via a facile process with precise pattern control, exhibiting concurrent high transparency, conductivity, flexibility, stretchability, and robustness. A highly transparent and flexible conductive film is first made through spin coating silver nanowires (AgNWs) onto polydimethylsiloxane (PDMS), and demonstrates simultaneous high transparency (90.86%) and low sheet resistance (3.22 Ω sq-1). Taking advantage of microfluidic technology, circuits with ultraprecise and complex patterns from the microscale to milliscale are obtained through spin coating of AgNWs into microfluidic channels on PDMS. Without elaborate processing, this method may be suitable for mass production, which would contribute enormously to potential applications in wearable medical equipment and transparent electronic devices.

  2. Facile Synthesis of Silver Nanowires with Different Aspect Ratios and Used as High-Performance Flexible Transparent Electrodes

    NASA Astrophysics Data System (ADS)

    Xue, Qingwen; Yao, Weijing; Liu, Jun; Tian, Qingyong; Liu, Li; Li, Mengxiao; Lu, Qiang; Peng, Rui; Wu, Wei

    2017-08-01

    Silver nanowires (Ag NWs) are the promising materials to fabricate flexible transparent electrodes, aiming to replace indium tin oxide (ITO) in the next generation of flexible electronics. Herein, a feasible polyvinylpyrrolidone (PVP)-mediated polyol synthesis of Ag NWs with different aspect ratios is demonstrated and high-quality Ag NWs transparent electrodes (NTEs) are fabricated without high-temperature thermal sintering. When employing the mixture of PVP with different average molecular weight as the capping agent, the diameters of Ag NWs can be tailored and Ag NWs with different aspect ratios varying from ca. 30 to ca. 1000 are obtained. Using these as-synthesized Ag NWs, the uniform Ag NWs films are fabricated by repeated spin coating. When the aspect ratios exceed 500, the optoelectronic performance of Ag NWs films improve remarkably and match up to those of ITO films. Moreover, an optimal Ag NTEs with low sheet resistance of 11.4 Ω/sq and a high parallel transmittance of 91.6% at 550 nm are achieved when the aspect ratios reach almost 1000. In addition, the sheet resistance of Ag NWs films does not show great variation after 400 cycles of bending test, suggesting an excellent flexibility. The proposed approach to fabricate highly flexible and high-performance Ag NTEs would be useful to the development of flexible devices.

  3. Attitude stability of spinning flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Likins, P. W.; Barbera, F. J.

    1971-01-01

    The stability of spinning flexible satellites in a force-free environment was analyzed. The satellite was modeled as a rigid core having attached to it a flexible appendage idealized as a collection of particles (point masses) interconnected by springs. Both Liapunov and Routh-Hurwitz stability procedures are used. In the former, the Hamiltonian of the system, constrained through the angular momentum integral so as to admit complete damping, is used as a testing function. Equations of motion are written using the hybrid coordinate formulation, which readily accepts a modal coordinate transformation ultimately allowing truncation to a level amenable to literal stability analysis. Closed form stability criteria are generated for the first mode of a restricted appendage model lying in a plane containing the system center of mass and orthogonal to the spin axis. The effects of spin on flexible bodies are discussed by considering a very elementary particle model. Control of passively unstable spacecraft is briefly considered.

  4. Social Performance Cues Induce Behavioral Flexibility in Humans

    PubMed Central

    Toelch, Ulf; Bruce, Matthew J.; Meeus, Marius T. H.; Reader, Simon M.

    2011-01-01

    Behavioral flexibility allows individuals to react to environmental changes, but changing established behavior carries costs, with unknown benefits. Individuals may thus modify their behavioral flexibility according to the prevailing circumstances. Social information provided by the performance level of others provides one possible cue to assess the potential benefits of changing behavior, since out-performance in similar circumstances indicates that novel behaviors (innovations) are potentially useful. We demonstrate that social performance cues, in the form of previous players’ scores in a problem-solving computer game, influence behavioral flexibility. Participants viewed only performance indicators, not the innovative behavior of others. While performance cues (high, low, or no scores) had little effect on innovation discovery rates, participants that viewed high scores increased their utilization of innovations, allowing them to exploit the virtual environment more effectively than players viewing low or no scores. Perceived conspecific performance can thus shape human decisions to adopt novel traits, even when the traits employed cannot be copied. This simple mechanism, social performance feedback, could be a driver of both the facultative adoption of innovations and cumulative cultural evolution, processes critical to human success. PMID:21811477

  5. Two-Arm Flexible Thermal Strap

    NASA Technical Reports Server (NTRS)

    Urquiza, Eugenio; Vasquez, Cristal; Rodriquez, Jose I.; Leland, Robert S.; VanGorp, Byron E.

    2011-01-01

    Airborne and space infrared cameras require highly flexible direct cooling of mechanically-sensitive focal planes. A thermal electric cooler is often used together with a thermal strap as a means to transport the thermal energy removed from the infrared detector. While effective, traditional thermal straps are only truly flexible in one direction. In this scenario, a cooling solution must be highly conductive, lightweight, able to operate within a vacuum, and highly flexible in all axes to accommodate adjustment of the focal plane while transmitting minimal force. A two-armed thermal strap using three end pieces and a twisted section offers enhanced elastic movement, significantly beyond the motion permitted by existing thermal straps. This design innovation allows for large elastic displacements in two planes and moderate elasticity in the third plane. By contrast, a more conventional strap of the same conductance offers less flexibility and asymmetrical elasticity. The two-arm configuration reduces the bending moment of inertia for a given conductance by creating the same cross-sectional area for thermal conduction, but with only half the thickness. This reduction in the thickness has a significant effect on the flexibility since there is a cubic relationship between the thickness and the rigidity or bending moment of inertia. The novelty of the technology lies in the mechanical design and manufacturing of the thermal strap. The enhanced flexibility will facilitate cooling of mechanically sensitive components (example: optical focal planes). This development is a significant contribution to the thermal cooling of optics. It is known to be especially important in the thermal control of optical focal planes due to their highly sensitive alignment requirements and mechanical sensitivity; however, many other applications exist including the cooling of gimbal-mounted components.

  6. Highly flexible sub-1 nm tungsten oxide nanobelts as efficient desulfurization catalysts.

    PubMed

    He, Jie; Liu, Huiling; Xu, Biao; Wang, Xun

    2015-03-01

    Ultrathin tungsten oxide nanobelts are successfully synthesized via a facile solvothermal method. Sub-1 nm thickness and hydrophobic surface property endow the nanobelts with flexibility, viscosity, gelation, and good catalytic performance in oxidative desulfurization. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. [Flexible print circuit technology application in biomedical engineering].

    PubMed

    Jiang, Lihua; Cao, Yi; Zheng, Xiaolin

    2013-06-01

    Flexible print circuit (FPC) technology has been widely applied in variety of electric circuits with high precision due to its advantages, such as low-cost, high specific fabrication ability, and good flexibility, etc. Recently, this technology has also been used in biomedical engineering, especially in the development of microfluidic chip and microelectrode array. The high specific fabrication can help making microelectrode and other micro-structure equipment. And good flexibility allows the micro devices based on FPC technique to be easily packaged with other parts. In addition, it also reduces the damage of microelectrodes to the tissue. In this paper, the application of FPC technology in biomedical engineering is introduced. Moreover, the important parameters of FPC technique and the development trend of prosperous applications is also discussed.

  8. CdS-Nanowires Flexible Photo-detector with Ag-Nanowires Electrode Based on Non-transfer Process

    PubMed Central

    Pei, Yanli; Pei, Ruihan; Liang, Xiaoci; Wang, Yuhao; Liu, Ling; Chen, Haibiao; Liang, Jun

    2016-01-01

    In this study, UV-visible flexible resistivity-type photo-detectors were demonstrated with CdS-nanowires (NWs) percolation network channel and Ag-NWs percolation network electrode. The devices were fabricated on Mixed Cellulose Esters (MCE) membrane using a lithographic filtration method combined with a facile non-transfer process. The photo-detectors demonstrated strong adhesion, fast response time, fast decay time, and high photo sensitivity. The high performance could be attributed to the high quality single crystalline CdS-NWs, encapsulation of NWs in MCE matrix and excellent interconnection of the NWs. Furthermore, the sensing performance was maintained even the device was bent at an angle of 90°. This research may pave the way for the facile fabrication of flexible photo-detectors with high performances. PMID:26899726

  9. Navigating Change with a Flexible Portfolio

    ERIC Educational Resources Information Center

    Tyksinski, Deborah J.

    2009-01-01

    This case study demonstrates how building a flexible portfolio of services allowed a continuing education (CE) unit to thrive during frequent leadership changes. The case is set in a small state college, State Technology Institute at Mohawk (STIM), which experienced nine leadership changes in as many years. The names of the institution and its…

  10. Facile synthesis of Prussian blue nanocubes/silver nanowires network as a water-based ink for the direct screen-printed flexible biosensor chips.

    PubMed

    Yang, Pengqi; Peng, Jingmeng; Chu, Zhenyu; Jiang, Danfeng; Jin, Wanqin

    2017-06-15

    The large-scale fabrication of nanocomposite based biosensors is always a challenge in the technology commercialization from laboratory to industry. In order to address this issue, we have designed a facile chemical method of fabricated nanocomposite ink applied to the screen-printed biosensor chip. This ink can be derived in the water through the in-situ growth of Prussian blue nanocubes (PBNCs) on the silver nanowires (AgNWs) to construct a composite nanostructure by a facile chemical method. Then a miniature flexible biosensor chip was screen-printed by using the prepared nanocomposite ink. Due to the synergic effects of the large specific surface area, high conductivity and electrocatalytic activity from AgNWs and PBNCs, the as-prepared biosensor chip exhibited a fast response (<3s), a wider linear response from 0.01 to 1.3mM with an ultralow LOD=5µm, and the ultrahigh sensitivities of 131.31 and 481.20µAmM -1 cm -2 for the detections of glucose and hydrogen peroxide (H 2 O 2 ), respectively. Furthermore, the biosensor chip exhibited excellent stability, good reproducibility and high anti-interference ability towards physiological substances under a very low working potential of -0.05. Hence, the proposed biosensor chip also showed a promising potential for the application in practical analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Mechanical attachments for flexible blanket TPS

    NASA Astrophysics Data System (ADS)

    Newquist, Charles W.; Anderson, David M.; Shorey, Mark W.; Preedy, Kristina S.

    1998-01-01

    The operability of a flexible blanket thermal protection system for a reusable launch vehicle can be improved by using mechanical attachments instead of adhesive bonding to fasten the thermal protection system to the vehicle structure. Mechanical attachments offer specific benefits by (1) permitting the use of composite or metal structures at or near their maximum temperatures (above the adhesive temperature limit) thereby reducing the required TPS thickness and weight, (2) significantly reducing both the frequency and time for TPS replacement, (3) providing easy access to hatches and the underlying structure, and (4) allowing the attachment of flexible TPS to integral cryotanks, where the TPS/structure interface temperature may fall below the lower temperature of the silicone adhesives.

  12. Mathematical modeling of a class of multibody flexible spacecraft structures

    NASA Technical Reports Server (NTRS)

    Kelkar, Atul, G.

    1994-01-01

    A mathematical model for a general multibody flexible spacecraft is obtained. The generic spacecraft considered consists of a flexible central body to which a number of flexible multibody structures are attached. The coordinate systems used in the derivation allow effective decoupling of the translational motion of the entire spacecraft from its rotational motion about its center of mass. The derivation assumes that the deformations in the bodies are only due to elastic motions. The dynamic model derived is a closed-form vector-matrix differential equation. The model developed can be used for analysis and simulation of many realistic spacecraft configurations.

  13. Flexible aerogel composite for mechanical stability and process of fabrication

    DOEpatents

    Coronado, Paul R.; Poco, John F.

    2000-01-01

    A flexible aerogel and process of fabrication. An aerogel solution is mixed with fibers in a mold and allowed to gel. The gel is then processed by supercritical extraction, or by air drying, to produce a flexible aerogel formed to the shape of the mold. The flexible aerogel has excellent thermal and acoustic properties, and can be utilized in numerous applications, such as for energy absorption, insulation (temperature and acoustic), to meet the contours of aircraft shapes, and where space is limited since an inch of aerogel is a 4-5 times better insulator than an inch of fiberglass. The flexible aerogel may be of an inorganic (silica) type or an organic (carbon) type, but containing fibers, such as glass or carbon fibers.

  14. Flexible aerogel composite for mechanical stability and process of fabrication

    DOEpatents

    Coronado, Paul R.; Poco, John F.

    1999-01-01

    A flexible aerogel and process of fabrication. An aerogel solution is mixed with fibers in a mold and allowed to gel. The gel is then processed by supercritical extraction, or by air drying, to produce a flexible aerogel formed to the shape of the mold. The flexible aerogel has excellent thermal and acoustic properties, and can be utilized in numerous applications, such as for energy absorption, insulation (temperature and acoustic), to meet the contours of aircraft shapes, and where space is limited since an inch of aerogel is a 4-5 times better insulator than an inch of fiberglass. The flexible aerogel may be of an inorganic (silica) type or an organic (carbon) type, but containing fibers, such as glass or carbon fibers.

  15. Self-Standing Polypyrrole/Black Phosphorus Laminated Film: Promising Electrode for Flexible Supercapacitor with Enhanced Capacitance and Cycling Stability.

    PubMed

    Luo, Shaojuan; Zhao, Jinlai; Zou, Jifei; He, Zhiliang; Xu, Changwen; Liu, Fuwei; Huang, Yang; Dong, Lei; Wang, Lei; Zhang, Han

    2018-01-31

    With the rapid development of portable electronics, solid-state flexible supercapacitors (SCs) are considered as one of the promising energy devices in powering electronics because of their intrinsic advantages. Polypyrrole (PPy) is an ideal electrode material in constructing flexible SCs owing to its high electrochemical activity and inherent flexibility, although its relatively low capacitance and poor cycling stability are still worthy of improvement. Herein, through the innovative introduction of black phosphorus (BP) nanosheets, we developed a laminated PPy/BP self-standing film with enhanced capacitance and cycling stability via a facile one-step electrochemical deposition method. The film exhibits a high capacitance of 497.5 F g -1 (551.7 F cm -3 ) and outstanding cycling stability of 10 000 charging/discharging cycles, thanks to BP nanosheets inducing laminated assembly which hinder dense and disordered stacking of PPy during electrodeposition, consequently providing a precise pathway for ion diffusion and electron transport together with alleviation of the structural deterioration during charge/discharge. The flexible SC fabricated by laminated films delivers a high capacitance of 452.8 F g -1 (7.7 F cm -3 ) besides its remarkable mechanical flexibility and cycling stability. Our facile strategy paves the way to improve the electrochemical performance of PPy-based SC that could serve as promising flexible energy device for portable electronics.

  16. False-positive psychology: undisclosed flexibility in data collection and analysis allows presenting anything as significant.

    PubMed

    Simmons, Joseph P; Nelson, Leif D; Simonsohn, Uri

    2011-11-01

    In this article, we accomplish two things. First, we show that despite empirical psychologists' nominal endorsement of a low rate of false-positive findings (≤ .05), flexibility in data collection, analysis, and reporting dramatically increases actual false-positive rates. In many cases, a researcher is more likely to falsely find evidence that an effect exists than to correctly find evidence that it does not. We present computer simulations and a pair of actual experiments that demonstrate how unacceptably easy it is to accumulate (and report) statistically significant evidence for a false hypothesis. Second, we suggest a simple, low-cost, and straightforwardly effective disclosure-based solution to this problem. The solution involves six concrete requirements for authors and four guidelines for reviewers, all of which impose a minimal burden on the publication process.

  17. Short uncemented stems allow greater femoral flexibility and may reduce peri-prosthetic fracture risk: a dry bone and cadaveric study.

    PubMed

    Jones, Christopher; Aqil, Adeel; Clarke, Susannah; Cobb, Justin P

    2015-09-01

    Short femoral stems for uncemented total hip arthroplasty have been introduced as a safe alternative to traditional longer stem designs. However, there has been little biomechanical examination of the effects of stem length on complications of surgery. This study aims to examine the effect of femoral stem length on torsional resistance to peri-prosthetic fracture. We tested 16 synthetic and two paired cadaveric femora. Specimens were implanted and then rapidly rotated until fracture to simulate internal rotation on a planted foot, as might occur during stumbling. 3D planning software and custom-printed 3D cutting guides were used to enhance the accuracy and consistency of our stem insertion technique. Synthetic femora implanted with short stems fractured at a significantly higher torque (27.1 vs. 24.2 Nm, p = 0.03) and angle (30.3° vs. 22.3°, p = 0.002) than those implanted with long stems. Fracture patterns of the two groups were different, but showed remarkable consistency within each group. These characteristic fracture patterns were closely replicated in the pair of cadaveric femora. This new short-stemmed press-fit femoral component allows more femoral flexibility and confers a higher resistance to peri-prosthetic fracture from torsional forces than long stems.

  18. Extremely Stable Polypyrrole Achieved via Molecular Ordering for Highly Flexible Supercapacitors.

    PubMed

    Huang, Yan; Zhu, Minshen; Pei, Zengxia; Huang, Yang; Geng, Huiyuan; Zhi, Chunyi

    2016-01-27

    The cycling stability of flexible supercapacitors with conducting polymers as electrodes is limited by the structural breakdown arising from repetitive counterion flow during charging/discharging. Supercapacitors made of facilely electropolymerized polypyrrole (e-PPy) have ultrahigh capacitance retentions of more than 97, 91, and 86% after 15000, 50000, and 100000 charging/discharging cycles, respectively, and can sustain more than 230000 charging/discharging cycles with still approximately half of the initial capacitance retained. To the best of our knowledge, such excellent long-term cycling stability was never reported. The fully controllable electropolymerization shows superiority in molecular ordering, favoring uniform stress distribution and charge transfer. Being left at ambient conditions for even 8 months, e-PPy supercapacitors completely retain the good electrochemical performance. The extremely stable supercapacitors with excellent flexibility and scalability hold considerable promise for the commerical application of flexible and wearable electronics.

  19. Meeting the Needs of Able Learners through Flexible Pacing. ERIC Digest #464.

    ERIC Educational Resources Information Center

    ERIC Clearinghouse on Handicapped and Gifted Children, Reston, VA.

    This information sheet, based on "Flexible Pacing for Able Learners" by Neil Daniel and June Cox, defines flexible pacing as any program in which students are taught material that is appropriately challenging for their ability and allows them to move forward in the curriculum as they master content and skill. The document outlines…

  20. One-Step Preparation of Long-Term Stable and Flexible CsPbBr3 Perovskite Quantum Dots/Ethylene Vinyl Acetate Copolymer Composite Films for White Light-Emitting Diodes.

    PubMed

    Li, Yang; Lv, Ying; Guo, Ziquan; Dong, Liubing; Zheng, Jianghui; Chai, Chufen; Chen, Nan; Lu, Yijun; Chen, Chao

    2018-05-09

    CsPbBr 3 perovskite quantum dots (PQDs)/ethylene vinyl acetate (EVA) composite films were prepared via a one-step method; on the basis of this, both supersaturated recrystallization of CsPbBr 3 PQDs and dissolution of EVA were realized in toluene. The prepared films display outstanding green-emitting performance with high color purity of 92% and photoluminescence (PL) quantum yield of 40.5% at appropriate CsPbBr 3 PQD loading. They possess long-term stable luminescent properties in the air and in water, benefiting from the effective protection of CsPbBr 3 PQDs by the EVA matrix. Besides, the prepared CsPbBr 3 PQDs/EVA films are flexible enough to be repeatedly bent for 1000 cycles while keeping unchanged the PL intensity. The optical properties of the CsPbBr 3 PQDs/EVA films in white light-emitting diodes were also studied by experiments and theoretical simulation. Overall, facile preparation process, good long-term stability, and high flexibility allow our green-emitting CsPbBr 3 PQDs/EVA films to be applied in lighting applications and flexible displays.

  1. InterFacility communications technical document 1.1

    DOT National Transportation Integrated Search

    1996-04-01

    InterFacility (IF) communications allows 2 adjacent air traffic control (ATC) facilities to communicate with each other. IF is simulated in TGF to allow whatever lab we are responding to (ARTS/NAS) to simulate communications with one or more adjacent...

  2. Flexible Bronchoscopy.

    PubMed

    Miller, Russell J; Casal, Roberto F; Lazarus, Donald R; Ost, David E; Eapen, George A

    2018-03-01

    Flexible bronchoscopy has changed the course of pulmonary medicine. As technology advances, the role of the flexible bronchoscope for both diagnostic and therapeutic indications is continually expanding. This article reviews the historical development of the flexible bronchoscopy, fundamental uses of the flexible bronchoscope as a tool to examine the central airways and obtain diagnostic tissue, and the indications, complications, and contraindications to flexible bronchoscopy. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Career Education Facilities: A Planning Guide for Space and Station Requirements. A Report

    ERIC Educational Resources Information Center

    Woodruff, Alan P.

    This publication provides the educational planner and the architect with some suggestions concerning models by which they may plan new flexible-use, shared-space facilities and supports the models with guidelines for the development of facilities and educational programs for occupational education. In addition to discussing the financial…

  4. Highly flexible, nonflammable and free-standing SiC nanowire paper

    NASA Astrophysics Data System (ADS)

    Chen, Jianjun; Liao, Xin; Wang, Mingming; Liu, Zhaoxiang; Zhang, Judong; Ding, Lijuan; Gao, Li; Li, Ye

    2015-03-01

    Flexible paper-like semiconductor nanowire materials are expected to meet the criteria for some emerging applications, such as components of flexible solar cells, electrical batteries, supercapacitors, nanocomposites, bendable or wearable electronic or optoelectronic components, and so on. As a new generation of wide-bandgap semiconductors and reinforcements in composites, SiC nanowires have advantages in power electronic applications and nanofiber reinforced ceramic composites. Herein, free-standing SiC nanowire paper consisting of ultralong single-crystalline SiC nanowires was prepared through a facile vacuum filtration approach. The ultralong SiC nanowires were synthesized by a sol-gel and carbothermal reduction method. The flexible paper composed of SiC nanowires is ~100 nm in width and up to several hundreds of micrometers in length. The nanowires are intertwisted with each other to form a three-dimensional network-like structure. SiC nanowire paper exhibits high flexibility and strong mechanical stability. The refractory performance and thermal stability of SiC nanowire paper were also investigated. The paper not only exhibits excellent nonflammability in fire, but also remains well preserved without visible damage when it is heated in an electric oven at a high temperature (1000 °C) for 3 h. With its high flexibility, excellent nonflammability, and high thermal stability, the free-standing SiC nanowire paper may have the potential to improve the ablation resistance of high temperature ceramic composites.Flexible paper-like semiconductor nanowire materials are expected to meet the criteria for some emerging applications, such as components of flexible solar cells, electrical batteries, supercapacitors, nanocomposites, bendable or wearable electronic or optoelectronic components, and so on. As a new generation of wide-bandgap semiconductors and reinforcements in composites, SiC nanowires have advantages in power electronic applications and nanofiber

  5. EPA versus Colorado: national unity versus state flexibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foster, T.

    When the Environmental Protection Agency (EPA) reviewed Colorado's National Pollutant Discharge Elimination System (NPDES) permit program under the federal Clean Water Act, it found a conflict between federal and state perspectives on how much flexibility from national norms is allowable for state peculiarities. Colorado's hydrology and geography seemed to justify a water quality program providing for various opportunities to review water quality decisions before requiring advanced waste treatment (AWT), and to avoid AWT when justified. Conflict arose because few streams in Colorado provide mixing zones or dilution that Eastern streams enjoy. The author reviews the legal developments as EPA arguedmore » for national uniformity and Colorado for flexibility. States might be tempted to return permitting programs to EPA if they cannot retain enough flexibility in the law to protect their interests.« less

  6. The Flexibility of Ectopic Lipids

    PubMed Central

    Loher, Hannah; Kreis, Roland; Boesch, Chris; Christ, Emanuel

    2016-01-01

    In addition to the subcutaneous and the visceral fat tissue, lipids can also be stored in non-adipose tissue such as in hepatocytes (intrahepatocellular lipids; IHCL), skeletal (intramyocellular lipids; IMCL) or cardiac muscle cells (intracardiomyocellular lipids; ICCL). Ectopic lipids are flexible fuel stores that can be depleted by physical exercise and repleted by diet. They are related to obesity and insulin resistance. Quantification of IMCL was initially performed invasively, using muscle biopsies with biochemical and/or histological analysis. 1H-magnetic resonance spectroscopy (1H-MRS) is now a validated method that allows for not only quantifying IMCL non-invasively and repeatedly, but also assessing IHCL and ICCL. This review summarizes the current available knowledge on the flexibility of ectopic lipids. The available evidence suggests a complex interplay between quantitative and qualitative diet, fat availability (fat mass), insulin action, and physical exercise, all important factors that influence the flexibility of ectopic lipids. Furthermore, the time frame of the intervention on these parameters (short-term vs. long-term) appears to be critical. Consequently, standardization of physical activity and diet are critical when assessing ectopic lipids in predefined clinical situations. PMID:27649157

  7. The Flexibility of Ectopic Lipids.

    PubMed

    Loher, Hannah; Kreis, Roland; Boesch, Chris; Christ, Emanuel

    2016-09-14

    In addition to the subcutaneous and the visceral fat tissue, lipids can also be stored in non-adipose tissue such as in hepatocytes (intrahepatocellular lipids; IHCL), skeletal (intramyocellular lipids; IMCL) or cardiac muscle cells (intracardiomyocellular lipids; ICCL). Ectopic lipids are flexible fuel stores that can be depleted by physical exercise and repleted by diet. They are related to obesity and insulin resistance. Quantification of IMCL was initially performed invasively, using muscle biopsies with biochemical and/or histological analysis. ¹H-magnetic resonance spectroscopy (¹H-MRS) is now a validated method that allows for not only quantifying IMCL non-invasively and repeatedly, but also assessing IHCL and ICCL. This review summarizes the current available knowledge on the flexibility of ectopic lipids. The available evidence suggests a complex interplay between quantitative and qualitative diet, fat availability (fat mass), insulin action, and physical exercise, all important factors that influence the flexibility of ectopic lipids. Furthermore, the time frame of the intervention on these parameters (short-term vs. long-term) appears to be critical. Consequently, standardization of physical activity and diet are critical when assessing ectopic lipids in predefined clinical situations.

  8. Monolithically Integrated Flexible Black Phosphorus Complementary Inverter Circuits.

    PubMed

    Liu, Yuanda; Ang, Kah-Wee

    2017-07-25

    Two-dimensional (2D) inverters are a fundamental building block for flexible logic circuits which have previously been realized by heterogeneously wiring transistors with two discrete channel materials. Here, we demonstrate a monolithically integrated complementary inverter made using a homogeneous black phosphorus (BP) nanosheet on flexible substrates. The digital logic inverter circuit is demonstrated via effective threshold voltage tuning within a single BP material, which offers both electron and hole dominated conducting channels with nearly symmetric pinch-off and current saturation. Controllable electron concentration is achieved by accurately modulating the aluminum (Al) donor doping, which realizes BP n-FET with a room-temperature on/off ratio >10 3 . Simultaneously, work function engineering is employed to obtain a low Schottky barrier contact electrode that facilities hole injection, thus enhancing the current density of the BP p-FET by 9.4 times. The flexible inverter circuit shows a clear digital logic voltage inversion operation along with a larger-than-unity direct current voltage gain, while exhibits alternating current dynamic signal switching at a record high frequency up to 100 kHz and remarkable electrical stability upon mechanical bending with a radii as small as 4 mm. Our study demonstrates a practical monolithic integration strategy for achieving functional logic circuits on one material platform, paving the way for future high-density flexible electronic applications.

  9. Self-Powered, Flexible, and Solution-Processable Perovskite Photodetector Based on Low-Cost Carbon Cloth.

    PubMed

    Sun, Haoxuan; Lei, Tianyu; Tian, Wei; Cao, Fengren; Xiong, Jie; Li, Liang

    2017-07-01

    Flexible perovskite photodetectors are usually constructed on indium-tin-oxide-coated polymer substrates, which are expensive, fragile, and not resistant to high temperature. Herein, for the first time, a high-performance flexible perovskite photodetector is fabricated based on low-cost carbon cloth via a facile solution processable strategy. In this device, perovskite microcrystal and Spiro-OMeTAD (hole transporting material) blended film act as active materials for light detection, and carbon cloth serves as both a flexible substrate and a conductive electrode. The as-fabricated photodetector shows a broad spectrum response from ultraviolet to near-infrared light, high responsivity, fast response speed, long-term stability, and self-powered capability. Flexible devices show negligible degradation after several tens of bending cycles and at the extremely bending angle of 180°. This work promises a new technique to construct flexible, high-performance photodetectors with low cost and self-powered capability. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A Facile Methodology for the Development of a Printable and Flexible All-Solid-State Rechargeable Battery.

    PubMed

    De, Bibekananda; Yadav, Amit; Khan, Salman; Kar, Kamal K

    2017-06-14

    Development of printable and flexible energy storage devices is one of the most promising technologies for wearable electronics in textile industry. The present work involves the design of a printable and flexible all-solid-state rechargeable battery for wearable electronics in textile applications. Copper-coated carbon fiber is used to make a poly(ethylene oxide) (PEO)-based polymer nanocomposite for a flexible and conductive current collector layer. Lithium iron phosphate (LiFePO 4 ) and titanium dioxide (TiO 2 ) are utilized to prepare the cathode and anode layers, respectively, with PEO and carbon black composites. The PEO- and Li salt-based solid composite separator layer is utilized for the solid-state and safe electrolyte. Fabrication of all these layers and assembly of them through coating on fabrics are performed in the open atmosphere without using any complex processing, as PEO prevents the degradation of the materials in the open atmosphere. The performance of the battery is evaluated through charge-discharge and open-circuit voltage analyses. The battery shows an open-circuit voltage of ∼2.67 V and discharge time ∼2000 s. It shows similar performance at different repeated bending angles (0° to 180°) and continuous bending along with long cycle life. The application of the battery is also investigated for printable and wearable textile applications. Therefore, this printable, flexible, easily processable, and nontoxic battery with this performance has great potential to be used in portable and wearable textile electronics.

  11. VICS-120 - A tube-vehicle system test facility.

    NASA Technical Reports Server (NTRS)

    Marte, J. E.

    1973-01-01

    Description of a large test facility for carrying out research in support of the aerodynamic and ventilation section of a handbook on subway design. The facility described is vertically oriented and has a test section with a nominal inside diameter of 2 in. and a length of 109 ft. It is capable of operating at Reynolds numbers up to full-scale (60,000,000) under open-end tube conditions. The facility is distinguished by a high degree of flexibility in configuration and operational limits. Details are given concerning the plenum assembly, the test section tubes, the scaffold, the instrumentation, the model launcher, the model arrestor, and the models themselves. A step-by-step account is given of the operation of the facility, and a brief sample of the type of data obtained from the facility is presented.

  12. A Flexible Pilot-Scale Setup for Real-Time Studies in Process Systems Engineering

    ERIC Educational Resources Information Center

    Panjapornpon, Chanin; Fletcher, Nathan; Soroush, Masoud

    2006-01-01

    This manuscript describes a flexible, pilot-scale setup that can be used for training students and carrying out research in process systems engineering. The setup allows one to study a variety of process systems engineering concepts such as design feasibility, design flexibility, control configuration selection, parameter estimation, process and…

  13. Flexible Nanowire Cluster as a Wearable Colorimetric Humidity Sensor.

    PubMed

    Wei, Zhiqiang; Zhou, Zhang-Kai; Li, Qiuyu; Xue, Jiancai; Di Falco, Andrea; Yang, Zhongjian; Zhou, Jianhua; Wang, Xuehua

    2017-07-01

    Wearable plasmonic devices combine the advantages of high flexibility, ultrathinness, light weight, and excellent integration with the optical benefits mediated by plasmon-enhanced electric fields. However, two obstacles severely hinder further developments and applications of a wearable plasmonic device. One is the lack of efficient approach to obtaining devices with robust antimotion-interference property, i.e., the devices can work independently on the morphology changes of their working structures caused by arbitrary wearing conditions. The other issue is to seek a facile and high-throughput fabrication method to satisfy the financial requirement of industrialization. In order to overcome these two challenges, a functional flexible film of nanowire cluster is developed, which can be easily fabricated by taking the advantages of both conventional electrochemical and sputtering methods. Such flexible plasmonic films can be made into wearable devices that work independently on shape changes induced by various wearing conditions (such as bending, twisting and stretching). Furthermore, due to plasmonic advantages of color controlling and high sensitivity to environment changes, the flexible film of nanowire cluster can be used to fabricate wearable items (such as bracelet, clothes, bag, or even commercial markers), with the ability of wireless visualization for humidity sensing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. SAFE (strategy, assessment, flexibility, and efficiency) for future use? Stages in master planning, programming, and architectural design.

    PubMed

    Westlake, P

    1995-10-01

    Health care facility design must incorporate four key elements: Strategy, Assessment, Flexibility, and Efficiency. These SAFE elements will offer the organization the greatest return on investment, because they encompass both present needs and future demand. They respect the integrated nature of functional operations by clustering them in ways that permit growth or consolidation. In the rapidly changing health care environment, flexibility is fundamental to successful design.

  15. 33 CFR 154.120 - Facility examinations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Facility examinations. 154.120...) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK General § 154.120 Facility examinations. (a) The facility operator shall allow the Coast Guard, at any time, to make any examination and shall...

  16. Robonaut's Flexible Information Technology Infrastructure

    NASA Technical Reports Server (NTRS)

    Askew, Scott; Bluethmann, William; Alder, Ken; Ambrose, Robert

    2003-01-01

    Robonaut, NASA's humanoid robot, is designed to work as both an astronaut assistant and, in certain situations, an astronaut surrogate. This highly dexterous robot performs complex tasks under telepresence control that could previously only be carried out directly by humans. Currently with 47 degrees of freedom (DOF), Robonaut is a state-of-the-art human size telemanipulator system. while many of Robonaut's embedded components have been custom designed to meet packaging or environmental requirements, the primary computing systems used in Robonaut are currently commercial-off-the-shelf (COTS) products which have some correlation to flight qualified computer systems. This loose coupling of information technology (IT) resources allows Robonaut to exploit cost effective solutions while floating the technology base to take advantage of the rapid pace of IT advances. These IT systems utilize a software development environment, which is both compatible with COTS hardware as well as flight proven computing systems, preserving the majority of software development for a flight system. The ability to use highly integrated and flexible COTS software development tools improves productivity while minimizing redesign for a space flight system. Further, the flexibility of Robonaut's software and communication architecture has allowed it to become a widely used distributed development testbed for integrating new capabilities and furthering experimental research.

  17. Flexible body control using neural networks

    NASA Technical Reports Server (NTRS)

    Mccullough, Claire L.

    1992-01-01

    Progress is reported on the control of Control Structures Interaction suitcase demonstrator (a flexible structure) using neural networks and fuzzy logic. It is concluded that while control by neural nets alone (i.e., allowing the net to design a controller with no human intervention) has yielded less than optimal results, the neural net trained to emulate the existing fuzzy logic controller does produce acceptible system responses for the initial conditions examined. Also, a neural net was found to be very successful in performing the emulation step necessary for the anticipatory fuzzy controller for the CSI suitcase demonstrator. The fuzzy neural hybrid, which exhibits good robustness and noise rejection properties, shows promise as a controller for practical flexible systems, and should be further evaluated.

  18. A screen-printed flexible flow sensor

    NASA Astrophysics Data System (ADS)

    Moschos, A.; Syrovy, T.; Syrova, L.; Kaltsas, G.

    2017-04-01

    A thermal flow sensor was printed on a flexible plastic substrate using exclusively screen-printing techniques. The presented device was implemented with custom made screen-printed thermistors, which allows simple, cost-efficient production on a variety of flexible substrates while maintaining the typical advantages of thermal flow sensors. Evaluation was performed for both static (zero flow) and dynamic conditions using a combination of electrical measurements and IR imaging techniques in order to determine important characteristics, such as temperature response, output repeatability, etc. The flow sensor was characterized utilizing the hot-wire and calorimetric principles of operation, while the preliminary results appear to be very promising, since the sensor was successfully evaluated and displayed adequate sensitivity in a relatively wide flow range.

  19. A silicon-on-insulator complementary-metal-oxide-semiconductor compatible flexible electronics technology

    NASA Astrophysics Data System (ADS)

    Tu, Hongen; Xu, Yong

    2012-07-01

    This paper reports a simple flexible electronics technology that is compatible with silicon-on-insulator (SOI) complementary-metal-oxide-semiconductor (CMOS) processes. Compared with existing technologies such as direct fabrication on flexible substrates and transfer printing, the main advantage of this technology is its post-SOI-CMOS compatibility. Consequently, high-performance and high-density CMOS circuits can be first fabricated on SOI wafers using commercial foundry and then be integrated into flexible substrates. The yield is also improved by eliminating the transfer printing step. Furthermore, this technology allows the integration of various sensors and microfluidic devices. To prove the concept of this technology, flexible MOSFETs have been demonstrated.

  20. Balancing stability and flexibility in adaptive governance: an ...

    EPA Pesticide Factsheets

    Adaptive governance must work “on the ground,” that is, it must operate through structures and procedures that the people it governs perceive to be legitimate and fair, as well as incorporating processes and substantive goals that are effective in allowing social-ecological systems (SESs) to adapt to climate change and other impacts. To address the continuing and accelerating alterations that climate change is bringing to SESs, adaptive governance generally will require more flexibility than prior governance institutions have often allowed. However, to function as good governance, adaptive governance must pay real attention to the problem of how to balance this increased need for flexibility with continuing governance stability so that it can foster adaptation to change without being perceived or experienced as perpetually destabilizing, disruptive, and unfair. Flexibility and stability serve different purposes in governance, and a variety of tools exist to strike different balances between them while still preserving the governance institution’s legitimacy among the people governed. After reviewing those purposes and the implications of climate change for environmental governance, we examine psychological insights into the structuring of adaptive governance and the variety of legal tools available to incorporate those insights into adaptive governance regimes. Because the substantive goals of governance systems will differ among specific systems, we do no

  1. Flexible NO(x) abatement from power plants in the eastern United States.

    PubMed

    Sun, Lin; Webster, Mort; McGaughey, Gary; McDonald-Buller, Elena C; Thompson, Tammy; Prinn, Ronald; Ellerman, A Denny; Allen, David T

    2012-05-15

    Emission controls that provide incentives for maximizing reductions in emissions of ozone precursors on days when ozone concentrations are highest have the potential to be cost-effective ozone management strategies. Conventional prescriptive emissions controls or cap-and-trade programs consider all emissions similarly regardless of when they occur, despite the fact that contributions to ozone formation may vary. In contrast, a time-differentiated approach targets emissions reductions on forecasted high ozone days without imposition of additional costs on lower ozone days. This work examines simulations of such dynamic air quality management strategies for NO(x) emissions from electric generating units. Results from a model of day-specific NO(x) pricing applied to the Pennsylvania-New Jersey-Maryland (PJM) portion of the northeastern U.S. electrical grid demonstrate (i) that sufficient flexibility in electricity generation is available to allow power production to be switched from high to low NO(x) emitting facilities, (ii) that the emission price required to induce EGUs to change their strategies for power generation are competitive with other control costs, (iii) that dispatching strategies, which can change the spatial and temporal distribution of emissions, lead to ozone concentration reductions comparable to other control technologies, and (iv) that air quality forecasting is sufficiently accurate to allow EGUs to adapt their power generation strategies.

  2. Flexible Wing Base Micro Aerial Vehicles: Composite Materials for Micro Air Vehicles

    NASA Technical Reports Server (NTRS)

    Ifju, Peter G.; Ettinger, Scott; Jenkins, David; Martinez, Luis

    2002-01-01

    This paper will discuss the development of the University of Florida's Micro Air Vehicle concept. A series of flexible wing based aircraft that possess highly desirable flight characteristics were developed. Since computational methods to accurately model flight at the low Reynolds numbers associated with this scale are still under development, our effort has relied heavily on trial and error. Hence a time efficient method was developed to rapidly produce prototype designs. The airframe and wings are fabricated using a unique process that incorporates carbon fiber composite construction. Prototypes can be fabricated in around five man-hours, allowing many design revisions to be tested in a short period of time. The resulting aircraft are far more durable, yet lighter, than their conventional counterparts. This process allows for thorough testing of each design in order to determine what changes were required on the next prototype. The use of carbon fiber allows for wing flexibility without sacrificing durability. The construction methods developed for this project were the enabling technology that allowed us to implement our designs. The resulting aircraft were the winning entries in the International Micro Air Vehicle Competition for the past two years. Details of the construction method are provided in this paper along with a background on our flexible wing concept.

  3. Development of flexible Ni80Fe20 magnetic nano-thin films

    NASA Astrophysics Data System (ADS)

    Vopson, M. M.; Naylor, J.; Saengow, T.; Rogers, E. G.; Lepadatu, S.; Fetisov, Y. K.

    2017-11-01

    Flexible magnetic Ni80Fe20 thin films with excellent adhesion, mechanical and magnetic properties have been fabricated using magnetron plasma deposition. We demonstrate that flexible Ni80Fe20 thin films maintain their non-flexible magnetic properties when the films are over 60 nm thick. However, when their thickness is reduced, the flexible thin films display significant increase in their magnetic coercive field compared to identical films coated on a solid Silicon substrate. For a 15 nm flexible Ni80Fe20 film coated onto 110 μm Polyvinylidene fluoride polymer substrate, we achieved a remarkable 355% increase in the magnetic coercive field relative to the same film deposited onto a Si substrate. Experimental evidence, backed by micro-magnetic modelling, indicates that the increase in the coercive fields is related to the larger roughness texture of the flexible substrates. This effect essentially transforms soft Ni80Fe20 permalloy thin films into medium/hard magnetic films allowing not only mechanical flexibility of the structure, but also fine tuning of their magnetic properties.

  4. Exploring the Impact of a Flexible, Technology-Enhanced Teaching Space on Pedagogy

    ERIC Educational Resources Information Center

    King, Emma; Joy, Mike; Foss, Jonathan; Sinclair, Jane; Sitthiworachart, Jirarat

    2015-01-01

    Approaches to teaching and learning are increasingly influenced by the introduction of new technologies and innovative use of space. Recognising the need to keep up to date many institutions has created technology-rich, flexible spaces. Studies so far have concentrated on how students use such facilities; however, their availability also strongly…

  5. Direct Write Printing on Thin and Flexible Substrates for Space Applications

    NASA Technical Reports Server (NTRS)

    Paquette, Beth

    2016-01-01

    This presentation describes the work done on direct-write printing conductive traces for a flexible detector application. A Repeatability Plan was established to define detector requirements, material and printer selections, printing facilities, and tests to verify requirements are met. Designs were created for the detector, and printed using an aerosol jet printer. Testing for requirement verification is ongoing.

  6. Measures of Potential Flexibility and Practical Flexibility in Equation Solving.

    PubMed

    Xu, Le; Liu, Ru-De; Star, Jon R; Wang, Jia; Liu, Ying; Zhen, Rui

    2017-01-01

    Researchers interested in mathematical proficiency have recently begun to explore the development of strategic flexibility, where flexibility is defined as knowledge of multiple strategies for solving a problem and the ability to implement an innovative strategy for a given problem solving circumstance. However, anecdotal findings from this literature indicate that students do not consistently use an innovative strategy for solving a given problem, even when these same students demonstrate knowledge of innovative strategies. This distinction, sometimes framed in the psychological literature as competence vs. performance-has not been previously studied for flexibility. In order to explore the competence/performance distinction in flexibility, this study developed and validated measures for potential flexibility (e.g., competence, or knowledge of multiple strategies) and practical flexibility (e.g., performance, use of innovative strategies) for solving equations. The measures were administrated to a sample of 158 Chinese middle school students through a Tri-Phase Flexibility Assessment, in which the students were asked to solve each equation, generate additional strategies, and evaluate own multiple strategies. Confirmatory factor analysis supported a two-factor model of potential and practical flexibility. Satisfactory internal consistency was found for the measures. Additional validity evidence included the significant association with flexibility measured with the previous method. Potential flexibility and practical flexibility were found to be distinct but related. The theoretical and practical implications of the concepts and their measures of potential flexibility and practical flexibility are discussed.

  7. Measures of Potential Flexibility and Practical Flexibility in Equation Solving

    PubMed Central

    Xu, Le; Liu, Ru-De; Star, Jon R.; Wang, Jia; Liu, Ying; Zhen, Rui

    2017-01-01

    Researchers interested in mathematical proficiency have recently begun to explore the development of strategic flexibility, where flexibility is defined as knowledge of multiple strategies for solving a problem and the ability to implement an innovative strategy for a given problem solving circumstance. However, anecdotal findings from this literature indicate that students do not consistently use an innovative strategy for solving a given problem, even when these same students demonstrate knowledge of innovative strategies. This distinction, sometimes framed in the psychological literature as competence vs. performance—has not been previously studied for flexibility. In order to explore the competence/performance distinction in flexibility, this study developed and validated measures for potential flexibility (e.g., competence, or knowledge of multiple strategies) and practical flexibility (e.g., performance, use of innovative strategies) for solving equations. The measures were administrated to a sample of 158 Chinese middle school students through a Tri-Phase Flexibility Assessment, in which the students were asked to solve each equation, generate additional strategies, and evaluate own multiple strategies. Confirmatory factor analysis supported a two-factor model of potential and practical flexibility. Satisfactory internal consistency was found for the measures. Additional validity evidence included the significant association with flexibility measured with the previous method. Potential flexibility and practical flexibility were found to be distinct but related. The theoretical and practical implications of the concepts and their measures of potential flexibility and practical flexibility are discussed. PMID:28848481

  8. FACET - a "Flexible Artifact Correction and Evaluation Toolbox" for concurrently recorded EEG/fMRI data.

    PubMed

    Glaser, Johann; Beisteiner, Roland; Bauer, Herbert; Fischmeister, Florian Ph S

    2013-11-09

    In concurrent EEG/fMRI recordings, EEG data are impaired by the fMRI gradient artifacts which exceed the EEG signal by several orders of magnitude. While several algorithms exist to correct the EEG data, these algorithms lack the flexibility to either leave out or add new steps. The here presented open-source MATLAB toolbox FACET is a modular toolbox for the fast and flexible correction and evaluation of imaging artifacts from concurrently recorded EEG datasets. It consists of an Analysis, a Correction and an Evaluation framework allowing the user to choose from different artifact correction methods with various pre- and post-processing steps to form flexible combinations. The quality of the chosen correction approach can then be evaluated and compared to different settings. FACET was evaluated on a dataset provided with the FMRIB plugin for EEGLAB using two different correction approaches: Averaged Artifact Subtraction (AAS, Allen et al., NeuroImage 12(2):230-239, 2000) and the FMRI Artifact Slice Template Removal (FASTR, Niazy et al., NeuroImage 28(3):720-737, 2005). Evaluation of the obtained results were compared to the FASTR algorithm implemented in the EEGLAB plugin FMRIB. No differences were found between the FACET implementation of FASTR and the original algorithm across all gradient artifact relevant performance indices. The FACET toolbox not only provides facilities for all three modalities: data analysis, artifact correction as well as evaluation and documentation of the results but it also offers an easily extendable framework for development and evaluation of new approaches.

  9. The Impact of a Flexible Assessment System on Students' Motivation, Performance and Attitude

    ERIC Educational Resources Information Center

    Pacharn, Parunchana; Bay, Darlene; Felton, Sandra

    2013-01-01

    We examine a flexible assessment system that allows students to determine the weights allocated to each course component and to re-allocate the weights in response to achieved scores. The flexibility is intended to encourage students' participation in the learning process, thereby promoting self-regulated learning skills. We compare this…

  10. The National Ignition Facility: Transition to a User Facility

    NASA Astrophysics Data System (ADS)

    Moses, E. I.; Atherton, J.; Lagin, L.; Larson, D.; Keane, C.; MacGowan, B.; Patterson, R.; Spaeth, M.; Van Wonterghem, B.; Wegner, P.; Kauffman, R.

    2016-03-01

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) has been operational since March 2009 and has been transitioning to a user facility supporting ignition science, high energy density science (HEDS), national security applications, and fundamental science. The facility has achieved its design goal of 1.8 MJ and 500 TW of 3ω light on target, and has performed target experiments with 1.9 MJ at peak powers of 410 TW. The facility is on track to perform over 200 target shots this year in support of all of its user communities. The facility has nearly 60 diagnostic systems operational and has shown flexibility in laser pulse shape and performance to meet the requirements of its multiple users. Progress continues on its goal of demonstrating thermonuclear burn in the laboratory. It has performed over 40 indirect-drive experiments with cryogenic-layered capsules. New platforms are being developed for HEDS and fundamental science. Equation-of-state and material strength experiments have been done on a number of materials with pressures of over 50 MBars obtained in diamond, conditions never previously encountered in the laboratory and similar to those found in planetary interiors. Experiments are also in progress investigating radiation transport, hydrodynamic instabilities, and direct drive implosions. NIF continues to develop as an experimental facility. Advanced Radiographic Capability (ARC) is now being installed on NIF for producing high-energy radiographs of the imploded cores of ignition targets and for short pulse laser-plasma interaction experiments. One NIF beam is planned for conversion to two picosecond beams in 2014. Other new diagnostics such as x-ray Thomson scattering, low energy neutron spectrometer, and multi-layer reflecting x-ray optics are also planned. Incremental improvements in laser performance such as improved optics damage performance, beam balance, and back reflection control are being pursued.

  11. Drive-train dynamics technology - State-of-the-art and design of a test facility for advanced development

    NASA Technical Reports Server (NTRS)

    Badgley, R. H.; Fleming, D. P.; Smalley, A. J.

    1975-01-01

    A program for the development and verification of drive-train dynamic technology is described along with its basis and the results expected from it. A central feature of this program is a drive-train test facility designed for the testing and development of advanced drive-train components, including shaft systems, dampers, and couplings. Previous efforts in designing flexible dynamic drive-train systems are reviewed, and the present state of the art is briefly summarized. The design of the test facility is discussed with major attention given to the formulation of the test-rig concept, dynamic scaling of model shafts, and the specification of design parameters. Specific efforts envisioned for the test facility are briefly noted, including evaluations of supercritical test shafts, stability thresholds for various sources and types of instabilities that can exist in shaft systems, effects of structural flexibility on the dynamic performance of dampers, and methods for vibration control in two-level and three-level flexible shaft systems.

  12. 25 CFR 502.23 - Facility license.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 2 2010-04-01 2010-04-01 false Facility license. 502.23 Section 502.23 Indians NATIONAL....23 Facility license. Facility license means a separate license issued by a tribe to each place, facility, or location on Indian lands where the tribe elects to allow class II or III gaming. [73 FR 6029...

  13. How does symmetry impact the flexibility of proteins?

    PubMed

    Schulze, Bernd; Sljoka, Adnan; Whiteley, Walter

    2014-02-13

    It is well known that (i) the flexibility and rigidity of proteins are central to their function, (ii) a number of oligomers with several copies of individual protein chains assemble with symmetry in the native state and (iii) added symmetry sometimes leads to added flexibility in structures. We observe that the most common symmetry classes of protein oligomers are also the symmetry classes that lead to increased flexibility in certain three-dimensional structures-and investigate the possible significance of this coincidence. This builds on the well-developed theory of generic rigidity of body-bar frameworks, which permits an analysis of the rigidity and flexibility of molecular structures such as proteins via fast combinatorial algorithms. In particular, we outline some very simple counting rules and possible algorithmic extensions that allow us to predict continuous symmetry-preserving motions in body-bar frameworks that possess non-trivial point-group symmetry. For simplicity, we focus on dimers, which typically assemble with twofold rotational axes, and often have allosteric function that requires motions to link distant sites on the two protein chains.

  14. How does symmetry impact the flexibility of proteins?

    PubMed Central

    Schulze, Bernd; Sljoka, Adnan; Whiteley, Walter

    2014-01-01

    It is well known that (i) the flexibility and rigidity of proteins are central to their function, (ii) a number of oligomers with several copies of individual protein chains assemble with symmetry in the native state and (iii) added symmetry sometimes leads to added flexibility in structures. We observe that the most common symmetry classes of protein oligomers are also the symmetry classes that lead to increased flexibility in certain three-dimensional structures—and investigate the possible significance of this coincidence. This builds on the well-developed theory of generic rigidity of body–bar frameworks, which permits an analysis of the rigidity and flexibility of molecular structures such as proteins via fast combinatorial algorithms. In particular, we outline some very simple counting rules and possible algorithmic extensions that allow us to predict continuous symmetry-preserving motions in body–bar frameworks that possess non-trivial point-group symmetry. For simplicity, we focus on dimers, which typically assemble with twofold rotational axes, and often have allosteric function that requires motions to link distant sites on the two protein chains. PMID:24379431

  15. SYFSA: A Framework for Systematic Yet Flexible Systems Analysis

    PubMed Central

    Johnson, Todd R.; Markowitz, Eliz; Bernstam, Elmer V.; Herskovic, Jorge R.; Thimbleby, Harold

    2013-01-01

    Although technological or organizational systems that enforce systematic procedures and best practices can lead to improvements in quality, these systems must also be designed to allow users to adapt to the inherent uncertainty, complexity, and variations in healthcare. We present a framework, called Systematic Yet Flexible Systems Analysis (SYFSA) that supports the design and analysis of Systematic Yet Flexible (SYF) systems (whether organizational or technical) by formally considering the tradeoffs between systematicity and flexibility. SYFSA is based on analyzing a task using three related problem spaces: the idealized space, the natural space, and the system space. The idealized space represents the best practice—how the task is to be accomplished under ideal conditions. The natural space captures the task actions and constraints on how the task is currently done. The system space specifies how the task is done in a redesigned system, including how it may deviate from the idealized space, and how the system supports or enforces task constraints. The goal of the framework is to support the design of systems that allow graceful degradation from the idealized space to the natural space. We demonstrate the application of SYFSA for the analysis of a simplified central line insertion task. We also describe several information-theoretic measures of flexibility that can be used to compare alternative designs, and to measure how efficiently a system supports a given task, the relative cognitive workload, and learnability. PMID:23727053

  16. Transparent 'solution' of ultrathin magnesium hydroxide nanocrystals for flexible and transparent nanocomposite films.

    PubMed

    Wang, Jie-Xin; Sun, Qian; Chen, Bo; Wu, Xi; Zeng, Xiao-Fei; Zhang, Cong; Zou, Hai-Kui; Chen, Jian-Feng

    2015-05-15

    Transparent solutions of nanocrystals exhibit many unique properties, and are thus attractive materials for numerous applications. However, the synthesis of transparent nanocrystal solutions of magnesium hydroxide (MH) with wide applications is yet to be realized. Here, we report a facile two-step process, which includes a direct reactive precipitation in alcohol phase instead of aqueous phase combined with a successive surface modification, to prepare transparent alcohol solutions containing lamellar MH nanocrystals with an average size of 52 nm and an ultrathin thickness of 1-2 nm, which is the thinnest MH nanoplatelet reported in the literatures. Further, highly flexible and transparent nanocomposite films are fabricated with a solution mixing method by adding the transparent MH nanocrystal solutions into PVB solution. Considering the simplicity of the fabrication process, high transparency and good flexibility, this MH/polymer nanocomposite film is promising for flame-resistant applications in plastic electronics and optical devices with high transparency, such as flexible displays, optical filters, and flexible solar cells.

  17. Flexible Models for Solar Sail Control

    NASA Technical Reports Server (NTRS)

    Weaver Smith, Suzanne; Song, Haiping; Baker, John R.; Black, Jonathan; Muheim, Danniella M.

    2005-01-01

    Solar sails employ a unique form of propulsion, gaining momentum from incident and reflected photons. However, the momentum transferred by an individual photon is extremely small. Consequently, a solar sail must have an extremely large surface area and also be extremely light. The flexibility of the sail then must be considered when designing or evaluating control laws. In this paper, solar sail flexibility and its influence on control effectiveness is considered using idealized two-dimensional models to represent physical phenomena rather than a specific design. Differential equations of motion are derived for a distributed parameter model of a flexible solar sail idealized as a rotating central hub with two opposing flexible booms. This idealization is appropriate for solar sail designs in which the vibrational modes of the sail and supporting booms move together allowing the sail mass to be distributed along the booms in the idealized model. A reduced analytical model of the flexible response is considered. Linear feedback torque control is applied at the central hub. Two translational disturbances and a torque disturbance also act at the central hub representing the equivalent effect of deflecting sail shape about a reference line. Transient simulations explore different control designs and their effectiveness for controlling orientation, for reducing flexible motion and for disturbance rejection. A second model also is developed as a two-dimensional "pathfinder" model to calculate the effect of solar sail shape on the resultant thrust, in-plane force and torque at the hub. The analysis is then extended to larger models using the finite element method. The finite element modeling approach is verified by comparing results from a two-dimensional finite element model with those from the analytical model. The utility of the finite element modeling approach for this application is then illustrated through examples based on a full finite element model.

  18. Keep It Flexible: Driving Macromolecular Rotary Motions in Atomistic Simulations with GROMACS

    PubMed Central

    2011-01-01

    We describe a versatile method to enforce the rotation of subsets of atoms, e.g., a protein subunit, in molecular dynamics (MD) simulations. In particular, we introduce a “flexible axis” technique that allows realistic flexible adaptions of both the rotary subunit as well as the local rotation axis during the simulation. A variety of useful rotation potentials were implemented for the GROMACS 4.5 MD package. Application to the molecular motor F1-ATP synthase demonstrates the advantages of the flexible axis approach over the established fixed axis rotation technique. PMID:21566696

  19. The Integrated Waste Tracking System - A Flexible Waste Management Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Robert Stephen

    2001-02-01

    The US Department of Energy (DOE) Idaho National Engineering and Environmental Laboratory (INEEL) has fully embraced a flexible, computer-based tool to help increase waste management efficiency and integrate multiple operational functions from waste generation through waste disposition while reducing cost. The Integrated Waste Tracking System (IWTS)provides comprehensive information management for containerized waste during generation,storage, treatment, transport, and disposal. The IWTS provides all information necessary for facilities to properly manage and demonstrate regulatory compliance. As a platformindependent, client-server and Web-based inventory and compliance system, the IWTS has proven to be a successful tracking, characterization, compliance, and reporting tool that meets themore » needs of both operations and management while providing a high level of management flexibility.« less

  20. Library Media Facilities Access: Do You Really Want Your Library Media Center Used?

    ERIC Educational Resources Information Center

    Hart, Thomas L.

    2005-01-01

    In this article, the author discusses and provides some examples on how students and teachers should use library media centers. He also discusses the common problems with facilities design as it changes along with other aspects of society. He states that flexibility in design ensures that the physical facility will meet future program needs.…

  1. Measurement of Residual Flexibility for Substructures Having Prominent Flexible Interfaces

    NASA Technical Reports Server (NTRS)

    Tinker, Michael L.; Bookout, Paul S.

    1994-01-01

    structure in both test and analysis. Measured and predicted residual functions are compared, and regions of poor data in the measured curves are described. It is found that for accurate residual measurements, frequency response functions having prominent stiffness lines in the acceleration/force format are needed. The lack of such stiffness lines increases measurement errors. Interface drive point frequency respose functions for shuttle orbiter payloads exhibit dominant stiffness lines, making the residual test approach a good candidate for payload modal tests when constrained tests are inappropriate. Difficulties in extracting a residual flexibility value from noisy test data are discussed. It is shown that use of a weighted second order least-squares curve fit of the measured residual function allows identification of residual flexibility that compares very well with predictions for the simple structure. This approach also provides an estimate of second order residual mass effects.

  2. All-solid-state flexible supercapacitors based on highly dispersed polypyrrole nanowire and reduced graphene oxide composites.

    PubMed

    Yu, Chenfei; Ma, Peipei; Zhou, Xi; Wang, Anqi; Qian, Tao; Wu, Shishan; Chen, Qiang

    2014-10-22

    Highly dispersed polypyrrole nanowires are decorated on reduced graphene oxide sheets using a facile in situ synthesis route. The prepared composites exhibit high dispersibility, large effective surface area, and high electric conductivity. All-solid-state flexible supercapacitors are assembled based on the prepared composites, which show excellent electrochemical performances with a specific capacitance of 434.7 F g(-1) at a current density of 1 A g(-1). The as-fabricated supercapacitor also exhibits excellent cycling stability (88.1% capacitance retention after 5000 cycles) and exceptional mechanical flexibility. In addition, outstanding power and energy densities were obtained, demonstrating the significant potential of prepared material for flexible and portable energy storage devices.

  3. Attaching solar collectors to a structural framework utilizing a flexible clip

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruse, John S

    Methods and apparatuses described herein provide for the attachment of solar collectors to a structural framework in a solar array assembly. A flexible clip is attached to either end of each solar collector and utilized to attach the solar collector to the structural framework. The solar collectors are positioned to allow a member of the framework to engage a pair of flexible clips attached to adjacent solar collectors during assembly of the solar array. Each flexible clip may have multiple frame-engaging portions, each with a flange on one end to cause the flexible clip to deflect inward when engaged bymore » the framework member during assembly and to guide each of the frame-engaging portions into contact with a surface of the framework member for attachment.« less

  4. Individual Differences in the Flexibility of Peripersonal Space.

    PubMed

    Hunley, Samuel B; Marker, Arwen M; Lourenco, Stella F

    2017-01-01

    The current study investigated individual differences in the flexibility of peripersonal space (i.e., representational space near the body), specifically in relation to trait claustrophobic fear (i.e., fear of suffocating or being physically restricted). Participants completed a line bisection task with either a laser pointer (Laser condition), allowing for a baseline measure of the size of one's peripersonal space, or a stick (Stick condition), which produces expansion of one's peripersonal space. Our results revealed that individuals high in claustrophobic fear had larger peripersonal spaces than those lower in claustrophobic fear, replicating previous research. We also found that, whereas individuals low in claustrophobic fear demonstrated the expected expansion of peripersonal space in the Stick condition, individuals high in claustrophobic fear showed less expansion, suggesting decreased flexibility. We discuss these findings in relation to the defensive function of peripersonal space and reduced attentional flexibility associated with trait anxieties.

  5. Mapping brain activity with flexible graphene micro-transistors

    NASA Astrophysics Data System (ADS)

    Blaschke, Benno M.; Tort-Colet, Núria; Guimerà-Brunet, Anton; Weinert, Julia; Rousseau, Lionel; Heimann, Axel; Drieschner, Simon; Kempski, Oliver; Villa, Rosa; Sanchez-Vives, Maria V.; Garrido, Jose A.

    2017-06-01

    Establishing a reliable communication interface between the brain and electronic devices is of paramount importance for exploiting the full potential of neural prostheses. Current microelectrode technologies for recording electrical activity, however, evidence important shortcomings, e.g. challenging high density integration. Solution-gated field-effect transistors (SGFETs), on the other hand, could overcome these shortcomings if a suitable transistor material were available. Graphene is particularly attractive due to its biocompatibility, chemical stability, flexibility, low intrinsic electronic noise and high charge carrier mobilities. Here, we report on the use of an array of flexible graphene SGFETs for recording spontaneous slow waves, as well as visually evoked and also pre-epileptic activity in vivo in rats. The flexible array of graphene SGFETs allows mapping brain electrical activity with excellent signal-to-noise ratio (SNR), suggesting that this technology could lay the foundation for a future generation of in vivo recording implants.

  6. Effect of Link Flexibility on tip position of a single link robotic arm

    NASA Astrophysics Data System (ADS)

    Madhusudan Raju, E.; Siva Rama Krishna, L.; Mouli, Y. Sharath Chandra; Nageswara Rao, V.

    2015-12-01

    The flexible robots are widely used in space applications due to their quick response, lower energy consumption, lower overall mass and operation at high speed compared to conventional industrial rigid link robots. These robots are inherently flexible, so that the kinematics of flexible robots can't be solved with rigid body assumptions. The flexibility in links and joints affects end-point positioning accuracy of the robot. It is important to model the link kinematics with precision which in turn simplifies modelling of dynamics of flexible robots. The main objective of this paper is to evaluate the effect of link flexibility on a tip position of a single link robotic arm for a given motion. The joint is assumed to be rigid and only link flexibility is considered. The kinematics of flexible link problem is evaluated by Assumed Modes Method (AMM) using MAT LAB Programming. To evaluate the effect of link flexibility (with and without payload) of robotic arm, the normalized tip deviation is found for flexible link with respect to a rigid link. Finally, the limiting inertia for payload mass is found if the allowable tip deviation is 5%.

  7. Ultra-slim flexible glass for roll-to-roll electronic device fabrication

    NASA Astrophysics Data System (ADS)

    Garner, Sean; Glaesemann, Scott; Li, Xinghua

    2014-08-01

    As displays and electronics evolve to become lighter, thinner, and more flexible, the choice of substrate continues to be critical to their overall optimization. The substrate directly affects improvements in the designs, materials, fabrication processes, and performance of advanced electronics. With their inherent benefits such as surface quality, optical transmission, hermeticity, and thermal and dimensional stability, glass substrates enable high-quality and long-life devices. As substrate thicknesses are reduced below 200 μm, ultra-slim flexible glass continues to provide these inherent benefits to high-performance flexible electronics such as displays, touch sensors, photovoltaics, and lighting. In addition, the reduction in glass thickness also allows for new device designs and high-throughput, continuous manufacturing enabled by R2R processes. This paper provides an overview of ultra-slim flexible glass substrates and how they enable flexible electronic device optimization. Specific focus is put on flexible glass' mechanical reliability. For this, a combination of substrate design and process optimizations has been demonstrated that enables R2R device fabrication on flexible glass. Demonstrations of R2R flexible glass processes such as vacuum deposition, photolithography, laser patterning, screen printing, slot die coating, and lamination have been made. Compatibility with these key process steps has resulted in the first demonstration of a fully functional flexible glass device fabricated completely using R2R processes.

  8. Balance and flexibility.

    PubMed

    2003-12-01

    The 'work-life balance' and flexible working are currently key buzz terms in the NHS. Those looking for more information on these topics should visit Flexibility at www.flexibility.co.uk for a host of resources designed to support new ways of working, including information on flexible workers and flexible rostering, the legal balancing act for work-life balance and home working.

  9. Astronaut Charles Conrad poses in shower facility in crew quarters

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Charles Conrad Jr., Skylab 2 commander, smiles for the camera after a hot bath in the shower facility in the crew quarters of the Orbital Workshop of the Skylab 2 space station cluster in Earth orbit. In deploying the shower facility the shower curtain is pulled up from the floor and attached to the ceiling. The water comes through a push-button shower head attached to a flexible hose. Water is drawn off by a vacuum system.

  10. Test of a flexible spacecraft dynamics simulator

    NASA Technical Reports Server (NTRS)

    Dichmann, Donald; Sedlak, Joseph

    1998-01-01

    There are a number of approaches one can take to modeling the dynamics of a flexible body. While one can attempt to capture the full dynamical behavior subject to disturbances from actuators and environmental torques, such a detailed description often is unnecessary. Simplification is possible either by limiting the amplitude of motion to permit linearization of the dynamics equations or by restricting the types of allowed motion. In this work, we study the nonlinear dynamics of bending deformations of wire booms on spinning spacecraft. The theory allows for large amplitude excursions from equilibrium while enforcing constraints on the dynamics to prohibit those modes that are physically less relevant or are expected to damp out fast. These constraints explicitly remove the acoustic modes (i.e., longitudinal sound waves and shear waves) while allowing for arbitrary bending and twisting, motions which typically are of lower frequency. As a test case, a spin axis reorientation maneuver by the Polar Plasma Laboratory (POLAR) spacecraft has been simulated. POLAR was chosen as a representative spacecraft because it has flexible wire antennas that extend to a length of 65 meters. Bending deformations in these antennas could be quite large and have a significant effect on the attitude dynamics of the spacecraft body. Summary results from the simulation are presented along, with a comparison with POLAR flight data.

  11. Energy Systems Integration Facility Control Room | Energy Systems

    Science.gov Websites

    Integration Facility | NREL Energy Systems Integration Facility Control Room Energy Systems Integration Facility Control Room The Energy Systems Integration Facility control room allows system engineers as the monitoring point for the facility's integrated safety and control systems. Photo of employees

  12. Flexible merit pay for faculty.

    PubMed

    Allcorn, S

    1986-01-01

    Faculty and administrators of medical schools should not depend only upon customary forms of salary administration. Many medical schools and departments set salaries in a manner contrary to the principal mission of the institution. In this approach, the author proposes a versatile, flexible, and cost-effective salary merit pay program. The system not only follows the mission of the institution, it also allows for a stimulating assortment of pay opportunities, and promotes productivity since the faculty members actively design their own programs.

  13. CryoEM and image sorting for flexible protein/DNA complexes.

    PubMed

    Villarreal, Seth A; Stewart, Phoebe L

    2014-07-01

    Intrinsically disordered regions of proteins and conformational flexibility within complexes can be critical for biological function. However, disorder, flexibility, and heterogeneity often hinder structural analyses. CryoEM and single particle image processing techniques offer the possibility of imaging samples with significant flexibility. Division of particle images into more homogenous subsets after data acquisition can help compensate for heterogeneity within the sample. We present the utility of an eigenimage sorting analysis for examining two protein/DNA complexes with significant conformational flexibility and heterogeneity. These complexes are integral to the non-homologous end joining pathway, and are involved in the repair of double strand breaks of DNA. Both complexes include the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and biotinylated DNA with bound streptavidin, with one complex containing the Ku heterodimer. Initial 3D reconstructions of the two DNA-PKcs complexes resembled a cryoEM structure of uncomplexed DNA-PKcs without additional density clearly attributable to the remaining components. Application of eigenimage sorting allowed division of the DNA-PKcs complex datasets into more homogeneous subsets. This led to visualization of density near the base of the DNA-PKcs that can be attributed to DNA, streptavidin, and Ku. However, comparison of projections of the subset structures with 2D class averages indicated that a significant level of heterogeneity remained within each subset. In summary, image sorting methods allowed visualization of extra density near the base of DNA-PKcs, suggesting that DNA binds in the vicinity of the base of the molecule and potentially to a flexible region of DNA-PKcs. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Flexible Fringe Benefit Plans Save You Money and Keep Employees Happy.

    ERIC Educational Resources Information Center

    Johnson, Rob

    1987-01-01

    This fringe benefit plan saves money for both employers and employees, provides a better fit for employees' actual benefit needs, and allows employees to choose options from a menu of benefits. One option is a flexible spending plan. Employees place a portion of their before-tax income into a special account from which allowable expenses are paid…

  15. Polyaniline-Modified Oriented Graphene Hydrogel Film as the Free-Standing Electrode for Flexible Solid-State Supercapacitors.

    PubMed

    Du, Pengcheng; Liu, Huckleberry C; Yi, Chao; Wang, Kai; Gong, Xiong

    2015-11-04

    In this study, we report polyaniline (PANI)-modified oriented graphene hydrogel (OGH) films as the free-standing electrode for flexible solid-state supercapacitors (SCs). The OGH films are prepared by a facile filtration method using chemically converted graphene sheets and then introduced to PANI on the surface of OGH films by in situ chemical polymerization. The PANI-modified OGH films possess high flexibility, high electrical conductivity, and mechanical robustness. The flexible solid-state SCs based on the PANI-modified OGH films exhibit a specific capacitance of 530 F/g, keeping 80% of its original value up to 10 000 charge-discharge cycles at the current density of 10 A/g. Remarkably, the flexible solid-state SCs maintain ∼100% capacitance retention bent at 180° for 250 cycles. Moreover, the flexible solid-state SCs are further demonstrated to be able to light up a red-light-emitting diode. These results indicate that the flexible solid-state SCs based on PANI-modified OGH films as the free-standing electrode have potential applications as energy-storage devices.

  16. Integration of Metal Oxide Nanowires in Flexible Gas Sensing Devices

    PubMed Central

    Comini, Elisabetta

    2013-01-01

    Metal oxide nanowires are very promising active materials for different applications, especially in the field of gas sensors. Advances in fabrication technologies now allow the preparation of nanowires on flexible substrates, expanding the potential market of the resulting sensors. The critical steps for the large-scale preparation of reliable sensing devices are the elimination of high temperatures processes and the stretchability of the entire final device, including the active material. Direct growth on flexible substrates and post-growth procedures have been successfully used for the preparation of gas sensors. The paper will summarize the procedures used for the preparation of flexible and wearable gas sensors prototypes with an overlook of the challenges and the future perspectives concerning this field. PMID:23955436

  17. Full-Scale Accelerated Testing of Multi-axial Geogrid Stabilized Flexible Pavements

    DTIC Science & Technology

    2017-06-01

    costs and reduced budgets, transportation officials are often tasked with applying innovative solutions to pavement design and construction projects... pavement designers . 1.2 Objective The objective of this effort was to construct and traffic full-scale flexible pavement sections to provide...Development Center (ERDC) constructed the full-scale test section as designed by Tensar under shelter in its Hangar 2 Pavement Test Facility. During

  18. Flexible intramedullary nailing for unicameral cysts in children's long bones : Level of evidence: lV, case series.

    PubMed

    Glanzmann, Michael C; Campos, Lautaro

    2007-07-01

    The purpose of this study was to evaluate the outcome of flexible intramedullary nailing for unicameral bone cysts in terms of function and osseous consolidation. Twenty-two unicameral bone cysts in children's long bones were treated by flexible intramedullary nailing. In 13 cases the bone cyst was diagnosed in a traumatic event leading to a pathologic fracture. Fifteen patients were referred to our clinic after failed conservative treatment. In 16 patients the cyst was located in the humerus, and in 6 patients in the femur. Mean duration of follow-up after surgery was 24 months. According to Capanna's criteria healing was obtained in 20 cases with a mean time of 16 months. Sixteen cysts healed completely. Four lesions were classified as grade 2, meaning that residual radiolucencies were radiographically visible at the latest follow-up. Two recurrences of humeral cysts were seen at 16 and 18 months postoperatively. The complication rate was minimal. Due to the immediate stabilization of the lesion aftercare becomes facile. This method allows prompt mobilization and early weight bearing without the necessity of a plaster cast. Further it prevents effectively the most common complication, a re-fracture or a pathologic fracture. Therefore we propose this surgical procedure as the treatment of choice for unicameral bone cysts in children's long bones.

  19. A randomized trial of heart failure disease management in skilled nursing facilities (SNF Connect): Lessons learned.

    PubMed

    Daddato, Andrea; Wald, Heidi L; Horney, Carolyn; Fairclough, Diane L; Leister, Erin C; Coors, Marilyn; Capell, Warren H; Boxer, Rebecca S

    2017-06-01

    Conducting clinical trials in skilled nursing facilities is particularly challenging. This manuscript describes facility and patient recruitment challenges and solutions for clinical research in skilled nursing facilities. Lessons learned from the SNF Connect Trial, a randomized trial of a heart failure disease management versus usual care for patients with heart failure receiving post-acute care in skilled nursing facilities, are discussed. Description of the trial design and barriers to facility and patient recruitment along with regulatory issues are presented. The recruitment of Denver-metro skilled nursing facilities was facilitated by key stakeholders of the skilled nursing facilities community. However, there were still a number of barriers to facility recruitment including leadership turnover, varying policies regarding research, fear of litigation and of an increased workload. Engagement of facilities was facilitated by their strong interest in reducing hospital readmissions, marketing potential to hospitals, and heart failure management education for their staff. Recruitment of patients proved difficult and there were few facilitators. Identified patient recruitment challenges included patients being unaware of their heart failure diagnosis, patients overwhelmed with their illness and care, and frequently there was no available proxy for cognitively impaired patients. Flexibility in changing the recruitment approach and targeting skilled nursing facilities with higher rates of admissions helped to overcome some barriers. Recruitment of skilled nursing facilities and patients in skilled nursing facilities for clinical trials is challenging. Strategies to attract both facilities and patients are warranted. These include aligning study goals with facility incentives and flexible recruitment protocols to work with patients in "transition crisis."

  20. Health and psychosocial effects of flexible working hours.

    PubMed

    Janssen, Daniela; Nachreiner, Friedhelm

    2004-12-01

    To examine whether any impairments in health and social lives can be found under different kinds of flexible working hours, and whether such effects are related to specific characteristics of these working hours. Two studies -- a company based survey (N=660) and an internet survey (N=528) -- have been conducted. The first one was a questionnaire study (paper and pencil) on employees working under some 'typical' kinds of different flexible working time arrangements in different companies and different occupational fields (health care, manufacturing, retail, administration, call centres). The second study was an internet-based survey, using an adaptation of the questionnaire from the first study. The results of both studies consistently show that high variability of working hours is associated with increased impairments in health and well-being and this is especially true if this variability is company controlled. These effects are less pronounced if variability is self-controlled; however, autonomy does not compensate the effects of variability. Recommendations for an appropriate design of flexible working hours should be developed in order to minimize any impairing effects on health and psychosocial well-being; these recommendations should include -- besides allowing for discretion in controlling one's (flexible) working hours -- that variability in flexible working hours should be kept low (or at least moderate), even if this variability is self-controlled.

  1. 36 CFR 1280.94 - When do Presidential libraries allow other groups to use their public areas for events?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... libraries allow other groups to use their public areas for events? 1280.94 Section 1280.94 Parks, Forests... FACILITIES What Additional Rules Apply for Use of Facilities in Presidential Libraries? § 1280.94 When do Presidential libraries allow other groups to use their public areas for events? (a) Although Presidential...

  2. 36 CFR 1280.94 - When do Presidential libraries allow other groups to use their public areas for events?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... libraries allow other groups to use their public areas for events? 1280.94 Section 1280.94 Parks, Forests... FACILITIES What Additional Rules Apply for Use of Facilities in Presidential Libraries? § 1280.94 When do Presidential libraries allow other groups to use their public areas for events? (a) Although Presidential...

  3. 36 CFR 1280.94 - When do Presidential libraries allow other groups to use their public areas for events?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... libraries allow other groups to use their public areas for events? 1280.94 Section 1280.94 Parks, Forests... FACILITIES What Additional Rules Apply for Use of Facilities in Presidential Libraries? § 1280.94 When do Presidential libraries allow other groups to use their public areas for events? (a) Although Presidential...

  4. 36 CFR 1280.94 - When do Presidential libraries allow other groups to use their public areas for events?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... libraries allow other groups to use their public areas for events? 1280.94 Section 1280.94 Parks, Forests... FACILITIES What Additional Rules Apply for Use of Facilities in Presidential Libraries? § 1280.94 When do Presidential libraries allow other groups to use their public areas for events? (a) Although Presidential...

  5. NASA Data Acquisition System Software Development for Rocket Propulsion Test Facilities

    NASA Technical Reports Server (NTRS)

    Herbert, Phillip W., Sr.; Elliot, Alex C.; Graves, Andrew R.

    2015-01-01

    Current NASA propulsion test facilities include Stennis Space Center in Mississippi, Marshall Space Flight Center in Alabama, Plum Brook Station in Ohio, and White Sands Test Facility in New Mexico. Within and across these centers, a diverse set of data acquisition systems exist with different hardware and software platforms. The NASA Data Acquisition System (NDAS) is a software suite designed to operate and control many critical aspects of rocket engine testing. The software suite combines real-time data visualization, data recording to a variety formats, short-term and long-term acquisition system calibration capabilities, test stand configuration control, and a variety of data post-processing capabilities. Additionally, data stream conversion functions exist to translate test facility data streams to and from downstream systems, including engine customer systems. The primary design goals for NDAS are flexibility, extensibility, and modularity. Providing a common user interface for a variety of hardware platforms helps drive consistency and error reduction during testing. In addition, with an understanding that test facilities have different requirements and setups, the software is designed to be modular. One engine program may require real-time displays and data recording; others may require more complex data stream conversion, measurement filtering, or test stand configuration management. The NDAS suite allows test facilities to choose which components to use based on their specific needs. The NDAS code is primarily written in LabVIEW, a graphical, data-flow driven language. Although LabVIEW is a general-purpose programming language; large-scale software development in the language is relatively rare compared to more commonly used languages. The NDAS software suite also makes extensive use of a new, advanced development framework called the Actor Framework. The Actor Framework provides a level of code reuse and extensibility that has previously been difficult

  6. Students' Choices and Achievement in Large Undergraduate Classes Using a Novel Flexible Assessment Approach

    ERIC Educational Resources Information Center

    Rideout, Candice A.

    2018-01-01

    A flexible approach to assessment may promote students' engagement and academic achievement by allowing them to personalise their learning experience, even in the context of large undergraduate classes. However, studies reporting flexible assessment strategies and their impact are limited. In this paper, I present a feasible and effective approach…

  7. National facilities study. Volume 5: Space research and development facilities task group

    NASA Technical Reports Server (NTRS)

    1994-01-01

    With the beginnings of the U.S. space program, there was a pressing need to develop facilities that could support the technology research and development, testing, and operations of evolving space systems. Redundancy in facilities that was once and advantage in providing flexibility and schedule accommodation is instead fast becoming a burden on scarce resources. As a result, there is a clear perception in many sectors that the U.S. has many space R&D facilities that are under-utilized and which are no longer cost-effective to maintain. At the same time, it is clear that the U.S. continues to possess many space R&D facilities which are the best -- or among the best -- in the world. In order to remain world class in key areas, careful assessment of current capabilities and planning for new facilities is needed. The National Facility Study (NFS) was initiated in 1992 to develop a comprehensive and integrated long-term plan for future aerospace facilities that meets current and projected government and commercial needs. In order to assess the nation's capability to support space research and development (R&D), a Space R&D Task Group was formed. The Task Group was co-chaired by NASA and DOD. The Task Group formed four major, technologically- and functionally- oriented working groups: Human and Machine Operations; Information and Communications; Propulsion and Power; and Materials, Structures, and Flight Dynamics. In addition to these groups, three supporting working groups were formed: Systems Engineering and Requirements; Strategy and Policy; and Costing Analysis. The Space R&D Task Group examined several hundred facilities against the template of a baseline mission and requirements model (developed in common with the Space Operations Task Group) and a set of excursions from the baseline. The model and excursions are described in Volume 3 of the NFS final report. In addition, as a part of the effort, the group examined key strategic issues associated with space R

  8. Technology Readiness Assessment of Department of Energy Waste Processing Facilities

    DTIC Science & Technology

    2007-09-11

    Must Be Reliable, Robust, Flexible, and Durable 6 EM Is Piloting the TRA/AD2 Process Hanford Waste Treatment Plant ( WTP ) – The Initial Pilot Project...Evaluation WTP can only treat ~ ½ of the LAW in the time it will take to treat all the HLW. • There is a need for tank space that will get more urgent with...Facility before the WTP Pretreatment and High-Level Waste (HLW) Vitrification Facilities are available (Requires tank farm pretreatment capability) TRAs

  9. FACET – a “Flexible Artifact Correction and Evaluation Toolbox” for concurrently recorded EEG/fMRI data

    PubMed Central

    2013-01-01

    Background In concurrent EEG/fMRI recordings, EEG data are impaired by the fMRI gradient artifacts which exceed the EEG signal by several orders of magnitude. While several algorithms exist to correct the EEG data, these algorithms lack the flexibility to either leave out or add new steps. The here presented open-source MATLAB toolbox FACET is a modular toolbox for the fast and flexible correction and evaluation of imaging artifacts from concurrently recorded EEG datasets. It consists of an Analysis, a Correction and an Evaluation framework allowing the user to choose from different artifact correction methods with various pre- and post-processing steps to form flexible combinations. The quality of the chosen correction approach can then be evaluated and compared to different settings. Results FACET was evaluated on a dataset provided with the FMRIB plugin for EEGLAB using two different correction approaches: Averaged Artifact Subtraction (AAS, Allen et al., NeuroImage 12(2):230–239, 2000) and the FMRI Artifact Slice Template Removal (FASTR, Niazy et al., NeuroImage 28(3):720–737, 2005). Evaluation of the obtained results were compared to the FASTR algorithm implemented in the EEGLAB plugin FMRIB. No differences were found between the FACET implementation of FASTR and the original algorithm across all gradient artifact relevant performance indices. Conclusion The FACET toolbox not only provides facilities for all three modalities: data analysis, artifact correction as well as evaluation and documentation of the results but it also offers an easily extendable framework for development and evaluation of new approaches. PMID:24206927

  10. Multi-vehicle mobility allowance shuttle transit (MAST) system : an analytical model to select the fleet size and a scheduling heuristic.

    DOT National Transportation Integrated Search

    2012-06-01

    The mobility allowance shuttle transit (MAST) system is a hybrid transit system in which vehicles are : allowed to deviate from a fixed route to serve flexible demand. A mixed integer programming (MIP) : formulation for the static scheduling problem ...

  11. High-performance flexible electrode based on electrodeposition of polypyrrole/MnO2 on carbon cloth for supercapacitors

    NASA Astrophysics Data System (ADS)

    Fan, Xingye; Wang, Xiaolei; Li, Ge; Yu, Aiping; Chen, Zhongwei

    2016-09-01

    A highly flexible electrodes based on electrodeposited MnO2 and polypyrrole composite on carbon cloth is designed and developed by a facile in-situ electrodeposition technique. Such flexible composite electrodes with multiply layered structure possess a high specific capacitance of 325 F g-1 at a current density of 0.2 A g-1, and an excellent rate capability with a capacitance retention of 70% at a high current density of 5.0 A g-1. The superior electrochemical performance is mainly due to the unique electrode with improved ion- and electron-transportation pathways as well as the efficient utilization of active materials and electrode robustness. The excellent electrochemical performance and the low cost property endow this flexible nanocomposite electrode with great promise in applications of flexible supercapacitors.

  12. Alleviation of Facility/Engine Interactions in an Open-Jet Scramjet Test Facility

    NASA Technical Reports Server (NTRS)

    Albertson, Cindy W.; Emami, Saied

    2001-01-01

    Results of a series of shakedown tests to eliminate facility/engine interactions in an open-jet scramjet test facility are presented. The tests were conducted with the NASA DFX (Dual-Fuel eXperimental scramjet) engine in the NASA Langley Combustion Heated Scramjet Test Facility (CHSTF) in support of the Hyper-X program, The majority of the tests were conducted at a total enthalpy and pressure corresponding to Mach 5 flight at a dynamic pressure of 734 psf. The DFX is the largest engine ever tested in the CHSTF. Blockage, in terms of the projected engine area relative to the nozzle exit area, is 81% with the engine forebody leading edge aligned with the upper edge of the facility nozzle such that it ingests the nozzle boundary layer. The blockage increases to 95% with the engine forebody leading edge positioned 2 in. down in the core flow. Previous engines successfully tested in the CHSTF have had blockages of no more than 51%. Oil flow studies along with facility and engine pressure measurements were used to define flow behavior. These results guided modifications to existing aeroappliances and the design of new aeroappliances. These changes allowed fueled tests to be conducted without facility interaction effects in the data with the engine forebody leading edge positioned to ingest the facility nozzle boundary layer. Interaction effects were also reduced for tests with the engine forebody leading edge positioned 2 in. into the core flow, however some interaction effects were still evident in the engine data. A new shroud and diffuser have been designed with the goal of allowing fueled tests to be conducted with the engine forebody leading edge positioned in the core without facility interaction effects in the data. Evaluation tests of the new shroud and diffuser will be conducted once ongoing fueled engine tests have been completed.

  13. Definition of Capabilities Needed for a Single Event Effects Test Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riemer, Bernie; Gallmeier, Franz X.

    The Federal Aviation Administration (FAA) is contemplating new regulations mandating testing of the vulnerability of flight-critical avionics to single event effects (SEE). A limited number of high-energy neutron test facilities currently serve the SEE industrial and institutional research community. The FAA recognizes that existing facilities have insufficient test capacity to meet new demand from such mandates; it desires more flexible irradiation capabilities to test complete, large systems and would like capabilities to address greater concerns for thermal neutrons. For this reason, the FAA funded this study by Spallation Neutron Source (SNS) staff with the ultimate aim of developing options formore » SEE test facilities using high-energy neutrons at the SNS complex. After an investigation of current SEE test practices and assessment of future testing requirements, three concepts were identified covering a range of test functionality, neutron flux levels, and fidelity to the atmospheric neutron spectrum. The costs and times required to complete each facility were also estimated. SEE testing is generally performed by accelerating the event rate to a point where the effects are still dominated by single events and double event causes of failures are negligible. In practice, acceleration factors of as high as 10 6 are applicable for component testing, whereas for systems testing acceleration factors of 10 4 seem to be the upper limit. It is strongly desirable that the irradiation facility be tunable over a large range of high-energy neutron fluxes of 10 2 - 10 4 n/cm²/s for systems testing and from 10 4 - 10 7 n/cm²/s for components testing. The most capable, most flexible, and highest-test-capacity option is a new stand-alone target station named the High-Energy neutron Test Station (HETS). It is also the most expensive option, with a cost to complete of approximately $100 million. Dual test enclosures would allow for simultaneous testing activity effectively

  14. Flexible Ablators

    NASA Technical Reports Server (NTRS)

    Stackpoole, Margaret M. (Inventor); Ghandehari, Ehson M. (Inventor); Thornton, Jeremy J. (Inventor); Covington, Melmoth Alan (Inventor)

    2017-01-01

    A low-density article comprising a flexible substrate and a pyrolizable material impregnated therein, methods of preparing, and devices using the article are disclosed. The pyrolizable material pyrolizes above 350 C and does not flow at temperatures below the pyrolysis temperature. The low-density article remains flexible after impregnation and continues to remain flexible when the pyrolizable material is fully pyrolized.

  15. Low authority-threshold control for large flexible structures

    NASA Technical Reports Server (NTRS)

    Zimmerman, D. C.; Inman, D. J.; Juang, J.-N.

    1988-01-01

    An improved active control strategy for the vibration control of large flexible structures is presented. A minimum force, low authority-threshold controller is developed to bring a system with or without known external disturbances back into an 'allowable' state manifold over a finite time interval. The concept of a constrained, or allowable feedback form of the controller is introduced that reflects practical hardware implementation concerns. The robustness properties of the control strategy are then assessed. Finally, examples are presented which highlight the key points made within the paper.

  16. Unique Flexibility in Energy Metabolism Allows Mycobacteria to Combat Starvation and Hypoxia

    PubMed Central

    Berney, Michael; Cook, Gregory M.

    2010-01-01

    Mycobacteria are a group of obligate aerobes that require oxygen for growth, but paradoxically have the ability to survive and metabolize under hypoxia. The mechanisms responsible for this metabolic plasticity are unknown. Here, we report on the adaptation of Mycobacterium smegmatis to slow growth rate and hypoxia using carbon-limited continuous culture. When M. smegmatis is switched from a 4.6 h to a 69 h doubling time at a constant oxygen saturation of 50%, the cells respond through the down regulation of respiratory chain components and the F1Fo-ATP synthase, consistent with the cells lower demand for energy at a reduced growth rate. This was paralleled by an up regulation of molecular machinery that allowed more efficient energy generation (i.e. Complex I) and the use of alternative electron donors (e.g. hydrogenases and primary dehydrogenases) to maintain the flow of reducing equivalents to the electron transport chain during conditions of severe energy limitation. A hydrogenase mutant showed a 40% reduction in growth yield highlighting the importance of this enzyme in adaptation to low energy supply. Slow growing cells at 50% oxygen saturation subjected to hypoxia (0.6% oxygen saturation) responded by switching on oxygen scavenging cytochrome bd, proton-translocating cytochrome bc1-aa3 supercomplex, another putative hydrogenase, and by substituting NAD+-dependent enzymes with ferredoxin-dependent enzymes thus highlighting a new pattern of mycobacterial adaptation to hypoxia. The expression of ferredoxins and a hydrogenase provides a potential conduit for disposing of and transferring electrons in the absence of exogenous electron acceptors. The use of ferredoxin-dependent enzymes would allow the cell to maintain a high carbon flux through its central carbon metabolism independent of the NAD+/NADH ratio. These data demonstrate the remarkable metabolic plasticity of the mycobacterial cell and provide a new framework for understanding their ability to survive

  17. Long-Lived Flexible Displays Employing Efficient and Stable Inverted Organic Light-Emitting Diodes.

    PubMed

    Fukagawa, Hirohiko; Sasaki, Tsubasa; Tsuzuki, Toshimitsu; Nakajima, Yoshiki; Takei, Tatsuya; Motomura, Genichi; Hasegawa, Munehiro; Morii, Katsuyuki; Shimizu, Takahisa

    2018-05-29

    Although organic light-emitting diodes (OLEDs) are promising for use in applications such as in flexible displays, reports of long-lived flexible OLED-based devices are limited due to the poor environmental stability of OLEDs. Flexible substrates such as plastic allow ambient oxygen and moisture to permeate into devices, which degrades the alkali metals used for the electron-injection layer in conventional OLEDs (cOLEDs). Here, the fabrication of a long-lived flexible display is reported using efficient and stable inverted OLEDs (iOLEDs), in which electrons can be effectively injected without the use of alkali metals. The flexible display employing iOLEDs can emit light for over 1 year with simplified encapsulation, whereas a flexible display employing cOLEDs exhibits almost no luminescence after only 21 d with the same encapsulation. These results demonstrate the great potential of iOLEDs to replace cOLEDs employing alkali metals for use in a wide variety of flexible organic optoelectronic devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Office flexible cystoscopy.

    PubMed

    Kavoussi, L R; Clayman, R V

    1988-11-01

    Since the development of the first purpose-built flexible cystoscope in 1984, flexible cystoscopy has become an accepted diagnostic and therapeutic modality. Indeed, it is estimated that more than 10 per cent of practicing urologists are already familiar with this technology. The flexible cystoscope has markedly extended the urologist's ability to examine the bladder, and it has become a valuable adjunct to the rigid cystoscope. Although the operation of this instrument is vastly different from that of its rigid counterpart, with practice, the technique can be learned. After experience is obtained with diagnostic flexible cystoscopy, the urologist will likely prefer this new instrument for bladder inspection, as it provides for a more thorough yet less morbid and less expensive examination. In the future, the development of improved and smaller instrumentation will further extend the therapeutic indications for flexible cystoscopy. Indeed, advances in laser technology are already providing the urologist with 300- to 600-micron (0.9 to 1.8F) flexible probes capable of incision (KTP laser), fulguration (Nd:YAG laser), and stone disintegration (tunable dye laser). Lastly, the skills obtained in using the flexible cystoscope are all readily applicable to the development of dexterity with the already available flexible nephroscope and the more recently developed flexible ureteroscope.

  19. EDITORIAL: Nanotechnology-based flexible electronics Nanotechnology-based flexible electronics

    NASA Astrophysics Data System (ADS)

    Subramanian, Vivek; Lee, Takhee

    2012-08-01

    Research on flexible electronics has grown exponentially over the last decade. Researchers around the globe are developing a wide range of flexible systems, including displays [1, 2], sensors [3-5], RFID tags [6, 7] and other similar devices [8]. Innovations in materials have been key to the increased research success in this field of research in recent years [9]. Transistors, interconnects, memory cells, passive components and other assorted devices all have challenging material demands for flexible electronics to become a reality. Nanomaterials of various kinds have been found to represent a tremendously powerful tool, with nanoparticles [10], nanotubes, nanowires [3, 11] and engineered organic molecules [12, 13] contributing to the realization of high-performance semiconductors, dielectrics and conductors for flexible electronics applications. Nanomaterials offer tunability in terms of performance, solution processability and processing temperature requirements, which makes them very attractive as building blocks for flexible electronic systems. Indeed, such systems represent some of the largest families of commercially produced nanomaterials today, and numerous commercial products based on nanoparticle formulations are widely available. This special issue focuses on the rapidly blossoming field of flexible electronics, with a particular focus on the use of nanotechnology to facilitate flexible electronic materials, processes, devices and systems. Contributions to the issue describe the development of nanomaterials—including nanoparticles, nanotubes, nanowires and carbon-based thin films—for use in conductors, transparent electrodes, semiconductors and dielectrics. The articles feature innovations in nanomanufacturing and novel materials, as well as the application of these technologies to advanced flexible devices and systems. As flexible electronics systems move rapidly towards successful commercial deployment, it is extremely likely that they will exploit

  20. High-performance and flexible thermoelectric films by screen printing solution-processed nanoplate crystals.

    PubMed

    Varghese, Tony; Hollar, Courtney; Richardson, Joseph; Kempf, Nicholas; Han, Chao; Gamarachchi, Pasindu; Estrada, David; Mehta, Rutvik J; Zhang, Yanliang

    2016-09-12

    Screen printing allows for direct conversion of thermoelectric nanocrystals into flexible energy harvesters and coolers. However, obtaining flexible thermoelectric materials with high figure of merit ZT through printing is an exacting challenge due to the difficulties to synthesize high-performance thermoelectric inks and the poor density and electrical conductivity of the printed films. Here, we demonstrate high-performance flexible films and devices by screen printing bismuth telluride based nanocrystal inks synthesized using a microwave-stimulated wet-chemical method. Thermoelectric films of several tens of microns thickness were screen printed onto a flexible polyimide substrate followed by cold compaction and sintering. The n-type films demonstrate a peak ZT of 0.43 along with superior flexibility, which is among the highest reported ZT values in flexible thermoelectric materials. A flexible thermoelectric device fabricated using the printed films produces a high power density of 4.1 mW/cm(2) with 60 °C temperature difference between the hot side and cold side. The highly scalable and low cost process to fabricate flexible thermoelectric materials and devices demonstrated here opens up many opportunities to transform thermoelectric energy harvesting and cooling applications.

  1. High-performance and flexible thermoelectric films by screen printing solution-processed nanoplate crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varghese, Tony; Hollar, Courtney; Richardson, Joseph

    Screen printing allows for direct conversion of thermoelectric nanocrystals into flexible energy harvesters and coolers. However, obtaining flexible thermoelectric materials with high figure of merit ZT through printing is an exacting challenge due to the difficulties to synthesize high-performance thermoelectric inks and the poor density and electrical conductivity of the printed films. Here, we demonstrate high-performance flexible films and devices by screen printing bismuth telluride based nanocrystal inks synthesized using a microwave-stimulated wet-chemical method. Thermoelectric films of several tens of microns thickness were screen printed onto a flexible polyimide substrate followed by cold compaction and sintering. The n-type films demonstratemore » a peak ZT of 0.43 along with superior flexibility, which is among the highest reported ZT values in flexible thermoelectric materials. A flexible thermoelectric device fabricated using the printed films produces a high power density of 4.1 mW/cm 2 with 60°C temperature difference between the hot side and cold side. In conclusion, the highly scalable and low cost process to fabricate flexible thermoelectric materials and devices demonstrated here opens up many opportunities to transform thermoelectric energy harvesting and cooling applications.« less

  2. High-performance and flexible thermoelectric films by screen printing solution-processed nanoplate crystals

    DOE PAGES

    Varghese, Tony; Hollar, Courtney; Richardson, Joseph; ...

    2016-09-12

    Screen printing allows for direct conversion of thermoelectric nanocrystals into flexible energy harvesters and coolers. However, obtaining flexible thermoelectric materials with high figure of merit ZT through printing is an exacting challenge due to the difficulties to synthesize high-performance thermoelectric inks and the poor density and electrical conductivity of the printed films. Here, we demonstrate high-performance flexible films and devices by screen printing bismuth telluride based nanocrystal inks synthesized using a microwave-stimulated wet-chemical method. Thermoelectric films of several tens of microns thickness were screen printed onto a flexible polyimide substrate followed by cold compaction and sintering. The n-type films demonstratemore » a peak ZT of 0.43 along with superior flexibility, which is among the highest reported ZT values in flexible thermoelectric materials. A flexible thermoelectric device fabricated using the printed films produces a high power density of 4.1 mW/cm 2 with 60°C temperature difference between the hot side and cold side. In conclusion, the highly scalable and low cost process to fabricate flexible thermoelectric materials and devices demonstrated here opens up many opportunities to transform thermoelectric energy harvesting and cooling applications.« less

  3. High-performance and flexible thermoelectric films by screen printing solution-processed nanoplate crystals

    PubMed Central

    Varghese, Tony; Hollar, Courtney; Richardson, Joseph; Kempf, Nicholas; Han, Chao; Gamarachchi, Pasindu; Estrada, David; Mehta, Rutvik J.; Zhang, Yanliang

    2016-01-01

    Screen printing allows for direct conversion of thermoelectric nanocrystals into flexible energy harvesters and coolers. However, obtaining flexible thermoelectric materials with high figure of merit ZT through printing is an exacting challenge due to the difficulties to synthesize high-performance thermoelectric inks and the poor density and electrical conductivity of the printed films. Here, we demonstrate high-performance flexible films and devices by screen printing bismuth telluride based nanocrystal inks synthesized using a microwave-stimulated wet-chemical method. Thermoelectric films of several tens of microns thickness were screen printed onto a flexible polyimide substrate followed by cold compaction and sintering. The n-type films demonstrate a peak ZT of 0.43 along with superior flexibility, which is among the highest reported ZT values in flexible thermoelectric materials. A flexible thermoelectric device fabricated using the printed films produces a high power density of 4.1 mW/cm2 with 60 °C temperature difference between the hot side and cold side. The highly scalable and low cost process to fabricate flexible thermoelectric materials and devices demonstrated here opens up many opportunities to transform thermoelectric energy harvesting and cooling applications. PMID:27615036

  4. adLIMS: a customized open source software that allows bridging clinical and basic molecular research studies.

    PubMed

    Calabria, Andrea; Spinozzi, Giulio; Benedicenti, Fabrizio; Tenderini, Erika; Montini, Eugenio

    2015-01-01

    Many biological laboratories that deal with genomic samples are facing the problem of sample tracking, both for pure laboratory management and for efficiency. Our laboratory exploits PCR techniques and Next Generation Sequencing (NGS) methods to perform high-throughput integration site monitoring in different clinical trials and scientific projects. Because of the huge amount of samples that we process every year, which result in hundreds of millions of sequencing reads, we need to standardize data management and tracking systems, building up a scalable and flexible structure with web-based interfaces, which are usually called Laboratory Information Management System (LIMS). We started collecting end-users' requirements, composed of desired functionalities of the system and Graphical User Interfaces (GUI), and then we evaluated available tools that could address our requirements, spanning from pure LIMS to Content Management Systems (CMS) up to enterprise information systems. Our analysis identified ADempiere ERP, an open source Enterprise Resource Planning written in Java J2EE, as the best software that also natively implements some highly desirable technological advances, such as the high usability and modularity that grants high use-case flexibility and software scalability for custom solutions. We extended and customized ADempiere ERP to fulfil LIMS requirements and we developed adLIMS. It has been validated by our end-users verifying functionalities and GUIs through test cases for PCRs samples and pre-sequencing data and it is currently in use in our laboratories. adLIMS implements authorization and authentication policies, allowing multiple users management and roles definition that enables specific permissions, operations and data views to each user. For example, adLIMS allows creating sample sheets from stored data using available exporting operations. This simplicity and process standardization may avoid manual errors and information backtracking, features

  5. High-Sensitivity and Low-Power Flexible Schottky Hydrogen Sensor Based on Silicon Nanomembrane.

    PubMed

    Cho, Minkyu; Yun, Jeonghoon; Kwon, Donguk; Kim, Kyuyoung; Park, Inkyu

    2018-04-18

    High-performance and low-power flexible Schottky diode-based hydrogen sensor was developed. The sensor was fabricated by releasing Si nanomembrane (SiNM) and transferring onto a plastic substrate. After the transfer, palladium (Pd) and aluminum (Al) were selectively deposited as a sensing material and an electrode, respectively. The top-down fabrication process of flexible Pd/SiNM diode H 2 sensor is facile compared to other existing bottom-up fabricated flexible gas sensors while showing excellent H 2 sensitivity (Δ I/ I 0 > 700-0.5% H 2 concentrations) and fast response time (τ 10-90 = 22 s) at room temperature. In addition, selectivity, humidity, and mechanical tests verify that the sensor has excellent reliability and robustness under various environments. The operating power consumption of the sensor is only in the nanowatt range, which indicates its potential applications in low-power portable and wearable electronics.

  6. Transparent Electrode Based on Silver Nanowires and Polyimide for Film Heater and Flexible Solar Cell

    PubMed Central

    He, Xin; Duan, Feng; Liu, Junyan; Lan, Qiuming; Wu, Jianhao; Yang, Chengyan; Yang, Weijia; Zeng, Qingguang; Wang, Huafang

    2017-01-01

    Transparent, conductive, and flexible Ag nanowire (NW)-polyimide (PI) composite films were fabricated by a facile solution method. Well-dispersed Ag NWs result in percolation networks on the PI supporting layer. A series of films with transmittance values of 53–80% and sheet resistances of 2.8–16.5 Ω/sq were investigated. To further verify the practicability of the Ag NWs-PI film in optoelectronic devices, we utilized it in a film heater and a flexible solar cell. The film heater was able to generate a temperature of 58 °C at a driving voltage of 3.5 V within 20 s, indicating its potential application in heating devices that require low power consumption and fast response. The flexible solar cell based on the composite film with a transmittance value of 71% presented a power conversion efficiency of 3.53%. These successful applications proved that the fabricated Ag NWs-PI composite film is a good candidate for application in flexible optoelectronic devices. PMID:29186012

  7. Two-dimensional polyaniline nanostructure to the development of microfluidic integrated flexible biosensors for biomarker detection.

    PubMed

    Liu, Pei; Zhu, Yisi; Lee, Seung Hee; Yun, Minhee

    2016-12-01

    In this work, we report a flexible field-effect-transistor (FET) biosensor design based on two-dimensional (2-D) polyaniline (PANI) nanostructure. The flexible biosensor devices were fabricated through a facile and inexpensive method that combines top-down and bottom-up processes. The chemically synthesized PANI nanostructure showed excellent p-type semiconductor properties as well as good compatibility with flexible design. With the 2-D PANI nanostructure being as thin as 80 nm and its extremely large surface-area-to-volume (SA/V) ratio due to the intrinsic properties of PANI chemical synthesis, the developed flexible biosensor exhibited outstanding sensing performance in detecting B-type natriuretic peptide (BNP) biomarkers, and was able to achieve high specificity (averagely 112 folds) with the limit of detection as low as 100 pg/mL. PANI nanostructure under bending condition was also investigated and showed controllable conductance changes being less than 20% with good restorability which may open up the possibility for wearable applications.

  8. Transparent Electrode Based on Silver Nanowires and Polyimide for Film Heater and Flexible Solar Cell.

    PubMed

    He, Xin; Duan, Feng; Liu, Junyan; Lan, Qiuming; Wu, Jianhao; Yang, Chengyan; Yang, Weijia; Zeng, Qingguang; Wang, Huafang

    2017-11-29

    Transparent, conductive, and flexible Ag nanowire (NW)-polyimide (PI) composite films were fabricated by a facile solution method. Well-dispersed Ag NWs result in percolation networks on the PI supporting layer. A series of films with transmittance values of 53-80% and sheet resistances of 2.8-16.5 Ω/sq were investigated. To further verify the practicability of the Ag NWs-PI film in optoelectronic devices, we utilized it in a film heater and a flexible solar cell. The film heater was able to generate a temperature of 58 °C at a driving voltage of 3.5 V within 20 s, indicating its potential application in heating devices that require low power consumption and fast response. The flexible solar cell based on the composite film with a transmittance value of 71% presented a power conversion efficiency of 3.53%. These successful applications proved that the fabricated Ag NWs-PI composite film is a good candidate for application in flexible optoelectronic devices.

  9. Maximizing sinter plant operating flexibility through emissions trading and air modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schewe, G.J.; Wagner, J.A.; Heron, T.

    1998-12-31

    This paper provides details on the dispersion modeling analysis performed to demonstrate air quality impacts associated with an emission trading scheme for a sintering operation in Youngstown, Ohio. The emission trade was proposed to allow the sinter plant to expand its current allowable sulfur dioxide (SO2) emissions while being offset with SO{sub 2} emissions from boilers at a nearby shutdown steel mill. While the emission trade itself was feasible and the emissions required for the offset were available (the boiler shutdown and their subsequent SO{sub 2} emission credits were never claimed, banked, or used elsewhere), the second criteria for determiningmore » compliance was a demonstration of minimal air quality impact. The air analysis combined the increased ambient SO{sub 2} concentrations of the relaxed sinter plant emissions with the offsetting air quality of the shutdown boilers to yield the net air quality impacts. To test this net air impact, dispersion modeling was performed treating the sinter plant SO{sub 2} emissions as positive and the shutdown boiler SO{sub 2} emissions as negative. The results of the modeling indicated that the ambient air concentrations due to the proposed emissions increase will be offset by the nearby boiler emissions to levels acceptable under EPA`s offset policy Level 2 significant impact concentrations. Therefore, the dispersion modeling demonstrated that the emission trading scheme would not result in significant air quality impacts and maximum operating flexibility was provided to the sintering facility.« less

  10. Scalable Microfabrication Procedures for Adhesive-Integrated Flexible and Stretchable Electronic Sensors.

    PubMed

    Kang, Dae Y; Kim, Yun-Soung; Ornelas, Gladys; Sinha, Mridu; Naidu, Keerthiga; Coleman, Todd P

    2015-09-16

    New classes of ultrathin flexible and stretchable devices have changed the way modern electronics are designed to interact with their target systems. Though more and more novel technologies surface and steer the way we think about future electronics, there exists an unmet need in regards to optimizing the fabrication procedures for these devices so that large-scale industrial translation is realistic. This article presents an unconventional approach for facile microfabrication and processing of adhesive-peeled (AP) flexible sensors. By assembling AP sensors on a weakly-adhering substrate in an inverted fashion, we demonstrate a procedure with 50% reduced end-to-end processing time that achieves greater levels of fabrication yield. The methodology is used to demonstrate the fabrication of electrical and mechanical flexible and stretchable AP sensors that are peeled-off their carrier substrates by consumer adhesives. In using this approach, we outline the manner by which adhesion is maintained and buckling is reduced for gold film processing on polydimethylsiloxane substrates. In addition, we demonstrate the compatibility of our methodology with large-scale post-processing using a roll-to-roll approach.

  11. Plasma jet printing of electronic materials on flexible and nonconformal objects.

    PubMed

    Gandhiraman, Ram P; Jayan, Vivek; Han, Jin-Woo; Chen, Bin; Koehne, Jessica E; Meyyappan, M

    2014-12-10

    We present a novel approach for the room-temperature fabrication of conductive traces and their subsequent site-selective dielectric encapsulation for use in flexible electronics. We have developed an aerosol-assisted atmospheric pressure plasma-based deposition process for efficiently depositing materials on flexible substrates. Silver nanowire conductive traces and silicon dioxide dielectric coatings for encapsulation were deposited using this approach as a demonstration. The paper substrate with silver nanowires exhibited a very low change in resistance upon 50 cycles of systematic deformation, exhibiting high mechanical flexibility. The applicability of this process to print conductive traces on nonconformal 3D objects was also demonstrated through deposition on a 3D-printed thermoplastic object, indicating the potential to combine plasma printing with 3D printing technology. The role of plasma here includes activation of the material present in the aerosol for deposition, increasing the deposition rate, and plasma polymerization in the case of inorganic coatings. The demonstration here establishes a low-cost, high-throughput, and facile process for printing electronic components on nonconventional platforms.

  12. Scalable Microfabrication Procedures for Adhesive-Integrated Flexible and Stretchable Electronic Sensors

    PubMed Central

    Kang, Dae Y.; Kim, Yun-Soung; Ornelas, Gladys; Sinha, Mridu; Naidu, Keerthiga; Coleman, Todd P.

    2015-01-01

    New classes of ultrathin flexible and stretchable devices have changed the way modern electronics are designed to interact with their target systems. Though more and more novel technologies surface and steer the way we think about future electronics, there exists an unmet need in regards to optimizing the fabrication procedures for these devices so that large-scale industrial translation is realistic. This article presents an unconventional approach for facile microfabrication and processing of adhesive-peeled (AP) flexible sensors. By assembling AP sensors on a weakly-adhering substrate in an inverted fashion, we demonstrate a procedure with 50% reduced end-to-end processing time that achieves greater levels of fabrication yield. The methodology is used to demonstrate the fabrication of electrical and mechanical flexible and stretchable AP sensors that are peeled-off their carrier substrates by consumer adhesives. In using this approach, we outline the manner by which adhesion is maintained and buckling is reduced for gold film processing on polydimethylsiloxane substrates. In addition, we demonstrate the compatibility of our methodology with large-scale post-processing using a roll-to-roll approach. PMID:26389915

  13. Flexible Reporting of Clinical Data

    PubMed Central

    Andrews, Robert D.

    1987-01-01

    Two prototype methods have been developed to aid in the presentation of relevant clinical data: 1) an integrated report that displays results from a patient's computer-stored data and also allows manual entry of data, and 2) a graph program that plots results of multiple kinds of tests. These reports provide a flexible means of displaying data to help evaluate patient treatment. The two methods also explore ways of integrating the display of data from multiple components of the Veterans Administration's (VA) Decentralized Hospital Computer Program (DHCP) database.

  14. Control of Flexible Systems in the Presence of Failures

    NASA Technical Reports Server (NTRS)

    Magahami, Peiman G.; Cox, David E.; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    Control of flexible systems under degradation or failure of sensors/actuators is considered. A Linear Matrix Inequality framework is used to synthesize H(sub infinity)-based controllers, which provide good disturbance rejection while capable of tolerating real parameter uncertainties in the system model, as well as potential degradation or failure of the control system hardware. In this approach, a one-at-a-time failure scenario is considered, wherein no more than one sensor or actuator is allowed to fail at any given time. A numerical example involving control synthesis for a two-dimensional flexible system is presented to demonstrate the feasibility of the proposed approach.

  15. Vertically Aligned Co9 S8 Nanotube Arrays onto Graphene Papers as High-Performance Flexible Electrodes for Supercapacitors.

    PubMed

    Xiong, Dongbin; Li, Xifei; Bai, Zhimin; Li, Jianwei; Han, Yan; Li, Dejun

    2018-02-16

    Paper-like electrodes are emerging as a new category of advanced electrodes for flexible supercapacitors (SCs). Graphene, a promising two-dimensional material with high conductivity, can be easily processed into papers. Here, we report a rational design of flexible architecture with Co 9 S 8 nanotube arrays (NAs) grown onto graphene paper (GP) via a facile two-step hydrothermal method. When employed as flexible free-standing electrode for SCs, the proposed architectured Co 9 S 8 /GPs exhibits superior electrochemical performance with ultrahigh capacitance and outstanding rate capability (469 F g -1 at 10 A g -1 ). These results demonstrate that the new nanostructured Co 9 S 8 /GPs can be potentially applied in high performance flexible supercapacitors. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Urban Watershed Research Facility at Edison Environmental Center

    EPA Science Inventory

    The Urban Watershed Research Facility (UWRF) is an isolated, 20-acre open space within EPA’s 200 acre Edison facility established to develop and evaluate the performance of stormwater management practices under controlled conditions. The facility includes greenhouses that allow ...

  17. Hybrid Residual Flexibility/Mass-Additive Method for Structural Dynamic Testing

    NASA Technical Reports Server (NTRS)

    Tinker, M. L.

    2003-01-01

    A large fixture was designed and constructed for modal vibration testing of International Space Station elements. This fixed-base test fixture, which weighs thousands of pounds and is anchored to a massive concrete floor, initially utilized spherical bearings and pendulum mechanisms to simulate Shuttle orbiter boundary constraints for launch of the hardware. Many difficulties were encountered during a checkout test of the common module prototype structure, mainly due to undesirable friction and excessive clearances in the test-article-to-fixture interface bearings. Measured mode shapes and frequencies were not representative of orbiter-constrained modes due to the friction and clearance effects in the bearings. As a result, a major redesign effort for the interface mechanisms was undertaken. The total cost of the fixture design, construction and checkout, and redesign was over $2 million. Because of the problems experienced with fixed-base testing, alternative free-suspension methods were studied, including the residual flexibility and mass-additive approaches. Free-suspension structural dynamics test methods utilize soft elastic bungee cords and overhead frame suspension systems that are less complex and much less expensive than fixed-base systems. The cost of free-suspension fixturing is on the order of tens of thousands of dollars as opposed to millions, for large fixed-base fixturing. In addition, free-suspension test configurations are portable, allowing modal tests to be done at sites without modal test facilities. For example, a mass-additive modal test of the ASTRO-1 Shuttle payload was done at the Kennedy Space Center launch site. In this Technical Memorandum, the mass-additive and residual flexibility test methods are described in detail. A discussion of a hybrid approach that combines the best characteristics of each method follows and is the focus of the study.

  18. The national free delivery policy in Nepal: early evidence of its effects on health facilities.

    PubMed

    Witter, Sophie; Khadka, Sunil; Nath, Hom; Tiwari, Suresh

    2011-11-01

    Nepal faces the challenge of high levels of poverty, difficult access to health facilities and poor, though improving, health indicators. In response, in the past 5 years it has been experimenting with a range of approaches to removing user fees. Access to health care is now enshrined as a constitutional right for all. This article examines the latest policy, which was introduced in January 2009: free delivery care across the country. The study objective was to understand the effects of the policy on health facilities. Study methods included structured forms to retrieve financial and activity data from national, district and facility records (comparing 10 months before implementation with 10 months after). These were supplemented by semi-structured interviews with key informants at different levels of the health system. Findings include that utilization of services (at the facilities visited) continues to rise, with caesareans proportionate to the general growth in deliveries. Funds for the free delivery policy ('Aama') are found to be adequate to cover the main costs of services, with some surplus which can be invested in staff and in improving services. The system for reimbursing facilities is operating without undue delay and there is satisfaction with the flexibility of use of resources which it allows and the additional incentives for staff. The main concerns relate to wider systemic issues-in particular, understaffing in some key posts and areas, and dwindling general revenues for the facilities, especially through loss of wider user fee revenues. This may explain the ongoing charges for patients, which both facilities and patients report. It will be challenging to build on the gains of the past few years and sustain them, at the same time as merging the separate free care funding streams.

  19. Measuring psychological flexibility in medical students and residents: a psychometric analysis

    PubMed Central

    Palladino, Christie L.; Ange, Brittany; Richardson, Deborah S.; Casillas, Rhonda; Decker, Matt; Gillies, Ralph A.; House, Amy; Rollock, Michael; Salazar, William H.; Waller, Jennifer L.; Zeidan, Ronnie; Stepleman, Lara

    2013-01-01

    Purpose Psychological flexibility involves mindful awareness of our thoughts and feelings without allowing them to prohibit acting consistently with our values and may have important implications for patient-centered clinical care. Although psychological flexibility appears quite relevant to the training and development of health care providers, prior research has not evaluated measures of psychological flexibility in medical learners. Therefore, we investigated the validity of our learners’ responses to three measures related to psychological flexibility. Methods Fourth-year medical students and residents (n=275) completed three measures of overlapping aspects of psychological flexibility: (1) Acceptance and Action Questionnaire-II (AAQ-II); (2) Cognitive Fusion Questionnaire (CFQ); and (3) Mindful Attention and Awareness Questionnaire (MAAS). We evaluated five aspects of construct validity: content, response process, internal structure, relationship with other variables, and consequences. Results We found good internal consistency for responses on the AAQ (α=0.93), MAAS (α=0.92), and CFQ (α=0.95). Factor analyses demonstrated a reasonable fit to previously published factor structures. As expected, scores on all three measures were moderately correlated with one another and with a measure of life satisfaction (p<0.01). Conclusion Our findings provide preliminary evidence supporting validity of the psychological flexibility construct in a medical education sample. As psychological flexibility is a central concept underlying self-awareness, this work may have important implications for clinical training and practice. PMID:23948496

  20. Composite flexible insulation for thermal protection of space vehicles

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius A.; Tran, Huy K.; Chiu, S. Amanda

    1991-01-01

    A composite flexible blanket insulation (CFBI) system considered for use as a thermal protection system for space vehicles is described. This flexible composite insulation system consists of an outer layer of silicon carbide fabric, followed by alumina mat insulation, and alternating layers of aluminized polyimide film and aluminoborosilicate scrim fabric. A potential application of this composite insulation would be as a thermal protection system for the aerobrake of the aeroassist space transfer vehicle (ASTV). It would also apply to other space vehicles subject to high convective and radiative heating during atmospheric entry. The thermal performance of this composite insulation as exposed to a simulated atmospheric entry environment in a plasma arc test facility is described. Other thermophysical properties which affect the thermal response of this composite insulation is included. It shows that this composite insulation is effective as a thermal protection system at total heating rates up to 30.6 W/sq cm.

  1. Composite flexible insulation for thermal protection of space vehicles

    NASA Astrophysics Data System (ADS)

    Kourtides, Demetrius A.; Tran, Huy K.; Chiu, S. Amanda

    1992-09-01

    A composite flexible blanket insulation (CFBI) system considered for use as a thermal protection system for space vehicles is described. This flexible composite insulation system consists of an outer layer of silicon carbide fabric, followed by alumina mat insulation, and alternating layers of aluminized polyimide film and aluminoborosilicate scrim fabric. A potential application of this composite insulation would be as a thermal protection system for the aerobrake of the Aeroassist Space Transfer Vehicle (ASTV). It would also apply to other space vehicles subject to high convective and radiative heating during atmospheric entry. The thermal performance of this composite insulation as exposed to a simulated atmospheric entry environment in a plasma arc test facility is described. Other thermophysical properties which affect the thermal response of this system are also described. Analytical modeling describing the thermal performance of this composite insulation is included. It shows that this composite insulation is effective as a thermal protection system at total heating rates up to 30.6 W/sq cm.

  2. Defense Infrastructure: More Accurate Data Would Allow DOD to Improve the Tracking, Management, and Security of Its Leased Facilities

    DTIC Science & Technology

    2016-03-01

    they traverse land [e.g., runway, road, rail line, pipeline, fence, pavement , electrical distribution line] and are reported by a linear unit of...locations. Furthermore, these officials stated that the new risk- based Interagency Security Committee standards provide a more flexible risk-based

  3. Identification of dynamic characteristics of flexible rotors as dynamic inverse problem

    NASA Technical Reports Server (NTRS)

    Roisman, W. P.; Vajingortin, L. D.

    1991-01-01

    The problem of dynamic and balancing of flexible rotors were considered, which were set and solved as the problem of the identification of flexible rotor systems, which is the same as the inverse problem of the oscillation theory dealing with the task of the identifying the outside influences and system parameters on the basis of the known laws of motion. This approach to the problem allows the disclosure the picture of disbalances throughout the rotor-under-test (which traditional methods of flexible rotor balancing, based on natural oscillations, could not provide), and identify dynamic characteristics of the system, which correspond to a selected mathematical model. Eventually, various methods of balancing were developed depending on the special features of the machines as to their design, technology, and operation specifications. Also, theoretical and practical methods are given for the flexible rotor balancing at far from critical rotation frequencies, which does not necessarily require the knowledge forms of oscillation, dissipation, and elasticity and inertia characteristics, and to use testing masses.

  4. smiFISH and FISH-quant - a flexible single RNA detection approach with super-resolution capability.

    PubMed

    Tsanov, Nikolay; Samacoits, Aubin; Chouaib, Racha; Traboulsi, Abdel-Meneem; Gostan, Thierry; Weber, Christian; Zimmer, Christophe; Zibara, Kazem; Walter, Thomas; Peter, Marion; Bertrand, Edouard; Mueller, Florian

    2016-12-15

    Single molecule FISH (smFISH) allows studying transcription and RNA localization by imaging individual mRNAs in single cells. We present smiFISH (single molecule inexpensive FISH), an easy to use and flexible RNA visualization and quantification approach that uses unlabelled primary probes and a fluorescently labelled secondary detector oligonucleotide. The gene-specific probes are unlabelled and can therefore be synthesized at low cost, thus allowing to use more probes per mRNA resulting in a substantial increase in detection efficiency. smiFISH is also flexible since differently labelled secondary detector probes can be used with the same primary probes. We demonstrate that this flexibility allows multicolor labelling without the need to synthesize new probe sets. We further demonstrate that the use of a specific acrydite detector oligonucleotide allows smiFISH to be combined with expansion microscopy, enabling the resolution of transcripts in 3D below the diffraction limit on a standard microscope. Lastly, we provide improved, fully automated software tools from probe-design to quantitative analysis of smFISH images. In short, we provide a complete workflow to obtain automatically counts of individual RNA molecules in single cells. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Development and design of flexible Fowler flaps for an adaptive wing

    NASA Astrophysics Data System (ADS)

    Monner, Hans P.; Hanselka, Holger; Breitbach, Elmar J.

    1998-06-01

    Civil transport airplanes fly with fixed geometry wings optimized only for one design point described by altitude, Mach number and airplane weight. These parameters vary continuously during flight, to which means the wing geometry seldom is optimal. According to aerodynamic investigations a chordwide variation of the wing camber leads to improvements in operational flexibility, buffet boundaries and performance resulting in reduction of fuel consumption. A spanwise differential camber variation allows to gain control over spanwise lift distributions reducing wing root bending moments. This paper describes the design of flexible Fowler flaps for an adaptive wing to be used in civil transport aircraft that allows both a chordwise as well as spanwise differential camber variation during flight. Since both lower and upper skins are flexed by active ribs, the camber variation is achieved with a smooth contour and without any additional gaps.

  6. Flexible Graphene Composites for Human Space Flight Applications

    NASA Technical Reports Server (NTRS)

    Sosa, Edward D.

    2013-01-01

    Graphene oxide allows for better dispersion stability in aqueous and organic solvents. Stabilizers provide dispersion of pristine graphene. Roll coating provide the best coverage of polyurethane sheets. Graphene and GO coated polyurethane used to fabricate flexible laminate composite. Permeation testing indicates that pristine graphene acts as a better gas barrier material. Continuous graphene films are expected to provide even better gas barrier properties.

  7. Flexible Delivery Approach in Architecture and Construction Management Course

    ERIC Educational Resources Information Center

    Chan, Eric

    2013-01-01

    The millennial generation is facing challenges in their career path and they believe that tertiary education can help them to equip better to tackle against. However, some students find it difficult to rush back to classroom due to work commitment. Fortunately, flexible education developed these years allows students to capture knowledge anytime…

  8. Bento and Buffet: Two Approaches to Flexible Summative Assessment

    ERIC Educational Resources Information Center

    Didicher, Nicky

    2016-01-01

    This practice-sharing piece outlines two main approaches to flexible summative assessment schemes, including for each approach one example from my practice and another from a published study. The bento approach offers the same assessments to all students but a variety of grade weighting schemes, allowing students to change weighting during the…

  9. Flexible detection optics for light scattering

    NASA Astrophysics Data System (ADS)

    Taratuta, Victor G.; Hurd, Alan J.; Meyer, Robert B.

    1984-05-01

    We have designed and built a compact, modular apparatus for the collection, viewing, and detection of scattered light for less than 1200, based on a commercially available optical bench. The novelty of our instrument is that it has the flexibility of modular design while allowing the user to see exactly what is happening: both the real image of the sample and the spatial coherence of the scattered light can be examined. There is built-in control over polarization, filtering, magnification, and other parameters.

  10. Facile synthesis of flexible macroporous polypropylene sponges for separation of oil and water

    PubMed Central

    Wang, Guowei; Uyama, Hiroshi

    2016-01-01

    Oil spill disasters always occur accidentally, accompanied by the release of plenty of crude oil that could spread quickly over a wide area, creating enormous damage to the fragile marine ecological system. Therefore, the facile large-scale synthesis of hydrophobic three-dimensional (3-D) porous sorbents from low cost raw materials is in urgent demand. In this study, we report the facile template-free synthesis of polypropylene (PP) sponge by using a thermally-induced phase separation (TIPS) technique. The obtained sponge showed macroporous structure, excellent mechanical property, high hydrophobicity, and superoleophilicity. Oil could be separated from an oil/water mixture by simple immersing the sponge into the mixture and subsequent squeezing the sponge. All of these features make this sponge the most promising oil sorbent that will replace commercial non-woven PP fabrics. PMID:26880297

  11. Computational control of flexible aerospace systems

    NASA Technical Reports Server (NTRS)

    Sharpe, Lonnie, Jr.; Shen, Ji Yao

    1994-01-01

    The main objective of this project is to establish a distributed parameter modeling technique for structural analysis, parameter estimation, vibration suppression and control synthesis of large flexible aerospace structures. This report concentrates on the research outputs produced in the last two years. The main accomplishments can be summarized as follows. A new version of the PDEMOD Code had been completed based on several incomplete versions. The verification of the code had been conducted by comparing the results with those examples for which the exact theoretical solutions can be obtained. The theoretical background of the package and the verification examples has been reported in a technical paper submitted to the Joint Applied Mechanics & Material Conference, ASME. A brief USER'S MANUAL had been compiled, which includes three parts: (1) Input data preparation; (2) Explanation of the Subroutines; and (3) Specification of control variables. Meanwhile, a theoretical investigation of the NASA MSFC two-dimensional ground-based manipulator facility by using distributed parameter modeling technique has been conducted. A new mathematical treatment for dynamic analysis and control of large flexible manipulator systems has been conceived, which may provide an embryonic form of a more sophisticated mathematical model for future modified versions of the PDEMOD Codes.

  12. New flexible endoscope for otologic application

    NASA Astrophysics Data System (ADS)

    Marchan, Mark L.

    1993-07-01

    Endoscopy has become an important procedure in many medical specialties. For the Otologist, however, space limitations within the ear have restricted development of endoscopic procedures. The desire for minimally invasive techniques in Otology has demonstrated itself through the work of numerous physicians who have performed procedures ranging from diagnostic inspection of the middle ear to viewing the interior of the cochlea. To assist in performing such endoscopic procedures, Xomed-Treace has developed a line of flexible fiberoptic endoscopes for use by the Otologist. These scopes combine illumination and imaging fiber bundles within a small diameter unit ranging in size from 0.8 mm to 1.2 mm. The 1.2 mm scope is produced with an angled, rigid stainless steel sheath. The 0.8 mm scope is flexible with the ability to articulate 120 degree(s) in one direction. The fiberscopes have been designed for the Otologist to produce a good resolution image while allowing ease of operation through ergonomics and consideration of the surgical anatomy.

  13. Invertible flexible matrices

    NASA Astrophysics Data System (ADS)

    Justino, Júlia

    2017-06-01

    Matrices with coefficients having uncertainties of type o (.) or O (.), called flexible matrices, are studied from the point of view of nonstandard analysis. The uncertainties of the afore-mentioned kind will be given in the form of the so-called neutrices, for instance the set of all infinitesimals. Since flexible matrices have uncertainties in their coefficients, it is not possible to define the identity matrix in an unique way and so the notion of spectral identity matrix arises. Not all nonsingular flexible matrices can be turned into a spectral identity matrix using Gauss-Jordan elimination method, implying that that not all nonsingular flexible matrices have the inverse matrix. Under certain conditions upon the size of the uncertainties appearing in a nonsingular flexible matrix, a general theorem concerning the boundaries of its minors is presented which guarantees the existence of the inverse matrix of a nonsingular flexible matrix.

  14. Training and Organising People for Flexible Manufacturing. A Literature Review.

    ERIC Educational Resources Information Center

    Cesnich, Janine

    Integrated or flexible manufacturing is a management strategy that integrates training and the organization of people with the modernization of hardware. It would allow Australian manufacturing organizations to produce value-added goods for niche markets and be competitive. Manufacturing organizations that identify and change their production…

  15. Research in free-flying robots and flexible manipulators at the Stanford Aerospace Robotics Laboratory

    NASA Technical Reports Server (NTRS)

    Ballhaus, W. L.; Alder, L. J.; Chen, V. W.; Dickson, W. C.; Ullman, M. A.; Wilson, E.

    1993-01-01

    Over the last ten years, the Stanford Aerospace Robotics Laboratory (ARL) has developed a hardware facility in which a number of space robotics issues have been, and continue to be addressed. This paper reviews two of the current ARL research areas: navigation and control of free flying space robots, and modeling and control of extremely flexible space structures.

  16. Accreditation of ambulatory facilities.

    PubMed

    Urman, Richard D; Philip, Beverly K

    2014-06-01

    With the continued growth of ambulatory surgical centers (ASC), the regulation of facilities has evolved to include new standards and requirements on both state and federal levels. Accreditation allows for the assessment of clinical practice, improves accountability, and better ensures quality of care. In some states, ASC may choose to voluntarily apply for accreditation from a recognized organization, but in others it is mandated. Accreditation provides external validation of safe practices, benchmarking performance against other accredited facilities, and demonstrates to patients and payers the facility's commitment to continuous quality improvement. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Probabilistic Modeling and Visualization of the Flexibility in Morphable Models

    NASA Astrophysics Data System (ADS)

    Lüthi, M.; Albrecht, T.; Vetter, T.

    Statistical shape models, and in particular morphable models, have gained widespread use in computer vision, computer graphics and medical imaging. Researchers have started to build models of almost any anatomical structure in the human body. While these models provide a useful prior for many image analysis task, relatively little information about the shape represented by the morphable model is exploited. We propose a method for computing and visualizing the remaining flexibility, when a part of the shape is fixed. Our method, which is based on Probabilistic PCA, not only leads to an approach for reconstructing the full shape from partial information, but also allows us to investigate and visualize the uncertainty of a reconstruction. To show the feasibility of our approach we performed experiments on a statistical model of the human face and the femur bone. The visualization of the remaining flexibility allows for greater insight into the statistical properties of the shape.

  18. Flexible and stackable terahertz metamaterials via silver-nanoparticle inkjet printing

    NASA Astrophysics Data System (ADS)

    Kashiwagi, K.; Xie, L.; Li, X.; Kageyama, T.; Miura, M.; Miyashita, H.; Kono, J.; Lee, S.-S.

    2018-04-01

    There is presently much interest in tunable, flexible, or reconfigurable metamaterial structures that work in the terahertz frequency range. They can be useful for a range of applications, including spectroscopy, sensing, imaging, and communications. Various methods based on microelectromechanical systems have been used for fabricating terahertz metamaterials, but they typically require high-cost facilities and involve a number of time-consuming and intricate processes. Here, we demonstrate a simple, robust, and cost-effective method for fabricating flexible and stackable multiresonant terahertz metamaterials, using silver nanoparticle inkjet printing. Using this method, we designed and fabricated two arrays of split-ring resonators (SRRs) having different resonant frequencies on separate sheets of paper and then combined the two arrays by stacking. Through terahertz time-domain spectroscopy, we observed resonances at the frequencies expected for the individual SRR arrays as well as at a new frequency due to coupling between the two SRR arrays.

  19. The LAM space active optics facility

    NASA Astrophysics Data System (ADS)

    Engel, C.; Ferrari, M.; Hugot, E.; Escolle, C.; Bonnefois, A.; Bernot, M.; Bret-Dibat, T.; Carlavan, M.; Falzon, F.; Fusco, T.; Laubier, D.; Liotard, A.; Michau, V.; Mugnier, L.

    2017-11-01

    The next generation of large lightweight space telescopes will require the use of active optics systems to enhance the performance and increase the spatial resolution. Since almost 10 years now, LAM, CNES, THALES and ONERA conjugate their experience and efforts for the development of space active optics through the validation of key technological building blocks: correcting devices, metrology components and control strategies. This article presents the work done so far on active correcting mirrors and wave front sensing, as well as all the facilities implemented. The last part of this paper focuses on the merging of the MADRAS and RASCASSE test-set up. This unique combination will provide to the active optics community an automated, flexible and versatile facility able to feed and characterise space active optics components.

  20. Robust, Flexible and Lightweight Dielectric Barrier Discharge Actuators Using Nanofoams/Aerogels

    NASA Technical Reports Server (NTRS)

    Siochi, Emilie J. (Inventor); Sauti, Godfrey (Inventor); Wilkinson, Stephen P. (Inventor); Guo, Haiquan N. (Inventor); Xu, Tian-Bing (Inventor); Meador, Mary Ann B. (Inventor)

    2015-01-01

    Robust, flexible, lightweight, low profile enhanced performance dielectric barrier discharge actuators (plasma actuators) based on aerogels/nanofoams with controlled pore size and size distribution as well as pore shape. The plasma actuators offer high body force as well as high force to weight ratios (thrust density). The flexibility and mechanical robustness of the actuators allows them to be shaped to conform to the surface to which they are applied. Carbon nanotube (CNT) based electrodes serve to further decrease the weight and profile of the actuators while maintaining flexibility while insulating nano-inclusions in the matrix enable tailoring of the mechanical properties. Such actuators are required for flow control in aeronautics and moving machinery such as wind turbines, noise abatement in landing gear and rotary wing aircraft and other applications.

  1. Flexible optical metrology strategies for the control and quality assurance of small series production

    NASA Astrophysics Data System (ADS)

    Schmitt, R.; Pavim, A.

    2009-06-01

    The demand for achieving smaller and more flexible production series with a considerable diversity of products complicates the control of the manufacturing tasks, leading to big challenges for the quality assurance systems. The quality assurance strategy that is nowadays used for mass production is unable to cope with the inspection flexibility needed among automated small series production, because the measuring strategy is totally dependent on the fixed features of the few manufactured object variants and on process parameters that can be controlled/compensated during production time. The major challenge faced by a quality assurance system applied to small series production facilities is to guarantee the needed quality level already at the first run, and therefore, the quality assurance system has to adapt itself constantly to the new manufacturing conditions. The small series production culture requires a change of paradigms, because its strategies are totally different from mass production. This work discusses the tight inspection requirements of small series production and presents flexible metrology strategies based on optical sensor data fusion techniques, agent-based systems as well as cognitive and self-optimised systems for assuring the needed quality level of flexible small series. Examples of application scenarios are provided among the automated assembly of solid state lasers and the flexible inspection of automotive headlights.

  2. Evaluation of a Schatz heat battery on a flexible-fueled vehicle

    NASA Astrophysics Data System (ADS)

    Piotrowski, Gregory K.; Schaefer, Ronald M.

    1991-09-01

    The evaluation is described of a Schatz Heat Battery as a means of reducing cold start emissions from a motor vehicle fueled with both gasoline and M85 high methanol blend fuel. The evaluation was conducted at both 20 and 75 F ambient temperatures. The test vehicle was a flexible fueled 1990 Audi 80 supplied by Volkswagen of America. A description is included of the test vehicle, the test facilities, the analytical methods and test procedures used.

  3. Flexible Environmental Modeling with Python and Open - GIS

    NASA Astrophysics Data System (ADS)

    Pryet, Alexandre; Atteia, Olivier; Delottier, Hugo; Cousquer, Yohann

    2015-04-01

    Numerical modeling now represents a prominent task of environmental studies. During the last decades, numerous commercial programs have been made available to environmental modelers. These software applications offer user-friendly graphical user interfaces that allow an efficient management of many case studies. However, they suffer from a lack of flexibility and closed-source policies impede source code reviewing and enhancement for original studies. Advanced modeling studies require flexible tools capable of managing thousands of model runs for parameter optimization, uncertainty and sensitivity analysis. In addition, there is a growing need for the coupling of various numerical models associating, for instance, groundwater flow modeling to multi-species geochemical reactions. Researchers have produced hundreds of open-source powerful command line programs. However, there is a need for a flexible graphical user interface allowing an efficient processing of geospatial data that comes along any environmental study. Here, we present the advantages of using the free and open-source Qgis platform and the Python scripting language for conducting environmental modeling studies. The interactive graphical user interface is first used for the visualization and pre-processing of input geospatial datasets. Python scripting language is then employed for further input data processing, call to one or several models, and post-processing of model outputs. Model results are eventually sent back to the GIS program, processed and visualized. This approach combines the advantages of interactive graphical interfaces and the flexibility of Python scripting language for data processing and model calls. The numerous python modules available facilitate geospatial data processing and numerical analysis of model outputs. Once input data has been prepared with the graphical user interface, models may be run thousands of times from the command line with sequential or parallel calls. We

  4. A technical review of flexible endoscopic multitasking platforms.

    PubMed

    Yeung, Baldwin Po Man; Gourlay, Terence

    2012-01-01

    Further development of advanced therapeutic endoscopic techniques and natural orifice translumenal endoscopic surgery (NOTES) requires a powerful flexible endoscopic multitasking platform. Medline search was performed to identify literature relating to flexible endoscopic multitasking platform from year 2004-2011 using keywords: Flexible endoscopic multitasking platform, NOTES, Instrumentation, Endoscopic robotic surgery, and specific names of various endoscopic multitasking platforms. Key articles from articles references were reviewed. Flexible multitasking platforms can be classified as either mechanical or robotic. Purely mechanical systems include the dual channel endoscope (DCE) (Olympus), R-Scope (Olympus), the EndoSamurai (Olympus), the ANUBIScope (Karl-Storz), Incisionless Operating Platform (IOP) (USGI), and DDES system (Boston Scientific). Robotic systems include the MASTER system (Nanyang University, Singapore) and the Viacath (Hansen Medical). The DCE, the R-Scope, the EndoSamurai and the ANUBIScope have integrated visual function and instrument manipulation function. The IOP and DDES systems rely on the conventional flexible endoscope for visualization, and instrument manipulation is integrated through the use of a flexible, often lockable, multichannel access device. The advantage of the access device concept is that it allows optics and instrument dissociation. Due to the anatomical constrains of the pharynx, systems are designed to have a diameter of less than 20 mm. All systems are controlled by traction cable system actuated either by hand or by robotic machinery. In a flexible system, this method of actuation inevitably leads to significant hysteresis. This problem will be accentuated with a long endoscope such as that required in performing colonic procedures. Systems often require multiple operators. To date, the DCE, the R-Scope, the IOP, and the Viacath system have data published relating to their application in human. Alternative forms of

  5. Thinking about Flexibility

    ERIC Educational Resources Information Center

    Villa, Mario Diaz

    2009-01-01

    This article emphasizes the complexity of the term flexibility and discusses its meanings and political dimensions, along with its expressions or realizations within the field of higher education. It proposes a new principle of flexibility that overcomes an understanding of flexibility within higher education as the mere ability or versatility to…

  6. Using Flexible Busing to Meet Average Class Size Targets

    ERIC Educational Resources Information Center

    Felt, Andrew J.; Koelemay, Ryan; Richter, Alexander

    2008-01-01

    This article describes a method of flexible redistricting for K-12 public school districts that allows students from the same geographical region to be bused to different schools, with the goal of meeting average class size (ACS) target ranges. Results of a case study on a geographically large school district comparing this method to a traditional…

  7. Additive-free thick graphene film as an anode material for flexible lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Rana, Kuldeep; Kim, Seong Dae; Ahn, Jong-Hyun

    2015-04-01

    This work demonstrates a simple route to develop mechanically flexible electrodes for Li-ion batteries (LIBs) that are usable as lightweight effective conducting networks for both cathodes and anodes. Removing electrochemically dead elements, such as binders, conducting agents and metallic current collectors, from the battery components will allow remarkable progress in this area. To investigate the feasibility of using thick, additive-free graphene films as anodes for flexible LIBs, we have synthesized and tested thick, additive-free, freestanding graphene films as anodes, first in a coin cell and further in a flexible full cell. As an anode material in a half cell, it showed a discharge capacity of about 350 mA h g-1 and maintained nearly this capacity over 50 cycles at various current rates. This film was also tested as an anode material in a full cell with a LiCoO2 cathode and showed good electrochemical performance. Because the graphene-based flexible film showed good performance in half- and full coin cells, we used this film as a flexible anode for flexible LIBs. No conducting agent or binder was used in the anode side, which helped in realizing the flexible LIBs. Using this, we demonstrate a thin, lightweight and flexible lithium ion battery with good electrochemical performance in both its flat and bent states.This work demonstrates a simple route to develop mechanically flexible electrodes for Li-ion batteries (LIBs) that are usable as lightweight effective conducting networks for both cathodes and anodes. Removing electrochemically dead elements, such as binders, conducting agents and metallic current collectors, from the battery components will allow remarkable progress in this area. To investigate the feasibility of using thick, additive-free graphene films as anodes for flexible LIBs, we have synthesized and tested thick, additive-free, freestanding graphene films as anodes, first in a coin cell and further in a flexible full cell. As an anode

  8. Tradeoffs in manipulator structure and control. Part 4: Flexible manipulator analysis program. [user manual

    NASA Technical Reports Server (NTRS)

    Book, W. J.

    1974-01-01

    The Flexible Manipulator Analysis Program (FMAP) is a collection of FORTRAN coding to allow easy analysis of the flexible dynamics of mechanical arms. The user specifies the arm configuration and parameters and any or all of several frequency domain analyses to be performed, while the time domain impulse response is obtained by inverse Fourier transformation of the frequency response. A detailed explanation of how to use FMAP is provided.

  9. Geometrical accuracy improvement in flexible roll forming lines

    NASA Astrophysics Data System (ADS)

    Larrañaga, J.; Berner, S.; Galdos, L.; Groche, P.

    2011-01-01

    The general interest to produce profiles with variable cross section in a cost-effective way has increased in the last few years. The flexible roll forming process allows producing profiles with variable cross section lengthwise in a continuous way. Until now, only a few flexible roll forming lines were developed and built up. Apart from the flange wrinkling along the transition zone of u-profiles with variable cross section, the process limits have not been investigated and solutions for shape deviations are unknown. During the PROFOM project a flexible roll forming machine has been developed with the objective of producing high technological components for automotive body structures. In order to investigate the limits of the process, different profile geometries and steel grades including high strength steels have been applied. During the first experimental tests, several errors have been identified, as a result of the complex stress states generated during the forming process. In order to improve the accuracy of the target profiles and to meet the tolerance demands of the automotive industry, a thermo-mechanical solution has been proposed. Additional mechanical devices, supporting flexible the roll forming process, have been implemented in the roll forming line together with local heating techniques. The combination of both methods shows a significant increase of the accuracy. In the present investigation, the experimental results of the validation process are presented.

  10. Facility Planning for 21st Century. Technology, Industry, and Education.

    ERIC Educational Resources Information Center

    Hill, Franklin

    When the Orange County School Board (Orlando, Florida) decided to build a new high school, they recognized Central Florida's high technology emphasis as a special challenge. The new facility needed to meet present instructional demands while being flexible enough to incorporate 21st century technologies. The final result is a new $30 million high…

  11. Flight Dynamics of Flexible Aircraft with Aeroelastic and Inertial Force Interactions

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Tuzcu, Ilhan

    2009-01-01

    This paper presents an integrated flight dynamic modeling method for flexible aircraft that captures coupled physics effects due to inertial forces, aeroelasticity, and propulsive forces that are normally present in flight. The present approach formulates the coupled flight dynamics using a structural dynamic modeling method that describes the elasticity of a flexible, twisted, swept wing using an equivalent beam-rod model. The structural dynamic model allows for three types of wing elastic motion: flapwise bending, chordwise bending, and torsion. Inertial force coupling with the wing elasticity is formulated to account for aircraft acceleration. The structural deflections create an effective aeroelastic angle of attack that affects the rigid-body motion of flexible aircraft. The aeroelastic effect contributes to aerodynamic damping forces that can influence aerodynamic stability. For wing-mounted engines, wing flexibility can cause the propulsive forces and moments to couple with the wing elastic motion. The integrated flight dynamics for a flexible aircraft are formulated by including generalized coordinate variables associated with the aeroelastic-propulsive forces and moments in the standard state-space form for six degree-of-freedom flight dynamics. A computational structural model for a generic transport aircraft has been created. The eigenvalue analysis is performed to compute aeroelastic frequencies and aerodynamic damping. The results will be used to construct an integrated flight dynamic model of a flexible generic transport aircraft.

  12. FlexibleSUSY-A spectrum generator generator for supersymmetric models

    NASA Astrophysics Data System (ADS)

    Athron, Peter; Park, Jae-hyeon; Stöckinger, Dominik; Voigt, Alexander

    2015-05-01

    We introduce FlexibleSUSY, a Mathematica and C++ package, which generates a fast, precise C++ spectrum generator for any SUSY model specified by the user. The generated code is designed with both speed and modularity in mind, making it easy to adapt and extend with new features. The model is specified by supplying the superpotential, gauge structure and particle content in a SARAH model file; specific boundary conditions e.g. at the GUT, weak or intermediate scales are defined in a separate FlexibleSUSY model file. From these model files, FlexibleSUSY generates C++ code for self-energies, tadpole corrections, renormalization group equations (RGEs) and electroweak symmetry breaking (EWSB) conditions and combines them with numerical routines for solving the RGEs and EWSB conditions simultaneously. The resulting spectrum generator is then able to solve for the spectrum of the model, including loop-corrected pole masses, consistent with user specified boundary conditions. The modular structure of the generated code allows for individual components to be replaced with an alternative if available. FlexibleSUSY has been carefully designed to grow as alternative solvers and calculators are added. Predefined models include the MSSM, NMSSM, E6SSM, USSM, R-symmetric models and models with right-handed neutrinos.

  13. Deposition SnO(2)/nitrogen-doped graphene nanocomposites on the separator: a new type of flexible electrode for energy storage devices.

    PubMed

    Liang, Junfei; Cai, Zhi; Tian, Yu; Li, Lidong; Geng, Jianxin; Guo, Lin

    2013-11-27

    It is currently very urgent to develop flexible energy storage devices because of the growing academic interest in and strong technical demand of flexible electronics. Exploration of high-performance electrode materials and a corresponding assembly method for fabrication of flexible energy storage devices plays a critical role in fulfilling this demand. Here, we have developed a facile, economic, and green hydrothermal process to synthesize ultrasmall SnO2 nanocrystallites/nitrogen-doped graphene nanocomposites (USNGs) as a high-performance electrode material for Li-ion batteries (LIBs). Furthermore, using the glass microfiber filters (GMFs) as supporting substrate, the novel flexible USNG-GMF bilayered films have been prepared by depositing the as-prepared USNG on GMF through a simple vacuum filtration. Significantly, for the first time, the flexible USNG-GMF bilayered films have directly been used for assembling LIBs, where the GMF further functions as a separator. The obtained highly robust, binder-free, conducting agent-free, and current collector-free new type of flexible electrodes show excellent LIB performance.

  14. MUFFSgenMC: An Open Source MUon Flexible Framework for Spectral GENeration for Monte Carlo Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatzidakis, Stylianos; Greulich, Christopher

    A cosmic ray Muon Flexible Framework for Spectral GENeration for Monte Carlo Applications (MUFFSgenMC) has been developed to support state-of-the-art cosmic ray muon tomographic applications. The flexible framework allows for easy and fast creation of source terms for popular Monte Carlo applications like GEANT4 and MCNP. This code framework simplifies the process of simulations used for cosmic ray muon tomography.

  15. Zenker’s diverticulum: flexible versus rigid repair

    PubMed Central

    Beard, Kristen

    2017-01-01

    Zenker’s diverticula (ZDs) are a relatively common cause of cervical dysphagia. Diagnosis is best by a good upper GI exam though upper endoscopy should be performed as well. Treatment is either by open, transcervical approaches or trans-oral. Over the past 20 years, transoral approach has mostly replace transcervical approaches due to less pain, no scarring and a rapid recovery. Transoral approaches are either using rigid access or flexible endoscopy. Today, the most common approach is transoral stapling using a 12 mm laparoscopic linear cutting stapler. This has the drawbacks of requiring extreme neck extension, the massive size of the stapler making visualization mostly impossible and the current staple design that does not cut/staple all the way to the end of the blades—resulting in a residual pouch. Flexible endoscopy allows a more tailored approach under direct vision, the myotomy can even be extended beyond the diverticulum and onto the esophageal wall to minimize the risk of incomplete myotomy. Experienced endoscopists report high technical success and low complication. Success rates are similar but maybe slightly higher than with ridged transoral approaches or open surgery. Today, flexible endoscopic Zenkers is our preferred initial approach—with open or ridged being reserved for special indications. PMID:28446979

  16. NASA HRP Plans for Collaboration at the IBMP Ground-Based Experimental Facility (NEK)

    NASA Technical Reports Server (NTRS)

    Cromwell, Ronita L.

    2016-01-01

    NASA and IBMP are planning research collaborations using the IBMP Ground-based Experimental Facility (NEK). The NEK offers unique capabilities to study the effects of isolation on behavioral health and performance as it relates to spaceflight. The NEK is comprised of multiple interconnected modules that range in size from 50-250m(sup3). Modules can be included or excluded in a given mission allowing for flexibility of platform design. The NEK complex includes a Mission Control Center for communications and monitoring of crew members. In an effort to begin these collaborations, a 2-week mission is planned for 2017. In this mission, scientific studies will be conducted to assess facility capabilities in preparation for longer duration missions. A second follow-on 2-week mission may be planned for early in 2018. In future years, long duration missions of 4, 8 and 12 months are being considered. Missions will include scenarios that simulate for example, transit to and from asteroids, the moon, or other interplanetary travel. Mission operations will be structured to include stressors such as, high workloads, communication delays, and sleep deprivation. Studies completed at the NEK will support International Space Station expeditions, and future exploration missions. Topics studied will include communication, crew autonomy, cultural diversity, human factors, and medical capabilities.

  17. Direct model reference adaptive control of a flexible robotic manipulator

    NASA Technical Reports Server (NTRS)

    Meldrum, D. R.

    1985-01-01

    Quick, precise control of a flexible manipulator in a space environment is essential for future Space Station repair and satellite servicing. Numerous control algorithms have proven successful in controlling rigid manipulators wih colocated sensors and actuators; however, few have been tested on a flexible manipulator with noncolocated sensors and actuators. In this thesis, a model reference adaptive control (MRAC) scheme based on command generator tracker theory is designed for a flexible manipulator. Quicker, more precise tracking results are expected over nonadaptive control laws for this MRAC approach. Equations of motion in modal coordinates are derived for a single-link, flexible manipulator with an actuator at the pinned-end and a sensor at the free end. An MRAC is designed with the objective of controlling the torquing actuator so that the tip position follows a trajectory that is prescribed by the reference model. An appealing feature of this direct MRAC law is that it allows the reference model to have fewer states than the plant itself. Direct adaptive control also adjusts the controller parameters directly with knowledge of only the plant output and input signals.

  18. Facilities maintenance handbook

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This handbook is a guide for facilities maintenance managers. Its objective is to set minimum facilities maintenance standards. It also provides recommendations on how to meet the standards to ensure that NASA maintains its facilities in a manner that protects and preserves its investment in the facilities in a cost-effective manner while safely and efficiently performing its mission. This handbook implements NMI 8831.1, which states NASA facilities maintenance policy and assigns organizational responsibilities for the management of facilities maintenance activities on all properties under NASA jurisdiction. It is a reference for facilities maintenance managers, not a step-by-step procedural manual. Because of the differences in NASA Field Installation organizations, this handbook does not assume or recommend a typical facilities maintenance organization. Instead, it uses a systems approach to describe the functions that should be included in any facilities maintenance management system, regardless of its organizational structure. For documents referenced in the handbook, the most recent version of the documents is applicable. This handbook is divided into three parts: Part 1 specifies common definitions and facilities maintenance requirements and amplifies the policy requirements contained in NMI 8831. 1; Part 2 provides guidance on how to meet the requirements of Part 1, containing recommendations only; Part 3 contains general facilities maintenance information. One objective of this handbook is to fix commonality of facilities maintenance definitions among the Centers. This will permit the application of uniform measures of facilities conditions, of the relationship between current replacement value and maintenance resources required, and of the backlog of deferred facilities maintenance. The utilization of facilities maintenance system functions will allow the Centers to quantitatively define maintenance objectives in common terms, prepare work plans, and

  19. Low-Temperature Presynthesized Crystalline Tin Oxide for Efficient Flexible Perovskite Solar Cells and Modules.

    PubMed

    Bu, Tongle; Shi, Shengwei; Li, Jing; Liu, Yifan; Shi, Jielin; Chen, Li; Liu, Xueping; Qiu, Junhao; Ku, Zhiliang; Peng, Yong; Zhong, Jie; Cheng, Yi-Bing; Huang, Fuzhi

    2018-05-02

    Organic-inorganic metal halide perovskite solar cells (PSCs) have been emerging as one of the most promising next generation photovoltaic technologies with a breakthrough power conversion efficiency (PCE) over 22%. However, aiming for commercialization, it still encounters challenges for the large-scale module fabrication, especially for flexible devices which have attracted intensive attention recently. Low-temperature processed high-performance electron-transporting layers (ETLs) are still difficult. Herein, we present a facile low-temperature synthesis of crystalline SnO 2 nanocrystals (NCs) as efficient ETLs for flexible PSCs including modules. Through thermal and UV-ozone treatments of the SnO 2 ETLs, the electron transporting resistance of the ETLs and the charge recombination at the interface of ETL/perovskite were decreased. Thus, the hysteresis-free highly efficient rigid and flexible PSCs were obtained with PCEs of 19.20 and 16.47%, respectively. Finally, a 5 × 5 cm 2 flexible PSC module with a PCE of 12.31% (12.22% for forward scan and 12.40% for reverse scan) was fabricated with the optimized perovskite/ETL interface. Thus, employing presynthesized SnO 2 NCs to fabricate ETLs has showed promising for future manufacturing.

  20. Recursive dynamics for flexible multibody systems using spatial operators

    NASA Technical Reports Server (NTRS)

    Jain, A.; Rodriguez, G.

    1990-01-01

    Due to their structural flexibility, spacecraft and space manipulators are multibody systems with complex dynamics and possess a large number of degrees of freedom. Here the spatial operator algebra methodology is used to develop a new dynamics formulation and spatially recursive algorithms for such flexible multibody systems. A key feature of the formulation is that the operator description of the flexible system dynamics is identical in form to the corresponding operator description of the dynamics of rigid multibody systems. A significant advantage of this unifying approach is that it allows ideas and techniques for rigid multibody systems to be easily applied to flexible multibody systems. The algorithms use standard finite-element and assumed modes models for the individual body deformation. A Newton-Euler Operator Factorization of the mass matrix of the multibody system is first developed. It forms the basis for recursive algorithms such as for the inverse dynamics, the computation of the mass matrix, and the composite body forward dynamics for the system. Subsequently, an alternative Innovations Operator Factorization of the mass matrix, each of whose factors is invertible, is developed. It leads to an operator expression for the inverse of the mass matrix, and forms the basis for the recursive articulated body forward dynamics algorithm for the flexible multibody system. For simplicity, most of the development here focuses on serial chain multibody systems. However, extensions of the algorithms to general topology flexible multibody systems are described. While the computational cost of the algorithms depends on factors such as the topology and the amount of flexibility in the multibody system, in general, it appears that in contrast to the rigid multibody case, the articulated body forward dynamics algorithm is the more efficient algorithm for flexible multibody systems containing even a small number of flexible bodies. The variety of algorithms described

  1. Inter-Vertebral Flexibility of the Ostrich Neck: Implications for Estimating Sauropod Neck Flexibility

    PubMed Central

    Cobley, Matthew J.; Rayfield, Emily J.; Barrett, Paul M.

    2013-01-01

    The flexibility and posture of the neck in sauropod dinosaurs has long been contentious. Improved constraints on sauropod neck function will have major implications for what we know of their foraging strategies, ecology and overall biology. Several hypotheses have been proposed, based primarily on osteological data, suggesting different degrees of neck flexibility. This study attempts to assess the effects of reconstructed soft tissues on sauropod neck flexibility through systematic removal of muscle groups and measures of flexibility of the neck in a living analogue, the ostrich (Struthio camelus). The possible effect of cartilage on flexibility is also examined, as this was previously overlooked in osteological estimates of sauropod neck function. These comparisons show that soft tissues are likely to have limited the flexibility of the neck beyond the limits suggested by osteology alone. In addition, the inferred presence of cartilage, and varying the inter-vertebral spacing within the synovial capsule, also affect neck flexibility. One hypothesis proposed that flexibility is constrained by requiring a minimum overlap between successive zygapophyses equivalent to 50% of zygapophyseal articular surface length (ONP50). This assumption is tested by comparing the maximum flexibility of the articulated cervical column in ONP50 and the flexibility of the complete neck with all tissues intact. It is found that this model does not adequately convey the pattern of flexibility in the ostrich neck, suggesting that the ONP50 model may not be useful in determining neck function if considered in isolation from myological and other soft tissue data. PMID:23967284

  2. Evaluation of a Schatz heat battery on a flexible-fueled vehicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piotrowski, G.K.; Schaefer, R.M.

    The report describes the evaluation of a Schatz Heat Battery as a means of reducing cold start emissions from a motor vehicle fueled with both gasoline and M85 high methanol blend fuel. The evaluation was conducted at both 20 F and 75 F ambient temperatures. The test vehicle was a flexible-fueled 1990 Audi 80 supplied by Volkswagen of America. The report also includes a description of the test vehicle, the test facilities, the analytical methods and test procedures used.

  3. Status and Perspectives of Neutron Imaging Facilities

    NASA Astrophysics Data System (ADS)

    Lehmann, E.; Trtik, P.; Ridikas, D.

    The methodology and the application range of neutron imaging techniques have been significantly improved at numerous facilities worldwide in the last decades. This progress has been achieved by new detector systems, the setup of dedicated, optimized and flexible beam lines and the much better understanding of the complete imaging process thanks to complementary simulations. Furthermore, new applications and research topics were found and implemented. However, since the quality and the number of neutron imaging facilities depend much on the access to suitable beam ports, there is still an enormous potential to implement state-of-the-art neutron imaging techniques at many more facilities. On the one hand, there are prominent and powerful sources which do not intend/accept the implementation of neutron imaging techniques due to the priorities set for neutron scattering and irradiation techniques exclusively. On the other hand, there are modern and useful devices which remain under-utilized and have either not the capacity or not the know-how to develop attractive user programs and/or industrial partnerships. In this overview of the international status of neutron imaging facilities, we will specify details about the current situation.

  4. Next Generation Non-Vacuum, Maskless, Low Temperature Nanoparticle Ink Laser Digital Direct Metal Patterning for a Large Area Flexible Electronics

    PubMed Central

    Yeo, Junyeob; Hong, Sukjoon; Lee, Daehoo; Hotz, Nico; Lee, Ming-Tsang; Grigoropoulos, Costas P.; Ko, Seung Hwan

    2012-01-01

    Flexible electronics opened a new class of future electronics. The foldable, light and durable nature of flexible electronics allows vast flexibility in applications such as display, energy devices and mobile electronics. Even though conventional electronics fabrication methods are well developed for rigid substrates, direct application or slight modification of conventional processes for flexible electronics fabrication cannot work. The future flexible electronics fabrication requires totally new low-temperature process development optimized for flexible substrate and it should be based on new material too. Here we present a simple approach to developing a flexible electronics fabrication without using conventional vacuum deposition and photolithography. We found that direct metal patterning based on laser-induced local melting of metal nanoparticle ink is a promising low-temperature alternative to vacuum deposition– and photolithography-based conventional metal patterning processes. The “digital” nature of the proposed direct metal patterning process removes the need for expensive photomask and allows easy design modification and short turnaround time. This new process can be extremely useful for current small-volume, large-variety manufacturing paradigms. Besides, simple, scalable, fast and low-temperature processes can lead to cost-effective fabrication methods on a large-area polymer substrate. The developed process was successfully applied to demonstrate high-quality Ag patterning (2.1 µΩ·cm) and high-performance flexible organic field effect transistor arrays. PMID:22900011

  5. Next generation non-vacuum, maskless, low temperature nanoparticle ink laser digital direct metal patterning for a large area flexible electronics.

    PubMed

    Yeo, Junyeob; Hong, Sukjoon; Lee, Daehoo; Hotz, Nico; Lee, Ming-Tsang; Grigoropoulos, Costas P; Ko, Seung Hwan

    2012-01-01

    Flexible electronics opened a new class of future electronics. The foldable, light and durable nature of flexible electronics allows vast flexibility in applications such as display, energy devices and mobile electronics. Even though conventional electronics fabrication methods are well developed for rigid substrates, direct application or slight modification of conventional processes for flexible electronics fabrication cannot work. The future flexible electronics fabrication requires totally new low-temperature process development optimized for flexible substrate and it should be based on new material too. Here we present a simple approach to developing a flexible electronics fabrication without using conventional vacuum deposition and photolithography. We found that direct metal patterning based on laser-induced local melting of metal nanoparticle ink is a promising low-temperature alternative to vacuum deposition- and photolithography-based conventional metal patterning processes. The "digital" nature of the proposed direct metal patterning process removes the need for expensive photomask and allows easy design modification and short turnaround time. This new process can be extremely useful for current small-volume, large-variety manufacturing paradigms. Besides, simple, scalable, fast and low-temperature processes can lead to cost-effective fabrication methods on a large-area polymer substrate. The developed process was successfully applied to demonstrate high-quality Ag patterning (2.1 µΩ·cm) and high-performance flexible organic field effect transistor arrays.

  6. Flexible power and bandwidth allocation in mobile satellites

    NASA Astrophysics Data System (ADS)

    Keyes, L. A.

    The introduction of L-band mobile communication services by spot beam satellites creates a payload design challenge due to uncertainty in the location and size of the new market to be served. A combination of payload technologies that allow a flexible allocation of power and bandwidth to any portion of the coverage area is described. Power flexibility is achieved by a novel combination of a low-level beam-forming network and a matrix power module which ensures equal sharing of power among individual amplifiers. This eliminates the loss of efficiency and increased mass when an amplifier associated with a beam must be over-designed to meet uncertainties in power distribution between beams. Flexibility in allocation of bandwidth to beams is achieved by intermediate frequency subdivision of the L-band service categories defined by ITU. These spectral subdivisions are assigned to beams by an IF interconnect matrix having beam ports and filter ports as inputs and outputs, respectively. Two such filter switch matrices are required, one for the inbound L-band to feeder link transponder, and one for the outbound feeder link to L-band transponder.

  7. The Multidimensional Card Selection Task: A new way to measure concurrent cognitive flexibility in preschoolers.

    PubMed

    Podjarny, Gal; Kamawar, Deepthi; Andrews, Katherine

    2017-07-01

    Most executive function research examining preschoolers' cognitive flexibility, the ability to think about something in more than one way, has focused on preschoolers' facility for sequentially switching their attention from one dimension to another (e.g., sorting bivalent cards first by color and then by shape). We know very little about preschoolers' ability to coordinate more than one dimension simultaneously (concurrent cognitive flexibility). Here we report on a new task, the Multidimensional Card Selection Task, which was designed to measure children's ability to consider two dimensions, and then three dimensions, concurrently (e.g., shape and size, and then shape, size, and color). More than half of the preschoolers in our sample of 107 (50 3-year-olds and 57 4-year-olds) could coordinate three dimensions simultaneously and consistently across three test trials. Furthermore, performance on the Multidimensional Card Selection Task was related, but not identical, to performance on other cognitive tasks, including a widely used measure of switching cognitive flexibility (the Dimensional Change Card Sort). The Multidimensional Card Selection Task provides a new way to measure concurrent cognitive flexibility in preschoolers, and opens another avenue for exploring the emergence of early cognitive flexibility development. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Flight dynamics simulation modeling and control of a large flexible tiltrotor aircraft

    NASA Astrophysics Data System (ADS)

    Juhasz, Ondrej

    A high order rotorcraft mathematical model is developed and validated against the XV-15 and a Large Civil Tiltrotor (LCTR) concept. The mathematical model is generic and allows for any rotorcraft configuration, from single main rotor helicopters to coaxial and tiltrotor aircraft. Rigid-body and inflow states, as well as flexible wing and blade states are used in the analysis. The separate modeling of each rotorcraft component allows for structural flexibility to be included, which is important when modeling large aircraft where structural modes affect the flight dynamics frequency ranges of interest, generally 1 to 20 rad/sec. Details of the formulation of the mathematical model are given, including derivations of structural, aerodynamic, and inertial loads. The linking of the components of the aircraft is developed using an approach similar to multibody analyses by exploiting a tree topology, but without equations of constraints. Assessments of the effects of wing flexibility are given. Flexibility effects are evaluated by looking at the nature of the couplings between rigid-body modes and wing structural modes and vice versa. The effects of various different forms of structural feedback on aircraft dynamics are analyzed. A proportional-integral feedback on the structural acceleration is deemed to be most effective at both improving the damping and reducing the overall excitation of a structural mode. A model following control architecture is then implemented on full order flexible LCTR models. For this aircraft, the four lowest frequency structural modes are below 20 rad/sec, and are thus needed for control law development and analysis. The impact of structural feedback on both Attitude-Command, Attitude-Hold (ACAH) and Translational Rate Command (TRC) response types are investigated. A rigid aircraft model has optimistic performance characteristics, and a control system designed for a rigid aircraft could potentially destabilize a flexible one. The various

  9. Propulsive performance of pitching foils with variable chordwise flexibility

    NASA Astrophysics Data System (ADS)

    Zeyghami, Samane; Moored, Keith; Lehigh University Team

    2017-11-01

    Many swimming and flying animals propel themselves efficiently through water by oscillating flexible fins. These fins are not homogeneously flexible, but instead their flexural stiffness varies along their chord and span. Here we seek to evaluate the effect stiffness profile on the propulsive performance of pitching foils. Stiffness profile characterizes the variation in the local fin stiffness along the chord. To this aim, we developed a low order model of a functionally-graded material where the chordwise flexibility is modeled by two torsional springs along the chordline and the stiffness and location of the springs can be varied arbitrarily. The torsional spring structural model is then strongly coupled to a boundary element fluid model to simulate the fluid-structure interactions. Keeping the leading edge kinematics unchanged, we alter the stiffness profile of the foil and allow it to swim freely in response to the resulting hydrodynamic forces. We then detail the dependency of the hydrodynamic performance and the wake structure to the variations in the local structural properties of the foil.

  10. [Flexible endoscope in thoracic surgery: CITES or cVATS?].

    PubMed

    Assouad, J; Fénane, H; Masmoudi, H; Giol, M; Karsenti, A; Gounant, V; Grunenwald, D

    2013-10-01

    Early pain and persistent parietal disorders remains a major unresolved problem in thoracic surgery. Thoracotomy and the use of multiple ports in most Video Assisted Thoracic Surgery (VATS) procedures are the major cause of this persistent pain. For the last decade, a few publications describing the use of either single incision VATS and cervical thoracic approaches have been reported without significant results in comparison with current used techniques. Intercostals compression during surgery and early after by intercostals chest tube placement, are probably the major cause of postoperative pain. Flexible endoscope is currently used in several surgeries and will take more and more importance in our daily use in thoracic surgery. Instrument flexibility allows its use through minimally invasive approaches and offers a very interesting intra-thoracic navigation. We describe here the first use in France of a flexible endoscope in thoracic surgery through a single cervical incision to perform simultaneous exploration and biopsies of the mediastinum and right pleura using the original approach of Cervical Incision Thoracic Endoscopic Surgery (CITES). Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  11. Bendability optimization of flexible optical nanoelectronics via neutral axis engineering

    PubMed Central

    2012-01-01

    The enhancement of bendability of flexible nanoelectronics is critically important to realize future portable and wearable nanoelectronics for personal and military purposes. Because there is an enormous variety of materials and structures that are used for flexible nanoelectronic devices, a governing design rule for optimizing the bendability of these nanodevices is required. In this article, we suggest a design rule to optimize the bendability of flexible nanoelectronics through neutral axis (NA) engineering. In flexible optical nanoelectronics, transparent electrodes such as indium tin oxide (ITO) are usually the most fragile under an external load because of their brittleness. Therefore, we representatively focus on the bendability of ITO which has been widely used as transparent electrodes, and the NA is controlled by employing a buffer layer on the ITO layer. First, we independently investigate the effect of the thickness and elastic modulus of a buffer layer on the bendability of an ITO film. Then, we develop a design rule for the bendability optimization of flexible optical nanoelectronics. Because NA is determined by considering both the thickness and elastic modulus of a buffer layer, the design rule is conceived to be applicable regardless of the material and thickness that are used for the buffer layer. Finally, our design rule is applied to optimize the bendability of an organic solar cell, which allows the bending radius to reach about 1 mm. Our design rule is thus expected to provide a great strategy to enhance the bending performance of a variety of flexible nanoelectronics. PMID:22587757

  12. Bendability optimization of flexible optical nanoelectronics via neutral axis engineering.

    PubMed

    Lee, Sangmin; Kwon, Jang-Yeon; Yoon, Daesung; Cho, Handong; You, Jinho; Kang, Yong Tae; Choi, Dukhyun; Hwang, Woonbong

    2012-05-15

    The enhancement of bendability of flexible nanoelectronics is critically important to realize future portable and wearable nanoelectronics for personal and military purposes. Because there is an enormous variety of materials and structures that are used for flexible nanoelectronic devices, a governing design rule for optimizing the bendability of these nanodevices is required. In this article, we suggest a design rule to optimize the bendability of flexible nanoelectronics through neutral axis (NA) engineering. In flexible optical nanoelectronics, transparent electrodes such as indium tin oxide (ITO) are usually the most fragile under an external load because of their brittleness. Therefore, we representatively focus on the bendability of ITO which has been widely used as transparent electrodes, and the NA is controlled by employing a buffer layer on the ITO layer. First, we independently investigate the effect of the thickness and elastic modulus of a buffer layer on the bendability of an ITO film. Then, we develop a design rule for the bendability optimization of flexible optical nanoelectronics. Because NA is determined by considering both the thickness and elastic modulus of a buffer layer, the design rule is conceived to be applicable regardless of the material and thickness that are used for the buffer layer. Finally, our design rule is applied to optimize the bendability of an organic solar cell, which allows the bending radius to reach about 1 mm. Our design rule is thus expected to provide a great strategy to enhance the bending performance of a variety of flexible nanoelectronics.

  13. Automation of electromagnetic compatability (EMC) test facilities

    NASA Technical Reports Server (NTRS)

    Harrison, C. A.

    1986-01-01

    Efforts to automate electromagnetic compatibility (EMC) test facilities at Marshall Space Flight Center are discussed. The present facility is used to accomplish a battery of nine standard tests (with limited variations) deigned to certify EMC of Shuttle payload equipment. Prior to this project, some EMC tests were partially automated, but others were performed manually. Software was developed to integrate all testing by means of a desk-top computer-controller. Near real-time data reduction and onboard graphics capabilities permit immediate assessment of test results. Provisions for disk storage of test data permit computer production of the test engineer's certification report. Software flexibility permits variation in the tests procedure, the ability to examine more closely those frequency bands which indicate compatibility problems, and the capability to incorporate additional test procedures.

  14. Regulating food service in North Carolina's long-term care facilities.

    PubMed

    DePorter, Cindy H

    2005-01-01

    Other commentaries in this issue of the North Carolina Medical Journal describe innovative food and dining practices in some of our state's long-term care facilities. Federal and state regulations do not prohibit these innovations, and DFS supports the concept of "enhancements" of the dining experience in these facilities. The Division of Facilities Services, therefore, encourages facilities to assess and operationalize various dining methods, allowing residents to select their foods, dining times, dining partners, and other preferences. The regulations allow facilities to utilize innovative dining approaches, such as buffet lines, or family-style serving options, which allow residents to order at the table as they would in a restaurant. The regulations do not dictate whether facilities should serve food to residents on trays, in buffet lines, or in a family style. While there are many regulations, they leave room for innovative new ideas as long as these ideas do not compromise resident health or safety.. Food consumption and the dining experience are an integral part of the resident's life in a nursing facility. It is important that resident preferences are being honored, and the dining experience is as pleasant and home-like as possible. The facility's responsibility is to provide adequate nutrition and hydration that assures the resident is at his/her highest level of functioning emotionally, functionally, and physically. Meeting the unique needs of each resident in a facility can be a daunting task, but one of immense importance to the quality long-term care.

  15. Project Village conceptual plans. Final technical report, November 1980-May 1982. [Proposed WyCoalGas project, Converse County, Wyoming; proposed housing facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-01-01

    The WyCoal Project Village is a housing facility proposed adjacent to the Wyoming Coal Gasification Project plant construction site that would accommodate single workers in dormitory units and singles or couples at a recreation vehicle park. Centralized services and recreational facilities are also to be provided. The provision for some mobile home units to be used in lieu of RV spaces has been considered but would be developed only if a strong demonstrated demand from singles and couples required such a provision. No children will be allowed at the Project Village as accommodations for families will be available in themore » town of Douglas. The development program for the Project Village calls for a total plan capacity of 225 living units: 1500 dormitory rooms and 750 recreational vehicle spaces. However, the total units to be developed will not exceed 1800 with peak employment, including couples at the Recreational Vehicle Park, not anticipated to exceed 2000. The flexibility within the maximum plan capacity of 2250 will allow for the development of an appropriate balance of housing units geared to the on-site project demands as plant construction occurs. At this time a mix of approximately 1200 dormitory rooms and 600 RV spaces appears appropriate for planning purposes.« less

  16. Lightweight, Superelastic, and Mechanically Flexible Graphene/Polyimide Nanocomposite Foam for Strain Sensor Application.

    PubMed

    Qin, Yuyang; Peng, Qingyu; Ding, Yujie; Lin, Zaishan; Wang, Chunhui; Li, Ying; Xu, Fan; Li, Jianjun; Yuan, Ye; He, Xiaodong; Li, Yibin

    2015-09-22

    The creation of superelastic, flexible three-dimensional (3D) graphene-based architectures is still a great challenge due to structure collapse or significant plastic deformation. Herein, we report a facile approach of transforming the mechanically fragile reduced graphene oxide (rGO) aerogel into superflexible 3D architectures by introducing water-soluble polyimide (PI). The rGO/PI nanocomposites are fabricated using strategies of freeze casting and thermal annealing. The resulting monoliths exhibit low density, excellent flexibility, superelasticity with high recovery rate, and extraordinary reversible compressibility. The synergistic effect between rGO and PI endows the elastomer with desirable electrical conductivity, remarkable compression sensitivity, and excellent durable stability. The rGO/PI nanocomposites show potential applications in multifunctional strain sensors under the deformations of compression, bending, stretching, and torsion.

  17. Blood does not buy goodwill: allowing culling increases poaching of a large carnivore

    PubMed Central

    Chapron, Guillaume; Treves, Adrian

    2016-01-01

    Quantifying environmental crime and the effectiveness of policy interventions is difficult because perpetrators typically conceal evidence. To prevent illegal uses of natural resources, such as poaching endangered species, governments have advocated granting policy flexibility to local authorities by liberalizing culling or hunting of large carnivores. We present the first quantitative evaluation of the hypothesis that liberalizing culling will reduce poaching and improve population status of an endangered carnivore. We show that allowing wolf (Canis lupus) culling was substantially more likely to increase poaching than reduce it. Replicated, quasi-experimental changes in wolf policies in Wisconsin and Michigan, USA, revealed that a repeated policy signal to allow state culling triggered repeated slowdowns in wolf population growth, irrespective of the policy implementation measured as the number of wolves killed. The most likely explanation for these slowdowns was poaching and alternative explanations found no support. When the government kills a protected species, the perceived value of each individual of that species may decline; so liberalizing wolf culling may have sent a negative message about the value of wolves or acceptability of poaching. Our results suggest that granting management flexibility for endangered species to address illegal behaviour may instead promote such behaviour. PMID:27170719

  18. 16 CFR 240.7 - Services or facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Services or facilities. 240.7 Section 240.7 Commercial Practices FEDERAL TRADE COMMISSION GUIDES AND TRADE PRACTICE RULES GUIDES FOR ADVERTISING ALLOWANCES AND OTHER MERCHANDISING PAYMENTS AND SERVICES § 240.7 Services or facilities. The terms services...

  19. Flexible Graphene Transistor Architecture for Optical Sensor Technology

    NASA Astrophysics Data System (ADS)

    Ordonez, Richard Christopher

    The unique electrical and optoelectronic properties of graphene allow tunable conductivity and broadband electromagnetic absorption that spans the ultraviolet and infrared regimes. However, in the current state-of-art graphene sensor architectures, junction resistance and doping concentration are predominant factors that affect signal strength and sensitivity. Unfortunately, graphene produces high contact resistances with standard electrode materials ( few kilo-ohms), therefore, signal is weak and large carrier concentrations are required to probe sensitivity. Moreover, the atomic thickness of graphene enables the potential for flexible electronics, but there has not been a successful graphene sensor architecture that demonstrates stable operation on flexible substrates and with minimal fabrication cost. In this study, the author explores a novel 3-terminal transistor architecture that integrates twodimensional graphene, liquid metal, and electrolytic gate dielectrics (LM-GFETs: Liquid Metal and Graphene Field-Effect Transistors ). The goal is to deliver a sensitive, flexible, and lightweight transistor architecture that will improve sensor technology and maneuverability. The reported high thermal conductivity of graphene provides potential for room-temperature thermal management without the need of thermal-electric and gas cooling systems that are standard in sensor platforms. Liquid metals provide a unique opportunity for conformal electrodes that maximize surface area contact, therefore, enable flexibility, lower contact resistance, and reduce damage to the graphene materials involved. Lastly, electrolytic gate dielectrics provide conformability and high capacitances needed for high on/off rations and electrostatic gating. Results demonstrated that with minimal fabrication steps the proposed flexible graphene transistor architecture demonstrated ambipolar current-voltage transfer characteristics that are comparable to the current state-of-the-art. An additional

  20. Laser-Direct Writing of Silver Metal Electrodes on Transparent Flexible Substrates with High-Bonding Strength.

    PubMed

    Zhou, Weiping; Bai, Shi; Ma, Ying; Ma, Delong; Hou, Tingxiu; Shi, Xiaomin; Hu, Anming

    2016-09-21

    We demonstrate a novel approach to rapidly fabricate conductive silver electrodes on transparent flexible substrates with high-bonding strength by laser-direct writing. A new type of silver ink composed of silver nitrate, sodium citrate, and polyvinylpyrrolidone (PVP) was prepared in this work. The role of PVP was elucidated for improving the quality of silver electrodes. Silver nanoparticles and sintered microstructures were simultaneously synthesized and patterned on a substrate using a focused 405 nm continuous wave laser. The writing was completed through the transparent flexible substrate with a programmed 2D scanning sample stage. Silver electrodes fabricated by this approach exhibit a remarkable bonding strength, which can withstand an adhesive tape test at least 50 times. After a 1500 time bending test, the resistance only increased 5.2%. With laser-induced in-situ synthesis, sintering, and simultaneous patterning of silver nanoparticles, this technology is promising for the facile fabrication of conducting electronic devices on flexible substrates.

  1. Additive-free thick graphene film as an anode material for flexible lithium-ion batteries.

    PubMed

    Rana, Kuldeep; Kim, Seong Dae; Ahn, Jong-Hyun

    2015-04-28

    This work demonstrates a simple route to develop mechanically flexible electrodes for Li-ion batteries (LIBs) that are usable as lightweight effective conducting networks for both cathodes and anodes. Removing electrochemically dead elements, such as binders, conducting agents and metallic current collectors, from the battery components will allow remarkable progress in this area. To investigate the feasibility of using thick, additive-free graphene films as anodes for flexible LIBs, we have synthesized and tested thick, additive-free, freestanding graphene films as anodes, first in a coin cell and further in a flexible full cell. As an anode material in a half cell, it showed a discharge capacity of about 350 mA h g(-1) and maintained nearly this capacity over 50 cycles at various current rates. This film was also tested as an anode material in a full cell with a LiCoO2 cathode and showed good electrochemical performance. Because the graphene-based flexible film showed good performance in half- and full coin cells, we used this film as a flexible anode for flexible LIBs. No conducting agent or binder was used in the anode side, which helped in realizing the flexible LIBs. Using this, we demonstrate a thin, lightweight and flexible lithium ion battery with good electrochemical performance in both its flat and bent states.

  2. Space Launch System Mission Flexibility Assessment

    NASA Technical Reports Server (NTRS)

    Monk, Timothy; Holladay, Jon; Sanders, Terry; Hampton, Bryan

    2012-01-01

    The Space Launch System (SLS) is envisioned as a heavy lift vehicle that will provide the foundation for future beyond low Earth orbit (LEO) missions. While multiple assessments have been performed to determine the optimal configuration for the SLS, this effort was undertaken to evaluate the flexibility of various concepts for the range of missions that may be required of this system. These mission scenarios include single launch crew and/or cargo delivery to LEO, single launch cargo delivery missions to LEO in support of multi-launch mission campaigns, and single launch beyond LEO missions. Specifically, we assessed options for the single launch beyond LEO mission scenario using a variety of in-space stages and vehicle staging criteria. This was performed to determine the most flexible (and perhaps optimal) method of designing this particular type of mission. A specific mission opportunity to the Jovian system was further assessed to determine potential solutions that may meet currently envisioned mission objectives. This application sought to significantly reduce mission cost by allowing for a direct, faster transfer from Earth to Jupiter and to determine the order-of-magnitude mass margin that would be made available from utilization of the SLS. In general, smaller, existing stages provided comparable performance to larger, new stage developments when the mission scenario allowed for optimal LEO dropoff orbits (e.g. highly elliptical staging orbits). Initial results using this method with early SLS configurations and existing Upper Stages showed the potential of capturing Lunar flyby missions as well as providing significant mass delivery to a Jupiter transfer orbit.

  3. Incorporating Flexibility in the Design of Repairable Systems - Design of Microgrids

    DTIC Science & Technology

    2014-01-01

    MICROGRIDS Vijitashwa Pandey1 Annette Skowronska1,2...optimization of complex systems such as a microgrid is however, computationally intensive. The problem is exacerbated if we must incorporate...flexibility in terms of allowing the microgrid architecture and its running protocol to change with time. To reduce the computational effort, this paper

  4. Capacitively Coupled Arrays of Multiplexed Flexible Silicon Transistors for Long-Term Cardiac Electrophysiology

    PubMed Central

    Fang, Hui; Yu, Ki Jun; Gloschat, Christopher; Yang, Zijian; Chiang, Chia-Han; Zhao, Jianing; Won, Sang Min; Xu, Siyi; Trumpis, Michael; Zhong, Yiding; Song, Enming; Han, Seung Won; Xue, Yeguang; Xu, Dong; Cauwenberghs, Gert; Kay, Matthew; Huang, Yonggang; Viventi, Jonathan; Efimov, Igor R.; Rogers, John A.

    2017-01-01

    Advanced capabilities in electrical recording are essential for the treatment of heart-rhythm diseases. The most advanced technologies use flexible integrated electronics; however, the penetration of biological fluids into the underlying electronics and any ensuing electrochemical reactions pose significant safety risks. Here, we show that an ultrathin, leakage-free, biocompatible dielectric layer can completely seal an underlying layer of flexible electronics while allowing for electrophysiological measurements through capacitive coupling between tissue and the electronics, and thus without the need for direct metal contact. The resulting current-leakage levels and operational lifetimes are, respectively, four orders of magnitude smaller and between two and three orders of magnitude longer than those of any other flexible-electronics technology. Systematic electrophysiological studies with normal, paced and arrhythmic conditions in Langendorff hearts highlight the capabilities of the capacitive-coupling approach. Our technology provides a realistic pathway towards the broad applicability of biocompatible, flexible electronic implants. PMID:28804678

  5. Flexible-Device Injector with a Microflap Array for Subcutaneously Implanting Flexible Medical Electronics.

    PubMed

    Song, Kwangsun; Kim, Juho; Cho, Sungbum; Kim, Namyun; Jung, Dongwuk; Choo, Hyuck; Lee, Jongho

    2018-06-25

    Implantable electronics in soft and flexible forms can reduce undesired outcomes such as irritations and chronic damages to surrounding biological tissues due to the improved mechanical compatibility with soft tissues. However, the same mechanical flexibility also makes it difficult to insert such implants through the skin because of reduced stiffness. In this paper, a flexible-device injector that enables the subcutaneous implantation of flexible medical electronics is reported. The injector consists of a customized blade at the tip and a microflap array which holds the flexible implant while the injector penetrates through soft tissues. The microflap array eliminates the need of additional materials such as adhesives that require an extended period to release a flexible medical electronic implant from an injector inside the skin. The mechanical properties of the injection system during the insertion process are experimentally characterized, and the injection of a flexible optical pulse sensor and electrocardiogram sensor is successfully demonstrated in vivo in live pig animal models to establish the practical feasibility of the concept. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. High-performance flexible all-solid-state supercapacitors based on densely-packed graphene/polypyrrole nanoparticle papers

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Zhang, Liling; Hu, Nantao; Yang, Zhi; Wei, Hao; Wang, Yanyan; Zhang, Yafei

    2016-11-01

    Graphene-based all-solid-state supercapacitors (ASSSCs) have received increasing attention. It's a great challenge to fabricate high-performance flexible solid-state supercapacitors with high areal and volumetric energy storage capability, superior electron and ion conductivity, robust mechanical flexibility, as well as long term stability. Herein, we report a facile method to fabricate flexible ASSSCs based on densely-packed reduced graphene oxide (rGO)/polypyrrole nanoparticle (PPy NP) hybrid papers with a sandwich framework, which consists of well-separated and continuously-aligned rGO sheets. The incorporation of PPy NPs not only provides pseudocapacitance but also facilitates the infiltration of gel electrolyte. The assembled ASSSCs possess maximum areal and volumetric specific capacitances of 477 mF/cm2 and 94.9 F/cm3 at 0.5 mA/cm2. They also exhibit little capacitance deviation under different bending states, excellent cycling stability, small leakage current and low self-discharge characteristics. Additionally, the maximum areal and volumetric energy densities of 132.5 μWh/cm2 and 26.4 mWh/cm3 are achieved, which indicate that this hybrid paper is a promising candidate for high-performance flexible energy storage devices.

  7. Adaptive management: a paradigm for remediation of public facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janecky, David R; Whicker, Jeffrey J; Doerr, Ted B

    2009-01-01

    (s) after a disruptive event suggest numerous advantages over preset linearly-structured plans by incorporating the flexibility and overlap of processes inherent in effective facility restoration. We discuss three restoration case studies (e.g., the Hart Senate Office Building anthrax restoration, Rocky Flats actinide remediation, and hurricane destruction restoration), that implement aspects of adaptive management but not a formal approach. We propose that more formal adoption of adaptive management principles could be a basis for more flexible standards to improve site-specific remediation plans under conditions of high uncertainty.« less

  8. Biotechnology Facility: An ISS Microgravity Research Facility

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Tsao, Yow-Min

    2000-01-01

    The International Space Station (ISS) will support several facilities dedicated to scientific research. One such facility, the Biotechnology Facility (BTF), is sponsored by the Microgravity Sciences and Applications Division (MSAD) and developed at NASA's Johnson Space Center. The BTF is scheduled for delivery to the ISS via Space Shuttle in April 2005. The purpose of the BTF is to provide: (1) the support structure and integration capabilities for the individual modules in which biotechnology experiments will be performed, (2) the capability for human-tended, repetitive, long-duration biotechnology experiments, and (3) opportunities to perform repetitive experiments in a short period by allowing continuous access to microgravity. The MSAD has identified cell culture and tissue engineering, protein crystal growth, and fundamentals of biotechnology as areas that contain promising opportunities for significant advancements through low-gravity experiments. The focus of this coordinated ground- and space-based research program is the use of the low-gravity environment of space to conduct fundamental investigations leading to major advances in the understanding of basic and applied biotechnology. Results from planned investigations can be used in applications ranging from rational drug design and testing, cancer diagnosis and treatments and tissue engineering leading to replacement tissues.

  9. Ovarian tumor-initiating cells display a flexible metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Angela S.; Roberts, Paul C.; Frisard, Madlyn I.

    2014-10-15

    An altered metabolism during ovarian cancer progression allows for increased macromolecular synthesis and unrestrained growth. However, the metabolic phenotype of cancer stem or tumor-initiating cells, small tumor cell populations that are able to recapitulate the original tumor, has not been well characterized. In the present study, we compared the metabolic phenotype of the stem cell enriched cell variant, MOSE-L{sub FFLv} (TIC), derived from mouse ovarian surface epithelial (MOSE) cells, to their parental (MOSE-L) and benign precursor (MOSE-E) cells. TICs exhibit a decrease in glucose and fatty acid oxidation with a concomitant increase in lactate secretion. In contrast to MOSE-L cells,more » TICs can increase their rate of glycolysis to overcome the inhibition of ATP synthase by oligomycin and can increase their oxygen consumption rate to maintain proton motive force when uncoupled, similar to the benign MOSE-E cells. TICs have an increased survival rate under limiting conditions as well as an increased survival rate when treated with AICAR, but exhibit a higher sensitivity to metformin than MOSE-E and MOSE-L cells. Together, our data show that TICs have a distinct metabolic profile that may render them flexible to adapt to the specific conditions of their microenvironment. By better understanding their metabolic phenotype and external environmental conditions that support their survival, treatment interventions can be designed to extend current therapy regimens to eradicate TICs. - Highlights: • Ovarian cancer TICs exhibit a decreased glucose and fatty acid oxidation. • TICs are more glycolytic and have highly active mitochondria. • TICs are more resistant to AICAR but not metformin. • A flexible metabolism allows TICs to adapt to their microenvironment. • This flexibility requires development of specific drugs targeting TIC-specific changes to prevent recurrent TIC outgrowth.« less

  10. Addition of flexible body option to the TOLA computer program, part 1

    NASA Technical Reports Server (NTRS)

    Dick, J. W.; Benda, B. J.

    1975-01-01

    This report describes a flexible body option that was developed and added to the Takeoff and Landing Analysis (TOLA) computer program. The addition of the flexible body option to TOLA allows it to be used to study essentially any conventional type airplane in the ground operating environment. It provides the capability to predict the total motion of selected points on the analytical methods incorporated in the program and operating instructions for the option are described. A program listing is included along with several example problems to aid in interpretation of the operating instructions and to illustrate program usage.

  11. Bioinspired Flexible and Highly Responsive Dual-Mode Strain/Magnetism Composite Sensor.

    PubMed

    Huang, Pei; Li, Yuan-Qing; Yu, Xiao-Guang; Zhu, Wei-Bin; Nie, Shu-Yan; Zhang, Hao; Liu, Jin-Rui; Hu, Ning; Fu, Shao-Yun

    2018-04-04

    The mimicry of human skin to detect both oncoming and physical-contacting object is of great importance in the fields of manufacturing, artificial robots and vehicles, etc. Herein, a novel bioinspired flexible and highly responsive dual-mode strain/magnetism composite sensor, which works via both contact and contactless modes, is first fabricated by incorporating Fe 3 O 4 /silicone system into a carbon fiber aerogel (CFA). The distance dependence of magnetic field endorses the CFA/Fe 3 O 4 /silicone composite possible for spatial sensing due to the introduction of Fe 3 O 4 magnetic nanoparticles. As a result, the as-prepared flexible sensor exhibits precise and real-time response not only to direct-contact compression as usual but also to contactless magnetic field in a wide frequency range from 0.1 to 10 Hz, achieving the maximum variance of 68% and 86% in relative electrical resistance, respectively. The contact and contactless sensing modes of the strain/magnetism sensor are clearly demonstrated by recording the speeds of bicycle riding and walking, respectively. Interestingly, this dual-mode composite sensor exhibits the capacity of identifying the contact and contactless state, which is the first report for flexible sensors. The current protocol is eco-friendly, facile, and thought-provoking for the fabrication of multifunctional sensors.

  12. [Inspecting the cochlear scala tympanic with flexible and semi-flexible micro-endoscope].

    PubMed

    Zhang, Daoxcing; Zhang, Yankun

    2006-02-01

    Flexible and semi-flexible micro-endoscopes were used in cochlear scala tympani inspection , to explore their application in inner ear examination. Fifteen profound hearing loss patients preparing for cochlear implant were included in this study. During the operation, micro-endoscopy was performed after opening the cochlear scala tympani. And 1 mm diameter semi-flexible micro-endoscope could go as deep as 9 mm into the cochlear scala tympani, while 0. 5 mm diameter flexible micro-endoscope could go as deep as 25 mm. The inspecting results were compared with video recording. Using 0.5 mm flexible micro-endoscope, we canould check cochlear scala tympani with depth range of 15-25 mm, but the video imaging was not clear enough to examine the microstructure in the cochlear. With 1 mm diameter semi-flexible micro-endoscope, we could reach 9 mm deep into the cochlear. During the examination, we found 3 cases with calcification deposit in osseous spiral lamina, l case with granulation tissue in the lateral wall of scala tympani, no abnormal findings in the other 11 cases. Inspecting the cochlear scala tympani with 0.5 mm flexible micro-endoscope, even though we can reach the second circuit of the cochlear, it is difficult to find the pathology in the cochlear because of the poor video imaging. With 1 mm semi-flexible micro-endoscope, we can identify the microstructure of the cochlear clearly and find the pathologic changes, but the inserting depth was limited to 9 mm with limitation to examine the whole cochlear.

  13. Development of Flexible Pneumatic Cylinder with Built-in Flexible Linear Encoder and Flexible Bending Sensor

    NASA Astrophysics Data System (ADS)

    Akagi, Tetsuya; Dohta, Shujiro; Matsushita, Hisashi; Fukuhara, Akimasa

    The purpose of this study is to develop a lightweight and intelligent soft actuator which can be safely attached to the human body. A novel flexible pneumatic cylinder that can be used even if it is deformed by external force had been proposed. The cylinder can realize both pushing and pulling motions even if the cylinder bends. In this paper, a flexible pneumatic cylinder with a built-in flexible linear encoder is proposed and tested. The encoder can detect the cylinder displacement even if the cylinder bends. In the next step, to realize an intelligent flexible cylinder, it is essential to recognize the angle of deflection of the cylinder to estimate the direction of the external force. Therefore, a flexible bending sensor that can measure the directional angle by attaching it to the end of the cylinder is also proposed and tested. The tested bending sensor also consists of four inexpensive photo-reflectors set on the circumferential surface to the cylinder tube every 90 degrees from the center of the tube. By measuring the distance between the photo reflector and the surface of the tube at each point, the bending directional angle of the cylinder can be obtained. A low cost measuring system using a micro-computer incorporating a programmed Up/Down counter to measure the displacement of the cylinder is also developed. As a result, it was confirmed that the measuring accuracy of the bending directional angle was good, less than 0.7 degrees as a standard deviation.

  14. High performance field emission of silicon carbide nanowires and their applications in flexible field emission displays

    NASA Astrophysics Data System (ADS)

    Cui, Yunkang; Chen, Jing; Di, Yunsong; Zhang, Xiaobing; Lei, Wei

    2017-12-01

    In this paper, a facile method to fabricate the flexible field emission devices (FEDs) based on SiC nanostructure emitters by a thermal evaporation method has been demonstrated. The composition characteristics of SiC nanowires was characterized by X-ray diffraction (XRD), selected area electron diffraction (SAED) and energy dispersive X-ray spectrometer (EDX), while the morphology was revealed by field emission scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). The results showed that the SiC nanowires grew along the [111] direction with the diameter of ˜110 nm and length of˜30 μm. The flexible FEDs have been fabricated by transferring and screen-printing the SiC nanowires onto the flexible substrates exhibited excellent field emission properties, such as the low turn-on field (˜0.95 V/μm) and threshold field (˜3.26 V/μm), and the high field enhancement factor (β=4670). It is worth noting the current density degradation can be controlled lower than 2% per hour during the stability tests. In addition, the flexible FEDs based on SiC nanowire emitters exhibit uniform bright emission modes under bending test conditions. As a result, this strategy is very useful for its potential application in the commercial flexible FEDs.

  15. High-Throughput Fabrication of Flexible and Transparent All-Carbon Nanotube Electronics.

    PubMed

    Chen, Yong-Yang; Sun, Yun; Zhu, Qian-Bing; Wang, Bing-Wei; Yan, Xin; Qiu, Song; Li, Qing-Wen; Hou, Peng-Xiang; Liu, Chang; Sun, Dong-Ming; Cheng, Hui-Ming

    2018-05-01

    This study reports a simple and effective technique for the high-throughput fabrication of flexible all-carbon nanotube (CNT) electronics using a photosensitive dry film instead of traditional liquid photoresists. A 10 in. sized photosensitive dry film is laminated onto a flexible substrate by a roll-to-roll technology, and a 5 µm pattern resolution of the resulting CNT films is achieved for the construction of flexible and transparent all-CNT thin-film transistors (TFTs) and integrated circuits. The fabricated TFTs exhibit a desirable electrical performance including an on-off current ratio of more than 10 5 , a carrier mobility of 33 cm 2 V -1 s -1 , and a small hysteresis. The standard deviations of on-current and mobility are, respectively, 5% and 2% of the average value, demonstrating the excellent reproducibility and uniformity of the devices, which allows constructing a large noise margin inverter circuit with a voltage gain of 30. This study indicates that a photosensitive dry film is very promising for the low-cost, fast, reliable, and scalable fabrication of flexible and transparent CNT-based integrated circuits, and opens up opportunities for future high-throughput CNT-based printed electronics.

  16. Heat barrier for use in a nuclear reactor facility

    DOEpatents

    Keegan, Charles P.

    1988-01-01

    A thermal barrier for use in a nuclear reactor facility is disclosed herein. Generally, the thermal barrier comprises a flexible, heat-resistant web mounted over the annular space between the reactor vessel and the guard vessel in order to prevent convection currents generated in the nitrogen atmosphere in this space from entering the relatively cooler atmosphere of the reactor cavity which surrounds these vessels. Preferably, the flexible web includes a blanket of heat-insulating material formed from fibers of a refractory material, such as alumina and silica, sandwiched between a heat-resistant, metallic cloth made from stainless steel wire. In use, the web is mounted between the upper edges of the guard vessel and the flange of a sealing ring which surrounds the reactor vessel with a sufficient enough slack to avoid being pulled taut as a result of thermal differential expansion between the two vessels. The flexible web replaces the rigid and relatively complicated structures employed in the prior art for insulating the reactor cavity from the convection currents generated between the reactor vessel and the guard vessel.

  17. Flexible thermal laminate

    NASA Technical Reports Server (NTRS)

    Dawn, F. S.; Sauers, D. G.

    1977-01-01

    Lightweight flexible laminate of interwoven conducting and insulating yarns, designed to provide localized controlled heating for propellant tanks on space vehicles, is useful for nonspace applications where weight, bulk, and flexibility are critical concerns.

  18. Guide to Regulated Facilities in ECHO | ECHO | US EPA

    EPA Pesticide Factsheets

    There are multiple ways ECHO can be used to search compliance data. By default, ECHO searches focus on larger, more regulated facilities. Each search page allows users to search a more comprehensive group of facilities by electing to search for minor or smaller facilities. Information is presented that explains the types and approximate numbers of facilities that are included in searches when the default and custom options are used.

  19. Flexible packaging of solid-state integrated circuit chips with elastomeric microfluidics

    PubMed Central

    Zhang, Bowei; Dong, Quan; Korman, Can E.; Li, Zhenyu; Zaghloul, Mona E.

    2013-01-01

    A flexible technology is proposed to integrate smart electronics and microfluidics all embedded in an elastomer package. The microfluidic channels are used to deliver both liquid samples and liquid metals to the integrated circuits (ICs). The liquid metals are used to realize electrical interconnects to the IC chip. This avoids the traditional IC packaging challenges, such as wire-bonding and flip-chip bonding, which are not compatible with current microfluidic technologies. As a demonstration we integrated a CMOS magnetic sensor chip and associate microfluidic channels on a polydimethylsiloxane (PDMS) substrate that allows precise delivery of small liquid samples to the sensor. Furthermore, the packaged system is fully functional under bending curvature radius of one centimetre and uniaxial strain of 15%. The flexible integration of solid-state ICs with microfluidics enables compact flexible electronic and lab-on-a-chip systems, which hold great potential for wearable health monitoring, point-of-care diagnostics and environmental sensing among many other applications.

  20. 2D Metal-Organic Frameworks Derived Nanocarbon Arrays for Substrate Enhancement in Flexible Supercapacitors.

    PubMed

    Liu, Ximeng; Guan, Cao; Hu, Yating; Zhang, Lei; Elshahawy, Abdelnaby M; Wang, John

    2017-10-27

    Direct assembling of active materials on carbon cloth (CC) is a promising way to achieve flexible electrodes for energy storage. However, the overall surface area and electrical conductivity of such electrodes are usually limited. Herein, 2D metal-organic framework derived nanocarbon nanowall (MOFC) arrays are successfully developed on carbon cloth by a facile solution + carbonization process. Upon growth of the MOFC arrays, the sites for growth of the active materials are greatly increased, and the equivalent series resistance is decreased, which contribute to the enhancement of the bare CC substrate. After decorating ultrathin flakes of MnO 2 and Bi 2 O 3 on the flexible CC/MOFC substrate, the hierarchical electrode materials show an abrupt improvement of areal capacitances by around 50% and 100%, respectively, compared to those of the active materials on pristine carbon cloth. A flexible supercapacitor can be further assembled using two hierarchical electrodes, which demonstrates an energy density of 124.8 µWh cm -2 at the power density of 2.55 mW cm -2 . © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Anti-reflective coating with a conductive indium tin oxide layer on flexible glass substrates.

    PubMed

    Sung, Yilin; Malay, Robert E; Wen, Xin; Bezama, Christian N; Soman, Varun V; Huang, Ming-Huang; Garner, Sean M; Poliks, Mark D; Klotzkin, David

    2018-03-20

    Flexible glass has many applications including photovoltaics, organic light-emitting device (OLED) lighting, and displays. Its ability to be processed in a roll-to-roll facility enables high-throughput continuous manufacturing compared to conventional glass processing. For photovoltaic, OLED lighting, and display applications, transparent conductors are required with minimal optical reflection losses. Here, we demonstrate an anti-reflective coating (ARC) that incorporates a useful transparent conductor that is realizable on flexible substrates. This reduces the average reflectivity to less than 6% over the visible band from normal incidence to incident angles up to 60°. This ARC is designed by the average uniform algorithm method. The coating materials consist of a multilayer stack of an electrically functional conductive indium tin oxide with conductivity 2.95×10 5   Siemens/m (31 Ω/□), and AlSiO 2 . The coatings showed modest changes in reflectivity and no delamination after 10,000 bending cycles. This demonstrates that effective conductive layers can be integrated into ARCs and can be realized on flexible glass substrates with proper design and process control.

  2. Flexible Plasmonic Sensors

    PubMed Central

    Shir, Daniel; Ballard, Zachary S.; Ozcan, Aydogan

    2016-01-01

    Mechanical flexibility and the advent of scalable, low-cost, and high-throughput fabrication techniques have enabled numerous potential applications for plasmonic sensors. Sensitive and sophisticated biochemical measurements can now be performed through the use of flexible plasmonic sensors integrated into existing medical and industrial devices or sample collection units. More robust sensing schemes and practical techniques must be further investigated to fully realize the potentials of flexible plasmonics as a framework for designing low-cost, embedded and integrated sensors for medical, environmental, and industrial applications. PMID:27547023

  3. Flexible High Speed Codec (FHSC)

    NASA Technical Reports Server (NTRS)

    Segallis, G. P.; Wernlund, J. V.

    1991-01-01

    The ongoing NASA/Harris Flexible High Speed Codec (FHSC) program is described. The program objectives are to design and build an encoder decoder that allows operation in either burst or continuous modes at data rates of up to 300 megabits per second. The decoder handles both hard and soft decision decoding and can switch between modes on a burst by burst basis. Bandspreading is low since the code rate is greater than or equal to 7/8. The encoder and a hard decision decoder fit on a single application specific integrated circuit (ASIC) chip. A soft decision applique is implemented using 300 K emitter coupled logic (ECL) which can be easily translated to an ECL gate array.

  4. Trunk-rotation flexibility in collegiate softball players with or without a history of shoulder or elbow injury.

    PubMed

    Aragon, Veronica J; Oyama, Sakiko; Oliaro, Scott M; Padua, Darin A; Myers, Joseph B

    2012-01-01

    Throwing is a whole-body motion that requires the transfer of momentum from the lower extremity to the upper extremity via the trunk. No research to date examines the association between a history of shoulder or elbow injury and trunk flexibility in overhead athletes. To determine if injury history and trunk-rotation flexibility are associated and to compare trunk-rotation flexibility measured using 3 clinical tests: half-kneeling rotation test with the bar in the back, half-kneeling rotation test with the bar in the front, and seated rotation test in softball position players with or without a history of shoulder or elbow injury. Cross-sectional design. University softball facilities. Sixty-five female National Collegiate Athletic Association Division I softball position players. Trunk-rotation flexibility was measured with 3 clinical tests. Recent injury history was obtained using a questionnaire and verified by the certified athletic trainer. Binomial regression models were used to determine if injury history was associated with flexibility categories (high, normal, or limited tertiles) for each of the 6 (3 tests × 2 directions) trunk-rotation flexibility measures. Trunk-rotation flexibility measures from 3 clinical tests were compared between participants with and without a history of shoulder or elbow injury using analysis-of-variance models. When measured using the half-kneeling rotation test with the bar in the back and the seated rotation test, injury history and forward trunk-rotation flexibility were associated. However, no mean group differences were seen in trunk-rotation flexibility between participants with and without a history of shoulder or elbow injury. Limited forward trunk-rotation flexibility may be a risk factor for shoulder or elbow injuries. However, further study is needed to confirm the study finding.

  5. Trunk-Rotation Flexibility in Collegiate Softball Players With or Without a History of Shoulder or Elbow Injury

    PubMed Central

    Aragon, Veronica J.; Oyama, Sakiko; Oliaro, Scott M.; Padua, Darin A.; Myers, Joseph B.

    2012-01-01

    Context: Throwing is a whole-body motion that requires the transfer of momentum from the lower extremity to the upper extremity via the trunk. No research to date examines the association between a history of shoulder or elbow injury and trunk flexibility in overhead athletes. Objective: To determine if injury history and trunk-rotation flexibility are associated and to compare trunk-rotation flexibility measured using 3 clinical tests: half-kneeling rotation test with the bar in the back, half-kneeling rotation test with the bar in the front, and seated rotation test in softball position players with or without a history of shoulder or elbow injury. Design: Cross-sectional design. Setting: University softball facilities. Patients or Other Participants: Sixty-five female National Collegiate Athletic Association Division I softball position players. Intervention(s): Trunk-rotation flexibility was measured with 3 clinical tests. Recent injury history was obtained using a questionnaire and verified by the certified athletic trainer. Main Outcome Measure(s): Binomial regression models were used to determine if injury history was associated with flexibility categories (high, normal, or limited tertiles) for each of the 6 (3 tests × 2 directions) trunk-rotation flexibility measures. Trunk-rotation flexibility measures from 3 clinical tests were compared between participants with and without a history of shoulder or elbow injury using analysis-of-variance models. Results: When measured using the half-kneeling rotation test with the bar in the back and the seated rotation test, injury history and forward trunk-rotation flexibility were associated. However, no mean group differences were seen in trunk-rotation flexibility between participants with and without a history of shoulder or elbow injury. Conclusions: Limited forward trunk-rotation flexibility may be a risk factor for shoulder or elbow injuries. However, further study is needed to confirm the study finding. PMID

  6. Scalable fabrication of nanostructured devices on flexible substrates using additive driven self-assembly and nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Watkins, James

    2013-03-01

    Roll-to-roll (R2R) technologies provide routes for continuous production of flexible, nanostructured materials and devices with high throughput and low cost. We employ additive-driven self-assembly to produce well-ordered polymer/nanoparticle hybrid materials that can serve as active device layers, we use highly filled nanoparticle/polymer hybrids for applications that require tailored dielectric constant or refractive index, and we employ R2R nanoimprint lithography for device scale patterning. Specific examples include the fabrication of flexible floating gate memory and large area films for optical/EM management. Our newly constructed R2R processing facility includes a custom designed, precision R2R UV-assisted nanoimprint lithography (NIL) system and hybrid nanostructured materials coaters.

  7. Naps promote flexible memory retrieval in 12-month-old infants.

    PubMed

    Konrad, Carolin; Seehagen, Sabine; Schneider, Silvia; Herbert, Jane S

    2016-11-01

    Flexibility in applying existing knowledge to similar cues is a corner stone of memory development in infants. Here, we examine the effect of sleep on the flexibility of memory retrieval using a deferred imitation paradigm. Forty-eight 12-month-old infants were randomly assigned to either a nap or a no-nap demonstration condition (scheduled around their natural daytime sleep schedule) or to a baseline control condition. In the demonstration conditions, infants watched an experimenter perform three target actions on a hand puppet. Immediately afterwards, infants were allowed to practice the target actions three times. In a test session 4-hr later, infants were given the opportunity to reproduce the actions with a novel hand puppet differing in color from the puppet used during the demonstration session. Only infants in the nap-condition performed significantly more target actions than infants in the baseline control condition. Furthermore, they were faster to carry out the first target action than infants in the no-nap condition. We conclude that sleep had a facilitative effect on infants' flexibility of memory retrieval. © 2016 Wiley Periodicals, Inc.

  8. Facile Fabrication of Multi-hierarchical Porous Polyaniline Composite as Pressure Sensor and Gas Sensor with Adjustable Sensitivity

    NASA Astrophysics Data System (ADS)

    He, Xiao-Xiao; Li, Jin-Tao; Jia, Xian-Sheng; Tong, Lu; Wang, Xiao-Xiong; Zhang, Jun; Zheng, Jie; Ning, Xin; Long, Yun-Ze

    2017-08-01

    A multi-hierarchical porous polyaniline (PANI) composite which could be used in good performance pressure sensor and adjustable sensitivity gas sensor has been fabricated by a facile in situ polymerization. Commercial grade sponge was utilized as a template scaffold to deposit PANI via in situ polymerization. With abundant interconnected pores throughout the whole structure, the sponge provided sufficient surface for the growth of PANI nanobranches. The flexible porous structure helped the composite to show high performance in pressure detection with fast response and favorable recoverability and gas detection with adjustable sensitivity. The sensing mechanism of the PANI/sponge-based flexible sensor has also been discussed. The results indicate that this work provides a feasible approach to fabricate efficient sensors with advantages of low cost, facile preparation, and easy signal collection.

  9. Facile Fabrication of Multi-hierarchical Porous Polyaniline Composite as Pressure Sensor and Gas Sensor with Adjustable Sensitivity.

    PubMed

    He, Xiao-Xiao; Li, Jin-Tao; Jia, Xian-Sheng; Tong, Lu; Wang, Xiao-Xiong; Zhang, Jun; Zheng, Jie; Ning, Xin; Long, Yun-Ze

    2017-12-01

    A multi-hierarchical porous polyaniline (PANI) composite which could be used in good performance pressure sensor and adjustable sensitivity gas sensor has been fabricated by a facile in situ polymerization. Commercial grade sponge was utilized as a template scaffold to deposit PANI via in situ polymerization. With abundant interconnected pores throughout the whole structure, the sponge provided sufficient surface for the growth of PANI nanobranches. The flexible porous structure helped the composite to show high performance in pressure detection with fast response and favorable recoverability and gas detection with adjustable sensitivity. The sensing mechanism of the PANI/sponge-based flexible sensor has also been discussed. The results indicate that this work provides a feasible approach to fabricate efficient sensors with advantages of low cost, facile preparation, and easy signal collection.

  10. Flexible Foam Model.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neilsen, Michael K.; Lu, Wei-Yang; Werner, Brian T.

    Experiments were performed to characterize the mechanical response of a 15 pcf flexible polyurethane foam to large deformation at different strain rates and temperatures. Results from these experiments indicated that at room temperature, flexible polyurethane foams exhibit significant nonlinear elastic deformation and nearly return to their original undeformed shape when unloaded. However, when these foams are cooled to temperatures below their glass transition temperature of approximately -35 o C, they behave like rigid polyurethane foams and exhibit significant permanent deformation when compressed. Thus, a new model which captures this dramatic change in behavior with temperature was developed and implemented intomore » SIERRA with the name Flex_Foam to describe the mechanical response of both flexible and rigid foams to large deformation at a variety of temperatures and strain rates. This report includes a description of recent experiments. Next, development of the Flex Foam model for flexible polyurethane and other flexible foams is described. Selection of material parameters are discussed and finite element simulations with the new Flex Foam model are compared with experimental results to show behavior that can be captured with this new model.« less

  11. A bacterial acyl aminoacyl peptidase couples flexibility and stability as a result of cold adaptation.

    PubMed

    Brocca, Stefania; Ferrari, Cristian; Barbiroli, Alberto; Pesce, Alessandra; Lotti, Marina; Nardini, Marco

    2016-12-01

    Life in cold environments requires an overall increase in the flexibility of macromolecular and supramolecular structures to allow biological processes to take place at low temperature. Conformational flexibility supports high catalytic rates of enzymes in the cold but in several cases is also a cause of instability. The three-dimensional structure of the psychrophilic acyl aminoacyl peptidase from Sporosarcina psychrophila (SpAAP) reported in this paper highlights adaptive molecular changes resulting in a fine-tuned trade-off between flexibility and stability. In its functional form SpAAP is a dimer, and an increase in flexibility is achieved through loosening of intersubunit hydrophobic interactions. The release of subunits from the quaternary structure is hindered by an 'arm exchange' mechanism, in which a tiny structural element at the N terminus of one subunit inserts into the other subunit. Mutants lacking the 'arm' are monomeric, inactive and highly prone to aggregation. Another feature of SpAAP cold adaptation is the enlargement of the tunnel connecting the exterior of the protein with the active site. Such a wide channel might compensate for the reduced molecular motions occurring in the cold and allow easy and direct access of substrates to the catalytic site, rendering transient movements between domains unnecessary. Thus, cold-adapted SpAAP has developed a molecular strategy unique within this group of proteins: it is able to enhance the flexibility of each functional unit while still preserving sufficient stability. Structural data are available in the Protein Data Bank under the accession number 5L8S. © 2016 Federation of European Biochemical Societies.

  12. Energy efficient flexible hybrid wavelength division multiplexing-time division multiplexing passive optical network with pay as you grow deployment

    NASA Astrophysics Data System (ADS)

    Garg, Amit Kumar; Madavi, Amresh Ashok; Janyani, Vijay

    2017-02-01

    A flexible hybrid wavelength division multiplexing-time division multiplexing passive optical network architecture that allows dual rate signals to be sent at 1 and 10 Gbps to each optical networking unit depending upon the traffic load is proposed. The proposed design allows dynamic wavelength allocation with pay-as-you-grow deployment capability. This architecture is capable of providing up to 40 Gbps of equal data rates to all optical distribution networks (ODNs) and up to 70 Gbps of a asymmetrical data rate to the specific ODN. The proposed design handles broadcasting capability with simultaneous point-to-point transmission, which further reduces energy consumption. In this architecture, each module sends a wavelength to each ODN, thus making the architecture fully flexible; this flexibility allows network providers to use only required OLT components and switch off others. The design is also reliable to any module or TRx failure and provides services without any service disruption. Dynamic wavelength allocation and pay-as-you-grow deployment support network extensibility and bandwidth scalability to handle future generation access networks.

  13. Impact of a Flexible Evaluation System on Effort and Timing of Study

    ERIC Educational Resources Information Center

    Pacharn, Parunchana; Bay, Darlene; Felton, Sandra

    2012-01-01

    This paper examines results of a flexible grading system that allows each student to influence the weight allocated to each performance measure. We construct a stylized model to determine students' optimal responses. Our analytical model predicts different optimal strategies for students with varying academic abilities: a frontloading strategy for…

  14. Flexible reusable mandrels

    NASA Technical Reports Server (NTRS)

    Willden, Kurtis S. (Inventor)

    1995-01-01

    A reusable laminate mandrel which is unaffected by extreme temperature changes. The flexible laminate mandrel is comprised of sheets stacked to produce the required configuration, a cover wrap that applies pressure to the mandrel laminate, maintaining the stack cross-section. Then after use, the mandrels can be removed, disassembled, and reused. In the method of extracting the flexible mandrel from one end of a composite stiffener, individual ones of the laminae of the flexible mandrel or all are extracted at the same time, depending on severity of the contour.

  15. Diagnostic flexible pharyngo-laryngoscopy: development of a procedure specific assessment tool using a Delphi methodology.

    PubMed

    Melchiors, Jacob; Henriksen, Mikael Johannes Vuokko; Dikkers, Frederik G; Gavilán, Javier; Noordzij, J Pieter; Fried, Marvin P; Novakovic, Daniel; Fagan, Johannes; Charabi, Birgitte W; Konge, Lars; von Buchwald, Christian

    2018-05-01

    Proper training and assessment of skill in flexible pharyngo-laryngoscopy are central in the education of otorhinolaryngologists. To facilitate an evidence-based approach to curriculum development in this field, a structured analysis of what constitutes flexible pharyngo-laryngoscopy is necessary. Our aim was to develop an assessment tool based on this analysis. We conducted an international Delphi study involving experts from twelve countries in five continents. Utilizing reiterative assessment, the panel defined the procedure and reached consensus (defined as 80% agreement) on the phrasing of an assessment tool. FIFTY PANELISTS COMPLETED THE DELPHI PROCESS. THE MEDIAN AGE OF THE PANELISTS WAS 44 YEARS (RANGE 33-64 YEARS). MEDIAN EXPERIENCE IN OTORHINOLARYNGOLOGY WAS 15 YEARS (RANGE 6-35 YEARS). TWENTY-FIVE WERE SPECIALIZED IN LARYNGOLOGY, 16 WERE HEAD AND NECK SURGEONS, AND NINE WERE GENERAL OTORHINOLARYNGOLOGISTS. AN ASSESSMENT TOOL WAS CREATED CONSISTING OF TWELVE DISTINCT ITEMS.: Conclusion The gathering of validity evidence for assessment of core procedural skills within Otorhinolaryngology is central to the development of a competence-based education. The use of an international Delphi panel allows for the creation of an assessment tool which is widely applicable and valid. This work allows for an informed approach to technical skills training for flexible pharyngo-laryngoscopy and as further validity evidence is gathered allows for a valid assessment of clinical performance within this important skillset.

  16. Atomic oxygen durability evaluation of the flexible batten for the photovoltaic array mast on Space Station

    NASA Technical Reports Server (NTRS)

    Stidham, Curtis R.; Rutledge, Sharon K.; Sechkar, Edward A.; Flaherty, David S.; Roig, David M.; Edwards, Jonathan L.

    1994-01-01

    A test program was conducted at the National Aeronautics and Space Administration's Lewis Research Center (LeRC) to evaluate the long term low Earth orbital (LEO) atomic oxygen (AO) durability of a flexible (fiberglass-epoxy composite) batten. The flexible batten is a component used to provide structural rigidity in the photovoltaic array mast on Space Station. The mast is used to support and articulate the photovoltaic array, therefore, the flexible batten must be preloaded for the 15 year lifetime of an array blanket. Development hardware and composite materials were evaluated in ground testing facilities for AO durability and dynamic retraction-deployment cyclic loading representative of expected full life in-space application. The CV1144 silicone (AO protective) coating was determined to provide adequate protection against AO degradation of the composite material and provided fiber containment, thus the structural integrity of the flexible batten was maintained. Both silicone coated and uncoated flexible battens maintained load carrying capabilities. Results of the testing did indicate that the CV1144 silicone protective coating was oxidized by AO reactions to form a brittle glassy (SiO2) skin that formed cracking patterns on all sides of the coated samples. The cracking was observed in samples that were mechanically stressed as well as samples in non-stressed conditions. The oxidized silicon was observed to randomly spall in small localized areas, on the flexible battens that underwent retraction-deployment cycling. Some darkening of the silicon, attributed to vacuum ultraviolet (VUV) radiation, was observed.

  17. A flexible object-oriented software framework for developing complex multimedia simulations.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sydelko, P. J.; Dolph, J. E.; Christiansen, J. H.

    Decision makers involved in brownfields redevelopment and long-term stewardship must consider environmental conditions, future-use potential, site ownership, area infrastructure, funding resources, cost recovery, regulations, risk and liability management, community relations, and expected return on investment in a comprehensive and integrated fashion to achieve desired results. Successful brownfields redevelopment requires the ability to assess the impacts of redevelopment options on multiple interrelated aspects of the ecosystem, both natural and societal. Computer-based tools, such as simulation models, databases, and geographical information systems (GISs) can be used to address brownfields planning and project execution. The transparent integration of these tools into a comprehensivemore » and dynamic decision support system would greatly enhance the brownfields assessment process. Such a system needs to be able to adapt to shifting and expanding analytical requirements and contexts. The Dynamic Information Architecture System (DIAS) is a flexible, extensible, object-oriented framework for developing and maintaining complex multidisciplinary simulations of a wide variety of application domains. The modeling domain of a specific DIAS-based simulation is determined by (1) software objects that represent the real-world entities that comprise the problem space (atmosphere, watershed, human), and (2) simulation models and other data processing applications that express the dynamic behaviors of the domain entities. Models and applications used to express dynamic behaviors can be either internal or external to DIAS, including existing legacy models written in various languages (FORTRAN, C, etc.). The flexible design framework of DIAS makes the objects adjustable to the context of the problem without a great deal of recoding. The DIAS Spatial Data Set facility allows parameters to vary spatially depending on the simulation context according to any of a number of 1-D

  18. Facilities Management via Computer: Information at Your Fingertips.

    ERIC Educational Resources Information Center

    Hensey, Susan

    1996-01-01

    Computer-aided facilities management is a software program consisting of a relational database of facility information--such as occupancy, usage, student counts, etc.--attached to or merged with computerized floor plans. This program can integrate data with drawings, thereby allowing the development of "what if" scenarios. (MLF)

  19. Flexible link functions in nonparametric binary regression with Gaussian process priors.

    PubMed

    Li, Dan; Wang, Xia; Lin, Lizhen; Dey, Dipak K

    2016-09-01

    In many scientific fields, it is a common practice to collect a sequence of 0-1 binary responses from a subject across time, space, or a collection of covariates. Researchers are interested in finding out how the expected binary outcome is related to covariates, and aim at better prediction in the future 0-1 outcomes. Gaussian processes have been widely used to model nonlinear systems; in particular to model the latent structure in a binary regression model allowing nonlinear functional relationship between covariates and the expectation of binary outcomes. A critical issue in modeling binary response data is the appropriate choice of link functions. Commonly adopted link functions such as probit or logit links have fixed skewness and lack the flexibility to allow the data to determine the degree of the skewness. To address this limitation, we propose a flexible binary regression model which combines a generalized extreme value link function with a Gaussian process prior on the latent structure. Bayesian computation is employed in model estimation. Posterior consistency of the resulting posterior distribution is demonstrated. The flexibility and gains of the proposed model are illustrated through detailed simulation studies and two real data examples. Empirical results show that the proposed model outperforms a set of alternative models, which only have either a Gaussian process prior on the latent regression function or a Dirichlet prior on the link function. © 2015, The International Biometric Society.

  20. Flexible Link Functions in Nonparametric Binary Regression with Gaussian Process Priors

    PubMed Central

    Li, Dan; Lin, Lizhen; Dey, Dipak K.

    2015-01-01

    Summary In many scientific fields, it is a common practice to collect a sequence of 0-1 binary responses from a subject across time, space, or a collection of covariates. Researchers are interested in finding out how the expected binary outcome is related to covariates, and aim at better prediction in the future 0-1 outcomes. Gaussian processes have been widely used to model nonlinear systems; in particular to model the latent structure in a binary regression model allowing nonlinear functional relationship between covariates and the expectation of binary outcomes. A critical issue in modeling binary response data is the appropriate choice of link functions. Commonly adopted link functions such as probit or logit links have fixed skewness and lack the flexibility to allow the data to determine the degree of the skewness. To address this limitation, we propose a flexible binary regression model which combines a generalized extreme value link function with a Gaussian process prior on the latent structure. Bayesian computation is employed in model estimation. Posterior consistency of the resulting posterior distribution is demonstrated. The flexibility and gains of the proposed model are illustrated through detailed simulation studies and two real data examples. Empirical results show that the proposed model outperforms a set of alternative models, which only have either a Gaussian process prior on the latent regression function or a Dirichlet prior on the link function. PMID:26686333

  1. Flexible Carbon Nanotube Films for High Performance Strain Sensors

    PubMed Central

    Kanoun, Olfa; Müller, Christian; Benchirouf, Abderahmane; Sanli, Abdulkadir; Dinh, Trong Nghia; Al-Hamry, Ammar; Bu, Lei; Gerlach, Carina; Bouhamed, Ayda

    2014-01-01

    Compared with traditional conductive fillers, carbon nanotubes (CNTs) have unique advantages, i.e., excellent mechanical properties, high electrical conductivity and thermal stability. Nanocomposites as piezoresistive films provide an interesting approach for the realization of large area strain sensors with high sensitivity and low manufacturing costs. A polymer-based nanocomposite with carbon nanomaterials as conductive filler can be deposited on a flexible substrate of choice and this leads to mechanically flexible layers. Such sensors allow the strain measurement for both integral measurement on a certain surface and local measurement at a certain position depending on the sensor geometry. Strain sensors based on carbon nanostructures can overcome several limitations of conventional strain sensors, e.g., sensitivity, adjustable measurement range and integral measurement on big surfaces. The novel technology allows realizing strain sensors which can be easily integrated even as buried layers in material systems. In this review paper, we discuss the dependence of strain sensitivity on different experimental parameters such as composition of the carbon nanomaterial/polymer layer, type of polymer, fabrication process and processing parameters. The insights about the relationship between film parameters and electromechanical properties can be used to improve the design and fabrication of CNT strain sensors. PMID:24915183

  2. CANISTER HANDLING FACILITY DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.F. Beesley

    The purpose of this facility description document (FDD) is to establish requirements and associated bases that drive the design of the Canister Handling Facility (CHF), which will allow the design effort to proceed to license application. This FDD will be revised at strategic points as the design matures. This FDD identifies the requirements and describes the facility design, as it currently exists, with emphasis on attributes of the design provided to meet the requirements. This FDD is an engineering tool for design control; accordingly, the primary audience and users are design engineers. This FDD is part of an iterative designmore » process. It leads the design process with regard to the flowdown of upper tier requirements onto the facility. Knowledge of these requirements is essential in performing the design process. The FDD follows the design with regard to the description of the facility. The description provided in this FDD reflects the current results of the design process.« less

  3. Recycling production designs: the value of coordination and flexibility in aluminum recycling operations

    NASA Astrophysics Data System (ADS)

    Brommer, Tracey H.

    The growing motivation for aluminum recycling has prompted interest in recycling alternative and more challenging secondary materials. The nature of these alternative secondary materials necessitates the development of an intermediate recycling facility that can reprocess the secondary materials into a liquid product Two downstream aluminum remelters will incorporate the liquid products into their aluminum alloy production schedules. Energy and environmental benefits result from delivering the products as liquid but coordination challenges persist because of the energy cost to maintain the liquid. Further coordination challenges result from the necessity to establish a long term recycling production plan in the presence of long term downstream aluminum remelter production uncertainty and inherent variation in the daily order schedule of the downstream aluminum remelters. In this context a fundamental question arises, considering the metallurgical complexities of dross reprocessing, what is the value of operating a coordinated set of by-product reprocessing plants and remelting cast houses? A methodology is presented to calculate the optimal recycling center production parameters including 1) the number of recycled products, 2) the volume of recycled products, 3) allocation of recycled materials across recycled products, 4) allocation of recycled products across finished alloys, 4) the level of flexibility for the recycling center to operate. The methods implemented include, 1) an optimization model to describe the long term operations of the recycling center, 2) an uncertainty simulation tool, 3) a simulation optimization method, 4) a dynamic simulation tool with four embedded daily production optimization models of varying degrees of flexibility. This methodology is used to quantify the performance of several recycling center production designs of varying levels of coordination and flexibility. This analysis allowed the identification of the optimal recycling

  4. The flow dynamics behind a flexible finite cylinder as a flexible agitator

    NASA Astrophysics Data System (ADS)

    Yong, T. H.; Chan, H. B.; Dol, S. S.; Wee, S. K.; Kumar, P.

    2017-06-01

    This paper investigates the flow dynamics behind a flexible finite cylinder in a single-phase flow using a water tunnel. The cylinder was individually submerged in water at ReD = 4000, 6000 and 8000. The cylinder investigated has a AR = 10 and 16 and is made of EVA in order to achieve the lower stiffness for flexibility. A same AR of its aluminium rigid cylinder was investigated to serve as a benchmark to the flow dynamics behind a flexible cylinder. The results the downwash that hinders the transportation of vortices to the downstream was diminished. As a direct consequence of this phenomenon, the turbulence production has seen significant improvement for flexible finite cylinder.

  5. Computer aided design environment for the analysis and design of multi-body flexible structures

    NASA Technical Reports Server (NTRS)

    Ramakrishnan, Jayant V.; Singh, Ramen P.

    1989-01-01

    A computer aided design environment consisting of the programs NASTRAN, TREETOPS and MATLAB is presented in this paper. With links for data transfer between these programs, the integrated design of multi-body flexible structures is significantly enhanced. The CAD environment is used to model the Space Shuttle/Pinhole Occulater Facility. Then a controller is designed and evaluated in the nonlinear time history sense. Recent enhancements and ongoing research to add more capabilities are also described.

  6. Flexible ferroelectric organic crystals

    DOE PAGES

    Owczarek, Magdalena; Hujsak, Karl A.; Ferris, Daniel P.; ...

    2016-10-13

    Flexible organic materials possessing useful electrical properties, such as ferroelectricity, are of crucial importance in the engineering of electronic devices. But, until now, only ferroelectric polymers have intrinsically met this flexibility requirement, leaving small-molecule organic ferroelectrics with room for improvement. Since both flexibility and ferroelectricity are rare properties on their own, combining them in one crystalline organic material is challenging. We report that trisubstituted haloimidazoles not only display ferroelectricity and piezoelectricity-the properties that originate from their non-centrosymmetric crystal lattice-but also lend their crystalline mechanical properties to fine-tuning in a controllable manner by disrupting the weak halogen bonds between the molecules.more » This element of control makes it possible to deliver another unique and highly desirable property, namely crystal flexibility. Moreover, the electrical properties are maintained in the flexible crystals.« less

  7. A hydrogel capsule as gate dielectric in flexible organic field-effect transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumitru, L. M.; Manoli, K.; Magliulo, M.

    2015-01-01

    A jellified alginate based capsule serves as biocompatible and biodegradable electrolyte system to gate an organic field-effect transistor fabricated on a flexible substrate. Such a system allows operating thiophene based polymer transistors below 0.5 V through an electrical double layer formed across an ion-permeable polymeric electrolyte. Moreover, biological macro-molecules such as glucose-oxidase and streptavidin can enter into the gating capsules that serve also as delivery system. An enzymatic bio-reaction is shown to take place in the capsule and preliminary results on the measurement of the electronic responses promise for low-cost, low-power, flexible electronic bio-sensing applications using capsule-gated organic field-effect transistors.

  8. Innovation and behavioral flexibility in wild redfronted lemurs (Eulemur rufifrons).

    PubMed

    Huebner, Franziska; Fichtel, Claudia

    2015-05-01

    Innovations and problem-solving abilities can provide animals with important ecological advantages as they allow individuals to deal with novel social and ecological challenges. Innovation is a solution to a novel problem or a novel solution to an old problem, with the latter being especially difficult. Finding a new solution to an old problem requires individuals to inhibit previously applied solutions to invent new strategies and to behave flexibly. We examined the role of experience on cognitive flexibility to innovate and to find new problem-solving solutions with an artificial feeding task in wild redfronted lemurs (Eulemur rufifrons). Four groups of lemurs were tested with feeding boxes, each offering three different techniques to extract food, with only one technique being available at a time. After the subjects learned a technique, this solution was no longer successful and subjects had to invent a new technique. For the first transition between task 1 and 2, subjects had to rely on their experience of the previous technique to solve task 2. For the second transition, subjects had to inhibit the previously learned technique to learn the new task 3. Tasks 1 and 2 were solved by most subjects, whereas task 3 was solved by only a few subjects. In this task, besides behavioral flexibility, especially persistence, i.e., constant trying, was important for individual success during innovation. Thus, wild strepsirrhine primates are able to innovate flexibly, suggesting a general ecological relevance of behavioral flexibility and persistence during innovation and problem solving across all primates.

  9. Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors.

    PubMed

    Cheng, Yingwen; Lu, Songtao; Zhang, Hongbo; Varanasi, Chakrapani V; Liu, Jie

    2012-08-08

    Flexible and lightweight energy storage systems have received tremendous interest recently due to their potential applications in wearable electronics, roll-up displays, and other devices. To manufacture such systems, flexible electrodes with desired mechanical and electrochemical properties are critical. Herein we present a novel method to fabricate conductive, highly flexible, and robust film supercapacitor electrodes based on graphene/MnO(2)/CNTs nanocomposites. The synergistic effects from graphene, CNTs, and MnO(2) deliver outstanding mechanical properties (tensile strength of 48 MPa) and superior electrochemical activity that were not achieved by any of these components alone. These flexible electrodes allow highly active material loading (71 wt % MnO(2)), areal density (8.80 mg/cm(2)), and high specific capacitance (372 F/g) with excellent rate capability for supercapacitors without the need of current collectors and binders. The film can also be wound around 0.5 mm diameter rods for fabricating full cells with high performance, showing significant potential in flexible energy storage devices.

  10. Induced liquid-crystalline ordering in solutions of stiff and flexible amphiphilic macromolecules: Effect of mixture composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glagolev, Mikhail K.; Vasilevskaya, Valentina V., E-mail: vvvas@polly.phys.msu.ru; Khokhlov, Alexei R.

    Impact of mixture composition on self-organization in concentrated solutions of stiff helical and flexible macromolecules was studied by means of molecular dynamics simulation. The macromolecules were composed of identical amphiphilic monomer units but a fraction f of macromolecules had stiff helical backbones and the remaining chains were flexible. In poor solvents the compacted flexible macromolecules coexist with bundles or filament clusters from few intertwined stiff helical macromolecules. The increase of relative content f of helical macromolecules leads to increase of the length of helical clusters, to alignment of clusters with each other, and then to liquid-crystalline-like ordering along a singlemore » direction. The formation of filament clusters causes segregation of helical and flexible macromolecules and the alignment of the filaments induces effective liquid-like ordering of flexible macromolecules. A visual analysis and calculation of order parameter relaying the anisotropy of diffraction allow concluding that transition from disordered to liquid-crystalline state proceeds sharply at relatively low content of stiff components.« less

  11. Advanced shape tracking to improve flexible endoscopic diagnostics

    NASA Astrophysics Data System (ADS)

    Cao, Caroline G. L.; Wong, Peter Y.; Lilge, Lothar; Gavalis, Robb M.; Xing, Hua; Zamarripa, Nate

    2008-03-01

    Colonoscopy is the gold standard for screening for inflammatory bowel disease and colorectal cancer. Flexible endoscopes are difficult to manipulate, especially in the distensible and tortuous colon, sometimes leading to disorientation during the procedure and missed diagnosis of lesions. Our goal is to design a navigational aid to guide colonoscopies, presenting a three dimensional representation of the endoscope in real-time. Therefore, a flexible sensor that can track the position and shape of the entire length of the endoscope is needed. We describe a novel shape-tracking technology utilizing a single modified optical fiber. By embedding fluorophores in the buffer of the fiber, we demonstrated a relationship between fluorescence intensity and fiber curvature. As much as a 40% increase in fluorescence intensity was achieved when the fiber's local bend radius decreased from 58 mm to 11 mm. This approach allows for the construction of a three-dimensional shape tracker that is small enough to be easily inserted into the biopsy channel of current endoscopes.

  12. Evolution of flexibility and rigidity in retaliatory punishment.

    PubMed

    Morris, Adam; MacGlashan, James; Littman, Michael L; Cushman, Fiery

    2017-09-26

    Natural selection designs some social behaviors to depend on flexible learning processes, whereas others are relatively rigid or reflexive. What determines the balance between these two approaches? We offer a detailed case study in the context of a two-player game with antisocial behavior and retaliatory punishment. We show that each player in this game-a "thief" and a "victim"-must balance two competing strategic interests. Flexibility is valuable because it allows adaptive differentiation in the face of diverse opponents. However, it is also risky because, in competitive games, it can produce systematically suboptimal behaviors. Using a combination of evolutionary analysis, reinforcement learning simulations, and behavioral experimentation, we show that the resolution to this tension-and the adaptation of social behavior in this game-hinges on the game's learning dynamics. Our findings clarify punishment's adaptive basis, offer a case study of the evolution of social preferences, and highlight an important connection between natural selection and learning in the resolution of social conflicts.

  13. High energy forming facility

    NASA Technical Reports Server (NTRS)

    Ciurlionis, B.

    1967-01-01

    Watertight, high-explosive forming facility, 25 feet in diameter and 15 feet deep, withstands repeated explosions of 10 pounds of TNT equivalent. The shell is fabricated of high strength steel and allows various structural elements to deform or move elastically and independently while retaining structural integrity.

  14. Value of flexible bronchoscopy in the pre-operative work-up of solitary pulmonary nodules.

    PubMed

    Schwarz, Carsten; Schönfeld, Nicolas; Bittner, Roland C; Mairinger, Thomas; Rüssmann, Holger; Bauer, Torsten T; Kaiser, Dirk; Loddenkemper, Robert

    2013-01-01

    The diagnostic value of flexible bronchoscopy in the pre-operative work-up of solitary pulmonary nodules (SPN) is still under debate among pneumologists, radiologists and thoracic surgeons. In a prospective observational manner, flexible bronchoscopy was routinely performed in 225 patients with SPN of unknown origin. Of the 225 patients, 80.5% had lung cancer, 7.6% had metastasis of an extrapulmonary primary tumour and 12% had benign aetiology. Unsuspected endobronchial involvement was found in 4.4% of all 225 patients (or in 5.5% of patients with lung cancer). In addition, flexible bronchoscopy clarified the underlying aetiology in 41% of the cases. The bronchoscopic biopsy results from the SPN were positive in 84 (46.5%) patients with lung cancer. Surgery was cancelled due to the results of flexible bronchoscopy in four cases (involvement of the right main bronchus (impaired pulmonary function did not allow pneumonectomy) n=1, small cell lung cancer n=1, bacterial pneumonia n=2), and the surgical strategy had to be modified to bilobectomy in one patient. Flexible bronchoscopy changed the planned surgical approach in five cases substantially. These results suggest that routine flexible bronchoscopy should be included in the regular pre-operative work-up of patients with SPN.

  15. 48 CFR 52.215-16 - Facilities Capital Cost of Money.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Money. 52.215-16 Section 52.215-16 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION....215-16 Facilities Capital Cost of Money. As prescribed in 15.408(h), insert the following provision: Facilities Capital Cost of Money (JUN 2003) (a) Facilities capital cost of money will be an allowable cost...

  16. 48 CFR 52.215-16 - Facilities Capital Cost of Money.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Money. 52.215-16 Section 52.215-16 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION....215-16 Facilities Capital Cost of Money. As prescribed in 15.408(h), insert the following provision: Facilities Capital Cost of Money (JUN 2003) (a) Facilities capital cost of money will be an allowable cost...

  17. 48 CFR 52.215-16 - Facilities Capital Cost of Money.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Money. 52.215-16 Section 52.215-16 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION....215-16 Facilities Capital Cost of Money. As prescribed in 15.408(h), insert the following provision: Facilities Capital Cost of Money (JUN 2003) (a) Facilities capital cost of money will be an allowable cost...

  18. 48 CFR 52.215-16 - Facilities Capital Cost of Money.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Money. 52.215-16 Section 52.215-16 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION....215-16 Facilities Capital Cost of Money. As prescribed in 15.408(h), insert the following provision: Facilities Capital Cost of Money (JUN 2003) (a) Facilities capital cost of money will be an allowable cost...

  19. 26 CFR 1.169-1 - Amortization of pollution control facilities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 2 2011-04-01 2011-04-01 false Amortization of pollution control facilities. 1....169-1 Amortization of pollution control facilities. (a) Allowance of deduction—(1) In general. Under... amortization of the amortizable basis (as defined in § 1.169-3) of any certified pollution control facility (as...

  20. 26 CFR 1.169-1 - Amortization of pollution control facilities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 2 2010-04-01 2010-04-01 false Amortization of pollution control facilities. 1....169-1 Amortization of pollution control facilities. (a) Allowance of deduction—(1) In general. Under... amortization of the amortizable basis (as defined in § 1.169-3) of any certified pollution control facility (as...

  1. 26 CFR 1.169-1 - Amortization of pollution control facilities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 2 2012-04-01 2012-04-01 false Amortization of pollution control facilities. 1....169-1 Amortization of pollution control facilities. (a) Allowance of deduction—(1) In general. Under... amortization of the amortizable basis (as defined in § 1.169-3) of any certified pollution control facility (as...

  2. 26 CFR 1.169-1 - Amortization of pollution control facilities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 2 2014-04-01 2014-04-01 false Amortization of pollution control facilities. 1....169-1 Amortization of pollution control facilities. (a) Allowance of deduction—(1) In general. Under... amortization of the amortizable basis (as defined in § 1.169-3) of any certified pollution control facility (as...

  3. 26 CFR 1.169-1 - Amortization of pollution control facilities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 2 2013-04-01 2013-04-01 false Amortization of pollution control facilities. 1....169-1 Amortization of pollution control facilities. (a) Allowance of deduction—(1) In general. Under... amortization of the amortizable basis (as defined in § 1.169-3) of any certified pollution control facility (as...

  4. 48 CFR 52.215-16 - Facilities Capital Cost of Money.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Money. 52.215-16 Section 52.215-16 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION....215-16 Facilities Capital Cost of Money. As prescribed in 15.408(h), insert the following provision: Facilities Capital Cost of Money (JUN 2003) (a) Facilities capital cost of money will be an allowable cost...

  5. Space Power Facility-Capabilities for Space Environmental Testing Within a Single Facility

    NASA Technical Reports Server (NTRS)

    Sorge, Richard N.

    2013-01-01

    The purpose of this paper is to describe the current and near-term environmental test capabilities of the NASA Glenn Research Center's Space Power Facility (SPF) located at Sandusky, Ohio. The paper will present current and near-term capabilities for conducting electromagnetic interference and compatibility testing, base-shake sinusoidal vibration testing, reverberant acoustic testing, and thermal-vacuum testing. The paper will also present modes of transportation, handling, ambient environments, and operations within the facility to conduct those tests. The SPF is in the midst of completing and activating new or refurbished capabilities which, when completed, will provide the ability to conduct most or all required full-scale end-assembly space simulation tests at a single test location. It is envisioned that the capabilities will allow a customer to perform a wide range of space simulation tests in one facility at reasonable cost.

  6. Flexible Parsing.

    DTIC Science & Technology

    1986-06-30

    Machine Studies .. 14. Minton, S. N., Hayes, P. J., and Fain, J. E. Controlling Search in Flexible Parsing. Proc. Ninth Int. Jt. Conf. on Artificial...interaction through the COUSIN command interface", International Journal of Man- Machine Studies , Vol. 19, No. 3, September 1983, pp. 285-305. 8...in a gracefully interacting user interface," "Dynamic strategy selection in flexible parsing," and "Parsing spoken language: a semantic case frame

  7. Facile Syntheses of Monodisperse Ultra-Small Au Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertino, Massimo F.; Sun, Zhong-Ming; Zhang, Rui

    2006-11-02

    During our effort to synthesize the tetrahedral Au20 cluster, we found a facile synthetic route to prepare monodisperse suspensions of ultra-small Au clusters AuN (N<12) using diphosphine ligands. In our monophasic and single-pot synthesis, a Au precursor ClAu(I)PPh3 and a bidentate phosphine ligand P(Ph)2(CH2)MP(Ph)2 (Ph = phenyl) are dissolved in an organic solvent. Au(I) is reduced slowly by a borane-tert-butylamine complex to form Au clusters coordinated by the diphosphine ligand. The Au clusters are characterized by both high resolution mass spectrometry and UV-Vis absorption spectroscopy. We found that the mean cluster size obtained depends on the chain length M ofmore » the ligand. In particular, a single monodispersed Au11 cluster is obtained with the P(Ph)2(CH2)3P(Ph)2 ligand, whereas P(Ph)2(CH2)MP(Ph)2 ligands with M = 5 and 6 yield Au10 and Au8 clusters. The simplicity of our synthetic method makes it suitable for large-scale production of nearly monodisperse ultrasmall Au clusters. It is suggested that diphosphines provide a set of flexible ligands to allow size-controlled synthesis of Au nanoparticles.« less

  8. Animation of multi-flexible body systems and its use in control system design

    NASA Technical Reports Server (NTRS)

    Juengst, Carl; Stahlberg, Ron

    1993-01-01

    Animation can greatly assist the structural dynamicist and control system analyst with better understanding of how multi-flexible body systems behave. For multi-flexible body systems, the structural characteristics (mode frequencies, mode shapes, and damping) change, sometimes dramatically with large angles of rotation between bodies. With computer animation, the analyst can visualize these changes and how the system responds to active control forces and torques. A characterization of the type of system we wish to animate is presented. The lack of clear understanding of the above effects was a key element leading to the development of a multi-flexible body animation software package. The resulting animation software is described in some detail here, followed by its application to the control system analyst. Other applications of this software can be determined on an individual need basis. A number of software products are currently available that make the high-speed rendering of rigid body mechanical system simulation possible. However, such options are not available for use in rendering flexible body mechanical system simulations. The desire for a high-speed flexible body visualization tool led to the development of the Flexible Or Rigid Mechanical System (FORMS) software. This software was developed at the Center for Simulation and Design Optimization of Mechanical Systems at the University of Iowa. FORMS provides interactive high-speed rendering of flexible and/or rigid body mechanical system simulations, and combines geometry and motion information to produce animated output. FORMS is designed to be both portable and flexible, and supports a number of different user interfaces and graphical display devices. Additional features have been added to FORMS that allow special visualization results related to the nature of the flexible body geometric representations.

  9. The radioactive beam facility ALTO

    NASA Astrophysics Data System (ADS)

    Essabaa, Saïd; Barré-Boscher, Nicole; Cheikh Mhamed, Maher; Cottereau, Evelyne; Franchoo, Serge; Ibrahim, Fadi; Lau, Christophe; Roussière, Brigitte; Saïd, Abdelhakim; Tusseau-Nenez, Sandrine; Verney, David

    2013-12-01

    The Transnational Access facility ALTO (TNA07-ENSAR/FP7) has been commissioned and received from the French safety authorities, the operation license. It is allowed to run at nominal intensity to produce 1011 fissions/s in a thick uranium carbide target by photo-fission using a 10 μA, 50 MeV electron beam. In addition the recent success in operating the selective laser ion source broadens the physics program with neutron-rich nuclear beams possible at this facility installed at IPN Orsay. The facility also aims at being a test bench for the SPIRAL2 project. In that framework an ambitious R&D program on the target ion source system is being developed.

  10. US EPA Region 4 RMP Facilities

    EPA Pesticide Factsheets

    To improve public health and the environment, the United States Environmental Protection Agency (USEPA) collects information about facilities, sites, or places subject to environmental regulation or of environmental interest. Through the Geospatial Data Download Service, the public is now able to download the EPA Geodata shapefile containing facility and site information from EPA's national program systems. The file is Internet accessible from the Envirofacts Web site (http://www.epa.gov/enviro). The data may be used with geospatial mapping applications. (Note: The shapefile omits facilities without latitude/longitude coordinates.) The EPA Geospatial Data contains the name, location (latitude/longitude), and EPA program information about specific facilities and sites. In addition, the file contains a Uniform Resource Locator (URL), which allows mapping applications to present an option to users to access additional EPA data resources on a specific facility or site.

  11. Flexible Approximation Model Approach for Bi-Level Integrated System Synthesis

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw; Kim, Hongman; Ragon, Scott; Soremekun, Grant; Malone, Brett

    2004-01-01

    Bi-Level Integrated System Synthesis (BLISS) is an approach that allows design problems to be naturally decomposed into a set of subsystem optimizations and a single system optimization. In the BLISS approach, approximate mathematical models are used to transfer information from the subsystem optimizations to the system optimization. Accurate approximation models are therefore critical to the success of the BLISS procedure. In this paper, new capabilities that are being developed to generate accurate approximation models for BLISS procedure will be described. The benefits of using flexible approximation models such as Kriging will be demonstrated in terms of convergence characteristics and computational cost. An approach of dealing with cases where subsystem optimization cannot find a feasible design will be investigated by using the new flexible approximation models for the violated local constraints.

  12. Graphene-based materials for flexible supercapacitors.

    PubMed

    Shao, Yuanlong; El-Kady, Maher F; Wang, Lisa J; Zhang, Qinghong; Li, Yaogang; Wang, Hongzhi; Mousavi, Mir F; Kaner, Richard B

    2015-06-07

    The demand for flexible/wearable electronic devices that have aesthetic appeal and multi-functionality has stimulated the rapid development of flexible supercapacitors with enhanced electrochemical performance and mechanical flexibility. After a brief introduction to flexible supercapacitors, we summarize current progress made with graphene-based electrodes. Two recently proposed prototypes for flexible supercapacitors, known as micro-supercapacitors and fiber-type supercapacitors, are then discussed. We also present our perspective on the development of graphene-based electrodes for flexible supercapacitors.

  13. MIMI: multimodality, multiresource, information integration environment for biomedical core facilities.

    PubMed

    Szymanski, Jacek; Wilson, David L; Zhang, Guo-Qiang

    2009-10-01

    The rapid expansion of biomedical research has brought substantial scientific and administrative data management challenges to modern core facilities. Scientifically, a core facility must be able to manage experimental workflow and the corresponding set of large and complex scientific data. It must also disseminate experimental data to relevant researchers in a secure and expedient manner that facilitates collaboration and provides support for data interpretation and analysis. Administratively, a core facility must be able to manage the scheduling of its equipment and to maintain a flexible and effective billing system to track material, resource, and personnel costs and charge for services to sustain its operation. It must also have the ability to regularly monitor the usage and performance of its equipment and to provide summary statistics on resources spent on different categories of research. To address these informatics challenges, we introduce a comprehensive system called MIMI (multimodality, multiresource, information integration environment) that integrates the administrative and scientific support of a core facility into a single web-based environment. We report the design, development, and deployment experience of a baseline MIMI system at an imaging core facility and discuss the general applicability of such a system in other types of core facilities. These initial results suggest that MIMI will be a unique, cost-effective approach to addressing the informatics infrastructure needs of core facilities and similar research laboratories.

  14. Coupled nonlinear aeroelasticity and flight dynamics of fully flexible aircraft

    NASA Astrophysics Data System (ADS)

    Su, Weihua

    This dissertation introduces an approach to effectively model and analyze the coupled nonlinear aeroelasticity and flight dynamics of highly flexible aircraft. A reduced-order, nonlinear, strain-based finite element framework is used, which is capable of assessing the fundamental impact of structural nonlinear effects in preliminary vehicle design and control synthesis. The cross-sectional stiffness and inertia properties of the wings are calculated along the wing span, and then incorporated into the one-dimensional nonlinear beam formulation. Finite-state unsteady subsonic aerodynamics is used to compute airloads along lifting surfaces. Flight dynamic equations are then introduced to complete the aeroelastic/flight dynamic system equations of motion. Instead of merely considering the flexibility of the wings, the current work allows all members of the vehicle to be flexible. Due to their characteristics of being slender structures, the wings, tail, and fuselage of highly flexible aircraft can be modeled as beams undergoing three dimensional displacements and rotations. New kinematic relationships are developed to handle the split beam systems, such that fully flexible vehicles can be effectively modeled within the existing framework. Different aircraft configurations are modeled and studied, including Single-Wing, Joined-Wing, Blended-Wing-Body, and Flying-Wing configurations. The Lagrange Multiplier Method is applied to model the nodal displacement constraints at the joint locations. Based on the proposed models, roll response and stability studies are conducted on fully flexible and rigidized models. The impacts of the flexibility of different vehicle members on flutter with rigid body motion constraints, flutter in free flight condition, and roll maneuver performance are presented. Also, the static stability of the compressive member of the Joined-Wing configuration is studied. A spatially-distributed discrete gust model is incorporated into the time simulation

  15. The effect of wing flexibility on sound generation of flapping wings.

    PubMed

    Geng, Biao; Xue, Qian; Zheng, Xudong; Liu, Geng; Ren, Yan; Dong, Haibo

    2017-12-13

    In this study, the unsteady flow and acoustic characteristics of a three-dimensional (3D) flapping wing model of a Tibicen linnei cicada in forward-flight are numerically investigated. A single cicada wing is modelled as a membrane with a prescribed motion reconstructed from high-speed videos of a live insect. The numerical solution takes a hydrodynamic/acoustic splitting approach: the flow field is solved with an incompressible Navier-Stokes flow solver based on an immersed boundary method, and the acoustic field is solved with linearized perturbed compressible equations. The 3D simulation allows for the examination of both the directivity and frequency compositions of the flapping wing sound in a full space. Along with the flexible wing model, a rigid wing model that is extracted from real motion is also simulated to investigate the effects of wing flexibility. The simulation results show that the flapping sound is directional; the dominant frequency varies around the wing. The first and second frequency harmonics show different radiation patterns in the rigid and flexible wing cases, which are demonstrated to be highly associated with wing kinematics and loadings. Furthermore, the rotation and deformation in the flexible wing is found to help lower the sound strength in all directions.

  16. Terminal configured vehicle program: Test facilities guide

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The terminal configured vehicle (TCV) program was established to conduct research and to develop and evaluate aircraft and flight management system technology concepts that will benefit conventional take off and landing operations in the terminal area. Emphasis is placed on the development of operating methods for the highly automated environment anticipated in the future. The program involves analyses, simulation, and flight experiments. Flight experiments are conducted using a modified Boeing 737 airplane equipped with highly flexible display and control equipment and an aft flight deck for research purposes. The experimental systems of the Boeing 737 are described including the flight control computer systems, the navigation/guidance system, the control and command panel, and the electronic display system. The ground based facilities used in the program are described including the visual motion simulator, the fixed base simulator, the verification and validation laboratory, and the radio frequency anechoic facility.

  17. Amino-functionalized sub-40 nm ultrathin Ag/ZnO transparent electrodes for flexible polymer dispersed liquid crystal devices

    NASA Astrophysics Data System (ADS)

    Huang, Jinhua; Lu, Yuehui; Wu, Wenxuan; Li, Jia; Zhang, Xianpeng; Zhu, Chaoting; Yang, Ye; Xu, Feng; Song, Weijie

    2017-11-01

    Various flexible transparent conducting electrodes (FTCEs) have been studied for promising applications in flexible optoelectronic devices, but there are still challenges in achieving higher transparency and conductivity, lower thickness, better mechanical flexibility, and lower preparation temperatures. In this work, we prepared a sub-40 nm Ag(9 nm)/ZnO(30 nm) FTCE at room temperature, where each layer played a relatively independent role in the tailoring of the optoelectronic properties. A continuous and smooth 9-nm Ag thin film was grown on amino-functionalized glass and polyethylene terephthalate (PET) substrates to provide good conductivity. A 30-nm ZnO cladding, as an antireflection layer, further improved the transmittance while hardly affecting the conductivity. The room-temperature grown sub-40 nm Ag/ZnO thin films on PET substrate exhibited a transmittance of 88.6% at 550 nm and a sheet resistance of 7.6 Ω.sq-1, which were superior to those of the commercial ITO. The facile preparation benefits the integration of FTCEs into various flexible optoelectronic devices, where the excellent performance of the sub-40 nm Ag/ZnO FTCEs in a flexible polymer dispersed liquid crystal device was demonstrated. Sub-40 nm Ag/ZnO FTCEs that have the characteristics of simple structure, room-temperature preparation, and easily tailored optoelectronic properties would provide flexible optoelectronic devices with more degrees of freedom.

  18. Flexible retinal electrode array

    DOEpatents

    Okandan, Murat [Albuquerque, NM; Wessendorf, Kurt O [Albuquerque, NM; Christenson, Todd R [Albuquerque, NM

    2006-10-24

    An electrode array which has applications for neural stimulation and sensing. The electrode array can include a large number of electrodes each of which is flexibly attached to a common substrate using a plurality of springs to allow the electrodes to move independently. The electrode array can be formed from a combination of bulk and surface micromachining, with electrode tips that can include an electroplated metal (e.g. platinum, iridium, gold or titanium) or a metal oxide (e.g. iridium oxide) for biocompatibility. The electrode array can be used to form a part of a neural prosthesis, and is particularly well adapted for use in an implantable retinal prosthesis where the electrodes can be tailored to provide a uniform gentle contact pressure with optional sensing of this contact pressure at one or more of the electrodes.

  19. Nanofabrication and Nanopatterning of Carbon Nanomaterials for Flexible Electronics

    NASA Astrophysics Data System (ADS)

    Ding, Junjun

    Stretchable electrodes have increasingly drawn attention as a vital component for flexible electronic devices. Carbon nanomaterials such as graphene and carbon nanotubes (CNTs) exhibit properties such as high mechanical flexibility and strength, optical transparency, and electrical conductivity which are naturally required for stretchable electrodes. Graphene growth, nanopatterning, and transfer processes are important steps to use graphene as flexible electrodes. However, advances in the large-area nanofabrication and nanopatterning of carbon nanomaterials such as graphene are necessary to realize the full potential of this technology. In particular, laser interference lithography (LIL), a fast and low cost large-area nanoscale patterning technique, shows tremendous promise for the patterning of graphene and other nanostructures for numerous applications. First, it was demonstrated that large-area nanopatterning and the transfer of chemical vapor deposition (CVD) grown graphene via LIL and plasma etching provide a reliable method to provide large area nanoengineered graphene on various target substrates. Then, to improve the electrode performance under large strain (naturally CVD grown graphene sheet will crack at tensile strains larger than 1%), a corrugated graphene structure on PDMS was designed, fabricated, and tested, with experimental results indicating that this approach successfully allows the graphene sheets to withstand cyclic tensile strains up to 15%. Lastly, to further enhance the performance of carbon-based stretchable electrodes, an approach was developed which coupled graphene and vertically aligned CNT (VACNT) on a flexible PDMS substrate. Characterization of the graphene-VACNT hybrid shows high electrical conductivity and durability through 50 cycles of loading up to 100% tensile strain. While flexible electronics promise tremendous advances in important technological areas such as healthcare, sensing, energy, and wearable electronics, continued

  20. Usefulness of a Flexible Port for Natural Orifice Transluminal Endoscopic Surgery by the Transrectal and Transvaginal Routes

    PubMed Central

    Ohdaira, Takeshi; Ikeda, Keiichi; Tajiri, Hisao; Yasuda, Yoshikazu; Hashizume, Makoto

    2010-01-01

    We developed a flexible port for NOTES which allows the use of conventional forceps for laparoscope-assisted surgery without change. The port is not affected by the location of the through hole in the gastrointestinal tract or vagina which elicits a problem in conventional NOTES, and its length can be adjusted during surgery by cutting the port itself. The port is made of polymer resin with a low friction coefficient. Furthermore, the port walls have a square wave structure which contributes to (1) the prevention of devices, for example, endoscope, from getting stuck at the time of insertion and retrieval, (2) the prevention of port slippage in the surgical opening for port insertion, (3) the prevention of unexpected port removal, (4) the prevention of port bore deformation, and (5) the improvement of port flexibility in the longitudinal direction. We validated the insertion and retrieval capacities of commercially available forceps for laparoscope-assisted surgery and power devices. Furthermore, we used the flexible port to conduct cholecystectomy and partial gastrectomy. We could confirm that the selection of the flexible port diameter according to the device type allowed the smooth insertion and retrieval of the device and that the port produced no air leakage. We affirmed that it is possible to conduct surgery by the cross or parallel method similarly to single port surgery. We considered that the flexible port has a potential of becoming a revolutionary port in NOTES. PMID:20508827

  1. Flexibility within Fidelity

    ERIC Educational Resources Information Center

    Kendall, Philip C.; Gosch, Elizabeth; Furr, Jami M.; Sood, Erica

    2008-01-01

    The authors address concerns regarding manual-based treatments, highlighting the role of flexibility and creativity. A cognitive-behavioral therapy for youth anxiety called the Coping Cat program demonstrates the flexible application of manuals and emphasizes the importance of a child-centered, personalized approach that involves the child in the…

  2. Quantification of rectifications for the Northwestern University Flexible Sub-Ischial Vacuum Socket.

    PubMed

    Fatone, Stefania; Johnson, William Brett; Tran, Lilly; Tucker, Kerice; Mowrer, Christofer; Caldwell, Ryan

    2017-06-01

    The fit and function of a prosthetic socket depend on the prosthetist's ability to design the socket's shape to distribute load comfortably over the residual limb. We recently developed a sub-ischial socket for persons with transfemoral amputation: the Northwestern University Flexible Sub-Ischial Vacuum Socket. This study aimed to quantify the rectifications required to fit the Northwestern University Flexible Sub-Ischial Vacuum Socket to teach the technique to prosthetists as well as provide a computer-aided design-computer-aided manufacturing option. Development project. A program was used to align scans of unrectified and rectified negative molds and calculate shape change as a result of rectification. Averaged rectifications were used to create a socket template, which was shared with a central fabrication facility engaged in provision of Northwestern University Flexible Sub-Ischial Vacuum Sockets to early clinical adopters. Feedback regarding quality of fitting was obtained. Rectification maps created from 30 cast pairs of successfully fit Northwestern University Flexible Sub-Ischial Vacuum Sockets confirmed that material was primarily removed from the positive mold in the proximal-lateral and posterior regions. The template was used to fabricate check sockets for 15 persons with transfemoral amputation. Feedback suggested that the template provided a reasonable initial fit with only minor adjustments. Rectification maps and template were used to facilitate teaching and central fabrication of the Northwestern University Flexible Sub-Ischial Vacuum Socket. Minor issues with quality of initial fit achieved with the template may be due to inability to adjust the template to patient characteristics (e.g. tissue type, limb shape) and/or the degree to which it represented a fully mature version of the technique. Clinical relevance Rectification maps help communicate an important step in the fabrication of the Northwestern University Flexible Sub-Ischial Vacuum

  3. A Simple Experiment to Explore Standing Waves in a Flexible Corrugated Sound Tube

    NASA Astrophysics Data System (ADS)

    Amorim, Maria Eva; Sousa, Teresa Delmira; Carvalho, P. Simeão; Sousa, Adriano Sampaioe

    2011-09-01

    Sound tubes, pipes, and singing rods are used as musical instruments and as toys to perform amusing experiments. In particular, corrugated tubes present unique characteristics with respect to the sounds they can produce; that is why they have been studied so intensively, both at theoretical and experimental levels.1-4 Experimental studies usually involve expensive and sophisticated equipment that is out of reach of school laboratory facilities.3-6 In this paper we show how to investigate quantitatively the sounds produced by a flexible sound tube corrugated on the inside by using educational equipment readily available in school laboratories, such as the oscilloscope, the microphone, the anemometer, and the air pump. We show that it is possible for students to study the discontinuous spectrum of sounds produced by a flexible corrugated tube and go even further, computing the speed of sound in air with a simple experimental procedure.

  4. Advances in Flexible Hybrid Electronics Reliability

    DTIC Science & Technology

    2017-03-01

    Advances in Flexible Hybrid Electronics Reliability Douglas R. Hackler, Richard L. Chaney, Brian N. Meek, Darrell E. Leber, Seth D. Leija, Kelly J...www.americansemi.com Abstract: Flexible Hybrid Electronics combine the best characteristics of printed electronics and silicon ICs to create high performance...presented for flexible hybrid electronics systems. Keywords: FleX; flexible; flexible hybrid electronics ; FHE; Silicon-on-Polymer Introduction

  5. Cognitive flexibility and religious disbelief.

    PubMed

    Zmigrod, Leor; Rentfrow, P Jason; Zmigrod, Sharon; Robbins, Trevor W

    2018-06-11

    Cognitive flexibility is operationalized in the neuropsychological literature as the ability to shift between modes of thinking and adapt to novel or changing environments. Religious belief systems consist of strict rules and rituals that offer adherents certainty, consistency, and stability. Consequently, we hypothesized that religious adherence and practice of repetitive religious rituals may be related to the persistence versus flexibility of one's cognition. The present study investigated the extent to which tendencies towards cognitive flexibility versus persistence are related to three facets of religious life: religious affiliation, religious practice, and religious upbringing. In a large sample (N = 744), we found that religious disbelief was related to cognitive flexibility across three independent behavioural measures: the Wisconsin Card Sorting Test, Remote Associates Test, and Alternative Uses Test. Furthermore, lower frequency of religious service attendance was related to cognitive flexibility. When analysing participants' religious upbringing in relation to their current religious affiliation, it was manifest that current affiliation was more influential than religious upbringing in all the measured facets of cognitive flexibility. The findings indicate that religious affiliation and engagement may shape and be shaped by cognitive control styles towards flexibility versus persistence, highlighting the tight links between flexibility of thought and religious ideologies.

  6. The Flexibility Hypothesis of Healing.

    PubMed

    Hinton, Devon E; Kirmayer, Laurence J

    2017-03-01

    Theories of healing have attempted to identify general mechanisms that may work across different modalities. These include altering expectations, remoralization, and instilling hope. In this paper, we argue that many forms of healing and psychotherapy may work by inducing positive psychological states marked by flexibility or an enhanced ability to shift cognitive sets. Healing practices may induce these states of cognitive and emotional flexibility through specific symbolic interventions we term "flexibility primers" that can include images, metaphors, music, and other media. The flexibility hypothesis suggests that cognitive and emotional flexibility is represented, elicited, and enacted through multiple modalities in healing rituals. Identifying psychological processes and cultural forms that evoke and support cognitive and emotional flexibility provides a way to understand the cultural specificity and potential efficacy of particular healing practices and can guide the design of interventions that promote resilience and well-being.

  7. A high-performance, flexible and robust metal nanotrough-embedded transparent conducting film for wearable touch screen panels

    NASA Astrophysics Data System (ADS)

    Im, Hyeon-Gyun; An, Byeong Wan; Jin, Jungho; Jang, Junho; Park, Young-Geun; Park, Jang-Ung; Bae, Byeong-Soo

    2016-02-01

    We report a high-performance, flexible and robust metal nanotrough-embedded transparent conducting hybrid film (metal nanotrough-GFRHybrimer). Using an electro-spun polymer nanofiber web as a template and vacuum-deposited gold as a conductor, a junction resistance-free continuous metal nanotrough network is formed. Subsequently, the metal nanotrough is embedded on the surface of a glass-fabric reinforced composite substrate (GFRHybrimer). The monolithic composite structure of our transparent conducting film allows simultaneously high thermal stability (24 h at 250 °C in air), a smooth surface topography (Rrms < 1 nm) and excellent opto-electrical properties. A flexible touch screen panel (TSP) is fabricated using the transparent conducting films. The flexible TSP device stably operates on the back of a human hand and on a wristband.We report a high-performance, flexible and robust metal nanotrough-embedded transparent conducting hybrid film (metal nanotrough-GFRHybrimer). Using an electro-spun polymer nanofiber web as a template and vacuum-deposited gold as a conductor, a junction resistance-free continuous metal nanotrough network is formed. Subsequently, the metal nanotrough is embedded on the surface of a glass-fabric reinforced composite substrate (GFRHybrimer). The monolithic composite structure of our transparent conducting film allows simultaneously high thermal stability (24 h at 250 °C in air), a smooth surface topography (Rrms < 1 nm) and excellent opto-electrical properties. A flexible touch screen panel (TSP) is fabricated using the transparent conducting films. The flexible TSP device stably operates on the back of a human hand and on a wristband. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07657a

  8. [Flexibility of working hours and health: towards ergonomics of working time].

    PubMed

    Costa, G; Sartori, S

    2005-01-01

    The search for ways and methods able to increase the "flexibility" of working hours deal with several forms of intervention that depend on political choices and work management, according to specific interests and needs of the companies, the individual worker and the whole society. The main problem on the carpet is to evaluate whether that interferes with worker's health and well-being. According to the data of the last European Survey on Working Conditions (EURF 2000), it appears the workers engaged in working hours different from the traditional day work are nowadays the vast majority of the population; moreover, organisational forms which allow more flexibility, that is more autonomy, in working time arrangement are associate to better health and well-being.

  9. Thermal Distribution System | Energy Systems Integration Facility | NREL

    Science.gov Websites

    Thermal Distribution System Thermal Distribution System The Energy Systems Integration Facility's integrated thermal distribution system consists of a thermal water loop connected to a research boiler and . Photo of the roof of the Energy Systems Integration Facility. The thermal distribution bus allows

  10. Flexible and Comprehensive Implementation of MD-PMM Approach in a General and Robust Code.

    PubMed

    Carrillo-Parramon, Oliver; Del Galdo, Sara; Aschi, Massimiliano; Mancini, Giordano; Amadei, Andrea; Barone, Vincenzo

    2017-11-14

    The Perturbed Matrix Method (PMM) approach to be used in combination with Molecular Dynamics (MD) trajectories (MD-PMM) has been recoded from scratch, improved in several aspects, and implemented in the Gaussian suite of programs for allowing a user-friendly and yet flexible tool to estimate quantum chemistry observables in complex systems in condensed phases. Particular attention has been devoted to a description of rigid and flexible quantum centers together with powerful essential dynamics and clustering approaches. The default implementation is fully black-box and does not require any external action concerning both MD and PMM sections. At the same time, fine-tuning of different parameters and use of external data are allowed in all the steps of the procedure. Two specific systems (Tyrosine and Uridine) have been reinvestigated with the new version of the code in order to validate the implementation, check the performances, and illustrate some new features.

  11. Addressing social aspects associated with wastewater treatment facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padilla-Rivera, Alejandro; Morgan-Sagastume, Juan Manuel; Noyola, Adalberto

    In wastewater treatment facilities (WWTF), technical and financial aspects have been considered a priority, while other issues, such as social aspects, have not been evaluated seriously and there is not an accepted methodology for assessing it. In this work, a methodology focused on social concerns related to WWTF is presented. The methodology proposes the use of 25 indicators as a framework for measuring social performance to evaluate the progress in moving towards sustainability. The methodology was applied to test its applicability and effectiveness in two WWTF in Mexico (urban and rural). This evaluation helped define the key elements, stakeholders andmore » barriers in the facilities. In this context, the urban facility showed a better overall performance, a result that may be explained mainly by the better socioeconomic context of the urban municipality. Finally, the evaluation of social aspects using the semi-qualitative approach proposed in this work allows for a comparison between different facilities and for the identification of strengths and weakness, and it provides an alternative tool for achieving and improving wastewater management. - Highlights: • The methodology proposes 25 indicators as a framework for measuring social performance in wastewater treatment facilities. • The evaluation helped to define the key elements, stakeholders and barriers in the wastewater treatment facilities. • The evaluation of social aspects allows the identification of strengths and weakness for improving wastewater management. • It provides a social profile of the facility that highlights the best and worst performances.« less

  12. Flexibility Support for Homecare Applications Based on Models and Multi-Agent Technology

    PubMed Central

    Armentia, Aintzane; Gangoiti, Unai; Priego, Rafael; Estévez, Elisabet; Marcos, Marga

    2015-01-01

    In developed countries, public health systems are under pressure due to the increasing percentage of population over 65. In this context, homecare based on ambient intelligence technology seems to be a suitable solution to allow elderly people to continue to enjoy the comforts of home and help optimize medical resources. Thus, current technological developments make it possible to build complex homecare applications that demand, among others, flexibility mechanisms for being able to evolve as context does (adaptability), as well as avoiding service disruptions in the case of node failure (availability). The solution proposed in this paper copes with these flexibility requirements through the whole life-cycle of the target applications: from design phase to runtime. The proposed domain modeling approach allows medical staff to design customized applications, taking into account the adaptability needs. It also guides software developers during system implementation. The application execution is managed by a multi-agent based middleware, making it possible to meet adaptation requirements, assuring at the same time the availability of the system even for stateful applications. PMID:26694416

  13. Social support, flexible resources, and health care navigation.

    PubMed

    Gage-Bouchard, Elizabeth A

    2017-10-01

    Recent research has focused attention on the role of patients' and clinicians' cultural skills and values in generating inequalities in health care experiences. Yet, examination of how social structural factors shape people's abilities to build, refine, and leverage strategies for navigating the health care system have received less attention. In this paper I place focus on one such social structural factor, social support, and examine how social support operates as a flexible resource that helps people navigate the health care system. Using the case of families navigating pediatric cancer care this study combines in-depth interviews with parents of pediatric cancer patients (N = 80), direct observation of clinical interactions between families and physicians (N = 73), and in-depth interviews with pediatric oncologists (N = 8). Findings show that physicians assess parental visibility in the hospital, medical vigilance, and adherence to their child's treatment and use these judgments to shape clinical decision-making. Parents who had help from their personal networks had more agility in balancing competing demands, and this allowed parents to more effectively meet institutional expectations for appropriate parental involvement in the child's health care. In this way, social support served as a flexible resource for some families that allowed parents to more quickly adapt to the demands of caring for a child with cancer, foster productive interpersonal relationships with health care providers, and play a more active role in their child's health care. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Flexible multielectrodes can resolve multiple muscles in an insect appendage.

    PubMed

    Spence, Andrew J; Neeves, Keith B; Murphy, Devon; Sponberg, Simon; Land, Bruce R; Hoy, Ronald R; Isaacson, Michael S

    2007-01-15

    Research into the neuromechanical basis of behavior, either in biomechanics, neuroethology, or neuroscience, is frequently limited by methods of data collection. Two of the most pressing needs are for methods with which to (1) record from multiple neurons or muscles simultaneously and (2) perform this recording in intact, behaving animals. In this paper we present the fabrication and testing of flexible multielectrode arrays (fMEAs) that move us significantly towards these goals. The fMEAs were used to record the activity of several distinct units in the coxa of the cockroach Blaberus discoidalis. The devices fabricated here address the first goal in two ways: (1) their flexibility allows them to be inserted into an animal and guided through internal tissues in order to access distinct groups of neurons and muscles and (2) their recording site geometry has been tuned to suit the anatomy under study, yielding multichannel spike waveforms that are easily separable under conditions of spike overlap. The flexible nature of the devices simultaneously addresses the second goal, in that it is less likely to interfere with the natural movement of the animal.

  15. A combinatorial approach to protein docking with flexible side chains.

    PubMed

    Althaus, Ernst; Kohlbacher, Oliver; Lenhof, Hans-Peter; Müller, Peter

    2002-01-01

    Rigid-body docking approaches are not sufficient to predict the structure of a protein complex from the unbound (native) structures of the two proteins. Accounting for side chain flexibility is an important step towards fully flexible protein docking. This work describes an approach that allows conformational flexibility for the side chains while keeping the protein backbone rigid. Starting from candidates created by a rigid-docking algorithm, we demangle the side chains of the docking site, thus creating reasonable approximations of the true complex structure. These structures are ranked with respect to the binding free energy. We present two new techniques for side chain demangling. Both approaches are based on a discrete representation of the side chain conformational space by the use of a rotamer library. This leads to a combinatorial optimization problem. For the solution of this problem, we propose a fast heuristic approach and an exact, albeit slower, method that uses branch-and-cut techniques. As a test set, we use the unbound structures of three proteases and the corresponding protein inhibitors. For each of the examples, the highest-ranking conformation produced was a good approximation of the true complex structure.

  16. Printable Solid-State Lithium-Ion Batteries: A New Route toward Shape-Conformable Power Sources with Aesthetic Versatility for Flexible Electronics.

    PubMed

    Kim, Se-Hee; Choi, Keun-Ho; Cho, Sung-Ju; Choi, Sinho; Park, Soojin; Lee, Sang-Young

    2015-08-12

    Forthcoming flexible/wearable electronic devices with shape diversity and mobile usability garner a great deal of attention as an innovative technology to bring unprecedented changes in our daily lives. From the power source point of view, conventional rechargeable batteries (one representative example is a lithium-ion battery) with fixed shapes and sizes have intrinsic limitations in fulfilling design/performance requirements for the flexible/wearable electronics. Here, as a facile and efficient strategy to address this formidable challenge, we demonstrate a new class of printable solid-state batteries (referred to as "PRISS batteries"). Through simple stencil printing process (followed by ultraviolet (UV) cross-linking), solid-state composite electrolyte (SCE) layer and SCE matrix-embedded electrodes are consecutively printed on arbitrary objects of complex geometries, eventually leading to fully integrated, multilayer-structured PRISS batteries with various form factors far beyond those achievable by conventional battery technologies. Tuning rheological properties of SCE paste and electrode slurry toward thixotropic fluid characteristics, along with well-tailored core elements including UV-cured triacrylate polymer and high boiling point electrolyte, is a key-enabling technology for the realization of PRISS batteries. This process/material uniqueness allows us to remove extra processing steps (related to solvent drying and liquid-electrolyte injection) and also conventional microporous separator membranes, thereupon enabling the seamless integration of shape-conformable PRISS batteries (including letters-shaped ones) into complex-shaped objects. Electrochemical behavior of PRISS batteries is elucidated via an in-depth analysis of cell impedance, which provides a theoretical basis to enable sustainable improvement of cell performance. We envision that PRISS batteries hold great promise as a reliable and scalable platform technology to open a new concept of cell

  17. Accessibility of sports facilities for persons with reduced mobility and assessment of their motivation for practice.

    PubMed

    Sá, Maria Manuel; Azevedo, Rui; Martins, Maria Cristina; Machado, Osvaldo; Tavares, João

    2012-01-01

    This study aims to create awareness, both within the scientific community and among providers of sports facilities, for individuals with impaired or reduced mobility, promoting the development of technical solutions that allow greater autonomy and social integration of people with disabilities. The purpose of this work is, on the one hand, to evaluate the accessibility of sports facilities for people with reduced mobility and, on the other hand, to investigate why this user group has such low rates of participation in sporting activities. Firstly, using the Portuguese norms and legislation transcribed from European Community directives, a check list was created comprising all the items that sports facilities should abide by in order to provide accessibility and safety to people with reduced mobility. Another questionnaire was designed aimed at this user group, with questions pertaining to their desire and ability to use sports facilities. This questionnaire was distributed in Portugal, in the greater metropolitan area of Porto, to users of Rehabilitation Centres and Physiotherapy Clinics. The results obtained from the check-list showed the compliances and non-compliances of the respective sports facilities, proving that many barriers preventing the participation of people with reduced mobility still exist. Twenty-four people with permanent impairment of the lower extremities (paraplegia) answered the questionnaire pertaining to the desire and ability to perform physical activity. Two individuals (8%) had sporting activities available to them in their area of residence and only five (21%) performed any physical activity. The main reason given for not taking part in any activity was the lack of adapted sports facilities. All the participants felt that taking part in sports is beneficial. The benefits stated were: general well-being and development of the psychomotor component (e.g. coordination, balance, body posture), of physical condition (e.g. strength, resistance

  18. Community residential facilities in mental health services: A ten-year comparison in Lombardy.

    PubMed

    Barbato, Angelo; Civenti, Graziella; D'Avanzo, Barbara

    2017-06-01

    Residential mental health services grew steadily since 2000 in Italy. A reorganisation of residential facilities was implemented in 2007 in Lombardy, introducing supported housing in addition to staffed facilities. We compare the provision and characteristics of residential facilities in the 2007 and 2016. In 2007 there were 3462 beds (35.9/100,000 population) in 276 facilities. In 2016 beds were 4783 (47.8/100,000) in 520 facilities. The increase were unevenly distributed in the public and private sector, and the overall increase was due to a higher increase in the private sector. 72% of beds were in highly supervised facilities in 2007 and 66% in 2016. The public sector managed more facilities with a rehabilitation goal, while the private sector more for long-term accommodation. Mean numbers of beds were higher in facilities managed by the private sector in both years. The 2007 reorganisation and the stop to opening new facilities in the last years were not enough to correct the imbalance between highly supervised and flexible solutions. A wider and more diverse offer might have triggered off an increased demand, rather than a more rational use. Given the costs of highly staffed facilities, and the risk of reproducing custodial models, close evaluation of the use of residential facilities should inform policies. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Engine component instrumentation development facility at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.; Buggele, Alvin E.; Lepicovsky, Jan

    1992-01-01

    The Engine Components Instrumentation Development Facility at NASA Lewis is a unique aeronautics facility dedicated to the development of innovative instrumentation for turbine engine component testing. Containing two separate wind tunnels, the facility is capable of simulating many flow conditions found in most turbine engine components. This facility's broad range of capabilities as well as its versatility provide an excellent location for the development of novel testing techniques. These capabilities thus allow a more efficient use of larger and more complex engine component test facilities.

  20. Enhanced Flexibility and Reusability through State Machine-Based Architectures for Multisensor Intelligent Robotics.

    PubMed

    Herrero, Héctor; Outón, Jose Luis; Puerto, Mildred; Sallé, Damien; López de Ipiña, Karmele

    2017-05-31

    This paper presents a state machine-based architecture, which enhances the flexibility and reusability of industrial robots, more concretely dual-arm multisensor robots. The proposed architecture, in addition to allowing absolute control of the execution, eases the programming of new applications by increasing the reusability of the developed modules. Through an easy-to-use graphical user interface, operators are able to create, modify, reuse and maintain industrial processes, increasing the flexibility of the cell. Moreover, the proposed approach is applied in a real use case in order to demonstrate its capabilities and feasibility in industrial environments. A comparative analysis is presented for evaluating the presented approach versus traditional robot programming techniques.

  1. 36 CFR § 1280.94 - When do Presidential libraries allow other groups to use their public areas for events?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true When do Presidential libraries... FACILITIES What Additional Rules Apply for Use of Facilities in Presidential Libraries? § 1280.94 When do Presidential libraries allow other groups to use their public areas for events? (a) Although Presidential...

  2. Optical connections on flexible substrates

    NASA Astrophysics Data System (ADS)

    Bosman, Erwin; Geerinck, Peter; Christiaens, Wim; Van Steenberge, Geert; Vanfleteren, Jan; Van Daele, Peter

    2006-04-01

    Optical interconnections integrated on a flexible substrate combine the advantages of optical data transmissions (high bandwidth, no electromagnetic disturbance and low power consumption) and those of flexible substrates (compact, ease of assembly...). Especially the flexible character of the substrates can significantly lower the assembly cost and leads to more compact modules. Especially in automotive-, avionic-, biomedical and sensing applications there is a great potential for these flexible optical interconnections because of the increasing data-rates, increasing use of optical sensors and requirement for smaller size and weight. The research concentrates on the integration of commercially available polymer optical layers (Truemode Backplane TM Polymer, Ormocer®) on a flexible Polyimide film, the fabrication of waveguides and out-of plane deflecting 45° mirrors, the characterization of the optical losses due to the bending of the substrate, and the fabrication of a proof-of-principal demonstrator. The resulting optical structures should be compatible with the standard fabrication of flexible printed circuit boards.

  3. 3D nitrogen-doped graphene foam with encapsulated germanium/nitrogen-doped graphene yolk-shell nanoarchitecture for high-performance flexible Li-ion battery

    PubMed Central

    Mo, Runwei; Rooney, David; Sun, Kening; Yang, Hui Ying

    2017-01-01

    Flexible electrochemical energy storage devices have attracted extensive attention as promising power sources for the ever-growing field of flexible and wearable electronic products. However, the rational design of a novel electrode structure with a good flexibility, high capacity, fast charge–discharge rate and long cycling lifetimes remains a long-standing challenge for developing next-generation flexible energy-storage materials. Herein, we develop a facile and general approach to three-dimensional (3D) interconnected porous nitrogen-doped graphene foam with encapsulated Ge quantum dot/nitrogen-doped graphene yolk-shell nano architecture for high specific reversible capacity (1,220 mAh g−1), long cycling capability (over 96% reversible capacity retention from the second to 1,000 cycles) and ultra-high rate performance (over 800 mAh g−1 at 40 C). This work paves a way to develop the 3D interconnected graphene-based high-capacity electrode material systems, particularly those that suffer from huge volume expansion, for the future development of high-performance flexible energy storage systems. PMID:28051065

  4. Control of large flexible structures - An experiment on the NASA Mini-Mast facility

    NASA Technical Reports Server (NTRS)

    Hsieh, Chen; Kim, Jae H.; Liu, Ketao; Zhu, Guoming; Skelton, Robert E.

    1991-01-01

    The output variance constraint controller design procedure is integrated with model reduction by modal cost analysis. A procedure is given for tuning MIMO controller designs to find the maximal rms performance of the actual system. Controller designs based on a finite-element model of the system are compared with controller designs based on an identified model (obtained using the Q-Markov Cover algorithm). The identified model and the finite-element model led to similar closed-loop performance, when tested in the Mini-Mast facility at NASA Langley.

  5. 36 CFR 1280.102 - When do NARA regional records services facilities allow other groups to use their public areas...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... public areas for events? (a) Although NARA regional records services facility auditoriums and other... auditoriums or other public spaces for any activities that involve: (1) Profit making; (2) Commercial...

  6. 36 CFR 1280.102 - When do NARA regional records services facilities allow other groups to use their public areas...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... public areas for events? (a) Although NARA regional records services facility auditoriums and other... auditoriums or other public spaces for any activities that involve: (1) Profit making; (2) Commercial...

  7. 36 CFR 1280.102 - When do NARA regional records services facilities allow other groups to use their public areas...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... public areas for events? (a) Although NARA regional records services facility auditoriums and other... auditoriums or other public spaces for any activities that involve: (1) Profit making; (2) Commercial...

  8. 36 CFR 1280.102 - When do NARA regional records services facilities allow other groups to use their public areas...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... public areas for events? (a) Although NARA regional records services facility auditoriums and other... auditoriums or other public spaces for any activities that involve: (1) Profit making; (2) Commercial...

  9. Flexible and wearable electronic silk fabrics for human physiological monitoring

    NASA Astrophysics Data System (ADS)

    Mao, Cuiping; Zhang, Huihui; Lu, Zhisong

    2017-09-01

    The development of textile-based devices for human physiological monitoring has attracted tremendous interest in recent years. However, flexible physiological sensing elements based on silk fabrics have not been realized. In this paper, ZnO nanorod arrays are grown in situ on reduced graphene oxide-coated silk fabrics via a facile electro-deposition method for the fabrication of silk-fabric-based mechanical sensing devices. The data show that well-aligned ZnO nanorods with hexagonal wurtzite crystalline structures are synthesized on the conductive silk fabric surface. After magnetron sputtering of gold electrodes, silk-fabric-based devices are produced and applied to detect periodic bending and twisting. Based on the electric signals, the deformation and release processes can be easily differentiated. Human arterial pulse and respiration can also be real-time monitored to calculate the pulse rate and respiration frequency, respectively. Throat vibrations during coughing and singing are detected to demonstrate the voice recognition capability. This work may not only help develop silk-fabric-based mechanical sensing elements for potential applications in clinical diagnosis, daily healthcare monitoring and voice recognition, but also provide a versatile method for fabricating textile-based flexible electronic devices.

  10. Current Issues in Flexibility Fitness.

    ERIC Educational Resources Information Center

    Knudson, Duane V.; Magnusson, Peter; McHugh, Malachy

    2000-01-01

    Physical activity is extremely important in maintaining good health. Activity is not possible without a certain amount of flexibility. This report discusses issues related to flexibility fitness. Flexibility is a property of the musculoskeletal system that determines the range of motion achievable without injury to the joints. Static flexibility…

  11. RNAPattMatch: a web server for RNA sequence/structure motif detection based on pattern matching with flexible gaps

    PubMed Central

    Drory Retwitzer, Matan; Polishchuk, Maya; Churkin, Elena; Kifer, Ilona; Yakhini, Zohar; Barash, Danny

    2015-01-01

    Searching for RNA sequence-structure patterns is becoming an essential tool for RNA practitioners. Novel discoveries of regulatory non-coding RNAs in targeted organisms and the motivation to find them across a wide range of organisms have prompted the use of computational RNA pattern matching as an enhancement to sequence similarity. State-of-the-art programs differ by the flexibility of patterns allowed as queries and by their simplicity of use. In particular—no existing method is available as a user-friendly web server. A general program that searches for RNA sequence-structure patterns is RNA Structator. However, it is not available as a web server and does not provide the option to allow flexible gap pattern representation with an upper bound of the gap length being specified at any position in the sequence. Here, we introduce RNAPattMatch, a web-based application that is user friendly and makes sequence/structure RNA queries accessible to practitioners of various background and proficiency. It also extends RNA Structator and allows a more flexible variable gaps representation, in addition to analysis of results using energy minimization methods. RNAPattMatch service is available at http://www.cs.bgu.ac.il/rnapattmatch. A standalone version of the search tool is also available to download at the site. PMID:25940619

  12. Biocellulose-based flexible magnetic paper

    NASA Astrophysics Data System (ADS)

    Barud, H. S.; Tercjak, A.; Gutierrez, J.; Viali, W. R.; Nunes, E. S.; Ribeiro, S. J. L.; Jafellici, M.; Nalin, M.; Marques, R. F. C.

    2015-05-01

    Biocellulose or bacterial cellulose (BC) is a biocompatible (nano) material produced with a three-dimensional network structure composed of microfibrils having nanometric diameters obtained by the Gluconacetobacter xylinus bacteria. BC membranes present relatively high porosity, allowing the incorporation or synthesis in situ of inorganic nanoparticles for multifunctional applications and have been used as flexible membranes for incorporation of magnetic nanocomposite. In this work, highly stable superparamagnetic iron oxide nanoparticles (SPION), functionalized with polyethylene glycol (PEG), with an average diameter of 5 nm and a saturation magnetization of 41 emu/g at 300 K were prepared. PEG-Fe2O3 hybrid was dispersed by mixing a pristine BC membrane in a stable aqueous dispersion of PEG-SPION. The PEG chains at PEG-SPION's surface provide a good permeability and strong affinity between the BC chains and SPION through hydrogen-bonding interactions. PEG-SPION also allow the incorporation of higher content of nanoparticles without compromising the mechanical properties of the nanocomposite. Structural and magnetic properties of the composite have been characterized by XRD, SEM, energy-dispersive X-ray spectroscopy (EDX), magnetization, Raman spectroscopy, and magnetic force microscopy.

  13. 40 CFR 1068.20 - May EPA enter my facilities for inspections?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., manufacturing processes, storage facilities (including port facilities for imported engines and equipment or... inspect if we learn that local law prohibits it, but we may suspend your certificate if we are not allowed...

  14. Stabilization of posture by precision touch of the index finger with rigid and flexible filaments

    NASA Technical Reports Server (NTRS)

    Lackner, J. R.; Rabin, E.; DiZio, P.

    2001-01-01

    Light touch of the index finger with a stationary surface at non-mechanically supportive force levels (<100 g) greatly attenuates the body sway of standing subjects. In three experiments, we evaluated the properties of finger contact and of the contacted object necessary to produce postural stabilization in subjects standing heel-to-toe with eyes closed, as well as how accurately hand position can be controlled. Experiment 1 involved finger contact with flexible filaments of different bending strengths, a flat surface, and an imagined spatial position. Contact with the flat surface was most effective in attenuating sway; the flexible filaments were much less effective but still significantly better than imagined contact. Experiment 2 compared the effectiveness of finger contact with a flexible filament, a rigid filament of the same diameter, a flat surface, and an imagined spatial position. The rigid filament and flat surface conditions were equally effective in attenuating body sway and were greatly superior to contact with the flexible filament, which was superior to imagined contact. Experiment 3 included five conditions: arms by sides; finger "contact" with an imagined spatial position; finger contact with a flat surface; finger contact with a flexible filament attempting to maintain it bent; and contact with the flexible filament attempting not to bend it. The arms by sides and finger "contact" with an imagined position conditions did not differ significantly; all three conditions involving actual finger contact showed significantly less center of pressure and hand sway, but contact with the flat surface was most effective in attenuating both postural and hand displacement. In all three experiments, the level of force applied in fingertip contact conditions was far below that necessary to provide mechanical stabilization. Our findings indicate that: (1) stimulation of a small number of receptors in the fingertip is adequate to allow stabilization of sway, (2

  15. EPM - The European Facility for human physiology research on ISS.

    PubMed

    Rieschel, Mats; Nasca, Rosario; Junk, Peter; Gerhard, Ingo

    2002-07-01

    The European Physiology Modules (EPM) Facility is one of the four major Space Station facilities being developed within the framework of ESA's Microgravity Facilities for Columbus (MFC) programme. In order to allow a wide spectrum of physiological studies in weightlessness conditions, the facility provides the infrastructure to accommodate a variable set of scientific equipment. The initial EPM configuration supports experiments in the fields of neuroscience, bone & muscle research, cardiovascular research and metabolism. The International Space Life Science Working Group (ISLSWG) has recommended co-locating EPM with the 2 NASA Human Research Facility racks.

  16. Window Observational Rack Facility (WORF)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Developed by Boeing, at the Marshall Space Flight Center (MSFC) Space Station Manufacturing building, the Window Observational Rack Facility (WORF) will help Space Station crews take some of the best photographs ever snapped from an orbiting spacecraft by eliminating glare and allowing researchers to control their cameras and other equipment from the ground. The WORF is designed to make the best possible use of the high-quality research window in the Space Station's U.S. Destiny laboratory module. Engineers at the MSFC proposed a derivative of the EXPRESS (Expedite the Processing of Experiments to the Space Station) Rack already used on the Space Station and were given the go-ahead. The EXPRESS rack can hold a wide variety of experiments and provide them with power, communications, data, cooling, fluids, and other utilities - all the things that Earth-observing experiment instruments would need. WORF will supply payloads with power, data, cooling, video downlink, and stable, standardized interfaces for mounting imaging instruments. Similar to specialized orbital observatories, the interior of the rack is sealed against light and coated with a special low-reflectant black paint, so payloads will be able to observe low-light-level subjects such as the faint glow of auroras. Cameras and remote sensing instruments in the WORF can be preprogrammed, controlled from the ground, or operated by a Station crewmember by using a flexible shroud designed to cinch tightly around the crewmember's waist. The WORF is scheduled to be launched aboard the STS-114 Space Shuttle mission in the year 2003.

  17. Flexible transparent conducting films with embedded silver networks composed of bimodal-sized nanoparticles for heater application.

    PubMed

    Park, Ji Sun; Song, Yookyung; Park, Daseul; Kim, Yeon-Won; Kim, Yoon Jin

    2018-06-22

    A facile one-pot synthetic method for preparing the Ag nanoparticle inks with a bimodal size distribution was newly devised and they were successfully employed as a conducting filler to form the metal-mesh type transparent conducting electrodes on the flexible substrate. Bimodal-sized Ag nanoparticles were synthesized through the polyol process, and their size variation was occurred via finely tuned composition ratio between Ag + ions and polymeric capping agents. The prepared bimodal-sized Ag nanoparticles exhibited the form of well-dispersed Ag nanoparticle inks without adding any dispersants and dispersion process. By filling the patterned micro-channels engraved on the flexible polymer substrate using a bimodal-sized Ag nanoparticle ink, a metal-mesh type transparent electrode (transmittance: 90% at 550 nm, haze: 1.5, area: 8 × 8 cm 2 ) was fabricated. By applying DC voltage to the mesh type electrode, a flexible transparent joule heater was successfully achieved with a performance of 4.5 °C s -1 heat-up rate at a low input power density.

  18. Flexible transparent conducting films with embedded silver networks composed of bimodal-sized nanoparticles for heater application

    NASA Astrophysics Data System (ADS)

    Park, Ji Sun; Song, Yookyung; Park, Daseul; Kim, Yeon-Won; Kim, Yoon Jin

    2018-06-01

    A facile one-pot synthetic method for preparing the Ag nanoparticle inks with a bimodal size distribution was newly devised and they were successfully employed as a conducting filler to form the metal-mesh type transparent conducting electrodes on the flexible substrate. Bimodal-sized Ag nanoparticles were synthesized through the polyol process, and their size variation was occurred via finely tuned composition ratio between Ag+ ions and polymeric capping agents. The prepared bimodal-sized Ag nanoparticles exhibited the form of well-dispersed Ag nanoparticle inks without adding any dispersants and dispersion process. By filling the patterned micro-channels engraved on the flexible polymer substrate using a bimodal-sized Ag nanoparticle ink, a metal-mesh type transparent electrode (transmittance: 90% at 550 nm, haze: 1.5, area: 8 × 8 cm2) was fabricated. By applying DC voltage to the mesh type electrode, a flexible transparent joule heater was successfully achieved with a performance of 4.5 °C s‑1 heat-up rate at a low input power density.

  19. Highly Stretchable and Conductive Superhydrophobic Coating for Flexible Electronics.

    PubMed

    Su, Xiaojing; Li, Hongqiang; Lai, Xuejun; Chen, Zhonghua; Zeng, Xingrong

    2018-03-28

    Superhydrophobic materials integrating stretchability with conductivity have huge potential in the emerging application horizons such as wearable electronic sensors, flexible power storage apparatus, and corrosion-resistant circuits. Herein, a facile spraying method is reported to fabricate a durable superhydrophobic coating with excellent stretchable and electrical performance by combing 1-octadecanethiol-modified silver nanoparticles (M-AgNPs) with polystyrene- b-poly(ethylene- co-butylene)- b-polystyrene (SEBS) on a prestretched natural rubber (NR) substrate. The embedding of M-AgNPs in elastic SEBS matrix and relaxation of prestretched NR substrate construct hierarchical rough architecture and endow the coating with dense charge-transport pathways. The fabricated coating exhibits superhydrophobicity with water contact angle larger than 160° and a high conductivity with resistance of about 10 Ω. The coating not only maintains superhydrophobicity at low/high stretch ratio for the newly generated small/large protuberances but also responds to stretching and bending with good sensitivity, broad sensing range, and stable response cycles. Moreover, the coating exhibits excellent durability to heat and strong acid/alkali and mechanical forces including droplet impact, kneading, torsion, and repetitive stretching-relaxation. The findings conceivably stand out as a new tool to fabricate multifunctional superhydrophobic materials with excellent stretchability and conductivity for flexible electronics under wet or corrosive environments.

  20. The Utilization and Design of Physical Facilities for the Rehabilitation of Mentally Retarded. Final Project Report.

    ERIC Educational Resources Information Center

    Bair, Howard V.; Leland, Henry

    To investigate the appropriate design and utilization of physical facilities being constructed as a rehabilitation center, a variety of centers was examined. Conclusions were that flexibility in construction of the physical plant, including nonpermanent walls and fixtures was necessary; program planning should be included in architectural…

  1. Design strategies for the International Space University's variable gravity research facility

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Chiaramonte, Francis P.; Davidian, Kenneth J.

    1990-01-01

    A variable gravity research facility named 'Newton' was designed by 58 students from 13 countries at the International Space University's 1989 summer session at the Universite Louis Pasteur, Strasbourge, France. The project was comprehensive in scope, including a political and legal foundation for international cooperation, development and financing; technical, science and engineering issues; architectural design; plausible schedules; and operations, crew issues and maintenance. Since log-term exposure to zero gravity is known to be harmful to the human body, the main goal was to design a unique variable gravity research facility which would find a practical solution to this problem, permitting a manned mission to Mars. The facility would not duplicate other space-based facilities and would provide the flexibility for examining a number of gravity levels, including lunar and Martian gravities. Major design alternatives included a truss versus a tether based system which also involved the question of docking while spinning or despinning to dock. These design issues are described. The relative advantages or disadvantages are discussed, including comments on the necessary research and technology development required for each.

  2. Flexible hemispheric microarrays of highly pressure-sensitive sensors based on breath figure method.

    PubMed

    Wang, Zhihui; Zhang, Ling; Liu, Jin; Jiang, Hao; Li, Chunzhong

    2018-05-30

    Recently, flexible pressure sensors featuring high sensitivity, broad sensing range and real-time detection have aroused great attention owing to their crucial role in the development of artificial intelligent devices and healthcare systems. Herein, highly sensitive pressure sensors based on hemisphere-microarray flexible substrates are fabricated via inversely templating honeycomb structures deriving from a facile and static breath figure process. The interlocked and subtle microstructures greatly improve the sensing characteristics and compressibility of the as-prepared pressure sensor, endowing it a sensitivity as high as 196 kPa-1 and a wide pressure sensing range (0-100 kPa), as well as other superior performance, including a lower detection limit of 0.5 Pa, fast response time (<26 ms) and high reversibility (>10 000 cycles). Based on the outstanding sensing performance, the potential capability of our pressure sensor in capturing physiological information and recognizing speech signals has been demonstrated, indicating promising application in wearable and intelligent electronics.

  3. Slew maneuvers on the SCOLE Laboratory Facility

    NASA Technical Reports Server (NTRS)

    Williams, Jeffrey P.

    1987-01-01

    The Spacecraft Control Laboratory Experiment (SCOLE) was conceived to provide a physical test bed for the investigation of control techniques for large flexible spacecraft. The control problems studied are slewing maneuvers and pointing operations. The slew is defined as a minimum time maneuver to bring the antenna line-of-sight (LOS) pointing to within an error limit of the pointing target. The second objective is to rotate about the LOS within the 0.02 degree error limit. The SCOLE problem is defined as two design challenges: control laws for a mathematical model of a large antenna attached to the Space Shuttle by a long flexible mast; and a control scheme on a laboratory representation of the structure modelled on the control laws. Control sensors and actuators are typical of those which the control designer would have to deal with on an actual spacecraft. Computational facilities consist of microcomputer based central processing units with appropriate analog interfaces for implementation of the primary control system, and the attitude estimation algorithm. Preliminary results of some slewing control experiments are given.

  4. Omnidirectional structured light in a flexible configuration.

    PubMed

    Paniagua, Carmen; Puig, Luis; Guerrero, José J

    2013-10-14

    Structured light is a perception method that allows us to obtain 3D information from images of the scene by projecting synthetic features with a light emitter. Traditionally, this method considers a rigid configuration, where the position and orientation of the light emitter with respect to the camera are known and calibrated beforehand. In this paper we propose a new omnidirectional structured light system in flexible configuration, which overcomes the rigidness of the traditional structured light systems. We propose the use of an omnidirectional camera combined with a conic pattern light emitter. Since the light emitter is visible in the omnidirectional image, the computation of its location is possible. With this information and the projected conic in the omnidirectional image, we are able to compute the conic reconstruction, i.e., the 3D information of the conic in the space. This reconstruction considers the recovery of the depth and orientation of the scene surface where the conic pattern is projected. One application of our proposed structured light system in flexible configuration consists of a wearable omnicamera with a low-cost laser in hand for visual impaired personal assistance.

  5. Silvabase: A flexible data file management system

    NASA Technical Reports Server (NTRS)

    Lambing, Steven J.; Reynolds, Sandra J.

    1991-01-01

    The need for a more flexible and efficient data file management system for mission planning in the Mission Operations Laboratory (EO) at MSFC has spawned the development of Silvabase. Silvabase is a new data file structure based on a B+ tree data structure. This data organization allows for efficient forward and backward sequential reads, random searches, and appends to existing data. It also provides random insertions and deletions with reasonable efficiency, utilization of storage space well but not at the expense of speed, and performance of these functions on a large volume of data. Mission planners required that some data be keyed and manipulated in ways not found in a commercial product. Mission planning software is currently being converted to use Silvabase in the Spacelab and Space Station Mission Planning Systems. Silvabase runs on a Digital Equipment Corporation's popular VAX/VMS computers in VAX Fortran. Silvabase has unique features involving time histories and intervals such as in operations research. Because of its flexibility and unique capabilities, Silvabase could be used in almost any government or commercial application that requires efficient reads, searches, and appends in medium to large amounts of almost any kind of data.

  6. Decentralized control experiments on NASA's flexible grid

    NASA Technical Reports Server (NTRS)

    Ozguner, U.; Yurkowich, S.; Martin, J., III; Al-Abbass, F.

    1986-01-01

    Methods arising from the area of decentralized control are emerging for analysis and control synthesis for large flexible structures. In this paper the control strategy involves a decentralized model reference adaptive approach using a variable structure control. Local models are formulated based on desired damping and response time in a model-following scheme for various modal configurations. Variable structure controllers are then designed employing co-located angular rate and position feedback. In this scheme local control forces the system to move on a local sliding mode in some local error space. An important feature of this approach is that the local subsystem is made insensitive to dynamical interactions with other subsystems once the sliding surface is reached. Experiments based on the above have been performed for NASA's flexible grid experimental apparatus. The grid is designed to admit appreciable low-frequency structural dynamics, and allows for implementation of distributed computing components, inertial sensors, and actuation devices. A finite-element analysis of the grid provides the model for control system design and simulation; results of several simulations are reported on here, and a discussion of application experiments on the apparatus is presented.

  7. Solvation Thermodynamics of Oligoglycine with Respect to Chain Length and Flexibility.

    PubMed

    Drake, Justin A; Harris, Robert C; Pettitt, B Montgomery

    2016-08-23

    Oligoglycine is a backbone mimic for all proteins and is prevalent in the sequences of intrinsically disordered proteins. We have computed the absolute chemical potential of glycine oligomers at infinite dilution by simulation with the CHARMM36 and Amber ff12SB force fields. We performed a thermodynamic decomposition of the solvation free energy (ΔG(sol)) of Gly2-5 into enthalpic (ΔH(sol)) and entropic (ΔS(sol)) components as well as their van der Waals and electrostatic contributions. Gly2-5 was either constrained to a rigid/extended conformation or allowed to be completely flexible during simulations to assess the effects of flexibility on these thermodynamic quantities. For both rigid and flexible oligoglycine models, the decrease in ΔG(sol) with chain length is enthalpically driven with only weak entropic compensation. However, the apparent rates of decrease of ΔG(sol), ΔH(sol), ΔS(sol), and their elec and vdw components differ for the rigid and flexible models. Thus, we find solvation entropy does not drive aggregation for this system and may not explain the collapse of long oligoglycines. Additionally, both force fields yield very similar thermodynamic scaling relationships with respect to chain length despite both force fields generating different conformational ensembles of various oligoglycine chains. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. Thrust generation by a heaving flexible foil: Resonance, nonlinearities, and optimality

    NASA Astrophysics Data System (ADS)

    Paraz, Florine; Schouveiler, Lionel; Eloy, Christophe

    2016-01-01

    Flexibility of marine animal fins has been thought to enhance swimming performance. However, despite numerous experimental and numerical studies on flapping flexible foils, there is still no clear understanding of the effect of flexibility and flapping amplitude on thrust generation and swimming efficiency. Here, to address this question, we combine experiments on a model system and a weakly nonlinear analysis. Experiments consist in immersing a flexible rectangular plate in a uniform flow and forcing this plate into a heaving motion at its leading edge. A complementary theoretical model is developed assuming a two-dimensional inviscid problem. In this model, nonlinear effects are taken into account by considering a transverse resistive drag. Under these hypotheses, a modal decomposition of the system motion allows us to predict the plate response amplitude and the generated thrust, as a function of the forcing amplitude and frequency. We show that this model can correctly predict the experimental data on plate kinematic response and thrust generation, as well as other data found in the literature. We also discuss the question of efficiency in the context of bio-inspired propulsion. Using the proposed model, we show that the optimal propeller for a given thrust and a given swimming speed is achieved when the actuating frequency is tuned to a resonance of the system, and when the optimal forcing amplitude scales as the square root of the required thrust.

  9. Flexible ureterorenoscopy: Tips and tricks.

    PubMed

    Somani, Bhaskar Kumar; Aboumarzouk, Omar; Srivastava, Aneesh; Traxer, Olivier

    2013-01-01

    With advancement in technology, improvement in endoscope and ancillary equipment, more complex procedures can be performed using flexible ureterorenoscopy. In this review article we provide a summary of flexible ureterorenoscopic procedures with "tips and tricks" for success for each type of procedure. It looks at the disposables used with flexible ureterorenoscopic procedures, set up and patient positioning for gaining access, insertion and handling of scope and the use of urethral access sheath. We also provide techniques for various flexible ureterorenoscopic procedures including management of renal stones, calyceal diverticula and upper tract urothelial tumours.

  10. Practices of Unregulated Tanning Facilities in Missouri: Implications for Statewide Legislation

    PubMed Central

    Biesbroeck, Lauren K.; Lickerman, Stephanie H.; Cornelius, Lynn A.; Jeffe, Donna B.

    2013-01-01

    BACKGROUND: The incidence of skin cancer has increased in the United States, concomitant with increased UV radiation (UVR) exposure among young adults. We examined whether tanning facilities in Missouri, a state without indoor-tanning regulations, acted in accordance with the Food and Drug Administration’s recommendations and consistently imparted information to potential clients about the known risks of UVR. METHODS: We conducted a statewide telephone survey of randomly selected tanning facilities in Missouri. Each tanning facility was surveyed twice, in the morning (7 am–3 pm) and evening (3–10 pm), on different days, to determine intrasalon consistency of information provided to potential clients at different times. RESULTS: On average, 65% of 243 tanning-facility operators would allow children as young as 10 or 12 years old to use indoor-tanning devices, 80% claimed that indoor tanning would prevent future sunburns, and 43% claimed that there were no risks associated with indoor tanning. Intrasalon inconsistencies involved allowable age of use, and UVR exposure type and duration. Morning tanning-facility employees were more likely to allow consumers to start with maximum exposure times and UV-A–emitting devices (P < .001), whereas evening employees were more likely to allow 10- or 12-year-old children to use indoor-tanning devices (P = .008). CONCLUSIONS: Despite increasing evidence that UVR exposure in indoor-tanning devices is associated with skin cancer, ocular damage, and premature photoaging, tanning facilities in Missouri often misinformed consumers regarding these risks and lack of health benefits and inconsistently provided information about the Food and Drug Administration’s guidelines for tanning devices. PMID:23439910

  11. Chemical sintering of direct-written silver nanowire flexible electrodes under room temperature.

    PubMed

    Hui, Zhuang; Liu, Yangai; Guo, Wei; Li, Lihang; Mu, Nan; Jin, Chao; Zhu, Ying; Peng, Peng

    2017-07-14

    Transparent and flexible electrodes on cost effective plastic substrates for wearable electronics have attract great attention recently. Due to the conductivity and flexibility in network form, metal nanowire is regarded as one of the most promising candidates for flexible electrode fabrication. Prior to application, low temperature joining of nanowire processes are required to reduce the resistance of electrodes and simultaneously maintain the dimensionality and uniformity of those nanowires. In the present work, we presented an innovative, robust and cost effective method to minimize the heat effect to plastic substrate and silver nanowires which allows silver nanowire electrodes been directly written on polycarbonate substrate and sintered by different electrolyte solutions at room temperature or near. It has been rigorously demonstrated that the resistance of silver nanowire electrodes has been reduced by 90% after chemical sintering at room temperature due to the joining of silver nanowires at junction areas. After ∼1000 bending cycles, the measured resistance of silver nanowire electrode was stable during both up-bending and down-bending states. The changes of silver nanowires after sintering were characterized using x-ray photoelectron spectroscopy and transmission electron microscopy and a sintering mechanism was proposed and validated. This direct-written silver nanowire electrode with good performance has broad applications in flexible electronics fabrication and packaging.

  12. Flexible Electronics Powered by Mixed Metal Oxide Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Marrs, Michael

    A low temperature amorphous oxide thin film transistor (TFT) and amorphous silicon PIN diode backplane technology for large area flexible digital x-ray detectors has been developed to create 7.9-in. diagonal backplanes. The critical steps in the evolution of the backplane process include the qualification and optimization of the low temperature (200 °C) metal oxide TFT and a-Si PIN photodiode process, the stability of the devices under forward and reverse bias stress, the transfer of the process to flexible plastic substrates, and the fabrication and assembly of the flexible detectors. Mixed oxide semiconductor TFTs on flexible plastic substrates suffer from performance and stability issues related to the maximum processing temperature limitation of the polymer. A novel device architecture based upon a dual active layer improves both the performance and stability. Devices are directly fabricated below 200 ºC on a polyethylene naphthalate (PEN) substrate using mixed metal oxides of either zinc indium oxide (ZIO) or indium gallium zinc oxide (IGZO) as the active semiconductor. The dual active layer architecture allows for adjustment to the saturation mobility and threshold voltage stability without the requirement of high temperature annealing, which is not compatible with flexible plastic substrates like PEN. The device performance and stability is strongly dependent upon the composition of the mixed metal oxide; this dependency provides a simple route to improving the threshold voltage stability and drive performance. By switching from a single to a dual active layer, the saturation mobility increases from 1.2 cm2/V-s to 18.0 cm2/V-s, while the rate of the threshold voltage shift decreases by an order of magnitude. This approach could assist in enabling the production of devices on flexible substrates using amorphous oxide semiconductors. Low temperature (200°C) processed amorphous silicon photodiodes were developed successfully by balancing the tradeoffs

  13. All-SPEEK flexible supercapacitor exploiting laser-induced graphenization

    NASA Astrophysics Data System (ADS)

    Lamberti, A.; Serrapede, M.; Ferraro, G.; Fontana, M.; Perrucci, F.; Bianco, S.; Chiolerio, A.; Bocchini, S.

    2017-09-01

    Flexible supercapacitors have emerged as one of the more promising and efficient space-saving energy storage system for portable and wearable electronics. Laser-induced graphenization has been recently proposed as a powerful and scalable method to directly convert a polymeric substrate into a 3D network of few layer graphene as high-performance supercapacitor electrode. Unfortunately this outstanding process has been reported to be feasible only for few thermoplastic polymers, strongly limiting its future developments. Here we show that laser induced graphenization of sulfonated poly(ether ether ketone) (SPEEK) can be obtained and the mechanism of this novel process is proposed. The resulting material can act at the same time as binder-free electrode and current collector. Moreover SPEEK is also used both as separator and polymeric electrolyte allowing the assembling of an all-SPEEK flexible supercapacitor. Chemico-physical characterization provides deep understanding of the laser-induced graphenization process, reported on this polymer for the first time, while the device performance studied by cyclic voltammetry, charging-discharging, and impedance spectroscopy prove the enormous potential of the proposed approach.

  14. Evolution of flexibility and rigidity in retaliatory punishment

    PubMed Central

    MacGlashan, James; Littman, Michael L.

    2017-01-01

    Natural selection designs some social behaviors to depend on flexible learning processes, whereas others are relatively rigid or reflexive. What determines the balance between these two approaches? We offer a detailed case study in the context of a two-player game with antisocial behavior and retaliatory punishment. We show that each player in this game—a “thief” and a “victim”—must balance two competing strategic interests. Flexibility is valuable because it allows adaptive differentiation in the face of diverse opponents. However, it is also risky because, in competitive games, it can produce systematically suboptimal behaviors. Using a combination of evolutionary analysis, reinforcement learning simulations, and behavioral experimentation, we show that the resolution to this tension—and the adaptation of social behavior in this game—hinges on the game’s learning dynamics. Our findings clarify punishment’s adaptive basis, offer a case study of the evolution of social preferences, and highlight an important connection between natural selection and learning in the resolution of social conflicts. PMID:28893996

  15. Flexible Carbon Dioxide Laser Fiber Versus Ultrasonic Scalpel in Robot-Assisted Laparoscopic Myomectomy.

    PubMed

    Choussein, Souzana; Srouji, Serene S; Farland, Leslie V; Gargiulo, Antonio R

    2015-01-01

    To compare the effectiveness and safety of a flexible carbon dioxide (CO2) laser fiber to the ultrasonic scalpel when employed through a robotic surgical system. Retrospective cohort study. Level II-2 evidence. Reproductive surgery practice at an academic hospital. Two hundred thirty-six women who had undergone robot-assisted laparoscopic myomectomy with either CO2 laser (n = 85) or the ultrasonic scalpel (n = 151). Robot-assisted laparoscopic myomectomy employing either a flexible CO2 laser fiber or a robotic ultrasonic scalpel as the primary energy tool. Perioperative outcomes (estimated blood loss, operative time, length of hospital stay) of patients undergoing robot-assisted myomectomy with a flexible laser fiber or ultrasonic scalpel. Estimated blood loss and operative time were comparable (p = .95 and p = .55, respectively) between the 2 groups after adjusting for all confounders, whereas length of hospital stay remained significantly different (p = .004). Odds ratio for complications was 0.35 (95% confidence interval 0.08-1.56; p = .17), which denotes no difference in the risk for complications between the 2 groups. Robot-assisted laparoscopic myomectomy with a flexible CO2 laser fiber is safe and has comparable operative outcomes to the ultrasonic scalpel. The small size and flexibility of this device allows robotic surgeons to employ safe focal energy without sacrificing operative ergonomics. Copyright © 2015 AAGL. Published by Elsevier Inc. All rights reserved.

  16. Satellite remote sensing facility for oceanograhic applications

    NASA Technical Reports Server (NTRS)

    Evans, R. H.; Kent, S. S.; Seidman, J. B.

    1980-01-01

    The project organization, design process, and construction of a Remote Sensing Facility at Scripps Institution of Oceanography at LaJolla, California are described. The facility is capable of receiving, processing, and displaying oceanographic data received from satellites. Data are primarily imaging data representing the multispectral ocean emissions and reflectances, and are accumulated during 8 to 10 minute satellite passes over the California coast. The most important feature of the facility is the reception and processing of satellite data in real time, allowing investigators to direct ships to areas of interest for on-site verifications and experiments.

  17. Self-Positioned Nanosized Mask for Transparent and Flexible Ferroelectric Polymer Nanodiodes Array.

    PubMed

    Hyun, Seung; Kwon, Owoong; Choi, Chungryong; Vincent Joseph, Kanniyambatti L; Kim, Yunseok; Kim, Jin Kon

    2016-10-12

    High density arrays of ferroelectric polymer nanodiodes have gained strong attention for next-generation transparent and flexible nonvolatile resistive memory. Here, we introduce a facile and innovative method to fabricate ferroelectric polymer nanodiode array on an ITO-coated poly(ethylene terephthalate) (PET) substrate by using block copolymer self-assembly and oxygen plasma etching. First, polystyrene-block-poly(2-vinylpyridine) copolymer (PS-b-P2VP) micelles were spin-coated on poly(vinylidene fluoride-ran-trifluoroethylene) copolymer (P(VDF-TrFE)) film/ITO-coated PET substrate. After the sample was immersed in a gold precursor (HAuCl 4 ) containing solution, which strongly coordinates with nitrogen group in P2VP, oxygen plasma etching was performed. During the plasma etching, coordinated gold precursors became gold nanoparticles (GNPs), which successfully acted as self-positioned etching mask to fabricate a high density array of P(VDF-TrFE)) nanoislands with GNP at the top. Each nanoisland shows clearly individual diode property, as confirmed by current-voltage (I-V) curve. Furthermore, due to the transparent and flexible nature of P(VDF-TrFE)) nanoisland as well as the substrate, the P(VDF-TrFE) nanodiode array was highly tranparent, and the diode property was maintained even after a large number of bendings (for instance, 1000 times). The array could be used as the next-generation tranparent and flexible nonvolatile memory device.

  18. Flexible Low-power SiGe HBT Amplifier Circuits for Fast Single-shot Spin Readout

    NASA Astrophysics Data System (ADS)

    England, Troy; Lilly, Michael; Curry, Matthew; Carr, Stephen; Carroll, Malcolm

    Fast, low-power quantum state readout is one of many challenges facing quantum information processing. Single electron transistors (SETs) are potentially fast, sensitive detectors for performing spin readout of electrons bound to Si:P donors. From a circuit perspective, however, their output impedance and nonlinear conductance are ill suited to drive the parasitic capacitance of coaxial conductors used in cryogenic environments, necessitating a cryogenic amplification stage. We will introduce two new amplifier topologies that provide excellent gain versus power tradeoffs using silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs). The AC HBT allows in-situ adjustment of power dissipation during an experiment and can provide gain in the millikelvin temperature regime while dissipating less than 500 nW. The AC Current Amplifier maximizes gain at nearly 800 A/A. We will also show results of using these amplifiers with SETs at 4 K. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000. Flexible Low-power SiGe HBT Amplifier Circuits for Fast Single-shot Spin Readout.

  19. Facile hydrothermal synthesis of carbon-coated cobalt ferrite spherical nanoparticles as a potential negative electrode for flexible supercapattery.

    PubMed

    Sankar, Kalimuthu Vijaya; Shanmugapriya, Sathyanarayanan; Surendran, Subramani; Jun, Seong Chan; Selvan, Ramakrishnan Kalai

    2018-03-01

    Battery type electrodes would replace the currently available pseudocapacitive electrodes by the cause of high energy density and long discharge time. In this regard, battery type carbon coated CoFe 2 O 4 spherical nanoparticles is prepared by the facile hydrothermal method and tested as the possible negative electrode for supercapattery applications. The phase purity, electronic states of elements, and the presence of carbon is inferred through various sophisticated techniques. The calculated surface area of CoFe 2 O 4 and carbon coated CoFe 2 O 4 are found to be 9 and 26 m 2  g -1 , respectively. The morphological analysis confirms the formation of uniform CoFe 2 O 4 nanospheres (∼25 nm) with a thin layer of carbon coating (∼2 nm). The amorphous carbon coating over CoFe 2 O 4 nanosphere is identified via high-resolution transmission electron microscope. The observed peak and plateau regions in the cyclic voltammogram and galvanostatic charge/discharge curves reveals the battery-type charge storage behaviour of the material. The carbon coated CoFe 2 O 4 delivers the maximum length capacitance of 9.9 F m -1 at 1 mV s -1 with a useful lifespan over 5000 cycles. The electrochemical impedance spectroscopy reveals that the carbon-coated CoFe 2 O 4 delivers the low charge transfer resistance than CoFe 2 O 4 . Further, the fabricated supercapattery provides the energy density of 160 × 10 -8  Wh cm -1 at a power density of 67.2 μW cm -1 . As well as, the device shows 93% of coulombic efficiency and 75% of the specific capacitance retention over 11,000 cycles. Overall, it is believed that the carbon-coated CoFe 2 O 4 can serve as a good candidate for flexible supercapatteries. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. 9 CFR 88.5 - Requirements at a slaughtering facility.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... COMMERCIAL TRANSPORTATION OF EQUINES FOR SLAUGHTER § 88.5 Requirements at a slaughtering facility. (a) Upon arrival at a slaughtering facility, the owner/shipper must: (1) Ensure that each equine has access to... representative; (3) Allow a USDA representative access to the equines for the purpose of examination; and (4...

  1. Aerospace test facilities at NASA LERC Plumbrook

    NASA Astrophysics Data System (ADS)

    1992-10-01

    An overview of the facilities and research being conducted at LeRC's Plumbrook field station is given. The video highlights four main structures and explains their uses. The Space Power Facility is the worlds largest space environment simulation chamber, where spacebound hardware is tested in simulations of the vacuum and extreme heat and cold of the space plasma environment. This facility was used to prepare Atlas 1 rockets to ferry CRRES into orbit; it will also be used to test space nuclear electric power generation systems. The Spacecraft Propulsion Research Facility allows rocket vehicles to be hot fired in a simulated space environment. In the Cryogenic Propellant Tank Facility, researchers are developing technology for storing and transferring liquid hydrogen in space. There is also a Hypersonic Wind Tunnel which can perform flow tests with winds up to Mach 7.

  2. Negative Feedback Enables Fast and Flexible Collective Decision-Making in Ants

    PubMed Central

    Grüter, Christoph; Schürch, Roger; Czaczkes, Tomer J.; Taylor, Keeley; Durance, Thomas; Jones, Sam M.; Ratnieks, Francis L. W.

    2012-01-01

    Positive feedback plays a major role in the emergence of many collective animal behaviours. In many ants pheromone trails recruit and direct nestmate foragers to food sources. The strong positive feedback caused by trail pheromones allows fast collective responses but can compromise flexibility. Previous laboratory experiments have shown that when the environment changes, colonies are often unable to reallocate their foragers to a more rewarding food source. Here we show both experimentally, using colonies of Lasius niger, and with an agent-based simulation model, that negative feedback caused by crowding at feeding sites allows ant colonies to maintain foraging flexibility even with strong recruitment to food sources. In a constant environment, negative feedback prevents the frequently found bias towards one feeder (symmetry breaking) and leads to equal distribution of foragers. In a changing environment, negative feedback allows a colony to quickly reallocate the majority of its foragers to a superior food patch that becomes available when foraging at an inferior patch is already well underway. The model confirms these experimental findings and shows that the ability of colonies to switch to a superior food source does not require the decay of trail pheromones. Our results help to resolve inconsistencies between collective foraging patterns seen in laboratory studies and observations in the wild, and show that the simultaneous action of negative and positive feedback is important for efficient foraging in mass-recruiting insect colonies. PMID:22984518

  3. Oxide Heteroepitaxy for Flexible Optoelectronics.

    PubMed

    Bitla, Yugandhar; Chen, Ching; Lee, Hsien-Chang; Do, Thi Hien; Ma, Chun-Hao; Qui, Le Van; Huang, Chun-Wei; Wu, Wen-Wei; Chang, Li; Chiu, Po-Wen; Chu, Ying-Hao

    2016-11-30

    The emerging technological demands for flexible and transparent electronic devices have compelled researchers to look beyond the current silicon-based electronics. However, fabrication of devices on conventional flexible substrates with superior performance are constrained by the trade-off between processing temperature and device performance. Here, we propose an alternative strategy to circumvent this issue via the heteroepitaxial growth of transparent conducting oxides (TCO) on the flexible mica substrate with performance comparable to that of their rigid counterparts. With the examples of ITO and AZO as a case study, a strong emphasis is laid upon the growth of flexible yet epitaxial TCO relying muscovite's superior properties compared to those of conventional flexible substrates and its compatibility with the present fabrication methods. Besides excellent optoelectro-mechanical properties, an additional functionality of high-temperature stability, normally lacking in the current state-of-the-art transparent flexitronics, is provided by these heterostructures. These epitaxial TCO electrodes with good chemical and thermal stabilities as well as mechanical durability can significantly contribute to the field of flexible, light-weight, and portable smart electronics.

  4. Non-equilibrium fluctuations of a semi-flexible filament driven by active cross-linkers

    NASA Astrophysics Data System (ADS)

    Weber, I.; Appert-Rolland, C.; Schehr, G.; Santen, L.

    2017-11-01

    The cytoskeleton is an inhomogeneous network of semi-flexible filaments, which are involved in a wide variety of active biological processes. Although the cytoskeletal filaments can be very stiff and embedded in a dense and cross-linked network, it has been shown that, in cells, they typically exhibit significant bending on all length scales. In this work we propose a model of a semi-flexible filament deformed by different types of cross-linkers for which one can compute and investigate the bending spectrum. Our model allows to couple the evolution of the deformation of the semi-flexible polymer with the stochastic dynamics of linkers which exert transversal forces onto the filament. We observe a q-2 dependence of the bending spectrum for some biologically relevant parameters and in a certain range of wave numbers q, as observed in some experiments. However, generically, the spatially localized forcing and the non-thermal dynamics both introduce deviations from the thermal-like q-2 spectrum.

  5. Flexible active-matrix displays and shift registers based on solution-processed organic transistors.

    PubMed

    Gelinck, Gerwin H; Huitema, H Edzer A; van Veenendaal, Erik; Cantatore, Eugenio; Schrijnemakers, Laurens; van der Putten, Jan B P H; Geuns, Tom C T; Beenhakkers, Monique; Giesbers, Jacobus B; Huisman, Bart-Hendrik; Meijer, Eduard J; Benito, Estrella Mena; Touwslager, Fred J; Marsman, Albert W; van Rens, Bas J E; de Leeuw, Dago M

    2004-02-01

    At present, flexible displays are an important focus of research. Further development of large, flexible displays requires a cost-effective manufacturing process for the active-matrix backplane, which contains one transistor per pixel. One way to further reduce costs is to integrate (part of) the display drive circuitry, such as row shift registers, directly on the display substrate. Here, we demonstrate flexible active-matrix monochrome electrophoretic displays based on solution-processed organic transistors on 25-microm-thick polyimide substrates. The displays can be bent to a radius of 1 cm without significant loss in performance. Using the same process flow we prepared row shift registers. With 1,888 transistors, these are the largest organic integrated circuits reported to date. More importantly, the operating frequency of 5 kHz is sufficiently high to allow integration with the display operating at video speed. This work therefore represents a major step towards 'system-on-plastic'.

  6. A flexible ligand-based wavy layered metal-organic framework for lithium-ion storage.

    PubMed

    An, Tiance; Wang, Yuhang; Tang, Jing; Wang, Yang; Zhang, Lijuan; Zheng, Gengfeng

    2015-05-01

    A substantial challenge for direct utilization of metal-organic frameworks (MOFs) as lithium-ion battery anodes is to maintain the rigid MOF structure during lithiation/delithiation cycles. In this work, we developed a flexible, wavy layered nickel-based MOF (C20H24Cl2N8Ni, designated as Ni-Me4bpz) by a solvothermal approach of 3,3',5,5'-tetramethyl-4,4'-bipyrazole (H2Me4bpz) with nickel(II) chloride hexahydrate. The obtained MOF materials (Ni-Me4bpz) with metal azolate coordination mode provide 2-dimensional layered structure for Li(+) intercalation/extraction, and the H2Me4bpz ligands allow for flexible rotation feature and structural stability. Lithium-ion battery anodes made of the Ni-Me4bpz material demonstrate excellent specific capacity and cycling performance, and the crystal structure is well preserved after the electrochemical tests, suggesting the potential of developing flexible layered MOFs for efficient and stable electrochemical storage. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Immediate prosthesis over implants retained using abutments with flexible screws: A preliminary study.

    PubMed

    Peñarrocha-Oltra, David; Serra-Pastor, Blanca; Balaguer-Martí, José-Carlos; Peñarrocha-Diago, Miguel; Agustín-Panadero, Rubén

    2017-12-01

    Immediate loading protocols for the rehabilitation of edentulous or partially edentulous patients have become very popular, due to the conveniences they afford in comparison with conventional loading techniques. A preliminary study was carried out with 8 patients subjected to dental implant treatment with an immediate loading protocol involving a novel system of abutments with flexible screws. Implant survival was analyzed, together with marginal bone loss and patient and dentist satisfaction. A total of 35 implants were subjected to immediate loading using the abutments with flexible screws. The mean patient and dentist satisfaction score was 9.1 and 8.5, respectively. After 12 months the dental implant survival rate was 95.8%, with a mean marginal bone loss of 0.51 ± 0.12 mm. The novel system of abutments with flexible screws offers a good alternative to conventional immediate loading, since it allows rapid and simple manufacture of a reliable passive fit, fixed interim prosthesis after surgery. Key words: Dental implants, Flexafit®, Immediate loading, Immediate prosthesis.

  8. Wageningen UR Unmanned Aerial Remote Sensing Facility - Overview of activities

    NASA Astrophysics Data System (ADS)

    Bartholomeus, Harm; Keesstra, Saskia; Kooistra, Lammert; Suomalainen, Juha; Mucher, Sander; Kramer, Henk; Franke, Jappe

    2016-04-01

    To support environmental management there is an increasing need for timely, accurate and detailed information on our land. Unmanned Aerial Systems (UAS) are increasingly used to monitor agricultural crop development, habitat quality or urban heat efficiency. An important reason is that UAS technology is maturing quickly while the flexible capabilities of UAS fill a gap between satellite based and ground based geo-sensing systems. In 2012, different groups within Wageningen University and Research Centre have established an Unmanned Airborne Remote Sensing Facility. The objective of this facility is threefold: a) To develop innovation in the field of remote sensing science by providing a platform for dedicated and high-quality experiments; b) To support high quality UAS services by providing calibration facilities and disseminating processing procedures to the UAS user community; and c) To promote and test the use of UAS in a broad range of application fields like habitat monitoring, precision agriculture and land degradation assessment. The facility is hosted by the Laboratory of Geo-Information Science and Remote Sensing (GRS) and the Department of Soil Physics and Land Management (SLM) of Wageningen University together with the team Earth Informatics (EI) of Alterra. The added value of the Unmanned Aerial Remote Sensing Facility is that compared to for example satellite based remote sensing more dedicated science experiments can be prepared. This includes for example higher frequent observations in time (e.g., diurnal observations), observations of an object under different observation angles for characterization of BRDF and flexibility in use of camera's and sensors types. In this way, laboratory type of set ups can be tested in a field situation and effects of up-scaling can be tested. In the last years we developed and implemented different camera systems (e.g. a hyperspectral pushbroom system, and multispectral frame cameras) which we operated in projects all

  9. Young children show representational flexibility when interpreting drawings.

    PubMed

    Allen, Melissa L; Nurmsoo, Erika; Freeman, Norman

    2016-02-01

    Drawings can be ambiguous and represent more than one entity. In three experiments, we examine whether young children show representational flexibility by allowing one picture to be called by a second name. We also evaluate the hypothesis that children who are representationally flexible see the artist's intention as binding, rather than changeable. In Experiment 1, an artist declared what she intended to draw (e.g. a balloon) but then produced an ambiguous drawing. Children were asked whether the drawings could be interpreted differently (e.g. 'could this be a lollipop?') in the presence of a perceptually similar or dissimilar distractor (e.g., lollipop or snake). Six-year-olds accepted two labels for drawings in both conditions, but four-year-olds only did so in the dissimilar condition. Experiment 2 probed each possible interpretation more deeply by asking property questions (e.g., 'does it float?, does it taste good?'). Preschoolers who understood that the ambiguous drawing could be given two interpretations nevertheless mostly endorsed only properties associated with the prior intent. Experiment 3 provided converging evidence that 4-year-olds were representationally flexible using a paradigm that did not rely upon modal questioning. Taken together, our results indicate that even 4-year-olds understand that pictures may denote more than one referent, they still think of the symbol as consistent with the artist's original intention. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. 42 CFR 61.9 - Payments: Stipends; dependency allowances; travel allowances.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Payments: Stipends; dependency allowances; travel... FELLOWSHIPS, INTERNSHIPS, TRAINING FELLOWSHIPS Regular Fellowships § 61.9 Payments: Stipends; dependency allowances; travel allowances. Payments for stipends, dependency allowances, and the travel allowances...

  11. 42 CFR 61.9 - Payments: Stipends; dependency allowances; travel allowances.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Payments: Stipends; dependency allowances; travel... FELLOWSHIPS, INTERNSHIPS, TRAINING FELLOWSHIPS Regular Fellowships § 61.9 Payments: Stipends; dependency allowances; travel allowances. Payments for stipends, dependency allowances, and the travel allowances...

  12. 42 CFR 61.9 - Payments: Stipends; dependency allowances; travel allowances.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Payments: Stipends; dependency allowances; travel... FELLOWSHIPS, INTERNSHIPS, TRAINING FELLOWSHIPS Regular Fellowships § 61.9 Payments: Stipends; dependency allowances; travel allowances. Payments for stipends, dependency allowances, and the travel allowances...

  13. 42 CFR 61.9 - Payments: Stipends; dependency allowances; travel allowances.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Payments: Stipends; dependency allowances; travel... FELLOWSHIPS, INTERNSHIPS, TRAINING FELLOWSHIPS Regular Fellowships § 61.9 Payments: Stipends; dependency allowances; travel allowances. Payments for stipends, dependency allowances, and the travel allowances...

  14. 42 CFR 61.9 - Payments: Stipends; dependency allowances; travel allowances.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Payments: Stipends; dependency allowances; travel... FELLOWSHIPS, INTERNSHIPS, TRAINING FELLOWSHIPS Regular Fellowships § 61.9 Payments: Stipends; dependency allowances; travel allowances. Payments for stipends, dependency allowances, and the travel allowances...

  15. All-inkjet-printed flexible ZnO micro photodetector for a wearable UV monitoring device.

    PubMed

    Tran, Van-Thai; Wei, Yuefan; Yang, Hongyi; Zhan, Zhaoyao; Du, Hejun

    2017-03-03

    Fabrication of small-sized patterns of inorganic semiconductor onto flexible substrates is a major concern when manufacturing wearable devices for measuring either biometric or environmental parameters. In this study, micro-sized flexible ZnO UV photodetectors have been thoroughly prepared by a facile inkjet printing technology and followed with heat treatments. A simple ink recipe of zinc acetate precursor solution was investigated. It is found that the substrate temperature during zinc precursor ink depositing has significant effects on ZnO pattern shape, film morphology, and crystallization. The device fabricated from the additive manufacturing approach has good bendability, Ohmic contact, short response time as low as 0.3 s, and high on/off ratio of 3525. We observed the sensor's dependence of response/decay time by the illuminating UV light intensity. The whole process is based on additive manufacturing which has many benefits such as rapid prototyping, saving material, being environmentally friendly, and being capable of creating high-resolution patterns. In addition, this method can be applied to flexible substrates, which makes the device more applicable for applications requiring flexibility such as wearable devices. The proposed all-inkjet-printing approach for a micro-sized ZnO UV photodetector would significantly simplify the fabrication process of micro-sized inorganic semiconductor-based devices. A potential application is real-time monitoring of UV light exposure to warn users about unsafe direct sunlight to implement suitable avoidance solutions.

  16. All-inkjet-printed flexible ZnO micro photodetector for a wearable UV monitoring device

    NASA Astrophysics Data System (ADS)

    Tran, Van-Thai; Wei, Yuefan; Yang, Hongyi; Zhan, Zhaoyao; Du, Hejun

    2017-03-01

    Fabrication of small-sized patterns of inorganic semiconductor onto flexible substrates is a major concern when manufacturing wearable devices for measuring either biometric or environmental parameters. In this study, micro-sized flexible ZnO UV photodetectors have been thoroughly prepared by a facile inkjet printing technology and followed with heat treatments. A simple ink recipe of zinc acetate precursor solution was investigated. It is found that the substrate temperature during zinc precursor ink depositing has significant effects on ZnO pattern shape, film morphology, and crystallization. The device fabricated from the additive manufacturing approach has good bendability, Ohmic contact, short response time as low as 0.3 s, and high on/off ratio of 3525. We observed the sensor’s dependence of response/decay time by the illuminating UV light intensity. The whole process is based on additive manufacturing which has many benefits such as rapid prototyping, saving material, being environmentally friendly, and being capable of creating high-resolution patterns. In addition, this method can be applied to flexible substrates, which makes the device more applicable for applications requiring flexibility such as wearable devices. The proposed all-inkjet-printing approach for a micro-sized ZnO UV photodetector would significantly simplify the fabrication process of micro-sized inorganic semiconductor-based devices. A potential application is real-time monitoring of UV light exposure to warn users about unsafe direct sunlight to implement suitable avoidance solutions.

  17. Carbon Nanotube Based Flexible Supercapacitors

    DTIC Science & Technology

    2011-04-01

    Carbon Nanotube Based Flexible Supercapacitors by Christopher M. Anton and Matthew H. Ervin ARL-TR-5522 April 2011...Carbon Nanotube Based Flexible Supercapacitors Christopher M. Anton and Matthew H. Ervin Sensors and Electron Devices Directorate, ARL...September 2010 4. TITLE AND SUBTITLE Carbon Nanotube Based Flexible Supercapacitors 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  18. Flexible Ultra Moisture Barrier Film for Thin-Film Photovoltaic Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David M. Dean

    2012-10-30

    Flexible Thin-film photovoltaic (TFPV) is a low cost alternative to incumbent c-Si PV products as it requires less volume of costly semiconductor materials and it can potentially reduce installation cost. Among the TFPV options, copper indium gallium diselenide (CIGS) has the highest efficiency and is believed to be one of the most attractive candidates to achieve PV cost reduction. However, CIGS cells are very moisture sensitive and require module water vapor transmission rate (WVTR) of less than 1x10-4 gram of water per square meter per day (g-H2O/m2/day). Successful development and commercialization of flexible transparent ultra moisture barrier film is themore » key to enable flexible CIGS TFPV products, and thus enable ultimate PV cost reduction. At DuPont, we have demonstrated at lab scale that we can successfully make polymer-based flexible transparent ultra moisture barrier film by depositing alumina on polymer films using atomic layer deposition (ALD) technology. The layer by layer ALD approach results in uniform and amorphous structure which effectively reduces pinhole density of the inorganic coating on the polymer, and thus allow the fabrication of flexible barrier film with WVTR of 10-5 g-H2O/m2/day. Currently ALD is a time-consuming process suitable only for high-value, relatively small substrates. To successfully commercialize the ALD-on-plastic technology for the PV industry, there is the need to scale up this technology and improve throughput. The goal of this contract work was to build a prototype demonstrating that the ALD technology could be scaled-up for commercial use. Unfortunately, the prototype failed to produce an ultra-barrier film by the close of the project.« less

  19. Network flexibility of the IRIDIUM (R) Global Mobile Satellite System

    NASA Technical Reports Server (NTRS)

    Hutcheson, Jonathan; Laurin, Mala

    1995-01-01

    The IRIDIUM system is a global personal communications system supported by a constellation of 66 low earth orbit (LEO) satellites and a collection of earth-based 'gateway' switching installations. Like traditional wireless cellular systems, coverage is achieved by a grid of cells in which bandwidth is reused for spectral efficiency. Unlike any cellular system ever built, the moving cells can be shared by multiple switching facilities. Noteworthy features of the IRIDIUM system include inter-satellite links, a GSM-based telephony architecture, and a geographically controlled system access process. These features, working in concert, permit flexible and reliable administration of the worldwide service area by gateway operators. This paper will explore this unique concept.

  20. Development of the Coping Flexibility Scale: Evidence for the Coping Flexibility Hypothesis

    ERIC Educational Resources Information Center

    Kato, Tsukasa

    2012-01-01

    "Coping flexibility" was defined as the ability to discontinue an ineffective coping strategy (i.e., evaluation coping) and produce and implement an alternative coping strategy (i.e., adaptive coping). The Coping Flexibility Scale (CFS) was developed on the basis of this definition. Five studies involving approximately 4,400 Japanese…

  1. Integrated Flight/Structural Mode Control for Very Flexible Aircraft Using L1 Adaptive Output Feedback Controller

    NASA Technical Reports Server (NTRS)

    Che, Jiaxing; Cao, Chengyu; Gregory, Irene M.

    2012-01-01

    This paper explores application of adaptive control architecture to a light, high-aspect ratio, flexible aircraft configuration that exhibits strong rigid body/flexible mode coupling. Specifically, an L(sub 1) adaptive output feedback controller is developed for a semi-span wind tunnel model capable of motion. The wind tunnel mount allows the semi-span model to translate vertically and pitch at the wing root, resulting in better simulation of an aircraft s rigid body motion. The control objective is to design a pitch control with altitude hold while suppressing body freedom flutter. The controller is an output feedback nominal controller (LQG) augmented by an L(sub 1) adaptive loop. A modification to the L(sub 1) output feedback is proposed to make it more suitable for flexible structures. The new control law relaxes the required bounds on the unmatched uncertainty and allows dependence on the state as well as time, i.e. a more general unmatched nonlinearity. The paper presents controller development and simulated performance responses. Simulation is conducted by using full state flexible wing models derived from test data at 10 different dynamic pressure conditions. An L(sub 1) adaptive output feedback controller is designed for a single test point and is then applied to all the test cases. The simulation results show that the L(sub 1) augmented controller can stabilize and meet the performance requirements for all 10 test conditions ranging from 30 psf to 130 psf dynamic pressure.

  2. Vertically building Zn2SnO4 nanowire arrays on stainless steel mesh toward fabrication of large-area, flexible dye-sensitized solar cells.

    PubMed

    Li, Zhengdao; Zhou, Yong; Bao, Chunxiong; Xue, Guogang; Zhang, Jiyuan; Liu, Jianguo; Yu, Tao; Zou, Zhigang

    2012-06-07

    Zn(2)SnO(4) nanowire arrays were for the first time grown onto a stainless steel mesh (SSM) in a binary ethylenediamine (En)/water solvent system using a solvothermal route. The morphology evolution following this reaction was carefully followed to understand the formation mechanism. The SSM-supported Zn(2)SnO(4) nanowire was utilized as a photoanode for fabrication of large-area (10 cm × 5 cm size as a typical sample), flexible dye-sensitized solar cells (DSSCs). The synthesized Zn(2)SnO(4) nanowires exhibit great bendability and flexibility, proving potential advantage over other metal oxide nanowires such as TiO(2), ZnO, and SnO(2) for application in flexible solar cells. Relative to the analogous Zn(2)SnO(4) nanoparticle-based flexible DSSCs, the nanowire geometry proves to enhance solar energy conversion efficiency through enhancement of electron transport. The bendable nature of the DSSCs without obvious degradation of efficiency and facile scale up gives the as-made flexible solar cell device potential for practical application.

  3. NASA Workshop on Distributed Parameter Modeling and Control of Flexible Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Marks, Virginia B. (Compiler); Keckler, Claude R. (Compiler)

    1994-01-01

    Although significant advances have been made in modeling and controlling flexible systems, there remains a need for improvements in model accuracy and in control performance. The finite element models of flexible systems are unduly complex and are almost intractable to optimum parameter estimation for refinement using experimental data. Distributed parameter or continuum modeling offers some advantages and some challenges in both modeling and control. Continuum models often result in a significantly reduced number of model parameters, thereby enabling optimum parameter estimation. The dynamic equations of motion of continuum models provide the advantage of allowing the embedding of the control system dynamics, thus forming a complete set of system dynamics. There is also increased insight provided by the continuum model approach.

  4. Flexible ureterorenoscopy: Tips and tricks

    PubMed Central

    Somani, Bhaskar Kumar; Aboumarzouk, Omar; Srivastava, Aneesh; Traxer, Olivier

    2013-01-01

    With advancement in technology, improvement in endoscope and ancillary equipment, more complex procedures can be performed using flexible ureterorenoscopy. In this review article we provide a summary of flexible ureterorenoscopic procedures with “tips and tricks” for success for each type of procedure. It looks at the disposables used with flexible ureterorenoscopic procedures, set up and patient positioning for gaining access, insertion and handling of scope and the use of urethral access sheath. We also provide techniques for various flexible ureterorenoscopic procedures including management of renal stones, calyceal diverticula and upper tract urothelial tumours. PMID:23662000

  5. Bioinspired nanoparticle spray-coating for superhydrophobic flexible materials with oil/water separation capabilities.

    PubMed

    Geraldi, Nicasio R; Dodd, Linzi E; Xu, Ben B; Wood, David; Wells, Gary G; McHale, Glen; Newton, Michael I

    2018-02-02

    Much of the inspiration for the creation of superhydrophobic surfaces has come from nature, from plants such as the sacred lotus (Nelumbo nucifera), where the micro-scale papillae epidermal cells on the surfaces of the leaves are covered with nano-scale epicuticular wax crystalloids. The combination of the surface roughness and the hydrophobic wax coating produces a superhydrophobic wetting state on the leaves, allowing them to self-clean and easily shed water. Here, a simple scaled-up carbon nanoparticle spray coating is presented that mimics the surface of sacred lotus leaves and can be applied to a wide variety of materials, complex structures, and flexible substrates, rendering them superhydrophobic, with contact angles above 160°. The sprayable mixture is produced by combining toluene, polydimethylsiloxane, and inherently hydrophobic rapeseed soot. The ability to spray the superhydrophobic coating allows for the hydrophobisation of complex structures such as metallic meshes, which allows for the production of flexible porous superhydrophobic materials that, when formed into U-shaped channels, can be used to direct flows. The porous meshes, whilst being superhydrophobic, are also oleophilic. Being both superhydrophobic and oleophilic allows oil to pass through the mesh, whilst water remains on the surface. The meshes were tested for their ability to separate mixtures of oil and water in flow conditions. When silicone oil/water mixtures were passed over the meshes, all meshes tested were capable of separating more than 93% of the oil from the mixture.

  6. Flexible Circuits

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Adflex Solutions, Inc.'s flexible circuits may be molded to the shape of a chassis for bulk reduction. Particularly valuable when circuitry must be moved. They are produced by combining a plastic film, a metallic conductor and an adhesive. One adhesive, LARC-TPI, developed by the Langley Research Center, is a thermoplastic polyimide resin used to produce laminates by Rogers Corporation. It can be processed at a lower temperature, has good moisture resistance and excellent adherence. It is used to bond film to copper foil conductor materials in flexible circuits. The circuits have both aerospace and commercial applications.

  7. A Flexible Pre-Major Model for British Columbia Departments of Anthropology. Final Report

    ERIC Educational Resources Information Center

    Hinbest, Jerry

    2007-01-01

    The Sociology/Anthropology Articulation Committee has engaged in a project resulting in tandem reports for each of the respective disciplines, which identify flexible pre-majors for both Sociology and Anthropology and summarize the specific types of courses that must be taken by students to allow them to transfer into third year of a major. A…

  8. Transferable and flexible label-like macromolecular memory on arbitrary substrates with high performance and a facile methodology.

    PubMed

    Lai, Ying-Chih; Hsu, Fang-Chi; Chen, Jian-Yu; He, Jr-Hau; Chang, Ting-Chang; Hsieh, Ya-Ping; Lin, Tai-Yuan; Yang, Ying-Jay; Chen, Yang-Fang

    2013-05-21

    A newly designed transferable and flexible label-like organic memory based on a graphene electrode behaves like a sticker, and can be readily placed on desired substrates or devices for diversified purposes. The memory label reveals excellent performance despite its physical presentation. This may greatly extend the memory applications in various advanced electronics and provide a simple scheme to integrate with other electronics. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Identifying Functional Requirements for Flexible Airspace Management Concept Using Human-In-The-Loop Simulations

    NASA Technical Reports Server (NTRS)

    Lee, Paul U.; Bender, Kim; Pagan, Danielle

    2011-01-01

    Flexible Airspace Management (FAM) is a mid- term Next Generation Air Transportation System (NextGen) concept that allows dynamic changes to airspace configurations to meet the changes in the traffic demand. A series of human-in-the-loop (HITL) studies have identified procedures and decision support requirements needed to implement FAM. This paper outlines a suggested FAM procedure and associated decision support functionality based on these HITL studies. A description of both the tools used to support the HITLs and the planned NextGen technologies available in the mid-term are presented and compared. The mid-term implementation of several NextGen capabilities, specifically, upgrades to the Traffic Management Unit (TMU), the initial release of an en route automation system, the deployment of a digital data communication system, a more flexible voice communications network, and the introduction of a tool envisioned to manage and coordinate networked ground systems can support the implementation of the FAM concept. Because of the variability in the overall deployment schedule of the mid-term NextGen capabilities, the dependency of the individual NextGen capabilities are examined to determine their impact on a mid-term implementation of FAM. A cursory review of the different technologies suggests that new functionality slated for the new en route automation system is a critical enabling technology for FAM, as well as the functionality to manage and coordinate networked ground systems. Upgrades to the TMU are less critical but important nonetheless for FAM to be fully realized. Flexible voice communications network and digital data communication system could allow more flexible FAM operations but they are not as essential.

  10. Adding flexibility to the search for robust portfolios in non-linear water resource planning

    NASA Astrophysics Data System (ADS)

    Tomlinson, James; Harou, Julien

    2017-04-01

    To date robust optimisation of water supply systems has sought to find portfolios or strategies that are robust to a range of uncertainties or scenarios. The search for a single portfolio that is robust in all scenarios is necessarily suboptimal compared to portfolios optimised for a single scenario deterministic future. By contrast establishing a separate portfolio for each future scenario is unhelpful to the planner who must make a single decision today under deep uncertainty. In this work we show that a middle ground is possible by allowing a small number of different portfolios to be found that are each robust to a different subset of the global scenarios. We use evolutionary algorithms and a simple water resource system model to demonstrate this approach. The primary contribution is to demonstrate that flexibility can be added to the search for portfolios, in complex non-linear systems, at the expense of complete robustness across all future scenarios. In this context we define flexibility as the ability to design a portfolio in which some decisions are delayed, but those decisions that are not delayed are themselves shown to be robust to the future. We recognise that some decisions in our portfolio are more important than others. An adaptive portfolio is found by allowing no flexibility for these near-term "important" decisions, but maintaining flexibility in the remaining longer term decisions. In this sense we create an effective 2-stage decision process for a non-linear water resource supply system. We show how this reduces a measure of regret versus the inflexible robust solution for the same system.

  11. Flexible Blades for Wind Turbines

    NASA Astrophysics Data System (ADS)

    Collins, Madeline Carlisle; Macphee, David; Harris, Caleb

    2016-11-01

    Previous research has shown that windmills with flexible blades are more efficient than those with rigid blades. Flexibility offers passive pitch control, preferable to active pitch control which is costly and requires maintenance. Flexible blades morph such that the blade more closely resembles its design point at part load and over load. The lift-to-drag ratios on individual blades was investigated. A mold was designed and machined from an acrylic slab for the casting of blades with a NACA 0012 cross section. A flexible blade was cast from silicone and a rigid blade was cast from polyurethane. Each of these blades was tested in a wind tunnel, cantilever mounted, spanning the whole test section. The angle of attack was varied by rotating the mount. All tests were performed at the same wind speed. A load cell within the mount measured forces on the blade, from which the lift and drag forces were calculated. The stall point for the flexible blade occurred later than for the rigid blade, which agrees with previous research. Lift-to-drag ratios were larger for the flexible blade at all angles of attack tested. Flexible blades seem to be a viable option for passive pitch control. Future research will include different airfoil cross sections, wind speeds, and blade materials. Funding from NSF REU site Grant EEC 1358991 is greatly appreciated.

  12. Behavioral flexibility as a mechanism for coping with climate change

    USGS Publications Warehouse

    Beever, Erik; Hall, L. Embere; Varner, Johanna; Loosen, Anne E.; Dunham, Jason B.; Gahl, Megan K.; Smith, Felisa A.; Lawler, Joshua J.

    2017-01-01

    Of the primary responses to contemporary climate change – “move, adapt, acclimate, or die” – that are available to organisms, “acclimate” may be effectively achieved through behavioral modification. Behavioral flexibility allows animals to rapidly cope with changing environmental conditions, and behavior represents an important component of a species’ adaptive capacity in the face of climate change. However, there is currently a lack of knowledge about the limits or constraints on behavioral responses to changing conditions. Here, we characterize the contexts in which organisms respond to climate variability through behavior. First, we quantify patterns in behavioral responses across taxa with respect to timescales, climatic stimuli, life-history traits, and ecology. Next, we identify existing knowledge gaps, research biases, and other challenges. Finally, we discuss how conservation practitioners and resource managers can incorporate an improved understanding of behavioral flexibility into natural resource management and policy decisions.

  13. Transport Reactor Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, D.A.; Shoemaker, S.A.

    1996-12-31

    The Morgantown Energy Technology Center (METC) is currently evaluating hot gas desulfurization (HGD)in its on-site transport reactor facility (TRF). This facility was originally constructed in the early 1980s to explore advanced gasification processes with an entrained reactor, and has recently been modified to incorporate a transport riser reactor. The TRF supports Integrated Gasification Combined Cycle (IGCC) power systems, one of METC`s advanced power generation systems. The HGD subsystem is a key developmental item in reducing the cost and increasing the efficiency of the IGCC concept. The TRF is a unique facility with high-temperature, high-pressure, and multiple reactant gas composition capability.more » The TRF can be configured for reacting a single flow pass of gas and solids using a variety of gases. The gas input system allows six different gas inputs to be mixed and heated before entering the reaction zones. Current configurations allow the use of air, carbon dioxide, carbon monoxide, hydrogen, hydrogen sulfide, methane, nitrogen, oxygen, steam, or any mixture of these gases. Construction plans include the addition of a coal gas input line. This line will bring hot coal gas from the existing Fluidized-Bed Gasifier (FBG) via the Modular Gas Cleanup Rig (MGCR) after filtering out particulates with ceramic candle filters. Solids can be fed either by a rotary pocket feeder or a screw feeder. Particle sizes may range from 70 to 150 micrometers. Both feeders have a hopper that can hold enough solid for fairly lengthy tests at the higher feed rates, thus eliminating the need for lockhopper transfers during operation.« less

  14. Fast and accurate grid representations for atom-based docking with partner flexibility.

    PubMed

    de Vries, Sjoerd J; Zacharias, Martin

    2017-06-30

    Macromolecular docking methods can broadly be divided into geometric and atom-based methods. Geometric methods use fast algorithms that operate on simplified, grid-like molecular representations, while atom-based methods are more realistic and flexible, but far less efficient. Here, a hybrid approach of grid-based and atom-based docking is presented, combining precalculated grid potentials with neighbor lists for fast and accurate calculation of atom-based intermolecular energies and forces. The grid representation is compatible with simultaneous multibody docking and can tolerate considerable protein flexibility. When implemented in our docking method ATTRACT, grid-based docking was found to be ∼35x faster. With the OPLSX forcefield instead of the ATTRACT coarse-grained forcefield, the average speed improvement was >100x. Grid-based representations may allow atom-based docking methods to explore large conformational spaces with many degrees of freedom, such as multiple macromolecules including flexibility. This increases the domain of biological problems to which docking methods can be applied. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. A flexible framework for process-based hydraulic and water ...

    EPA Pesticide Factsheets

    Background Models that allow for design considerations of green infrastructure (GI) practices to control stormwater runoff and associated contaminants have received considerable attention in recent years. While popular, generally, the GI models are relatively simplistic. However, GI model predictions are being relied upon by many municipalities and State/Local agencies to make decisions about grey vs. green infrastructure improvement planning. Adding complexity to GI modeling frameworks may preclude their use in simpler urban planning situations. Therefore, the goal here was to develop a sophisticated, yet flexible tool that could be used by design engineers and researchers to capture and explore the effect of design factors and properties of the media used in the performance of GI systems at a relatively small scale. We deemed it essential to have a flexible GI modeling tool that is capable of simulating GI system components and specific biophysical processes affecting contaminants such as reactions, and particle-associated transport accurately while maintaining a high degree of flexibly to account for the myriad of GI alternatives. The mathematical framework for a stand-alone GI performance assessment tool has been developed and will be demonstrated.Framework Features The process-based model framework developed here can be used to model a diverse range of GI practices such as green roof, retention pond, bioretention, infiltration trench, permeable pavement and

  16. Enhanced Flexibility and Reusability through State Machine-Based Architectures for Multisensor Intelligent Robotics

    PubMed Central

    Herrero, Héctor; Outón, Jose Luis; Puerto, Mildred; Sallé, Damien; López de Ipiña, Karmele

    2017-01-01

    This paper presents a state machine-based architecture, which enhances the flexibility and reusability of industrial robots, more concretely dual-arm multisensor robots. The proposed architecture, in addition to allowing absolute control of the execution, eases the programming of new applications by increasing the reusability of the developed modules. Through an easy-to-use graphical user interface, operators are able to create, modify, reuse and maintain industrial processes, increasing the flexibility of the cell. Moreover, the proposed approach is applied in a real use case in order to demonstrate its capabilities and feasibility in industrial environments. A comparative analysis is presented for evaluating the presented approach versus traditional robot programming techniques. PMID:28561750

  17. Flexible retrieval: When true inferences produce false memories.

    PubMed

    Carpenter, Alexis C; Schacter, Daniel L

    2017-03-01

    Episodic memory involves flexible retrieval processes that allow us to link together distinct episodes, make novel inferences across overlapping events, and recombine elements of past experiences when imagining future events. However, the same flexible retrieval and recombination processes that underpin these adaptive functions may also leave memory prone to error or distortion, such as source misattributions in which details of one event are mistakenly attributed to another related event. To determine whether the same recombination-related retrieval mechanism supports both successful inference and source memory errors, we developed a modified version of an associative inference paradigm in which participants encoded everyday scenes comprised of people, objects, and other contextual details. These scenes contained overlapping elements (AB, BC) that could later be linked to support novel inferential retrieval regarding elements that had not appeared together previously (AC). Our critical experimental manipulation concerned whether contextual details were probed before or after the associative inference test, thereby allowing us to assess whether (a) false memories increased for successful versus unsuccessful inferences, and (b) any such effects were specific to after compared with before participants received the inference test. In each of 4 experiments that used variants of this paradigm, participants were more susceptible to false memories for contextual details after successful than unsuccessful inferential retrieval, but only when contextual details were probed after the associative inference test. These results suggest that the retrieval-mediated recombination mechanism that underlies associative inference also contributes to source misattributions that result from combining elements of distinct episodes. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  18. Flexible Retrieval: When True Inferences Produce False Memories

    PubMed Central

    Carpenter, Alexis C.; Schacter, Daniel L.

    2016-01-01

    Episodic memory involves flexible retrieval processes that allow us to link together distinct episodes, make novel inferences across overlapping events, and recombine elements of past experiences when imagining future events. However, the same flexible retrieval and recombination processes that underpin these adaptive functions may also leave memory prone to error or distortion, such as source misattributions in which details of one event are mistakenly attributed to another related event. To determine whether the same recombination-related retrieval mechanism supports both successful inference and source memory errors, we developed a modified version of an associative inference paradigm in which participants encoded everyday scenes comprised of people, objects, and other contextual details. These scenes contained overlapping elements (AB, BC) that could later be linked to support novel inferential retrieval regarding elements that had not appeared together previously (AC). Our critical experimental manipulation concerned whether contextual details were probed before or after the associative inference test, thereby allowing us to assess whether a) false memories increased for successful versus unsuccessful inferences, and b) any such effects were specific to after as compared to before participants received the inference test. In each of four experiments that used variants of this paradigm, participants were more susceptible to false memories for contextual details after successful than unsuccessful inferential retrieval, but only when contextual details were probed after the associative inference test. These results suggest that the retrieval-mediated recombination mechanism that underlies associative inference also contributes to source misattributions that result from combining elements of distinct episodes. PMID:27918169

  19. A unique facility for V/STOL aircraft hover testing. [Langley Impact Dynamics Research Facility

    NASA Technical Reports Server (NTRS)

    Culpepper, R. G.; Murphy, R. D.; Gillespie, E. A.; Lane, A. G.

    1979-01-01

    The Langley Impact Dynamics Research Facility (IDRF) was modified to obtain static force and moment data and to allow assessment of aircraft handling qualities during dynamic tethered hover flight. Test probe procedures were also established. Static lift and control measurements obtained are presented along with results of limited dynamic tethered hover flight.

  20. Magneto-optical tracking of flexible laparoscopic ultrasound: model-based online detection and correction of magnetic tracking errors.

    PubMed

    Feuerstein, Marco; Reichl, Tobias; Vogel, Jakob; Traub, Joerg; Navab, Nassir

    2009-06-01

    Electromagnetic tracking is currently one of the most promising means of localizing flexible endoscopic instruments such as flexible laparoscopic ultrasound transducers. However, electromagnetic tracking is also susceptible to interference from ferromagnetic material, which distorts the magnetic field and leads to tracking errors. This paper presents new methods for real-time online detection and reduction of dynamic electromagnetic tracking errors when localizing a flexible laparoscopic ultrasound transducer. We use a hybrid tracking setup to combine optical tracking of the transducer shaft and electromagnetic tracking of the flexible transducer tip. A novel approach of modeling the poses of the transducer tip in relation to the transducer shaft allows us to reliably detect and significantly reduce electromagnetic tracking errors. For detecting errors of more than 5 mm, we achieved a sensitivity and specificity of 91% and 93%, respectively. Initial 3-D rms error of 6.91 mm were reduced to 3.15 mm.