Sample records for facility background pressure

  1. Investigation of the Effects of Facility Background Pressure on the Performance and Voltage-Current Characteristics of the High Voltage Hall Accelerator

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Spektor, Rostislav

    2014-01-01

    The National Aeronautics and Space Administration (NASA) Science Mission Directorate In-Space Propulsion Technology office is sponsoring NASA Glenn Research Center to develop a 4 kW-class Hall thruster propulsion system for implementation in NASA science missions. A study was conducted to assess the impact of varying the facility background pressure on the High Voltage Hall Accelerator (HiVHAc) thruster performance and voltage-current characteristics. This present study evaluated the HiVHAc thruster performance in the lowest attainable background pressure condition at NASA GRC Vacuum Facility 5 to best simulate space-like conditions. Additional tests were performed at selected thruster operating conditions to investigate and elucidate the underlying physics that change during thruster operation at elevated facility background pressure. Tests were performed at background pressure conditions that are three and ten times higher than the lowest realized background pressure. Results indicated that the thruster discharge specific impulse and efficiency increased with elevated facility background pressure. The voltage-current profiles indicated a narrower stable operating region with increased background pressure. Experimental observations of the thruster operation indicated that increasing the facility background pressure shifted the ionization and acceleration zones upstream towards the thruster's anode. Future tests of the HiVHAc thruster are planned at background pressure conditions that are expected to be two to three times lower than what was achieved during this test campaign. These tests will not only assess the impact of reduced facility background pressure on thruster performance, voltage-current characteristics, and plume properties; but will also attempt to quantify the magnitude of the ionization and acceleration zones upstream shifting as a function of increased background pressure.

  2. Investigation of the Effects of Facility Background Pressure on the Performance and Voltage-Current Characteristics of the High Voltage Hall Accelerator

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Spektor, Rostislav

    2014-01-01

    The National Aeronautics and Space Administration (NASA) Science Mission Directorate In-Space Propulsion Technology office is sponsoring NASA Glenn Research Center to develop a 4 kW-class Hall thruster propulsion system for implementation in NASA science missions. A study was conducted to assess the impact of varying the facility background pressure on the High Voltage Hall Accelerator (HiVHAc) thruster performance and voltage-current characteristics. This present study evaluated the HiVHAc thruster performance in the lowest attainable background pressure condition at NASA GRC Vacuum Facility 5 to best simulate space-like conditions. Additional tests were performed at selected thruster operating conditions to investigate and elucidate the underlying physics that change during thruster operation at elevated facility background pressure. Tests were performed at background pressure conditions that are three and ten times higher than the lowest realized background pressure. Results indicated that the thruster discharge specific impulse and efficiency increased with elevated facility background pressure. The voltage-current profiles indicated a narrower stable operating region with increased background pressure. Experimental observations of the thruster operation indicated that increasing the facility background pressure shifted the ionization and acceleration zones upstream towards the thrusters anode. Future tests of the HiVHAc thruster are planned at background pressure conditions that are expected to be two to three times lower than what was achieved during this test campaign. These tests will not only assess the impact of reduced facility background pressure on thruster performance, voltage-current characteristics, and plume properties; but will also attempt to quantify the magnitude of the ionization.

  3. Characterization of Vacuum Facility Background Gas Through Simulation and Considerations for Electric Propulsion Ground Testing

    NASA Technical Reports Server (NTRS)

    Yim, John T.; Burt, Jonathan M.

    2015-01-01

    The background gas in a vacuum facility for electric propulsion ground testing is examined in detail through a series of cold flow simulations using a direct simulation Monte Carlo (DSMC) code. The focus here is on the background gas itself, its structure and characteristics, rather than assessing its interaction and impact on thruster operation. The background gas, which is often incorrectly characterized as uniform, is found to have a notable velocity within a test facility. The gas velocity has an impact on the proper measurement of pressure and the calculation of ingestion flux to a thruster. There are also considerations for best practices for tests that involve the introduction of supplemental gas flows to artificially increase the background pressure. All of these effects need to be accounted for to properly characterize the operation of electric propulsion thrusters across different ground test vacuum facilities.

  4. Performance, Facility Pressure Effects, and Stability Characterization Tests of NASA's Hall Effect Rocket with Magnetic Shielding Thruster

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Yim, John; Herman, Daniel; Peterson, Peter Y.; Williams, George J.; Gilland, James; Hofer, Richard; Mikellides, Ioannis

    2016-01-01

    NASA's Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5 kW Technology Demonstration Unit-1 (TDU-1) has been the subject of extensive technology maturation in preparation for flight system development. Part of the technology maturation effort included experimental evaluation of the TDU-1 thruster with conducting and dielectric front pole cover materials in two different electrical configurations. A graphite front magnetic pole cover thruster configuration with the thruster body electrically tied to cathode, and an alumina front pole cover thruster configuration with the thruster body floating were evaluated. Both configurations were also evaluated at different facility background pressure conditions to evaluate background pressure effects on thruster operation. Performance characterization tests found that higher thruster performance was attained with the graphite front pole cover configuration with the thruster electrically tied to cathode. A total thrust efficiency of 68% and a total specific impulse of 2,820 s was demonstrated at a discharge voltage of 600 V and a discharge power of 12.5 kW. Thruster stability regimes were characterized with respect to the thruster discharge current oscillations and with maps of the discharge current-voltage-magnetic field (IVB). Analysis of TDU-1 discharge current waveforms found that lower normalized discharge current peak-to-peak and root mean square magnitudes were attained when the thruster was electrically floated with alumina front pole covers. Background pressure effects characterization tests indicated that the thruster performance and stability were mostly invariant to changes in the facility background pressure for vacuum chamber pressure below 1×10-5 Torr-Xe (for thruster flow rates of 20.5 mg/s). Power spectral density analysis of the discharge current waveforms showed that increasing the vacuum chamber background pressure resulted in a higher discharge current dominant breathing mode frequency. Finally, IVB maps of the TDU-1 thruster indicated that the discharge current became more oscillatory with higher discharge current peak-to-peak and RMS values with increased facility background pressure at lower thruster mass flow rates; thruster operation at higher flow rates resulted in less change to the thruster's IVB characteristics with elevated background pressure.

  5. Effect of Background Pressure on the Plasma Oscillation Characteristics of the HiVHAc Hall Thruster

    DTIC Science & Technology

    2014-06-01

    Hall thruster , a number of plasma diagnostics were implemented to study the effect of varying facility background pressure on thruster operation. These diagnostics characterized the thruster performance, the plume, and the plasma oscillations in the thruster. Thruster performance and plume characteristics as functions of background pressure were previously published. This paper will focus on changes in the plasma oscillation characteristics with changing background pressure. The diagnostics used to study plasma oscillations include a high-speed camera and a set of

  6. Evaluation of Plume Divergence and Facility Effects on Far-Field Faraday Probe Current Density Profiles

    DTIC Science & Technology

    2009-09-01

    elevated background pressure, compared nude Faraday probe designs, and evaluated design modifications to minimize uncertainty due to charge exchange...evaluated Faraday probe design and facility background pressure on collected ion current. A comparison of two nude Faraday probe designs concluded...140.5 Plasma potential in the region surrounding a nude Faraday probe has been measured to study the possibility of probe bias voltage acting as a

  7. Performance, Facility Pressure Effects, and Stability Characterization Tests of NASA's Hall Effect Rocket with Magnetic Shielding Thruster

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Yim, John; Herman, Daniel; Williams, George; Gilland, James; Peterson, Peter; Hofer, Richard; Mikellides, Ioannis

    2016-01-01

    NASAs Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5 kW Technology Demonstration Unit-1 (TDU-1) Hall thruster has been the subject of extensive technology maturation in preparation for flight system development. Part of the technology maturation effort included experimental evaluation of the TDU-1 thruster with conducting and dielectric front pole cover materials in two different electrical configurations. A graphite front pole cover thruster configuration with the thruster body electrically tied to cathode and an alumina front pole cover thruster configuration with the thruster body floating were evaluated. Both configurations were also evaluated at different facility background pressure conditions to evaluate background pressure effects on thruster operation. Performance characterization tests found that higher thruster performance was attained with the graphite front pole cover configuration with the thruster electrically tied to cathode. A total thrust efficiency of 68 and a total specific impulse of 2,820 s was demonstrated at a discharge voltage of 600 V and a discharge power of 12.5 kW. Thruster stability regimes were characterized with respect to the thruster discharge current oscillations and with maps of the current-voltage-magnetic field (IVB). Analysis of TDU-1 discharge current waveforms found that lower normalized discharge current peak-to-peak and root mean square magnitudes were attained when the thruster was electrically floated with alumina front pole covers. Background pressure effects characterization tests indicated that the thruster performance and stability was mostly invariant to changes in the facility background pressure for vacuum chamber pressure below 110-5 Torr-Xe (for thruster flow rate above 8 mgs). Power spectral density analysis of the discharge current waveform showed that increasing the vacuum chamber background pressure resulted in a higher discharge current dominant frequency. Finally the IVB maps of the TDU-1 thruster taken at elevated magnetic fields indicated that the discharge current became more oscillatory with increased facility background pressure at lower thruster mass flow rates, where thruster operation at higher flow rates resulted in less change to the thrusters IVB characteristics.

  8. Effect of Background Pressure on the Plasma Oscillation Characteristics of the HiVHAc Hall Thruster

    NASA Technical Reports Server (NTRS)

    Huang, Wensheng; Kamhawi, Hani; Lobbia, Robert B.; Brown, Daniel L.

    2014-01-01

    During a component compatibility test of the NASA HiVHAc Hall thruster, a high-speed camera and a set of high-speed Langmuir probes were implemented to study the effect of varying facility background pressure on thruster operation. The results show a rise in the oscillation frequency of the breathing mode with rising background pressure, which is hypothesized to be due to a shortening accelerationionization zone. An attempt is made to apply a simplified ingestion model to the data. The combined results are used to estimate the maximum acceptable background pressure for performance and wear testing.

  9. Effect of Background Pressure on the Plasma Oscillation Characteristics of the HiVHAc Hall Thruster

    NASA Technical Reports Server (NTRS)

    Huang, Wensheng; Kamhawi, Hani; Lobbia, Robert B.; Brown, Daniel L.

    2014-01-01

    During a component compatibility test of the NASA HiVHAc Hall thruster, a number of plasma diagnostics were implemented to study the effect of varying facility background pressure on thruster operation. These diagnostics characterized the thruster performance, the plume, and the plasma oscillations in the thruster. Thruster performance and plume characteristics as functions of background pressure were previously published. This paper focuses on changes in the plasma oscillation characteristics with changing background pressure. The diagnostics used to study plasma oscillations include a high-speed camera and a set of high-speed Langmuir probes. The results show a rise in the oscillation frequency of the "breathing" mode with rising background pressure, which is hypothesized to be due to a shortening acceleration/ionization zone. An attempt is made to apply a simplified ingestion model to the data. The combined results are used to estimate the maximum acceptable background pressure for performance and wear testing.

  10. Effect of Background Pressure on the Performance and Plume of the HiVHAc Hall Thruster

    NASA Technical Reports Server (NTRS)

    Huang, Wensheng; Kamhawi, Hani; Haag, Thomas

    2013-01-01

    During the Single String Integration Test of the NASA HiVHAc Hall thruster, a number of plasma diagnostics were implemented to study the effect of varying facility background pressure on thruster operation. These diagnostics include thrust stand, Faraday probe, ExB probe, and retarding potential analyzer. The test results indicated a rise in thrust and discharge current with background pressure. There was also a decrease in ion energy per charge, an increase in multiply-charged species production, a decrease in plume divergence, and a decrease in ion beam current with increasing background pressure. A simplified ingestion model was applied to determine the maximum acceptable background pressure for thrust measurement. The maximum acceptable ingestion percentage was found to be around 1%. Examination of the diagnostics results suggest the ionization and acceleration zones of the thruster were shifting upstream with increasing background pressure.

  11. An Electronic Pressure Profile Display system for aeronautic test facilities

    NASA Technical Reports Server (NTRS)

    Woike, Mark R.

    1990-01-01

    The NASA Lewis Research Center has installed an Electronic Pressure Profile Display system. This system provides for the real-time display of pressure readings on high resolution graphics monitors. The Electronic Pressure Profile Display system will replace manometer banks currently used in aeronautic test facilities. The Electronic Pressure Profile Display system consists of an industrial type Digital Pressure Transmitter (DPI) unit which interfaces with a host computer. The host computer collects the pressure data from the DPI unit, converts it into engineering units, and displays the readings on a high resolution graphics monitor in bar graph format. Software was developed to accomplish the above tasks and also draw facility diagrams as background information on the displays. Data transfer between host computer and DPT unit is done with serial communications. Up to 64 channels are displayed with one second update time. This paper describes the system configuration, its features, and its advantages over existing systems.

  12. An electronic pressure profile display system for aeronautic test facilities

    NASA Technical Reports Server (NTRS)

    Woike, Mark R.

    1990-01-01

    The NASA Lewis Research Center has installed an Electronic Pressure Profile Display system. This system provides for the real-time display of pressure readings on high resolution graphics monitors. The Electronic Pressure Profile Display system will replace manometer banks currently used in aeronautic test facilities. The Electronic Pressure Profile Display system consists of an industrial type Digital Pressure Transmitter (DPT) unit which interfaces with a host computer. The host computer collects the pressure data from the DPT unit, converts it into engineering units, and displays the readings on a high resolution graphics monitor in bar graph format. Software was developed to accomplish the above tasks and also draw facility diagrams as background information on the displays. Data transfer between host computer and DPT unit is done with serial communications. Up to 64 channels are displayed with one second update time. This paper describes the system configuration, its features, and its advantages over existing systems.

  13. Background Pressure Profiles for Sonic Boom Vehicle Testing in the NASA Glenn 8- by 6-Foot Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Castner, Raymond; Shaw, Stephen; Adamson, Eric; Simerly, Stephanie

    2013-01-01

    In an effort to identify test facilities that offer sonic boom measurement capabilities, an exploratory test program was initiated using wind tunnels at NASA research centers. The subject of this report is the sonic boom pressure rail data collected in the Glenn Research Center 8- by 6-Foot Supersonic Wind Tunnel. The purpose is to summarize the lessons learned based on the test activity, specifically relating to collecting sonic boom data which has a large amount of spatial pressure variation. The wind tunnel background pressure profiles are presented as well as data which demonstrated how both wind tunnel Mach number and model support-strut position affected the wind tunnel background pressure profile. Techniques were developed to mitigate these effects and are presented.

  14. Effect of facility background gases on internal erosion of the 30-cm Hg ion thruster

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.; Mantenieks, M. A.

    1978-01-01

    Sputtering erosion of the upstream side of the molybdenum screen grid by discharge chamber ions in mercury bombardment thrusters was considered. Data which revealed that the screen grid erosion was very sensitive to the partial pressure of certain background gases in the space simulation vacuum facility were presented along with results of tests conducted to evaluate this effect. It is shown from estimates of the screen grid erosion in space that adequate lifetime for proposed missions exists.

  15. Background nuclei measurements and implications for cavitation inception in hydrodynamic test facilities

    NASA Astrophysics Data System (ADS)

    Venning, J. A.; Khoo, M. T.; Pearce, B. W.; Brandner, P. A.

    2018-04-01

    Water susceptibility and background nuclei content in a water tunnel are investigated using a cavitation susceptibility meter. The measured cumulative histogram of nuclei concentration against critical pressure shows a power law dependence over a large range of concentrations and pressures. These results show that the water strength is not characterised by a single tension but is susceptible to `all' tensions depending on the relevant timescale. This background nuclei population is invariant to tunnel conditions showing that it is stabilised against dissolution. Consideration of a practical cavitating flow about a sphere shows that although background nuclei may be activated, their numbers are so few compared with other sources that they are insignificant for this case.

  16. Boeing infrared sensor (BIRS) calibration facility

    NASA Technical Reports Server (NTRS)

    Hazen, John D.; Scorsone, L. V.

    1990-01-01

    The Boeing Infrared Sensor (BIRS) Calibration Facility represents a major capital investment in optical and infrared technology. The facility was designed and built for the calibration and testing of the new generation large aperture long wave infrared (LWIR) sensors, seekers, and related technologies. Capability exists to perform both radiometric and goniometric calibrations of large infrared sensors under simulated environmental operating conditions. The system is presently configured for endoatmospheric calibrations with a uniform background field which can be set to simulate the expected mission background levels. During calibration, the sensor under test is also exposed to expected mission temperatures and pressures within the test chamber. Capability exists to convert the facility for exoatmospheric testing. The configuration of the system is described along with hardware elements and changes made to date are addressed.

  17. Performance and Facility Background Pressure Characterization Tests of NASAs 12.5-kW Hall Effect Rocket with Magnetic Shielding Thruster

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Shastry, Rohit; Thomas, Robert; Yim, John; Herman, Daniel; Williams, George; Myers, James; Hofer, Richard; hide

    2015-01-01

    NASA's Space Technology Mission Directorate (STMD) Solar Electric Propulsion Technology Demonstration Mission (SEP/TDM) project is funding the development of a 12.5-kW Hall thruster system to support future NASA missions. The thruster designated Hall Effect Rocket with Magnetic Shielding (HERMeS) is a 12.5-kW Hall thruster with magnetic shielding incorporating a centrally mounted cathode. HERMeS was designed and modeled by a NASA GRC and JPL team and was fabricated and tested in vacuum facility 5 (VF5) at NASA GRC. Tests at NASA GRC were performed with the Technology Development Unit 1 (TDU1) thruster. TDU1's magnetic shielding topology was confirmed by measurement of anode potential and low electron temperature along the discharge chamber walls. Thermal characterization tests indicated that during full power thruster operation at peak magnetic field strength, the various thruster component temperatures were below prescribed maximum allowable limits. Performance characterization tests demonstrated the thruster's wide throttling range and found that the thruster can achieve a peak thruster efficiency of 63% at 12.5 kW 500 V and can attain a specific impulse of 3,000 s at 12.5 kW and a discharge voltage of 800 V. Facility background pressure variation tests revealed that the performance, operational characteristics, and magnetic shielding effectiveness of the TDU1 design were mostly insensitive to increases in background pressure.

  18. Characterization of in-flight performance of ion propulsion systems

    NASA Astrophysics Data System (ADS)

    Sovey, James S.; Rawlin, Vincent K.

    1993-06-01

    In-flight measurements of ion propulsion performance, ground test calibrations, and diagnostic performance measurements were reviewed. It was found that accelerometers provided the most accurate in-flight thrust measurements compared with four other methods that were surveyed. An experiment has also demonstrated that pre-flight alignment of the thrust vector was sufficiently accurate so that gimbal adjustments and use of attitude control thrusters were not required to counter disturbance torques caused by thrust vector misalignment. The effects of facility background pressure, facility enhanced charge-exchange reactions, and contamination on ground-based performance measurements are also discussed. Vacuum facility pressures for inert-gas ion thruster life tests and flight qualification tests will have to be less than 2 mPa to ensure accurate performance measurements.

  19. Characterization of in-flight performance of ion propulsion systems

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Rawlin, Vincent K.

    1993-01-01

    In-flight measurements of ion propulsion performance, ground test calibrations, and diagnostic performance measurements were reviewed. It was found that accelerometers provided the most accurate in-flight thrust measurements compared with four other methods that were surveyed. An experiment has also demonstrated that pre-flight alignment of the thrust vector was sufficiently accurate so that gimbal adjustments and use of attitude control thrusters were not required to counter disturbance torques caused by thrust vector misalignment. The effects of facility background pressure, facility enhanced charge-exchange reactions, and contamination on ground-based performance measurements are also discussed. Vacuum facility pressures for inert-gas ion thruster life tests and flight qualification tests will have to be less than 2 mPa to ensure accurate performance measurements.

  20. Electric Propulsion Test and Evaluation Methodologies for Plasma in the Environments of Space and Testing (EP TEMPEST)

    DTIC Science & Technology

    2016-04-14

    Swanson AEDC Path 1: Magnetized electron transport impeded across magnetic field lines; transport via electron-particle collisions Path 2*: Electron...T&E (higher pressure, metallic walls) → Impacts stability, performance, plume properties, thruster lifetime Magnetic Field Lines Plasma Plume...Development of T&E Methodologies • Current-Voltage- Magnetic Field (I-V-B) Mapping • Facility Interaction Studies • Background Pressure • Plasma Wall

  1. Thrust Measurements of an Underexpanded Orifice in the Transitional Regime

    NASA Astrophysics Data System (ADS)

    Ketsdever, Andrew D.

    2003-05-01

    The popularity of micropropulsion system development has led to renewed interest in the determination of propulsive properties of orifice flows since micronozzle expansions may suffer high viscous losses at low pressure operation. The mass flow and relative thrust for an under expanded orifice is measured as a function of orifice stagnation pressure from 0.1 to 3.5 Torr. Nitrogen, argon, and helium propellant gases are passed through a 1.0 mm diameter orifice with a wall thickness of 0.015 mm . Near-free molecule, transitional and continuum flow regimes are studied. The relative thrust is determined by a novel thrust stand designed primarily for low operating pressure, micropropulsion systems. It is shown that the thrust indications obtained from the stand are a function of the facility background pressure, and corrections are made to determine the indicated thrust for a zero background pressure with nitrogen as propellant. Highly repeatable (within 1 %) indicated thrust measurements are obtained in the thrust range from 5 to 500 μN.

  2. KENNEDY SPACE CENTER, FLA. - At Port Canaveral, the Pressurized Module of the Japanese Experiment Module (JEM) is lifted out of the ship’s cargo hold. It will be loaded onto the truck bed in the background for transfer to KSC’s Space Station Processing Facility. The container transport ship carrying JEM departed May 2 from Yokohama Harbor in Japan for the voyage to the United States. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

    NASA Image and Video Library

    2003-06-04

    KENNEDY SPACE CENTER, FLA. - At Port Canaveral, the Pressurized Module of the Japanese Experiment Module (JEM) is lifted out of the ship’s cargo hold. It will be loaded onto the truck bed in the background for transfer to KSC’s Space Station Processing Facility. The container transport ship carrying JEM departed May 2 from Yokohama Harbor in Japan for the voyage to the United States. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

  3. Performance of a low-power subsonic-arc-attachment arcjet thruster

    NASA Technical Reports Server (NTRS)

    Sankovic, John M.; Berns, Darren H.

    1993-01-01

    A subsonic-arc-attachment thruster design was scaled from a 30 kW 1960's vintage thruster to operate at nominally 3 kW. Performance measurements were obtained over a 1-4 kW power range using hydrogen as the propellant. Several modes of operation were identified and were characterized by varying degrees of voltage instability. A stability map was developed showing that the voltage oscillations were brought upon by elevated current or propellant levels. At a given specific energy level the specific impulse increased asymptotically with increased flow rates. Comparisons of performance were made between radial and tangential propellant injection. When the vortex flow was eliminated using radial injection, the operating voltages were lower at a given current, and the specific impulse and efficiency decreased. Tests were also conducted to determine the effects of background pressure on operation, and performance data were obtained at pressures of 0.047 Pa and 18 Pa. For a given specific energy level, the performance increased with a decrease in facility background pressure. Lowering the background pressure also caused a dramatic change in the voltage-current characteristic and the voltage stability, a phenomenon not previously reported with conventional supersonic-arc-attachment thrusters.

  4. Facility Effect Characterization Test of NASA's HERMeS Hall Thruster

    NASA Technical Reports Server (NTRS)

    Huang, Wensheng; Kamhawi, Hani; Haag, Thomas W.; Ortega, Alejandro Lopez; Mikellides, Ioannis G.

    2016-01-01

    A test to characterize the effect of varying background pressure on NASA's 12.5-kW Hall Effect Rocket with Magnetic Shielding had being completed. This thruster is the baseline propulsion system for the Solar Electric Propulsion Technology Demonstration Mission (SEP TDM). Potential differences in thruster performance and oscillation characteristics when in ground facilities versus on-orbit are considered a primary risk for the propulsion system of the Asteroid Redirect Robotic Mission, which is a candidate for SEP TDM. The first primary objective of this test was to demonstrate that the tools being developed to predict the zero-background-pressure behavior of the thruster can provide self-consistent results. The second primary objective of this test was to provide data for refining a physics-based model of the thruster plume that will be used in spacecraft interaction studies. Diagnostics deployed included a thrust stand, Faraday probe, Langmuir probe, retarding potential analyzer, Wien filter spectrometer, and high-speed camera. From the data, a physics-based plume model was refined. Comparisons of empirical data to modeling results are shown.

  5. Background noise measurements from jet exit vanes designed to reduced flow pulsations in an open-jet wind tunnel

    NASA Technical Reports Server (NTRS)

    Hoad, D. R.; Martin, R. M.

    1985-01-01

    Many open jet wind tunnels experience pulsations of the flow which are typically characterized by periodic low frequency velocity and pressure variations. One method of reducing these fluctuations is to install vanes around the perimeter of the jet exit to protrude into the flow. Although these vanes were shown to be effective in reducing the fluctuation content, they can also increase the test section background noise level. The results of an experimental acoustic program in the Langley 4- by 7-Meter Tunnel is presented which evaluates the effect on tunnel background noise of such modifications to the jet exit nozzle. Noise levels for the baseline tunnel configuration are compared with those for three jet exit nozzle modifications, including an enhanced noise reduction configuration that minimizes the effect of the vanes on the background noise. Although the noise levels for this modified vane configuration were comparable to baseline tunnel background noise levels in this facility, installation of these modified vanes in an acoustic tunnel may be of concern because the noise levels for the vanes could be well above background noise levels in a quiet facility.

  6. Inviscid Limit for Damped and Driven Incompressible Navier-Stokes Equations in mathbb R^2

    NASA Astrophysics Data System (ADS)

    Ramanah, D.; Raghunath, S.; Mee, D. J.; Rösgen, T.; Jacobs, P. A.

    2007-08-01

    Experiments to demonstrate the use of the background-oriented schlieren (BOS) technique in hypersonic impulse facilities are reported. BOS uses a simple optical set-up consisting of a structured background pattern, an electronic camera with a high shutter speed and a high intensity light source. The visualization technique is demonstrated in a small reflected shock tunnel with a Mach 4 conical nozzle, nozzle supply pressure of 2.2 MPa and nozzle supply enthalpy of 1.8 MJ/kg. A 20° sharp circular cone and a model of the MUSES-C re-entry body were tested. Images captured were processed using PIV-style image analysis to visualize variations in the density field. The shock angle on the cone measured from the BOS images agreed with theoretical calculations to within 0.5°. Shock standoff distances could be measured from the BOS image for the re-entry body. Preliminary experiments are also reported in higher enthalpy facilities where flow luminosity can interfere with imaging of the background pattern.

  7. Applied-field MPD thruster geometry effects

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.

    1991-01-01

    Eight MPD thruster configurations were used to study the effects of applied field strength, propellant, and facility pressure on thruster performance. Vacuum facility background pressures higher than approx. 0.12 Pa were found to greatly influence thruster performance and electrode power deposition. Thrust efficiency and specific impulse increased monotonically with increasing applied field strength. Both cathode and anode radii fundamentally influenced the efficiency specific impulse relationship, while their lengths influence only the magnitude of the applied magnetic field required to reach a given performance level. At a given specific impulse, large electrode radii result in lower efficiencies for the operating conditions studied. For all test conditions, anode power deposition was the largest efficiency loss, and represented between 50 and 80 pct. of the input power. The fraction of the input power deposited into the anode decreased with increasing applied field and anode radii. The highest performance measured, 20 pct. efficiency at 3700 seconds specific impulse, was obtained using hydrogen propellant.

  8. High-Power Ion Thruster Technology

    NASA Technical Reports Server (NTRS)

    Beattie, J. R.; Matossian, J. N.

    1996-01-01

    Performance data are presented for the NASA/Hughes 30-cm-diam 'common' thruster operated over the power range from 600 W to 4.6 kW. At the 4.6-kW power level, the thruster produces 172 mN of thrust at a specific impulse of just under 4000 s. Xenon pressure and temperature measurements are presented for a 6.4-mm-diam hollow cathode operated at emission currents ranging from 5 to 30 A and flow rates of 4 sccm and 8 sccm. Highly reproducible results show that the cathode temperature is a linear function of emission current, ranging from approx. 1000 C to 1150 C over this same current range. Laser-induced fluorescence (LIF) measurements obtained from a 30-cm-diam thruster are presented, suggesting that LIF could be a valuable diagnostic for real-time assessment of accelerator-arid erosion. Calibration results of laminar-thin-film (LTF) erosion badges with bulk molybdenum are presented for 300-eV xenon, krypton, and argon sputtering ions. Facility-pressure effects on the charge-exchange ion current collected by 8-cm-diam and 30-cm-diam thrusters operated on xenon propellant are presented to show that accel current is nearly independent of facility pressure at low pressures, but increases rapidly under high-background-pressure conditions.

  9. Distribution of the background gas in the MITICA accelerator

    NASA Astrophysics Data System (ADS)

    Sartori, E.; Dal Bello, S.; Serianni, G.; Sonato, P.

    2013-02-01

    MITICA is the ITER neutral beam test facility to be built in Padova for the generation of a 40A D- ion beam with a 16×5×16 array of 1280 beamlets accelerated to 1MV. The background gas pressure distribution and the particle flows inside MITICA accelerator are critical aspects for stripping losses, generation of secondary particles and beam non-uniformities. To keep the stripping losses in the extraction and acceleration stages reasonably low, the source pressure should be 0.3 Pa or less. The gas flow in MITICA accelerator is being studied using a 3D Finite Element code, named Avocado. The gas-wall interaction model is based on the cosine law, and the whole vacuum system geometry is represented by a view factor matrix based on surface discretization and gas property definitions. Pressure distribution and mutual fluxes are then solved linearly. In this paper the result of a numerical simulation is presented, showing the steady-state pressure distribution inside the accelerator when gas enters the system at room temperature. The accelerator model is limited to a horizontal slice 400 mm high (1/4 of the accelerator height). The pressure profile at solid walls and through the beamlet axis is obtained, allowing the evaluation and the discussion of the background gas distribution and nonuniformity. The particle flux at the inlet and outlet boundaries (namely the grounded grid apertures and the lateral conductances respectively) will be discussed.

  10. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, a cameraman films part of Discovery’s payload bay for a special feature on the KSC Web. In the background is the open hatch of the airlock, located inside the middeck of the spacecraft’s pressurized crew cabin. The airlock is sized to accommodate two fully suited flight crew members simultaneously. Support functions include airlock depressurization and repressurization, extravehicular activity equipment recharge, liquid-cooled garment water cooling, EVA equipment checkout, donning and communications. The outer hatch isolates the airlock from the unpressurized payload bay when closed and permits the EVA crew members to exit from the airlock to the payload bay when open.

    NASA Image and Video Library

    2004-01-22

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, a cameraman films part of Discovery’s payload bay for a special feature on the KSC Web. In the background is the open hatch of the airlock, located inside the middeck of the spacecraft’s pressurized crew cabin. The airlock is sized to accommodate two fully suited flight crew members simultaneously. Support functions include airlock depressurization and repressurization, extravehicular activity equipment recharge, liquid-cooled garment water cooling, EVA equipment checkout, donning and communications. The outer hatch isolates the airlock from the unpressurized payload bay when closed and permits the EVA crew members to exit from the airlock to the payload bay when open.

  11. STS-45 MS Foale in EMU prepares for underwater exercises in JSC's WETF pool

    NASA Image and Video Library

    1991-02-26

    S91-30196 (1 March 1991) --- Astronaut C. Michael Foale, mission specialist, and Kathryn D. Sullivan, payload commander (barely visible in background), stand on a platform (out of frame) which is part of a system that will lower them into a 25-ft. deep pool. The payload commander and mission specialist used the pool in the weightless environment training facility (WET-F) to rehearse a contingency extravehicular activity (EVA). Astronauts wear pressurized spacesuits configured for achieving a neutrally buoyant condition in the water to simulate both planned and contingency EVAs. Two SCUBA-equipped swimmers assisting the training are seen in the background.

  12. Modeling Neutral Densities Downstream of a Gridded Ion Thruster

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    2010-01-01

    The details of a model for determining the neutral density downstream of a gridded ion thruster are presented. An investigation of the possible sources of neutrals emanating from and surrounding a NEXT ion thruster determined that the most significant contributors to the downstream neutral density include discharge chamber neutrals escaping through the perforated grids, neutrals escaping from the neutralizer, and vacuum facility background neutrals. For the neutral flux through the grids, near- and far-field equations are presented for rigorously determining the neutral density downstream of a cylindrical aperture. These equations are integrated into a spherically-domed convex grid geometry with a hexagonal array of apertures for determining neutral densities downstream of the ion thruster grids. The neutrals escaping from an off-center neutralizer are also modeled assuming diffuse neutral emission from the neutralizer keeper orifice. Finally, the effect of the surrounding vacuum facility neutrals is included and assumed to be constant. The model is used to predict the neutral density downstream of a NEXT ion thruster with and without neutralizer flow and a vacuum facility background pressure. The impacts of past simplifying assumptions for predicting downstream neutral densities are also examined for a NEXT ion thruster.

  13. Prevalence and incidence studies of pressure ulcers in two long-term care facilities in Canada.

    PubMed

    Davis, C M; Caseby, N G

    2001-11-01

    A study was initiated to determine the prevalence and incidence of pressure ulcers in two long-term care facilities in Canada, one with 95 residents and the other with 92 residents. The prevalence study was conducted at both facilities on a single day. The incidence study was completed after 41 and 42 days, respectively, at each facility. Data were collected on demographics, medical information, and possible contributing factors. Each resident was assessed for the presence of a pressure ulcer. Each ulcer was staged and anatomical location was noted. The prevalence of pressure ulcers in the two long-term care facilities was 36.8% and 53.2%, respectively. The incidence of pressure ulcers in the two long-term care facilities was 11.7% and 11.6%, respectively. In conclusion, the pressure ulcer prevalence is higher than published figures for the long-term care setting. However, a pressure ulcer incidence of less than 12% in each facility suggests an equal and acceptable level of nursing care in both facilities. The disparity of pressure ulcer prevalence between the two facilities may be explained by a difference of case mix.

  14. Thermal-hydraulic analysis of the coil test facility for CFETR.

    PubMed

    Ren, Yong; Liu, Xiaogang; Li, Junjun; Wang, Zhaoliang; Qiu, Lilong; Du, Shijun; Li, Guoqiang; Gao, Xiang

    2016-01-01

    Performance test of the China Fusion Engineering Test Reactor (CFETR) central solenoid (CS) and toroidal field (TF) insert coils is of great importance to evaluate the CFETR magnet performance in relevant operation conditions. The superconducting magnet of the coil test facility for CFETR is being designed with the aim of providing a background magnetic field to test the CFETR CS insert and TF insert coils. The superconducting magnet consists of the inner module with Nb 3 Sn coil and the outer module with NbTi coil. The superconducting magnet is designed to have a maximum magnetic field of 12.59 T and a stored energy of 436.6 MJ. An active quench protection circuit and the positive temperature coefficient dump resistor were adopted to transfer the stored magnetic energy. The temperature margin behavior of the test facility for CFETR satisfies the design criteria. The quench analysis of the test facility shows that the cable temperature and the helium pressure inside the jacket are within the design criteria.

  15. Development of a gas-pressurized high-pressure μSR setup at the RIKEN-RAL Muon Facility

    NASA Astrophysics Data System (ADS)

    Watanabe, I.; Ishii, Y.; Kawamata, T.; Suzuki, T.; Pratt, F. L.; Done, R.; Chowdhury, M.; Goodway, C.; Dreyer, J.; Smith, C.; Southern, M.

    2009-04-01

    The development and testing of a gas-pressurized μSR setup for the RIKEN-RAL Muon Facility is reported. In collaboration with the high-pressure group of the ISIS Facility at the Rutherford Appleton Laboratory, a gas-pressurized setup for a pulsed muon beam at the RIKEN-RAL Muon Facility has been constructed in 2008. The sample is pressurized by helium gas and the designed maximum pressure is 6.4 kbar. The high-pressure cell can be cooled down to 2 K using an existing cryostat. Tests were made injecting the double-pulsed muon beam into a high-purity sample of Sn powder, which confirmed that the maximum pressure achieved at 2 K was close to the designed pressure.

  16. Rating long-term care facilities on pressure ulcer development: importance of case-mix adjustment.

    PubMed

    Berlowitz, D R; Ash, A S; Brandeis, G H; Brand, H K; Halpern, J L; Moskowitz, M A

    1996-03-15

    To determine the importance of case-mix adjustment in interpreting differences in rates of pressure ulcer development in Department of Veterans Affairs long- term care facilities. A sample assembled from the Patient Assessment File, a Veterans Affairs administrative database, was used to derive predictors of pressure ulcer development; the resulting model was validated in a separate sample. Facility-level rates of pressure ulcer development, both unadjusted and adjusted for case mix using the predictive model, were compared. Department of Veterans Affairs long-term care facilities. The derivation sample consisted of 31 150 intermediate medicine and nursing home residents who were initially free of pressure ulcers and were institutionalized between October 1991 and April 1993. The validation sample consisted of 17 946 residents institutionalized from April 1993 to October 1993. Development of a stage 2 or greater pressure ulcer. 11 factors predicted pressure ulcer development. Validated performance properties of the resulting model were good. Model-predicted rates of pressure ulcer development at individual long-term care facilities varied from 1.9% to 6.3%, and observed rates ranged from 0% to 10.9%. Case-mix-adjusted rates and ranks of facilities differed considerably from unadjusted ratings. For example, among five facilities that were identified as high outliers on the basis of unadjusted rates, two remained as outliers after adjustment for case mix. Long-term care facilities differ in case mix. Adjustments for case mix result in different judgments about facility performance and should be used when facility incidence rates are compared.

  17. Experimental and numerical modeling of rarefied gas flows through orifices and short tubes

    NASA Astrophysics Data System (ADS)

    Gimelshein, S. F.; Markelov, G. N.; Lilly, T. C.; Selden, N. P.; Ketsdever, A. D.

    2005-05-01

    Flow through circular orifices with thickness-to-diameter ratios varying from 0.015 to 1.2 is studied experimentally and numerically with kinetic and continuum approaches. Helium and nitrogen gases are used in the range of Reynolds numbers from 0.02 to over 700. Good agreement between experimental and numerical results is observed for mass flow and thrust corrected for the experimental facility background pressure. For thick-to-thin orifice ratios of mass flow and thrust vs pressure, a minimum is established. The thick orifice propulsion efficiency is much higher than that of a thin orifice. The effects of edge roundness and surface specularity on a thick orifice specific impulse were found to be relatively small.

  18. Activation of the E1 Ultra High Pressure Propulsion Test Facility at Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Messer, Bradley; Messer, Elisabeth; Sewell, Dale; Sass, Jared; Lott, Jeff; Dutreix, Lionel, III

    2001-01-01

    After a decade of construction and a year of activation the El Ultra High Pressure Propulsion Test Facility at NASA's Stennis Space Center is fully operational. The El UHP Propulsion Test Facility is a multi-cell, multi-purpose component and engine test facility . The facility is capable of delivering cryogenic propellants at low, high, and ultra high pressures with flow rates ranging from a few pounds per second up to two thousand pounds per second. Facility activation is defined as a series of tasks required to transition between completion of construction and facility operational readiness. Activating the El UHP Propulsion Test Facility involved independent system checkouts, propellant system leak checks, fluid and gas sampling, gaseous system blow downs, pressurization and vent system checkouts, valve stability testing, valve tuning cryogenic cold flows, and functional readiness tests.

  19. Application of Compton-suppressed self-induced XRF to spent nuclear fuel measurement

    NASA Astrophysics Data System (ADS)

    Park, Se-Hwan; Jo, Kwang Ho; Lee, Seung Kyu; Seo, Hee; Lee, Chaehun; Won, Byung-Hee; Ahn, Seong-Kyu; Ku, Jeong-Hoe

    2017-11-01

    Self-induced X-ray fluorescence (XRF) is a technique by which plutonium (Pu) content in spent nuclear fuel can be directly quantified. In the present work, this method successfully measured the plutonium/uranium (Pu/U) peak ratio of a pressurized water reactor (PWR)'s spent nuclear fuel at the Korea atomic energy research institute (KAERI)'s post irradiation examination facility (PIEF). In order to reduce the Compton background in the low-energy X-ray region, the Compton suppression system additionally was implemented. By use of this system, the spectrum's background level was reduced by a factor of approximately 2. This work shows that Compton-suppressed selfinduced XRF can be effectively applied to Pu accounting in spent nuclear fuel.

  20. X-Ray Diffraction on NIF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eggert, J H; Wark, J

    2012-02-15

    The National Ignition Facility (NIF) is currently a 192 beam, 1.6 MJ laser. NIF Ramp-Compression Experiments have already made the relevant exo-planet pressure range from 1 to 50 Mbar accessible. We Proposed to Study Carbon Phases by X-Ray Diffraction on NIF. Just a few years ago, ultra-high pressure phase diagrams for materials were very 'simple'. New experiments and theories point out surprising and decidedly complex behavior at the highest pressures considered. High pressures phases of aluminum are also predicted to be complex. Recent metadynamics survey of carbon proposed a dynamic pathway among multiple phases. We need to develop diagnostics andmore » techniques to explore this new regime of highly compressed matter science. X-Ray Diffraction - Understand the phase diagram/EOS/strength/texture of materials to 10's of Mbar. Strategy and physics goals: (1) Powder diffraction; (2) Begin with diamond; (3) Continue with metals etc.; (4) Explore phase diagrams; (5) Develop liquid diffraction; and (6) Reduce background/improve resolution.« less

  1. Generating Long Scale-Length Plasma Jets Embedded in a Uniform, Multi-Tesla Magnetic-Field

    NASA Astrophysics Data System (ADS)

    Manuel, Mario; Kuranz, Carolyn; Rasmus, Alex; Klein, Sallee; Fein, Jeff; Belancourt, Patrick; Drake, R. P.; Pollock, Brad; Hazi, Andrew; Park, Jaebum; Williams, Jackson; Chen, Hui

    2013-10-01

    Collimated plasma jets emerge in many classes of astrophysical objects and are of great interest to explore in the laboratory. In many cases, these astrophysical jets exist within a background magnetic field where the magnetic pressure approaches the plasma pressure. Recent experiments performed at the Jupiter Laser Facility utilized a custom-designed solenoid to generate the multi-tesla fields necessary to achieve proper magnetization of the plasma. Time-gated interferometry, Schlieren imaging, and proton radiography were used to characterize jet evolution and collimation under varying degrees of magnetization. Experimental results will be presented and discussed. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-NA0001840, by the National Laser User Facility Program, grant number DE-NA0000850, by the Predictive Sciences Academic Alliances Program in NNSA-ASC, grant number DEFC52-08NA28616, and by NASA through Einstein Postdoctoral Fellowship grant number PF3-140111 awarded by the Chandra X-ray Center, which is operated by the Smithsonian Astrophysical Observatory for NASA under contract NAS8-03060.

  2. Impingement-Current-Erosion Characteristics of Accelerator Grids on Two-Grid Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Barker, Timothy

    1996-01-01

    Accelerator grid sputter erosion resulting from charge-exchange-ion impingement is considered to be a primary cause of failure for electrostatic ion thrusters. An experimental method was developed and implemented to measure erosion characteristics of ion-thruster accel-grids for two-grid systems as a function of beam current, accel-grid potential, and facility background pressure. Intricate accelerator grid erosion patterns, that are typically produced in a short time (a few hours), are shown. Accelerator grid volumetric and depth-erosion rates are calculated from these erosion patterns and reported for each of the parameters investigated. A simple theoretical volumetric erosion model yields results that are compared to experimental findings. Results from the model and experiments agree to within 10%, thereby verifying the testing technique. In general, the local distribution of erosion is concentrated in pits between three adjacent holes and trenches that join pits. The shapes of the pits and trenches are shown to be dependent upon operating conditions. Increases in beam current and the accel-grid voltage magnitude lead to deeper pits and trenches. Competing effects cause complex changes in depth-erosion rates as background pressure is increased. Shape factors that describe pits and trenches (i.e. ratio of the average erosion width to the maximum possible width) are also affected in relatively complex ways by changes in beam current, ac tel-grid voltage magnitude, and background pressure. In all cases, however, gross volumetric erosion rates agree with theoretical predictions.

  3. STS-71 astronauts and cosmonauts during egress training

    NASA Image and Video Library

    1994-10-18

    S94-47079 (18 Oct 1994) --- Astronaut Robert L. Gibson, (arms folded, near center) STS-71 mission commander, joins several crew mates during a briefing preceding emergency egress training in the Systems Integration Facility at the Johnson Space Center (JSC). Astronauts Bonnie J. Dunbar and Gregory J. Harbaugh (partially obscured), along with cosmonaut Anatoliy Y. Solovyev, all mission specialists, are attired in training versions of the partial pressure launch and entry space suits. Astronaut Charles J. Precourt, pilot, is in center foreground, and Ellen S. Baker, mission specialist, is in left background.

  4. Medicaid claims history of Florida long-term care facility residents hospitalized for pressure ulcers.

    PubMed

    Baker, J

    1996-01-01

    The purpose of this study was to identify patterns of admission, discharge, and readmission between hospital and long-term care facility among a group of Florida long-term care facility residents with pressure ulcers whose care was paid for by Medicaid. A patient-specific, longitudinal claims history database was constructed from data provided by the Florida Department of Health and Rehabilitative Services. This database was used to determine and analyze hospital admissions for pressure ulcer care among Medicaid recipients cared for in a long-term care facility. Analysis of the data determined that more than half of the Medicaid-covered long-term care facility residents who formed the target study group (54.57%) had multiple hospital admissions associated with pressure ulcers. Pressure ulcer hospital admissions amounted to a program cost of $9.9 million.

  5. Energy Systems High-Pressure Test Laboratory | Energy Systems Integration

    Science.gov Websites

    Facility | NREL Energy Systems High-Pressure Test Laboratory Energy Systems High-Pressure Test Laboratory In the Energy Systems Integration Facility's High-Pressure Test Laboratory, researchers can safely test high-pressure hydrogen components. Photo of researchers running an experiment with a hydrogen fuel

  6. Preventing Heel Pressure Ulcers: Sustained Quality Improvement Initiative in a Canadian Acute Care Facility.

    PubMed

    Hanna-Bull, Debbie

    2016-01-01

    The setting for this quality improvement initiative designed to reduce the prevalence of facility-acquired heel pressure ulcers was a regional, acute-care, 490-bed facility in Ontario, Canada, responsible for dialysis, vascular, and orthopedic surgery. An interdisciplinary skin and wound care team designed an evidence-based quality improvement initiative based on a systematic literature review and standardization of heel offloading methods. The prevalence of heel pressure ulcers was measured at baseline (immediately prior to implementation of initiative) and at 1 and 4 years following implementation. The prevalence of facility-acquired heel pressure ulcers was 5.8% when measured before project implementation. It was 4.2% at 1 year following implementation and 1.6% when measured at the end of the 4-year initiative. Outcomes demonstrate that the initiative resulted in a continuous and sustained reduction in facility-acquired heel pressure ulcer incidence over a 4-year period.

  7. Background radiation measurements at high power research reactors

    NASA Astrophysics Data System (ADS)

    Ashenfelter, J.; Balantekin, B.; Baldenegro, C. X.; Band, H. R.; Barclay, G.; Bass, C. D.; Berish, D.; Bowden, N. S.; Bryan, C. D.; Cherwinka, J. J.; Chu, R.; Classen, T.; Davee, D.; Dean, D.; Deichert, G.; Dolinski, M. J.; Dolph, J.; Dwyer, D. A.; Fan, S.; Gaison, J. K.; Galindo-Uribarri, A.; Gilje, K.; Glenn, A.; Green, M.; Han, K.; Hans, S.; Heeger, K. M.; Heffron, B.; Jaffe, D. E.; Kettell, S.; Langford, T. J.; Littlejohn, B. R.; Martinez, D.; McKeown, R. D.; Morrell, S.; Mueller, P. E.; Mumm, H. P.; Napolitano, J.; Norcini, D.; Pushin, D.; Romero, E.; Rosero, R.; Saldana, L.; Seilhan, B. S.; Sharma, R.; Stemen, N. T.; Surukuchi, P. T.; Thompson, S. J.; Varner, R. L.; Wang, W.; Watson, S. M.; White, B.; White, C.; Wilhelmi, J.; Williams, C.; Wise, T.; Yao, H.; Yeh, M.; Yen, Y.-R.; Zhang, C.; Zhang, X.; Prospect Collaboration

    2016-01-01

    Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these facilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including γ-ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the background fields encountered. The general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.

  8. X-29 High Alpha Test in the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Underwood, Pamela J.; Owens, Lewis R.; Wahls, Richard A.; Williams, Susan

    2003-01-01

    This paper describes the X-29A research program at the National Transonic Facility. This wind tunnel test leveraged the X-29A high alpha flight test program by enabling ground-to-flight correlation studies with an emphasis on Reynolds number effects. The background and objectives of this test program, as well as the comparison of high Reynolds number wind tunnel data to X-29A flight test data are presented. The effects of Reynolds number on the forebody pressures at high angles of attack are also presented. The purpose of this paper is to document this test and serve as a reference for future ground-to-flight correlation studies, and high angle-of-attack investigations. Good ground-to-flight correlations were observed for angles of attack up to 50 deg, and Reynolds number effects were also observed.

  9. KSC-2009-6628

    NASA Image and Video Library

    2009-11-27

    CAPE CANAVERAL, Fla. - At NASA's Kennedy Space Center in Florida, space shuttle Atlantis is towed from the Shuttle Landing Facility toward the 525-foot-tall Vehicle Assembly Building in the background. Atlantis touched down on Runway 33 after 11 days in space, completing the 4.5-million mile STS-129 mission to the International Space Station on orbit 171. Once Atlantis arrives in Orbiter Processing Facility-1, processing will begin for its next mission, designated STS-132. The 34th shuttle mission to the International Space Station, Atlantis will deliver an Integrated Cargo Carrier and Russian-built Mini Research Module, or MRM, to the orbiting laboratory on STS-132. The second in a series of new pressurized components for Russia, the MRM will be permanently attached to the bottom port of the Zarya module. The Russian module also will carry U.S. pressurized cargo. Three spacewalks are planned to stage spare components outside the station, including six spare batteries, a boom assembly for the Ku-band antenna and spares for the Canadian Dextre robotic arm extension. A radiator, airlock and European robotic arm for the Russian Multi-Purpose Laboratory Module also are payloads on the flight. Photo credit: NASA/Jack Pfaller

  10. Pavement testing facility : effects of tire pressure on flexible pavement response performance

    DOT National Transportation Integrated Search

    1989-08-01

    The effects of tire pressure on flexible pavement response and performance were evaluated using data from the first phase of research at the Federal Highway Administration's Pavement Testing Facility. The Accelerated Loading Facility testing machine ...

  11. Performance Gains of Propellant Management Devices for Liquid Hydrogen Depots

    NASA Technical Reports Server (NTRS)

    Hartwig, Jason W.; McQuillen, John B.; Chato, David J.

    2013-01-01

    This paper presents background, experimental design, and preliminary experimental results for the liquid hydrogen bubble point tests conducted at the Cryogenic Components Cell 7 facility at the NASA Glenn Research Center in Cleveland, Ohio. The purpose of the test series was to investigate the parameters that affect liquid acquisition device (LAD) performance in a liquid hydrogen (LH2) propellant tank, to mitigate risk in the final design of the LAD for the Cryogenic Propellant Storage and Transfer Technology Demonstration Mission, and to provide insight into optimal LAD operation for future LH2 depots. Preliminary test results show an increase in performance and screen retention over the low reference LH2 bubble point value for a 325 2300 screen in three separate ways, thus improving fundamental LH2 LAD performance. By using a finer mesh screen, operating at a colder liquid temperature, and pressurizing with a noncondensible pressurant gas, a significant increase in margin is achieved in bubble point pressure for LH2 screen channel LADs.

  12. Priority pollutants and associated constituents in untreated and treated discharges from coal mining or processing facilities in Pennsylvania, USA

    USGS Publications Warehouse

    Cravotta, III, Charles A.; Brady, Keith B.C.

    2015-01-01

    Findings from this study suggest that typical chemical or aerobic treatment of CMD to pH > 6 with removal of Fe to <7 mg/L and Mn to <5 mg/L may provide a reasonable measure of protection for aquatic life from priority pollutant metals and other toxic or hazardous constituents in effluent but may not be effective for achieving permissible or background levels for TDS, SC, osmotic pressure, or concentrations of SO4 and some other pollutants, including Se, Br, and Cl, if present.

  13. Langmuir probe surveys of an arcjet exhaust

    NASA Technical Reports Server (NTRS)

    Zana, Lynnette M.

    1987-01-01

    Electrostatic (Langmuir) probes of both spherical and cylindrical geometry have been used to obtain electron number density and temperature in the exhaust of a laboratory arcjet. The arcjet thruster operated on nitrogen and hydrogen mixtures to simulate fully decomposed hydrazine in a vacuum environment with background pressures less than 0.05 Pa. The exhaust appears to be only slightly ionized (less than 1 percent) with local plasma potentials near facility ground. The current-voltage characteristics of the probes indicate a Maxwellian temperature distribution. Plume data are presented as a function of arcjet operating conditions and also position in the exhaust.

  14. Poorly processed reusable surface disinfection tissue dispensers may be a source of infection

    PubMed Central

    2014-01-01

    Background Reusable surface disinfectant tissue dispensers are used in hospitals in many countries because they allow immediate access to pre-soaked tissues for targeted surface decontamination. On the other hand disinfectant solutions with some active ingredients may get contaminated and cause outbreaks. We determined the frequency of contaminated surface disinfectant solutions in reusable dispensers and the ability of isolates to multiply in different formulations. Methods Reusable tissue dispensers with different surface disinfectants were randomly collected from healthcare facilities. Solutions were investigated for bacterial contamination. The efficacy of two surface disinfectants was determined in suspension tests against two isolated species directly from a contaminated solution or after 5 passages without selection pressure in triplicate. Freshly prepared use solutions were contaminated to determine survival of isolates. Results 66 dispensers containing disinfectant solutions with surface-active ingredients were collected in 15 healthcare facilities. 28 dispensers from nine healthcare facilities were contaminated with approximately 107 cells per mL of Achromobacter species 3 (9 hospitals), Achromobacter xylosoxidans or Serratia marcescens (1 hospital each). In none of the hospitals dispenser processing had been adequately performed. Isolates regained susceptibility to the disinfectants after five passages without selection pressure but were still able to multiply in different formulations from different manufacturers at room temperature within 7 days. Conclusions Neglecting adequate processing of surface disinfectant dispensers has contributed to frequent and heavy contamination of use-solutions based on surface active ingredients. Tissue dispenser processing should be taken seriously in clinical practice. PMID:24447780

  15. High-pressure water facility

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA Test Operations Group employees, from left, Todd Pearson, Tim Delcuze and Rodney Wilkinson maintain a water pump in Stennis Space Center's high-pressure water facility. The three were part of a group of employees who rode out Hurricane Katrina at the facility and helped protect NASA's rocket engine test complex.

  16. High-pressure water facility

    NASA Image and Video Library

    2006-02-15

    NASA Test Operations Group employees, from left, Todd Pearson, Tim Delcuze and Rodney Wilkinson maintain a water pump in Stennis Space Center's high-pressure water facility. The three were part of a group of employees who rode out Hurricane Katrina at the facility and helped protect NASA's rocket engine test complex.

  17. Nuclear thermal propulsion test facility requirements and development strategy

    NASA Technical Reports Server (NTRS)

    Allen, George C.; Warren, John; Clark, J. S.

    1991-01-01

    The Nuclear Thermal Propulsion (NTP) subpanel of the Space Nuclear Propulsion Test Facilities Panel evaluated facility requirements and strategies for nuclear thermal propulsion systems development. High pressure, solid core concepts were considered as the baseline for the evaluation, with low pressure concepts an alternative. The work of the NTP subpanel revealed that a wealth of facilities already exists to support NTP development, and that only a few new facilities must be constructed. Some modifications to existing facilities will be required. Present funding emphasis should be on long-lead-time items for the major new ground test facility complex and on facilities supporting nuclear fuel development, hot hydrogen flow test facilities, and low power critical facilities.

  18. Background radiation measurements at high power research reactors

    DOE PAGES

    Ashenfelter, J.; Yeh, M.; Balantekin, B.; ...

    2015-10-23

    Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these facilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including γ-ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the backgroundmore » fields encountered. Furthermore, the general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.« less

  19. Low Background Counting at LBNL

    DOE PAGES

    Smith, A. R.; Thomas, K. J.; Norman, E. B.; ...

    2015-03-24

    The Low Background Facility (LBF) at Lawrence Berkeley National Laboratory in Berkeley, California provides low background gamma spectroscopy services to a wide array of experiments and projects. The analysis of samples takes place within two unique facilities; locally within a carefully-constructed, low background cave and remotely at an underground location that historically has operated underground in Oroville, CA, but has recently been relocated to the Sanford Underground Research Facility (SURF) in Lead, SD. These facilities provide a variety of gamma spectroscopy services to low background experiments primarily in the form of passive material screening for primordial radioisotopes (U, Th, K)more » or common cosmogenic/anthropogenic products, as well as active screening via Neutron Activation Analysis for specific applications. The LBF also provides hosting services for general R&D testing in low background environments on the surface or underground for background testing of detector systems or similar prototyping. A general overview of the facilities, services, and sensitivities is presented. Recent activities and upgrades will also be presented, such as the completion of a 3π anticoincidence shield at the surface station and environmental monitoring of Fukushima fallout. The LBF is open to any users for counting services or collaboration on a wide variety of experiments and projects.« less

  20. Unsteady loads due to propulsive lift configurations. Part D: The development of an experimental facility for the investigation of scaling effects on propulsive lift configurations

    NASA Technical Reports Server (NTRS)

    Haviland, J. K.; Herling, W. W.

    1978-01-01

    The design and construction of an experimental facility for the investigation of scaling effects in propulsive lift configurations are described. The facility was modeled after an existing full size NASA facility which consisted of a coaxial turbofan jet engine with a rectangular nozzle in a blown surface configuration. The flow field of the model facility was examined with and without a simulated wing surface in place at several locations downstream of the nozzle exit plane. Emphasis was placed on obtaining pressure measurements which were made with static probes and surface pressure ports connected via plastic tubing to condenser microphones for fluctuating measurements. Several pressure spectra were compared with those obtained from the NASA facility, and were used in a preliminary evaluation of scaling laws.

  1. NETL- High-Pressure Combustion Research Facility

    ScienceCinema

    None

    2018-02-14

    NETL's High-Pressure Combustion Facility is a unique resource within the National Laboratories system. It provides the test capabilities needed to evaluate new combustion concepts for high-pressure, high-temperature hydrogen and natural gas turbines. These concepts will be critical for the next generation of ultra clean, ultra efficient power systems.

  2. Atmospheric pressure plasma analysis by modulated molecular beam mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aranda Gonzalvo, Y.; Whitmore, T.D.; Rees, J.A.

    Fractional number density measurements for a rf plasma 'needle' operating at atmospheric pressure have been obtained using a molecular beam mass spectrometer (MBMS) system designed for diagnostics of atmospheric plasmas. The MBMS system comprises three differentially pumped stages and a mass/energy analyzer and includes an automated beam-to-background measurement facility in the form of a software-controlled chopper mechanism. The automation of the beam modulation allows the neutral components in the plasma to be rapidly and accurately measured using the mass spectrometer by threshold ionization techniques. Data are reported for plasma generated by a needle plasma source operated using a helium/air mixture.more » In particular, data for the conversion of atmospheric oxygen and nitrogen into nitric oxide are discussed with reference to its significance for medical applications such as disinfecting wounds and dental cavities and for microsurgery.« less

  3. Longitudinal variation in pressure injury incidence among long-term aged care facilities.

    PubMed

    Jorgensen, Mikaela; Siette, Joyce; Georgiou, Andrew; Westbrook, Johanna I

    2018-05-04

    To examine variation in pressure injury (PI) incidence among long-term aged care facilities and identify resident- and facility-level factors that explain this variation. Longitudinal incidence study using routinely-collected electronic care management data. A large aged care service provider in New South Wales and the Australian Capital Territory, Australia. About 6556 people aged 65 years and older who were permanent residents in 60 long-term care facilities between December 2014 and November 2016. Risk-adjusted PI incidence rates over eight study quarters. Incidence density over the study period was 1.33 pressure injuries per 1000 resident days (95% confidence interval (CI) = 1.29-1.37). Funnel plots were used to identify variation among facilities. On average, 14% of facilities had risk-adjusted PI rates that were higher than expected in each quarter (above 95% funnel plot control limits). Ten percent of facilities had persistently high rates in any three or more consecutive quarters (n = 6). The variation between facilities was only partly explained by resident characteristics in multilevel regression models. Residents were more likely to have higher-pressure injury rates in facilities in regional areas compared with major city areas (adjusted incidence rate ratio = 1.25, 95% CI = 1.04-1.51), and facilities with persistently high rates were more likely to be located in areas with low socioeconomic status (P = 0.038). There is considerable variation among facilities in PI incidence. This study demonstrates the potential of routinely-collected care management data to monitor PI incidence and to identify facilities that may benefit from targeted intervention.

  4. Production and Study of High-Beta Plasma Confined by a Superconducting Dipole Magnet

    NASA Astrophysics Data System (ADS)

    Garnier, Darren

    2005-10-01

    The Levitated Dipole Experiment (LDX)http://psfcwww2.psfc.mit.edu/ldx/ is a new research facility that is exploring the confinement and stability of plasma created within the dipole field produced by a strong superconducting magnet. Unlike other configurations in which stability depends on curvature and magnetic shear, MHD stability of a dipole derives from plasma compressibility. Theoretically, the dipole magnetic geometry can stabilize a centrally-peaked plasma pressure that exceeds the local magnetic pressure (β> 1), and the absence of magnetic shear allows particle and energy confinement to decouple. In this presentation, the first experiments using the LDX facility are reported. Long-pulse, quasi-steady state microwave discharges lasting up to 12 seconds have been produced that are consistent with equilibria having peak beta values of 10%. Detailed measurements have been made of discharge evolution, plasma dynamics and instability, and the roles of gas fueling, microwave power deposition profiles, and plasma boundary shape. In these initial experiments, the high-field superconducting floating coil was supported by three thin supports and later the coil will be magnetically levitated. The plasma was created by multi- frequency electron cyclotron resonance heating at 2.45 and 6.4 GHz, and a population of energetic electrons, with mean energies above 50 keV, dominated the plasma pressure. Creation of high-pressure, high-beta plasma is only possible when intense hot electron interchange instabilities are stabilized sufficiently by a high background plasma density. A dramatic transition from a low-density, low-beta regime to a more quiescent, high-beta regime is observed when the plasma-fueling rate and confinement times are sufficiently long. External shaping coils are seen to modify the outer plasma boundary and affect the transition.

  5. Application of Background Oriented Schlieren for Altitude Testing of Rocket Engines

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Stiegemeier, Benjamin R.

    2017-01-01

    A series of experiments was performed to determine the feasibility of using the Background Oriented Schlieren, BOS, flow visualization technique to image a simulated, small, rocket engine, plume under altitude test conditions. Testing was performed at the NASA Glenn Research Centers Altitude Combustion Stand, ACS, using nitrogen as the exhaust gas simulant. Due to limited optical access to the facility test capsule, all of the hardware required to conduct the BOS were located inside the vacuum chamber. During the test series 26 runs were performed using two different nozzle configurations with pressures in the test capsule around 0.3 psia. No problems were encountered during the test series resulting from the optical hardware being located in the test capsule and acceptable resolution images were captured. The test campaign demonstrated the ability of using the BOS technique for small, rocket engine, plume flow visualization during altitude testing.

  6. Safety Assessment of TACOM’s Crew Station/Turret Motion Base Simulator

    DTIC Science & Technology

    1992-04-01

    mode. The power ON switch is interlocked with the system hydraulic pressure switch so that the electronics can not be turned off while the system...analog) "o Oil Temperature Transducer (analog) "o Facility Pressure Switch o Pressure Critical Switch "o Six Supply Solenoid Valves "O Three Accumulator...Relief Solenoid Valves o Return Pressure Switch o Return Valve Switch o Six Filter Clogged Switches (one per filter) The Facility Pressure switch detects

  7. Characterization of the Reverberation Chamber at the NASA Langley Structural Acoustics Loads and Transmission (SALT) Facility

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.

    2013-01-01

    In 2011 the noise generating capabilities in the reverberation chamber of the Structural Acoustic Loads and Transmission (SALT) facility at NASA Langley Research Center were enhanced with two fiberglass reinforced polyester resin exponential horns, each coupled to Wyle Acoustic Source WAS-3000 airstream modulators. This report describes the characterization of the reverberation chamber in terms of the background noise, diffusivity, sound pressure levels, the reverberation times and the related overall acoustic absorption in the empty chamber and with the acoustic horn(s) installed. The frequency range of interest includes the 80 Hz to 8000 Hz one-third octave bands. Reverberation time and sound pressure level measurements were conducted and standard deviations from the mean were computed. It was concluded that a diffuse field could be produced above the Schroeder frequency in the 400 Hz one-third octave band and higher for all applications. This frequency could be lowered by installing panel diffusers or moving vanes to improve the acoustic modal overlap in the chamber. In the 80 Hz to 400 Hz one-third octave bands a successful measurement will be dependent on the type of measurement, the test configuration, the source and microphone locations and the desired accuracy. It is recommended that qualification measurements endorsed in the International Standards be conducted for each particular application.

  8. Development and Characterization of a 16.3 keV X-Ray Source at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Fournier, K. B.; Barrios, M. A.; Schneider, M. B.; Khan, S.; Chen, H.; Coppari, F.; Rygg, R.; Hohenberger, M.; Albert, F.; Moody, J.; Ralph, J.; Kemp, G. E.; Regan, S. P.

    2014-10-01

    X-ray sources at the National Ignition Facility are needed for radiography of in-flight capsules in inertial confinement fusion experiments and for diffraction studies of materials at high pressures. In the former case, we want to optimize signal to noise and signal over background ratios for the radiograph, in the latter case, we want to minimize high-energy emission from the backlighter that creates background on the diffraction data. Four interleaved shots at NIF were taken in one day, with laser irradiances on a Zr backlighter target ranging from 5 to 14 × 1015 W/cm2. Two shots were for source optimization as a function of laser irradiance. X-ray fluxes were measured with the time-resolved NIF X-ray Spectrometer (NXS) and the DANTE array of calibrated, filtered diodes. Two shots were optimized to make backscatter measurements with the FABS and NBI optical power systems. The backscatter levels are investigated to look for correlation with hot electron populations inferred from high-energy x rays measured with the FFLEX broadband spectrometer. Results from all shots are presented and compared with models. Work performed under the auspices of the U.S. DOE by LLNL under Contract No. DE-AC52-07NA27344.

  9. 77 FR 55843 - Office of Facilities Management and Program Services; Submission for OMB Review; Background...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ... of Facilities Management and Program Services; Submission for OMB Review; Background Investigations... collection of personal data for background investigations for child care workers accessing GSA owned and... assumptions and methodology; ways to enhance the quality, utility, and clarity of the information to be...

  10. Preparation for Testing a Multi-Bay Box Subjected to Combined Loads

    NASA Technical Reports Server (NTRS)

    Rouse, Marshall; Jegley, Dawn

    2015-01-01

    The COmbined Loads Test System (COLTS) facility at NASA Langley Research Center provides a test capability to help develop validated structures technologies. The test machine was design to accommodate a range of fuselage structures and wing sections and subject them to both quasistatic and cyclic loading conditions. The COLTS facility is capable of testing fuselage barrels up to 4.6 m in diameter and 13.7 m long with combined mechanical, internal pressure, and thermal loads. The COLTS facility is currently being prepared to conduct a combined mechanical and pressure loading for a multi-bay pressure box to experimentally verify the structural performance of a composite structure which is 9.1 meters long and representative of a section of a hybrid wing body fuselage section in support of the Environmentally Responsible Aviation Project at NASA. This paper describes development of the multi-bay pressure box test using the COLTS facility. The multi-bay test article will be subjected to mechanical loads and internal pressure loads up to design ultimate load. Mechanical and pressure loads will be applied independently in some tests and simultaneously in others.

  11. Credit PSR. The interior of the grinder room appears as ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit PSR. The interior of the grinder room appears as seen looking southeast (148°), showing the remaining grinder equipment in the building. Note the blow-out wall in the background, and the water sprinkler head positioned over the hopper. The hopper top is connected to the dust receiver in the adjacent room. The blow-out wall is constructed to relieve pressure easily should an explosion occur, thus minimizing damage to the rest of the building structure. The floor has a conductive coating which dissipates static electrical charges that might otherwise cause fires - Jet Propulsion Laboratory Edwards Facility, Oxidizer Grinder Building, Edwards Air Force Base, Boron, Kern County, CA

  12. High Pressure Industrial Water Facility

    NASA Technical Reports Server (NTRS)

    1992-01-01

    In conjunction with Space Shuttle Main Engine testing at Stennis, the Nordberg Water Pumps at the High Pressure Industrial Water Facility provide water for cooling the flame deflectors at the test stands during test firings.

  13. An Evidence-Based Cue-Selection Guide and Logic Model to Improve Pressure Ulcer Prevention in Long-term Care.

    PubMed

    Yap, Tracey L; Kennerly, Susan M; Bergstrom, Nancy; Hudak, Sandra L; Horn, Susan D

    2016-01-01

    Pressure ulcers have consistently resisted prevention efforts in long-term care facilities nationwide. Recent research has described cueing innovations that-when selected according to the assumptions and resources of particular facilities-support best practices of pressure ulcer prevention. This article synthesizes that research into a unified, dynamic logic model to facilitate effective staff implementation of a pressure ulcer prevention program.

  14. Preliminary Results of Field Emission Cathode Tests

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Kovaleski, Scott D.

    2001-01-01

    Preliminary screening tests of field emission cathodes such as chemical vapor deposited (CVD) diamond, textured pyrolytic graphite, and textured copper were conducted at background pressures typical of electric thruster test facilities to assess cathode performance and stability. Very low power electric thrusters which provide tens to hundreds micronewtons of thrust may need field emission neutralizers that have a capability of tens to hundreds of microamperes. From current voltage characteristics, it was found that the CVD diamond and textured metals cathodes clearly satisfied the Fowler-Nordheim emission relation. The CVD diamond and a textured copper cathode had average current densities of 270 and 380 mA/sq cm, respectively, at the beginning-of-life. After a few hours of operation the cathode emission currents degraded by 40 to 75% at background pressures in the 10(exp -5) Pa to 10(exp -4) Pa range. The textured pyrolytic graphite had a modest current density at beginning-of-life of 84 mA/sq cm, but this cathode was the most stable of all. Extended testing of the most promising cathodes is warranted to determine if current degradation is a burn-in effect or whether it is a long-term degradation process. Preliminary experiments with ferroelectric emission cathodes, which are ceramics with spontaneous electric polarization, were conducted. Peak current densities of 30 to 120 mA/sq cm were obtained for pulse durations of about 500 ns in the 10(exp -4) Pa pressure range.

  15. High-Pressure Gaseous Burner (HPGB) Facility Completed for Quantitative Laser Diagnostics Calibration

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet

    2002-01-01

    A gas-fueled high-pressure combustion facility with optical access, which was developed over the last 2 years, has just been completed. The High Pressure Gaseous Burner (HPGB) rig at the NASA Glenn Research Center can operate at sustained pressures up to 60 atm with a variety of gaseous fuels and liquid jet fuel. The facility is unique as it is the only continuous-flow, hydrogen-capable, 60-atm rig in the world with optical access. It will provide researchers with new insights into flame conditions that simulate the environment inside the ultra-high-pressure-ratio combustion chambers of tomorrow's advanced aircraft engines. The facility provides optical access to the flame zone, enabling the calibration of nonintrusive optical diagnostics to measure chemical species and temperature. The data from the HPGB rig enables the validation of numerical codes that simulate gas turbine combustors, such as the National Combustor Code (NCC). The validation of such numerical codes is often best achieved with nonintrusive optical diagnostic techniques that meet these goals: information-rich (multispecies) and quantitative while providing good spatial and time resolution. Achieving these goals is a challenge for most nonintrusive optical diagnostic techniques. Raman scattering is a technique that meets these challenges. Raman scattering occurs when intense laser light interacts with molecules to radiate light at a shifted wavelength (known as the Raman shift). This shift in wavelength is unique to each chemical species and provides a "fingerprint" of the different species present. The facility will first be used to gather a comprehensive data base of laser Raman spectra at high pressures. These calibration data will then be used to quantify future laser Raman measurements of chemical species concentration and temperature in this facility and other facilities that use Raman scattering.

  16. Determination of Extrapolation Distance With Pressure Signatures Measured at Two to Twenty Span Lengths From Two Low-Boom Models

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.; Kuhn, Neil S.

    2006-01-01

    A study was performed to determine a limiting separation distance for the extrapolation of pressure signatures from cruise altitude to the ground. The study was performed at two wind-tunnel facilities with two research low-boom wind-tunnel models designed to generate ground pressure signatures with "flattop" shapes. Data acquired at the first wind-tunnel facility showed that pressure signatures had not achieved the desired low-boom features for extrapolation purposes at separation distances of 2 to 5 span lengths. However, data acquired at the second wind-tunnel facility at separation distances of 5 to 20 span lengths indicated the "limiting extrapolation distance" had been achieved so pressure signatures could be extrapolated with existing codes to obtain credible predictions of ground overpressures.

  17. Improving Access to Institutional Delivery through Janani Shishu Suraksha Karyakram: Evidence from Rural Haryana, North India

    PubMed Central

    Salve, Harshal R.; Charlette, Lena; Kankaria, Ankita; Rai, Sanjay K.; Krishnan, Anand; Kant, Shashi

    2017-01-01

    Background: In India, Janani Shishu Suraksha Karyakaram (JSSK) was launched in the year 2011 to assure cashless institutional delivery to pregnant women, including free transport and diet. Objective: To assess the impact of JSSK on institutional delivery. Materials and Methods: A record review was done at the primary health care facility in Faridabad district of Haryana from August 2010 to March 2013. Focus group discussion/ informal interviews were carried out to get an insight about various factors determining use / non-use of health facilities for delivery. Results: Institutional delivery increased by almost 2.7 times (197 Vs 537) after launch of JSSK (p < 0.001). For institutional deliveries, the most important facilitator as well as barrier was identified as ambulance service under JSSK and pressure by elders in the family respectively. Conclusions: JSSK scheme had a positive impact on institutional deliveries. It should be supported with targeted intervention designed to facilitate appropriate decision-making at family level in order to address barriers to institutional delivery. PMID:28553021

  18. Erosion rate diagnostics in ion thrusters using laser-induced fluorescence

    NASA Technical Reports Server (NTRS)

    Gaeta, C. J.; Matossian, J. N.; Turley, R. S.; Beattie, J. R.; Williams, J. D.; Williamson, W. S.

    1993-01-01

    We have used laser-induced fluorescence (LIF) to monitor the charge-exchange ion erosion of the molybdenum accelerator electrode in ion thrusters. This real-time, nonintrusive method was implemented by operating a 30cm-diam ring-cusp thruster using xenon propellant. With the thruster operating at a total power of 5 kW, laser radiation at a wavelength of 390 nm (corresponding to a ground state atomic transition of molybdenum) was directed through the extracted ion beam adjacent to the downstream surface of the molybdenum accelerator electrode. Molybdenum atoms, sputtered from this surface as a result of charge-exchange ion erosion, were excited by the laser radiation. The intensity of the laser-induced fluorescence radiation, which is proportional to the sputter rate of the molybdenum atoms, was measured and correlated with variations in thruster operating conditions such as accelerator electrode voltage, accelerator electrode current, and test facility background pressure. We also demonstrated that the LIF technique has sufficient sensitivity and spatial resolution to evaluate accelerator electrode lifetime in ground-based test facilities.

  19. A rack is installed in MPLM Leonardo

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Workers (right, left and center) in the Space Station Processing Facility wait to install a laboratory rack in the Multi-Purpose Logistics Module Leonardo (background). Leonardo is the first of three such pressurized modules that will serve as the International Space Station's '''moving vans,''' carrying laboratory racks filled with equipment, experiments and supplies to and from the Space Station aboard the Space Shuttle. Approximately 21 feet long and 15 feet in diameter, Leonardo will be launched on Shuttle mission STS-102 March 1, 2001. On that flight, Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, being carried to the ISS on the Jan. 19, 2001, launch of STS-98.

  20. Laboratory racks are installed in the MPLM Leonardo

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Space Station Processing Facility, the Rack Insertion Unit lifts another laboratory rack to the Multi-Purpose Logistics Module Leonardo, in the background. The MPLM is the first of three such pressurized modules that will serve as the International Space Station's '''moving vans,''' carrying laboratory racks filled with equipment, experiments and supplies to and from the International Space Station aboard the Space Shuttle. Leonardo will be launched for the first time March 1, 2001, on Shuttle mission STS-102. On that flight, Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, being carried to the ISS on the Jan. 19, 2001, launch of STS-98.

  1. NASA GRC's High Pressure Burner Rig Facility and Materials Test Capabilities

    NASA Technical Reports Server (NTRS)

    Robinson, R. Craig

    1999-01-01

    The High Pressure Burner Rig (HPBR) at NASA Glenn Research Center is a high-velocity. pressurized combustion test rig used for high-temperature environmental durability studies of advanced materials and components. The facility burns jet fuel and air in controlled ratios, simulating combustion gas chemistries and temperatures that are realistic to those in gas turbine engines. In addition, the test section is capable of simulating the pressures and gas velocities representative of today's aircraft. The HPBR provides a relatively inexpensive. yet sophisticated means for researchers to study the high-temperature oxidation of advanced materials. The facility has the unique capability of operating under both fuel-lean and fuel-rich gas mixtures. using a fume incinerator to eliminate any harmful byproduct emissions (CO, H2S) of rich-burn operation. Test samples are easily accessible for ongoing inspection and documentation of weight change, thickness, cracking, and other metrics. Temperature measurement is available in the form of both thermocouples and optical pyrometery. and the facility is equipped with quartz windows for observation and video taping. Operating conditions include: (1) 1.0 kg/sec (2.0 lbm/sec) combustion and secondary cooling airflow capability: (2) Equivalence ratios of 0.5- 1.0 (lean) to 1.5-2.0 (rich), with typically 10% H2O vapor pressure: (3) Gas temperatures ranging 700-1650 C (1300-3000 F): (4) Test pressures ranging 4-12 atmospheres: (5) Gas flow velocities ranging 10-30 m/s (50-100) ft/sec.: and (6) Cyclic and steady-state exposure capabilities. The facility has historically been used to test coupon-size materials. including metals and ceramics. However complex-shaped components have also been tested including cylinders, airfoils, and film-cooled end walls. The facility has also been used to develop thin-film temperature measurement sensors.

  2. Influence of condensation on heat flux and pressure measurements in a detonation-based short-duration facility

    NASA Astrophysics Data System (ADS)

    Haase, S.; Olivier, H.

    2017-10-01

    Detonation-based short-duration facilities provide hot gas with very high stagnation pressures and temperatures. Due to the short testing time, complex and expensive cooling techniques of the facility walls are not needed. Therefore, they are attractive for economical experimental investigations of high-enthalpy flows such as the flow in a rocket engine. However, cold walls can provoke condensation of the hot combustion gas at the walls. This has already been observed in detonation tubes close behind the detonation wave, resulting in a loss of tube performance. A potential influence of condensation at the wall on the experimental results, like wall heat fluxes and static pressures, has not been considered so far. Therefore, in this study the occurrence of condensation and its influence on local heat flux and pressure measurements has been investigated in the nozzle test section of a short-duration rocket-engine simulation facility. This facility provides hot water vapor with stagnation pressures up to 150 bar and stagnation temperatures up to 3800 K. A simple method has been developed to detect liquid water at the wall without direct optical access to the flow. It is shown experimentally and theoretically that condensation has a remarkable influence on local measurement values. The experimental results indicate that for the elimination of these influences the nozzle wall has to be heated to a certain temperature level, which exclusively depends on the local static pressure.

  3. NASA low-speed centrifugal compressor for fundamental research

    NASA Technical Reports Server (NTRS)

    Wood, J. R.; Adam, P. W.; Buggele, A. E.

    1983-01-01

    A new centrifugal compressor facility being built by the NASA Lewis Research Center is described; its purpose is to obtain 'benchmark' experimental data for internal flow code verification and modeling. The facility will be heavily instrumented with standard pressure and temperature probes and have provisions for flow visualization and laser Doppler velocimetry. The facility will accommodate rotational speeds to 2400 rpm and will be rated at pressures to 1.25 atm. The initial compressor stage for testing is geometrically and dynamically representative of modern high-performance stages with the exception of Mach number levels. Design exit tip speed for the initial stage is 500 ft/sec with a pressure ratio of 1.17. The rotor exit backsweep is 55 deg from radial. The facility is expected to be operational in the first half of 1985.

  4. High-pressure Experimental Studies on Geo-liquids Using Synchrotron Radiation at the Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yanbin; Shen, Guoyin

    2014-12-23

    Here, we review recent progress in studying silicate, carbonate, and metallic liquids of geological and geophysical importance at high pressure and temperature, using the large-volume high-pressure devices at the third-generation synchrotron facility of the Advanced Photon Source, Argonne National Laboratory. These integrated high-pressure facilities now offer a unique combination of experimental techniques that allow researchers to investigate structure, density, elasticity, viscosity, and interfacial tension of geo-liquids under high pressure, in a coordinated and systematic fashion. Moreover, we describe experimental techniques, along with scientific highlights. Future developments are also discussed.

  5. 33 CFR 105.305 - Facility Security Assessment (FSA) requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Facility Security Assessment (FSA... SECURITY MARITIME SECURITY MARITIME SECURITY: FACILITIES Facility Security Assessment (FSA) § 105.305 Facility Security Assessment (FSA) requirements. (a) Background. The facility owner or operator must ensure...

  6. 33 CFR 105.305 - Facility Security Assessment (FSA) requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Facility Security Assessment (FSA... SECURITY MARITIME SECURITY MARITIME SECURITY: FACILITIES Facility Security Assessment (FSA) § 105.305 Facility Security Assessment (FSA) requirements. (a) Background. The facility owner or operator must ensure...

  7. 33 CFR 105.305 - Facility Security Assessment (FSA) requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Facility Security Assessment (FSA... SECURITY MARITIME SECURITY MARITIME SECURITY: FACILITIES Facility Security Assessment (FSA) § 105.305 Facility Security Assessment (FSA) requirements. (a) Background. The facility owner or operator must ensure...

  8. 33 CFR 105.305 - Facility Security Assessment (FSA) requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Facility Security Assessment (FSA... SECURITY MARITIME SECURITY MARITIME SECURITY: FACILITIES Facility Security Assessment (FSA) § 105.305 Facility Security Assessment (FSA) requirements. (a) Background. The facility owner or operator must ensure...

  9. 33 CFR 105.305 - Facility Security Assessment (FSA) requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Facility Security Assessment (FSA... SECURITY MARITIME SECURITY MARITIME SECURITY: FACILITIES Facility Security Assessment (FSA) § 105.305 Facility Security Assessment (FSA) requirements. (a) Background. The facility owner or operator must ensure...

  10. Reactivation and upgrade of the NASA Ames 16-Inch Shock Tunnel - Status report

    NASA Technical Reports Server (NTRS)

    Bogdanoff, David W.; Zambrana, Horacio A.; Cavolowsky, John A.; Newfield, Mark E.; Cornelison, Charles J.; Miller, Robert J.

    1992-01-01

    The NASA Ames 16-Inch Shock Tunnel has been reactivated after seventeen years of inactivity. In the years before deactivating the facility, it was operated at enthalpies of 4,700 J/gm and pressures up to 260 atm or at enthalpies of 1900 J/gm over a wide pressure range. Since reactivating, the facility has been operated at enthalpies up to 12,000 J/gm and pressures up to 408 atm. The present paper describes the steps taken in upgrading the facility and summarizes the currently achievable conditions. The selection of the driver gas, the steps taken to improve the driver burn, and the diaphragm opening techniques are described. The pressure and heat flux instrumentation, the optical diagnostics and the data acquisition system are also described.

  11. Analysis of Fluctuating Static Pressure Measurements in the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Igoe, William B.

    1996-01-01

    Dynamic measurements of fluctuating static pressure levels were taken with flush-mounted, high-frequency response pressure transducers at 11 locations in the circuit of the National Transonic Facility (NTF) across the complete operating range of this wind tunnel. Measurements were taken at test-section Mach numbers from 0.1 to 1.2, at pressures from 1 to 8.6 atm, and at temperatures from ambient to -250 F, which resulted in dynamic flow disturbance measurements at the highest Reynolds numbers available in a transonic ground test facility. Tests were also made by independent variation of the Mach number, the Reynolds number, or the fan drive power while the other two parameters were held constant, which for the first time resulted in a distinct separation of the effects of these three important parameters.

  12. 43 CFR 3272.11 - How do I describe the proposed utilization facility?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... rates, pressures, and temperatures; facility net and gross electrical generation; and, if applicable, interconnection with other utilization facilities. If it is a direct use facility, send us the information we need...

  13. 43 CFR 3272.11 - How do I describe the proposed utilization facility?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... rates, pressures, and temperatures; facility net and gross electrical generation; and, if applicable, interconnection with other utilization facilities. If it is a direct use facility, send us the information we need...

  14. 43 CFR 3272.11 - How do I describe the proposed utilization facility?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... rates, pressures, and temperatures; facility net and gross electrical generation; and, if applicable, interconnection with other utilization facilities. If it is a direct use facility, send us the information we need...

  15. Hurricane risk mitigation - High Pressure Gas Facility

    NASA Image and Video Library

    2008-07-29

    A worker pours concrete as part of a nitrogen risk mitigation project at the High Pressure Gas Facility at Stennis Space Center. The concrete slab will provide the foundation needed to place new pumps at the site and is part of ongoing hurricane-related mitigation work at Stennis.

  16. Hurricane risk mitigation - High Pressure Gas Facility

    NASA Technical Reports Server (NTRS)

    2008-01-01

    A worker pours concrete as part of a nitrogen risk mitigation project at the High Pressure Gas Facility at Stennis Space Center. The concrete slab will provide the foundation needed to place new pumps at the site and is part of ongoing hurricane-related mitigation work at Stennis.

  17. Pressure ulcer multidisciplinary teams via telemedicine: a pragmatic cluster randomized stepped wedge trial in long term care.

    PubMed

    Stern, Anita; Mitsakakis, Nicholas; Paulden, Mike; Alibhai, Shabbir; Wong, Josephine; Tomlinson, George; Brooker, Ann-Sylvia; Krahn, Murray; Zwarenstein, Merrick

    2014-02-24

    The study was conducted to determine the clinical and cost effectiveness of enhanced multi-disciplinary teams (EMDTs) vs. 'usual care' for the treatment of pressure ulcers in long term care (LTC) facilities in Ontario, Canada We conducted a multi-method study: a pragmatic cluster randomized stepped-wedge trial, ethnographic observation and in-depth interviews, and an economic evaluation. Long term care facilities (clusters) were randomly allocated to start dates of the intervention. An advance practice nurse (APN) with expertise in skin and wound care visited intervention facilities to educate staff on pressure ulcer prevention and treatment, supported by an off-site hospital based expert multi-disciplinary wound care team via email, telephone, or video link as needed. The primary outcome was rate of reduction in pressure ulcer surface area (cm2/day) measured on before and after standard photographs by an assessor blinded to facility allocation. Secondary outcomes were time to healing, probability of healing, pressure ulcer incidence, pressure ulcer prevalence, wound pain, hospitalization, emergency department visits, utility, and cost. 12 of 15 eligible LTC facilities were randomly selected to participate and randomized to start date of the intervention following the stepped wedge design. 137 residents with a total of 259 pressure ulcers (stage 2 or greater) were recruited over the 17 month study period. No statistically significant differences were found between control and intervention periods on any of the primary or secondary outcomes. The economic evaluation demonstrated a mean reduction in direct care costs of $650 per resident compared to 'usual care'. The qualitative study suggested that onsite support by APN wound specialists was welcomed, and is responsible for reduced costs through discontinuation of expensive non evidence based treatments. Insufficient allocation of nursing home staff time to wound care may explain the lack of impact on healing. Enhanced multi-disciplinary wound care teams were cost effective, with most benefit through cost reduction initiated by APNs, but did not improve the treatment of pressure ulcers in nursing homes. Policy makers should consider the potential yield of strengthening evidence based primary care within LTC facilities, through outreach by APNs. ClinicalTrials.gov identifier NCT01232764.

  18. 46 CFR 160.151-45 - Equipment required for servicing facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...); (d) Hot presses (if applicable); (e) Safety-type glue pots or equivalents; (f) Abrasive devices; (g..., or other pressure-measurement device or pressure gauge of equivalent accuracy and sensitivity; (j... liferafts, unless the facility services only non-davit-launched liferafts; (q) A supply of parts for all...

  19. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, the U.S. Node 2 (center) and the Japanese Experiment Module (JEM), background right, await a Multi-Element Integrated Test (MEIT). Node 2 attaches to the end of the U.S. Lab on the International Space Station and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The National Space Development Agency of Japan (NASDA) developed their laboratory at the Tsukuba Space Center near Tokyo. It is the first element, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-08-27

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, the U.S. Node 2 (center) and the Japanese Experiment Module (JEM), background right, await a Multi-Element Integrated Test (MEIT). Node 2 attaches to the end of the U.S. Lab on the International Space Station and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The National Space Development Agency of Japan (NASDA) developed their laboratory at the Tsukuba Space Center near Tokyo. It is the first element, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  20. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto (center) gets information about the facility while on a tour of KSC. Behind the group is the Japanese Experiment Module (JEM)/pressurized module. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of JEM.

    NASA Image and Video Library

    2003-06-12

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto (center) gets information about the facility while on a tour of KSC. Behind the group is the Japanese Experiment Module (JEM)/pressurized module. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of JEM.

  1. Evaluation of a Quartz Bourdon Pressure Gage of Wind Tunnel Mach Number Control System Application

    NASA Technical Reports Server (NTRS)

    Chapin, W. G.

    1986-01-01

    A theoretical and experimental study was undertaken to determine the feasibility of using the National Transonic Facility's high accuracy Mach number measurement system as part of a closed loop Mach number control system. The theoretical and experimental procedures described are applicable to the engineering design of pressure control systems. The results show that the dynamic response characteristics of the NTF Mach number gage (a Ruska DDR-6000 quartz absolute pressure gage) coupled to a typical length of pressure tubing were only marginally acceptable within a limited range of the facility's total pressure envelope and could not be used in the Mach number control system.

  2. Hypertension and hematologic parameters in a community near a uranium processing facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, Sara E., E-mail: swagner@uga.edu; Burch, James B.; South Carolina Statewide Cancer Prevention and Control Program, Columbia, SC

    Background: Environmental uranium exposure originating as a byproduct of uranium processing can impact human health. The Fernald Feed Materials Production Center functioned as a uranium processing facility from 1951 to 1989, and potential health effects among residents living near this plant were investigated via the Fernald Medical Monitoring Program (FMMP). Methods: Data from 8216 adult FMMP participants were used to test the hypothesis that elevated uranium exposure was associated with indicators of hypertension or changes in hematologic parameters at entry into the program. A cumulative uranium exposure estimate, developed by FMMP investigators, was used to classify exposure. Systolic and diastolicmore » blood pressure and physician diagnoses were used to assess hypertension; and red blood cells, platelets, and white blood cell differential counts were used to characterize hematology. The relationship between uranium exposure and hypertension or hematologic parameters was evaluated using generalized linear models and quantile regression for continuous outcomes, and logistic regression or ordinal logistic regression for categorical outcomes, after adjustment for potential confounding factors. Results: Of 8216 adult FMMP participants 4187 (51%) had low cumulative uranium exposure, 1273 (15%) had moderate exposure, and 2756 (34%) were in the high (>0.50 Sievert) cumulative lifetime uranium exposure category. Participants with elevated uranium exposure had decreased white blood cell and lymphocyte counts and increased eosinophil counts. Female participants with higher uranium exposures had elevated systolic blood pressure compared to women with lower exposures. However, no exposure-related changes were observed in diastolic blood pressure or hypertension diagnoses among female or male participants. Conclusions: Results from this investigation suggest that residents in the vicinity of the Fernald plant with elevated exposure to uranium primarily via inhalation exhibited decreases in white blood cell counts, and small, though statistically significant, gender-specific alterations in systolic blood pressure at entry into the FMMP.« less

  3. FACILITY 846, SOUTHEAST END ON LEFT, WITH FACILITY 845 ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 846, SOUTHEAST END ON LEFT, WITH FACILITY 845 ON RIGHT AND FACILITY 847 IN CENTER BACKGROUND, QUADRANGLE J, VIEW FACING NORTH. - Schofield Barracks Military Reservation, Quadrangles I & J Barracks Type, Between Wright-Smith & Capron Avenues near Williston Avenue, Wahiawa, Honolulu County, HI

  4. Recommended Practice for Pressure Measurements and Calculation of Effective Pumping Speeds During Electric Propulsion Testing

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.; Walker, Mitchell; Swiatek, Michael W.; Yim, John T.

    2013-01-01

    The electric propulsion community has been implored to establish and implement a set of universally applicable test standards during the research, development, and qualification of electric propulsion systems. Variability between facility-to-facility and more importantly ground-to-flight performance can result in large margins in application or aversion to mission infusion. Performance measurements and life testing under appropriate conditions can be costly and lengthy. Measurement practices must be consistent, accurate, and repeatable. Additionally, the measurements must be universally transportable across facilities throughout the development, qualification, spacecraft integration, and on-orbit performance. A recommended practice for making pressure measurements, pressure diagnostics, and calculating effective pumping speeds with justification is presented.

  5. Spontaneous Raman Scattering Diagnostics for High-pressure Gaseous Flames

    NASA Technical Reports Server (NTRS)

    Kojima, Jun; Nguyen, Quang-Viet; Reddy, D. R. (Technical Monitor)

    2002-01-01

    A high-pressure (up to 60 atm) gaseous burner facility with optical access that provides steady, reproducible flames with high precision, and the ability to use multiple fuel/oxidizer combinations has been developed. In addition, a high-performance spontaneous Raman scattering system for use in the above facility has also been developed. Together, the two systems will be used to acquire and establish a comprehensive Raman scattering spectral database for use as a quantitative high-pressure calibration of single-shot Raman scattering measurements in high-pressure combustion systems. Using these facilities, the Raman spectra of H2-Air flames were successfully measured at pressures up to 20 atm. The spectra demonstrated clear rotational and ro-vibrational Raman features of H2, N2, and H2O. theoretical Raman spectra of pure rotational H2, vibrational H2, and vibrational N2 were calculated using a classical harmonic-oscillator model with pressure broadening effects and fitted to the data. At a gas temperature of 1889 K for a phi = 1.34 H2-Air flame, the model and the data showed good agreement, confirming a ro-vibrational equilibrium temperature.

  6. Is There a Clinically Meaningful Change in the Blood Pressure of Osteoarthritis Patients with Comorbid Hypertension During the Course of Balneotherapy?

    PubMed Central

    Hayta, Emrullah; Yılmaz, Mehmet Birhan; Yayıkçı, İlker; Özer, Zafer; Şahin, Özlem

    2015-01-01

    Background: Balneotherapy (BT) is a treatment modality that uses the physical and chemical effects of water, including thermomineral, acratothermal, and acratopegal waters. It has many effects on cardiovascular system. Aim: The aim of the study is to investigate the effects of 3-week BT on blood pressure of osteoarthritis (OA) patients with no hypertension (HT), and controlled or uncontrolled HT. Materials and Methods: The OA patients (n = 270) were divided into three groups: No HT, controlled HT, and uncontrolled HT. All the groups received BT in the facilities of our university hospital at the same time every day (10:00-11:30 AM) for 10 min per day, 5 days per week, for a total duration of 15 days in a 3-week period. Systolic and diastolic blood pressures and pulse rates were measured before and after BT on daily basis. Results: Overall, (1) the pulse rates of study groups measured after BT were significantly increased compared to before BT; (2) the systolic blood pressures of study groups measured before and after BT were found as comparable; and (3) the diastolic blood pressures of no HT and controlled HT groups measured before and after BT were not statistically significant (P > 0.05); however, in the uncontrolled HT group, the diastolic blood pressure showed a decreasing trend after BT (P < 0.05). Conclusions: In patients with OA, BT can be safely used without resulting in any meaningful changes in systolic and diastolic blood pressures in patients with normal and controlled HT but a decrease in diastolic blood pressure of patients with uncontrolled HT. This may be an advantage in OA patients having HT as comorbid disease. PMID:26713300

  7. JEM Experiment Logistics Module Pressurized Section

    NASA Image and Video Library

    2007-04-02

    In the Space Station Processing Facility, the JEM Experiment Logistics Module Pressurized Section is lowered onto a scale for weight and center-of-gravity measurements. The module will then be moved to a work stand. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.

  8. Evaluation of flow quality in two large NASA wind tunnels at transonic speeds

    NASA Technical Reports Server (NTRS)

    Harvey, W. D.; Stainback, P. C.; Owen, F. K.

    1980-01-01

    Wind tunnel testing of low drag airfoils and basic transition studies at transonic speeds are designed to provide high quality aerodynamic data at high Reynolds numbers. This requires that the flow quality in facilities used for such research be excellent. To obtain a better understanding of the characteristics of facility disturbances and identification of their sources for possible facility modification, detailed flow quality measurements were made in two prospective NASA wind tunnels. Experimental results are presented of an extensive and systematic flow quality study of the settling chamber, test section, and diffuser in the Langley 8 foot transonic pressure tunnel and the Ames 12 foot pressure wind tunnel. Results indicate that the free stream velocity and pressure fluctuation levels in both facilities are low at subsonic speeds and are so high as to make it difficult to conduct meaningful boundary layer control and transition studies at transonic speeds.

  9. 4.5-kW Hall Effect Thruster Evaluated

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    2000-01-01

    As part of an Interagency Agreement with the Air Force Research Lab (AFRL), a space simulation test of a Russian SPT 140 Hall Effect Thruster was completed in September 1999 at Vacuum Facility 6 at the NASA Glenn Research Center at Lewis Field. The thruster was subjected to a three-part test sequence that included thrust and performance characterization, electromagnetic interference, and plume contamination. SPT 140 is a 4.5-kW thruster developed under a joint agreement between AFRL, Atlantic Research Corp, and Space Systems/Loral, and was manufactured by the Fakal Experimental Design Bureau of Russia. All objectives were satisfied, and the thruster performed exceptionally well during the 120-hr test program, which comprised 33 engine firings. The Glenn testing provided a critical contribution to the thruster development effort, and the large volume and high pumping speed of this vacuum facility was key to the test s success. The low background pressure (1 10 6 torr) provided a more accurate representation of space vacuum than is possible in most vacuum chambers. The facility had been upgraded recently with new cryogenic pumps and sputter shielding to support the active electric propulsion program at Glenn. The Glenn test team was responsible for all test support equipment, including the thrust stand, power supplies, data acquisition, electromagnetic interference measurement equipment, and the contamination measurement system.

  10. Plasma Oscillation Characterization of NASA's HERMeS Hall Thruster via High Speed Imaging

    NASA Technical Reports Server (NTRS)

    Huang, Wensheng; Kamhawi, Hani; Haag, Thomas W.

    2016-01-01

    The performance and facility effect characterization tests of NASA's 12.5-kW Hall Effect Rocket with Magnetic Shielding had been completed. As a part of these tests, three plasma oscillation characterization studies were performed to help determine operation settings and quantify margins. The studies included the magnetic field strength variation study, background pressure effect study, and cathode flow fraction study. Separate high-speed videos of the thruster including the cathode and of only the cathode were recorded. Breathing mode at 10-15 kHz and cathode gradient-driven mode at 60-75 kHz were observed. An additional high frequency (40-70 kHz) global oscillation mode with sinusoidal probability distribution function was identified.

  11. STS-92 crew takes part in a Leak Seal Kit Fit Check in the SSPF

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Space Station Processing Facility, STS-92 crew members take part in a Leak Seal Kit Fit Check in connection with the Pressurized Mating Adapter -3 in the background. From left are Mission Specialist Peter J.K. 'Jeff' Wisoff (Ph.D.), Pilot Pamela A. Melroy, Commander Brian Duffy, Mission Specialist Koichi Wakata, who represents the National Space Development Agency of Japan (NASDA), Brian Warkentine, with JSC, and a Boeing worker at right. Also participating are other crew members Mission Specialists Leroy Chiao (Ph.D.), Michael E. Lopez-Alegria and William Surles 'Bill' McArthur Jr. The mission payload also includes an integrated truss structure (Z-1 truss). Launch of STS-92 is scheduled for Feb. 24, 2000.

  12. NASA Wallops Flight Facility Air-Sea Interaction Research Facility

    NASA Technical Reports Server (NTRS)

    Long, Steven R.

    1992-01-01

    This publication serves as an introduction to the Air-Sea Interaction Research Facility at NASA/GSFC/Wallops Flight Facility. The purpose of this publication is to provide background information on the research facility itself, including capabilities, available instrumentation, the types of experiments already done, ongoing experiments, and future plans.

  13. A study of the local pressure field in turbulent shear flow and its relation to aerodynamic noise generation

    NASA Technical Reports Server (NTRS)

    Jones, B. G.; Planchon, H. P., Jr.

    1973-01-01

    Work during the period of this report has been in three areas: (1) pressure transducer error analysis, (2) fluctuating velocity and pressure measurements in the NASA Lewis 6-inch diameter quiet jet facility, and (3) measurement analysis. A theory was developed and experimentally verified to quantify the pressure transducer velocity interference error. The theory and supporting experimental evidence show that the errors are a function of the velocity field's turbulent structure. It is shown that near the mixing layer center the errors are negligible. Turbulent velocity and pressure measurements were made in the NASA Lewis quiet jet facility. Some preliminary results are included.

  14. Low Pressure Seeder Development for PIV in Large Scale Open Loop Wind Tunnels

    NASA Astrophysics Data System (ADS)

    Schmit, Ryan

    2010-11-01

    A low pressure seeding techniques have been developed for Particle Image Velocimetry (PIV) in large scale wind tunnel facilities was performed at the Subsonic Aerodynamic Research Laboratory (SARL) facility at Wright-Patterson Air Force Base. The SARL facility is an open loop tunnel with a 7 by 10 foot octagonal test section that has 56% optical access and the Mach number varies from 0.2 to 0.5. A low pressure seeder sprayer was designed and tested in the inlet of the wind tunnel. The seeder sprayer was designed to produce an even and uniform distribution of seed while reducing the seeders influence in the test section. ViCount Compact 5000 using Smoke Oil 180 was using as the seeding material. The results show that this low pressure seeder does produce streaky seeding but excellent PIV images are produced.

  15. Calibration for Thrust and Airflow Measurements in the CE-22 Advanced Nozzle Test Facility

    NASA Technical Reports Server (NTRS)

    Werner, Roger A.; Wolter, John D.

    2010-01-01

    CE-22 facility procedures and measurements for thrust and airflow calibration obtained with choked-flow ASME nozzles are presented. Six calibration nozzles are used at an inlet total pressure from 20 to 48 psia. Throat areas are from 9.9986 to 39.986 sq. in.. Throat Reynolds number varies from 1.8 to 7.9 million. Nozzle gross thrust coefficient (CFG) uncertainty is 0.25 to 0.75 percent, with smaller uncertainly generally for larger nozzles and higher inlet total pressure. Nozzle discharge coefficient (CDN) uncertainty is 0.15 percent or less for all the data. ASME nozzle calibrations need to be done before and after research model testing to achieve these uncertainties. In addition, facility capability in terms of nozzle pressure ratio (NPR) and nozzle airflow are determined. Nozzle pressure ratio of 50 or more is obtainable at 40 psia for throat areas between 20 and 30 sq. in.. Also presented are results for two of the ASME nozzles vectored at 10deg, a dead-weight check of the vertical (perpendicular to the jet axis) force measurement, a calibration of load cell forces for the effects of facility tank deflection with tank pressure, and the calibration of the metric-break labyrinth seal.

  16. Low-background Gamma Spectroscopy at Sanford Underground Laboratory

    NASA Astrophysics Data System (ADS)

    Chiller, Christopher; Alanson, Angela; Mei, Dongming

    2014-03-01

    Rare-event physics experiments require the use of material with unprecedented radio-purity. Low background counting assay capabilities and detectors are critical for determining the sensitivity of the planned ultra-low background experiments. A low-background counting, LBC, facility has been built at the 4850-Level Davis Campus of the Sanford Underground Research Facility to perform screening of material and detector parts. Like many rare event physics experiments, our LBC uses lead shielding to mitigate background radiation. Corrosion of lead brick shielding in subterranean installations creates radon plate-out potential as well as human risks of ingestible or respirable lead compounds. Our LBC facilities employ an exposed lead shield requiring clean smooth surfaces. A cleaning process of low-activity silica sand blasting and borated paraffin hot coating preservation was employed to guard against corrosion due to chemical and biological exposures. The resulting lead shield maintains low background contribution integrity while fully encapsulating the lead surface. We report the performance of the current LBC and a plan to develop a large germanium well detector for PMT screening. Support provided by Sd governors research center-CUBED, NSF PHY-0758120 and Sanford Lab.

  17. Synthetic fiber production facilities: Background information for proposed standards

    NASA Astrophysics Data System (ADS)

    Goodwin, D. R.

    1982-10-01

    Standards of performance to control emissions of volatile organic compounds (VOC) from new, modified, and reconstructed synthetic fiber production facilities are being proposed under section III of the Clean Air Act. This document contains information on the background and authority, regulatory alternatives considered, and environmental and economic impacts of the regulatory alternatives.

  18. Background-Oriented Schlieren Applications in NASA Glenn Research Center's Ground Test Facilities

    NASA Technical Reports Server (NTRS)

    Clem, Michelle M.; Woike, Mark R.

    2015-01-01

    This is a presentation for an invited session at the 2015 SciTech Conference 53rd AIAA Aerospace Sciences Meeting. The presentation covers the recent applications of Background-Oriented Schlieren in NASA Glenn Research Center's ground test facilities, such as the 8x6 SWT, open jet rig, and AAPL.

  19. Sanford Underground Research Facility - The United State's Deep Underground Research Facility

    NASA Astrophysics Data System (ADS)

    Vardiman, D.

    2012-12-01

    The 2.5 km deep Sanford Underground Research Facility (SURF) is managed by the South Dakota Science and Technology Authority (SDSTA) at the former Homestake Mine site in Lead, South Dakota. The US Department of Energy currently supports the development of the facility using a phased approach for underground deployment of experiments as they obtain an advanced design stage. The geology of the Sanford Laboratory site has been studied during the 125 years of operations at the Homestake Mine and more recently as part of the preliminary geotechnical site investigations for the NSF's Deep Underground Science and Engineering Laboratory project. The overall geology at DUSEL is a well-defined stratigraphic sequence of schist and phyllites. The three major Proterozoic units encountered in the underground consist of interbedded schist, metasediments, and amphibolite schist which are crosscut by Tertiary rhyolite dikes. Preliminary geotechnical site investigations included drift mapping, borehole drilling, borehole televiewing, in-situ stress analysis, laboratory analysis of core, mapping and laser scanning of new excavations, modeling and analysis of all geotechnical information. The investigation was focused upon the determination if the proposed site rock mass could support the world's largest (66 meter diameter) deep underground excavation. While the DUSEL project has subsequently been significantly modified, these data are still available to provide a baseline of the ground conditions which may be judiciously extrapolated throughout the entire Proterozoic rock assemblage for future excavations. Recommendations for facility instrumentation and monitoring were included in the preliminary design of the DUSEL project design and include; single and multiple point extensometers, tape extensometers and convergence measurements (pins), load cells and pressure cells, smart cables, inclinometers/Tiltmeters, Piezometers, thermistors, seismographs and accelerometers, scanners (laser/LIDAR), surveying instruments, and surveying benchmarks and optical survey points. Currently an array of single and multipoint extensometers monitors the Davis Campus. A facility-wide micro seismic monitoring system is anticipated to be deployed during the latter half of 2012. This system is designed to monitor minor events initiated within the historical mined out portions of the facility. The major science programs for the coming five years consist of the MAJORANA DEMONSTRATOR (MJD) neutrinoless double beta decay experiment; the Large Underground Xenon (LUX) dark matter search, the Center for Ultralow Background Experiments at DUSEL (CUBED), numerous geoscience installations, Long-Baseline Neutrino Experiment (LBNE), a nuclear astrophysics program involving a low energy underground particle accelerator, second and third generation dark matter experiments, and additional low background counting facilities. The Sanford Lab facility is an active, U.S. based, deep underground research facility dedicated to science, affording the science community the opportunity to conduct unprecedented scientific research in a broad range of physics, biology and geoscience fields at depth. SURF is actively interested in hosting additional research collaborations and provides resources for full facility design, cost estimation, excavation, construction and support management services.

  20. NASA Low-Speed Centrifugal Compressor for Fundamental Research

    NASA Technical Reports Server (NTRS)

    Wood, J. R.; Adam, P. W.; Buggele, A. E.

    1983-01-01

    A centrifugal compressor facility being built by the NASA Lewis Research Center is described; its purpose is to obtain benchmark experimental data for internal flow code verification and modeling. The facility will be heavily instrumented with standard pressure and temperature probes and have provisions for flow visualization and laser Doppler velocimetry. The facility will accommodate rotational speeds to 2400 rpm and will be rated at pressures to 1.25 atm. The initial compressor stage for testing is geometrically and dynamically representative of modern high-performance stages with the exception of Mach number levels. Design exit tip speed for the initial stage is 500 ft/sec with a pressure ratio of 1.17. The rotor exit backsweep is 55 deg from radial.

  1. The National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Holmes, H. K.

    1986-01-01

    The National Transonic Facility, NTF, is a high Reynolds Number facility where the increase in Reynolds Number is obtained by operating at high pressures and low temperatures. Liquid nitrogen is allowed to vaporize, making gaseous nitrogen the test medium with temperatures extending down to approximately 100 degrees Kelvin. These factors have created unique, new challenges to those developing sensors and instrumentation. Pressure vessels, thermal enclosures or elaborate temperature compensations schemes, are needed for environmental protection and special materials are needed for sensors and model fabrication. The need for a new measurement, model deformation, was also created. An extensive program to develop the unique sensors and instrumentation was initiated. The data acquisition system and systems to measure aerodynamic forces and pressures, model attitude, and model deformation, are discussed.

  2. Computational Analyses in Support of Sub-scale Diffuser Testing for the A-3 Facility. Part 2; Unsteady Analyses and Risk Assessment

    NASA Technical Reports Server (NTRS)

    Ahuja, Vineet; Hosangadi, Ashvin; Allgood, Daniel

    2008-01-01

    Simulation technology can play an important role in rocket engine test facility design and development by assessing risks, providing analysis of dynamic pressure and thermal loads, identifying failure modes and predicting anomalous behavior of critical systems. This is especially true for facilities such as the proposed A-3 facility at NASA SSC because of a challenging operating envelope linked to variable throttle conditions at relatively low chamber pressures. Design Support of the feasibility of operating conditions and procedures is critical in such cases due to the possibility of startup/shutdown transients, moving shock structures, unsteady shock-boundary layer interactions and engine and diffuser unstart modes that can result in catastrophic failure. Analyses of such systems is difficult due to resolution requirements needed to accurately capture moving shock structures, shock-boundary layer interactions, two-phase flow regimes and engine unstart modes. In a companion paper, we will demonstrate with the use of CFD, steady analyses advanced capability to evaluate supersonic diffuser and steam ejector performance in the sub-scale A-3 facility. In this paper we will address transient issues with the operation of the facility especially at startup and shutdown, and assess risks related to afterburning due to the interaction of a fuel rich plume with oxygen that is a by-product of the steam ejectors. The primary areas that will be addressed in this paper are: (1) analyses of unstart modes due to flow transients especially during startup/ignition, (2) engine safety during the shutdown process (3) interaction of steam ejectors with the primary plume i.e. flow transients as well as probability of afterburning. In this abstract we discuss unsteady analyses of the engine shutdown process. However, the final paper will include analyses of a staged startup, drawdown of the engine test cell pressure, and risk assessment of potential afterburning in the facility. Unsteady simulations have been carried out to study the engine shutdown process in the facility and understand the physics behind the interactions between the steam ejectors, the test cell and the supersonic diffuser. As a first approximation, to understand the dominant unsteady mechanisms in the engine test cell and the supersonic diffuser, the turning duct in the facility was removed. As the engine loses power a rarefaction wave travels downstream that disrupts the shock cell structure in the supersonic diffuser. Flow from the test cell is seen to expand into the supersonic diffuser section and re-pressurizes the area around the nozzle along with a upstream traveling compression wave that emanates from near the first stage ejectors. Flow from the first stage ejector expands to the center of the duct and a new shock train is formed between the first and second stage ejectors. Both stage ejectors keep the facility pressurized and prevent any large amplitude pressure fluctuations from affecting the engine nozzle. The resultant pressure loads the nozzle experiences in the shutdown process are small.

  3. Transient Pressure Test Article Test Program

    NASA Technical Reports Server (NTRS)

    Vibbart, Charles M.

    1989-01-01

    The Transient Pressure Test Article (TPTA) test program is being conducted at a new test facility located in the East Test Area at the National Aeronautics and Space Administration's (NASA's) Marshall Space Flight Center (MSFC) in Huntsville, Alabama. This facility, along with the special test equipment (STE) required for facility support, was constructed specifically to test and verify the sealing capability of the Redesigned Solid Rocket Motor (RSRM) field, igniter, and nozzle joints. The test article consists of full scale RSRM hardware loaded with inert propellant and assembled in a short stack configuration. The TPTA is pressurized by igniting a propellant cartridge capable of inducing a pressure rise rate which stimulates the ignition transient that occurs during launch. Dynamic loads are applied during the pressure cycle to simulate external tank attach (ETA) strut loads present on the ETA ring. Sealing ability of the redesigned joints is evaluated under joint movement conditions produced by these combined loads since joint sealing ability depends on seal resilience velocity being greater than gap opening velocity. Also, maximum flight dynamic loads are applied to the test article which is either pressurized to 600 psia using gaseous nitrogen (GN2) or applied to the test article as the pressure decays inside the test article on the down cycle after the ignition transient cycle. This new test facility is examined with respect to its capabilities. In addition, both the topic of test effectiveness versus space vehicle flight performance and new aerospace test techniques, as well as a comparison between the old SRM design and the RSRM are presented.

  4. Compact anti-radon facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fajt, L.; Kouba, P.; Mamedov, F.

    Suppression of radon background is one of main tasks in ultra-low background experiments. The most promising technique for suppression of radon is its adsorption on charcoal. Within the frame of the NEMO-3 experiment, radon trapping facility (RTF) was installed in Modane underground laboratory in 2004. Based on long-term experience with this facility a new compact transportable anti-radon facility was constructed in cooperation among IEAP CTU, SÚRO and ATEKO company. The device provides 20m{sup 3}/h of purified air (air radon activity at the output ∼10mBq/m{sup 3}). The basic features and preliminary results of anti-radon device testing are presented.

  5. Johnson Space Center's Regenerative Life Support Systems Test Bed

    NASA Technical Reports Server (NTRS)

    Barta, D. J.; Henninger, D. L.

    1996-01-01

    The Regenerative Life Support Systems (RLSS) Test Bed at NASA's Johnson Space Center is an atmospherically closed, controlled environment facility for human testing of regenerative life support systems using higher plants in conjunction with physicochemical life support systems. The facility supports NASA's Advanced Life Support (ALS) Program. The facility is comprised of two large scale plant growth chambers, each with approximately 11 m2 growing area. The root zone in each chamber is configurable for hydroponic or solid media plant culture systems. One of the two chambers, the Variable Pressure Growth Chamber (VPGC), is capable of operating at lower atmospheric pressures to evaluate a range of environments that may be used in a planetary surface habitat; the other chamber, the Ambient Pressure Growth Chamber (APGC) operates at ambient atmospheric pressure. The air lock of the VPGC is currently being outfitted for short duration (1 to 15 day) human habitation at ambient pressures. Testing with and without human subjects will focus on 1) integration of biological and physicochemical air and water revitalization systems; 2) effect of atmospheric pressure on system performance; 3) planetary resource utilization for ALS systems, in which solid substrates (simulated planetary soils or manufactured soils) are used in selected crop growth studies; 4) environmental microbiology and toxicology; 5) monitoring and control strategies; and 6) plant growth systems design. Included are descriptions of the overall design of the test facility, including discussions of the atmospheric conditioning, thermal control, lighting, and nutrient delivery systems.

  6. Johnson Space Center's Regenerative Life Support Systems Test Bed

    NASA Astrophysics Data System (ADS)

    Barta, D. J.; Henninger, D. L.

    1996-01-01

    The Regenerative Life Support Systems (RLSS) Test Bed at NASA's Johnson Space Center is an atmospherically closed, controlled environment facility for human testing of regenerative life support systems using higher plants in conjunction with physicochemical life support systems. The facility supports NASA's Advanced Life Support (ALS) Program. The facility is comprised of two large scale plant growth chambers, each with approximately 11 m^2 growing area. The root zone in each chamber is configurable for hydroponic or solid media plant culture systems. One of the two chambers, the Variable Pressure Growth Chamber (VPGC), is capable of operating at lower atmospheric pressures to evaluate a range of environments that may be used in a planetary surface habitat; the other chamber, the Ambient Pressure Growth Chamber (APGC) operates at ambient atmospheric pressure. The air lock of the VPGC is currently being outfitted for short duration (1 to 15 day) human habitation at ambient pressures. Testing with and without human subjects will focus on 1) integration of biological and physicochemical air and water revitalization systems; 2) effect of atmospheric pressure on system performance; 3) planetary resource utilization for ALS systems, in which solid substrates (simulated planetary soils or manufactured soils) are used in selected crop growth studies; 4) environmental microbiology and toxicology; 5) monitoring and control strategies; and 6) plant growth systems design. Included are descriptions of the overall design of the test facility, including discussions of the atmospheric conditioning, thermal control, lighting, and nutrient delivery systems.

  7. Numerical Simulations of Instabilities in Single-Hole Office Elements

    NASA Technical Reports Server (NTRS)

    Ahuja, Vineet; Hosangadi, Ashvin; Hitt, Matthew A.; Lineberry, David M.

    2013-01-01

    An orifice element is commonly used in liquid rocket engine test facilities either as a flow metering device, a damper for acoustic resonance or to provide a large reduction in pressure over a very small distance in the piping system. While the orifice as a device is largely effective in stepping down pressure, it is also susceptible to a wake-vortex type instability that generates pressure fluctuations that propagate downstream and interact with other elements of the test facility resulting in structural vibrations. Furthermore in piping systems an unstable feedback loop can exist between the vortex shedding and acoustic perturbations from upstream components resulting in an amplification of the modes convecting downstream. Such was the case in several tests conducted at NASA as well as in the Ariane 5 strap-on P230 engine in a static firing test where pressure oscillations of 0.5% resulted in 5% thrust oscillations. Exacerbating the situation in cryogenic test facilities, is the possibility of the formation of vapor clouds when the pressure in the wake falls below the vapor pressure leading to a cavitation instability that has a lower frequency than the primary wake-vortex instability. The cavitation instability has the potential for high amplitude fluctuations that can cause catastrophic damage in the facility. In this paper high-fidelity multi-phase numerical simulations of an orifice element are used to characterize the different instabilities, understand the dominant instability mechanisms and identify the tonal content of the instabilities.

  8. Poor Long-Term Blood Pressure Control after Intracerebral Hemorrhage

    PubMed Central

    Zahuranec, Darin B.; Wing, Jeffrey J.; Edwards, Dorothy F.; Menon, Ravi S.; Fernandez, Stephen J.; Burgess, Richard E.; Sobotka, Ian A.; German, Laura; Trouth, Anna J.; Shara, Nawar M.; Gibbons, M. Chris; Boden-Albala, Bernadette; Kidwell, Chelsea S.

    2012-01-01

    Background and Purpose Hypertension is the most important risk factor associated with intracerebral hemorrhage (ICH). We explored racial differences in blood pressure (BP) control after ICH and assessed predictors of BP control at presentation, 30 days, and 1 year in a prospective cohort study. Methods Subjects with spontaneous ICH were identified from the DiffErenCes in the Imaging of Primary Hemorrhage based on Ethnicity or Race (DECIPHER) Project. Blood pressure was compared by race at each time point. Multivariable linear regression was used to determine predictors of presenting mean arterial pressure (MAP), and longitudinal linear regression was used to assess predictors of MAP at follow-up. Results A total of 162 patients were included (mean age 59, 53% male, 77% black). MAP at presentation was 9.6 mmHg higher in blacks than whites despite adjustment for confounders (p=0.065). Fewer than 20% of patients had normal blood pressure (<120/80 mmHg) at 30 days or 1 year. While there was no difference at 30 days (p=0.331), blacks were more likely than whites to have Stage I/II hypertension at one year (p=0.036). Factors associated with lower MAP at follow-up in multivariable analysis were being married at baseline (p=0.032) and living in a facility (versus personal residence) at the time of BP measurement (p=0.023). Conclusions Long-term blood pressure control is inadequate in patients following ICH, particularly in blacks. Further studies are needed to understand the role of social support and barriers to control to identify optimal approaches to improve blood pressure in this high-risk population. PMID:22903494

  9. Understanding Functional Adequacy and Facility Condition for Strategic Decision Making

    ERIC Educational Resources Information Center

    Dufresne, Ray

    2012-01-01

    At colleges and universities today, the increasing number of students is putting new pressure on facilities--and on facility staff. Student needs are also increasingly different, and most campus facilities have not kept up with the changing times. Facilities are expensive to build, maintain, and renovate, and costs are on the rise. Funds for…

  10. Overview of NASA White Sands Test Facility Composite Overwrapped Pressure Vessel Testing

    NASA Technical Reports Server (NTRS)

    Greene, Nathanael; Saulsberry, Regor; Thesken, John; Phoenix, Leigh

    2006-01-01

    This viewgraph presentation examines the White Sands Test Facility testing of Composite overwrapped pressure vessel (COPV). A COPV is typically a metallic liner overwrapped with a fiber epoxy matrix. There is a weight advantage over the traditional all metal design. The presentation shows pictures of the facilities at White Sands, and then examines some of the testing performed. The tests include fluids compatibility, and Kevlar COPV. Data for the Kevlar tests are given, and an analysis is reviewed. There is also a comparison between Carbon COPVs and the Kevlar COPVs.

  11. Hydrogen Infrastructure Testing and Research Facility Animation | Hydrogen

    Science.gov Websites

    at full pressure. This system provides hydrogen to fill fuel cell forklifts and feeds the high pressure compressor. View Photos High Pressure Storage The high pressure hydrogen storage system consists full pressure. This system provides hydrogen to high pressure research projects and for fuel cell

  12. Portable Fluorescence Imaging System for Hypersonic Flow Facilities

    NASA Technical Reports Server (NTRS)

    Wilkes, J. A.; Alderfer, D. W.; Jones, S. B.; Danehy, P. M.

    2003-01-01

    A portable fluorescence imaging system has been developed for use in NASA Langley s hypersonic wind tunnels. The system has been applied to a small-scale free jet flow. Two-dimensional images were taken of the flow out of a nozzle into a low-pressure test section using the portable planar laser-induced fluorescence system. Images were taken from the center of the jet at various test section pressures, showing the formation of a barrel shock at low pressures, transitioning to a turbulent jet at high pressures. A spanwise scan through the jet at constant pressure reveals the three-dimensional structure of the flow. Future capabilities of the system for making measurements in large-scale hypersonic wind tunnel facilities are discussed.

  13. JEM Experiment Logistics Module Pressurized Section

    NASA Image and Video Library

    2007-04-02

    An overhead crane moves the JEM Experiment Logistics Module Pressurized Section above the floor of the Space Station Processing Facility to a scale for weight and center-of-gravity measurements. The module will then be moved to a work stand. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.

  14. JEM Experiment Logistics Module Pressurized Section

    NASA Image and Video Library

    2007-04-02

    In the Space Station Processing Facility, an overhead crane moves the JEM Experiment Logistics Module Pressurized Section toward a scale (at left) for weight and center-of-gravity measurements. The module will then be moved to a work stand. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.

  15. JEM Experiment Logistics Module Pressurized Section

    NASA Image and Video Library

    2007-04-02

    The JEM Experiment Logistics Module Pressurized Section is lifted from its shipping crate in the Space Station Processing Facility. The module will be moved to a scale for weight and center-of-gravity measurements and then to a work stand. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.

  16. JEM Experiment Logistics Module Pressurized Section

    NASA Image and Video Library

    2007-04-02

    In the Space Station Processing Facility, an overhead crane lifts the JEM Experiment Logistics Module Pressurized Section from its shipping container and moves it toward a scale for weight and center-of-gravity measurements. The module will then be moved to a work stand. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.

  17. Lewis Pressurized, Fluidized-Bed Combustion Program. Data and Calculated Results

    NASA Technical Reports Server (NTRS)

    Rollbuhler, R. J.

    1982-01-01

    A 200 kilowatt (thermal), pressurized, fluidized bed (PFB) reactor and research test facility were designed, constructed, and operated. The facility was established to assess and evaluate the effect of PFB hot gas effluent on aircraft turbine engine materials that may have applications in stationary powerplant turbogenerators. The facility was intended for research and development work and was designed to operate over a wide range of conditions. These conditions included the type and rate of consumption of fuel (e.g., coal) and sulfur reacting sorbent material: the ratio of feed fuel to sorbent material; the ratio of feed fuel to combustion airflow; the depth of the fluidized reaction bed; the temperature and pressure in the reaction bed; and the type of test unit that was exposed to the combustion exhaust gases.

  18. Lewis pressurized, fluidized-bed combustion program. Data and calculated results

    NASA Astrophysics Data System (ADS)

    Rollbuhler, R. J.

    1982-03-01

    A 200 kilowatt (thermal), pressurized, fluidized bed (PFB) reactor and research test facility were designed, constructed, and operated. The facility was established to assess and evaluate the effect of PFB hot gas effluent on aircraft turbine engine materials that may have applications in stationary powerplant turbogenerators. The facility was intended for research and development work and was designed to operate over a wide range of conditions. These conditions included the type and rate of consumption of fuel (e.g., coal) and sulfur reacting sorbent material: the ratio of feed fuel to sorbent material; the ratio of feed fuel to combustion airflow; the depth of the fluidized reaction bed; the temperature and pressure in the reaction bed; and the type of test unit that was exposed to the combustion exhaust gases.

  19. Influence analysis of fluctuation parameters on flow stability based on uncertainty method

    NASA Astrophysics Data System (ADS)

    Meng, Tao; Fan, Shangchun; Wang, Chi; Shi, Huichao

    2018-05-01

    The relationship between flow fluctuation and pressure in a flow facility is studied theoretically and experimentally in this paper, and a method for measuring the flow fluctuation is proposed. According to the synchronicity of pressure and flow fluctuation, the amplitude of the flow fluctuation is calculated using the pressure measured in the flow facility and measurement of the flow fluctuation in a wide range of frequency is realized. Based on the method proposed, uncertainty analysis is used to evaluate the influences of different parameters on the flow fluctuation by the help of a sample-based stochastic model established and the parameters that have great influence are found, which can be a reference for the optimization design and the stability improvement of the flow facility.

  20. Plant Habitat Facility in the JPM

    NASA Image and Video Library

    2017-11-21

    iss053e234714 (Nov. 21, 2017) --- Advanced Plant Habitat (APH) Facility in the Japanese Experiment Module (JEM) Pressurized Module (JPM). The Plant Habitat is a fully automated facility that provides a large, enclosed, environmentally-controlled chamber for plant bioscience research.

  1. Japanese Experiment Module arrival

    NASA Image and Video Library

    2007-03-29

    The Experiment Logistics Module Pressurized Section for the Japanese Experiment Module arrives at the Space Station Processing Facility. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.

  2. Japanese Experiment Module arrival

    NASA Image and Video Library

    2007-03-29

    The Experiment Logistics Module Pressurized Section for the Japanese Experiment Module arrives at the Space Station Processing Facility for uncrating. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.

  3. Lewis Research Center's coal-fired, pressurized, fluidized-bed reactor test facility

    NASA Astrophysics Data System (ADS)

    Kobak, J. A.; Rollbuhler, R. J.

    1981-10-01

    A 200-kilowatt-thermal, pressurized, fluidized-bed (PFB) reactor, research test facility was designed, constructed, and operated as part of a NASA-funded project to assess and evaluate the effect of PFB hot-gas effluent on aircraft turbine engine materials that might have applications in stationary-power-plant turbogenerators. Some of the techniques and components developed for this PFB system are described. One of the more important items was the development of a two-in-one, gas-solids separator that removed 95+ percent of the solids in 1600 F to 1900 F gases. Another was a coal and sorbent feed and mixing system for injecting the fuel into the pressurized combustor. Also important were the controls and data-acquisition systems that enabled one person to operate the entire facility. The solid, liquid, and gas sub-systems all had problems that were solved over the 2-year operating time of the facility, which culminated in a 400-hour, hot-gas, turbine test.

  4. Lewis Research Center's coal-fired, pressurized, fluidized-bed reactor test facility

    NASA Technical Reports Server (NTRS)

    Kobak, J. A.; Rollbuhler, R. J.

    1981-01-01

    A 200-kilowatt-thermal, pressurized, fluidized-bed (PFB) reactor, research test facility was designed, constructed, and operated as part of a NASA-funded project to assess and evaluate the effect of PFB hot-gas effluent on aircraft turbine engine materials that might have applications in stationary-power-plant turbogenerators. Some of the techniques and components developed for this PFB system are described. One of the more important items was the development of a two-in-one, gas-solids separator that removed 95+ percent of the solids in 1600 F to 1900 F gases. Another was a coal and sorbent feed and mixing system for injecting the fuel into the pressurized combustor. Also important were the controls and data-acquisition systems that enabled one person to operate the entire facility. The solid, liquid, and gas sub-systems all had problems that were solved over the 2-year operating time of the facility, which culminated in a 400-hour, hot-gas, turbine test.

  5. Thermal Vacuum Facility for Testing Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Knutson, Jeffrey R.; Sikora, Joseph G.

    2002-01-01

    A thermal vacuum facility for testing launch vehicle thermal protection systems by subjecting them to transient thermal conditions simulating re-entry aerodynamic heating is described. Re-entry heating is simulated by controlling the test specimen surface temperature and the environmental pressure in the chamber. Design requirements for simulating re-entry conditions are briefly described. A description of the thermal vacuum facility, the quartz lamp array and the control system is provided. The facility was evaluated by subjecting an 18 by 36 in. Inconel honeycomb panel to a typical re-entry pressure and surface temperature profile. For most of the test duration, the average difference between the measured and desired pressures was 1.6% of reading with a standard deviation of +/- 7.4%, while the average difference between measured and desired temperatures was 7.6% of reading with a standard deviation of +/- 6.5%. The temperature non-uniformity across the panel was 12% during the initial heating phase (t less than 500 sec.), and less than 2% during the remainder of the test.

  6. Development of Background-Oriented Schlieren for NASA Langley Research Center Ground Test Facilities

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Borg, Stephen; Jones, Stephen; Overmeyer, Austin; Walker, Eric; Goad, William; Clem, Michelle; Schairer, Edward T.; Mizukaki, Toshiharu

    2015-01-01

    This paper provides an overview of recent wind tunnel tests performed at the NASA Langley Research Center where the Background-Oriented Schlieren (BOS) technique was used to provide information pertaining to flow-field density disturbances. The facilities in which the BOS technique was applied included the National Transonic Facility (NTF), Transonic Dynamics Tunnel (TDT), 31-Inch Mach 10 Air Tunnel, 15-Inch Mach 6 High-Temperature Air Tunnel, Rotor Test Cell at the 14 by 22 Subsonic Tunnel, and a 13-Inch Low-Speed Tunnel.

  7. Radiocarbon signal of a low and intermediate level radioactive waste disposal facility in nearby trees.

    PubMed

    Janovics, R; Kelemen, D I; Kern, Z; Kapitány, S; Veres, M; Jull, A J T; Molnár, M

    2016-03-01

    Tree ring series were collected from the vicinity of a Hungarian radioactive waste treatment and disposal facility and from a distant control background site, which is not influenced by the radiocarbon discharge of the disposal facility but it represents the natural regional (14)C level. The (14)C concentration of the cellulose content of tree rings was measured by AMS. Data of the tree ring series from the disposal facility was compared to the control site for each year. The results were also compared to the (14)C data of the atmospheric (14)C monitoring stations at the disposal facility and to international background measurements. On the basis of the results, the excess radiocarbon of the disposal facility can unambiguously be detected in the tree from the repository site. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Availability of physical activity-related facilities and neighborhood demographic and socioeconomic characteristics: a national study.

    PubMed

    Powell, Lisa M; Slater, Sandy; Chaloupka, Frank J; Harper, Deborah

    2006-09-01

    We examined associations between neighborhood demographic characteristics and the availability of commercial physical activity-related outlets by zip code across the United States. Multivariate analyses were conducted to assess the availability of 4 types of outlets: (1) physical fitness facilities, (2) membership sports and recreation clubs, (3) dance facilities, and (4) public golf courses. Commercial outlet data were linked by zip code to US Census Bureau population and socioeconomic data. Results showed that commercial physical activity-related facilities were less likely to be present in lower-income neighborhoods and in neighborhoods with higher proportions of African American residents, residents with His-panic ethnicity, and residents of other racial minority backgrounds. In addition, these neighborhoods had fewer such facilities available. Lack of availability of facilities that enable and promote physical activity may, in part, underpin the lower levels of activity observed among populations of low socioeconomic status and minority backgrounds.

  9. Hydrogen Infrastructure Testing and Research Facility Animation (Text

    Science.gov Websites

    . Medium pressure hydrogen is stored in tanks and then fed to the high pressure compressor. High pressure hydrogen is stored in tanks and then fed to either high pressure research projects in ESIF or to the the high pressure compressor. The medium pressure storage photo gallery includes two photos of medium

  10. Research and test facilities

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A description is given of each of the following Langley research and test facilities: 0.3-Meter Transonic Cryogenic Tunnel, 7-by 10-Foot High Speed Tunnel, 8-Foot Transonic Pressure Tunnel, 13-Inch Magnetic Suspension & Balance System, 14-by 22-Foot Subsonic Tunnel, 16-Foot Transonic Tunnel, 16-by 24-Inch Water Tunnel, 20-Foot Vertical Spin Tunnel, 30-by 60-Foot Wind Tunnel, Advanced Civil Transport Simulator (ACTS), Advanced Technology Research Laboratory, Aerospace Controls Research Laboratory (ACRL), Aerothermal Loads Complex, Aircraft Landing Dynamics Facility (ALDF), Avionics Integration Research Laboratory, Basic Aerodynamics Research Tunnel (BART), Compact Range Test Facility, Differential Maneuvering Simulator (DMS), Enhanced/Synthetic Vision & Spatial Displays Laboratory, Experimental Test Range (ETR) Flight Research Facility, General Aviation Simulator (GAS), High Intensity Radiated Fields Facility, Human Engineering Methods Laboratory, Hypersonic Facilities Complex, Impact Dynamics Research Facility, Jet Noise Laboratory & Anechoic Jet Facility, Light Alloy Laboratory, Low Frequency Antenna Test Facility, Low Turbulence Pressure Tunnel, Mechanics of Metals Laboratory, National Transonic Facility (NTF), NDE Research Laboratory, Polymers & Composites Laboratory, Pyrotechnic Test Facility, Quiet Flow Facility, Robotics Facilities, Scientific Visualization System, Scramjet Test Complex, Space Materials Research Laboratory, Space Simulation & Environmental Test Complex, Structural Dynamics Research Laboratory, Structural Dynamics Test Beds, Structures & Materials Research Laboratory, Supersonic Low Disturbance Pilot Tunnel, Thermal Acoustic Fatigue Apparatus (TAFA), Transonic Dynamics Tunnel (TDT), Transport Systems Research Vehicle, Unitary Plan Wind Tunnel, and the Visual Motion Simulator (VMS).

  11. Integration Test of the High Voltage Hall Accelerator System Components

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Haag, Thomas; Huang, Wensheng; Pinero, Luis; Peterson, Todd; Dankanich, John

    2013-01-01

    NASA Glenn Research Center is developing a 4 kilowatt-class Hall propulsion system for implementation in NASA science missions. NASA science mission performance analysis was completed using the latest high voltage Hall accelerator (HiVHAc) and Aerojet-Rocketdyne's state-of-the-art BPT-4000 Hall thruster performance curves. Mission analysis results indicated that the HiVHAc thruster out performs the BPT-4000 thruster for all but one of the missions studied. Tests of the HiVHAc system major components were performed. Performance evaluation of the HiVHAc thruster at NASA Glenn's vacuum facility 5 indicated that thruster performance was lower than performance levels attained during tests in vacuum facility 12 due to the lower background pressures attained during vacuum facility 5 tests when compared to vacuum facility 12. Voltage-Current characterization of the HiVHAc thruster in vacuum facility 5 showed that the HiVHAc thruster can operate stably for a wide range of anode flow rates for discharge voltages between 250 and 600 volts. A Colorado Power Electronics enhanced brassboard power processing unit was tested in vacuum for 1,500 hours and the unit demonstrated discharge module efficiency of 96.3% at 3.9 kilowatts and 650 volts. Stand-alone open and closed loop tests of a VACCO TRL 6 xenon flow control module were also performed. An integrated test of the HiVHAc thruster, brassboard power processing unit, and xenon flow control module was performed and confirmed that integrated operation of the HiVHAc system major components. Future plans include continuing the maturation of the HiVHAc system major components and the performance of a single-string integration test.

  12. STS-92 crew takes part in a Leak Seal Kit Fit Check in the SSPF

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Space Station Processing Facility, STS-92 crew members discuss the Pressurized Mating Adapter -3 (PMA-3), in the background, with Boeing workers. From left are Pilot Pamela A. Melroy and Mission Specialists Koichi Wakata, who represents the National Space Development Agency of Japan (NASDA), and Peter J.K. 'Jeff' Wisoff (Ph.D.). The STS-92 crew are taking part in a Leak Seal Kit Fit Check in connection with the PMA-3. Other crew members participating are Commander Brian Duffy and Mission Specialists Leroy Chiao (Ph.D.), Michael E. Lopez-Alegria and William Surles 'Bill' McArthur Jr. The mission payload also includes an integrated truss structure (Z-1 truss). Launch of STS-92 is scheduled for Feb. 24, 2000.

  13. STS-92 crew takes part in a Leak Seal Kit Fit Check in the SSPF

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Space Station Processing Facility, STS-92 crew members discuss the Pressurized Mating Adapter -3 in the background with workers from Boeing. At the far left is Mission Specialist William Surles 'Bill' McArthur Jr.; facing the camera are Pilot Pamela A. Melroy and Mission Specialist Koichi Wakata, who represents the National Space Development Agency of Japan (NASDA). Also participating are other crew members Commander Brian Duffy and Mission Specialists Leroy Chiao (Ph.D.), Peter J.K. 'Jeff' Wisoff (Ph.D.), Michael E. Lopez-Alegria and William Surles 'Bill' McArthur Jr. The crew are taking part in a Leak Seal Kit Fit Check. The mission payload also includes an integrated truss structure (Z-1 truss). Launch of STS-92 is scheduled for Feb. 24, 2000.

  14. STS-92 crew takes part in a Leak Seal Kit Fit Check in the SSPF

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Space Station Processing Facility, STS-92 crew members discuss the Pressurized Mating Adapter -3 (PMA-3) in the background with Boeing workers. From left are Pilot Pamela A. Melroy and Mission Specialists Koichi Wakata, who represents the National Space Development Agency of Japan (NASDA), and Peter J.K. 'Jeff' Wisoff (Ph.D.). The STS-92 crew are taking part in a Leak Seal Kit Fit Check in connection with the PMA-3. Other crew members participating are Commander Brian Duffy and Mission Specialists Leroy Chiao (Ph.D.), Michael E. Lopez-Alegria and William Surles 'Bill' McArthur Jr. The mission payload also includes an integrated truss structure (Z-1 truss). Launch of STS-92 is scheduled for Feb. 24, 2000.

  15. Steve Nixon | NREL

    Science.gov Websites

    NREL. Steve has an extensive background in facilities engineering, facilities management, and Energy Manager, and a Project Management Professional. Prior to joining NREL, Steve was the Facilities manufacturing engineering, business application programming, and business process management positions

  16. Exhaust pressure and density of various pulsed MPD-Arc thruster systems

    NASA Technical Reports Server (NTRS)

    Michels, C. J.

    1973-01-01

    Exhaust flow in a new 155-cm-i.d. vacuum facility is compared with earlier measurements in a small (15.2-cm-i.d.) duct. Reductions in post-transient impact pressure are about 5:1 in the larger facility. Corresponding reduced electron number densities (about 2 x 10 to the 13th power per cu cm) are noted. A new 125-microsec pulse-forming network power source produced no major differences in impact pressure compared to the crowbarred condenser bank used earlier. Comparing a puff gas feed of the arc chamber with a new 10-msec steady gas feed also shows no major difference in impact pressure for 125-microsec powering.

  17. Relationship between the presence of baccalaureate-educated RNs and quality of care: a cross-sectional study in Dutch long-term care facilities.

    PubMed

    Backhaus, Ramona; van Rossum, Erik; Verbeek, Hilde; Halfens, Ruud J G; Tan, Frans E S; Capezuti, Elizabeth; Hamers, Jan P H

    2017-01-19

    Recent evidence suggests that an increase in baccalaureate-educated registered nurses (BRNs) leads to better quality of care in hospitals. For geriatric long-term care facilities such as nursing homes, this relationship is less clear. Most studies assessing the relationship between nurse staffing and quality of care in long-term care facilities are US-based, and only a few have focused on the unique contribution of registered nurses. In this study, we focus on BRNs, as they are expected to serve as role models and change agents, while little is known about their unique contribution to quality of care in long-term care facilities. We conducted a cross-sectional study among 282 wards and 6,145 residents from 95 Dutch long-term care facilities. The relationship between the presence of BRNs in wards and quality of care was assessed, controlling for background characteristics, i.e. ward size, and residents' age, gender, length of stay, comorbidities, and care dependency status. Multilevel logistic regression analyses, using a generalized estimating equation approach, were performed. 57% of the wards employed BRNs. In these wards, the BRNs delivered on average 4.8 min of care per resident per day. Among residents living in somatic wards that employed BRNs, the probability of experiencing a fall (odds ratio 1.44; 95% CI 1.06-1.96) and receiving antipsychotic drugs (odds ratio 2.15; 95% CI 1.66-2.78) was higher, whereas the probability of having an indwelling urinary catheter was lower (odds ratio 0.70; 95% CI 0.53-0.91). Among residents living in psychogeriatric wards that employed BRNs, the probability of experiencing a medication incident was lower (odds ratio 0.68; 95% CI 0.49-0.95). For residents from both ward types, the probability of suffering from nosocomial pressure ulcers did not significantly differ for residents in wards employing BRNs. In wards that employed BRNs, their mean amount of time spent per resident was low, while quality of care on most wards was acceptable. No consistent evidence was found for a relationship between the presence of BRNs in wards and quality of care outcomes, controlling for background characteristics. Future studies should consider the mediating and moderating role of staffing-related work processes and ward environment characteristics on quality of care.

  18. Estimating outflow facility through pressure dependent pathways of the human eye

    PubMed Central

    Gardiner, Bruce S.

    2017-01-01

    We develop and test a new theory for pressure dependent outflow from the eye. The theory comprises three main parameters: (i) a constant hydraulic conductivity, (ii) an exponential decay constant and (iii) a no-flow intraocular pressure, from which the total pressure dependent outflow, average outflow facilities and local outflow facilities for the whole eye may be evaluated. We use a new notation to specify precisely the meaning of model parameters and so model outputs. Drawing on a range of published data, we apply the theory to animal eyes, enucleated eyes and in vivo human eyes, and demonstrate how to evaluate model parameters. It is shown that the theory can fit high quality experimental data remarkably well. The new theory predicts that outflow facilities and total pressure dependent outflow for the whole eye are more than twice as large as estimates based on the Goldman equation and fluorometric analysis of anterior aqueous outflow. It appears likely that this discrepancy can be largely explained by pseudofacility and aqueous flow through the retinal pigmented epithelium, while any residual discrepancy may be due to pathological processes in aged eyes. The model predicts that if the hydraulic conductivity is too small, or the exponential decay constant is too large, then intraocular eye pressure may become unstable when subjected to normal circadian changes in aqueous production. The model also predicts relationships between variables that may be helpful when planning future experiments, and the model generates many novel testable hypotheses. With additional research, the analysis described here may find application in the differential diagnosis, prognosis and monitoring of glaucoma. PMID:29261696

  19. Resident's concerns and attitudes towards Solid Waste Management facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahardyan, B.; Matsuto, T.; Kakuta, Y.

    2004-07-01

    Because of limited space, the siting and construction of a new SWM facility is a big challenge in Japan. An SWM facility should be socially accepted as well as environmentally and economically sound. This study aimed to investigate people's concerns about SWM facilities and their attitudes towards such facilities. A questionnaire was designed based on literature reviews and was sent to residents in three municipalities with different backgrounds. The questions covered concerns on the impact of an SWM facility, management aspects, unfairness of facility siting, and attitudes to facility construction. Of the many concerns, 'pollution and health effect' had themore » highest rating, followed by 'reliability', 'damage to nature' and 'cost'. The rating was different between municipalities, reflecting their geographic and social backgrounds. Using factor analysis, correlations among concerns were analyzed, and five principal components were extracted, namely 'pollution', 'nuisance', 'facility management', 'planning of facility', and 'merit/demerit'. Although obvious correlations were not found between individual items of concern and attitudes to construction of a facility, the discriminant analysis indicated dominant concerns of attitudes, but the disagreement between actual impact and citizens were found. As for attributes, the 'opposed' attitude decreased for residents who had visited an SWM facility, even if they had only seen it from outside.« less

  20. Description and calibration of the Langley Hypersonic CF4 tunnel: A facility for simulating low gamma flow as occurs for a real gas

    NASA Technical Reports Server (NTRS)

    Midden, Raymond E.; Miller, Charles G., III

    1985-01-01

    The Langley Hypersonic CF4 Tunnel is a Mach 6 facility which simulates an important aspect of dissociative real-gas phenomena associated with the reentry of blunt vehicles, i.e., the decrease in the ratio of specific heats (gamma) that occurs within the shock layer of the vehicle. A general description of this facility is presented along with a discussion of the basic components, instrumentation, and operating procedure. Pitot-pressure surveys were made at the nozzle exit and downstream of the exit for reservoir temperatures from 1020 to 1495 R and reservoir pressures from 1000 to 2550 psia. A uniform test core having a diameter of circa 11 in. (0.55 times the nozzle-exit diameter) exists at the maximum value of reservoir pressure and temperature. The corresponding free-stream Mach number is 5.9, the unit Reynolds number is 4 x 10 to the 5th power per foot, the ratio of specific heats immediately behind a normal shock is 1.10, and the normal-shock density ratio is 12.6. When the facility is operated at reservoir temperatures below 1440 R, irregularities occur in the pitot-pressure profile within a small region about the nozzle centerline. These variations in pitot pressure indicate the existence of flow distrubances originating in the upstream region of the nozzle. This necessitates testing models off centerline in the uniform flow between the centerline region and either the nozzle boundary layer or the lip shock originating at the nozzle exit. Samples of data obtained in this facility with various models are presented to illustrate the effect of gamma on flow conditions about the model and the importance of knowing the magnitude of this effect.

  1. Development of hypertension after long-term exposure to static magnetic fields among workers from a magnetic resonance imaging device manufacturing facility.

    PubMed

    Bongers, Suzan; Slottje, Pauline; Kromhout, Hans

    2018-07-01

    To assess the association between long-term exposure to static magnetic fields (SMF) in a magnetic resonance imaging (MRI)-manufacturing environment and hypertension. In an occupational cohort of male workers (n = 538) of an MRI-manufacturing facility, the first and last available blood pressure measurements from the facility's medical surveillance scheme were associated with modeled cumulative exposure to SMF. Exposure modeling was based on linkage of individual job histories from the facility's personnel records with a facility specific historical job exposure matrix. Hypertension was defined as a systolic pressure of above 140 mm Hg and/or a diastolic blood pressure above 90 mm Hg. Logistic regression models were used to associate cumulative SMF exposure to hypertension while adjusting for age, body mass index and blood pressure at time of first blood pressure measurement. Stratified analysis by exposure duration was performed similarly. High cumulative exposure to SMF (≥ 7.4 K Tesla minutes) was positively associated with development of hypertension (Odds Ratio [OR] 2.32, 95% confidence interval [CI] 1.27 - 4.25, P = 0.006). Stratified analysis showed a stronger association for those with high cumulative SMF exposure within a period up to 10 years (OR 3.96, 95% CI 1.62 - 9.69, P = 0.003), but no significant association was found for (high) cumulative exposure accumulated in a period of 10 or more years. Our findings suggest SMF exposure intensity to be more important than exposure duration for the risk of developing hypertension. Our data revealed that exposure to high levels of MRI-related SMF during MRI-manufacturing might be associated with developing hypertension. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. 43 CFR 3276.12 - What information must I give BLM in the monthly report for facility operations?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... facilities, include in your monthly report of facility operations: (1) Mass of steam and/or hot water, in klbs, used or brought into the facility. For facilities using both steam and hot water, you must report the mass of each; (2) The temperature of the steam or hot water in deg. F; (3) The pressure of the...

  3. 43 CFR 3276.12 - What information must I give BLM in the monthly report for facility operations?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... facilities, include in your monthly report of facility operations: (1) Mass of steam and/or hot water, in klbs, used or brought into the facility. For facilities using both steam and hot water, you must report the mass of each; (2) The temperature of the steam or hot water in deg. F; (3) The pressure of the...

  4. 43 CFR 3276.12 - What information must I give BLM in the monthly report for facility operations?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... facilities, include in your monthly report of facility operations: (1) Mass of steam and/or hot water, in klbs, used or brought into the facility. For facilities using both steam and hot water, you must report the mass of each; (2) The temperature of the steam or hot water in deg. F; (3) The pressure of the...

  5. 33 CFR 127.315 - Preliminary transfer inspection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Operations § 127.315 Preliminary transfer... parts; (b) For each of the vessel's cargo tanks from which cargo will be transferred, note the pressure...

  6. VIEW LOOKING SOUTH AT THE SATURN V (BLDG. 4550) AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW LOOKING SOUTH AT THE SATURN V (BLDG. 4550) AND SATURN I (BLDG. 4557) STRUCTURAL TEST FACILITIES, SATURN V TEST FACILITY IS IN THE FOREGROUND RIGHT. THE SATURN I TEST FACILITY IS IN THE BACKGROUND CENTER. - Marshall Space Flight Center, Saturn V Dynamic Test Facility, East Test Area, Huntsville, Madison County, AL

  7. Pressure profiles of the BRing based on the simulation used in the CSRm

    NASA Astrophysics Data System (ADS)

    Wang, J. C.; Li, P.; Yang, J. C.; Yuan, Y. J.; Wu, B.; Chai, Z.; Luo, C.; Dong, Z. Q.; Zheng, W. H.; Zhao, H.; Ruan, S.; Wang, G.; Liu, J.; Chen, X.; Wang, K. D.; Qin, Z. M.; Yin, B.

    2017-07-01

    HIAF-BRing, a new multipurpose accelerator facility of the High Intensity heavy-ion Accelerator Facility project, requires an extremely high vacuum lower than 10-11 mbar to fulfill the requirements of radioactive beam physics and high energy density physics. To achieve the required process pressure, the bench-marked codes of VAKTRAK and Molflow+ are used to simulate the pressure profiles of the BRing system. In order to ensure the accuracy of the implementation of VAKTRAK, the computational results are verified by measured pressure data and compared with a new simulation code BOLIDE on the current synchrotron CSRm. Since the verification of VAKTRAK has been done, the pressure profiles of the BRing are calculated with different parameters such as conductance, out-gassing rates and pumping speeds. According to the computational results, the optimal parameters are selected to achieve the required pressure for the BRing.

  8. Facile Fabrication of Multi-hierarchical Porous Polyaniline Composite as Pressure Sensor and Gas Sensor with Adjustable Sensitivity

    NASA Astrophysics Data System (ADS)

    He, Xiao-Xiao; Li, Jin-Tao; Jia, Xian-Sheng; Tong, Lu; Wang, Xiao-Xiong; Zhang, Jun; Zheng, Jie; Ning, Xin; Long, Yun-Ze

    2017-08-01

    A multi-hierarchical porous polyaniline (PANI) composite which could be used in good performance pressure sensor and adjustable sensitivity gas sensor has been fabricated by a facile in situ polymerization. Commercial grade sponge was utilized as a template scaffold to deposit PANI via in situ polymerization. With abundant interconnected pores throughout the whole structure, the sponge provided sufficient surface for the growth of PANI nanobranches. The flexible porous structure helped the composite to show high performance in pressure detection with fast response and favorable recoverability and gas detection with adjustable sensitivity. The sensing mechanism of the PANI/sponge-based flexible sensor has also been discussed. The results indicate that this work provides a feasible approach to fabricate efficient sensors with advantages of low cost, facile preparation, and easy signal collection.

  9. Facile Fabrication of Multi-hierarchical Porous Polyaniline Composite as Pressure Sensor and Gas Sensor with Adjustable Sensitivity.

    PubMed

    He, Xiao-Xiao; Li, Jin-Tao; Jia, Xian-Sheng; Tong, Lu; Wang, Xiao-Xiong; Zhang, Jun; Zheng, Jie; Ning, Xin; Long, Yun-Ze

    2017-12-01

    A multi-hierarchical porous polyaniline (PANI) composite which could be used in good performance pressure sensor and adjustable sensitivity gas sensor has been fabricated by a facile in situ polymerization. Commercial grade sponge was utilized as a template scaffold to deposit PANI via in situ polymerization. With abundant interconnected pores throughout the whole structure, the sponge provided sufficient surface for the growth of PANI nanobranches. The flexible porous structure helped the composite to show high performance in pressure detection with fast response and favorable recoverability and gas detection with adjustable sensitivity. The sensing mechanism of the PANI/sponge-based flexible sensor has also been discussed. The results indicate that this work provides a feasible approach to fabricate efficient sensors with advantages of low cost, facile preparation, and easy signal collection.

  10. 43 CFR 3275.14 - What aspects of my geothermal operations must I measure?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... wellhead pressure. (b) For all electrical generation facilities, you must measure: (1) Steam and/or hot... steam and/or hot water exiting the facility. (c) For direct use facilities, you must measure: (1) Flow of steam and/or hot water; and (2) Temperature of the steam or water entering the facility. (d) We...

  11. 43 CFR 3275.14 - What aspects of my geothermal operations must I measure?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... wellhead pressure. (b) For all electrical generation facilities, you must measure: (1) Steam and/or hot... steam and/or hot water exiting the facility. (c) For direct use facilities, you must measure: (1) Flow of steam and/or hot water; and (2) Temperature of the steam or water entering the facility. (d) We...

  12. 43 CFR 3275.14 - What aspects of my geothermal operations must I measure?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... wellhead pressure. (b) For all electrical generation facilities, you must measure: (1) Steam and/or hot... steam and/or hot water exiting the facility. (c) For direct use facilities, you must measure: (1) Flow of steam and/or hot water; and (2) Temperature of the steam or water entering the facility. (d) We...

  13. 43 CFR 3275.14 - What aspects of my geothermal operations must I measure?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... wellhead pressure. (b) For all electrical generation facilities, you must measure: (1) Steam and/or hot... steam and/or hot water exiting the facility. (c) For direct use facilities, you must measure: (1) Flow of steam and/or hot water; and (2) Temperature of the steam or water entering the facility. (d) We...

  14. KENNEDY SPACE CENTER, FLA. - Members of the STS-114 crew take a look at the Japanese Experiment Module (JEM) pressure module in the Space Station Processing Facility. A research laboratory, the pressurized module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo and is Japan's primary contribution to the Station. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

    NASA Image and Video Library

    2003-06-09

    KENNEDY SPACE CENTER, FLA. - Members of the STS-114 crew take a look at the Japanese Experiment Module (JEM) pressure module in the Space Station Processing Facility. A research laboratory, the pressurized module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo and is Japan's primary contribution to the Station. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

  15. High-Reynolds Number Active Blowing Semi-Span Force Measurement System Development

    NASA Technical Reports Server (NTRS)

    Lynn, Keith C.; Rhew, Ray D.; Acheson, Michael J.; Jones, Gregory S.; Milholen, William E.; Goodliff, Scott L.

    2012-01-01

    Recent wind-tunnel tests at the NASA Langley Research Center National Transonic Facility utilized high-pressure bellows to route air to the model for evaluating aircraft circulation control. The introduction of these bellows within the Sidewall Model Support System significantly impacted the performance of the external sidewall mounted semi-span balance. As a result of this impact on the semi-span balance measurement performance, it became apparent that a new capability needed to be built into the National Transonic Facility s infrastructure to allow for performing pressure tare calibrations on the balance in order to properly characterize its performance under the influence of static bellows pressure tare loads and bellows thermal effects. The objective of this study was to design both mechanical calibration hardware and an experimental calibration design that can be employed at the facility in order to efficiently and precisely perform the necessary loadings in order to characterize the semi-span balance under the influence of multiple calibration factors (balance forces/moments and bellows pressure/temperature). Using statistical design of experiments, an experimental design was developed allowing for strategically characterizing the behavior of the semi-span balance for use in circulation control and propulsion-type flow control testing at the National Transonic Facility.

  16. Signal and background considerations for the MRSt on the National Ignition Facility (NIF).

    PubMed

    Wink, C W; Frenje, J A; Hilsabeck, T J; Bionta, R; Khater, H Y; Gatu Johnson, M; Kilkenny, J D; Li, C K; Séguin, F H; Petrasso, R D

    2016-11-01

    A Magnetic Recoil Spectrometer (MRSt) has been conceptually designed for time-resolved measurements of the neutron spectrum at the National Ignition Facility. Using the MRSt, the goals are to measure the time-evolution of the spectrum with a time resolution of ∼20-ps and absolute accuracy better than 5%. To meet these goals, a detailed understanding and optimization of the signal and background characteristics are required. Through ion-optics, MCNP simulations, and detector-response calculations, it is demonstrated that the goals and a signal-to background >5-10 for the down-scattered neutron measurement are met if the background, consisting of ambient neutrons and gammas, at the MRSt is reduced 50-100 times.

  17. Experimental Investigation of Magnetic Superconducting and other Phase Transitions in Novel f-Electron Materials at Ultra-high Pressures using Designer Diamond Anvils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maple, M. Brian; Jeffries, Jason R.; Ho, Pei-Chun

    Pressure is often used as a controlled parameter for the investigation of condensed matter systems. In particular, pressure experiments can provide valuable information into the nature of superconductivity, magnetism, and the coexistence of these two phenomena. Some f-electron, heavy-fermion materials display interesting and novel behavior at moderately low pressures achievable with conventional experimental techniques; however, a growing number of condensed matter systems require ultrahigh pressure techniques, techniques that generate significantly higher pressures than conventional methods, to sufficiently explore their important properties. To that end, we have been funded to develop an ultrahigh pressure diamond anvil cell facility at the Universitymore » of California, San Diego (UCSD) in order to investigate superconductivity, magnetism, non-Fermi liquid behavior, and other phenomena. Our goals for the first year of this grant were as follows: (a) set up and test a suitable refrigerator; (b) set up a laser and spectrometer fluorescence system to determine the pressure within the diamond anvil cell; (c) perform initial resistivity measurements at moderate pressures from room temperature to liquid helium temperatures ({approx}1K); (d) investigate f-electron materials within our current pressure capabilities to find candidate materials for high-pressure studies. During the past year, we have ordered almost all the components required to set up a diamond anvil cell facility at UCSD, we have received and implemented many of the components that have been ordered, we have performed low pressure research on several materials, and we have engaged in a collaborative effort with Sam Weir at Lawrence Livermore National Lab (LLNL) to investigate Au4V under ultrahigh pressure in a designer diamond anvil cell (dDAC). This report serves to highlight the progress we have made towards developing an ultrahigh pressure research facility at UCSD, the research performed in the past year, as well as future directions we plan to pursue.« less

  18. 40 CFR 265.1054 - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... gas/vapor service. 265.1054 Section 265.1054 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... TREATMENT, STORAGE, AND DISPOSAL FACILITIES Air Emission Standards for Equipment Leaks § 265.1054 Standards: Pressure relief devices in gas/vapor service. (a) Except during pressure releases, each pressure relief...

  19. 30 CFR 250.803 - Additional production system requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ranges of pressure vessels at any time when there is a change in operating pressures that requires new... significant change in operating pressures. The most recent pressure-recorder charts used to determine... prominent place on the facility or structure. (v) For operations in subfreezing climates, the lessee shall...

  20. Development of the Los Alamos National Laboratory Cryogenic Pressure Loader

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebey, Peter S.; Dole, James M.; Hoffer, James K.

    2003-05-15

    Targets for inertial fusion research and ignition at OMEGA, the National Ignition Facility, LMJ, and future facilities rely on beta-radiation-driven layering of spherical cryogenic DT ice layers contained within plastic or metal shells. Plastic shells will be permeation filled at room temperature then cooled to cryogenic temperatures before removal of the overpressure. The cryogenic pressure loader (CPL) was recently developed at Los Alamos National Laboratory as a testbed for studying the filling and layering of plastic target shells with DT. A technical description of the CPL is provided. The CPL consists of a cryostat, which contains a high-pressure permeation cell,more » and has optical access for investigating beta layering. The cryostat is housed within a tritium glovebox that contains manifolds for supplying high-pressure DT. The CPL shares some design elements with the cryogenic target handling system at the OMEGA facility to allow testing of tritium issues related to that system. The CPL has the capability to fill plastic targets by permeation to pressures up to 100 MPa and to cool them to 15 K. The CPL will accommodate a range of targets and may be modified for future experiments.« less

  1. THE LARGE HIGH PRESSURE ARC PLASMA GENERATOR: A FACILITY FOR SIMULATING MISSLE AND SATELLITE RE-ENTRY. Research Report 56

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, P.; Powers, W.; Hritzay, D.

    1959-06-01

    The development of an arc wind tunnel capable of stagnation pressures in the excess of twenty atmospheres and using as much as fifteen megawatts of electrical power is described. The calibration of this facility shows that it is capable of reproducing the aerodynamic environment encountered by vehicles flying at velocities as great as satellite velocity. Its use as a missile re-entry material test facility is described. The large power capacity of this facility allows one to make material tests on specimens of size sufficient to be useful for material development yet at realistic energy and Reynolds number values. By themore » addition of a high-capacity vacuum system, this facility can be used to produce the low density, high Mach number environment needed for simulating satellite re-entry, as well as hypersonic flight at extreme altitudes. (auth)« less

  2. NASA Langley Low Speed Aeroacoustic Wind Tunnel: Background Noise and Flow Survey Results Prior to FY05 Construction of Facilities Modifications

    NASA Technical Reports Server (NTRS)

    Booth, Earl R., Jr.; Henderson, Brenda S.

    2005-01-01

    The NASA Langley Research Center Low Speed Aeroacoustic Wind Tunnel is a premier facility for model-scale testing of jet noise reduction concepts at realistic flow conditions. However, flow inside the open jet test section is less than optimum. A Construction of Facilities project, scheduled for FY 05, will replace the flow collector with a new design intended to reduce recirculation in the open jet test section. The reduction of recirculation will reduce background noise levels measured by a microphone array impinged by the recirculation flow and will improve flow characteristics in the open jet tunnel flow. In order to assess the degree to which this modification is successful, background noise levels and tunnel flow are documented, in order to establish a baseline, in this report.

  3. Capacity of Health Facilities to Manage Hypertension in Mukono and Buikwe Districts in Uganda: Challenges and Recommendations

    PubMed Central

    Musinguzi, Geofrey; Bastiaens, Hilde; Wanyenze, Rhoda K.; Mukose, Aggrey; Van geertruyden, Jean-Pierre; Nuwaha, Fred

    2015-01-01

    Background The burden of chronic diseases is increasing in both low- and middle-income countries. However, healthcare systems in low-income countries are inadequately equipped to deal with the growing disease burden, which requires chronic care for patients. The aim of this study was to assess the capacity of health facilities to manage hypertension in two districts in Uganda. Methods In a cross-sectional study conducted between June and October 2012, we surveyed 126 health facilities (6 hospitals, 4 Health Center IV (HCIV), 23 Health Center III (HCIII), 41 Health Center II (HCII) and 52 private clinics/dispensaries) in Mukono and Buikwe districts in Uganda. We assessed records, conducted structured interviews with heads of facilities, and administered questionnaires to 271 health workers. The study assessed service provision for hypertension, availability of supplies such as medicines, guidelines and equipment, in-service training for hypertension, knowledge of hypertension management, challenges and recommendations. Results Of the 126 health facilities, 92.9% reported managing (diagnosing/treating) patients with hypertension, and most (80.2%) were run by non-medical doctors or non-physician health workers (NPHW). Less than half (46%) of the facilities had guidelines for managing hypertension. A 10th of the facilities lacked functioning blood pressure devices and 28% did not have stethoscopes. No facilities ever calibrated their BP devices except one. About a half of the facilities had anti-hypertensive medicines in stock; mainly thiazide diuretics (46%), beta blockers (56%) and calcium channel blockers (48.4%). Alpha blockers, mixed alpha & beta blockers and angiotensin II receptor antagonists were only stocked by private clinics/dispensaries. Most HCIIs lacked anti-hypertensive medicines, including the first line thiazide diuretics. Significant knowledge gaps in classification of patients as hypertensive were noted among respondents. All health workers (except 5, 1.9%) indicated that they needed additional training in hypertension management. Several provider and patient related challenges were also observed in this study. Conclusions Health facilities in this setting are inadequately equipped to provide services for management of hypertension. Diagnostic equipment, anti-hypertensive drugs and personnel present great challenges. To address the increasing burden of hypertension and other chronic diseases, measures are needed to substantially strengthen the healthcare facilities, including training of personnel in management of hypertension and other chronic diseases, and improving diagnostic and treatment supplies. PMID:26560131

  4. Advanced Technical Data Study

    DTIC Science & Technology

    1975-01-29

    will shut down automatically when condenser high pressure causes Pressure Limit Control high pressure switch to release. Press START switch (3...power cable (1) from facility pow- er. Troubleshoot cooling unit, for HI-LOW pressure switch repeated cutout. Refer to AGE ECU Cooling Unit...acti- vate when loss of air flow oc- curred, the pressure switch (3) failed to open circuit. Adjust or replace pressure switch . Refer to

  5. State and Federal Policies for School Facility Construction: A Comparison of Michigan and Ohio

    ERIC Educational Resources Information Center

    Davis, Thomas E.

    2015-01-01

    Background: The Ohio School Facilities Commission was set up in response to litigation compelling the state to achieve a more equitable distribution in the quality of school facilities. The American Recovery and Reinvestment Act (ARRA) was a federal policy to stimulate the United States economy and support school facility construction. These two…

  6. Cutting the Cost of New Community College Facilities: Streamlining the Facilities Approval Process. Commission on Innovation Policy Discussion Paper Number 3.

    ERIC Educational Resources Information Center

    BW Associates, Berkeley, CA.

    Intended to provide background information and preliminary options for the California Community Colleges' Commission on Innovation, this document proposes that approval processes for new facilities be simplified and that restrictions on the lease or purchase of off-campus facilities be eased. Following introductory materials detailing the…

  7. Cross-Sectional Association between Length of Incarceration and Selected Risk Factors for Non-Communicable Chronic Diseases in Two Male Prisons of Mexico City

    PubMed Central

    Silverman-Retana, Omar; Lopez-Ridaura, Ruy; Servan-Mori, Edson; Bautista-Arredondo, Sergio; Bertozzi, Stefano M.

    2015-01-01

    Background Mexico City prisons are characterized by overcrowded facilities and poor living conditions for housed prisoners. Chronic disease profile is characterized by low prevalence of self reported hypertension (2.5%) and diabetes (1.8%) compared to general population; 9.5% of male inmates were obese. There is limited evidence regarding on the exposure to prison environment over prisoner’s health status; particularly, on cardiovascular disease risk factors. The objective of this study is to assess the relationship between length of incarceration and selected risk factors for non-communicable chronic diseases (NCDs). Methods and Findings We performed a cross-sectional analysis using data from two large male prisons in Mexico City (n = 14,086). Using quantile regression models we assessed the relationship between length of incarceration and selected risk factors for NCDs; stratified analysis by age at admission to prison was performed. We found a significant negative trend in BMI and WC across incarceration length quintiles. BP had a significant positive trend with a percentage change increase around 5% mmHg. The greatest increase in systolic blood pressure was observed in the older age at admission group. Conclusions This analysis provides insight into the relationship between length of incarceration and four selected risk factors for NCDs; screening for high blood pressure should be guarantee in order to identify at risk individuals and linked to the prison’s health facility. It is important to assess prison environment features to approach potential risk for developing NCDs in this context. PMID:26381399

  8. The Life-and-Death Factor: Focus on Healthcare Facilities

    ERIC Educational Resources Information Center

    Dessoff, Alan

    2009-01-01

    With economic pressures restricting campus budgets and healthcare policy issues capturing national attention, facilities managers at university-affiliated hospitals and other healthcare entities say they feel more urgency than ever to provide cost-effective services to patients, providers, medical researchers, and students. Managing facilities at…

  9. KSC-07pd0636

    NASA Image and Video Library

    2007-03-13

    KENNEDY SPACE CENTER, FLA. -- A flat bed truck hauls the container with the Experiment Logistics Module Pressurized Section inside away from the Trident wharf. The logistics module is part of the Japanese Experiment Module, known as Kibo. The logistics module is being transported to the Space Station Processing Facility at NASA's Kennedy Space Center. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett

  10. Japanese Experiment Module arrival

    NASA Image and Video Library

    2007-03-29

    Inside the Space Station Processing Facility, workers monitor progress as a huge crane is used to remove the top of the crate carrying the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.

  11. Japanese Experiment Module arrival

    NASA Image and Video Library

    2007-03-29

    Inside the Space Station Processing Facility, the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module is revealed after the top of the crate is removed. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.

  12. Flow analysis of airborne particles in a hospital operating room

    NASA Astrophysics Data System (ADS)

    Faeghi, Shiva; Lennerts, Kunibert

    2016-06-01

    Preventing airborne infections during a surgery has been always an important issue to deliver effective and high quality medical care to the patient. One of the important sources of infection is particles that are distributed through airborne routes. Factors influencing infection rates caused by airborne particles, among others, are efficient ventilation and the arrangement of surgical facilities inside the operating room. The paper studies the ventilation airflow pattern in an operating room in a hospital located in Tehran, Iran, and seeks to find the efficient configurations with respect to the ventilation system and layout of facilities. This study uses computational fluid dynamics (CFD) and investigates the effects of different inflow velocities for inlets, two pressurization scenarios (equal and excess pressure) and two arrangements of surgical facilities in room while the door is completely open. The results show that system does not perform adequately when the door is open in the operating room under the current conditions, and excess pressure adjustments should be employed to achieve efficient results. The findings of this research can be discussed in the context of design and controlling of the ventilation facilities of operating rooms.

  13. Computational and Experimental Characterization of the Mach 6 Facility Nozzle Flow for the Enhanced Injection and Mixing Project at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Drozda, Tomasz G.; Cabell, Karen F.; Passe, Bradley J.; Baurle, Robert A.

    2017-01-01

    Computational fluid dynamics analyses and experimental data are presented for the Mach 6 facility nozzle used in the Arc-Heated Scramjet Test Facility for the Enhanced Injection and Mixing Project (EIMP). This project, conducted at the NASA Langley Research Center, aims to investigate supersonic combustion ramjet (scramjet) fuel injection and mixing physics relevant to flight Mach numbers greater than 8. The EIMP experiments use a two-dimensional Mach 6 facility nozzle to provide the high-speed air simulating the combustor entrance flow of a scramjet engine. Of interest are the physical extent and the thermodynamic properties of the core flow at the nozzle exit plane. The detailed characterization of this flow is obtained from three-dimensional, viscous, Reynolds-averaged simulations. Thermodynamic nonequilibrium effects are also investigated. The simulations are compared with the available experimental data, which includes wall static pressures as well as in-stream static pressure, pitot pressure and total temperature obtained via in-stream probes positioned just downstream of the nozzle exit plane.

  14. Comparison of the NASA Common Research Model European Transonic Wind Tunnel Test Data to NASA Test Data

    NASA Technical Reports Server (NTRS)

    Rivers, Melissa; Quest, Juergen; Rudnik, Ralf

    2015-01-01

    Experimental aerodynamic investigations of the NASA Common Research Model have been conducted in the NASA Langley National Transonic Facility, the NASA Ames 11-ft wind tunnel, and the European Transonic Wind Tunnel. In the NASA Ames 11-ft wind tunnel, data have been obtained at only a chord Reynolds number of 5 million for a wing/body/tail = 0 degree incidence configuration. Data have been obtained at chord Reynolds numbers of 5, 19.8 and 30 million for the same configuration in the National Transonic Facility and in the European Transonic Facility. Force and moment, surface pressure, wing bending and twist, and surface flow visualization data were obtained in all three facilities but only the force and moment and surface pressure data are presented herein.

  15. Improvement in Outflow Facility by Two Novel Microinvasive Glaucoma Surgery Implants

    PubMed Central

    Hays, Cassandra L.; Gulati, Vikas; Fan, Shan; Samuelson, Thomas W.; Ahmed, Iqbal Ike K.; Toris, Carol B.

    2014-01-01

    Purpose. To determine improvement in outflow facility (C) in human anterior segments implanted with a novel Schlemm's canal scaffold or two trabecular micro-bypasses. Methods. Human anterior segments were isolated from 12 pairs of eyes from donors with no history of ocular disease and then perfused at 50, 40, 30, 20, and 10 mm Hg pressures for 10 minutes each. Baseline C was calculated from perfusion pressures and flow rates. The scaffold was implanted into Schlemm's canal of one anterior segment, and two micro-bypasses were implanted three clock-hours apart in the contralateral anterior segment. Outflow facility and resistance were compared at various standardized perfusion pressures and between each device. Results. Compared to baseline, C increased by 0.16 ± 0.12 μL/min/mm Hg (74%) with the scaffold, and 0.08 ± 0.12 μL/min/mm Hg (34%) with two micro-bypasses. The scaffold increased C at perfusion pressures of 50, 40, 30, and 20 mm Hg (P < 0.005). Two micro-bypasses increased C at a perfusion pressure of 40 mm Hg (P < 0.05). Conclusions. Both implants effectively increased C in human eyes ex vivo. The scaffold increased C by a greater percentage (73% vs. 34%) and at a greater range of perfusion pressures (20 to 50 mm Hg vs. 40 mm Hg) than the two micro-bypasses, suggesting that the 8-mm dilation of Schlemm's canal by the scaffold may have additional benefits in lowering the outflow resistance. The Hydrus Microstent scaffold may be an effective therapy for increasing outflow facility and thus reducing the IOP in patients with glaucoma. PMID:24550367

  16. Static and Wind Tunnel Aero-Performance Tests of NASA AST Separate Flow Nozzle Noise Reduction Configurations

    NASA Technical Reports Server (NTRS)

    Mikkelsen, Kevin L.; McDonald, Timothy J.; Saiyed, Naseem (Technical Monitor)

    2001-01-01

    This report presents the results of cold flow model tests to determine the static and wind tunnel performance of several NASA AST separate flow nozzle noise reduction configurations. The tests were conducted by Aero Systems Engineering, Inc., for NASA Glenn Research Center. The tests were performed in the Channels 14 and 6 static thrust stands and the Channel 10 transonic wind tunnel at the FluiDyne Aerodynamics Laboratory in Plymouth, Minnesota. Facility checkout tests were made using standard ASME long-radius metering nozzles. These tests demonstrated facility data accuracy at flow conditions similar to the model tests. Channel 14 static tests reported here consisted of 21 ASME nozzle facility checkout tests and 57 static model performance tests (including 22 at no charge). Fan nozzle pressure ratio varied from 1.4 to 2.0, and fan to core total pressure ratio varied from 1.0 to 1.19. Core to fan total temperature ratio was 1.0. Channel 10 wind tunnel tests consisted of 15 tests at Mach number 0.28 and 31 tests at Mach 0.8. The sting was checked out statically in Channel 6 before the wind tunnel tests. In the Channel 6 facility, 12 ASME nozzle data points were taken and 7 model data points were taken. In the wind tunnel, fan nozzle pressure ratio varied from 1.73 to 2.8, and fan to core total pressure ratio varied from 1.0 to 1.19. Core to fan total temperature ratio was 1.0. Test results include thrust coefficients, thrust vector angle, core and fan nozzle discharge coefficients, total pressure and temperature charging station profiles, and boat-tail static pressure distributions in the wind tunnel.

  17. High Pressure Combustion Experimental Facility(HPCEF) for Studies on Combustion in Reactive Flows

    DTIC Science & Technology

    2017-12-13

    SECURITY CLASSIFICATION OF: 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6...Report: High Pressure Combustion Experimental Facility (HPCEF) for Studies on Combustion in Reactive Flows The views, opinions and/or findings... contained in this report are those of the author(s) and should not contrued as an official Department of the Army position, policy or decision, unless so

  18. High Speed Optical Diagnostics in a High Pressure, GOx/RP 2 Combustor

    DTIC Science & Technology

    2017-07-10

    Similarly, the German Aerospace Center (DLR) at Lampoldshausen conducted research on LOX/LH2 propellants in the Combustion Chamber C experimental ...facility. This single element, optically accessible liquid rocket engine test article was designed to operate up to 1,450 psi, however most research was...significant result of this work was the acquisition of data at pressures up to 2400 psi. T 3 II. Experimental Facility This testing was

  19. Spontaneous Raman Scattering Diagnostics: Applications in Practical Combustion Systems. Chapter 5

    NASA Technical Reports Server (NTRS)

    Kojima, Jun; Viet-Nguyen, Quang; Lackner, Maximilian (Editor); Winter, Franz (Editor); Agarwal, Avinash (Editor)

    2010-01-01

    In this chapter, the recent advancements and practical aspects of laser SRS diagnostics have been reviewed wi til regards to applications in practical combustion systems. Clearly, SRS represents a theoretically and experimentally mature diagnostic technology that has become an essential tool for multiscalar measurements in turbulent combustion at elevated pressures. Today, time-, space-, spectrally, and even polarization-resolved S RS diagnostics is at hand, with aid from recent innovations in theoretical and technological developments on electro-optical or electromechanical devices. Whilst a linear increase in SRS signals can be expected in high-pressure systems (this is perhaps one of the most important advantages for using SRS in high-pressure systems), there are practical (often severe) restrictions associated with pressurized vessels, due mainly to the limited degree of optical access. This narrows ti,e available choice of diagnostics that can be employed at any given time. Point-wise SRS diagnostics provides the highest accuracy on the chemical species and temperature measurements, and will continue to remain a vital approach for the study in such harsh environments. The practical design considerations and hands-on set-up guide for SRS diagnostics provided in this chapter are rarely presented elsewhere. Although the second-harmonic Nd:YAG pulsed laser (532 nm), combined with pulse-stretching optics or the recently introduced White Cell-based laser, seems to be the most favored excitation source of choice by the research community, UV excitation will undoubtedly continue to be used on many occasions, and especially in sooting flames. Detection methods may be divided into ICCD-based nanosecond-gate detection or a rotary-chopper electromechanical shutter-based CCD array detection, and the levels of background flame emission in individual cases would determine this critical design choice. Here, a process of Raman signal calibration based on ti,e crosstalk matrix formalism was explained step-by-step. As tI,is process may be very time-consuming and expensive, a well-planned experimental approach (01' building a transferable calibration database or library (at least with in a user's own facility over a series of different testing and runs) is vitally important. Hands on advice on the design and construction of flow control systems for high pressure burner facilities were also presented.

  20. Energy Systems Integration Laboratory | Energy Systems Integration Facility

    Science.gov Websites

    systems test hub includes a Class 1, Division 2 space for performing tests of high-pressure hydrogen Laboratory offers the following capabilities. High-Pressure Hydrogen Systems The high-pressure hydrogen infrastructure. Key Infrastructure Robotic arm; high-pressure hydrogen; natural gas supply; standalone SCADA

  1. Hydrogen Infrastructure Testing and Research Facility | Energy Systems

    Science.gov Websites

    hydrogen production through renewable electrolysis, fuel cell manufacturing and testing, high-pressure system provides hydrogen to fill fuel cell forklifts and feeds the high pressure compressor. View Photos High Pressure Storage The high pressure hydrogen storage system consists of four Type II hydrogen tanks

  2. Force Measurement Improvements to the National Transonic Facility Sidewall Model Support System

    NASA Technical Reports Server (NTRS)

    Goodliff, Scott L.; Balakrishna, Sundareswara; Butler, David; Cagle, C. Mark; Chan, David; Jones, Gregory S.; Milholen, William E., II

    2016-01-01

    The National Transonic Facility is a transonic pressurized cryogenic facility. The development of the high Reynolds number semi-span capability has advanced over the years to include transonic active flow control and powered testing using the sidewall model support system. While this system can be used in total temperatures down to -250Â F for conventional unpowered configurations, it is limited to temperatures above -60Â F when used with powered models that require the use of the high-pressure air delivery system. Thermal instabilities and non-repeatable mechanical arrangements revealed several data quality shortfalls by the force and moment measurement system. Recent modifications to the balance cavity recirculation system have improved the temperature stability of the balance and metric model-to-balance hardware. Changes to the mechanical assembly of the high-pressure air delivery system, particularly hardware that interfaces directly with the model and balance, have improved the repeatability of the force and moment measurement system. Drag comparisons with the high-pressure air system removed will also be presented in this paper.

  3. Safety Evaluation Report: Development of Improved Composite Pressure Vessels for Hydrogen Storage, Lincoln Composites, Lincoln, NE, May 25, 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fort, III, William C.; Kallman, Richard A.; Maes, Miguel

    2010-12-22

    Lincoln Composites operates a facility for designing, testing, and manufacturing composite pressure vessels. Lincoln Composites also has a U.S. Department of Energy (DOE)-funded project to develop composite tanks for high-pressure hydrogen storage. The initial stage of this project involves testing the permeation of high-pressure hydrogen through polymer liners. The company recently moved and is constructing a dedicated research/testing laboratory at their new location. In the meantime, permeation tests are being performed in a corner of a large manufacturing facility. The safety review team visited the Lincoln Composites site on May 25, 2010. The project team presented an overview of themore » company and project and took the safety review team on a tour of the facility. The safety review team saw the entire process of winding a carbon fiber/resin tank on a liner, installing the boss and valves, and curing and painting the tank. The review team also saw the new laboratory that is being built for the DOE project and the temporary arrangement for the hydrogen permeation tests.« less

  4. Plasma Propulsion Testing Capabilities at Arnold Engineering Development Center

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Dawbarn, Albert; Moeller, Trevor

    2007-01-01

    This paper describes the results of a series of experiments aimed at quantifying the plasma propulsion testing capabilities of a 12-ft diameter vacuum facility (12V) at USAF-Arnold Engineering Development Center (AEDC). Vacuum is maintained in the 12V facility by cryogenic panels lining the interior of the chamber. The pumping capability of these panels was shown to be great enough to support plasma thrusters operating at input electrical power >20 kW. In addition, a series of plasma diagnostics inside the chamber allowed for measurement of plasma parameters at different spatial locations, providing information regarding the chamber's effect on the global plasma thruster flowfield. The plasma source used in this experiment was Hall thruster manufactured by Busek Co. The thruster was operated at up to 20 kW steady-state power in both a lower current and higher current mode. The vacuum level in the chamber never rose above 9 x 10(exp -6) torr during the course of testing. Langmuir probes, ion flux probes, and Faraday cups were used to quantify the plasma parameters in the chamber. We present the results of these measurements and estimates of pumping speed based on the background pressure level and thruster propellant mass flow rate.

  5. Alleviation of Facility/Engine Interactions in an Open-Jet Scramjet Test Facility

    NASA Technical Reports Server (NTRS)

    Albertson, Cindy W.; Emami, Saied

    2001-01-01

    Results of a series of shakedown tests to eliminate facility/engine interactions in an open-jet scramjet test facility are presented. The tests were conducted with the NASA DFX (Dual-Fuel eXperimental scramjet) engine in the NASA Langley Combustion Heated Scramjet Test Facility (CHSTF) in support of the Hyper-X program, The majority of the tests were conducted at a total enthalpy and pressure corresponding to Mach 5 flight at a dynamic pressure of 734 psf. The DFX is the largest engine ever tested in the CHSTF. Blockage, in terms of the projected engine area relative to the nozzle exit area, is 81% with the engine forebody leading edge aligned with the upper edge of the facility nozzle such that it ingests the nozzle boundary layer. The blockage increases to 95% with the engine forebody leading edge positioned 2 in. down in the core flow. Previous engines successfully tested in the CHSTF have had blockages of no more than 51%. Oil flow studies along with facility and engine pressure measurements were used to define flow behavior. These results guided modifications to existing aeroappliances and the design of new aeroappliances. These changes allowed fueled tests to be conducted without facility interaction effects in the data with the engine forebody leading edge positioned to ingest the facility nozzle boundary layer. Interaction effects were also reduced for tests with the engine forebody leading edge positioned 2 in. into the core flow, however some interaction effects were still evident in the engine data. A new shroud and diffuser have been designed with the goal of allowing fueled tests to be conducted with the engine forebody leading edge positioned in the core without facility interaction effects in the data. Evaluation tests of the new shroud and diffuser will be conducted once ongoing fueled engine tests have been completed.

  6. Association between Gastrointestinal Illness and Precipitation in Areas Impacted by Combined Sewer Facilities: Analysis of Massachusetts Data, 2003-2007

    EPA Science Inventory

    Background: Combined sewer systems (CSS) collect rainwater runoff, sewage, and industrial wastewater for transit to treatment facilities. With heavy precipitation, volumes can exceed capacity of treatment facilities, and wastewater discharges directly to receiving waters. These c...

  7. Signal and background considerations for the MRSt on the National Ignition Facility (NIF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wink, C. W., E-mail: cwink@mit.edu; Frenje, J. A.; Gatu Johnson, M.

    2016-11-15

    A Magnetic Recoil Spectrometer (MRSt) has been conceptually designed for time-resolved measurements of the neutron spectrum at the National Ignition Facility. Using the MRSt, the goals are to measure the time-evolution of the spectrum with a time resolution of ∼20-ps and absolute accuracy better than 5%. To meet these goals, a detailed understanding and optimization of the signal and background characteristics are required. Through ion-optics, MCNP simulations, and detector-response calculations, it is demonstrated that the goals and a signal-to background >5–10 for the down-scattered neutron measurement are met if the background, consisting of ambient neutrons and gammas, at the MRStmore » is reduced 50–100 times.« less

  8. Signal and background considerations for the MRSt on the National Ignition Facility (NIF)

    DOE PAGES

    Wink, C. W.; Frenje, J. A.; Hilsabeck, T. J.; ...

    2016-08-03

    A Magnetic Recoil Spectrometer (MRSt) has been conceptually designed for time-resolved measurements of the neutron spectrum at the National Ignition Facility. Using the MRSt, the goals are to measure the time-evolution of the spectrum with a time resolution of ~20-ps and absolute accuracy better than 5%. To meet these goals, a detailed understanding and optimization of the signal and background characteristics are required. Through ion-optics, MCNP simulations, and detector-response calculations, we demonstrate that the goals and a signal-to background >5-10 for the down-scattered neutron measurement are met if the background, consisting of ambient neutrons and gammas, at the MRSt ismore » reduced 50-100 times.« less

  9. Spontaneous Raman Scattering (SRS) System for Calibrating High-Pressure Flames Became Operational

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet

    2003-01-01

    A high-performance spontaneous Raman scattering (SRS) system for measuring quantitative species concentration and temperature in high-pressure flames is now operational. The system is located in Glenn s Engine Research Building. Raman scattering is perhaps the only optical diagnostic technique that permits the simultaneous (single-shot) measurement of all major species (N2, O2, CO2, H2O, CO, H2, and CH4) as well as temperature in combustion systems. The preliminary data acquired with this new system in a 20-atm hydrogen-air (H2-air) flame show excellent spectral coverage, good resolution, and a signal-to-noise ratio high enough for the data to serve as a calibration standard. This new SRS diagnostic system is used in conjunction with the newly developed High- Pressure Gaseous Burner facility (ref. 1). The main purpose of this diagnostic system and the High-Pressure Gaseous Burner facility is to acquire and establish a comprehensive Raman-scattering spectral database calibration standard for the combustion diagnostic community. A secondary purpose of the system is to provide actual measurements in standardized flames to validate computational combustion models. The High-Pressure Gaseous Burner facility and its associated SRS system will provide researchers throughout the world with new insights into flame conditions that simulate the environment inside the ultra-high-pressure-ratio combustion chambers of tomorrow s advanced aircraft engines.

  10. Blood Pressure Levels and Mortality Risk among Hemodialysis Patients: Results from the Dialysis Outcomes and Practice Patterns Study

    PubMed Central

    Robinson, Bruce M.; Tong, Lin; Zhang, Jinyao; Wolfe, Robert A.; Goodkin, David A.; Greenwood, Roger N.; Kerr, Peter G.; Morgenstern, Hal; Li, Yun; Pisoni, Ronald L.; Saran, Rajiv; Tentori, Francesca; Akizawa, Tadao; Fukuhara, Shunichi; Port, Friedrich K.

    2014-01-01

    KDOQI practice guidelines recommend pre-dialysis blood pressure (BP) <140/90 mm Hg. However, most prior hemodialysis studies found elevated mortality with low, not high, systolic blood pressure (SBP), possibly due to unmeasured confounders affecting BP and mortality such as severity of comorbidities. To lessen this bias, we analyzed facility-level BP practices, relating patient-level survival to the fraction of patients in BP categories at each dialysis facility in Cox regression models adjusted for patient and facility characteristics. Analyses included 24,525 patients in the Dialysis Outcomes and Practice Patterns Study. Compared with pre-dialysis SBP 130–159 mm Hg, mortality was 13% higher in facilities with 20% more patients at SBP 110–129 mm Hg and 16% higher in facilities with 20% more patients at SBP ≥160 mm Hg. For patient-level SBP, mortality was elevated at low (<130 mm Hg), not high (up to ≥180 mm Hg) SBP. For pre-dialysis diastolic BP, mortality was lowest at 60–99 mm Hg, a wide range suggesting less chance to improve outcomes. Higher mortality at SBP <130 mm Hg is consistent with prior studies and may be due to excessive BP-lowering during dialysis. The lowest risk facility SBP range of 130–159 mm Hg indicates this range may be optimal, but may have been influenced by unmeasured facility practices. While additional study is needed, the findings contrast with KDOQI BP targets, and provide guidance on optimal BP range in absence of definitive clinical trial data. PMID:22718187

  11. Repair of a vesicocutaneous fistula using negative-pressure wound therapy and urinary diversion via a nephrostomy tube.

    PubMed

    Freeman, Julie J; Storto, Dominic L P; Berry-Cabán, Cristóbal S

    2013-01-01

    This article describes an unusual case of a vesicocutaneous fistula in a patient with a history of radiation therapy and recent abdominal surgery. A 61-year-old woman was transferred to our acute care facility from a rehabilitation facility, with poor nutritional intake and a concern for urine draining from her wound. A nephrostomy tube was placed (she had only 1 functioning kidney) and negative-pressure wound therapy was used to close the fistula. Urinary diversion via a nephrostomy tube and negative-pressure wound therapy were used to successfully and safely close this vesicocutaneous fistula.

  12. Laboratory simulations of astrophysical jets: results from experiments at the PF-3, PF-1000U, and KPF-4 facilities

    NASA Astrophysics Data System (ADS)

    Krauz, V. I.; Myalton, V. V.; Vinogradov, V. P.; Velikhov, E. P.; Ananyev, S. S.; Dan'ko, S. A.; Kalinin, Yu G.; Kharrasov, A. M.; Vinogradova, Yu V.; Mitrofanov, K. N.; Paduch, M.; Miklaszewski, R.; Zielinska, E.; Skladnik-Sadowska, E.; Sadowski, M. J.; Kwiatkowski, R.; Tomaszewski, K.; Vojtenko, D. A.

    2017-10-01

    Results are presented from laboratory simulations of plasma jets emitted by young stellar objects carried out at the plasma focus facilities. The experiments were performed at three facilities: the PF-3, PF-1000U and KPF-4. The operation modes were realized enabling the formation of narrow plasma jets which can propagate over long distances. The main parameters of plasma jets and background plasma were determined. In order to control the ratio of a jet density to that of background plasma, some special operation modes with pulsed injection of the working gas were used.

  13. Soudan Low Background Counting Facility (SOLO)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Attisha, Michael; Viveiros, Luiz de; Gaitksell, Richard

    2005-09-08

    The Soudan Low Background Counting Facility (SOLO) has been in operation at the Soudan Mine, MN since March 2003. In the past two years, we have gamma-screened samples for the Majorana, CDMS and XENON experiments. With individual sample exposure times of up to two weeks we have measured sample contamination down to the 0.1 ppb level for 238U / 232Th, and down to the 0.25 ppm level for 40K.

  14. 32 CFR 770.54 - Background.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ACCESS TO PARTICULAR INSTALLATIONS Entry Regulations for Portsmouth Naval Shipyard, Portsmouth, New Hampshire § 770.54 Background. (a) Portsmouth Naval Shipyard maintains and operates facilities “to provide...

  15. 32 CFR 770.54 - Background.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ACCESS TO PARTICULAR INSTALLATIONS Entry Regulations for Portsmouth Naval Shipyard, Portsmouth, New Hampshire § 770.54 Background. (a) Portsmouth Naval Shipyard maintains and operates facilities “to provide...

  16. 32 CFR 770.54 - Background.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ACCESS TO PARTICULAR INSTALLATIONS Entry Regulations for Portsmouth Naval Shipyard, Portsmouth, New Hampshire § 770.54 Background. (a) Portsmouth Naval Shipyard maintains and operates facilities “to provide...

  17. 32 CFR 770.54 - Background.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ACCESS TO PARTICULAR INSTALLATIONS Entry Regulations for Portsmouth Naval Shipyard, Portsmouth, New Hampshire § 770.54 Background. (a) Portsmouth Naval Shipyard maintains and operates facilities “to provide...

  18. Background Pressure Effects on Krypton Hall Effect Thruster Internal Acceleration

    DTIC Science & Technology

    2013-08-01

    This was also previously seen for xenon. Several interpretations of the continued velocity dis- tribution broadening of the high pressure case of...acceleration region into the thruster rel- ative to lower background pressures. We have at- tributed this behavior to increased electron mobility...density. While the data presented thus far does shown some changes in the breadth of the velocity Kr II dis- tributions with increasing

  19. Fast neutron background characterization with the Radiological Multi-sensor Analysis Platform (RadMAP)

    DOE PAGES

    Davis, John R.; Brubaker, Erik; Vetter, Kai

    2017-03-29

    In an effort to characterize the fast neutron radiation background, 16 EJ-309 liquid scintillator cells were installed in the Radiological Multi-sensor Analysis Platform (RadMAP) to collect data in the San Francisco Bay Area. Each fast neutron event was associated with specific weather metrics (pressure, temperature, absolute humidity) and GPS coordinates. Furthermore, the expected exponential dependence of the fast neutron count rate on atmospheric pressure was demonstrated and event rates were subsequently adjusted given the measured pressure at the time of detection. Pressure adjusted data was also used to investigate the influence of other environmental conditions on the neutron background rate.more » Using National Oceanic and Atmospheric Administration (NOAA) coastal area lidar data, an algorithm was implemented to approximate sky-view factors (the total fraction of visible sky) for points along RadMAPs route. In the three areas we analyzed, San Francisco, Downtown Oakland, and Berkeley, all demonstrated a suppression in the background rate of over 50% for the range of sky-view factors measured. This effect, which is due to the shielding of cosmic-ray produced neutrons by surrounding buildings, was comparable to the pressure influence which yielded a 32% suppression in the count rate over the range of pressures measured.« less

  20. An Evidence-Based Cue-Selection Guide and Logic Model to Improve Pressure Ulcer Prevention in Long Term Care

    PubMed Central

    Yap, Tracey L.; Kennerly, Susan M.; Bergstrom, Nancy; Hudak, Sandra L.; Horn, Susan D.

    2015-01-01

    Pressure ulcers (PrUs) have consistently resisted prevention efforts in long term care (LTC) facilities nationwide. Recent research has described cueing innovations that – when selected according to the assumptions and resources of particular facilities – support best practices of PrU prevention. This paper synthesizes that research into a unified, dynamic logic model to facilitate effective staff implementation of a PrU prevention program. PMID:26066791

  1. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto (right) looks at the newly arrived Japanese Experiment Module (JEM)/pressurized module. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of JEM.

    NASA Image and Video Library

    2003-06-12

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto (right) looks at the newly arrived Japanese Experiment Module (JEM)/pressurized module. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of JEM.

  2. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto (left) looks at the newly arrived Japanese Experiment Module (JEM)/pressurized module. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of JEM.

    NASA Image and Video Library

    2003-06-12

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto (left) looks at the newly arrived Japanese Experiment Module (JEM)/pressurized module. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of JEM.

  3. 78 FR 20564 - Medicare and Medicaid Programs; Survey, Certification and Enforcement Procedures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-05

    ... Providers Act of 2008 NF--Nursing Facility OIG--Office of the Inspector General OPT--Provider of outpatient... Act SNF--Skilled Nursing Facility TJC--The Joint Commission I. Background To participate in the... participation (CoPs) for most providers, requirements for skilled nursing facilities (SNFs), conditions for...

  4. Screening for Atrial Fibrillation in Patients ≥65 Years Using an Automatic Blood Pressure Monitor in a Skilled Nursing Facility.

    PubMed

    Wiesel, Joseph; Salomone, Thomas J

    2017-10-15

    Early detection of asymptomatic atrial fibrillation (AF) provides an opportunity to treat patients to reduce their risk of stroke. Long-term residents of skilled nursing facilities frequently have multiple risk factors for strokes due to AF and may benefit from screening for AF. Patients in a skilled nursing facility 65 years and older, without a history of AF and without a pacemaker or defibrillator, were evaluated using a Microlife WatchBP Home A automatic blood pressure monitor that can detect AF when set to a triple reading mode. Those with readings positive for AF were evaluated with a standard 12-lead electrocardiogram (ECG) or a 30-second single-channel ECG to confirm the presence of AF. A total of 101 patients were screened with an average age of 78 years, and 48 (48%) were female. Nine automatic blood pressure monitor readings were positive for possible AF. Of those, 7 (6.9%, 95% confidence intervals 3.0% to 14.2%) had AF confirmed with ECG. Only 2 (2%, 95% confidence interval 0.3% to 7.7%) were false-positive readings. One-time screening for AF using an automatic blood pressure monitor in a skilled nursing facility resulted in a high number of patients with newly diagnosed AF. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. 15. VIEW OF MODULE H, THE HIGH PRESSURE ASSEMBLY AREA. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. VIEW OF MODULE H, THE HIGH PRESSURE ASSEMBLY AREA. PROCESSES IN THIS MODULE OCCURRED UNDER HIGH PRESSURES AND TEMPERATURES. (5/70) - Rocky Flats Plant, Plutonium Manufacturing Facility, North-central section of Plant, just south of Building 776/777, Golden, Jefferson County, CO

  6. Estimation of fan pressure ratio requirements and operating performance for the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Gloss, B. B.; Nystrom, D.

    1981-01-01

    The National Transonic Facility (NTF), a fan-driven, transonic, pressurized, cryogenic wind tunnel, will operate over the Mach number range of 0.10 to 1.20 with stagnation pressures varying from 1.00 to about 8.8 atm and stagnation temperatures varying from 77 to 340 K. The NTF is cooled to cryogenic temperatures by the injection of liquid nitrogen into the tunnel stream with gaseous nitrogen as the test gas. The NTF can also operate at ambient temperatures using a conventional chilled water heat exchanger with air on nitrogen as the test gas. The methods used in estimating the fan pressure ratio requirements are described. The estimated NTF operating envelopes at Mach numbers from 0.10 to 1.20 are presented.

  7. Physiological effects of a companion robot on blood pressure of older people in residential care facility: a pilot study.

    PubMed

    Robinson, Hayley; MacDonald, Bruce; Broadbent, Elizabeth

    2015-03-01

    To investigate the effects of interacting with the companion robot, Paro, on blood pressure and heart rate of older people in a residential care facility. This study used a repeated measures design. Twenty-one residents in rest home and hospital level care had their blood pressure taken three times; before, during and after interacting with the seal robot. Four residents who did not interact with the robot were excluded from the final analysis (final n = 17). The final analysis found that systolic and diastolic blood pressure changed significantly over time as did heart rate. Planned comparisons revealed that systolic and diastolic blood pressure decreased significantly from baseline to when residents had Paro (systolic, P = 0.048; diastolic, P = 0.05). Diastolic blood pressure increased significantly after Paro was withdrawn (P = 0.03). Interacting with Paro has a physiological effect on cardiovascular measures, which is similar to findings with live animals. © 2013 ACOTA.

  8. Code System to Calculate Tornado-Induced Flow Material Transport.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ANDRAE, R. W.

    1999-11-18

    Version: 00 TORAC models tornado-induced flows, pressures, and material transport within structures. Its use is directed toward nuclear fuel cycle facilities and their primary release pathway, the ventilation system. However, it is applicable to other structures and can model other airflow pathways within a facility. In a nuclear facility, this network system could include process cells, canyons, laboratory offices, corridors, and offgas systems. TORAC predicts flow through a network system that also includes ventilation system components such as filters, dampers, ducts, and blowers. These ventilation system components are connected to the rooms and corridors of the facility to form amore » complete network for moving air through the structure and, perhaps, maintaining pressure levels in certain areas. The material transport capability in TORAC is very basic and includes convection, depletion, entrainment, and filtration of material.« less

  9. A comparison of the acoustic and aerodynamic measurements of a model rotor tested in two anechoic wind tunnels

    NASA Technical Reports Server (NTRS)

    Boxwell, D. A.; Schmitz, F. H.; Splettstoesser, W. R.; Schultz, K. J.; Lewy, S.; Caplot, M.

    1986-01-01

    Two aeroacoustic facilities--the CEPRA 19 in France and the DNW in the Netherlands--are compared. The two facilities have unique acoustic characteristics that make them appropriate for acoustic testing of model-scale helicopter rotors. An identical pressure-instrumented model-scale rotor was tested in each facility and acoustic test results are compared with full-scale-rotor test results. Blade surface pressures measured in both tunnels were used to correlated nominal rotor operating conditions in each tunnel, and also used to assess the steadiness of the rotor in each tunnel's flow. In-the-flow rotor acoustic signatures at moderate forward speeds (35-50 m/sec) are presented for each facility and discussed in relation to the differences in tunnel geometries and aeroacoustic characteristics. Both reports are presented in appendices to this paper. ;.);

  10. Comparison of the NASA Common Research Model European Transonic Wind Tunnel Test Data to NASA Test Data

    NASA Technical Reports Server (NTRS)

    Rivers, Melissa B.; Quest, Jurgen; Rudnik, Ralf

    2015-01-01

    Experimental aerodynamic investigations of the NASA Common Research Model have been conducted in the NASA Langley National Transonic Facility, the NASA Ames 11-ft wind tunnel, and the European Transonic Wind Tunnel. In the NASA Ames 11-ft wind tunnel, data have been obtained at only a chord Reynolds number of 5 million for a wing/body/tail = 0 degree incidence configuration. Data have been obtained at chord Reynolds numbers of 5, 19.8 and 30 million for the same configuration in the National Transonic Facility and in the European Transonic Facility. Force and moment, surface pressure, wing bending and twist, and surface flow visualization data were obtained in all three facilities but only the force and moment, surface pressure and wing bending and twist data are presented herein.

  11. 3. VIEW LOOKING NORTH, COMPONENTS TEST LABORATORY, DYNAMIC TEST FACILITY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW LOOKING NORTH, COMPONENTS TEST LABORATORY, DYNAMIC TEST FACILITY (SATURN V IN BACKGROUND). - Marshall Space Flight Center, East Test Area, Components Test Laboratory, Huntsville, Madison County, AL

  12. CRADA opportunities in pressurized combustion research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maloney, D J; Norton, T S; Casleton, K H

    1995-06-01

    The Morgantown Energy Technology Center recently began operation of a Low Emissions Combustor Test and Research (LECTR) Facility. This facility was built to support the development of Advanced Gas Turbine Systems (ATS) by providing test facilities and engineering support to METC customers through the ATS University-Industry Consortium and through CRADA participation with industrial partners.

  13. 33 CFR 154.2103 - Facility requirements for vessel vapor overpressure and vacuum protection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... HAZARDOUS MATERIAL IN BULK Marine Vapor Control Systems Transfer Facilities-Vcs Design and Installation... rate, unless there is experimental data for actual vapor growth for turbulent transferring under the... vapor growth. (b) A facility VCS must be designed to prevent the pressure in a vessel's cargo tanks from...

  14. Pressure Ulcer Risk in the Incontinent Patient: Analysis of Incontinence and Hospital-Acquired Pressure Ulcers From the International Pressure Ulcer Prevalence™ Survey.

    PubMed

    Lachenbruch, Charlie; Ribble, David; Emmons, Kirsten; VanGilder, Catherine

    2016-01-01

    To measure the prevalence of incontinence in the 2013-2014 International Pressure Ulcer Prevalence (IPUP) surveys and determine the relative risk of developing a facility-acquired pressure ulcers (FAPUs) by stage and by Braden Scale score groupings. The IPUP survey is an observational, cross-sectional cohort database designed to determine the frequency and severity of pressure ulcers in various populations. The survey includes acute care (91.4%), long-term acute care (1.7%), rehabilitation patients (1.7%) and long-term care residents (5.2%). Geographic distribution included 182,832 patients in the United States, 22,282 patients in Canada, and the rest of the world, primarily in Europe and the Middle East. We analyzed data from the 2013 and 2014 IPUP surveys to better understand the relationship between incontinence and the frequency and severity of FAPUs. The IPUP survey is an annual voluntary survey of patients who are hospitalized or who reside in long-term care facilities. Data were collected over a 24-hour period within each participating facility. Data collection included limited demographics, presence and stage of pressure ulcers, and pressure ulcer risk assessment score (Braden Scale for Pressure Sore Risk, Braden Q, Norton, Waterlow, and others). In addition, data were collected on pertinent pressure ulcer risk factors including the number of linen layers, use of a pressure redistributing surface, adherence to repositioning schedule, and whether moisture management was provided in the last 24 hours. We aggregated data by urinary, urinary catheter, fecal, fecal management system, double (urinary and fecal), and ostomy incontinence category. If patients were managed by indwelling urinary catheter or fecal management systems, they were considered incontinent in this analysis. In order to analyze ulcers likely to be affected by incontinence, we defined a subset of ulcers as Relevant Pressure Ulcers, which are ulcers that are facility-acquired, non-device-related, and located in the pelvic region. We analyzed 176,689 patients based on data collected between 2013 and 2014. Slightly less than half (n = 83,800; 47%) of patients did not have incontinence, and 92,889 (53%) were deemed to be incontinent. The prevalence of pressure ulcers was 4.1% for continent patients and 16.3% for incontinent patients; the prevalence of FAPUs was 1.6% and 6.0%, respectively. The relative risk for PU development in incontinent patients was higher than predicted by the Braden Scale risk score. As wound severity increased, the odds ratios for pressure ulcer development for incontinent patients versus continent patients also increased, especially in patients with fecal incontinence. Incontinent patients had higher Braden Scale scores and higher overall and FAPU prevalence. Incontinence was associated with an increased risk for all pressure ulcers, but especially full-thickness injuries.

  15. NASA low-speed centrifugal compressor for 3-D viscous code assessment and fundamental flow physics research

    NASA Technical Reports Server (NTRS)

    Hathaway, M. D.; Wood, J. R.; Wasserbauer, C. A.

    1991-01-01

    A low speed centrifugal compressor facility recently built by the NASA Lewis Research Center is described. The purpose of this facility is to obtain detailed flow field measurements for computational fluid dynamic code assessment and flow physics modeling in support of Army and NASA efforts to advance small gas turbine engine technology. The facility is heavily instrumented with pressure and temperature probes, both in the stationary and rotating frames of reference, and has provisions for flow visualization and laser velocimetry. The facility will accommodate rotational speeds to 2400 rpm and is rated at pressures to 1.25 atm. The initial compressor stage being tested is geometrically and dynamically representative of modern high-performance centrifugal compressor stages with the exception of Mach number levels. Preliminary experimental investigations of inlet and exit flow uniformly and measurement repeatability are presented. These results demonstrate the high quality of the data which may be expected from this facility. The significance of synergism between computational fluid dynamic analysis and experimentation throughout the development of the low speed centrifugal compressor facility is demonstrated.

  16. Multidimensional team-based intervention using musical cues to reduce odds of facility-acquired pressure ulcers in long-term care: a paired randomized intervention study.

    PubMed

    Yap, Tracey L; Kennerly, Susan M; Simmons, Mark R; Buncher, Charles R; Miller, Elaine; Kim, Jay; Yap, Winston Y

    2013-09-01

    To test the effectiveness of a pressure ulcer (PU) prevention intervention featuring musical cues to remind all long-term care (LTC) staff (nursing and ancillary) to help every resident move or reposition every 2 hours. Twelve-month paired-facility two-arm (with one-arm crossover) randomized intervention trial. Ten midwestern U.S. LTC facilities. Four treatment facilities received intervention during Months 1 to 12, four comparison facilities received intervention during Months 7 to 12, and two pseudo-control facilities received no intervention. LTC facility residents (N = 1,928). All facility staff received in-person education, video, and handouts, and visiting family members received informational pamphlets on PU prevention and an intervention featuring musical cues. Nurse-led multidisciplinary staff teams presented the cues as prompts for staff and family to reposition residents or remind them to move. Musical selections (with and without lyrics) customized to facility preferences were played daily over the facility intercom or public address system every 2 hours for the 12-hour daytime period. Primary outcome measure was the frequency of new facility-acquired PUs divided by the total number of facility Minimum Data Set (MDS) resident assessments conducted during the study period. Odds of a new PU were lower in intervention facilities (P = .08) for MDS 2.0 assessments and were significantly lower (P = .05) for MDS 3.0. Mean odds ratios suggested intervention facility residents were 45% less likely than comparison facility residents to develop a new PU. Customized musical cues that prompt multidisciplinary staff teams to encourage or enable movement of all residents hold promise for reducing facility-acquired PUs in LTC settings. © 2013, Copyright the Authors Journal compilation © 2013, The American Geriatrics Society.

  17. Team Update on North American Proton Facilities for Radiation Testing

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Turflinger, Thomas; Haas, Thurman; George, Jeffrey; Moss, Steven; Davis, Scott; Kostic, Andrew; Wie, Brian; Reed, Robert; Guertin, Steven; hide

    2016-01-01

    In the wake of the closure of the Indiana University Cyclotron Facility (IUCF), this presentation provides an overview of the options for North American proton facilities. This includes those in use by the aerospace community as well as new additions from the cancer therapy regime. In addition, proton single event testing background is provided for understanding the criteria needed for these facilities for electronics testing.

  18. 46 CFR 160.151-45 - Equipment required for servicing facilities.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., or other pressure-measurement device or pressure gauge of equivalent accuracy and sensitivity; (j) Thermometer; (k) Barometer, aneroid or mercury; (l) Calibrated torque-wrench for assembling the inflation...

  19. 46 CFR 160.151-45 - Equipment required for servicing facilities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., or other pressure-measurement device or pressure gauge of equivalent accuracy and sensitivity; (j) Thermometer; (k) Barometer, aneroid or mercury; (l) Calibrated torque-wrench for assembling the inflation...

  20. The Effect of Background Pressure on Electron Acceleration from Ultra-Intense Laser-Matter Interactions

    NASA Astrophysics Data System (ADS)

    Le, Manh; Ngirmang, Gregory; Orban, Chris; Morrison, John; Chowdhury, Enam; Roquemore, William

    2017-10-01

    We present two-dimensional particle-in-cell (PIC) simulations that investigate the role of background pressure on the acceleration of electrons from ultra intense laser interaction at normal incidence with liquid density ethylene glycol targets. The interaction was simulated at ten different pressures varying from 7.8 mTorr to 26 Torr. We calculated conversion efficiencies from the simulation results and plotted the efficiencies with respect to the background pressure. The results revealed that the laser to > 100 keV electron conversion efficiency remained flat around 0.35% from 7.8 mTorr to 1.2 Torr and increased exponentially from 1.2 Torr onward to about 1.47% at 26 Torr. Increasing the background pressure clearly has a dramatic effect on the acceleration of electrons from the target. We explain how electrostatic effects, in particular the neutralization of the target by the background plasma, allows electrons to escape more easily and that this effect is strengthened with higher densities. This work could facilitate the design of future experiments in increasing laser to electron conversion efficiency and generating substantial bursts of electrons with relativistic energies. This research is supported by the Air Force Office of Scientific Research under LRIR Project 17RQCOR504 under the management of Dr. Riq Parra and Dr. Jean-Luc Cambier. Support was also provided by the DOD HPCMP Internship Program.

  1. Modern tornado design of nuclear and other potentially hazardous facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevenson, J.D.; Zhao, Y.

    Tornado wind loads and other tornado phenomena, including tornado missiles and differential pressure effects, have not usually been considered in the design of conventional industrial, commercial, or residential facilities in the United States; however, tornado resistance has often become a design requirement for certain hazardous facilities, such as large nuclear power plants and nuclear materials and waste storage facilities, as well as large liquefied natural gas storage facilities. This article provides a review of current procedures for the design of hazardous industrial facilities to resist tornado effects. 23 refs., 19 figs., 13 tabs.

  2. Development of an Implantable Fish Spawning Sensor Tag

    DTIC Science & Technology

    2013-09-24

    Manatee Hatchery Facility, Port Manatee , Florida) using a Millar Instruments pressure catheter inserted a fixed distance (15cm) into the ovary before and...red drum aquaculture facility in Port Manatee , Florida (or similar aquaculture facility where spawning fishes are kept). This facility maintains a...at the Port Manatee hatchery and phase three tests on goliath grouper in the field. RESULTS *Please refer to other sections for more details and

  3. Summary of experimental heat-transfer results from the turbine hot section facility

    NASA Technical Reports Server (NTRS)

    Gladden, Herbert J.; Yeh, Fredrick C.

    1993-01-01

    Experimental data from the turbine Hot Section Facility are presented and discussed. These data include full-coverage film-cooled airfoil results as well as special instrumentation results obtained at simulated real engine conditions. Local measurements of airfoil wall temperature, airfoil gas-path static-pressure distribution, and local heat-transfer coefficient distributions are presented and discussed. In addition, measured gas and coolant temperatures and pressures are presented. These data are also compared with analyses from Euler and boundary-layer codes.

  4. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto (center) joins others for a tour. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.

    NASA Image and Video Library

    2003-06-12

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto (center) joins others for a tour. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.

  5. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto points to other Space Station elements. Behind him is the Japanese Experiment Module (JEM)/pressurized module. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of JEM.

    NASA Image and Video Library

    2003-06-12

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto points to other Space Station elements. Behind him is the Japanese Experiment Module (JEM)/pressurized module. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of JEM.

  6. Mechanical reinforcement for RACC cables in high magnetic background fields

    NASA Astrophysics Data System (ADS)

    Bayer, C. M.; Gade, P. V.; Barth, C.; Preuß, A.; Jung, A.; Weiß, K. P.

    2016-02-01

    Operable in liquid helium, liquid hydrogen or liquid nitrogen, high temperature superconductor (HTS) cables are investigated as future alternatives to low temperature superconductor (LTS) cables in magnet applications. Different high current HTS cable concepts have been developed and optimized in the last years—each coming with its own benefits and challenges. As the Roebel assembled coated conductor (RACC) is the only fully transposed HTS cable investigated so far, it is attractive for large scale magnet and accelerator magnet applications when field quality and alternating current (AC) losses are of highest importance. However, due to its filamentary character, the RACC is very sensitive to Lorentz forces. In order to increase the mechanical strength of the RACC, each of the HTS strands was covered by an additional copper tape. After investigating the maximum applicable transverse pressure on the strand composition, the cable was clamped into a stainless steel structure to reinforce it against Lorentz forces. A comprehensive test has been carried out in the FBI facility at 4.2 K in a magnetic field of up to 12 T. This publication discusses the maximum applicable pressure as well as the behaviour of the RACC cable as a function of an external magnetic field.

  7. Applications of Low Density Flow Techniques and Catalytic Recombination at the Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Scott, Carl D.

    2000-01-01

    The talk presents a brief background on defInitions of catalysis and effects associated with chemically nonequilibrium and low-density flows of aerospace interest. Applications of catalytic recombination on surfaces in dissociated flow are given, including aero heating on reentry spacecraft thermal protection surfaces and reflection of plume flow on pressure distributions associated with the space station. Examples include aero heating predictions for the X-38 test vehicle, the inlet of a proposed gas-sampling probe used in high enthalpy test facilities, and a parabolic body at angle of attack. The effect of accommodation coefficients on thruster induced pressure distributions is also included. Examples of tools used include simple aero heating formulas based on boundary layer solutions, an engineering approximation that uses axisymmetric viscous shock layer flow to simulate full three dimensional flow, full computational fluid dynamics, and direct simulation Monte-Carlo calculations. Methods of determining catalytic recombination rates in arc jet flow are discus ed. An area of catalysis not fully understood is the formation of single-wall carbon nanotubes (SWNT) with gas phase or nano-size metal particles. The Johnson Space Center is making SWNTs using both a laser ablation technique and an electric arc vaporization technique.

  8. High-pressure swing system for measurements of radioactive fission gases in air samples

    NASA Astrophysics Data System (ADS)

    Schell, W. R.; Vives-Battle, J.; Yoon, S. R.; Tobin, M. J.

    1999-01-01

    Radionuclides emitted from nuclear reactors, fuel reprocessing facilities and nuclear weapons tests are distributed widely in the atmosphere but have very low concentrations. As part of the Comprehensive Test Ban Treaty (CTBT), identification and verification of the emission of radionuclides from such sources are fundamental in maintaining nuclear security. To detect underground and underwater nuclear weapons tests, only the gaseous components need to be analyzed. Equipment has now been developed that can be used to collect large volumes of air, separate and concentrate the radioactive gas constituents, such as xenon and krypton, and measure them quantitatively. By measuring xenon isotopes with different half-lives, the time since the fission event can be determined. Developments in high-pressure (3500 kPa) swing chromatography using molecular sieve adsorbents have provided the means to collect and purify trace quantities of the gases from large volumes of air automatically. New scintillation detectors, together with timing and pulse shaping electronics, have provided the low-background levels essential in identifying the gamma ray, X-ray, and electron energy spectra of specific radionuclides. System miniaturization and portability with remote control could be designed for a field-deployable production model.

  9. KSC-07pd0635

    NASA Image and Video Library

    2007-03-13

    KENNEDY SPACE CENTER, FLA. -- A flat bed truck hauls the container with the Experiment Logistics Module Pressurized Section inside away from the Trident wharf. The logistics module is part of the Japanese Experiment Module. The logistics module is being transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett

  10. KSC-07pd0632

    NASA Image and Video Library

    2007-03-13

    KENNEDY SPACE CENTER, FLA. -- At the Trident wharf, workers help guide the container with the Experiment Logistics Module Pressurized Section inside toward the dock. The logistics module is part of the Japanese Experiment Module. The logistics module will be transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett

  11. KSC-07pd0626

    NASA Image and Video Library

    2007-03-12

    KENNEDY SPACE CENTER, FLA. -- The ship carrying the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module arrives at the Trident wharf after departing from Yokohama, Japan, Feb. 7. The logistics module will be offloaded and transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett

  12. KSC-07pd0628

    NASA Image and Video Library

    2007-03-12

    KENNEDY SPACE CENTER, FLA. -- The ship carrying the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module arrives at the Trident wharf after departing from Yokohama, Japan, Feb. 7. The logistics module will be offloaded and transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett

  13. KSC-07pd0627

    NASA Image and Video Library

    2007-03-12

    KENNEDY SPACE CENTER, FLA. -- The ship carrying the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module arrives at the Trident wharf after departing from Yokohama, Japan, Feb. 7. The logistics module will be offloaded and transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett

  14. KSC-07pd0629

    NASA Image and Video Library

    2007-03-12

    KENNEDY SPACE CENTER, FLA. -- The ship carrying the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module is tied up at the Trident wharf after departing from Yokohama, Japan, Feb. 7. The logistics module will be offloaded and transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett

  15. 78 FR 48541 - Agency Information Collection Activities: Requests for Comments; Clearance of Renewed Approval of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ... Facility Charge (PFC) Application. Form Numbers: FAA Form 5500-1. Type of Review: Renewal of an information collection. Background: 49 U.S.C. 40117 authorizes airports to impose passenger facility charges (PFC). The... Facility Charge (PFC) Application AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice and...

  16. 78 FR 29425 - Agency Information Collection Activities: Requests for Comments; Clearance of Renewed Approval of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-20

    ... Facility Charge (PFC) Application. Form Numbers: FAA Form 5500-1. Type of Review: Renewal of an information collection. Background: 49 U.S.C. 40117 authorizes airports to impose passenger facility charges (PFC). The... Facility Charge (PFC) Application AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice and...

  17. Computational Analyses in Support of Sub-scale Diffuser Testing for the A-3 Facility. Part 1; Steady Predictions

    NASA Technical Reports Server (NTRS)

    Allgood, Daniel C.; Graham, Jason S.; Ahuja, Vineet; Hosangadi, Ashvin

    2010-01-01

    Simulation technology can play an important role in rocket engine test facility design and development by assessing risks, providing analysis of dynamic pressure and thermal loads, identifying failure modes and predicting anomalous behavior of critical systems. Advanced numerical tools assume greater significance in supporting testing and design of high altitude testing facilities and plume induced testing environments of high thrust engines because of the greater inter-dependence and synergy in the functioning of the different sub-systems. This is especially true for facilities such as the proposed A-3 facility at NASA SSC because of a challenging operating envelope linked to variable throttle conditions at relatively low chamber pressures. Facility designs in this case will require a complex network of diffuser ducts, steam ejector trains, fast operating valves, cooling water systems and flow diverters that need to be characterized for steady state performance. In this paper, we will demonstrate with the use of CFD analyses s advanced capability to evaluate supersonic diffuser and steam ejector performance in a sub-scale A-3 facility at NASA Stennis Space Center (SSC) where extensive testing was performed. Furthermore, the focus in this paper relates to modeling of critical sub-systems and components used in facilities such as the A-3 facility. The work here will address deficiencies in empirical models and current CFD analyses that are used for design of supersonic diffusers/turning vanes/ejectors as well as analyses for confined plumes and venting processes. The primary areas that will be addressed are: (1) supersonic diffuser performance including analyses of thermal loads (2) accurate shock capturing in the diffuser duct; (3) effect of turning duct on the performance of the facility (4) prediction of mass flow rates and performance classification for steam ejectors (5) comparisons with test data from sub-scale diffuser testing and assessment of confidence levels in CFD based flowpath modeling of the facility. The analyses tools used here expand on the multi-element unstructured CFD which has been tailored and validated for impingement dynamics of dry plumes, complex valve/feed systems, and high pressure propellant delivery systems used in engine and component test stands at NASA SSC. The analyses performed in the evaluation of the sub-scale diffuser facility explored several important factors that influence modeling and understanding of facility operation such as (a) importance of modeling the facility with Real Gas approximation, (b) approximating the cluster of steam ejector nozzles as a single annular nozzle, (c) existence of mixed subsonic/supersonic flow downstream of the turning duct, and (d) inadequacy of two-equation turbulence models in predicting the correct pressurization in the turning duct and expansion of the second stage steam ejectors. The procedure used for modeling the facility was as follows: (i) The engine, test cell and first stage ejectors were simulated with an axisymmetric approximation (ii) the turning duct, second stage ejectors and the piping downstream of the second stage ejectors were analyzed with a three-dimensional simulation utilizing a half-plane symmetry approximation. The solution i.e. primitive variables such as pressure, velocity components, temperature and turbulence quantities were passed from the first computational domain and specified as a supersonic boundary condition for the second simulation. (iii) The third domain comprised of the exit diffuser and the region in the vicinity of the facility (primary included to get the correct shock structure at the exit of the facility and entrainment characteristics). The first set of simulations comprising the engine, test cell and first stage ejectors was carried out both as a turbulent real gas calculation as well as a turbulent perfect gas calculation. A comparison for the two cases (Real Turbulent and Perfect gas turbulent) of the Ma Number distribution and temperature distributions are shown in Figures 1 and 2 respectively.

  18. Noise in a Laboratory Animal Facility from the Human and Mouse Perspectives

    PubMed Central

    Reynolds, Randall P; Kinard, Will L; Degraff, Jesse J; Leverage, Ned; Norton, John N

    2010-01-01

    The current study was performed to understand the level of sound produced by ventilated racks, animal transfer stations, and construction equipment that mice in ventilated cages hear relative to what humans would hear in the same environment. Although the ventilated rack and animal transfer station both produced sound pressure levels above the ambient level within the human hearing range, the sound pressure levels within the mouse hearing range did not increase above ambient noise from either noise source. When various types of construction equipment were used 3 ft from the ventilated rack, the sound pressure level within the mouse hearing range was increased but to a lesser degree for each implement than were the sound pressure levels within the human hearing range. At more distant locations within the animal facility, sound pressure levels from the large jackhammer within the mouse hearing range decreased much more rapidly than did those in the human hearing range, indicating that less of the sound is perceived by mice than by humans. The relatively high proportion of low-frequency sound produced by the shot blaster, used without the metal shot that it normally uses to clean concrete, increased the sound pressure level above the ambient level for humans but did not increase sound pressure levels above ambient noise for mice at locations greater than 3 ft from inside of the cage, where sound was measured. This study demonstrates that sound clearly audible to humans in the animal facility may be perceived to a lesser degree or not at all by mice, because of the frequency content of the sound. PMID:20858361

  19. 10 CFR 50.55a - Codes and standards.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... specified in § 50.55, except that each combined license for a boiling or pressurized water-cooled nuclear... boiling or pressurized water-cooled nuclear power facility is subject to the conditions in paragraphs (f... performed. (2) Systems and components of boiling and pressurized water-cooled nuclear power reactors must...

  20. 30 CFR 57.4430 - Surface storage facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... liquids shall be— (1) Capable of withstanding working pressures and stresses and compatible with the type.... These pressure relief requirements do not apply to tanks used for storage of Class IIIB liquids that are... withstanding working pressures and stresses; (2) Compatible with the type of liquid stored; and (3) Maintained...

  1. 30 CFR 57.4430 - Surface storage facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... liquids shall be— (1) Capable of withstanding working pressures and stresses and compatible with the type.... These pressure relief requirements do not apply to tanks used for storage of Class IIIB liquids that are... withstanding working pressures and stresses; (2) Compatible with the type of liquid stored; and (3) Maintained...

  2. Pressure- and Temperature-Sensitive Paint at 0.3-m Transonic Cryogenic Tunnel

    NASA Technical Reports Server (NTRS)

    Watkins, A. Neal; Leighty, Bradley D.; Lipford, William E.; Goodman, Kyle Z.

    2015-01-01

    Recently both Pressure- and Temperature-Sensitive Paint experiments were conducted at cryogenic conditions in the 0.3-m Transonic Cryogenic Tunnel at NASA Langley Research Center. This represented a re-introduction of the techniques to the facility after more than a decade, and provided a means to upgrade the measurements using newer technology as well as demonstrate that the techniques were still viable in the facility. Temperature-Sensitive Paint was employed on a laminar airfoil for transition detection and Pressure-Sensitive Paint was employed on a supercritical airfoil. This report will detail the techniques and their unique challenges that need to be overcome in cryogenic environments. In addition, several optimization strategies will also be discussed.

  3. Analysis of Qualitative Interviews about the Impact of Information Technology on Pressure Ulcer Prevention Programs: Implications for the Wound Ostomy Continence Nurse

    PubMed Central

    Shepherd, Marilyn Murphy; Wipke-Tevis, Deidre D.; Alexander, Gregory L.

    2015-01-01

    Purpose The purpose of this study was to compare pressure ulcer prevention programs in 2 long term care facilities (LTC) with diverse Information Technology Sophistication (ITS), one with high sophistication and one with low sophistication, and to identify implications for the Wound Ostomy Continence Nurse (WOC Nurse) Design Secondary analysis of narrative data obtained from a mixed methods study. Subjects and Setting The study setting was 2 LTC facilities in the Midwestern United States. The sample comprised 39 staff from 2 facilities, including 26 from a high ITS facility and 13 from the low ITS facility. Respondents included Certified Nurse Assistants,, Certified Medical Technicians, Restorative Medical Technicians, Social Workers, Registered Nurses, Licensed Practical Nurses, Information Technology staff, Administrators, and Directors. Methods This study is a secondary analysis of interviews regarding communication and education strategies in two longterm care agencies. This analysis focused on focus group interviews, which included both direct and non-direct care providers. Results Eight themes (codes) were identified in the analysis. Three themes are presented individually with exemplars of communication and education strategies. The analysis revealed specific differences between the high ITS and low ITS facility in regards to education and communication involving pressure ulcer prevention. These differences have direct implications for WOC nurses consulting in the LTC setting. Conclusions Findings from this study suggest that effective strategies for staff education and communication regarding PU prevention differ based on the level of ITS within a given facility. Specific strategies for education and communication are suggested for agencies with high ITS and agencies with low ITS sophistication. PMID:25945822

  4. A hybrid electronically scanned pressure module for cryogenic environments

    NASA Technical Reports Server (NTRS)

    Chapman, J. J.; Hopson, P., Jr.; Kruse, N.

    1995-01-01

    Pressure is one of the most important parameters measured when testing models in wind tunnels. For models tested in the cryogenic environment of the National Transonic Facility at NASA Langley Research Center, the technique of utilizing commercially available multichannel pressure modules inside the models is difficult due to the small internal volume of the models and the requirement of keeping the pressure transducer modules within an acceptable temperature range well above the -173 degrees C tunnel temperature. A prototype multichannel pressure transducer module has been designed and fabricated with stable, repeatable sensors and materials optimized for reliable performance in the cryogenic environment. The module has 16 single crystal silicon piezoresistive pressure sensors electrostatically bonded to a metalized Pyrex substrate for sensing the wind tunnel model pressures. An integral temperature sensor mounted on each silicon micromachined pressure sensor senses real-time temperature fluctuations to within 0.1 degrees C to correct for thermally induced non-random sensor drift. The data presented here are from a prototype sensor module tested in the 0.3 M cryogenic tunnel and thermal equilibrium conditions in an environmental chamber which approximates the thermal environment (-173 degrees C to +60 degrees C) of the National Transonic Facility.

  5. Design of a cryogenic test facility for evaluating the performance of interferometric components of the SPICA/SAFARI instrument

    NASA Astrophysics Data System (ADS)

    Veenendaal, Ian T.; Naylor, David A.; Gom, Brad G.

    2014-08-01

    The Japanese SPace Infrared telescope for Cosmology and Astrophysics (SPICA), a 3 m class telescope cooled to ~ 6 K, will provide extremely low thermal background far-infrared observations. An imaging Fourier transform spectrometer (SAFARI) is being developed to exploit the low background provided by SPICA. Evaluating the performance of the interferometer translation stage and key optical components requires a cryogenic test facility. In this paper we discuss the design challenges of a pulse tube cooled cryogenic test facility that is under development for this purpose. We present the design of the cryostat and preliminary results from component characterization and external optical metrology.

  6. KENNEDY SPACE CENTER, FLA. - STS-120 Mission Specialists Piers Sellers and Michael Foreman look at the Japanese Experiment Module (JEM) Pressurized Module located in the Space Station Processing Facility. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-120 mission will deliver the second of three Station connecting modules, Node 2, which attaches to the end of U.S. Lab. It will provide attach locations for the JEM, European laboratory, the Centrifuge Accommodation Module and later Multi-Purpose Logistics Modules. The addition of Node 2 will complete the U.S. core of the International Space Station.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - STS-120 Mission Specialists Piers Sellers and Michael Foreman look at the Japanese Experiment Module (JEM) Pressurized Module located in the Space Station Processing Facility. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-120 mission will deliver the second of three Station connecting modules, Node 2, which attaches to the end of U.S. Lab. It will provide attach locations for the JEM, European laboratory, the Centrifuge Accommodation Module and later Multi-Purpose Logistics Modules. The addition of Node 2 will complete the U.S. core of the International Space Station.

  7. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-120 Mission Specialist Piers Sellers looks over the Japanese Experiment Module (JEM) Pressurized Module. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-120 mission will deliver the second of three Station connecting modules, Node 2, which attaches to the end of U.S. Lab. It will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and later Multi-Purpose Logistics Modules. The addition of Node 2 will complete the U.S. core of the International Space Station.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-120 Mission Specialist Piers Sellers looks over the Japanese Experiment Module (JEM) Pressurized Module. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-120 mission will deliver the second of three Station connecting modules, Node 2, which attaches to the end of U.S. Lab. It will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and later Multi-Purpose Logistics Modules. The addition of Node 2 will complete the U.S. core of the International Space Station.

  8. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-120 Mission Specialist Michael Foreman looks over the Japanese Experiment Module (JEM) Pressurized Module. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-120 mission will deliver the second of three Station connecting modules, Node 2, which attaches to the end of U.S. Lab. It will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and later Multi-Purpose Logistics Modules. The addition of Node 2 will complete the U.S. core of the International Space Station.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-120 Mission Specialist Michael Foreman looks over the Japanese Experiment Module (JEM) Pressurized Module. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-120 mission will deliver the second of three Station connecting modules, Node 2, which attaches to the end of U.S. Lab. It will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and later Multi-Purpose Logistics Modules. The addition of Node 2 will complete the U.S. core of the International Space Station.

  9. Use of Telemedicine for Management of Diabetes in Correctional Facilities.

    PubMed

    Kassar, Kinan; Roe, Cheryl; Desimone, Marisa

    2017-01-01

    Prisoners can have difficulty obtaining subspecialty consultations. Telemedicine is used to provide diabetes consultations for residents of correctional facilities from our diabetes center. Telemedicine helps improve access to endocrinologists at reduced cost, but little outcome data are available. A retrospective chart review of prisoners from 15 correctional facilities who received televisits for diabetes from 2011 to 2014 was performed. Demographic information, complications, medications, blood pressure, and laboratory results were collected. At baseline (n = 106), mean age was 44 years, duration of diabetes was 15 years, 44% had type 1 diabetes, and all were male. Only 64 of the participants had ≥2 video consultations; 58/64 had follow-up HbA1c results; and 53/58 were insulin requiring. Mean initial HbA1c was 9.3% with an average decrease of 0.5% from initial to final visit (a mean of 3.6 televisits). Patients with an initial HbA1c >9% (n = 28) had an average drop of 1.3%. Twenty-two subjects had initial elevated blood pressure; 20/22 (91%) were prescribed angiotensin-converting-enzyme-inhibitors (ACE-I)/angiotensin II receptor blockers (ARB); and 15 of these 20 (75%) had a final blood pressure <140/90 mm Hg over a mean of 3.3 televisits. 17/20 with high low-density lipoprotein (LDL) were treated with statin drugs; 15/17 (88%) had improved LDL on follow-up. Follow-up was limited by prisoner availability or visit cancellation by prison facility. Improvements in glycemic, blood pressure, and lipid control for prisoners with diabetes can be achieved with teleconsultations to correctional institutions. Given the high costs of transporting prisoners to healthcare facilities, telemedicine should be considered to help improve diabetes care for this vulnerable population.

  10. Low-background germanium radioassay for the MAJORANA Collaboration

    NASA Astrophysics Data System (ADS)

    Trimble, James E., Jr.

    The focus of the MAJORANA COLLABORATION is the search for nuclear neutrinoless double beta decay. If discovered, this process would prove that the neutrino is its own anti-particle, or a M AJORANA particle. Being constructed at the Sanford Underground Research Facility, the MAJORANA DEMONSTRATOR aims to show that a background rate of 3 counts per region of interest (ROI) per tonne per year in the 4 keV ROI surrounding the 2039-keV Q-value energy of 76Ge is achievable and to demonstrate the technological feasibility of building a tonne-scale Ge-based experiment. Because of the rare nature of this process, detectors in the system must be isolated from ionizing radiation backgrounds as much as possible. This involved building the system with materials containing very low levels of naturally- occurring and anthropogenic radioactive isotopes at a deep underground site. In order to measure the levels of radioactive contamination in some components, the Majorana Demonstrator uses a low background counting facility managed by the Experimental Nuclear and Astroparticle Physics (ENAP) group at UNC. The UNC low background counting (LBC) facility is located at the Kimballton Underground Research Facility (KURF) located in Ripplemead, VA. The facility was used for a neutron activation analysis of samples of polytetrafluoroethylene (PTFE) and fluorinated ethylene propylene (FEP) tubing intended for use in the Demonstrator. Calculated initial activity limits (90% C.L.) of 238U and 232Th in the 0.002-in PTFE samples were 7.6 ppt and 5.1 ppt, respectively. The same limits in the FEP tubing sample were 150 ppt and 45 ppt, respectively. The UNC LBC was also used to gamma-assay a modified stainless steel flange to be used as a vacuum feedthrough. Trace activities of both 238U and 232Th were found in the sample, but all were orders of magnitude below the acceptable threshold for the Majorana experiment. Also discussed is a proposed next generation ultra-low background system designed to utilize technology designed for the Majorana Demonstrator. Fi- nally, a discussion is presented on the design and construction of an azimuthal scanner used by the Majorana collaboration.

  11. A low-background piston-cylinder-type hybrid high pressure cell for muon-spin rotation/relaxation experiments

    NASA Astrophysics Data System (ADS)

    Shermadini, Z.; Khasanov, R.; Elender, M.; Simutis, G.; Guguchia, Z.; Kamenev, K. V.; Amato, A.

    2017-10-01

    A low background double-wall piston-cylinder-type pressure cell is developed at the Paul Scherrer Institute. The cell is made from BERYLCO-25 (beryllium copper) and MP35N nonmagnetic alloys with the design and dimensions which are specifically adapted to muon-spin rotation/relaxation (μSR) measurements. The mechanical design and performance of the pressure cell are evaluated using finite-element analysis (FEA). By including the measured stress-strain characteristics of the materials into the finite-element model, the cell dimensions are optimized with the aim to reach the highest possible pressure while maintaining the sample space large (6 mm in diameter and 12 mm high). The presented unconventional design of the double-wall piston-cylinder pressure cell with a harder outer MP35N sleeve and a softer inner CuBe cylinder enables pressures of up to 2.6 GPa to be reached at ambient temperature, corresponding to 2.2 GPa at low temperatures without any irreversible damage to the pressure cell. The nature of the muon stopping distribution, mainly in the sample and in the CuBe cylinder, results in a low-background μSR signal.

  12. Abatement of Xenon and Iodine Emissions from Medical Isotope Production Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doll, Charles G.; Sorensen, Christina M.; Bowyer, Ted W.

    2014-04-01

    The capability of the International Monitoring System (IMS) to detect xenon from underground nuclear explosions is dependent on the radioactive xenon background. Adding to the background, medical isotope production (MIP) by fission releases several important xenon isotopes including xenon-133 and iodine-133 that decays to xenon-133. The amount of xenon released from these facilities may be equivalent to or exceed that released from an underground nuclear explosion. Thus the release of gaseous fission products within days of irradiation makes it difficult to distinguish MIP emissions from a nuclear explosion. In addition, recent shortages in molybdenum-99 have created interest and investment opportunitiesmore » to design and build new MIP facilities in the United States and throughout the world. Due to the potential increase in the number of MIP facilities, a discussion of abatement technologies provides insight into how the problem of emission control from MIP facilities can be tackled. A review of practices is provided to delineate methods useful for abatement of medical isotopes.« less

  13. SSC Test Operations Contract Overview

    NASA Technical Reports Server (NTRS)

    Kleim, Kerry D.

    2010-01-01

    This slide presentation reviews the Test Operations Contract at the Stennis Space Center (SSC). There are views of the test stands layouts, and closer views of the test stands. There are descriptions of the test stand capabilities, some of the other test complexes, the Cryogenic propellant storage facility, the High Pressure Industrial Water (HPIW) facility, and Fluid Component Processing Facility (FCPF).

  14. 40 CFR 60.5401 - What are the exceptions to the equipment leak standards for affected facilities at onshore...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... equipment leak standards for affected facilities at onshore natural gas processing plants? 60.5401 Section... for affected facilities at onshore natural gas processing plants? (a) You may comply with the... is detected. (4)(i) Any pressure relief device that is located in a nonfractionating plant that is...

  15. 40 CFR 60.5401 - What are the exceptions to the equipment leak standards for affected facilities at onshore...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... equipment leak standards for affected facilities at onshore natural gas processing plants? 60.5401 Section... for affected facilities at onshore natural gas processing plants? (a) You may comply with the... is detected. (4)(i) Any pressure relief device that is located in a nonfractionating plant that is...

  16. Production and study of high-beta plasma confined by a superconducting dipole magneta)

    NASA Astrophysics Data System (ADS)

    Garnier, D. T.; Hansen, A.; Mauel, M. E.; Ortiz, E.; Boxer, A. C.; Ellsworth, J.; Karim, I.; Kesner, J.; Mahar, S.; Roach, A.

    2006-05-01

    The Levitated Dipole Experiment (LDX) [J. Kesner et al., in Fusion Energy 1998, 1165 (1999)] is a new research facility that is exploring the confinement and stability of plasma created within the dipole field produced by a strong superconducting magnet. Unlike other configurations in which stability depends on curvature and magnetic shear, magnetohydrodynamic stability of a dipole derives from plasma compressibility. Theoretically, the dipole magnetic geometry can stabilize a centrally peaked plasma pressure that exceeds the local magnetic pressure (β>1), and the absence of magnetic shear allows particle and energy confinement to decouple. In initial experiments, long-pulse, quasi-steady-state microwave discharges lasting more than 10s have been produced that are consistent with equilibria having peak beta values of 20%. Detailed measurements have been made of discharge evolution, plasma dynamics and instability, and the roles of gas fueling, microwave power deposition profiles, and plasma boundary shape. In these initial experiments, the high-field superconducting floating coil was supported by three thin supports. The plasma is created by multifrequency electron cyclotron resonance heating at 2.45 and 6.4GHz, and a population of energetic electrons, with mean energies above 50keV, dominates the plasma pressure. Creation of high-pressure, high-beta plasma is possible only when intense hot electron interchange instabilities are stabilized by sufficiently high background plasma density. A dramatic transition from a low-density, low-beta regime to a more quiescent, high-beta regime is observed when the plasma fueling rate and confinement time become sufficiently large.

  17. High-temperature test facility at the NASA Lewis engine components research laboratory

    NASA Technical Reports Server (NTRS)

    Colantonio, Renato O.

    1990-01-01

    The high temperature test facility (HTTF) at NASA-Lewis Engine Components Research Laboratory (ECRL) is presently used to evaluate the survivability of aerospace materials and the effectiveness of new sensing instrumentation in a realistic afterburner environment. The HTTF has also been used for advanced heat transfer studies on aerospace components. The research rig uses pressurized air which is heated with two combustors to simulate high temperature flow conditions for test specimens. Maximum airflow is 31 pps. The HTTF is pressure rated for up to 150 psig. Combustors are used to regulate test specimen temperatures up to 2500 F. Generic test sections are available to house test plates and advanced instrumentation. Customized test sections can be fabricated for programs requiring specialized features and functions. The high temperature test facility provides government and industry with a facility for testing aerospace components. Its operation and capabilities are described.

  18. Efficiency and cost advantages of an advanced-technology nuclear electrolytic hydrogen-energy production facility

    NASA Technical Reports Server (NTRS)

    Donakowski, T. D.; Escher, W. J. D.; Gregory, D. P.

    1977-01-01

    The concept of an advanced-technology (viz., 1985 technology) nuclear-electrolytic water electrolysis facility was assessed for hydrogen production cost and efficiency expectations. The facility integrates (1) a high-temperature gas-cooled nuclear reactor (HTGR) operating a binary work cycle, (2) direct-current (d-c) electricity generation via acyclic generators, and (3) high-current-density, high-pressure electrolyzers using a solid polymer electrolyte (SPE). All subsystems are close-coupled and optimally interfaced for hydrogen production alone (i.e., without separate production of electrical power). Pipeline-pressure hydrogen and oxygen are produced at 6900 kPa (1000 psi). We found that this advanced facility would produce hydrogen at costs that were approximately half those associated with contemporary-technology nuclear electrolysis: $5.36 versus $10.86/million Btu, respectively. The nuclear-heat-to-hydrogen-energy conversion efficiency for the advanced system was estimated as 43%, versus 25% for the contemporary system.

  19. Adherence to blood pressure measurement guidelines in long-term care facilities: A cross sectional study.

    PubMed

    Ozone, Sachiko; Sato, Mikiya; Takayashiki, Ayumi; Sakamoto, Naoto; Yoshimoto, Hisashi; Maeno, Tetsuhiro

    2018-05-01

    To assess the extent to which long-term care facilities in Japan adhere to blood pressure (BP) measurement guidelines. Cross-sectional, observational survey. Japan (nationwide). Geriatric health service facilities that responded to a questionnaire among 701 facilities that provide short-time daycare rehabilitation services in Japan. A written questionnaire that asked about types of measurement devices, number of measurements used to obtain an average BP, resting time prior to measurement, and measurement methods when patients' arms were covered with thin (eg, a light shirt) or thick sleeves (eg, a sweater) was administered. Proportion of geriatric health service facilities adherent to BP measurement guidelines. The response rate was 63.2% (443/701). Appropriate upper-arm BP measurement devices were used at 302 facilities (68.2%). The number of measurements was appropriate at 7 facilities (1.6%). Pre-measurement resting time was appropriate (≥5 minutes) at 205 facilities (46.3%). Of the 302 facilities that used appropriate BP measurement devices, 4 (1.3%) measured BP on a bare arm if it was covered with a thin sleeve, while 266 (88.1%) measured BP over a thin sleeve. When arms were covered with thick sleeves, BP was measured on a bare arm at 127 facilities (42.1%) and over a sleeve at 78 facilities (25.8%). BP measurement guidelines were not necessarily followed by long-term care service facilities in Japan. Modification of guidelines regarding removing thick sweaters and assessing BP on a visit-to-visit basis might be needed.

  20. A High-Lift Building Block Flow: Turbulent Boundary Layer Relaminarization

    NASA Technical Reports Server (NTRS)

    Bourassa, Corey; Thomas, Flint O.; Nelson, Robert C.

    2001-01-01

    A working wind tunnel test facility has been constructed at the University of Notre Dame's Hessert Center. The relaminarization test facility has been constructed in the 1.5m x 1.5m (5ft x 5 ft) atmospheric wind tunnel and generates a Re(theta)=4694 turbulent boundary layer in nominally zero-pressure gradient before it is exposed to the Case #1 pressure gradient (K approximately equal to 4.2 x 10(exp -6), which is believed to be sufficient to achieve relaminarization. Future work to be conducted will include measuring the response of the turbulent boundary layer to the favorable pressure gradients created in the test facility and documenting this response in order to understand the underlying flow physics responsible for relaminarization. It is the goal of this research to have a better understanding of accelerated turbulent boundary layers which will aid in the development of future flow diagnostic utilities to be implemented in applied aerodynamic research.

  1. A Single Long-Term Acute Care Hospital Experience with a Pressure Ulcer Prevention Program.

    PubMed

    Young, Daniel L; Borris-Hale, Cathy; Falconio-West, Margaret; Chakravarthy, Debashish

    2015-01-01

    The occurrence of pressure ulcers (PrUs) challenges care facilities. Few studies report PrU reduction efforts in long-term acute care (LTAC). This study described the PrU reduction efforts of a single, LTAC facility using the Medline Pressure Ulcer Prevention Program (mPUPP). This study was a quasi-experimental, quality improvement project, with pre- and postmeasurement design. Outcomes were tracked for 24 months. The mPUPP was implemented in month 11. Education for caregivers was provided through an interactive web-based suite. In addition, all Patient Care Technicians attended a 4-week 1-hour inservice. New skin care products were implemented. The facility also implemented an algorithm for treatment of wounds. There was a significant reduction in the mean monthly hospital-acquired PrU (nPrU) rate when preprogram is compared to postprogram. Sustainable nPrU reduction can be achieved with mPUPP. LTAC hospitals could expect to reduce nPrU with education and incentive of caregivers. © 2014 Association of Rehabilitation Nurses.

  2. 32 CFR 770.49 - Background.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Washington § 770.49 Background. (a) Puget Sound Naval Shipyard is a major naval ship repair facility, with... interruption. Additionally, most of Puget Sound Naval Shipyard is dedicated to heavy industrial activity where...

  3. Evaluating and improving pressure ulcer care: the VA experience with administrative data.

    PubMed

    Berlowitz, D R; Halpern, J

    1997-08-01

    A number of state initiatives are using databases originally developed for nursing home reimbursements to assess the quality of care. Since 1991 the Department of Veterans Affairs (VA; Washington, DC) has been using a long term care administrative database to calculate facility-specific rates of pressure ulcer development. This information is disseminated to all 140 long term care facilities as part of a quality assessment and improvement program. Assessments are performed on all long term care residents on April 1 and October 1, as well as at the time of admission or transfer to a long term care unit. Approximately 18,000 long term care residents are evaluated in each six-month period; the VA rate of pressure ulcer development is approximately 3.5%. Reports of the rates of pressure ulcer development are then disseminated to all facilities, generally within two months of the assessment date. The VA's more than five years' experience in using administrative data to assess outcomes for long term care highlights several important issues that should be considered when using outcome measures based on administrative data. These include the importance of carefully selecting the outcome measure, the need to consider the structure of the database, the role of case-mix adjustment, strategies for reporting rates to small facilities, and methods for information dissemination. Attention to these issues will help ensure that results from administrative databases lead to improvements in the quality of care.

  4. KENNEDY SPACE CENTER, FLA. - The container with the Japanese Experiment Module (JEM)’s pressurized module is inside the Space Station Processing Facility. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

    NASA Image and Video Library

    2003-06-06

    KENNEDY SPACE CENTER, FLA. - The container with the Japanese Experiment Module (JEM)’s pressurized module is inside the Space Station Processing Facility. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

  5. KENNEDY SPACE CENTER, FLA. - The truck transporting the Pressurized Module of the Japanese Experiment Module (JEM) to KSC’s Space Station Processing Facility arrives on Center. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

    NASA Image and Video Library

    2003-06-04

    KENNEDY SPACE CENTER, FLA. - The truck transporting the Pressurized Module of the Japanese Experiment Module (JEM) to KSC’s Space Station Processing Facility arrives on Center. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

  6. The NASA Ames 16-Inch Shock Tunnel Nozzle Simulations and Experimental Comparison

    NASA Technical Reports Server (NTRS)

    TokarcikPolsky, S.; Papadopoulos, P.; Venkatapathy, E.; Delwert, G. S.; Edwards, Thomas A. (Technical Monitor)

    1995-01-01

    The 16-Inch Shock Tunnel at NASA Ames Research Center is a unique test facility used for hypersonic propulsion testing. To provide information necessary to understand the hypersonic testing of the combustor model, computational simulations of the facility nozzle were performed and results are compared with available experimental data, namely static pressure along the nozzle walls and pitot pressure at the exit of the nozzle section. Both quasi-one-dimensional and axisymmetric approaches were used to study the numerous modeling issues involved. The facility nozzle flow was examined for three hypersonic test conditions, and the computational results are presented in detail. The effects of variations in reservoir conditions, boundary layer growth, and parameters of numerical modeling are explored.

  7. A research program to reduce interior noise in general aviation airplanes: Investigation of the characteristics of an acoustic panel test facility

    NASA Technical Reports Server (NTRS)

    Grosveld, F.; Vanaken, J.

    1978-01-01

    Sound pressure levels in the test facility were studied that are caused by varying: (1) microphone positions; (2) equalizer setting; and (3) panel clamping forces. Measurements were done by using a Beranek tube or this Beranek tube in combinations with an extension tube and a special test section. In all configurations tests were executed with and without a test panel installed. The influence of the speaker back panel and the back panel of the Beranek tube on the sound pressure levels inside the test tube were also investigated. It is shown that the definition of noise reduction is more useful in relation to this test facility than transmission loss.

  8. Integral Reactor Containment Condensation Model and Experimental Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Qiao; Corradini, Michael

    This NEUP funded project, NEUP 12-3630, is for experimental, numerical and analytical studies on high-pressure steam condensation phenomena in a steel containment vessel connected to a water cooling tank, carried out at Oregon State University (OrSU) and the University of Wisconsin at Madison (UW-Madison). In the three years of investigation duration, following the original proposal, the planned tasks have been completed: (1) Performed a scaling study for the full pressure test facility applicable to the reference design for the condensation heat transfer process during design basis accidents (DBAs), modified the existing test facility to route the steady-state secondary steam flowmore » into the high pressure containment for controllable condensation tests, and extended the operations at negative gage pressure conditions (OrSU). (2) Conducted a series of DBA and quasi-steady experiments using the full pressure test facility to provide a reliable high pressure condensation database (OrSU). (3) Analyzed experimental data and evaluated condensation model for the experimental conditions, and predicted the prototypic containment performance under accidental conditions (UW-Madison). A film flow model was developed for the scaling analysis, and the results suggest that the 1/3 scaled test facility covers large portion of laminar film flow, leading to a lower average heat transfer coefficient comparing to the prototypic value. Although it is conservative in reactor safety analysis, the significant reduction of heat transfer coefficient (50%) could under estimate the prototypic condensation heat transfer rate, resulting in inaccurate prediction of the decay heat removal capability. Further investigation is thus needed to quantify the scaling distortion for safety analysis code validation. Experimental investigations were performed in the existing MASLWR test facility at OrST with minor modifications. A total of 13 containment condensation tests were conducted for pressure ranging from 4 to 21 bar with three different static inventories of non-condensable gas. Condensation and heat transfer rates were evaluated employing several methods, notably from measured temperature gradients in the HTP as well as measured condensate formation rates. A detailed mass and energy accounting was used to assess the various measurement methods and to support simplifying assumptions required for the analysis. Condensation heat fluxes and heat transfer coefficients are calculated and presented as a function of pressure to satisfy the objectives of this investigation. The major conclusions for those tests are summarized below: (1) In the steam blow-down tests, the initial condensation heat transfer process involves the heating-up of the containment heat transfer plate. An inverse heat conduction model was developed to capture the rapid transient transfer characteristics, and the analysis method is applicable to SMR safety analysis. (2) The average condensation heat transfer coefficients for different pressure conditions and non-condensable gas mass fractions were obtained from the integral test facility, through the measurements of the heat conduction rate across the containment heat transfer plate, and from the water condensation rates measurement based on the total energy balance equation. 15 (3) The test results using the measured HTP wall temperatures are considerably lower than popular condensation models would predict mainly due to the side wall conduction effects in the existing MASLWR integral test facility. The data revealed the detailed heat transfer characteristics of the model containment, important to the SMR safety analysis and the validation of associated evaluation model. However this approach, unlike separate effect tests, cannot isolate the condensation heat transfer coefficient over the containment wall, and therefore is not suitable for the assessment of the condensation heat transfer coefficient against system pressure and noncondensable gas mass fraction. (4) The average condensation heat transfer coefficients measured from the water condensation rates through energy balance analysis are appropriate, however, with considerable uncertainties due to the heat loss and temperature distribution on the containment wall. With the consideration of the side wall conduction effects, the results indicate that the measured heat transfer coefficients in the tests is about 20% lower than the prediction of Dehbi’s correlation, mainly due to the side wall conduction effects. The investigation also indicates an increase in the condensation heat transfer coefficient at high containment pressure conditions, but the uncertainties invoked with this method appear to be substantial. (5) Non-condensable gas in the tests has little effects on the condensation heat transfer at high elevation measurement ports. It does affect the bottom measurements near the water level position. The results suggest that the heavier non-condensable gas is accumulated in the lower portion of the containment due to stratification in the narrow containment space. The overall effects of the non-condensable gas on the heat transfer process should thus be negligible for tall containments of narrow condensation spaces in most SMR designs. Therefore, the previous correlations with noncondensable gas effects are not appropriate to those small SMR containments due to the very poor mixing of steam and non-condensable gas. The MELCOR simulation results agree with the experimental data reasonably well. However, it is observed that the MELCOR overpredicts the heat flux for all analyzed tests. The MELCOR predicts that the heat fluxes for CCT’s approximately range from 30 to 45 kW/m2 whereas the experimental data (averaged) ranges from about 25 to 40 kW/m2. This may be due to the limited availability of liquid film models included in MELCOR. Also, it is believed that due to complex test geometry, measured temperature gradients across the heat transfer plate may have been underestimated and thus the heat flux had been underestimated. The MELCOR model predicts a film thickness on the order of 100 microns, which agrees very well with film flow model developed in this study for scaling analysis. However, the expected differences in film thicknesses for near vacuum and near atmospheric test conditions are not significant. Further study on the behavior of condensate film is expected to refine the simulation results. Possible refinements include but are not limited to, the followings: CFD simulation focusing on the liquid film behavior and benchmarking with experimental analyses for simpler geometries. 16 1 INTRODUCTION This NEUP funded project, NEUP 12-3630, is for experimental, numerical and analytical studies on high-pressure steam condensation phenomena in a steel containment vessel connected to a water cooling tank, carried out at Oregon State University (OrSU) and the University of Wisconsin at Madison (UW-Madison). The experimental results are employed to validate the containment condensation model in reactor containment system safety analysis code for integral SMRs. Such a containment condensation model is important to demonstrate the adequate cooling. In the three years of investigation, following the original proposal, the following planned tasks have been completed: (1) Performed a scaling study for the full pressure test facility applicable to the reference design for the condensation heat transfer process during design basis accidents (DBAs), modified the existing test facility to route the steady-state secondary steam flow into the high pressure containment for controllable condensation tests, and extended the operations at negative gage pressure conditions (OrSU). (2) Conducted a series of DBA and quasi-steady experiments using the full pressure test facility to provide a reliable high pressure condensation database (OrSU). (3) Analyzed experimental data and evaluated condensation model for the experimental conditions, and predicted the prototypic containment performance under accidental conditions (UW-Madison). The results are applicable to integral Small Modular Reactor (SMR) designs, including NuScale, mPower, Westinghouse SMR, Holtec-160 and other integral reactors with small containments of relatively high pressures under accidental conditions. Testing has been conducted at the OrSU laboratory in the existing MASLWR (Multi-Application Small Light Water Reactor) integral test facility sponsored by the US Department of Energy. Its highpressure stainless steel containment model (~2 MPa) is scaled to the NuScale SMR currently under development at NuScale Power, Inc.. Minor modifications to the model containment have been made to control the non-condensable gas fraction and to utilize the secondary loop stable steam flow for condensation testing. UW-Madison has developed a containment condensation model, which leveraged previous validated containment heat transfer work carried out at UW-Madison, and extended the range of applicability of the model to integral SMR designs that utilize containment vessels of high heat transfer efficiencies. In this final report, the research background and literature survey are presented in Chapter 2 and 3, respectively. The test facility description and modifications are summarized in Chapter 4, and the scaling analysis is introduced in Chapter 5. The tests description, procedures, and data analysis are presented in Chapter 6, while the numerical modeling is presented in Chapter 7, followed by a conclusion section in Chapter 8.« less

  9. 76 FR 66090 - Facility Operating License Amendment From Virginia Electric and Power Company, Surry Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-25

    ... operating pressures, leakage from primary water stress corrosion cracking below the proposed limited... discussed in Regulatory Guide (RG) 1.121, ``Bases for Plugging Degraded PWR [Pressurized-Water Reactor...

  10. Cryogenic implications of orbit selection of the Space Infrared Telescope Facility (SIRTF)

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Brooks, W. F.; Maa, S.

    1986-01-01

    An investigation has been conducted to determine how the choice of orbit for NASA's prospective Space IR Telescope Facility (SIRTF), between polar (99-deg) and low inclination (28.5-deg) alternatives, will affect the performance of the all-superfluid He-cooled IR optics employed. While the dewar design met both the service life and 200-micron background-limited performance criteria in the case of the polar orbit mission, the alternative orbit allowed the background-limited criteria to be met only 50 percent of the time. It is accordingly recommended that the 200-micron background-limited observations be made only for a limited portion of the mission, while meeting the 100-micron limit at all times.

  11. [Algorithm for taking into account the average annual background of air pollution in the assessment of health risks].

    PubMed

    Fokin, M V

    2013-01-01

    State Budgetary Educational Institution of Higher Professional Education "I.M. Sechenov First Moscow State Medical University" of the Ministry of Health care and Social Development, Moscow, Russian Federation. The assessment of health risks from air pollution with emissions from industrial facilities, without the average annual background of air pollution does not meet sanitary legislation. However Russian Federal Service for Hydrometeorology and Environmental Monitoring issues official certificates for a limited number of areas covered by the observations of the full program on the stationary points. Questions of accounting average background air pollution in the evaluation of health risks from exposure to emissions from industrial facilities are considered.

  12. The VCU Pressure Ulcer Summit: Collaboration to Operationalize Hospital-Acquired Pressure Ulcer Prevention Best Practice Recommendations.

    PubMed

    Brindle, C Tod; Creehan, Sue; Black, Joyce; Zimmermann, Deb

    2015-01-01

    This executive summary reports outcomes of an interprofessional collaboration between experts in pressure ulcer prevention, bedside clinicians, regulatory agencies, quality improvement, informatics experts, and professional nursing organizations. The goal of the collaboration was to develop a framework to assist facilities to operationalize best practice recommendations to sustain organizational culture change in hospital-acquired pressure ulcer prevention, to develop a hospital-acquired pressure ulcer severity score, and to address topics related to the unavoidable pressure ulcer.

  13. Hazardous Waste Cleanup: Clean Harbors BTD, LLC in Clarence, New York

    EPA Pesticide Factsheets

    The Clean Harbors BDT, LLC site was a commercial treatment, storage, and disposal facility that treated reactive hazardous wastes, pressurized waste, pharmaceutical and packaged laboratory chemicals. The facility was initially owned and operated by Wilson-

  14. 18 CFR 157.213 - Underground storage field facilities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... storage reservoir and within the buffer area; (4) A detailed description of present storage operations and..., provided the storage facility's certificated physical parameters—including total inventory, reservoir pressure, reservoir and buffer boundaries, and certificated capacity remain unchanged—and provided...

  15. Preparing Technical Requirements for Third Party Contracting of Army Facilities

    DTIC Science & Technology

    1993-06-01

    Boiler and Pressure Vessel Code Sec 9 Welding and Brazing Qualifications B 16.1 Cast Iron Pipe Flanges and Flanged...Control Terminology for Heating, Ventilating, Air Conditioning American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code B40.1...American National Standards Institute (ANSI) Boiler and Pressure Vessel Code (ASME) 125 Boilers and Pressure Vessels Code (ASTM) B31 Power

  16. Development of a Pebble-Bed Liquid-Nitrogen Evaporator and Superheater for the Scaled Large Blast/Thermal Simulator Facility

    DTIC Science & Technology

    1991-04-01

    Boiler and Pressure Vessel Code . Other design requirements are developed from standard safe... Boiler and Pressure Vessel Code . The following three condi- tions constitute the primary design parameters for pressure vessels: (a) Design Working...rules and practices of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code . Section VIII, Division 1 of the ASME

  17. Measuring Global Surface Pressures on a Circulation Control Concept Using Pressure Sensitive Paint

    NASA Technical Reports Server (NTRS)

    Watkins, Anthony N.; Lipford, William E.; Leighty, Bradley D.; Goodman, Kyle Z.; Goad, William K.

    2012-01-01

    This report will present the results obtained from the Pressure Sensitive Paint (PSP) technique on a circulation control concept model. This test was conducted at the National Transonic Facility (NTF) at the NASA Langley Research Center. PSP was collected on the upper wing surface while the facility was operating in cryogenic mode at 227 K (-50 oF). The test envelope for the PSP portion included Mach numbers from 0.7 to 0.8 with angle of attack varying between 0 and 8 degrees and a total pressure of approximately 168 kPa (24.4 psi), resulting in a chord Reynolds number of approximately 15 million. While the PSP results did exhibit high levels of noise in certain conditions (where the oxygen content of the flow was very small), some conditions provided good correlation between the PSP and pressure taps, showing the ability of the PSP technique. This work also served as a risk reduction opportunity for future testing in cryogenic conditions at the NTF.

  18. High-Pressure Turbulent Flame Speeds and Chemical Kinetics of Syngas Blends with and without Impurities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersen, Eric; Mathieu, Olivier; Morones, Anibal

    This Final Report documents the entire four years of the project, from October 1, 2013 through September 30, 2017. This project was concerned with the chemical kinetics of fuel blends with high-hydrogen content in the presence of impurities. Emphasis was also on the design and construction of a new, high-pressure turbulent flame speed facility and the use of ignition delay times and flame speeds to elucidate the diluent and impurity effects on the fuel chemistry at gas turbine engine conditions and to also validate the chemical kinetics models. The project was divided into five primary tasks: 1) Project Management andmore » Program Planning; 2) Turbulent Flame Speed Measurements at Atmospheric Pressure; 3) Experiments and Kinetics of Syngas Blends with Impurities; 4) Design and Construction of a High-Pressure Turbulent Flame Speed Facility; and 5) High-Pressure Turbulent Flame Speed Measurements. Details on the execution and results of each of these tasks are provided in the main report.« less

  19. 76 FR 39705 - Taking and Importing Marine Mammals; Taking Marine Mammals Incidental to Operation of Offshore...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-06

    ... freeze-up of the sea ice when wind, ice conditions, or other operational considerations prevent or limit... facility include the following: Two diesel generators (designated emergency generators); three turbine... one time); two high pressure turbine compressors; one low pressure flare; and one high pressure flare...

  20. 30 CFR 250.1004 - Safety equipment requirements for DOI pipelines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... delivering gas to the power plant platform may be equipped with high- and low-pressure sensors (PSHL), which... facilities shall be protected by high- and low-pressure sensors (PSHL) to directly or indirectly shut in all... pressure range. However, high pilots shall not be set above the pipeline's MAOP. (4) Crossing pipelines on...

  1. 30 CFR 250.1004 - Safety equipment requirements for DOI pipelines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... delivering gas to the power plant platform may be equipped with high- and low-pressure sensors (PSHL), which... facilities shall be protected by high- and low-pressure sensors (PSHL) to directly or indirectly shut in all... pressure range. However, high pilots shall not be set above the pipeline's MAOP. (4) Crossing pipelines on...

  2. 30 CFR 250.1004 - Safety equipment requirements for DOI pipelines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... delivering gas to the power plant platform may be equipped with high- and low-pressure sensors (PSHL), which... facilities shall be protected by high- and low-pressure sensors (PSHL) to directly or indirectly shut in all... pressure range. However, high pilots shall not be set above the pipeline's MAOP. (4) Crossing pipelines on...

  3. High Pressure Angle Gears: Comparison to Typical Gear Designs

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Zabrajsek, Andrew J.

    2010-01-01

    A preliminary study has been completed to determine the feasibility of using high-pressure angle gears in aeronautic and space applications. Tests were conducted in the NASA Glenn Research Center (GRC) Spur Gear Test Facility at speeds up to 10,000 rpm and 73 N*m (648 in.*lb) for 3.18, 2.12, and 1.59 module gears (8, 12, and 16 diametral pitch gears), all designed to operate in the same test facility. The 3.18 module (8-diametral pitch), 28 tooth, 20deg pressure angle gears are the GRC baseline test specimen. Also, 2.12 module (12-diametral pitch), 42 tooth, 25deg pressure angle gears were tested. Finally 1.59 module (16-diametral pitch), 56 tooth, 35deg pressure angle gears were tested. The high-pressure angle gears were the most efficient when operated in the high-speed aerospace mode (10,000 rpm, lubricated with a synthetic turbine engine oil), and produced the lowest wear rates when tested with a perfluoroether-based grease. The grease tests were conducted at 150 rpm and 71 N*m (630 in.*lb).

  4. KSC-07pd2649

    NASA Image and Video Library

    2007-09-28

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-122 Mission Specialist Rex Walheim practices working with equipment for the mission. In the background, at right, is European Space Agency astronaut Leopold Eyharts, who will be on the mission and joining the Expedition 16 crew as flight engineer on the International Space Station. The crew is at Kennedy Space Center to take part in a crew equipment interface test, which includes equipment familiarization. The mission will carry and install the Columbus Lab, a multifunctional, pressurized laboratory that will be permanently attached to Node 2 of the space station to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. It is Europe’s largest contribution to the construction of the International Space Station and will support scientific and technological research in a microgravity environment. STS-122 is targeted for launch in December. Photo credit: NASA/Kim Shiflett

  5. Patient Mobility in Times of Austerity: A Legal and Policy Analysis of the Petru Case.

    PubMed

    Frischhut, Markus; Fahy, Nick

    2016-03-01

    The case-law of the Court of Justice (ECJ) on patient mobility was recently challenged by a ruling that a patient could go to Germany for treatment when facilities in Romanian hospitals were inadequate. Given the reported impact of austerity measures in the field of health care this raises the question; what is the impact of the ECJ's ruling on how Member States can manage expenditure and limit outflows of patients and how should such measures be legally evaluated? The objective of this article is to analyse potential impact on health systems in the context of increasing pressure on public financing for health. While the ECJ mainly referred to the requirement of treatment in due time, we also analyse possible austerity reductions of the basket of care against the background of EU law (i.e., EGJ case-law, patient mobility directive, Charter of Fundamental rights and social security regulation).

  6. Investigation of the expansion rate scaling of plasmas in the Electron Diffusion Gauge experiment

    NASA Astrophysics Data System (ADS)

    Morrison, Kyle A.; Davidson, Ronald C.; Paul, Stephen F.; Jenkins, Thomas G.

    2002-01-01

    The expansion of the Electron Diffusion Gauge (EDG) pure electron plasma due to collisions with background neutral gas atoms is characterized by the pressure and magnetic field scaling of the profile expansion rate (d/dt). Data obtained at higher background gas pressures [1] than previously studied [2] is presented. The measured expansion rate in the higher pressure regime is found to be in good agreement with the classical estimate of the expansion rate [3].

  7. Tracing the plasma interactions for pulsed reactive crossed-beam laser ablation

    NASA Astrophysics Data System (ADS)

    Chen, Jikun; Stender, Dieter; Pichler, Markus; Döbeli, Max; Pergolesi, Daniele; Schneider, Christof W.; Wokaun, Alexander; Lippert, Thomas

    2015-10-01

    Pulsed reactive crossed-beam laser ablation is an effective technique to govern the chemical activity of plasma species and background molecules during pulsed laser deposition. Instead of using a constant background pressure, a gas pulse with a reactive gas, synchronized with the laser beam, is injected into vacuum or a low background pressure near the ablated area of the target. It intercepts the initially generated plasma plume, thereby enhancing the physicochemical interactions between the gaseous environment and the plasma species. For this study, kinetic energy resolved mass-spectrometry and time-resolved plasma imaging were used to study the physicochemical processes occurring during the reactive crossed beam laser ablation of a partially 18O substituted La0.6Sr0.4MnO3 target using oxygen as gas pulse. The characteristics of the ablated plasma are compared with those observed during pulsed laser deposition in different oxygen background pressures.

  8. The National Ignition Facility (NIF) as a User Facility

    NASA Astrophysics Data System (ADS)

    Keane, Christopher; NIF Team

    2013-10-01

    The National Ignition Facility (NIF) has made significant progress towards operation as a user facility. Through June 2013, NIF conducted over 1200 experiments in support of ICF, HED science, and development of facility capabilities. The NIF laser has met or achieved all specifications and a wide variety of diagnostic and target fabrication capabilities are in place. A NIF User Group and associated Executive Board have been formed. Two User Group meetings have been conducted since formation of the User Group. NIF experiments in fundamental science have provided important new results. NIF ramp compression experiments have been conducted using diamond and iron, with EOS results obtained at pressures up to approximately 50 Mbar and 8 Mbar, respectively. Initial experiments in supernova hydrodynamics, the fundamental physics of the Rayleigh-Taylor instability, and equation of state in the Gbar pressure regime have also been conducted. This presentation will discuss the fundamental science program at NIF, including the proposal solicitation and scientific review processes and other aspects of user facility operation. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinogeikin, Stanislav V., E-mail: ssinogeikin@carnegiescience.edu; Smith, Jesse S.; Rod, Eric

    The ability to remotely control pressure in diamond anvil cells (DACs) in accurate and consistent manner at room temperature, as well as at cryogenic and elevated temperatures, is crucial for effective and reliable operation of a high-pressure synchrotron facility such as High Pressure Collaborative Access Team (HPCAT). Over the last several years, a considerable effort has been made to develop instrumentation for remote and automated pressure control in DACs during synchrotron experiments. We have designed and implemented an array of modular pneumatic (double-diaphragm), mechanical (gearboxes), and piezoelectric devices and their combinations for controlling pressure and compression/decompression rate at various temperaturemore » conditions from 4 K in cryostats to several thousand Kelvin in laser-heated DACs. Because HPCAT is a user facility and diamond cells for user experiments are typically provided by users, our development effort has been focused on creating different loading mechanisms and frames for a variety of existing and commonly used diamond cells rather than designing specialized or dedicated diamond cells with various drives. In this paper, we review the available instrumentation for remote static and dynamic pressure control in DACs and show some examples of their applications to high pressure research.« less

  10. Remediation System Evaluation, Selma Pressure Treating Superfund Site

    EPA Pesticide Factsheets

    The Selma Pressure Treating site is located 15 miles south of Fresno, adjacent to the city limits of Selma,California and has subsurface contamination from a former wood treating facility. The site occupiesapproximately 40 acres, including...

  11. 9. POWERHOUSE, LOWER LEVEL, LOOKING NORTHWEST, PRESSURE CASE WHICH CONTAINS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. POWERHOUSE, LOWER LEVEL, LOOKING NORTHWEST, PRESSURE CASE WHICH CONTAINS THE WATER TURBINE - Dayville Mills Hydroelectric Facility, Powerhouse, North side of Route 101, .5 mile west of Route 395, Killingly Center, Windham County, CT

  12. 9. Photocopy of engineering drawing. LC 17 HIGH PRESSURE GAS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Photocopy of engineering drawing. LC 17 HIGH PRESSURE GAS INSTALLATION: SITE & GRADING PLAN, APRIL 1969. - Cape Canaveral Air Station, Launch Complex 17, Facility 28419, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  13. Apparatus for dispensing compressed natural gas and liquified natural gas to natural gas powered vehicles

    DOEpatents

    Bingham, Dennis A.; Clark, Michael L.; Wilding, Bruce M.; Palmer, Gary L.

    2007-05-29

    A fueling facility and method for dispensing liquid natural gas (LNG), compressed natural gas (CNG) or both on-demand. The fueling facility may include a source of LNG, such as cryogenic storage vessel. A low volume high pressure pump is coupled to the source of LNG to produce a stream of pressurized LNG. The stream of pressurized LNG may be selectively directed through an LNG flow path or to a CNG flow path which includes a vaporizer configured to produce CNG from the pressurized LNG. A portion of the CNG may be drawn from the CNG flow path and introduced into the CNG flow path to control the temperature of LNG flowing therethrough. Similarly, a portion of the LNG may be drawn from the LNG flow path and introduced into the CNG flow path to control the temperature of CNG flowing therethrough.

  14. Method and apparatus for dispensing compressed natural gas and liquified natural gas to natural gas powered vehicles

    DOEpatents

    Bingham, Dennis A.; Clark, Michael L.; Wilding, Bruce M.; Palmer, Gary L.

    2005-05-31

    A fueling facility and method for dispensing liquid natural gas (LNG), compressed natural gas (CNG) or both on-demand. The fueling facility may include a source of LNG, such as cryogenic storage vessel. A low volume high pressure pump is coupled to the source of LNG to produce a stream of pressurized LNG. The stream of pressurized LNG may be selectively directed through an LNG flow path or to a CNG flow path which includes a vaporizer configured to produce CNG from the pressurized LNG. A portion of the CNG may be drawn from the CNG flow path and introduced into the CNG flow path to control the temperature of LNG flowing therethrough. Similarly, a portion of the LNG may be drawn from the LNG flow path and introduced into the CNG flow path to control the temperature of CNG flowing therethrough.

  15. Benchmarking of Improved DPAC Transient Deflagration Analysis Code

    DOE PAGES

    Laurinat, James E.; Hensel, Steve J.

    2017-09-27

    The deflagration pressure analysis code (DPAC) has been upgraded for use in modeling hydrogen deflagration transients. The upgraded code is benchmarked using data from vented hydrogen deflagration tests conducted at the HYDRO-SC Test Facility at the University of Pisa. DPAC originally was written to calculate peak pressures for deflagrations in radioactive waste storage tanks and process facilities at the Savannah River Site. Upgrades include the addition of a laminar flame speed correlation for hydrogen deflagrations and a mechanistic model for turbulent flame propagation, incorporation of inertial effects during venting, and inclusion of the effect of water vapor condensation on vesselmore » walls. In addition, DPAC has been coupled with chemical equilibrium with applications (CEA), a NASA combustion chemistry code. The deflagration tests are modeled as end-to-end deflagrations. As a result, the improved DPAC code successfully predicts both the peak pressures during the deflagration tests and the times at which the pressure peaks.« less

  16. Benchmarking of Improved DPAC Transient Deflagration Analysis Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurinat, James E.; Hensel, Steve J.

    The deflagration pressure analysis code (DPAC) has been upgraded for use in modeling hydrogen deflagration transients. The upgraded code is benchmarked using data from vented hydrogen deflagration tests conducted at the HYDRO-SC Test Facility at the University of Pisa. DPAC originally was written to calculate peak pressures for deflagrations in radioactive waste storage tanks and process facilities at the Savannah River Site. Upgrades include the addition of a laminar flame speed correlation for hydrogen deflagrations and a mechanistic model for turbulent flame propagation, incorporation of inertial effects during venting, and inclusion of the effect of water vapor condensation on vesselmore » walls. In addition, DPAC has been coupled with chemical equilibrium with applications (CEA), a NASA combustion chemistry code. The deflagration tests are modeled as end-to-end deflagrations. As a result, the improved DPAC code successfully predicts both the peak pressures during the deflagration tests and the times at which the pressure peaks.« less

  17. Recent National Transonic Facility Test Process Improvements (Invited)

    NASA Technical Reports Server (NTRS)

    Kilgore, W. A.; Balakrishna, S.; Bobbitt, C. W., Jr.; Adcock, J. B.

    2001-01-01

    This paper describes the results of two recent process improvements; drag feed-forward Mach number control and simultaneous force/moment and pressure testing, at the National Transonic Facility. These improvements have reduced the duration and cost of testing. The drag feed-forward Mach number control reduces the Mach number settling time by using measured model drag in the Mach number control algorithm. Simultaneous force/moment and pressure testing allows simultaneous collection of force/moment and pressure data without sacrificing data quality thereby reducing the overall testing time. Both improvements can be implemented at any wind tunnel. Additionally the NTF is working to develop and implement continuous pitch as a testing option as an additional method to reduce costs and maintain data quality.

  18. Recent National Transonic Facility Test Process Improvements (Invited)

    NASA Technical Reports Server (NTRS)

    Kilgore, W. A.; Balakrishna, S.; Bobbitt, C. W., Jr.; Adcock, J. B.

    2001-01-01

    This paper describes the results of two recent process improvements; drag feed-forward Mach number control and simultaneous force/moment and pressure testing, at the National Transonic Facility. These improvements have reduced the duration and cost of testing. The drag feedforward Mach number control reduces the Mach number settling time by using measured model drag in the Mach number control algorithm. Simultaneous force/moment and pressure testing allows simultaneous collection of force/moment and pressure data without sacrificing data quality thereby reducing the overall testing time. Both improvements can be implemented at any wind tunnel. Additionally the NTF is working to develop and implement continuous pitch as a testing option as an additional method to reduce costs and maintain data quality.

  19. Radioactivities of Long Duration Exposure Facility (LDEF) materials: Baggage and bonanzas

    NASA Technical Reports Server (NTRS)

    Smith, Alan R.; Hurley, Donna L.

    1992-01-01

    Radioactivities in materials onboard the returned Long Duration Exposure Facility (LDEF) satellite were studied by a variety of techniques. Among the most powerful is low-background Ge-semiconductor detector gamma-ray spectrometry, illustrated here by results obtained at the Lawrence Berkeley Laboratory's (LBL) Low Background Facilities. The observed radioactivities are of two origins: those radionuclides produced by nuclear reactions with the radiation field in orbit, and radionuclides present initially as 'contaminants' in materials used for construction of the spacecraft and experimental assemblies. In the first category are experiment-related monitor foils and tomato seeds, and such spacecraft materials as aluminum, stainless steel, and titanium. In the second category are aluminum, beryllium, titanium, vanadium, and some special glasses.

  20. Penn State axial flow turbine facility: Performance and nozzle flow field

    NASA Technical Reports Server (NTRS)

    Lakshminarayana, B.; Zaccaria, M.; Itoh, S.

    1991-01-01

    The objective is to gain a thorough understanding of the flow field in a turbine stage including three-dimensional inviscid and viscid effects, unsteady flow field, rotor-stator interaction effects, unsteady blade pressures, shear stress, and velocity field in rotor passages. The performance of the turbine facility at the design condition is measured and compared with the design distribution. The data on the nozzle vane static pressure and wake characteristics are presented and interpreted. The wakes are found to be highly three-dimensional, with substantial radial inward velocity at most spanwise locations.

  1. The Ames 12-Foot Pressure Tunnel: Tunnel Empty Flow Calibration Results and Discussion

    NASA Technical Reports Server (NTRS)

    Zell, Peter T.; Banducci, David E. (Technical Monitor)

    1996-01-01

    An empty test section flow calibration of the refurbished NASA Ames 12-Foot Pressure Tunnel was recently completed. Distributions of total pressure, dynamic pressure, Mach number, flow angularity temperature, and turbulence are presented along with results obtained prior to facility demolition. Axial static pressure distributions along tunnel centerline are also compared. Test section model support geometric configurations will be presented along with a discussion of the issues involved with different model mounting schemes.

  2. Overall view of administration area with building 11110 in background, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Overall view of administration area with building 11110 in background, looking east from facility gate. - Naval Ordnance Test Station Inyokern, China Lake Pilot Plant, Pilot Plant Road, China Lake, Kern County, CA

  3. Low power DC arcjet operation with hydrogen/nitrogen/ammonia mixtures

    NASA Technical Reports Server (NTRS)

    Hardy, Terry L.; Curran, Francis M.

    1987-01-01

    The effect of gas composition and ambient pressure on arcjet operation was determined. Arcjet operation in different facilities was also compared to determine the validity of tests in small facilities. Volt-ampere characteristics were determined for an arcjet using hydrogen/nitrogen mixtures (simulating both ammonia and hydrazine), hydrogen/nitrogen/ammonia mixtures, and pure ammonia as propellants at various flow rates. The arcjet had a typical performance of 450 sec specific impulse at 1 kW with hydrogen/nitrogen mixures. It was determined that the amount of ammonia present in the gas stream had a significant effect on the arcjet volt-ampere characteristics. Also, hydrogen/nitrogen mixtures simulating ammonia gave arc characteristics approximately the same as those of pure ammonia. Finally, no differences in arc volt-ampere characteristics were seen between low and high ambient pressure operation in the same facility. A 3 to 5 V difference was seen when different facilities were compared, but this difference was probably due to differences in the voltage drops across the current connections, and not due to arcjet operational differences in the two facilities.

  4. Low power dc arcjet operation with hydrogen/nitrogen/ammonia mixtures

    NASA Technical Reports Server (NTRS)

    Hardy, Terry L.; Curran, Francis M.

    1986-01-01

    The effect of gas composition and ambient pressure on arcjet operation was determined. Arcjet operation in different facilities was also compared to determine the validity of tests in small facilities. Volt-ampere characteristics were determined for an arcjet using hydrogen/nitrogen mixtures (simulating both ammonia and hydrazine), hydrogen/nitrogen/ammonia mixtures, and pure ammonia as propellants at various flow rates. The arcjet had a typical performance of 450 sec specific impulse at 1 kW with hydrogen/nitrogen mixtures. It was determined that the amount of ammonia present in the gas stream had a significant effect on the arcjet volt-ampere characteristics. Also, hydrogen/nitrogen mixtures simulating ammonia gave arc characteristics approximately the same as those of pure ammonia. Finally, no differences in arc volt-ampere characteristics were seen between low and high ambient pressure operation in the same facility. A 3 to 5 V difference was seen when different facilities were compared, but this difference was probably due to differences in the voltage drops across the current connections, and not due to arcjet operational differences in the two facilities.

  5. Calibration facility for environment dosimetry instruments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bercea, Sorin; Celarel, Aurelia; Cenusa, Constantin

    2013-12-16

    In the last ten years, the nuclear activities, as well as the major nuclear events (see Fukushima accident) had an increasing impact on the environment, merely by contamination with radioactive materials. The most conferment way to quickly identify the presence of some radioactive elements in the environment, is to measure the dose-equivalent rate H. In this situation, information concerning the values of H due only to the natural radiation background must exist. Usually, the values of H due to the natural radiation background, are very low (∼10{sup −9} - 10{sup −8} Sv/h). A correct measurement of H in this rangemore » involve a performing calibration of the measuring instruments in the measuring range corresponding to the natural radiation background lead to important problems due to the presence of the natural background itself the best way to overlap this difficulty is to set up the calibration stand in an area with very low natural radiation background. In Romania, we identified an area with such special conditions at 200 m dept, in a salt mine. This paper deals with the necessary requirements for such a calibration facility, as well as with the calibration stand itself. The paper includes also, a description of the calibration stand (and images) as well as the radiological and metrological parameters. This calibration facilities for environment dosimetry is one of the few laboratories in this field in Europe.« less

  6. Prevalence of pregnancy-related complications and course of labour of surviving women who gave birth in selected health facilities in Rwanda: a health facility-based, cross-sectional study.

    PubMed

    Semasaka Sengoma, Jean Paul; Krantz, Gunilla; Nzayirambaho, Manasse; Munyanshongore, Cyprien; Edvardsson, Kristina; Mogren, Ingrid

    2017-07-09

    This study estimated health facility-based prevalence for pre-eclampsia/eclampsia, postpartum haemorrhage and caesarean section (CS) due to prolonged labour/dystocia. The background characteristics of Rwandan pregnant women, the course of labour and the level of healthcare were investigated in relation to pregnancy and delivery outcomes. This is health facility-based study and data were collected in 2014-2015 through structured interviews and medical records (n=817) in Kigali and Northern Province, Rwanda. Frequencies and prevalence were used to describe participants' background factors, labour and delivery-related characteristics. Bivariable and multivariable logistic regression models were performed for different background factors and pregnancy/delivery outcomes. Pre-eclampsia/eclampsia, postpartum haemorrhage and CS due to prolonged labour/dystocia represented 1%, 2.7% and 5.4% of all participants, respectively. In total, 56.4% of the participants were transferred from facilities with low levels to those with higher levels of healthcare, and the majority were transferred from health centres to district hospitals, with CS as the main reason for transfer. Participants who arrived at the health facility with cervical dilation grade of ≤3 cm spent more hours in maternity ward than those who arrived with cervical dilatation grade of ≥4 cm. Risk factors for CS due to prolonged labour or dystocia were poor households, nulliparity and residence far from health facility. The estimated health facility-based prevalence of pregnancy-related complications was relatively low in this sample from Rwanda. CS was the main reason for the transfer of pregnant women from health centres to district hospitals. Upgrading the capacity of health centres in the management of pregnant women in Rwanda may improve maternal and fetal health. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  7. KSC-07pd0633

    NASA Image and Video Library

    2007-03-13

    KENNEDY SPACE CENTER, FLA. -- At the Trident wharf, workers help guide the container with the Experiment Logistics Module Pressurized Section inside toward a flat bed on the dock. The logistics module is part of the Japanese Experiment Module. The logistics module will be transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett

  8. KSC-07pd0634

    NASA Image and Video Library

    2007-03-13

    KENNEDY SPACE CENTER, FLA. -- At the Trident wharf, workers help guide the container with the Experiment Logistics Module Pressurized Section inside onto a flat bed on the dock. The logistics module is part of the Japanese Experiment Module. The logistics module will be transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett

  9. KSC-07pd0631

    NASA Image and Video Library

    2007-03-13

    KENNEDY SPACE CENTER, FLA. -- At the Trident wharf, workers in the hold of a ship attach a crane to the shipping container with the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module. The ship brought the module from Yokohama, Japan. The logistics module will be offloaded and transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett

  10. KSC-07pd0630

    NASA Image and Video Library

    2007-03-13

    KENNEDY SPACE CENTER, FLA. -- At the Trident wharf, the shipping container with the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module is ready for lifting out of the hold of the ship that brought it from Yokohama, Japan. The logistics module will be offloaded and transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett

  11. The conversion of a room temperature NaK loop to a high temperature MHD facility for Li/V blanket testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, C.B.; Haglund, R.C.; Miller, M.E.

    1996-12-31

    The Vanadium/Lithium system has been the recent focus of ANL`s Blanket Technology Pro-ram, and for the last several years, ANL`s Liquid Metal Blanket activities have been carried out in direct support of the ITER (International Thermonuclear Experimental Reactor) breeding blanket task area. A key feasibility issue for the ITER Vanadium/Lithium breeding blanket is the Near the development of insulator coatings. Design calculations, Hua and Gohar, show that an electrically insulating layer is necessary to maintain an acceptably low magneto-hydrodynamic (MHD) pressure drop in the current ITER design. Consequently, the decision was made to convert Argonne`s Liquid Metal EXperiment (ALEX) frommore » a 200{degrees}C NaK facility to a 350{degrees}C lithium facility. The upgraded facility was designed to produce MHD pressure drop data, test section voltage distributions, and heat transfer data for mid-scale test sections and blanket mockups at Hartmann numbers (M) and interaction parameters (N) in the range of 10{sup 3} to 10{sup 5} in lithium at 350{degrees}C. Following completion of the upgrade work, a short performance test was conducted, followed by two longer multiple-hour, MHD tests, all at 230{degrees}C. The modified ALEX facility performed up to expectations in the testing. MHD pressure drop and test section voltage distributions were collected at Hartmann numbers of 1000.« less

  12. Conversion of a room temperature NaK loop to a high temperature MHD facility for Li/V blanket testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, C.B.; Haglund, R.C.; Miller, M.E.

    1996-12-31

    The Vanadium/Lithium system has been the recent focus of ANL`s Blanket Technology Program, and for the last several years, ANL`s Liquid Metal Blanket activities have been carried out in direct support of the ITER (International Thermonuclear Experimental Reactor) breeding blanket task area. A key feasibility issue for the ITER Vanadium/Lithium breeding blanket is the development of insulator coatings. Design calculations, Hua and Gohar, show that an electrically insulating layer is necessary to maintain an acceptably low magnetohydrodynamic (MHD) pressure drop in the current ITER design. Consequently, the decision was made to convert Argonne`s Liquid Metal EXperiment (ALEX) from a 200{degree}Cmore » NaK facility to a 350{degree}C lithium facility. The upgraded facility was designed to produce MHD pressure drop data, test section voltage distributions, and heat transfer data for mid-scale test sections and blanket mockups at Hartmann numbers (M) and interaction parameters (N) in the range of 10{sup 3} to 10{sup 5} in lithium at 350{degree}C. Following completion of the upgrade work, a short performance test was conducted, followed by two longer, multiple-hour, MHD tests, all at 230{degree}C. The modified ALEX facility performed up to expectations in the testing. MHD pressure drop and test section voltage distributions were collected at Hartmann numbers of 1000. 4 refs., 2 figs.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, John R.; Brubaker, Erik; Vetter, Kai

    In an effort to characterize the fast neutron radiation background, 16 EJ-309 liquid scintillator cells were installed in the Radiological Multi-sensor Analysis Platform (RadMAP) to collect data in the San Francisco Bay Area. Each fast neutron event was associated with specific weather metrics (pressure, temperature, absolute humidity) and GPS coordinates. Furthermore, the expected exponential dependence of the fast neutron count rate on atmospheric pressure was demonstrated and event rates were subsequently adjusted given the measured pressure at the time of detection. Pressure adjusted data was also used to investigate the influence of other environmental conditions on the neutron background rate.more » Using National Oceanic and Atmospheric Administration (NOAA) coastal area lidar data, an algorithm was implemented to approximate sky-view factors (the total fraction of visible sky) for points along RadMAPs route. In the three areas we analyzed, San Francisco, Downtown Oakland, and Berkeley, all demonstrated a suppression in the background rate of over 50% for the range of sky-view factors measured. This effect, which is due to the shielding of cosmic-ray produced neutrons by surrounding buildings, was comparable to the pressure influence which yielded a 32% suppression in the count rate over the range of pressures measured.« less

  14. Credit BG. Northeast and northwest facades of Building 4496 (Security ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit BG. Northeast and northwest facades of Building 4496 (Security Facility) as seen when looking south (178°) from entrance to secured area. The Control Tower (Building 4500) appears in background. The Security Facility is part of the secured Building 4505 complex - Edwards Air Force Base, North Base, Security Facility, Northeast of A Street, Boron, Kern County, CA

  15. The Acoustic Environment of the NASA Glenn 9- by 15-foot Low-Speed Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Stephens, David B.

    2015-01-01

    The 9- by 15-Foot Low Speed Wind Tunnel is an acoustic testing facility with a long history of aircraft propulsion noise research. Due to interest in renovating the facility to support future testing of advanced quiet engine designs, a study was conducted to document the background noise level in the facility and investigate the sources of contaminating noise. The anechoic quality of the facility was also investigated using an interrupted noise method. The present report discusses these aspects of the noise environment in this facility.

  16. Computational Analyses in Support of Sub-scale Diffuser Testing for the A-3 Facility. Part 1; Steady Predictions

    NASA Technical Reports Server (NTRS)

    Allgood, Daniel C.; Graham, Jason S.; Ahuja, Vineet; Hosangadi, Ashvin

    2008-01-01

    Simulation technology can play an important role in rocket engine test facility design and development by assessing risks, providing analysis of dynamic pressure and thermal loads, identifying failure modes and predicting anomalous behavior of critical systems. Advanced numerical tools assume greater significance in supporting testing and design of high altitude testing facilities and plume induced testing environments of high thrust engines because of the greater inter-dependence and synergy in the functioning of the different sub-systems. This is especially true for facilities such as the proposed A-3 facility at NASA SSC because of a challenging operating envelope linked to variable throttle conditions at relatively low chamber pressures. Facility designs in this case will require a complex network of diffuser ducts, steam ejector trains, fast operating valves, cooling water systems and flow diverters that need to be characterized for steady state performance. In this paper, we will demonstrate with the use of CFD analyses s advanced capability to evaluate supersonic diffuser and steam ejector performance in a sub-scale A-3 facility at NASA Stennis Space Center (SSC) where extensive testing was performed. Furthermore, the focus in this paper relates to modeling of critical sub-systems and components used in facilities such as the A-3 facility. The work here will address deficiencies in empirical models and current CFD analyses that are used for design of supersonic diffusers/turning vanes/ejectors as well as analyses for confined plumes and venting processes. The primary areas that will be addressed are: (1) supersonic diffuser performance including analyses of thermal loads (2) accurate shock capturing in the diffuser duct; (3) effect of turning duct on the performance of the facility (4) prediction of mass flow rates and performance classification for steam ejectors (5) comparisons with test data from sub-scale diffuser testing and assessment of confidence levels in CFD based flowpath modeling of the facility. The analyses tools used here expand on the multi-element unstructured CFD which has been tailored and validated for impingement dynamics of dry plumes, complex valve/feed systems, and high pressure propellant delivery systems used in engine and component test stands at NASA SSC. The analyses performed in the evaluation of the sub-scale diffuser facility explored several important factors that influence modeling and understanding of facility operation such as (a) importance of modeling the facility with Real Gas approximation, (b) approximating the cluster of steam ejector nozzles as a single annular nozzle, (c) existence of mixed subsonic/supersonic flow downstream of the turning duct, and (d) inadequacy of two-equation turbulence models in predicting the correct pressurization in the turning duct and expansion of the second stage steam ejectors. The procedure used for modeling the facility was as follows: (i) The engine, test cell and first stage ejectors were simulated with an axisymmetric approximation (ii) the turning duct, second stage ejectors and the piping downstream of the second stage ejectors were analyzed with a three-dimensional simulation utilizing a half-plane symmetry approximation. The solution i.e. primitive variables such as pressure, velocity components, temperature and turbulence quantities were passed from the first computational domain and specified as a supersonic boundary condition for the second simulation. (iii) The third domain comprised of the exit diffuser and the region in the vicinity of the facility (primary included to get the correct shock structure at the exit of the facility and entrainment characteristics). The first set of simulations comprising the engine, test cell and first stage ejectors was carried out both as a turbulent real gas calculation as well as a turbulent perfect gas calculation. A comparison for the two cases (Real Turbulent and Perfect gas turbulent) of the Ma Number distribution and temperature distributions are shown in Figures 1 and 2 respectively. The Mach Number distribution shows small yet distinct differences between the two cases such as locations of shocks/shock reflections and a slightly different impingement point on the wall of the diffuser from the expansion at the exit of the nozzle. Similarly the temperature distribution indicates different flow recirculation patterns in the test cell. Both cases capture all the essential flow phenomena such as the shock-boundary layer interaction, plume expansion, expansion of the first stage ejectors, mixing between the engine plume and the first stage ejector flow and pressurization due to the first stage ejectors. The final paper will discuss thermal loads on the walls of the diffuser and cooling mechanisms investigated.

  17. Total Dose Effects of Ionizing and Non-Ionizing Radiation on Piezoresistive Pressure Transducer Chips

    DTIC Science & Technology

    2003-03-01

    facility and Mr. Joseph Talnagi of the Ohio State Research Reactor facility for their personal guidance and insight into reactor dosimetry and neutron...62 Test C1: Dosimetry ..................................................................................................... 63 Special...66 Annex A-3. Preliminary Dosimetry Calculations

  18. View of Facility No. S359 (Seaplane Ramp 3), with Koolau ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Facility No. S359 (Seaplane Ramp 3), with Koolau Mountain Range in background - U.S. Naval Base, Pearl Harbor, Seaplane Runways-1933 Type, South shore of Ford Island, near Lexington Boulevard, Pearl City, Honolulu County, HI

  19. 77 FR 61826 - Pipeline Safety: Communication During Emergency Situations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-11

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No... liquefied natural gas pipeline facilities that operators should immediately and directly notify the Public.... Background Federal regulations for gas, liquefied natural gas (LNG), and hazardous liquid pipeline facilities...

  20. Facility 596, detail of ramp from below, with replacement sheetpile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Facility 596, detail of ramp from below, with replacement sheet-pile dolphin on right and southernmost dolphins in background. - U.S. Naval Base, Pearl Harbor, Ferry Landing Type, Halawa Landing on Ford Island, Pearl City, Honolulu County, HI

  1. Development of experimental facilities for processing metallic crystals in orbit

    NASA Technical Reports Server (NTRS)

    Duncan, Bill J.

    1990-01-01

    This paper discusses the evolution, current status, and planning for facilities to exploit the microgravity environment of earth orbit in applied metallic materials science. Space-Shuttle based facilities and some precursor flight programs are reviewed. Current facility development programs and planned Space Station furnace capabilities are described. The reduced gravity levels available in earth orbit allow the processing of metallic materials without the disturbing influence of gravitationally induced thermal convection, stratification due to density differences in sample components, or the effects of hydrostatic pressure.

  2. A radiant heating test facility for space shuttle orbiter thermal protection system certification

    NASA Technical Reports Server (NTRS)

    Sherborne, W. D.; Milhoan, J. D.

    1980-01-01

    A large scale radiant heating test facility was constructed so that thermal certification tests can be performed on the new generation of thermal protection systems developed for the space shuttle orbiter. This facility simulates surface thermal gradients, onorbit cold-soak temperatures down to 200 K, entry heating temperatures to 1710 K in an oxidizing environment, and the dynamic entry pressure environment. The capabilities of the facility and the development of new test equipment are presented.

  3. Support of gas flowmeter upgrade

    NASA Technical Reports Server (NTRS)

    Waugaman, Dennis

    1996-01-01

    A project history review, literature review, and vendor search were conducted to identify a flowmeter that would improve the accuracy of gaseous flow measurements in the White Sands Test Facility (WSTF) Calibration Laboratory and the Hydrogen High Flow Facility. Both facilities currently use sonic flow nozzles to measure flowrates. The flow nozzle pressure drops combined with corresponding pressure and temperature measurements have been estimated to produce uncertainties in flowrate measurements of 2 to 5 percent. This study investigated the state of flowmeter technology to make recommendations that would reduce those uncertainties. Most flowmeters measure velocity and volume, therefore mass flow measurement must be calculated based on additional pressures and temperature measurement which contribute to the error. The two exceptions are thermal dispersion meters and Coriolis mass flowmeters. The thermal dispersion meters are accurate to 1 to 5 percent. The Coriolis meters are significantly more accurate, at least for liquids. For gases, there is evidence they may be accurate to within 0.5 percent or better of the flowrate, but there may be limitations due to inappropriate velocity, pressure, Mach number and vibration disturbances. In this report, a comparison of flowmeters is presented. Candidate Coriolis meters and a methodology to qualify the meter with tests both at WSTF and Southwest Research Institute are recommended and outlined.

  4. Flow Characterization Studies of the 10-MW TP3 Arc-Jet Facility: Probe Sweeps

    NASA Technical Reports Server (NTRS)

    Goekcen, Tahir; Alunni, Antonella I.

    2016-01-01

    This paper reports computational simulations and analysis in support of calibration and flow characterization tests in a high enthalpy arc-jet facility at NASA Ames Research Center. These tests were conducted in the NASA Ames 10-MW TP3 facility using flat-faced stagnation calorimeters at six conditions corresponding to the steps of a simulated flight heating profile. Data were obtained using a conical nozzle test configuration in which the models were placed in a free jet downstream of the nozzle. Experimental surveys of arc-jet test flow with pitot pressure and heat flux probes were also performed at these arc-heater conditions, providing assessment of the flow uniformity and valuable data for the flow characterization. Two different sets of pitot pressure and heat probes were used: 9.1-mm sphere-cone probes (nose radius of 4.57 mm or 0.18 in) with null-point heat flux gages, and 15.9-mm (0.625 in) diameter hemisphere probes with Gardon gages. The probe survey data clearly show that the test flow in the TP3 facility is not uniform at most conditions (not even axisymmetric at some conditions), and the extent of non-uniformity is highly dependent on various arc-jet parameters such as arc current, mass flow rate, and the amount of cold-gas injection at the arc-heater plenum. The present analysis comprises computational fluid dynamics simulations of the nonequilibrium flowfield in the facility nozzle and test box, including the models tested. Comparisons of computations with the experimental measurements show reasonably good agreement except at the extreme low pressure conditions of the facility envelope.

  5. Barriers to management of cardiovascular risk in a low-resource setting using hypertension as an entry point.

    PubMed

    Mendis, Shanthi; Abegunde, Dele; Oladapo, Olulola; Celletti, Francesca; Nordet, Porfirio

    2004-01-01

    Assess capacity of health-care facilities in a low-resource setting to implement the absolute risk approach for assessment of cardiovascular risk in hypertensive patients and effective management of hypertension. A descriptive cross-sectional study in Egbeda and Oluyole local government areas of Oyo State in Nigeria in 56 randomly selected primary- (n = 42) and secondary-level (n = 2) health-care and private health-care (n = 12) facilities. One thousand consecutive, known hypertensives attending the selected facilities for follow-up, and health-care providers working in the above randomly selected facilities, were interviewed. About two-thirds of hypertensives utilized primary-care centers both for diagnosis and for follow-up. Laboratory and other investigations to exclude secondary hypertension or to assess target organ damage were not available in the majority of facilities, particularly in primary care. A considerable knowledge and awareness gap related to hypertension and its complications was found, both among patients and health-care providers. Blood pressure control rates were poor (28% with systolic blood pressure (SBP) < 140 mmHg and diastolic blood pressure (DBP) < 90 mmHg] and drug prescription patterns were not evidence based and cost effective. The majority of patients (73%) in this low socio-economic group (mean monthly income 73 US dollars) had to pay fully, out of their own pocket, for consultations and medications. If the absolute risk approach for assessment of risk and effective management of hypertension is to be implemented in low-resource settings, appropriate policy measures need to be taken to improve the competency of health-care providers, to provide basic laboratory facilities and to develop affordable financing mechanisms.

  6. Measurements of the optical performance of bolometers for SPICA/SAFARI

    NASA Astrophysics Data System (ADS)

    Audley, Michael D.; de Lange, Gert; Gao, Jian-Rong; Khosropanah, Pourya; Ridder, Marcel; Ferrari, Lorenza; Laauwen, Wouter M.; Ranjan, Manisha; Mauskopf, Philip D.; Morozov, Dmitry; Trappe, Neil A.

    2012-09-01

    We have measured the optical response of detectors designed for SAFARI, the far-infrared imaging spectrometer for the SPICA satellite. To take advantage of SPICA's cooled optics, SAFARI’s three bolometer arrays are populated with extremely sensitive (NEP~2×10-19 W/√Hz) transition edge sensors with a transition temperature close to 100 mK. The extreme sensitivity and low saturation power (~4 fW) of SAFARI’s detectors present challenges to characterizing them. We have therefore built up an ultra-low background test facility with a cryogen-free high-capacity dilution refrigerator, paying careful attention to stray-light exclusion. Our use of a pulse-tube cooler to pre-cool the dilution refrigerator required that the SAFARI Detector System Test Facility provide a high degree electrical, magnetic, and mechanical isolation for the detectors. We have carefully characterized the performance of the test facility in terms of background power loading. The test facility has been designed to be flexible and easily reconfigurable with internal illuminators that allow us to characterize the optical response of the detectors. We describe the test facility and some of the steps we took to create an ultra-low background test environment. We have measured the optical response of two detectors designed for SAFARI’s short-wave wavelength band in combination with a spherical backshort and conical feedhorn. We find an overall optical efficiency of 40% for both, compared with an ideal-case predicted optical efficiency of 66%.

  7. Effect of interfacial turbulence and accommodation coefficient on CFD predictions of pressurization and pressure control in cryogenic storage tank

    NASA Astrophysics Data System (ADS)

    Kassemi, Mohammad; Kartuzova, Olga

    2016-03-01

    Pressurization and pressure control in cryogenic storage tanks are to a large extent affected by heat and mass transport across the liquid-vapor interface. These mechanisms are, in turn, controlled by the kinetics of the phase change process and the dynamics of the turbulent recirculating flows in the liquid and vapor phases. In this paper, the effects of accommodation coefficient and interfacial turbulence on tank pressurization and pressure control simulations are examined. Comparison between numerical predictions and ground-based measurements in two large liquid hydrogen tank experiments, performed in the K-site facility at NASA Glenn Research Center (GRC) and the Multi-purpose Hydrogen Test Bed (MHTB) facility at NASA Marshall Space Flight Center (MSFC), are used to show the impact of accommodation coefficient and interfacial and vapor phase turbulence on evolution of pressure and temperatures in the cryogenic storage tanks. In particular, the self-pressurization comparisons indicate that: (1) numerical predictions are essentially independent of the magnitude of the accommodation coefficient; and (2) surprisingly, laminar models sometimes provide results that are in better agreement with experimental self-pressurization rates, even in parametric ranges where the bulk flow is deemed fully turbulent. In this light, shortcomings of the present CFD models, especially, numerical treatments of interfacial mass transfer and turbulence, as coupled to the Volume-of-Fluid (VOF) interface capturing scheme, are underscored and discussed.

  8. Effectiveness of Qigong in promoting the health of wheelchair-bound older adults in long-term care facilities.

    PubMed

    Kuan, Shu-Chien; Chen, Kuei-Min; Wang, Chi

    2012-04-01

    Institutional wheelchair-bound older adults often do not get regular exercise and are prone to health problems. The aim of this study was to test the effects of a 12-week qigong exercise program on the physiological and psychological health of wheelchair-bound older adults in long-term care facilities. Study design was quasi-experimental, pre-post test, nonequivalent control group. Participants comprised a convenience sample of 72 wheelchair-bound older adults (qigong = 34; control = 38). The qigong group exercised 35 min/day, 5 days/week for 12 weeks. Measures for physical health (blood pressure, heart rate variability, and distal skin temperature) and psychological health (Brief Symptom Rating Scale-5) were collected before and during study Weeks 4, 8, and 12. The qigong group participants' blood pressure, distal skin temperature, and psychological health were significantly improved (all p < .001). These findings suggest that qigong exercise is a suitable daily activity for elderly residents in long-term care facilities and may help in the control of blood pressure among older adults.

  9. KSC-07pd2843

    NASA Image and Video Library

    2007-10-11

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, members of the STS-123 crew learn more about the mission payload, the Kibo Experiment Logistics Module Pressurized Section. Crew members are Commander Dominic Gorie, Pilot Gregory Johnson and Mission Specialists Richard Linnehan, Takao Doi, Robert Behnken, Gerrett Reisman and Michael Foreman. Doi represents the Japan Aerospace Exploration Agency. Reisman will remain on the space station after the mission as a flight engineer for Expedition 16. STS-123 will carry and install one of the components of the Japanese Experiment Module, or JEM. Known as Kibo, the JEM comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. The various components of JEM will be assembled in space over the course of three space shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the space shuttle Endeavour, targeted for launch in February 2008. Photo credit: NASA/Dimitrios Gerondidakis

  10. Maximizing internal opportunities for healthcare facilities facing a managed-care environment.

    PubMed

    Gillespie, M

    1997-01-01

    The primary theme of this article concerns the pressures on healthcare facilities to become efficient utilizers of their existing resources. This acute need for efficiency has been extremely obvious since the changing reimbursement patterns of managed care have proliferated across the nation.

  11. Environmental Technology Verification Report: Grouts for Wastewater Collection Systems, Avanti International AV-118 Acrylic Chemical Grout

    EPA Science Inventory

    Municipalities are discovering rapid degradation of infrastructures in wastewater collection and treatment facilities due to the infiltration of water from the surrounding environments. Wastewater facilities are not only wet, but also experience hydrostatic pressure conditions un...

  12. 5. Photocopy of engineering drawing. LC17 HIGH PRESSURE GAS INSTALLATION: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Photocopy of engineering drawing. LC-17 HIGH PRESSURE GAS INSTALLATION: PLANS AND DETAILS (CHANGE HOUSE)-STRUCTURAL, APRIL 1969. - Cape Canaveral Air Station, Launch Complex 17, Facility 28409, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  13. KSC-03PD-2138

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, STS-115 Mission Specialists Joseph Tanner (left) and Heidemarie Stefanyshyn-Piper (right) look over the Japanese Experiment Module (JEM) Pressurized Module located in the Space Station Processing Facility. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-115 mission will deliver the second port truss segment, the P3/P4 Truss, to attach to the first port truss segment, the P1 Truss, as well as deploy solar array sets 2A and 4A.. The crew is scheduled to activate and check out the Solar Alpha Rotary Joint (SARJ) and deploy the P4 Truss radiator.

  14. A new sliding joint to accommodate recoil of a free-piston-driven expansion tube facility

    NASA Astrophysics Data System (ADS)

    Gildfind, D. E.; Morgan, R. G.

    2016-11-01

    This paper describes a new device to decouple free-piston driver recoil and its associated mechanical vibration from the acceleration tube and test section of The University of Queensland's X3 expansion tube. A sliding joint is introduced to the acceleration tube which axially decouples the facility at this station. When the facility is fired, the upstream section of the facility, which includes the free-piston driver, can recoil upstream freely. The downstream acceleration tube remains stationary. This arrangement provides two important benefits. Firstly, it eliminates nozzle movement relative to the test section before and during the experiment. This has benefits in terms of experimental setup and alignment. Secondly, it prevents transmission of mechanical disturbances from the free-piston driver to the acceleration tube, thereby eliminating mechanically-induced transducer noise in the sensitive pressure transducers installed in this low-pressure tube. This paper details the new design, and presents experimental confirmation of its performance.

  15. FACILITY 713, DINING ROOM CABINET DOORS AND DOORS FROM LIVING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 713, DINING ROOM CABINET DOORS AND DOORS FROM LIVING ROOM TO ENTRY PORCH IN RIGHT BACKGROUND, VIEW FACING NORTHWEST. - Schofield Barracks Military Reservation, Central-Entry Single-Family Housing Type, Between Bragg & Grime Streets near Ayres Avenue, Wahiawa, Honolulu County, HI

  16. Posters as a tool for disseminating health related information in a developing country: a pilot experience.

    PubMed

    Nishtar, S; Zoka, N; Nishtar, S S; Khan, S Y; Jehan, S; Mirza, Y A

    2004-09-01

    To investigate the effectiveness of posters as a tool, for imparting information related to high blood pressure. The intervention involved hanging posters conveying information about blood pressure, in the waiting rooms of 339 health facilities. The impact of this intervention was assessed after 30 days of hanging the posters with the main assessment component of the survey aimed at the target audience at the facilities. 1017 people attending the facilities were interviewed. Mean age of this population was 40.4 (SD 11.06) years. There were 79% males and 21% females. 80.2% (n=816) of the respondents had noticed the posters. 84.5% of the people were of the opinion that the poster was good. 63.7% of the people understood the overall message of the poster correctly. Regarding change in behaviour, 96.7% (n=789) of the people thought that the poster was asking them to do something; 85.9% (n=501) of these got their blood pressure checked compared to 60.9% (n=14) of those who did not think the poster was asking them to do anything (p=0.004). Of those who said that the poster was asking them to do something, there were varied responses as to what they thought the poster was asking them to do. If the response was that they should have their blood pressure checked, it was taken as a correct response. 87.3% of those who said that the poster was asking them to get their blood pressure checked, actually got their blood pressure checked compared to 83.7% of those who did not understand this message (p=0.241). Given the limitations of the study it is difficult to assess the effectiveness of the poster in changing people's behaviour regarding blood pressure check up. This experience will serve as a pilot for a larger prospective study to assess poster as a tool for prompting people to get their blood pressure checked.

  17. An experimental investigation of clocking effects on turbine aerodynamics using a modern 3-D one and one-half stage high pressure turbine for code verification and flow model development

    NASA Astrophysics Data System (ADS)

    Haldeman, Charles Waldo, IV

    2003-10-01

    This research uses a modern 1 and 1/2 stage high-pressure (HP) turbine operating at the proper design corrected speed, pressure ratio, and gas to metal temperature ratio to generate a detailed data set containing aerodynamic, heat-transfer and aero-performance information. The data was generated using the Ohio State University Gas Turbine Laboratory Turbine Test Facility (TTF), which is a short-duration shock tunnel facility. The research program utilizes an uncooled turbine stage for which all three airfoils are heavily instrumented at multiple spans and on the HPV and LPV endwalls and HPB platform and tips. Heat-flux and pressure data are obtained using the traditional shock-tube and blowdown facility operational modes. Detailed examination show that the aerodynamic (pressure) data obtained in the blowdown mode is the same as obtained in the shock-tube mode when the corrected conditions are matched. Various experimental conditions and configurations were performed, including LPV clocking positions, off-design corrected speed conditions, pressure ratio changes, and Reynolds number changes. The main research for this dissertation is concentrated on the LPV clocking experiments, where the LPV was clocked relative to the HPV at several different passage locations and at different Reynolds numbers. Various methods were used to evaluate the effect of clocking on both the aeroperformance (efficiency) and aerodynamics (pressure loading) on the LPV, including time-resolved measurements, time-averaged measurements and stage performance measurements. A general improvement in overall efficiency of approximately 2% is demonstrated and could be observed using a variety of independent methods. Maximum efficiency is obtained when the time-average pressures are highest on the LPV, and the time-resolved data both in the time domain and frequency domain show the least amount of variation. The gain in aeroperformance is obtained by integrating over the entire airfoil as the three-dimensional effects on the LPV surface are significant.

  18. The planned Alaska SAR Facility - An overview

    NASA Technical Reports Server (NTRS)

    Carsey, Frank; Weeks, Wilford

    1987-01-01

    The Alaska SAR Facility (ASF) is described in an overview fashion. The facility consists of three major components, a Receiving Ground System, a SAR Processing System and an Analysis and Archiving System; the ASF Program also has a Science Working Team and the requisite management and operations systems. The ASF is now an approved and fully funded activity; detailed requirements and science background are presented for the facility to be implemented for data from the European ERS-1, the Japanese ERS-1 and Radarsat.

  19. Experimental investigation of the effect of insulator sleeve length on the time to pinch and multipinch formation in the plasma focus facility

    NASA Astrophysics Data System (ADS)

    Momenei, M.; Khodabakhshei, Z.; Panahi, N.; Mohammadi, M. A.

    2017-03-01

    The length of insulator sleeve is varied to investigate its effect on the pinch formation in the plasma focus facility. In this paper, the effect of insulator length on the time to pinch at various pressures and working voltages in the 1.15 kJ Mather type plasma focus is investigated. The results show that with 4.5 cm insulator length the time to pinch at all pressures is minimum. Other results also confirm that with increasing of pressure the time to pinch is increased. Moreover, with increasing working voltage the time to pinch is decreased. Pictures, captured using a digital single lens reflex (DSLR) Canon EOS 7D system, show that multipinch phenomenon is formed.

  20. The influence of facility and home pen design on the welfare of the laboratory-housed dog.

    PubMed

    Scullion Hall, Laura E M; Robinson, Sally; Finch, John; Buchanan-Smith, Hannah M

    We have an ethical and scientific obligation to Refine all aspects of the life of the laboratory-housed dog. Across industry there are many differences amongst facilities, home pen design and husbandry, as well as differences in features of the dogs such as strain, sex and scientific protocols. Understanding how these influence welfare, and hence scientific output is therefore critical. A significant proportion of dogs' lives are spent in the home pen and as such, the design can have a considerable impact on welfare. Although best practice guidelines exist, there is a paucity of empirical evidence to support the recommended Refinements and uptake varies across industry. In this study, we examine the effect of modern and traditional home pen design, overall facility design, husbandry, history of regulated procedures, strain and sex on welfare-indicating behaviours and mechanical pressure threshold. Six groups of dogs from two facilities (total n=46) were observed in the home pen and tested for mechanical pressure threshold. Dogs which were housed in a purpose-built modern facility or in a modern design home pen showed the fewest behavioural indicators of negative welfare (such as alert or pacing behaviours) and more indicators of positive welfare (such as resting) compared to those in a traditional home pen design or traditional facility. Welfare indicating behaviours did not vary consistently with strain, but male dogs showed more negative welfare indicating behaviours and had greater variation in these behaviours than females. Our findings showed more positive welfare indicating behaviours in dogs with higher mechanical pressure thresholds. We conclude that factors relating to the design of home pens and implementation of Refinements at the facility level have a significant positive impact on the welfare of laboratory-housed dogs, with a potential concomitant impact on scientific endpoints. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Effects of inlet flow field conditions on the performance of centrifugal compressor diffusers: Part 2 -- Straight-channel diffuser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deniz, S.; Greitzer, E.M.; Cumpsty, N.A.

    2000-01-01

    This is Part 2 of an examination of the influence of inlet flow conditions on the performance and operating range of centrifugal compressor vaned diffusers. The paper describes tests of a straight-channel type diffuser, sometimes called a wedge-vane diffuser, and compares the results with those from the discrete-passage diffusers described in Part 1. Effects of diffuser inlet Mach number, flow angle, blockage, and axial flow nonuniformity on diffuser pressure recovery and operating range are addressed. The straight-channel diffuser investigated has 30 vanes and was designed for the same aerodynamic duty as the discrete-passage diffuser described in Part 1. The rangesmore » of the overall pressure recovery coefficients were 0.50--0.78 for the straight-channel diffuser and 0.50--0.70 for the discrete-passage diffuser, except when the diffuser was choked. In other words, the maximum pressure recovery of the straight-channel diffuser was found to be roughly 10% higher than that of the discrete-passage diffuser investigated. The two types of diffuser showed similar behavior regarding the dependence of pressure recovery on diffuser inlet flow angle and the insensitivity of the performance to inlet flow field axial distortion and Mach number. The operating range of the straight-channel diffuser, as for the discrete-passage diffusers, was limited by the onset of rotating stall at a fixed momentum-averaged flow angle into the diffuser, which was for the straight-channel diffuser, {alpha}{sub crit} = 70 {+-} 0.5 deg. The background, nomenclature, and description of the facility and method are all given in Part 1.« less

  2. Cryogenic x-ray diffraction microscopy utilizing high-pressure cryopreservation

    NASA Astrophysics Data System (ADS)

    Lima, Enju; Chushkin, Yuriy; van der Linden, Peter; Kim, Chae Un; Zontone, Federico; Carpentier, Philippe; Gruner, Sol M.; Pernot, Petra

    2014-10-01

    We present cryo x-ray diffraction microscopy of high-pressure-cryofixed bacteria and report high-convergence imaging with multiple image reconstructions. Hydrated D. radiodurans cells were cryofixed at 200 MPa pressure into ˜10-μm-thick water layers and their unstained, hydrated cellular environments were imaged by phasing diffraction patterns, reaching sub-30-nm resolutions with hard x-rays. Comparisons were made with conventional ambient-pressure-cryofixed samples, with respect to both coherent small-angle x-ray scattering and the image reconstruction. The results show a correlation between the level of background ice signal and phasing convergence, suggesting that phasing difficulties with frozen-hydrated specimens may be caused by high-background ice scattering.

  3. Electric Propulsion of a Different Class: The Challenges of Testing for MegaWatt Missions

    DTIC Science & Technology

    2012-08-01

    mode akin to steady state. Realizing that the pumping capacity of the Large Vacuum Test Facility (LVTF) at PEPL... Pumping High T/P thruster testing requires high propellant throughput. This reality necessitates the careful survey and selection of appropriate...test facilities to ensure that they have 1) sufficient pumping speed to maintain desired operating pressures and 2) adequate size to mitigate facility

  4. ARC-1964-A-33038-22

    NASA Image and Video Library

    1964-08-14

    Aerial view of Gasdynamics facility in 1964 and the 20 inch helium tunnel Part of the Thermal Protection Laboratory used to research materials for heat shield applications and for aerodynamic heating and materials studies of vehicles in planetary atmospheres.  This laboratory is comprised of five separate facilities: an Aerodynamic Heating Tunnel, a Heat Transfer Tunnel, two Supersonic Turbulent Ducts, and a High-Power CO2 Gasdynamic Laser. All these facilities are driven by arc-heaters, with the exception of the large, combustion-type laser. The arc-heated facilities are powered by a 20 Megawatt DC power supply. Their effluent gas stream (test gases; Air, N2, He, CO2 and mixtures; flow rates from 0.05 to 5.0 lbs/sec) discharges into a five-stage stream-ejector-driven vacuum system. The vacuum system and power supply are common to the test faciities in building N-238. All of the facilities have high pressure water available at flow rates up to 4, 000 gals/min. The data obtained from these facilities are recorded on magnetic tape or oscillographs. All forms of data can be handled whether from thermo-couples, pressure cells, pyrometers, or radiometers, etc. in addition, closed circuit T. V. monitors and various film cameras are available. (operational since 1962)

  5. Results From a Pressure Sensitive Paint Test Conducted at the National Transonic Facility on Test 197: The Common Research Model

    NASA Technical Reports Server (NTRS)

    Watkins, A. Neal; Lipford, William E.; Leighty, Bradley D.; Goodman, Kyle Z.; Goad, William K.; Goad, Linda R.

    2011-01-01

    This report will serve to present results of a test of the pressure sensitive paint (PSP) technique on the Common Research Model (CRM). This test was conducted at the National Transonic Facility (NTF) at NASA Langley Research Center. PSP data was collected on several surfaces with the tunnel operating in both cryogenic mode and standard air mode. This report will also outline lessons learned from the test as well as possible approaches to challenges faced in the test that can be applied to later entries.

  6. Johnson Space Center's regenerative life support systems test bed

    NASA Technical Reports Server (NTRS)

    Henninger, Donald L.; Tri, Terry O.; Barta, Daniel J.; Stahl, Randal S.

    1991-01-01

    The Regenerative Life Support System (RLSS) Test Bed at NASA's Johnson Space Center is an atmospherically closed, controlled environment facility for the evaluation of regenerative life support systems using higher plants in conjunction with physicochemical life support systems. When completed, the facility will be comprised of two large scale plant growth chambers, each with approximately 10 m(exp 2) growing area. One of the two chambers, the Variable Pressure Growth Chamber (VPGC), will be capable of operating at lower atmospheric pressures to evaluate a range of environments that may be used in Lunar or Martian habitats; the other chamber, the Ambient Pressure Growth Chamber (APGC) will operate at ambient atmospheric pressure. The root zone in each chamber will be configurable for hydroponic or solid state media systems. Research will focus on: (1) in situ resource utilization for CELSS systems, in which simulated lunar soils will be used in selected crop growth studies; (2) integration of biological and physicochemical air and water revitalization systems; (3) effect of atmospheric pressure on system performance; and (4) monitoring and control strategies.

  7. The Development and Implementation of a Cryogenic Pressure Sensitive Paint System in the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Watkins, A. Neal; Leighty, Bradley D.; Lipford, William E.; Oglesby, Donald M.; Goodman, Kyle Z.; Goad, William K.; Goad, Linda R.; Massey, Edward A.

    2009-01-01

    The Pressure Sensitive Paint (PSP) method was used to measure global surface pressures on a model at full-scale flight Reynolds numbers. In order to achieve these conditions, the test was carried out at the National Transonic Facility (NTF) operating under cryogenic conditions in a nitrogen environment. The upper surface of a wing on a full-span 0.027 scale commercial transport was painted with a porous PSP formulation and tested at 120K. Data was acquired at Mach 0.8 with a total pressure of 200 kPa, resulting in a Reynolds number of 65 x 106/m. Oxygen, which is required for PSP operation, was injected using dry air so that the oxygen concentration in the flow was approximately 1535 ppm. Results show qualitative agreement with expected results. This preliminary test is the first time that PSP has been successfully deployed to measure global surface pressures at cryogenic condition in the NTF. This paper will describe the system as installed, the results obtained from the test, as well as proposed upgrades and future tests.

  8. Pressure ulcers and lateral rotation beds: a case study.

    PubMed

    Russell, Teresa; Logsdon, Angela

    2003-05-01

    During a 6-month period, the WOC nurses at a 500-bed medical treatment facility noticed the development of nosocomial pressure ulcers on the sacrum, occiput, and heel areas of patients who were placed on lateral rotation specialty beds because they had pulmonary disorders. Measures were taken to address the problem by repositioning the patients and through a staff education program. Repositioning included repositioning the patient's head every 2 hours, thorough skin assessments every 2 hours, and ensuring that the patient's heels were subject to zero pressure. Staff education centered on the importance of using a risk assessment tool (the Braden scale) and understanding the clinical uses for lateral rotation beds. During the subsequent 6 months, the incidence of hospital-acquired pressure ulcers decreased by 52%. Efforts to further decrease the number of pressure ulcers related to the use of lateral rotation beds continue. Issues such as length of stay on the bed and the appropriateness of manufacturer's guidelines still need to be addressed at this facility. This case study highlights the potential issues associated with lateral rotation beds and identifies the need for further research.

  9. Hazardous Waste Cleanup: Boricua Wood Processing Incorporated in Toja Baja, Puerto Rico

    EPA Pesticide Factsheets

    Boricua Wood Processing, Inc. is located on State Road 865 at kilometer 5.5, in Toja Baja. The facility is a manufacturing plant for the pressure injection of liquid preservative solutions into untreated cut lumber. The facility began its activity in 1957.

  10. 49 CFR 178.70 - Approval of UN pressure receptacles.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... facility as specified in § 178.69. (7) Design specifications and manufacturing drawings, showing components... compliance with the applicable pressure receptacle design standard. (8) Manufacturing procedures and any applicable standards that describe in detail the manufacturing processes and control. (9) Design type...

  11. Reid Vapor Pressure (RVP) of Gasoline Spreadsheet Example Key for Requirements at 40 CFR 80.47(g) and 80.47(l)

    EPA Pesticide Factsheets

    This guidance deals with the self-qualification of analytical test methods at a testing facility for measuring Reid Vapor Pressure (RVP) of gasoline to meet precision requirements codified in regulations.

  12. 6. Photocopy of engineering drawing. LC17 HIGH PRESSURE GAS INSTALLATION: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Photocopy of engineering drawing. LC-17 HIGH PRESSURE GAS INSTALLATION: PLANS, SCHEDULES AND ELEVATIONS (CHANGE HOUSE)-ARCHITECTURAL, APRIL 1969. - Cape Canaveral Air Station, Launch Complex 17, Facility 28409, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  13. The Association between Malnutrition and Pressure Ulcers in Elderly in Long-Term Care Facility.

    PubMed

    Neloska, Lenche; Damevska, Katerina; Nikolchev, Andjelka; Pavleska, Lidija; Petreska-Zovic, Biljana; Kostov, Milenko

    2016-09-15

    Malnutrition is common in elderly and is a risk factor for pressure ulcers. The aim of the present study was to determine the prevalence of malnutrition in geriatric and palliative patients hospitalised in long-term care facility, and to examine the influence of nutritional status on the prevalence of pressure ulcers (PU). Descriptive, observational and cross-sectional study including 2099 patients admitted to the Hospital during a 24 month period (January 2013 to December 2014). We recorded: demographic data, body mass index (BMI), Braden score, laboratory parameters of interest (albumin, total protein, RBC count, haemoglobin and iron levels) and presence or absence of malnutrition and pressure ulcers. The pressure ulcer prevalence was 12.9% (256 out of 2099). Based on the BMI classification, 61.7% of patients had a good nutritional status, 27.4% were undernourished, and 2.1% were considered malnourished. Nutritional status was statistically significantly different between patients with and without PU (p < 0.0001). This study also showed that hypoproteinemia, hypoalbuminemia, low RBC was positively associated with PU prevalence. The results highlight the impact of nutritional status on the prevalence of pressure ulcers in hospitalised geriatric and palliative population. It is of paramount importance to correctly evaluate the presence of malnutrition in patients at risk of pressure ulcers.

  14. Background Report: Recommendations on Guidance for Diagnostic X-Ray Studies in Federal Health Care Facilities

    EPA Pesticide Factsheets

    This document shares the guidance developed by the Interagency Working Group which was formed to develop guidance to reduce unnecessary radiation exposures from the use of x-rays in the healing arts in Federal health care facilities.

  15. 28 CFR 115.317 - Hiring and promotion decisions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... records check; (2) Consult any child abuse registry maintained by the State or locality in which the... also perform a criminal background records check, and consult applicable child abuse registries, before... sexual abuse in a prison, jail, lockup, community confinement facility, juvenile facility, or other...

  16. 28 CFR 115.317 - Hiring and promotion decisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... records check; (2) Consult any child abuse registry maintained by the State or locality in which the... also perform a criminal background records check, and consult applicable child abuse registries, before... sexual abuse in a prison, jail, lockup, community confinement facility, juvenile facility, or other...

  17. 28 CFR 115.317 - Hiring and promotion decisions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... records check; (2) Consult any child abuse registry maintained by the State or locality in which the... also perform a criminal background records check, and consult applicable child abuse registries, before... sexual abuse in a prison, jail, lockup, community confinement facility, juvenile facility, or other...

  18. Low-energy nuclear astrophysics studies at the Multicharged Ion Research Facility

    NASA Astrophysics Data System (ADS)

    Febbraro, Michael; Pain, Steven; Bannister, Mark; Deboer, Richard; Chipps, Kelly; Havener, Charles; Peters, Willan; Ummel, Chad; Smith, Michael; Temanson, Eli; Toomey, Rebecca; Walter, David

    2017-09-01

    As low-energy nuclear astrophysics progresses toward measuring reaction cross sections in the stellar burning regimes, a worldwide effort is underway to continue these measurements at underground laboratories to achieve the requisite ultra-low-background environment. These facilities are crucial for providing the required low-background environments to perform such measurements of astrophysical importance. While advances have been made in the use of accelerators underground, of equal importance is the detectors, high-current targets, and techniques required to perform such measurements. With these goals in mind, a newly established astrophysics beamline has been built at the Multicharged Ion Research Facility (MIRF) located at Oak Ridge National Laboratory. The unique capabilities of MIRF will be demonstrated through two recent low-energy above-ground measurements of the dominant s-process neutron source 13C(α,n)16O and associated beam-induced background source 13C(d,n)14N. This material is based upon work supported by the U.S. DOE, Office of Science, Office of Nuclear Physics. Research sponsored by the LDRD Program of ORNL, managed by UT-Battelle, LLC, for the U.S. DOE.

  19. Offshore submarine storage facility for highly chilled liquified gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, S.F.

    1982-12-28

    Improvements in an offshore platform and submarine storage facility for highly chilled liquified gas, such as liquified natural gas, are disclosed. The improved facility includes an elongated, vertically oriented submerged anchoring frame to which one or more insulated storage tanks are moveably mounted so they can be positioned at a selected depth in the water. The double piston tank is constructed with improved seals to transfer ambient water pressure of the selected depth to the cryogenic liquified gas without intermixture. This transferred pressure at the depth selected aids in maintaining the liquified state of the stored liquified gas. Structural improvementsmore » to the tank facilitating ballasting, locking the double piston cylinders together and further facilitating surface access to the tank for inspection, repairs and removal, and structural improvements to the platform are disclosed.« less

  20. A Step Towards Electric Propulsion Testing Standards: Pressure Measurements and Effective Pumping Speeds

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.; Swiatek, Michael W.; Yim, John T.

    2012-01-01

    The electric propulsion community has been implored to establish and implement a set of universally applicable test standards during the research, development, and qualification of electric propulsion systems. Existing practices are fallible and result in testing variations which leads to suspicious results, large margins in application, or aversion to mission infusion. Performance measurements and life testing under appropriate conditions can be costly and lengthy. Measurement practices must be consistent, accurate, and repeatable. Additionally, the measurements must be universally transportable across facilities throughout the development, qualification, spacecraft integration and on-orbit performance. A preliminary step to progress towards universally applicable testing standards is outlined for facility pressure measurements and effective pumping speed calculations. The standard has been applied to multiple facilities at the NASA Glenn Research Center. Test results and analyses of universality of measurements are presented herein.

  1. Guide for users of the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Fuller, D. E.; Gloss, B. B.; Nystrom, D.

    1981-01-01

    The National Transonic Facility (NTF) is a fan-driven, closed-circuit, continuous flow, pressurized wind tunnel. The test section is 2.5 m x 2.5 m and 7.62 m long with a slotted-wall configuration. The NTF will have a Mach number range from 0.2 to 1.2, with Reynolds number up to 120 10 to the sixth power at Mach 1 (based on a reference length of 0.25 m). The pressure range for the facility will be from 1 to about 9 bars (1 ban = 100 kPa), and the temperature can be varied from 340 to 78 K. This report provides potential users of the NTF with the information required for preliminary planning to test programs and for preliminary layout of models and model supports which may be used in such programs.

  2. Plasma Gradient Piston: a new approach to precision pulse shaping

    NASA Astrophysics Data System (ADS)

    Prisbrey, Shon T.

    2011-10-01

    We have successfully developed a method to create shaped pressure drives from large shocks that can be applied to a wide variety of experimental platforms. The method consists of transforming a large shock or blast wave into a ramped pressured drive by utilizing a graded density reservoir that unloads across a gap and stagnates against the sample being studied. The utilization of a graded density reservoir, different materials, and a gap transforms the energy in the initial large shock into a quasi-isentropic ramped compression. Control of the ramp history is via the size of the initial shock, the chosen reservoir materials, their densities, the thickness of each density layer, and the gap size. There are two keys to utilizing this approach to create ramped drives: the ability to produce a large shock, and making the layered density reservoir. A number of facilities can produce the strong initial shock (Z, Omega, NIF, Phoenix, high explosives, NIKE, LMJ, pulsed power,...). We have demonstrated ramped drives from 0.5 to 1.5 Mbar utilizing a large shock created at the Omega laser facility. We recently concluded a pair of NIF drive shots where we successfully converted a hohlraum-generated shock into a stepped, ramped pressure drive with a peak pressure of ~4 - 5 Mbar in a Ta sample. We will explain the basic concepts needed for producing a ramped pressure drive, compare experimental data with simulations from Omega (Pmax ~ 1 Mbar) and NIF (Pmax ~ 5-10 Mbar), and present designs for ramped, staged-shock designs up to Pmax ~ 30 Mbar. The approach that we have developed enables precision pulse shaping of the drive (applied pressure vs. time) via target characteristics, as opposed to tailoring laser power vs time or Z-pinch facility current vs time. This enables ramped, quasi-isentropic materials studies to be performed on a wide variety of HED facilities. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-490532.

  3. NOx Emissions Performance and Correlation Equations for a Multipoint LDI Injector

    NASA Technical Reports Server (NTRS)

    He, Zhuohui J.; Chang, Clarence T.; Follen, Caitlin E.

    2014-01-01

    Lean Direct Injection (LDI) is a combustor concept that reduces nitrogen oxides (NOx) emissions. This paper looks at a 3-zone multipoint LDI concept developed by Parker Hannifin Corporation. The concept was tested in a flame-tube test facility at NASA Glenn Research Center. Due to test facility limitations, such as inlet air temperature and pressure, the flame-tube test was not able to cover the full set of engine operation conditions. Three NOx correlation equations were developed based on assessing NOx emissions dependencies on inlet air pressure (P3), inlet air temperature (T3), and fuel air equivalence ratio (phi) to estimate the NOx emissions at the unreachable high engine power conditions. As the results, the NOx emissions are found to be a strong function of combustion inlet air temperature and fuel air equivalence ratio but a weaker function of inlet air pressure. With these three equations, the NOx emissions performance of this injector concept is calculated as a 66 percent reduction relative to the ICAO CAEP-6 standard using a 55:1 pressure-ratio engine cycle. Uncertainty in the NOx emissions estimation increases as the extrapolation range departs from the experimental conditions. Since maximum inlet air pressure tested was less than 50 percent of the full power engine inlet air pressure, a future experiment at higher inlet air pressure conditions is needed to confirm the NOx emissions dependency on inlet air pressure.

  4. NOx Emissions Performance and Correlation Equations for a Multipoint LDI Injector

    NASA Technical Reports Server (NTRS)

    He, Zhuohui Joe; Chang, Clarence T.; Follen, Caitlin E.

    2015-01-01

    Lean Direct Injection (LDI) is a combustor concept that reduces nitrogen oxides (NOx) emissions.This paper looks at a 3-zone multipoint LDI concept developed by Parker Hannifin Corporation. The concept was tested in a flame-tube test facility at NASA Glenn Research Center. Due to test facility limitations, such as inlet air temperature and pressure, the flame-tube test was not able to cover the full set of engine operation conditions. Three NOx correlation equations were developed based on assessing NOx emissions dependencies on inlet air pressure (P3), inlet air temperature (T3), and fuel air equivalence ratio(theta) to estimate the NOx emissions at the unreachable high engine power conditions. As the results, the NOx emissions are found to be a strong function of combustion inlet air temperature and fuel air equivalence ratio but a weaker function of inlet air pressure. With these three equations, the NOx emissions performance of this injector concept is calculated as a 66 reduction relative to the ICAO CAEP-6 standard using a 55:1 pressure-ratio engine cycle. Uncertainty in the NOx emissions estimation increases as the extrapolation range departs from the experimental conditions. Since maximum inlet air pressure tested was less than 50 of the full power engine inlet air pressure, a future experiment at higher inlet air pressure conditions is needed to confirm the NOx emissions dependency on inlet air pressure.

  5. NOx Emissions Performance and Correlation Equations for a Multipoint LDI Injector

    NASA Technical Reports Server (NTRS)

    He, Zhuohui J.; Chang, Clarence T.; Follen, Caitlin E.

    2015-01-01

    Lean Direct Injection (LDI) is a combustor concept that reduces nitrogen oxides (NOx) emissions. This paper looks at a 3-zone multipoint LDI concept developed by Parker Hannifin Corporation. The concept was tested in a flame-tube test facility at NASA Glenn Research Center. Due to test facility limitations, such as inlet air temperature and pressure, the flame-tube test was not able to cover the full set of engine operation conditions. Three NOx correlation equations were developed based on assessing NOx emissions dependencies on inlet air pressure (P3), inlet air temperature (T3), and fuel air equivalence ratio (?) to estimate the NOx emissions at the unreachable high engine power conditions. As the results, the NOx emissions are found to be a strong function of combustion inlet air temperature and fuel air equivalence ratio but a weaker function of inlet air pressure. With these three equations, the NOx emissions performance of this injector concept is calculated as a 66% reduction relative to the ICAO CAEP-6 standard using a 55:1 pressure-ratio engine cycle. Uncertainty in the NOx emissions estimation increases as the extrapolation range departs from the experimental conditions. Since maximum inlet air pressure tested was less than 50% of the full power engine inlet air pressure, a future experiment at higher inlet air pressure conditions is needed to confirm the NOx emissions dependency on inlet air pressure.

  6. NOx Emissions Performance and Correlation Equations for a Multipoint LDI Injector

    NASA Technical Reports Server (NTRS)

    He, Zhuohui J.; Chang, Clarence T.; Follen, Caitlin E.

    2014-01-01

    Lean Direct Injection (LDI) is a combustor concept that reduces nitrogen oxides (NOx) emissions. This paper looks at a 3-zone multipoint LDI concept developed by Parker Hannifin Corporation. The concept was tested in a flame-tube test facility at NASA Glenn Research Center. Due to test facility limitations, such as inlet air temperature and pressure, the flame-tube test was not able to cover the full set of engine operation conditions. Three NOx correlation equations were developed based on assessing NOx emissions dependencies on inlet air pressure (P3), inlet air temperature (T3), and fuel air equivalence ratio (?) to estimate the NOx emissions at the unreachable high engine power conditions. As the results, the NOx emissions are found to be a strong function of combustion inlet air temperature and fuel air equivalence ratio but a weaker function of inlet air pressure. With these three equations, the NOx emissions performance of this injector concept is calculated as a 66 percent reduction relative to the ICAO CAEP-6 standard using a 55:1 pressure-ratio engine cycle. Uncertainty in the NOx emissions estimation increases as the extrapolation range departs from the experimental conditions. Since maximum inlet air pressure tested was less than 50 percent of the full power engine inlet air pressure, a future experiment at higher inlet air pressure conditions is needed to confirm the NOx emissions dependency on inlet air pressure.

  7. Japanese Experiment Module arrival

    NASA Image and Video Library

    2007-03-29

    Several components for delivery to the International Space Station sit in test stands inside the Space Station Processing Facility highbay. To the right, from back to front, are the Japanese Experiment Module, the Raffaello multi-purpose logistics module, and the European Space Agency's Columbus scientific research module. To the left in front is the starboard truss segment S5. Behind it is the test stand that will hold the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.

  8. An Information System for the Council of Educational Facility Planners International Membership Information Network. Volume 1: Background Report and Implementation Models. Volume 2: Appendices.

    ERIC Educational Resources Information Center

    Hruday, Connie; And Others

    This document is designed to assist the Council of Educational Facility Planners International (CEFP/I) in planning for the establishment of an information system for its members and other stakeholders who need information on educational facilities. The report focuses on the major activities to be accomplished and the issues to be considered when…

  9. Where Our Children Learn Matters. A Report on the Virginia School Facilities Impact Study.

    ERIC Educational Resources Information Center

    Duke, Daniel; Griesdorn, Jacqueline

    2001-01-01

    Describes the methodology, findings, and recommendations of a survey to determine how overcrowded and deteriorating facilities affect learning and teaching. Survey questions sought information about lost instructional time, instructional effectiveness, available curricular options, student health and safety, and the pressure on facilities…

  10. 33 CFR 127.1407 - Tests.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Tests. 127.1407 Section 127.1407... Facilities Handling Liquefied Hazardous Gas Maintenance § 127.1407 Tests. (a) Each operator of a waterfront facility handling LHG shall conduct a static liquid-pressure test of the piping, hoses, and loading arms of...

  11. 33 CFR 127.1407 - Tests.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Tests. 127.1407 Section 127.1407... Facilities Handling Liquefied Hazardous Gas Maintenance § 127.1407 Tests. (a) Each operator of a waterfront facility handling LHG shall conduct a static liquid-pressure test of the piping, hoses, and loading arms of...

  12. 33 CFR 127.1407 - Tests.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Tests. 127.1407 Section 127.1407... Facilities Handling Liquefied Hazardous Gas Maintenance § 127.1407 Tests. (a) Each operator of a waterfront facility handling LHG shall conduct a static liquid-pressure test of the piping, hoses, and loading arms of...

  13. 33 CFR 127.1407 - Tests.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Tests. 127.1407 Section 127.1407... Facilities Handling Liquefied Hazardous Gas Maintenance § 127.1407 Tests. (a) Each operator of a waterfront facility handling LHG shall conduct a static liquid-pressure test of the piping, hoses, and loading arms of...

  14. 33 CFR 127.1407 - Tests.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Tests. 127.1407 Section 127.1407... Facilities Handling Liquefied Hazardous Gas Maintenance § 127.1407 Tests. (a) Each operator of a waterfront facility handling LHG shall conduct a static liquid-pressure test of the piping, hoses, and loading arms of...

  15. 40 CFR 63.2231 - Does this subpart apply to me?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Standards for Hazardous Air Pollutants: Plywood and Composite Wood Products What This Subpart Covers § 63... manufacturing facility is a facility that manufactures plywood and/or composite wood products by bonding wood... and pressure, to form a structural panel or engineered wood product. Plywood and composite wood...

  16. KSC-03PD-1955

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto (center) gets information about the facility while on a tour of KSC. Behind the group is the Japanese Experiment Module (JEM)/pressurized module. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of JEM.

  17. Langley Mach 4 scramjet test facility

    NASA Technical Reports Server (NTRS)

    Andrews, E. H., Jr.; Torrence, M. G.; Anderson, G. Y.; Northam, G. B.; Mackley, E. A.

    1985-01-01

    An engine test facility was constructed at the NASA Langley Research Center in support of a supersonic combustion ramjet (scramjet) technology development program. Hydrogen combustion in air with oxygen replenishment provides simulated air at Mach 4 flight velocity, pressure, and true total temperature for an altitude range from 57,000 to 86,000 feet. A facility nozzle with a 13 in square exit produces a Mach 3.5 free jet flow for engine propulsion tests. The facility is described and calibration results are presented which demonstrate the suitability of the test flow for conducting scramjet engine research.

  18. Research at a European Planetary Simulation Facility

    NASA Astrophysics Data System (ADS)

    Merrison, J.; Iversen, J. J.; Alois, S.; Rasmussen, K. R.

    2015-10-01

    This unique environmental simulation facility is capable of re-creating extreme terrestrial, Martian and other planetary environments. It is supported by EU activities including Europlanet RI and a volcanology network VERTIGO. It is also used as a test facility by ESA for the forthcoming ExoMars 2018 mission. Specifically it is capable of recreating the key physical parameters such as temperature, pressure (gas composition), wind flow and importantly the suspension/transport of dust or sand particulates. This facility is available both to the scientific and Industrial community. The latest research and networking activities will be presented.

  19. 1. AERIAL VIEW, NAVAL INACTIVE SHIPS MAINTENANCE FACILITY, SINCLAIR ISLET, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. AERIAL VIEW, NAVAL INACTIVE SHIPS MAINTENANCE FACILITY, SINCLAIR ISLET, BREMERTON, KITSAP COUNTY, WASHINGTON WITH EX-USS HORNET CVS-12, THREE MINECRAFT ALONGSIDE TO PORT. OTHER INACTIVE SHIPS IN BACKGROUND. - U.S.S. HORNET, Puget Sound Naval Shipyard, Sinclair Inlet, Bremerton, Kitsap County, WA

  20. FACILITY 713, LIVING ROOM SHOWING DIAMONDPANED WINDOWS FLANKING THE FIREPLACE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 713, LIVING ROOM SHOWING DIAMOND-PANED WINDOWS FLANKING THE FIREPLACE, AND LEADED-GLASS WINDOWS IN DINING ROOM IN RIGHT BACKGROUND, VIEW FACING SOUTHEAST. - Schofield Barracks Military Reservation, Central-Entry Single-Family Housing Type, Between Bragg & Grime Streets near Ayres Avenue, Wahiawa, Honolulu County, HI

  1. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-115 Mission Specialist Joseph Tanner (left) and STS-117 Mission Specialist James Reilly (right) are donning protective clothing to interface with the Japanese Experiment Module (JEM), in the background. Equipment familiarization is a routine part of astronaut training and launch preparations.

    NASA Image and Video Library

    2003-10-21

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-115 Mission Specialist Joseph Tanner (left) and STS-117 Mission Specialist James Reilly (right) are donning protective clothing to interface with the Japanese Experiment Module (JEM), in the background. Equipment familiarization is a routine part of astronaut training and launch preparations.

  2. KSC-04pd0591

    NASA Image and Video Library

    2004-03-18

    KENNEDY SPACE CENTER, FLA. - A Universal Coolant Transporter (UCT), manufactured in Sharpes, Fla., drives past the Vehicle Assembly Building (background, left) and Operations Support Building (background, right) on its way to the KSC Shuttle Landing Facility (SLF). Replacing the existing ground cooling unit, the UCT is designed to service payloads for the Space Shuttle and International Space Station, and may be capable of servicing space exploration vehicles of the future. It will provide ground cooling to the orbiter and returning payloads, such as science experiments requiring cold or freezing temperatures, during post-landing activities at the SLF and during transport of the payloads to other facilities.

  3. Internationalization of the Space Station

    NASA Technical Reports Server (NTRS)

    Lottmann, R. V.

    1985-01-01

    Attention is given to the NASA Space Station system elements whose production is under consideration by potential foreign partners. The ESA's Columbus Program declaration encompasses studies of pressurized modules, unmanned payload carriers, and ground support facilities. Canada has expressed interest in construction and servicing facilities, solar arrays, and remote sensing facilities. Japanese studies concern a multipurpose experimental module concept. Each of these foreign investments would expand Space Station capabilities and lay the groundwork for long term partnerships.

  4. Thermal stratification in LH2 tank of cryogenic propulsion stage tested in ISRO facility

    NASA Astrophysics Data System (ADS)

    Xavier, M.; Raj, R. Edwin; Narayanan, V.

    2017-02-01

    Liquid oxygen and hydrogen are used as oxidizer and fuel respectively in cryogenic propulsion system. These liquids are stored in foam insulated tanks of cryogenic propulsion system and are pressurized using warm pressurant gas supplied for tank pressure maintenance during cryogenic engine operation. Heat leak to cryogenic propellant tank causes buoyancy driven liquid stratification resulting in formation of warm liquid stratum at liquid free surface. This warm stratum is further heated by the admission of warm pressurant gas for tank pressurization during engine operation. Since stratified layer temperature has direct bearing on the cavitation free operation of turbo pumps integrated in cryogenic engine, it is necessary to model the thermal stratification for predicting stratified layer temperature and mass of stratified liquid in tank at the end of engine operation. These inputs are required for estimating the minimum pressure to be maintained by tank pressurization system. This paper describes configuration of cryogenic stage for ground qualification test, stage hot test sequence, a thermal model and its results for a foam insulated LH2 tank subjected to heat leak and pressurization with hydrogen gas at 200 K during liquid outflow at 38 lps for engine operation. The above model considers buoyancy flow in free convection boundary layer caused by heat flux from tank wall and energy transfer from warm pressurant gas etc. to predict temperature of liquid stratum and mass of stratified liquid in tank at the end of engine operation in stage qualification tests carried out in ISRO facility.

  5. Radiation Detection Field Test at the Federal Express (FedEx) Air Cargo Facility at Denver International Airport (DIA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weirup, D; Waters, A; Hall, H

    2004-02-11

    Lawrence Livermore National Laboratory (LLNL) recently conducted a field-test of radiation detection and identification equipment at the air cargo facility of Federal Express (FedEx) located at Denver International Airport (DIA) over a period of two weeks. Comprehensive background measurements were performed and were analyzed, and a trial strategy for detection and identification of parcels displaying radioactivity was implemented to aid in future development of a comprehensive protection plan. The purpose of this project was threefold: {sm_bullet} Quantify background radiation environments at an air cargo facility. {sm_bullet} Quantify and identify ''nuisance'' alarms. {sm_bullet} Evaluate the performance of various isotope identifiers deployedmore » in an operational environment (in this case, the operational environment included the biggest blizzard in over 90 years!).« less

  6. The AEDC aerospace chamber 7V: An advanced test capability for infrared surveillance and seeker sensors

    NASA Technical Reports Server (NTRS)

    Simpson, W. R.

    1994-01-01

    An advanced sensor test capability is now operational at the Air Force Arnold Engineering Development Center (AEDC) for calibration and performance characterization of infrared sensors. This facility, known as the 7V, is part of a broad range of test capabilities under development at AEDC to provide complete ground test support to the sensor community for large-aperture surveillance sensors and kinetic kill interceptors. The 7V is a state-of-the-art cryo/vacuum facility providing calibration and mission simulation against space backgrounds. Key features of the facility include high-fidelity scene simulation with precision track accuracy and in-situ target monitoring, diffraction limited optical system, NIST traceable broadband and spectral radiometric calibration, outstanding jitter control, environmental systems for 20 K, high-vacuum, low-background simulation, and an advanced data acquisition system.

  7. Aeroacoustic Characteristics of Model Jet Test Facility Flow Conditioners

    NASA Technical Reports Server (NTRS)

    Kinzie, Kevin W.; Henderson, Brenda S.; Haskin, Harry H.

    2005-01-01

    An experimental investigation of flow conditioning devices used to suppress internal rig noise in high speed, high temperature experimental jet facilities is discussed. The aerodynamic and acoustic characteristics of a number of devices including pressure loss and extraneous noise generation are measured. Both aerodynamic and acoustic characteristics are strongly dependent on the porosity of the flow conditioner and the closure ratio of the duct system. For unchoked flow conditioners, the pressure loss follows conventional incompressible flow models. However, for choked flow conditioners, a compressible flow model where the duct and flow conditioner system is modeled as a convergent-divergent nozzle can be used to estimate pressure loss. Choked flow conditioners generate significantly more noise than unchoked conditioners. In addition, flow conditioners with small hole diameters or sintered metal felt material generate less self-noise noise compared to flow conditioners with larger holes.

  8. Knowledge and practice of nurses towards prevention of pressure ulcer and associated factors in Gondar University Hospital, Northwest Ethiopia.

    PubMed

    Nuru, Nurhusien; Zewdu, Fisseha; Amsalu, Senafikish; Mehretie, Yohannes

    2015-01-01

    Pressure ulcers are the common conditions among patients hospitalized in acute and chronic care facilities and impose significant burden on patients, their relatives and caregivers. Pressure ulcers have been described as one of the most costly and physically debilitating complications since the 20(th) century. The pain and discomfort due to pressure ulcer prolongs illness, rehabilitation, time of discharge and even contribute to disability and death. This study was aimed to assess knowledge, practice and factors associated with pressure ulcer prevention among nurses in Gondar University Hospital, North-west Ethiopia. An institution-based cross-sectional survey was conducted from March 15 - April 10, 2014 among 248 nurses in Gondar University hospital. A pretested and structured self-administered questionnaire was used for data collection. Data were entered using EPI info version 3.5.3 statistical software and analyzed using SPSS version 20 statistical package. Descriptive statistics was used to describe the study population in relation to relevant variables. Bivariate and multivariate logistic regression was also carried out to see the effect of each independent variable on the dependent variable. Nearly half (54.4 %) of the nurses had good knowledge; similarly 48.4 % of them had good practice on prevention of pressure ulcer. Educational status [Adjusted Odds Ratio (AOR) = 2.4, 95 % CI (1.39-4.15)], work experience [AOR = 4.8, 95 % CI (1.31-10.62)] and having formal training [AOR = 4.1, 95 % CI (1.29-9.92)] were significantly associated with knowledge on prevention of pressure ulcer. While, satisfaction with nursing leadership [AOR = 1.9, 95 % CI (1.04-3.82)], staff shortage [AOR = 0.07, 95 % CI (0.03-0.13)] and inadequate facilities and equipment [AOR = 0.4, 95 % CI (0.19-0.83)] were found to be significantly associated with the practice on prevention of pressure ulcer. Knowledge and practice of the nurses regarding prevention of pressure ulcer was found to be inadequate. Having higher educational status, attending formal training and being experienced were positively associated with knowledge; while shortage of facilities and equipments, dissatisfaction with nursing leadership and inadequate staff number showed negative association with practice of nurse's pressure ulcer prevention. In-service training and upgrading courses are some of the important steps to improve nurses' knowledge and practice on prevention of ulcer pressure.

  9. Diode laser detection of greenhouse gases in the near-infrared region by wavelength modulation spectroscopy: pressure dependence of the detection sensitivity.

    PubMed

    Asakawa, Takashi; Kanno, Nozomu; Tonokura, Kenichi

    2010-01-01

    We have investigated the pressure dependence of the detection sensitivity of CO(2), N(2)O and CH(4) using wavelength modulation spectroscopy (WMS) with distributed feed-back diode lasers in the near infrared region. The spectral line shapes and the background noise of the second harmonics (2f) detection of the WMS were analyzed theoretically. We determined the optimum pressure conditions in the detection of CO(2), N(2)O and CH(4), by taking into consideration the background noise in the WMS. At the optimum total pressure for the detection of CO(2), N(2)O and CH(4), the limits of detection in the present system were determined.

  10. Development of a High-Pressure Gaseous Burner for Calibrating Optical Diagnostic Techniques

    NASA Technical Reports Server (NTRS)

    Kojima, Jun; Nguyen, Quang-Viet

    2003-01-01

    In this work-in-progress report, we show the development of a unique high-pressure burner facility (up to 60 atm) that provides steady, reproducible premixed flames with high precision, while having the capability to use multiple fuel/oxidizer combinations. The highpressure facility has four optical access ports for applying different laser diagnostic techniques and will provide a standard reference flame for the development of a spectroscopic database in high-pressure/temperature conditions. Spontaneous Raman scattering (SRS) was the first diagnostic applied, and was used to successfully probe premixed hydrogen-air flames generated in the facility using a novel multi-jet micro-premixed array burner element. The SRS spectral data include contributions from H2, N2, O2, and H2O and were collected over a wide range of equivalence ratios ranging from 0.16 to 4.9 at an initial pressure of 10-atm via a spatially resolved point SRS measurement with a high-performance optical system. Temperatures in fuel-lean to stoichiometric conditions were determined from the ratio of the Stokes to anti-Stokes scattering of the Q-branch of N2, and those in fuel-rich conditions via the rotational temperature of H2. The SRS derived temperatures using both techniques were consistent and indicated that the flame temperature was approximately 500 K below that predicted by adiabatic equilibrium, indicating a large amount of heat-loss at the measurement zone. The integrated vibrational SRS signals show that SRS provides quantitative number density data in high-pressure H2-air flames.

  11. Description and Operation of the A3 Subscale Facility

    NASA Technical Reports Server (NTRS)

    Saunders, G. P.; Varner, D. G.; Grover, J. B.

    2010-01-01

    The purpose of this paper is to give an overview of the general design and operation of the A3 Subscale test facility. The goal is to provide the reader with a general understanding of what the major facility systems are, where they are located, and how they are used to meet the objectives supporting the design of the A3 altitude rocket test facility. This paper also provides the reader with the background information prior to reading the subsequent papers detailing the design and test results of the various systems described herein.

  12. Quality assurance programs for pressure ulcers.

    PubMed

    Xakellis, G C

    1997-08-01

    Traditional medical quality assurance programs are beginning to incorporate the principles of continuous quality improvement pioneered by Juran and Deming. Strategies for incorporating these principles into a long-term care facility are described, and two examples of successful implementation of continuous quality improvement programs for pressure ulcers are presented.

  13. 126. DETAIL OF NORTH PLANT AMMUNITION DEMOLITION FACILITY, WITH ASSEMBLY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    126. DETAIL OF NORTH PLANT AMMUNITION DEMOLITION FACILITY, WITH ASSEMBLY PLANT/WAREHOUSE (BUILDING 1601/1606/1701) IN BACKGROUND, FROM GB MANUFACTURING PLANT. VIEW TO NORTHWEST. - Rocky Mountain Arsenal, Bounded by Ninety-sixth Avenue & Fifty-sixth Avenue, Buckley Road, Quebec Street & Colorado Highway 2, Commerce City, Adams County, CO

  14. 125. NORTH PLANT AMMUNITION DEMOLITION FACILITY IN FOREGROUND AND ASSEMBLY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    125. NORTH PLANT AMMUNITION DEMOLITION FACILITY IN FOREGROUND AND ASSEMBLY PLANT/WAREHOUSE (BUILDING 1601/1606/1701) IN BACKGROUND. FROM GB MANUFACTURING PLANT. VIEW TO NORTHWEST. - Rocky Mountain Arsenal, Bounded by Ninety-sixth Avenue & Fifty-sixth Avenue, Buckley Road, Quebec Street & Colorado Highway 2, Commerce City, Adams County, CO

  15. Department of Energy Other Major Laboratories and Facilities

    Science.gov Websites

    major laboratories and facilities. This high-level compilation of their history and achievements Laboratory (NBL) History About Background/History of the Laboratory New Brunswick Laboratory website TOP dropdown listing Oak Ridge Institute for Science and Education (ORISE) History Environmental Assessments

  16. NORTH AND WEST ELEVATIONS OF REMOTE ANALYTICAL FACILITY (CPP627) LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTH AND WEST ELEVATIONS OF REMOTE ANALYTICAL FACILITY (CPP-627) LOOKING SOUTHEAST. HEADEND PLANT (CPP-640) APPEARS IN THE BACKGROUND. INL PHOTO NUMBER HD-22-1-4. Mike Crane, Photographer, 11/1998 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  17. Operating manual for the High Flux Isotope Reactor. Volume I. Description of the facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-09-01

    This volume contains a comprehensive description of the High Flux Isotope Reactor Facility. Its primary purpose is to supplement the detailed operating procedures, providing the reactor operators with background information on the various HFIR systems. The detailed operating procdures are presented in another report.

  18. Overview taken from the corner of Avenue E (Russell Avenue) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Overview taken from the corner of Avenue E (Russell Avenue) and Central Avenue. Facility 167 in background. View facing northwest - U.S. Naval Base, Pearl Harbor, Administration Annex, Near Russell Avenue (previously Avenue E), between of Facility Nos. 1C & 1E , Pearl City, Honolulu County, HI

  19. Pre-Flight Ground Testing of the Full-Scale HIFiRE-1 Vehicle at Fully Duplicated Flight Conditions: Part 2

    DTIC Science & Technology

    2008-05-14

    survey rake installed in the test section to measure pitot pressure, static pressure and stagnation point heat transfer in the freestream. From these...on the cone, employing time of arrival pressure transducers to obtain 2"d mode transition frequencies, and making pitot pressure measurements to...these studies have proven to be the most accurate measurement technique in supersonic and hypersonic test facilities, and the small size of the sensing

  20. Design Report for the ½ Scale Air-Cooled RCCS Tests in the Natural convection Shutdown heat removal Test Facility (NSTF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lisowski, D. D.; Farmer, M. T.; Lomperski, S.

    The Natural convection Shutdown heat removal Test Facility (NSTF) is a large scale thermal hydraulics test facility that has been built at Argonne National Laboratory (ANL). The facility was constructed in order to carry out highly instrumented experiments that can be used to validate the performance of passive safety systems for advanced reactor designs. The facility has principally been designed for testing of Reactor Cavity Cooling System (RCCS) concepts that rely on natural convection cooling for either air or water-based systems. Standing 25-m in height, the facility is able to supply up to 220 kW at 21 kW/m 2 tomore » accurately simulate the heat fluxes at the walls of a reactor pressure vessel. A suite of nearly 400 data acquisition channels, including a sophisticated fiber optic system for high density temperature measurements, guides test operations and provides data to support scaling analysis and modeling efforts. Measurements of system mass flow rate, air and surface temperatures, heat flux, humidity, and pressure differentials, among others; are part of this total generated data set. The following report provides an introduction to the top level-objectives of the program related to passively safe decay heat removal, a detailed description of the engineering specifications, design features, and dimensions of the test facility at Argonne. Specifications of the sensors and their placement on the test facility will be provided, along with a complete channel listing of the data acquisition system.« less

  1. The coincidence counting technique for orders of magnitude background reduction in data obtained with the magnetic recoil spectrometer at OMEGA and the NIF.

    PubMed

    Casey, D T; Frenje, J A; Séguin, F H; Li, C K; Rosenberg, M J; Rinderknecht, H; Manuel, M J-E; Gatu Johnson, M; Schaeffer, J C; Frankel, R; Sinenian, N; Childs, R A; Petrasso, R D; Glebov, V Yu; Sangster, T C; Burke, M; Roberts, S

    2011-07-01

    A magnetic recoil spectrometer (MRS) has been built and successfully used at OMEGA for measurements of down-scattered neutrons (DS-n), from which an areal density in both warm-capsule and cryogenic-DT implosions have been inferred. Another MRS is currently being commissioned on the National Ignition Facility (NIF) for diagnosing low-yield tritium-hydrogen-deuterium implosions and high-yield DT implosions. As CR-39 detectors are used in the MRS, the principal sources of background are neutron-induced tracks and intrinsic tracks (defects in the CR-39). The coincidence counting technique was developed to reduce these types of background tracks to the required level for the DS-n measurements at OMEGA and the NIF. Using this technique, it has been demonstrated that the number of background tracks is reduced by a couple of orders of magnitude, which exceeds the requirement for the DS-n measurements at both facilities.

  2. Patient Care Staffing Levels and Facility Characteristics in U.S. Hemodialysis Facilities

    PubMed Central

    Yoder, Laura A. G.; Xin, Wenjun; Norris, Keith C.; Yan, Guofen

    2013-01-01

    Background Higher numbers of registered nurses per patient have been associated with improved patient outcomes in acute care facilities. Variation and associations of patient-care staffing levels and hemodialysis facility characteristics have not been previously examined. Study Design Cross-sectional study using Poisson regression to examine associations betwee patient-care staffing levels and hemodialysis facility characteristics. Setting & Participants 4,800 U.S. hemodialysis facilities in the 2009 CMS ESRD Annual Facility Survey (CMS-2744), USRDS. Predictors Facility characteristics, including profit status, freestanding status, chain affiliatio and geographic region, adjusted for facility size, capacity, functional type, and urbanicity. Outcomes Patient care staffing levels, including ratios of Registered Nurses (RN), Licensed Practical Nurses (LPN), Patient Care Technicians (PCT), composite staff (RN+LPN+PCT), Social Workers, and Dietitians to in-center hemodialysis patients. Results After adjusting for background facility characteristics, the ratios of RNs and LPNs to patients were 35% (p<0.001) and 42% (p<0.001) lower, but the PCT-to-patient ratio was 16% (p<0.001) higher in for-profit facilities than those in nonprofit facilities (Rate ratio, 0.65, 95%CI, 0.63–0.68; 0.58, 0.51–0.65; 1.16, 1.12–1.19; respectively). Regionally, compared to the Northeast, the adjusted RN-to-patient ratio was 14% (p< 0.001) lower in the Midwest, 25% (p< 0.001) lower in the South, and 18% (p< 0.001) lower in the West. Even after additional adjustments, the large for-profit chains had significantly lower RN and LPN ratios than the largest nonprofit chain, but a significantly higher PCT-to-patient ratio. The overall composite staffing levels were also lower in for-profit and chain-affiliated facilities. The patterns hold when the hospital-based units were excluded. Limitations Nursing hours were not available. Conclusions The significant variation in patient-care staffing levels and its associations with facility characteristics warrants inclusion in future large-scale hemodialysis outcomes studies. ESRD networks and hemodialysis facilities should attend to quality assurance and performance improvement initiatives that maximize licensed nurse-staffing levels in hemodialysis facilities. PMID:23810689

  3. Assessment of the MHD capability in the ATHENA code using data from the ALEX facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, P.A.

    1989-03-01

    The ATHENA (Advanced Thermal Hydraulic Energy Network Analyzer) code is a system transient analysis code with multi-loop, multi-fluid capabilities, which is available to the fusion community at the National Magnetic Fusion Energy Computing Center (NMFECC). The work reported here assesses the ATHENA magnetohydrodynamic (MHD) pressure drop model for liquid metals flowing through a strong magnetic field. An ATHENA model was developed for two simple geometry, adiabatic test sections used in the Argonne Liquid Metal Experiment (ALEX) at Argonne National Laboratory (ANL). The pressure drops calculated by ATHENA agreed well with the experimental results from the ALEX facility.

  4. Comparison the Results of Numerical Simulation And Experimental Results for Amirkabir Plasma Focus Facility

    NASA Astrophysics Data System (ADS)

    Goudarzi, Shervin; Amrollahi, R.; Niknam Sharak, M.

    2014-06-01

    In this paper the results of the numerical simulation for Amirkabir Mather-type Plasma Focus Facility (16 kV, 36μF and 115 nH) in several experiments with Argon as working gas at different working conditions (different discharge voltages and gas pressures) have been presented and compared with the experimental results. Two different models have been used for simulation: five-phase model of Lee and lumped parameter model of Gonzalez. It is seen that the results (optimum pressures and current signals) of the Lee model at different working conditions show better agreement than lumped parameter model with experimental values.

  5. Post-Test Analysis of 11% Break at PSB-VVER Experimental Facility using Cathare 2 Code

    NASA Astrophysics Data System (ADS)

    Sabotinov, Luben; Chevrier, Patrick

    The best estimate French thermal-hydraulic computer code CATHARE 2 Version 2.5_1 was used for post-test analysis of the experiment “11% upper plenum break”, conducted at the large-scale test facility PSB-VVER in Russia. The PSB rig is 1:300 scaled model of VVER-1000 NPP. A computer model has been developed for CATHARE 2 V2.5_1, taking into account all important components of the PSB facility: reactor model (lower plenum, core, bypass, upper plenum, downcomer), 4 separated loops, pressurizer, horizontal multitube steam generators, break section. The secondary side is represented by recirculation model. A large number of sensitivity calculations has been performed regarding break modeling, reactor pressure vessel modeling, counter current flow modeling, hydraulic losses, heat losses. The comparison between calculated and experimental results shows good prediction of the basic thermal-hydraulic phenomena and parameters such as pressures, temperatures, void fractions, loop seal clearance, etc. The experimental and calculation results are very sensitive regarding the fuel cladding temperature, which show a periodical nature. With the applied CATHARE 1D modeling, the global thermal-hydraulic parameters and the core heat up have been reasonably predicted.

  6. Operational considerations in monitoring oxygen levels at the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Zalenski, M. A.; Rowe, E. L.; Mcphee, J. R.

    1985-01-01

    Laboratory monitoring of the level of oxygen in sample gas mixtures is a process which can be performed with accurate and repeatable results. Operations at the National Transonic Facility require the storage and pumping of large volumes of liquid nitrogen. To protect against the possibility of a fault resulting in a localized oxygen deficient atmosphere, the facility is equipped with a monitoring system with an array of sensors. During the early operational stages, the system produced recurrent alarms, none of which could be traced to a true oxygen deficiency. A thorough analysis of the system was undertaken with primary emphasis placed on the sensor units. These units sense the partial pressure of oxygen which, after signal conditioning, is presented as a % by volume indication at the system output. It was determined that many of the problems experienced were due to a lack of proper accounting for the partial pressure/% by volume relationship, with a secondary cause being premature sensor failure. Procedures were established to consider atmospherically induced partial pressure variations. Sensor rebuilding techniques were examined, and those elements contributing to premature sensor failure were identified. The system now operates with a high degree of confidence and reliability.

  7. A facility for long-term Mars simulation experiments: the Mars Environmental Simulation Chamber (MESCH).

    PubMed

    Jensen, Lars Liengaard; Merrison, Jonathan; Hansen, Aviaja Anna; Mikkelsen, Karina Aarup; Kristoffersen, Tommy; Nørnberg, Per; Lomstein, Bente Aagaard; Finster, Kai

    2008-06-01

    We describe the design, construction, and pilot operation of a Mars simulation facility comprised of a cryogenic environmental chamber, an atmospheric gas analyzer, and a xenon/mercury discharge source for UV generation. The Mars Environmental Simulation Chamber (MESCH) consists of a double-walled cylindrical chamber. The double wall provides a cooling mantle through which liquid N(2) can be circulated. A load-lock system that consists of a small pressure-exchange chamber, which can be evacuated, allows for the exchange of samples without changing the chamber environment. Fitted within the MESCH is a carousel, which holds up to 10 steel sample tubes. Rotation of the carousel is controlled by an external motor. Each sample in the carousel can be placed at any desired position. Environmental data, such as temperature, pressure, and UV exposure time, are computer logged and used in automated feedback mechanisms, enabling a wide variety of experiments that include time series. Tests of the simulation facility have successfully demonstrated its ability to produce temperature cycles and maintain low temperature (down to -140 degrees C), low atmospheric pressure (5-10 mbar), and a gas composition like that of Mars during long-term experiments.

  8. A Facility for Long-Term Mars Simulation Experiments: The Mars Environmental Simulation Chamber (MESCH)

    NASA Astrophysics Data System (ADS)

    Jensen, Lars Liengaard; Merrison, Jonathan; Hansen, Aviaja Anna; Mikkelsen, Karina Aarup; Kristoffersen, Tommy; Nørnberg, Per; Lomstein, Bente Aagaard; Finster, Kai

    2008-06-01

    We describe the design, construction, and pilot operation of a Mars simulation facility comprised of a cryogenic environmental chamber, an atmospheric gas analyzer, and a xenon/mercury discharge source for UV generation. The Mars Environmental Simulation Chamber (MESCH) consists of a double-walled cylindrical chamber. The double wall provides a cooling mantle through which liquid N2 can be circulated. A load-lock system that consists of a small pressure-exchange chamber, which can be evacuated, allows for the exchange of samples without changing the chamber environment. Fitted within the MESCH is a carousel, which holds up to 10 steel sample tubes. Rotation of the carousel is controlled by an external motor. Each sample in the carousel can be placed at any desired position. Environmental data, such as temperature, pressure, and UV exposure time, are computer logged and used in automated feedback mechanisms, enabling a wide variety of experiments that include time series. Tests of the simulation facility have successfully demonstrated its ability to produce temperature cycles and maintain low temperature (down to -140°C), low atmospheric pressure (5 10 mbar), and a gas composition like that of Mars during long-term experiments.

  9. KSC-07pd2827

    NASA Image and Video Library

    2007-10-11

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, members of the STS-123 crew get hands-on experience with the mission payload, the Kibo Experiment Logistics Module Pressurized Section. They are at the center for a crew equipment interface test, which allows familiarization with equipment they will use during the mission. Crew members are Commander Dominic Gorie, Pilot Gregory Johnson and Mission Specialists Richard Linnehan, Takao Doi, Robert Behnken, Gerrett Reisman and Michael Foreman. Doi represents the Japan Aerospace Exploration Agency. Reisman will remain on the space station after the mission as a flight engineer for Expedition 16. STS-123 will carry and install one of the components of the Japanese Experiment Module, or JEM. Known as Kibo, the JEM comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. The various components of JEM will be assembled in space over the course of three space shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the space shuttle Endeavour, targeted for launch in February 2008. Photo credit: NASA/Dimitrios Gerondidakis

  10. KSC-07pd2828

    NASA Image and Video Library

    2007-10-11

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, members of the STS-123 crew get hands-on experience with the mission payload, the Kibo Experiment Logistics Module Pressurized Section. They are at the center for a crew equipment interface test, which allows familiarization with equipment they will use during the mission. Crew members are Commander Dominic Gorie, Pilot Gregory Johnson and Mission Specialists Richard Linnehan, Takao Doi, Robert Behnken, Gerrett Reisman and Michael Foreman. Doi represents the Japan Aerospace Exploration Agency. Reisman will remain on the space station after the mission as a flight engineer for Expedition 16. STS-123 will carry and install one of the components of the Japanese Experiment Module, or JEM. Known as Kibo, the JEM comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. The various components of JEM will be assembled in space over the course of three space shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the space shuttle Endeavour, targeted for launch in February 2008. Photo credit: NASA/Dimitrios Gerondidakis

  11. KSC-07pd2826

    NASA Image and Video Library

    2007-10-11

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, members of the STS-123 crew learn more about the mission payload, the Kibo Experiment Logistics Module Pressurized Section. They are at the center for a crew equipment interface test, which allows familiarization with equipment they will use during the mission. Crew members are Commander Dominic Gorie, Pilot Gregory Johnson and Mission Specialists Richard Linnehan, Takao Doi, Robert Behnken, Gerrett Reisman and Michael Foreman. Doi represents the Japan Aerospace Exploration Agency. Reisman will remain on the space station after the mission as a flight engineer for Expedition 16. STS-123 will carry and install one of the components of the Japanese Experiment Module, or JEM. Known as Kibo, the JEM comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. The various components of JEM will be assembled in space over the course of three space shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the space shuttle Endeavour, targeted for launch in February 2008. Photo credit: NASA/Dimitrios Gerondidakis

  12. A Procedure to Discriminate Between Successful and Unsuccessful Pressure Groups Which Have an Interest in Education. Final Report.

    ERIC Educational Resources Information Center

    Gustafson, Thomas John

    A pilot study was designed to explore the nature of pressure groups interested in education and to determine characteristics common to those groups. Background material is presented covering the history of pressure groups in the U.S., the social structure in which pressure groups must operate, and the role of pressure groups in the decision-making…

  13. 36 CFR 1234.12 - What are the fire safety requirements that apply to records storage facilities?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... that have been incorporated to minimize loss. The report should make specific reference to appropriate.... Retrofitting may require modifications to the piping system to ensure that adequate water capacity and pressure... storage facilities, boiler rooms or rooms containing equipment operating with a fuel supply (such as...

  14. Building Pressure: Modeling the Fiscal Future of California K-12 School Facilities

    ERIC Educational Resources Information Center

    Jain, Liz S.; Vincent, Jefrey M.

    2016-01-01

    Public school districts across California, particularly those in low-wealth areas, experience significant funding shortfalls for their facilities. Industry benchmarks suggest the state's K-12 school districts should spend nearly $18 billion a year to maintain their inventory, ensure buildings are up-to-date, and to build new spaces to handle…

  15. Chemical processing in geothermal nuclear chimney

    DOEpatents

    Krikorian, O.H.

    1973-10-01

    A closed rubble filled nuclear chimney is provided in a subterranean geothermal formation by detonation of a nuclear explosive device therein, with reagent input and product output conduits connecting the chimney cavity with appropriate surface facilities. Such facilities will usually comprise reagent preparation, product recovery and recycle facilities. Proccsses are then conducted in the nuclear chimney which processes are facilitated by temperature, pressure, catalytic and other conditions existent or which are otherwise provided in the nuclear chimney. (auth)

  16. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-115 Mission Specialist Joseph Tanner (second from left, foreground) works with technicians to learn more about the Japanese Experiment Module (JEM), known as Kibo. The JEM consists of six components: two research facilities - the Pressurized Module and the Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. Equipment familiarization is a routine part of astronaut training and launch preparations.

    NASA Image and Video Library

    2003-10-22

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-115 Mission Specialist Joseph Tanner (second from left, foreground) works with technicians to learn more about the Japanese Experiment Module (JEM), known as Kibo. The JEM consists of six components: two research facilities - the Pressurized Module and the Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. Equipment familiarization is a routine part of astronaut training and launch preparations.

  17. Flow Disturbance Measurements in the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    King, Rudolph A.; Andino, Marlyn Y.; Melton, Latunia; Eppink, Jenna; Kegerise, Michael A.

    2013-01-01

    Recent flow measurements have been acquired in the National Transonic Facility to assess the test-section unsteady flow environment. The primary purpose of the test is to determine the feasibility of the facility to conduct laminar-flow-control testing and boundary-layer transition-sensitive testing at flight-relevant operating conditions throughout the transonic Mach number range. The facility can operate in two modes, warm and cryogenic test conditions for testing full and semispan-scaled models. Data were acquired for Mach and unit Reynolds numbers ranging from 0.2 less than or equal to M less than or equal to 0.95 and 3.3 × 10(exp 6) less than Re/m less than 220×10(exp 6) collectively at air and cryogenic conditions. Measurements were made in the test section using a survey rake that was populated with 19 probes. Roll polar data at selected conditions were obtained to look at the uniformity of the flow disturbance field in the test section. Data acquired included mean total temperatures, mean and fluctuating static/total pressures, and mean and fluctuating hot-wire measurements. This paper focuses primarily on the unsteady pressure and hot-wire results. Based on the current measurements and previous data, an assessment was made that the facility may be a suitable facility for ground-based demonstrations of laminar-flow technologies at flight-relevant conditions in the cryogenic mode.

  18. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-115 Mission Specialist Joseph Tanner (center, foreground) works with technicians to learn more about the Japanese Experiment Module (JEM), known as Kibo. The JEM consists of six components: two research facilities - the Pressurized Module and the Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. Equipment familiarization is a routine part of astronaut training and launch preparations.

    NASA Image and Video Library

    2003-10-22

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-115 Mission Specialist Joseph Tanner (center, foreground) works with technicians to learn more about the Japanese Experiment Module (JEM), known as Kibo. The JEM consists of six components: two research facilities - the Pressurized Module and the Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. Equipment familiarization is a routine part of astronaut training and launch preparations.

  19. 76 FR 21917 - Biweekly Notice; Applications and Amendments to Facility Operating Licenses Involving No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-19

    ... SGTR accident. At normal operating pressures, leakage from primary water stress corrosion cracking... PWR [pressurized- water reactor] Operability Requirements and Actions for RCS Leakage Instrumentation... water inventory can be obtained. Therefore, it is concluded that the proposed changes do not involve a...

  20. 76 FR 1644 - Biweekly Notice; Applications and Amendments to Facility Operating Licenses Involving No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-11

    ... tubesheet in that region. At normal operating pressures, leakage from primary water stress corrosion... cause failure. The EDG reliability will thereby be potentially increased by reducing the stresses on the..., ``Bases for Plugging Degraded PWR [pressurized-water reactor] Steam Generator Tubes,'' margins against...

  1. 40 CFR 63.769 - Equipment leak standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....242-5. (5) Pumps in VHAP service, valves in gas/vapor and light liquid service, and pressure relief... section. (6) Pumps in VHAP service, valves in gas/vapor and light liquid service, and pressure relief...) National Emission Standards for Hazardous Air Pollutants From Oil and Natural Gas Production Facilities...

  2. Pressure and Temperature Sensitive Paint Field System

    NASA Technical Reports Server (NTRS)

    Sprinkle, Danny R.; Obara, Clifford J.; Amer, Tahani R.; Faulcon, Nettie D.; Carmine, Michael T.; Burkett, Cecil G.; Pritchard, Daniel W.; Oglesby, Donald M.

    2004-01-01

    This report documents the Pressure and Temperature Sensitive Paint Field System that is used to provide global surface pressure and temperature measurements on models tested in Langley wind tunnels. The system was developed and is maintained by Global Surface Measurements Team personnel of the Data Acquisition and Information Management Branch in the Research Facilities Services Competency. Descriptions of the system hardware and software are presented and operational procedures are detailed.

  3. Development of a Facility for Combustion Stability Experiments at Supercritical Pressure

    DTIC Science & Technology

    2013-12-01

    by the exhaust orifice. This technique adds freedom for designing a large array experimental conditions, because chamber pressure is controlled...analytical examination reveals a broad array of frequencies. The analytical relationship between chamber length L, acoustic frequency fF, and the speed...the pressure amplitude is directly controlled by altering the voltage input to the sirens, similar to a traditional loudspeaker . Last, both a PN and

  4. Research at a European Planetary Simulation Facility

    NASA Astrophysics Data System (ADS)

    Merrison, Jonathan; Alois, Stefano; Iversen, Jens Jacob

    2016-04-01

    A unique environmental simulation facility will be presented which is capable of re-creating extreme terrestrial or other planetary environments. It is supported by EU activities including a volcanology network VERTIGO and a planetology network Europlanet 2020 RI. It is also used as a test facility by ESA for the forthcoming ExoMars 2018 mission. Specifically it is capable of recreating the key physical parameters such as temperature, pressure (gas composition), wind flow and importantly the suspension/transport of dust or sand particulates. This facility is available both to the scientific and industrial community. Details of this laboratory facility will be presented and some of the most recent activities will be summarized. For information on access to this facility please contact the author.

  5. A facile approach to manufacturing non-ionic surfactant nanodipsersions using proniosome technology and high-pressure homogenization.

    PubMed

    Najlah, Mohammad; Hidayat, Kanar; Omer, Huner K; Mwesigwa, Enosh; Ahmed, Waqar; AlObaidy, Kais G; Phoenix, David A; Elhissi, Abdelbary

    2015-03-01

    In this study, a niosome nanodispersion was manufactured using high-pressure homogenization following the hydration of proniosomes. Using beclometasone dipropionate (BDP) as a model drug, the characteristics of the homogenized niosomes were compared with vesicles prepared via the conventional approach of probe-sonication. Particle size, zeta potential, and the drug entrapment efficiency were similar for both size reduction mechanisms. However, high-pressure homogenization was much more efficient than sonication in terms of homogenization output rate, avoidance of sample contamination, offering a greater potential for a large-scale manufacturing of noisome nanodispersions. For example, high-pressure homogenization was capable of producing small size niosomes (209 nm) using a short single-step of size reduction (6 min) as compared with the time-consuming process of sonication (237 nm in >18 min) and the BDP entrapment efficiency was 29.65% ± 4.04 and 36.4% ± 2.8. In addition, for homogenization, the output rate of the high-pressure homogenization was 10 ml/min compared with 0.83 ml/min using the sonication protocol. In conclusion, a facile, applicable, and highly efficient approach for preparing niosome nanodispersions has been established using proniosome technology and high-pressure homogenization.

  6. Future directions in high-pressure neutron diffraction

    NASA Astrophysics Data System (ADS)

    Guthrie, M.

    2015-04-01

    The ability to manipulate structure and properties using pressure has been well known for many centuries. Diffraction provides the unique ability to observe these structural changes in fine detail on lengthscales spanning atomic to nanometre dimensions. Amongst the broad suite of diffraction tools available today, neutrons provide unique capabilities of fundamental importance. However, to date, the growth of neutron diffraction under extremes of pressure has been limited by the weakness of available sources. In recent years, substantial government investments have led to the construction of a new generation of neutron sources while existing facilities have been revitalized by upgrades. The timely convergence of these bright facilities with new pressure-cell technologies suggests that the field of high-pressure (HP) neutron science is on the cusp of substantial growth. Here, the history of HP neutron research is examined with the hope of gleaning an accurate prediction of where some of these revolutionary capabilities will lead in the near future. In particular, a dramatic expansion of current pressure-temperature range is likely, with corresponding increased scope for extreme-conditions science with neutron diffraction. This increase in coverage will be matched with improvements in data quality. Furthermore, we can also expect broad new capabilities beyond diffraction, including in neutron imaging, small angle scattering and inelastic spectroscopy.

  7. Heat transfer measurements on an incidence-tolerant low pressure turbine blade in a high speed linear cascade at low to moderate Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Moualeu, Leolein Patrick Gouemeni

    Runway-independent aircraft are expected to be the future for short-haul flights by improving air transportation and reducing area congestion encountered in airports. The Vehicle Systems Program of NASA identified a Large Civil Tilt-Rotor, equipped with variable-speed power-turbine engines, as the best concept. At cruise altitude, the engine rotor-speed will be reduced by as much as the 50% of take-off speed. The large incidence variation in the low pressure turbine associated with the change in speed can be detrimental to the engine performance. Low pressure turbine blades in cruise altitude are more predisposed to develop regions of boundary layer separation. Typical phenomenon such as impinging wakes on downstream blades and mainstream turbulences enhance the complexity of the flow in low pressure turbines. It is therefore important to be able to understand the flow behavior to accurately predict the losses. Research facilities are seldom able to experimentally reproduce low Reynolds numbers at relevant engine Mach number. Having large incidence swing as an additional parameter in the investigation of the boundary layer development, on a low pressure turbine blade, makes this topic unique and as a consequence requires a unique facility to conduct the experimental research. The compressible flow wind tunnel facility at the University of North Dakota had been updated to perform steady state experiments on a modular-cascade, designed to replicate a large variation of the incidence angles. The high speed and low Reynolds number facility maintained a sealed and closed loop configuration for each incidence angle. The updated facility is capable to produce experimental Reynolds numbers as low as 45,000 and as high as 570,000 at an exit Mach number of 0.72. Pressure and surface temperature measurements were performed at these low pressure turbine conditions. The present thesis investigates the boundary layer development on the surface of an Incidence-tolerant blade. The heat transfer approach is the method used to obtain knowledge of the state of the boundary layer on the surface of the blade. Pressure and temperature distributions are acquired for Reynolds numbers of 50,000, 66,000, 228,000, and 568,000 at an exit Mach number of 0.72, and Reynolds numbers of 228,000, and 568,000 at an exit Mach number of 0.35. These experimental flow conditions are conducted at different flow inlet angles of 40°, 34.2°, 28°, 18°, 8°, -2.6°, -12°, and -17°, and at two free-stream turbulence levels. Results of the analyses performed show that as the incidence angle decreases, a region of laminar separation bubble forms on the pressure surface and grows toward the trailing-edge. It is also noted that the position of the leading-edge moves as the incidence angle varies. A transitional flow is observed on both the pressure and suction surfaces, mainly at the two highest incidence angles, for the high turbulence case. This investigation also reveals that the Stanton number increases as the mainstream turbulence increases, and that the Stanton number at the leading-edge increases as the Reynolds number decreases, as it is documented in the literature.

  8. EXPOSE-R2: The Astrobiological ESA Mission on Board of the International Space Station.

    PubMed

    Rabbow, Elke; Rettberg, Petra; Parpart, Andre; Panitz, Corinna; Schulte, Wolfgang; Molter, Ferdinand; Jaramillo, Esther; Demets, René; Weiß, Peter; Willnecker, Rainer

    2017-01-01

    On July 23, 2014, the Progress cargo spacecraft 56P was launched from Baikonur to the International Space Station (ISS), carrying EXPOSE-R2, the third ESA (European Space Agency) EXPOSE facility, the second EXPOSE on the outside platform of the Russian Zvezda module, with four international astrobiological experiments into space. More than 600 biological samples of archaea, bacteria (as biofilms and in planktonic form), lichens, fungi, plant seeds, triops eggs, mosses and 150 samples of organic compounds were exposed to the harsh space environment and to parameters similar to those on the Mars surface. Radiation dosimeters distributed over the whole facility complemented the scientific payload. Three extravehicular activities later the chemical samples were returned to Earth on March 2, 2016, with Soyuz 44S, having spent 588 days in space. The biological samples arrived back later, on June 18, 2016, with 45S, after a total duration in space of 531 days. The exposure of the samples to Low Earth Orbit vacuum lasted for 531 days and was divided in two parts: protected against solar irradiation during the first 62 days, followed by exposure to solar radiation during the subsequent 469 days. In parallel to the space mission, a Mission Ground Reference (MGR) experiment with a flight identical Hardware and a complete flight identical set of samples was performed at the premises of DLR (German Aerospace Center) in Cologne by MUSC (Microgravity User Support Center), according to the mission data either downloaded from the ISS (temperature data, facility status, inner pressure status) or provided by RedShift Design and Engineering BVBA, Belgium (calculated ultra violet radiation fluence data). In this paper, the EXPOSE-R2 facility, the experimental samples, mission parameters, environmental parameters, and the overall mission and MGR sequences are described, building the background for the research papers of the individual experiments, their analysis and results.

  9. EXPOSE-R2: The Astrobiological ESA Mission on Board of the International Space Station

    PubMed Central

    Rabbow, Elke; Rettberg, Petra; Parpart, Andre; Panitz, Corinna; Schulte, Wolfgang; Molter, Ferdinand; Jaramillo, Esther; Demets, René; Weiß, Peter; Willnecker, Rainer

    2017-01-01

    On July 23, 2014, the Progress cargo spacecraft 56P was launched from Baikonur to the International Space Station (ISS), carrying EXPOSE-R2, the third ESA (European Space Agency) EXPOSE facility, the second EXPOSE on the outside platform of the Russian Zvezda module, with four international astrobiological experiments into space. More than 600 biological samples of archaea, bacteria (as biofilms and in planktonic form), lichens, fungi, plant seeds, triops eggs, mosses and 150 samples of organic compounds were exposed to the harsh space environment and to parameters similar to those on the Mars surface. Radiation dosimeters distributed over the whole facility complemented the scientific payload. Three extravehicular activities later the chemical samples were returned to Earth on March 2, 2016, with Soyuz 44S, having spent 588 days in space. The biological samples arrived back later, on June 18, 2016, with 45S, after a total duration in space of 531 days. The exposure of the samples to Low Earth Orbit vacuum lasted for 531 days and was divided in two parts: protected against solar irradiation during the first 62 days, followed by exposure to solar radiation during the subsequent 469 days. In parallel to the space mission, a Mission Ground Reference (MGR) experiment with a flight identical Hardware and a complete flight identical set of samples was performed at the premises of DLR (German Aerospace Center) in Cologne by MUSC (Microgravity User Support Center), according to the mission data either downloaded from the ISS (temperature data, facility status, inner pressure status) or provided by RedShift Design and Engineering BVBA, Belgium (calculated ultra violet radiation fluence data). In this paper, the EXPOSE-R2 facility, the experimental samples, mission parameters, environmental parameters, and the overall mission and MGR sequences are described, building the background for the research papers of the individual experiments, their analysis and results. PMID:28861052

  10. Bridging the gaps in the Health Management Information System in the context of a changing health sector

    PubMed Central

    2010-01-01

    Background The Health Management Information System (HMIS) is crucial for evidence-based policy-making, informed decision-making during planning, implementation and evaluation of health programs; and for appropriate use of resources at all levels of the health system. This study explored the gaps and factors influencing HMIS in the context of a changing health sector in Tanzania. Methods A cross sectional descriptive study was conducted in 11 heath facilities in Kilombero district between January and February 2008. A semi-structured questionnaire was used to interview 43 health workers on their knowledge, attitude, practice and factors for change on HMIS and HMIS booklets from these facilities were reviewed for completeness. Results Of all respondents, 81% had never been trained on HMIS, 65% did not properly define this system, 54% didn't know who is supposed to use the information collected and 42% did not use the collected data for planning, budgeting and evaluation of services provision. Although the attitude towards the system was positive among 91%, the reviewed HMIS booklets were never completed in 25% - 55% of the facilities. There were no significant differences in knowledge, attitude and practice on HMIS between clinicians and nurses. The most common type of HMIS booklets which were never filled were those for deliveries (55%). The gaps in the current HMIS were linked to lack of training, inactive supervision, staff workload pressure and the lengthy and laborious nature of the system. Conclusions This research has revealed a state of poor health data collection, lack of informed decision-making at the facility level and the factors for change in the country's HMIS. It suggests need for new innovations including incorporation of HMIS in the ongoing reviews of the curricula for all cadres of health care providers, development of more user-friendly system and use of evidence-based John Kotter's eight-step process for implementing successful changes in this system. PMID:20579336

  11. An Experimental Test Facility to Support Development of the Fluoride Salt Cooled High Temperature Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoder Jr, Graydon L; Aaron, Adam M; Cunningham, Richard Burns

    2014-01-01

    The need for high-temperature (greater than 600 C) energy exchange and delivery systems is significantly increasing as the world strives to improve energy efficiency and develop alternatives to petroleum-based fuels. Liquid fluoride salts are one of the few energy transport fluids that have the capability of operating at high temperatures in combination with low system pressures. The Fluoride Salt-Cooled High-Temperature Reactor design uses fluoride salt to remove core heat and interface with a power conversion system. Although a significant amount of experimentation has been performed with these salts, specific aspects of this reactor concept will require experimental confirmation during themore » development process. The experimental facility described here has been constructed to support the development of the Fluoride Salt Cooled High Temperature Reactor concept. The facility is capable of operating at up to 700 C and incorporates a centrifugal pump to circulate FLiNaK salt through a removable test section. A unique inductive heating technique is used to apply heat to the test section, allowing heat transfer testing to be performed. An air-cooled heat exchanger removes added heat. Supporting loop infrastructure includes a pressure control system; trace heating system; and a complement of instrumentation to measure salt flow, temperatures, and pressures around the loop. The initial experiment is aimed at measuring fluoride salt heat transfer inside a heated pebble bed similar to that used for the core of the pebble bed advanced high-temperature reactor. This document describes the details of the loop design, auxiliary systems used to support the facility, the inductive heating system, and facility capabilities.« less

  12. Soviet research on the transport of intense relativistic electron beams through high-pressure air

    NASA Astrophysics Data System (ADS)

    Wells, Nikita

    1987-05-01

    Soviet development of intense relativistic electron beams (IREB) through background air at pressures from 1/100 Torr to atmospheric is analyzed as reflected by Soviet open literature of the last 15 years. Important Soviet findings include: (1) the formation of a plasma channel created by an IREB propagating through background air and the effect of beam parameters upon the plasma channel parameters (and vice versa); (2) determination of the background air pressure for the optimum transport of IREB in two ranges, an ion focused regime at 0.06 to 0.09 Torr and a low pressure window at 1 Torr; (3) observation of current enhancement, whereby the IREB-induced current in plasma is higher than the initial beam current; and (4) the effect of resistive hose instability on IREB propagation. This research is characterized by absence of high energy experimentation. A conclusion of the research is that, for optimum beam transport through air, it is imperative to ensure conditions that allow full neutralization of the IREB's self-fields along the entire path of the beam's transport.

  13. Resonant tube for measurement of sound absorption in gases at low frequency/pressure ratios

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.; Griffin, W. A.

    1980-01-01

    The paper describes a resonant tube for measuring sound absorption in gases, with specific emphasis on the vibrational relaxation peak of N2, over a range of frequency/pressure ratios from 0.1 to 2500 Hz/atm. The experimental background losses measured in argon agree with the theoretical wall losses except at few isolated frequencies. Rigid cavity terminations, external excitation, and a differential technique of background evaluation were used to minimize spurious contributions to the background losses. Room temperature measurements of sound absorption in binary mixtures of N2-CO2 in which both components are excitable resulted in the maximum frequency/pressure ratio in Hz/atm of 0.063 + 123m for the N2 vibrational relaxation peak, where m is mole percent of added CO2; the maximum ratio for the CO2 peak was 34,500 268m where m is mole percent of added N2.

  14. Using neutrons to measure keV temperatures in highly compressed plastic at multi-Gbar pressures

    NASA Astrophysics Data System (ADS)

    Nilsen, J.; Bachmann, B.; Zimmerman, G. B.; Hatarik, R.; Döppner, T.; Swift, D.; Hawreliak, J.; Collins, G. W.; Falcone, R. W.; Glenzer, S. H.; Kraus, D.; Landen, O. L.; Kritcher, A. L.

    2016-12-01

    We have designed an experiment for the National Ignition Facility to measure the Hugoniot of materials such as plastic at extreme pressures. The design employs a strong spherically converging shock launched through a solid ball of material using a hohlraum radiation drive. The shock front conditions can be characterized using X-ray radiography until background from shock coalescence overtakes the backlit signal. Shock coalescence at the center is predicted to reach tens of Gbars and can be further characterized by measuring the X-ray self-emission and 2.45 MeV neutrons emitted from the shock flash region. In this simulation design work the standard plastic sphere is replaced with a deuterated polyethylene sphere, CD2, that reaches sufficiently high densities and temperatures in the central hot spot to produce neutrons from Deuterium-Deuterium (DD) fusion reactions that can be measured by a neutron time of flight spectrometer (nTOF) and act as a temperature diagnostic. This paper focuses on the design of these experiments, based on an extensive suite of radiation-hydrodynamics simulations, and the interpretation of the predicted DD neutron signals. The simulations predict mean temperatures of 1 keV in the central hot spot with mean densities of 33 g/cc and mean pressures of 25 Gbar. A preliminary comparison with early experimental results looks promising with an average ion temperature of 1.06 ± 0.15 keV in the central hot spot estimated from the nTOF spectral width and measured neutron yield of 7.0 (±0.5) × 109 DD neutrons.

  15. PLMA vs. I-gel: A Comparative Evaluation of Respiratory Mechanics in Laparoscopic Cholecystectomy

    PubMed Central

    Sharma, Bimla; Sehgal, Raminder; Sahai, Chand; Sood, Jayashree

    2010-01-01

    Background: Supraglottic airway devices (SADs), such as ProSealTM laryngeal mask airway (PLMA), which produce high oropharyngeal seal pressure (OSP) and have the facility for gastric decompression have been used in laparoscopic procedures. i-gel is a new SAD which shares these features with the PLMA. This study was designed to compare the respiratory mechanics of these two devices during positive pressure ventilation in anaesthetised adult patients undergoing laparoscopic cholecystectomy. Patients & Methods: The study included 60 ASA I-II adult patients scheduled for laparoscopic cholecystectomy. The patients were randomized to two groups of 30 each, with either PLMA or i-gel as their airway device. Anaesthesia and premedication were standardized for both the groups. In addition to routine monitoring, neuromuscular monitoring with TOF ratio, OSP and respiratory mechanics monitoring (dynamic compliance, resistance, work of breathing, measured minute ventilation and peak airway pressures) were employed. Fibreoptic evaluation of positioning of the devices and adverse events related to them were also compared. Results: The OSP (cm H2O) were higher for PLMA (38.9 vs. 35.6, P=0.007). The respiratory mechanics parameters using the two devices were comparable apart from the dynamic compliance, which was significantly higher with i-gel (P < 0.05). Malrotation was higher with i-gel than with PLMA (15 vs. 5, P = 0.006). Conclusion: The PLMA formed a better seal while the dynamic compliance was higher with the i-gel. Both devices provided optimal ventilation and oxygenation and the adverse events were also comparable. PMID:21547168

  16. Resonance Effects in the NASA Transonic Flutter Cascade Facility

    NASA Technical Reports Server (NTRS)

    Lepicovsky, J.; Capece, V. R.; Ford, C. T.

    2003-01-01

    Investigations of unsteady pressure loadings on the blades of fans operating near the stall flutter boundary are carried out under simulated conditions in the NASA Transonic Flutter Cascade facility (TFC). It has been observed that for inlet Mach numbers of about 0.8, the cascade flowfield exhibits intense low-frequency pressure oscillations. The origins of these oscillations were not clear. It was speculated that this behavior was either caused by instabilities in the blade separated flow zone or that it was a tunnel resonance phenomenon. It has now been determined that the strong low-frequency oscillations, observed in the TFC facility, are not a cascade phenomenon contributing to blade flutter, but that they are solely caused by the tunnel resonance characteristics. Most likely, the self-induced oscillations originate in the system of exit duct resonators. For sure, the self-induced oscillations can be significantly suppressed for a narrow range of inlet Mach numbers by tuning one of the resonators. A considerable amount of flutter simulation data has been acquired in this facility to date, and therefore it is of interest to know how much this tunnel self-induced flow oscillation influences the experimental data at high subsonic Mach numbers since this facility is being used to simulate flutter in transonic fans. In short, can this body of experimental data still be used reliably to verify computer codes for blade flutter and blade life predictions? To answer this question a study on resonance effects in the NASA TFC facility was carried out. The results, based on spectral and ensemble averaging analysis of the cascade data, showed that the interaction between self-induced oscillations and forced blade motion oscillations is very weak and can generally be neglected. The forced motion data acquired with the mistuned tunnel, when strong self-induced oscillations were present, can be used as reliable forced pressure fluctuations provided that they are extracted from raw data sets by an ensemble averaging procedure.

  17. The concept of a facility for cosmic dust research on the International Space Station

    NASA Technical Reports Server (NTRS)

    Blum, Juergen; Cabane, Michel; Fonda, Mark; Giovane, Frank; Gustafson, Bo A. S.; Keller, Horst U.; Markiewicz, Wojciech J.; Levasseur-Regourd, Any-Chantal; Worms, Jean-Claude; Nuth, Joseph A.; hide

    1996-01-01

    A proposal for the development of a permanently operating facility for the experimental investigation of cosmic dust-related phenomena onboard the International Space Station (ISS) is presented. Potential applications for this facility are the convection-free nucleation of dust grains, studies of coagulation and aggregation phenomena in a microgravity environment, investigations of heat transport through, and dust emissions from, high-porosity cometary analogs, and experiments on the interaction of very fluffy dust grains with electromagnetic radiation and with low pressure gas flows. Possible extensions of such a facility are towards aerosol science and colloidal plasma research.

  18. Innovations at a European Planetary Simulation Facility

    NASA Astrophysics Data System (ADS)

    Merrison, J.; Iversen, J. J.; Alois, S.; Rasmussen, K. R.

    2017-09-01

    This unique and recently improved planetary simulation facility is capable of re-creating extreme terrestrial, Martian and other planetary environments. It is supported by EU activities including Europlanet 2020 RI and a volcanology network VERTIGO. It is also used as a test facility by ESA for the forthcoming ExoMars 2020 mission. Specifically it is capable of recreating the key physical parameters such as temperature, pressure (gas composition), wind flow and importantly the suspension/transport of dust or sand particulates. This facility is available both to the scientific and Industrial community. The latest research and networking activities will be presented.

  19. Interference-free gas-phase thermometry at elevated pressure using hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering.

    PubMed

    Miller, Joseph D; Dedic, Chloe E; Roy, Sukesh; Gord, James R; Meyer, Terrence R

    2012-02-27

    Rotational-level-dependent dephasing rates and nonresonant background can lead to significant uncertainties in coherent anti-Stokes Raman scattering (CARS) thermometry under high-pressure, low-temperature conditions if the gas composition is unknown. Hybrid femtosecond/picosecond rotational CARS is employed to minimize or eliminate the influence of collisions and nonresonant background for accurate, frequency-domain thermometry at elevated pressure. The ability to ignore these interferences and achieve thermometric errors of <5% is demonstrated for N2 and O2 at pressures up to 15 atm. Beyond 15 atm, the effects of collisions cannot be ignored but can be minimized using a short probe delay (~6.5 ps) after Raman excitation, thereby improving thermometric accuracy with a time- and frequency-resolved theoretical model.

  20. Cryosorption Pumps for a Neutral Beam Injector Test Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dremel, M.; Mack, A.; Day, C.

    2006-04-27

    We present the experiences of the manufacturing and the operating of a system of two identical cryosorption pumps used in a neutral beam injector test facility for fusion reactors. Calculated and measured heat loads of the cryogenic liquid helium and liquid nitrogen circuits of the cryosorption pumps are discussed. The design calculations concerning the thermo-hydraulics of the helium circuit are compared with experiences from the operation of the cryosorption pumps. Both cryopumps are integrated in a test facility of a neutral beam injector that will be used to heat the plasma of a nuclear fusion reactor with a beam ofmore » deuterium or hydrogen molecules. The huge gas throughput into the vessel of the test facility results in challenging needs on the cryopumping system.The developed cryosorption pumps are foreseen to pump a hydrogen throughput of 20 - 30 mbar{center_dot}l/s. To establish a mean pressure of several 10-5 mbar in the test vessel a pumping speed of about 350 m3/s per pump is needed. The pressure conditions must be maintained over several hours pumping without regeneration of the cryopanels, which necessitates a very high pumping capacity. A possibility to fulfill these requirements is the use of charcoal coated cryopanels to pump the gasloads by adsorption. For the cooling of the cryopanels, liquid helium at saturation pressure is used and therefore a two-phase forced flow in the cryopump system must be controlled.« less

  1. Aerodynamic characteristics of the modified 40- by 80-foot wind tunnel as measured in a 1/50th-scale model

    NASA Technical Reports Server (NTRS)

    Smith, Brian E.; Naumowicz, Tim

    1987-01-01

    The aerodynamic characteristics of the 40- by 80-Foot Wind Tunnel at Ames Research Center were measured by using a 1/50th-scale facility. The model was configured to closely simulate the features of the full-scale facility when it became operational in 1986. The items measured include the aerodynamic effects due to changes in the total-pressure-loss characteristics of the intake and exhaust openings of the air-exchange system, total-pressure distributions in the flow field at locations around the wind tunnel circuit, the locations of the maximum total-pressure contours, and the aerodynamic changes caused by the installation of the acoustic barrier in the southwest corner of the wind tunnel. The model tests reveal the changes in the aerodynamic performance of the 1986 version of the 40- by 80-Foot Wind Tunnel compared with the performance of the 1982 configuration.

  2. Barriers to Shared Use of Indoor and Outdoor Facilities at US Elementary Schools

    ERIC Educational Resources Information Center

    Turner, Lindsey; Calvert, Hannah G.; Chaloupka, Frank J.

    2018-01-01

    Background: School policies and practices, such as the sharing of school facilities with the surrounding community, support physical activity among students and community members, but are often underutilized. This study examined variations in shared use practices, and associations with perceived barriers. Methods: Surveys were completed by a…

  3. 76 FR 16838 - Finding of No Significant Impact; Notice of Availability of the Finding of No Significant Impact...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-25

    ... Male, Non-US Citizen, Criminal Aliens at a Contractor-Owned, Contractor-Operated Correctional Facility... aliens within one existing contractor owned, contractor operated facility. Background Information Growth... criminal aliens. In response, the BOP is seeking flexibility in managing its current shortage of beds by...

  4. A National Survey of Mental Health Screening and Assessment Practices in Juvenile Correctional Facilities

    ERIC Educational Resources Information Center

    Swank, Jacqueline M.; Gagnon, Joseph C.

    2017-01-01

    Background: Mental health screening and assessment is crucial within juvenile correctional facilities (JC). However, limited information is available about the current screening and assessment procedures specifically within JC. Objective: The purpose of the current study was to obtain information about the mental health screening and assessment…

  5. 76 FR 44614 - Biweekly Notice; Applications and Amendments to Facility Operating Licenses Involving No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-26

    ... Facility Operating Licenses Involving No Significant Hazards Considerations Background Pursuant to Section... authority to issue and make immediately effective any amendment to an operating license upon a determination... electronic form will be posted on the NRC Web site and on the Federal rulemaking Web site http://www...

  6. Physical Activity Breaks and Facilities in US Secondary Schools

    ERIC Educational Resources Information Center

    Hood, Nancy E.; Colabianchi, Natalie; Terry-McElrath, Yvonne M.; O'Malley, Patrick M.; Johnston, Lloyd D.

    2014-01-01

    Background: Research on physical activity breaks and facilities (indoor and outdoor) in secondary schools is relatively limited. Methods: School administrators and students in nationally representative samples of 8th (middle school) and 10th/12th grade (high school) students were surveyed annually from 2008-2009 to 2011-2012. School administrators…

  7. The Development of a Measure of the Parenting Alliance.

    ERIC Educational Resources Information Center

    Abidin, Richard R.; Brunner, John F.

    The Parenting Alliance Inventory (PAI) was administered to 186 mothers and 75 fathers with a wide range of socioeconomic backgrounds who had at least one child between 2 and 6 years of age. Subjects were recruited from child care facilities, pediatric practices, and public recreational facilities in central Virginia. Extrafamilial child caregivers…

  8. Volatile Organic Compound and Particulate Emission Studies of AF (Air Force) Paint Booth Facilities. Phase 1.

    DTIC Science & Technology

    1988-07-01

    quantity of air which requires processing. Recirculation systems were designed for two of the painting facilities included in this study. In designing the...BACKGROUND AND PURPOSE .... ................ .... 57 B. DESIGN CONSIDERATIONS .... ............... .... 58 1. Safety Standards .......... ............... 58...65 5. Conceptual Design .... ................ ... 68 V CONCLUSIONS AND RECOMMENDATIONS ............... .. 72 A. CONCLUSIONS

  9. The Viability of Lease Purchases as a Means for Funding School Facilities.

    ERIC Educational Resources Information Center

    Bunch, Beverly S.; Smith, Tina

    2002-01-01

    Examines the use of the lease purchase of school facilities in Texas; provides background on the use of lease purchases by Texas school districts; describes factors influencing the use of lease purchases and superintendents' experiences based on survey responses from 50 school districts; recommends careful evaluation of advantages and…

  10. Manual for Public School Facilities: Fire Prevention and Fire Inspection.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of Educational Management Services.

    This manual is designed for use by New York public school administrators and facility inspectors, providing instruction for completing the state's Fire Safety Report. It provides background information and details about the State Fire Prevention and Building Code and regulations, and explains the inspection and enforcement processes. One-third of…

  11. LPT. Aerial of low power test (TAN640 and 641) and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LPT. Aerial of low power test (TAN-640 and -641) and shield test (TAN-645 and -646) facilities. Camera facing north west. Low power test facility at right. Shield test facility at left. Flight engine test area in background at center left of view. Administrative and A&M areas at right. Photographer: Lowin. Date: February 24, 1965. INEEL negative no. 65-991 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  12. KSC-2009-6860

    NASA Image and Video Library

    2009-12-17

    CAPE CANAVERAL, Fla. - At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a crane deposits the transportation case protecting the Russian-built Mini Research Module1, or MRM1, onto a transporter. The MRM was delivered to Kennedy aboard the Volga-Dnepr Antonov AN-124-100, a Ukranian/Russian aircraft, in the background. The second in a series of new pressurized components for Russia, the module, named Rassvet, will be permanently attached to the International Space Station's Zarya module on space shuttle Atlantis' STS-132 mission. An Integrated Cargo Carrier will join the MRM in Atlantis' payload bay. Three spacewalks are planned to store spare components outside the station, including six spare batteries, a boom assembly for the Ku-band antenna and spares for the Canadian Dextre robotic arm extension. A radiator, airlock, and European robotic arm for the Russian Multi-purpose Laboratory Module also will be delivered to the station. Launch is targeted for May 14, 2010. Photo credit: NASA/Jack Pfaller

  13. KSC-2009-6859

    NASA Image and Video Library

    2009-12-17

    CAPE CANAVERAL, Fla. - At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, the transportation case protecting the Russian-built Mini Research Module1, or MRM1, is lifted onto a transporter. The MRM was delivered to Kennedy aboard the Volga-Dnepr Antonov AN-124-100, a Ukranian/Russian aircraft, in the background. The second in a series of new pressurized components for Russia, the module, named Rassvet, will be permanently attached to the International Space Station's Zarya module on space shuttle Atlantis' STS-132 mission. An Integrated Cargo Carrier will join the MRM in Atlantis' payload bay. Three spacewalks are planned to store spare components outside the station, including six spare batteries, a boom assembly for the Ku-band antenna and spares for the Canadian Dextre robotic arm extension. A radiator, airlock, and European robotic arm for the Russian Multi-purpose Laboratory Module also will be delivered to the station. Launch is targeted for May 14, 2010. Photo credit: NASA/Jack Pfaller

  14. Design and Characterization of the UTIAS Anechoic Wind Tunnel

    NASA Astrophysics Data System (ADS)

    Chow, Derrick H. F.

    The anechoic open-jet wind tunnel facility at the University of Toronto Institute for Aerospace Studies was updated and characterized to meet the needs of current and future aeroacoustic experiments. The wind tunnel inlet was resurfaced and flow-conditioning screens were redesigned to improve the freestream turbulence intensity to below 0.4% in the test section. The circular nozzle was replaced with a square secondary contraction that increased the maximum test section velocity to 75 m/s and improved flow uniformity to over 99% across a usable cross-sectional area of 500 mm x 500 mm. Acoustic baffles were installed in front of the wind tunnel inlet and foam wedges were installed in the anechoic chamber. The overall background sound pressure levels in the chamber were improved by 8-18 db over the range of operational freestream velocities. The anechoic chamber cut-off frequency is 170 Hz and the reverberation time for a 60 dB sound power decay is 0.032 s.

  15. A unique high heat flux facility for testing hypersonic engine components

    NASA Technical Reports Server (NTRS)

    Melis, Matthew E.; Gladden, Herbert J.

    1990-01-01

    This paper describes the Hot Gas Facility, a unique, reliable, and cost-effective high-heat-flux facility for testing hypersonic engine components developed at the NASA Lewis Research Center. The Hot Gas Facility is capable of providing heat fluxes ranging from 200 Btu/sq ft per sec on flat surfaces up to 8000 Btu/sq ft per sec at a leading edge stagnation point. The usefulness of the Hot Gas Facility for the NASP community was demonstrated by testing hydrogen-cooled structures over a range of temperatures and pressures. Ranges of the Reynolds numbers, Prandtl numbers, enthalpy, and heat fluxes similar to those expected during hypersonic flights were achieved.

  16. Uncertainty and Traceability for the CEESI Iowa Natural Gas Facility.

    PubMed

    Johnson, Aaron; Kegel, Tom

    2004-01-01

    This paper analyzes the uncertainty of a secondary flow measurement facility that calibrates a significant fraction of United States and foreign flow meters used for custody transfer of natural gas. The facility, owned by the Colorado Experimental Engineering Station Incorporated (CEESI), is located in Iowa. This facility measures flow with nine turbine meter standards, each of which is traceable to the NIST primary flow standard. The flow capacity of this facility ranges from 0.7 actual m(3)/s to 10.7 actual m(3)/s at nominal pressures of 7174 kPa and at ambient temperatures. Over this flow range the relative expanded flow uncertainty varies from 0.28 % to 0.30 % (depending on flow).

  17. The experiences of districts in implementing a national incentive programme to promote safe delivery in Nepal

    PubMed Central

    Powell-Jackson, Timothy; Morrison, Joanna; Tiwari, Suresh; Neupane, Basu Dev; Costello, Anthony M

    2009-01-01

    Background Nepal's Safe Delivery Incentive Programme (SDIP) was introduced nationwide in 2005 with the intention of increasing utilisation of professional care at childbirth. It provided cash to women giving birth in a health facility and an incentive to the health provider for each delivery attended, either at home or in the facility. We explored early implementation of the programme at the district-level to understand the factors that have contributed to its low uptake. Methods We conducted in ten study districts a series of key informant interviews and focus group discussions with staff from health facilities and the district health office and other stakeholders involved in implementation. Manual content analysis was used to categorise data under emerging themes. Results Problems at the central level imposed severe constraints on the ability of district-level actors to implement the programme. These included bureaucratic delays in the disbursement of funds, difficulties in communicating the policy, both to implementers and the wider public and the complexity of the programme's design. However, some district implementers were able to cope with these problems, providing reasons for why uptake of the programme varied considerably between districts. Actions appeared to be influenced by the pressure to meet local needs, as well individual perceptions and acceptance of the programme. The experience also sheds light on some of the adverse effects of the programme on the wider health system. Conclusion The success of conditional cash transfer programmes in Latin America has led to a wave of enthusiasm for their adoption in other parts of the world. However, context matters and proponents of similar programmes in south Asia should give due attention to the challenges to implementation when capacity is weak and health services inadequate. PMID:19508710

  18. Detroit Metropolitan Library Research and Demonstration Project. Background Data.

    ERIC Educational Resources Information Center

    Kremer, Helen

    The Detroit Metropolitan Region, including six countries in southeastern Michigan, is the focus for the Detroit Metropolitan Library Research and Demonstration Project. This document provides background data on the region for the Project. Data included are (1) population, (2) educational facilities, (3) numbers of elementary and secondary pupils…

  19. A perforated diamond anvil cell for high-energy x-ray diffraction of liquids and amorphous solids at high pressure.

    PubMed

    Soignard, Emmanuel; Benmore, Chris J; Yarger, Jeffery L

    2010-03-01

    Diamond anvil cells (DACs) are widely used for the study of materials at high pressure. The typical diamonds used are between 1 and 3 mm thick, while the sample contained within the opposing diamonds is often just a few microns in thickness. Hence, any absorbance or scattering from diamond can cause a significant background or interference when probing a sample in a DAC. By perforating the diamond to within 50-100 microm of the sample, the amount of diamond and the resulting background or interference can be dramatically reduced. The DAC presented in this article is designed to study amorphous materials at high pressure using high-energy x-ray scattering (>60 keV) using laser-perforated diamonds. A small diameter perforation maintains structural integrity and has allowed us to reach pressures >50 GPa, while dramatically decreasing the intensity of the x-ray diffraction background (primarily Compton scattering) when compared to studies using solid diamonds. This cell design allows us for the first time measurement of x-ray scattering from light (low Z) amorphous materials. Here, we present data for two examples using the described DAC with one and two perforated diamond geometries for the high-pressure structural studies of SiO(2) glass and B(2)O(3) glass.

  20. Reinforced carbon-carbon oxidation behavior in convective and radiative environments

    NASA Technical Reports Server (NTRS)

    Curry, D. M.; Johansen, K. J.; Stephens, E. W.

    1978-01-01

    Reinforced carbon-carbon, which is used as thermal protection on the space shuttle orbiter wing leading edges and nose cap, was tested in both radiant and plasma arcjet heating test facilities. The test series was conducted at varying temperatures and pressures. Samples tested in the plasma arcjet facility had consistently higher mass loss than those samples tested in the radiant facility. A method using the mass loss data is suggested for predicting mission mass loss for specific locations on the Orbiter.

  1. Operation of the 25kW NASA Lewis Research Center Solar Regenerative Fuel Cell Tested Facility

    NASA Technical Reports Server (NTRS)

    Moore, S. H.; Voecks, G. E.

    1997-01-01

    Assembly of the NASA Lewis Research Center(LeRC)Solar Regenerative Fuel Cell (RFC) Testbed Facility has been completed and system testing has proceeded. This facility includes the integration of two 25kW photovoltaic solar cell arrays, a 25kW proton exchange membrane (PEM) electrolysis unit, four 5kW PEM fuel cells, high pressure hydrogen and oxygen storage vessels, high purity water storage containers, and computer monitoring, control and data acquisition.

  2. High blood pressure and visual sensitivity

    NASA Astrophysics Data System (ADS)

    Eisner, Alvin; Samples, John R.

    2003-09-01

    The study had two main purposes: (1) to determine whether the foveal visual sensitivities of people treated for high blood pressure (vascular hypertension) differ from the sensitivities of people who have not been diagnosed with high blood pressure and (2) to understand how visual adaptation is related to standard measures of systemic cardiovascular function. Two groups of middle-aged subjects-hypertensive and normotensive-were examined with a series of test/background stimulus combinations. All subjects met rigorous inclusion criteria for excellent ocular health. Although the visual sensitivities of the two subject groups overlapped extensively, the age-related rate of sensitivity loss was, for some measures, greater for the hypertensive subjects, possibly because of adaptation differences between the two groups. Overall, the degree of steady-state sensitivity loss resulting from an increase of background illuminance (for 580-nm backgrounds) was slightly less for the hypertensive subjects. Among normotensive subjects, the ability of a bright (3.8-log-td), long-wavelength (640-nm) adapting background to selectively suppress the flicker response of long-wavelength-sensitive (LWS) cones was related inversely to the ratio of mean arterial blood pressure to heart rate. The degree of selective suppression was also related to heart rate alone, and there was evidence that short-term changes of cardiovascular response were important. The results suggest that (1) vascular hypertension, or possibly its treatment, subtly affects visual function even in the absence of eye disease and (2) changes in blood flow affect retinal light-adaptation processes involved in the selective suppression of the flicker response from LWS cones caused by bright, long-wavelength backgrounds.

  3. Pre-Flight Ground Testing of the Full-Scale HIFiRE-1 at Fully Duplicated Flight Conditions

    DTIC Science & Technology

    2008-05-14

    survey rake installed in the test section to measure X ... -------- pitot pressure, static pressure and stagnation point heat transfer in . the...equilibrium at Figure 17. Photograph of Pitot Rake Assembly all points. This is a safe assumption, as the pressures and Mounted Inside Test Section of...measurement technique in supersonic and hypersonic test facilities, and the small size of the sensing element coupled with the insulating substrate

  4. Electronically scanned pressure sensor module with in SITU calibration capability

    NASA Technical Reports Server (NTRS)

    Gross, C. (Inventor)

    1978-01-01

    This high data rate pressure sensor module helps reduce energy consumption in wind tunnel facilities without loss of measurement accuracy. The sensor module allows for nearly a two order of magnitude increase in data rates over conventional electromechanically scanned pressure sampling techniques. The module consists of 16 solid state pressure sensor chips and signal multiplexing electronics integrally mounted to a four position pressure selector switch. One of the four positions of the pressure selector switch allows the in situ calibration of the 16 pressure sensors; the three other positions allow 48 channels (three sets of 16) pressure inputs to be measured by the sensors. The small size of the sensor module will allow mounting within many wind tunnel models, thus eliminating long tube lengths and their corresponding slow pressure response.

  5. Pressure Injuries in Inpatient Care Facilities in the Czech Republic: Analysis of a National Electronic Database.

    PubMed

    Pokorná, Andrea; Benešová, Klára; Jarkovský, Jirˇí; Mužík, Jan; Beeckman, Dimitri

    The purpose of this study was to analyze pressure injury (PI) occurrence upon admission and at any time during the hospital course inpatients care facilities in the Czech Republic. Secondary aims were to evaluate demographic and clinical data of patients with PI and the impact of a PI on length of stay (LOS) in the hospital. Retrospective, cross-sectional analysis. The sample comprised data of hospitalized patients entered into the National Register of Hospitalized Patients (NRHOSP) database of the Czech Republic between 2007 and 2014 with a diagnosis L89 (pressure ulcer of unspecified site based on the International Classification of Diseases, Tenth Revision, ICD-10). Electronic records of 17,762,854 hospitalizations were reviewed. Data from the NRHOSP from all acute and non-acute care hospitals in the Czech Republic were analyzed. Specifically, we analyzed patients admitted to acute and non-acute care facilities with a primary or secondary diagnosis of PI. The NRHOSP database included 17,762,854 cases, of which 46,224 cases (33,342 cases in acute care hospitals; 12,882 in non-acute care hospitals) had the L89 diagnosis (0.3%). The mean age of patients admitted with a PI was 73.8 ± 15.3 years (mean ± SD), and their average LOS was 33.2 ± 76.9 days. The mean LOS of patients hospitalized with L89 code as a primary diagnosis (n = 6877) was significantly longer compared to those patients for whom L89 code was a secondary diagnosis (25.8 vs 20.2 days, P < .001) in acute care facilities. In contrast, we found no difference in the mean LOS for patients hospitalized in non-acute care facility (58.7 days vs 65.1 days; P = .146) with ICD code L89. Pressure injuries were associated with significant LOS in both acute and non-acute care settings in the Czech Republic. Despite the valuable insights we obtained from the analysis of NRHOSP data, we advocate creation of a more valid and reliable electronic reporting system that enables policy makers to evaluate the quality and safety concerning PI and its impact on patients and the healthcare system.

  6. Report on Beryllium Strength Experiments Conducted at the TA-55 40 mm Impact Test Facility, Fiscal Year 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, William Wyatt; Hollowell, Benjamin Charles; Martinez, Todd P.

    A series of experiments is currently in progress at eth 40 mm Impact Test Facility (ITF), located at TA-55, to understand the strength behavior of Beryllium metal at elevated temperature and pressure. In FY 2017, three experiments were conducted as a part of this project.

  7. Working Out Works for Shawn Kelly | Poster

    Cancer.gov

    By Nancy Parrish, Staff Writer When Shawn Kelly found out last year that he had high blood pressure, he was determined to do something about it. Luckily for Kelly, an instrumentation technician III, Facilities Maintenance and Engineering, he works at the Advanced Technology Research Facility (ATRF), where he can take advantage of the gym there, known as the Wellness Center.

  8. Living in interesting times: applying creative strategic planning.

    PubMed

    Jessome, P

    1995-01-01

    Rapidly changing expectations and environments have put health care facilities under increasing pressure. Using traditional strategic planning to deal with these challenges has often produced disappointing results. This article outlines a different approach, based on Robert Fritz's model of the creative process, and discusses its application in Kiwanis Lodge in West Vancouver, an intermediate care facility.

  9. 76 FR 23848 - Carolina Power And Light Company; Notice of Withdrawal of Application for Amendment to Renewed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-28

    ...; Notice of Withdrawal of Application for Amendment to Renewed Facility Operating License The U.S. Nuclear... December 9, 2010, for a proposed amendment to Renewed Facility Operating License No. NPF-63 for the Shearon... Pressurized Water Reactors,'' to the Core Operating Limits Report methodologies list. This change would have...

  10. 77 FR 26353 - Notice of Availability of the Environmental Assessment and Request for Comments on Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-03

    ... a liquid form at an existing natural gas facility in North Dakota. The ethane that would be... maintenance of pipeline facilities of natural gas liquids and also evaluates reasonable alternatives to the... Pipeline Project would be an underground high vapor pressure pipeline that would carry liquid ethane from...

  11. One-Dimensional Spontaneous Raman Measurements of Temperature Made in a Gas Turbine Combustor

    NASA Technical Reports Server (NTRS)

    Hicks, Yolanda R.; Locke, Randy J.; DeGroot, Wilhelmus A.; Anderson, Robert C.

    2002-01-01

    The NASA Glenn Research Center is working with the aeronautics industry to develop highly fuel-efficient and environmentally friendly gas turbine combustor technology. This effort includes testing new hardware designs at conditions that simulate the high-temperature, high-pressure environment expected in the next-generation of high-performance engines. Glenn has the only facilities in which such tests can be performed. One aspect of these tests is the use of nonintrusive optical and laser diagnostics to measure combustion species concentration, fuel/air ratio, fuel drop size, and velocity, and to visualize the fuel injector spray pattern and some combustion species distributions. These data not only help designers to determine the efficacy of specific designs, but provide a database for computer modelers and enhance our understanding of the many processes that take place within a combustor. Until recently, we lacked one critical capability, the ability to measure temperature. This article summarizes our latest developments in that area. Recently, we demonstrated the first-ever use of spontaneous Raman scattering to measure combustion temperatures within the Advanced Subsonics Combustion Rig (ASCR) sector rig. We also established the highest rig pressure ever achieved for a continuous-flow combustor facility, 54.4 bar. The ASCR facility can provide operating pressures from 1 to 60 bar (60 atm). This photograph shows the Raman system setup next to the ASCR rig. The test was performed using a NASA-concept fuel injector and Jet-A fuel over a range of air inlet temperatures, pressures, and fuel/air ratios.

  12. Characterization and Uncertainty Analysis of a Reference Pressure Measurement System for Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Amer, Tahani; Tripp, John; Tcheng, Ping; Burkett, Cecil; Sealey, Bradley

    2004-01-01

    This paper presents the calibration results and uncertainty analysis of a high-precision reference pressure measurement system currently used in wind tunnels at the NASA Langley Research Center (LaRC). Sensors, calibration standards, and measurement instruments are subject to errors due to aging, drift with time, environment effects, transportation, the mathematical model, the calibration experimental design, and other factors. Errors occur at every link in the chain of measurements and data reduction from the sensor to the final computed results. At each link of the chain, bias and precision uncertainties must be separately estimated for facility use, and are combined to produce overall calibration and prediction confidence intervals for the instrument, typically at a 95% confidence level. The uncertainty analysis and calibration experimental designs used herein, based on techniques developed at LaRC, employ replicated experimental designs for efficiency, separate estimation of bias and precision uncertainties, and detection of significant parameter drift with time. Final results, including calibration confidence intervals and prediction intervals given as functions of the applied inputs, not as a fixed percentage of the full-scale value are presented. System uncertainties are propagated beginning with the initial reference pressure standard, to the calibrated instrument as a working standard in the facility. Among the several parameters that can affect the overall results are operating temperature, atmospheric pressure, humidity, and facility vibration. Effects of factors such as initial zeroing and temperature are investigated. The effects of the identified parameters on system performance and accuracy are discussed.

  13. Computational Simulations of the NASA Langley HyMETS Arc-Jet Facility

    NASA Technical Reports Server (NTRS)

    Brune, A. J.; Bruce, W. E., III; Glass, D. E.; Splinter, S. C.

    2017-01-01

    The Hypersonic Materials Environmental Test System (HyMETS) arc-jet facility located at the NASA Langley Research Center in Hampton, Virginia, is primarily used for the research, development, and evaluation of high-temperature thermal protection systems for hypersonic vehicles and reentry systems. In order to improve testing capabilities and knowledge of the test article environment, an effort is underway to computationally simulate the flow-field using computational fluid dynamics (CFD). A detailed three-dimensional model of the arc-jet nozzle and free-jet portion of the flow-field has been developed and compared to calibration probe Pitot pressure and stagnation-point heat flux for three test conditions at low, medium, and high enthalpy. The CFD model takes into account uniform pressure and non-uniform enthalpy profiles at the nozzle inlet as well as catalytic recombination efficiency effects at the probe surface. Comparing the CFD results and test data indicates an effectively fully-catalytic copper surface on the heat flux probe of about 10% efficiency and a 2-3 kpa pressure drop from the arc heater bore, where the pressure is measured, to the plenum section, prior to the nozzle. With these assumptions, the CFD results are well within the uncertainty of the stagnation pressure and heat flux measurements. The conditions at the nozzle exit were also compared with radial and axial velocimetry. This simulation capability will be used to evaluate various three-dimensional models that are tested in the HyMETS facility. An end-to-end aerothermal and thermal simulation of HyMETS test articles will follow this work to provide a better understanding of the test environment, test results, and to aid in test planning. Additional flow-field diagnostic measurements will also be considered to improve the modeling capability.

  14. Uncontrolled hypertension among patients managed in primary healthcare facilities in Kinshasa, Democratic Republic of the Congo.

    PubMed

    Kika, T M; Lepira, F B; Kayembe, P K; Makulo, J R; Sumaili, E K; Kintoki, E V; M'Buyamba-Kabangu, J R

    Uncontrolled hypertension remains an important issue in daily clinical practice worldwide. Although the majority of patients are treated in primary care, most of the data on blood pressure control originate from population-based studies or secondary healthcare. The aim of this study was to evaluate the frequency of uncontrolled hypertension and associated risk factors among hypertensive patients followed at primary care facilities in Kinshasa, the capital city of Democratic Republic of the Congo. A sample of 298 hypertensive patients seen at primary healthcare facilities, 90 men and 208 women, aged ≥ 18 years, were consecutively included in this cross-sectional study. The majority (66%) was receiving monotherapy, and diuretics (43%) were the most used drugs. According to 2007 European Society of Hypertension/European Society of Cardiology hypertension guidelines, uncontrolled hypertension was defined as blood pressure ≥ 140/90 or ≥ 130/80 mmHg (diabetes or chronic kidney disease). Logistic regression analysis was used to identify the determinants of uncontrolled hypertension. Uncontrolled hypertension was observed in 231 patients (77.5%), 72 men and 159 women. Uncontrolled systolic blood pressure (SBP) was more frequent than uncontrolled diastolic blood pressure (DBP) and increased significantly with advancing age (p = 0.002). The proportion of uncontrolled SBP and DBP was significantly higher in patients with renal failure (p = 0.01) and those with high (p = 0.03) to very high (p = 0.02) absolute cardiovascular risk. The metabolic syndrome (OR 2.40; 95% CI 1.01-5.74; p = 0.04) emerged as the main risk factor associated with uncontrolled hypertension. Uncontrolled hypertension was common in this case series and was associated with factors related to lifestyle and diet, which interact with blood pressure control.

  15. Preventing Molecular and Particulate Infiltration in a Confined Volume

    NASA Technical Reports Server (NTRS)

    Scialdone, John J.

    1999-01-01

    Contaminants from an instrument's self-generated sources or from sources external to the instrument may degrade its critical surfaces and/or create an environment which limits the instrument's intended performance. Analyses have been carried out on a method to investigate the required purging flow of clean, dry gas to prevent the ingestion of external contaminants into the instrument container volume. The pressure to be maintained and the required flow are examined in terms of their effectiveness in preventing gaseous and particulate contaminant ingestion and abatement of self-generated contaminants in the volume. The required venting area or the existing volume venting area is correlated to the volume to be purged, the allowable pressure differential across the volume, the external contaminant partial pressure, and the sizes of the ambient particulates. The diffusion of external water vapor into the volume while it was being purged was experimentally obtained in terms of an infiltration time constant. That data and the acceptable fraction of the outside pressure into the volume indicate the required flow of purge gas expressed in terms of volume change per unit time. The exclusion of particulates is based on the incoming velocity of the particles and the exit flow speed and density of the purge gas. The purging flow pressures needed to maintain the required flows through the vent passages are indicated. The purge gas must prevent or limit the entrance of the external contaminants to the critical locations of the instrument. It should also prevent self- contamination from surfaces, reduce material outgassing, and sweep out the outgassed products. Systems and facilities that can benefit from purging may be optical equipment, clinical facilities, manufacturing facilities, clean rooms, and other systems requiring clean environments.

  16. Missed opportunities to improve the health of postpartum women: high rates of untreated hypertension in rural Tanzania

    PubMed Central

    Larson, Elysia; Rabkin, Miriam; Mbaruku, Godfrey M.; Mbatia, Redempta; Kruk, Margaret E.

    2017-01-01

    Objectives To assess the prevalence of high blood pressure amongst postpartum women in rural Tanzania, and to explore factors associated with hypertension prevalence, awareness of their own hypertension, treatment, and control. Methods We conducted a cross-sectional study of 1,849 women in Tanzania’s Pwani Region who delivered a child in the prior year. We measured blood pressure, administered a structured questionnaire, and assessed factors associated with hypertension (HTN) prevalence, women’s awareness of their own HTN, treatment, and control of HTN using bivariable and multivariable logistic regressions. Findings 26.7% of women had high blood pressure and/or were taking antihypertensive medication. Women were on average 27.5 years old (range 15–54). Nearly all women (99.5%) reported contact with the health system during their pregnancy and delivery, with 97.0% reporting at least one antenatal care visit, 81.4% reporting facility delivery, and an overall average of 5.2 visits for their own care in the past year. Only 23.5% of those with HTN were aware of their diagnosis, 17.4% were taking medication, and only 10.5% had controlled blood pressure. In multivariable analysis, facility delivery, health insurance, and increased distance from a hospital were associated with increased likelihood of HTN awareness; facility delivery and hospital distance were associated with current hypertensive treatment; younger age and increased hospital distance were associated with control of HTN. Conclusion The prevalence of high blood pressure in this postpartum population was high, and despite frequent recent contacts with the health system, awareness, treatment and control of HTN were low. These findings highlight an important missed opportunity to improve women’s health during antenatal and postnatal care. PMID:28120288

  17. Current Sheet Formation in a Conical Theta Pinch Faraday Accelerator with Radio-frequency Assisted Discharge

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Hallock, Ashley K.; Choueiri, Edgar Y.

    2008-01-01

    Data from an inductive conical theta pinch accelerator are presented to gain insight into the process of inductive current sheet formation in the presence of a preionized background gas produced by a steady-state RF-discharge. The presence of a preionized plasma has been previously shown to allow for current sheet formation at lower discharge voltages and energies than those found in other pulsed inductive accelerator concepts, leading to greater accelerator efficiencies at lower power levels. Time-resolved magnetic probe measurements are obtained for different background pressures and pulse energies to characterize the effects of these parameters on current sheet formation. Indices are defined that describe time-resolved current sheet characteristics, such as the total current owing in the current sheet, the time-integrated total current ('strength'), and current sheet velocity. It is found that for a given electric field strength, maximums in total current, strength, and velocity occur for one particular background pressure. At other pressures, these current sheet indices are considerably smaller. The trends observed in these indices are explained in terms of the principles behind Townsend breakdown that lead to a dependence on the ratio of the electric field to the background pressure. Time-integrated photographic data are also obtained at the same experimental conditions, and qualitatively they compare quite favorably with the time-resolved magnetic field data.

  18. Development of an Ultra-Low Background Liquid Scintillation Counter for Trace Level Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erchinger, Jennifer L.; Orrell, John L.; Aalseth, Craig E.

    2015-09-01

    Low-level liquid scintillation counting (LSC) has been established as one of the radiation detection techniques useful in elucidating environmental processes and environmental monitoring around nuclear facilities. The Ultra-Low Background Liquid Scintillation Counter (ULB-LSC) under construction in the Shallow Underground Laboratory at Pacific Northwest National Laboratory aims to further reduce the MDAs and/or required sample processing. Through layers of passive shielding in conjunction with an active veto and 30 meters water equivalent overburden, the background reduction is expected to be 10 to 100 times below typical analytic low-background liquid scintillation systems. Simulations have shown an expected background of around 14 countsmore » per day. A novel approach to the light collection will use a coated hollow light guide cut into the inner copper shielding. Demonstration LSC measurements will show low-energy detection, spectral deconvolution, and alpha/beta discrimination capabilities, from trials with standards of tritium, strontium-90, and actinium-227, respectively. An overview of the system design and expected demonstration measurements will emphasize the potential applications of the ULB-LSC in environmental monitoring for treaty verification, reach-back sample analysis, and facility inspections.« less

  19. 33 CFR 154.850 - Operational requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... system that meets the requirements of 46 CFR 39.20-9(b) must not be connected to an overfill sensor... by § 154.810(a) of this subpart must not be opened until the pressure at the facility vapor connection exceeds the pressure on the downstream side of the remotely operated cargo vapor shutoff valve. (f...

  20. 78 FR 54417 - Oil and Gas and Sulphur Operations on the Outer Continental Shelf-Oil and Gas Production Safety...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-04

    ... for subsurface related equipment installed in high safety valves (SSSVs) and pressure high temperature (HPHT) related equipment installed in environments. high pressure high temperature (HPHT) environments... flammable liquids (other than produced hydrocarbons) stored on the facility in containers other than bulk...

Top