Sample records for facility beampath infrastructure

  1. Scope of Work for Integration Management and Installation Services of the National Ignition Facility Beampath Infrastructure System

    NASA Astrophysics Data System (ADS)

    Coyle, P. D.

    2000-03-01

    The goal of the National Ignition Facility (NIF) project is to provide an above ground experimental capability for maintaining nuclear competence and weapons effects simulation and to provide a facility capable of achieving fusion ignition using solid-state lasers as the energy driver. The facility will incorporate 192 laser beams, which will be focused onto a small target located at the center of a spherical target chamber-the energy from the laser beams will be deposited in a few billionths of a second. The target will then implode, forcing atomic nuclei to sufficiently high temperatures and densities necessary to achieve a miniature fusion reaction. The NIF is under construction, at Livermore, California, located approximately 50 miles southeast of San Francisco, California. The University of California, Lawrence Livermore National Laboratory (LLNL), operating under Prime Contract W-7405-ENG. 48 with the U.S. Department of Energy (DOE), shall subcontract for Integration Management and Installation (IMI) Services for the Beampath Infrastructure System (BIS). The BIS includes Beampath Hardware and Beampath Utilities. Conventional Facilities work for the NIF Laser and Target Area Building (LTAB) and Optics Assembly Building (OAB) is over 86 percent constructed. This Scope of Work is for Integration Management and Installation (IMI) Services corresponding to Management Services, Design Integration Services, Construction Services, and Commissioning Services for the NIB BIS. The BIS includes Beampath Hardware and Beampath Utilities. Beampath Hardware and Beampath Utilities include beampath vessels, enclosures, and beam tubes; auxiliary and utility systems; and support structures. A substantial amount of GFE will be provided by the University for installation as part of the infrastructure packages.

  2. National Ignition Facility Project: An Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogan, W J; Moses, E; Warner, B

    2000-12-07

    The National Ignition Facility (NIF) consists of 192 forty-centimeter-square laser beams and a 10-m-diameter target chamber. Physical construction began in 1997. The Laser and Target Area Building and the Optics Assembly Building were the first major construction activities, and despite several unforeseen obstacles, the buildings are now 92% complete and have been done on time and within cost. Prototype component development and testing has proceeded in parallel. Optics vendors have installed full-scale production lines and have done prototype production runs. The assembly and integration of the beampath infrastructure has been reconsidered and a new approach has been developed. This papermore » will discuss the status of the NIF project and the plans for completion. It will also include summary information on Laser MegaJoule (LMJ) provided by M. Andre, LMJ Project Director.« less

  3. Scope of Work for Integration Management and Installation Services of the National Ignition Facility Beampath Infrastructure System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coyle, P.D.

    2000-04-25

    The goal of the National Ignition Facility (NIF) project is to provide an aboveground experimental capability for maintaining nuclear competence and weapons effects simulation and to provide a facility capable of achieving fusion ignition using solid-state lasers as the energy driver. The facility will incorporate 192 laser beams, which will be focused onto a small target located at the center of a spherical target chamber--the energy from the laser beams will be deposited in a few billionths of a second. The target will then implode, forcing atomic nuclei to sufficiently high temperatures and densities necessary to achieve a miniature fusionmore » reaction. The NIF is under construction, at Livermore, California, located approximately 50 miles southeast of San Francisco, California.« less

  4. Scope of Work for Integration Management and Installation Services of the National Ignition Facility Beampath Infrastructure System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coyle, P.D.

    The goal of the National Ignition Facility (NIF) project is to provide an aboveground experimental capability for maintaining nuclear competence and weapons effects simulation and to provide a facility capable of achieving fusion ignition using solid-state lasers as the energy driver. The facility will incorporate 192 laser beams, which will be focused onto a small target located at the center of a spherical target chamber--the energy from the laser beams will be deposited in a few billionths of a second. The target will then implode, forcing atomic nuclei to sufficiently high temperatures and densities necessary to achieve a miniature fusionmore » reaction. The NIF is under construction, at Livermore, California, located approximately 50 miles southeast of San Francisco, California.« less

  5. Integrated Facilities and Infrastructure Plan.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reisz Westlund, Jennifer Jill

    Our facilities and infrastructure are a key element of our capability-based science and engineering foundation. The focus of the Integrated Facilities and Infrastructure Plan is the development and implementation of a comprehensive plan to sustain the capabilities necessary to meet national research, design, and fabrication needs for Sandia National Laboratories’ (Sandia’s) comprehensive national security missions both now and into the future. A number of Sandia’s facilities have reached the end of their useful lives and many others are not suitable for today’s mission needs. Due to the continued aging and surge in utilization of Sandia’s facilities, deferred maintenance has continuedmore » to increase. As part of our planning focus, Sandia is committed to halting the growth of deferred maintenance across its sites through demolition, replacement, and dedicated funding to reduce the backlog of maintenance needs. Sandia will become more agile in adapting existing space and changing how space is utilized in response to the changing requirements. This Integrated Facilities & Infrastructure (F&I) Plan supports the Sandia Strategic Plan’s strategic objectives, specifically Strategic Objective 2: Strengthen our Laboratories’ foundation to maximize mission impact, and Strategic Objective 3: Advance an exceptional work environment that enables and inspires our people in service to our nation. The Integrated F&I Plan is developed through a planning process model to understand the F&I needs, analyze solution options, plan the actions and funding, and then execute projects.« less

  6. Hydrogen Infrastructure Testing and Research Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2017-04-10

    Learn about the Hydrogen Infrastructure Testing and Research Facility (HITRF), where NREL researchers are working on vehicle and hydrogen infrastructure projects that aim to enable more rapid inclusion of fuel cell and hydrogen technologies in the market to meet consumer and national goals for emissions reduction, performance, and energy security. As part of NREL’s Energy Systems Integration Facility (ESIF), the HITRF is designed for collaboration with a wide range of hydrogen, fuel cell, and transportation stakeholders.

  7. 75 FR 66683 - Defense Federal Acquisition Regulation Supplement; Safety of Facilities, Infrastructure, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ... operation of facilities, infrastructure, and equipment for use by DoD military or civilian should be...-7004, Safety of Facilities, Infrastructure, and Equipment for Military Operations. DFARS 246.270-1... operation of facilities. This includes contracts for facilities, infrastructure, and equipment configured...

  8. 76 FR 14590 - Defense Federal Acquisition Regulation Supplement; Safety of Facilities, Infrastructure, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-17

    ... facilities, infrastructure, and equipment that are intended for use by military or civilian personnel of the..., maintenance, or operation of facilities, infrastructure, and equipment for use by DoD military or civilian... facilities. This includes contracts for facilities, infrastructure, and equipment configured for occupancy...

  9. Facilities and Infrastructure FY 2017 Budget At-A-Glance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-03-01

    The Facilities and Infrastructure Program includes EERE’s capital investments, operations and maintenance, and site-wide support of the National Renewable Energy Laboratory (NREL). It is the nation’s only national laboratory with a primary mission dedicated to the research, development and demonstration (RD&D) of energy efficiency, renewable energy and related technologies. EERE is NREL’s steward, primary client and sponsor of NREL’s designation as a Federally Funded Research and Development Center. The Facilities and Infrastructure (F&I) budget maintains NREL’s research and support infrastructure, ensures availability for EERE’s use, and provides a safe and secure workplace for employees.

  10. Controlling Infrastructure Costs: Right-Sizing the Mission Control Facility

    NASA Technical Reports Server (NTRS)

    Martin, Keith; Sen-Roy, Michael; Heiman, Jennifer

    2009-01-01

    Johnson Space Center's Mission Control Center is a space vehicle, space program agnostic facility. The current operational design is essentially identical to the original facility architecture that was developed and deployed in the mid-90's. In an effort to streamline the support costs of the mission critical facility, the Mission Operations Division (MOD) of Johnson Space Center (JSC) has sponsored an exploratory project to evaluate and inject current state-of-the-practice Information Technology (IT) tools, processes and technology into legacy operations. The general push in the IT industry has been trending towards a data-centric computer infrastructure for the past several years. Organizations facing challenges with facility operations costs are turning to creative solutions combining hardware consolidation, virtualization and remote access to meet and exceed performance, security, and availability requirements. The Operations Technology Facility (OTF) organization at the Johnson Space Center has been chartered to build and evaluate a parallel Mission Control infrastructure, replacing the existing, thick-client distributed computing model and network architecture with a data center model utilizing virtualization to provide the MCC Infrastructure as a Service. The OTF will design a replacement architecture for the Mission Control Facility, leveraging hardware consolidation through the use of blade servers, increasing utilization rates for compute platforms through virtualization while expanding connectivity options through the deployment of secure remote access. The architecture demonstrates the maturity of the technologies generally available in industry today and the ability to successfully abstract the tightly coupled relationship between thick-client software and legacy hardware into a hardware agnostic "Infrastructure as a Service" capability that can scale to meet future requirements of new space programs and spacecraft. This paper discusses the benefits

  11. ICAT: Integrating data infrastructure for facilities based science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flannery, Damian; Matthews, Brian; Griffin, Tom

    2009-12-21

    ICAT: Integrating data infrastructure for facilities based science Damian Flannery, Brian Matthews, Tom Griffin, Juan Bicarregui, Michael Gleaves, Laurent Lerusse, Roger Downing, Alun Ashton, Shoaib Sufi, Glen Drinkwater, Kerstin Kleese Abstract— Scientific facilities, in particular large-scale photon and neutron sources, have demanding requirements to manage the increasing quantities of experimental data they generate in a systematic and secure way. In this paper, we describe the ICAT infrastructure for cataloguing facility generated experimental data which has been in development within STFC and DLS for several years. We consider the factors which have influenced its design and describe its architecture and metadatamore » model, a key tool in the management of data. We go on to give an outline of its current implementation and use, with plans for its future development.« less

  12. Rapid assessment of infrastructure of primary health care facilities - a relevant instrument for health care systems management.

    PubMed

    Scholz, Stefan; Ngoli, Baltazar; Flessa, Steffen

    2015-05-01

    Health care infrastructure constitutes a major component of the structural quality of a health system. Infrastructural deficiencies of health services are reported in literature and research. A number of instruments exist for the assessment of infrastructure. However, no easy-to-use instruments to assess health facility infrastructure in developing countries are available. Present tools are not applicable for a rapid assessment by health facility staff. Therefore, health information systems lack data on facility infrastructure. A rapid assessment tool for the infrastructure of primary health care facilities was developed by the authors and pilot-tested in Tanzania. The tool measures the quality of all infrastructural components comprehensively and with high standardization. Ratings use a 2-1-0 scheme which is frequently used in Tanzanian health care services. Infrastructural indicators and indices are obtained from the assessment and serve for reporting and tracing of interventions. The tool was pilot-tested in Tanga Region (Tanzania). The pilot test covered seven primary care facilities in the range between dispensary and district hospital. The assessment encompassed the facilities as entities as well as 42 facility buildings and 80 pieces of technical medical equipment. A full assessment of facility infrastructure was undertaken by health care professionals while the rapid assessment was performed by facility staff. Serious infrastructural deficiencies were revealed. The rapid assessment tool proved a reliable instrument of routine data collection by health facility staff. The authors recommend integrating the rapid assessment tool in the health information systems of developing countries. Health authorities in a decentralized health system are thus enabled to detect infrastructural deficiencies and trace the effects of interventions. The tool can lay the data foundation for district facility infrastructure management.

  13. 48 CFR 246.270 - Safety of facilities, infrastructure, and equipment for military operations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ASSURANCE Contract Quality Requirements 246.270 Safety of facilities, infrastructure, and equipment for... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Safety of facilities, infrastructure, and equipment for military operations. 246.270 Section 246.270 Federal Acquisition Regulations...

  14. 48 CFR 252.246-7004 - Safety of Facilities, Infrastructure, and Equipment for Military Operations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...: SAFETY OF FACILITIES, INFRASTRUCTURE, AND EQUIPMENT FOR MILITARY OPERATIONS (OCT 2010) (a) Definition... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Safety of Facilities, Infrastructure, and Equipment for Military Operations. 252.246-7004 Section 252.246-7004 Federal Acquisition...

  15. Onsite and Electric Backup Capabilities at Critical Infrastructure Facilities in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Julia A.; Wallace, Kelly E.; Kudo, Terence Y.

    2016-04-01

    The following analysis, conducted by Argonne National Laboratory’s (Argonne’s) Risk and Infrastructure Science Center (RISC), details an analysis of electric power backup of national critical infrastructure as captured through the Department of Homeland Security’s (DHS’s) Enhanced Critical Infrastructure Program (ECIP) Initiative. Between January 1, 2011, and September 2014, 3,174 ECIP facility surveys have been conducted. This study focused first on backup capabilities by infrastructure type and then expanded to infrastructure type by census region.

  16. Europlanet Research Infrastructure: Planetary Sample Analysis Facilities

    NASA Astrophysics Data System (ADS)

    Cloquet, C.; Mason, N. J.; Davies, G. R.; Marty, B.

    2008-09-01

    EuroPlanet The Europlanet Research Infrastructure consortium funded under FP7 aims to provide the EU Planetary Science community greater access for to research infrastructure. A series of networking and outreach initiatives will be complimented by joint research activities and the formation of three Trans National Access distributed service laboratories (TNA's) to provide a unique and comprehensive set of analogue field sites, laboratory simulation facilities, and extraterrestrial sample analysis tools. Here we report on the infrastructure that comprises the third TNA: Planetary Sample Analysis Facilities. The modular infrastructure represents a major commitment of analytical instrumentation by three institutes and together forms a state-of-the-art analytical facility of unprecedented breadth. These centres perform research in the fields of geochemistry and cosmochemistry, studying fluids and rocks in order to better understand the keys cof the universe. Europlanet Research Infrastructure Facilities: Ion Probe facilities at CRPG and OU The Cameca 1270 Ion microprobe is a CNRS-INSU national facility. About a third of the useful analytical time of the ion probe (about 3 months each year) is allocated to the national community. French scientists have to submit their projects to a national committee for selection. The selected projects are allocated time in the following 6 months twice a year. About 15 to 20 projects are run each year. There are only two such instruments in Europe, with cosmochemistry only performed at CRPG. Different analyses can be performed on a routine basis, such as U-Pb dating on Zircon, Monazite or Pechblende, Li, B, C, O, Si isotopic ratios determination on different matrix, 26Al, 60Fe extinct radioactivity ages, light and trace elements contents . The NanoSIMS 50L - producing element or isotope maps with a spatial resolution down to ≈50nm. This is one of the cornerstone facilities of UKCAN, with 75% of available instrument time funded and

  17. Guidelines and Standards for the Technology Infrastructure of 21st Century Educational Facilities.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Office of Facilities Planning.

    New York State Regents directed that new guidelines and "standards" be developed for technology infrastructures in educational facilities in order to assist administrators and educators in planning technology integration during retrofits, renovations, or new construction of educational facilities. This document provides the first draft…

  18. Network information attacks on the control systems of power facilities belonging to the critical infrastructure

    NASA Astrophysics Data System (ADS)

    Loginov, E. L.; Raikov, A. N.

    2015-04-01

    The most large-scale accidents occurred as a consequence of network information attacks on the control systems of power facilities belonging to the United States' critical infrastructure are analyzed in the context of possibilities available in modern decision support systems. Trends in the development of technologies for inflicting damage to smart grids are formulated. A volume matrix of parameters characterizing attacks on facilities is constructed. A model describing the performance of a critical infrastructure's control system after an attack is developed. The recently adopted measures and legislation acts aimed at achieving more efficient protection of critical infrastructure are considered. Approaches to cognitive modeling and networked expertise of intricate situations for supporting the decision-making process, and to setting up a system of indicators for anticipatory monitoring of critical infrastructure are proposed.

  19. Europlanet Research Infrastructure: Planetary Simulation Facilities

    NASA Astrophysics Data System (ADS)

    Davies, G. R.; Mason, N. J.; Green, S.; Gómez, F.; Prieto, O.; Helbert, J.; Colangeli, L.; Srama, R.; Grande, M.; Merrison, J.

    2008-09-01

    EuroPlanet The Europlanet Research Infrastructure consortium funded under FP7 aims to provide the EU Planetary Science community greater access for to research infrastructure. A series of networking and outreach initiatives will be complimented by joint research activities and the formation of three Trans National Access distributed service laboratories (TNA's) to provide a unique and comprehensive set of analogue field sites, laboratory simulation facilities, and extraterrestrial sample analysis tools. Here we report on the infrastructure that comprises the second TNA; Planetary Simulation Facilities. 11 laboratory based facilities are able to recreate the conditions found in the atmospheres and on the surfaces of planetary systems with specific emphasis on Martian, Titan and Europa analogues. The strategy has been to offer some overlap in capabilities to ensure access to the highest number of users and to allow for progressive and efficient development strategies. For example initial testing of mobility capability prior to the step wise development within planetary atmospheres that can be made progressively more hostile through the introduction of extreme temperatures, radiation, wind and dust. Europlanet Research Infrastructure Facilties: Mars atmosphere simulation chambers at VUA and OU These relatively large chambers (up to 1 x 0.5 x 0.5 m) simulate Martian atmospheric conditions and the dual cooling options at VUA allows stabilised instrument temperatures while the remainder of the sample chamber can be varied between 220K and 350K. Researchers can therefore assess analytical protocols for instruments operating on Mars; e.g. effect of pCO2, temperature and material (e.g., ± ice) on spectroscopic and laser ablation techniques while monitoring the performance of detection technologies such as CCD at low T & variable p H2O & pCO2. Titan atmosphere and surface simulation chamber at OU The chamber simulates Titan's atmospheric composition under a range of

  20. 48 CFR 252.246-7004 - Safety of Facilities, Infrastructure, and Equipment for Military Operations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., Infrastructure, and Equipment for Military Operations. As prescribed in 246.270-4, use the following clause... contract comply with Unified Facilities Criteria (UFC) 1-200-01 for— (1) Fire protection; (2) Structural...

  1. 48 CFR 252.246-7004 - Safety of Facilities, Infrastructure, and Equipment for Military Operations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., Infrastructure, and Equipment for Military Operations. As prescribed in 246.270-4, use the following clause... contract comply with Unified Facilities Criteria (UFC) 1-200-01 for— (1) Fire protection; (2) Structural...

  2. 48 CFR 252.246-7004 - Safety of Facilities, Infrastructure, and Equipment for Military Operations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., Infrastructure, and Equipment for Military Operations. As prescribed in 246.270-4, use the following clause... contract comply with Unified Facilities Criteria (UFC) 1-200-01 for— (1) Fire protection; (2) Structural...

  3. Army Corrosion Prevention and Control (CPC) Program for Facilities and Infrastructure

    DTIC Science & Technology

    2010-02-01

    FY2009 - 2011 • Benefits: Reduced corrosion due to elimination of metallic rebar , reduced weight equates to reduced dead load and increased dynamic...Decks as Replacement for Steel Reinforced Concrete Decks F09AR04: Corrosion Resistant Roofs with Integrated Sustainable PV Power Systems • Where...Army Corrosion Prevention and Control (CPC) Program for Facilities and Infrastructure Dr. Craig E. College Deputy Assistant Chief of Staff for

  4. Integration of bicycling and walking facilities into the infrastructure of urban communities : [research brief].

    DOT National Transportation Integrated Search

    2012-02-01

    Many manuals, handbooks and web resources exist that provide guidance on planning for and designing bicycle and pedestrian facilities. However few of these resources emphasize program and infrastructure characteristics most desired by current (and po...

  5. SNL Five-Year Facilities & Infrastructure Plan FY2015-2019

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cipriani, Ralph J.

    2014-12-01

    Sandia’s development vision is to provide an agile, flexible, safer, more secure, and efficient enterprise that leverages the scientific and technical capabilities of the workforce and supports national security requirements in multiple areas. Sandia’s Five-Year Facilities & Infrastructure Planning program represents a tool to budget and prioritize immediate and short-term actions from indirect funding sources in light of the bigger picture of proposed investments from direct-funded, Work for Others and other funding sources. As a complementary F&I investment program, Sandia’s indirect investment program supports incremental achievement of the development vision within a constrained resource environment.

  6. Virtual Facility at Fermilab: Infrastructure and Services Expand to Public Clouds

    DOE PAGES

    Timm, Steve; Garzoglio, Gabriele; Cooper, Glenn; ...

    2016-02-18

    In preparation for its new Virtual Facility Project, Fermilab has launched a program of work to determine the requirements for running a computation facility on-site, in public clouds, or a combination of both. This program builds on the work we have done to successfully run experimental workflows of 1000-VM scale both on an on-site private cloud and on Amazon AWS. To do this at scale we deployed dynamically launched and discovered caching services on the cloud. We are now testing the deployment of more complicated services on Amazon AWS using native load balancing and auto scaling features they provide. Themore » Virtual Facility Project will design and develop a facility including infrastructure and services that can live on the site of Fermilab, off-site, or a combination of both. We expect to need this capacity to meet the peak computing requirements in the future. The Virtual Facility is intended to provision resources on the public cloud on behalf of the facility as a whole instead of having each experiment or Virtual Organization do it on their own. We will describe the policy aspects of a distributed Virtual Facility, the requirements, and plans to make a detailed comparison of the relative cost of the public and private clouds. Furthermore, this talk will present the details of the technical mechanisms we have developed to date, and the plans currently taking shape for a Virtual Facility at Fermilab.« less

  7. Virtual Facility at Fermilab: Infrastructure and Services Expand to Public Clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timm, Steve; Garzoglio, Gabriele; Cooper, Glenn

    In preparation for its new Virtual Facility Project, Fermilab has launched a program of work to determine the requirements for running a computation facility on-site, in public clouds, or a combination of both. This program builds on the work we have done to successfully run experimental workflows of 1000-VM scale both on an on-site private cloud and on Amazon AWS. To do this at scale we deployed dynamically launched and discovered caching services on the cloud. We are now testing the deployment of more complicated services on Amazon AWS using native load balancing and auto scaling features they provide. Themore » Virtual Facility Project will design and develop a facility including infrastructure and services that can live on the site of Fermilab, off-site, or a combination of both. We expect to need this capacity to meet the peak computing requirements in the future. The Virtual Facility is intended to provision resources on the public cloud on behalf of the facility as a whole instead of having each experiment or Virtual Organization do it on their own. We will describe the policy aspects of a distributed Virtual Facility, the requirements, and plans to make a detailed comparison of the relative cost of the public and private clouds. Furthermore, this talk will present the details of the technical mechanisms we have developed to date, and the plans currently taking shape for a Virtual Facility at Fermilab.« less

  8. 43 CFR 404.9 - What types of infrastructure and facilities may be included in an eligible rural water supply...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... related facilities required for the rural water supply project; (f) Equipment and management tools for... facilities may be included in an eligible rural water supply project? 404.9 Section 404.9 Public Lands... RURAL WATER SUPPLY PROGRAM Overview § 404.9 What types of infrastructure and facilities may be included...

  9. Infrastructural challenges to better health in maternity facilities in rural Kenya: community and healthworker perceptions.

    PubMed

    Essendi, Hildah; Johnson, Fiifi Amoako; Madise, Nyovani; Matthews, Zoe; Falkingham, Jane; Bahaj, Abubakr S; James, Patrick; Blunden, Luke

    2015-11-09

    The efforts and commitments to accelerate progress towards the Millennium Development Goals for maternal and newborn health (MDGs 4 and 5) in low and middle income countries have focused primarily on providing key medical interventions at maternity facilities to save the lives of women at the time of childbirth, as well as their babies. However, in most rural communities in sub-Saharan, access to maternal and newborn care services is still limited and even where services are available they often lack the infrastructural prerequisites to function at the very basic level in providing essential routine health care services, let alone emergency care. Lists of essential interventions for normal and complicated childbirth, do not take into account these prerequisites, thus the needs of most health facilities in rural communities are ignored, although there is enough evidence that maternal and newborn deaths continue to remain unacceptably high in these areas. This study uses data gathered through qualitative interviews in Kitonyoni and Mwania sub-locations of Makueni County in Eastern Kenya to understand community and provider perceptions of the obstacles faced in providing and accessing maternal and newborn care at health facilities in their localities. The study finds that the community perceives various challenges, most of which are infrastructural, including lack of electricity, water and poor roads that adversely impact the provision and access to essential life-saving maternal and newborn care services in the two sub-locations. The findings and recommendations from this study are important for the attention of policy makers and programme managers in order to improve the state of lower-tier health facilities serving rural communities and to strengthen infrastructure with the aim of making basic routine and emergency obstetric and newborn care services more accessible.

  10. Customer Satisfaction versus Infrastructural Facilities in the Realm of Higher Education--A Case Study of Sri Venkateswara University Tirupati

    ERIC Educational Resources Information Center

    Janardhana, G.; Rajasekhar, Mamilla

    2012-01-01

    This article analyses the levels of students' satisfaction and how institution provides infrastructure facilities in the field of higher education. Infrastructure is the fastest growing segment of the higher education scenario. Universities play a very vital role in a country in terms of their potential. It contributes to employment and growth.…

  11. The Infrastructure of Academic Research.

    ERIC Educational Resources Information Center

    Davey, Ken

    1996-01-01

    Canadian university infrastructures have eroded as seen in aging equipment, deteriorating facilities, and fewer skilled personnel to maintain and operate research equipment. Research infrastructure includes administrative overhead, facilities and equipment, and research personnel including faculty, technicians, and students. The biggest erosion of…

  12. a System Dynamics Model to Study the Importance of Infrastructure Facilities on Quality of Primary Education System in Developing Countries

    NASA Astrophysics Data System (ADS)

    Pedamallu, Chandra Sekhar; Ozdamar, Linet; Weber, Gerhard-Wilhelm; Kropat, Erik

    2010-06-01

    The system dynamics approach is a holistic way of solving problems in real-time scenarios. This is a powerful methodology and computer simulation modeling technique for framing, analyzing, and discussing complex issues and problems. System dynamics modeling and simulation is often the background of a systemic thinking approach and has become a management and organizational development paradigm. This paper proposes a system dynamics approach for study the importance of infrastructure facilities on quality of primary education system in developing nations. The model is proposed to be built using the Cross Impact Analysis (CIA) method of relating entities and attributes relevant to the primary education system in any given community. We offer a survey to build the cross-impact correlation matrix and, hence, to better understand the primary education system and importance of infrastructural facilities on quality of primary education. The resulting model enables us to predict the effects of infrastructural facilities on the access of primary education by the community. This may support policy makers to take more effective actions in campaigns.

  13. 43 CFR 404.9 - What types of infrastructure and facilities may be included in an eligible rural water supply...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... water conservation, groundwater recovery, and water reuse and recycling; (g) Associated features to... facilities may be included in an eligible rural water supply project? 404.9 Section 404.9 Public Lands... RURAL WATER SUPPLY PROGRAM Overview § 404.9 What types of infrastructure and facilities may be included...

  14. National Ignition Facility Construction Safety Management Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warner, B.E.

    2000-02-01

    An accident occurred at the NIF construction site on January 13, 2000, in which a worker sustained a serious injury when a 42-inch-diameter duct fell during installation. Following the accident, NIF Project Management chartered two review teams: (1) an Incident Analysis Team to independently assess the direct and root causes of the accident, and (2) a Management Review Team to review the roles and responsibilities of the line, support, and construction management organizations involved. This report provides a discussion of the information gathered by the Management Review Team and provides a list of observations and recommendations based on an analysismore » of the information. The Management Review Team includes senior managers who represent several Directorates within LLNL and DOE OAK: Dick Billia representing Engineering; Dave Leary representing Business Services and Public Affairs; Jim Jackson representing Hazards Control; Chuck Taylor representing DOE OAK; Arnie Clobes representing the ICF/NIF Program; and Jon Yatabe and Bruce Warner (Chairperson) representing the NIF Project. The attached letter from the NIF Project Manager, Ed Moses, to the Management Review Team contains the team's Charter. The team was asked to evaluate the effectiveness of the line management and its supporting safety functions in managing safety during NIF construction. The evaluation was to include the current conventional facility construction, which is 85% complete, and upcoming activities such as Beampath Infrastructure System installation, which will begin in the next six months and which represents a significant amount of work over the next two to three years. The remainder of this document describes the Management Review Team's review process (Section 2), its observations gathered during the review (Section 3), and its recommendations to the NIF Project Manager based on those observations (Section 4).« less

  15. 47 CFR 59.2 - Terms and conditions of infrastructure sharing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... infrastructure, technology, information, or telecommunications facilities, or functions made available to a... infrastructure, technology, information, and telecommunications facilities, or functions available to a... infrastructure, technology, information and telecommunications facilities and functions pursuant to this part. ...

  16. Study on the availability of physical infrastructure and manpower facilities in sub-centers of Chittoor district of Andhra Pradesh.

    PubMed

    Reddy, N Bayapa; Prabhu, G Ravi; Sai, T S R

    2012-01-01

    The sub-centers (SCs) are under constant criticism for their inability to deliver quality services due to the nonavailability of adequate infrastructure, manpower and supply of drugs.A cross-sectional study was conducted in Chittoor District of Andhra Pradesh to assess the availability of physical infrastructure and manpower in the SCs. A total of 34 SCs were selected by multistage and stratified random sampling technique. The data was statistically analyzed by using Microsoft Excel. The deficiency in the availability of health workers male and female were found to be 67.7% and 27.5%, respectively. The residential facility for health workers was available only in 26.4% SCs. Only 20.6% of SCs had stethoscope and B.P apparatus. The physical infrastructure and manpower availability at the SCs needs considerable improvement as per the Indian Public Health Standard (IPHS). Facilities to conduct the normal delivery and 24-hours emergency referral services need to be addressed at the earliest.

  17. 43 CFR 404.9 - What types of infrastructure and facilities may be included in an eligible rural water supply...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... facilities may be included in an eligible rural water supply project? 404.9 Section 404.9 Public Lands... RURAL WATER SUPPLY PROGRAM Overview § 404.9 What types of infrastructure and facilities may be included in an eligible rural water supply project? A rural water supply project may include, but is not...

  18. Water, sanitation and hygiene infrastructure and quality in rural healthcare facilities in Rwanda.

    PubMed

    Huttinger, Alexandra; Dreibelbis, Robert; Kayigamba, Felix; Ngabo, Fidel; Mfura, Leodomir; Merryweather, Brittney; Cardon, Amelie; Moe, Christine

    2017-08-03

    WHO and UNICEF have proposed an action plan to achieve universal water, sanitation and hygiene (WASH) coverage in healthcare facilities (HCFs) by 2030. The WASH targets and indicators for HCFs include: an improved water source on the premises accessible to all users, basic sanitation facilities, a hand washing facility with soap and water at all sanitation facilities and patient care areas. To establish viable targets for WASH in HCFs, investigation beyond 'access' is needed to address the state of WASH infrastructure and service provision. Patient and caregiver use of WASH services is largely unaddressed in previous studies despite being critical for infection control. The state of WASH services used by staff, patients and caregivers was assessed in 17 rural HCFs in Rwanda. Site selection was non-random and predicated upon piped water and power supply. Direct observation and semi-structured interviews assessed drinking water treatment, presence and condition of sanitation facilities, provision of soap and water, and WASH-related maintenance and record keeping. Samples were collected from water sources and treated drinking water containers and analyzed for total coliforms, E. coli, and chlorine residual. Drinking water treatment was reported at 15 of 17 sites. Three of 18 drinking water samples collected met the WHO guideline for free chlorine residual of >0.2 mg/l, 6 of 16 drinking water samples analyzed for total coliforms met the WHO guideline of <1 coliform/100 mL and 15 of 16 drinking water samples analyzed for E. coli met the WHO guideline of <1 E. coli/100 mL. HCF staff reported treating up to 20 L of drinking water per day. At all sites, 60% of water access points (160 of 267) were observed to be functional, 32% of hand washing locations (46 of 142) had water and soap and 44% of sanitary facilities (48 of 109) were in hygienic condition and accessible to patients. Regular maintenance of WASH infrastructure consisted of cleaning; no HCF had on

  19. 43 CFR 404.10 - Are there certain types of infrastructure and facilities that may not be included in a rural...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... and facilities that may not be included in a rural water supply project? 404.10 Section 404.10 Public... RECLAMATION RURAL WATER SUPPLY PROGRAM Overview § 404.10 Are there certain types of infrastructure and facilities that may not be included in a rural water supply project? Yes. A rural water supply project may...

  20. Association between infrastructure and observed quality of care in 4 healthcare services: A cross-sectional study of 4,300 facilities in 8 countries

    PubMed Central

    Sun, Zeye

    2017-01-01

    Background It is increasingly apparent that access to healthcare without adequate quality of care is insufficient to improve population health outcomes. We assess whether the most commonly measured attribute of health facilities in low- and middle-income countries (LMICs)—the structural inputs to care—predicts the clinical quality of care provided to patients. Methods and findings Service Provision Assessments are nationally representative health facility surveys conducted by the Demographic and Health Survey Program with support from the US Agency for International Development. These surveys assess health system capacity in LMICs. We drew data from assessments conducted in 8 countries between 2007 and 2015: Haiti, Kenya, Malawi, Namibia, Rwanda, Senegal, Tanzania, and Uganda. The surveys included an audit of facility infrastructure and direct observation of family planning, antenatal care (ANC), sick-child care, and (in 2 countries) labor and delivery. To measure structural inputs, we constructed indices that measured World Health Organization-recommended amenities, equipment, and medications in each service. For clinical quality, we used data from direct observations of care to calculate providers’ adherence to evidence-based care guidelines. We assessed the correlation between these metrics and used spline models to test for the presence of a minimum input threshold associated with good clinical quality. Inclusion criteria were met by 32,531 observations of care in 4,354 facilities. Facilities demonstrated moderate levels of infrastructure, ranging from 0.63 of 1 in sick-child care to 0.75 of 1 for family planning on average. Adherence to evidence-based guidelines was low, with an average of 37% adherence in sick-child care, 46% in family planning, 60% in labor and delivery, and 61% in ANC. Correlation between infrastructure and evidence-based care was low (median 0.20, range from −0.03 for family planning in Senegal to 0.40 for ANC in Tanzania

  1. Association between infrastructure and observed quality of care in 4 healthcare services: A cross-sectional study of 4,300 facilities in 8 countries.

    PubMed

    Leslie, Hannah H; Sun, Zeye; Kruk, Margaret E

    2017-12-01

    It is increasingly apparent that access to healthcare without adequate quality of care is insufficient to improve population health outcomes. We assess whether the most commonly measured attribute of health facilities in low- and middle-income countries (LMICs)-the structural inputs to care-predicts the clinical quality of care provided to patients. Service Provision Assessments are nationally representative health facility surveys conducted by the Demographic and Health Survey Program with support from the US Agency for International Development. These surveys assess health system capacity in LMICs. We drew data from assessments conducted in 8 countries between 2007 and 2015: Haiti, Kenya, Malawi, Namibia, Rwanda, Senegal, Tanzania, and Uganda. The surveys included an audit of facility infrastructure and direct observation of family planning, antenatal care (ANC), sick-child care, and (in 2 countries) labor and delivery. To measure structural inputs, we constructed indices that measured World Health Organization-recommended amenities, equipment, and medications in each service. For clinical quality, we used data from direct observations of care to calculate providers' adherence to evidence-based care guidelines. We assessed the correlation between these metrics and used spline models to test for the presence of a minimum input threshold associated with good clinical quality. Inclusion criteria were met by 32,531 observations of care in 4,354 facilities. Facilities demonstrated moderate levels of infrastructure, ranging from 0.63 of 1 in sick-child care to 0.75 of 1 for family planning on average. Adherence to evidence-based guidelines was low, with an average of 37% adherence in sick-child care, 46% in family planning, 60% in labor and delivery, and 61% in ANC. Correlation between infrastructure and evidence-based care was low (median 0.20, range from -0.03 for family planning in Senegal to 0.40 for ANC in Tanzania). Facilities with similar infrastructure scores

  2. Nuclear Energy Infrastructure Database Description and User’s Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heidrich, Brenden

    In 2014, the Deputy Assistant Secretary for Science and Technology Innovation initiated the Nuclear Energy (NE)–Infrastructure Management Project by tasking the Nuclear Science User Facilities, formerly the Advanced Test Reactor National Scientific User Facility, to create a searchable and interactive database of all pertinent NE-supported and -related infrastructure. This database, known as the Nuclear Energy Infrastructure Database (NEID), is used for analyses to establish needs, redundancies, efficiencies, distributions, etc., to best understand the utility of NE’s infrastructure and inform the content of infrastructure calls. The Nuclear Science User Facilities developed the database by utilizing data and policy direction from amore » variety of reports from the U.S. Department of Energy, the National Research Council, the International Atomic Energy Agency, and various other federal and civilian resources. The NEID currently contains data on 802 research and development instruments housed in 377 facilities at 84 institutions in the United States and abroad. The effort to maintain and expand the database is ongoing. Detailed information on many facilities must be gathered from associated institutions and added to complete the database. The data must be validated and kept current to capture facility and instrumentation status as well as to cover new acquisitions and retirements. This document provides a short tutorial on the navigation of the NEID web portal at NSUF-Infrastructure.INL.gov.« less

  3. Facilities | Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    integration research. Photo of the Hydrogen Infrastructure Testing and Research Facility building, with hydrogen fueling station and fuel cell vehicles. Hydrogen Infrastructure Testing and Research Facility The Hydrogen Infrastructure Testing and Research Facility (HITRF) at the ESIF combines electrolyzers, a

  4. University of Maryland MRSEC - Facilities: Instrumentation Infrastructure

    Science.gov Websites

    Instrumentation Infrastructure In order to establish a broader campus context, each MRSEC Shared Experimental without alteration is granted to educational institutions for non-profit administrative or educational

  5. 43 CFR 404.9 - What types of infrastructure and facilities may be included in an eligible rural water supply...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false What types of infrastructure and facilities may be included in an eligible rural water supply project? 404.9 Section 404.9 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR RECLAMATION RURAL WATER SUPPLY PROGRAM Overview § 404.9...

  6. 43 CFR 404.9 - What types of infrastructure and facilities may be included in an eligible rural water supply...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true What types of infrastructure and facilities may be included in an eligible rural water supply project? 404.9 Section 404.9 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR RECLAMATION RURAL WATER SUPPLY PROGRAM Overview § 404.9 Wha...

  7. Dynamic Modeling and Evaluation of Recurring Infrastructure Maintenance Budget Determination Methods

    DTIC Science & Technology

    2005-03-01

    represent the annual M&R costs for the entire facility (Melvin, 1992). This method requires immense amounts of detailed data for each facility to be...and where facility and infrastructure maintenance must occur. Uzarski et al (1995) discuss that the data gathered produces a candidate list that can... facilities or an infrastructure plant. Government agencies like the DoD, major universities, and large corporations are the major players. Data

  8. Transportation Infrastructure Robustness : Joint Engineering and Economic Analysis

    DOT National Transportation Integrated Search

    2017-11-01

    The objectives of this study are to develop a methodology for assessing the robustness of transportation infrastructure facilities and assess the effect of damage to such facilities on travel demand and the facilities users welfare. The robustness...

  9. MFC Communications Infrastructure Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael Cannon; Terry Barney; Gary Cook

    2012-01-01

    Unprecedented growth of required telecommunications services and telecommunications applications change the way the INL does business today. High speed connectivity compiled with a high demand for telephony and network services requires a robust communications infrastructure.   The current state of the MFC communication infrastructure limits growth opportunities of current and future communication infrastructure services. This limitation is largely due to equipment capacity issues, aging cabling infrastructure (external/internal fiber and copper cable) and inadequate space for telecommunication equipment. While some communication infrastructure improvements have been implemented over time projects, it has been completed without a clear overall plan and technology standard.more »   This document identifies critical deficiencies with the current state of the communication infrastructure in operation at the MFC facilities and provides an analysis to identify needs and deficiencies to be addressed in order to achieve target architectural standards as defined in STD-170. The intent of STD-170 is to provide a robust, flexible, long-term solution to make communications capabilities align with the INL mission and fit the various programmatic growth and expansion needs.« less

  10. 43 CFR 404.10 - Are there certain types of infrastructure and facilities that may not be included in a rural...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Are there certain types of infrastructure and facilities that may not be included in a rural water supply project? 404.10 Section 404.10 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR RECLAMATION RURAL WATER SUPPLY PROGRAM...

  11. 43 CFR 404.10 - Are there certain types of infrastructure and facilities that may not be included in a rural...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Are there certain types of infrastructure and facilities that may not be included in a rural water supply project? 404.10 Section 404.10 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR RECLAMATION RURAL WATER SUPPLY PROGRAM...

  12. Opportunity to Save Historical Railway Infrastructure - Adaptation and Functional Conversion of Facilities

    NASA Astrophysics Data System (ADS)

    Podwojewska, Magdalena

    2017-10-01

    After years of neglect and underinvestment, the Polish railways are now witnessing a rapid modernization of both their technical facilities and rolling stock. However, this is true only of the main railway lines connecting major urban complexes. It is worth pointing out that a great number of secondary lines, railway stations and halts still has not been covered by the transformation process. Railway facilities, warehouses and service features are in decay. Rapid technological developments have caused numerous architectural structures of historical interest and service features to fall out of use. There are historical railway facilities dating back to the late 19th or early 20th centuries, whose condition is constantly deteriorating. The only way to save these structures is to change the manner, in which they are being used, and attract new investors and operators. The adaptation of buildings may be carried out in a number of ways by following different strategies. The process depends on the structure’s current condition and significance for the railway network. The facilities which are disused as a result of technological changes in the rolling stock and infrastructure include workshops, steam locomotive bays, turntables and warehouses. Their size and location within a city make them a perfect place for commercial services, exhibitions, heritage sites, concerts and other events attracting great numbers of people. Other strategies may be used for constructions located next to railways lines, whose role has declined. Such constructions include small railway stations, warehouses, reloading and forwarding facilities, railway ramps, railway staff buildings as well as residences for railway employees. Railway stations located at large junctions can handle passenger traffic or freight loading operations. As well as acting as the only window to the world, railway stations in small towns housed all the services available in the place. At the same time, they served as

  13. Nuclear Energy Infrastructure Database Fitness and Suitability Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heidrich, Brenden

    In 2014, the Deputy Assistant Secretary for Science and Technology Innovation (NE-4) initiated the Nuclear Energy-Infrastructure Management Project by tasking the Nuclear Science User Facilities (NSUF) to create a searchable and interactive database of all pertinent NE supported or related infrastructure. This database will be used for analyses to establish needs, redundancies, efficiencies, distributions, etc. in order to best understand the utility of NE’s infrastructure and inform the content of the infrastructure calls. The NSUF developed the database by utilizing data and policy direction from a wide variety of reports from the Department of Energy, the National Research Council, themore » International Atomic Energy Agency and various other federal and civilian resources. The NEID contains data on 802 R&D instruments housed in 377 facilities at 84 institutions in the US and abroad. A Database Review Panel (DRP) was formed to review and provide advice on the development, implementation and utilization of the NEID. The panel is comprised of five members with expertise in nuclear energy-associated research. It was intended that they represent the major constituencies associated with nuclear energy research: academia, industry, research reactor, national laboratory, and Department of Energy program management. The Nuclear Energy Infrastructure Database Review Panel concludes that the NSUF has succeeded in creating a capability and infrastructure database that identifies and documents the major nuclear energy research and development capabilities across the DOE complex. The effort to maintain and expand the database will be ongoing. Detailed information on many facilities must be gathered from associated institutions added to complete the database. The data must be validated and kept current to capture facility and instrumentation status as well as to cover new acquisitions and retirements.« less

  14. Upgrade of the cryogenic infrastructure of SM18, CERN main test facility for superconducting magnets and RF cavities

    NASA Astrophysics Data System (ADS)

    Perin, A.; Dhalla, F.; Gayet, P.; Serio, L.

    2017-12-01

    SM18 is CERN main facility for testing superconducting accelerator magnets and superconducting RF cavities. Its cryogenic infrastructure will have to be significantly upgraded in the coming years, starting in 2019, to meet the testing requirements for the LHC High Luminosity project and for the R&D program for superconducting magnets and RF equipment until 2023 and beyond. This article presents the assessment of the cryogenic needs based on the foreseen test program and on past testing experience. The current configuration of the cryogenic infrastructure is presented and several possible upgrade scenarios are discussed. The chosen upgrade configuration is then described and the characteristics of the main newly required cryogenic equipment, in particular a new 35 g/s helium liquefier, are presented. The upgrade implementation strategy and plan to meet the required schedule are then described.

  15. Scientific Infrastructure To Support Manned And Unmanned Aircraft, Tethered Balloons, And Related Aerial Activities At Doe Arm Facilities On The North Slope Of Alaska

    NASA Astrophysics Data System (ADS)

    Ivey, M.; Dexheimer, D.; Hardesty, J.; Lucero, D. A.; Helsel, F.

    2015-12-01

    The U.S. Department of Energy (DOE), through its scientific user facility, the Atmospheric Radiation Measurement (ARM) facilities, provides scientific infrastructure and data to the international Arctic research community via its research sites located on the North Slope of Alaska. DOE has recently invested in improvements to facilities and infrastructure to support operations of unmanned aerial systems for science missions in the Arctic and North Slope of Alaska. A new ground facility, the Third ARM Mobile Facility, was installed at Oliktok Point Alaska in 2013. Tethered instrumented balloons were used to make measurements of clouds in the boundary layer including mixed-phase clouds. A new Special Use Airspace was granted to DOE in 2015 to support science missions in international airspace in the Arctic. Warning Area W-220 is managed by Sandia National Laboratories for DOE Office of Science/BER. W-220 was successfully used for the first time in July 2015 in conjunction with Restricted Area R-2204 and a connecting Altitude Reservation Corridor (ALTRV) to permit unmanned aircraft to operate north of Oliktok Point. Small unmanned aircraft (DataHawks) and tethered balloons were flown at Oliktok during the summer and fall of 2015. This poster will discuss how principal investigators may apply for use of these Special Use Airspaces, acquire data from the Third ARM Mobile Facility, or bring their own instrumentation for deployment at Oliktok Point, Alaska. The printed poster will include the standard DOE funding statement.

  16. An Infrastructure Museum

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2013-01-01

    This article invites teachers to let their students' imaginations soar as they become part of a team that will design a whole new kind of living technological museum, a facility that celebrates the world of infrastructure. In this activity, a new two-story building will be built, occupying a vacant corner parcel of land, approximately 150…

  17. A knowledge infrastructure for occupational safety and health.

    PubMed

    van Dijk, Frank J H; Verbeek, Jos H; Hoving, Jan L; Hulshof, Carel T J

    2010-12-01

    Occupational Safety and Health (OSH) professionals should use scientific evidence to support their decisions in policy and practice. Although examples from practice show that progress has been made in evidence-based decision making, there is a challenge to improve and extend the facilities that support knowledge translation in practice. A knowledge infrastructure that supports OSH practice should include scientific research, systematic reviews, practice guidelines, and other tools for professionals such as well accessible virtual libraries and databases providing knowledge, quality tools, and good learning materials. A good infrastructure connects facilities with each other and with practice. Training and education is needed for OSH professionals in the use of evidence to improve effectiveness and efficiency. New initiatives show that occupational health can profit from intensified international collaboration to establish a good functioning knowledge infrastructure.

  18. NHERI: Advancing the Research Infrastructure of the Multi-Hazard Community

    NASA Astrophysics Data System (ADS)

    Blain, C. A.; Ramirez, J. A.; Bobet, A.; Browning, J.; Edge, B.; Holmes, W.; Johnson, D.; Robertson, I.; Smith, T.; Zuo, D.

    2017-12-01

    The Natural Hazards Engineering Research Infrastructure (NHERI), supported by the National Science Foundation (NSF), is a distributed, multi-user national facility that provides the natural hazards research community with access to an advanced research infrastructure. Components of NHERI are comprised of a Network Coordination Office (NCO), a cloud-based cyberinfrastructure (DesignSafe-CI), a computational modeling and simulation center (SimCenter), and eight Experimental Facilities (EFs), including a post-disaster, rapid response research facility (RAPID). Utimately NHERI enables researchers to explore and test ground-breaking concepts to protect homes, businesses and infrastructure lifelines from earthquakes, windstorms, tsunamis, and surge enabling innovations to help prevent natural hazards from becoming societal disasters. When coupled with education and community outreach, NHERI will facilitate research and educational advances that contribute knowledge and innovation toward improving the resiliency of the nation's civil infrastructure to withstand natural hazards. The unique capabilities and coordinating activities over Year 1 between NHERI's DesignSafe-CI, the SimCenter, and individual EFs will be presented. Basic descriptions of each component are also found at https://www.designsafe-ci.org/facilities/. Additionally to be discussed are the various roles of the NCO in leading development of a 5-year multi-hazard science plan, coordinating facility scheduling and fostering the sharing of technical knowledge and best practices, leading education and outreach programs such as the recent Summer Institute and multi-facility REU program, ensuring a platform for technology transfer to practicing engineers, and developing strategic national and international partnerships to support a diverse multi-hazard research and user community.

  19. Optimal condition sampling of infrastructure networks.

    DOT National Transportation Integrated Search

    2009-10-15

    Transportation infrastructure systems consist of spatially extensive and longlived sets of interconnected : facilities. Over the past two decades, several new nondestructive inspection technologies have been : developed and applied in collectin...

  20. The Facilities Audit. A Process for Improving Facilities Conditions.

    ERIC Educational Resources Information Center

    Kaiser, Harvey H.

    The problems of deferred maintenance and decaying campus infrastructure have troubled higher education for the past two decades. This book, designed to be a tool for facilities managers, describes a process for inspecting and reporting conditions of buildings and infrastructure. The audit process is meant to be a routine part of maintenance…

  1. Optimal condition sampling for a network of infrastructure facilities.

    DOT National Transportation Integrated Search

    2011-12-31

    In response to the developments in inspection technologies, infrastructure decision-making methods evolved whereby the optimum combination of inspection decisions on the one hand and maintenance and rehabilitation decisions on the other are determine...

  2. Geographic Hotspots of Critical National Infrastructure.

    PubMed

    Thacker, Scott; Barr, Stuart; Pant, Raghav; Hall, Jim W; Alderson, David

    2017-12-01

    Failure of critical national infrastructures can result in major disruptions to society and the economy. Understanding the criticality of individual assets and the geographic areas in which they are located is essential for targeting investments to reduce risks and enhance system resilience. Within this study we provide new insights into the criticality of real-life critical infrastructure networks by integrating high-resolution data on infrastructure location, connectivity, interdependence, and usage. We propose a metric of infrastructure criticality in terms of the number of users who may be directly or indirectly disrupted by the failure of physically interdependent infrastructures. Kernel density estimation is used to integrate spatially discrete criticality values associated with individual infrastructure assets, producing a continuous surface from which statistically significant infrastructure criticality hotspots are identified. We develop a comprehensive and unique national-scale demonstration for England and Wales that utilizes previously unavailable data from the energy, transport, water, waste, and digital communications sectors. The testing of 200,000 failure scenarios identifies that hotspots are typically located around the periphery of urban areas where there are large facilities upon which many users depend or where several critical infrastructures are concentrated in one location. © 2017 Society for Risk Analysis.

  3. Commercial space infrastructure - Giving industry a lift

    NASA Technical Reports Server (NTRS)

    Stone, Barbara A.; Wood, Peter W.

    1991-01-01

    Private sector initiatives directed toward establishing a commercial space sector in the fields of commercial space transportation, payload processing, upper stages, launch facilities, and other facilities and equipment are presented. Consideration is given to a payload processing facility that is capable of providing all prelaunch services required by communications satellites targeted for launch on U.S. launch systems. Attention is given to NASA's efforts to promote commercial infrastructure development for the creation of new products and services, leading to new markets and businesses.

  4. Facility and Laboratory Equipment | Energy Systems Integration Facility |

    Science.gov Websites

    Energy Systems Integration Facility is its infrastructure. In addition to extensive fixed laboratory . Photo of researchers testing building loads and power networks in the Systems Performance Laboratory

  5. Infrastructure and Private Sector Investment in Pakistan

    DTIC Science & Technology

    1997-03-01

    manner in which the expansion in various types of infrastructural facilities interact with private sector investment, and whether there is a long run...passive role in the country’s development. That is public facilities have largely expanded in response to the needs created by private sector investment...tangible needs created by private sector expansion it has, no doubt, been very effective in alleviating real bottlenecks. (JEL F21, 053).

  6. How Critical Is Critical Infrastructure?

    DTIC Science & Technology

    2015-09-01

    electrical power, telecommunications, transportation, petroleum liquid , or natural gas as shown in Figure 34 from the National Infrastructure Protection...Natural Gas Segment  Food and Agriculture Sector  Government facilities Sector  Healthcare and Public Health Sector  Information Technology...514 religious meeting places, 127 gas 69 “Current United States GDP,” 2015, http

  7. Decline in Radiation Hardened Microcircuit Infrastructure

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.

    2015-01-01

    Two areas of radiation hardened microcircuit infrastructure will be discussed: 1) The availability and performance of radiation hardened microcircuits, and, and 2) The access to radiation test facilities primarily for proton single event effects (SEE) testing. Other areas not discussed, but are a concern include: The challenge for maintaining radiation effects tool access for assurance purposes, and, the access to radiation test facilities primarily for heavy ion single event effects (SEE) testing. Status and implications will be discussed for each area.

  8. Managing a tier-2 computer centre with a private cloud infrastructure

    NASA Astrophysics Data System (ADS)

    Bagnasco, Stefano; Berzano, Dario; Brunetti, Riccardo; Lusso, Stefano; Vallero, Sara

    2014-06-01

    In a typical scientific computing centre, several applications coexist and share a single physical infrastructure. An underlying Private Cloud infrastructure eases the management and maintenance of such heterogeneous applications (such as multipurpose or application-specific batch farms, Grid sites, interactive data analysis facilities and others), allowing dynamic allocation resources to any application. Furthermore, the maintenance of large deployments of complex and rapidly evolving middleware and application software is eased by the use of virtual images and contextualization techniques. Such infrastructures are being deployed in some large centres (see e.g. the CERN Agile Infrastructure project), but with several open-source tools reaching maturity this is becoming viable also for smaller sites. In this contribution we describe the Private Cloud infrastructure at the INFN-Torino Computer Centre, that hosts a full-fledged WLCG Tier-2 centre, an Interactive Analysis Facility for the ALICE experiment at the CERN LHC and several smaller scientific computing applications. The private cloud building blocks include the OpenNebula software stack, the GlusterFS filesystem and the OpenWRT Linux distribution (used for network virtualization); a future integration into a federated higher-level infrastructure is made possible by exposing commonly used APIs like EC2 and OCCI.

  9. Uncertainty in Predicted Neighborhood-Scale Green Stormwater Infrastructure Performance Informed by field monitoring of Hydrologic Abstractions

    NASA Astrophysics Data System (ADS)

    Smalls-Mantey, L.; Jeffers, S.; Montalto, F. A.

    2013-12-01

    Human alterations to the environment provide infrastructure for housing and transportation but have drastically changed local hydrology. Excess stormwater runoff from impervious surfaces generates erosion, overburdens sewer infrastructure, and can pollute receiving bodies. Increased attention to green stormwater management controls is based on the premise that some of these issues can be mitigated by capturing or slowing the flow of stormwater. However, our ability to predict actual green infrastructure facility performance using physical or statistical methods needs additional validation, and efforts to incorporate green infrastructure controls into hydrologic models are still in their infancy stages. We use more than three years of field monitoring data to derive facility specific probability density functions characterizing the hydrologic abstractions provided by a stormwater treatment wetland, streetside bioretention facility, and a green roof. The monitoring results are normalized by impervious area treated, and incorporated into a neighborhood-scale agent model allowing probabilistic comparisons of the stormwater capture outcomes associated with alternative urban greening scenarios. Specifically, we compare the uncertainty introduced into the model by facility performance (as represented by the variability in the abstraction), to that introduced by both precipitation variability, and spatial patterns of emergence of different types of green infrastructure. The modeling results are used to update a discussion about the potential effectiveness of urban green infrastructure implementation plans.

  10. Revitalization of the NASA Langley Research Center's Infrastructure

    NASA Technical Reports Server (NTRS)

    Weiser, Erik S.; Mastaler, Michael D.; Craft, Stephen J.; Kegelman, Jerome T.; Hope, Drew J.; Mangum, Cathy H.

    2012-01-01

    The NASA Langley Research Center (Langley) was founded in 1917 as the nation's first civilian aeronautical research facility and NASA's first field center. For nearly 100 years, Langley has made significant contributions to the Aeronautics, Space Exploration, and Earth Science missions through research, technology, and engineering core competencies in aerosciences, materials, structures, the characterization of earth and planetary atmospheres and, more recently, in technologies associated with entry, descent, and landing. An unfortunate but inevitable outcome of this rich history is an aging infrastructure where the longest serving building is close to 80 years old and the average building age is 44 years old. In the current environment, the continued operation and maintenance of this aging and often inefficient infrastructure presents a real challenge to Center leadership in the trade space of sustaining infrastructure versus not investing in future capabilities. To address this issue, the Center has developed a forward looking revitalization strategy that ties future core competencies and technical capabilities to the Center Master Facility Plan to maintain a viable Center well into the future. This paper documents Langley's revitalization strategy which integrates the Center's missions, the Langley 2050 vision, the Center Master Facility Plan, and the New Town repair-by-replacement program through the leadership of the Vibrant Transformation to Advance Langley (ViTAL) Team.

  11. Distribution of green infrastructure along walkable roads

    EPA Science Inventory

    Low-income and minority neighborhoods frequently lack healthful resources to which wealthier communities have access. Though important, the addition of facilities such as recreation centers can be costly and take time to implement. Urban green infrastructure, such as street trees...

  12. Saving America's School Infrastructure. Research in Education Fiscal Policy and Practice.

    ERIC Educational Resources Information Center

    Crampton, Faith E., Ed.; Thompson, David C., Ed.

    This book addresses funding for school facilities. Contents of section 1, "Overview and Scope of the Problem," are: (1) "Unmet School Infrastructure Funding Need as a Critical Educational Capacity Issue: Setting the Context" (Faith E. Crampton); (2) "Financing School Infrastructure Needs: An Overview across the 50 States" (Catherine C. Sielke);…

  13. Eco-logical : an ecosystem approach to developing transportation infrastructure projects in a changing environment

    DOT National Transportation Integrated Search

    2009-09-13

    The development of infrastructure facilities can negatively impact critical habitat and essential ecosystems. There are a variety of techniques available to avoid, minimize, and mitigate negative impacts of existing infrastructure as well as future i...

  14. Evolution of the Virtualized HPC Infrastructure of Novosibirsk Scientific Center

    NASA Astrophysics Data System (ADS)

    Adakin, A.; Anisenkov, A.; Belov, S.; Chubarov, D.; Kalyuzhny, V.; Kaplin, V.; Korol, A.; Kuchin, N.; Lomakin, S.; Nikultsev, V.; Skovpen, K.; Sukharev, A.; Zaytsev, A.

    2012-12-01

    Novosibirsk Scientific Center (NSC), also known worldwide as Akademgorodok, is one of the largest Russian scientific centers hosting Novosibirsk State University (NSU) and more than 35 research organizations of the Siberian Branch of Russian Academy of Sciences including Budker Institute of Nuclear Physics (BINP), Institute of Computational Technologies, and Institute of Computational Mathematics and Mathematical Geophysics (ICM&MG). Since each institute has specific requirements on the architecture of computing farms involved in its research field, currently we've got several computing facilities hosted by NSC institutes, each optimized for a particular set of tasks, of which the largest are the NSU Supercomputer Center, Siberian Supercomputer Center (ICM&MG), and a Grid Computing Facility of BINP. A dedicated optical network with the initial bandwidth of 10 Gb/s connecting these three facilities was built in order to make it possible to share the computing resources among the research communities, thus increasing the efficiency of operating the existing computing facilities and offering a common platform for building the computing infrastructure for future scientific projects. Unification of the computing infrastructure is achieved by extensive use of virtualization technology based on XEN and KVM platforms. This contribution gives a thorough review of the present status and future development prospects for the NSC virtualized computing infrastructure and the experience gained while using it for running production data analysis jobs related to HEP experiments being carried out at BINP, especially the KEDR detector experiment at the VEPP-4M electron-positron collider.

  15. Sustainable infrastructure system modeling under uncertainties and dynamics

    NASA Astrophysics Data System (ADS)

    Huang, Yongxi

    Infrastructure systems support human activities in transportation, communication, water use, and energy supply. The dissertation research focuses on critical transportation infrastructure and renewable energy infrastructure systems. The goal of the research efforts is to improve the sustainability of the infrastructure systems, with an emphasis on economic viability, system reliability and robustness, and environmental impacts. The research efforts in critical transportation infrastructure concern the development of strategic robust resource allocation strategies in an uncertain decision-making environment, considering both uncertain service availability and accessibility. The study explores the performances of different modeling approaches (i.e., deterministic, stochastic programming, and robust optimization) to reflect various risk preferences. The models are evaluated in a case study of Singapore and results demonstrate that stochastic modeling methods in general offers more robust allocation strategies compared to deterministic approaches in achieving high coverage to critical infrastructures under risks. This general modeling framework can be applied to other emergency service applications, such as, locating medical emergency services. The development of renewable energy infrastructure system development aims to answer the following key research questions: (1) is the renewable energy an economically viable solution? (2) what are the energy distribution and infrastructure system requirements to support such energy supply systems in hedging against potential risks? (3) how does the energy system adapt the dynamics from evolving technology and societal needs in the transition into a renewable energy based society? The study of Renewable Energy System Planning with Risk Management incorporates risk management into its strategic planning of the supply chains. The physical design and operational management are integrated as a whole in seeking mitigations against the

  16. Late-life depression in Rural China: do village infrastructure and availability of community resources matter?

    PubMed

    Li, Lydia W; Liu, Jinyu; Zhang, Zhenmei; Xu, Hongwei

    2015-07-01

    This study aimed to examine whether physical infrastructure and availability of three types of community resources (old-age income support, healthcare facilities, and elder activity centers) in rural villages are associated with depressive symptoms among older adults in rural China. Data were from the 2011 baseline survey of the Chinese Health and Retirement Longitudinal Study (CHARLS). The sample included 3824 older adults aged 60 years or older residing in 301 rural villages across China. A score of 12 on the 10-item Center for Epidemiologic Studies Depression Scale was used as the cutoff for depressed versus not depressed. Village infrastructure was indicated by an index summing deficiency in six areas: drinking water, fuel, road, sewage, waste management, and toilet facilities. Three dichotomous variables indicated whether income support, healthcare facility, and elder activity center were available in the village. Respondents' demographic characteristics (age, gender, marital status, and living arrangements), health status (chronic conditions and physical disability), and socioeconomic status (education, support from children, health insurance, household luxury items, and housing quality) were covariates. Multilevel logistic regression was conducted. Controlling for individuals' socioeconomic status, health status, and demographic characteristics, village infrastructure deficiency was positively associated with the odds of being depressed among rural older Chinese, whereas the provision of income support and healthcare facilities in rural villages was associated with lower odds. Village infrastructure and availability of community resources matter for depressive symptoms in rural older adults. Improving infrastructure, providing old-age income support, and establishing healthcare facilities in villages could be effective strategies to prevent late-life depression in rural China. Copyright © 2014 John Wiley & Sons, Ltd.

  17. Integration of research infrastructures and ecosystem models toward development of predictive ecology

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Huang, Y.; Jiang, J.; MA, S.; Saruta, V.; Liang, G.; Hanson, P. J.; Ricciuto, D. M.; Milcu, A.; Roy, J.

    2017-12-01

    The past two decades have witnessed rapid development in sensor technology. Built upon the sensor development, large research infrastructure facilities, such as National Ecological Observatory Network (NEON) and FLUXNET, have been established. Through networking different kinds of sensors and other data collections at many locations all over the world, those facilities generate large volumes of ecological data every day. The big data from those facilities offer an unprecedented opportunity for advancing our understanding of ecological processes, educating teachers and students, supporting decision-making, and testing ecological theory. The big data from the major research infrastructure facilities also provides foundation for developing predictive ecology. Indeed, the capability to predict future changes in our living environment and natural resources is critical to decision making in a world where the past is no longer a clear guide to the future. We are living in a period marked by rapid climate change, profound alteration of biogeochemical cycles, unsustainable depletion of natural resources, and deterioration of air and water quality. Projecting changes in future ecosystem services to the society becomes essential not only for science but also for policy making. We will use this panel format to outline major opportunities and challenges in integrating research infrastructure and ecosystem models toward developing predictive ecology. Meanwhile, we will also show results from an interactive model-experiment System - Ecological Platform for Assimilating Data into models (EcoPAD) - that have been implemented at the Spruce and Peatland Responses Under Climatic and Environmental change (SPRUCE) experiment in Northern Minnesota and Montpellier Ecotron, France. EcoPAD is developed by integrating web technology, eco-informatics, data assimilation techniques, and ecosystem modeling. EcoPAD is designed to streamline data transfer seamlessly from research infrastructure

  18. Biomedical Waste Management : An Infrastructural Survey of Hospitals.

    PubMed

    Rao, Skm; Ranyal, R K; Bhatia, S S; Sharma, V R

    2004-10-01

    The Ministry of Environment & Forests notified the Biomedical Waste (management & handling) Rules, 1998" (BMW Mgt) in July 1998. In accordance with the rules, every hospital generating BMW needs to set up requisite BMW treatment facilities on site or ensure requisite treatment of waste at common treatment facility. No untreated BMW shall be kept stored beyond a period of 48 hours. The cost of construction, operation and maintenance of system for managing BMW represents a significant part of overall budget of a hospital if the BMW rules have to be implemented in their true spirit. Two types of costs are required to be incurred by hospitals for BMW Mgt, internal and external. Internal cost is the cost for segregation, mutilation, disinfection, internal storage and transportation including hidden cost of protective equipment. External costs are off site transportation, treatment and final disposal. A study of hospitals was carried out from various sectors like Govt, Private, Charitable institutions etc. to assess the infrastructural requirement for BMW Mgt. Cost was worked out for a hospital where all the infrastructure as per each and every requirement of BMW rules had been implemented and then it was compared with other hospitals where hospitals have made compromises on each stage of BMW Mgt. Capital cost incurred by benchmarked hospital of 1047 beds was Rs.3 lakh 59 thousand excluding cost of incinerator and hospital is incurring Rs. 656/- per day as recurring expenditure. Pune city has common regional facility for BMW final disposal. Facility is charging Rs.20 per kg of infectious waste. As on Dec 2001 there were 400 institutions including nursing homes, labs and blood banks which were registered. After analyzing the results of study it was felt that there is an urgent need to standardize the infrastructural requirement so that hospitals following BMW rules strictly do not suffer additional costs.

  19. LANL: Weapons Infrastructure Briefing to Naval Reactors, July 18, 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chadwick, Frances

    Presentation slides address: The Laboratory infrastructure supports hundreds of high hazard, complex operations daily; LANL’s unique science and engineering infrastructure is critical to delivering on our mission; LANL FY17 Budget & Workforce; Direct-Funded Infrastructure Accounts; LANL Org Chart; Weapons Infrastructure Program Office; The Laboratory’s infrastructure relies on both Direct and Indirect funding; NA-50’s Operating, Maintenance & Recapitalization funding is critical to the execution of the mission; Los Alamos is currently executing several concurrent Line Item projects; Maintenance @ LANL; NA-50 is helping us to address D&D needs; We are executing a CHAMP Pilot Project at LANL; G2 = Main Toolmore » for Program Management; MDI: Future Investments are centered on facilities with a high Mission Dependency Index; Los Alamos hosted first “Deep Dive” in November 2016; Safety, Infrastructure & Operations is one of the most important programs at LANL, and is foundational for our mission success.« less

  20. Autonomous rendezvous and capture development infrastructure

    NASA Technical Reports Server (NTRS)

    Bryan, Thomas C.; Roe, Fred; Coker, Cindy; Nelson, Pam; Johnson, B.

    1991-01-01

    In the development of the technology for autonomous rendezvous and docking, key infrastructure capabilities must be used for effective and economical development. This involves facility capabilities, both equipment and personnel, to devise, develop, qualify, and integrate ARD elements and subsystems into flight programs. One effective way of reducing technical risks in developing ARD technology is the use of the ultimate test facility, using a Shuttle-based reusable free-flying testbed to perform a Technology Demonstration Test Flight which can be structured to include a variety of additional sensors, control schemes, and operational approaches. This conceptual testbed and flight demonstration will be used to illustrate how technologies and facilities at MSFC can be used to develop and prove an ARD system.

  1. Autonomous rendezvous and capture development infrastructure

    NASA Technical Reports Server (NTRS)

    Bryan, Thomas C.

    1991-01-01

    In the development of the technology for autonomous rendezvous and docking, key infrastructure capabilities must be used for effective and economical development. This need involves facility capabilities, both equipment and personnel, to devise, develop, qualify, and integrate ARD elements and subsystems into flight programs. One effective way of reducing technical risks in developing ARD technology is the use of the Low Earth Orbit test facility. Using a reusable free-flying testbed carried in the Shuttle, as a technology demonstration test flight, can be structured to include a variety of sensors, control schemes, and operational approaches. This testbed and flight demonstration concept will be used to illustrate how technologies and facilities at MSFC can be used to develop and prove an ARD system.

  2. Do Physical Proximity and Availability of Adequate Infrastructure at Public Health Facility Increase Institutional Delivery? A Three Level Hierarchical Model Approach

    PubMed Central

    Patel, Rachana; Ladusingh, Laishram

    2015-01-01

    This study aims to examine the inter-district and inter-village variation of utilization of health services for institutional births in EAG states in presence of rural health program and availability of infrastructures. District Level Household Survey-III (2007–08) data on delivery care and facility information was used for the purpose. Bivariate results examined the utilization pattern by states in presence of correlates of women related while a three-level hierarchical multilevel model illustrates the effect of accessibility, availability of health facility and community health program variables on the utilization of health services for institutional births. The study found a satisfactory improvement in state Rajasthan, Madhya Pradesh and Orissa, importantly, in Bihar and Uttaranchal. The study showed that increasing distance from health facility discouraged institutional births and there was a rapid decline of more than 50% for institutional delivery as the distance to public health facility exceeded 10 km. Additionally, skilled female health worker (ANM) and observed improved public health facility led to significantly increase the probability of utilization as compared to non-skilled ANM and not-improved health centers. Adequacy of essential equipment/laboratory services required for maternal care significantly encouraged deliveries at public health facility. District/village variables neighborhood poverty was negatively related to institutional delivery while higher education levels in the village and women’s residing in more urbanized districts increased the utilization. “Inter-district” variation was 14 percent whereas “between-villages” variation for the utilization was 11 percent variation once controlled for all the three-level variables in the model. This study suggests that the mere availability of health facilities is necessary but not sufficient condition to promote utilization until the quality of service is inadequate and inaccessible

  3. Do Physical Proximity and Availability of Adequate Infrastructure at Public Health Facility Increase Institutional Delivery? A Three Level Hierarchical Model Approach.

    PubMed

    Patel, Rachana; Ladusingh, Laishram

    2015-01-01

    This study aims to examine the inter-district and inter-village variation of utilization of health services for institutional births in EAG states in presence of rural health program and availability of infrastructures. District Level Household Survey-III (2007-08) data on delivery care and facility information was used for the purpose. Bivariate results examined the utilization pattern by states in presence of correlates of women related while a three-level hierarchical multilevel model illustrates the effect of accessibility, availability of health facility and community health program variables on the utilization of health services for institutional births. The study found a satisfactory improvement in state Rajasthan, Madhya Pradesh and Orissa, importantly, in Bihar and Uttaranchal. The study showed that increasing distance from health facility discouraged institutional births and there was a rapid decline of more than 50% for institutional delivery as the distance to public health facility exceeded 10 km. Additionally, skilled female health worker (ANM) and observed improved public health facility led to significantly increase the probability of utilization as compared to non-skilled ANM and not-improved health centers. Adequacy of essential equipment/laboratory services required for maternal care significantly encouraged deliveries at public health facility. District/village variables neighborhood poverty was negatively related to institutional delivery while higher education levels in the village and women's residing in more urbanized districts increased the utilization. "Inter-district" variation was 14 percent whereas "between-villages" variation for the utilization was 11 percent variation once controlled for all the three-level variables in the model. This study suggests that the mere availability of health facilities is necessary but not sufficient condition to promote utilization until the quality of service is inadequate and inaccessible considering

  4. Cost-Benefit Analysis of Green Infrastructures on Community Stormwater Reduction and Utilization: A Case of Beijing, China.

    PubMed

    Liu, Wen; Chen, Weiping; Feng, Qi; Peng, Chi; Kang, Peng

    2016-12-01

    Cost-benefit analysis is demanded for guiding the plan, design and construction of green infrastructure practices in rapidly urbanized regions. We developed a framework to calculate the costs and benefits of different green infrastructures on stormwater reduction and utilization. A typical community of 54,783 m 2 in Beijing was selected for case study. For the four designed green infrastructure scenarios (green space depression, porous brick pavement, storage pond, and their combination), the average annual costs of green infrastructure facilities are ranged from 40.54 to 110.31 thousand yuan, and the average of the cost per m 3 stormwater reduction and utilization is 4.61 yuan. The total average annual benefits of stormwater reduction and utilization by green infrastructures of the community are ranged from 63.24 to 250.15 thousand yuan, and the benefit per m 3 stormwater reduction and utilization is ranged from 5.78 to 11.14 yuan. The average ratio of average annual benefit to cost of four green infrastructure facilities is 1.91. The integrated facilities had the highest economic feasibility with a benefit to cost ratio of 2.27, and followed by the storage pond construction with a benefit to cost ratio of 2.14. The results suggested that while the stormwater reduction and utilization by green infrastructures had higher construction and maintenance costs, their comprehensive benefits including source water replacements benefits, environmental benefits and avoided cost benefits are potentially interesting. The green infrastructure practices should be promoted for sustainable management of urban stormwater.

  5. Integrating multiple scientific computing needs via a Private Cloud infrastructure

    NASA Astrophysics Data System (ADS)

    Bagnasco, S.; Berzano, D.; Brunetti, R.; Lusso, S.; Vallero, S.

    2014-06-01

    In a typical scientific computing centre, diverse applications coexist and share a single physical infrastructure. An underlying Private Cloud facility eases the management and maintenance of heterogeneous use cases such as multipurpose or application-specific batch farms, Grid sites catering to different communities, parallel interactive data analysis facilities and others. It allows to dynamically and efficiently allocate resources to any application and to tailor the virtual machines according to the applications' requirements. Furthermore, the maintenance of large deployments of complex and rapidly evolving middleware and application software is eased by the use of virtual images and contextualization techniques; for example, rolling updates can be performed easily and minimizing the downtime. In this contribution we describe the Private Cloud infrastructure at the INFN-Torino Computer Centre, that hosts a full-fledged WLCG Tier-2 site and a dynamically expandable PROOF-based Interactive Analysis Facility for the ALICE experiment at the CERN LHC and several smaller scientific computing applications. The Private Cloud building blocks include the OpenNebula software stack, the GlusterFS filesystem (used in two different configurations for worker- and service-class hypervisors) and the OpenWRT Linux distribution (used for network virtualization). A future integration into a federated higher-level infrastructure is made possible by exposing commonly used APIs like EC2 and by using mainstream contextualization tools like CloudInit.

  6. Risk assessment for physical and cyber attacks on critical infrastructures.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Bryan J.; Sholander, Peter E.; Phelan, James M.

    2005-08-01

    Assessing the risk of malevolent attacks against large-scale critical infrastructures requires modifications to existing methodologies. Existing risk assessment methodologies consider physical security and cyber security separately. As such, they do not accurately model attacks that involve defeating both physical protection and cyber protection elements (e.g., hackers turning off alarm systems prior to forced entry). This paper presents a risk assessment methodology that accounts for both physical and cyber security. It also preserves the traditional security paradigm of detect, delay and respond, while accounting for the possibility that a facility may be able to recover from or mitigate the results ofmore » a successful attack before serious consequences occur. The methodology provides a means for ranking those assets most at risk from malevolent attacks. Because the methodology is automated the analyst can also play 'what if with mitigation measures to gain a better understanding of how to best expend resources towards securing the facilities. It is simple enough to be applied to large infrastructure facilities without developing highly complicated models. Finally, it is applicable to facilities with extensive security as well as those that are less well-protected.« less

  7. The Fair Facility

    NASA Astrophysics Data System (ADS)

    Nilsson, Thomas

    2015-03-01

    The FAIR (Facility for Antiproton and Ion Beams), under construction at the GSI site in Darmstadt, Germany, will be addressing a wealth of outstanding questions within the realm of subatomic, atomic and plasma physics through a combination of novel accelerators, storage rings and innovative experimental setups. The envisaged programme of FAIR yields a breadth that is unprecedented at an accelerator-based infrastructure. A brief review of the FAIR infrastructure and scientific reach is made, together with an update of the status of the construction.

  8. Facility Accounting: Hammering Out a Capital Replacement Budget.

    ERIC Educational Resources Information Center

    Readinger, Jay

    1996-01-01

    Most facility and finance managers cannot adequately handle school infrastructure issues because they lack the tools to describe the problem appropriately. Facility accounting gives managers accurate deferral and projected replacement costs, using nationally recognized life-cycle and cost data. Facility accounting enables proper management of…

  9. 33 CFR 105.205 - Facility Security Officer (FSO).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... training in the following, as appropriate: (i) Relevant international laws and codes, and recommendations... well as any plans to change the facility or facility infrastructure prior to amending the FSP; and (18...

  10. Improving water, sanitation and hygiene in health-care facilities, Liberia.

    PubMed

    Abrampah, Nana Mensah; Montgomery, Maggie; Baller, April; Ndivo, Francis; Gasasira, Alex; Cooper, Catherine; Frescas, Ruben; Gordon, Bruce; Syed, Shamsuzzoha Babar

    2017-07-01

    The lack of proper water and sanitation infrastructures and poor hygiene practices in health-care facilities reduces facilities' preparedness and response to disease outbreaks and decreases the communities' trust in the health services provided. To improve water and sanitation infrastructures and hygiene practices, the Liberian health ministry held multistakeholder meetings to develop a national water, sanitation and hygiene and environmental health package. A national train-the-trainer course was held for county environmental health technicians, which included infection prevention and control focal persons; the focal persons acted as change agents. In Liberia, only 45% of 701 surveyed health-care facilities had an improved water source in 2015, and only 27% of these health-care facilities had proper disposal for infectious waste. Local ownership, through engagement of local health workers, was introduced to ensure development and refinement of the package. In-county collaborations between health-care facilities, along with multisectoral collaboration, informed national level direction, which led to increased focus on water and sanitation infrastructures and uptake of hygiene practices to improve the overall quality of service delivery. National level leadership was important to identify a vision and create an enabling environment for changing the perception of water, sanitation and hygiene in health-care provision. The involvement of health workers was central to address basic infrastructure and hygiene practices in health-care facilities and they also worked as stimulators for sustainable change. Further, developing a long-term implementation plan for national level initiatives is important to ensure sustainability.

  11. Using Facility Condition Assessments to Identify Actions Related to Infrastructure

    NASA Technical Reports Server (NTRS)

    Rubert, Kennedy F.

    2010-01-01

    To support cost effective, quality research it is essential that laboratory and testing facilities are maintained in a continuous and reliable state of availability at all times. NASA Langley Research Center (LaRC) and its maintenance contractor, Jacobs Technology, Inc. Research Operations, Maintenance, and Engineering (ROME) group, are in the process of implementing a combined Facility Condition Assessment (FCA) and Reliability Centered Maintenance (RCM) program to improve asset management and overall reliability of testing equipment in facilities such as wind tunnels. Specific areas are being identified for improvement, the deferred maintenance cost is being estimated, and priority is being assigned against facilities where conditions have been allowed to deteriorate. This assessment serves to assist in determining where to commit available funds on the Center. RCM methodologies are being reviewed and enhanced to assure that appropriate preventive, predictive, and facilities/equipment acceptance techniques are incorporated to prolong lifecycle availability and assure reliability at minimum cost. The results from the program have been favorable, better enabling LaRC to manage assets prudently.

  12. NIST Document Sharing Test Facility

    Science.gov Websites

    NIST Document Sharing Test Facility This site supports the IHE effort in Document Sharing as part . This test facility is based on the IHE IT Infrastructure Technical Framework. All testing done against that Patient IDs be pre-registered before submitting metadata about them. To allocate new patient IDs

  13. An integrated approach to infrastructure.

    PubMed

    Hayes, Stewart

    2010-02-01

    In an edited version of a paper presented at the IHEA (Institute of Hospital Engineering Australia) 60th National Conference 2009, Stewart Hayes, principal consultant at Jakeman Business Solutions, argues that, with "traditional" means of purchasing and maintaining critical hospital infrastructure systems "becoming less viable", a more integrated, strategic approach to procuring and providing essential hospital services that looks not just to the present, but equally to the facility's anticipated future needs, is becoming ever more important.

  14. A Tool for Rating the Resilience of Critical Infrastructures in Extreme Fires

    DTIC Science & Technology

    2014-05-01

    provide a tool for NRC to help the Canadian industry to develop extreme fire protection materials and technologies for critical infrastructures. Future...supported by the Canadian Safety and Security Program (CSSP) which is led by Defence Research and Development Canada’s Centre for Security Science, in...in oil refinery and chemical industry facilities. The only available standard in North America that addresses the transportation infrastructure is

  15. The European Research Infrastructure for Heritage Science (erihs)

    NASA Astrophysics Data System (ADS)

    Striova, J.; Pezzati, L.

    2017-08-01

    The European Research Infrastructure for Heritage Science (E-RIHS) entered the European strategic roadmap for research infrastructures (ESFRI Roadmap [1]) in 2016, as one of its six new projects. E-RIHS supports research on heritage interpretation, preservation, documentation and management. Both cultural and natural heritage are addressed: collections, artworks, buildings, monuments and archaeological sites. E-RIHS aims to become a distributed research infrastructure with a multi-level star-structure: facilities from single Countries will be organized in national nodes, coordinated by National Hubs. The E-RIHS Central Hub will provide the unique access point to all E-RIHS services through coordination of National Hubs. E-RIHS activities already started in some of its national nodes. In Italy the access to some E-RIHS services started in 2015. A case study concerning the diagnostic of a hypogea cave is presented.

  16. Elemental Concentrations in Urban Green Stormwater Infrastructure Soils

    Treesearch

    Michelle C. Kondo; Raghav Sharma; Alain F. Plante; Yunwen Yang; Igor Burstyn

    2016-01-01

    Green stormwater infrastructure (GSI) is designed to capture stormwater for infiltration, detention, evapotranspiration, or reuse. Soils play a key role in stormwater interception at these facilities. It is important to assess whether contamination is occurring in GSI soils because urban stormwater drainage areas often accumulate elements of concern. Soil contamination...

  17. The impact of transportation infrastructure on bicycling injuries and crashes: a review of the literature

    PubMed Central

    2009-01-01

    Background Bicycling has the potential to improve fitness, diminish obesity, and reduce noise, air pollution, and greenhouse gases associated with travel. However, bicyclists incur a higher risk of injuries requiring hospitalization than motor vehicle occupants. Therefore, understanding ways of making bicycling safer and increasing rates of bicycling are important to improving population health. There is a growing body of research examining transportation infrastructure and the risk of injury to bicyclists. Methods We reviewed studies of the impact of transportation infrastructure on bicyclist safety. The results were tabulated within two categories of infrastructure, namely that at intersections (e.g. roundabouts, traffic lights) or between intersections on "straightaways" (e.g. bike lanes or paths). To assess safety, studies examining the following outcomes were included: injuries; injury severity; and crashes (collisions and/or falls). Results The literature to date on transportation infrastructure and cyclist safety is limited by the incomplete range of facilities studied and difficulties in controlling for exposure to risk. However, evidence from the 23 papers reviewed (eight that examined intersections and 15 that examined straightaways) suggests that infrastructure influences injury and crash risk. Intersection studies focused mainly on roundabouts. They found that multi-lane roundabouts can significantly increase risk to bicyclists unless a separated cycle track is included in the design. Studies of straightaways grouped facilities into few categories, such that facilities with potentially different risks may have been classified within a single category. Results to date suggest that sidewalks and multi-use trails pose the highest risk, major roads are more hazardous than minor roads, and the presence of bicycle facilities (e.g. on-road bike routes, on-road marked bike lanes, and off-road bike paths) was associated with the lowest risk. Conclusion Evidence

  18. Applications of UAVs for Remote Sensing of Critical Infrastructure

    NASA Technical Reports Server (NTRS)

    Wegener, Steve; Brass, James; Schoenung, Susan

    2003-01-01

    The surveillance of critical facilities and national infrastructure such as waterways, roadways, pipelines and utilities requires advanced technological tools to provide timely, up to date information on structure status and integrity. Unmanned Aerial Vehicles (UAVs) are uniquely suited for these tasks, having large payload and long duration capabilities. UAVs also have the capability to fly dangerous and dull missions, orbiting for 24 hours over a particular area or facility providing around the clock surveillance with no personnel onboard. New UAV platforms and systems are becoming available for commercial use. High altitude platforms are being tested for use in communications, remote sensing, agriculture, forestry and disaster management. New payloads are being built and demonstrated onboard the UAVs in support of these applications. Smaller, lighter, lower power consumption imaging systems are currently being tested over coffee fields to determine yield and over fires to detect fire fronts and hotspots. Communication systems that relay video, meteorological and chemical data via satellite to users on the ground in real-time have also been demonstrated. Interest in this technology for infrastructure characterization and mapping has increased dramatically in the past year. Many of the UAV technological developments required for resource and disaster monitoring are being used for the infrastructure and facility mapping activity. This paper documents the unique contributions from NASA;s Environmental Research Aircraft and Sensor Technology (ERAST) program to these applications. ERAST is a UAV technology development effort by a consortium of private aeronautical companies and NASA. Details of demonstrations of UAV capabilities currently underway are also presented.

  19. Development of Bioinformatics Infrastructure for Genomics Research.

    PubMed

    Mulder, Nicola J; Adebiyi, Ezekiel; Adebiyi, Marion; Adeyemi, Seun; Ahmed, Azza; Ahmed, Rehab; Akanle, Bola; Alibi, Mohamed; Armstrong, Don L; Aron, Shaun; Ashano, Efejiro; Baichoo, Shakuntala; Benkahla, Alia; Brown, David K; Chimusa, Emile R; Fadlelmola, Faisal M; Falola, Dare; Fatumo, Segun; Ghedira, Kais; Ghouila, Amel; Hazelhurst, Scott; Isewon, Itunuoluwa; Jung, Segun; Kassim, Samar Kamal; Kayondo, Jonathan K; Mbiyavanga, Mamana; Meintjes, Ayton; Mohammed, Somia; Mosaku, Abayomi; Moussa, Ahmed; Muhammd, Mustafa; Mungloo-Dilmohamud, Zahra; Nashiru, Oyekanmi; Odia, Trust; Okafor, Adaobi; Oladipo, Olaleye; Osamor, Victor; Oyelade, Jellili; Sadki, Khalid; Salifu, Samson Pandam; Soyemi, Jumoke; Panji, Sumir; Radouani, Fouzia; Souiai, Oussama; Tastan Bishop, Özlem

    2017-06-01

    Although pockets of bioinformatics excellence have developed in Africa, generally, large-scale genomic data analysis has been limited by the availability of expertise and infrastructure. H3ABioNet, a pan-African bioinformatics network, was established to build capacity specifically to enable H3Africa (Human Heredity and Health in Africa) researchers to analyze their data in Africa. Since the inception of the H3Africa initiative, H3ABioNet's role has evolved in response to changing needs from the consortium and the African bioinformatics community. H3ABioNet set out to develop core bioinformatics infrastructure and capacity for genomics research in various aspects of data collection, transfer, storage, and analysis. Various resources have been developed to address genomic data management and analysis needs of H3Africa researchers and other scientific communities on the continent. NetMap was developed and used to build an accurate picture of network performance within Africa and between Africa and the rest of the world, and Globus Online has been rolled out to facilitate data transfer. A participant recruitment database was developed to monitor participant enrollment, and data is being harmonized through the use of ontologies and controlled vocabularies. The standardized metadata will be integrated to provide a search facility for H3Africa data and biospecimens. Because H3Africa projects are generating large-scale genomic data, facilities for analysis and interpretation are critical. H3ABioNet is implementing several data analysis platforms that provide a large range of bioinformatics tools or workflows, such as Galaxy, the Job Management System, and eBiokits. A set of reproducible, portable, and cloud-scalable pipelines to support the multiple H3Africa data types are also being developed and dockerized to enable execution on multiple computing infrastructures. In addition, new tools have been developed for analysis of the uniquely divergent African data and for

  20. Investigation into the effect of infrastructure on fly-in fly-out mining workers.

    PubMed

    Perring, Adam; Pham, Kieu; Snow, Steve; Buys, Laurie

    2014-12-01

    To explore fly-in fly-out (FIFO) mining workers' attitudes towards the leisure time they spend in mining camps, the recreational and social aspects of mining camp culture, the camps' communal and recreational infrastructure and activities, and implications for health. In-depth semistructured interviews. Individual interviews at locations convenient for each participant. A total of seven participants, one female and six males. The age group varied within 20-59 years. Marital status varied across participants. A qualitative approach was used to interview participants, with responses thematically analysed. Findings highlight how the recreational infrastructure and activities at mining camps impact participants' enjoyment of the camps and their feelings of community and social inclusion. Three main areas of need were identified in the interviews, as follows: (i) on-site facilities and activities; (ii) the role of infrastructure in facilitating a sense of community; and (iii) barriers to social interaction. Recreational infrastructure and activities enhance the experience of FIFO workers at mining camps. The availability of quality recreational facilities helps promote social interaction, provides for greater social inclusion and improves the experience of mining camps for their temporary FIFO residents. The infrastructure also needs to allow for privacy and individual recreational activities, which participants identified as important emotional needs. Developing appropriate recreational infrastructure at mining camps would enhance social interactions among FIFO workers, improve their well-being and foster a sense of community. Introducing infrastructure to promote social and recreational activities could also reduce alcohol-related social exclusion. © 2014 National Rural Health Alliance Inc.

  1. Waste to Watts and Water: Enabling Self-Contained Facilities Using Microbial Fuel Cells

    DTIC Science & Technology

    2008-05-01

    suitable growing medium. LOC - Line of communications . Used in a military sense to indicate a main supply route. It includes transportation by ships...fresh water. Self-Contained Facilities - Facilities that do not rely on outside infrastructure or lines of communication for utilities such as water...require in future facilities is the ability to operate cleanly and efficiently apart from the infrastructure network and line of communications (LOCs) both

  2. Research infrastructure support to address ecosystem dynamics

    NASA Astrophysics Data System (ADS)

    Los, Wouter

    2014-05-01

    Predicting the evolution of ecosystems to climate change or human pressures is a challenge. Even understanding past or current processes is complicated as a result of the many interactions and feedbacks that occur within and between components of the system. This talk will present an example of current research on changes in landscape evolution, hydrology, soil biogeochemical processes, zoological food webs, and plant community succession, and how these affect feedbacks to components of the systems, including the climate system. Multiple observations, experiments, and simulations provide a wealth of data, but not necessarily understanding. Model development on the coupled processes on different spatial and temporal scales is sensitive for variations in data and of parameter change. Fast high performance computing may help to visualize the effect of these changes and the potential stability (and reliability) of the models. This may than allow for iteration between data production and models towards stable models reducing uncertainty and improving the prediction of change. The role of research infrastructures becomes crucial is overcoming barriers for such research. Environmental infrastructures are covering physical site facilities, dedicated instrumentation and e-infrastructure. The LifeWatch infrastructure for biodiversity and ecosystem research will provide services for data integration, analysis and modeling. But it has to cooperate intensively with the other kinds of infrastructures in order to support the iteration between data production and model computation. The cooperation in the ENVRI project (Common operations of environmental research infrastructures) is one of the initiatives to foster such multidisciplinary research.

  3. Sea Level Rise Impacts On Infrastructure Vulnerability

    NASA Astrophysics Data System (ADS)

    Pasqualini, D.; Mccown, A. W.; Backhaus, S.; Urban, N. M.

    2015-12-01

    Increase of global sea level is one of the potential consequences of climate change and represents a threat for the U.S.A coastal regions, which are highly populated and home of critical infrastructures. The potential danger caused by sea level rise may escalate if sea level rise is coupled with an increase in frequency and intensity of storms that may strike these regions. These coupled threats present a clear risk to population and critical infrastructure and are concerns for Federal, State, and particularly local response and recovery planners. Understanding the effect of sea level rise on the risk to critical infrastructure is crucial for long planning and for mitigating potential damages. In this work we quantify how infrastructure vulnerability to a range of storms changes due to an increase of sea level. Our study focuses on the Norfolk area of the U.S.A. We assess the direct damage of drinking water and wastewater facilities and the power sector caused by a distribution of synthetic hurricanes. In addition, our analysis estimates indirect consequences of these damages on population and economic activities accounting also for interdependencies across infrastructures. While projections unanimously indicate an increase in the rate of sea level rise, the scientific community does not agree on the size of this rate. Our risk assessment accounts for this uncertainty simulating a distribution of sea level rise for a specific climate scenario. Using our impact assessment results and assuming an increase of future hurricanes frequencies and intensities, we also estimate the expected benefits for critical infrastructure.

  4. Energy Systems Integration Facility (ESIF) Facility Stewardship Plan: Revision 2.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torres, Juan; Anderson, Art

    The U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), has established the Energy Systems Integration Facility (ESIF) on the campus of the National Renewable Energy Laboratory (NREL) and has designated it as a DOE user facility. This 182,500-ft2 research facility provides state-of-the-art laboratory and support infrastructure to optimize the design and performance of electrical, thermal, fuel, and information technologies and systems at scale. This Facility Stewardship Plan provides DOE and other decision makers with information about the existing and expected capabilities of the ESIF and the expected performance metrics to be applied to ESIF operations.more » This plan is a living document that will be updated and refined throughout the lifetime of the facility.« less

  5. When Money Matters: School Infrastructure Funding and Student Achievement

    ERIC Educational Resources Information Center

    Crampton, Faith E.; Thompson, David C.

    2011-01-01

    Today's school business officials are more aware than ever of the importance of making every dollar count. As they scour their budgets for possible savings, they may be tempted to reduce investment in school infrastructure, perhaps by deferring maintenance, renovations, and replacement of outdated facilities. However, school business officials…

  6. Implications of Intermodal Freight Movements for Infrastructure Access, Capacity, and Productivity

    DOT National Transportation Integrated Search

    1996-03-31

    This report evaluates the status of intermodal freight in the U.S. with reference to infrastructure access problems such as inadequate highway connectors and facility clearance, and terminal capacity constraints affecting levels of service. Though th...

  7. Capacity analysis of pedestrian facilities involving individuals with disabilities.

    DOT National Transportation Integrated Search

    2015-08-31

    Walking facilities are important infrastructures that must be designed to accommodate the behavior of pedestrians in order to be effective. Heterogeneity in pedestrian composition is one important factor generally overlooked in walking facility desig...

  8. Volcanic hazards at distant critical infrastructure: A method for bespoke, multi-disciplinary assessment

    NASA Astrophysics Data System (ADS)

    Odbert, H. M.; Aspinall, W.; Phillips, J.; Jenkins, S.; Wilson, T. M.; Scourse, E.; Sheldrake, T.; Tucker, P.; Nakeshree, K.; Bernardara, P.; Fish, K.

    2015-12-01

    Societies rely on critical services such as power, water, transport networks and manufacturing. Infrastructure may be sited to minimise exposure to natural hazards but not all can be avoided. The probability of long-range transport of a volcanic plume to a site is comparable to other external hazards that must be considered to satisfy safety assessments. Recent advances in numerical models of plume dispersion and stochastic modelling provide a formalized and transparent approach to probabilistic assessment of hazard distribution. To understand the risks to critical infrastructure far from volcanic sources, it is necessary to quantify their vulnerability to different hazard stressors. However, infrastructure assets (e.g. power plantsand operational facilities) are typically complex systems in themselves, with interdependent components that may differ in susceptibility to hazard impact. Usually, such complexity means that risk either cannot be estimated formally or that unsatisfactory simplifying assumptions are prerequisite to building a tractable risk model. We present a new approach to quantifying risk by bridging expertise of physical hazard modellers and infrastructure engineers. We use a joint expert judgment approach to determine hazard model inputs and constrain associated uncertainties. Model outputs are chosen on the basis of engineering or operational concerns. The procedure facilitates an interface between physical scientists, with expertise in volcanic hazards, and infrastructure engineers, with insight into vulnerability to hazards. The result is a joined-up approach to estimating risk from low-probability hazards to critical infrastructure. We describe our methodology and show preliminary results for vulnerability to volcanic hazards at a typical UK industrial facility. We discuss our findings in the context of developing bespoke assessment of hazards from distant sources in collaboration with key infrastructure stakeholders.

  9. Green infrastructure in high-rise residential development on steep slopes in city of Vladivostok

    NASA Astrophysics Data System (ADS)

    Kopeva, Alla; Ivanova, Olga; Khrapko, Olga

    2018-03-01

    The purpose of this study is to identify the facilities of green infrastructure that are able to improve living conditions in an urban environment in high-rise residential apartments buildings on steep slopes in the city of Vladivostok. Based on the analysis of theoretical sources and practices that can be observed in the world, green infrastructure facilities have been identified. These facilities meet the criteria of the sustainable development concept, and can be used in the city of Vladivostok. They include green roofs, green walls, and greening of disturbed slopes. All the existing high-rise apartments buildings situated on steep slopes in the city of Vladivostok, have been studied. It is concluded that green infrastructure is necessary to be used in new projects connected with designing and constructing of residential apartments buildings on steep slopes, as well as when upgrading the projects that have already been implemented. That will help to regulate the ecological characteristics of the sites. The results of the research can become a basis for increasing the sustainability of the habitat, and will facilitate the adoption of decisions in the field of urban design and planning.

  10. Health care network communications infrastructure: an engineering design for the Military Health Service System.

    PubMed

    Hoffman, P; Kline, E; George, L; Price, K; Clark, M; Walasin, R

    1995-01-01

    The Military Health Service System (MHSS) provides health care for the Department of Defense (DOD). This system operates on an annual budget of $15 Billion, supports 127 medical treatment facilities (MTFs) and 500 clinics, and provides support to 8.7 million beneficiaries worldwide. To support these facilities and their patients, the MHSS uses more than 125 different networked automated medical systems. These systems rely on a heterogeneous telecommunications infrastructure for data communications. With the support of the Defense Medical Information Management (DMIM) Program Office, our goal was to identify the network requirements for DMIM migration and target systems and design a communications infrastructure to support all systems with an integrated network. This work used tools from Business Process Reengineering (BPR) and applied it to communications infrastructure design for the first time. The methodology and results are applicable to any health care enterprise, military or civilian.

  11. Health care network communications infrastructure: an engineering design for the Military Health Service System.

    PubMed Central

    Hoffman, P.; Kline, E.; George, L.; Price, K.; Clark, M.; Walasin, R.

    1995-01-01

    The Military Health Service System (MHSS) provides health care for the Department of Defense (DOD). This system operates on an annual budget of $15 Billion, supports 127 medical treatment facilities (MTFs) and 500 clinics, and provides support to 8.7 million beneficiaries worldwide. To support these facilities and their patients, the MHSS uses more than 125 different networked automated medical systems. These systems rely on a heterogeneous telecommunications infrastructure for data communications. With the support of the Defense Medical Information Management (DMIM) Program Office, our goal was to identify the network requirements for DMIM migration and target systems and design a communications infrastructure to support all systems with an integrated network. This work used tools from Business Process Reengineering (BPR) and applied it to communications infrastructure design for the first time. The methodology and results are applicable to any health care enterprise, military or civilian. PMID:8563346

  12. The EPOS e-Infrastructure

    NASA Astrophysics Data System (ADS)

    Jeffery, Keith; Bailo, Daniele

    2014-05-01

    The European Plate Observing System (EPOS) is integrating geoscientific information concerning earth movements in Europe. We are approaching the end of the PP (Preparatory Project) phase and in October 2014 expect to continue with the full project within ESFRI (European Strategic Framework for Research Infrastructures). The key aspects of EPOS concern providing services to allow homogeneous access by end-users over heterogeneous data, software, facilities, equipment and services. The e-infrastructure of EPOS is the heart of the project since it integrates the work on organisational, legal, economic and scientific aspects. Following the creation of an inventory of relevant organisations, persons, facilities, equipment, services, datasets and software (RIDE) the scale of integration required became apparent. The EPOS e-infrastructure architecture has been developed systematically based on recorded primary (user) requirements and secondary (interoperation with other systems) requirements through Strawman, Woodman and Ironman phases with the specification - and developed confirmatory prototypes - becoming more precise and progressively moving from paper to implemented system. The EPOS architecture is based on global core services (Integrated Core Services - ICS) which access thematic nodes (domain-specific European-wide collections, called thematic Core Services - TCS), national nodes and specific institutional nodes. The key aspect is the metadata catalog. In one dimension this is described in 3 levels: (1) discovery metadata using well-known and commonly used standards such as DC (Dublin Core) to enable users (via an intelligent user interface) to search for objects within the EPOS environment relevant to their needs; (2) contextual metadata providing the context of the object described in the catalog to enable a user or the system to determine the relevance of the discovered object(s) to their requirement - the context includes projects, funding, organisations

  13. Improving water, sanitation and hygiene in health-care facilities, Liberia

    PubMed Central

    Montgomery, Maggie; Baller, April; Ndivo, Francis; Gasasira, Alex; Cooper, Catherine; Frescas, Ruben; Gordon, Bruce; Syed, Shamsuzzoha Babar

    2017-01-01

    Abstract Problem The lack of proper water and sanitation infrastructures and poor hygiene practices in health-care facilities reduces facilities’ preparedness and response to disease outbreaks and decreases the communities’ trust in the health services provided. Approach To improve water and sanitation infrastructures and hygiene practices, the Liberian health ministry held multistakeholder meetings to develop a national water, sanitation and hygiene and environmental health package. A national train-the-trainer course was held for county environmental health technicians, which included infection prevention and control focal persons; the focal persons acted as change agents. Local setting In Liberia, only 45% of 701 surveyed health-care facilities had an improved water source in 2015, and only 27% of these health-care facilities had proper disposal for infectious waste. Relevant changes Local ownership, through engagement of local health workers, was introduced to ensure development and refinement of the package. In-county collaborations between health-care facilities, along with multisectoral collaboration, informed national level direction, which led to increased focus on water and sanitation infrastructures and uptake of hygiene practices to improve the overall quality of service delivery. Lessons learnt National level leadership was important to identify a vision and create an enabling environment for changing the perception of water, sanitation and hygiene in health-care provision. The involvement of health workers was central to address basic infrastructure and hygiene practices in health-care facilities and they also worked as stimulators for sustainable change. Further, developing a long-term implementation plan for national level initiatives is important to ensure sustainability. PMID:28670017

  14. XML Based Scientific Data Management Facility

    NASA Technical Reports Server (NTRS)

    Mehrotra, Piyush; Zubair, M.; Ziebartt, John (Technical Monitor)

    2001-01-01

    The World Wide Web consortium has developed an Extensible Markup Language (XML) to support the building of better information management infrastructures. The scientific computing community realizing the benefits of HTML has designed markup languages for scientific data. In this paper, we propose a XML based scientific data management facility, XDMF. The project is motivated by the fact that even though a lot of scientific data is being generated, it is not being shared because of lack of standards and infrastructure support for discovering and transforming the data. The proposed data management facility can be used to discover the scientific data itself, the transformation functions, and also for applying the required transformations. We have built a prototype system of the proposed data management facility that can work on different platforms. We have implemented the system using Java, and Apache XSLT engine Xalan. To support remote data and transformation functions, we had to extend the XSLT specification and the Xalan package.

  15. XML Based Scientific Data Management Facility

    NASA Technical Reports Server (NTRS)

    Mehrotra, P.; Zubair, M.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    The World Wide Web consortium has developed an Extensible Markup Language (XML) to support the building of better information management infrastructures. The scientific computing community realizing the benefits of XML has designed markup languages for scientific data. In this paper, we propose a XML based scientific data management ,facility, XDMF. The project is motivated by the fact that even though a lot of scientific data is being generated, it is not being shared because of lack of standards and infrastructure support for discovering and transforming the data. The proposed data management facility can be used to discover the scientific data itself, the transformation functions, and also for applying the required transformations. We have built a prototype system of the proposed data management facility that can work on different platforms. We have implemented the system using Java, and Apache XSLT engine Xalan. To support remote data and transformation functions, we had to extend the XSLT specification and the Xalan package.

  16. The home hemodialysis hub: physical infrastructure and integrated governance structure.

    PubMed

    Marshall, Mark R; Young, Bessie A; Fox, Sally J; Cleland, Calli J; Walker, Robert J; Masakane, Ikuto; Herold, Aaron M

    2015-04-01

    An effective home hemodialysis program critically depends on adequate hub facilities and support functions and on transparent and accountable organizational processes. The likelihood of optimal service delivery and patient care will be enhanced by fit-for-purpose facilities and implementation of a well-considered governance structure. In this article, we describe the required accommodation and infrastructure for a home hemodialysis program and a generic organizational structure that will support both patient-facing clinical activities and business processes. © 2015 International Society for Hemodialysis.

  17. Truckers' parking/rest facility study.

    DOT National Transportation Integrated Search

    2008-07-01

    This study examined the current state of truck parking and rest area facilities in the Northeast Illinois Region to determine if : and how problems from truck parking affect freight transportation infrastructure, safety, and the regions economy an...

  18. Assessing the uptake of persistent identifiers by research infrastructure users

    PubMed Central

    Maull, Keith E.

    2017-01-01

    Significant progress has been made in the past few years in the development of recommendations, policies, and procedures for creating and promoting citations to data sets, software, and other research infrastructures like computing facilities. Open questions remain, however, about the extent to which referencing practices of authors of scholarly publications are changing in ways desired by these initiatives. This paper uses four focused case studies to evaluate whether research infrastructures are being increasingly identified and referenced in the research literature via persistent citable identifiers. The findings of the case studies show that references to such resources are increasing, but that the patterns of these increases are variable. In addition, the study suggests that citation practices for data sets may change more slowly than citation practices for software and research facilities, due to the inertia of existing practices for referencing the use of data. Similarly, existing practices for acknowledging computing support may slow the adoption of formal citations for computing resources. PMID:28394907

  19. A Study to Compare the Failure Rates of Current Space Shuttle Ground Support Equipment with the New Pathfinder Equipment and Investigate the Effect that the Proposed GSE Infrastructure Upgrade Might Have to Reduce GSE Infrastructure Failures

    NASA Technical Reports Server (NTRS)

    Kennedy, Barbara J.

    2004-01-01

    The purposes of this study are to compare the current Space Shuttle Ground Support Equipment (GSE) infrastructure with the proposed GSE infrastructure upgrade modification. The methodology will include analyzing the first prototype installation equipment at Launch PAD B called the "Pathfinder". This study will begin by comparing the failure rate of the current components associated with the "Hardware interface module (HIM)" at the Kennedy Space Center to the failure rate of the neW Pathfinder components. Quantitative data will be gathered specifically on HIM components and the PAD B Hypergolic Fuel facility and Hypergolic Oxidizer facility areas which has the upgraded pathfinder equipment installed. The proposed upgrades include utilizing industrial controlled modules, software, and a fiber optic network. The results of this study provide evidence that there is a significant difference in the failure rates of the two studied infrastructure equipment components. There is also evidence that the support staff for each infrastructure system is not equal. A recommendation to continue with future upgrades is based on a significant reduction of failures in the new' installed ground system components.

  20. Assessing Terrorist Motivations for Attacking Critical Infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackerman, G; Abhayaratne, P; Bale, J

    Certain types of infrastructure--critical infrastructure (CI)--play vital roles in underpinning our economy, security and way of life. These complex and often interconnected systems have become so ubiquitous and essential to day-to-day life that they are easily taken for granted. Often it is only when the important services provided by such infrastructure are interrupted--when we lose easy access to electricity, health care, telecommunications, transportation or water, for example--that we are conscious of our great dependence on these networks and of the vulnerabilities that stem from such dependence. Unfortunately, it must be assumed that many terrorists are all too aware that CImore » facilities pose high-value targets that, if successfully attacked, have the potential to dramatically disrupt the normal rhythm of society, cause public fear and intimidation, and generate significant publicity. Indeed, revelations emerging at the time of this writing about Al Qaida's efforts to prepare for possible attacks on major financial facilities in New York, New Jersey, and the District of Columbia remind us just how real and immediate such threats to CI may be. Simply being aware that our nation's critical infrastructure presents terrorists with a plethora of targets, however, does little to mitigate the dangers of CI attacks. In order to prevent and preempt such terrorist acts, better understanding of the threats and vulnerabilities relating to critical infrastructure is required. The Center for Nonproliferation Studies (CNS) presents this document as both a contribution to the understanding of such threats and an initial effort at ''operationalizing'' its findings for use by analysts who work on issues of critical infrastructure protection. Specifically, this study focuses on a subsidiary aspect of CI threat assessment that has thus far remained largely unaddressed by contemporary terrorism research: the motivations and related factors that determine whether a

  1. Infrastructure sensing.

    PubMed

    Soga, Kenichi; Schooling, Jennifer

    2016-08-06

    Design, construction, maintenance and upgrading of civil engineering infrastructure requires fresh thinking to minimize use of materials, energy and labour. This can only be achieved by understanding the performance of the infrastructure, both during its construction and throughout its design life, through innovative monitoring. Advances in sensor systems offer intriguing possibilities to radically alter methods of condition assessment and monitoring of infrastructure. In this paper, it is hypothesized that the future of infrastructure relies on smarter information; the rich information obtained from embedded sensors within infrastructure will act as a catalyst for new design, construction, operation and maintenance processes for integrated infrastructure systems linked directly with user behaviour patterns. Some examples of emerging sensor technologies for infrastructure sensing are given. They include distributed fibre-optics sensors, computer vision, wireless sensor networks, low-power micro-electromechanical systems, energy harvesting and citizens as sensors.

  2. CLIMB (the Cloud Infrastructure for Microbial Bioinformatics): an online resource for the medical microbiology community

    PubMed Central

    Smith, Andy; Southgate, Joel; Poplawski, Radoslaw; Bull, Matthew J.; Richardson, Emily; Ismail, Matthew; Thompson, Simon Elwood-; Kitchen, Christine; Guest, Martyn; Bakke, Marius

    2016-01-01

    The increasing availability and decreasing cost of high-throughput sequencing has transformed academic medical microbiology, delivering an explosion in available genomes while also driving advances in bioinformatics. However, many microbiologists are unable to exploit the resulting large genomics datasets because they do not have access to relevant computational resources and to an appropriate bioinformatics infrastructure. Here, we present the Cloud Infrastructure for Microbial Bioinformatics (CLIMB) facility, a shared computing infrastructure that has been designed from the ground up to provide an environment where microbiologists can share and reuse methods and data. PMID:28785418

  3. CLIMB (the Cloud Infrastructure for Microbial Bioinformatics): an online resource for the medical microbiology community.

    PubMed

    Connor, Thomas R; Loman, Nicholas J; Thompson, Simon; Smith, Andy; Southgate, Joel; Poplawski, Radoslaw; Bull, Matthew J; Richardson, Emily; Ismail, Matthew; Thompson, Simon Elwood-; Kitchen, Christine; Guest, Martyn; Bakke, Marius; Sheppard, Samuel K; Pallen, Mark J

    2016-09-01

    The increasing availability and decreasing cost of high-throughput sequencing has transformed academic medical microbiology, delivering an explosion in available genomes while also driving advances in bioinformatics. However, many microbiologists are unable to exploit the resulting large genomics datasets because they do not have access to relevant computational resources and to an appropriate bioinformatics infrastructure. Here, we present the Cloud Infrastructure for Microbial Bioinformatics (CLIMB) facility, a shared computing infrastructure that has been designed from the ground up to provide an environment where microbiologists can share and reuse methods and data.

  4. Romanian contribution to research infrastructure database for EPOS

    NASA Astrophysics Data System (ADS)

    Ionescu, Constantin; Craiu, Andreea; Tataru, Dragos; Balan, Stefan; Muntean, Alexandra; Nastase, Eduard; Oaie, Gheorghe; Asimopolos, Laurentiu; Panaiotu, Cristian

    2014-05-01

    European Plate Observation System - EPOS is a long-term plan to facilitate integrated use of data, models and facilities from mainly distributed existing, but also new, research infrastructures for solid Earth Science. In EPOS Preparatory Phase were integrated the national Research Infrastructures at pan European level in order to create the EPOS distributed research infrastructures, structure in which, at the present time, Romania participates by means of the earth science research infrastructures of the national interest declared on the National Roadmap. The mission of EPOS is to build an efficient and comprehensive multidisciplinary research platform for solid Earth Sciences in Europe and to allow the scientific community to study the same phenomena from different points of view, in different time periods and spatial scales (laboratory and field experiments). At national scale, research and monitoring infrastructures have gathered a vast amount of geological and geophysical data, which have been used by research networks to underpin our understanding of the Earth. EPOS promotes the creation of comprehensive national and regional consortia, as well as the organization of collective actions. To serve the EPOS goals, in Romania a group of National Research Institutes, together with their infrastructures, gathered in an EPOS National Consortium, as follows: 1. National Institute for Earth Physics - Seismic, strong motion, GPS and Geomagnetic network and Experimental Laboratory; 2. National Institute of Marine Geology and Geoecology - Marine Research infrastructure and Euxinus integrated regional Black Sea observation and early-warning system; 3. Geological Institute of Romania - Surlari National Geomagnetic Observatory and National lithoteque (the latter as part of the National Museum of Geology) 4. University of Bucharest - Paleomagnetic Laboratory After national dissemination of EPOS initiative other Research Institutes and companies from the potential

  5. Infrastructures for Distributed Computing: the case of BESIII

    NASA Astrophysics Data System (ADS)

    Pellegrino, J.

    2018-05-01

    The BESIII is an electron-positron collision experiment hosted at BEPCII in Beijing and aimed to investigate Tau-Charm physics. Now BESIII has been running for several years and gathered more than 1PB raw data. In order to analyze these data and perform massive Monte Carlo simulations, a large amount of computing and storage resources is needed. The distributed computing system is based up on DIRAC and it is in production since 2012. It integrates computing and storage resources from different institutes and a variety of resource types such as cluster, grid, cloud or volunteer computing. About 15 sites from BESIII Collaboration from all over the world joined this distributed computing infrastructure, giving a significant contribution to the IHEP computing facility. Nowadays cloud computing is playing a key role in the HEP computing field, due to its scalability and elasticity. Cloud infrastructures take advantages of several tools, such as VMDirac, to manage virtual machines through cloud managers according to the job requirements. With the virtually unlimited resources from commercial clouds, the computing capacity could scale accordingly in order to deal with any burst demands. General computing models have been discussed in the talk and are addressed herewith, with particular focus on the BESIII infrastructure. Moreover new computing tools and upcoming infrastructures will be addressed.

  6. Infrastructure sensing

    PubMed Central

    Soga, Kenichi; Schooling, Jennifer

    2016-01-01

    Design, construction, maintenance and upgrading of civil engineering infrastructure requires fresh thinking to minimize use of materials, energy and labour. This can only be achieved by understanding the performance of the infrastructure, both during its construction and throughout its design life, through innovative monitoring. Advances in sensor systems offer intriguing possibilities to radically alter methods of condition assessment and monitoring of infrastructure. In this paper, it is hypothesized that the future of infrastructure relies on smarter information; the rich information obtained from embedded sensors within infrastructure will act as a catalyst for new design, construction, operation and maintenance processes for integrated infrastructure systems linked directly with user behaviour patterns. Some examples of emerging sensor technologies for infrastructure sensing are given. They include distributed fibre-optics sensors, computer vision, wireless sensor networks, low-power micro-electromechanical systems, energy harvesting and citizens as sensors. PMID:27499845

  7. The computing and data infrastructure to interconnect EEE stations

    NASA Astrophysics Data System (ADS)

    Noferini, F.; EEE Collaboration

    2016-07-01

    The Extreme Energy Event (EEE) experiment is devoted to the search of high energy cosmic rays through a network of telescopes installed in about 50 high schools distributed throughout the Italian territory. This project requires a peculiar data management infrastructure to collect data registered in stations very far from each other and to allow a coordinated analysis. Such an infrastructure is realized at INFN-CNAF, which operates a Cloud facility based on the OpenStack opensource Cloud framework and provides Infrastructure as a Service (IaaS) for its users. In 2014 EEE started to use it for collecting, monitoring and reconstructing the data acquired in all the EEE stations. For the synchronization between the stations and the INFN-CNAF infrastructure we used BitTorrent Sync, a free peer-to-peer software designed to optimize data syncronization between distributed nodes. All data folders are syncronized with the central repository in real time to allow an immediate reconstruction of the data and their publication in a monitoring webpage. We present the architecture and the functionalities of this data management system that provides a flexible environment for the specific needs of the EEE project.

  8. Education Facilities Sector-Specific Plan: An Annex to the Government Facilities Sector-Specific Plan

    ERIC Educational Resources Information Center

    US Department of Homeland Security, 2010

    2010-01-01

    Critical infrastructure and key resources (CIKR) provide the essential services that support basic elements of American society. Compromise of these CIKR could disrupt key government and industry activities, facilities, and systems, producing cascading effects throughout the Nation's economy and society and profoundly affecting the national…

  9. EUDAT: A New Cross-Disciplinary Data Infrastructure For Science

    NASA Astrophysics Data System (ADS)

    Lecarpentier, Damien; Michelini, Alberto; Wittenburg, Peter

    2013-04-01

    In recent years significant investments have been made by the European Commission and European member states to create a pan-European e-Infrastructure supporting multiple research communities. As a result, a European e-Infrastructure ecosystem is currently taking shape, with communication networks, distributed grids and HPC facilities providing European researchers from all fields with state-of-the-art instruments and services that support the deployment of new research facilities on a pan-European level. However, the accelerated proliferation of data - newly available from powerful new scientific instruments, simulations and the digitization of existing resources - has created a new impetus for increasing efforts and investments in order to tackle the specific challenges of data management, and to ensure a coherent approach to research data access and preservation. EUDAT is a pan-European initiative that started in October 2011 and which aims to help overcome these challenges by laying out the foundations of a Collaborative Data Infrastructure (CDI) in which centres offering community-specific support services to their users could rely on a set of common data services shared between different research communities. Although research communities from different disciplines have different ambitions and approaches - particularly with respect to data organization and content - they also share many basic service requirements. This commonality makes it possible for EUDAT to establish common data services, designed to support multiple research communities, as part of this CDI. During the first year, EUDAT has been reviewing the approaches and requirements of a first subset of communities from linguistics (CLARIN), solid earth sciences (EPOS), climate sciences (ENES), environmental sciences (LIFEWATCH), and biological and medical sciences (VPH), and shortlisted four generic services to be deployed as shared services on the EUDAT infrastructure. These services are data

  10. Facilities of the Future

    ERIC Educational Resources Information Center

    Grayson, Jennifer

    2009-01-01

    The bricks-and-mortar infrastructure of community colleges has not nearly kept pace with increases in student enrollments. Not only are colleges bursting at the proverbial seams, but, according to the American Graduation Initiative, many two-year institutions "face large needs due to deferred maintenance or lack the modern facilities and…

  11. Science and Technology Facilities

    ERIC Educational Resources Information Center

    Moonen, Jean-Marie; Buono, Nicolas; Handfield, Suzanne

    2004-01-01

    These four articles relate to science and technology infrastructure for secondary and tertiary institutions. The first article presents a view on approaches to teaching science in school and illustrates ideal science facilities for secondary education. The second piece reports on work underway to improve the Science Complex at the "Universite…

  12. Cloud computing can simplify HIT infrastructure management.

    PubMed

    Glaser, John

    2011-08-01

    Software as a Service (SaaS), built on cloud computing technology, is emerging as the forerunner in IT infrastructure because it helps healthcare providers reduce capital investments. Cloud computing leads to predictable, monthly, fixed operating expenses for hospital IT staff. Outsourced cloud computing facilities are state-of-the-art data centers boasting some of the most sophisticated networking equipment on the market. The SaaS model helps hospitals safeguard against technology obsolescence, minimizes maintenance requirements, and simplifies management.

  13. Quantifying surgical and anesthetic availability at primary health facilities in Mongolia.

    PubMed

    Spiegel, David A; Choo, Shelly; Cherian, Meena; Orgoi, Sergelen; Kehrer, Beat; Price, Raymond R; Govind, Salik

    2011-02-01

    Significant barriers limit the safe and timely provision of surgical and anaesthetic care in low- and middle-income countries. Nearly one-half of Mongolia's population resides in rural areas where the austere geography makes travel for adequate surgical care very difficult. Our goal was to characterize the availability of surgical and anaesthetic services, in terms of infrastructure capability, physical resources (supplies and equipment), and human resources for health at primary level health facilities in Mongolia. A situational analysis of the capacity to deliver emergency and essential surgical care (EESC) was performed in a nonrandom sample of 44 primary health facilities throughout Mongolia. Significant shortfalls were noted in the capacity to deliver surgical and anesthetic services. Deficiencies in infrastructure and supplies were common, and there were no trained surgeons or anaesthesiologists at any of the health facilities sampled. Most procedures were performed by general doctors and paraprofessionals, and occasionally visiting surgeons from higher levels of the health system. While basic interventions such as suturing or abscess drainage were commonly performed, the availability of many essential interventions was absent at a significant number of facilities. This situational analysis of the availability of essential surgical and anesthetic services identified significant deficiencies in infrastructure, supplies, and equipment, as well as a lack of human resources at the primary referral level facilities in Mongolia. Given the significant travel distances to secondary level facilities for the majority of the rural population, there is an urgent need to strengthen the delivery of essential surgical and anaesthetic services at the primary referral level (soum and intersoum). This will require a multidisciplinary, multi-sectoral effort aimed to improve infrastructure, procure and maintain essential equipment and supplies, and train appropriate health

  14. The dependence of educational infrastructure on clinical infrastructure.

    PubMed Central

    Cimino, C.

    1998-01-01

    The Albert Einstein College of Medicine needed to assess the growth of its infrastructure for educational computing as a first step to determining if student needs were being met. Included in computing infrastructure are space, equipment, software, and computing services. The infrastructure was assessed by reviewing purchasing and support logs for a six year period from 1992 to 1998. This included equipment, software, and e-mail accounts provided to students and to faculty for educational purposes. Student space has grown at a constant rate (averaging 14% increase each year respectively). Student equipment on campus has grown by a constant amount each year (average 8.3 computers each year). Student infrastructure off campus and educational support of faculty has not kept pace. It has either declined or remained level over the six year period. The availability of electronic mail clearly demonstrates this with accounts being used by 99% of students, 78% of Basic Science Course Leaders, 38% of Clerkship Directors, 18% of Clerkship Site Directors, and 8% of Clinical Elective Directors. The collection of the initial descriptive infrastructure data has revealed problems that may generalize to other medical schools. The discrepancy between infrastructure available to students and faculty on campus and students and faculty off campus creates a setting where students perceive a paradoxical declining support for computer use as they progress through medical school. While clinical infrastructure may be growing, it is at the expense of educational infrastructure at affiliate hospitals. PMID:9929262

  15. MOEMS industrial infrastructure

    NASA Astrophysics Data System (ADS)

    van Heeren, Henne; Paschalidou, Lia

    2004-08-01

    Forecasters and analysts predict the market size for microsystems and microtechnologies to be in the order of 68 billion by the year 2005 (NEXUS Market Study 2002). In essence, the market potential is likely to double in size from its 38 billion status in 2002. According to InStat/MDR the market for MOEMS (Micro Optical Electro Mechanical Systems) in optical communication will be over $1.8 billion in 2006 and WTC states that the market for non telecom MOEMS will be even larger. Underpinning this staggering growth will be an infrastructure of design houses, foundries, package/assembly providers and equipment suppliers to cater for the demand in design, prototyping, and (mass-) production. This infrastructure is needed to provide an efficient route to commercialisation. Foundries, which provide the infrastructure to prototype, fabricate and mass-produce the designs emanating from the design houses and other companies. The reason for the customers to rely on foundries can be diverse: ranging from pure economical reasons (investments, cost-price) to technical (availability of required technology). The desire to have a second source of supply can also be a reason for outsourcing. Foundries aim to achieve economies of scale by combining several customer orders into volume production. Volumes are necessary, not only to achieve the required competitive cost prices, but also to attain the necessary technical competence level. Some products that serve very large markets can reach such high production volumes that they are able to sustain dedicated factories. In such cases, captive supply is possible, although outsourcing is still an option, as can be seen in the magnetic head markets, where captive and non-captive suppliers operate alongside each other. The most striking examples are: inkjet heads (>435 million heads per year) and magnetic heads (>1.5 billion heads per year). Also pressure sensor and accelerometer producers can afford their own facilities to produce the

  16. Adequate & Equitable U.S. PK-12 Infrastructure: Priority Actions for Systemic Reform. A Report from the Planning for PK-12 School Infrastructure National Initiative

    ERIC Educational Resources Information Center

    Filardo, Mary; Vincent, Jeffrey M.

    2017-01-01

    To formulate a "systems-based" plan to address the PK-12 infrastructure crisis, in 2016, the 21st Century School Fund (21CSF) and the University of California-Berkeley's Center for Cities + Schools (CC+S), in partnership with the National Council on School Facilities and the Center for Green Schools at the U.S. Green Building Council,…

  17. Availability of Youth Services in U.S. Mental Health Treatment Facilities

    PubMed Central

    Cummings, Janet R.; Case, Brady G.; Ji, Xu; Marcus, Steven C.

    2015-01-01

    Despite concern about access to mental health (MH) services for youth, little is known about the specialty treatment infrastructure serving this population. We used national data to examine which types of MH treatment facilities (hospital- and community-based) were most likely to offer youth services and which types of communities were most likely to have this infrastructure. Larger (p<0.001) and privately owned (p<0.001) facilities were more likely to offer youth services. Rural counties, counties in which a majority of residents were nonwhite, and/or counties with a higher percentage of uninsured residents were less likely to have a community-based MH treatment facility that served youth (p<0.001). PMID:26467795

  18. Availability of Youth Services in U.S. Mental Health Treatment Facilities.

    PubMed

    Cummings, Janet R; Case, Brady G; Ji, Xu; Marcus, Steven C

    2016-09-01

    Despite concern about access to mental health (MH) services for youth, little is known about the specialty treatment infrastructure serving this population. We used national data to examine which types of MH treatment facilities (hospital- and community-based) were most likely to offer youth services and which types of communities were most likely to have this infrastructure. Larger (p < 0.001) and privately owned (p < 0.001) facilities were more likely to offer youth services. Rural counties, counties in which a majority of residents were nonwhite, and/or counties with a higher percentage of uninsured residents were less likely to have a community-based MH treatment facility that served youth (p < 0.001).

  19. Access to emergency and surgical care in sub-Saharan Africa: the infrastructure gap.

    PubMed

    Hsia, Renee Y; Mbembati, Naboth A; Macfarlane, Sarah; Kruk, Margaret E

    2012-05-01

    The effort to increase access to emergency and surgical care in low-income countries has received global attention. While most of the literature on this issue focuses on workforce challenges, it is critical to recognize infrastructure gaps that hinder the ability of health systems to make emergency and surgical care a reality. This study reviews key barriers to the provision of emergency and surgical care in sub-Saharan Africa using aggregate data from the Service Provision Assessments and Demographic and Health Surveys of five countries: Ghana, Kenya, Rwanda, Tanzania and Uganda. For hospitals and health centres, competency was assessed in six areas: basic infrastructure, equipment, medicine storage, infection control, education and quality control. Percentage of compliant facilities in each country was calculated for each of the six areas to facilitate comparison of hospitals and health centres across the five countries. The percentage of hospitals with dependable running water and electricity ranged from 22% to 46%. In countries analysed, only 19-50% of hospitals had the ability to provide 24-hour emergency care. For storage of medication, only 18% to 41% of facilities had unexpired drugs and current inventories. Availability of supplies to control infection and safely dispose of hazardous waste was generally poor (less than 50%) across all facilities. As few as 14% of hospitals (and as high as 76%) among those surveyed had training and supervision in place. No surveyed hospital had enough infrastructure to follow minimum standards and practices that the World Health Organization has deemed essential for the provision of emergency and surgical care. The countries where these hospitals are located may be representative of other low-income countries in sub-Saharan Africa. Thus, the results suggest that increased attention to building up the infrastructure within struggling health systems is necessary for improvements in global access to medical care.

  20. LAGUNA DESIGN STUDY, Underground infrastructures and engineering

    NASA Astrophysics Data System (ADS)

    Nuijten, Guido Alexander

    2011-07-01

    The European Commission has awarded the LAGUNA project a grant of 1.7 million euro for a Design Study from the seventh framework program of research and technology development (FP7-INFRASTRUCTURES - 2007-1) in 2008. The purpose of this two year work is to study the feasibility of the considered experiments and prepare a conceptual design of the required underground infrastructure. It is due to deliver a report that allows the funding agencies to decide on the realization of the experiment and to select the site and the technology. The result of this work is the first step towards fulfilling the goals of LAGUNA. The work will continue with EU funding to study the possibilities more thoroughly. The LAGUNA project is included in the future plans prepared by European funding organizations. (Astroparticle physics in Europe). It is recommended that a new large European infrastructure is put forward, as a future international multi-purpose facility for improved studies on proton decay and low-energy neutrinos from astrophysical origin. The three detection techniques being studied for such large detectors in Europe, Water-Cherenkov (like MEMPHYS), liquid scintillator (like LENA) and liquid argon (like GLACIER), are evaluated in the context of a common design study which should also address the underground infrastructure and the possibility of an eventual detection of future accelerator neutrino beams. The design study is also to take into account worldwide efforts and converge, on a time scale of 2010, to a common proposal.

  1. Development and implementation of web based infrastructure for problem management at UNPRI

    NASA Astrophysics Data System (ADS)

    WijayaDewantoro, Rico; Wardani, Sumita; Rudy; Surya Perdana Girsang, Batara; Dharma, Abdi

    2018-04-01

    Information technology drastically affects human way of thinking. It has entered every part of human life and also became one of the most significant contributors to make human life more manageable. Reporting a problem of facilities and infrastructure in Universitas Prima Indonesia was done manually where the complainant have to meet the responsible person directly and describe how the problem looks like. Then, the responsible person only solve the problem but have no good documentation on it like Five Ws and How. Moreover, the other issue is to avoid a person who is mischievous for giving false reports. In this paper, we applied a set of procedures called Universitas Prima Indonesia Problem Management System (UNPRI-PMS) which also integrated with academic information system. Implemetation of UNPRI-PMS affects all of the problems about facilities and infrastructure at Universitas Prima Indonesia can be solved more efficient, structured, and accurate.

  2. Developing measurement indices to enhance protection and resilience of critical infrastructure and key resources.

    PubMed

    Fisher, Ronald E; Norman, Michael

    2010-07-01

    The US Department of Homeland Security (DHS) is developing indices to better assist in the risk management of critical infrastructures. The first of these indices is the Protective Measures Index - a quantitative index that measures overall protection across component categories: physical security, security management, security force, information sharing, protective measures and dependencies. The Protective Measures Index, which can also be recalculated as the Vulnerability Index, is a way to compare differing protective measures (eg fence versus security training). The second of these indices is the Resilience Index, which assesses a site's resilience and consists of three primary components: robustness, resourcefulness and recovery. The third index is the Criticality Index, which assesses the importance of a facility. The Criticality Index includes economic, human, governance and mass evacuation impacts. The Protective Measures Index, Resilience Index and Criticality Index are being developed as part of the Enhanced Critical Infrastructure Protection initiative that DHS protective security advisers implement across the nation at critical facilities. This paper describes two core themes: determination of the vulnerability, resilience and criticality of a facility and comparison of the indices at different facilities.

  3. New Geodetic Infrastructure for Australia: The NCRIS / AuScope Geospatial Component

    NASA Astrophysics Data System (ADS)

    Tregoning, P.; Watson, C. S.; Coleman, R.; Johnston, G.; Lovell, J.; Dickey, J.; Featherstone, W. E.; Rizos, C.; Higgins, M.; Priebbenow, R.

    2009-12-01

    In November 2006, the Australian Federal Government announced AUS15.8M in funding for geospatial research infrastructure through the National Collaborative Research Infrastructure Strategy (NCRIS). Funded within a broader capability area titled ‘Structure and Evolution of the Australian Continent’, NCRIS has provided a significant investment across Earth imaging, geochemistry, numerical simulation and modelling, the development of a virtual core library, and geospatial infrastructure. Known collectively as AuScope (www.auscope.org.au), this capability area has brought together Australian’s leading Earth scientists to decide upon the most pressing scientific issues and infrastructure needs for studying Earth systems and their impact on the Australian continent. Importantly and at the same time, the investment in geospatial infrastructure offers the opportunity to raise Australian geodetic science capability to the highest international level into the future. The geospatial component of AuScope builds onto the AUS15.8M of direct funding through the NCRIS process with significant in-kind and co-investment from universities and State/Territory and Federal government departments. The infrastructure to be acquired includes an FG5 absolute gravimeter, three gPhone relative gravimeters, three 12.1 m radio telescopes for geodetic VLBI, a continent-wide network of continuously operating geodetic quality GNSS receivers, a trial of a mobile SLR system and access to updated cluster computing facilities. We present an overview of the AuScope geospatial capability, review the current status of the infrastructure procurement and discuss some examples of the scientific research that will utilise the new geospatial infrastructure.

  4. Quantifying habitat impacts of natural gas infrastructure to facilitate biodiversity offsetting.

    PubMed

    Jones, Isabel L; Bull, Joseph W; Milner-Gulland, Eleanor J; Esipov, Alexander V; Suttle, Kenwyn B

    2014-01-01

    Habitat degradation through anthropogenic development is a key driver of biodiversity loss. One way to compensate losses is "biodiversity offsetting" (wherein biodiversity impacted is "replaced" through restoration elsewhere). A challenge in implementing offsets, which has received scant attention in the literature, is the accurate determination of residual biodiversity losses. We explore this challenge for offsetting gas extraction in the Ustyurt Plateau, Uzbekistan. Our goal was to determine the landscape extent of habitat impacts, particularly how the footprint of "linear" infrastructure (i.e. roads, pipelines), often disregarded in compensation calculations, compares with "hub" infrastructure (i.e. extraction facilities). We measured vegetation cover and plant species richness using the line-intercept method, along transects running from infrastructure/control sites outward for 500 m, accounting for wind direction to identify dust deposition impacts. Findings from 24 transects were extrapolated to the broader plateau by mapping total landscape infrastructure network using GPS data and satellite imagery. Vegetation cover and species richness were significantly lower at development sites than controls. These differences disappeared within 25 m of the edge of the area physically occupied by infrastructure. The current habitat footprint of gas infrastructure is 220 ± 19 km(2) across the Ustyurt (total ∼ 100,000 km(2)), 37 ± 6% of which is linear infrastructure. Vegetation impacts diminish rapidly with increasing distance from infrastructure, and localized dust deposition does not conspicuously extend the disturbance footprint. Habitat losses from gas extraction infrastructure cover 0.2% of the study area, but this reflects directly eliminated vegetation only. Impacts upon fauna pose a more difficult determination, as these require accounting for behavioral and demographic responses to disturbance by elusive mammals, including threatened species. This study

  5. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE): Conceptual Design Report. Volume 3: Long-Baseline Neutrino Facility for DUNE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strait, James; McCluskey, Elaine; Lundin, Tracy

    2016-01-21

    This volume of the LBNF/DUNE Conceptual Design Report covers the Long-Baseline Neutrino Facility for DUNE and describes the LBNF Project, which includes design and construction of the beamline at Fermilab, the conventional facilities at both Fermilab and SURF, and the cryostat and cryogenics infrastructure required for the DUNE far detector.

  6. Thoughts on Beijing's Long-Term Rural Infrastructure Management and Protection Issues from the Perspective of the Government to Effectively Perform Their Duties

    NASA Astrophysics Data System (ADS)

    Wang, Z.

    To strengthen rural infrastructure management, give full play to the role of benefit of infrastructure, it has important significance for promoting the development of rural economy and society. Protection-use and facility energy-use issues are outstanding during Beijing rural infrastructure management. The comprehensive and detailed analysis of the cause of the problems put forward the concrete feasible countermeasures from the government to fulfill the effective function to rural infrastructure: A clear property ownership; Implementation of special funds audit system of the rural infrastructure management; Implementation of rural infrastructure maintenance and management assessment methods and so on.

  7. 75 FR 60093 - Record of Decision for the United States Marine Corps Basewide Utilities Infrastructure Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-29

    ... construction, operation, and maintenance of utility infrastructure upgrades, expansions, and improvements... and wastewater facilities and road improvements to Range 130. All practical means to avoid or minimize...

  8. Higher Education Facilities: The SmartGrid Earns a Doctorate in Economics

    ERIC Educational Resources Information Center

    Tysseling, John C.; Zibelman, Audrey; Freifeld, Allen

    2011-01-01

    Most higher education facilities have already accomplished some measure of a "microgrid" investment with building control systems (BCS), energy management systems (EMS), and advanced metering infrastructure (AMI) installations. Available energy production facilities may include boilers, chillers, cogeneration, thermal storage, electrical…

  9. EU H2020 SERA: Seismology and Earthquake Engineering Research Infrastructure Alliance for Europe

    NASA Astrophysics Data System (ADS)

    Giardini, Domenico; Saleh, Kauzar; SERA Consortium, the

    2017-04-01

    SERA - Seismology and Earthquake Engineering Research Infrastructure Alliance for Europe - is a new infrastructure project awarded in the last Horizon 2020 call for Integrating Activities for Advanced Communities (INFRAIA-01-2016-2017). Building up on precursor projects like NERA, SHARE, NERIES, SERIES, etc., SERA is expected to contribute significantly to the access of data, services and research infrastructures, and to develop innovative solutions in seismology and earthquake engineering, with the overall objective of reducing the exposure to risks associated to natural and anthropogenic earthquakes. For instance, SERA will revise the European Seismic Hazard reference model for input in the current revision of the Eurocode 8 on Seismic Design of Buildings; we also foresee to develop the first comprehensive framework for seismic risk modeling at European scale, and to develop new standards for future experimental observations and instruments for earthquake engineering and seismology. To that aim, SERA is engaging 31 institutions across Europe with leading expertise in the operation of research facilities, monitoring infrastructures, data repositories and experimental facilities in the fields of seismology, anthropogenic hazards and earthquake engineering. SERA comprises 26 activities, including 5 Networking Activities (NA) to improve the availability and access of data through enhanced community coordination and pooling of resources, 6 Joint Research Activities (JRA) aimed at creating new European standards for the optimal use of the data collected by the European infrastructures, Virtual Access (VA) to the 5 main European services for seismology and engineering seismology, and Trans-national Access (TA) to 10 high-class experimental facilities for earthquake engineering and seismology in Europe. In fact, around 50% of the SERA resources will be dedicated to virtual and transnational access. SERA and EPOS (European Platform Observing System, a European Research

  10. Measuring facility capability to provide routine and emergency childbirth care to mothers and newborns: An appeal to adjust for delivery caseload of facilities

    PubMed Central

    Allen, Stephanie M.; Opondo, Charles; Campbell, Oona M. R.

    2017-01-01

    Background Measurement of Emergency Obstetric Care capability is common, and measurement of newborn and overall routine childbirth care has begun in recent years. These assessments of facility capabilities can be used to identify geographic inequalities in access to functional health services and to monitor improvements over time. This paper develops an approach for monitoring the childbirth environment that accounts for the delivery caseload of the facility. Methods We used data from the Kenya Service Provision Assessment to examine facility capability to provide quality childbirth care, including infrastructure, routine maternal and newborn care, and emergency obstetric and newborn care. A facility was considered capable of providing a function if necessary tracer items were present and, for emergency functions, if the function had been performed in the previous three months. We weighted facility capability by delivery caseload, and compared results with those generated using traditional “survey weights”. Results Of the 403 facilities providing childbirth care, the proportion meeting criteria for capability were: 13% for general infrastructure, 6% for basic emergency obstetric care, 3% for basic emergency newborn care, 13% and 11% for routine maternal and newborn care, respectively. When the new caseload weights accounting for delivery volume were applied, capability improved and the proportions of deliveries occurring in a facility meeting capability criteria were: 51% for general infrastructure, 46% for basic emergency obstetric care, 12% for basic emergency newborn care, 36% and 18% for routine maternal and newborn care, respectively. This is because most of the caseload was in hospitals, which generally had better capability. Despite these findings, fewer than 2% of deliveries occurred in a facility capable of providing all functions. Conclusion Reporting on the percentage of facilities capable of providing certain functions misrepresents the capacity to

  11. Fabulous Facilities: New Constructions and Renovations.

    ERIC Educational Resources Information Center

    American Libraries, 1997

    1997-01-01

    Renovation and construction projects in 18 public and academic libraries across the United States are showcased, with 23 photographs illustrating library interiors and exteriors. Discussion centers on architecture, costs, technology infrastructure and equipment, preservation of old facilities, furniture, and library functions. (AEF)

  12. Data discovery and data processing for environmental research infrastructures

    NASA Astrophysics Data System (ADS)

    Los, Wouter; Beranzoli, Laura; Corriero, Giuseppe; Cossu, Roberto; Fiore, Nicola; Hardisty, Alex; Legré, Yannick; Pagano, Pasquale; Puglisi, Giuseppe; Sorvari, Sanna; Turunen, Esa

    2013-04-01

    The European ENVRI project (Common operations of Environmental Research Infrastructures) is addressing common ICT solutions for the research infrastructures as selected in the ESFRI Roadmap. More specifically, the project is looking for solutions that will assist interdisciplinary users who want to benefit from the data and other services of more than a single research infrastructure. However, the infrastructure architectures, the data, data formats, scales and granularity are very different. Indeed, they deal with diverse scientific disciplines, from plate tectonics, the deep sea, sea and land surface up to atmosphere and troposphere, from the dead to the living environment, and with a variety of instruments producing increasingly larger amounts of data. One of the approaches in the ENVRI project is to design a common Reference Model that will serve to promote infrastructure interoperability at the data, technical and service levels. The analysis of the characteristics of the environmental research infrastructures assisted in developing the Reference Model, and which is also an example for comparable infrastructures worldwide. Still, it is for users already now important to have the facilities available for multi-disciplinary data discovery and data processing. The rise of systems research, addressing Earth as a single complex and coupled system is requiring such capabilities. So, another approach in the project is to adapt existing ICT solutions to short term applications. This is being tested for a few study cases. One of these is looking for possible coupled processes following a volcano eruption in the vertical column from deep sea to troposphere. Another one deals with volcano either human impacts on atmospheric and sea CO2 pressure and the implications for sea acidification and marine biodiversity and their ecosystems. And a third one deals with the variety of sensor and satellites data sensing the area around a volcano cone. Preliminary results on these

  13. Strategies for 96-hour critical infrastructure compliance.

    PubMed

    Storbakken, Steven H; Kendall, Shannon; Lackey, Connie

    2009-01-01

    Organizations that stand the best chance at survival following a disaster do so because they can depend on the sharing of resources and mutual ideologies, the authors claim, pointing out that when it comes to strategizing for 96-hour critical infrastructure compliance, it is important to keep at the forefront not only the idea of collaborative planning from within the organization--involving security and safety, clinical, facilities and administrative staffs--but also includes collaborative planning with the local and regional businesses surrounding the organization.

  14. Quantitative Analysis of the Educational Infrastructure in Colombia Through the Use of a Georeferencing Software and Analytic Hierarchy Process

    NASA Astrophysics Data System (ADS)

    Cala Estupiñan, Jose Luis; María González Bernal, Lina; Ponz Tienda, Jose Luis; Gutierrez Bucheli, Laura Andrea; Alejandro Arboleda, Carlos

    2017-10-01

    The distribution policies of the national budget have been showing an increasing trend of the investment in education infrastructure. This is the reason that makes it necessary to identify the territories with the greatest number of facilities (such as schools, colleges, universities and libraries) and those lacking this type of infrastructure, in order to know where a possible government intervention is required. This work is not intended to give a judgment on the qualitative state of the national infrastructure. It focuses, in terms of infrastructure, on Colombia’s quantitative status of the educational sector, by identifying the territories with more facilities, such as schools, colleges, universities and public libraries. To do this a quantitative index will be created to identify if the coverage of educational infrastructure at departmental level is enough, by taking into account not only the number of facilities, but also the population and the area of influence each one has. The above study is framed within a project of the University of the Andes called “visible Infrastructure”. The index is obtained through a hierarchical analytical process (AHP) and subsequently a linear equation that reflects the variables investigated. The validation of this index is performed through correlations and regressions of social, economic and cultural indicators determined by official entities. All the information on which the analysis is based is official and public. With the end of the armed conflict, it is necessary to focus the planning of public policies to heal the social gaps that the most vulnerable population needs.

  15. The Effect of Infrastructure Sharing in Estimating Operations Cost of Future Space Transportation Systems

    NASA Technical Reports Server (NTRS)

    Sundaram, Meenakshi

    2005-01-01

    NASA and the aerospace industry are extremely serious about reducing the cost and improving the performance of launch vehicles both manned or unmanned. In the aerospace industry, sharing infrastructure for manufacturing more than one type spacecraft is becoming a trend to achieve economy of scale. An example is the Boeing Decatur facility where both Delta II and Delta IV launch vehicles are made. The author is not sure how Boeing estimates the costs of each spacecraft made in the same facility. Regardless of how a contractor estimates the cost, NASA in its popular cost estimating tool, NASA Air force Cost Modeling (NAFCOM) has to have a method built in to account for the effect of infrastructure sharing. Since there is no provision in the most recent version of NAFCOM2002 to take care of this, it has been found by the Engineering Cost Community at MSFC that the tool overestimates the manufacturing cost by as much as 30%. Therefore, the objective of this study is to develop a methodology to assess the impact of infrastructure sharing so that better operations cost estimates may be made.

  16. A zebra or a painted horse? Are hospital PPPs infrastructure partnerships with stripes or a separate species?

    PubMed

    Montagu, Dominic; Harding, April

    2012-01-01

    Public Private Partnerships (PPP) have been common in infrastructure for many years and are increasingly being considered as a means to finance, build, and manage hospitals. However, the growth of hospital PPPs in the past two decades has led to confusion about what sorts of contractual arrangements between public and private partners consititute a PPP, and what key differences distinguish public private partnership for hospitals from PPPs for infrastructure. Based on experiences from around the world we indentify six key areas where hospital PPPs differ from infrastructure partnerships. We draw upon the hospital partnerships that have been documented in OECD countries and a growing number of middle-income countries to identify four distinct types of hospital PPPs: service focused partnerships in which private partners manage operations within publicly constructed facilities; facilities and finance PPPs, focused on mobilizing capital and creating new hospitals; combined PPPs, involving both facility and clinical operations; and co-located PPPs where privately operated services are developed within the grounds of a public hospital. These four types of hospital PPPs have differing goals, and therefore different contractual and functional aspects, as well as differing risks to both public and private partners. By clarifying these, we provide a base upon which hospital PPPs can be assessed against appropriate goals and benchmarks.

  17. NASA Johnson Space Center: White Sands Test Facility

    NASA Technical Reports Server (NTRS)

    Aggarwal, Pravin; Kowalski, Robert R.

    2011-01-01

    This slide presentation reviews the testing facilities and laboratories available at the White Sands Test Facility (WSTF). The mission of WSTF is to provide the expertise and infrastructure to test and evaluate spacecraft materials, components and propulsion systems that enable the safe exploration and use of space. There are nine rocket test stands in two major test areas, six altitude test stands, three ambient test stands,

  18. Environmental impacts of dispersed development from federal infrastructure projects.

    PubMed

    Southerland, Mark T

    2004-06-01

    Dispersed development, also referred to as urban growth or sprawl, is a pattern of low-density development spread over previously rural landscapes. Such growth can result in adverse impacts to air quality, water quality, human health, aquatic and terrestrial ecosystems, agricultural land, military training areas, water supply and wastewater treatment, recreational resources, viewscapes, and cultural resources. The U.S. Environmental Protection Agency (U.S. EPA) is charged with protecting public health and the environment, which includes consideration of impacts from dispersed development. Specifically, because federal infrastructure projects can affect the progress of dispersed development, the secondary impacts resulting from it must be assessed in documents prepared under the National Environmental Policy Act (NEPA). The Council on Environmental Quality (CEQ) has oversight for NEPA and Section 309 of the Clean Air Act requires that U.S. EPA review and comment on federal agency NEPA documents. The adverse effects of dispersed development can be induced by federal infrastructure projects including transportation, built infrastructure, modifications in natural infrastructure, public land conversion and redevelopment of properties, construction of federal facilities, and large traffic or major growth generation developments requiring federal permits. This paper presents an approach that U.S. EPA reviewers and NEPA practitioners can use to provide accurate, realistic, and consistent analysis of secondary impacts of dispersed development resulting from federal infrastructure projects. It also presents 24 measures that can be used to mitigate adverse impacts from dispersed development by modifying project location and design, participating in preservation or restoration activities, or informing and supporting local communities in planning.

  19. Modernization of B-2 Data, Video, and Control Systems Infrastructure

    NASA Technical Reports Server (NTRS)

    Cmar, Mark D.; Maloney, Christian T.; Butala, Vishal D.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) Plum Brook Station (PBS) Spacecraft Propulsion Research Facility, commonly referred to as B-2, is NASA s third largest thermal-vacuum facility with propellant systems capability. B-2 has completed a modernization effort of its facility legacy data, video and control systems infrastructure to accommodate modern integrated testing and Information Technology (IT) Security requirements. Integrated systems tests have been conducted to demonstrate the new data, video and control systems functionality and capability. Discrete analog signal conditioners have been replaced by new programmable, signal processing hardware that is integrated with the data system. This integration supports automated calibration and verification of the analog subsystem. Modern measurement systems analysis (MSA) tools are being developed to help verify system health and measurement integrity. Legacy hard wired digital data systems have been replaced by distributed Fibre Channel (FC) network connected digitizers where high speed sampling rates have increased to 256,000 samples per second. Several analog video cameras have been replaced by digital image and storage systems. Hard-wired analog control systems have been replaced by Programmable Logic Controllers (PLC), fiber optic networks (FON) infrastructure and human machine interface (HMI) operator screens. New modern IT Security procedures and schemes have been employed to control data access and process control flows. Due to the nature of testing possible at B-2, flexibility and configurability of systems has been central to the architecture during modernization.

  20. Modernization of B-2 Data, Video, and Control Systems Infrastructure

    NASA Technical Reports Server (NTRS)

    Cmar, Mark D.; Maloney, Christian T.; Butala, Vishal D.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) Plum Brook Station (PBS) Spacecraft Propulsion Research Facility, commonly referred to as B-2, is NASA's third largest thermal-vacuum facility with propellant systems capability. B-2 has completed a modernization effort of its facility legacy data, video and control systems infrastructure to accommodate modern integrated testing and Information Technology (IT) Security requirements. Integrated systems tests have been conducted to demonstrate the new data, video and control systems functionality and capability. Discrete analog signal conditioners have been replaced by new programmable, signal processing hardware that is integrated with the data system. This integration supports automated calibration and verification of the analog subsystem. Modern measurement systems analysis (MSA) tools are being developed to help verify system health and measurement integrity. Legacy hard wired digital data systems have been replaced by distributed Fibre Channel (FC) network connected digitizers where high speed sampling rates have increased to 256,000 samples per second. Several analog video cameras have been replaced by digital image and storage systems. Hard-wired analog control systems have been replaced by Programmable Logic Controllers (PLC), fiber optic networks (FON) infrastructure and human machine interface (HMI) operator screens. New modern IT Security procedures and schemes have been employed to control data access and process control flows. Due to the nature of testing possible at B-2, flexibility and configurability of systems has been central to the architecture during modernization.

  1. EPM - The European Facility for human physiology research on ISS.

    PubMed

    Rieschel, Mats; Nasca, Rosario; Junk, Peter; Gerhard, Ingo

    2002-07-01

    The European Physiology Modules (EPM) Facility is one of the four major Space Station facilities being developed within the framework of ESA's Microgravity Facilities for Columbus (MFC) programme. In order to allow a wide spectrum of physiological studies in weightlessness conditions, the facility provides the infrastructure to accommodate a variable set of scientific equipment. The initial EPM configuration supports experiments in the fields of neuroscience, bone & muscle research, cardiovascular research and metabolism. The International Space Life Science Working Group (ISLSWG) has recommended co-locating EPM with the 2 NASA Human Research Facility racks.

  2. Quantifying habitat impacts of natural gas infrastructure to facilitate biodiversity offsetting

    PubMed Central

    Jones, Isabel L; Bull, Joseph W; Milner-Gulland, Eleanor J; Esipov, Alexander V; Suttle, Kenwyn B

    2014-01-01

    Habitat degradation through anthropogenic development is a key driver of biodiversity loss. One way to compensate losses is “biodiversity offsetting” (wherein biodiversity impacted is “replaced” through restoration elsewhere). A challenge in implementing offsets, which has received scant attention in the literature, is the accurate determination of residual biodiversity losses. We explore this challenge for offsetting gas extraction in the Ustyurt Plateau, Uzbekistan. Our goal was to determine the landscape extent of habitat impacts, particularly how the footprint of “linear” infrastructure (i.e. roads, pipelines), often disregarded in compensation calculations, compares with “hub” infrastructure (i.e. extraction facilities). We measured vegetation cover and plant species richness using the line-intercept method, along transects running from infrastructure/control sites outward for 500 m, accounting for wind direction to identify dust deposition impacts. Findings from 24 transects were extrapolated to the broader plateau by mapping total landscape infrastructure network using GPS data and satellite imagery. Vegetation cover and species richness were significantly lower at development sites than controls. These differences disappeared within 25 m of the edge of the area physically occupied by infrastructure. The current habitat footprint of gas infrastructure is 220 ± 19 km2 across the Ustyurt (total ∼ 100,000 km2), 37 ± 6% of which is linear infrastructure. Vegetation impacts diminish rapidly with increasing distance from infrastructure, and localized dust deposition does not conspicuously extend the disturbance footprint. Habitat losses from gas extraction infrastructure cover 0.2% of the study area, but this reflects directly eliminated vegetation only. Impacts upon fauna pose a more difficult determination, as these require accounting for behavioral and demographic responses to disturbance by elusive mammals, including threatened species

  3. Development and utilization of USGS ShakeCast for rapid post-earthquake assessment of critical facilities and infrastructure

    USGS Publications Warehouse

    Wald, David J.; Lin, Kuo-wan; Kircher, C.A.; Jaiswal, Kishor; Luco, Nicolas; Turner, L.; Slosky, Daniel

    2017-01-01

    The ShakeCast system is an openly available, near real-time post-earthquake information management system. ShakeCast is widely used by public and private emergency planners and responders, lifeline utility operators and transportation engineers to automatically receive and process ShakeMap products for situational awareness, inspection priority, or damage assessment of their own infrastructure or building portfolios. The success of ShakeCast to date and its broad, critical-user base mandates improved software usability and functionality, including improved engineering-based damage and loss functions. In order to make the software more accessible to novice users—while still utilizing advanced users’ technical and engineering background—we have developed a “ShakeCast Workbook”, a well documented, Excel spreadsheet-based user interface that allows users to input notification and inventory data and export XML files requisite for operating the ShakeCast system. Users will be able to select structure based on a minimum set of user-specified facility (building location, size, height, use, construction age, etc.). “Expert” users will be able to import user-modified structural response properties into facility inventory associated with the HAZUS Advanced Engineering Building Modules (AEBM). The goal of the ShakeCast system is to provide simplified real-time potential impact and inspection metrics (i.e., green, yellow, orange and red priority ratings) to allow users to institute customized earthquake response protocols. Previously, fragilities were approximated using individual ShakeMap intensity measures (IMs, specifically PGA and 0.3 and 1s spectral accelerations) for each facility but we are now performing capacity-spectrum damage state calculations using a more robust characterization of spectral deamnd.We are also developing methods for the direct import of ShakeMap’s multi-period spectra in lieu of the assumed three-domain design spectrum (at 0.3s for

  4. Implementation status of the extreme light infrastructure - nuclear physics (ELI-NP) project

    NASA Astrophysics Data System (ADS)

    Gales, S.; Zamfir, N. V.

    2015-02-01

    The Project Extreme Light Infrastructure (ELI) is part of the European Strategic Forum for Research Infrastructures (ESFRI) Roadmap. ELI will be built as a network of three complementary pillars at the frontier of laser technologies. The ELI-NP pillar (NP for Nuclear Physics) is under construction near Bucharest (Romania) and will develop a scientific program using two 10 PW lasers and a Compton back-scattering high-brilliance and intense gamma beam, a marriage of laser and accelerator technology at the frontier of knowledge. In the present paper, the technical description of the facility, the present status of the project as well as the science, applications and future perspectives will be discussed.

  5. JPL Facilities and Software for Collaborative Design: 1994 - Present

    NASA Technical Reports Server (NTRS)

    DeFlorio, Paul A.

    2004-01-01

    The viewgraph presentation provides an overview of the history of the JPL Project Design Center (PDC) and, since 2000, the Center for Space Mission Architecture and Design (CSMAD). The discussion includes PDC objectives and scope; mission design metrics; distributed design; a software architecture timeline; facility design principles; optimized design for group work; CSMAD plan view, facility design, and infrastructure; and distributed collaboration tools.

  6. AMF3 ARM's Research Facility at Oliktok Point Alaska

    NASA Astrophysics Data System (ADS)

    Helsel, F.; Lucero, D. A.; Ivey, M.; Dexheimer, D.; Hardesty, J.; Roesler, E. L.

    2015-12-01

    Scientific Infrastructure To Support Atmospheric Science And Aerosol Science For The Department Of Energy's Atmospheric Radiation Measurement Programs Mobile Facility 3 Located At Oliktok Point, Alaska.The Atmospheric Radiation Measurement (ARM) Program's Mobile Facility 3 (AMF3) located at Oliktok Point, Alaska is a U.S. Department of Energy (DOE) site. The site provides a scientific infrastructure and data archives for the international Arctic research community. The infrastructure at Oliktok is designed to be mobile and it may be relocated in the future to support other ARM science missions. AMF-3 instruments include: scanning precipitation Radar-cloud radar, Raman Lidar, Eddy correlation flux systems, Ceilometer, Balloon sounding system, Atmospheric Emitted Radiance Interferometer (AERI), Micro-pulse Lidar (MPL), Millimeter cloud radar along with all the standard metrological measurements. Data from these instruments is placed in the ARM data archives and are available to the international research community. This poster will discuss what instruments are at AMF3 and the challenges of powering an Arctic site without the use of grid power.

  7. On the Storm Surge and Sea Level Rise Projections for Infrastructure Risk Analysis and Adaptation

    EPA Science Inventory

    Storm surge can cause coastal hydrology changes, flooding, water quality changes, and even inundation of low-lying terrain. Strong wave actions and disruptive winds can damage water infrastructure and other environmental assets (hazardous and solid waste management facilities, w...

  8. A Framework and Metric for resilience concept in water infrastructure

    NASA Astrophysics Data System (ADS)

    Karamouz, M.; Olyaei, M.

    2017-12-01

    The collaborators of water industries are looking for ways and means to bring resilience into our water infrastructure systems. The key to this conviction is to develop a shared vision among the engineers, builders and decision makers of our water executive branch and policy makers, utilities, community leaders, players, end users and other stakeholders of our urban environment. Among water infrastructures, wastewater treatment plants (WWTP) have a significant role on urban systems' serviceability. These facilities, especially when located in coastal regions, are vulnerable to heavy rain, surface runoff, storm surges and coastal flooding. Flooding can cause overflows from treatment facilities into the natural water bodies and result in environmental predicament of significant proportions. In order to minimize vulnerability to flood, a better understanding of flood risk must be realized. Vulnerability to floods frequency and intensity is increasing by external forcing such as climate change, as well as increased interdependencies in urban systems. Therefore, to quantify the extent of efforts for flood risk management, a unified index is needed for evaluating resiliency of infrastructure. Resiliency is a key concept in understanding vulnerability in dealing with flood. New York City based on its geographic location, its urbanized nature, densely populated area, interconnected water bodies and history of the past flooding events is extremely vulnerable to flood and was selected as the case study. In this study, a framework is developed to evaluate resiliency of WWTPs. An analysis of the current understanding of vulnerability is performed and a new perspective utilizing different components of resiliency including resourcefulness, robustness, rapidity and redundancy is presented. To quantify resiliency and rank the wastewater treatment plants in terms of how resilient they are, an index is developed using Multi Criteria Decision Making (MCDM) technique. Moreover

  9. 18 CFR 157.21 - Pre-filing procedures and review process for LNG terminal facilities and other natural gas...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the pre-filing review of any pipeline or other natural gas facilities, including facilities not... from the subject LNG terminal facilities to the existing natural gas pipeline infrastructure. (b) Other... and review process for LNG terminal facilities and other natural gas facilities prior to filing of...

  10. Extreme Light Infrastructure - Nuclear Physics Eli-Np Project

    NASA Astrophysics Data System (ADS)

    Gales, S.

    2015-06-01

    The development of high power lasers and the combination of such novel devices with accelerator technology has enlarged the science reach of many research fields, in particular High energy, Nuclear and Astrophysics as well as societal applications in Material Science, Nuclear Energy and Medicine. The European Strategic Forum for Research Infrastructures (ESFRI) has selected a proposal based on these new premises called "ELI" for Extreme Light Infrastructure. ELI will be built as a network of three complementary pillars at the frontier of laser technologies. The ELI-NP pillar (NP for Nuclear Physics) is under construction near Bucharest (Romania) and will develop a scientific program using two 10 PW class lasers and a Back Compton Scattering High Brilliance and Intense Low Energy Gamma Beam , a marriage of Laser and Accelerator technology at the frontier of knowledge. In the present paper, the technical description of the facility, the present status of the project as well as the science, applications and future perspectives will be discussed.

  11. Spatial modelling of disaster resilience using infrastructure components of baseline resilience indicators for communities (BRIC) in special region of Yogyakarta

    NASA Astrophysics Data System (ADS)

    Kuscahyadi, Febriana; Meilano, Irwan; Riqqi, Akhmad

    2017-07-01

    Special Region of Yogyakarta Province (DIY) is one of Indonesian regions that often harmed by varied natural disasters which caused huge negative impacts. The most catastrophic one is earthquake in May, 27th 2006 with 6.3 magnitude moment [1], evoked 5716 people died, and economic losses for Rp. 29.1 Trillion, [2]. Their impacts could be minimized by committing disaster risk reduction program. Therefore, it is necessary to measure the natural disaster resilience within a region. Since infrastructure are might be able as facilities that means for evacuations, distribute supplies, and post disaster recovery [3], this research concerns to establish spatial modelling of natural disaster resilience using infrastructure components based on BRIC in DIY Province. There are three infrastructure used in this model; they are school, health facilities, and roads. Distance analysis is used to determine the level of resilient zone. The result gives the spatial understanding as a map that urban areas have better disaster resilience than the rural areas. The coastal areas and mountains areas which are vulnerable towards disaster have less resilience since there are no enough facilities that will increase the disaster resilience

  12. International Microgravity Plasma Facility IMPF: A Multi-User Modular Research Facility for Complex Plasma Research on ISS

    NASA Astrophysics Data System (ADS)

    Seurig, R.; Burfeindt, J.; Castegini, R.; Griethe, W.; Hofmann, P.

    2002-01-01

    On March 03, 2001, the PKE-Nefedov plasma experiment was successfully put into operation on board ISS. This complex plasma experiment is the predecessor for the semi-autonomous multi-user facility IMPF (International Microgravity Plasma Facility) to be flown in 2006 with an expected operational lifetime of 10 years. IMPF is envisioned to be an international research facility for investigators in the field of multi-component plasmas containing ions, electrons, and charged microparticles. This research filed is often referred to as "complex plasmas". The actual location of IMPF on ISS is not decided yet; potential infrastructure under consideration are EXPRESS Rack, Standard Interface Rack SIR, European Drawer Rack EDR, or a to be designed custom rack infrastructure on the Russian Segment. The actual development status of the DLR funded Pre-phase B Study for IMPF will be presented. For this phase, IMPF was assumed to be integrated in an EXPRESS Rack requiring four middeck lockers with two 4-PU ISIS drawers for accommodation. Technical and operational challenges, like a 240 Mbytes/sec continuous experimental data stream for 60 minutes, will be addressed. The project was funded by the German Space Agency (DLR) and was performed in close cooperation with scientists from the Max-Planck-Institute for Extraterrestical Physics in Munich, Germany.

  13. Green Infrastructure

    EPA Pesticide Factsheets

    To promote the benefits of green infrastructure, help communities overcome barriers to using GI, and encourage the use of GI to create sustainable and resilient water infrastructure that improves water quality and supports and revitalizes communities.

  14. VERCE, Virtual Earthquake and Seismology Research Community in Europe, a new ESFRI initiative integrating data infrastructure, Grid and HPC infrastructures for data integration, data analysis and data modeling in seismology

    NASA Astrophysics Data System (ADS)

    van Hemert, Jano; Vilotte, Jean-Pierre

    2010-05-01

    Research in earthquake and seismology addresses fundamental problems in understanding Earth's internal wave sources and structures, and augment applications to societal concerns about natural hazards, energy resources and environmental change. This community is central to the European Plate Observing System (EPOS)—the ESFRI initiative in solid Earth Sciences. Global and regional seismology monitoring systems are continuously operated and are transmitting a growing wealth of data from Europe and from around the world. These tremendous volumes of seismograms, i.e., records of ground motions as a function of time, have a definite multi-use attribute, which puts a great premium on open-access data infrastructures that are integrated globally. In Europe, the earthquake and seismology community is part of the European Integrated Data Archives (EIDA) infrastructure and is structured as "horizontal" data services. On top of this distributed data archive system, the community has developed recently within the EC project NERIES advanced SOA-based web services and a unified portal system. Enabling advanced analysis of these data by utilising a data-aware distributed computing environment is instrumental to fully exploit the cornucopia of data and to guarantee optimal operation of the high-cost monitoring facilities. The strategy of VERCE is driven by the needs of data-intensive applications in data mining and modelling and will be illustrated through a set of applications. It aims to provide a comprehensive architecture and framework adapted to the scale and the diversity of these applications, and to integrate the community data infrastructure with Grid and HPC infrastructures. A first novel aspect is a service-oriented architecture that provides well-equipped integrated workbenches, with an efficient communication layer between data and Grid infrastructures, augmented with bridges to the HPC facilities. A second novel aspect is the coupling between Grid data analysis and

  15. The Condition of the Infrastructure of New York Schools: Who Pays and Who Benefits?

    ERIC Educational Resources Information Center

    Crampton, Faith E.

    1991-01-01

    Insufficient resource allocation to facilities maintenance and decisions to defer maintenance are contributors to a backlog of deferred maintenance nationwide. Focuses on the infrastructure of New York schools and suggests incentives at the state level to ensure adequate attention is given to plant maintenance. (eight references) (MLF)

  16. Master Planning School District Facility Needs

    ERIC Educational Resources Information Center

    Prager, Gary; Matschulat, Robert

    2010-01-01

    Most educational entities confront any number of facility issues. Upgrading the physical infrastructure to meet current and future demands can be intimidating. The quantity and magnitude of capital issues in a changing environment can be overwhelming. How can all this complexity be made coherent to assure that decisions are sound and limited…

  17. Implementation status of the extreme light infrastructure - nuclear physics (ELI-NP) project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gales, S., E-mail: sydney.gales@eli-np.ro; Zamfir, N. V., E-mail: sydney.gales@eli-np.ro

    2015-02-24

    The Project Extreme Light Infrastructure (ELI) is part of the European Strategic Forum for Research Infrastructures (ESFRI) Roadmap. ELI will be built as a network of three complementary pillars at the frontier of laser technologies. The ELI-NP pillar (NP for Nuclear Physics) is under construction near Bucharest (Romania) and will develop a scientific program using two 10 PW lasers and a Compton back-scattering high-brilliance and intense gamma beam, a marriage of laser and accelerator technology at the frontier of knowledge. In the present paper, the technical description of the facility, the present status of the project as well as themore » science, applications and future perspectives will be discussed.« less

  18. Greenhouse gas emissions modeling : a tool for federal facility decommissioning

    DOT National Transportation Integrated Search

    2010-10-21

    The Federal Aviation Administration (FAA) facility inventory is constantly changing as newer systems supplant older infrastructure in response to technological advances. Transformational change embodied by the FAAs Next Generation Air Transportati...

  19. Evaluating Commercial and Private Cloud Services for Facility-Scale Geodetic Data Access, Analysis, and Services

    NASA Astrophysics Data System (ADS)

    Meertens, C. M.; Boler, F. M.; Ertz, D. J.; Mencin, D.; Phillips, D.; Baker, S.

    2017-12-01

    UNAVCO, in its role as a NSF facility for geodetic infrastructure and data, has succeeded for over two decades using on-premises infrastructure, and while the promise of cloud-based infrastructure is well-established, significant questions about suitability of such infrastructure for facility-scale services remain. Primarily through the GeoSciCloud award from NSF EarthCube, UNAVCO is investigating the costs, advantages, and disadvantages of providing its geodetic data and services in the cloud versus using UNAVCO's on-premises infrastructure. (IRIS is a collaborator on the project and is performing its own suite of investigations). In contrast to the 2-3 year time scale for the research cycle, the time scale of operation and planning for NSF facilities is for a minimum of five years and for some services extends to a decade or more. Planning for on-premises infrastructure is deliberate, and migrations typically take months to years to fully implement. Migrations to a cloud environment can only go forward with similar deliberate planning and understanding of all costs and benefits. The EarthCube GeoSciCloud project is intended to address the uncertainties of facility-level operations in the cloud. Investigations are being performed in a commercial cloud environment (Amazon AWS) during the first year of the project and in a private cloud environment (NSF XSEDE resource at the Texas Advanced Computing Center) during the second year. These investigations are expected to illuminate the potential as well as the limitations of running facility scale production services in the cloud. The work includes running parallel equivalent cloud-based services to on premises services and includes: data serving via ftp from a large data store, operation of a metadata database, production scale processing of multiple months of geodetic data, web services delivery of quality checked data and products, large-scale compute services for event post-processing, and serving real time data

  20. The role of public communication in decision making for waste management infrastructure.

    PubMed

    Kirkman, Richard; Voulvoulis, Nikolaos

    2017-12-01

    Modern waste management provision seeks to meet challenging objectives and strategies while reflecting community aspirations and ensuring cost-effective compliance with statutory obligations. Its social acceptability, which affects both what systems (infrastructure) can be put in place and to what extent their implementation will be successful, is a multi-dimensional phenomenon, often not well understood. In light of the growing evidence that decisions to build new infrastructure are often contested by the public, there is a clear need to understand the role of scientific evidence in public perception, particularly as environmental infrastructure delivery is often objected to by the public on environmental grounds. In this paper the need for waste management infrastructure is reviewed, and the way its delivery in the UK has evolved is used as an example of the role of public perception in the planning and delivery of waste facilities. Findings demonstrate the vital role of public communication in waste management infrastructure delivery. Public perception must be taken into account early in the decision making process, with the public informed and engaged from the start. There is a pressing need for people not simply to accept but to understand and appreciate the need for infrastructure, the nature of infrastructure investments and development, the costs and the benefits involved, and the technological aspects. Scientific evidence and literacy have a critical role to play, facilitating public engagement in a process that empowers people, allowing them to define and handle challenges and influence decisions that will impact their lives. Problem ownership, and an increased probability of any solutions proposed being selected and implemented successfully are potential benefits of such approach. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. "Atmospheric Radiation Measurement (ARM) Research Facility at Oliktok Point Alaska"

    NASA Astrophysics Data System (ADS)

    Helsel, F.; Ivey, M.; Hardesty, J.; Roesler, E. L.; Dexheimer, D.

    2017-12-01

    Scientific Infrastructure To Support Atmospheric Science, Aerosol Science and UAS's for The Department Of Energy's Atmospheric Radiation Measurement Programs At The Mobile Facility 3 Located At Oliktok Point, Alaska.The Atmospheric Radiation Measurement (ARM) Program's Mobile Facility 3 (AMF3) located at Oliktok Point, Alaska is a U.S. Department of Energy (DOE) site designed to collect data and help determine the impact that clouds and aerosols have on solar radiation. AMF3 provides a scientific infrastructure to support instruments and collect arctic data for the international arctic research community. The infrastructure at AMF3/Oliktok is designed to be mobile and it may be relocated in the future to support other ARM science missions. AMF3's present base line instruments include: scanning precipitation Radars, cloud Radar, Raman Lidar, Eddy correlation flux systems, Ceilometer, Balloon sounding system, Atmospheric Emitted Radiance Interferometer (AERI), Micro-pulse Lidar (MPL) Along with all the standard metrological measurements. In addition AMF3 provides aerosol measurements with a Mobile Aerosol Observing System (MAOS). Ground support for Unmanned Aerial Systems (UAS) and tethered balloon flights. Data from these instruments and systems are placed in the ARM data archives and are available to the international research community. This poster will discuss what instruments and systems are at the ARM Research Facility at Oliktok Point Alaska.

  2. Energy Transmission and Infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathison, Jane

    2012-12-31

    The objective of Energy Transmission and Infrastructure Northern Ohio (OH) was to lay the conceptual and analytical foundation for an energy economy in northern Ohio that will: • improve the efficiency with which energy is used in the residential, commercial, industrial, agricultural, and transportation sectors for Oberlin, Ohio as a district-wide model for Congressional District OH-09; • identify the potential to deploy wind and solar technologies and the most effective configuration for the regional energy system (i.e., the ratio of distributed or centralized power generation); • analyze the potential within the district to utilize farm wastes to produce biofuels; •more » enhance long-term energy security by identifying ways to deploy local resources and building Ohio-based enterprises; • identify the policy, regulatory, and financial barriers impeding development of a new energy system; and • improve energy infrastructure within Congressional District OH-09. This objective of laying the foundation for a renewable energy system in Ohio was achieved through four primary areas of activity: 1. district-wide energy infrastructure assessments and alternative-energy transmission studies; 2. energy infrastructure improvement projects undertaken by American Municipal Power (AMP) affiliates in the northern Ohio communities of Elmore, Oak Harbor, and Wellington; 3. Oberlin, OH-area energy assessment initiatives; and 4. a district-wide conference held in September 2011 to disseminate year-one findings. The grant supported 17 research studies by leading energy, policy, and financial specialists, including studies on: current energy use in the district and the Oberlin area; regional potential for energy generation from renewable sources such as solar power, wind, and farm-waste; energy and transportation strategies for transitioning the City of Oberlin entirely to renewable resources and considering pedestrians, bicyclists, and public transportation as well as

  3. European environmental research infrastructures are going for common 30 years strategy

    NASA Astrophysics Data System (ADS)

    Asmi, Ari; Konjin, Jacco; Pursula, Antti

    2014-05-01

    Environmental Research infrastructures are facilities, resources, systems and related services that are used by research communities to conduct top-level research. Environmental research is addressing processes at very different time scales, and supporting research infrastructures must be designed as long-term facilities in order to meet the requirements of continuous environmental observation, measurement and analysis. This longevity makes the environmental research infrastructures ideal structures to support the long-term development in environmental sciences. ENVRI project is a collaborative action of the major European (ESFRI) Environmental Research Infrastructures working towards increased co-operation and interoperability between the infrastructures. One of the key products of the ENVRI project is to combine the long-term plans of the individual infrastructures towards a common strategy, describing the vision and planned actions. The envisaged vision for environmental research infrastructures toward 2030 is to support the holistic understanding of our planet and it's behavior. The development of a 'Standard Model of the Planet' is a common ambition, a challenge to define an environmental standard model; a framework of all interactions within the Earth System, from solid earth to near space. Indeed scientists feel challenged to contribute to a 'Standard Model of the Planet' with data, models, algorithms and discoveries. Understanding the Earth System as an interlinked system requires a systems approach. The Environmental Sciences are rapidly moving to become a one system-level science. Mainly since modern science, engineering and society are increasingly facing complex problems that can only be understood in the context of the full overall system. The strategy of the supporting collaborating research infrastructures is based on developing three key factors for the Environmental Sciences: the technological, the cultural and the human capital. The technological

  4. Traffic control for high occupancy vehicle facilities in Virginia.

    DOT National Transportation Integrated Search

    1998-04-01

    High occupancy vehicle (HOV) facilities are an important tool in relieving the congestion that continues to build on many urban roadways. By moving more people in fewer vehicles, the existing infrastructure can be used more efficiently. Operating HOV...

  5. Adapting New Space System Designs into Existing Ground Infrastructure

    NASA Technical Reports Server (NTRS)

    Delgado, Hector N.; McCleskey, Carey M.

    2008-01-01

    As routine space operations extend beyond earth orbit, the ability for ground infrastructures to take on new launch vehicle systems and a more complex suite of spacecraft and payloads has become a new challenge. The U.S. Vision for Space Exploration and its Constellation Program provides opportunities for our space operations community to meet this challenge. Presently, as new flight and ground systems add to the overall groundbased and space-based capabilities for NASA and its international partners, specific choices are being made as to what to abandon, what to retain, as well as what to build new. The total ground and space-based infrastructure must support a long-term, sustainable operation after it is all constructed, deployed, and activated. This paper addresses key areas of engineering concern during conceptual design, development, and routine operations, with a particular focus on: (1) legacy system reusability, (2) system supportability attributes and operations characteristics, (3) ground systems design trades and criteria, and (4) technology application survey. Each key area explored weighs the merits of reusability of the infrastructure in terms of: engineering analysis methods and techniques; top-level facility, systems, and equipment design criteria; and some suggested methods for making the operational system attributes (the "-ilities") highly visible to the design teams and decisionmakers throughout the design process.

  6. National Aeronautics Research, Development, Test and Evaluation (RDT&E) Infrastructure Plan

    DTIC Science & Technology

    2011-01-01

    addressed in the National Aeronautics R&D Plan, identi- fying unnecessary redundancy solely on the basis of infrastructure required to support H H13 ...near, mid, and far terms, and impact not only scramjet propulsion systems, but potential turbine-based combined cycle systems as well. Turbine Engine...Icing Test Facilities A greater understanding of the impact that icing conditions have on turbine engine opera- tions is needed to develop enhanced

  7. Parallel digital forensics infrastructure.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liebrock, Lorie M.; Duggan, David Patrick

    2009-10-01

    This report documents the architecture and implementation of a Parallel Digital Forensics infrastructure. This infrastructure is necessary for supporting the design, implementation, and testing of new classes of parallel digital forensics tools. Digital Forensics has become extremely difficult with data sets of one terabyte and larger. The only way to overcome the processing time of these large sets is to identify and develop new parallel algorithms for performing the analysis. To support algorithm research, a flexible base infrastructure is required. A candidate architecture for this base infrastructure was designed, instantiated, and tested by this project, in collaboration with New Mexicomore » Tech. Previous infrastructures were not designed and built specifically for the development and testing of parallel algorithms. With the size of forensics data sets only expected to increase significantly, this type of infrastructure support is necessary for continued research in parallel digital forensics. This report documents the implementation of the parallel digital forensics (PDF) infrastructure architecture and implementation.« less

  8. Challenges in integrating multidisciplinary data into a single e-infrastructure

    NASA Astrophysics Data System (ADS)

    Atakan, Kuvvet; Jeffery, Keith G.; Bailo, Daniele; Harrison, Matthew

    2015-04-01

    The European Plate Observing System (EPOS) aims to create a pan-European infrastructure for solid Earth science to support a safe and sustainable society. The mission of EPOS is to monitor and understand the dynamic and complex Earth system by relying on new e-science opportunities and integrating diverse and advanced Research Infrastructures in Europe for solid Earth Science. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. EPOS will improve our ability to better manage the use of the subsurface of the Earth. Through integration of data, models and facilities EPOS will allow the Earth Science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and to human welfare. EPOS is now getting into its Implementation Phase (EPOS-IP). One of the main challenges during the implementation phase is the integration of multidisciplinary data into a single e-infrastructure. Multidisciplinary data are organized and governed by the Thematic Core Services (TCS) and are driven by various scientific communities encompassing a wide spectrum of Earth science disciplines. TCS data, data products and services will be integrated into a platform "the ICS system" that will ensure their interoperability and access to these services by the scientific community as well as other users within the society. This requires dedicated tasks for interactions with the various TCS-WPs, as well as the various distributed ICS (ICS-Ds), such as High Performance Computing (HPC) facilities, large scale data storage facilities, complex processing and visualization tools etc. Computational Earth Science (CES

  9. IP Infrastructure Geolocation

    DTIC Science & Technology

    2015-03-01

    unlimited 13. ABSTRACT (maximum 200 words) Physical network maps are important to critical infrastructure defense and planning. Current state-of...the-art network infrastructure geolocation relies on Domain Name System (DNS) inferences. However, not only is using the DNS relatively inaccurate for...INTENTIONALLY LEFT BLANK iv ABSTRACT Physical network maps are important to critical infrastructure defense and planning. Cur- rent state-of-the-art

  10. IT Infrastructure for Biomedical Research in North-West Germany.

    PubMed

    Seeger, Insa; Zeleke, Atinkut; Freitag, Michael; Röhrig, Rainer

    2017-01-01

    The efficient use of routine data for biomedical research presupposes an IT infrastructure designed for health care facilities. The objective of this study was to analyse which IT infrastructure is used in hospitals and by general practitioners' (GP) practices in the region Oldenburg-Bremen and to examine how well this supports research projects. To this end, IT managers and GPs were interviewed. The usage of hospital information systems (HIS) and data warehouse systems (DWS) in hospitals is of major importance for the study. Over 90 % use DWS for administration, 42 % for clinical research. None of the hospitals implemented consent for the use of routine data for research. Only a third of the GPs have participated in studies. The GPs' offices based EHR systems in use offer virtually no support for research projects. The study results demonstrate that technical and organisational measures are required for the further usage of routine data in the region.

  11. Land cover and topography affect the land transformation caused by wind facilities

    USGS Publications Warehouse

    Diffendorfer, Jay E.; Compton, Roger W.

    2014-01-01

    Land transformation (ha of surface disturbance/MW) associated with wind facilities shows wide variation in its reported values. In addition, no studies have attempted to explain the variation across facilities. We digitized land transformation at 39 wind facilities using high resolution aerial imagery. We then modeled the effects of turbine size, configuration, land cover, and topography on the levels of land transformation at three spatial scales. The scales included strings (turbines with intervening roads only), sites (strings with roads connecting them, buried cables and other infrastructure), and entire facilities (sites and the roads or transmission lines connecting them to existing infrastructure). An information theoretic modeling approach indicated land cover and topography were well-supported variables affecting land transformation, but not turbine size or configuration. Tilled landscapes, despite larger distances between turbines, had lower average land transformation, while facilities in forested landscapes generally had the highest land transformation. At site and string scales, flat topographies had the lowest land transformation, while facilities on mesas had the largest. The results indicate the landscape in which the facilities are placed affects the levels of land transformation associated with wind energy. This creates opportunities for optimizing wind energy production while minimizing land cover change. In addition, the results indicate forecasting the impacts of wind energy on land transformation should include the geographic variables affecting land transformation reported here.

  12. Land Cover and Topography Affect the Land Transformation Caused by Wind Facilities

    PubMed Central

    Diffendorfer, Jay E.; Compton, Roger W.

    2014-01-01

    Land transformation (ha of surface disturbance/MW) associated with wind facilities shows wide variation in its reported values. In addition, no studies have attempted to explain the variation across facilities. We digitized land transformation at 39 wind facilities using high resolution aerial imagery. We then modeled the effects of turbine size, configuration, land cover, and topography on the levels of land transformation at three spatial scales. The scales included strings (turbines with intervening roads only), sites (strings with roads connecting them, buried cables and other infrastructure), and entire facilities (sites and the roads or transmission lines connecting them to existing infrastructure). An information theoretic modeling approach indicated land cover and topography were well-supported variables affecting land transformation, but not turbine size or configuration. Tilled landscapes, despite larger distances between turbines, had lower average land transformation, while facilities in forested landscapes generally had the highest land transformation. At site and string scales, flat topographies had the lowest land transformation, while facilities on mesas had the largest. The results indicate the landscape in which the facilities are placed affects the levels of land transformation associated with wind energy. This creates opportunities for optimizing wind energy production while minimizing land cover change. In addition, the results indicate forecasting the impacts of wind energy on land transformation should include the geographic variables affecting land transformation reported here. PMID:24558449

  13. Centre for Research Infrastructure of Polish GNSS Data - response and possible contribution to EPOS

    NASA Astrophysics Data System (ADS)

    Araszkiewicz, Andrzej; Rohm, Witold; Bosy, Jaroslaw; Szolucha, Marcin; Kaplon, Jan; Kroszczynski, Krzysztof

    2017-04-01

    In the frame of the first call under Action 4.2: Development of modern research infrastructure of the science sector in the Smart Growth Operational Programme 2014-2020 in the late of 2016 the "EPOS-PL" project has launched. Following institutes are responsible for the implementation of this project: Institute of Geophysics, Polish Academy of Sciences - Project Leader, Academic Computer Centre Cyfronet AGH University of Science and Technology, Central Mining Institute, the Institute of Geodesy and Cartography, Wrocław University of Environmental and Life Sciences, Military University of Technology. In addition, resources constituting entrepreneur's own contribution will come from the Polish Mining Group. Research Infrastructure EPOS-PL will integrate both existing and newly built National Research Infrastructures (Theme Centre for Research Infrastructures), which, under the premise of the program EPOS, are financed exclusively by the national founds. In addition, the e-science platform will be developed. The Centre for Research Infrastructure of GNSS Data (CIBDG - Task 5) will be built based on the experience and facilities of two institutions: Military University of Technology and Wrocław University of Environmental and Life Sciences. The project includes the construction of the National GNNS Repository with data QC procedures and adaptation of two Regional GNNS Analysis Centres for rapid and long-term geodynamical monitoring.

  14. 75 FR 16080 - Notice of Intent To Prepare an Environmental Impact Statement for Basewide Water Infrastructure...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-31

    ...- design and to develop additional alternatives for analysis. These two water infrastructure projects are... carbon, and reverse osmosis. The facility would be designed in modular form for ease of expandability... lighting, asphalt pavement, and pavement marking and signs. The project includes ``100-year storm'' flood...

  15. LifeWatch - a Large-scale eScience Infrastructure to Assist in Understanding and Managing our Planet's Biodiversity

    NASA Astrophysics Data System (ADS)

    Hernández Ernst, Vera; Poigné, Axel; Los, Walter

    2010-05-01

    Understanding and managing the complexity of the biodiversity system in relation to global changes concerning land use and climate change with their social and economic implications is crucial to mitigate species loss and biodiversity changes in general. The sustainable development and exploitation of existing biodiversity resources require flexible and powerful infrastructures offering, on the one hand, the access to large-scale databases of observations and measures, to advanced analytical and modelling software, and to high performance computing environments and, on the other hand, the interlinkage of European scientific communities among each others and with national policies. The European Strategy Forum on Research Infrastructures (ESFRI) selected the "LifeWatch e-science and technology infrastructure for biodiversity research" as a promising development to construct facilities to contribute to meet those challenges. LifeWatch collaborates with other selected initiatives (e.g. ICOS, ANAEE, NOHA, and LTER-Europa) to achieve the integration of the infrastructures at landscape and regional scales. This should result in a cooperating cluster of such infrastructures supporting an integrated approach for data capture and transmission, data management and harmonisation. Besides, facilities for exploration, forecasting, and presentation using heterogeneous and distributed data and tools should allow the interdisciplinary scientific research at any spatial and temporal scale. LifeWatch is an example of a new generation of interoperable research infrastructures based on standards and a service-oriented architecture that allow for linkage with external resources and associated infrastructures. External data sources will be established data aggregators as the Global Biodiversity Information Facility (GBIF) for species occurrences and other EU Networks of Excellence like the Long-Term Ecological Research Network (LTER), GMES, and GEOSS for terrestrial monitoring, the

  16. Water Infrastructure Needs and Investment: Review and Analysis of Key Issues

    DTIC Science & Technology

    2008-11-24

    the Rural Development Act of 1972, as amended (7 U.S.C. § 1926). The purpose of these USDA programs is to provide basic amenities, alleviate health...nonregulatory costs (e.g., routine replacement of basic infrastructure).12 Wastewater Needs. The most recent wastewater survey, conducted in 2004 and issued...1.6 billion just to implement the most basic steps needed to improve security (such as better controlling access to facilities with fences, locks

  17. Sustainable Water Infrastructure

    EPA Pesticide Factsheets

    Resources for state and local environmental and public health officials, and water, infrastructure and utility professionals to learn about sustainable water infrastructure, sustainable water and energy practices, and their role.

  18. Infrastructure Development of Single Cell Testing Capability at A0 Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhanaraj, Nandhini; Padilla, R.; Reid, J.

    2009-09-01

    The objective of this technical note is to document the details of the infrastructure development process that was realized at the A0 photo injector facility to establish RF cold testing capability for 1.3 GHz superconducting niobium single cell cavities. The activity began the last quarter of CY 2006 and ended the first quarter of CY 2009. The whole process involved addressing various aspects such as design of vertical insert and lifting fixture, modification of existing RF test station and design of new couplers, development of a Temperature Mapping (T-Map) system, radiation considerations for the test location (north cave), update ofmore » existing High Pressure Rinse (HPR) system, preparation of necessary safety documents and eventually obtaining an Operational Readiness Clearance (ORC). Figure 1 illustrates the various components of the development process. In the past, the north cave test station at A0 has supported the cold testing 3.9 GHz nine cell and single cell cavities, thus some of the components were available for use and some needed modification. The test dewar had the capacity to accommodate 1.3 GHz single cells although a new vertical insert that could handle both cavity types (1.3 and 3.9 GHz) had to be designed. The existing cryogenic system with an average capacity of {approx} 0.5 g/sec was deemed sufficient. The RF system was updated with broadband components and an additional amplifier with higher power capacity to handle higher gradients usually achieved in 1.3 GHz cavities. The initial testing phase was arbitrated to proceed with fixed power coupling. A new temperature mapping system was developed to provide the diagnostic tool for hot spot studies, quench characterization and field emission studies. The defining feature of this system was the use of diode sensors instead of the traditional carbon resistors as sensing elements. The unidirectional current carrying capacity (forward bias) of the diodes provided for the ease of multiplexing

  19. Research Infrastructure and Scientific Collections: The Supply and Demand of Scientific Research

    NASA Astrophysics Data System (ADS)

    Graham, E.; Schindel, D. E.

    2016-12-01

    Research infrastructure is essential in both experimental and observational sciences and is commonly thought of as single-sited facilities. In contrast, object-based scientific collections are distributed in nearly every way, including by location, taxonomy, geologic epoch, discipline, collecting processes, benefits sharing rules, and many others. These diffused collections may have been amassed for a particular discipline, but their potential for use and impact in other fields needs to be explored. Through a series of cross-disciplinary activities, Scientific Collections International (SciColl) has explored and developed new ways in which the supply of scientific collections can meet the demand of researchers in unanticipated ways. From cross-cutting workshops on emerging infectious diseases and food security, to an online portal of collections, SciColl aims to illustrate the scope and value of object-based scientific research infrastructure. As distributed infrastructure, the full impact of scientific collections to the research community is a result of discovering, utilizing, and networking these resources. Examples and case studies from infectious disease research, food security topics, and digital connectivity will be explored.

  20. The Forgotten Side of School Finance Equity: The Role of Infrastructure Funding in Student Success

    ERIC Educational Resources Information Center

    Crampton, Faith E.; Thompson, David C.; Vesely, Randall S.

    2004-01-01

    Traditionally, local school districts have shouldered the burden of funding school infrastructure in the name of local control, relying upon local property tax revenues and the willingness of local voters to approve bond issues. Given vast disparities in school districts' property wealth, gross inequities in school facilities will remain without…

  1. Critical infrastructure protection.

    PubMed

    Deitz, Kim M

    2012-01-01

    Current government policies for protecting the nation's critical infrastructure are described in this article which focuses on hospital disaster planning and incident management and the significant role of Security in infrastructure protection

  2. Upgrade of the cryogenic CERN RF test facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pirotte, O.; Benda, V.; Brunner, O.

    2014-01-29

    With the large number of superconducting radiofrequency (RF) cryomodules to be tested for the former LEP and the present LHC accelerator a RF test facility was erected early in the 1990’s in the largest cryogenic test facility at CERN located at Point 18. This facility consisted of four vertical test stands for single cavities and originally one and then two horizontal test benches for RF cryomodules operating at 4.5 K in saturated helium. CERN is presently working on the upgrade of its accelerator infrastructure, which requires new superconducting cavities operating below 2 K in saturated superfluid helium. Consequently, the RFmore » test facility has been renewed in order to allow efficient cavity and cryomodule tests in superfluid helium and to improve its thermal performances. The new RF test facility is described and its performances are presented.« less

  3. Critical Infrastructure for Ocean Research and Societal Needs in 2030

    NASA Astrophysics Data System (ADS)

    Glickson, D.; Barron, E. J.; Fine, R. A.; Bellingham, J. G.; Boss, E.; Boyle, E. A.; Edwards, M.; Johnson, K. S.; Kelley, D. S.; Kite-Powell, H.; Ramberg, S. E.; Rudnick, D. L.; Schofield, O.; Tamburri, M.; Wiebe, P. H.; Wright, D. J.; Committee on an Ocean Infrastructure StrategyU. S. Ocean Research in 2030

    2011-12-01

    At the request of the Subcommittee on Ocean Science and Technology, an expert committee was convened by the National Research Council to identify major research questions anticipated to be at the forefront of ocean science in 2030, define categories of infrastructure that should be included in planning, provide advice on criteria and processes that could be used to set priorities, and recommend ways to maximize the value of investments in ocean infrastructure. The committee identified 32 future ocean research questions in four themes: enabling stewardship of the environment, protecting life and property, promoting economic vitality, and increasing fundamental scientific understanding. Many of the questions reflect challenging, multidisciplinary science questions that are clearly relevant now and are likely to take decades to solve. U.S. ocean research will require a growing suite of ocean infrastructure for a range of activities, such as high quality, sustained time series observations and autonomous monitoring at a broad range of spatial and temporal scales. A coordinated national plan for making future strategic investments will be needed and should be based upon known priorities and reviewed every 5-10 years. After assessing trends in ocean infrastructure and technology development, the committee recommended implementing a comprehensive, long-term research fleet plan in order to retain access to the sea; continuing U.S. capability to access fully and partially ice-covered seas; supporting innovation, particularly the development of biogeochemical sensors; enhancing computing and modeling capacity and capability; establishing broadly accessible data management facilities; and increasing interdisciplinary education and promoting a technically-skilled workforce. They also recommended that development, maintenance, or replacement of ocean research infrastructure assets should be prioritized in terms of societal benefit. Particular consideration should be given to

  4. Progress In Developing An In-Pile Acoustically Telemetered Sensor Infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, James A.; Garrett, Steven L.; Heibel, Michael D.

    2016-09-01

    A salient grand challenge for a number of Department of Energy programs such as Fuels Cycle Research and Development ( includes Accident Tolerant Fuel research and the Transient Reactor Test Facility Restart experiments), Light Water Sustainability, and Advanced Reactor Technologies is to enhance our fundamental understanding of fuel and materials behavior under irradiation. Robust and accurate in-pile measurements will be instrumental to develop and validate a computationally predictive multi-scale understanding of nuclear fuel and materials. This sensing technology will enable the linking of fundamental micro-structural evolution mechanisms to the macroscopic degradation of fuels and materials. The in situ sensors andmore » measurement systems will monitor local environmental parameters as well as characterize microstructure evolution during irradiation. One of the major road blocks in developing practical robust, and cost effective in-pile sensor systems, are instrument leads. If a wireless telemetry infrastructure can be developed for in-pile use, in-core measurements would become more attractive and effective. Thus to be successful in accomplishing effective in-pile sensing and microstructure characterization an interdisciplinary measurement infrastructure needs to be developed in parallel with key sensing technology. For the discussion in this research, infrastructure is defined as systems, technology, techniques, and algorithms that may be necessary in the delivery of beneficial and robust data from in-pile devices. The architecture of a system’s infrastructure determines how well it operates and how flexible it is to meet future requirements. The limiting path for the effective deployment of the salient sensing technology will not be the sensors themselves but the infrastructure that is necessary to communicate data from in-pile to the outside world in a non-intrusive and reliable manner. This article gives a high level overview of a promising telemetry

  5. Constructing vulnerabilty and protective measures indices for the enhanced critical infrastructure protection program.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, R. E.; Buehring, W. A.; Whitfield, R. G.

    2009-10-14

    The US Department of Homeland Security (DHS) has directed its Protective Security Advisors (PSAs) to form partnerships with the owners and operators of assets most essential to the Nation's well being - a subclass of critical infrastructure and key resources (CIKR) - and to conduct site visits for these and other high-risk assets as part of the Enhanced Critical Infrastructure Protection (ECIP) Program. During each such visit, the PSA documents information about the facility's current CIKR protection posture and overall security awareness. The primary goals for ECIP site visits (DHS 2009) are to: (1) inform facility owners and operators ofmore » the importance of their facilities as an identified high-priority CIKR and the need to be vigilant in light of the ever-present threat of terrorism; (2) identify protective measures currently in place at these facilities, provide comparisons of CIKR protection postures across like assets, and track the implementation of new protective measures; and (3) enhance existing relationships among facility owners and operators; DHS; and various Federal, State, local tribal, and territorial partners. PSAs conduct ECIP visits to assess overall site security; educate facility owners and operators about security; help owners and operators identify gaps and potential improvements; and promote communication and information sharing among facility owners and operators, DHS, State governments, and other security partners. Information collected during ECIP visits is used to develop metrics; conduct sector-by-sector and cross-sector vulnerability comparisons; identify security gaps and trends across CIKR sectors and subsectors; establish sector baseline security survey results; and track progress toward improving CIKR security through activities, programs, outreach, and training (Snyder 2009). The data being collected are used in a framework consistent with the National Infrastructure Protection Plan (NIPP) risk criteria (DHS 2009). The NIPP

  6. [Attributes of forest infrastructure].

    PubMed

    Gao, Jun-kai; Jin, Ying-shan

    2007-06-01

    This paper discussed the origin and evolution of the conception of ecological infrastructure, the understanding of international communities about the functions of forest, the important roles of forest in China' s economic development and ecological security, and the situations and challenges to the ongoing forestry ecological restoration programs. It was suggested that forest should be defined as an essential infrastructure for national economic and social development in a modern society. The critical functions of forest infrastructure played in the transition of forestry ecological development were emphasized. Based on the synthesis of forest ecosystem features, it was considered that the attributes of forest infrastructure are distinctive, due to the fact that it is constructed by living biological material and diversified in ownership. The forestry ecological restoration program should not only follow the basic principles of infrastructural construction, but also take the special characteristics of forests into consideration in studying the managerial system of the programs. Some suggestions for the ongoing programs were put forward: 1) developing a modern concept of ecosystem where man and nature in harmony is the core, 2) formulating long-term stable investments for forestry ecological restoration programs, 3) implementing forestry ecological restoration programs based on infrastructure construction principles, and 4) managing forests according to the principles of infrastructural construction management.

  7. Life-cycle Economic and Environmental Effects of Green, Gray and Hybrid Stormwater Infrastructure

    NASA Astrophysics Data System (ADS)

    Stokes-Draut, J. R.; Taptich, M. N.; Horvath, A.

    2016-12-01

    Cities throughout the U.S. are seeking efficient ways to manage stormwater for many reasons, including flood control, pollution management, water supply augmentation and to prepare for a changing climate. Traditionally, cities have relied primarily on gray infrastructure, namely sewers, storage and treatment facilities. In these systems, urban runoff, its volume increasing as impervious surfaces expand, is channeled to a wastewater plant where it is mixed with raw sewage prior to treatment or it is discharged, generally untreated, to local water bodies. These facilities are inflexible and expensive to build and maintain. Many systems are deteriorating and/or approaching, if not exceeding, their design capacity. Increasingly, more innovative approaches that integrate stormwater management into the natural environment and that make sense at both local and regional scales are sought. Identifying the best stormwater solution will require evaluating the life-cycle economic costs associated with these alternatives, including costs associated with construction, operation, and maintenance including regulatory and permitting costs, financing, as well as other indirect costs (e.g., avoided wastewater processing or system capacity expansion, increased property value) and non-economic co-benefits (i.e, aesthetics, habitat provision). Beyond conventional life-cycle costing, applying life-cycle assessment (LCA) will contribute to more holistic and sustainable decision-making. LCA can be used to quantitatively track energy use, greenhouse gas emissions, and other environmental effects associated with constructing, operating, and maintaining green and gray infrastructure, including supply chain contributions. We will present the current state of knowledge for implementing life-cycle costing and LCA into stormwater management decisions for green, gray and hybrid infrastructure.

  8. Theoretically-Driven Infrastructure for Supporting Healthcare Teams Training at a Military Treatment Facility

    NASA Technical Reports Server (NTRS)

    Turner, Robert T.; Parodi, Andrea V.

    2011-01-01

    The Team Resource Center (TRC) at Naval Medical Center Portsmouth (NMCP) currently hosts a tri-service healthcare teams training course three times annually . The course consists of didactic learning coupled with simulation exercises to provide an interactive educational experience for healthcare professionals. The course is also the foundation of a research program designed to explore the use of simulation technologies for enhancing team training and evaluation. The TRC has adopted theoretical frameworks for evaluating training readiness and efficacy, and is using these frameworks to guide a systematic reconfiguration of the infrastructure supporting healthcare teams training and research initiatives at NMCP.

  9. Guidelines for Technology Infrastructure in Connecticut Schools: An Implementation Guide for the Connecticut Statewide Educational Technology Plan.

    ERIC Educational Resources Information Center

    Center for Educational Leadership and Technology, Inc., Marlborough, MA.

    This document presents guidelines and recommendations for development of a technology infrastructure in Connecticut public schools that conforms to national industry standards for voice, video, and data communications. The guidelines present information on the state statutes regarding facilities implementation and describe industry standards.…

  10. Aging Water Infrastructure

    EPA Science Inventory

    The Aging Water Infrastructure (AWI) research program is part of EPA’s larger effort called the Sustainable Water Infrastructure (SI) initiative. The SI initiative brings together drinking water and wastewater utility managers; trade associations; local watershed protection organ...

  11. Efficiency improvement of the investment and innovation activities in the transport facility construction field with public-private partnership involvement

    NASA Astrophysics Data System (ADS)

    Shibayeva, Marina; Serebryakova, Yelena; Shalnev, Oleg

    2017-10-01

    Growing demand to increase the investment volume in modernization and development projects for transport infrastructure define the urgency of the current study. The amount of private sector investments in the field is insufficient to implement the projects for road construction due to their significant capital intensity and long payoff period. The implementation of social significant infrastructure projects on the principles of public-private partnership is one of the key strategic directions of growth for transport facilities. The authors come up with a concept and methodology for modeling the investment and innovation activity in the transport facility construction. Furthermore, there is developed a model to find the balance between public and private sector investments in implementing construction projects for transport infrastructure with involvement of PPP (further - public-private partnership). The suggested concepts aim to improve the efficiency rate of the investment and innovation activity in the field of transport facility construction on the basis of public and private sectors collaboration.

  12. Assessment of municipal infrastructure development and its critical influencing factors in urban China: A FA and STIRPAT approach.

    PubMed

    Li, Yu; Zheng, Ji; Li, Fei; Jin, Xueting; Xu, Chen

    2017-01-01

    Municipal infrastructure is a fundamental facility for the normal operation and development of an urban city and is of significance for the stable progress of sustainable urbanization around the world, especially in developing countries. Based on the municipal infrastructure data of the prefecture-level cities in China, municipal infrastructure development is assessed comprehensively using a FA (factor analysis) model, and then the stochastic model STIRPAT (stochastic impacts by regression on population, affluence and technology) is examined to investigate key factors that influence municipal infrastructure of cities in various stages of urbanization and economy. This study indicates that the municipal infrastructure development in urban China demonstrates typical characteristics of regional differentiation, in line with the economic development pattern. Municipal infrastructure development in cities is primarily influenced by income, industrialization and investment. For China and similar developing countries under transformation, national public investment remains the primary driving force of economy as well as the key influencing factor of municipal infrastructure. Contribution from urbanization and the relative consumption level, and the tertiary industry is still scanty, which is a crux issue for many developing countries under transformation. With economic growth and the transformation requirements, the influence of the conventional factors such as public investment and industrialization on municipal infrastructure development would be expected to decline, meanwhile, other factors like the consumption and tertiary industry driven model and the innovation society can become key contributors to municipal infrastructure sustainability.

  13. Assessment of municipal infrastructure development and its critical influencing factors in urban China: A FA and STIRPAT approach

    PubMed Central

    Li, Yu; Zheng, Ji; Li, Fei; Jin, Xueting; Xu, Chen

    2017-01-01

    Municipal infrastructure is a fundamental facility for the normal operation and development of an urban city and is of significance for the stable progress of sustainable urbanization around the world, especially in developing countries. Based on the municipal infrastructure data of the prefecture-level cities in China, municipal infrastructure development is assessed comprehensively using a FA (factor analysis) model, and then the stochastic model STIRPAT (stochastic impacts by regression on population, affluence and technology) is examined to investigate key factors that influence municipal infrastructure of cities in various stages of urbanization and economy. This study indicates that the municipal infrastructure development in urban China demonstrates typical characteristics of regional differentiation, in line with the economic development pattern. Municipal infrastructure development in cities is primarily influenced by income, industrialization and investment. For China and similar developing countries under transformation, national public investment remains the primary driving force of economy as well as the key influencing factor of municipal infrastructure. Contribution from urbanization and the relative consumption level, and the tertiary industry is still scanty, which is a crux issue for many developing countries under transformation. With economic growth and the transformation requirements, the influence of the conventional factors such as public investment and industrialization on municipal infrastructure development would be expected to decline, meanwhile, other factors like the consumption and tertiary industry driven model and the innovation society can become key contributors to municipal infrastructure sustainability. PMID:28787031

  14. Progress and Challenges in Developing Reference Data Layers for Human Population Distribution and Built Infrastructure

    NASA Astrophysics Data System (ADS)

    Chen, R. S.; Yetman, G.; de Sherbinin, A. M.

    2015-12-01

    Understanding the interactions between environmental and human systems, and in particular supporting the applications of Earth science data and knowledge in place-based decision making, requires systematic assessment of the distribution and dynamics of human population and the built human infrastructure in conjunction with environmental variability and change. The NASA Socioeconomic Data and Applications Center (SEDAC) operated by the Center for International Earth Science Information Network (CIESIN) at Columbia University has had a long track record in developing reference data layers for human population and settlements and is expanding its efforts on topics such as intercity roads, reservoirs and dams, and energy infrastructure. SEDAC has set as a strategic priority the acquisition, development, and dissemination of data resources derived from remote sensing and socioeconomic data on urban land use change, including temporally and spatially disaggregated data on urban change and rates of change, the built infrastructure, and critical facilities. We report here on a range of past and ongoing activities, including the Global Human Settlements Layer effort led by the European Commission's Joint Research Centre (JRC), the Global Exposure Database for the Global Earthquake Model (GED4GEM) project, the Global Roads Open Access Data Working Group (gROADS) of the Committee on Data for Science and Technology (CODATA), and recent work with ImageCat, Inc. to improve estimates of the exposure and fragility of buildings, road and rail infrastructure, and other facilities with respect to selected natural hazards. New efforts such as the proposed Global Human Settlement indicators initiative of the Group on Earth Observations (GEO) could help fill critical gaps and link potential reference data layers with user needs. We highlight key sectors and themes that require further attention, and the many significant challenges that remain in developing comprehensive, high quality

  15. A Constructive Approach to Infrastructure: Infrastructure "Breakdowns" and the Cultivation of Rhetorical Wisdom

    ERIC Educational Resources Information Center

    Clifton, Jennifer; Loveridge, Jordan; Long, Elenore

    2016-01-01

    It is not typically the bent of infrastructure to be continually responsive in a way that is expansive and inclusive; instead, for newcomers or those with alternative histories, aims, vision, values, and perspectives, the inertia of infrastructure is more likely to be experienced as infrastructural breakdowns. We ask: "What might wisdom look…

  16. Smart Valley Infrastructure.

    ERIC Educational Resources Information Center

    Maule, R. William

    1994-01-01

    Discusses prototype information infrastructure projects in northern California's Silicon Valley. The strategies of the public and private telecommunications carriers vying for backbone services and industries developing end-user infrastructure technologies via office networks, set-top box networks, Internet multimedia, and "smart homes"…

  17. Operational models of infrastructure resilience.

    PubMed

    Alderson, David L; Brown, Gerald G; Carlyle, W Matthew

    2015-04-01

    We propose a definition of infrastructure resilience that is tied to the operation (or function) of an infrastructure as a system of interacting components and that can be objectively evaluated using quantitative models. Specifically, for any particular system, we use quantitative models of system operation to represent the decisions of an infrastructure operator who guides the behavior of the system as a whole, even in the presence of disruptions. Modeling infrastructure operation in this way makes it possible to systematically evaluate the consequences associated with the loss of infrastructure components, and leads to a precise notion of "operational resilience" that facilitates model verification, validation, and reproducible results. Using a simple example of a notional infrastructure, we demonstrate how to use these models for (1) assessing the operational resilience of an infrastructure system, (2) identifying critical vulnerabilities that threaten its continued function, and (3) advising policymakers on investments to improve resilience. © 2014 Society for Risk Analysis.

  18. A high resolution agent-based model to support walk-bicycle infrastructure investment decisions: A case study with New York City

    DOE PAGES

    Aziz, H. M. Abdul; Park, Byung H.; Morton, April M.; ...

    2017-11-24

    Active transportation modes--walk and bicycle--are central for low carbon transport, healthy living, and complete streets initiative. Building a community with amenable walk and bicycle facilities asks for smart planning and investments. It is critical to investigate the impact of infrastructure building or expansion on the overall walk and bicycle mode usage prior to making investment choices utilizing public tax money. This research developed an agent-based model to support investment decisions that allows to assess the impact of changes in walk-bike infrastructures at a high spatial resolution (e.g., block group level). The agent-based model (ABM) utilizes data from a synthetic populationmore » simulator generating agents with corresponding socio-demographic characteristics, and integrates facility attributes regarding walking and bicycling (e.g., sidewalk width, bike lane length) into the mode choice decision making process. Moreover, the ABM accounts for the effect of social interactions among agents who live and work at the same geographic locations. Finally, GIS-based maps are developed at block group resolution that allows exploring the effect of walk-bike infrastructure related investments. The results from New York City case study indicate that infrastructure investments such as widening sidewalk and increasing bike lane network can positively influence the active transportation mode choices. In addition, the level of impact varies with geographic locations--different boroughs of New York City will have different impacts. Lastly, social promotions resulting in higher social interaction among agents can reinforce the impacts of infrastructure changes.« less

  19. A high resolution agent-based model to support walk-bicycle infrastructure investment decisions: A case study with New York City

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aziz, H. M. Abdul; Park, Byung H.; Morton, April M.

    Active transportation modes--walk and bicycle--are central for low carbon transport, healthy living, and complete streets initiative. Building a community with amenable walk and bicycle facilities asks for smart planning and investments. It is critical to investigate the impact of infrastructure building or expansion on the overall walk and bicycle mode usage prior to making investment choices utilizing public tax money. This research developed an agent-based model to support investment decisions that allows to assess the impact of changes in walk-bike infrastructures at a high spatial resolution (e.g., block group level). The agent-based model (ABM) utilizes data from a synthetic populationmore » simulator generating agents with corresponding socio-demographic characteristics, and integrates facility attributes regarding walking and bicycling (e.g., sidewalk width, bike lane length) into the mode choice decision making process. Moreover, the ABM accounts for the effect of social interactions among agents who live and work at the same geographic locations. Finally, GIS-based maps are developed at block group resolution that allows exploring the effect of walk-bike infrastructure related investments. The results from New York City case study indicate that infrastructure investments such as widening sidewalk and increasing bike lane network can positively influence the active transportation mode choices. In addition, the level of impact varies with geographic locations--different boroughs of New York City will have different impacts. Lastly, social promotions resulting in higher social interaction among agents can reinforce the impacts of infrastructure changes.« less

  20. Evolution of Safeguards over Time: Past, Present, and Projected Facilities, Material, and Budget

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kollar, Lenka; Mathews, Caroline E.

    This study examines the past trends and evolution of safeguards over time and projects growth through 2030. The report documents the amount of nuclear material and facilities under safeguards from 1970 until present, along with the corresponding budget. Estimates for the future amount of facilities and material under safeguards are made according to non-nuclear-weapons states’ (NNWS) plans to build more nuclear capacity and sustain current nuclear infrastructure. Since nuclear energy is seen as a clean and economic option for base load electric power, many countries are seeking to either expand their current nuclear infrastructure, or introduce nuclear power. In ordermore » to feed new nuclear power plants and sustain existing ones, more nuclear facilities will need to be built, and thus more nuclear material will be introduced into the safeguards system. The projections in this study conclude that a zero real growth scenario for the IAEA safeguards budget will result in large resource gaps in the near future.« less

  1. School Facilities: America's Schools Not Designed or Equipped for 21st Century. Report to Congressional Requesters.

    ERIC Educational Resources Information Center

    General Accounting Office, Washington, DC. Health, Education, and Human Services Div.

    This document presents findings of a General Accounting Office study that examined the extent to which America's schools have the physical capacity to support learning into the 21st century. Specifically, it looked at facilities requirements, environmental conditions, educational technologies, and facility infrastructure. Data were collected…

  2. Green Infrastructure 101

    EPA Science Inventory

    Green Infrastructure 101 • What is it? What does it do? What doesn’t it do? • Green Infrastructure as a stormwater and combined sewer control • GI Controls and Best Management Practices that make sense for Yonkers o (Include operations and maintenance requirements for each)

  3. Liberian surgical and anesthesia infrastructure: a survey of county hospitals.

    PubMed

    Knowlton, Lisa Marie; Chackungal, Smita; Dahn, Bernice; LeBrun, Drake; Nickerson, Jason; McQueen, Kelly

    2013-04-01

    There is a significant burden of disease in low-income countries that can benefit from surgical intervention. The goal of this survey was to evaluate the current ability of the Liberian health care system to provide safe surgical care and to identify unmet needs in regard to trained personnel, equipment, infrastructure, and outcomes measurement. A comprehensive survey tool was developed to assess physical infrastructure of operative facilities, education and training for surgical and anesthesia providers, equipment and medications, and the capacity of the surgical system to collect and evaluate surgical outcomes at district-level hospitals in Africa. This tool was implemented in a sampling of 11 county hospitals in Liberia (January 2011). Data were obtained from the Ministry of Health and by direct government-affiliated hospital site visits. The total catchment area of the 11 hospitals surveyed was 2,313,429--equivalent to roughly 67 % of the population of Liberia (3,476,608). There were 13 major operating rooms and 34 (1.5 per 100,000 population) physicians delivering surgical, obstetric, or anesthesia care including 2 (0.1 per 100,000 population) who had completed formal postgraduate training programs in these specialty areas. The total number of surgical cases for 2010 was 7,654, with approximately 43 % of them being elective procedures. Among the facilities that tracked outcomes in 2010, a total of 11 intraoperative deaths (145 per 100,000 operative cases) were recorded for 2009. The 30-day postoperative mortality at hospitals providing data was 44 (1,359 per 100,000 operative cases). Metrics were also used to evaluate surgical output, safety of anesthesia, and the burden of obstetric disease. A significant volume of surgical care is being delivered at county hospitals throughout Liberia. The density and quality of appropriately trained personnel and infrastructure remain critically low. There is strong evidence for continued development of emergency and

  4. Complex Networks and Critical Infrastructures

    NASA Astrophysics Data System (ADS)

    Setola, Roberto; de Porcellinis, Stefano

    The term “Critical Infrastructures” indicates all those technological infrastructures such as: electric grids, telecommunication networks, railways, healthcare systems, financial circuits, etc. that are more and more relevant for the welfare of our countries. Each one of these infrastructures is a complex, highly non-linear, geographically dispersed cluster of systems, that interact with their human owners, operators, users and with the other infrastructures. Their augmented relevance and the actual political and technological scenarios, which have increased their exposition to accidental failure and deliberate attacks, demand for different and innovative protection strategies (generally indicate as CIP - Critical Infrastructure Protection). To this end it is mandatory to understand the mechanisms that regulate the dynamic of these infrastructures. In this framework, an interesting approach is those provided by the complex networks. In this paper we illustrate some results achieved considering structural and functional properties of the corresponding topological networks both when each infrastructure is assumed as an autonomous system and when we take into account also the dependencies existing among the different infrastructures.

  5. The future of infrastructure security :

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, Pablo; Turnley, Jessica Glicken; Parrott, Lori K.

    2013-05-01

    Sandia National Laboratories hosted a workshop on the future of infrastructure security on February 27-28, 2013, in Albuquerque, NM. The 17 participants came from backgrounds as diverse as federal policy, the insurance industry, infrastructure management, and technology development. The purpose of the workshop was to surface key issues, identify directions forward, and lay groundwork for cross-sectoral and cross-disciplinary collaborations. The workshop addressed issues such as the problem space (what is included in infrastructure problems?), the general types of threats to infrastructure (such as acute or chronic, system-inherent or exogenously imposed) and definitions of secure and resilient infrastructures. The workshop concludedmore » with a consideration of stakeholders and players in the infrastructure world, and identification of specific activities that could be undertaken by the Department of Homeland Security (DHS) and other players.« less

  6. CEMS: Building a Cloud-Based Infrastructure to Support Climate and Environmental Data Services

    NASA Astrophysics Data System (ADS)

    Kershaw, P. J.; Curtis, M.; Pechorro, E.

    2012-04-01

    CEMS, the facility for Climate and Environmental Monitoring from Space, is a new joint collaboration between academia and industry to bring together their collective expertise to support research into climate change and provide a catalyst for growth in related Earth Observation (EO) technologies and services in the commercial sector. A recent major investment by the UK Space Agency has made possible the development of a dedicated facility at ISIC, the International Space Innovation Centre at Harwell in the UK. CEMS has a number of key elements: the provision of access to large-volume EO and climate datasets co-located with high performance computing facilities; a flexible infrastructure to support the needs of research projects in the academic community and new business opportunities for commercial companies. Expertise and tools for scientific data quality and integrity are another essential component, giving users confidence and transparency in its data, services and products. Central to the development of this infrastructure is the utilisation of cloud-based technology: multi-tenancy and the dynamic provision of resources are key characteristics to exploit in order to support the range of organisations using the facilities and the varied use cases. The hosting of processing services and applications next to the data within the CEMS facility is another important capability. With the expected exponential increase in data volumes within the climate science and EO domains it is becoming increasingly impracticable for organisations to retrieve this data over networks and provide the necessary storage. Consider for example, the factor of o20 increase in data volumes expected for the ESA Sentinel missions over the equivalent Envisat instruments. We explore the options for the provision of a hybrid community/private cloud looking at offerings from the commercial sector and developments in the Open Source community. Building on this virtualisation layer, a further core

  7. Integration of bicycling and walking facilities into the infrastructure of urban communities.

    DOT National Transportation Integrated Search

    2012-02-01

    Several manuals, handbooks and web resources exist to provide varied guidance on planning for and designing bicycle and pedestrian facilities, yet there are no specific indications about which of the varied treatments in these guides work well for us...

  8. Integration of Bicycling and Walking Facilities into the Infrastructure of Urban Communities

    DOT National Transportation Integrated Search

    2012-02-01

    Several manuals, handbooks and web resources exist to provide varied guidance on planning for and designing bicycle and pedestrian facilities, yet there are no specific indications about which of the varied treatments in these guides work well for us...

  9. Energy-Water Modeling and Impacts at Urban and Infrastructure Scales

    NASA Astrophysics Data System (ADS)

    Saleh, F.; Pullen, J. D.; Schoonen, M. A.; Gonzalez, J.; Bhatt, V.; Fellows, J. D.

    2017-12-01

    We converge multi-disciplinary, multi-sectoral modeling and data analysis tools on an urban watershed to examine the feedbacks of concentrated and connected infrastructure on the environment. Our focus area is the Lower Hudson River Basin (LHRB). The LHRB captures long-term and short- term energy/water stressors as it represents: 1) a coastal environment subject to sea level rise that is among the fastest in the East impacted by a wide array of various storms; 2) one of the steepest gradients in population density in the US, with Manhattan the most densely populated coastal county in the nation; 3) energy/water infrastructure serving the largest metropolitan area in the US; 4) a history of environmental impacts, ranging from heatwaves to hurricanes, that can be used to hindcast; and 5) a wealth of historic and real-time data, extensive monitoring facilities and existing specific sector models that can be leveraged. We detail two case studies on "water infrastructure and stressors", and "heatwaves and energy-water demands." The impact of a hypothetical failure of Oradell Dam (on the Hackensack River, a tributary of the Hudson River) coincident with a hurricane, and urban power demands under current and future heat waves are examined with high-resolution (meter to km scale) earth system models to illustrate energy water nexus issues where detailed predictions can shape response and mitigation strategies.

  10. Approach to sustainable e-Infrastructures - The case of the Latin American Grid

    NASA Astrophysics Data System (ADS)

    Barbera, Roberto; Diacovo, Ramon; Brasileiro, Francisco; Carvalho, Diego; Dutra, Inês; Faerman, Marcio; Gavillet, Philippe; Hoeger, Herbert; Lopez Pourailly, Maria Jose; Marechal, Bernard; Garcia, Rafael Mayo; Neumann Ciuffo, Leandro; Ramos Pollan, Paul; Scardaci, Diego; Stanton, Michael

    2010-05-01

    The EELA (E-Infrastructure shared between Europe and Latin America) and EELA-2 (E-science grid facility for Europe and Latin America) projects, co-funded by the European Commission under FP6 and FP7, respectively, have been successful in building a high capacity, production-quality, scalable Grid Facility for a wide spectrum of applications (e.g. Earth & Life Sciences, High energy physics, etc.) from several European and Latin American User Communities. This paper presents the 4-year experience of EELA and EELA-2 in: • Providing each Member Institution the unique opportunity to benefit of a huge distributed computing platform for its research activities, in particular through initiatives such as OurGrid which proposes a so-called Opportunistic Grid Computing well adapted to small and medium Research Laboratories such as most of those of Latin America and Africa; • Developing a realistic strategy to ensure the long-term continuity of the e-Infrastructure in the Latin American continent, beyond the term of the EELA-2 project, in association with CLARA and collaborating with EGI. Previous interactions between EELA and African Grid members at events such as the IST Africa'07, 08 and 09, the International Conference on Open Access'08 and EuroAfriCa-ICT'08, to which EELA and EELA-2 contributed, have shown that the e-Infrastructure situation in Africa compares well with the Latin American one. This means that African Grids are likely to face the same problems that EELA and EELA-2 experienced, especially in getting the necessary User and Decision Makers support to create NGIs and, later, a possible continent-wide African Grid Initiative (AGI). The hope is that the EELA-2 endeavour towards sustainability as described in this presentation could help the progress of African Grids.

  11. The development of network infrastructure in rural areas and problems in applying IT to the medical field.

    PubMed

    Ooe, Yosuke; Anamizu, Hiromitsu; Tatsumi, Haruyuki; Tanaka, Hiroshi

    2008-07-01

    The financial condition of the Japanese health insurance system is said to be compounded with the aging of the population. The government argues that the application of IT and networking is required in order to streamline health care services while avoiding its collapse. The Internet environment has been furnished with broadband connection and multimedia in the span of one year or shorter, and is becoming more and more convenient. It is true that the Internet is now a part of Tokyo's infrastructure along with electricity and water supply, as it is the center of politics. However, in local cities, development of the Internet environment is still insufficient. In order to use the network as a common infrastructure at health care facilities, we need to be aware of this digital divide. This study investigated the development status of network infrastructure in regional cities.

  12. Hydrogen and Storage Initiatives at the NASA JSC White Sands Test Facility

    NASA Technical Reports Server (NTRS)

    Maes, Miguel; Woods, Stephen S.

    2006-01-01

    NASA WSTF Hydrogen Activities: a) Aerospace Test; b) System Certification & Verification; c) Component, System, & Facility Hazard Assessment; d) Safety Training Technical Transfer: a) Development of Voluntary Consensus Standards and Practices; b) Support of National Hydrogen Infrastructure Development.

  13. The correlation of housing estate area with regional infrastructure development in peri-urban region of metropolitan Bandung Raya

    NASA Astrophysics Data System (ADS)

    Vitriana, A. N. I. T. A.

    2018-03-01

    Housing estates development in the peri-urban area is often used as a solution to meet the needs of urban housing. In this case, the development of housing estates built by developers, are including housing units as well as the facilities and infrastructure. Based on this practice, then two opposite opinions emerge about the participation of developers in the development of housing infrastructure. The first opinion acknowledges that residential developers have assisted the government in providing settlement infrastructure. Meanwhile, the second opinion considers the infrastructure development undertaken by the residential developers has precisely caused inefficient regional infrastructure development. This study aims to examine the correlation between the development of housing estates and the development of regional infrastructure by using simple linear regression analyses, in order to prove whether there is a relationship between the two variables. This research was conducted at West Bandung Regency (Kabupaten Bandung Barat), one of the regency that located in peri-urban of Metropolitan Bandung Area. Two variables used in this study consist of the area of housing estates variable and the infrastructure development variable. The infrastructure development variable is represented by The IKG score (Geographic Difficulties Index). In this study, two different levels of the area were conducted to the examination, the village, and the subdistrict. The result of this examination shows that there is a weak correlation between the variables of the housing estates area and The IKG, even though its relationship is getting stronger when the test performed on a larger area. Based on this research, it can be said that the development of housing estates infrastructure in West Bandung Regency has a lack of significant effect on the regional infrastructure development.

  14. Using infrastructure optimization to reduce greenhouse gas emissions from oil sands extraction and processing.

    PubMed

    Middleton, Richard S; Brandt, Adam R

    2013-02-05

    The Alberta oil sands are a significant source of oil production and greenhouse gas emissions, and their importance will grow as the region is poised for decades of growth. We present an integrated framework that simultaneously considers economic and engineering decisions for the capture, transport, and storage of oil sands CO(2) emissions. The model optimizes CO(2) management infrastructure at a variety of carbon prices for the oil sands industry. Our study reveals several key findings. We find that the oil sands industry lends itself well to development of CO(2) trunk lines due to geographic coincidence of sources and sinks. This reduces the relative importance of transport costs compared to nonintegrated transport systems. Also, the amount of managed oil sands CO(2) emissions, and therefore the CCS infrastructure, is very sensitive to the carbon price; significant capture and storage occurs only above 110$/tonne CO(2) in our simulations. Deployment of infrastructure is also sensitive to CO(2) capture decisions and technology, particularly the fraction of capturable CO(2) from oil sands upgrading and steam generation facilities. The framework will help stakeholders and policy makers understand how CCS infrastructure, including an extensive pipeline system, can be safely and cost-effectively deployed.

  15. Development Model for Research Infrastructures

    NASA Astrophysics Data System (ADS)

    Wächter, Joachim; Hammitzsch, Martin; Kerschke, Dorit; Lauterjung, Jörn

    2015-04-01

    Research infrastructures (RIs) are platforms integrating facilities, resources and services used by the research communities to conduct research and foster innovation. RIs include scientific equipment, e.g., sensor platforms, satellites or other instruments, but also scientific data, sample repositories or archives. E-infrastructures on the other hand provide the technological substratum and middleware to interlink distributed RI components with computing systems and communication networks. The resulting platforms provide the foundation for the design and implementation of RIs and play an increasing role in the advancement and exploitation of knowledge and technology. RIs are regarded as essential to achieve and maintain excellence in research and innovation crucial for the European Research Area (ERA). The implementation of RIs has to be considered as a long-term, complex development process often over a period of 10 or more years. The ongoing construction of Spatial Data Infrastructures (SDIs) provides a good example for the general complexity of infrastructure development processes especially in system-of-systems environments. A set of directives issued by the European Commission provided a framework of guidelines for the implementation processes addressing the relevant content and the encoding of data as well as the standards for service interfaces and the integration of these services into networks. Additionally, a time schedule for the overall construction process has been specified. As a result this process advances with a strong participation of member states and responsible organisations. Today, SDIs provide the operational basis for new digital business processes in both national and local authorities. Currently, the development of integrated RIs in Earth and Environmental Sciences is characterised by the following properties: • A high number of parallel activities on European and national levels with numerous institutes and organisations participating

  16. The Swedish Research Infrastructure for Ecosystem Science - SITES

    NASA Astrophysics Data System (ADS)

    Lindroth, A.; Ahlström, M.; Augner, M.; Erefur, C.; Jansson, G.; Steen Jensen, E.; Klemedtsson, L.; Langenheder, S.; Rosqvist, G. N.; Viklund, J.

    2017-12-01

    The vision of SITES is to promote long-term field-based ecosystem research at a world class level by offering an infrastructure with excellent technical and scientific support and services attracting both national and international researchers. In addition, SITES will make data freely and easily available through an advanced data portal which will add value to the research. During the first funding period, three innovative joint integrating facilities were established through a researcher-driven procedure: SITES Water, SITES Spectral, and SITES AquaNet. These new facilities make it possible to study terrestrial and limnic ecosystem processes across a range of ecosystem types and climatic gradients, with common protocols and similar equipment. In addition, user-driven development at the nine individual stations has resulted in e.g. design of a long-term agricultural systems experiment, and installation of weather stations, flux systems, etc. at various stations. SITES, with its integrative approach and broad coverage of climate and ecosystem types across Sweden, constitutes an excellent platform for state-of-the-art research projects. SITES' support the development of: A better understanding of the way in which key ecosystems function and interact with each other at the landscape level and with the climate system in terms of mass and energy exchanges. A better understanding of the role of different organisms in controlling different processes and ultimately the functioning of ecosystems. New strategies for forest management to better meet the many and varied requirements from nature conservation, climate and wood, fibre, and energy supply points of view. Agricultural systems that better utilize resources and minimize adverse impacts on the environment. Collaboration with other similar infrastructures and networks is a high priority for SITES. This will enable us to make use of each others' experiences, harmonize metadata for easier exchange of data, and support each

  17. 77 FR 30589 - SteelRiver Infrastructure Partners LP, SteelRiver Infrastructure Associates LLC, SteelRiver...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-23

    ... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [Docket No. FD 35622] SteelRiver Infrastructure Partners LP, SteelRiver Infrastructure Associates LLC, SteelRiver Infrastructure Fund North America LP, and Patriot Funding LLC--Control Exemption--Patriot Rail Corp., et al. SteelRiver...

  18. Making green infrastructure healthier infrastructure.

    PubMed

    Lõhmus, Mare; Balbus, John

    2015-01-01

    Increasing urban green and blue structure is often pointed out to be critical for sustainable development and climate change adaptation, which has led to the rapid expansion of greening activities in cities throughout the world. This process is likely to have a direct impact on the citizens' quality of life and public health. However, alongside numerous benefits, green and blue infrastructure also has the potential to create unexpected, undesirable, side-effects for health. This paper considers several potential harmful public health effects that might result from increased urban biodiversity, urban bodies of water, and urban tree cover projects. It does so with the intent of improving awareness and motivating preventive measures when designing and initiating such projects. Although biodiversity has been found to be associated with physiological benefits for humans in several studies, efforts to increase the biodiversity of urban environments may also promote the introduction and survival of vector or host organisms for infectious pathogens with resulting spread of a variety of diseases. In addition, more green connectivity in urban areas may potentiate the role of rats and ticks in the spread of infectious diseases. Bodies of water and wetlands play a crucial role in the urban climate adaptation and mitigation process. However, they also provide habitats for mosquitoes and toxic algal blooms. Finally, increasing urban green space may also adversely affect citizens allergic to pollen. Increased awareness of the potential hazards of urban green and blue infrastructure should not be a reason to stop or scale back projects. Instead, incorporating public health awareness and interventions into urban planning at the earliest stages can help insure that green and blue infrastructure achieves full potential for health promotion.

  19. Chemical and Biological Defense: Designated Entity Needed to Identify, Align, and Manage DOD’s Infrastructure

    DTIC Science & Technology

    2015-06-01

    Designated Leader, GAO-10-645 (Washington, D.C.: June 30, 2010). 35See GAO, Biological Defense: DOD Has Strengthened Coordination on Medical... on track to be designated a Leadership in Energy and Environmental Design facility. metabolic poisons, and pulmonary toxicants; nerve agent...CHEMICAL AND BIOLOGICAL DEFENSE Designated Entity Needed to Identify, Align, and Manage DOD’s Infrastructure

  20. Green Infrastructure Modeling Tools

    EPA Pesticide Factsheets

    Modeling tools support planning and design decisions on a range of scales from setting a green infrastructure target for an entire watershed to designing a green infrastructure practice for a particular site.

  1. Infrastructure Survey 2011

    ERIC Educational Resources Information Center

    Group of Eight (NJ1), 2012

    2012-01-01

    In 2011, the Group of Eight (Go8) conducted a survey on the state of its buildings and infrastructure. The survey is the third Go8 Infrastructure survey, with previous surveys being conducted in 2007 and 2009. The current survey updated some of the information collected in the previous surveys. It also collated data related to aspects of the…

  2. Climate Action Benefits: Infrastructure

    EPA Pesticide Factsheets

    This page provides background on the relationship between infrastructure and climate change and describes what the CIRA Infrastructure analyses cover. It provides links to the subsectors Bridges, Roads, Urban Drainage, and Coastal Property.

  3. Improving the Research Infrastructure at U.S. Universities and Colleges. Hearing before the Committee on Science and Technology. U.S. House of Representatives, Ninety-Eighth Congress, Second Session.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. House Committee on Science and Technology.

    The state of university science and engineering research capabilities is considered. Attention is directed to the need for improving and enhancing the research infrastructure, including support for instrumentation, buildings, and other related research facilities. U.S. universities and colleges are encountering severe facilities and…

  4. 50 CFR 86.30 - Must I allow the public to use the grant-funded facilities?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Must I allow the public to use the grant-funded facilities? 86.30 Section 86.30 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE... INFRASTRUCTURE GRANT (BIG) PROGRAM Public Use of the Facility § 86.30 Must I allow the public to use the grant...

  5. Caribou distribution during the post-calving period in relation to infrastructure in the Prudhoe Bay oil field, Alaska

    USGS Publications Warehouse

    Cronin, Matthew A.; Amstrup, Steven C.; Durner, George M.; Noel, Lynn E.; McDonald, Trent L.; Ballard, Warren B.

    1998-01-01

    There is concern that caribou (Rangifer tarandus) may avoid roads and facilities (i.e., infrastructure) in the Prudhoe Bay oil field (PBOF) in northern Alaska, and that this avoidance can have negative effects on the animals. We quantified the relationship between caribou distribution and PBOF infrastructure during the post-calving period (mid-June to mid-August) with aerial surveys from 1990 to 1995. We conducted four to eight surveys per year with complete coverage of the PBOF. We identified active oil field infrastructure and used a geographic information system (GIS) to construct ten 1 km wide concentric intervals surrounding the infrastructure. We tested whether caribou distribution is related to distance from infrastructure with a chi-squared habitat utilization-availability analysis and log-linear regression. We considered bulls, calves, and total caribou of all sex/age classes separately. The habitat utilization-availability analysis indicated there was no consistent trend of attraction to or avoidance of infrastructure. Caribou frequently were more abundant than expected in the intervals close to infrastructure, and this trend was more pronounced for bulls and for total caribou of all sex/age classes than for calves. Log-linear regression (with Poisson error structure) of numbers of caribou and distance from infrastructure were also done, with and without combining data into the 1 km distance intervals. The analysis without intervals revealed no relationship between caribou distribution and distance from oil field infrastructure, or between caribou distribution and Julian date, year, or distance from the Beaufort Sea coast. The log-linear regression with caribou combined into distance intervals showed the density of bulls and total caribou of all sex/age classes declined with distance from infrastructure. Our results indicate that during the post-calving period: 1) caribou distribution is largely unrelated to distance from infrastructure; 2) caribou

  6. Systematic risk assessment methodology for critical infrastructure elements - Oil and Gas subsectors

    NASA Astrophysics Data System (ADS)

    Gheorghiu, A.-D.; Ozunu, A.

    2012-04-01

    The concern for the protection of critical infrastructure has been rapidly growing in the last few years in Europe. The level of knowledge and preparedness in this field is beginning to develop in a lawfully organized manner, for the identification and designation of critical infrastructure elements of national and European interest. Oil and gas production, refining, treatment, storage and transmission by pipelines facilities, are considered European critical infrastructure sectors, as per Annex I of the Council Directive 2008/114/EC of 8 December 2008 on the identification and designation of European critical infrastructures and the assessment of the need to improve their protection. Besides identifying European and national critical infrastructure elements, member states also need to perform a risk analysis for these infrastructure items, as stated in Annex II of the above mentioned Directive. In the field of risk assessment, there are a series of acknowledged and successfully used methods in the world, but not all hazard identification and assessment methods and techniques are suitable for a given site, situation, or type of hazard. As Theoharidou, M. et al. noted (Theoharidou, M., P. Kotzanikolaou, and D. Gritzalis 2009. Risk-Based Criticality Analysis. In Critical Infrastructure Protection III. Proceedings. Third Annual IFIP WG 11.10 International Conference on Critical Infrastructure Protection. Hanover, New Hampshire, USA, March 23-25, 2009: revised selected papers, edited by C. Palmer and S. Shenoi, 35-49. Berlin: Springer.), despite the wealth of knowledge already created, there is a need for simple, feasible, and standardized criticality analyses. The proposed systematic risk assessment methodology includes three basic steps: the first step (preliminary analysis) includes the identification of hazards (including possible natural hazards) for each installation/section within a given site, followed by a criterial analysis and then a detailed analysis step

  7. Medication safety infrastructure in critical-access hospitals in Florida.

    PubMed

    Winterstein, Almut G; Hartzema, Abraham G; Johns, Thomas E; De Leon, Jessica M; McDonald, Kathie; Henshaw, Zak; Pannell, Robert

    2006-03-01

    The medication safety infrastructure of critical-access hospitals (CAHs) in Florida was evaluated. Qualitative assessments, including a self-administered survey and site visits, were conducted in seven of nine CAHs between January and June 2003. The survey consisted of the Institute for Safe Medication Practices Medication Safety Self-assessment, the 2003 Joint Commission on Accreditation of Healthcare Organizations patient safety goals, health information technology (HIT) questions, and medication-use-process flow charts. On-site visits included interviews of CAH personnel who had safety responsibility and inspections of pharmacy facilities. The findings were compiled into a matrix reflecting structural and procedural components of the CAH medication safety infrastructure. The nine characteristics that emerged as targets for quality improvement (QI) were medication accessibility and storage, sterile product compounding, access to drug information, access to and utilization of patient information in medication order review, advanced safety technology, drug formularies and standardized medication protocols, safety culture, and medication reconciliation. Based on weighted importance and feasibility, QI efforts in CAHs should focus on enhancing medication order review systems, standardizing procedures for handling high-risk medications, promoting an appropriate safety culture, involvement in seamless care, and investment in HIT.

  8. Making green infrastructure healthier infrastructure

    PubMed Central

    Lõhmus, Mare; Balbus, John

    2015-01-01

    Increasing urban green and blue structure is often pointed out to be critical for sustainable development and climate change adaptation, which has led to the rapid expansion of greening activities in cities throughout the world. This process is likely to have a direct impact on the citizens’ quality of life and public health. However, alongside numerous benefits, green and blue infrastructure also has the potential to create unexpected, undesirable, side-effects for health. This paper considers several potential harmful public health effects that might result from increased urban biodiversity, urban bodies of water, and urban tree cover projects. It does so with the intent of improving awareness and motivating preventive measures when designing and initiating such projects. Although biodiversity has been found to be associated with physiological benefits for humans in several studies, efforts to increase the biodiversity of urban environments may also promote the introduction and survival of vector or host organisms for infectious pathogens with resulting spread of a variety of diseases. In addition, more green connectivity in urban areas may potentiate the role of rats and ticks in the spread of infectious diseases. Bodies of water and wetlands play a crucial role in the urban climate adaptation and mitigation process. However, they also provide habitats for mosquitoes and toxic algal blooms. Finally, increasing urban green space may also adversely affect citizens allergic to pollen. Increased awareness of the potential hazards of urban green and blue infrastructure should not be a reason to stop or scale back projects. Instead, incorporating public health awareness and interventions into urban planning at the earliest stages can help insure that green and blue infrastructure achieves full potential for health promotion. PMID:26615823

  9. LEMON - LHC Era Monitoring for Large-Scale Infrastructures

    NASA Astrophysics Data System (ADS)

    Marian, Babik; Ivan, Fedorko; Nicholas, Hook; Hector, Lansdale Thomas; Daniel, Lenkes; Miroslav, Siket; Denis, Waldron

    2011-12-01

    At the present time computer centres are facing a massive rise in virtualization and cloud computing as these solutions bring advantages to service providers and consolidate the computer centre resources. However, as a result the monitoring complexity is increasing. Computer centre management requires not only to monitor servers, network equipment and associated software but also to collect additional environment and facilities data (e.g. temperature, power consumption, cooling efficiency, etc.) to have also a good overview of the infrastructure performance. The LHC Era Monitoring (Lemon) system is addressing these requirements for a very large scale infrastructure. The Lemon agent that collects data on every client and forwards the samples to the central measurement repository provides a flexible interface that allows rapid development of new sensors. The system allows also to report on behalf of remote devices such as switches and power supplies. Online and historical data can be visualized via a web-based interface or retrieved via command-line tools. The Lemon Alarm System component can be used for notifying the operator about error situations. In this article, an overview of the Lemon monitoring is provided together with a description of the CERN LEMON production instance. No direct comparison is made with other monitoring tool.

  10. 75 FR 67989 - Agency Information Collection Activities: Office of Infrastructure Protection; Infrastructure...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-04

    ..., National Protection and Programs Directorate, Office of Infrastructure Protection (IP), will submit the... manner.'' DHS designated IP to lead these efforts. Given that the vast majority of the Nation's critical infrastructure and key resources in most sectors are privately owned or controlled, IP's success in achieving the...

  11. Department of Energy Arm Facilities on the North Slope of Alaska and Plans for a North Slope "Mega-Site"

    NASA Astrophysics Data System (ADS)

    Ivey, M.; Verlinde, J.

    2014-12-01

    The U.S. Department of Energy (DOE), through its scientific user facility, the Atmospheric Radiation Measurement (ARM) Climate Research Facility, provides scientific infrastructure and data to the international Arctic research community via its research sites located on the North Slope of Alaska. The DOE ARM Program has operated an atmospheric measurement facility in Barrow, Alaska, since 1998. Major upgrades to this facility, including scanning radars, were added in 2010. Facilities and infrastructure to support operations of unmanned aerial systems for science missions in the Arctic and North Slope of Alaska were established at Oliktok Point Alaska in 2013. Tethered instrumented balloons will be used in the near future to make measurements of clouds in the boundary layer including mixed-phase clouds. The Atmospheric Radiation Measurement (ARM) Climate Research Facility is implementing "mega-sites" at the Southern Great Plains and North Slope of Alaska sites. Two workshops were held to gather input from the scientific community on these mega-sites. The NSA workshop was held September 10 and 11 in the Washington DC area. The workshops included discussions of additional profiling remote sensors, detailed measurements of the land-atmosphere interface, aerial operations to link the Barrow and Oliktok sites, unmanned aerial system measurements, and routine large eddy simulation model runs. The "mega-sites" represent a significant new scientific and infrastructure investment by DOE Office of Science, Office of Biological and Environmental Research. This poster will present information on plans for a North Slope "Megasite" as well as new opportunities for members of the arctic research community to make atmospheric measurements using unmanned aerial systems or tethered balloons in conjunction with the DOE ARM facilities on the North Slope of Alaska.

  12. A hydrologic retention system and water quality monitoring program for a human decomposition research facility: concept and design.

    PubMed

    Wozniak, Jeffrey R; Thies, Monte L; Bytheway, Joan A; Lutterschmidt, William I

    2015-01-01

    Forensic taphonomy is an essential research field; however, the decomposition of human cadavers at forensic science facilities may lead to nutrient loading and the introduction of unique biological compounds to adjacent areas. The infrastructure of a water retention system may provide a mechanism for the biogeochemical processing and retention of nutrients and compounds, ensuring the control of runoff from forensic facilities. This work provides a proof of concept for a hydrologic retention system and an autonomous water quality monitoring program designed to mitigate runoff from The Southeast Texas Applied Forensic Science (STAFS) Facility. Water samples collected along a sample transect were analyzed for total phosphorous, total nitrogen, NO3-, NO2-, NH4, F(-), and Cl(-). Preliminary water quality analyses confirm the overall effectiveness of the water retention system. These results are discussed with relation to how this infrastructure can be expanded upon to monitor additional, more novel, byproducts of forensic science research facilities. © 2014 American Academy of Forensic Sciences.

  13. Green Infrastructure Modeling Toolkit

    EPA Pesticide Factsheets

    EPA's Green Infrastructure Modeling Toolkit is a toolkit of 5 EPA green infrastructure models and tools, along with communication materials, that can be used as a teaching tool and a quick reference resource when making GI implementation decisions.

  14. TAN HOT SHOP AND SUPPORT FACILITY UTILIZATION STUDY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Ken Crawforth

    2001-11-01

    Impacts to the U.S. Department of Energy (DOE) complex caused by early closure (prior to 2018) and Demolition and Dismantlement (D&D) of the Test Area North (TAN) hot shop and its support facilities are explored in this report. Various possible conditions, such as Standby, Safe Store and Lay-up, that the facility may be placed in prior to eventually being turned over to D&D are addressed. The requirements, impacts, and implications to the facility and to the DOE Complex are discussed for each condition presented in the report. Some details of the report reference the Idaho National Engineering and Environmental Laboratorymore » (INEEL) Spent Nuclear Fuel Life Cycle Baseline Plan, the INEEL 2000 Infrastructure Long Range Plan, and other internal INEEL reports.« less

  15. TAN Hot Shop and Support Facility Utilization Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Picker, B.A.

    2001-11-16

    Impacts to the U.S. Department of Energy (DOE) complex caused by early closure (prior to 2018) and Demolition and Dismantlement (D and D) of the Test Area North (TAN) hot shop and its support facilities are explored in this report. Various possible conditions, such as Standby, Safe Store and Lay-up, that the facility may be placed in prior to eventually being turned over to D and D are addressed. The requirements, impacts, and implications to the facility and to the DOE Complex are discussed for each condition presented in the report. Some details of the report reference the Idaho Nationalmore » Engineering and Environmental Laboratory (INEEL) Spent Nuclear Fuel Life Cycle Baseline Plan, the INEEL 2000 Infrastructure Long Range Plan, and other internal INEEL reports.« less

  16. Critical Infrastructure Interdependencies Assessment

    DOE PAGES

    Petit, Frederic; Verner, Duane

    2016-11-01

    Throughout the world there is strong recognition that critical infrastructure security and resilience needs to be improved. In the United States, the National Infrastructure Protection Plan (NIPP) provides the strategic vision to guide the national effort to manage risk to the Nation’s critical infrastructure.”1 The achievement of this vision is challenged by the complexity of critical infrastructure systems and their inherent interdependencies. The update to the NIPP presents an opportunity to advance the nation’s efforts to further understand and analyze interdependencies. Such an important undertaking requires the involvement of public and private sector stakeholders and the reinforcement of existing partnershipsmore » and collaborations within the U.S. Department of Homeland Security (DHS) and other Federal agencies, including national laboratories; State, local, tribal, and territorial governments; and nongovernmental organizations.« less

  17. Megacity Green Infrastructure Converts Water into Billions of Dollars in Ecosystem Services

    NASA Astrophysics Data System (ADS)

    Endreny, T. A.; Ulgiati, S.; Santagata, R.

    2016-12-01

    Cities can invest in green infrastructure to purposefully couple water with urban tree growth, thereby generating ecosystem services and supporting human wellbeing as advocated by United Nations sustainable development initiatives. This research estimates the value of tree-based ecosystem services in order to help megacities assess the benefits relative to the costs of such investments. We inventoried tree cover across the metropolitan area of 10 megacities, in 5 continents and biomes, and developed biophysical scaling equations using i-Tree tools to estimate the tree cover value to reductions in air pollution, stormwater, building energy, and carbon emissions. Metropolitan areas ranged from 1173 to 18,720 sq km (median value 2530 sq km), with median tree cover 21%, and potential additional tree cover 19%, of this area. Median tree cover density was 39 m2/capita (compared with global value of 7800 m2/capita), with lower density in desert and tropical biomes, and higher density in temperate biomes. Using water to support trees led to median benefits of 1.2 billion/yr from reductions in CO, NO2, SO2, PM10, and PM2.5, 27 million/yr in avoided stormwater processing by wastewater facilities, 1.2 million/yr in building energy heating and cooling savings, and 20 million/yr in CO2 sequestration. These ecosystem service benefits contributed between 0.1% and 1% of megacity GDP, with a median contribution of 0.3%. Adjustment of benefit value between different city economies considered factors such as purchasing power parity and emergy to money ratio conversions. Green infrastructure costs billions of dollars less than grey infrastructure, and stormwater based grey infrastructure provides fewer benefits. This analysis suggests megacities should invest in tree-based green infrastructure to maintain and increase ecosystem service benefits, manage their water resources, and improve human wellbeing.

  18. Green Infrastructure Fact Sheet

    EPA Science Inventory

    We briefly describe the environmental issues associated with stormwater runoff, describe the purpose of green infrastructure and key techniques used. We also highlight environmental and economic benefits of green infrastructure through text and tables, as well as provide US wate...

  19. Multi-Scale Infrastructure Assessment

    EPA Science Inventory

    The U.S. Environmental Protection Agency’s (EPA) multi-scale infrastructure assessment project supports both water resource adaptation to climate change and the rehabilitation of the nation’s aging water infrastructure by providing tools, scientific data and information to progra...

  20. The Alto Tandem and Isol Facility at IPN Orsay

    NASA Astrophysics Data System (ADS)

    Franchoo, Serge

    Alto is an infrastructure for experimental nuclear physics in France that comprises both an on-line isotope-separation facility based on the photofission of uranium and a stable-ion beam facility based on a 14.5-MV tandem accelerator. The isotope-separation on-line section of Alto is dedicated to the production of neutron-rich radioactive ion beams (RIB) from the interaction of the γ-flux induced by a 50-MeV 10-µA electron beam in a uranium-carbide target. It is dimensioned for 1011 fissions per second. The RIB facility is exploited in alternating mode with the tandem-based section of Alto, capable of accelerating both light ions for nuclear astrophysics and heavy ions for γ-spectroscopy. The facility thereby offers the opportunity to deliver beams to a large range of physics programmes from nuclear to interdisciplinary physics. In this article, we present the Alto facility as well as some of the highlights and prospects of the experimental programme.

  1. The NHERI RAPID Facility: Enabling the Next-Generation of Natural Hazards Reconnaissance

    NASA Astrophysics Data System (ADS)

    Wartman, J.; Berman, J.; Olsen, M. J.; Irish, J. L.; Miles, S.; Gurley, K.; Lowes, L.; Bostrom, A.

    2017-12-01

    The NHERI post-disaster, rapid response research (or "RAPID") facility, headquartered at the University of Washington (UW), is a collaboration between UW, Oregon State University, Virginia Tech, and the University of Florida. The RAPID facility will enable natural hazard researchers to conduct next-generation quick response research through reliable acquisition and community sharing of high-quality, post-disaster data sets that will enable characterization of civil infrastructure performance under natural hazard loads, evaluation of the effectiveness of current and previous design methodologies, understanding of socio-economic dynamics, calibration of computational models used to predict civil infrastructure component and system response, and development of solutions for resilient communities. The facility will provide investigators with the hardware, software and support services needed to collect, process and assess perishable interdisciplinary data following extreme natural hazard events. Support to the natural hazards research community will be provided through training and educational activities, field deployment services, and by promoting public engagement with science and engineering. Specifically, the RAPID facility is undertaking the following strategic activities: (1) acquiring, maintaining, and operating state-of-the-art data collection equipment; (2) developing and supporting mobile applications to support interdisciplinary field reconnaissance; (3) providing advisory services and basic logistics support for research missions; (4) facilitating the systematic archiving, processing and visualization of acquired data in DesignSafe-CI; (5) training a broad user base through workshops and other activities; and (6) engaging the public through citizen science, as well as through community outreach and education. The facility commenced operations in September 2016 and will begin field deployments beginning in September 2018. This poster will provide an overview

  2. Carbon emissions of infrastructure development.

    PubMed

    Müller, Daniel B; Liu, Gang; Løvik, Amund N; Modaresi, Roja; Pauliuk, Stefan; Steinhoff, Franciska S; Brattebø, Helge

    2013-10-15

    Identifying strategies for reconciling human development and climate change mitigation requires an adequate understanding of how infrastructures contribute to well-being and greenhouse gas emissions. While direct emissions from infrastructure use are well-known, information about indirect emissions from their construction is highly fragmented. Here, we estimated the carbon footprint of the existing global infrastructure stock in 2008, assuming current technologies, to be 122 (-20/+15) Gt CO2. The average per-capita carbon footprint of infrastructures in industrialized countries (53 (± 6) t CO2) was approximately 5 times larger that that of developing countries (10 (± 1) t CO2). A globalization of Western infrastructure stocks using current technologies would cause approximately 350 Gt CO2 from materials production, which corresponds to about 35-60% of the remaining carbon budget available until 2050 if the average temperature increase is to be limited to 2 °C, and could thus compromise the 2 °C target. A promising but poorly explored mitigation option is to build new settlements using less emissions-intensive materials, for example by urban design; however, this strategy is constrained by a lack of bottom-up data on material stocks in infrastructures. Infrastructure development must be considered in post-Kyoto climate change agreements if developing countries are to participate on a fair basis.

  3. Rwandan surgical and anesthesia infrastructure: a survey of district hospitals.

    PubMed

    Notrica, Michelle R; Evans, Faye M; Knowlton, Lisa Marie; Kelly McQueen, K A

    2011-08-01

    In low-income countries, unmet surgical needs lead to a high incidence of death. Information on the incidence and safety of current surgical care in low-income countries is limited by the paucity of data in the literature. The aim of this survey was to assess the surgical and anesthesia infrastructure in Rwanda as part of a larger study examining surgical and anesthesia capacity in low-income African countries. A comprehensive survey tool was developed to assess the physical infrastructure of operative facilities, education and training for surgical and anesthesia providers, and equipment and medications at district-level hospitals in sub-Saharan Africa. The survey was administered at 21 district hospitals in Rwanda using convenience sampling. There are only nine Rwandan anesthesiologists and 17 Rwandan surgeons providing surgical care for a population of more than 10 million. The specialty-trained Rwandan surgeons and anesthesiologists are practicing almost exclusively at referral hospitals, leaving surgical care at district hospitals to the general practice physicians and nurses. All of the district hospitals reported some lack of surgical infrastructure including limited access to oxygen, anesthesia equipment and medications, monitoring equipment, and trained personnel. This survey provides strong evidence of the need for continued development of emergency and essential surgical services at district hospitals in Rwanda to improve health care and to comply with World Health Organization recommendations. It has identified serious deficiencies in both financial and human resources-areas where the international community can play a role.

  4. Telemedicine and the National Information Infrastructure

    PubMed Central

    Jones, Mary Gardiner

    1997-01-01

    Abstract Health care is shifting from a focus on hospital-based acute care toward prevention, promotion of wellness, and maintenance of function in community and home-based facilities. Telemedicine can facilitate this shifted focus, but the bulk of the current projects emphasize academic medical center consultations to rural hospitals. Home-based projects encounter barriers of cost and inadequate infrastructure. The 1996 Telecommunications Act as implemented by the Federal Communications commission holds out significant promise to overcome these barriers, although it has serious limitations in its application to health care providers. Health care advocates must work actively on the federal, state, and local public and private sector levels to address these shortcomings and develop cost effective partnerships with other community-based organizations to build network links to facilitate telemedicine-generated services to the home, where the majority of health care decisions are made. PMID:9391928

  5. Outsourcing strategy and tendering methodology for the operation and maintenance of CERN’s cryogenic facilities

    NASA Astrophysics Data System (ADS)

    Serio, L.; Bremer, J.; Claudet, S.; Delikaris, D.; Ferlin, G.; Ferrand, F.; Pezzetti, M.; Pirotte, O.

    2017-12-01

    CERN operates and maintains the world largest cryogenic infrastructure ranging from ageing but well maintained installations feeding detectors, test facilities and general services, to the state-of-the-art cryogenic system serving the flagship LHC machine complex. A study was conducted and a methodology proposed to outsource to industry the operation and maintenance of the whole cryogenic infrastructure. The cryogenic installations coupled to non LHC-detectors, test facilities and general services infrastructure have been fully outsourced for operation and maintenance on the basis of performance obligations. The contractor is responsible for the operational performance of the installations based on a yearly operation schedule provided by CERN. The maintenance of the cryogenic system serving the LHC machine and its detectors has been outsourced on the basis of tasks oriented obligations, monitored by key performance indicators. CERN operation team, with the support of the contractor operation team, remains responsible for the operational strategy and performances. We report the analysis, strategy, definition of the requirements and technical specifications as well as the achieved technical and economic performances after one year of operation.

  6. Developing an infrastructure index : phase I.

    DOT National Transportation Integrated Search

    2010-04-01

    Over the past decade the American Society of Civil Engineers has used the Infrastructure Report : Card to raise awareness of infrastructure issues. Aging and deteriorating infrastructure has : recently been highlighted in the popular media. However, ...

  7. CALS Infrastructure Analysis. Draft. Volume 21

    DOT National Transportation Integrated Search

    1990-03-01

    This executive overview to the DoD CALS Infrastructure Analysis Report summarizes the Components' current effort to modernize the DoD technical data infrastructure. This infrastructure includes all existing and planned capabilities to acquire, manage...

  8. Federated data storage and management infrastructure

    NASA Astrophysics Data System (ADS)

    Zarochentsev, A.; Kiryanov, A.; Klimentov, A.; Krasnopevtsev, D.; Hristov, P.

    2016-10-01

    The Large Hadron Collider (LHC)’ operating at the international CERN Laboratory in Geneva, Switzerland, is leading Big Data driven scientific explorations. Experiments at the LHC explore the fundamental nature of matter and the basic forces that shape our universe. Computing models for the High Luminosity LHC era anticipate a growth of storage needs of at least orders of magnitude; it will require new approaches in data storage organization and data handling. In our project we address the fundamental problem of designing of architecture to integrate a distributed heterogeneous disk resources for LHC experiments and other data- intensive science applications and to provide access to data from heterogeneous computing facilities. We have prototyped a federated storage for Russian T1 and T2 centers located in Moscow, St.-Petersburg and Gatchina, as well as Russian / CERN federation. We have conducted extensive tests of underlying network infrastructure and storage endpoints with synthetic performance measurement tools as well as with HENP-specific workloads, including the ones running on supercomputing platform, cloud computing and Grid for ALICE and ATLAS experiments. We will present our current accomplishments with running LHC data analysis remotely and locally to demonstrate our ability to efficiently use federated data storage experiment wide within National Academic facilities for High Energy and Nuclear Physics as well as for other data-intensive science applications, such as bio-informatics.

  9. Cloud Infrastructure & Applications - CloudIA

    NASA Astrophysics Data System (ADS)

    Sulistio, Anthony; Reich, Christoph; Doelitzscher, Frank

    The idea behind Cloud Computing is to deliver Infrastructure-as-a-Services and Software-as-a-Service over the Internet on an easy pay-per-use business model. To harness the potentials of Cloud Computing for e-Learning and research purposes, and to small- and medium-sized enterprises, the Hochschule Furtwangen University establishes a new project, called Cloud Infrastructure & Applications (CloudIA). The CloudIA project is a market-oriented cloud infrastructure that leverages different virtualization technologies, by supporting Service-Level Agreements for various service offerings. This paper describes the CloudIA project in details and mentions our early experiences in building a private cloud using an existing infrastructure.

  10. Implementation of Grid Tier 2 and Tier 3 facilities on a Distributed OpenStack Cloud

    NASA Astrophysics Data System (ADS)

    Limosani, Antonio; Boland, Lucien; Coddington, Paul; Crosby, Sean; Huang, Joanna; Sevior, Martin; Wilson, Ross; Zhang, Shunde

    2014-06-01

    The Australian Government is making a AUD 100 million investment in Compute and Storage for the academic community. The Compute facilities are provided in the form of 30,000 CPU cores located at 8 nodes around Australia in a distributed virtualized Infrastructure as a Service facility based on OpenStack. The storage will eventually consist of over 100 petabytes located at 6 nodes. All will be linked via a 100 Gb/s network. This proceeding describes the development of a fully connected WLCG Tier-2 grid site as well as a general purpose Tier-3 computing cluster based on this architecture. The facility employs an extension to Torque to enable dynamic allocations of virtual machine instances. A base Scientific Linux virtual machine (VM) image is deployed in the OpenStack cloud and automatically configured as required using Puppet. Custom scripts are used to launch multiple VMs, integrate them into the dynamic Torque cluster and to mount remote file systems. We report on our experience in developing this nation-wide ATLAS and Belle II Tier 2 and Tier 3 computing infrastructure using the national Research Cloud and storage facilities.

  11. TCIA Secure Cyber Critical Infrastructure Modernization.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keliiaa, Curtis M.

    The Sandia National Laboratories (Sandia Labs) tribal cyber infrastructure assurance initiative was developed in response to growing national cybersecurity concerns in the the sixteen Department of Homeland Security (DHS) defined critical infrastructure sectors1. Technical assistance is provided for the secure modernization of critical infrastructure and key resources from a cyber-ecosystem perspective with an emphasis on enhanced security, resilience, and protection. Our purpose is to address national critical infrastructure challenges as a shared responsibility.

  12. Infrastructure optimisation via MBR retrofit: a design guide.

    PubMed

    Bagg, W K

    2009-01-01

    Wastewater management is continually evolving with the development and implementation of new, more efficient technologies. One of these is the Membrane Bioreactor (MBR). Although a relatively new technology in Australia, MBR wastewater treatment has been widely used elsewhere for over 20 years, with thousands of MBRs now in operation worldwide. Over the past 5 years, MBR technology has been enthusiastically embraced in Australia as a potential treatment upgrade option, and via retrofit typically offers two major benefits: (1) more capacity using mostly existing facilities, and (2) very high quality treated effluent. However, infrastructure optimisation via MBR retrofit is not a simple or low-cost solution and there are many factors which should be carefully evaluated before deciding on this method of plant upgrade. The paper reviews a range of design parameters which should be carefully evaluated when considering an MBR retrofit solution. Several actual and conceptual case studies are considered to demonstrate both advantages and disadvantages. Whilst optimising existing facilities and production of high quality water for reuse are powerful drivers, it is suggested that MBRs are perhaps not always the most sustainable Whole-of-Life solution for a wastewater treatment plant upgrade, especially by way of a retrofit.

  13. EV Charging Infrastructure Roadmap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karner, Donald; Garetson, Thomas; Francfort, Jim

    2016-08-01

    As highlighted in the U.S. Department of Energy’s EV Everywhere Grand Challenge, vehicle technology is advancing toward an objective to “… produce plug-in electric vehicles that are as affordable and convenient for the average American family as today’s gasoline-powered vehicles …” [1] by developing more efficient drivetrains, greater battery energy storage per dollar, and lighter-weight vehicle components and construction. With this technology advancement and improved vehicle performance, the objective for charging infrastructure is to promote vehicle adoption and maximize the number of electric miles driven. The EV Everywhere Charging Infrastructure Roadmap (hereafter referred to as Roadmap) looks forward and assumesmore » that the technical challenges and vehicle performance improvements set forth in the EV Everywhere Grand Challenge will be met. The Roadmap identifies and prioritizes deployment of charging infrastructure in support of this charging infrastructure objective for the EV Everywhere Grand Challenge« less

  14. Environmental Monitoring using Measurements from Cellular Network Infrastructure

    NASA Astrophysics Data System (ADS)

    David, N.; Gao, O. H.

    2015-12-01

    Accurate measurements of atmospheric parameters at ground level are fundamentally essential for hazard warning, meteorological forecasting and for various applications in agriculture, hydrology, transportation and more. The accuracy of existing instruments, however, is often limited as a result of technical and practical constraints. Existing technologies such as satellite systems cover large areas but may experience lack of precision at near surface level. On the other hand, ground based in-situ sensors often suffer from low spatial representativity. In addition, these conventional monitoring instruments are costly to implement and maintain. At frequencies of tens of GHz, various atmospheric hydrometeors affect microwave beams, causing perturbations to radio signals. Consequently, commercial wireless links that constitute the infrastructure for data transport between cellular base stations can be considered as a built in environmental monitoring facility (Messer et al., Science, 2006). These microwave links are widely deployed worldwide at surface level altitudes and can provide measurements of various atmospheric phenomena. The implementation costs are minimal since the infrastructure is already situated in the field. This technique has been shown to be applicable for 2D rainfall monitoring (e.g. Overeem et al., PNAS, 2013; Liberman et al., AMT, 2014) and potentially for water vapor observations (David et al., ACP, 2009; Chwala et al., Atmos. Res., 2013). Moreover, it has been recently shown that the technology has strong potential for detection of fog and estimation of its intensity (David et al., JGR-Atmos., 2013; David et al., BAMS, 2014). The research conducted to this point forms the basis for the initiation of a research project in this newly emerging field at the School of Civil and Environmental Engineering of Cornell University. The presentation will provide insights into key capabilities of the novel approach. The potential to monitor various

  15. Dynamic Collaboration Infrastructure for Hydrologic Science

    NASA Astrophysics Data System (ADS)

    Tarboton, D. G.; Idaszak, R.; Castillo, C.; Yi, H.; Jiang, F.; Jones, N.; Goodall, J. L.

    2016-12-01

    Data and modeling infrastructure is becoming increasingly accessible to water scientists. HydroShare is a collaborative environment that currently offers water scientists the ability to access modeling and data infrastructure in support of data intensive modeling and analysis. It supports the sharing of and collaboration around "resources" which are social objects defined to include both data and models in a structured standardized format. Users collaborate around these objects via comments, ratings, and groups. HydroShare also supports web services and cloud based computation for the execution of hydrologic models and analysis and visualization of hydrologic data. However, the quantity and variety of data and modeling infrastructure available that can be accessed from environments like HydroShare is increasing. Storage infrastructure can range from one's local PC to campus or organizational storage to storage in the cloud. Modeling or computing infrastructure can range from one's desktop to departmental clusters to national HPC resources to grid and cloud computing resources. How does one orchestrate this vast number of data and computing infrastructure without needing to correspondingly learn each new system? A common limitation across these systems is the lack of efficient integration between data transport mechanisms and the corresponding high-level services to support large distributed data and compute operations. A scientist running a hydrology model from their desktop may require processing a large collection of files across the aforementioned storage and compute resources and various national databases. To address these community challenges a proof-of-concept prototype was created integrating HydroShare with RADII (Resource Aware Data-centric collaboration Infrastructure) to provide software infrastructure to enable the comprehensive and rapid dynamic deployment of what we refer to as "collaborative infrastructure." In this presentation we discuss the

  16. Developing Sustainable Urban Water-Energy Infrastructures: Applying a Multi-Sectoral Social-Ecological-Infrastructural Systems (SEIS) Framework

    NASA Astrophysics Data System (ADS)

    Ramaswami, A.

    2016-12-01

    Urban infrastructure - broadly defined to include the systems that provide water, energy, food, shelter, transportation-communication, sanitation and green/public spaces in cities - have tremendous impact on the environment and on human well-being (Ramaswami et al., 2016; Ramaswami et al., 2012). Aggregated globally, these sectors contribute 90% of global greenhouse gas (GHG) emissions and 96% of global water withdrawals. Urban infrastructure contributions to such impacts are beginning to dominate. Cities are therefore becoming the action arena for infrastructure transformations that can achieve high levels of service delivery while reducing environmental impacts and enhancing human well-being. Achieving sustainable urban infrastructure transitions requires: information about the engineered infrastructure, and its interaction with the natural (ecological-environmental) and the social sub-systems In this paper, we apply a multi-sector, multi-scalar Social-Ecological-Infrastructural Systems framework that describes the interactions among biophysical engineered infrastructures, the natural environment and the social system in a systems-approach to inform urban infrastructure transformations. We apply the SEIS framework to inform water and energy sector transformations in cities to achieve environmental and human health benefits realized at multiple scales - local, regional and global. Local scales address pollution, health, wellbeing and inequity within the city; regional scales address regional pollution, scarcity, as well as supply risks in the water-energy sectors; global impacts include greenhouse gas emissions and climate impacts. Different actors shape infrastructure transitions including households, businesses, and policy actors. We describe the development of novel cross-sectoral strategies at the water-energy nexus in cities, focusing on water, waste and energy sectors, in a case study of Delhi, India. Ramaswami, A.; Russell, A.G.; Culligan, P.J.; Sharma, K

  17. Decontamination of Anthrax spores in critical infrastructure and critical assets.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boucher, Raymond M.; Crown, Kevin K.; Tucker, Mark David

    2010-05-01

    Decontamination of anthrax spores in critical infrastructure (e.g., subway systems, major airports) and critical assets (e.g., the interior of aircraft) can be challenging because effective decontaminants can damage materials. Current decontamination methods require the use of highly toxic and/or highly corrosive chemical solutions because bacterial spores are very difficult to kill. Bacterial spores such as Bacillus anthracis, the infectious agent of anthrax, are one of the most resistant forms of life and are several orders of magnitude more difficult to kill than their associated vegetative cells. Remediation of facilities and other spaces (e.g., subways, airports, and the interior of aircraft)more » contaminated with anthrax spores currently requires highly toxic and corrosive chemicals such as chlorine dioxide gas, vapor- phase hydrogen peroxide, or high-strength bleach, typically requiring complex deployment methods. We have developed a non-toxic, non-corrosive decontamination method to kill highly resistant bacterial spores in critical infrastructure and critical assets. A chemical solution that triggers the germination process in bacterial spores and causes those spores to rapidly and completely change to much less-resistant vegetative cells that can be easily killed. Vegetative cells are then exposed to mild chemicals (e.g., low concentrations of hydrogen peroxide, quaternary ammonium compounds, alcohols, aldehydes, etc.) or natural elements (e.g., heat, humidity, ultraviolet light, etc.) for complete and rapid kill. Our process employs a novel germination solution consisting of low-cost, non-toxic and non-corrosive chemicals. We are testing both direct surface application and aerosol delivery of the solutions. A key Homeland Security need is to develop the capability to rapidly recover from an attack utilizing biological warfare agents. This project will provide the capability to rapidly and safely decontaminate critical facilities and assets to return

  18. Envri Cluster - a Community-Driven Platform of European Environmental Researcher Infrastructures for Providing Common E-Solutions for Earth Science

    NASA Astrophysics Data System (ADS)

    Asmi, A.; Sorvari, S.; Kutsch, W. L.; Laj, P.

    2017-12-01

    European long-term environmental research infrastructures (often referred as ESFRI RIs) are the core facilities for providing services for scientists in their quest for understanding and predicting the complex Earth system and its functioning that requires long-term efforts to identify environmental changes (trends, thresholds and resilience, interactions and feedbacks). Many of the research infrastructures originally have been developed to respond to the needs of their specific research communities, however, it is clear that strong collaboration among research infrastructures is needed to serve the trans-boundary research requires exploring scientific questions at the intersection of different scientific fields, conducting joint research projects and developing concepts, devices, and methods that can be used to integrate knowledge. European Environmental research infrastructures have already been successfully worked together for many years and have established a cluster - ENVRI cluster - for their collaborative work. ENVRI cluster act as a collaborative platform where the RIs can jointly agree on the common solutions for their operations, draft strategies and policies and share best practices and knowledge. Supporting project for the ENVRI cluster, ENVRIplus project, brings together 21 European research infrastructures and infrastructure networks to work on joint technical solutions, data interoperability, access management, training, strategies and dissemination efforts. ENVRI cluster act as one stop shop for multidisciplinary RI users, other collaborative initiatives, projects and programmes and coordinates and implement jointly agreed RI strategies.

  19. Constructing a resilience index for the Enhanced Critical Infrastructure Protection Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, R. E.; Bassett, G. W.; Buehring, W. A.

    2010-10-14

    Following recommendations made in Homeland Security Presidential Directive 7, which established a national policy for the identification and increased protection of critical infrastructure and key resources (CIKR) by Federal departments and agencies, the U.S. Department of Homeland Security (DHS) in 2006 developed the Enhanced Critical Infrastructure Protection (ECIP) program. The ECIP program aimed to provide a closer partnership with state, regional, territorial, local, and tribal authorities in fulfilling the national objective to improve CIKR protection. The program was specifically designed to identify protective measures currently in place in CIKR and to inform facility owners/operators of the benefits of new protectivemore » measures. The ECIP program also sought to enhance existing relationships between DHS and owners/operators of CIKR and to build relationships where none existed (DHS 2008; DHS 2009). In 2009, DHS and its protective security advisors (PSAs) began assessing CIKR assets using the ECIP program and ultimately produced individual protective measure and vulnerability values through the protective measure and vulnerability indices (PMI/VI). The PMI/VI assess the protective measures posture of individual facilities at their 'weakest link,' allowing for a detailed analysis of the most vulnerable aspects of the facilities (Schneier 2003), while maintaining the ability to produce an overall protective measures picture. The PMI has six main components (physical security, security management, security force, information sharing, protective measures assessments, and dependencies) and focuses on actions taken by a facility to prevent or deter the occurrence of an incident (Argonne National Laboratory 2009). As CIKR continue to be assessed using the PMI/VI and owners/operators better understand how they can prevent or deter incidents, academic research, practitioner emphasis, and public policy formation have increasingly focused on resilience as a

  20. e-Infrastructures for Astronomy: An Integrated View

    NASA Astrophysics Data System (ADS)

    Pasian, F.; Longo, G.

    2010-12-01

    As for other disciplines, the capability of performing “Big Science” in astrophysics requires the availability of large facilities. In the field of ICT, computational resources (e.g. HPC) are important, but are far from being enough for the community: as a matter of fact, the whole set of e-infrastructures (network, computing nodes, data repositories, applications) need to work in an interoperable way. This implies the development of common (or at least compatible) user interfaces to computing resources, transparent access to observations and numerical simulations through the Virtual Observatory, integrated data processing pipelines, data mining and semantic web applications. Achieving this interoperability goal is a must to build a real “Knowledge Infrastructure” in the astrophysical domain. Also, the emergence of new professional profiles (e.g. the “astro-informatician”) is necessary to allow defining and implementing properly this conceptual schema.

  1. AMF3 ARM's Research Facility and MAOS at Oliktok Point Alaska

    NASA Astrophysics Data System (ADS)

    Helsel, F.; Ivey, M.; Dexheimer, D.; Hardesty, J.; Lucero, D. A.; Roesler, E. L.

    2016-12-01

    Scientific Infrastructure To Support Atmospheric Science And Aerosol Science For The Department Of Energy's Atmospheric Radiation Measurement Programs Mobile Facility 3 Located At Oliktok Point, Alaska.The Atmospheric Radiation Measurement (ARM) Program's Mobile Facility 3 (AMF3) located at Oliktok Point, Alaska is a U.S. Department of Energy (DOE) site designed to collect data to determine the impact that clouds and aerosols have on solar radiation. The site provides a scientific infrastructure and data archives for the international Arctic research community. The infrastructure at Oliktok is designed to be mobile and it may be relocated in the future to support other ARM science missions. AMF3's present instruments include: scanning precipitation Radar-cloud radar, Raman Lidar, Eddy correlation flux systems, Ceilometer, Balloon sounding system, Atmospheric Emitted Radiance Interferometer (AERI), Micro-pulse Lidar (MPL), Millimeter cloud radar along with all the standard metrological measurements. A Mobile Aerosol Observing System (MAOS) has been added to AMF3 in 2016 more details of the instrumentation at www.arm.gov/sites/amf/mobile-aos. Data from these instruments are placed in the ARM data archives and are available to the international research community. This poster will discuss what instruments are at the ARM Program's AMF3 and highlight the newest addition to AMF3, the Mobile Aerosol Observing System (MAOS).

  2. Elemental Concentrations in Urban Green Stormwater Infrastructure Soils.

    PubMed

    Kondo, Michelle C; Sharma, Raghav; Plante, Alain F; Yang, Yunwen; Burstyn, Igor

    2016-01-01

    Green stormwater infrastructure (GSI) is designed to capture stormwater for infiltration, detention, evapotranspiration, or reuse. Soils play a key role in stormwater interception at these facilities. It is important to assess whether contamination is occurring in GSI soils because urban stormwater drainage areas often accumulate elements of concern. Soil contamination could affect hydrologic and ecosystem functions. Maintenance workers and the public may also be exposed to GSI soils. We investigated soil elemental concentrations, categorized as macro- and micronutrients, heavy metals, and other elements, at 59 GSI sites in the city of Philadelphia. Non-GSI soil samples 3 to 5 m upland of GSI sites were used for comparison. We evaluated differences in elemental composition in GSI and non-GSI soils; the comparisons were corrected for the age of GSI facility, underlying soil type, street drainage, and surrounding land use. Concentrations of Ca and I were greater than background levels at GSI sites. Although GSI facilities appear to accumulate Ca and I, these elements do not pose a significant human health risk. Elements of concern to human health, including Cd, Hg, and Pb, were either no different or were lower in GSI soils compared with non-GSI soils. However, mean values found across GSI sites were up to four times greater than soil cleanup objectives for residential use. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  3. The Resilient Infrastructure Initiative

    DOE PAGES

    Clifford, Megan

    2016-10-01

    Infrastructure is, by design, largely unnoticed until it breaks down and services fail. This includes water supplies, gas pipelines, bridges and dams, phone lines and cell towers, roads and culverts, railways, and the electric grid—all of the complex systems that keep our societies and economies running. Climate change, population growth, increased urbanization, system aging, and outdated design standards stress existing infrastructure and its ability to satisfy the rapidly changing demands from users. Here, the resilience of both physical and cyber infrastructure systems, however, is critical to a community as it prepares for, responds to, and recovers from a disaster, whethermore » natural or man-made.« less

  4. Clarkesville Green Infrastructure Implementation Strategy

    EPA Pesticide Factsheets

    The report outlines the 2012 technical assistance for Clarkesville, GA to develop a Green Infrastructure Implementation Strategy, which provides the basic building blocks for a green infrastructure plan:

  5. 50 CFR 86.31 - How much money may I charge the public to use tie-up facilities?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false How much money may I charge the public to use tie-up facilities? 86.31 Section 86.31 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE... PROGRAM BOATING INFRASTRUCTURE GRANT (BIG) PROGRAM Public Use of the Facility § 86.31 How much money may I...

  6. Locations and attributes of utility-scale solar power facilities in Colorado and New Mexico, 2011

    USGS Publications Warehouse

    Ignizio, Drew A.; Carr, Natasha B.

    2012-01-01

    The data series consists of polygonal boundaries for utility-scale solar power facilities (both photovoltaic and concentrating solar power) located within Colorado and New Mexico as of December 2011. Attributes captured for each facility include the following: facility name, size/production capacity (in MW), type of solar technology employed, location, state, operational status, year the facility came online, and source identification information. Facility locations and perimeters were derived from 1-meter true-color aerial photographs (2011) produced by the National Agriculture Imagery Program (NAIP); the photographs have a positional accuracy of about ±5 meters (accessed from the NAIP GIS service: http://gis.apfo.usda.gov/arcgis/services). Solar facility perimeters represent the full extent of each solar facility site, unless otherwise noted. When visible, linear features such as fences or road lines were used to delineate the full extent of the solar facility. All related equipment including buildings, power substations, and other associated infrastructure were included within the solar facility. If solar infrastructure was indistinguishable from adjacent infrastructure, or if solar panels were installed on existing building tops, only the solar collecting equipment was digitized. The "Polygon" field indicates whether the "equipment footprint" or the full "site outline" was digitized. The spatial accuracy of features that represent site perimeters or an equipment footprint is estimated at +/- 10 meters. Facilities under construction or not fully visible in the NAIP imagery at the time of digitization (December 2011) are represented by an approximate site outline based on the best available information and documenting materials. The spatial accuracy of these facilities cannot be estimated without more up-to-date imagery – users are advised to consult more recent imagery as it becomes available. The "Status" field provides information about the operational

  7. ITER Cryoplant Infrastructures

    NASA Astrophysics Data System (ADS)

    Fauve, E.; Monneret, E.; Voigt, T.; Vincent, G.; Forgeas, A.; Simon, M.

    2017-02-01

    The ITER Tokamak requires an average 75 kW of refrigeration power at 4.5 K and 600 kW of refrigeration Power at 80 K to maintain the nominal operation condition of the ITER thermal shields, superconducting magnets and cryopumps. This is produced by the ITER Cryoplant, a complex cluster of refrigeration systems including in particular three identical Liquid Helium Plants and two identical Liquid Nitrogen Plants. Beyond the equipment directly part of the Cryoplant, colossal infrastructures are required. These infrastructures account for a large part of the Cryoplants lay-out, budget and engineering efforts. It is ITER Organization responsibility to ensure that all infrastructures are adequately sized and designed to interface with the Cryoplant. This proceeding presents the overall architecture of the cryoplant. It provides order of magnitude related to the cryoplant building and utilities: electricity, cooling water, heating, ventilation and air conditioning (HVAC).

  8. Intelligent systems technology infrastructure for integrated systems

    NASA Technical Reports Server (NTRS)

    Lum, Henry

    1991-01-01

    A system infrastructure must be properly designed and integrated from the conceptual development phase to accommodate evolutionary intelligent technologies. Several technology development activities were identified that may have application to rendezvous and capture systems. Optical correlators in conjunction with fuzzy logic control might be used for the identification, tracking, and capture of either cooperative or non-cooperative targets without the intensive computational requirements associated with vision processing. A hybrid digital/analog system was developed and tested with a robotic arm. An aircraft refueling application demonstration is planned within two years. Initially this demonstration will be ground based with a follow-on air based demonstration. System dependability measurement and modeling techniques are being developed for fault management applications. This involves usage of incremental solution/evaluation techniques and modularized systems to facilitate reuse and to take advantage of natural partitions in system models. Though not yet commercially available and currently subject to accuracy limitations, technology is being developed to perform optical matrix operations to enhance computational speed. Optical terrain recognition using camera image sequencing processed with optical correlators is being developed to determine position and velocity in support of lander guidance. The system is planned for testing in conjunction with Dryden Flight Research Facility. Advanced architecture technology is defining open architecture design constraints, test bed concepts (processors, multiple hardware/software and multi-dimensional user support, knowledge/tool sharing infrastructure), and software engineering interface issues.

  9. Distribution of green infrastructure along walkable roads ...

    EPA Pesticide Factsheets

    Low-income and minority neighborhoods frequently lack healthful resources to which wealthier communities have access. Though important, the addition of facilities such as recreation centers can be costly and take time to implement. Urban green infrastructure, such as street trees and other green space, can be a low-cost alternative to promote frequency and duration of outdoor physical activity. Street trees and other green space may increase outdoor physical activity levels by providing shade, improving aesthetics, and promoting social engagement. Though street trees and green space provide many benefits and are publicly accessible at all times, these resources are not evenly distributed between neighborhoods. An objective analysis of street tree cover and green space in 6,407 block groups across 10 urban areas was conducted using fine-scale land cover data. Distribution of green infrastructure was then analyzed by minority status, income, car ownership, housing density, and employment density. The objective measure of street tree cover and green space is based on 1-meter resolution land cover data from the U.S. EPA-led EnviroAtlas. Tree cover was analyzed along each side of walkable road centerlines in the areas where sidewalks are estimated to be. Green space was calculated within 25 meters of road centerlines. Percent tree cover and green space per city block were then summarized to census block group (CBG). CBG demographics from the U.S. Census and built env

  10. Survey of Emergency and Essential Surgical, Obstetric and Anaesthetic Services Available in Bangladeshi Government Health Facilities.

    PubMed

    Loveday, Jonathan; Sachdev, Sonal P; Cherian, Meena N; Katayama, Francisco; Akhtaruzzaman, A K M; Thomas, Joe; Huda, N; Faragher, E Brian; Johnson, Walter D

    2017-07-01

    Evaluate the capacity of government-run hospitals in Bangladesh to provide emergency and essential surgical, obstetric and anaesthetic services. Cross-sectional survey of 240 Bangladeshi Government healthcare facilities using the World Health Organisation Situational Analysis Tool to Assess Emergency and Essential Surgical Care (SAT). This tool evaluates the ability of a healthcare facility to provide basic surgical, obstetric and anaesthetic care based on 108 queries that detail the infrastructure and population demographics, human resources, surgical interventions and reason for referral, and available surgical equipment and supplies. For this survey, the Bangladeshi Ministry of Health sent the SAT to sub-district, district/general and teaching hospitals throughout the country in April 2013. Responses were received from 240 healthcare facilities (49.5% response rate): 218 sub-district and 22 district/general hospitals. At the sub-district level, caesarean section was offered by 55% of facilities, laparotomy by 7% and open fracture repair by 8%. At the district/general hospital level, 95% offered caesarean section, 86% offered laparotomy and 77% offered open fracture treatment. Availability of anaesthesia services, general equipment and supplies reflected this trend, where district/general hospitals were better equipped than sub-district hospitals, though equipment and infrastructure shortages persist. There has been overall impressive progress by the Bangladeshi Government in providing essential surgical services. Areas for improvement remain across all key areas, including infrastructure, human resources, surgical interventions offered and available equipment. Investment in surgical services offers a cost-effective opportunity to continue to improve the health of the Bangladeshi population and move the country towards universal healthcare coverage.

  11. Green Infrastructure Checklists and Renderings

    EPA Pesticide Factsheets

    Materials and checklists for Denver, CO to review development project plans for green infrastructure components, best practices for inspecting and maintaining installed green infrastructure. Also includes renderings of streetscape projects.

  12. Maximizing industrial infrastructure efficiency in Iceland

    NASA Astrophysics Data System (ADS)

    Ingason, Helgi Thor; Sigfusson, Thorsteinn I.

    2010-08-01

    As a consequence of the increasing aluminum production in Iceland, local processing of aluminum skimmings has become a feasible business opportunity. A recycling plant for this purpose was built in Helguvik on the Reykjanes peninsula in 2003. The case of the recycling plant reflects increased concern regarding environmental aspects of the industry. An interesting characteristic of this plant is the fact that it is run in the same facilities as a large fishmeal production installation. It is operated by the same personnel and uses—partly—the same equipment and infrastructure. This paper reviews the grounds for these decisions and the experience of this merger of a traditional fish melting industry and a more recent aluminum melting industry after 6 years of operation. The paper is written by the original entrepreneurs behind the company, who provide observations on how the aluminum industry in Iceland has evolved since the starting of Alur’s operation and what might be expected in the near future.

  13. 31 CFR 800.208 - Critical infrastructure.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Critical infrastructure. 800.208..., AND TAKEOVERS BY FOREIGN PERSONS Definitions § 800.208 Critical infrastructure. The term critical infrastructure means, in the context of a particular covered transaction, a system or asset, whether physical or...

  14. 31 CFR 800.208 - Critical infrastructure.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Critical infrastructure. 800.208..., AND TAKEOVERS BY FOREIGN PERSONS Definitions § 800.208 Critical infrastructure. The term critical infrastructure means, in the context of a particular covered transaction, a system or asset, whether physical or...

  15. 31 CFR 800.208 - Critical infrastructure.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Critical infrastructure. 800.208..., AND TAKEOVERS BY FOREIGN PERSONS Definitions § 800.208 Critical infrastructure. The term critical infrastructure means, in the context of a particular covered transaction, a system or asset, whether physical or...

  16. 31 CFR 800.208 - Critical infrastructure.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Critical infrastructure. 800.208..., AND TAKEOVERS BY FOREIGN PERSONS Definitions § 800.208 Critical infrastructure. The term critical infrastructure means, in the context of a particular covered transaction, a system or asset, whether physical or...

  17. Linear infrastructure impacts on landscape hydrology.

    PubMed

    Raiter, Keren G; Prober, Suzanne M; Possingham, Hugh P; Westcott, Fiona; Hobbs, Richard J

    2018-01-15

    The extent of roads and other forms of linear infrastructure is burgeoning worldwide, but their impacts are inadequately understood and thus poorly mitigated. Previous studies have identified many potential impacts, including alterations to the hydrological functions and soil processes upon which ecosystems depend. However, these impacts have seldom been quantified at a regional level, particularly in arid and semi-arid systems where the gap in knowledge is the greatest, and impacts potentially the most severe. To explore the effects of extensive track, road, and rail networks on surface hydrology at a regional level we assessed over 1000 km of linear infrastructure, including approx. 300 locations where ephemeral streams crossed linear infrastructure, in the largely intact landscapes of Australia's Great Western Woodlands. We found a high level of association between linear infrastructure and altered surface hydrology, with erosion and pooling 5 and 6 times as likely to occur on-road than off-road on average (1.06 erosional and 0.69 pooling features km -1 on vehicle tracks, compared with 0.22 and 0.12 km -1 , off-road, respectively). Erosion severity was greater in the presence of tracks, and 98% of crossings of ephemeral streamlines showed some evidence of impact on water movement (flow impedance (62%); diversion of flows (73%); flow concentration (76%); and/or channel initiation (31%)). Infrastructure type, pastoral land use, culvert presence, soil clay content and erodibility, mean annual rainfall, rainfall erosivity, topography and bare soil cover influenced the frequency and severity of these impacts. We conclude that linear infrastructure frequently affects ephemeral stream flows and intercepts natural overland and near-surface flows, artificially changing site-scale moisture regimes, with some parts of the landscape becoming abnormally wet and other parts becoming water-starved. In addition, linear infrastructure frequently triggers or exacerbates erosion

  18. Fire Hazard Assessment in Supporting Fire Protection System Design of a Chemical Process Facility

    DTIC Science & Technology

    1996-08-01

    CSDP/Studies/FireHaz –i– 3/28/97 FIRE HAZARD ASSESSMENT IN SUPPORTING FIRE PROTECTION SYSTEM DESIGN OF A CHEMICAL PROCESS FACILITY Ali Pezeshk...Joseph Chang, Dwight Hunt, and Peter Jahn Parsons Infrastructure & Technology Group, Inc. Pasadena, California 91124 ABSTRACT Because fires in a chemical ...Assessment in Supporting Fire Protection System Design of a Chemical Process Facility 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  19. Using business intelligence for efficient inter-facility patient transfer.

    PubMed

    Haque, Waqar; Derksen, Beth Ann; Calado, Devin; Foster, Lee

    2015-01-01

    In the context of inter-facility patient transfer, a transfer operator must be able to objectively identify a destination which meets the needs of a patient, while keeping in mind each facility's limitations. We propose a solution which uses Business Intelligence (BI) techniques to analyze data related to healthcare infrastructure and services, and provides a web based system to identify optimal destination(s). The proposed inter-facility transfer system uses a single data warehouse with an Online Analytical Processing (OLAP) cube built on top that supplies analytical data to multiple reports embedded in web pages. The data visualization tool includes map based navigation of the health authority as well as an interactive filtering mechanism which finds facilities meeting the selected criteria. The data visualization is backed by an intuitive data entry web form which safely constrains the data, ensuring consistency and a single version of truth. The overall time required to identify the destination for inter-facility transfers is reduced from hours to a few minutes with this interactive solution.

  20. Modeling joint restoration strategies for interdependent infrastructure systems

    PubMed Central

    Simonovic, Slobodan P.

    2018-01-01

    Life in the modern world depends on multiple critical services provided by infrastructure systems which are interdependent at multiple levels. To effectively respond to infrastructure failures, this paper proposes a model for developing optimal joint restoration strategy for interdependent infrastructure systems following a disruptive event. First, models for (i) describing structure of interdependent infrastructure system and (ii) their interaction process, are presented. Both models are considering the failure types, infrastructure operating rules and interdependencies among systems. Second, an optimization model for determining an optimal joint restoration strategy at infrastructure component level by minimizing the economic loss from the infrastructure failures, is proposed. The utility of the model is illustrated using a case study of electric-water systems. Results show that a small number of failed infrastructure components can trigger high level failures in interdependent systems; the optimal joint restoration strategy varies with failure occurrence time. The proposed models can help decision makers to understand the mechanisms of infrastructure interactions and search for optimal joint restoration strategy, which can significantly enhance safety of infrastructure systems. PMID:29649300

  1. Modeling joint restoration strategies for interdependent infrastructure systems.

    PubMed

    Zhang, Chao; Kong, Jingjing; Simonovic, Slobodan P

    2018-01-01

    Life in the modern world depends on multiple critical services provided by infrastructure systems which are interdependent at multiple levels. To effectively respond to infrastructure failures, this paper proposes a model for developing optimal joint restoration strategy for interdependent infrastructure systems following a disruptive event. First, models for (i) describing structure of interdependent infrastructure system and (ii) their interaction process, are presented. Both models are considering the failure types, infrastructure operating rules and interdependencies among systems. Second, an optimization model for determining an optimal joint restoration strategy at infrastructure component level by minimizing the economic loss from the infrastructure failures, is proposed. The utility of the model is illustrated using a case study of electric-water systems. Results show that a small number of failed infrastructure components can trigger high level failures in interdependent systems; the optimal joint restoration strategy varies with failure occurrence time. The proposed models can help decision makers to understand the mechanisms of infrastructure interactions and search for optimal joint restoration strategy, which can significantly enhance safety of infrastructure systems.

  2. EPA NRMRL green Infrastructure research

    EPA Science Inventory

    Green Infrastructure is an engineering approach to wet weather flow management that uses infiltration, evapotranspiration, capture and reuse to better mimic the natural drainage processes than traditional gray systems. Green technologies supplement gray infrastructure to red...

  3. The Virtual Geophysics Laboratory (VGL): Scientific Workflows Operating Across Organizations and Across Infrastructures

    NASA Astrophysics Data System (ADS)

    Cox, S. J.; Wyborn, L. A.; Fraser, R.; Rankine, T.; Woodcock, R.; Vote, J.; Evans, B.

    2012-12-01

    The Virtual Geophysics Laboratory (VGL) is web portal that provides geoscientists with an integrated online environment that: seamlessly accesses geophysical and geoscience data services from the AuScope national geoscience information infrastructure; loosely couples these data to a variety of gesocience software tools; and provides large scale processing facilities via cloud computing. VGL is a collaboration between CSIRO, Geoscience Australia, National Computational Infrastructure, Monash University, Australian National University and the University of Queensland. The VGL provides a distributed system whereby a user can enter an online virtual laboratory to seamlessly connect to OGC web services for geoscience data. The data is supplied in open standards formats using international standards like GeoSciML. A VGL user uses a web mapping interface to discover and filter the data sources using spatial and attribute filters to define a subset. Once the data is selected the user is not required to download the data. VGL collates the service query information for later in the processing workflow where it will be staged directly to the computing facilities. The combination of deferring data download and access to Cloud computing enables VGL users to access their data at higher resolutions and to undertake larger scale inversions, more complex models and simulations than their own local computing facilities might allow. Inside the Virtual Geophysics Laboratory, the user has access to a library of existing models, complete with exemplar workflows for specific scientific problems based on those models. For example, the user can load a geological model published by Geoscience Australia, apply a basic deformation workflow provided by a CSIRO scientist, and have it run in a scientific code from Monash. Finally the user can publish these results to share with a colleague or cite in a paper. This opens new opportunities for access and collaboration as all the resources (models

  4. Regulatory cross-cutting topics for fuel cycle facilities.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denman, Matthew R.; Brown, Jason; Goldmann, Andrew Scott

    This report overviews crosscutting regulatory topics for nuclear fuel cycle facilities for use in the Fuel Cycle Research & Development Nuclear Fuel Cycle Evaluation and Screening study. In particular, the regulatory infrastructure and analysis capability is assessed for the following topical areas: Fire Regulations (i.e., how applicable are current Nuclear Regulatory Commission (NRC) and/or International Atomic Energy Agency (IAEA) fire regulations to advance fuel cycle facilities) Consequence Assessment (i.e., how applicable are current radionuclide transportation tools to support risk-informed regulations and Level 2 and/or 3 PRA) While not addressed in detail, the following regulatory topic is also discussed: Integrated Security,more » Safeguard and Safety Requirement (i.e., how applicable are current Nuclear Regulatory Commission (NRC) regulations to future fuel cycle facilities which will likely be required to balance the sometimes conflicting Material Accountability, Security, and Safety requirements.)« less

  5. SRB Processing Facilities Media Event

    NASA Image and Video Library

    2016-03-01

    Members of the news media view forward booster segments (painted green) for NASA’s Space Launch System rocket boosters inside the Booster Fabrication Facility (BFF) at NASA’s Kennedy Space Center in Florida. Orbital ATK is a contractor for NASA’s Marshall Space Flight Center in Alabama, and operates the BFF to prepare aft booster segments and hardware for the SLS rocket boosters. The SLS rocket and Orion spacecraft will launch on Exploration Mission-1 in 2018. The Ground Systems Development and Operations Program is preparing the infrastructure to process and launch spacecraft for deep-space missions and the journey to Mars.

  6. Nested barriers to low-carbon infrastructure investment

    NASA Astrophysics Data System (ADS)

    Granoff, Ilmi; Hogarth, J. Ryan; Miller, Alan

    2016-12-01

    Low-carbon, 'green' economic growth is necessary to simultaneously improve human welfare and avoid the worst impacts of climate change and environmental degradation. Infrastructure choices underpin both the growth and the carbon intensity of the economy. This Perspective explores the barriers to investing in low-carbon infrastructure and some of the policy levers available to overcome them. The barriers to decarbonizing infrastructure 'nest' within a set of barriers to infrastructure development more generally that cause spending on infrastructure--low-carbon or not--to fall more than 70% short of optimal levels. Developing countries face additional barriers such as currency and political risks that increase the investment gap. Low-carbon alternatives face further barriers, such as commercialization risk and financial and public institutions designed for different investment needs. While the broader barriers to infrastructure investment are discussed in other streams of literature, they are often disregarded in literature on renewable energy diffusion or climate finance, which tends to focus narrowly on the project costs of low- versus high-carbon options. We discuss how to overcome the barriers specific to low-carbon infrastructure within the context of the broader infrastructure gap.

  7. Green infrastructure.

    DOT National Transportation Integrated Search

    2014-06-01

    The transportation industry has increasingly recognized the vital role sustainability serves in promoting and : protecting the transportation infrastructure of the nation. Many state Departments of Transportation have : correspondingly increased effo...

  8. EFAB Report: Green Infrastructure Operations and Maintenance Finance

    EPA Pesticide Factsheets

    In this report, EFAB defines green infrastructure, outlines the benefits of green infrastructure, introduces green infrastructure operations and maintenance costs, and identifies and evaluates diverse ways to fund/finance green infrastructure O&M costs.

  9. Shadows of Stuxnet: Recommendations for U.S. Policy on Critical Infrastructure Cyber Defense Derived from the Stuxnet Attack

    DTIC Science & Technology

    2016-03-01

    wastewater, oil and natural gas, chemical, transportation, pharmaceutical, pulp and paper, food and beverage, and discrete manufacturing (e.g...dams, energy infrastructure, banks, farms, food processing facilities, hospitals, nuclear reactors, transportation carriers, and water treatment... food and agriculture sector” is, “almost entirely under private ownership and is comprised of an estimated 2.2 million farms, 900,000 restaurants, and

  10. LSST summit facility construction progress report: reacting to design refinements and field conditions

    NASA Astrophysics Data System (ADS)

    Barr, Jeffrey D.; Gressler, William; Sebag, Jacques; Seriche, Jaime; Serrano, Eduardo

    2016-07-01

    The civil work, site infrastructure and buildings for the summit facility of the Large Synoptic Survey Telescope (LSST) are among the first major elements that need to be designed, bid and constructed to support the subsequent integration of the dome, telescope, optics, camera and supporting systems. As the contracts for those other major subsystems now move forward under the management of the LSST Telescope and Site (T and S) team, there has been inevitable and beneficial evolution in their designs, which has resulted in significant modifications to the facility and infrastructure. The earliest design requirements for the LSST summit facility were first documented in 2005, its contracted full design was initiated in 2010, and construction began in January, 2015. During that entire development period, and extending now roughly halfway through construction, there continue to be necessary modifications to the facility design resulting from the refinement of interfaces to other major elements of the LSST project and now, during construction, due to unanticipated field conditions. Changes from evolving interfaces have principally involved the telescope mount, the dome and mirror handling/coating facilities which have included significant variations in mass, dimensions, heat loads and anchorage conditions. Modifications related to field conditions have included specifying and testing alternative methods of excavation and contending with the lack of competent rock substrate where it was predicted to be. While these and other necessary changes are somewhat specific to the LSST project and site, they also exemplify inherent challenges related to the typical timeline for the design and construction of astronomical observatory support facilities relative to the overall development of the project.

  11. Resilience in social insect infrastructure systems

    PubMed Central

    2016-01-01

    Both human and insect societies depend on complex and highly coordinated infrastructure systems, such as communication networks, supply chains and transportation networks. Like human-designed infrastructure systems, those of social insects are regularly subject to disruptions such as natural disasters, blockages or breaks in the transportation network, fluctuations in supply and/or demand, outbreaks of disease and loss of individuals. Unlike human-designed systems, there is no deliberate planning or centralized control system; rather, individual insects make simple decisions based on local information. How do these highly decentralized, leaderless systems deal with disruption? What factors make a social insect system resilient, and which factors lead to its collapse? In this review, we bring together literature on resilience in three key social insect infrastructure systems: transportation networks, supply chains and communication networks. We describe how systems differentially invest in three pathways to resilience: resistance, redirection or reconstruction. We suggest that investment in particular resistance pathways is related to the severity and frequency of disturbance. In the final section, we lay out a prospectus for future research. Human infrastructure networks are rapidly becoming decentralized and interconnected; indeed, more like social insect infrastructures. Human infrastructure management might therefore learn from social insect researchers, who can in turn make use of the mature analytical and simulation tools developed for the study of human infrastructure resilience. PMID:26962030

  12. Resilience in social insect infrastructure systems.

    PubMed

    Middleton, Eliza J T; Latty, Tanya

    2016-03-01

    Both human and insect societies depend on complex and highly coordinated infrastructure systems, such as communication networks, supply chains and transportation networks. Like human-designed infrastructure systems, those of social insects are regularly subject to disruptions such as natural disasters, blockages or breaks in the transportation network, fluctuations in supply and/or demand, outbreaks of disease and loss of individuals. Unlike human-designed systems, there is no deliberate planning or centralized control system; rather, individual insects make simple decisions based on local information. How do these highly decentralized, leaderless systems deal with disruption? What factors make a social insect system resilient, and which factors lead to its collapse? In this review, we bring together literature on resilience in three key social insect infrastructure systems: transportation networks, supply chains and communication networks. We describe how systems differentially invest in three pathways to resilience: resistance, redirection or reconstruction. We suggest that investment in particular resistance pathways is related to the severity and frequency of disturbance. In the final section, we lay out a prospectus for future research. Human infrastructure networks are rapidly becoming decentralized and interconnected; indeed, more like social insect infrastructures. Human infrastructure management might therefore learn from social insect researchers, who can in turn make use of the mature analytical and simulation tools developed for the study of human infrastructure resilience. © 2016 The Author(s).

  13. Evaluation of Urban Drainage Infrastructure: New York City Case Study

    NASA Astrophysics Data System (ADS)

    Hamidi, A.; Grossberg, M.; Khanbilvardi, R.

    2017-12-01

    Flood response in an urban area is the product of interactions of spatially and temporally varying rainfall and infrastructures. In urban areas, however, the complex sub-surface networks of tunnels, waste and storm water drainage systems are often inaccessible, pose challenges for modeling and prediction of the drainage infrastructure performance. The increased availability of open data in cities is an emerging information asset for a better understanding of the dynamics of urban water drainage infrastructure. This includes crowd sourced data and community reporting. A well-known source of this type of data is the non-emergency hotline "311" which is available in many US cities, and may contain information pertaining to the performance of physical facilities, condition of the environment, or residents' experience, comfort and well-being. In this study, seven years of New York City 311 (NYC311) call during 2010-2016 is employed, as an alternative approach for identifying the areas of the city most prone to sewer back up flooding. These zones are compared with the hydrologic analysis of runoff flooding zones to provide a predictive model for the City. The proposed methodology is an example of urban system phenomenology using crowd sourced, open data. A novel algorithm for calculating the spatial distribution of flooding complaints across NYC's five boroughs is presented in this study. In this approach, the features that represent reporting bias are separated from those that relate to actual infrastructure system performance. The sewer backup results are assessed with the spatial distribution of runoff in NYC during 2010-2016. With advances in radar technologies, a high spatial-temporal resolution data set for precipitation is available for most of the United States that can be implemented in hydrologic analysis of dense urban environments. High resolution gridded Stage IV radar rainfall data along with the high resolution spatially distributed land cover data are

  14. Integrated Carbon Observation System (ICOS) - a domain-overarching long-term research infrastructure for the future

    NASA Astrophysics Data System (ADS)

    Lavric, J. V.; Juurola, E.; Vermeulen, A. T.; Kutsch, W. L.

    2016-12-01

    In a world that is undergoing climate change and is increasingly impacted by human influence, the need for globally integrated observations of greenhouse gases (GHG) and independent evaluation of their fluxes is becoming increasingly pressing. Since the 2015 COP21 meeting in Paris, such observation systems are also demanded by global stakeholders and policy makers. For successful monitoring and implementation of mitigation measures, the behavior of natural carbon pools must be well understood, the human carbon emission inventories better constrained, and the interaction between the two better studied. The Integrated Carbon Observation System (ICOS), currently comprising 12 member countries, is a European domain-overarching distributed research infrastructure dedicated to providing freely accessible long-term, high-quality data and data products on greenhouse gas (GHG) budgets and their evolution in terrestrial ecosystems, oceans and atmosphere. ICOS was built on the foundations of nationally-operated in-situ measurement facilities and modelling efforts. Today, it consists of National Networks, Central Facilities, and the European Research Infrastructure Consortium (ICOS ERIC), founded in November 2015. The long-term objective of ICOS is to remain independent, sustainable, on the forefront of scientific and technological development, and to find a good balance between scientific interests on one side and expectations of policy makers and society on the other. On the global scale, ICOS seeks to interlink with complementary research infrastructures (e.g. ACTRIS, IAGOS, etc.) to form partnerships that maximize the output and the effect of invested resources to the benefit of all stakeholders. A lot of attention will also be given to network design and attracting new partners from regions where such observations are still lacking in order to fill the gaps in the global observation network. In this presentation we present the latest developments concerning ICOS and its

  15. Infrastructure Task Force Sustainable Infrastructure Goals and Concepts Document

    EPA Pesticide Factsheets

    This document outlines the concepts of appropriate infrastructure and sustainable management entities to guide the coordinated federal efforts to achieve greater sustainable access to safe drinking water and basic sanitation.

  16. The Component Model of Infrastructure: A Practical Approach to Understanding Public Health Program Infrastructure

    PubMed Central

    Snyder, Kimberly; Rieker, Patricia P.

    2014-01-01

    Functioning program infrastructure is necessary for achieving public health outcomes. It is what supports program capacity, implementation, and sustainability. The public health program infrastructure model presented in this article is grounded in data from a broader evaluation of 18 state tobacco control programs and previous work. The newly developed Component Model of Infrastructure (CMI) addresses the limitations of a previous model and contains 5 core components (multilevel leadership, managed resources, engaged data, responsive plans and planning, networked partnerships) and 3 supporting components (strategic understanding, operations, contextual influences). The CMI is a practical, implementation-focused model applicable across public health programs, enabling linkages to capacity, sustainability, and outcome measurement. PMID:24922125

  17. Advancing Translational Research through Facility Design in Non-AMC Hospitals.

    PubMed

    Pati, Debajyoti; Pietrzak, Michael P; Harvey, Thomas E; Armstrong, Walter B; Clarke, Robert; Weissman, Neil J; Rapp, Paul E; Smith, Mark S; Fairbanks, Rollin J; Collins, Jeffreyg M

    2013-01-01

    This article aims to explore the future of translational research and its physical design implications for community hospitals and hospitals not attached to large centralized research platforms. With a shift in medical services delivery focus to community wellness, continuum of care, and comparative effectiveness research, healthcare research will witness increasing pressure to include community-based practitioners. The roundtable discussion group, comprising 14 invited experts from 10 institutions representing the fields of biomedical research, research administration, facility planning and design, facility management, finance, and environmental design research, examined the issue in a structured manner. The discussion was conducted at the Washington Hospital Center, MedStar Health, Washington, D.C. Institutions outside the AMCs will be increasingly targeted for future research. Three factors are crucial for successful research in non-AMC hospitals: operational culture, financial culture, and information culture. An operating culture geared towards creation, preservation, and protection of spaces needed for research; creative management of spaces for financial accountability; and a flexible information infrastructure at the system level that enables complete link of key programmatic areas to academic IT research infrastructure are critical to success of research endeavors. Hospital, interdisciplinary, leadership, planning, work environment.

  18. 18 CFR 35.35 - Transmission infrastructure investment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... infrastructure investment. 35.35 Section 35.35 Conservation of Power and Water Resources FEDERAL ENERGY... AND TARIFFS Transmission Infrastructure Investment Provisions § 35.35 Transmission infrastructure investment. (a) Purpose. This section establishes rules for incentive-based (including performance-based...

  19. Integrating Urban Infrastructure and Health System Impact Modeling for Disasters and Mass-Casualty Events

    NASA Astrophysics Data System (ADS)

    Balbus, J. M.; Kirsch, T.; Mitrani-Reiser, J.

    2017-12-01

    Over recent decades, natural disasters and mass-casualty events in United States have repeatedly revealed the serious consequences of health care facility vulnerability and the subsequent ability to deliver care for the affected people. Advances in predictive modeling and vulnerability assessment for health care facility failure, integrated infrastructure, and extreme weather events have now enabled a more rigorous scientific approach to evaluating health care system vulnerability and assessing impacts of natural and human disasters as well as the value of specific interventions. Concurrent advances in computing capacity also allow, for the first time, full integration of these multiple individual models, along with the modeling of population behaviors and mass casualty responses during a disaster. A team of federal and academic investigators led by the National Center for Disaster Medicine and Public Health (NCDMPH) is develoing a platform for integrating extreme event forecasts, health risk/impact assessment and population simulations, critical infrastructure (electrical, water, transportation, communication) impact and response models, health care facility-specific vulnerability and failure assessments, and health system/patient flow responses. The integration of these models is intended to develop much greater understanding of critical tipping points in the vulnerability of health systems during natural and human disasters and build an evidence base for specific interventions. Development of such a modeling platform will greatly facilitate the assessment of potential concurrent or sequential catastrophic events, such as a terrorism act following a severe heat wave or hurricane. This presentation will highlight the development of this modeling platform as well as applications not just for the US health system, but also for international science-based disaster risk reduction efforts, such as the Sendai Framework and the WHO SMART hospital project.

  20. Development of a lunar infrastructure

    NASA Astrophysics Data System (ADS)

    Burke, J. D.

    If humans are to reside continuously and productively on the Moon, they must be surrounded and supported there by an infrastructure having some attributes of the support systems that have made advanced civilization possible on Earth. Building this lunar infrastructure will, in a sense, be an investment. Creating it will require large resources from Earth, but once it exists it can do much to limit the further demands of a lunar base for Earthside support. What is needed for a viable lunar infrastructure? This question can be approached from two directions. The first is to examine history, which is essentially a record of growing information structures among humans on Earth (tribes, agriculture, specialization of work, education, ethics, arts and sciences, cities and states, technology). The second approach is much less secure but may provide useful insights: it is to examine the minimal needs of a small human community - not just for physical survival but for a stable existence with a net product output. This paper presents a summary, based on present knowledge of the Moon and of the likely functions of a human community there, of some of these infrastructure requirements, and also discusses possible ways to proceed toward meeting early infrastructure needs.

  1. Big Wind Turbines Require Infrastructure Upgrades - Continuum Magazine |

    Science.gov Websites

    rapidly. To that end, NREL has been completing electrical infrastructure upgrades to accommodate utility in the fall of 2009 necessitated infrastructure upgrades. Now the NWTC's electrical infrastructure eastern-most row on site. Interconnecting these large turbines required major electrical infrastructure

  2. Energy Systems Integration Facility (ESIF): Golden, CO - Energy Integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheppy, Michael; VanGeet, Otto; Pless, Shanti

    2015-03-01

    At NREL's Energy Systems Integration Facility (ESIF) in Golden, Colo., scientists and engineers work to overcome challenges related to how the nation generates, delivers and uses energy by modernizing the interplay between energy sources, infrastructure, and data. Test facilities include a megawatt-scale ac electric grid, photovoltaic simulators and a load bank. Additionally, a high performance computing data center (HPCDC) is dedicated to advancing renewable energy and energy efficient technologies. A key design strategy is to use waste heat from the HPCDC to heat parts of the building. The ESIF boasts an annual EUI of 168.3 kBtu/ft2. This article describes themore » building's procurement, design and first year of performance.« less

  3. 76 FR 81956 - National Infrastructure Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-29

    ... through the Secretary of Homeland Security with advice on the security of the critical infrastructure... critical infrastructure as directed by the President. At this meeting, the committee will receive work from... DEPARTMENT OF HOMELAND SECURITY [Docket No. DHS-2011-0117] National Infrastructure Advisory...

  4. 76 FR 36137 - National Infrastructure Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-21

    ... Homeland Security with advice on the security of the critical infrastructure sectors and their information systems. The NIAC will meet to address issues relevant to the protection of critical infrastructure as... DEPARTMENT OF HOMELAND SECURITY [Docket No. DHS-2011-0034] National Infrastructure Advisory...

  5. Chemical Facility Security: Reauthorization, Policy Issues, and Options for Congress

    DTIC Science & Technology

    2009-09-03

    EPA experts have pointed to the change by drinking water treatment facilities from gaseous chlorine disinfection to chloramine disinfection —a change...for purposes such as disinfection .21 Advocates for their inclusion in security regulations cite the presence of such potentially hazardous chemicals...DHS Science and Technology (S& T ) Directorate is engaged in a Chemical Infrastructure Risk Assessment Project that, among other goals, will assess the

  6. Increasing the productivity of the nation's urban transportation infrastructure: Measures to increase transit use and carpooling. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kain, J.F.; Gittell, R.; Daniere, A.

    1992-01-01

    The report surveys the growing use of bus and carpool priority measures to increase the productivity of the nation's transportation infrastructure. While it identifies a wide variety of priority measures, the report principally focuses on the planning and operation of exclusive and shared busways and high occupancy vehicle (HOV) facilities. It presents a variety of case studies describing the implementation of busways and transitways. The document also compares the cost effectiveness of exclusive busways and bus-HOV facilities with the cost effectiveness of recently completed light and heavy rail lines. It also explores the options and problems in serving large downtownmore » areas.« less

  7. Environmental engineering of navigation infrastructure: a survey of existing practices, challenges, and potential opportunities.

    PubMed

    Fredette, Thomas J; Foran, Christy M; Brasfield, Sandra M; Suedel, Burton C

    2012-01-01

    Navigation infrastructure such as channels, jetties, river training structures, and lock-and-dam facilities are primary components of a safe and efficient water transportation system. Planning for such infrastructure has until recently involved efforts to minimize impacts on the environment through a standardized environmental assessment process. More recently, consistent with environmental sustainability concepts, planners have begun to consider how such projects can also be constructed with environmental enhancements. This study examined the existing institutional conditions within the US Army Corps of Engineers and cooperating federal agencies relative to incorporating environmental enhancements into navigation infrastructure projects. The study sought to (1) investigate institutional attitudes towards the environmental enhancement of navigation infrastructure (EENI) concept, (2) identify potential impediments to implementation and solutions to such impediments, (3) identify existing navigation projects designed with the express intent of enhancing environmental benefit in addition to the primary project purpose, (4) identify innovative ideas for increasing environmental benefits for navigation projects, (5) identify needs for additional technical information or research, and (6) identify laws, regulations, and policies that both support and hinder such design features. The principal investigation tool was an Internet-based survey with 53 questions. The survey captured a wide range of perspectives on the EENI concept including ideas, concerns, research needs, and relevant laws and policies. Study recommendations included further promotion of the concept of EENI to planners and designers, documentation of existing projects, initiation of pilot studies on some of the innovative ideas provided through the survey, and development of national goals and interagency agreements to facilitate implementation. Copyright © 2011 SETAC.

  8. "Measuring Operational Effectiveness of Information Technology Infrastructure Library (IIL) and the Impact of Critical Facilities Inclusion in the Process."

    ERIC Educational Resources Information Center

    Woodell, Eric A.

    2013-01-01

    Information Technology (IT) professionals use the Information Technology Infrastructure Library (ITIL) process to better manage their business operations, measure performance, improve reliability and lower costs. This study examined the operational results of those data centers using ITIL against those that do not, and whether the results change…

  9. Research Infrastructure Challenges for Graduate Programs in STEM Disciplines at Minority Institutions

    NASA Technical Reports Server (NTRS)

    Aggarwal, M. D.; Lal, Ravi; Penn, Benjamin G.

    2007-01-01

    It is much more challenging to perform experimental research functions at many minority institutions, because of lack of adequate research infrastructure. This is especially true if one wishes to initiate and implement masters and doctoral degree program in physics. In the present paper, an attempt is made to discuss the various hurdles encountered by the authors in the establishment of Master's and Doctoral degree programs in physics at one of the HBCUs (Historically Black Colleges and Universities). The department got no special or necessary treatment and faculty members are asked to teach as much course work as any other undergraduate department on the campus. It was very hard to convince university administration that giving less teaching load to research producing department faculty, shall culminate in abundant funding for the future years. This scenario created an extra heavy pressure on the faculty to continue the program. Some of the challenges included the resistance of some faculty and administrators to change, lack of sufficient release time for research producing faculty, and potential variation in funding or support with changes in the state education budget proration or members of the administration. In spite of the indirect cost recovery, very little infrastructure facilities was provided and the federal funding agencies did not want to interfere in the administration of the university. Various issues of recruiting and mentoring minority students, retention in the STEM disciplines as well as research infrastructure challenges at an HBCU university are presented.

  10. Critical Infrastructure Rebuild Prioritization using Simulation Optimization

    DTIC Science & Technology

    2007-03-01

    23 Figure 2.9 Production by temperature and production made from a crude oil (EIA.com)24 Figure 2.10 Natural gas industry... Oil infrastructure physical layer ...................................................................... 45 Figure 3.6 Natural gas infrastructure...information layer.......................................................... 55 Figure 3.11 Oil infrastructure information layer

  11. Designs for Success: Massive Building Project Makes LACCD a Leader in Green Facilities

    ERIC Educational Resources Information Center

    LaVista, Daniel

    2010-01-01

    After a 35-year building hiatus, the nine colleges in the Los Angeles Community College District (LACCD) needed a major facelift. Facilities on LACCD campuses were antiquated and had fallen into disrepair. For years, students voiced dismay, saying their campuses resembled high schools rather than colleges. Inadequate infrastructure drove many…

  12. The challenge of developing ethical guidelines for a research infrastructure

    NASA Astrophysics Data System (ADS)

    Kutsch, Werner Leo

    2016-04-01

    The mission of the Integrated Carbon Observation System (ICOS RI) is to enable research to understand the greenhouse gas (GHG) budgets and perturbations. The ICOS RI provides the long-term observations required to understand the present state and predict future behaviour of the global carbon cycle and GHG emissions. Technological developments and implementations, related to GHGs, will be promoted by the linking of research, education and innovation. In order to provide this data ICOS RI is a distributed research infrastructure. The backbones of ICOS RI are the national measurement stations such as ICOS atmosphere, ecosystem and ocean stations. ICOS Central Facilities are the European level ICOS RI Centres, which have the specific tasks in collecting and processing the data and samples received from the national measurement networks. During the establishment of ICOS RI ethical guidelines were developed. These guidelines describe principles of ethics in the research activities that should be applied within ICOS RI. They should be acknowledged and followed by all researchers affiliated to ICOS RI and should be supported by all participating institutions. The presentation describes (1) the general challenge to develop ethical guidelines in a complex international infrastructure and (2) gives an overview about the content that includes different kinds of conflicts of interests, data ethics and social responsibility.

  13. European seismological data exchange, access and processing: current status of the Research Infrastructure project NERIES

    NASA Astrophysics Data System (ADS)

    Giardini, D.; van Eck, T.; Bossu, R.; Wiemer, S.

    2009-04-01

    The EC Research infrastructure project NERIES, an Integrated Infrastructure Initiative in seismology for 2006-2010 has passed its mid-term point. We will present a short concise overview of the current state of the project, established cooperation with other European and global projects and the planning for the last year of the project. Earthquake data archiving and access within Europe has dramatically improved during the last two years. This concerns earthquake parameters, digital broadband and acceleration waveforms and historical data. The Virtual European Broadband Seismic Network (VEBSN) consists currently of more then 300 stations. A new distributed data archive concept, the European Integrated Waveform Data Archive (EIDA), has been implemented in Europe connecting the larger European seismological waveform data. Global standards for earthquake parameter data (QuakeML) and tomography models have been developed and are being established. Web application technology has been and is being developed to make a jump start to the next generation data services. A NERIES data portal provides a number of services testing the potential capacities of new open-source web technologies. Data application tools like shakemaps, lossmaps, site response estimation and tools for data processing and visualisation are currently available, although some of these tools are still in an alpha version. A European tomography reference model will be discussed at a special workshop in June 2009. Shakemaps, coherent with the NEIC application, are implemented in, among others, Turkey, Italy, Romania, Switzerland, several countries. The comprehensive site response software is being distributed and used both inside and outside the project. NERIES organises several workshops inviting both consortium and non-consortium participants and covering a wide range of subjects: ‘Seismological observatory operation tools', ‘Tomography', ‘Ocean bottom observatories', 'Site response software training

  14. Towards a single seismological service infrastructure in Europe

    NASA Astrophysics Data System (ADS)

    Spinuso, A.; Trani, L.; Frobert, L.; Van Eck, T.

    2012-04-01

    within a data-intensive computation framework, which will be tailored to the specific needs of the community. It will provide a new interoperable infrastructure, as the computational backbone laying behind the publicly available interfaces. VERCE will have to face the challenges of implementing a service oriented architecture providing an efficient layer between the Data and the Grid infrastructures, coupling HPC data analysis and HPC data modeling applications through the execution of workflows and data sharing mechanism. Online registries of interoperable worklflow components, storage of intermediate results and data provenance are those aspects that are currently under investigations to make the VERCE facilities usable from a large scale of users, data and service providers. For such purposes the adoption of a Digital Object Architecture, to create online catalogs referencing and describing semantically all these distributed resources, such as datasets, computational processes and derivative products, is seen as one of the viable solution to monitor and steer the usage of the infrastructure, increasing its efficiency and the cooperation among the community.

  15. 77 FR 19300 - National Infrastructure Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-30

    ... Homeland Security with advice on the security of the critical infrastructure sectors and their information systems. The NIAC will meet to address issues relevant to the protection of critical infrastructure as... Group regarding the scope of the next phase of the Working Group's critical infrastructure resilience...

  16. Overview: Development of the National Ignition Facility and the Transition to a User Facility for the Ignition Campaign and High Energy Density Scientific Research

    DOE PAGES

    Moses, E. I.; Lindl, J. D.; Spaeth, M. L.; ...

    2017-03-23

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory has been operational since March 2009 and has been transitioning to a user facility supporting ignition science, high energy density stockpile science, national security applications, and fundamental science. The facility has achieved its design goal of 1.8 MJ and 500 TW of 3ω light on target, and has performed target experiments with 1.9 MJ at peak powers of 410 TW. The National Ignition Campaign (NIC), established by the U.S. National Nuclear Security Administration in 2005, was responsible for transitioning NIF from a construction project to a national user facility. Besidesmore » the operation and optimization of the use of the NIF laser, the NIC program was responsible for developing capabilities including target fabrication facilities; cryogenic layering capabilities; over 60 optical, X-ray, and nuclear diagnostic systems; experimental platforms; and a wide range of other NIF facility infrastructure. This study provides a summary of some of the key experimental results for NIF to date, an overview of the NIF facility capabilities, and the challenges that were met in achieving these capabilities. Finally, they are covered in more detail in the papers that follow.« less

  17. Overview: Development of the National Ignition Facility and the Transition to a User Facility for the Ignition Campaign and High Energy Density Scientific Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moses, E. I.; Lindl, J. D.; Spaeth, M. L.

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory has been operational since March 2009 and has been transitioning to a user facility supporting ignition science, high energy density stockpile science, national security applications, and fundamental science. The facility has achieved its design goal of 1.8 MJ and 500 TW of 3ω light on target, and has performed target experiments with 1.9 MJ at peak powers of 410 TW. The National Ignition Campaign (NIC), established by the U.S. National Nuclear Security Administration in 2005, was responsible for transitioning NIF from a construction project to a national user facility. Besidesmore » the operation and optimization of the use of the NIF laser, the NIC program was responsible for developing capabilities including target fabrication facilities; cryogenic layering capabilities; over 60 optical, X-ray, and nuclear diagnostic systems; experimental platforms; and a wide range of other NIF facility infrastructure. This study provides a summary of some of the key experimental results for NIF to date, an overview of the NIF facility capabilities, and the challenges that were met in achieving these capabilities. Finally, they are covered in more detail in the papers that follow.« less

  18. Nuclear Science User Facilities (NSUF) Monthly Report March 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soelberg, Renae

    Nuclear Science User Facilities (NSUF) Formerly: Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report February 2015 Highlights; Jim Cole attended the OECD NEA Expert Group on Innovative Structural Materials meeting in Paris, France; Jim Lane and Doug Copsey of Writers Ink visited PNNL to prepare an article for the NSUF annual report; Brenden Heidrich briefed the Nuclear Energy Advisory Committee-Facilities Subcommittee on the Nuclear Energy Infrastructure Database project and provided them with custom reports for their upcoming visits to Argonne National Laboratory, Idaho National Laboratory, Oak Ridge National Laboratory and the Massachusetts Institute of Technology; and Universitymore » of California-Berkeley Principal Investigator Mehdi Balooch visited PNNL to observe measurements and help finalize plans for completing the desired suite of analyses. His visit was coordinated to coincide with the visit of Jim Lane and Doug Copsey.« less

  19. COOPEUS - connecting research infrastructures in environmental sciences

    NASA Astrophysics Data System (ADS)

    Koop-Jakobsen, Ketil; Waldmann, Christoph; Huber, Robert

    2015-04-01

    The COOPEUS project was initiated in 2012 bringing together 10 research infrastructures (RIs) in environmental sciences from the EU and US in order to improve the discovery, access, and use of environmental information and data across scientific disciplines and across geographical borders. The COOPEUS mission is to facilitate readily accessible research infrastructure data to advance our understanding of Earth systems through an international community-driven effort, by: Bringing together both user communities and top-down directives to address evolving societal and scientific needs; Removing technical, scientific, cultural and geopolitical barriers for data use; and Coordinating the flow, integrity and preservation of information. A survey of data availability was conducted among the COOPEUS research infrastructures for the purpose of discovering impediments for open international and cross-disciplinary sharing of environmental data. The survey showed that the majority of data offered by the COOPEUS research infrastructures is available via the internet (>90%), but the accessibility to these data differ significantly among research infrastructures; only 45% offer open access on their data, whereas the remaining infrastructures offer restricted access e.g. do not release raw data or sensible data, demand user registration or require permission prior to release of data. These rules and regulations are often installed as a form of standard practice, whereas formal data policies are lacking in 40% of the infrastructures, primarily in the EU. In order to improve this situation COOPEUS has installed a common data-sharing policy, which is agreed upon by all the COOPEUS research infrastructures. To investigate the existing opportunities for improving interoperability among environmental research infrastructures, COOPEUS explored the opportunities with the GEOSS common infrastructure (GCI) by holding a hands-on workshop. Through exercises directly registering resources

  20. SRB Processing Facilities Media Event

    NASA Image and Video Library

    2016-03-01

    The right-hand aft skirt, one part of the aft booster assembly for NASA’s Space Launch System solid rocket boosters, is in view in a processing cell inside the Booster Fabrication Facility (BFF) at NASA’s Kennedy Space Center in Florida. Orbital ATK is a contractor for NASA’s Marshall Space Flight Center in Alabama, and operates the BFF to prepare aft booster segments and hardware for the SLS rocket boosters. The SLS rocket and Orion spacecraft will launch on Exploration Mission-1 in 2018. The Ground Systems Development and Operations Program is preparing the infrastructure to process and launch spacecraft for deep-space missions and the journey to Mars.

  1. Hierarchical Coloured Petrinet Based Healthcare Infrastructure Interdependency Model

    NASA Astrophysics Data System (ADS)

    Nivedita, N.; Durbha, S.

    2014-11-01

    To ensure a resilient Healthcare Critical Infrastructure, understanding the vulnerabilities and analysing the interdependency on other critical infrastructures is important. To model this critical infrastructure and its dependencies, Hierarchal Coloured petri net modelling approach for simulating the vulnerability of Healthcare Critical infrastructure in a disaster situation is studied.. The model enables to analyse and understand various state changes, which occur when there is a disruption or damage to any of the Critical Infrastructure, and its cascading nature. It also enables to explore optimal paths for evacuation during the disaster. The simulation environment can be used to understand and highlight various vulnerabilities of Healthcare Critical Infrastructure during a flood disaster scenario; minimize consequences; and enable timely, efficient response.

  2. A Multidisciplinary Research Framework on Green Schools: Infrastructure, Social Environment, Occupant Health, and Performance.

    PubMed

    Magzamen, Sheryl; Mayer, Adam P; Barr, Stephanie; Bohren, Lenora; Dunbar, Brian; Manning, Dale; Reynolds, Stephen J; Schaeffer, Joshua W; Suter, Jordan; Cross, Jennifer E

    2017-05-01

    Sustainable school buildings hold much promise to reducing operating costs, improve occupant well-being and, ultimately, teacher and student performance. However, there is a scarcity of evidence on the effects of sustainable school buildings on health and performance indicators. We sought to create a framework for a multidisciplinary research agenda that links school facilities, health, and educational outcomes. We conducted a nonsystematic review of peer review publications, government documents, organizational documents, and school climate measurement instruments. We found that studies on the impact of physical environmental factors (air, lighting, and thermal comfort) on health and occupant performance are largely independent of research on the social climate. The current literature precludes the formation of understanding the causal relation among school facilities, social climate, occupant health, and occupant performance. Given the average age of current school facilities in the United States, construction of new school facilities or retrofits of older facilities will be a major infrastructure investment for many municipalities over the next several decades. Multidisciplinary research that seeks to understand the impact of sustainable design on the health and performance of occupants will need to include both an environmental science and social science perspective to inform best practices and quantification of benefits that go beyond general measures of costs savings from energy efficiencies. © 2017, American School Health Association.

  3. Green Infrastructure

    EPA Science Inventory

    Large paved surfaces keep rain from infiltrating the soil and recharging groundwater supplies. Alternatively, Green infrastructure uses natural processes to reduce and treat stormwater in place by soaking up and storing water. These systems provide many environmental, social, an...

  4. Data Updating Methods for Spatial Data Infrastructure that Maintain Infrastructure Quality and Enable its Sustainable Operation

    NASA Astrophysics Data System (ADS)

    Murakami, S.; Takemoto, T.; Ito, Y.

    2012-07-01

    The Japanese government, local governments and businesses are working closely together to establish spatial data infrastructures in accordance with the Basic Act on the Advancement of Utilizing Geospatial Information (NSDI Act established in August 2007). Spatial data infrastructures are urgently required not only to accelerate computerization of the public administration, but also to help restoration and reconstruction of the areas struck by the East Japan Great Earthquake and future disaster prevention and reduction. For construction of a spatial data infrastructure, various guidelines have been formulated. But after an infrastructure is constructed, there is a problem of maintaining it. In one case, an organization updates its spatial data only once every several years because of budget problems. Departments and sections update the data on their own without careful consideration. That upsets the quality control of the entire data system and the system loses integrity, which is crucial to a spatial data infrastructure. To ensure quality, ideally, it is desirable to update data of the entire area every year. But, that is virtually impossible, considering the recent budget crunch. The method we suggest is to update spatial data items of higher importance only in order to maintain quality, not updating all the items across the board. We have explored a method of partially updating the data of these two geographical features while ensuring the accuracy of locations. Using this method, data on roads and buildings that greatly change with time can be updated almost in real time or at least within a year. The method will help increase the availability of a spatial data infrastructure. We have conducted an experiment on the spatial data infrastructure of a municipality using those data. As a result, we have found that it is possible to update data of both features almost in real time.

  5. Infrastructure Commons in Economic Perspective

    NASA Astrophysics Data System (ADS)

    Frischmann, Brett M.

    This chapter briefly summarizes a theory (developed in substantial detail elsewhere)1 that explains why there are strong economic arguments for managing and sustaining infrastructure resources in an openly accessible manner. This theory facilitates a better understanding of two related issues: how society benefits from infrastructure resources and how decisions about how to manage or govern infrastructure resources affect a wide variety of public and private interests. The key insights from this analysis are that infrastructure resources generate value as inputs into a wide range of productive processes and that the outputs from these processes are often public goods and nonmarket goods that generate positive externalities that benefit society as a whole. Managing such resources in an openly accessible manner may be socially desirable from an economic perspective because doing so facilitates these downstream productive activities. For example, managing the Internet infrastructure in an openly accessible manner facilitates active citizen involvement in the production and sharing of many different public and nonmarket goods. Over the last decade, this has led to increased opportunities for a wide range of citizens to engage in entrepreneurship, political discourse, social network formation, and community building, among many other activities. The chapter applies these insights to the network neutrality debate and suggests how the debate might be reframed to better account for the wide range of private and public interests at stake.

  6. Structural health monitoring of civil infrastructure.

    PubMed

    Brownjohn, J M W

    2007-02-15

    Structural health monitoring (SHM) is a term increasingly used in the last decade to describe a range of systems implemented on full-scale civil infrastructures and whose purposes are to assist and inform operators about continued 'fitness for purpose' of structures under gradual or sudden changes to their state, to learn about either or both of the load and response mechanisms. Arguably, various forms of SHM have been employed in civil infrastructure for at least half a century, but it is only in the last decade or two that computer-based systems are being designed for the purpose of assisting owners/operators of ageing infrastructure with timely information for their continued safe and economic operation. This paper describes the motivations for and recent history of SHM applications to various forms of civil infrastructure and provides case studies on specific types of structure. It ends with a discussion of the present state-of-the-art and future developments in terms of instrumentation, data acquisition, communication systems and data mining and presentation procedures for diagnosis of infrastructural 'health'.

  7. Cyberwarfare on the Electricity Infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murarka, N.; Ramesh, V.C.

    2000-03-20

    The report analyzes the possibility of cyberwarfare on the electricity infrastructure. The ongoing deregulation of the electricity industry makes the power grid all the more vulnerable to cyber attacks. The report models the power system information system components, models potential threats and protective measures. It therefore offers a framework for infrastructure protection.

  8. LCG/AA build infrastructure

    NASA Astrophysics Data System (ADS)

    Hodgkins, Alex Liam; Diez, Victor; Hegner, Benedikt

    2012-12-01

    The Software Process & Infrastructure (SPI) project provides a build infrastructure for regular integration testing and release of the LCG Applications Area software stack. In the past, regular builds have been provided using a system which has been constantly growing to include more features like server-client communication, long-term build history and a summary web interface using present-day web technologies. However, the ad-hoc style of software development resulted in a setup that is hard to monitor, inflexible and difficult to expand. The new version of the infrastructure is based on the Django Python framework, which allows for a structured and modular design, facilitating later additions. Transparency in the workflows and ease of monitoring has been one of the priorities in the design. Formerly missing functionality like on-demand builds or release triggering will support the transition to a more agile development process.

  9. The Small Aircraft Transportation System for America: A Case in Public Infrastructure Change

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.

    2000-01-01

    The National Aeronautics and Space Administration (NASA), U.S. Department of Transportation, Federal Aviation Administration, industry stakeholders, and academia, have joined forces to pursue the NASA National General Aviation Roadmap leading to a Small Aircraft Transportation System (SATS). This strategic undertaking has a 25-year goal to bring next-generation technologies and improve travel between remote communities and transportation centers in urban areas by utilizing the nation's 5,400 public-use general aviation airports. To facilitate this initiative, a comprehensive upgrade of public infrastructure must be planned, coordinated, and implemented within the framework of the national air transportation system. The Nebraska NASA EPSCoR Program has proposed to deliver research support in key public infrastructure areas in coordination with the General Aviation Program Office at the NASA Langley Research Center. Ultimately, SATS may permit tripling aviation system throughput capacity by tapping the underutilized general aviation facilities to achieve the national goal of doorstep-to-destination travel at four times the speed of highways for the nation's suburban, rural, and remote communities.

  10. Manned Mars mission health maintenance facility

    NASA Technical Reports Server (NTRS)

    Degioanni, Joseph C.

    1986-01-01

    The Health Maintenance Facility (HMF) requirements which enable/enhance manned Mars missions (MMMs) are addressed. It does not attempt to resolve any issues that may affect the feasibility of any given element in the HMF. Reference is made to current work being conducted in the design of the space station HMF. The HMF requirements are discussed within the context of two distinctly different scenarios: HMF as part of the Mars surface infrastructure, and HMF as part of the nine months translation from low Earth orbit to Mars orbit. Requirements for an HMF are provided, and a concept of HMF is shown.

  11. Benchmarking infrastructure for mutation text mining

    PubMed Central

    2014-01-01

    Background Experimental research on the automatic extraction of information about mutations from texts is greatly hindered by the lack of consensus evaluation infrastructure for the testing and benchmarking of mutation text mining systems. Results We propose a community-oriented annotation and benchmarking infrastructure to support development, testing, benchmarking, and comparison of mutation text mining systems. The design is based on semantic standards, where RDF is used to represent annotations, an OWL ontology provides an extensible schema for the data and SPARQL is used to compute various performance metrics, so that in many cases no programming is needed to analyze results from a text mining system. While large benchmark corpora for biological entity and relation extraction are focused mostly on genes, proteins, diseases, and species, our benchmarking infrastructure fills the gap for mutation information. The core infrastructure comprises (1) an ontology for modelling annotations, (2) SPARQL queries for computing performance metrics, and (3) a sizeable collection of manually curated documents, that can support mutation grounding and mutation impact extraction experiments. Conclusion We have developed the principal infrastructure for the benchmarking of mutation text mining tasks. The use of RDF and OWL as the representation for corpora ensures extensibility. The infrastructure is suitable for out-of-the-box use in several important scenarios and is ready, in its current state, for initial community adoption. PMID:24568600

  12. Benchmarking infrastructure for mutation text mining.

    PubMed

    Klein, Artjom; Riazanov, Alexandre; Hindle, Matthew M; Baker, Christopher Jo

    2014-02-25

    Experimental research on the automatic extraction of information about mutations from texts is greatly hindered by the lack of consensus evaluation infrastructure for the testing and benchmarking of mutation text mining systems. We propose a community-oriented annotation and benchmarking infrastructure to support development, testing, benchmarking, and comparison of mutation text mining systems. The design is based on semantic standards, where RDF is used to represent annotations, an OWL ontology provides an extensible schema for the data and SPARQL is used to compute various performance metrics, so that in many cases no programming is needed to analyze results from a text mining system. While large benchmark corpora for biological entity and relation extraction are focused mostly on genes, proteins, diseases, and species, our benchmarking infrastructure fills the gap for mutation information. The core infrastructure comprises (1) an ontology for modelling annotations, (2) SPARQL queries for computing performance metrics, and (3) a sizeable collection of manually curated documents, that can support mutation grounding and mutation impact extraction experiments. We have developed the principal infrastructure for the benchmarking of mutation text mining tasks. The use of RDF and OWL as the representation for corpora ensures extensibility. The infrastructure is suitable for out-of-the-box use in several important scenarios and is ready, in its current state, for initial community adoption.

  13. A model for manuscript submitted to the nth IIR conference on overview of the long-baseline neutrino facility cryogenic system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montanari, David; Adamowski, Mark; Bremer, Johan

    2017-03-09

    The Deep Underground Neutrino Experiment (DUNE) collaboration is developing a multi-kiloton Long-Baseline neutrino experiment that will be located one mile underground at the Sanford Underground Research Facility (SURF) in Lead, SD. In the present design, detectors will be located inside four cryostats filled with a total of 68,400 ton of ultrapure liquid argon, at the level of impurities lower than 100 parts per trillion of oxygen equivalent contamination. The Long-Baseline Neutrino Facility (LBNF) is developing the conventional facilities and cryogenics infrastructure supporting this experiment. The cryogenics system is composed of several sub-systems: External/Infrastructure, Proximity, and Internal cryogenics. It will bemore » engineered, manufactured, commissioned, and qualified by an international engineering team. This contribution highlights the main features of the LBNF cryogenic system. It presents its performance, functional requirements and modes of operations. As a result, it also details the status of the design, present and future needs.« less

  14. Toolkit of Available EPA Green Infrastructure Modeling ...

    EPA Pesticide Factsheets

    This webinar will present a toolkit consisting of five EPA green infrastructure models and tools, along with communication material. This toolkit can be used as a teaching and quick reference resource for use by planners and developers when making green infrastructure implementation decisions. It can also be used for low impact development design competitions. Models and tools included: Green Infrastructure Wizard (GIWiz), Watershed Management Optimization Support Tool (WMOST), Visualizing Ecosystem Land Management Assessments (VELMA) Model, Storm Water Management Model (SWMM), and the National Stormwater Calculator (SWC). This webinar will present a toolkit consisting of five EPA green infrastructure models and tools, along with communication material. This toolkit can be used as a teaching and quick reference resource for use by planners and developers when making green infrastructure implementation decisions. It can also be used for low impact development design competitions. Models and tools included: Green Infrastructure Wizard (GIWiz), Watershed Management Optimization Support Tool (WMOST), Visualizing Ecosystem Land Management Assessments (VELMA) Model, Storm Water Management Model (SWMM), and the National Stormwater Calculator (SWC).

  15. Extreme Light Infrastructure - Nuclear Physics pillar (ELI-NP) : new horizons in physics with high power lasers and brilliant gamma beams.

    PubMed

    Gales, Sydney; Tanaka, Kazuo A; Balabanski, D L; Negoita, Florin; Stutman, D; Ur, Calin Alexander; Tesileanu, Ovidiu; Ursescu, Daniel; Ghita, Dan Gabriel; Andrei, I; Ataman, Stefan; Cernaianu, M O; D'Alessi, L; Dancus, I; Diaconescu, B; Djourelov, N; Filipescu, D; Ghenuche, P; Matei, C; Seto Kei, K; Zeng, M; Zamfir, Victor Nicolae

    2018-06-28

    The European Strategic Forum for Research Infrastructures (ESFRI) has selected in 2006 a proposal based on ultra-intense laser elds with intensities reaching up to 10221023 W/cm2 called \\ELI" for Extreme Light Infrastructure. The construction of a large-scale laser-centred, distributed pan-European research infrastructure, involving beyond the state-of-the-art ultra-short and ultra-intense laser technologies, received the approval for funding in 2011 2012. The three pillars of the ELI facility are being built in Czech Republic, Hungary and Romania. The Romanian pillar is ELI-Nuclear Physics (ELI-NP). The new facility is intended to serve a broad national, European and International science community. Its mission covers scientic research at the frontier of knowledge involving two domains. The rst one is laser-driven experiments related to nuclear physics, strong-eld quantum electrodynamics and associated vacuum eects. The second is based on a Comptonbackscattering high-brilliance and intense low-energy gamma beam (< 20 MeV), a marriage of laser and accelerator technology which will allow us to investigate nuclear structure and reactions as well as nuclear astrophysics with unprecedented resolution and accuracy. In addition to fundamental themes, a large number of applications with signicant societal impact are being developed. The ELI-NP research centre will be located in Magurele near Bucharest, Romania. The project is implemented by \\Horia Hulubei" National Institute for Physics and Nuclear Engineering (IFIN-HH). The project started in January 2013 and the new facility will be fully operational by the end of 2019. After a short introduction to multi-PW lasers and Multi-MeV brilliant gamma beam scientic and technical description of the future ELI-NP facility as well as the present status of its implementation of ELI-NP, will be presented. The

  16. Transportation Energy Futures Series: Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melaina, M. W.; Heath, G.; Sandor, D.

    2013-04-01

    Achieving the Department of Energy target of an 80% reduction in greenhouse gas emissions by 2050 depends on transportation-related strategies combining technology innovation, market adoption, and changes in consumer behavior. This study examines expanding low-carbon transportation fuel infrastructure to achieve deep GHG emissions reductions, with an emphasis on fuel production facilities and retail components serving light-duty vehicles. Three distinct low-carbon fuel supply scenarios are examined: Portfolio: Successful deployment of a range of advanced vehicle and fuel technologies; Combustion: Market dominance by hybridized internal combustion engine vehicles fueled by advanced biofuels and natural gas; Electrification: Market dominance by electric drive vehiclesmore » in the LDV sector, including battery electric, plug-in hybrid, and fuel cell vehicles, that are fueled by low-carbon electricity and hydrogen. A range of possible low-carbon fuel demand outcomes are explored in terms of the scale and scope of infrastructure expansion requirements and evaluated based on fuel costs, energy resource utilization, fuel production infrastructure expansion, and retail infrastructure expansion for LDVs. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored transportation-related strategies for abating GHGs and reducing petroleum dependence.« less

  17. The TENCompetence Infrastructure: A Learning Network Implementation

    NASA Astrophysics Data System (ADS)

    Vogten, Hubert; Martens, Harrie; Lemmers, Ruud

    The TENCompetence project developed a first release of a Learning Network infrastructure to support individuals, groups and organisations in professional competence development. This infrastructure Learning Network infrastructure was released as open source to the community thereby allowing users and organisations to use and contribute to this development as they see fit. The infrastructure consists of client applications providing the user experience and server components that provide the services to these clients. These services implement the domain model (Koper 2006) by provisioning the entities of the domain model (see also Sect. 18.4) and henceforth will be referenced as domain entity services.

  18. ARM Operations and Engineering Procedure Mobile Facility Site Startup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voyles, Jimmy W

    2015-05-01

    This procedure exists to define the key milestones, necessary steps, and process rules required to commission and operate an Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF), with a specific focus toward on-time product delivery to the ARM Data Archive. The overall objective is to have the physical infrastructure, networking and communications, and instrument calibration, grooming, and alignment (CG&A) completed with data products available from the ARM Data Archive by the Operational Start Date milestone.

  19. 75 FR 21011 - Critical Infrastructure Partnership Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-22

    ... DEPARTMENT OF HOMELAND SECURITY [Docket No. DHS-2010-0032] Critical Infrastructure Partnership... Infrastructure Partnership Advisory Council (CIPAC) charter renewal. SUMMARY: The Department of Homeland Security... and Outreach Division, Office of Infrastructure Protection, National Protection and Programs...

  20. Relevance of an academic GMP Pan-European vector infra-structure (PEVI).

    PubMed

    Cohen-Haguenauer, O; Creff, N; Cruz, P; Tunc, C; Aïuti, A; Baum, C; Bosch, F; Blomberg, P; Cichutek, K; Collins, M; Danos, O; Dehaut, F; Federspiel, M; Galun, E; Garritsen, H; Hauser, H; Hildebrandt, M; Klatzmann, D; Merten, O W; Montini, E; O'Brien, T; Panet, A; Rasooly, L; Scherman, D; Schmidt, M; Schweitzer, M; Tiberghien, P; Vandendriessche, T; Ziehr, H; Ylä-Herttuala, S; von Kalle, C; Gahrton, G; Carrondo, M

    2010-12-01

    In the past 5 years, European investigators have played a major role in the development of clinical gene therapy. The provision of substantial funds by some individual member states to construct GMP facilities makes it an opportune time to network available gene therapy GMP facilities at an EU level. The integrated coordination of GMP production facilities and human skills for advanced gene and genetically-modified (GM) cell therapy, can dramatically enhance academic-led "First-in-man" gene therapy trials. Once proof of efficacy is gathered, technology can be transferred to the private sector which will take over further development taking advantage of knowledge and know-how. Complex technical challenges require existing production facilities to adapt to emerging technologies in a coordinated manner. These include a mandatory requirement for the highest quality of production translating gene-transfer technologies with pharmaceutical-grade GMP processes to the clinic. A consensus has emerged on the directions and priorities to adopt, applying to advanced technologies with improved efficacy and safety profiles, in particular AAV, lentivirus-based and oncolytic vectors. Translating cutting-edge research into "First-in-man" trials require that pre-normative research is conducted which aims to develop standard assays, processes and candidate reference materials. This research will help harmonise practices and quality in the production of GMP vector lots and GM-cells. In gathering critical expertise in Europe and establish conditions for interoperability, the PEVI infrastructure will contribute to the demands of the advanced therapy medicinal products* regulation and to both health and quality of life of EU-citizens.

  1. Development of a public health nursing data infrastructure.

    PubMed

    Monsen, Karen A; Bekemeier, Betty; P Newhouse, Robin; Scutchfield, F Douglas

    2012-01-01

    An invited group of national public health nursing (PHN) scholars, practitioners, policymakers, and other stakeholders met in October 2010 identifying a critical need for a national PHN data infrastructure to support PHN research. This article summarizes the strengths, limitations, and gaps specific to PHN data and proposes a research agenda for development of a PHN data infrastructure. Future implications are suggested, such as issues related to the development of the proposed PHN data infrastructure and future research possibilities enabled by the infrastructure. Such a data infrastructure has potential to improve accountability and measurement, to demonstrate the value of PHN services, and to improve population health. © 2012 Wiley Periodicals, Inc.

  2. Requirements Doc for Refurb of JASPER Facility in B131HB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knittel, Kenn M.

    The Joint Actinide Shock Physics Experimental Research (JASPER) Program target fabrication facility is currently located in building 131 (B131) of the Lawrence Livermore National Laboratory (LLNL). A portion of this current facility has been committed to another program as part of a larger effort to consolidate LLNL capabilities into newer facilities. This facility assembles precision targets for scientific studies at the Nevada National Security Site (NNSS). B131 is also going through a modernization project to upgrade the infrastructure and abate asbestos. These activities will interrupt the continuous target fabrication efforts for the JASPER Program. Several options are explored to meetmore » the above conflicting requirements, with the final recommendation to prepare a new facility for JASPER target fabrication operations before modernization efforts begin in the current facility assigned to JASPER. This recommendation fits within all schedule constraints and minimizes the disruption to the JASPER Program. This option is not without risk, as it requires moving an aged, precision coordinate measuring machine, which is essential to the JASPER Program’s success. The selected option balances the risk to the machine with continuity of operations.« less

  3. 75 FR 75611 - Critical Infrastructure Protection Month, 2010

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-03

    ... Part IV The President Proclamation 8607--Critical Infrastructure Protection Month, 2010..., 2010 Critical Infrastructure Protection Month, 2010 By the President of the United States of America A Proclamation During Critical Infrastructure Protection Month, we highlight the vast network of systems and...

  4. Transportation infrastructure resiliency : a review of transportation infrastructure resiliency in light of future impacts of climate change

    DOT National Transportation Integrated Search

    2013-08-06

    The threat of global climate change and its impact on our worlds infrastructure is a rapidly growing reality. Particularly, as seen in recent storm events such as Hurricane Katrina and Sandy in the United States, transportation infrastructure is o...

  5. Principles of Emergency Department facility design for optimal management of mass-casualty incidents.

    PubMed

    Halpern, Pinchas; Goldberg, Scott A; Keng, Jimmy G; Koenig, Kristi L

    2012-04-01

    The Emergency Department (ED) is the triage, stabilization and disposition unit of the hospital during a mass-casualty incident (MCI). With most EDs already functioning at or over capacity, efficient management of an MCI requires optimization of all ED components. While the operational aspects of MCI management have been well described, the architectural/structural principles have not. Further, there are limited reports of the testing of ED design components in actual MCI events. The objective of this study is to outline the important infrastructural design components for optimization of ED response to an MCI, as developed, implemented, and repeatedly tested in one urban medical center. In the authors' experience, the most important aspects of ED design for MCI have included external infrastructure and promoting rapid lockdown of the facility for security purposes; an ambulance bay permitting efficient vehicle flow and casualty discharge; strategic placement of the triage location; patient tracking techniques; planning adequate surge capacity for both patients and staff; sufficient command, control, communications, computers, and information; well-positioned and functional decontamination facilities; adequate, well-located and easily distributed medical supplies; and appropriately built and functioning essential services. Designing the ED to cope well with a large casualty surge during a disaster is not easy, and it may not be feasible for all EDs to implement all the necessary components. However, many of the components of an appropriate infrastructural design add minimal cost to the normal expenditures of building an ED. This study highlights the role of design and infrastructure in MCI preparedness in order to assist planners in improving their ED capabilities. Structural optimization calls for a paradigm shift in the concept of structural and operational ED design, but may be necessary in order to maximize surge capacity, department resilience, and patient and

  6. EPA Research Highlights: EPA Studies Aging Water Infrastructure

    EPA Science Inventory

    The nation's extensive water infrastructure has the capacity to treat, store, and transport trillions of gallons of water and wastewater per day through millions of miles of pipelines. However, some infrastructure components are more than 100 years old, and as the infrastructure ...

  7. Strategic plan for infrastructure optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donley, C.D.

    This document represents Fluor Daniel Hanford`s and DynCorp`s Tri-Cities Strategic Plan for Fiscal Years 1998--2002, the road map that will guide them into the next century and their sixth year of providing safe and cost effective infrastructure services and support to the Department of Energy (DOE) and the Hanford Site. The Plan responds directly to the issues raised in the FDH/DOE Critical Self Assessment specifically: (1) a strategy in place to give DOE the management (systems) and physical infrastructure for the future; (2) dealing with the barriers that exist to making change; and (3) a plan to right-size the infrastructuremore » and services, and reduce the cost of providing services. The Plan incorporates initiatives from several studies conducted in Fiscal Year 1997 to include: the Systems Functional Analysis, 200 Area Water Commercial Practices Plan, $ million Originated Cost Budget Achievement Plan, the 1OO Area Vacate Plan, the Railroad Shutdown Plan, as well as recommendations from the recently completed Review of Hanford Electrical Utility. These and other initiatives identified over the next five years will result in significant improvements in efficiency, allowing a greater portion of the infrastructure budget to be applied to Site cleanup. The Plan outlines a planning and management process that defines infrastructure services and structure by linking site technical base line data and customer requirements to work scope and resources. The Plan also provides a vision of where Site infrastructure is going and specific initiatives to get there.« less

  8. The Czech National Grid Infrastructure

    NASA Astrophysics Data System (ADS)

    Chudoba, J.; Křenková, I.; Mulač, M.; Ruda, M.; Sitera, J.

    2017-10-01

    The Czech National Grid Infrastructure is operated by MetaCentrum, a CESNET department responsible for coordinating and managing activities related to distributed computing. CESNET as the Czech National Research and Education Network (NREN) provides many e-infrastructure services, which are used by 94% of the scientific and research community in the Czech Republic. Computing and storage resources owned by different organizations are connected by fast enough network to provide transparent access to all resources. We describe in more detail the computing infrastructure, which is based on several different technologies and covers grid, cloud and map-reduce environment. While the largest part of CPUs is still accessible via distributed torque servers, providing environment for long batch jobs, part of infrastructure is available via standard EGI tools in EGI, subset of NGI resources is provided into EGI FedCloud environment with cloud interface and there is also Hadoop cluster provided by the same e-infrastructure.A broad spectrum of computing servers is offered; users can choose from standard 2 CPU servers to large SMP machines with up to 6 TB of RAM or servers with GPU cards. Different groups have different priorities on various resources, resource owners can even have an exclusive access. The software is distributed via AFS. Storage servers offering up to tens of terabytes of disk space to individual users are connected via NFS4 on top of GPFS and access to long term HSM storage with peta-byte capacity is also provided. Overview of available resources and recent statistics of usage will be given.

  9. SRB Processing Facilities Media Event

    NASA Image and Video Library

    2016-03-01

    Inside the Booster Fabrication Facility (BFF) at NASA’s Kennedy Space Center in Florida, members of the news media photograph a frustrum that will be stacked atop a forward skirt for one of NASA’s Space Launch System (SLS) solid rocket boosters. Orbital ATK is a contractor for NASA’s Marshall Space Flight Center in Alabama, and operates the BFF to prepare aft booster segments and hardware for the SLS solid rocket boosters. The SLS rocket and Orion spacecraft will launch on Exploration Mission-1 in 2018. The Ground Systems Development and Operations Program is preparing the infrastructure to process and launch spacecraft on deep-space missions and the journey to Mars.

  10. SRB Processing Facilities Media Event

    NASA Image and Video Library

    2016-03-01

    Inside the Booster Fabrication Facility (BFF) at NASA’s Kennedy Space Center in Florida, Jeff Cook, a thermal protection system specialist with Orbital ATK, displays a sample of the painted thermal protection system that is being applied to booster segments. Members of the news media toured the BFF. Orbital ATK is a contractor for NASA’s Marshall Space Flight Center in Alabama, and operates the BFF to prepare aft booster segments and hardware for the SLS rocket boosters. The SLS rocket and Orion spacecraft will launch on Exploration Mission-1 in 2018. The Ground Systems Development and Operations Program is preparing the infrastructure to process and launch spacecraft for deep-space missions and the journey to Mars.

  11. Permafrost Hazards and Linear Infrastructure

    NASA Astrophysics Data System (ADS)

    Stanilovskaya, Julia; Sergeev, Dmitry

    2014-05-01

    The international experience of linear infrastructure planning, construction and exploitation in permafrost zone is being directly tied to the permafrost hazard assessment. That procedure should also consider the factors of climate impact and infrastructure protection. The current global climate change hotspots are currently polar and mountain areas. Temperature rise, precipitation and land ice conditions change, early springs occur more often. The big linear infrastructure objects cross the territories with different permafrost conditions which are sensitive to the changes in air temperature, hydrology, and snow accumulation which are connected to climatic dynamics. One of the most extensive linear structures built on permafrost worldwide are Trans Alaskan Pipeline (USA), Alaska Highway (Canada), Qinghai-Xizang Railway (China) and Eastern Siberia - Pacific Ocean Oil Pipeline (Russia). Those are currently being influenced by the regional climate change and permafrost impact which may act differently from place to place. Thermokarst is deemed to be the most dangerous process for linear engineering structures. Its formation and development depend on the linear structure type: road or pipeline, elevated or buried one. Zonal climate and geocryological conditions are also of the determining importance here. All the projects are of the different age and some of them were implemented under different climatic conditions. The effects of permafrost thawing have been recorded every year since then. The exploration and transportation companies from different countries maintain the linear infrastructure from permafrost degradation in different ways. The highways in Alaska are in a good condition due to governmental expenses on annual reconstructions. The Chara-China Railroad in Russia is under non-standard condition due to intensive permafrost response. Standards for engineering and construction should be reviewed and updated to account for permafrost hazards caused by the

  12. Modeling and Managing Risk in Billing Infrastructures

    NASA Astrophysics Data System (ADS)

    Baiardi, Fabrizio; Telmon, Claudio; Sgandurra, Daniele

    This paper discusses risk modeling and risk management in information and communications technology (ICT) systems for which the attack impact distribution is heavy tailed (e.g., power law distribution) and the average risk is unbounded. Systems with these properties include billing infrastructures used to charge customers for services they access. Attacks against billing infrastructures can be classified as peripheral attacks and backbone attacks. The goal of a peripheral attack is to tamper with user bills; a backbone attack seeks to seize control of the billing infrastructure. The probability distribution of the overall impact of an attack on a billing infrastructure also has a heavy-tailed curve. This implies that the probability of a massive impact cannot be ignored and that the average impact may be unbounded - thus, even the most expensive countermeasures would be cost effective. Consequently, the only strategy for managing risk is to increase the resilience of the infrastructure by employing redundant components.

  13. Arid Green Infrastructure for Water Control and Conservation ...

    EPA Pesticide Factsheets

    Green infrastructure is an approach to managing wet weather flows using systems and practices that mimic natural processes. It is designed to manage stormwater as close to its source as possible and protect the quality of receiving waters. Although most green infrastructure practices were first developed in temperate climates, green infrastructure also can be a cost-effective approach to stormwater management and water conservation in arid and semi-arid regions, such as those found in the western and southwestern United States. Green infrastructure practices can be applied at the site, neighborhood and watershed scales. In addition to water management and conservation, implementing green infrastructure confers many social and economic benefits and can address issues of environmental justice. The U.S. Environmental Protection Agency (EPA) commissioned a literature review to identify the state-of-the science practices dealing with water control and conservation in arid and semi-arid regions, with emphasis on these regions in the United States. The search focused on stormwater control measures or practices that slow, capture, treat, infiltrate and/or store runoff at its source (i.e., green infrastructure). The material in Chapters 1 through 3 provides background to EPA’s current activities related to the application of green infrastructure practices in arid and semi-arid regions. An introduction to the topic of green infrastructure in arid and semi-arid regions i

  14. Positioning infrastructure and technologies for low-carbon urbanization

    NASA Astrophysics Data System (ADS)

    Chester, Mikhail V.; Sperling, Josh; Stokes, Eleanor; Allenby, Braden; Kockelman, Kara; Kennedy, Christopher; Baker, Lawrence A.; Keirstead, James; Hendrickson, Chris T.

    2014-10-01

    The expected urbanization of the planet in the coming century coupled with aging infrastructure in developed regions, increasing complexity of man-made systems, and pressing climate change impacts have created opportunities for reassessing the role of infrastructure and technologies in cities and how they contribute to greenhouse gas (GHG) emissions. Modern urbanization is predicated on complex, increasingly coupled infrastructure systems, and energy use continues to be largely met from fossil fuels. Until energy infrastructures evolve away from carbon-based fuels, GHG emissions are critically tied to the urbanization process. Further complicating the challenge of decoupling urban growth from GHG emissions are lock-in effects and interdependencies. This paper synthesizes state-of-the-art thinking for transportation, fuels, buildings, water, electricity, and waste systems and finds that GHG emissions assessments tend to view these systems as static and isolated from social and institutional systems. Despite significant understanding of methods and technologies for reducing infrastructure-related GHG emissions, physical, institutional, and cultural constraints continue to work against us, pointing to knowledge gaps that must be addressed. This paper identifies three challenge themes to improve our understanding of the role of infrastructure and technologies in urbanization processes and position these increasingly complex systems for low-carbon growth. The challenges emphasize how we can reimagine the role of infrastructure in the future and how people, institutions, and ecological systems interface with infrastructure.

  15. Application of large-scale computing infrastructure for diverse environmental research applications using GC3Pie

    NASA Astrophysics Data System (ADS)

    Maffioletti, Sergio; Dawes, Nicholas; Bavay, Mathias; Sarni, Sofiane; Lehning, Michael

    2013-04-01

    The Swiss Experiment platform (SwissEx: http://www.swiss-experiment.ch) provides a distributed storage and processing infrastructure for environmental research experiments. The aim of the second phase project (the Open Support Platform for Environmental Research, OSPER, 2012-2015) is to develop the existing infrastructure to provide scientists with an improved workflow. This improved workflow will include pre-defined, documented and connected processing routines. A large-scale computing and data facility is required to provide reliable and scalable access to data for analysis, and it is desirable that such an infrastructure should be free of traditional data handling methods. Such an infrastructure has been developed using the cloud-based part of the Swiss national infrastructure SMSCG (http://www.smscg.ch) and Academic Cloud. The infrastructure under construction supports two main usage models: 1) Ad-hoc data analysis scripts: These scripts are simple processing scripts, written by the environmental researchers themselves, which can be applied to large data sets via the high power infrastructure. Examples of this type of script are spatial statistical analysis scripts (R-based scripts), mostly computed on raw meteorological and/or soil moisture data. These provide processed output in the form of a grid, a plot, or a kml. 2) Complex models: A more intense data analysis pipeline centered (initially) around the physical process model, Alpine3D, and the MeteoIO plugin; depending on the data set, this may require a tightly coupled infrastructure. SMSCG already supports Alpine3D executions as both regular grid jobs and as virtual software appliances. A dedicated appliance with the Alpine3D specific libraries has been created and made available through the SMSCG infrastructure. The analysis pipelines are activated and supervised by simple control scripts that, depending on the data fetched from the meteorological stations, launch new instances of the Alpine3D appliance

  16. Critical infrastructure protection: why physicians, nurses, and other healthcare professionals need to be involved.

    PubMed

    Lavin, Roberta; Harrington, Michael B; Agbor-tabi, Elisabeth; Erger, Nurit

    2006-01-01

    What is present in nearly every U.S. community, performs myriad services from the routine to the life saving on a daily basis, responds to every disaster, and functions 24 hours a day every day of the year? The answer, of course, is the nation's $1.8 trillion public health and healthcare system. Protection of this system's vast infrastructure has assumed increasing urgency since September 11, and there are at least two reasons for this. The first is that this sector must respond to every conceivable event involving risks to human life, including those traditionally within the purview of public health, so its ability to respond to these events must be preserved. The second is that elements of the sector itself face increasing threats to facilities, information systems, and workforces. These reasons alone warrant greater emphasis on protective programs than may have seemed necessary in the past, and the public health and healthcare sector should recognize that it must now understand critical infrastructure protection as well as it does healthcare management.

  17. Policy model for space economy infrastructure

    NASA Astrophysics Data System (ADS)

    Komerath, Narayanan; Nally, James; Zilin Tang, Elizabeth

    2007-12-01

    Extraterrestrial infrastructure is key to the development of a space economy. Means for accelerating transition from today's isolated projects to a broad-based economy are considered. A large system integration approach is proposed. The beginnings of an economic simulation model are presented, along with examples of how interactions and coordination bring down costs. A global organization focused on space infrastructure and economic expansion is proposed to plan, coordinate, fund and implement infrastructure construction. This entity also opens a way to raise low-cost capital and solve the legal and public policy issues of access to extraterrestrial resources.

  18. Healthcare worker and family caregiver hand hygiene in Bangladeshi healthcare facilities: results from the Bangladesh National Hygiene Baseline Survey.

    PubMed

    Horng, L M; Unicomb, L; Alam, M-U; Halder, A K; Shoab, A K; Ghosh, P K; Opel, A; Islam, M K; Luby, S P

    2016-11-01

    Healthcare facility hand hygiene impacts patient care, healthcare worker safety, and infection control, but low-income countries have few data to guide interventions. To conduct a nationally representative survey of hand hygiene infrastructure and behaviour in Bangladeshi healthcare facilities to establish baseline data to aid policy. The 2013 Bangladesh National Hygiene Baseline Survey examined water, sanitation, and hand hygiene across households, schools, restaurants and food vendors, traditional birth attendants, and healthcare facilities. We used probability proportional to size sampling to select 100 rural and urban population clusters, and then surveyed hand hygiene infrastructure in 875 inpatient healthcare facilities, observing behaviour in 100 facilities. More than 96% of facilities had 'improved' water sources, but environmental contamination occurred frequently around water sources. Soap was available at 78-92% of handwashing locations for doctors and nurses, but just 4-30% for patients and family. Only 2% of 4676 hand hygiene opportunities resulted in recommended actions: using alcohol sanitizer or washing both hands with soap, then drying by air or clean cloth. Healthcare workers performed recommended hand hygiene in 9% of 919 opportunities: more after patient contact (26%) than before (11%). Family caregivers frequently washed hands with only water (48% of 2751 opportunities), but with little soap (3%). Healthcare workers had more access to hand hygiene materials and performed better hand hygiene than family, but still had low adherence. Increasing hand hygiene materials and behaviour could improve infection control in Bangladeshi healthcare facilities. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Healthcare worker and family caregiver hand hygiene in Bangladeshi healthcare facilities: results from the Bangladesh National Hygiene Baseline Survey

    PubMed Central

    Horng, L.M.; Unicomb, L.; Alam, M.-U.; Halder, A.K.; Shoab, A.K.; Ghosh, P.K.; Opel, A.; Islam, M.K.; Luby, S.P.

    2017-01-01

    SUMMARY Background Healthcare facility hand hygiene impacts patient care, healthcare worker safety, and infection control, but low-income countries have few data to guide interventions. Aim To conduct a nationally representative survey of hand hygiene infrastructure and behaviour in Bangladeshi healthcare facilities to establish baseline data to aid policy. Methods The 2013 Bangladesh National Hygiene Baseline Survey examined water, sanitation, and hand hygiene across households, schools, restaurants and food vendors, traditional birth attendants, and healthcare facilities. We used probability proportional to size sampling to select 100 rural and urban population clusters, and then surveyed hand hygiene infrastructure in 875 inpatient healthcare facilities, observing behaviour in 100 facilities. Findings More than 96% of facilities had ‘improved’ water sources, but environmental contamination occurred frequently around water sources. Soap was available at 78–92% of handwashing locations for doctors and nurses, but just 4–30% for patients and family. Only 2% of 4676 hand hygiene opportunities resulted in recommended actions: using alcohol sanitizer or washing both hands with soap, then drying by air or clean cloth. Healthcare workers performed recommended hand hygiene in 9% of 919 opportunities: more after patient contact (26%) than before (11%). Family caregivers frequently washed hands with only water (48% of 2751 opportunities), but with little soap (3%). Conclusion Healthcare workers had more access to hand hygiene materials and performed better hand hygiene than family, but still had low adherence. Increasing hand hygiene materials and behaviour could improve infection control in Bangladeshi health-care facilities. PMID:27665311

  20. Chemical Facility Security: Issues and Options for the 112th Congress

    DTIC Science & Technology

    2011-04-19

    between two approved disinfectants —chlorine and chloramine —as correlated with an unexpected increase in levels of lead in drinking water due to...treatment facilities possess large amounts of potentially hazardous chemicals, such as chlorine, for purposes such as disinfection .50 Advocates for their...Works, June 21, 2006, S.Hrg. 109-1044. 89 The DHS Science and Technology (S& T ) Directorate is engaged in a Chemical Infrastructure Risk Assessment

  1. Alternative Fuels Data Center: Natural Gas Fueling Infrastructure

    Science.gov Websites

    Development Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center : Natural Gas Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center : Natural Gas Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Natural

  2. MIMI: multimodality, multiresource, information integration environment for biomedical core facilities.

    PubMed

    Szymanski, Jacek; Wilson, David L; Zhang, Guo-Qiang

    2009-10-01

    The rapid expansion of biomedical research has brought substantial scientific and administrative data management challenges to modern core facilities. Scientifically, a core facility must be able to manage experimental workflow and the corresponding set of large and complex scientific data. It must also disseminate experimental data to relevant researchers in a secure and expedient manner that facilitates collaboration and provides support for data interpretation and analysis. Administratively, a core facility must be able to manage the scheduling of its equipment and to maintain a flexible and effective billing system to track material, resource, and personnel costs and charge for services to sustain its operation. It must also have the ability to regularly monitor the usage and performance of its equipment and to provide summary statistics on resources spent on different categories of research. To address these informatics challenges, we introduce a comprehensive system called MIMI (multimodality, multiresource, information integration environment) that integrates the administrative and scientific support of a core facility into a single web-based environment. We report the design, development, and deployment experience of a baseline MIMI system at an imaging core facility and discuss the general applicability of such a system in other types of core facilities. These initial results suggest that MIMI will be a unique, cost-effective approach to addressing the informatics infrastructure needs of core facilities and similar research laboratories.

  3. 49 CFR 536.5 - Trading infrastructure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 6 2012-10-01 2012-10-01 false Trading infrastructure. 536.5 Section 536.5... infrastructure. (a) Accounts. NHTSA maintains “accounts” for each credit holder. The account consists of a... the certified and reported CAFE data provided by the Environmental Protection Agency for enforcement...

  4. 49 CFR 536.5 - Trading infrastructure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 6 2014-10-01 2014-10-01 false Trading infrastructure. 536.5 Section 536.5... infrastructure. (a) Accounts. NHTSA maintains “accounts” for each credit holder. The account consists of a... the certified and reported CAFE data provided by the Environmental Protection Agency for enforcement...

  5. 49 CFR 536.5 - Trading infrastructure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 6 2013-10-01 2013-10-01 false Trading infrastructure. 536.5 Section 536.5... infrastructure. (a) Accounts. NHTSA maintains “accounts” for each credit holder. The account consists of a... the certified and reported CAFE data provided by the Environmental Protection Agency for enforcement...

  6. Factors Relating Infrastructure Provision by Developer in Formal Housing

    NASA Astrophysics Data System (ADS)

    Putri, H. T.; Maryati, S.; Humaira, A. N. S.

    2018-03-01

    In big cities, housing developer has significant role in infrastructure provision. Nevertheless in some cases developers have not fulfilled their role to complete the housing with infrastructures needed. The objective of this study is to explore the characteristics and the related factors of infrastructure provisioning in formal housing developed by developer using the quantitative and association method analysis. Infrastructures are focused on clean water, sewage, drainage, and solid waste system. This study used Parongpong District, West Bandung Regency as case study where the need of infrastructure is not fulfilled. Based on the analysis, can be concluded that there are some variation in infrastructure provisioning and the factor related the condition is the level of income of house owner target.

  7. Green infrastructure development at European Union's eastern border: Effects of road infrastructure and forest habitat loss.

    PubMed

    Angelstam, Per; Khaulyak, Olha; Yamelynets, Taras; Mozgeris, Gintautas; Naumov, Vladimir; Chmielewski, Tadeusz J; Elbakidze, Marine; Manton, Michael; Prots, Bohdan; Valasiuk, Sviataslau

    2017-05-15

    The functionality of forest patches and networks as green infrastructure may be affected negatively both by expanding road networks and forestry intensification. We assessed the effects of (1) the current and planned road infrastructure, and (2) forest loss and gain, on the remaining large forest landscape massifs as green infrastructure at the EU's eastern border region in post-socialistic transition. First, habitat patch and network functionality in 1996-98 was assessed using habitat suitability index modelling. Second, we made expert interviews about road development with planners in 10 administrative regions in Poland, Belarus and Ukraine. Third, forest loss and gain inside the forest massifs, and gain outside them during the period 2001-14 were measured. This EU cross-border region hosts four remaining forest massifs as regional green infrastructure hotspots. While Poland's road network is developing fast in terms of new freeways, city bypasses and upgrades of road quality, in Belarus and Ukraine the focus is on maintenance of existing roads, and no new corridors. We conclude that economic support from the EU, and thus rapid development of roads in Poland, is likely to reduce the permeability for wildlife of the urban and agricultural matrix around existing forest massifs. However, the four identified forest massifs themselves, forming the forest landscape green infrastructure at the EU's east border, were little affected by road development plans. In contrast, forest loss inside massifs was high, especially in Ukraine. Only in Poland forest loss was balanced by gain. Forest gain outside forest massifs was low. To conclude, pro-active and collaborative spatial planning across different sectors and countries is needed to secure functional forest green infrastructure as base for biodiversity conservation and human well-being. Copyright © 2017. Published by Elsevier Ltd.

  8. Alternative Fuels Data Center: Electric Vehicle Infrastructure Projection

    Science.gov Websites

    Tool (EVI-Pro) Lite Electric Vehicle Infrastructure Projection Tool (EVI-Pro) Lite to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Infrastructure Projection Tool (EVI -Pro) Lite on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Infrastructure

  9. Building a North American Spatial Data Infrastructure

    USGS Publications Warehouse

    Coleman, D.J.; Nebert, D.D.

    1998-01-01

    This paper addresses the state of spatial data infrastructures within North America in late 1997. After providing some background underlying the philosophy and development of the SDI concept, the authors discuss effects of technology, institutions, and standardization that confront the cohesive implementation of a common infrastructure today. The paper concludes with a comparative framework and specific examples of elements and initiatives defining respective spatial data infrastructure initiatives in the United States and Canada.

  10. A new vision of the post-NIST civil infrastructure program: the challenges of next-generation construction materials and processes

    NASA Astrophysics Data System (ADS)

    Wu, H. Felix; Wan, Yan

    2014-03-01

    Our nation's infrastructural systems are crumbling. The deteriorating process grows over time. The physical aging of these vital facilities and the remediation of their current critical state pose a key societal challenge to the United States. Current sensing technologies, while well developed in controlled laboratory environments, have not yet yielded tools for producing real-time, in-situ data that are adequately comprehensible for infrastructure decision-makers. The need for advanced sensing technologies is national because every municipality and state in the nation faces infrastructure management challenges. The need is critical because portions of infrastructure are reaching the end of their life-spans and there are few cost-effective means to monitor infrastructure integrity and to prioritize the renovation and replacement of infrastructure elements. New advanced sensing technologies that produce cost-effective inspection and real-time monitoring data, and that can also help or aid in meaningful interpretation of the acquired data, therefore will enhance the safety in regard to the public on structural integrity by issuing timely and accurate alert data for effective maintenance to avoid disasters happening. New advanced sensing technologies also allow more informed management of infrastructural investments by avoiding premature replacement of infrastructure and identifying those structures in need of immediate action to prevent from catastrophic failure. Infrastructure management requires that once a structural defect is detected, an economical and efficient repair be made. Advancing the technologies of repairing infrastructure elements in contact with water, road salt, and subjected to thermal changes requires innovative research to significantly extend the service life of repairs, lower the costs of repairs, and provide repair technologies that are suitable for a wide range of conditions. All these new technologies will provide increased lifetimes

  11. Vision for a 21st Century Information Infrastructure.

    ERIC Educational Resources Information Center

    Council on Competitiveness, Washington, DC.

    In order to ensure that the United States maintains an advanced information infrastructure, the Council on Competitiveness has started a project on the 21st century infrastructure. Participating in this project are the many different parties who are providing and using the infrastructure, including cable companies, regional Bell companies, long…

  12. A Study on Governance and Human Resources for Cooperative Road Facilities Management

    NASA Astrophysics Data System (ADS)

    Ohno, Sachiko; Takagi, Akiyoshi; Kurauchi, Fumitaka; Demura, Yoshifumi

    Within today's infrastructure management, Asset Management systems are becoming a mainstream feature. For region where the risk is low, it is necessary to create a "cooperative road facilities management system". This research both examined and suggested what kind of cooperative road facilities management system should be promoted by the regional society. Concretely, this study defines the operational realities of a previous case. It discusses the problem of the road facilities management as a governance. Furthermore, its realization depends on "the cooperation between municipalities", "the private-sector initiative", and "residents participation" .Also, it discusses the problem of human resources for governance. Its realization depends on "the engineers' promotion", and "creation of a voluntary activity of the resident" as a human resources. Moreover, it defines that the intermediary is important because the human resources tied to the governance. As a result, the prospect of the road facilities management is shown by the role of the player and the relation among player.

  13. STILTS -- Starlink Tables Infrastructure Library Tool Set

    NASA Astrophysics Data System (ADS)

    Taylor, Mark

    STILTS is a set of command-line tools for processing tabular data. It has been designed for, but is not restricted to, use on astronomical data such as source catalogues. It contains both generic (format-independent) table processing tools and tools for processing VOTable documents. Facilities offered include crossmatching, format conversion, format validation, column calculation and rearrangement, row selection, sorting, plotting, statistical calculations and metadata display. Calculations on cell data can be performed using a powerful and extensible expression language. The package is written in pure Java and based on STIL, the Starlink Tables Infrastructure Library. This gives it high portability, support for many data formats (including FITS, VOTable, text-based formats and SQL databases), extensibility and scalability. Where possible the tools are written to accept streamed data so the size of tables which can be processed is not limited by available memory. As well as the tutorial and reference information in this document, detailed on-line help is available from the tools themselves. STILTS is available under the GNU General Public Licence.

  14. Infrastructure for large space telescopes

    NASA Astrophysics Data System (ADS)

    MacEwen, Howard A.; Lillie, Charles F.

    2016-10-01

    It is generally recognized (e.g., in the National Aeronautics and Space Administration response to recent congressional appropriations) that future space observatories must be serviceable, even if they are orbiting in deep space (e.g., around the Sun-Earth libration point, SEL2). On the basis of this legislation, we believe that budgetary considerations throughout the foreseeable future will require that large, long-lived astrophysics missions must be designed as evolvable semipermanent observatories that will be serviced using an operational, in-space infrastructure. We believe that the development of this infrastructure will include the design and development of a small to mid-sized servicing vehicle (MiniServ) as a key element of an affordable infrastructure for in-space assembly and servicing of future space vehicles. This can be accomplished by the adaptation of technology developed over the past half-century into a vehicle approximately the size of the ascent stage of the Apollo Lunar Module to provide some of the servicing capabilities that will be needed by very large telescopes located in deep space in the near future (2020s and 2030s). We specifically address the need for a detailed study of these servicing requirements and the current proposals for using presently available technologies to provide the appropriate infrastructure.

  15. Fuzzy architecture assessment for critical infrastructure resilience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muller, George

    2012-12-01

    This paper presents an approach for the selection of alternative architectures in a connected infrastructure system to increase resilience of the overall infrastructure system. The paper begins with a description of resilience and critical infrastructure, then summarizes existing approaches to resilience, and presents a fuzzy-rule based method of selecting among alternative infrastructure architectures. This methodology includes considerations which are most important when deciding on an approach to resilience. The paper concludes with a proposed approach which builds on existing resilience architecting methods by integrating key system aspects using fuzzy memberships and fuzzy rule sets. This novel approach aids the systemsmore » architect in considering resilience for the evaluation of architectures for adoption into the final system architecture.« less

  16. Pavement Technology and Airport Infrastructure Expansion Impact

    NASA Astrophysics Data System (ADS)

    Sabib; Setiawan, M. I.; Kurniasih, N.; Ahmar, A. S.; Hasyim, C.

    2018-01-01

    This research aims for analyzing construction and infrastructure development activities potential contribution towards Airport Performance. This research is correlation study with variable research that includes Airport Performance as X variable and construction and infrastructure development activities as Y variable. The population in this research is 148 airports in Indonesia. The sampling technique uses total sampling, which means 148 airports that becomes the population unit then all of it become samples. The results of coefficient correlation (R) test showed that construction and infrastructure development activities variable have a relatively strong relationship with Airport Performance variable, but the value of Adjusted R Square shows that an increase in the construction and infrastructure development activities is influenced by factor other than Airport Performance.

  17. Climate Indicators for Energy and Infrastructure

    NASA Astrophysics Data System (ADS)

    Wilbanks, T. J.

    2014-12-01

    Two of the key categories of climate indicators are energy and infrastructure. For energy supply and use, many indicators are available for energy supply and consumption; and some indicators are available to assess implications of climate change, such as changes over time in heating and cooling days. Indicators of adaptation and adaptive capacity are more elusive. For infrastructure, which includes more than a dozen different sectors, general indicators are not available, beyond counts of major disasters and such valuable contributions as the ASCE "report cards." In this case, research is needed, for example to develop credible metrics for assessing the resilience of built infrastructures to climate change and other stresses.

  18. Collaborative Access Control For Critical Infrastructures

    NASA Astrophysics Data System (ADS)

    Baina, Amine; El Kalam, Anas Abou; Deswarte, Yves; Kaaniche, Mohamed

    A critical infrastructure (CI) can fail with various degrees of severity due to physical and logical vulnerabilities. Since many interdependencies exist between CIs, failures can have dramatic consequences on the entire infrastructure. This paper focuses on threats that affect information and communication systems that constitute the critical information infrastructure (CII). A new collaborative access control framework called PolyOrBAC is proposed to address security problems that are specific to CIIs. The framework offers each organization participating in a CII the ability to collaborate with other organizations while maintaining control of its resources and internal security policy. The approach is demonstrated on a practical scenario involving the electrical power grid.

  19. Radioactive Waste Management and Nuclear Facility Decommissioning Progress in Iraq - 13216

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Musawi, Fouad; Shamsaldin, Emad S.; Jasim, Hadi

    2013-07-01

    Management of Iraq's radioactive wastes and decommissioning of Iraq's former nuclear facilities are the responsibility of Iraq's Ministry of Science and Technology (MoST). The majority of Iraq's former nuclear facilities are in the Al-Tuwaitha Nuclear Research Center located a few kilometers from the edge of Baghdad. These facilities include bombed and partially destroyed research reactors, a fuel fabrication facility and radioisotope production facilities. Within these facilities are large numbers of silos, approximately 30 process or waste storage tanks and thousands of drums of uncharacterised radioactive waste. There are also former nuclear facilities/sites that are outside of Al-Tuwaitha and these includemore » the former uranium processing and waste storage facility at Jesira, the dump site near Adaya, the former centrifuge facility at Rashdiya and the former enrichment plant at Tarmiya. In 2005, Iraq lacked the infrastructure needed to decommission its nuclear facilities and manage its radioactive wastes. The lack of infrastructure included: (1) the lack of an organization responsible for decommissioning and radioactive waste management, (2) the lack of a storage facility for radioactive wastes, (3) the lack of professionals with experience in decommissioning and modern waste management practices, (4) the lack of laws and regulations governing decommissioning or radioactive waste management, (5) ongoing security concerns, and (6) limited availability of electricity and internet. Since its creation eight years ago, the MoST has worked with the international community and developed an organizational structure, trained staff, and made great progress in managing radioactive wastes and decommissioning Iraq's former nuclear facilities. This progress has been made, despite the very difficult implementing conditions in Iraq. Within MoST, the Radioactive Waste Treatment and Management Directorate (RWTMD) is responsible for waste management and the Iraqi

  20. The data access infrastructure of the Wadden Sea Long Term Ecosystem Research (WaLTER) project

    NASA Astrophysics Data System (ADS)

    De Bruin, T.

    2011-12-01

    The Wadden Sea, North of The Netherlands, Germany and Danmark, is one of the most important tidal areas in the world. In 2009, the Wadden Sea was listed on the UNESCO World Heritage list. The area is noted for its ecological diversity and value, being a stopover for large numbers of migrating birds. The Wadden Sea is also used intensively for economic activities by inhabitants of the surrounding coasts and islands, as well as by the many tourists visiting the area every year. A whole series of monitoring programmes is carried out by a range of governmental bodies and institutes to study the natural processes occuring in the Wadden Sea ecosystems as well as the influence of human activities on those ecosystems. Yet, the monitoring programmes are scattered and it is difficult to get an overview of those monitoring activities or to get access to the data resulting from those monitoring programmes. The Wadden Sea Long Term Ecosystem Research (WaLTER) project aims to: 1. To provide a base set of consistent, standardized, long-term data on changes in the Wadden Sea ecological and socio-economic system in order to model and understand interrelationships with human use, climate variation and possible other drivers. 2. To provide a research infrastructure, open access to commonly shared databases, educational facilities and one or more field sites in which experimental, innovative and process-driven research can be carried out. This presentation will introduce the WaLTER-project and explain the rationale for this project. The presentation will focus on the data access infrastructure which will be used for WaLTER. This infrastructure is part of the existing and operational infrastructure of the National Oceanographic Data Committee (NODC) in the Netherlands. The NODC forms the Dutch node in the European SeaDataNet consortium, which has built an European, distributed data access infrastructure. WaLTER, NODC and SeaDataNet all use the same technology, developed within the Sea

  1. Upgrading Technology Infrastructure in California's Schools

    ERIC Educational Resources Information Center

    Gao, Niu; Murphy, Patrick

    2016-01-01

    As California schools move into online testing and online learning, an adequate technology infrastructure is no longer an option, but a necessity. To fully benefit from digital learning, schools will require a comprehensive technology infrastructure that can support a range of administrative and instructional tools. An earlier PPIC report found…

  2. Vista-LA: Mapping methane-emitting infrastructure in the Los Angeles megacity

    NASA Astrophysics Data System (ADS)

    Carranza, Valerie; Rafiq, Talha; Frausto-Vicencio, Isis; Hopkins, Francesca M.; Verhulst, Kristal R.; Rao, Preeti; Duren, Riley M.; Miller, Charles E.

    2018-03-01

    Methane (CH4) is a potent greenhouse gas (GHG) and a critical target of climate mitigation efforts. However, actionable emission reduction efforts are complicated by large uncertainties in the methane budget on relevant scales. Here, we present Vista, a Geographic Information System (GIS)-based approach to map potential methane emissions sources in the South Coast Air Basin (SoCAB) that encompasses Los Angeles, an area with a dense, complex mixture of methane sources. The goal of this work is to provide a database that, together with atmospheric observations, improves methane emissions estimates in urban areas with complex infrastructure. We aggregated methane source location information into three sectors (energy, agriculture, and waste) following the frameworks used by the State of California GHG Inventory and the Intergovernmental Panel on Climate Change (IPCC) Guidelines for GHG Reporting. Geospatial modeling was applied to publicly available datasets to precisely geolocate facilities and infrastructure comprising major anthropogenic methane source sectors. The final database, Vista-Los Angeles (Vista-LA), is presented as maps of infrastructure known or expected to emit CH4. Vista-LA contains over 33 000 features concentrated on < 1 % of land area in the region. Currently, Vista-LA is used as a planning and analysis tool for atmospheric measurement surveys of methane sources, particularly for airborne remote sensing, and methane hotspot detection using regional observations. This study represents a first step towards developing an accurate, spatially resolved methane flux estimate for point sources in SoCAB, with the potential to address discrepancies between bottom-up and top-down methane emissions accounting in this region. The Vista-LA datasets and associated metadata are available from the Oak Ridge National Laboratory Distributed Active Archive Center for Biogeochemical Dynamics (ORNL DAAC;

  3. Strengthening Critical Infrastructure: Combined Heat and Power at Wastewater Treatment Facilities (Webinar) – November 15, 2011

    EPA Pesticide Factsheets

    This webinar provides information about CHP at wastewater treatment facilities (WWTFs), including advantages and challenges, financial incentives and funding programs, and technical and economic potential.

  4. Passive, wireless corrosion sensors for transportation infrastructure.

    DOT National Transportation Integrated Search

    2011-07-01

    Many industrial segments including utilities, manufacturing, government and infrastructure have an urgent need for a means to detect corrosion before significant damage occurs. Transportation infrastructure, such as bridges and roads, rely on reinfor...

  5. Measuring Systemic Impacts of Bike Infrastructure Projects

    DOT National Transportation Integrated Search

    2018-05-01

    This paper qualitatively identifies the impacts of bicycle infrastructure on all roadway users, including safety, operations, and travel route choice. Bicycle infrastructure includes shared lanes, conventional bike lanes, and separated bike lanes. Th...

  6. The Infrastructure of Open Educational Resources

    ERIC Educational Resources Information Center

    Smith, Marshall S.; Wang, Phoenix M.

    2007-01-01

    The success of OER is likely to depend on a flexible, extendable infrastructure that will meet the challenges of an evolving World Wide Web. In this article, the authors examine three key dimensions of this infrastructure--technical, legal/cultural/social/political, and research--and discuss possible directions for development. (Contains 1 table…

  7. Spatial modeling of infrastructure resilience to the natural disasters using baseline resilience indicators for communities (BRIC) - Case study: 5 districts/cities of Bandung Basin area

    NASA Astrophysics Data System (ADS)

    Nafishoh, Qoriatun; Riqqi, Akhmad; Meilano, Irwan

    2017-07-01

    The Bandung Basin area has highly susceptible to the natural disasters. Therefore, resilience measurement is useful to find out the capacity of an area in the facing of a natural disaster. Natural disaster resilience can be measured using BRIC (Baseline Resilience Indicators for Communities) model. This model comprises several indicators; includes social, economic, community, institution, infrastructure, and the environment. This research tries to measure resilience to the natural disasters with still focusing on infrastructure resilience measurement by spatial modeling and analyzed the dominant driving factor that contributes to this resilience trend. We generated a spatial modeling by applying a spatial analysis to the infrastructure objects. The infrastructure objects consist of the road, school, and health facilities. Those objects will be given some radius levels that indicate the resilience level by using buffer processing. An area closest to those objects will have high resilience and contrarily. Our result showed that almost all city areas (Bandung and Cimahi City) have high resilience because they have many infrastructure objects. But contrarily with the district areas which are still contained many patterns of low and moderate resilience level. The dominant driving factor of infrastructure resilience in this research area is a road. The areas which are closest to the road have high resilience and farther away from the road will have low resilience.

  8. A New Facility for Testing Superconducting Solenoid Magnets with Large Fringe Fields at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orris, D.; Carcagno, R.; Nogiec, J.

    2013-09-01

    Testing superconducting solenoid with no iron flux return can be problematic for a magnet test facility due to the large magnetic fringe fields generated. These large external fields can interfere with the operation of equipment while precautions must be taken for personnel supporting the test. The magnetic forces between the solenoid under test and the external infrastructure must also be taken under consideration. A new test facility has been designed and built at Fermilab specifically for testing superconducting magnets with large external fringe fields. This paper discusses the test stand design, capabilities, and details of the instrumentation and controls withmore » data from the first solenoid tested in this facility: the Muon Ionization Cooling Experiment (MICE) coupling coil.« less

  9. Lidar sprectroscopy instrument (LISSI): An infrastructure facility for chemical aerosol profiling at the University of Hertfordshire

    NASA Astrophysics Data System (ADS)

    Tesche, Matthias; Tatarov, Boyan; Noh, Youngmin; Müller, Detlef

    2018-04-01

    The lidar development at the University of Hertfordshire explores the feasibility of using Raman backscattering for chemical aerosol profiling. This paper provides an overview of the new facility. A high-power Nd:YAG/OPO setup is used to excite Raman backscattering at a wide range of wavelengths. The receiver combines a spectrometer with a 32-channel detector or an ICCD camera to resolve Raman signals of various chemical compounds. The new facility will open new avenues for chemical profiling of aerosol pollution from measurements of Raman scattering by selected chemical compounds, provide data that allow to close the gap between optical and microphysical aerosol profiling with lidar and enables connecting lidar measurements to parameters used in atmospheric modelling.

  10. The multi-modal Australian ScienceS Imaging and Visualization Environment (MASSIVE) high performance computing infrastructure: applications in neuroscience and neuroinformatics research

    PubMed Central

    Goscinski, Wojtek J.; McIntosh, Paul; Felzmann, Ulrich; Maksimenko, Anton; Hall, Christopher J.; Gureyev, Timur; Thompson, Darren; Janke, Andrew; Galloway, Graham; Killeen, Neil E. B.; Raniga, Parnesh; Kaluza, Owen; Ng, Amanda; Poudel, Govinda; Barnes, David G.; Nguyen, Toan; Bonnington, Paul; Egan, Gary F.

    2014-01-01

    The Multi-modal Australian ScienceS Imaging and Visualization Environment (MASSIVE) is a national imaging and visualization facility established by Monash University, the Australian Synchrotron, the Commonwealth Scientific Industrial Research Organization (CSIRO), and the Victorian Partnership for Advanced Computing (VPAC), with funding from the National Computational Infrastructure and the Victorian Government. The MASSIVE facility provides hardware, software, and expertise to drive research in the biomedical sciences, particularly advanced brain imaging research using synchrotron x-ray and infrared imaging, functional and structural magnetic resonance imaging (MRI), x-ray computer tomography (CT), electron microscopy and optical microscopy. The development of MASSIVE has been based on best practice in system integration methodologies, frameworks, and architectures. The facility has: (i) integrated multiple different neuroimaging analysis software components, (ii) enabled cross-platform and cross-modality integration of neuroinformatics tools, and (iii) brought together neuroimaging databases and analysis workflows. MASSIVE is now operational as a nationally distributed and integrated facility for neuroinfomatics and brain imaging research. PMID:24734019

  11. 75 FR 60771 - Critical Infrastructure Partnership Advisory Council (CIPAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-01

    ... DEPARTMENT OF HOMELAND SECURITY [Docket No. DHS-2010-0080] Critical Infrastructure Partnership..., Section Chief Partnership Programs, Partnership and Outreach Division, Office of Infrastructure Protection... Outreach Division, Office of Infrastructure Protection, National Protection and Programs Directorate...

  12. Indoor Lighting Facilities

    NASA Astrophysics Data System (ADS)

    Matsushima, Koji; Saito, Yoshinori; Ichikawa, Shigenori; Kawauchi, Takao; Tanaka, Tsuneo; Hirano, Rika; Tazuke, Fuyuki

    According to the statistics by the Ministry of Land, Infrastructure and Transport, the total floor space of all building construction started was 188.87 million m2 (1.5% increase y/y), marking the fourth straight year of increase. Many large-scale buildings under construction in central Tokyo become fully occupied by tenants before completion. As for office buildings, it is required to develop comfortable and functional office spaces as working styles are becoming more and more diversified, and lighting is also an element of such functionalities. The total floor space of construction started for exhibition pavilions, multipurpose halls, conference halls and religious architectures decreased 11.1% against the previous year. This marked a decline for 10 consecutive years and the downward trend continues. In exhibition pavilions, the light radiation is measured and adjusted throughout the year so as not to damage the artworks by lighting. Hospitals, while providing higher quality medical services and enhancing the dwelling environment of patients, are expected to meet various restrictions and requirements, including the respect for privacy. Meanwhile, lighting designs for school classrooms tend to be homogeneous, yet new ideas are being promoted to strike a balance between the economical and functional aspects. The severe economic environment continues to be hampering the growth of theaters and halls in both the private and public sectors. Contrary to the downsizing trend of such facilities, additional installations of lighting equipment were conspicuous, and the adoption of high efficacy lighting appliances and intelligent function control circuits are becoming popular. In the category of stores/commercial facilities, the construction of complex facilities is a continuing trend. Indirect lighting, high luminance discharge lamps with excellent color rendition and LEDs are being effectively used in these facilities, together with the introduction of lighting designs

  13. Infrastructure dynamics: A selected bibliography

    NASA Technical Reports Server (NTRS)

    Dajani, J. S.; Bencosme, A. J.

    1978-01-01

    The term infrastructure is used to denote the set of life support and public service systems which is necessary for the development of growth of human settlements. Included are some basic references in the field of dynamic simulation, as well as a number of relevant applications in the area of infrastructure planning. The intent is to enable the student or researcher to quickly identify such applications to the extent necessary for initiating further work in the field.

  14. A cross sectional comparison of postnatal care quality in facilities participating in a maternal health voucher program versus non-voucher facilities in Kenya.

    PubMed

    Warren, Charlotte E; Abuya, Timothy; Kanya, Lucy; Obare, Francis; Njuki, Rebecca; Temmerman, Marleen; Bellows, Ben

    2015-07-24

    Health service fees constitute substantial barriers for women seeking childbirth and postnatal care. In an effort to reduce health inequities, the government of Kenya in 2006 introduced the output-based approach (OBA), or voucher programme, to increase poor women's access to quality Safe Motherhood services including postnatal care. To help improve service quality, OBA programmes purchase services on behalf of the poor and marginalised, with provider reimbursements for verified services. Kenya's programme accredited health facilities in three districts as well as in two informal Nairobi settlements. Postnatal care quality in voucher health facilities (n = 21) accredited in 2006 and in similar non-voucher health facilities (n = 20) are compared with cross sectional data collected in 2010. Summary scores for quality were calculated as additive sums of specific aspects of each attribute (structure, process, outcome). Measures of effect were assessed in a linear regression model accounting for clustering at facility level. Data were analysed using Stata 11.0. The overall quality of postnatal care is poor in voucher and non-voucher facilities, but many facilities demonstrated 'readiness' for postnatal care (structural attributes: infrastructure, equipment, supplies, staffing, training) indicated by high scores (83/111), with public voucher facilities scoring higher than public non-voucher facilities. The two groups of facilities evinced no significant differences in postnatal care mean process scores: 14.2/55 in voucher facilities versus 16.4/55 in non-voucher facilities; coefficient: -1.70 (-4.9, 1.5), p = 0.294. Significantly more newborns were seen within 48 hours (83.5% versus 72.1%: p = 0.001) and received Bacillus Calmette-Guerin (BCG) (82.5% versus 76.5%: p < 0.001) at voucher facilities than at non-voucher facilities. Four years after facility accreditation in Kenya, scores for postnatal care quality are low in all facilities, even those with Safe Motherhood

  15. 77 FR 32656 - Critical Infrastructure Partnership Advisory Council (CIPAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-01

    ... DEPARTMENT OF HOMELAND SECURITY [Docket No. DHS-2012-0008] Critical Infrastructure Partnership... Critical Infrastructure Partnership Advisory Council (CIPAC) by notice published in the Federal Register... Federal Officer, Critical Infrastructure Partnership Advisory Council, Sector Outreach and Programs...

  16. 77 FR 32655 - Critical Infrastructure Partnership Advisory Council (CIPAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-01

    ... DEPARTMENT OF HOMELAND SECURITY [Docket No. DHS-2012-0009] Critical Infrastructure Partnership... the Critical Infrastructure Partnership Advisory Council (CIPAC) by notice published in the Federal... CONTACT: Larry May, Designated Federal Officer, Critical Infrastructure Partnership Advisory Council...

  17. Infrastructure for the Geospatial Web

    NASA Astrophysics Data System (ADS)

    Lake, Ron; Farley, Jim

    Geospatial data and geoprocessing techniques are now directly linked to business processes in many areas. Commerce, transportation and logistics, planning, defense, emergency response, health care, asset management and many other domains leverage geospatial information and the ability to model these data to achieve increased efficiencies and to develop better, more comprehensive decisions. However, the ability to deliver geospatial data and the capacity to process geospatial information effectively in these domains are dependent on infrastructure technology that facilitates basic operations such as locating data, publishing data, keeping data current and notifying subscribers and others whose applications and decisions are dependent on this information when changes are made. This chapter introduces the notion of infrastructure technology for the Geospatial Web. Specifically, the Geography Markup Language (GML) and registry technology developed using the ebRIM specification delivered from the OASIS consortium are presented as atomic infrastructure components in a working Geospatial Web.

  18. A Design for an Orbital Assembly Facility for Complex Missions

    NASA Astrophysics Data System (ADS)

    Feast, S.; Bond, A.

    A design is presented for an Operations Base Station (OBS) in low earth orbit that will function as an integral part of a space transportation system, enabling assembly and maintenance of a Cis-Lunar transportation infrastructure and integration of vehicles for other high energy space missions to be carried out. Construction of the OBS assumes the use of the SKYLON Single-Stage-to-Orbit (SSTO) spaceplane, which imposes design and assembly constraints due to its payload mass limits and payload bay dimensions. It is assumed that the space transport infrastructure and high mission energy vehicles would also make use of SKYLON to deploy standard transport equipment and stages bound by these same constraints. The OBS is therefore a highly modular arrangement, incorporating some of these other vehicle system elements in its layout design. Architecturally, the facilities of the OBS are centred around the Assembly Dock which is in the form of a large cylindrical spaceframe structure with two large doors on either end incorporating a skin of aluminised Mylar to enclose the dock. Longitudinal rails provide internal tether attachments to anchor vehicles and components while manipulators are used for the handling and assembling of vehicle structures. The exterior of the OBS houses the habitation modules for workforce and vehicle crews along with propellant farms and other operational facilities.

  19. Structural and Functional Concepts in Current Mouse Phenotyping and Archiving Facilities

    PubMed Central

    Kollmus, Heike; Post, Rainer; Brielmeier, Markus; Fernández, Julia; Fuchs, Helmut; McKerlie, Colin; Montoliu, Lluis; Otaegui, Pedro J; Rebelo, Manuel; Riedesel, Hermann; Ruberte, Jesús; Sedlacek, Radislav; de Angelis, Martin Hrabě; Schughart, Klaus

    2012-01-01

    Collecting and analyzing available information on the building plans, concepts, and workflow from existing animal facilities is an essential prerequisite for most centers that are planning and designing the construction of a new animal experimental research unit. Here, we have collected and analyzed such information in the context of the European project Infrafrontier, which aims to develop a common European infrastructure for high-throughput systemic phenotyping, archiving, and dissemination of mouse models. A team of experts visited 9 research facilities and 3 commercial breeders in Europe, Canada, the United States, and Singapore. During the visits, detailed data of each facility were collected and subsequently represented in standardized floor plans and descriptive tables. These data showed that because the local needs of scientists and their projects, property issues, and national and regional laws require very specific solutions, a common strategy for the construction of such facilities does not exist. However, several basic concepts were apparent that can be described by standardized floor plans showing the principle functional units and their interconnection. Here, we provide detailed information of how individual facilities addressed their specific needs by using different concepts of connecting the principle units. Our analysis likely will be valuable to research centers that are planning to design new mouse phenotyping and archiving facilities. PMID:23043807

  20. Vehicle-to-infrastructure (V2I) program.

    DOT National Transportation Integrated Search

    2017-01-01

    Vehicle-to-infrastructure (V2I) communication, which involves the exchange of safety and operational data between vehicles and elements of the transportation infrastructure, offers a wide range of safety, mobility and environmental benefits. When car...

  1. 49 CFR 1511.5 - Imposition of Aviation Security Infrastructure Fees.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 9 2012-10-01 2012-10-01 false Imposition of Aviation Security Infrastructure... AVIATION SECURITY INFRASTRUCTURE FEE § 1511.5 Imposition of Aviation Security Infrastructure Fees. (a) Effective February 18, 2002, an Aviation Security Infrastructure Fee will be imposed on air carriers and...

  2. 49 CFR 1511.5 - Imposition of Aviation Security Infrastructure Fees.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 9 2011-10-01 2011-10-01 false Imposition of Aviation Security Infrastructure... AVIATION SECURITY INFRASTRUCTURE FEE § 1511.5 Imposition of Aviation Security Infrastructure Fees. (a) Effective February 18, 2002, an Aviation Security Infrastructure Fee will be imposed on air carriers and...

  3. 49 CFR 1511.5 - Imposition of Aviation Security Infrastructure Fees.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 9 2013-10-01 2013-10-01 false Imposition of Aviation Security Infrastructure... AVIATION SECURITY INFRASTRUCTURE FEE § 1511.5 Imposition of Aviation Security Infrastructure Fees. (a) Effective February 18, 2002, an Aviation Security Infrastructure Fee will be imposed on air carriers and...

  4. 49 CFR 1511.5 - Imposition of Aviation Security Infrastructure Fees.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 9 2014-10-01 2014-10-01 false Imposition of Aviation Security Infrastructure... AVIATION SECURITY INFRASTRUCTURE FEE § 1511.5 Imposition of Aviation Security Infrastructure Fees. (a) Effective February 18, 2002, an Aviation Security Infrastructure Fee will be imposed on air carriers and...

  5. Cyber-Physical Correlations for Infrastructure Resilience: A Game-Theoretic Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Nageswara S; He, Fei; Ma, Chris Y. T.

    In several critical infrastructures, the cyber and physical parts are correlated so that disruptions to one affect the other and hence the whole system. These correlations may be exploited to strategically launch components attacks, and hence must be accounted for ensuring the infrastructure resilience, specified by its survival probability. We characterize the cyber-physical interactions at two levels: (i) the failure correlation function specifies the conditional survival probability of cyber sub-infrastructure given the physical sub-infrastructure as a function of their marginal probabilities, and (ii) the individual survival probabilities of both sub-infrastructures are characterized by first-order differential conditions. We formulate a resiliencemore » problem for infrastructures composed of discrete components as a game between the provider and attacker, wherein their utility functions consist of an infrastructure survival probability term and a cost term expressed in terms of the number of components attacked and reinforced. We derive Nash Equilibrium conditions and sensitivity functions that highlight the dependence of infrastructure resilience on the cost term, correlation function and sub-infrastructure survival probabilities. These results generalize earlier ones based on linear failure correlation functions and independent component failures. We apply the results to models of cloud computing infrastructures and energy grids.« less

  6. Current and future flood risk to railway infrastructure in Europe

    NASA Astrophysics Data System (ADS)

    Bubeck, Philip; Kellermann, Patric; Alfieri, Lorenzo; Feyen, Luc; Dillenardt, Lisa; Thieken, Annegret H.

    2017-04-01

    Railway infrastructure plays an important role in the transportation of freight and passengers across the European Union. According to Eurostat, more than four billion passenger-kilometres were travelled on national and international railway lines of the EU28 in 2014. To further strengthen transport infrastructure in Europe, the European Commission will invest another € 24.05 billion in the transnational transport network until 2020 as part of its new transport infrastructure policy (TEN-T), including railway infrastructure. Floods pose a significant risk to infrastructure elements. Damage data of recent flood events in Europe show that infrastructure losses can make up a considerable share of overall losses. For example, damage to state and municipal infrastructure in the federal state of Saxony (Germany) accounted for nearly 60% of overall losses during the large-scale event in June 2013. Especially in mountainous areas with little usable space available, roads and railway lines often follow floodplains or are located along steep and unsteady slopes. In Austria, for instance, the flood of 2013 caused € 75 million of direct damage to railway infrastructure. Despite the importance of railway infrastructure and its exposure to flooding, assessments of potential damage and risk (i.e. probability * damage) are still in its infancy compared with other sectors, such as the residential or industrial sector. Infrastructure-specific assessments at the regional scale are largely lacking. Regional assessment of potential damage to railway infrastructure has been hampered by a lack of infrastructure-specific damage models and data availability. The few available regional approaches have used damage models that assess damage to various infrastructure elements (e.g. roads, railway, airports and harbours) using one aggregated damage function and cost estimate. Moreover, infrastructure elements are often considerably underrepresented in regional land cover data, such as

  7. SRB Processing Facilities Media Event

    NASA Image and Video Library

    2016-03-01

    Inside the Booster Fabrication Facility (BFF) at NASA’s Kennedy Space Center in Florida, members of the news media view a forward skirt that will be used on a solid rocket booster for NASA’s Space Launch System (SLS) rocket. Orbital ATK is a contractor for NASA’s Marshall Space Flight Center in Alabama, and operates the BFF to prepare aft booster segments and hardware for the SLS solid rocket boosters. Rick Serfozo, Orbital ATK Florida site director, talks to the media. The SLS rocket and Orion spacecraft will launch on Exploration Mission-1 in 2018. The Ground Systems Development and Operations Program is preparing the infrastructure to process and launch spacecraft for deep-space missions and the journey to Mars.

  8. Infrastructure Joint Venture Projects in Malaysia: A Preliminary Study

    NASA Astrophysics Data System (ADS)

    Romeli, Norsyakilah; Muhamad Halil, Faridah; Ismail, Faridah; Sufian Hasim, Muhammad

    2018-03-01

    As many developed country practise, the function of the infrastructure is to connect the each region of Malaysia holistically and infrastructure is an investment network projects such as transportation water and sewerage, power, communication and irrigations system. Hence, a billions allocations of government income reserved for the sake of the infrastructure development. Towards a successful infrastructure development, a joint venture approach has been promotes by 2016 in one of the government thrust in Construction Industry Transformation Plan which encourage the internationalisation among contractors. However, there is depletion in information on the actual practise of the infrastructure joint venture projects in Malaysia. Therefore, this study attempt to explore the real application of the joint venture in Malaysian infrastructure projects. Using the questionnaire survey, a set of survey question distributed to the targeted respondents. The survey contained three section which the sections are respondent details, organizations background and project capital in infrastructure joint venture project. The results recorded and analyse using SPSS software. The contractors stated that they have implemented the joint venture practice with mostly the client with the usual construction period of the infrastructure project are more than 5 years. Other than that, the study indicates that there are problems in the joint venture project in the perspective of the project capital and the railway infrastructure should be given a highlights in future study due to its high significant in term of cost and technical issues.

  9. 76 FR 20995 - Critical Infrastructure Partnership Advisory Council (CIPAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-14

    ... DEPARTMENT OF HOMELAND SECURITY [Docket No. DHS-2011-0028] Critical Infrastructure Partnership... Critical Infrastructure Partnership Advisory Council (CIPAC) by notice published in the Federal Register... Infrastructure Protection, National Protection and Programs Directorate, U.S. Department of Homeland Security...

  10. Quantifying the conservation gains from shared access to linear infrastructure.

    PubMed

    Runge, Claire A; Tulloch, Ayesha I T; Gordon, Ascelin; Rhodes, Jonathan R

    2017-12-01

    The proliferation of linear infrastructure such as roads and railways is a major global driver of cumulative biodiversity loss. One strategy for reducing habitat loss associated with development is to encourage linear infrastructure providers and users to share infrastructure networks. We quantified the reductions in biodiversity impact and capital costs under linear infrastructure sharing of a range of potential mine to port transportation links for 47 mine locations operated by 28 separate companies in the Upper Spencer Gulf Region of South Australia. We mapped transport links based on least-cost pathways for different levels of linear-infrastructure sharing and used expert-elicited impacts of linear infrastructure to estimate the consequences for biodiversity. Capital costs were calculated based on estimates of construction costs, compensation payments, and transaction costs. We evaluated proposed mine-port links by comparing biodiversity impacts and capital costs across 3 scenarios: an independent scenario, where no infrastructure is shared; a restricted-access scenario, where the largest mining companies share infrastructure but exclude smaller mining companies from sharing; and a shared scenario where all mining companies share linear infrastructure. Fully shared development of linear infrastructure reduced overall biodiversity impacts by 76% and reduced capital costs by 64% compared with the independent scenario. However, there was considerable variation among companies. Our restricted-access scenario showed only modest biodiversity benefits relative to the independent scenario, indicating that reductions are likely to be limited if the dominant mining companies restrict access to infrastructure, which often occurs without policies that promote sharing of infrastructure. Our research helps illuminate the circumstances under which infrastructure sharing can minimize the biodiversity impacts of development. © 2017 The Authors. Conservation Biology published

  11. The Long-Baseline Neutrino Facility: Building the Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fermilab

    The Long-Baseline Neutrino Facility (LBNF) will be the world’s flagship science project to unlock the mysteries of neutrinos, the particles that could be the key to explaining why matter exists in our universe. It will house the infrastructure and particle detectors for the Deep Underground Neutrino Experiment (DUNE) and will use the world’s most intense neutrino beam. LBNF will be hosted at the U.S. Department of Energy’s Fermi National Accelerator Laboratory in Illinois and the Sanford Underground Research Facility in South Dakota. About 1,000 scientists from more than 160 laboratories and universities in 30 countries are contributing to this internationalmore » mega-science project. In addition to direct economic benefits to the states of Illinois and South Dakota, LBNF will foster STEM education nationwide and keep the United States at the leading edge of global science and innovation.« less

  12. 78 FR 57644 - Critical Infrastructure Partnership Advisory Council (CIPAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-19

    ... DEPARTMENT OF HOMELAND SECURITY [Docket No. DHS-2103-0050] Critical Infrastructure Partnership... management; Notice of an open Federal Advisory Committee Meeting. SUMMARY: The Critical Infrastructure... involving critical infrastructure security and resiliency. Off-topic questions or comments will not be...

  13. Consideration of an Applied Model of Public Health Program Infrastructure

    PubMed Central

    Lavinghouze, Rene; Snyder, Kimberly; Rieker, Patricia; Ottoson, Judith

    2015-01-01

    Systemic infrastructure is key to public health achievements. Individual public health program infrastructure feeds into this larger system. Although program infrastructure is rarely defined, it needs to be operationalized for effective implementation and evaluation. The Ecological Model of Infrastructure (EMI) is one approach to defining program infrastructure. The EMI consists of 5 core (Leadership, Partnerships, State Plans, Engaged Data, and Managed Resources) and 2 supporting (Strategic Understanding and Tactical Action) elements that are enveloped in a program’s context. We conducted a literature search across public health programs to determine support for the EMI. Four of the core elements were consistently addressed, and the other EMI elements were intermittently addressed. The EMI provides an initial and partial model for understanding program infrastructure, but additional work is needed to identify evidence-based indicators of infrastructure elements that can be used to measure success and link infrastructure to public health outcomes, capacity, and sustainability. PMID:23411417

  14. Strategies for the implementation of a European Volcano Observations Research Infrastructure

    NASA Astrophysics Data System (ADS)

    Puglisi, Giuseppe

    2015-04-01

    Active volcanic areas in Europe constitute a direct threat to millions of people on both the continent and adjacent islands. Furthermore, eruptions of "European" volcanoes in overseas territories, such as in the West Indies, an in the Indian and Pacific oceans, can have a much broader impacts, outside Europe. Volcano Observatories (VO), which undertake volcano monitoring under governmental mandate and Volcanological Research Institutions (VRI; such as university departments, laboratories, etc.) manage networks on European volcanoes consisting of thousands of stations or sites where volcanological parameters are either continuously or periodically measured. These sites are equipped with instruments for geophysical (seismic, geodetic, gravimetric, electromagnetic), geochemical (volcanic plumes, fumaroles, groundwater, rivers, soils), environmental observations (e.g. meteorological and air quality parameters), including prototype deployment. VOs and VRIs also operate laboratories for sample analysis (rocks, gases, isotopes, etc.), near-real time analysis of space-borne data (SAR, thermal imagery, SO2 and ash), as well as high-performance computing centres; all providing high-quality information on the current status of European volcanoes and the geodynamic background of the surrounding areas. This large and high-quality deployment of monitoring systems, focused on a specific geophysical target (volcanoes), together with the wide volcanological phenomena of European volcanoes (which cover all the known volcano types) represent a unique opportunity to fundamentally improve the knowledge base of volcano behaviour. The existing arrangement of national infrastructures (i.e. VO and VRI) appears to be too fragmented to be considered as a unique distributed infrastructure. Therefore, the main effort planned in the framework of the EPOS-PP proposal is focused on the creation of services aimed at providing an improved and more efficient access to the volcanological facilities

  15. The new postirradiation examination facility of the Atomic Energy Corporation of South Africa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walt, P.L. van der; Aspeling, J.C.; Jonker, W.D.

    1992-01-01

    The Pelindaba Hot Cell Complex (HCC) forms an important part of the infrastructure and support services of the Atomic Energy Corporation (AEC) of South Africa. It is a comprehensive, one-stop facility designed to make South Africa self-sufficient in the fields of spent-fuel qualification and verification, reactor pressure vessel surveillance program testing, ad hoc failure analyses for the nuclear power industry, and research and development studies in conjunction with the Safari I material test reactor (MTR) and irradiation rigs. Local technology and expertise was used for the design and construction of the HCC, which start up in 1980. The facility wasmore » commissioned in 1990.« less

  16. Enhancing future resilience in urban drainage system: Green versus grey infrastructure.

    PubMed

    Dong, Xin; Guo, Hao; Zeng, Siyu

    2017-11-01

    In recent years, the concept transition from fail-safe to safe-to-fail makes the application of resilience analysis popular in urban drainage systems (UDSs) with various implications and quantifications. However, most existing definitions of UDSs resilience are confined to the severity of flooding, while uncertainties from climate change and urbanization are not considered. In this research, we take into account the functional variety, topological complexity, and disturbance randomness of UDSs and define a new formula of resilience based on three parts of system severity, i.e. social severity affected by urban flooding, environmental severity caused by sewer overflow, and technological severity considering the safe operation of downstream facilities. A case study in Kunming, China is designed to compare the effect of green and grey infrastructure strategies on the enhancement of system resilience together with their costs. Different system configurations with green roofs, permeable pavement and storage tanks are compared by scenario analysis with full consideration of future uncertainties induced by urbanization and climate change. The research contributes to the development of sustainability assessment of urban drainage system with consideration of the resilience of green and grey infrastructure under future change. Finding the response measures with high adaptation across a variety of future scenarios is crucial to establish sustainable urban drainage system in a long term. Copyright © 2017. Published by Elsevier Ltd.

  17. Helix Nebula: Enabling federation of existing data infrastructures and data services to an overarching cross-domain e-infrastructure

    NASA Astrophysics Data System (ADS)

    Lengert, Wolfgang; Farres, Jordi; Lanari, Riccardo; Casu, Francesco; Manunta, Michele; Lassalle-Balier, Gerard

    2014-05-01

    Helix Nebula has established a growing public private partnership of more than 30 commercial cloud providers, SMEs, and publicly funded research organisations and e-infrastructures. The Helix Nebula strategy is to establish a federated cloud service across Europe. Three high-profile flagships, sponsored by CERN (high energy physics), EMBL (life sciences) and ESA/DLR/CNES/CNR (earth science), have been deployed and extensively tested within this federated environment. The commitments behind these initial flagships have created a critical mass that attracts suppliers and users to the initiative, to work together towards an "Information as a Service" market place. Significant progress in implementing the following 4 programmatic goals (as outlined in the strategic Plan Ref.1) has been achieved: × Goal #1 Establish a Cloud Computing Infrastructure for the European Research Area (ERA) serving as a platform for innovation and evolution of the overall infrastructure. × Goal #2 Identify and adopt suitable policies for trust, security and privacy on a European-level can be provided by the European Cloud Computing framework and infrastructure. × Goal #3 Create a light-weight governance structure for the future European Cloud Computing Infrastructure that involves all the stakeholders and can evolve over time as the infrastructure, services and user-base grows. × Goal #4 Define a funding scheme involving the three stake-holder groups (service suppliers, users, EC and national funding agencies) into a Public-Private-Partnership model to implement a Cloud Computing Infrastructure that delivers a sustainable business environment adhering to European level policies. Now in 2014 a first version of this generic cross-domain e-infrastructure is ready to go into operations building on federation of European industry and contributors (data, tools, knowledge, ...). This presentation describes how Helix Nebula is being used in the domain of earth science focusing on geohazards. The

  18. Mapping the Characteristics of Critical Care Facilities: Assessment, Distribution, and Level of Critical Care Facilities from Central India.

    PubMed

    Saigal, Saurabh; Sharma, Jai Prakash; Pakhare, Abhijit; Bhaskar, Santosh; Dhanuka, Sanjay; Kumar, Sanjay; Sabde, Yogesh; Bhattacharya, Pradip; Joshi, Rajnish

    2017-10-01

    In low- and middle-income countries such as India, where health systems are weak, the number of available Critical Care Unit (Intensive Care Unit [ICU]) beds is expected to be low. There is no study from the Indian subcontinent that has reported the characteristics and distribution of existing ICUs. We performed this study to understand the characteristics and distribution of ICUs in Madhya Pradesh (MP) state of Central India. We also aimed to develop a consensus scoring system and internally validate it to define levels of care and to improve health system planning and to strengthen referral networks in the state. We obtained a list of potential ICU facilities from various sources and then performed a cross-sectional survey by visiting each facility and determining characteristics for each facility. We collected variables with respect to infrastructure, human resources, equipment, support services, procedures performed, training courses conducted, and in-place policies or standard operating procedure documents. We identified a total of 123 ICUs in MP. Of 123 ICUs, 35 were level 1 facilities, 74 were level 2 facilities, and only 14 were level 3 facilities. Overall, there were 0.17 facilities per 100,000 population (95* confidence interval [CI] 0.14-0.20 per 100,000 populations). There were a total of 1816 ICU beds in the state, with an average of 2.5 beds per 100,000 population (95* CI 2.4-2.6 per 100,000 population). Of the total number of ICU beds, 250 are in level 1, 1141 are in level 2, and 425 are in level 3 facilities. This amounts to 0.34, 1.57, and 0.59 ICU beds per 100,000 population for levels 1, 2, and 3, respectively. This study could just be an eye opener for our healthcare authorities at both state and national levels to estimate the proportion of ICU beds per lac population. Similar mapping of intensive care services from other States will generate national data that is hitherto unknown.

  19. 78 FR 16861 - The Critical Infrastructure Partnership Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-19

    ... DEPARTMENT OF HOMELAND SECURITY [Docket No. DHS-2012-0077] The Critical Infrastructure Partnership... Infrastructure Partnership Advisory Council membership update. SUMMARY: The Department of Homeland Security (DHS) announced the establishment of the Critical Infrastructure Partnership Advisory Council (CIPAC) in a Federal...

  20. Enhancing infrastructure resilience through business continuity planning.

    PubMed

    Fisher, Ronald; Norman, Michael; Klett, Mary

    2017-01-01

    Critical infrastructure is crucial to the functionality and wellbeing of the world around us. It is a complex network that works together to create an efficient society. The core components of critical infrastructure are dependent on one another to function at their full potential. Organisations face unprecedented environmental risks such as increased reliance on information technology and telecommunications, increased infrastructure interdependencies and globalisation. Successful organisations should integrate the components of cyber-physical and infrastructure interdependencies into a holistic risk framework. Physical security plans, cyber security plans and business continuity plans can help mitigate environmental risks. Cyber security plans are becoming the most crucial to have, yet are the least commonly found in organisations. As the reliance on cyber continues to grow, it is imperative that organisations update their business continuity and emergency preparedness activities to include this.

  1. Vulnerability Assessments and Resilience Planning at Federal Facilities. Preliminary Synthesis of Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moss, R. H.; Blohm, A. J.; Delgado, A.

    2015-08-15

    U.S. government agencies are now directed to assess the vulnerability of their operations and facilities to climate change and to develop adaptation plans to increase their resilience. Specific guidance on methods is still evolving based on the many different available frameworks. Agencies have been experimenting with these frameworks and approaches. This technical paper synthesizes lessons and insights from a series of research case studies conducted by the investigators at facilities of the U.S. Department of Energy and the Department of Defense. The purpose of the paper is to solicit comments and feedback from interested program managers and analysts before finalmore » conclusions are published. The paper describes the characteristics of a systematic process for prioritizing needs for adaptation planning at individual facilities and examines requirements and methods needed. It then suggests a framework of steps for vulnerability assessments at Federal facilities and elaborates on three sets of methods required for assessments, regardless of the detailed framework used. In a concluding section, the paper suggests a roadmap to further develop methods to support agencies in preparing for climate change. The case studies point to several preliminary conclusions; (1) Vulnerability assessments are needed to translate potential changes in climate exposure to estimates of impacts and evaluation of their significance for operations and mission attainment, in other words into information that is related to and useful in ongoing planning, management, and decision-making processes; (2) To increase the relevance and utility of vulnerability assessments to site personnel, the assessment process needs to emphasize the characteristics of the site infrastructure, not just climate change; (3) A multi-tiered framework that includes screening, vulnerability assessments at the most vulnerable installations, and adaptation design will efficiently target high-risk sites and

  2. Development of a Master Health Facility List in Nigeria

    PubMed Central

    Azeez, Aderemi; Bamidele, Samson; Oyemakinde, Akin; Oyediran, Kolawole Azeez; Adebayo, Wura; Fapohunda, Bolaji; Abioye, Abimbola; Mullen, Stephanie

    2014-01-01

    Abstract Introduction Routine Health Information Systems (RHIS) are increasingly transitioning to electronic platforms in several developing countries. Establishment of a Master Facility List (MFL) to standardize the allocation of unique identifiers for health facilities can overcome identification issues and support health facility management. The Nigerian Federal Ministry of Health (FMOH) recently developed a MFL, and we present the process and outcome. Methods The MFL was developed from the ground up, and includes a state code, a local government area (LGA) code, health facility ownership (public or private), the level of care, and an exclusive LGA level health facility serial number, as part of the unique identifier system in Nigeria. To develop the MFL, the LGAs sent the list of all health facilities in their jurisdiction to the state, which in turn collated for all LGAs under them before sending to the FMOH. At the FMOH, a group of RHIS experts verified the list and identifiers for each state. Results The national MFL consists of 34,423 health facilities uniquely identified. The list has been published and is available for worldwide access; it is currently used for planning and management of health services in Nigeria. Discussion Unique identifiers are a basic component of any information system. However, poor planning and execution of implementing this key standard can diminish the success of the RHIS. Conclusion Development and adherence to standards is the hallmark for a national health information infrastructure. Explicit processes and multi-level stakeholder engagement is necessary to ensuring the success of the effort. PMID:25422720

  3. Development of a master health facility list in Nigeria.

    PubMed

    Makinde, Olusesan Ayodeji; Azeez, Aderemi; Bamidele, Samson; Oyemakinde, Akin; Oyediran, Kolawole Azeez; Adebayo, Wura; Fapohunda, Bolaji; Abioye, Abimbola; Mullen, Stephanie

    2014-01-01

    Abstract. Routine Health Information Systems (RHIS) are increasingly transitioning to electronic platforms in several developing countries. Establishment of a Master Facility List (MFL) to standardize the allocation of unique identifiers for health facilities can overcome identification issues and support health facility management. The Nigerian Federal Ministry of Health (FMOH) recently developed a MFL, and we present the process and outcome. The MFL was developed from the ground up, and includes a state code, a local government area (LGA) code, health facility ownership (public or private), the level of care, and an exclusive LGA level health facility serial number, as part of the unique identifier system in Nigeria. To develop the MFL, the LGAs sent the list of all health facilities in their jurisdiction to the state, which in turn collated for all LGAs under them before sending to the FMOH. At the FMOH, a group of RHIS experts verified the list and identifiers for each state. The national MFL consists of 34,423 health facilities uniquely identified. The list has been published and is available for worldwide access; it is currently used for planning and management of health services in Nigeria. Unique identifiers are a basic component of any information system. However, poor planning and execution of implementing this key standard can diminish the success of the RHIS. Development and adherence to standards is the hallmark for a national health information infrastructure. Explicit processes and multi-level stakeholder engagement is necessary to ensuring the success of the effort.

  4. 47 CFR 10.330 - Provider infrastructure requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Provider infrastructure requirements. 10.330 Section 10.330 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL WIRELESS EMERGENCY ALERTS System Architecture § 10.330 Provider infrastructure requirements. This section specifies the general...

  5. 47 CFR 10.330 - Provider infrastructure requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Provider infrastructure requirements. 10.330 Section 10.330 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL WIRELESS EMERGENCY ALERTS System Architecture § 10.330 Provider infrastructure requirements. This section specifies the general...

  6. Energy-Water Microgrid Opportunity Analysis at the University of Arizona's Biosphere 2 Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daw, Jennifer A; Kandt, Alicen J; Macknick, Jordan E

    Microgrids provide reliable and cost-effective energy services in a variety of conditions and locations. There has been minimal effort invested in developing energy-water microgrids that demonstrate the feasibility and leverage synergies of operating renewable energy and water systems in a coordinated framework. Water systems can be operated in ways to provide ancillary services to the electrical grid and renewable energy can be utilized to power water-related infrastructure, but the potential for co-managed systems has not yet been quantified or fully characterized. Energy-water microgrids could be a promising solution to improve energy and water resource management for islands, rural communities, distributedmore » generation, Defense operations, and many parts of the world lacking critical infrastructure. NREL and the University of Arizona have been jointly researching energy-water microgrid opportunities at the University's Biosphere 2 (B2) research facility. B2 is an ideal case study for an energy-water microgrid test site, given its size, its unique mission and operations, the criticality of water and energy infrastructure, and its ability to operate connected to or disconnected from the local electrical grid. Moreover, the B2 is a premier facility for undertaking agricultural research, providing an excellent opportunity to evaluate connections and tradeoffs at the food-energy-water nexus. In this study, NREL used the B2 facility as a case study for an energy-water microgrid test site, with the potential to catalyze future energy-water system integration research. The study identified opportunities for energy and water efficiency and estimated the sizes of renewable energy and storage systems required to meet remaining loads in a microgrid, identified dispatchable loads in the water system, and laid the foundation for an in-depth energy-water microgrid analysis. The foundational work performed at B2 serves a model that can be built upon for identifying

  7. A GIS Inventory of Critical Coastal Infrastructure Land Use in Caribbean Island Small Island Developing States: Classification and Criteria Methodology

    NASA Astrophysics Data System (ADS)

    D'aversa, N.; Becker, A.; Bove, G.

    2017-12-01

    Caribbean Small Island Developing States (SIDS) face significant natural hazard risks, as demonstrated by recent Hurricanes Jose, Irma, and Maria. Scientists project storms to become more intense and sea level rise to increase over the next century. As a result, the Inter-American Development Bank projections suggest that Caribbean nations could face climate-related losses in excess of $22 billion annually by 2050. Critical infrastructure that supports island economies, such as airports, seaports, cruise ports, and energy facilities, are typically located in the coastal zone with high exposure to natural hazards. Despite the increasing danger from climate driven natural hazards in coastal zones in the region, there is very little data available to identify how much land and associated infrastructure is at risk. This work focuses on the criteria and data standards developed for this new region-wide GIS database, which will then be used to formulate a risk assessment. Results will be integrated into a single, comprehensive source for data of lands identified as critical coastal infrastructure and used to address such questions as: How much of the Caribbean SIDS infrastructure lands are at risk from sea level rise? How might demand for such lands change in the future, based on historical trends? Answers to these questions will help decision makers understand how to prioritize resilience investment decisions in the coming decades.

  8. Assessing the risk posed by natural hazards to infrastructures

    NASA Astrophysics Data System (ADS)

    Eidsvig, Unni; Kristensen, Krister; Vidar Vangelsten, Bjørn

    2015-04-01

    The modern society is increasingly dependent on infrastructures to maintain its function, and disruption in one of the infrastructure systems may have severe consequences. The Norwegian municipalities have, according to legislation, a duty to carry out a risk and vulnerability analysis and plan and prepare for emergencies in a short- and long term perspective. Vulnerability analysis of the infrastructures and their interdependencies is an important part of this analysis. This paper proposes a model for assessing the risk posed by natural hazards to infrastructures. The model prescribes a three level analysis with increasing level of detail, moving from qualitative to quantitative analysis. This paper focuses on the second level, which consists of a semi-quantitative analysis. The purpose of this analysis is to perform a screening of the scenarios of natural hazards threatening the infrastructures identified in the level 1 analysis and investigate the need for further analyses, i.e. level 3 quantitative analyses. The proposed level 2 analysis considers the frequency of the natural hazard, different aspects of vulnerability including the physical vulnerability of the infrastructure itself and the societal dependency on the infrastructure. An indicator-based approach is applied, ranking the indicators on a relative scale. The proposed indicators characterize the robustness of the infrastructure, the importance of the infrastructure as well as interdependencies between society and infrastructure affecting the potential for cascading effects. Each indicator is ranked on a 1-5 scale based on pre-defined ranking criteria. The aggregated risk estimate is a combination of the semi-quantitative vulnerability indicators, as well as quantitative estimates of the frequency of the natural hazard and the number of users of the infrastructure. Case studies for two Norwegian municipalities are presented, where risk to primary road, water supply and power network threatened by storm

  9. 47 CFR 10.330 - Provider infrastructure requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Provider infrastructure requirements. 10.330 Section 10.330 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMERCIAL MOBILE ALERT SYSTEM System Architecture § 10.330 Provider infrastructure requirements. This section specifies the general...

  10. 47 CFR 10.330 - Provider infrastructure requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Provider infrastructure requirements. 10.330 Section 10.330 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMERCIAL MOBILE ALERT SYSTEM System Architecture § 10.330 Provider infrastructure requirements. This section specifies the general...

  11. 47 CFR 10.330 - Provider infrastructure requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Provider infrastructure requirements. 10.330 Section 10.330 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMERCIAL MOBILE ALERT SYSTEM System Architecture § 10.330 Provider infrastructure requirements. This section specifies the general...

  12. Technology requirements for an orbiting fuel depot: A necessary element of a space infrastructure

    NASA Technical Reports Server (NTRS)

    Stubbs, R. M.; Corban, R. R.; Willoughby, A. J.

    1988-01-01

    Advanced planning within NASA has identified several bold space exploration initiatives. The successful implementation of these missions will require a supporting space infrastructure which would include a fuel depot, an orbiting facility to store, transfer and process large quantities of cryogenic fluids. In order to adequately plan the technology development programs required to enable the construction and operation of a fuel depot, a multidisciplinary workshop was convened to assess critical technologies and their state of maturity. Since technology requirements depend strongly on the depot design assumptions, several depot concepts are presented with their effect on criticality ratings. Over 70 depot-related technology areas are addressed.

  13. Technology requirements for an orbiting fuel depot - A necessary element of a space infrastructure

    NASA Technical Reports Server (NTRS)

    Stubbs, R. M.; Corban, R. R.; Willoughby, A. J.

    1988-01-01

    Advanced planning within NASA has identified several bold space exploration initiatives. The successful implementation of these missions will require a supporting space infrastructure which would include a fuel depot, an orbiting facility to store, transfer and process large quantities of cryogenic fluids. In order to adequately plan the technology development programs required to enable the construction and operation of a fuel depot, a multidisciplinary workshop was convened to assess critical technologies and their state of maturity. Since technology requirements depend strongly on the depot design assumptions, several depot concepts are presented with their effect of criticality ratings. Over 70 depot-related technology areas are addressed.

  14. Access to water and sanitation facilities in primary schools: A neglected educational crisis in Ngamiland district in Botswana

    NASA Astrophysics Data System (ADS)

    Ngwenya, B. N.; Thakadu, O. T.; Phaladze, N. A.; Bolaane, B.

    2018-06-01

    In developing countries, the sanitation and hygiene provision often receives limited resources compared to the water supply. However, water supply benefits tend to diminish if improved sanitation and hygiene are neglected. This paper presents findings of a situational analysis of water supply, sanitation and hygiene infrastructure and their utilization in three primary schools in north-western Botswana. The overall objective of the paper is to determine access and functionality of water supply, sanitation and hygiene infrastructure in three primary schools. The specific objectives are: a) Learners' perspective of their water and sanitation facilities and b) gendered utilization of sanitation and hygiene facilities. Data were collected through a face-to-face administered social survey tool to 286 learners selected through proportionate stratified random sampling from three purposively selected villages in the middle and lower Okavango Delta. Findings indicate that standpipes provide 96% of potable water supply. However, the majority (65% of leaners) indicated that they 'sometimes' experienced water shortage due to dry/nonfunctioning taps/pumps and leaks/wastage. Overall, schools have relatively sufficient sanitation facilities consisting of both water borne toilets and VIP latrines. The major sanitation gap identified was that 80% flush toilets hardly work, while 77% of VIP toilets were in disrepair. Furthermore, poor water supply compromised hand washing with 65.7% learners "always" washing their hands if school standpipes had water, while the majority did not wash hands if standpipes were dry. The study concluded that availability of sanitation infrastructure does not necessarily translate into utilization in the study area due to multiple problems, such as lack of personal hygiene supplies (regular toilet paper and hand washing detergents), privacy issues and recurring water problems. The chronicity of inadequate water, sanitation and hygiene infrastructure in

  15. Co-location and Self-Similar Topologies of Urban Infrastructure Networks

    NASA Astrophysics Data System (ADS)

    Klinkhamer, Christopher; Zhan, Xianyuan; Ukkusuri, Satish; Elisabeth, Krueger; Paik, Kyungrock; Rao, Suresh

    2016-04-01

    The co-location of urban infrastructure is too obvious to be easily ignored. For reasons of practicality, reliability, and eminent domain, the spatial locations of many urban infrastructure networks, including drainage, sanitary sewers, and road networks, are well correlated. However, important questions dealing with correlations in the network topologies of differing infrastructure types remain unanswered. Here, we have extracted randomly distributed, nested subnets from the urban drainage, sanitary sewer, and road networks in two distinctly different cities: Amman, Jordan; and Indianapolis, USA. Network analyses were performed for each randomly chosen subnet (location and size), using a dual-mapping approach (Hierarchical Intersection Continuity Negotiation). Topological metrics for each infrastructure type were calculated and compared for all subnets in a given city. Despite large differences in the climate, governance, and populace of the two cities, and functional properties of the different infrastructure types, these infrastructure networks are shown to be highly spatially homogenous. Furthermore, strong correlations are found between topological metrics of differing types of surface and subsurface infrastructure networks. Also, the network topologies of each infrastructure type for both cities are shown to exhibit self-similar characteristics (i.e., power law node-degree distributions, [p(k) = ak-γ]. These findings can be used to assist city planners and engineers either expanding or retrofitting existing infrastructure, or in the case of developing countries, building new cities from the ground up. In addition, the self-similar nature of these infrastructure networks holds significant implications for the vulnerability of these critical infrastructure networks to external hazards and ways in which network resilience can be improved.

  16. IT Infrastructure Components for Biobanking.

    PubMed

    Prokosch, H U; Beck, A; Ganslandt, T; Hummel, M; Kiehntopf, M; Sax, U; Uckert, F; Semler, S

    2010-01-01

    Within translational research projects in the recent years large biobanks have been established, mostly supported by homegrown, proprietary software solutions. No general requirements for biobanking IT infrastructures have been published yet. This paper presents an exemplary biobanking IT architecture, a requirements specification for a biorepository management tool and exemplary illustrations of three major types of requirements. We have pursued a comprehensive literature review for biobanking IT solutions and established an interdisciplinary expert panel for creating the requirements specification. The exemplary illustrations were derived from a requirements analysis within two university hospitals. The requirements specification comprises a catalog with more than 130 detailed requirements grouped into 3 major categories and 20 subcategories. Special attention is given to multitenancy capabilities in order to support the project-specific definition of varying research and bio-banking contexts, the definition of workflows to track sample processing, sample transportation and sample storage and the automated integration of preanalytic handling and storage robots. IT support for biobanking projects can be based on a federated architectural framework comprising primary data sources for clinical annotations, a pseudonymization service, a clinical data warehouse with a flexible and user-friendly query interface and a biorepository management system. Flexibility and scalability of all such components are vital since large medical facilities such as university hospitals will have to support biobanking for varying monocentric and multicentric research scenarios and multiple medical clients.

  17. Implementation of green infrastructure concept in Citarum Watershed

    NASA Astrophysics Data System (ADS)

    Maryati, Sri; Humaira, An Nisaa'Siti

    2017-03-01

    Green infrastructure has several benefits compared to grey infrastructure in term of environmental services and sustainability, such as reducing energy consumption, improving air quality, providing carbon sequestration, and increasing property values. Nevertheless in practice, the implementation of the concept in Indonesia is still limited. Implementation of the certain concept has to be guided in planning document. In this paper, green infrastructure concept in the current spatial plan and other planning documents is assessed. The purpose of this research is to figure out how far the green infrastructure concept is integrated into planning system, based on the analysis of planning documents in Citarum Watershed and expert interviews with local stakeholders. Content analysis method is used to analyze the documents and result of interview. The result shows that green infrastructure concept has not been accommodated in spatial plan or other planning documents widely. There are some challenges in implementing the concept including reward and punishment system (incentive and disincentive), coordination, and lack of human resources.

  18. The ATLAS Simulation Infrastructure

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2010-09-25

    The simulation software for the ATLAS Experiment at the Large Hadron Collider is being used for large-scale production of events on the LHC Computing Grid. This simulation requires many components, from the generators that simulate particle collisions, through packages simulating the response of the various detectors and triggers. All of these components come together under the ATLAS simulation infrastructure. In this paper, that infrastructure is discussed, including that supporting the detector description, interfacing the event generation, and combining the GEANT4 simulation of the response of the individual detectors. Also described are the tools allowing the software validation, performance testing, andmore » the validation of the simulated output against known physics processes.« less

  19. Neighborhood Sociodemographics and Change in Built Infrastructure.

    PubMed

    Hirsch, Jana A; Green, Geoffrey F; Peterson, Marc; Rodriguez, Daniel A; Gordon-Larsen, Penny

    2017-01-01

    While increasing evidence suggests an association between physical infrastructure in neighbourhoods and health outcomes, relatively little research examines how neighbourhoods change physically over time and how these physical improvements are spatially distributed across populations. This paper describes the change over 25 years (1985-2010) in bicycle lanes, off-road trails, bus transit service, and parks, and spatial clusters of changes in these domains relative to neighbourhood sociodemographics in four U.S. cities that are diverse in terms of geography, size and population. Across all four cities, we identified increases in bicycle lanes, off-road trails, and bus transit service, with spatial clustering in these changes that related to neighbourhood sociodemographics. Overall, we found evidence of positive changes in physical infrastructure commonly identified as supportive of physical activity. However, the patterning of infrastructure change by sociodemographic change encourages attention to the equity in infrastructure improvements across neighbourhoods.

  20. Neighborhood Sociodemographics and Change in Built Infrastructure

    PubMed Central

    Hirsch, Jana A.; Green, Geoffrey F.; Peterson, Marc; Rodriguez, Daniel A.; Gordon-Larsen, Penny

    2016-01-01

    While increasing evidence suggests an association between physical infrastructure in neighbourhoods and health outcomes, relatively little research examines how neighbourhoods change physically over time and how these physical improvements are spatially distributed across populations. This paper describes the change over 25 years (1985–2010) in bicycle lanes, off-road trails, bus transit service, and parks, and spatial clusters of changes in these domains relative to neighbourhood sociodemographics in four U.S. cities that are diverse in terms of geography, size and population. Across all four cities, we identified increases in bicycle lanes, off-road trails, and bus transit service, with spatial clustering in these changes that related to neighbourhood sociodemographics. Overall, we found evidence of positive changes in physical infrastructure commonly identified as supportive of physical activity. However, the patterning of infrastructure change by sociodemographic change encourages attention to the equity in infrastructure improvements across neighbourhoods. PMID:28316645

  1. A technological infrastructure to sustain Internetworked Enterprises

    NASA Astrophysics Data System (ADS)

    La Mattina, Ernesto; Savarino, Vincenzo; Vicari, Claudia; Storelli, Davide; Bianchini, Devis

    In the Web 3.0 scenario, where information and services are connected by means of their semantics, organizations can improve their competitive advantage by publishing their business and service descriptions. In this scenario, Semantic Peer to Peer (P2P) can play a key role in defining dynamic and highly reconfigurable infrastructures. Organizations can share knowledge and services, using this infrastructure to move towards value networks, an emerging organizational model characterized by fluid boundaries and complex relationships. This chapter collects and defines the technological requirements and architecture of a modular and multi-Layer Peer to Peer infrastructure for SOA-based applications. This technological infrastructure, based on the combination of Semantic Web and P2P technologies, is intended to sustain Internetworked Enterprise configurations, defining a distributed registry and enabling more expressive queries and efficient routing mechanisms. The following sections focus on the overall architecture, while describing the layers that form it.

  2. Expecting the Unexpected: Towards Robust Credential Infrastructure

    NASA Astrophysics Data System (ADS)

    Xu, Shouhuai; Yung, Moti

    Cryptographic credential infrastructures, such as Public key infrastructure (PKI), allow the building of trust relationships in electronic society and electronic commerce. At the center of credential infrastructures is the methodology of digital signatures. However, methods that assure that credentials and signed messages possess trustworthiness and longevity are not well understood, nor are they adequately addressed in both literature and practice. We believe that, as a basic engineering principle, these properties have to be built into the credential infrastructure rather than be treated as an after-thought since they are crucial to the long term success of this notion. In this paper we present a step in the direction of dealing with these issues. Specifically, we present the basic engineering reasoning as well as a model that helps understand (somewhat formally) the trustworthiness and longevity of digital signatures, and then we give basic mechanisms that help improve these notions.

  3. The development of a cislunar space infrastructure

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The primary objective of the University of Colorado Advanced Mission Design Program is to define the characteristics and evolution of a near-Earth space infrastructure. The envisioned foundation includes a permanently manned, self-sustaining base on the lunar surface, an L1 space station, and a transportation system that anchors these elements to a low Earth orbit (LEO) station. The motivation of this project was based on the idea that a near-Earth space infrastructure is not an end but an important step in a larger plan to expand man's capabilities in space science and technology. The presence of a cislunar space infrastructure would greatly facilitate the staging of future planetary missions, as well as facilitating the full exploration of the potential for science and industry on the lunar surface. This paper will provide a sound rationale and a detailed scenario in support of the cislunar infrastructure design.

  4. Major Incident Hospital: Development of a Permanent Facility for Management of Incident Casualties.

    PubMed

    Marres, Geertruid; Bemelman, Michael; van der Eijk, John; Leenen, Luke

    2009-06-01

    Preparation is essential to cope with the challenge of providing optimal care when there is a sudden, unexpected surge of casualties due to a disaster or major incident. By definition, the requirements of such cases exceed the standard care facilities of hospitals in qualitative or quantitative respects and interfere with the care of regular patients. To meet the growing demands to be prepared for disasters, a permanent facility to provide structured, prepared relief in such situations was developed. A permanent but reserved Major Incident Hospital (MIH) has been developed through cooperation between a large academic medical institution, a trauma center, a military hospital, and the National Poison Information Centre (NVIC). The infrastructure, organization, support systems, training and systematic working methods of the MIH are designed to create order in a chaotic, unexpected situation and to optimize care and logistics in any possible scenario. Focus points are: patient flow and triage, registration, communication, evaluation and training. Research and the literature are used to identify characteristic pitfalls due to the chaos associated with and the unexpected nature of disasters, and to adapt our organization. At the MIH, the exceptional has become the core business, and preparation for disaster and large-scale emergency care is a daily occupation. An Emergency Response Protocol enables admittance to the normally dormant hospital of up to 100 (in exceptional cases even 300) patients after a start-up time of only 15 min. The Patient Barcode Registration System (PBR) with EAN codes guarantees quick and adequate registration of patient data in order to facilitate good medical coordination and follow-up during a major incident. The fact that the hospital is strictly reserved for this type of care guarantees availability and minimizes impact on normal care. When it is not being used during a major incident, there is time to address training and research

  5. 77 FR 59203 - Critical Infrastructure Partnership Advisory Council (CIPAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-26

    ... Infrastructure Partnership Advisory Council. [FR Doc. 2012-23666 Filed 9-25-12; 8:45 am] BILLING CODE 9910-9P-P ... DEPARTMENT OF HOMELAND SECURITY [Docket No. DHS-2012-0051] Critical Infrastructure Partnership... meeting. SUMMARY: The Critical Infrastructure Partnership Advisory Council (CIPAC) Plenary Meeting will be...

  6. Requirement Generation for Space Infrastructure Systems

    NASA Astrophysics Data System (ADS)

    Hempsell, M.

    Despite heavy investment, in the half-century period between 1970 and 2020 there will almost no progress in the capability provided by the space infrastructure. It is argued that this is due to a failure during the requirement generation phase of the infrastructure's elements, a failure that is primarily due to following the accepted good practice of involving stakeholders while establishing a mission based set of technical requirements. This argument is supported by both a consideration of the history of the requirement generation phase of past space infrastructure projects, in particular the Space Shuttle, and an analysis of the interactions of the stakeholders during this phase. Traditional stakeholder involvement only works well in mature infrastructures where investment aims to make minor improvements, whereas space activity is still in the early experimental stages and is open to major new initiatives that aim to radically change the way we work in space. A new approach to requirement generation is proposed, which is more appropriate to these current circumstances. This uses a methodology centred on the basic functions the system is intended to perform rather than its expected missions.

  7. Defense Infrastructure: Challenges Increase Risks for Providing Timely Infrastructure Support for Army Installations Expecting Substantial Personnel Growth

    DTIC Science & Technology

    2007-09-01

    Office Why GAO Did This Study Highlights Accountability Integrity Reliability September 2007 DEFENSE INFRASTRUCTURE Challenges Increase Risks for...authority to conduct evaluations on his own initiative. It addresses (1) the challenges and associated risks the Army faces in providing for timely...but it faces several complex implementation challenges that risk late provision of needed infrastructure to adequately support incoming personnel

  8. Critical success factors in infrastructure projects

    NASA Astrophysics Data System (ADS)

    Zakaria, Siti Fairus; Zin, Rosli Mohamad; Mohamad, Ismail; Balubaid, Saeed; Mydin, Shaik Hussein; Mohd Rahim, E. M. Roodienyanto

    2017-11-01

    Construction of infrastructure project is different from buildings. The main difference is term of project site where infrastructure project need to command a long stretch while building mostly confine to a limited area. As such factors that are critical to infrastructure project may not be that significant to building project and vice versa. Flood mitigation can be classified under infrastructure projects under which their developments are planned by the government with the specific objective to reduce or avoid the negative effects of flood to the environment and livelihood. One of the indicators in project success is delay. The impact of project delay in construction industry is significant that it decelerates the projects implementation, specifically the government projects. This study attempted to identify and compare the success factors between infrastructure and building projects, as such comparison rarely found in the current literature. A model of flood mitigation projects' success factors was developed by merging the experts' views and reports from the existing literature. The experts' views were obtained from the responses to open-ended questions on the required fundamentals to achieve successful completion of flood mitigation projects. An affinity analysis was applied to these responses to develop the model. The developed model was then compared to the established success factors found in building project, extracted from the previous studies to identify the similarities and differences between the two models. This study would assist the government and construction players to become more effective in constructing successful flood mitigation projects for the future practice in a flood-prone country like Malaysia.

  9. The Other Infrastructure: Distance Education's Digital Plant.

    ERIC Educational Resources Information Center

    Boettcher, Judith V.; Kumar, M. S. Vijay

    2000-01-01

    Suggests a new infrastructure--the digital plant--for supporting flexible Web campus environments. Describes four categories which make up the infrastructure: personal communication tools and applications; network of networks for the Web campus; dedicated servers and software applications; software applications and services from external…

  10. Economic Benefits of Green Infrastructure in Lancaster PA

    EPA Pesticide Factsheets

    This document outlines technical assistance for demonstrating how accounting for the multiple benefits of green infrastructure can provide a more complete assessment of infrastructure and community investments.

  11. Commonwealth Infrastructure Funding for Australian Universities: 2004 to 2011

    ERIC Educational Resources Information Center

    Koshy, Paul; Phillimore, John

    2013-01-01

    This paper provides an overview of recent trends in the provision of general infrastructure funding by the Commonwealth for Australian universities (Table A providers) over the period 2004 to 2011. It specifically examines general infrastructure development and excludes funding for research infrastructure through the Australian Research Council or…

  12. Deficiencies in the availability of essential musculoskeletal surgical services at 883 health facilities in 24 low- and lower-middle-income countries.

    PubMed

    Spiegel, D A; Nduaguba, A; Cherian, M N; Monono, M; Kelley, E T

    2015-06-01

    The sequelae of acute musculoskeletal conditions, especially injuries and infections, are responsible for significant disability in low- and middle-income countries. This study characterizes the availability of selected musculoskeletal surgical services at different tiers of the health system in a convenience sample of 883 health facilities from 24 low- and lower-middle-income countries. Selected data points from the World Health Organization's (WHO) tool of situational analysis of surgical availability were extracted from the WHO's database in December, 2013. These included infrastructure, physical resources and supplies, interventions, and human resources. For a descriptive analysis, facilities were divided into two groups based on number of beds (<100, 100-300, and >300) and level of facility (primary referral, secondary/tertiary, and Private/NGO/Mission). Statistical comparison was made between public and Private/NGO/Mission facilities based on number of beds (≤100, 100-300, and >300) using a Chi-Square analysis, with statistical significance at p < 0.05. Significant deficiencies were noted in infrastructure, physical resources and supplies, and human resources for the provision of essential orthopedic surgical services at all tiers of the health system. Availability was significantly lower in public versus Private/NGO/Mission facilities for nearly all categories in facilities with ≤100 beds, and in a subset of measures in facilities with between 100 and 300 beds. Deficiencies in the availability of orthopedic surgical services were observed at all levels of health facility and were most pronounced at facilities with ≤100 beds in the public sector. Strengthening the delivery of essential surgical services, including orthopedics, at the primary referral level must be prioritized if we are to reduce the burden of death and disability from a variety of emergent health conditions. There were no sources of funding.

  13. Space facilities: Meeting future needs for research, development, and operations

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The National Facilities Study (NFS) represents an interagency effort to develop a comprehensive and integrated long-term plan for world-class aeronautical and space facilities that meet current and projected needs for commercial and government aerospace research and development and space operations. At the request of NASA and the DOD, the National Research Council's Committee on Space Facilities has reviewed the space related findings of the NFS. The inventory of more than 2800 facilities will be an important resource, especially if it continues to be updated and maintained as the NFS report recommends. The data in the inventory provide the basis for a much better understanding of the resources available in the national facilities infrastructure, as well as extensive information on which to base rational decisions about current and future facilities needs. The working groups have used the inventory data and other information to make a set of recommendations that include estimates of cast savings and steps for implementation. While it is natural that the NFS focused on cost reduction and consolidations, such a study is most useful to future planning if it gives equal weight to guiding the direction of future facilities needed to satisfy legitimate national aspirations. Even in the context of cost reduction through facilities closures and consolidations, the study is timid about recognizing and proposing program changes and realignments of roles and missions to capture what could be significant savings and increased effectiveness. The recommendations of the Committee on Space Facilities are driven by the clear need to be more realistic and precise both in recognizing current incentives and disincentives in the aerospace industry and in forecasting future conditions for U.S. space activities.

  14. Space facilities: Meeting future needs for research, development, and operations

    NASA Astrophysics Data System (ADS)

    The National Facilities Study (NFS) represents an interagency effort to develop a comprehensive and integrated long-term plan for world-class aeronautical and space facilities that meet current and projected needs for commercial and government aerospace research and development and space operations. At the request of NASA and the DOD, the National Research Council's Committee on Space Facilities has reviewed the space related findings of the NFS. The inventory of more than 2800 facilities will be an important resource, especially if it continues to be updated and maintained as the NFS report recommends. The data in the inventory provide the basis for a much better understanding of the resources available in the national facilities infrastructure, as well as extensive information on which to base rational decisions about current and future facilities needs. The working groups have used the inventory data and other information to make a set of recommendations that include estimates of cast savings and steps for implementation. While it is natural that the NFS focused on cost reduction and consolidations, such a study is most useful to future planning if it gives equal weight to guiding the direction of future facilities needed to satisfy legitimate national aspirations. Even in the context of cost reduction through facilities closures and consolidations, the study is timid about recognizing and proposing program changes and realignments of roles and missions to capture what could be significant savings and increased effectiveness. The recommendations of the Committee on Space Facilities are driven by the clear need to be more realistic and precise both in recognizing current incentives and disincentives in the aerospace industry and in forecasting future conditions for U.S. space activities.

  15. Local food protection and safety infrastructure and capacity: a Maryland case study.

    PubMed

    Kufel, Joanna Zablotsky; Resnick, Beth A; Fox, Mary; Frattaroli, Shannon; Gielen, Andrea; Burke, Thomas A

    2011-01-01

    In Maryland, county Food Protection Programs (FPP), housed within Environmental Public Health (EPH) Divisions, maintain responsibility for regular inspection of all food service facilities (FSF). With growing concerns about how our food supply is protected, it is important to determine the state and effectiveness of our food safety systems. This research elucidates the roles, responsibilities, strengths, and weaknesses of Food Safety and Protection Programs in Maryland. A 16-question survey tool, which addressed facets of the local food protection infrastructure, including FSF inspections, staffing, budget, and foodborne illness surveillance, was distributed to all 24 county FPP. The number of FSF in Maryland increased 97% from 2001 to 2006 and counties had an average inspection completion rate of 73%, with a 4% increase over the time period. Statewide, there were 4.1 EPH full-time employees (FTE) per 10 000 population and 1.6 FPP FTE per 10 000 population. EPH Division budgets increased 63% statewide, from $19.5 million in 2000 to $31.9 million in 2007. FPP budgets also increased 59% over the period, from $6.2 million in 2000 to $9.8 million in 2007. This study offers new quantitative measures of the demands, capacities, and performance of Food Protection and Safety Programs in Maryland. This assessment of local EPH and FPP capacity also offers insight into the strengths and weaknesses of the local food protection and safety infrastructure. Importantly, it reveals an infrastructure and dedicated food protection workforce that inspects the food supply and responds to foodborne illness outbreaks. Yet, resources vary substantially from county to county, impacting which services can be provided and how well they can be performed. This can, in turn, impact the potential risk of foodborne illness and the public's overall health.

  16. Influence of governance structure on green stormwater infrastructure investment

    USGS Publications Warehouse

    Hopkins, Kristina G.; Grimm, Nancy B.; York, Abigail M.

    2018-01-01

    Communities are faced with the challenge of meeting regulatory requirements mandating reductions in water pollution from stormwater and combined sewer overflows (CSO). Green stormwater infrastructure and gray stormwater infrastructure are two types of water management strategies communities can use to address water pollution. In this study, we used long-term control plans from 25 U.S. cities to synthesize: the types of gray and green infrastructure being used by communities to address combined sewer overflows; the types of goals set; biophysical characteristics of each city; and factors associated with the governance of stormwater management. These city characteristics were then used to identify common characteristics of “green leader” cities—those that dedicated >20% of the control plan budget in green infrastructure. Five “green leader” cities were identified: Milwaukee, WI, Philadelphia, PA, Syracuse, NY, New York City, NY, and Buffalo, NY. These five cities had explicit green infrastructure goals targeting the volume of stormwater or percentage of impervious cover managed by green infrastructure. Results suggested that the management scale and complexity of the management system are less important factors than the ability to harness a “policy window” to integrate green infrastructure into control plans. Two case studies—Philadelphia, PA, and Milwaukee, WI—indicated that green leader cities have a long history of building momentum for green infrastructure through a series of phases from experimentation, demonstration, and finally—in the case of Philadelphia—a full transition in the approach used to manage CSOs.

  17. A prototype Infrastructure for Cloud-based distributed services in High Availability over WAN

    NASA Astrophysics Data System (ADS)

    Bulfon, C.; Carlino, G.; De Salvo, A.; Doria, A.; Graziosi, C.; Pardi, S.; Sanchez, A.; Carboni, M.; Bolletta, P.; Puccio, L.; Capone, V.; Merola, L.

    2015-12-01

    In this work we present the architectural and performance studies concerning a prototype of a distributed Tier2 infrastructure for HEP, instantiated between the two Italian sites of INFN-Romal and INFN-Napoli. The network infrastructure is based on a Layer-2 geographical link, provided by the Italian NREN (GARR), directly connecting the two remote LANs of the named sites. By exploiting the possibilities offered by the new distributed file systems, a shared storage area with synchronous copy has been set up. The computing infrastructure, based on an OpenStack facility, is using a set of distributed Hypervisors installed in both sites. The main parameter to be taken into account when managing two remote sites with a single framework is the effect of the latency, due to the distance and the end-to-end service overhead. In order to understand the capabilities and limits of our setup, the impact of latency has been investigated by means of a set of stress tests, including data I/O throughput, metadata access performance evaluation and network occupancy, during the life cycle of a Virtual Machine. A set of resilience tests has also been performed, in order to verify the stability of the system on the event of hardware or software faults. The results of this work show that the reliability and robustness of the chosen architecture are effective enough to build a production system and to provide common services. This prototype can also be extended to multiple sites with small changes of the network topology, thus creating a National Network of Cloud-based distributed services, in HA over WAN.

  18. Development of a Water Infrastructure Knowledge Database

    EPA Science Inventory

    This paper presents a methodology for developing a national database, as applied to water infrastructure systems, which includes both drinking water and wastewater. The database is branded as "WATERiD" and can be accessed at www.waterid.org. Water infrastructure in the U.S. is ag...

  19. National Biological Information Infrastructure (NBII) | Information Center

    Science.gov Websites

    National Biological Information Infrastructure (NBII) Contact Information Website: http://www.nbii.gov/ The National Biological Information Infrastructure (NBII) is a broad, collaborative program to provide increased access to data and information on the nation's biological resources. The NBII links diverse, high

  20. Service Modeling Language Applied to Critical Infrastructure

    NASA Astrophysics Data System (ADS)

    Baldini, Gianmarco; Fovino, Igor Nai

    The modeling of dependencies in complex infrastructure systems is still a very difficult task. Many methodologies have been proposed, but a number of challenges still remain, including the definition of the right level of abstraction, the presence of different views on the same critical infrastructure and how to adequately represent the temporal evolution of systems. We propose a modeling methodology where dependencies are described in terms of the service offered by the critical infrastructure and its components. The model provides a clear separation between services and the underlying organizational and technical elements, which may change in time. The model uses the Service Modeling Language proposed by the W3 consortium for describing critical infrastructure in terms of interdependent services nodes including constraints, behavior, information flows, relations, rules and other features. Each service node is characterized by its technological, organizational and process components. The model is then applied to a real case of an ICT system for users authentication.

  1. An authentication infrastructure for today and tomorrow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engert, D.E.

    1996-06-01

    The Open Software Foundation`s Distributed Computing Environment (OSF/DCE) was originally designed to provide a secure environment for distributed applications. By combining it with Kerberos Version 5 from MIT, it can be extended to provide network security as well. This combination can be used to build both an inter and intra organizational infrastructure while providing single sign-on for the user with overall improved security. The ESnet community of the Department of Energy is building just such an infrastructure. ESnet has modified these systems to improve their interoperability, while encouraging the developers to incorporate these changes and work more closely together tomore » continue to improve the interoperability. The success of this infrastructure depends on its flexibility to meet the needs of many applications and network security requirements. The open nature of Kerberos, combined with the vendor support of OSF/DCE, provides the infrastructure for today and tomorrow.« less

  2. Policy Model of Sustainable Infrastructure Development (Case Study : Bandarlampung City, Indonesia)

    NASA Astrophysics Data System (ADS)

    Persada, C.; Sitorus, S. R. P.; Marimin; Djakapermana, R. D.

    2018-03-01

    Infrastructure development does not only affect the economic aspect, but also social and environmental, those are the main dimensions of sustainable development. Many aspects and actors involved in urban infrastructure development requires a comprehensive and integrated policy towards sustainability. Therefore, it is necessary to formulate an infrastructure development policy that considers various dimensions of sustainable development. The main objective of this research is to formulate policy of sustainable infrastructure development. In this research, urban infrastructure covers transportation, water systems (drinking water, storm water, wastewater), green open spaces and solid waste. This research was conducted in Bandarlampung City. This study use a comprehensive modeling, namely the Multi Dimensional Scaling (MDS) with Rapid Appraisal of Infrastructure (Rapinfra), it uses of Analytic Network Process (ANP) and it uses system dynamics model. The findings of the MDS analysis showed that the status of Bandarlampung City infrastructure sustainability is less sustainable. The ANP analysis produces 8 main indicators of the most influential in the development of sustainable infrastructure. The system dynamics model offered 4 scenarios of sustainable urban infrastructure policy model. The best scenario was implemented into 3 policies consist of: the integrated infrastructure management, the population control, and the local economy development.

  3. Assessment of ebola virus disease, health care infrastructure, and preparedness - four counties,Southeastern Liberia, august 2014.

    PubMed

    Forrester, Joseph D; Pillai, Satish K; Beer, Karlyn D; Neatherlin, John; Massaquoi, Moses; Nyenswah, Tolbert G; Montgomery, Joel M; De Cock, Kevin

    2014-10-10

    Ebola virus disease (Ebola) is a multisystem disease caused by a virus of the genus Ebolavirus. In late March 2014, Ebola cases were described in Liberia, with epicenters in Lofa County and later in Montserrado County. While information about case burden and health care infrastructure was available for the two epicenters, little information was available about remote counties in southeastern Liberia. Over 9 days, August 6-14, 2014, Ebola case burden, health care infrastructure, and emergency preparedness were assessed in collaboration with the Liberian Ministry of Health and Social Welfare in four counties in southeastern Liberia: Grand Gedeh, Grand Kru, River Gee, and Maryland. Data were collected by health care facility visits to three of the four county referral hospitals and by unstructured interviews with county and district health officials, hospital administrators, physicians, nurses, physician assistants, and health educators in all four counties. Local burial practices were discussed with county officials, but no direct observation of burial practices was conducted. Basic information about Ebola surveillance and epidemiology, case investigation, contact tracing, case management, and infection control was provided to local officials.

  4. A national facility for biological cryo-electron microscopy

    PubMed Central

    Saibil, Helen R.; Grünewald, Kay; Stuart, David I.

    2015-01-01

    Three-dimensional electron microscopy is an enormously powerful tool for structural biologists. It is now able to provide an understanding of the molecular machinery of cells, disease processes and the actions of pathogenic organisms from atomic detail through to the cellular context. However, cutting-edge research in this field requires very substantial resources for equipment, infrastructure and expertise. Here, a brief overview is provided of the plans for a UK national three-dimensional electron-microscopy facility for integrated structural biology to enable internationally leading research on the machinery of life. State-of-the-art equipment operated with expert support will be provided, optimized for both atomic-level single-particle analysis of purified macromolecules and complexes and for tomography of cell sections. The access to and organization of the facility will be modelled on the highly successful macromolecular crystallography (MX) synchrotron beamlines, and will be embedded at the Diamond Light Source, facilitating the development of user-friendly workflows providing near-real-time experimental feedback. PMID:25615867

  5. SEE-GRID eInfrastructure for Regional eScience

    NASA Astrophysics Data System (ADS)

    Prnjat, Ognjen; Balaz, Antun; Vudragovic, Dusan; Liabotis, Ioannis; Sener, Cevat; Marovic, Branko; Kozlovszky, Miklos; Neagu, Gabriel

    In the past 6 years, a number of targeted initiatives, funded by the European Commission via its information society and RTD programmes and Greek infrastructure development actions, have articulated a successful regional development actions in South East Europe that can be used as a role model for other international developments. The SEEREN (South-East European Research and Education Networking initiative) project, through its two phases, established the SEE segment of the pan-European G ´EANT network and successfully connected the research and scientific communities in the region. Currently, the SEE-LIGHT project is working towards establishing a dark-fiber backbone that will interconnect most national Research and Education networks in the region. On the distributed computing and storage provisioning i.e. Grid plane, the SEE-GRID (South-East European GRID e-Infrastructure Development) project, similarly through its two phases, has established a strong human network in the area of scientific computing and has set up a powerful regional Grid infrastructure, and attracted a number of applications from different fields from countries throughout the South-East Europe. The current SEEGRID-SCI project, ending in April 2010, empowers the regional user communities from fields of meteorology, seismology and environmental protection in common use and sharing of the regional e-Infrastructure. Current technical initiatives in formulation are focusing on a set of coordinated actions in the area of HPC and application fields making use of HPC initiatives. Finally, the current SEERA-EI project brings together policy makers - programme managers from 10 countries in the region. The project aims to establish a communication platform between programme managers, pave the way towards common e-Infrastructure strategy and vision, and implement concrete actions for common funding of electronic infrastructures on the regional level. The regional vision on establishing an e-Infrastructure

  6. Climate Change and Water Infrastructure in Central Asia: adaptation capacities and institutional challenges

    NASA Astrophysics Data System (ADS)

    Abdullaev, Iskandar; Rakhmatullaev, Shavkat

    2014-05-01

    The paper discusses vulnerability areas of water sector in arid Central Asia due to climate change projections with particular focus on adaptation to sustainable operation of physical infrastructure capacities (from legal, institutional and technical aspects). Two types of technical installations are the main focus of this paper, i.e., electrical lift irrigation systems and water reservoirs. The first set of electrical lift infrastructure is strategic for delivering water to water users via pumps, diversion structures, vertical drainage facilities and groundwater boreholes; on the other hand, the primarily task of second set of structures is to accumulate the water resources for sectors of economy. In Central Asia, approximately, 20-50% of irrigation water is lifted, yet major of lift structures are in very poor technical conditions coupled with ever increasing of electricity tariffs. Furthermore, useful volumes capacities of water reservoirs are being severely diminished due to bio-physical geomorphologic processes, improper operational regimes and chronic financing for special in-house sedimentation surveys. Most importantly, the key argument is that irrigation sector should internalize its adaptation efforts, i.e., integrate renewable energy technologies, energy audit programs and lastly design comprehensive investment prioritization processes and programs. Otherwise, water sector will be at great risk for continued provision of fundamental services to the public, food security and industry

  7. 78 FR 66038 - Critical Infrastructure Partnership Advisory Council (CIPAC); Correction.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-04

    ... DEPARTMENT OF HOMELAND SECURITY Critical Infrastructure Partnership Advisory Council (CIPAC... Critical Infrastructure Partnership Advisory Council (CIPAC) Plenary Meeting on November 5, 2013. The... Murphy, Critical Infrastructure Partnership Advisory Council Alternate Designated Federal Officer...

  8. Why You Should Consider Green Stormwater Infrastructure for Your Community

    EPA Pesticide Factsheets

    This page provides an overview of the nation's infrastructure needs and cost and the benefits of integrating green infrastructure into projects that typically use grey infrastructure, such as roadways, sidewalks and parking lots.

  9. Critical Infrastructure: The National Asset Database

    DTIC Science & Technology

    2007-07-16

    Infrastructure: The National Asset Database 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e...upon which federal resources, including infrastructure protection grants , are allocated. According to DHS, both of those assumptions are wrong. DHS...assets that it has determined are critical to the nation. Also, while the National Asset Database has been used to support federal grant -making

  10. Explorations Around "Graceful Failure" in Transportation Infrastructure: Lessons Learned By the Infrastructure and Climate Network (ICNet)

    NASA Astrophysics Data System (ADS)

    Jacobs, J. M.; Thomas, N.; Mo, W.; Kirshen, P. H.; Douglas, E. M.; Daniel, J.; Bell, E.; Friess, L.; Mallick, R.; Kartez, J.; Hayhoe, K.; Croope, S.

    2014-12-01

    Recent events have demonstrated that the United States' transportation infrastructure is highly vulnerable to extreme weather events which will likely increase in the future. In light of the 60% shortfall of the $900 billion investment needed over the next five years to maintain this aging infrastructure, hardening of all infrastructures is unlikely. Alternative strategies are needed to ensure that critical aspects of the transportation network are maintained during climate extremes. Preliminary concepts around multi-tier service expectations of bridges and roads with reference to network capacity will be presented. Drawing from recent flooding events across the U.S., specific examples for roads/pavement will be used to illustrate impacts, disruptions, and trade-offs between performance during events and subsequent damage. This talk will also address policy and cultural norms within the civil engineering practice that will likely challenge the application of graceful failure pathways during extreme events.

  11. The Use of Spatial Data Infrastructure in Environmental Management:an Example from the Spatial Planning Practice in Poland.

    PubMed

    Zwirowicz-Rutkowska, Agnieszka; Michalik, Anna

    2016-10-01

    Today's technology plays a crucial role in the effective use of environmental information. This includes geographic information systems and infrastructures. The purpose of this research is to identify the way in which the Polish spatial data infrastructure (PSDI) supports policies and activities that may have an impact on the environment in relation to one group of users, namely urban planners, and their tasks concerning environmental management. The study is based on a survey conducted in July and August, 2014. Moreover, the authors' expert knowledge gained through urban development practice and the analysis of the environmental conservation regulations and spatial planning in Poland has been used to define the scope of environmental management in both spatial planning studies and spatial data sources. The research included assessment of data availability, infrastructure usability, and its impact on decision-making process. The results showed that the PSDI is valuable because it allows for the acquisition of data on environmental monitoring, agricultural and aquaculture facilities. It also has a positive impact on decision-making processes and improves numerous planners' activities concerning both the inclusion of environmental indicators in spatial plans and the support of nature conservation and environmental management in the process of working on future land use. However, even though the infrastructure solves certain problems with data accessibility, further improvements might be proposed. The importance of the SDI in environmental management is noticeable and could be considered from many standpoints: Data, communities engaged in policy or decision-making concerning environmental issues, and data providers.

  12. The National Information Infrastructure: Agenda for Action.

    ERIC Educational Resources Information Center

    Department of Commerce, Washington, DC. Information Infrastructure Task Force.

    The National Information Infrastructure (NII) is planned as a web of communications networks, computers, databases, and consumer electronics that will put vast amounts of information at the users' fingertips. Private sector firms are beginning to develop this infrastructure, but essential roles remain for the Federal Government. The National…

  13. SRB Processing Facilities Media Event

    NASA Image and Video Library

    2016-03-01

    Inside the Booster Fabrication Facility (BFF) at NASA’s Kennedy Space Center in Florida, members of the news media view the right-hand aft skirt that will be used on a solid rocket booster for NASA’s Space Launch System (SLS) rocket. Orbital ATK is contractor for NASA’s Marshall Space Flight Center in Alabama, and operates the BFF to prepare aft booster segments and hardware for the SLS solid rocket boosters. At far right, in the royal blue shirt, Rick Serfozo, Orbital ATK Florida site director, talks to the media. The SLS rocket and Orion spacecraft will launch on Exploration Mission-1 in 2018. The Ground Systems Development and Operations Program is preparing the infrastructure to process and launch spacecraft for deep-space missions and the journey to Mars.

  14. Decontamination of Drinking Water Infrastructure ...

    EPA Pesticide Factsheets

    Technical Brief This study examines the effectiveness of decontaminating corroded iron and cement-mortar coupons that have been contaminated with spores of Bacillus atrophaeus subsp. globigii (B. globigii), which is often used as a surrogate for pathogenic B. anthracis (anthrax) in disinfection studies. Bacillus spores are persistent on common drinking water material surfaces like corroded iron, requiring physical or chemical methods to decontaminate the infrastructure. In the United States, free chlorine and monochloramine are the primary chemical disinfectants used by the drinking water industry to inactivate microorganisms. Flushing is also a common, easily implemented practice in drinking water distribution systems, although large volumes of contaminated water needing treatment could be generated. Identifying readily available alternative disinfectant formulations for infrastructure decontamination could give water utilities options for responding to specific types of contamination events. In addition to presenting data on flushing alone, which demonstrated the persistence of spores on water infrastructure in the absence of high levels of disinfectants, data on acidified nitrite, chlorine dioxide, free chlorine, monochloramine, ozone, peracetic acid, and followed by flushing are provided.

  15. Infrastructure for Reaching Disadvantaged Consumers

    PubMed Central

    Hovenga, Evelyn J. S.; Hovel, Joe; Klotz, Jeanette; Robins, Patricia

    1998-01-01

    Both consumers and health service providers need access to up-to-date information, including patient and practice guidelines, that allows them to make decisions in partnership about individual and public health in line with the primary health care model of health service delivery. Only then is it possible for patient preferences to be considered while the health of the general population is improved. The Commonwealth Government of Australia has allocated $250 million over five years, starting July 1, 1997, to support activities and projects designed to meet a range of telecommunication needs in regional, rural, and remote Australia. This paper defines rural and remote communities, then reviews rural and remote health services, information, and telecommunication technology infrastructures and their use in Australia to establish the current state of access to information tools by rural and remote communities and rural health workers in Australia today. It is argued that a suitable telecommunication infrastructure is needed to reach disadvantaged persons in extremely remote areas and that intersectoral support is essential to build this infrastructure. In addition, education will make its utilization possible. PMID:9609497

  16. U.S. Infrastructure : funding trends and Federal agencies investment estimates

    DOT National Transportation Integrated Search

    2001-07-01

    This is the statement of Peter F. Guerrero, Director, Physical Infrastructure Issues before the Subcommittee on Transportation and Infrastructure, Committee on Environment and Public Works, U.S. Senate regarding public infrastructure. The testimony d...

  17. Life-Cycle Assessments of Selected NASA Ground-Based Test Facilities

    NASA Technical Reports Server (NTRS)

    Sydnor, George Honeycutt

    2012-01-01

    In the past two years, two separate facility-specific life cycle assessments (LCAs) have been performed as summer student projects. The first project focused on 13 facilities managed by NASA s Aeronautics Test Program (ATP), an organization responsible for large, high-energy ground test facilities that accomplish the nation s most advanced aerospace research. A facility inventory was created for each facility, and the operational-phase carbon footprint and environmental impact were calculated. The largest impacts stemmed from electricity and natural gas used directly at the facility and to generate support processes such as compressed air and steam. However, in specialized facilities that use unique inputs like R-134a, R-14, jet fuels, or nitrogen gas, these sometimes had a considerable effect on the facility s overall environmental impact. The second LCA project was conducted on the NASA Ames Arc Jet Complex and also involved creating a facility inventory and calculating the carbon footprint and environmental impact. In addition, operational alternatives were analyzed for their effectiveness at reducing impact. Overall, the Arc Jet Complex impact is dominated by the natural-gas fired boiler producing steam on-site, but alternatives were provided that could reduce the impact of the boiler operation, some of which are already being implemented. The data and results provided by these LCA projects are beneficial to both the individual facilities and NASA as a whole; the results have already been used in a proposal to reduce carbon footprint at Ames Research Center. To help future life cycle projects, several lessons learned have been recommended as simple and effective infrastructure improvements to NASA, including better utility metering and data recording and standardization of modeling choices and methods. These studies also increased sensitivity to and appreciation for quantifying the impact of NASA s activities.

  18. South Africa's School Infrastructure Performance Indicator System

    ERIC Educational Resources Information Center

    Gibberd, Jeremy

    2007-01-01

    While some South African schools have excellent infrastructure, others lack basic services such as water and sanitation. This article describes the school infrastructure performance indicator system (SIPIS) in South Africa. The project offers an approach that can address both the urgent provision of basic services as well as support the…

  19. 49 CFR 1511.15 - Cessation of the Aviation Security Infrastructure Fee.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 9 2014-10-01 2014-10-01 false Cessation of the Aviation Security Infrastructure... AVIATION SECURITY INFRASTRUCTURE FEE § 1511.15 Cessation of the Aviation Security Infrastructure Fee... this part. Any unremitted Aviation Security Infrastructure Fees incurred by an air carrier or foreign...

  20. Optimal infrastructure maintenance scheduling problem under budget uncertainty.

    DOT National Transportation Integrated Search

    2010-05-01

    This research addresses a general class of infrastructure asset management problems. Infrastructure : agencies usually face budget uncertainties that will eventually lead to suboptimal planning if : maintenance decisions are made without taking the u...