Sample records for facility cape canaveral

  1. Cape Canaveral Air Force Station, Launch Complex 39, Solid Rocket ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Cape Canaveral Air Force Station, Launch Complex 39, Solid Rocket Booster Disassembly & Refurbishment Complex, Thrust Vector Control Deservicing Facility, Hangar Road, Cape Canaveral, Brevard County, FL

  2. Cape Canaveral Air Force Station, Launch Complex 39, The Solid ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Cape Canaveral Air Force Station, Launch Complex 39, The Solid Rocket Booster Assembly and Refurbishment Facility Manufacturing Building, Southeast corner of Schwartz Road and Contractors Road, Cape Canaveral, Brevard County, FL

  3. 33 CFR 334.595 - Atlantic Ocean off Cape Canaveral; 45th Space Wing, Cape Canaveral Air Force Station, FL...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...; 45th Space Wing, Cape Canaveral Air Force Station, FL; restricted area. 334.595 Section 334.595.... The regulations in this section shall be enforced by the Commander, 45th Space Wing, Patrick Air Force... AND RESTRICTED AREA REGULATIONS § 334.595 Atlantic Ocean off Cape Canaveral; 45th Space Wing, Cape...

  4. 33 CFR 334.595 - Atlantic Ocean off Cape Canaveral; 45th Space Wing, Cape Canaveral Air Force Station, FL...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...; 45th Space Wing, Cape Canaveral Air Force Station, FL; restricted area. 334.595 Section 334.595.... The regulations in this section shall be enforced by the Commander, 45th Space Wing, Patrick Air Force... AND RESTRICTED AREA REGULATIONS § 334.595 Atlantic Ocean off Cape Canaveral; 45th Space Wing, Cape...

  5. 33 CFR 334.595 - Atlantic Ocean off Cape Canaveral; 45th Space Wing, Cape Canaveral Air Force Station, FL...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...; 45th Space Wing, Cape Canaveral Air Force Station, FL; restricted area. 334.595 Section 334.595.... The regulations in this section shall be enforced by the Commander, 45th Space Wing, Patrick Air Force... AND RESTRICTED AREA REGULATIONS § 334.595 Atlantic Ocean off Cape Canaveral; 45th Space Wing, Cape...

  6. 33 CFR 334.595 - Atlantic Ocean off Cape Canaveral; 45th Space Wing, Cape Canaveral Air Force Station, FL...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...; 45th Space Wing, Cape Canaveral Air Force Station, FL; restricted area. 334.595 Section 334.595.... The regulations in this section shall be enforced by the Commander, 45th Space Wing, Patrick Air Force... AND RESTRICTED AREA REGULATIONS § 334.595 Atlantic Ocean off Cape Canaveral; 45th Space Wing, Cape...

  7. 33 CFR 334.595 - Atlantic Ocean off Cape Canaveral; 45th Space Wing, Cape Canaveral Air Force Station, FL...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...; 45th Space Wing, Cape Canaveral Air Force Station, FL; restricted area. 334.595 Section 334.595.... The regulations in this section shall be enforced by the Commander, 45th Space Wing, Patrick Air Force... AND RESTRICTED AREA REGULATIONS § 334.595 Atlantic Ocean off Cape Canaveral; 45th Space Wing, Cape...

  8. Cape Canaveral and Kennedy Space Center, Florida

    NASA Image and Video Library

    1989-05-08

    STS030-76-042 (4-8 May 1989) --- For two decades, astronauts have been photographing their launching area from space, but in terms of sharpness and clarity, NASA photo experts feel, few rival this STS-30 vertical scene over the Cape Canaveral area. Sprinkled along the jutting cape feature are a number of launching pads of Kennedy Space Center, and nearby is seen the Shuttle landing facility. Titusville can be seen just above center on the north; Cocoa, Cocoa Beach and Merritt Island are south, near bottom of the frame. St. Johns, Banana and Indian Rivers are easily traced as well.

  9. Ohio Senator John Glenn tours the SPACEHAB Payload Processing Facility in Cape Canaveral

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Ohio Senator John Glenn, center, enjoys a tour of the SPACEHAB Payload Processing Facility in Cape Canaveral. On his immediate left is Dale Steffey, SPACEHAB vice president, operations, and at the right of the photograph is Michael Lounge, SPACEHAB vice president, flight systems development. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.

  10. Ohio Senator John Glenn tours the SPACEHAB Payload Processing Facility in Cape Canaveral

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Ohio Senator John Glenn, second from right, enjoys a tour of the SPACEHAB Payload Processing Facility in Cape Canaveral. Joining Senator Glenn are, left to right, Dr. Bernard Harris, SPACEHAB vice president, microgravity and life sciences, and Dale Steffey, SPACEHAB vice president, operations. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.

  11. DETAIL VIEW OF COMPUTER PANELS, ROOM 8A Cape Canaveral ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF COMPUTER PANELS, ROOM 8A - Cape Canaveral Air Force Station, Launch Complex 39, Mobile Launcher Platforms, Launcher Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  12. Ohio Senator John Glenn tours the SPACEHAB Payload Processing Facility in Cape Canaveral

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Ohio Senator John Glenn, second from right, enjoys a tour of the SPACEHAB Payload Processing Facility in Cape Canaveral. Joining Senator Glenn are, left to right, Dr. Bernard Harris, SPACEHAB vice president, microgravity and life sciences; Dale Steffey, SPACEHAB vice president, operations; and Dr. Shelley Harrison, SPACEHAB chairman and chief executive officer. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.

  13. Ohio Senator John Glenn tours the SPACEHAB Payload Processing Facility in Cape Canaveral

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Ohio Senator John Glenn, at left, enjoys a tour of the SPACEHAB Payload Processing Facility in Cape Canaveral. Joining Senator Glenn are, left to right, Dale Steffey, SPACEHAB vice president, operations; Dr. Shelley Harrison, SPACEHAB chairman and chief executive officer; and Dr. Bernard Harris, SPACEHAB vice president, microgravity and life sciences. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.

  14. Ohio Senator John Glenn tours the SPACEHAB Payload Processing Facility in Cape Canaveral

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Ohio Senator John Glenn, second from left, enjoys a tour of the SPACEHAB Payload Processing Facility in Cape Canaveral. Joining Senator Glenn are, left to right, Dale Steffey, SPACEHAB vice president, operations; Dr. Shelley Harrison, SPACEHAB chairman and chief executive officer; and Dr. Bernard Harris, SPACEHAB vice president, microgravity and life sciences. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.

  15. Ohio Senator John Glenn tours the SPACEHAB Payload Processing Facility in Cape Canaveral

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Ohio Senator John Glenn, at right, enjoys a tour of the SPACEHAB Payload Processing Facility in Cape Canaveral. Joining Senator Glenn are, left to right, David Rossi, SPACEHAB president and chief operating officer (extreme left); Michael Lounge, SPACEHAB vice president, flight systems development; and Dr. Bernard Harris, SPACEHAB vice president, microgravity and life sciences. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.

  16. 33 CFR 165.777 - Security Zone; West Basin, Port Canaveral Harbor, Cape Canaveral, Florida.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... clearly states the location of the security zone and the times it will be enforced. This will be the... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zone; West Basin, Port... Guard District § 165.777 Security Zone; West Basin, Port Canaveral Harbor, Cape Canaveral, Florida. (a...

  17. Hydrologic overlay maps of the Cape Canaveral Quadrangle, Florida

    USGS Publications Warehouse

    Frazee, James M.; Laughlin, Charles P.

    1979-01-01

    Brevard County is an area of some 1,300 square miles located on the east coast of central Florida.  The Cape Canaveral quadrangle, in central Brevard, includes part of the Merritt Island National Wildlife Refuge, John F. Kennedy Space Center (NASA), and Cape Canaveral Air Force Station.  The eastern part of the quadrangle is occupied by the Atlantic Ocean and the western part by estuarine waters of the Banana River.  Topography is characterized by numerous elongate sand dumes, with altitudes up to 10 feet or greater, which roughly parallel the estuary and ocean.

  18. Assessment and forecasting of lightning potential and its effect on launch operations at Cape Canaveral Air Force Station and John F. Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Weems, J.; Wyse, N.; Madura, J.; Secrist, M.; Pinder, C.

    1991-01-01

    Lightning plays a pivotal role in the operation decision process for space and ballistic launches at Cape Canaveral Air Force Station and Kennedy Space Center. Lightning forecasts are the responsibility of Detachment 11, 4th Weather Wing's Cape Canaveral Forecast Facility. These forecasts are important to daily ground processing as well as launch countdown decisions. The methodology and equipment used to forecast lightning are discussed. Impact on a recent mission is summarized.

  19. Astronaut John Glenn poses for press photographers at Cape Canaveral

    NASA Image and Video Library

    1962-02-01

    S64-14869 (February 1962) --- Astronaut John H. Glenn Jr., wearing a Mercury pressure suit, was the pilot of the Mercury-Atlas 6 (MA-6) mission. Glenn made America's first manned Earth-orbital spaceflight on Feb. 20, 1962. This photograph was taken at Cape Canaveral, Florida, during MA-6 preflight training activities. Photo credit: NASA

  20. XTE Solid Motor Installation at Pad 17-A, Cape Canaveral Air Station

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This NASA Kennedy Space Center video presents live footage of the installation of the XTE (X-Ray Timing Explorer) Solid Rocket Motor at Launch Pad 17-A. The installation takes place at Cape Canaveral Air Station, Florida.

  1. STS-44 DSP satellite and IUS during preflight processing at Cape Canaveral

    NASA Image and Video Library

    1991-10-19

    S91-50773 (19 Oct 1991) --- At a processing facility on Cape Canaveral Air Force Station, the Defense Support Program (DSP) satellite is being transferred into the payload canister transporter for shipment to Launch Pad 39A at KSC. The DSP will be deployed during Space Shuttle Mission STS-44 later this year. It is a surveillance satellite, developed for the Department of Defense, which can detect missile and space launches, as well as nuclear detonations. The Inertial Upper Stage which will boost the DSP satellite to its proper orbital position is the lower portion of the payload. DSP satellites have comprised the spaceborne segment of NORAD's (North American Air Defense Command) Tactical Warning and Attack Assessment System since 1970. STS- 44, carrying a crew of six, will be a ten-day flight.

  2. Estuarine and Coastal Wildlife Research at Cape Canaveral

    NASA Technical Reports Server (NTRS)

    Reyier, Eric A.

    2016-01-01

    Dr. Eric Reyier has been invited to give a 15-minute oral and Powerpoint presentation to the Florida Sport Fishing Association (north Chapter) regarding fisheries research and management in the greater Cape Canaveral region. The focus of the talk will center on the Florida Atlantic Coast Telemetry Array, a multi-agency network of submerged acoustic receivers used to track the movements of economically valuable sportfish, sharks, and sea turtles here at KSC and elsewhere along the US east coast. The talk has been given (in varying forms) several times before and is always a positive story for KSC.

  3. Astronaut John Glenn is suited up at Cape Canaveral during MA-6 activities

    NASA Image and Video Library

    1962-02-01

    S64-14843 (1962) --- Astronaut John H. Glenn Jr., pilot of the Mercury-Atlas 6 Earth-orbital space mission, is suited up at Cape Canaveral, Florida, during MA-6 preflight activities. Assisting Glenn is suit technician Al Rochford. Photo credit: NASA

  4. KENNEDY SPACE CENTER, FLA. - At Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) observatory is moved into NASA Spacecraft Hangar AE. SIRTF will remain in the clean room at Hangar AE until it returns to the pad in early August.

    NASA Image and Video Library

    2003-05-02

    KENNEDY SPACE CENTER, FLA. - At Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) observatory is moved into NASA Spacecraft Hangar AE. SIRTF will remain in the clean room at Hangar AE until it returns to the pad in early August.

  5. Supplemental Environmental Assessment: Lighthouse Substation Cape Canaveral Air Force Station Florida

    DTIC Science & Technology

    2007-10-01

    associated with transmission lines is generally due to either corona or “spark gap” discharges. When the electric field at the surface of a conductor... corona , will be initiated from the conductor into the Chapter 3: Affected Environment Supplemental Environmental Assessment – Lighthouse Substation at...Cape Canaveral Air Force Station 24 surrounding air. The intensity of the corona increases with the voltage of the line and is dependent on the

  6. Deep Space Climate Observatory (DSCOVR) lifted off from Cape Canaveral

    NASA Image and Video Library

    2015-02-13

    KSC-2015-1363 (02/11/2015) --- The SpaceX Falcon 9 rocket carrying NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 6:03 p.m. EST. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force, and will maintain the nation's real-time solar wind monitoring capabilities. To learn more about DSCOVR, visit www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Tony Gray and Tim Powers

  7. Deep Space Climate Observatory (DSCOVR) lifted off from Cape Canaveral

    NASA Image and Video Library

    2015-02-13

    KSC-2015-1341 (02/11/2015) --- The SpaceX Falcon 9 rocket carrying NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. Liftoff occurred at 6:03 p.m. EST. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force, and will maintain the nation's real-time solar wind monitoring capabilities. To learn more about DSCOVR, visit www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Ben Smegelsky

  8. Deep Space Climate Observatory (DSCOVR) lifted off from Cape Canaveral

    NASA Image and Video Library

    2015-02-13

    KSC-2015-1342 (02/11/2015) --- Backdropped by a bright blue sky, the SpaceX Falcon 9 rocket carrying NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, soars away from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. Liftoff occurred at 6:03 p.m. EST. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force, and will maintain the nation's real-time solar wind monitoring capabilities. To learn more about DSCOVR, visit www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Ben Smegelsky..

  9. Deep Space Climate Observatory (DSCOVR) lifted off from Cape Canaveral

    NASA Image and Video Library

    2015-02-13

    Open Image KSC-2015-1368.KSC-2015-1368 (02/11/2015) --- The SpaceX Falcon 9 rocket carrying NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. Liftoff occurred at 6:03 p.m. EST. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force, and will maintain the nation's real-time solar wind monitoring capabilities. To learn more about DSCOVR, visit www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Tony Gray and Tim Powers

  10. Environmental Assessment for the Beddown and Flight Operations of Unmanned Aircraft Systems at Cape Canaveral Air Force Station, Florida

    DTIC Science & Technology

    2011-07-01

    Banana River to the west. PURPOSE AND NEED: The purpose of this action is to . establish a U.S. CBP A&M Southeastern Region Operations Center that...barrier island bordered by the Atlantic Ocean to the east and the Banana River to the west. CCAFS is home to the 45th Space Wing (45 SW) Mission...Hangar C Cape Canaveral AFS Skid Strip Figure 3-2. Cape Canaveral AFS Land Use July 20113-5Final EA Atlantic Ocean Banana River Legend CCAFS

  11. Establishing A Geologic Baseline of Cape Canaveral''s Natural Landscape: Black Point Drive

    NASA Technical Reports Server (NTRS)

    Parkinson, Randall W.

    2002-01-01

    The goal of this project is to identify the process responsible for the formation of geomorphic features in the Black Point Drive area of Merritt Island National Wildlife Refuge/Kennedy Space Center (MINWR/KSC), northwest Cape Canaveral. This study confirms the principal landscape components (geomorphology) of Black Point Drive reflect interaction between surficial sediments deposited in association with late-Quaternary sea-level highstands and the chemical evolution of late-Cenozoic sub-surface limestone formations. The Black Point Drive landscape consists of an undulatory mesic terrain which dips westward into myriad circular and channel-like depression marshes and lakes. This geomorphic gradient may reflect: (1) spatial distinctions in the elevation, character or age of buried (pre-Miocene) limestone formations, (2) dissolution history of late-Quaternary coquina and/or (3) thickness of unconsolidated surface sediment. More detailed evaluation of subsurface data will be necessary before this uncertain0 can be resolved.

  12. The meteorological monitoring system for the Kennedy Space Center/Cape Canaveral Air Station

    NASA Technical Reports Server (NTRS)

    Dianic, Allan V.

    1994-01-01

    The Kennedy Space Center (KSC) and Cape Canaveral Air Station (CCAS) are involved in many weather-sensitive operations. Manned and unmanned vehicle launches, which occur several times each year, are obvious example of operations whose success and safety are dependent upon favorable meteorological conditions. Other operations involving NASA, Air Force, and contractor personnel, including daily operations to maintain facilities, refurbish launch structures, prepare vehicles for launch, and handle hazardous materials, are less publicized but are no less weather-sensitive. The Meteorological Monitoring System (MMS) is a computer network which acquires, processes, disseminates, and monitors near real-time and forecast meteorological information to assist operational personnel and weather forecasters with the task of minimizing the risk to personnel, materials, and the surrounding population. CLIPS has been integrated into the MMS to provide quality control analysis and data monitoring. This paper describes aspects of the MMS relevant to CLIPS including requirements, actual implementation details, and results of performance testing.

  13. Verification and implementation of microburst day potential index (MDPI) and wind INDEX (WINDEX) forecasting tools at Cape Canaveral Air Station

    NASA Technical Reports Server (NTRS)

    Wheeler, Mark

    1996-01-01

    This report details the research, development, utility, verification and transition on wet microburst forecasting and detection the Applied Meteorology Unit (AMU) did in support of ground and launch operations at Kennedy Space Center (KSC) and Cape Canaveral Air Station (CCAS). The unforecasted wind event on 16 August 1994 of 33.5 ms-1 (65 knots) at the Shuttle Landing Facility raised the issue of wet microburst detection and forecasting. The AMU researched and analyzed the downburst wind event and determined it was a wet microburst event. A program was developed for operational use on the Meteorological Interactive Data Display System (MIDDS) weather system to analyze, compute and display Theta(epsilon) profiles, the microburst day potential index (MDPI), and wind index (WINDEX) maximum wind gust value. Key microburst nowcasting signatures using the WSR-88D data were highlighted. Verification of the data sets indicated that the MDPI has good potential in alerting the duty forecaster to the potential of wet microburst and the WINDEX values computed from the hourly surface data do have potential in showing a trend for the maximum gust potential. WINDEX should help in filling in the temporal hole between the MDPI on the last Cape Canaveral rawinsonde and the nowcasting radar data tools.

  14. Successful Demolition of Historic Cape Canaveral Air Force Station Launch Facilities: Managing the Process to Maximize Recycle Value to Fund Demolition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, A.; Hambro, L.; Hooper, K.

    2008-07-01

    This paper will present the history of the Atlas 36 and Titan 40 Space Launch Complexes (SLC), the facility assessment process, demolition planning, recycle methodology, and actual facility demolition that resulted in a 40% reduction in baseline cost. These two SLC launched hundreds of payloads into space from Cape Canaveral Air Force Station (AFS), Florida. The Atlas-Centaur family of rockets could lift small- to medium-size satellites designed for communications, weather, or military use, placing them with near pinpoint accuracy into their intended orbits. The larger Titan family was relied upon for heavier lifting needs, including launching military satellites as wellmore » as interplanetary probes. But despite their efficiency and cost-effectiveness, the Titan rockets, as well as earlier generation Atlas models, were retired in 2005. Concerns about potential environmental health hazards from PCBs and lead-based paint chipping off the facilities also contributed to the Air Force's decision in 2005 to dismantle and demolish the Atlas and Titan missile-launching systems. Lockheed Martin secured the complex following the final launch, removed equipment and turned over the site to the Air Force for decommissioning and demolition (D and D). AMEC was retained by the Air Force to perform demolition planning and facility D and D in 2004. AMEC began with a review of historical information, interviews with past operations personnel, and 100% facility assessment of over 100 structures. There where numerous support buildings that due to their age contained asbestos containing material (ACM), PCB-impacted material, and universal material that had to be identified and removed prior to demolition. Environmental testing had revealed that the 36B mobile support tower (MST) exceeded the TSCA standard for polychlorinated biphenyls (PCB) paint (<50 ppm), as did the high bay sections of the Titan Vertical Integration Building (VIB). Thus, while most of the steel structures could

  15. 8. Photocopy of engineering drawing. AETR DIGS FACILITY THEODOLITE AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Photocopy of engineering drawing. AETR DIGS FACILITY THEODOLITE AND PRISM SHELTER: SECTIONS AND DETAILS, 1971. - Cape Canaveral Air Station, Launch Complex 17, Facility 28413, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  16. 7. Photocopy of engineering drawing. AETR DIGS FACILITY THEODOLITE AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Photocopy of engineering drawing. AETR DIGS FACILITY THEODOLITE AND PRISM SHELTER: ELEVATIONS, FLOOR AND FOUNDATION PLANS, 1971. - Cape Canaveral Air Station, Launch Complex 17, Facility 28413, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  17. 6. Photocopy of engineering drawing. AETR DIGS FACILITY THEODOLITE AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Photocopy of engineering drawing. AETR DIGS FACILITY THEODOLITE AND PRISM SHELTER: MONUMENT LOCATION AND LINE-OF-SIGHT PLAN, 1972. - Cape Canaveral Air Station, Launch Complex 17, Facility 28413, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  18. 33 CFR 334.540 - Banana River at the Eastern Range, 45th Space Wing, Cape Canaveral Air Force Station, FL...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., 45th Space Wing, Cape Canaveral Air Force Station, FL; restricted area. 334.540 Section 334.540... enforced by the Commander, 45th Space Wing, Patrick Air Force Base, Florida and/or such persons or agencies... AND RESTRICTED AREA REGULATIONS § 334.540 Banana River at the Eastern Range, 45th Space Wing, Cape...

  19. 33 CFR 334.540 - Banana River at the Eastern Range, 45th Space Wing, Cape Canaveral Air Force Station, FL...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., 45th Space Wing, Cape Canaveral Air Force Station, FL; restricted area. 334.540 Section 334.540... enforced by the Commander, 45th Space Wing, Patrick Air Force Base, Florida and/or such persons or agencies... AND RESTRICTED AREA REGULATIONS § 334.540 Banana River at the Eastern Range, 45th Space Wing, Cape...

  20. 33 CFR 334.540 - Banana River at the Eastern Range, 45th Space Wing, Cape Canaveral Air Force Station, FL...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., 45th Space Wing, Cape Canaveral Air Force Station, FL; restricted area. 334.540 Section 334.540... enforced by the Commander, 45th Space Wing, Patrick Air Force Base, Florida and/or such persons or agencies... AND RESTRICTED AREA REGULATIONS § 334.540 Banana River at the Eastern Range, 45th Space Wing, Cape...

  1. 33 CFR 334.540 - Banana River at the Eastern Range, 45th Space Wing, Cape Canaveral Air Force Station, FL...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., 45th Space Wing, Cape Canaveral Air Force Station, FL; restricted area. 334.540 Section 334.540... enforced by the Commander, 45th Space Wing, Patrick Air Force Base, Florida and/or such persons or agencies... AND RESTRICTED AREA REGULATIONS § 334.540 Banana River at the Eastern Range, 45th Space Wing, Cape...

  2. 33 CFR 334.540 - Banana River at the Eastern Range, 45th Space Wing, Cape Canaveral Air Force Station, FL...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., 45th Space Wing, Cape Canaveral Air Force Station, FL; restricted area. 334.540 Section 334.540... enforced by the Commander, 45th Space Wing, Patrick Air Force Base, Florida and/or such persons or agencies... AND RESTRICTED AREA REGULATIONS § 334.540 Banana River at the Eastern Range, 45th Space Wing, Cape...

  3. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) observatory is lowered to the ground and taken back to NASA Spacecraft Hangar AE. SIRTF will remain in the clean room at Hangar AE until it returns to the pad in early August.

    NASA Image and Video Library

    2003-05-02

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) observatory is lowered to the ground and taken back to NASA Spacecraft Hangar AE. SIRTF will remain in the clean room at Hangar AE until it returns to the pad in early August.

  4. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) observatory is on a transporter to be taken back to NASA Spacecraft Hangar AE. SIRTF will remain in the clean room at Hangar AE until it returns to the pad in early August.

    NASA Image and Video Library

    2003-05-02

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) observatory is on a transporter to be taken back to NASA Spacecraft Hangar AE. SIRTF will remain in the clean room at Hangar AE until it returns to the pad in early August.

  5. VIEW OF FLIGHT CREW SYSTEMS, FLIGHT KITS FACILITY, ROOM NO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF FLIGHT CREW SYSTEMS, FLIGHT KITS FACILITY, ROOM NO. 1N12, FACING NORTH - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  6. VIEW OF FLIGHT CREW SYSTEMS, FLIGHT KITS FACILITY, ROOM NO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF FLIGHT CREW SYSTEMS, FLIGHT KITS FACILITY, ROOM NO. 1N12, FACING SOUTH - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  7. DETAIL VIEW OF ELECTRONICS TEST AREA, FLIGHT KITS FACILITY, ROOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF ELECTRONICS TEST AREA, FLIGHT KITS FACILITY, ROOM NO. 1N12, FACING WEST - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  8. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) observatory is lowered onto a transporter to be taken back to NASA Spacecraft Hangar AE. SIRTF will remain in the clean room at Hangar AE until it returns to the pad in early August.

    NASA Image and Video Library

    2003-05-02

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) observatory is lowered onto a transporter to be taken back to NASA Spacecraft Hangar AE. SIRTF will remain in the clean room at Hangar AE until it returns to the pad in early August.

  9. 33 CFR 334.590 - Atlantic Ocean off Cape Canaveral, Fla.; Air Force missile testing area, Patrick Air Force Base...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., Fla.; Air Force missile testing area, Patrick Air Force Base, Fla. 334.590 Section 334.590 Navigation... RESTRICTED AREA REGULATIONS § 334.590 Atlantic Ocean off Cape Canaveral, Fla.; Air Force missile testing area... during firing periods to be specified by the Commander, Air Force Missile Test Center, Patrick Air Force...

  10. 33 CFR 334.590 - Atlantic Ocean off Cape Canaveral, Fla.; Air Force missile testing area, Patrick Air Force Base...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., Fla.; Air Force missile testing area, Patrick Air Force Base, Fla. 334.590 Section 334.590 Navigation... RESTRICTED AREA REGULATIONS § 334.590 Atlantic Ocean off Cape Canaveral, Fla.; Air Force missile testing area... during firing periods to be specified by the Commander, Air Force Missile Test Center, Patrick Air Force...

  11. 33 CFR 334.590 - Atlantic Ocean off Cape Canaveral, Fla.; Air Force missile testing area, Patrick Air Force Base...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., Fla.; Air Force missile testing area, Patrick Air Force Base, Fla. 334.590 Section 334.590 Navigation... RESTRICTED AREA REGULATIONS § 334.590 Atlantic Ocean off Cape Canaveral, Fla.; Air Force missile testing area... during firing periods to be specified by the Commander, Air Force Missile Test Center, Patrick Air Force...

  12. 33 CFR 334.590 - Atlantic Ocean off Cape Canaveral, Fla.; Air Force missile testing area, Patrick Air Force Base...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., Fla.; Air Force missile testing area, Patrick Air Force Base, Fla. 334.590 Section 334.590 Navigation... RESTRICTED AREA REGULATIONS § 334.590 Atlantic Ocean off Cape Canaveral, Fla.; Air Force missile testing area... during firing periods to be specified by the Commander, Air Force Missile Test Center, Patrick Air Force...

  13. 33 CFR 334.590 - Atlantic Ocean off Cape Canaveral, Fla.; Air Force missile testing area, Patrick Air Force Base...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Fla.; Air Force missile testing area, Patrick Air Force Base, Fla. 334.590 Section 334.590 Navigation... RESTRICTED AREA REGULATIONS § 334.590 Atlantic Ocean off Cape Canaveral, Fla.; Air Force missile testing area, Patrick Air Force Base, Fla. (a) The danger zone. An area in the Atlantic Ocean immediately offshore from...

  14. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) observatory is ready to be lowered to the ground and taken back to NASA Spacecraft Hangar AE. SIRTF will remain in the clean room at Hangar AE until it returns to the pad in early August.

    NASA Image and Video Library

    2003-05-02

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) observatory is ready to be lowered to the ground and taken back to NASA Spacecraft Hangar AE. SIRTF will remain in the clean room at Hangar AE until it returns to the pad in early August.

  15. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) observatory is being dismantled from atop the Delta II rocket. It will be taken back to NASA Spacecraft Hangar AE. SIRTF will remain in the clean room at Hangar AE until it returns to the pad in early August.

    NASA Image and Video Library

    2003-05-02

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) observatory is being dismantled from atop the Delta II rocket. It will be taken back to NASA Spacecraft Hangar AE. SIRTF will remain in the clean room at Hangar AE until it returns to the pad in early August.

  16. KENNEDY SPACE CENTER, FLA. - Workers on Launch Complex 17-B, Cape Canaveral Air Force Station, start dismantling the Space Infrared Telescope Facility (SIRTF) observatory from atop the Delta II rocket. It will be taken back to NASA Spacecraft Hangar AE. SIRTF will remain in the clean room at Hangar AE until it returns to the pad in early August.

    NASA Image and Video Library

    2003-05-02

    KENNEDY SPACE CENTER, FLA. - Workers on Launch Complex 17-B, Cape Canaveral Air Force Station, start dismantling the Space Infrared Telescope Facility (SIRTF) observatory from atop the Delta II rocket. It will be taken back to NASA Spacecraft Hangar AE. SIRTF will remain in the clean room at Hangar AE until it returns to the pad in early August.

  17. Analysis of bathymetric surveys to identify coastal vulnerabilities at Cape Canaveral, Florida

    USGS Publications Warehouse

    Thompson, David M.; Plant, Nathaniel G.; Hansen, Mark E.

    2015-10-07

    The purpose of this work is to describe an updated bathymetric dataset collected in 2014 and compare it to previous datasets. The updated data focus on the bathymetric features and sediment transport pathways that connect the offshore regions to the shoreline and, therefore, are related to the protection of other portions of the coastal environment, such as dunes, that support infrastructure and ecosystems. Previous survey data include National Oceanic and Atmospheric Administration’s (NOAA) National Ocean Service (NOS) hydrographic survey from 1956 and a USGS survey from 2010 that is augmented with NOS surveys from 2006 and 2007. The primary result of this analysis is documentation and quantification of the nature and rates of bathymetric changes that are near (within about 2.5 km) the current Cape Canaveral shoreline and interpretation of the impact of these changes on future erosion vulnerability.

  18. Establishing a Geologic Baseline Of Cape Canaveral's Natural Landscape: Black Point Drive

    NASA Technical Reports Server (NTRS)

    Parkinson, Randall W.

    2001-01-01

    The goal of this project is to identify the process responsible for the formation of geomorphic features in the Black Point Drive area of Merritt Island National Wildlife Refuge/Kennedy Space Center (MINWR/KSC), northwest Cape Canaveral. This study confirms the principal landscape components (geomorphology) of Black Point Drive reflect interaction between surficial sediments deposited in association with late-Quaternary sea-level highstands and the chemical evolution of late-Cenozoic subsurface limestone formations. The Black Point Drive landscape consists of an undulatory mesic terrain which dips westward into myriad circular and channel-like depression marshes and lakes. This geomorphic gradient may reflect: (1) spatial distinctions in the elevation, character or age of buried (pre-Miocene) limestone formations, (2) dissolution history of late-Quaternary coquina and/or (3) thickness of unconsolidated surface sediment. More detailed evaluation of subsurface data will be necessary before this uncertainty can be resolved.

  19. Cape Cod National Seashore : satellite maintenance facility feasibility study

    DOT National Transportation Integrated Search

    2010-09-30

    This report analyzes the benefits and costs of a potential satellite vehicle maintenance facility on the outer portion of Cape Cod. A satellite facility had been proposed as a means of servicing the local transit vehicles that bring visitors to Cape ...

  20. 43. CAPE COD AIR STATION PAVE PAWS FACILITY WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. CAPE COD AIR STATION PAVE PAWS FACILITY - WITH BUILDING METAL SIDING BEING APPLIED ON "C" FACE (RIGHT) AND "B" FACE BEING PREPARED FOR INSTALLATION. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  1. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) observatory is moved toward the outside of the launch tower. It will be lowered and taken back to NASA Spacecraft Hangar AE. SIRTF will remain in the clean room at Hangar AE until it returns to the pad in early August.

    NASA Image and Video Library

    2003-05-02

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) observatory is moved toward the outside of the launch tower. It will be lowered and taken back to NASA Spacecraft Hangar AE. SIRTF will remain in the clean room at Hangar AE until it returns to the pad in early August.

  2. 42. CAPE COD AIR STATION PAVE PAWS FACILITY SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. CAPE COD AIR STATION PAVE PAWS FACILITY - SHOWING BUILDING "RED IRON" STEEL STRUCTURE AT 46T DAY OF STEEL CONSTRUCTION. "BUILDING TOPPED OFF, 7 JULY, 1974. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  3. Environmental Conditions and Threatened and Endangered Species Populations near the Titan, Atlas, and Delta Launch Complexes, Cape Canaveral Air Station

    NASA Technical Reports Server (NTRS)

    Oddy, Donna M.; Stolen, Eric D.; Schmalzer, Paul A.; Hensley, Melissa A.; Hall, Patrice; Larson, Vickie L.; Turek, Shannon R.

    1999-01-01

    Launches of Delta, Atlas, and Titan rockets from Cape Canaveral Air Station (CCAS) have potential environmental effects. These could occur from direct impacts of launches or indirectly from habitat alterations. This report summarizes a three-year study (1 995-1 998) characterizing the environment, with particular attention to threatened and endangered species, near Delta, Atlas, and Titan launch facilities. Cape Canaveral has been modified by Air Force development and by 50 years of fire suppression. The dominant vegetation type around the Delta and Atlas launch complexes is coastal oak hammock forest. Oak scrub is the predominant upland vegetation type near the Titan launch complexes. Compositionally, these are coastal scrub communities that has been unburned for > 40 years and have developed into closed canopy, low-stature forests. Herbaceous vegetation around active and inactive facilities, coastal strand and dune vegetation near the Atlantic Ocean, and exotic vegetation in disturbed areas are common. Marsh and estuarine vegetation is most common west of the Titan complexes. Launch effects to vegetation include scorch, acid, and particulate deposition. Discernable, cumulative effects are limited to small areas near the launch complexes. Water quality samples were collected at the Titan, Atlas, and Delta launch complexes in September 1995 (wet season) and January 1996 (dry season). Samples were analyzed for heavy metals, chloride, total organic carbon, calcium, iron, magnesium, sodium, total alkalinity, pH, and conductivity. Differences between fresh, brackish, and saline surface waters were evident. The natural buffering capacity of the environment surrounding the CCAS launch complexes is adequate for neutralizing acid deposition in rainfall and launch deposition. Populations of the Florida Scrub-Jay (Aphelocoma coerulescens), a Federally-listed, threatened species, reside near the launch complexes. Thirty-seven to forty-one scrub-jay territories were located at

  4. Environmental Conditions and Threatened and Endangered Species Populations near the Titain, Atlas, and Delta Launch Complexes, Cape Canaveral Air Station

    NASA Technical Reports Server (NTRS)

    Oddy, Donna M.; Stolen, Eric D.; Schmalzer, Paul A.; Hensley, Melissa A.; Hall, Patrice; Larson, Vickie L.; Turek, Shannon R.

    1999-01-01

    Launches of Delta, Atlas, and Titan rockets from Cape Canaveral Air Station (CCAS) have potential environmental effects. These could occur from direct impacts of launches or indirectly from habitat alterations. This report summarizes a three-year study (1995-1998) characterizing the environment, with particular attention to threatened and endangered species, near Delta, Atlas, and Titan launch facilities. Cape Canaveral has been modified by Air Force development and by 50 years of fire suppression. The dominant vegetation type around the Delta and Atlas launch complexes is coastal oak hammock forest. Oak scrub is the predominant upland vegetation type near the Titan launch complexes. Compositionally, these are coastal scrub communities that has been unburned for greater than 40 years and have developed into closed canopy, low-stature forests. Herbaceous vegetation around active and inactive facilities, coastal strand and dune vegetation near the Atlantic Ocean, and exotic vegetation in disturbed areas are common. Marsh and estuarine vegetation is most common west of the Titan complexes. Launch effects to vegetation include scorch, acid, and particulate deposition. Discernable, cumulative effects are limited to small areas near the launch complexes. Water quality samples were collected at the Titan, Atlas, and Delta launch complexes in September 1995 (wet season) and January 1996 (dry season). Samples were analyzed for heavy metals, chloride, total organic carbon, calcium, iron, magnesium, sodium, total alkalinity, pH, and conductivity. Differences between fresh, brackish, and saline surface waters were evident. The natural buffering capacity of the environment surrounding the CCAS launch complexes is adequate for neutralizing acid deposition in rainfall and launch deposition. Populations of the Florida Scrub-Jay (Aphelocoma coerulescens), a Federally- listed, threatened species, reside near the launch complexes. Thirty-seven to forty-one scrub-jay territories were

  5. 45. CAPE COD AIR STATION PAVE PAWS FACILITY BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. CAPE COD AIR STATION PAVE PAWS FACILITY - BUILDING ELEVATION VIEW WITH BUILDING METAL SIDING BEING APPLIED ON "A" FACE (LEFT) AND "B" FACE (RIGHT). NOTE THAT NORTH IS GENERALLY TO RIGHT OF VIEW. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  6. 46. CAPE COD AIR STATION PAVE PAWS FACILITY BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. CAPE COD AIR STATION PAVE PAWS FACILITY - BUILDING ELEVATION VIEW WITH ALL METAL SIDING INSTALLED AND WITH EMITTER/ANTENNA ARRAY SYSTEM NEARING OCMPLETION ON "B" FACE (RIGHT). VIEW ALSO SHOWS TRAVELING "CLEANING" SYSTEM ON "B" FACE - NOW REMOVED. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  7. DEMONSTRATION OF IN SITU DEHALOGENATION OF DNAPL THROUGH INJECTION OF EMULSIFIED ZERO-VALIENT IRON AT LAUNCH COMPLEX 34 IN CAPE CANAVERAL AIR FORCE STATION, FLORIDA

    EPA Science Inventory

    The purpose of this project was to evaluate the technical and cost performance of emulsified zero-valent iron (EZVI) technology when applied to DNAPL contaminants in the saturated zone. This demonstration was conducted at Launch Complex 34, Cape Canaveral Air Force Station, FL, w...

  8. 47. CAPE COD AIR STATION PAVE PAWS FACILITY AERIAL VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    47. CAPE COD AIR STATION PAVE PAWS FACILITY AERIAL VIEW OF "A" FACE (LEFT) WITH CLEANING SYSTEM INSTALLED (NOW REMOVED) AND "B" FACE (RIGHT) WITH CONSTRUCTION CRANE IN USE. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  9. Objective Lightning Forecasting at Kennedy Space Center and Cape Canaveral Air Force Station using Cloud-to-Ground Lightning Surveillance System Data

    NASA Technical Reports Server (NTRS)

    Lambert, Winfred; Wheeler, Mark; Roeder, William

    2005-01-01

    The 45th Weather Squadron (45 WS) at Cape Canaveral Air-Force Station (CCAFS)ln Florida issues a probability of lightning occurrence in their daily 24-hour and weekly planning forecasts. This information is used for general planning of operations at CCAFS and Kennedy Space Center (KSC). These facilities are located in east-central Florida at the east end of a corridor known as 'Lightning Alley', an indication that lightning has a large impact on space-lift operations. Much of the current lightning probability forecast is based on a subjective analysis of model and observational data and an objective forecast tool developed over 30 years ago. The 45 WS requested that a new lightning probability forecast tool based on statistical analysis of more recent historical warm season (May-September) data be developed in order to increase the objectivity of the daily thunderstorm probability forecast. The resulting tool is a set of statistical lightning forecast equations, one for each month of the warm season, that provide a lightning occurrence probability for the day by 1100 UTC (0700 EDT) during the warm season.

  10. Geomorphic origin of Merritt Island-Cape Canaveral, Florida, USA: A paleodelta of the reversed St. Johns River?

    NASA Astrophysics Data System (ADS)

    Adams, Peter N.

    2018-04-01

    The Merritt Island-Cape Canaveral (MICCSC) sedimentary complex consists of a series of adjacent, non-conformable, beach ridge sets that suggest a multi-phase constructional history, but the feature's geomorphic and sedimentary origins are not well-understood. In spite of its notable sedimentary volume (surface area = 1200 km2), the MICCSC lacks a clear sediment source, or supply mechanism, to explain its presence today. Previously published U/Th, radiocarbon and OSL dates indicate that beach ridge deposition was active during MIS 5 (130-80 ka) on Merritt Island, but has occurred over a shorter, younger time interval on Cape Canaveral proper (6 ka to present). In this paper, it is proposed that the MICCSC is an abandoned paleodelta whose fluvial source provided a sediment supply sufficient for coastal progradation. Although the MICCSC, today, does not receive an appreciable sediment supply, the nearly 23,000 km2 drainage basin of the St. Johns River may well have provided such a sediment supply during MIS 5 times. This low-gradient fluvial system currently empties to the Atlantic Ocean some 200 km north of the MICCSC (near Jacksonville, Florida) but may have flowed southward during the time of MICCSC sedimentary construction, then experienced flow reversal since MIS 5 times. Three possible uplift mechanisms are proposed to explain the northward down-tilting that may have reversed the flow direction of the St. Johns, abandoning deltaic construction of the MICCSC: (1) karst-driven, flexural isostatic uplift in response to carbonate rock dissolution in central Florida, (2) glacio-hydro-isostatic tilting/back-tilting cycles during loading and unloading of the Laurentide ice sheet during the Pleistocene, and (3) mantle convection-driven dynamic topography operating within southeastern North America since the Pliocene. This example testifies to the sensitivity of low-gradient, low-relief landscapes to various sources of uplift, be they isostatic or otherwise.

  11. Report from ILEWG and Cape Canaveral Lunar Declaration 2008

    NASA Astrophysics Data System (ADS)

    Foing, B. H.

    2009-04-01

    We shall report on the ILEWG charter, goals and activities, on ICEUM "lunar declarations" and follow-up activities, with focus on societal questions, and the Cape Canaveral Lunar Declaration 2008. ILEWG charter: ILEWG , the International Lunar Exploration Working Group is a public forum created in 1994, sponsored by the world's space agencies to support "international cooperation towards a world strategy for the exploration and utilization of the Moon - our natural satellite". The charter of ILEWG is: - To develop an international strategy for the exploration of the Moon - To establish a forum and mechanisms for the communication and coordination of activities - To implement international coordination and cooperation - In order to facilitate communication among all interested parties ILEWG agrees to establish an electronic communication network for exchange of science, technology and programmatic information related to lunar activities ILEWG meets regularly, at least, once a year, and leads the organization of an International Conference in order to discuss the state of lunar exploration. Formal reports are given at COSPAR meetings and to space agencies. ILEWG is sponsored by the world's space agencies and is intended to serve three relevant groups: - actual members of the ILEWG, ie delegates and repre-sentatives of the participating Space Agencies and organizations - allowing them to discuss and possibly harmonize their draft concepts and plans - team members of the relevant space projects - allowing them to coordinate their internal work according to the guidelines provided by the Charter of the ILEWG - members of the general public and of the Lunar Explorer's Society who are interested and wish to be informed on the progress of the Moon projects and possibly contribute their own ideas ILEWG activities and working groups: ILEWG task groups include science, technology, human aspects, socio-economics, young explorers and outreach, programmatics, roadmaps and

  12. KENNEDY SPACE CENTER, FLA. - One of four rudder speed brake actuators arrives at Cape Canaveral Air Force Station. The actuators, to be installed on the orbiter Discovery, are being X-rayed at the Radiographic High-Energy X-ray Facility to determine if the gears were installed correctly. Discovery has been assigned to the first Return to Flight mission, STS-114, a logistics flight to the International Space Station.

    NASA Image and Video Library

    2004-03-08

    KENNEDY SPACE CENTER, FLA. - One of four rudder speed brake actuators arrives at Cape Canaveral Air Force Station. The actuators, to be installed on the orbiter Discovery, are being X-rayed at the Radiographic High-Energy X-ray Facility to determine if the gears were installed correctly. Discovery has been assigned to the first Return to Flight mission, STS-114, a logistics flight to the International Space Station.

  13. 17. CAPE COD AIR STATION PAVE PAWS FACILITY AERIAL VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. CAPE COD AIR STATION PAVE PAWS FACILITY AERIAL VIEW WITH PROJECT NEARING COMPLETION. VIEW SHOWS "A" FACE (LEFT) AND "B" FACE OF RADAR ARRAY SYSTEM. NOTE THAT NORTH IS GENERALLY TO RIGHT OF VIEW. - Cape Cod Air Station, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  14. Severe Weather Tool using 1500 UTC Cape Canaveral Air Force Station Soundings

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III

    2013-01-01

    People and property at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) are at risk when severe weather occurs. Strong winds, hail and tornadoes can injure individuals and cause costly damage to structures if not properly protected. NASA's Launch Services Program and Ground Systems Development and Operations Program and other KSC programs use the daily and weekly severe weather forecasts issued by the 45th Weather Squadron (45 WS) to determine if they need to limit an activity such as working on gantries, or protect property such as a vehicle on a pad. The 45 WS requested the Applied Meteorology Unit (AMU) develop a warm season (May-September) severe weather tool for use in the Meteorological Interactive Data Display System (MIDDS) based on the late morning, 1500 UTC (1100 local time), CCAFS (XMR) sounding. The 45 WS frequently makes decisions to issue a severe weather watch and other severe weather warning support products to NASA and the 45th Space Wing in the late morning, after the 1500 UTC sounding. The results of this work indicate that certain stability indices based on the late morning XMR soundings can depict differences between days with reported severe weather and days with no reported severe weather. The AMU determined a frequency of reported severe weather for the stability indices and implemented an operational tool in MIDDS.

  15. PRESIDENT KENNEDY TOURS CAPE CANAVERAL FACILITIES WITH DR. KURT H. DEBUS

    NASA Technical Reports Server (NTRS)

    1962-01-01

    President Kennedy and Dr. Kurt Debus head for the car that will take them on a tour of our Nation's space facilities. The President, Vice President, and the Space Committee are among those being briefed at four locations on our space program. The tour includes Marshall Space Flight Center at Huntsville, Alabama, Atlantic Missile Range, Manned Space Flight Center, Houston, Texas, and McDonnell Aircraft at St. Louis, Mo.

  16. Environmental Assessment for the Operation and Launch of the Falcon 1 and Falcon 9 Space Vehicles at Cape Canaveral Air Force Station Florida

    DTIC Science & Technology

    2007-11-01

    barrier island. The Banana River separates CCAFS from KSC to the west. The Port of Cape Canaveral adjoins CCAFS to the south. CCAFS’s eastern boundary...3) which is located at the northern end of CCAFS, approximately 3,000 ft west of the Atlantic Ocean and 0.75 miles east of the Banana River. The...commercial and industrial activities. The major industrial area is located in the center of the western portion of CCAFS, near the Banana River, and is

  17. Final Environmental Assessment for the Skid Strip Area Development Plan at Cape Canaveral Air Force Station Florida

    DTIC Science & Technology

    2009-07-01

    including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215...Canaveral Air Force Station (CCAFS) Skid Strip. Since the facility no longer operates as a missile skid strip, it is referred to as the "Airfield...construction of a new 65 foot tall control tower; construction of a new Airfield Manager (AM) Operations Building that would adjoin the new tower; and

  18. KENNEDY SPACE CENTER, FLA. - Workers at Cape Canaveral Air Force Station place one of four rudder speed brake actuators onto a pallet for X-ray. The actuators, to be installed on the orbiter Discovery, are being X-rayed at the Radiographic High-Energy X-ray Facility to determine if the gears were installed correctly. Discovery has been assigned to the first Return to Flight mission, STS-114, a logistics flight to the International Space Station.

    NASA Image and Video Library

    2004-03-08

    KENNEDY SPACE CENTER, FLA. - Workers at Cape Canaveral Air Force Station place one of four rudder speed brake actuators onto a pallet for X-ray. The actuators, to be installed on the orbiter Discovery, are being X-rayed at the Radiographic High-Energy X-ray Facility to determine if the gears were installed correctly. Discovery has been assigned to the first Return to Flight mission, STS-114, a logistics flight to the International Space Station.

  19. Using C-Band Dual-Polarization Radar Signatures to Improve Convective Wind Forecasting at Cape Canaveral Air Force Station and NASA Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Amiot, Corey G.; Carey, Lawrence D.; Roeder, William P.; McNamara, Todd M.; Blakeslee, Richard J.

    2017-01-01

    The United States Air Force's 45th Weather Squadron (45WS) is the organization responsible for monitoring atmospheric conditions at Cape Canaveral Air Force Station and NASA Kennedy Space Center (CCAFS/KSC) and issuing warnings for hazardous weather conditions when the need arises. One such warning is issued for convective wind events, for which lead times of 30 and 60 minutes are desired for events with peak wind gusts of 35 knots or greater (i.e., Threshold-1) and 50 knots or greater (i.e., Threshold-2), respectively (Roeder et al. 2014).

  20. Blue Origin Facility - Construction Progress

    NASA Image and Video Library

    2017-03-21

    Construction is progressing on Blue Origin's 750,000-square-foot facility being built at Exploration Park on NASA Kennedy Space Center property in Florida. Blue Origin will use the factory to manufacture its two-stage super-heavy-lift New Glenn launch vehicle and launch the vehicles from Space Launch Complex 46 at Cape Canaveral Air Force Station.

  1. Update to the Lightning Probability Forecast Equations at Kennedy Space Center/Cape Canaveral Air Force Station, Florida

    NASA Technical Reports Server (NTRS)

    Lambert, Winifred; Roeder, William

    2007-01-01

    This conference presentation describes the improvement of a set of lightning probability forecast equations that are used by the 45th Weather Squadron forecasters for their daily 1100 UTC (0700 EDT) weather briefing during the warm season months of May-September. This information is used for general scheduling of operations at Cape Canaveral Air Force Station and Kennedy Space Center. Forecasters at the Spaceflight Meteorology Group also make thunderstorm forecasts during Shuttle flight operations. Five modifications were made by the Applied Meteorology Unit: increased the period of record from 15 to 17 years, changed the method of calculating the flow regime of the day, calculated a new optimal layer relative humidity, used a new smoothing technique for the daily climatology, and used a new valid area. The test results indicated that the modified equations showed and increase in skill over the current equations, good reliability, and an ability to distinguish between lightning and non-lightning days.

  2. Update to the Lightning Probability Forecast Equations at Kennedy Space Center/Cape Canaveral Air Force Station, Florida

    NASA Technical Reports Server (NTRS)

    Lambert, Winifred; Roeder, William

    2007-01-01

    This conference presentation describes the improvement of a set of lightning probability forecast equations that are used by the 45th Weather Squadron forecasters for their daily 1100 UTC (0700 EDT) weather briefing during the warm season months of May- September. This information is used for general scheduling of operations at Cape Canaveral Air Force Station and Kennedy Space Center. Forecasters at the Spaceflight Meteorology Group also make thunderstorm forecasts during Shuttle flight operations. Five modifications were made by the Applied Meteorology Unit: increased the period of record from 15 to 17 years, changed the method of calculating the flow regime of the day, calculated a new optimal layer relative humidity, used a new smoothing technique for the daily climatology, and used a new valid area. The test results indicated that the modified equations showed and increase in skill over the current equations, good reliability, and an ability to distinguish between lightning and non-lightning days.

  3. Update to the Objective Lightning Probability Forecast Tool in Use at Cape Canaveral Air Force Station, Florida

    NASA Technical Reports Server (NTRS)

    Lambert, Winifred; Roeder, William

    2008-01-01

    This conference presentation describes the improvement of a set of lightning probability forecast equations that are used by the 45th Weather Squadron forecasters for their daily 1100 UTC (0700 EDT) weather briefing during the warm season months of May-September. This information is used for general scheduling of operations at Cape Canaveral Air Force Station and Kennedy Space Center. Forecasters at the Spaceflight Meteorology Group also make thunderstorm forecasts during Shuttle flight operations. Five modifications were made by the Applied Meteorology Unit: increased the period of record from 15 to 17 years, changed the method of calculating the flow regime of the day, calculated a new optimal layer relative humidity, used a new smoothing technique for the daily climatology, and used a new valid area. The test results indicated that the modified equaitions showed and increase in skill over the current equations, good reliability, and an ability to distinguish between lightning and non-lightning days.

  4. Update to the Objective Lightning Probability Forecast Tool in use at Cape Canaveral Air Force Station, Florida

    NASA Technical Reports Server (NTRS)

    Lambert, Winifred; Roeder, William

    2013-01-01

    This conference poster describes the improvement of a set of lightning probability forecast equations that are used by the 45th Weather Squadron forecasters for their daily 1100 UTC (0700 EDT) weather briefing during the warm season months of May-September. This information is used for general scheduling of operations at Cape Canaveral Air Force Station and Kennedy Space Center. Forecasters at the Spaceflight Meteorology Group also make thunderstorm forecasts during Shuttle flight operations. Five modifications were made by the Applied Meteorology Unit: increased the period of record from 15 to 17 years, changed the method of calculating the flow regime of the day, calculated a new optimal layer relative humidity, used a new smoothing technique for the daily climatology, and used a new valid area. The test results indicated that the modified equations showed and increase in skill over the current equations, good reliability and an ability to distinguish between lightning and non-lightning days.

  5. KENNEDY SPACE CENTER, FLA. - Workers calibrate a tracking telescope, part of the Distant Object Attitude Measurement System (DOAMS), located in Cocoa Beach, Fla. The telescope provides optical support for launches from KSC and Cape Canaveral.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Workers calibrate a tracking telescope, part of the Distant Object Attitude Measurement System (DOAMS), located in Cocoa Beach, Fla. The telescope provides optical support for launches from KSC and Cape Canaveral.

  6. A Peak Wind Probability Forecast Tool for Kennedy Space Center and Cape Canaveral Air Force Station

    NASA Technical Reports Server (NTRS)

    Crawford, Winifred; Roeder, William

    2008-01-01

    This conference abstract describes the development of a peak wind forecast tool to assist forecasters in determining the probability of violating launch commit criteria (LCC) at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) in east-central Florida. The peak winds are an important forecast element for both the Space Shuttle and Expendable Launch Vehicle (ELV) programs. The LCC define specific peak wind thresholds for each launch operation that cannot be exceeded in order to ensure the safety of the vehicle. The 45th Weather Squadron (45 WS) has found that peak winds are a challenging parameter to forecast, particularly in the cool season months of October through April. Based on the importance of forecasting peak winds, the 45 WS tasked the Applied Meteorology Unit (AMU) to develop a short-range peak-wind forecast tool to assist in forecasting LCC violatioas.The tool will include climatologies of the 5-minute mean end peak winds by month, hour, and direction, and probability distributions of the peak winds as a function of the 5-minute mean wind speeds.

  7. Modifications to the Objective Lightning Probability Forecast Tool at Kennedy Space Center/Cape Canaveral Air Force Station, Florida

    NASA Technical Reports Server (NTRS)

    Crawford, Winifred; Roeder, William

    2010-01-01

    The 45th Weather Squadron (45 WS) at Cape Canaveral Air Force Station (CCAFS) includes the probability of lightning occurrence in their 24-Hour and Weekly Planning Forecasts, briefed at 0700 EDT for daily operations planning on Kennedy Space Center (KSC) and CCAFS. This forecast is based on subjective analyses of model and observational data and output from an objective tool developed by the Applied Meteorology Unit (AMU). This tool was developed over two phases (Lambert and Wheeler 2005, Lambert 2007). It consists of five equations, one for each warm season month (May-Sep), that calculate the probability of lightning occurrence for the day and a graphical user interface (GUI) to display the output. The Phase I and II equations outperformed previous operational tools by a total of 56%. Based on this success, the 45 WS tasked the AMU with Phase III to improve the tool further.

  8. KENNEDY SPACE CENTER, FLA. - A worker calibrates a tracking telescope, part of the Distant Object Attitude Measurement System (DOAMS), located in Cocoa Beach, Fla. The telescope provides optical support for launches from KSC and Cape Canaveral.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - A worker calibrates a tracking telescope, part of the Distant Object Attitude Measurement System (DOAMS), located in Cocoa Beach, Fla. The telescope provides optical support for launches from KSC and Cape Canaveral.

  9. Finishing Touches for Space Infrared Telescope Facility (SIRTF)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Technicians put final touches on NASA's Space Infrared Telescope Facility at Lockheed Martin Aeronautics in Sunnyvale, Calif. It will soon be shipped to Cape Canaveral, Florida, where it is scheduled to launch on April 15. The mission will observe the coldest, oldest and most dust-obscured objects in the universe.

  10. KENNEDY SPACE CENTER, FLA. - An X-ray machine is in place to take images of four rudder speed brake actuators to be installed on the orbiter Discovery. The actuators are being X-rayed at the Cape Canaveral Air Force Station’s Radiographic High-Energy X-ray Facility to determine if the gears were installed correctly. Discovery has been assigned to the first Return to Flight mission, STS-114, a logistics flight to the International Space Station.

    NASA Image and Video Library

    2004-03-08

    KENNEDY SPACE CENTER, FLA. - An X-ray machine is in place to take images of four rudder speed brake actuators to be installed on the orbiter Discovery. The actuators are being X-rayed at the Cape Canaveral Air Force Station’s Radiographic High-Energy X-ray Facility to determine if the gears were installed correctly. Discovery has been assigned to the first Return to Flight mission, STS-114, a logistics flight to the International Space Station.

  11. Investigating the Geomorphic Behavior of the Cape Canaveral Coast Through High-Resolution Beach Monitoring, Sediment Analysis, Oceanographic Observations, and Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Adams, P. N.; Jaeger, J. M.; MacKenzie, R. A.; Kline, S. W.; Maibauer, B. J.; Plant, N. G.; Gravens, M. B.; Pierro, T. P.; Shaffer, J.

    2011-12-01

    The salient of Cape Canaveral interrupts a relatively straight, sandy, passive margin coastline that extends nearly 400 km from the St. Johns River mouth to the St. Lucie Inlet along the Florida Atlantic coast. OSL dating indicates that the modern cape has been prograding rapidly since the LGM and subtle topographic features, inland from the modern cape, suggest that this salient has persisted over several sea level cycles since the early Pleistocene. Dynamic shoreline change over the past decade at the Kennedy Space Center (KSC) is threatening critical NASA infrastructure and has prompted officials to develop a mitigation strategy through a partnership among researchers from the U.S. Geological Survey, the U.S. Army Corps of Engineers, private coastal engineering firms, and the University of Florida. Since May 2009, the research team has assembled data on decadal to event-scale shoreline change (dGPS), beach and nearshore morphodynamics (dGPS and Argus), beach sedimentary character (grain size analysis), wave climate and transformation (ADCP), and inner shelf bathymetry (Echo Sounding) in an effort to assess dune vulnerability and flooding risk. In addition, SWAN numerical modeling simulations offer insight into the influence of irregular bathymetry (cape-associated shoals) on the alteration of spatial patterns of wave energy flux during a decadal shift in deep-water wave climate. Beach-fx, modeling of cross-shore profile evolution is being applied to evaluate the performance of alternative protective measures, estimate project costs, and examine ecological influences of the proposed alternative protective measures. By combining contemporaneous data of coastal geomorphic and sedimentary response to wave forcing with numerical model results that explore a range of climate scenarios, we aim to develop a useful understanding of the coastal geomorphic behavior at KSC that can be used to make a mitigation recommendation.

  12. Developing a Peak Wind Probability Forecast Tool for Kennedy Space Center and Cape Canaveral Air Force Station

    NASA Technical Reports Server (NTRS)

    Lambert, WInifred; Roeder, William

    2007-01-01

    This conference presentation describes the development of a peak wind forecast tool to assist forecasters in determining the probability of violating launch commit criteria (LCC) at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) in east-central Florida. The peak winds are an important forecast element for both the Space Shuttle and Expendable Launch Vehicle (ELV) programs. The LCC define specific peak wind thresholds for each launch operation that cannot be exceeded in order to ensure the safety of the vehicle. The 45th Weather Squadron (45 WS) has found that peak winds are a challenging parameter to forecast, particularly in the cool season months of October through April. Based on the importance of forecasting peak winds, the 45 WS tasked the Applied Meteorology Unit (AMU) to develop a short-range peak-wind forecast tool to assist in forecasting LCC violations. The tool will include climatologies of the 5-minute mean and peak winds by month, hour, and direction, and probability distributions of the peak winds as a function of the 5-minute mean wind speeds.

  13. Developing Empirical Lightning Cessation Forecast Guidance for the Cape Canaveral Air Force Station and Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Stano, Geoffrey T.; Fuelberg, Henry E.; Roeder, William P.

    2010-01-01

    This research addresses the 45th Weather Squadron's (45WS) need for improved guidance regarding lightning cessation at Cape Canaveral Air Force Station and Kennedy Space Center (KSC). KSC's Lightning Detection and Ranging (LDAR) network was the primary observational tool to investigate both cloud-to-ground and intracloud lightning. Five statistical and empirical schemes were created from LDAR, sounding, and radar parameters derived from 116 storms. Four of the five schemes were unsuitable for operational use since lightning advisories would be canceled prematurely, leading to safety risks to personnel. These include a correlation and regression tree analysis, three variants of multiple linear regression, event time trending, and the time delay between the greatest height of the maximum dBZ value to the last flash. These schemes failed to adequately forecast the maximum interval, the greatest time between any two flashes in the storm. The majority of storms had a maximum interval less than 10 min, which biased the schemes toward small values. Success was achieved with the percentile method (PM) by separating the maximum interval into percentiles for the 100 dependent storms.

  14. Statistical Short-Range Guidance for Peak Wind Forecasts on Kennedy Space Center/Cape Canaveral Air Force Station, Phase III

    NASA Technical Reports Server (NTRS)

    Crawford, Winifred

    2010-01-01

    This final report describes the development of a peak wind forecast tool to assist forecasters in determining the probability of violating launch commit criteria (LCC) at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). The peak winds are an important forecast element for both the Space Shuttle and Expendable Launch Vehicle (ELV) programs. The LCC define specific peak wind thresholds for each launch operation that cannot be exceeded in order to ensure the safety of the vehicle. The 45th Weather Squadron (45 WS) has found that peak winds are a challenging parameter to forecast, particularly in the cool season months of October through April. Based on the importance of forecasting peak winds, the 45 WS tasked the Applied Meteorology Unit (AMU) to develop a short-range peak-wind forecast tool to assist in forecasting LCC violations.The tool includes climatologies of the 5-minute mean and peak winds by month, hour, and direction, and probability distributions of the peak winds as a function of the 5-minute mean wind speeds.

  15. An Objective Verification of the North American Mesoscale Model for Kennedy Space Center and Cape Canaveral Air Force Station

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III

    2010-01-01

    The 45th Weather Squadron (45 WS) Launch Weather Officers use the 12-km resolution North American Mesoscale (NAM) model (MesoNAM) text and graphical product forecasts extensively to support launch weather operations. However, the actual performance of the model at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) has not been measured objectively. In order to have tangible evidence of model performance, the 45 WS tasked the Applied Meteorology Unit to conduct a detailed statistical analysis of model output compared to observed values. The model products are provided to the 45 WS by ACTA, Inc. and include hourly forecasts from 0 to 84 hours based on model initialization times of 00, 06, 12 and 18 UTC. The objective analysis compared the MesoNAM forecast winds, temperature and dew point, as well as the changes in these parameters over time, to the observed values from the sensors in the KSC/CCAFS wind tower network. Objective statistics will give the forecasters knowledge of the model's strength and weaknesses, which will result in improved forecasts for operations.

  16. Dental needs of intellectualy disabled children attending six special educational facilities in Cape Town.

    PubMed

    Roberts, T; Chetty, M; Kimmie-Dhansay, F; Fieggen, K; Stephen, L X G

    2016-05-25

    To assess the dental needs of a group of children with intellectual disability (ID) attending six special educational facilities in Cape Town, South Africa. Methods. This was a cross-sectional study based on a convenience sampling method. One hundred and fifty-seven children with ID attending six special educational facilities in Cape Town were included in the survey. Five schools were exclusively funded by the State and one school received additional private financial support. The oral examinations complied with guidelines drafted by Special Olympics Special Smiles programme and the Centers for Disease Control, USA. The most common dental disorders requiring management were gingival disease (69%) and untreated dental caries (68%). Almost 50% of the children had missing teeth. Twenty-nine percent needed orthodontic correction of malocclusion and 7% had structural abnormalities of their teeth that required either aesthetic or functional intervention. Fillings were evident in only 8% of the children. Females required more dental treatment than males. The dental needs of children with ID increased with age. There were no significant differences in the dental needs of children attending State-funded schools and those attending the single school that received additional financial assistance. The frequency of unmet dental needs of children with ID attending special educational facilities in Cape Town was high and the dental care available to them was minimal. The study highlights the need for improved dental services to ensure that optimal oral health is accessible to children with ID attending special educational facilities in Cape Town.

  17. KENNEDY SPACE CENTER, FLA. - Japanese girls from Urawa Daiichi Girls High School, Urawa, Japan, pose for a group photo on their visit to the Spacehab facility in Cape Canaveral, Fla. They were awarded the trip when their experiments were chosen to fly on mission STS-107. The group was also meeting with American students from Melbourne and Jacksonville, Fla. The girls planned a floral tribute at the STS-107 memorial stone at the facility. The National Space Development Agency of Japan (NASDA) and the KSC International Space Station and Payloads Processing Directorate worked with the NASA KSC Education Programs and University Research Division to coordinate the students’ visit.

    NASA Image and Video Library

    2003-08-20

    KENNEDY SPACE CENTER, FLA. - Japanese girls from Urawa Daiichi Girls High School, Urawa, Japan, pose for a group photo on their visit to the Spacehab facility in Cape Canaveral, Fla. They were awarded the trip when their experiments were chosen to fly on mission STS-107. The group was also meeting with American students from Melbourne and Jacksonville, Fla. The girls planned a floral tribute at the STS-107 memorial stone at the facility. The National Space Development Agency of Japan (NASDA) and the KSC International Space Station and Payloads Processing Directorate worked with the NASA KSC Education Programs and University Research Division to coordinate the students’ visit.

  18. Astronaut John Glenn - Blood Draw - Training - Cape

    NASA Image and Video Library

    1961-07-05

    S61-02579 (1961) --- Astronaut nurse Delores B. O'Hara, R.N., in the Aeromedical Laboratory at Cape Canaveral, Florida, takes a blood sample from Mercury astronaut John H. Glenn Jr. Photo credit: NASA

  19. Segment of Challenger's right wing unloaded at KSC Logistics Facility

    NASA Image and Video Library

    1986-04-18

    51L-10187 (18 April 1986) --- A 9'7" x 16' segment of Challenger's right wing is unloaded at the Logistics Facility after being off-loaded from the rescue and salvage ship USS Opportune. It was located and recovered by Navy divers from the Opportune about 12 nautical miles northeast of Cape Canaveral in 70 feet of water. Photo credit: NASA

  20. Peak Wind Forecasts for the Launch-Critical Wind Towers on Kennedy Space Center/Cape Canaveral Air Force Station, Phase IV

    NASA Technical Reports Server (NTRS)

    Crawford, Winifred

    2011-01-01

    This final report describes the development of a peak wind forecast tool to assist forecasters in determining the probability of violating launch commit criteria (LCC) at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). The peak winds arc an important forecast clement for both the Space Shuttle and Expendable Launch Vehicle (ELV) programs. The LCC define specific peak wind thresholds for each launch operation that cannot be exceeded in order to ensure the safety of the vehicle. The 45th Weather Squadron (45 WS) has found that peak winds are a challenging parameter to forecast, particularly in the cool season months of October through April. Based on the importance of forecasting peak winds, the 45 WS tasked the Applied Meteorology Unit (AMU) to update the statistics in the current peak-wind forecast tool to assist in forecasting LCC violations. The tool includes onshore and offshore flow climatologies of the 5-minute mean and peak winds and probability distributions of the peak winds as a function of the 5-minute mean wind speeds.

  1. MERCURY-ATLAS (MA)-6 - SUITING-UP - CAPE

    NASA Image and Video Library

    1962-02-20

    S64-14848 (20 Feb. 1962) --- Astronaut John H. Glenn Jr. dons spacesuit during preflight operations at Cape Canaveral, Feb. 20, 1962, the day he flew his Mercury-Atlas 6 spacecraft, Friendship 7, into orbital flight around Earth. Photo credit: NASA

  2. Monitoring Direct Effects of Delta, Atlas, and Titan Launches from Cape Canaveral Air Station

    NASA Technical Reports Server (NTRS)

    Schmalzer, Paul A.; Boyle, Shannon R.; Hall, Patrice; Oddy, Donna M.; Hensley, Melissa A.; Stolen, Eric D.; Duncan, Brean W.

    1998-01-01

    Launches of Delta, Atlas, and Titan rockets from Cape Canaveral Air Station (CCAS) have potential environmental effects that could arise from direct impacts of the launch exhaust (e.g., blast, heat), deposition of exhaust products of the solid rocket motors (hydrogen chloride, aluminum oxide), or other effects such as noise. Here we: 1) review previous reports, environmental assessments, and environmental impact statements for Delta, Atlas, and Titan vehicles and pad areas to clarity the magnitude of potential impacts; 2) summarize observed effects of 15 Delta, 22 Atlas, and 8 Titan launches; and 3) develop a spatial database of the distribution of effects from individual launches and cumulative effects of launches. The review of previous studies indicated that impacts from these launches can occur from the launch exhaust heat, deposition of exhaust products from the solid rocket motors, and noise. The principal effluents from solid rocket motors are hydrogen chloride (HCl), aluminum oxide (Al2O3), water (H2O), hydrogen (H2), carbon monoxide (CO), and carbon dioxide (CO2). The exhaust plume interacts with the launch complex structure and water deluge system to generate a launch cloud. Fall out or rain out of material from this cloud can produce localized effects from acid or particulate deposition. Delta, Atlas, and Titan launch vehicles differ in the number and size of solid rocket boosters and in the amount of deluge water used. All are smaller and use less water than the Space Shuttle. Acid deposition can cause damage to plants and animals exposed to it, acidify surface water and soil, and cause long-term changes to community composition and structure from repeated exposure. The magnitude of these effects depends on the intensity and frequency of acid deposition.

  3. The 2006 Cape Canaveral Air Force Station Range Reference Atmosphere Model Validation Study and Sensitivity Analysis to the National Aeronautics and Space Administration's Space Shuttle

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Burns, Lee; Merry, Carl; Harrington, Brian

    2008-01-01

    Atmospheric parameters are essential in assessing the flight performance of aerospace vehicles. The effects of the Earth's atmosphere on aerospace vehicles influence various aspects of the vehicle during ascent ranging from its flight trajectory to the structural dynamics and aerodynamic heatmg on the vehicle. Atmospheric databases charactenzing the wind and thermodynamic environments, known as Range Reference Atmospheres (RRA), have been developed at space launch ranges by a governmental interagency working group for use by aerospace vehicle programs. The National Aeronantics and Space Administration's (NASA) Space Shuttle Program (SSP), which launches from Kennedy Space Center, utilizes atmosphenc statistics derived from the Cape Canaveral Air Force Station Range Reference Atmosphere (CCAFS RRA) database to evaluate environmental constraints on various aspects of the vehlcle during ascent.

  4. An Objective Verification of the North American Mesoscale Model for Kennedy Space Center and Cape Canaveral Air Force Station

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III

    2010-01-01

    The 45th Weather Squadron (45 WS) Launch Weather Officers (LWO's) use the 12-km resolution North American Mesoscale (NAM) model (MesoNAM) text and graphical product forecasts extensively to support launch weather operations. However, the actual performance of the model at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) has not been measured objectively. In order to have tangible evidence of model performance, the 45 WS tasked the Applied Meteorology Unit (AMU; Bauman et ai, 2004) to conduct a detailed statistical analysis of model output compared to observed values. The model products are provided to the 45 WS by ACTA, Inc. and include hourly forecasts from 0 to 84 hours based on model initialization times of 00, 06, 12 and 18 UTC. The objective analysis compared the MesoNAM forecast winds, temperature (T) and dew pOint (T d), as well as the changes in these parameters over time, to the observed values from the sensors in the KSC/CCAFS wind tower network shown in Table 1. These objective statistics give the forecasters knowledge of the model's strengths and weaknesses, which will result in improved forecasts for operations.

  5. 9. Photocopy of engineering drawing. LC17 LOX STORAGE TANK PAD: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Photocopy of engineering drawing. LC-17 LOX STORAGE TANK PAD: ELECTRICAL, OCTOBER 1966. - Cape Canaveral Air Station, Launch Complex 17, Facility 28405, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  6. 5. GENERAL VIEW OF LAUNCHER BUILDING 28402 SHOWING LAUNCH DECK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. GENERAL VIEW OF LAUNCHER BUILDING 28402 SHOWING LAUNCH DECK AT RIGHT; VIEW TO NORTHEAST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28402, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  7. 9. Photocopy of engineering drawing. SECURITY UPGRADES, SLC17: PLANS, SECTIONS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Photocopy of engineering drawing. SECURITY UPGRADES, SLC17: PLANS, SECTIONS, AND DETAILS, JANUARY 1993. - Cape Canaveral Air Station, Launch Complex 17, Facility 28425, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  8. 8. Photocopy of engineering drawing. SECURITY UPGRADES, SLC17: ELEVATIONS AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Photocopy of engineering drawing. SECURITY UPGRADES, SLC17: ELEVATIONS AND BUILDING SECTION, JULY 1992. - Cape Canaveral Air Station, Launch Complex 17, Facility 28425, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  9. 14. Photocopy of engineering drawing. PROJECT WS315A: INSTRUMENTATION TRENCH DETAILSSTRUCTURAL, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Photocopy of engineering drawing. PROJECT WS-315A: INSTRUMENTATION TRENCH DETAILS-STRUCTURAL, 17, APRIL 1956. - Cape Canaveral Air Station, Launch Complex 17, Facility 28401, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  10. 26. DETAIL OF CONCRETE PIPE SUPPORTS LEADING TO NEW LIQUID ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. DETAIL OF CONCRETE PIPE SUPPORTS LEADING TO NEW LIQUID HYDROGEN TANK FARM; VIEW TO WEST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28402, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  11. 29. GENERAL VIEW OF ELECTRICAL EQUIPMENT PROTECTED BY CONCRETE AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. GENERAL VIEW OF ELECTRICAL EQUIPMENT PROTECTED BY CONCRETE AND EARTH BLAST BERM; VIEW TO SOUTHEAST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28402, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  12. 28. GENERAL VIEW OF ELECTRICAL EQUIPMENT PROTECTED BY CONCRETE AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. GENERAL VIEW OF ELECTRICAL EQUIPMENT PROTECTED BY CONCRETE AND EARTH BLAST BERM; VIEW TO NORTHEAST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28402, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  13. 9. Photocopy of engineering drawing. LC 17 HIGH PRESSURE GAS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Photocopy of engineering drawing. LC 17 HIGH PRESSURE GAS INSTALLATION: SITE & GRADING PLAN, APRIL 1969. - Cape Canaveral Air Station, Launch Complex 17, Facility 28419, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  14. KENNEDY SPACE CENTER, FLA. - The master assembler, crane crew, removes a five-meter telescope in Cocoa Beach, Fla., for repair. The tracking telescope is part of the Distant Object Attitude Measurement System (DOAMS) that provides optical support for launches from KSC and Cape Canaveral.

    NASA Image and Video Library

    2003-08-25

    KENNEDY SPACE CENTER, FLA. - The master assembler, crane crew, removes a five-meter telescope in Cocoa Beach, Fla., for repair. The tracking telescope is part of the Distant Object Attitude Measurement System (DOAMS) that provides optical support for launches from KSC and Cape Canaveral.

  15. 4. GENERAL VIEW SHOWING EARTHEN BERM AROUND STRUCTURE. NOTE INSTRUMENTATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. GENERAL VIEW SHOWING EARTHEN BERM AROUND STRUCTURE. NOTE INSTRUMENTATION TRENCH IN FOREGROUND RIGHT; VIEW TO WEST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28401, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  16. 6. VIEW OF LAUNCHER BUILDING 28402 SHOWING STEEL STAIRS LEADING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW OF LAUNCHER BUILDING 28402 SHOWING STEEL STAIRS LEADING UP TO LAUNCH DECK; VIEW TO NORTHWEST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28402, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  17. 4. GENERAL VIEW OF LAUNCH PAD B FROM LAUNCH PAD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. GENERAL VIEW OF LAUNCH PAD B FROM LAUNCH PAD A MOBILE SERVICE STRUCTURE; VIEW TO SOUTH. - Cape Canaveral Air Station, Launch Complex 17, Facility 28402, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  18. 24. GENERAL VIEW OF NEW CONCRETE BLAST BERM FOR NEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. GENERAL VIEW OF NEW CONCRETE BLAST BERM FOR NEW LIQUID HYDROGEN TANK FARM; VIEW TO EAST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28402, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  19. 27. Photocopy of engineering drawing. PROJECT WS315A: DISPOSAL PONDS AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. Photocopy of engineering drawing. PROJECT WS-315A: DISPOSAL PONDS AND DRAINAGE-STRUCTURAL AND MECHANICAL, 1969. - Cape Canaveral Air Station, Launch Complex 17, Facility 28501, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  20. 5. DETAIL OF MAIN LIQUID NITROGEN TANK, WEST SIDE WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. DETAIL OF MAIN LIQUID NITROGEN TANK, WEST SIDE WITH METERS, VALVES AND GAUGES; VIEW TO SOUTHEAST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28419, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  1. 26. Photocopy of engineering drawing. PROJECT WS315A: FLUME AND RETENTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Photocopy of engineering drawing. PROJECT WS-315A: FLUME AND RETENTION PONDS-STRUCTURAL AND MECHANICAL, APRIL 1956. - Cape Canaveral Air Station, Launch Complex 17, Facility 28501, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  2. 7. Photocopy of engineering drawing. PROJECT WS315A HELIUM STORAGE AREA: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Photocopy of engineering drawing. PROJECT WS-315A HELIUM STORAGE AREA: PLAN AND DETAILS-MECHANICAL, APRIL 1956. - Cape Canaveral Air Station, Launch Complex 17, Facility 28419, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  3. 32. DETAIL VIEW OF CAMERA PIT SOUTH OF LAUNCH PAD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. DETAIL VIEW OF CAMERA PIT SOUTH OF LAUNCH PAD WITH CAMERA AIMED AT LAUNCH DECK; VIEW TO NORTHEAST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28402, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  4. 5. Photocopy of engineering drawing. LC17 HIGH PRESSURE GAS INSTALLATION: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Photocopy of engineering drawing. LC-17 HIGH PRESSURE GAS INSTALLATION: PLANS AND DETAILS (CHANGE HOUSE)-STRUCTURAL, APRIL 1969. - Cape Canaveral Air Station, Launch Complex 17, Facility 28409, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  5. Forecasting Cool Season Daily Peak Winds at Kennedy Space Center and Cape Canaveral Air Force Station

    NASA Technical Reports Server (NTRS)

    Barrett, Joe, III; Short, David; Roeder, William

    2008-01-01

    The expected peak wind speed for the day is an important element in the daily 24-Hour and Weekly Planning Forecasts issued by the 45th Weather Squadron (45 WS) for planning operations at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). The morning outlook for peak speeds also begins the warning decision process for gusts ^ 35 kt, ^ 50 kt, and ^ 60 kt from the surface to 300 ft. The 45 WS forecasters have indicated that peak wind speeds are a challenging parameter to forecast during the cool season (October-April). The 45 WS requested that the Applied Meteorology Unit (AMU) develop a tool to help them forecast the speed and timing of the daily peak and average wind, from the surface to 300 ft on KSC/CCAFS during the cool season. The tool must only use data available by 1200 UTC to support the issue time of the Planning Forecasts. Based on observations from the KSC/CCAFS wind tower network, surface observations from the Shuttle Landing Facility (SLF), and CCAFS upper-air soundings from the cool season months of October 2002 to February 2007, the AMU created multiple linear regression equations to predict the timing and speed of the daily peak wind speed, as well as the background average wind speed. Several possible predictors were evaluated, including persistence, the temperature inversion depth, strength, and wind speed at the top of the inversion, wind gust factor (ratio of peak wind speed to average wind speed), synoptic weather pattern, occurrence of precipitation at the SLF, and strongest wind in the lowest 3000 ft, 4000 ft, or 5000 ft. Six synoptic patterns were identified: 1) surface high near or over FL, 2) surface high north or east of FL, 3) surface high south or west of FL, 4) surface front approaching FL, 5) surface front across central FL, and 6) surface front across south FL. The following six predictors were selected: 1) inversion depth, 2) inversion strength, 3) wind gust factor, 4) synoptic weather pattern, 5) occurrence of

  6. 41. Photocopy of engineering drawing. LC17B LONG TANK DELTA UPBUILD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. Photocopy of engineering drawing. LC-17B LONG TANK DELTA UPBUILD UMBILICAL MAST: ELEVATIONS AND DETAILS, MECHANICAL, APRIL 1969 - Cape Canaveral Air Station, Launch Complex 17, Facility 28402, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  7. 21. Photocopy of engineering drawing. COMPLEX 17A AND B: SERVICE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Photocopy of engineering drawing. COMPLEX 17A AND B: SERVICE STRUCTURE SPACECRAFT AREA-MECHANICAL, ELEVATIONS, SHEET 4, DECEMBER 1965. - Cape Canaveral Air Station, Launch Complex 17, Facility 28417, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  8. 9. DETAIL OF UMBILICAL MAST BASE WITH STEEL STOPS AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. DETAIL OF UMBILICAL MAST BASE WITH STEEL STOPS AT EAST END OF MOBILE SERVICE STRUCTURE RAIL; VIEW TO NORTHWEST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28501, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  9. 6. Photocopy of engineering drawing. LC17 HIGH PRESSURE GAS INSTALLATION: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Photocopy of engineering drawing. LC-17 HIGH PRESSURE GAS INSTALLATION: PLANS, SCHEDULES AND ELEVATIONS (CHANGE HOUSE)-ARCHITECTURAL, APRIL 1969. - Cape Canaveral Air Station, Launch Complex 17, Facility 28409, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  10. 7. DETAIL AT SOUTHEAST 'CORNER' SHOWING CONCRETE FILLED BAGS USED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. DETAIL AT SOUTHEAST 'CORNER' SHOWING CONCRETE FILLED BAGS USED AS EXPLOSION BARRIER TO BLOCKHOUSE TUNNEL ENTRANCE; VIEW TO NORTH. - Cape Canaveral Air Station, Launch Complex 17, Facility 28401, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  11. The 2006 Cape Canaveral Air Force Station Range Reference Atmosphere Model Validation Study and Sensitivity Analysis to the National Aeronautics and Space Administration's Space Shuttle

    NASA Technical Reports Server (NTRS)

    Burns, Lee; Merry, Carl; Decker, Ryan; Harrington, Brian

    2008-01-01

    The 2006 Cape Canaveral Air Force Station (CCAFS) Range Reference Atmosphere (RRA) is a statistical model summarizing the wind and thermodynamic atmospheric variability from surface to 70 kin. Launches of the National Aeronautics and Space Administration's (NASA) Space Shuttle from Kennedy Space Center utilize CCAFS RRA data to evaluate environmental constraints on various aspects of the vehicle during ascent. An update to the CCAFS RRA was recently completed. As part of the update, a validation study on the 2006 version was conducted as well as a comparison analysis of the 2006 version to the existing CCAFS RRA database version 1983. Assessments to the Space Shuttle vehicle ascent profile characteristics were performed to determine impacts of the updated model to the vehicle performance. Details on the model updates and the vehicle sensitivity analyses with the update model are presented.

  12. 19. Photocopy of engineering drawing. COMPLEX 17A AND B: SERVICE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Photocopy of engineering drawing. COMPLEX 17A AND B: SERVICE STRUCTURE SPACECRAFT AREA A/C-MECHANICAL, ELEVATIONS, SHEET 3, DECEMBER 1965. - Cape Canaveral Air Station, Launch Complex 17, Facility 28416, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  13. KENNEDY SPACE CENTER, FLA. - Many vendors and organizations displayed their products during the Spaceport Super Safety and Health Day at KSC and Cape Canaveral Air Force Station, an annual event dedicated to reinforcing safe and healthful behaviors in the workforce. This scene is at Hangar S, CCAFS.

    NASA Image and Video Library

    2003-10-15

    KENNEDY SPACE CENTER, FLA. - Many vendors and organizations displayed their products during the Spaceport Super Safety and Health Day at KSC and Cape Canaveral Air Force Station, an annual event dedicated to reinforcing safe and healthful behaviors in the workforce. This scene is at Hangar S, CCAFS.

  14. 40. Photocopy of engineering drawing. LC17B LONG TANK DELTA UPBUILD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. Photocopy of engineering drawing. LC-17B LONG TANK DELTA UPBUILD LAUNCH DECK: NEW PLATE AT LAUNCH MOUNT AREA-STRUCTURAL, APRIL 1969. - Cape Canaveral Air Station, Launch Complex 17, Facility 28402, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  15. 22. Photocopy of engineering drawing. MODIFICATION TO LAUNCH COMPLEX 17 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Photocopy of engineering drawing. MODIFICATION TO LAUNCH COMPLEX 17 MOBILE SERVICE TOWER 'A'-MECHANICAL, PROPULSION DRIVE TRUCKS AND KEY PLAN, MARCH 1967. - Cape Canaveral Air Station, Launch Complex 17, Facility 28416, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  16. 17. DETAIL OF STEEL STOPS AT WEST END OF MOBILE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. DETAIL OF STEEL STOPS AT WEST END OF MOBILE SERVICE STRUCTURE RAIL WITH STEEL STOPS AND CONCRETE TIE-DOWN BLOCK; VIEW TO NORTHWEST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28416, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  17. KSC-06pd0456

    NASA Image and Video Library

    2006-01-26

    KENNEDY SPACE CENTER, FLA. - At Cape Canaveral Air Force Station, workers help place the lamp room detached from the Cape Canaveral Lighthouse onto a flat bed truck. It will be moved to a facility near Cape Canaveral for repairs and renovation. Leaks in the roof allowed moisture to seep in. The lamp room is being removed for repairs and refurbishment. In addition, the original brass roof will be restored and put back in place. The Cape Canaveral Lighthouse is the only operational lighthouse owned by the Air Force. It was first erected in 1868 near the edge of the Atlantic Ocean. Photo credit: NASA/Jack Pfaller

  18. KSC-06pd0457

    NASA Image and Video Library

    2006-01-26

    KENNEDY SPACE CENTER, FLA. - At Cape Canaveral Air Force Station, workers secure the lamp room detached from the Cape Canaveral Lighthouse onto a flat bed truck. Leaks in the roof allowed moisture to seep in. The lamp room will be moved to a facility near Cape Canaveral for repairs and renovation. The lamp room is being removed for repairs and refurbishment. In addition, the original brass roof will be restored and put back in place. The Cape Canaveral Lighthouse is the only operational lighthouse owned by the Air Force. It was first erected in 1868 near the edge of the Atlantic Ocean. Photo credit: NASA/Jack Pfaller

  19. Astronaut John Glenn, Jr. - Insertion - Mercury Spacecraft - Cape

    NASA Image and Video Library

    1962-02-20

    S62-00371 (20 Feb. 1962) --- Mercury astronaut John H. Glenn Jr., pilot of the Mercury-Atlas 6 (MA-6) spaceflight, enters the Mercury "Friendship 7" spacecraft during the MA-6 prelaunch preparations at Cape Canaveral, Florida. Glenn became the first American to orbit Earth. Photo credit: NASA

  20. 1. GENERAL VIEW OF LAUNCH PAD A WITH MOBILE SERVICE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW OF LAUNCH PAD A WITH MOBILE SERVICE STRUCTURE IN LOCKED POSITION OVER LAUNCHER BUILDING AND RETENTION POND AT RIGHT; VIEW TO NORTHWEST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28501, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  1. 8. VIEW OF NEW CONSTRUCTION ON LAUNCH DECK WITH CASTINPLACE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW OF NEW CONSTRUCTION ON LAUNCH DECK WITH CAST-IN-PLACE CONCRETE WALLS AND STEEL STRUCTURE FOR NEW SOUTH-FACING FLAME DEFLECTOR; VIEW TO EAST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28402, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  2. 7. DETAIL OF UPPER SECTIONS OF WEST SIDE SHOWING WHITE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. DETAIL OF UPPER SECTIONS OF WEST SIDE SHOWING WHITE INSULATED DUCTWORK VENTILATING CLEAN ROOM AT TOP LEVELS OF MOBILE SERVICE STRUCTURE; VIEW TO NORTHEAST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28417, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  3. Studying - Astronaut John H. Glenn, Jr. - Mercury-Atlas (MA)-6 - Cape

    NASA Image and Video Library

    1961-01-01

    S61-04546 (1961) --- Astronaut John H. Glenn Jr., pilot of the Mercury-Atlas 6 (MA-6) "Friendship 7" mission, takes part in spacecraft systems briefing during preflight activity at Cape Canaveral, Florida. Photo credit: NASA

  4. 32. Photocopy of engineering drawing. NEW WHITE ROOM AND MULTISOLIDS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. Photocopy of engineering drawing. NEW WHITE ROOM AND MULTISOLIDS MODIFICATIONS FOR STRETCHED TANK DELTA, LAUNCH COMPLEX 17-A: UMBILICAL MAST ELEVATIONS-REMOVAL WORK, STRUCTURAL, APRIL 1969. - Cape Canaveral Air Station, Launch Complex 17, Facility 28501, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  5. 24. Photocopy of engineering drawing. NEW WHITE ROOM AND MULTISOLIDS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. Photocopy of engineering drawing. NEW WHITE ROOM AND MULTISOLIDS MODS FOR STRETCHED TANK DELTA LAUNCH COMPLEX 17-A, PAD AREA: PAD AREA PLAN-MODIFICATIONS CIVIL, APRIL 1972. - Cape Canaveral Air Station, Launch Complex 17, Facility 28416, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  6. 33. Photocopy of engineering drawing. NEW WHITE ROOM AND MULTISOLIDS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. Photocopy of engineering drawing. NEW WHITE ROOM AND MULTISOLIDS MODIFICATIONS FOR STRETCHED TANK DELTA, LAUNCH COMPLEX 17-A: PAD AREA PLAN-REMOVAL WORK, CIVIL, APRIL 1972. - Cape Canaveral Air Station, Launch Complex 17, Facility 28501, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  7. 26. Photocopy of engineering drawing. NEW WHITE ROOM AND MULTISOLIDS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Photocopy of engineering drawing. NEW WHITE ROOM AND MULTISOLIDS MODS FOR STRETCHED TANK DELTA LAUNCH COMPLEX 17-A, MOBILE SERVICE TOWER: SOUTH AND EAST ELEVATIONS-MODIFICATIONS, ARCHITECTURAL, APRIL 1972. - Cape Canaveral Air Station, Launch Complex 17, Facility 28416, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  8. 27. Photocopy of engineering drawing. NEW WHITE ROOM AND MULTISOLIDS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. Photocopy of engineering drawing. NEW WHITE ROOM AND MULTISOLIDS MODS FOR STRETCHED TANK DELTA LAUNCH COMPLEX 17-A, MOBILE SERVICE TOWER: NORTH AND WEST ELEVATIONS-MODIFICATIONS, ARCHITECTURAL, APRIL 1972. - Cape Canaveral Air Station, Launch Complex 17, Facility 28416, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  9. 5. DETAIL VIEW OF SOUTH SIDE WITH DAMAGE TO METAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. DETAIL VIEW OF SOUTH SIDE WITH DAMAGE TO METAL DOORS WHEN INCENDIARY CHUNKS OF SOLID FUEL CRASHED THROUGH AWNING AND BURNED MELTING PORTIONS OF THE BUILDING; VIEW TO NORTHWEST. - Cape Canaveral Air Station, Launch Complex 17, Facility 36009, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  10. KENNEDY SPACE CENTER, FLA. - Japanese girls from Urawa Daiichi Girls High School, Urawa, Japan, place a floral tribute to the crew of Columbia at the STS-107 memorial stone at the Spacehab facility, Cape Canaveral, Fla. The group was awarded the trip to Florida when their experiments were chosen to fly on mission STS-107. The group was also meeting with American students from Melbourne and Jacksonville, Fla. The National Space Development Agency of Japan (NASDA) and the KSC International Space Station and Payloads Processing Directorate worked with the NASA KSC Education Programs and University Research Division to coordinate the students’ visit.

    NASA Image and Video Library

    2003-08-20

    KENNEDY SPACE CENTER, FLA. - Japanese girls from Urawa Daiichi Girls High School, Urawa, Japan, place a floral tribute to the crew of Columbia at the STS-107 memorial stone at the Spacehab facility, Cape Canaveral, Fla. The group was awarded the trip to Florida when their experiments were chosen to fly on mission STS-107. The group was also meeting with American students from Melbourne and Jacksonville, Fla. The National Space Development Agency of Japan (NASDA) and the KSC International Space Station and Payloads Processing Directorate worked with the NASA KSC Education Programs and University Research Division to coordinate the students’ visit.

  11. KENNEDY SPACE CENTER, FLA. - Japanese and American students gather at the STS-107 memorial stone at the Spacehab facility, Cape Canaveral, Fla. The Japanese girls are from Urawa Daiichi Girls High School, Urawa, Japan. The group was awarded the trip to Florida when their experiments were chosen to fly on mission STS-107. The American students are from Melbourne and Jacksonville, Fla. The National Space Development Agency of Japan (NASDA) and the KSC International Space Station and Payloads Processing Directorate worked with the NASA KSC Education Programs and University Research Division to coordinate the students’ visit.

    NASA Image and Video Library

    2003-08-20

    KENNEDY SPACE CENTER, FLA. - Japanese and American students gather at the STS-107 memorial stone at the Spacehab facility, Cape Canaveral, Fla. The Japanese girls are from Urawa Daiichi Girls High School, Urawa, Japan. The group was awarded the trip to Florida when their experiments were chosen to fly on mission STS-107. The American students are from Melbourne and Jacksonville, Fla. The National Space Development Agency of Japan (NASDA) and the KSC International Space Station and Payloads Processing Directorate worked with the NASA KSC Education Programs and University Research Division to coordinate the students’ visit.

  12. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket arrives at the pad. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket arrives at the pad. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  13. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is moved into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is moved into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  14. 25. Photocopy of engineering drawing. NEW WHITE ROOM AND MULTISOLIDS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. Photocopy of engineering drawing. NEW WHITE ROOM AND MULTISOLIDS MODS FOR STRETCHED TANK DELTA LAUNCH COMPLEX 17-A, PAD AREA: PLAN-RAIL BEAMS AND HURRICANE ANCHOR FOUNDATIONS, STRUCTURAL, APRIL 1972. - Cape Canaveral Air Station, Launch Complex 17, Facility 28416, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  15. A Sounding-based Severe Weather Tool to Support Daily Operations at Kennedy Space Center and Cape Canaveral Air Force Station

    NASA Technical Reports Server (NTRS)

    Bauman, William H.; Roeder, William P.

    2014-01-01

    People and property at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) are at risk when severe weather occurs. Strong winds, hail and tornadoes can injure individuals and cause costly damage to structures if not properly protected. NASA's Launch Services Program and Ground Systems Development and Operations Program and other KSC programs use the daily and weekly severe weather forecasts issued by the 45th Weather Squadron (45 WS) to determine if they need to limit an activity such as working on gantries, or protect property such as a vehicle on a pad. The 45 WS requested the Applied Meteorology Unit (AMU) develop a warm season (May-September) severe weather tool for use in the Meteorological Interactive Data Display System (MIDDS) based on the late morning, 1500 UTC (1100 local time), CCAFS (XMR) sounding. The 45 WS frequently makes decisions to issue a severe weather watch and other severe weather warning support products to NASA and the 45th Space Wing in the late morning, after the 1500 UTC sounding. The results of this work indicate that certain stability indices based on the late morning XMR soundings can depict differences between days with reported severe weather and days with no reported severe weather. The AMU determined a frequency of reported severe weather for the stability indices and implemented an operational tool in MIDDS.

  16. KSC-2011-2976

    NASA Image and Video Library

    2011-04-07

    CAPE CANAVERAL, Fla. - At the Cape Canaveral Air Force Station forecast facility in Florida, a member of the weather team demonstrates the effectiveness of the new weather radar display recently installed. The facility is operated by the U.S. Air Force 45th Weather Squadron and will generate a launch weather forecast for the scheduled July 8 lift off of space shuttle Atlantis on the STS-135 mission. Photo credit: NASA/Jack Pfaller

  17. KSC-2011-2975

    NASA Image and Video Library

    2011-04-07

    CAPE CANAVERAL, Fla. - At the Cape Canaveral Air Force Station forecast facility in Florida, a member of the weather team demonstrates the effectiveness of the new weather radar display recently installed. The facility is operated by the U.S. Air Force 45th Weather Squadron and will generate a launch weather forecast for the scheduled July 8 lift off of space shuttle Atlantis on the STS-135 mission. Photo credit: NASA/Jack Pfaller

  18. 25. Photocopy of engineering drawing. LC17B LONG TANK DELTA UPBUILD: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. Photocopy of engineering drawing. LC-17B LONG TANK DELTA UPBUILD: MOBILE SERVICE TOWER, WEATHER CURTAINS SECTION 1 AND PLANS LEVELS 4 & 4A, 3, 2X, & 1A-ARCHITECTURAL, APRIL 1969. - Cape Canaveral Air Station, Launch Complex 17, Facility 28417, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  19. INSERTION - ASTRONAUT CARPENTER - MERCURY-ATLAS (MA)-7 - CAPE

    NASA Image and Video Library

    1962-05-24

    S62-02846 (24 May 1962) --- Project Mercury astronaut M. Scott Carpenter, prime pilot for the Mercury-Atlas 7 (MA-7) mission, is assisted into the MA-7 spacecraft by techicians at Launch Pad 14, Cape Canaveral, Florida. MA-7 is the United States? second attempt in orbital flight around Earth. The spacecraft was designated the ?Aurora? 7. Photo credit: NASA

  20. Butch Wilmore tour of ULA facility and viewing of ICPS

    NASA Image and Video Library

    2017-03-16

    Inside the United Launch Alliance Horizontal Integration Facility at Cape Canaveral Air Force Station in Florida, NASA astronaut Barry "Butch" Wilmore views the first integrated piece of flight hardware for NASA's Space Launch System (SLS) rocket, the Interim Cryogenic Propulsion Stage (ICPS). The ICPS is the in-space stage that is located toward the top of the rocket, between the Launch Vehicle Stage Adapter and the Orion Spacecraft Adapter. It will provide some of the in-space propulsion during Orion's first flight test atop the SLS on Exploration Mission 1.

  1. The Max Rover submersible is tested at the Trident pier, Port Canaveral

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Thomas Lippitt of NASA's Advanced Systems Development (ASD) laboratory observes robotic operations as Chris Nicholson, owner of Deep Sea Systems, and Bill Jones of NASA's ASD laboratory operate the unmanned robotic submersible recovery system, known as Max Rover, during a test of the system at the Trident Pier at Port Canaveral. The submersible is seen in the water with the Diver Operated Plug (DOP). Kennedy Space Center's solid rocket booster (SRB) retrieval team and ASD laboratory staff hope that the new robotic technology will make the process of inserting the plug safer and less strenuous. Currently, scuba divers manually insert the DOP into the aft nozzle of a jettisoned SRB 60 to 70 feet below the surface of the Atlantic Ocean. After the plug is installed, water is pumped out of the booster allowing it to float horizontally. It is then towed back to Hangar AF at Cape Canaveral Air Station for refurbishment. Deep Sea Systems of Falmouth, Mass., built the submersible for NASA.

  2. Forecasting Lightning at Kennedy Space Center/Cape Canaveral Air Force Station, Florida

    NASA Technical Reports Server (NTRS)

    Lambert, Winfred; Wheeler, Mark; Roeder, William

    2005-01-01

    The Applied Meteorology Unit (AMU) developed a set of statistical forecast equations that provide a probability of lightning occurrence on Kennedy Space Center (KSC) I Cape Canaveral Air Force Station (CCAFS) for the day during the warm season (May September). The 45th Weather Squadron (45 WS) forecasters at CCAFS in Florida include a probability of lightning occurrence in their daily 24-hour and weekly planning forecasts, which are briefed at 1100 UTC (0700 EDT). This information is used for general scheduling of operations at CCAFS and KSC. Forecasters at the Spaceflight Meteorology Group also make thunderstorm forecasts for the KSC/CCAFS area during Shuttle flight operations. Much of the current lightning probability forecast at both groups is based on a subjective analysis of model and observational data. The objective tool currently available is the Neumann-Pfeffer Thunderstorm Index (NPTI, Neumann 1971), developed specifically for the KSCICCAFS area over 30 years ago. However, recent studies have shown that 1-day persistence provides a better forecast than the NPTI, indicating that the NPTI needed to be upgraded or replaced. Because they require a tool that provides a reliable estimate of the daily thunderstorm probability forecast, the 45 WS forecasters requested that the AMU develop a new lightning probability forecast tool using recent data and more sophisticated techniques now possible through more computing power than that available over 30 years ago. The equation development incorporated results from two research projects that investigated causes of lightning occurrence near KSCICCAFS and over the Florida peninsula. One proved that logistic regression outperformed the linear regression method used in NPTI, even when the same predictors were used. The other study found relationships between large scale flow regimes and spatial lightning distributions over Florida. Lightning, probabilities based on these flow regimes were used as candidate predictors in

  3. 1. GENERAL VIEW OF EAST AND NORTH SIDES OF NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW OF EAST AND NORTH SIDES OF NORTH WING; NOTE PLYWOOD COVERED WINDOWS DUE TO EXPLOSION ON LAUNCH PAD A IN MARCH 1997 WITH FIERY RAIN OF SOLID ROCKET FUEL AND PROLONGED CONCUSSION WAVES; VIEW TO SOUTHWEST. - Cape Canaveral Air Station, Launch Complex 17, Facility 36001, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  4. MERCURY-ATLAS (MA)-9 - SHEPARD, ALAN B., JR. ASTRONAUT - MERCURY CONTROL CENTER (MCC) - CAPE

    NASA Image and Video Library

    1963-05-16

    S63-07857 (15-16 May 1963) --- Astronaut Alan Shepard (left) and Walter C. Williams monitor progress of the Mercury Atlas 9 (MA-9) mission from Mercury Control Center, Cape Canaveral, Florida. Photo credit: NASA

  5. KSC-2009-3933

    NASA Image and Video Library

    2009-07-08

    CAPE CANAVERAL, Fla. – The United Launch Alliance Delta IV first stage rolls into the Horizontal Integration Facility on Cape Canaveral Air Force Station's Launch Complex 37. The Delta IV is the launch vehicle for the latest Geostationary Operational Environmental Satellite, known as GOES-P, developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. Photo credit: NASA/Jim Grossmann

  6. KSC-2009-3932

    NASA Image and Video Library

    2009-07-08

    CAPE CANAVERAL, Fla. – The United Launch Alliance Delta IV first stage rolls toward the Horizontal Integration Facility on Cape Canaveral Air Force Station's Launch Complex 37. The Delta IV is the launch vehicle for the latest Geostationary Operational Environmental Satellite, known as GOES-P, developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. Photo credit: NASA/Jim Grossmann

  7. KENNEDY SPACE CENTER, FLA. - One of many vendors displaying their products during the Spaceport Super Safety and Health Day at KSC and Cape Canaveral Air Force Station, Florida Power and Light draws a crowd during a demonstration. The annual KSC event is dedicated to reinforcing safe and healthful behaviors in the workforce.

    NASA Image and Video Library

    2003-10-15

    KENNEDY SPACE CENTER, FLA. - One of many vendors displaying their products during the Spaceport Super Safety and Health Day at KSC and Cape Canaveral Air Force Station, Florida Power and Light draws a crowd during a demonstration. The annual KSC event is dedicated to reinforcing safe and healthful behaviors in the workforce.

  8. KSC-2013-3227

    NASA Image and Video Library

    2013-08-06

    CAPE CANAVERAL, Fla. – In Hangar N at Cape Canaveral Air Force Station, PaR Systems, Inc. operations engineer Lu Bell conducts a phase array ultrasonic inspection. NASA's Kennedy Space Center in Florida recently established a partnership agreement with PaR Systems, Inc. of Shoreview, Minn., for operation of the Hangar N facility and its nondestructive testing and evaluation equipment. As the spaceport transitions from a historically government-only launch facility to a multi-user spaceport for both federal and commercial customers, partnerships between the space agency and other organizations will be a key element in that effort. Hangar N is located at Cape Canaveral Air Force Station adjacent to Kennedy and houses a unique inventory of test and evaluation equipment and the capability for current and future mission spaceflight support. Photo credit: NASA/ Dimitri Gerondidakis

  9. LIFTOFF - MERCURY-REDSTONE (MR)-2 - CAPE

    NASA Image and Video Library

    1961-01-31

    S63-22731 (31 Jan. 1961) --- The launch of the Mercury-Redstone 2 (MR-2) suborbital mission from Cape Canaveral, Florida, on Jan. 31, 1961. Onboard the spacecraft was ?Ham?, a 37-pound chimpanzee. Despite an over-acceleration factor, the flight was considered to be successful. Following recovery Ham appeared to be in good physiological condition, but sometime later when he was shown the Mercury spacecraft it was visually apparent that he had no further interest in cooperating with the spaceflight program. Photo credit: NASA

  10. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy rocket waits the arrival of the mobile service tower with three additional solid rocket boosters (SRBs). Nine 46-inch-diameter, stretched SRBs will help launch the Space Infrared Telescope Facility (SIRTF). Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-22

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy rocket waits the arrival of the mobile service tower with three additional solid rocket boosters (SRBs). Nine 46-inch-diameter, stretched SRBs will help launch the Space Infrared Telescope Facility (SIRTF). Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  11. KENNEDY SPACE CENTER, FLA. - A solid rocket booster (SRB) for the Delta II Heavy rocket that will launch the Space Infrared Telescope Facility (SIRTF) arrives at Launch Complex 17-B, Cape Canaveral Air Force Station. The Delta II Heavy features nine 46-inch-diameter, stretched SRBs. Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-22

    KENNEDY SPACE CENTER, FLA. - A solid rocket booster (SRB) for the Delta II Heavy rocket that will launch the Space Infrared Telescope Facility (SIRTF) arrives at Launch Complex 17-B, Cape Canaveral Air Force Station. The Delta II Heavy features nine 46-inch-diameter, stretched SRBs. Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  12. KENNEDY SPACE CENTER, FLA. - In the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) waits for encapsulation. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Consisting of a 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF will be the largest infrared telescope ever launched into space. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” Its highly sensitive instruments will give a unique view of the Universe and peer into regions of space that are hidden from optical telescopes.

    NASA Image and Video Library

    2003-08-14

    KENNEDY SPACE CENTER, FLA. - In the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) waits for encapsulation. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Consisting of a 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF will be the largest infrared telescope ever launched into space. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” Its highly sensitive instruments will give a unique view of the Universe and peer into regions of space that are hidden from optical telescopes.

  13. KENNEDY SPACE CENTER, FLA. - Japanese girls from Urawa Daiichi Girls High School, Urawa, Japan, carry a floral tribute to the crew of Columbia to place at the STS-107 memorial stone at the Spacehab facility, Cape Canaveral, Fla. The group was awarded the trip to Florida when their experiments were chosen to fly on mission STS-107. The group was also meeting with American students from Melbourne and Jacksonville, Fla. The National Space Development Agency of Japan (NASDA) and the KSC International Space Station and Payloads Processing Directorate worked with the NASA KSC Education Programs and University Research Division to coordinate the students’ visit.

    NASA Image and Video Library

    2003-08-20

    KENNEDY SPACE CENTER, FLA. - Japanese girls from Urawa Daiichi Girls High School, Urawa, Japan, carry a floral tribute to the crew of Columbia to place at the STS-107 memorial stone at the Spacehab facility, Cape Canaveral, Fla. The group was awarded the trip to Florida when their experiments were chosen to fly on mission STS-107. The group was also meeting with American students from Melbourne and Jacksonville, Fla. The National Space Development Agency of Japan (NASDA) and the KSC International Space Station and Payloads Processing Directorate worked with the NASA KSC Education Programs and University Research Division to coordinate the students’ visit.

  14. KENNEDY SPACE CENTER, FLA. - In Hangar A&E, Cape Canaveral Air Force Station, the upper canister is lowered toward the Space Infrared Telescope Facility (SIRTF) below. After encapsulation is complete, the spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-07

    KENNEDY SPACE CENTER, FLA. - In Hangar A&E, Cape Canaveral Air Force Station, the upper canister is lowered toward the Space Infrared Telescope Facility (SIRTF) below. After encapsulation is complete, the spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  15. KENNEDY SPACE CENTER, FLA. - Workers on Launch Complex 17-B, Cape Canaveral Air Force Station, prepare the first stage of a Delta II rocket for its lift up the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - Workers on Launch Complex 17-B, Cape Canaveral Air Force Station, prepare the first stage of a Delta II rocket for its lift up the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  16. KENNEDY SPACE CENTER, FLA. - A worker at Hangar A&E, Cape Canaveral Air Force Station, tightens the canister around the Space Infrared Telescope Facility (SIRTF). The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-07

    KENNEDY SPACE CENTER, FLA. - A worker at Hangar A&E, Cape Canaveral Air Force Station, tightens the canister around the Space Infrared Telescope Facility (SIRTF). The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  17. KENNEDY SPACE CENTER, FLA. - In Hangar A&E, Cape Canaveral Air Force Station, encapsulation of the Space Infrared Telescope Facility (SIRTF) is complete. The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-07

    KENNEDY SPACE CENTER, FLA. - In Hangar A&E, Cape Canaveral Air Force Station, encapsulation of the Space Infrared Telescope Facility (SIRTF) is complete. The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  18. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is raised off the transporter before lifting and moving it into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is raised off the transporter before lifting and moving it into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  19. KENNEDY SPACE CENTER, FLA. - Workers at Hangar A&E, Cape Canaveral Air Force Station, place the middle row of panels to encapsulate the Space Infrared Telescope Facility (SIRTF). The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-07

    KENNEDY SPACE CENTER, FLA. - Workers at Hangar A&E, Cape Canaveral Air Force Station, place the middle row of panels to encapsulate the Space Infrared Telescope Facility (SIRTF). The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  20. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket waits to be lifted up and moved into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket waits to be lifted up and moved into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  1. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is lifted up the mobile service tower. In the background is pad 17-A. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is lifted up the mobile service tower. In the background is pad 17-A. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  2. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is nearly erect for its move into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is nearly erect for its move into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  3. KENNEDY SPACE CENTER, FLA. - A worker at Hangar A&E, Cape Canaveral Air Force Station, place the lower panels of the canister around the Space Infrared Telescope Facility (SIRTF). The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-07

    KENNEDY SPACE CENTER, FLA. - A worker at Hangar A&E, Cape Canaveral Air Force Station, place the lower panels of the canister around the Space Infrared Telescope Facility (SIRTF). The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  4. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket waits to be lifted up into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket waits to be lifted up into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  5. KENNEDY SPACE CENTER, FLA. - In Hangar A&E, Cape Canaveral Air Force Station, the upper canister is mated to the middle panels around the Space Infrared Telescope Facility (SIRTF). The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-07

    KENNEDY SPACE CENTER, FLA. - In Hangar A&E, Cape Canaveral Air Force Station, the upper canister is mated to the middle panels around the Space Infrared Telescope Facility (SIRTF). The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  6. KENNEDY SPACE CENTER, FLA. - Workers at Hangar A&E, Cape Canaveral Air Force Station, lower the upper canister toward the Space Infrared Telescope Facility (SIRTF) below. After encapsulation is complete, the spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-07

    KENNEDY SPACE CENTER, FLA. - Workers at Hangar A&E, Cape Canaveral Air Force Station, lower the upper canister toward the Space Infrared Telescope Facility (SIRTF) below. After encapsulation is complete, the spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  7. KSC-2009-3929

    NASA Image and Video Library

    2009-07-08

    CAPE CANAVERAL, Fla. – The United Launch Alliance Delta IV first stage is being transported to the Horizontal Integration Facility on Cape Canaveral Air Force Station's Launch Complex 37. The Delta IV is the launch vehicle for the latest Geostationary Operational Environmental Satellite, known as GOES-P, developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. Photo credit: NASA/Jim Grossmann

  8. KSC-2009-3930

    NASA Image and Video Library

    2009-07-08

    CAPE CANAVERAL, Fla. – The United Launch Alliance Delta IV first stage is being transported to the Horizontal Integration Facility on Cape Canaveral Air Force Station's Launch Complex 37. The Delta IV is the launch vehicle for the latest Geostationary Operational Environmental Satellite, known as GOES-P, developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. Photo credit: NASA/Jim Grossmann

  9. KSC-2013-3223

    NASA Image and Video Library

    2013-08-06

    CAPE CANAVERAL, Fla. – In Hangar N at Cape Canaveral Air Force Station, ceramic materials are positioned for Advanced Partial Angle Computed Tomography testing. The activity is part of work performed by PaR Systems, Inc. under a partnership agreement with NASA. NASA's Kennedy Space Center in Florida recently established a partnership agreement with PaR Systems, Inc. of Shoreview, Minn., for operation of the Hangar N facility and its nondestructive testing and evaluation equipment. As the spaceport transitions from a historically government-only launch facility to a multi-user spaceport for both federal and commercial customers, partnerships between the space agency and other organizations will be a key element in that effort. Hangar N is located at Cape Canaveral Air Force Station adjacent to Kennedy and houses a unique inventory of test and evaluation equipment and the capability for current and future mission spaceflight support. Photo credit: NASA/ Dimitri Gerondidakis

  10. KENNEDY SPACE CENTER, FLA. - Employees file around table displays under a tent near the Operations and Checkout Building. Many vendors and organizations displayed their products during the Spaceport Super Safety and Health Day at KSC and Cape Canaveral Air Force Station, an annual event dedicated to reinforcing safe and healthful behaviors in the workforce.

    NASA Image and Video Library

    2003-10-15

    KENNEDY SPACE CENTER, FLA. - Employees file around table displays under a tent near the Operations and Checkout Building. Many vendors and organizations displayed their products during the Spaceport Super Safety and Health Day at KSC and Cape Canaveral Air Force Station, an annual event dedicated to reinforcing safe and healthful behaviors in the workforce.

  11. ASTRONAUT GLENN, JOHN H., JR. - INSERTION PRACTICE - MERCURY-ATLAS (MA)-6 - FRIENDSHIP "7" - CAPE

    NASA Image and Video Library

    1962-02-05

    S62-00993 (1962) --- Astronaut John H. Glenn Jr., pilot of the Mercury-Atlas 6 (MA-6) mission, practices insertion into the Mercury "Friendship 7" spacecraft during MA-6 preflight training activity at Cape Canaveral, Florida. He is wearing the full pressure suit and helmet. Photo credit: NASA

  12. Satellite Alert Facility at Cape Canaveral Air Force Station. Environmental Assessment

    DTIC Science & Technology

    2005-09-01

    binthifolius Raddi), Cogon grass (Imperata cylindrical), and Australian pine (Casuarina equisetifolia). The management of invasive plant species may be...circle). The proposed and secondary alternative sites consist only of mowed grass . A photograph of the proposed action site is also included in...indigenous to the Florida coastline. The proposed and secondary alternative sites for the proposed ac- tion are located on mowed grass ; no natural

  13. Real-Time Kennedy Space Center and Cape Canaveral Air Force Station High-Resolution Model Implementation and Verification

    NASA Technical Reports Server (NTRS)

    Shafer, Jaclyn; Watson, Leela R.

    2015-01-01

    NASA's Launch Services Program, Ground Systems Development and Operations, Space Launch System and other programs at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) use the daily and weekly weather forecasts issued by the 45th Weather Squadron (45 WS) as decision tools for their day-to-day and launch operations on the Eastern Range (ER). Examples include determining if they need to limit activities such as vehicle transport to the launch pad, protect people, structures or exposed launch vehicles given a threat of severe weather, or reschedule other critical operations. The 45 WS uses numerical weather prediction models as a guide for these weather forecasts, particularly the Air Force Weather Agency (AFWA) 1.67 km Weather Research and Forecasting (WRF) model. Considering the 45 WS forecasters' and Launch Weather Officers' (LWO) extensive use of the AFWA model, the 45 WS proposed a task at the September 2013 Applied Meteorology Unit (AMU) Tasking Meeting requesting the AMU verify this model. Due to the lack of archived model data available from AFWA, verification is not yet possible. Instead, the AMU proposed to implement and verify the performance of an ER version of the high-resolution WRF Environmental Modeling System (EMS) model configured by the AMU (Watson 2013) in real time. Implementing a real-time version of the ER WRF-EMS would generate a larger database of model output than in the previous AMU task for determining model performance, and allows the AMU more control over and access to the model output archive. The tasking group agreed to this proposal; therefore the AMU implemented the WRF-EMS model on the second of two NASA AMU modeling clusters. The AMU also calculated verification statistics to determine model performance compared to observational data. Finally, the AMU made the model output available on the AMU Advanced Weather Interactive Processing System II (AWIPS II) servers, which allows the 45 WS and AMU staff to customize

  14. Obama Kennedy Space Center Visit

    NASA Image and Video Library

    2010-04-14

    President Barack Obama tours the commercial rocket processing facility of Space Exploration Technologies, known as SpaceX, along with Elon Musk, SpaceX CEO at Cape Canaveral Air Force Station, Cape Canaveral, Fla. on Thursday, April 15, 2010. Obama also visited the NASA Kennedy Space Center to deliver remarks on the bold new course the administration is charting to maintain U.S. leadership in human space flight. Photo Credit: (NASA/Bill Ingalls)

  15. KENNEDY SPACE CENTER, FLA. - An employee gets a blood pressure check from one of the participating organizations in Spaceport Super Safety and Health Day at KSC and Cape Canaveral Air Force Station. Many vendors and Center organizations displayed and demonstrated their products during the annual event dedicated to reinforcing safe and healthful behaviors in the workforce.

    NASA Image and Video Library

    2003-10-15

    KENNEDY SPACE CENTER, FLA. - An employee gets a blood pressure check from one of the participating organizations in Spaceport Super Safety and Health Day at KSC and Cape Canaveral Air Force Station. Many vendors and Center organizations displayed and demonstrated their products during the annual event dedicated to reinforcing safe and healthful behaviors in the workforce.

  16. Large-Scale Cryogen Systems and Test Facilities

    NASA Technical Reports Server (NTRS)

    Johnson, R. G.; Sass, J. P.; Hatfield, W. H.

    2007-01-01

    NASA has completed initial construction and verification testing of the Integrated Systems Test Facility (ISTF) Cryogenic Testbed. The ISTF is located at Complex 20 at Cape Canaveral Air Force Station, Florida. The remote and secure location is ideally suited for the following functions: (1) development testing of advanced cryogenic component technologies, (2) development testing of concepts and processes for entire ground support systems designed for servicing large launch vehicles, and (3) commercial sector testing of cryogenic- and energy-related products and systems. The ISTF Cryogenic Testbed consists of modular fluid distribution piping and storage tanks for liquid oxygen/nitrogen (56,000 gal) and liquid hydrogen (66,000 gal). Storage tanks for liquid methane (41,000 gal) and Rocket Propellant 1 (37,000 gal) are also specified for the facility. A state-of-the-art blast proof test command and control center provides capability for remote operation, video surveillance, and data recording for all test areas.

  17. ASTRONAUT GLENN, JOHN H., JR. - INSERTION PRACTICE - MERCURY-ATLAS (MA)-6 - FRIENDSHIP "7" - CAPE

    NASA Image and Video Library

    1962-02-05

    S62-00994 (1962) --- Astronaut John H. Glenn Jr., pilot of the Mercury-Atlas 6 mission, practices insertion into the Mercury "Friendship 7? spacecraft, with help of a McDonnell Aircraft Corporation technician, during MA-6 preflight training activity at Cape Canaveral, Florida. He is wearing the full pressure suit. Photo credit: NASA

  18. KSC-2009-3177

    NASA Image and Video Library

    2009-05-15

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations Facility in Titusville, Fla., garbed media representatives attend a showing of NASA's Lunar Reconnaissance Orbiter, or LRO, and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS. The LRO includes five instruments: DIVINER, LAMP, LEND, LOLA and LROC. They will be launched aboard an Atlas V/Centaur rocket no earlier than June 17 from Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller

  19. KSC-2009-3178

    NASA Image and Video Library

    2009-05-15

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations Facility in Titusville, Fla., NASA's Lunar Reconnaissance Orbiter, or LRO, and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS, are being prepared for fairing installation. The LRO includes five instruments: DIVINER, LAMP, LEND, LOLA and LROC. They will be launched aboard an Atlas V/Centaur rocket no earlier than June 17 from Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller

  20. Final Environmental Assessment for the Proposed Naval Ordnance Test Unit Engineering Services Facility at Cape Canaveral Air Force Station

    DTIC Science & Technology

    2006-08-01

    and on the west by the Banana River, which is an estuarine system. Figure 1-1 shows CCAFS and the surrounding area. CCAFS encompasses approximately...barrier island on which it is located characterizes the visual environment in the vicinity of CCAFS. The Indian and Banana rivers separate the...large expanses of inland waters in the Indian, Banana , and St. John’s rivers and large ENVIRONMENTAL ASSESSMENT-ENGINEERING SERVICES FACILITY AT

  1. KSC-2011-4958

    NASA Image and Video Library

    2011-06-27

    CAPE CANAVERAL, Fla., -- Workers transport NASA's Juno spacecraft from Astrotech's Payload Processing Facility in Titusville, Fla., to the Hazardous Processing Facility for fueling. The spacecraft will be loaded with the propellant necessary for orbit maneuvers and the attitude control system. Juno is scheduled to launch aboard a United Launch Alliance Atlas V rocket from Cape Canaveral, Fla., Aug. 5.The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. For more information visit: www.nasa.gov/juno. Photo credit: NASA/Troy Cryder

  2. KSC-2011-4956

    NASA Image and Video Library

    2011-06-27

    CAPE CANAVERAL, Fla., -- Workers transport NASA's Juno spacecraft from Astrotech's Payload Processing Facility in Titusville, Fla., to the Hazardous Processing Facility for fueling. The spacecraft will be loaded with the propellant necessary for orbit maneuvers and the attitude control system. Juno is scheduled to launch aboard a United Launch Alliance Atlas V rocket from Cape Canaveral, Fla., Aug. 5.The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. For more information visit: www.nasa.gov/juno. Photo credit: NASA/Troy Cryder

  3. KSC-2011-4954

    NASA Image and Video Library

    2011-06-27

    CAPE CANAVERAL, Fla. -- Workers prepare to transport NASA's Juno spacecraft from Astrotech's Payload Processing Facility in Titusville, Fla., to the Hazardous Processing Facility for fueling. The spacecraft will be loaded with the propellant necessary for orbit maneuvers and the attitude control system. Juno is scheduled to launch aboard a United Launch Alliance Atlas V rocket from Cape Canaveral, Fla., Aug. 5.The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. For more information visit: www.nasa.gov/juno. Photo credit: NASA/Troy Cryder

  4. KSC-2011-4957

    NASA Image and Video Library

    2011-06-27

    CAPE CANAVERAL, Fla., -- Workers transport NASA's Juno spacecraft from Astrotech's Payload Processing Facility in Titusville, Fla., to the Hazardous Processing Facility for fueling. The spacecraft will be loaded with the propellant necessary for orbit maneuvers and the attitude control system. Juno is scheduled to launch aboard a United Launch Alliance Atlas V rocket from Cape Canaveral, Fla., Aug. 5.The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. For more information visit: www.nasa.gov/juno. Photo credit: NASA/Troy Cryder

  5. KSC-2011-4955

    NASA Image and Video Library

    2011-06-27

    CAPE CANAVERAL, Fla., -- Workers transport NASA's Juno spacecraft from Astrotech's Payload Processing Facility in Titusville, Fla., to the Hazardous Processing Facility for fueling. The spacecraft will be loaded with the propellant necessary for orbit maneuvers and the attitude control system. Juno is scheduled to launch aboard a United Launch Alliance Atlas V rocket from Cape Canaveral, Fla., Aug. 5.The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. For more information visit: www.nasa.gov/juno. Photo credit: NASA/Troy Cryder

  6. KENNEDY SPACE CENTER, FLA. - A solid rocket booster (SRB) is lifted to vertical on Launch Complex 17-B, Cape Canaveral Air Force Station. The SRB will be attached to the Delta II Heavy rocket that will launch the Space Infrared Telescope Facility (SIRTF). The Delta II Heavy features nine 46-inch-diameter, stretched SRBs. Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-22

    KENNEDY SPACE CENTER, FLA. - A solid rocket booster (SRB) is lifted to vertical on Launch Complex 17-B, Cape Canaveral Air Force Station. The SRB will be attached to the Delta II Heavy rocket that will launch the Space Infrared Telescope Facility (SIRTF). The Delta II Heavy features nine 46-inch-diameter, stretched SRBs. Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  7. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, a solid rocket booster (SRB) is lifted into the mobile service tower, joining two others. They are three of nine 46-inch-diameter, stretched SRBs that are being attached to the Delta II Heavy rocket that will launch the Space Infrared Telescope Facility (SIRTF). Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-22

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, a solid rocket booster (SRB) is lifted into the mobile service tower, joining two others. They are three of nine 46-inch-diameter, stretched SRBs that are being attached to the Delta II Heavy rocket that will launch the Space Infrared Telescope Facility (SIRTF). Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  8. KENNEDY SPACE CENTER, FLA. - Workers on Launch Complex 17-B, Cape Canaveral Air Force Station, help steady a solid rocket booster (SRB) being lifted into the mobile service tower. It is one of nine 46-inch-diameter, stretched SRBs that are being attached to the Delta II Heavy rocket that will launch the Space Infrared Telescope Facility (SIRTF). Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-22

    KENNEDY SPACE CENTER, FLA. - Workers on Launch Complex 17-B, Cape Canaveral Air Force Station, help steady a solid rocket booster (SRB) being lifted into the mobile service tower. It is one of nine 46-inch-diameter, stretched SRBs that are being attached to the Delta II Heavy rocket that will launch the Space Infrared Telescope Facility (SIRTF). Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  9. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, another solid rocket booster (SRB) is being raised from its transporter to lift it to vertical. It is one of nine 46-inch-diameter, stretched SRBs that are being attached to the Delta II Heavy rocket that will launch the Space Infrared Telescope Facility (SIRTF). Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-22

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, another solid rocket booster (SRB) is being raised from its transporter to lift it to vertical. It is one of nine 46-inch-diameter, stretched SRBs that are being attached to the Delta II Heavy rocket that will launch the Space Infrared Telescope Facility (SIRTF). Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  10. KENNEDY SPACE CENTER, FLA. - NASA's Space Infrared Telescope Facility (SIRTF) lifts off from Launch Pad 17-B, Cape Canaveral Air Force Station, on Aug. 25 at 1:35:39 a.m. EDT. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Consisting of a 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF will be the largest infrared telescope ever launched into space. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” Its highly sensitive instruments will give a unique view of the Universe and peer into regions of space that are hidden from optical telescopes.

    NASA Image and Video Library

    2003-08-25

    KENNEDY SPACE CENTER, FLA. - NASA's Space Infrared Telescope Facility (SIRTF) lifts off from Launch Pad 17-B, Cape Canaveral Air Force Station, on Aug. 25 at 1:35:39 a.m. EDT. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Consisting of a 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF will be the largest infrared telescope ever launched into space. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” Its highly sensitive instruments will give a unique view of the Universe and peer into regions of space that are hidden from optical telescopes.

  11. KENNEDY SPACE CENTER, FLA. - In the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station, the first half of the fairing is moved around the Space Infrared Telescope Facility (SIRTF). SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Consisting of a 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF will be the largest infrared telescope ever launched into space. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” Its highly sensitive instruments will give a unique view of the Universe and peer into regions of space that are hidden from optical telescopes.

    NASA Image and Video Library

    2003-08-14

    KENNEDY SPACE CENTER, FLA. - In the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station, the first half of the fairing is moved around the Space Infrared Telescope Facility (SIRTF). SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Consisting of a 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF will be the largest infrared telescope ever launched into space. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” Its highly sensitive instruments will give a unique view of the Universe and peer into regions of space that are hidden from optical telescopes.

  12. KENNEDY SPACE CENTER, FLA. - In the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station, the first half of the fairing (background) moves toward the Space Infrared Telescope Facility (foreground) for encapsulation. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Consisting of a 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF will be the largest infrared telescope ever launched into space. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” Its highly sensitive instruments will give a unique view of the Universe and peer into regions of space that are hidden from optical telescopes.

    NASA Image and Video Library

    2003-08-14

    KENNEDY SPACE CENTER, FLA. - In the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station, the first half of the fairing (background) moves toward the Space Infrared Telescope Facility (foreground) for encapsulation. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Consisting of a 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF will be the largest infrared telescope ever launched into space. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” Its highly sensitive instruments will give a unique view of the Universe and peer into regions of space that are hidden from optical telescopes.

  13. KENNEDY SPACE CENTER, FLA. - The Mars Exploration Rover 2 (MER-2) undergoes a weight and center of gravity determination in the Payload Hazardous Servicing Facility. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. Launch of MER-2 is scheduled for June 5 from Cape Canaveral Air Force Station.

    NASA Image and Video Library

    2003-05-09

    KENNEDY SPACE CENTER, FLA. - The Mars Exploration Rover 2 (MER-2) undergoes a weight and center of gravity determination in the Payload Hazardous Servicing Facility. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. Launch of MER-2 is scheduled for June 5 from Cape Canaveral Air Force Station.

  14. KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility prepare the Mars Exploration Rover 2 (MER-2) for a weight and center of gravity determination. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. Launch of MER-2 is scheduled for June 5 from Cape Canaveral Air Force Station.

    NASA Image and Video Library

    2003-05-09

    KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility prepare the Mars Exploration Rover 2 (MER-2) for a weight and center of gravity determination. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. Launch of MER-2 is scheduled for June 5 from Cape Canaveral Air Force Station.

  15. KENNEDY SPACE CENTER, FLA. - Workers at Hangar A&E, Cape Canaveral Air Force Station, help guide the upper canister toward the Space Infrared Telescope Facility (SIRTF) at left. After encapsulation is complete, the spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-07

    KENNEDY SPACE CENTER, FLA. - Workers at Hangar A&E, Cape Canaveral Air Force Station, help guide the upper canister toward the Space Infrared Telescope Facility (SIRTF) at left. After encapsulation is complete, the spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  16. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is raised off the transporter before lifting it up and moved into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is raised off the transporter before lifting it up and moved into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  17. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is lifted up the mobile service tower. Below the rocket is the flame trench, and in the foreground is the overflow pool. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is lifted up the mobile service tower. Below the rocket is the flame trench, and in the foreground is the overflow pool. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  18. KENNEDY SPACE CENTER, FLA. - Workers at Hangar A&E, Cape Canaveral Air Force Station, lift the upper canister to move it to the Space Infrared Telescope Facility (SIRTF) at right. After encapsulation, the spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-07

    KENNEDY SPACE CENTER, FLA. - Workers at Hangar A&E, Cape Canaveral Air Force Station, lift the upper canister to move it to the Space Infrared Telescope Facility (SIRTF) at right. After encapsulation, the spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  19. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy rocket (background) is framed by the solid rocket boosters (foreground) suspended in the mobile service tower. The SRBs will be added to those already attached to the rocket. The Delta II Heavy will launch the Space Infrared Telescope Facility (SIRTF). Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-22

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy rocket (background) is framed by the solid rocket boosters (foreground) suspended in the mobile service tower. The SRBs will be added to those already attached to the rocket. The Delta II Heavy will launch the Space Infrared Telescope Facility (SIRTF). Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  20. KENNEDY SPACE CENTER, FLA. - Before dawn, the Space Infrared Telescope Facility (SIRTF) arrives at Launch Pad 17-B, Cape Canaveral Air Force Station, where it will be lifted into the mobile service tower and prepared for launch. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA’s largest infrared telescopes to be launched. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-10

    KENNEDY SPACE CENTER, FLA. - Before dawn, the Space Infrared Telescope Facility (SIRTF) arrives at Launch Pad 17-B, Cape Canaveral Air Force Station, where it will be lifted into the mobile service tower and prepared for launch. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA’s largest infrared telescopes to be launched. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  1. ARES I-X Launch Prep

    NASA Image and Video Library

    2009-10-25

    A launch countdown sign showing one day until launch of the NASA ARES I-X rocket is seen along the road between Cape Canaveral Air Force Base and the NASA Kennedy Space Center in Cape Canaveral, Florida on Monday, Oct. 26, 2009. The flight test of Ares I-X, scheduled for Tuesday, Oct. 27, 2009, will provide NASA with an early opportunity to test and prove flight characteristics, hardware, facilities and ground operations associated with the Ares I. Photo Credit: (NASA/Bill Ingalls)

  2. The 2006 Cape Canaveral Air Force Station Range Reference Atmosphere Model Validation Study and Sensitivity Analysis to the National Aeronautics and Space Administration's Space Shuttle

    NASA Technical Reports Server (NTRS)

    Decker, Ryan; Burns, Lee; Merry, Carl; Harrington, Brian

    2008-01-01

    NASA's Space Shuttle utilizes atmospheric thermodynamic properties to evaluate structural dynamics and vehicle flight performance impacts by the atmosphere during ascent. Statistical characteristics of atmospheric thermodynamic properties at Kennedy Space Center (KSC) used in Space. Shuttle Vehicle assessments are contained in the Cape Canaveral Air Force Station (CCAFS) Range Reference Atmosphere (RRA) Database. Database contains tabulations for monthly and annual means (mu), standard deviations (sigma) and skewness of wind and thermodynamic variables. Wind, Thermodynamic, Humidity and Hydrostatic parameters 1 km resolution interval from 0-30 km 2 km resolution interval 30-70 km Multiple revisions of the CCAFS RRA database have been developed since initial RRA published in 1963. 1971, 1983, 2006 Space Shuttle program utilized 1983 version for use in deriving "hot" and "cold" atmospheres, atmospheric density dispersions for use in vehicle certification analyses and selection of atmospheric thermodynamic profiles for use in vehicle ascent design and certification analyses. During STS-114 launch preparations in July 2005 atmospheric density observations between 50-80 kft exceeded density limits used for aerodynamic ascent heating constraints in vehicle certification analyses. Mission specific analyses were conducted and concluded that the density bias resulted in small changes to heating rates and integrated heat loading on the vehicle. In 2001, the Air Force Combat Climatology Center began developing an updated RRA for CCAFS.

  3. KSC-2011-6643

    NASA Image and Video Library

    2011-08-31

    CAPE CANAVERAL, Fla. -- The Cape Canaveral Spaceport Mobile Command Center vehicle participates in the aviation safety exercise during Emergency Response Safety Training at the Shuttle Landing Facility, Runway 33, at NASA’s Kennedy Space Center in Florida. The simulated helicopter mishap exercise was conducted to evaluate emergency response and mishap investigations of aircraft at Kennedy. Participants included Air Rescue Fire Fighters, Flight Operations, Disaster Preparedness, Security, and Safety. NASA mandates simulated aviation safety training take place every two years. Photo credit: NASA/Kim Shiflett

  4. KSC-2011-4952

    NASA Image and Video Library

    2011-06-27

    CAPE CANAVERAL, Fla., -- At the Astrotech Payload Processing Facility in Titusville, Fla., technicians stretch a protective cover over NASA's Juno spacecraft. Juno is being prepared for its move to the Hazardous Processing Facility for fueling. The spacecraft will be loaded with the propellant necessary for orbit maneuvers and the attitude control system. Juno is scheduled to launch aboard a United Launch Alliance Atlas V rocket from Cape Canaveral, Fla., Aug. 5.The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. For more information visit: www.nasa.gov/juno. Photo credit: NASA/Troy Cryder

  5. KSC-2011-4953

    NASA Image and Video Library

    2011-06-27

    CAPE CANAVERAL, Fla. -- At the Astrotech Payload Processing Facility in Titusville, Fla., , technicians secure a protective cover over NASA's Juno spacecraft. Juno is being prepared for its move to the Hazardous Processing Facility for fueling. The spacecraft will be loaded with the propellant necessary for orbit maneuvers and the attitude control system. Juno is scheduled to launch aboard a United Launch Alliance Atlas V rocket from Cape Canaveral, Fla., Aug. 5.The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. For more information visit: www.nasa.gov/juno. Photo credit: NASA/Troy Cryder

  6. KSC-2010-1275

    NASA Image and Video Library

    2010-01-15

    CAPE CANAVERAL, Fla. - An endangered green sea turtle is outfitted with a tracking transmitter at Cape Canaveral Air Force Station in Florida. A recent cold snap left this turtle and nearly 2,000 others "stunned" and in need of help. Many of the turtles were rescued from the Mosquito Lagoon, with others coming from the Indian River Lagoon and Cocoa Beach. Biologists, environmentalists, wildlife experts and other volunteers joined forces with a massive rescue effort at the Merritt Island National Wildlife Refuge, where the turtles were identified, examined and transported to rehabilitation facilities throughout Florida and South Georgia. The animals stayed at these facilities until local waters warmed up to safe temperatures. Photo credit: NASA/Jack Pfaller

  7. Bulk Fuel Storage Facility Cape Canaveral Air Force Station, Florida. Environmental Assessment

    DTIC Science & Technology

    2006-11-01

    Potential DESC Fuel Depot Locations............................................2-7 Figure 2-5: Proposed Action Area Soils Map ... Area (FSA) #4, as the location is required to provide secure office space. 4) Maintain fuel operations in compliance with federal, state, and local...at the CCAFS fueling station(s) to Aboveground Storage Tanks (ASTs). Six alternative sites (five locations in the CCAFS Industrial Area and one

  8. KSC-2013-4431

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Launch Complex 41, a United Launch Alliance Atlas V rocket, with its Centaur second stage atop, stands in the Vertical Integration Facility as preparations continue for lift off of the Tracking and Data Relay Satellite, or TDRS-L. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  9. KSC-2013-4398

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Vertical Integration Facility at Launch Complex 41, a crane is positioned to support stacking of the United Launch Alliance Atlas V rocket that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  10. KSC-2013-4397

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Vertical Integration Facility at Launch Complex 41, a crane is positioned to support stacking of the United Launch Alliance Atlas V rocket that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  11. KSC-2012-4353

    NASA Image and Video Library

    2012-08-10

    CAPE CANAVERAL, Fla. – The Radiation Belt Storm Probes, or RBSP, spacecraft are moved inside their payload fairing on the payload transporter from the Astrotech payload processing facility in Titusville, Fla. to Space Launch Complex-41 at Cape Canaveral Air Force Station. The fairing, which holds the twin RBSP spacecraft, will be lifted to the top of a United Launch Alliance Atlas V rocket for launch later in August. The two spacecraft are designed to study the Van Allen radiation belts in unprecedented detail. Photo credit: NASA/Dmitri Gerondidakis

  12. KSC-01pp1041

    NASA Image and Video Library

    2001-05-30

    Workers supervise the off-loading of segments of a Lockheed Martin Atlas II rocket at the Skid Strip at Cape Canaveral Air Force Station.; The rocket will be used to launch the Geostationary Operational Environmental Satellite-M (GOES-M), the latest in the current series of advanced geostationary weather satellites in service.; GOES-M is being prepared for launch at the Astrotech Space Operations facility located in the Spaceport Florida Industrial Park in Titusville, Fla. The launch is scheduled for July 15 from Pad 36-A, Cape Canaveral Air Force Station

  13. KSC-01pp1040

    NASA Image and Video Library

    2001-05-30

    Workers supervise the off-loading of segments of a Lockheed Martin Atlas II rocket at the Skid Strip at Cape Canaveral Air Force Station.; The rocket will be used to launch the Geostationary Operational Environmental Satellite-M (GOES-M), the latest in the current series of advanced geostationary weather satellites in service.; GOES-M is being prepared for launch at the Astrotech Space Operations facility located in the Spaceport Florida Industrial Park in Titusville, Fla. The launch is scheduled for July 15 from Pad 36-A, Cape Canaveral Air Force Station

  14. Workstation-Based Real-Time Mesoscale Modeling Designed for Weather Support to Operations at the Kennedy Space Center and Cape Canaveral Air Station

    NASA Technical Reports Server (NTRS)

    Manobianco, John; Zack, John W.; Taylor, Gregory E.

    1996-01-01

    This paper describes the capabilities and operational utility of a version of the Mesoscale Atmospheric Simulation System (MASS) that has been developed to support operational weather forecasting at the Kennedy Space Center (KSC) and Cape Canaveral Air Station (CCAS). The implementation of local, mesoscale modeling systems at KSC/CCAS is designed to provide detailed short-range (less than 24 h) forecasts of winds, clouds, and hazardous weather such as thunderstorms. Short-range forecasting is a challenge for daily operations, and manned and unmanned launches since KSC/CCAS is located in central Florida where the weather during the warm season is dominated by mesoscale circulations like the sea breeze. For this application, MASS has been modified to run on a Stardent 3000 workstation. Workstation-based, real-time numerical modeling requires a compromise between the requirement to run the system fast enough so that the output can be used before expiration balanced against the desire to improve the simulations by increasing resolution and using more detailed physical parameterizations. It is now feasible to run high-resolution mesoscale models such as MASS on local workstations to provide timely forecasts at a fraction of the cost required to run these models on mainframe supercomputers. MASS has been running in the Applied Meteorology Unit (AMU) at KSC/CCAS since January 1994 for the purpose of system evaluation. In March 1995, the AMU began sending real-time MASS output to the forecasters and meteorologists at CCAS, Spaceflight Meteorology Group (Johnson Space Center, Houston, Texas), and the National Weather Service (Melbourne, Florida). However, MASS is not yet an operational system. The final decision whether to transition MASS for operational use will depend on a combination of forecaster feedback, the AMU's final evaluation results, and the life-cycle costs of the operational system.

  15. ULA Delta IV Heavy Common Booster Cores for the Parker Solar Pro

    NASA Image and Video Library

    2017-07-28

    Framed by a series of cabbage palms, a United Launch Alliance Delta IV Heavy common booster core is transported by truck to Cape Canaveral Air Force Station's Launch Complex 37 Horizontal Processing Facility after arriving at Port Canaveral. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection. Liftoff atop the Delta IV Heavy rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 37 in summer 2018.

  16. Parker Solar Probe: Delta IV Heavy Second-stage and Port CBC Arrival, Offload, and Transport

    NASA Image and Video Library

    2017-08-26

    The United Launch Alliance Mariner arrives at Port Canaveral's Army Warf carrying the third Delta IV Heavy common booster core and second stage for NASA's upcoming Parker Solar Probe spacecraft. The flight hardware is offloaded and transported to the Horizontal Integration Facility (HIF) at Cape Canaveral Air Force Station for preflight processing. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection. Liftoff atop the Delta IV Heavy rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 37 in summer 2018.

  17. Applied Meteorology Unit - Operational Contributions to Spaceport Canaveral

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III; Roeder, William P.; Lafosse, Richard A.; Sharp, David W.; Merceret, Francis J.

    2004-01-01

    The Applied Meteorology Unit (AMU) provides technology development, evaluation and transition services to improve operational weather support to the Space Shuttle and the National Space Program. It is established under a Memorandum of Understanding among NASA, the Air Force and the National .Weather Service (NWS). The AMU is funded and managed by NASA and operated by ENSCO, Inc. through a competitively awarded NASA contract. The primary customers are the 45th Weather Squadron (45WS) at Cape Canaveral Air Force Station (CCAFS), FL; the Spaceflight Meteorology Group (SMG) at Johnson Space Center (JSC) in Houston, TX; and the NWS office in Melbourne, FL (NWS MLB). This paper will briefly review the AMU's history and describe the three processes through which its work is assigned. Since its inception in 1991 the AMU has completed 72 projects, all of which are listed at the end of this paper. At least one project that highlights each of the three tasking processes will be briefly reviewed. Some of the projects that have been especially beneficial to the space program will also be discussed in more detail, as will projects that developed significant new techniques or science in applied meteorology.

  18. KSC-2010-1274

    NASA Image and Video Library

    2010-01-15

    CAPE CANAVERAL, Fla. - A trio of green sea turtles rest in a box at Cape Canaveral Air Force Station in Florida after the animals were outfitted with tracking transmitters. The turtles were some of nearly 2,000 that were "stunned" by the recent drop in temperatures. Many of the turtles were rescued from the Mosquito Lagoon, with others coming from the Indian River Lagoon and Cocoa Beach. Biologists, environmentalists, wildlife experts and other volunteers joined forces with a massive rescue effort at the Merritt Island National Wildlife Refuge, where the turtles were identified, examined and transported to rehabilitation facilities throughout Florida and South Georgia. The animals stayed at these facilities until local waters warmed up to safe temperatures. Photo credit: NASA/Jack Pfaller

  19. KSC-2010-1272

    NASA Image and Video Library

    2010-01-15

    CAPE CANAVERAL, Fla. - A tracking transmitter is installed on the shell of an endangered green sea turtle at Cape Canaveral Air Force Station in Florida. A recent cold snap left this turtle and nearly 2,000 others "stunned" and in need of help. Many of the turtles were rescued from the Mosquito Lagoon, with others coming from the Indian River Lagoon and Cocoa Beach. Biologists, environmentalists, wildlife experts and other volunteers joined forces with a massive rescue effort at the Merritt Island National Wildlife Refuge, where the turtles were identified, examined and transported to rehabilitation facilities throughout Florida and South Georgia. The animals stayed at these facilities until local waters warmed up to safe temperatures. Photo credit: NASA/Jack Pfaller

  20. KSC-2010-1276

    NASA Image and Video Library

    2010-01-15

    CAPE CANAVERAL, Fla. - An endangered green sea turtle awaits release as its shell is tagged with a tracking transmitter at Cape Canaveral Air Force Station in Florida. A recent cold snap left this turtle and nearly 2,000 others "stunned" and in need of help. Many of the turtles were rescued from the Mosquito Lagoon, with others coming from the Indian River Lagoon and Cocoa Beach. Biologists, environmentalists, wildlife experts and other volunteers joined forces with a massive rescue effort at the Merritt Island National Wildlife Refuge, where the turtles were identified, examined and transported to rehabilitation facilities throughout Florida and South Georgia. The animals stayed at these facilities until local waters warmed up to safe temperatures. Photo credit: NASA/Jack Pfaller

  1. KSC-2010-1273

    NASA Image and Video Library

    2010-01-15

    CAPE CANAVERAL, Fla. - A green sea turtle rests its head on a companion as the animals are tagged with tracking transmitters and prepared for release at Cape Canaveral Air Force Station in Florida. The turtles were some of nearly 2,000 that were "stunned" by the recent drop in temperatures. Many of the turtles were rescued from the Mosquito Lagoon, with others coming from the Indian River Lagoon and Cocoa Beach. Biologists, environmentalists, wildlife experts and other volunteers joined forces with a massive rescue effort at the Merritt Island National Wildlife Refuge, where the turtles were identified, examined and transported to rehabilitation facilities throughout Florida and South Georgia. The animals stayed at these facilities until local waters warmed up to safe temperatures. Photo credit: NASA/Jack Pfaller

  2. KSC-2009-2832

    NASA Image and Video Library

    2009-04-27

    CAPE CANAVERAL, Fla. –– The Atlas V first stage is being transferred from the hangar at the Atlas Space Operations Facility to the Vertical Integration Facility near Cape Canaveral Air Force Station's Launch Complex 41. The Atlas V/Centaur is the launch vehicle for the Lunar Reconnaissance Orbiter, or LRO. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. Launch of LRO is targeted no earlier than June 2. Photo credit: NASA/Kim Shiflett

  3. KSC-2009-2831

    NASA Image and Video Library

    2009-04-27

    CAPE CANAVERAL, Fla. –– The Atlas V first stage is moved from the hangar at the Atlas Space Operations Facility. It is going to the Vertical Integration Facility near Cape Canaveral Air Force Station's Launch Complex 41. The Atlas V/Centaur is the launch vehicle for the Lunar Reconnaissance Orbiter, or LRO. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. Launch of LRO is targeted no earlier than June 2. Photo credit: NASA/Kim Shiflett

  4. KSC-2011-6103

    NASA Image and Video Library

    2011-07-30

    CAPE CANAVERAL, Fla. -- Preparations are under way to begin two days of fueling activities on NASA's twin Gravity Recovery and Interior Laboratory lunar spacecraft in the Hazardous Processing Facility (HPF) at Astrotech Space Operation's payload processing facility in Titusville, Fla. GRAIL will fly in tandem orbits around the moon for several months to measure its gravity field. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. Launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 17B on Cape Canaveral Air Force Station is scheduled for Sept. 8. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Charisse Nahser

  5. Characterization of the Shuttle Landing Facility as a laser range for testing and evaluation of EO systems

    NASA Astrophysics Data System (ADS)

    Stromqvist Vetelino, Frida; Borbath, Michael R.; Andrews, Larry C.; Phillips, Ronald L.; Burdge, Geoffrey L.; Chin, Peter G.; Galus, Darren J.; Wayne, David; Pescatore, Robert; Cowan, Doris; Thomas, Frederick

    2005-08-01

    The Shuttle Landing Facility runway at the Kennedy Space Center in Cape Canaveral, Florida is almost 5 km long and 100 m wide. Its homogeneous environment makes it a unique and ideal place for testing and evaluating EO systems. An experiment, with the goal of characterizing atmospheric parameters on the runway, was conducted in June 2005. Weather data was collected and the refractive index structure parameter was measured with a commercial scintillometer. The inner scale of turbulence was inferred from wind speed measurements and surface roughness. Values of the crosswind speed obtained from the scintillometer were compared with wind measurements taken by a weather station.

  6. TDRS-L spacecraft lift to mate on Atlas V

    NASA Image and Video Library

    2014-01-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Vertical Integration Facility at Launch Complex 41, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft is lifted for mounting atop a United Launch Alliance Atlas V rocket. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on Jan. 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html Photo credit: NASA/Dimitri Gerondidakis

  7. KSC-2013-4406

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, the first stage of the United Launch Alliance Atlas V rocket is lifted for stacking in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  8. KSC-2013-4407

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, the first stage of the United Launch Alliance Atlas V rocket is lifted for stacking in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  9. KSC-2013-4415

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, the first stage of the United Launch Alliance Atlas V rocket positioned in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  10. KSC-2013-4410

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, the first stage of the United Launch Alliance Atlas V rocket is lifted for stacking in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  11. KSC-2013-4413

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, a technician support lifting the first stage of the United Launch Alliance Atlas V rocket during stacking operations in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  12. KSC-2013-4400

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, engineers and technicians prepare the United Launch Alliance Atlas V rocket for stacking in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  13. TDRS-L Spacecraft Transported from Astrotech to SLC

    NASA Image and Video Library

    2014-01-13

    CAPE CANAVERAL, Fla. – Encapsulated in its payload fairing, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft arrives at Cape Canaveral Air Force Station's Vertical Integration Facility at Launch Complex 41. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on January 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html Photo credit: NASA/Dimitri Gerondidakis

  14. TDRS-L spacecraft lift to mate on Atlas V

    NASA Image and Video Library

    2014-01-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Vertical Integration Facility at Launch Complex 41, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft has been mated atop a United Launch Alliance Atlas V rocket. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on Jan. 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html Photo credit: NASA/Dimitri Gerondidakis

  15. KSC-2013-4411

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, the first stage of the United Launch Alliance Atlas V rocket is lifted for stacking in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  16. KSC-2013-4408

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, a technician supports lifting of a United Launch Alliance Atlas V rocket in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  17. KSC-2013-4403

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, the first stage of the United Launch Alliance Atlas V rocket is lifted for stacking in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  18. KSC-2013-4416

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, the first stage of the United Launch Alliance Atlas V rocket positioned in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  19. KSC-2013-4405

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, the first stage of the United Launch Alliance Atlas V rocket is lifted for stacking in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  20. TDRS-L spacecraft lift to mate on Atlas V

    NASA Image and Video Library

    2014-01-13

    CAPE CANAVERAL, Fla. – Encapsulated in its payload fairing, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft arrives at Cape Canaveral Air Force Station's Vertical Integration Facility at Launch Complex 41. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on Jan. 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html Photo credit: NASA/Dimitri Gerondidakis

  1. KSC-2013-4401

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, engineers and technicians prepare the United Launch Alliance Atlas V rocket for stacking in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  2. KSC-2013-4414

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, the first stage of the United Launch Alliance Atlas V rocket is lifted for stacking in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  3. KSC-2013-4399

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, engineers and technicians prepare the United Launch Alliance Atlas V rocket for stacking in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  4. KSC-2013-4409

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, the first stage of the United Launch Alliance Atlas V rocket is lifted for stacking in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  5. KENNEDY SPACE CENTER, FLA. - A solid rocket booster (SRB) for the Delta II Heavy rocket that will launch the Space Infrared Telescope Facility (SIRTF) is lifted off its transporter on Launch Complex 17-B, Cape Canaveral Air Force Station. The SRB will be added to the launch vehicle in the background. The Delta II Heavy features nine 46-inch-diameter, stretched SRBs. SIRTF, consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-22

    KENNEDY SPACE CENTER, FLA. - A solid rocket booster (SRB) for the Delta II Heavy rocket that will launch the Space Infrared Telescope Facility (SIRTF) is lifted off its transporter on Launch Complex 17-B, Cape Canaveral Air Force Station. The SRB will be added to the launch vehicle in the background. The Delta II Heavy features nine 46-inch-diameter, stretched SRBs. SIRTF, consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  6. KENNEDY SPACE CENTER, FLA. - In the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station, workers move the first half of the fairing around the Space Infrared Telescope Facility (SIRTF) behind it for encapsulation. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Consisting of a 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF will be the largest infrared telescope ever launched into space. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” Its highly sensitive instruments will give a unique view of the Universe and peer into regions of space that are hidden from optical telescopes.

    NASA Image and Video Library

    2003-08-14

    KENNEDY SPACE CENTER, FLA. - In the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station, workers move the first half of the fairing around the Space Infrared Telescope Facility (SIRTF) behind it for encapsulation. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Consisting of a 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF will be the largest infrared telescope ever launched into space. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” Its highly sensitive instruments will give a unique view of the Universe and peer into regions of space that are hidden from optical telescopes.

  7. KENNEDY SPACE CENTER, FLA. - In the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station, the top of the fairing is seen as it moves into place around the Space Infrared Telescope Facility (SIRTF). SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Consisting of a 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF will be the largest infrared telescope ever launched into space. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” Its highly sensitive instruments will give a unique view of the Universe and peer into regions of space that are hidden from optical telescopes.

    NASA Image and Video Library

    2003-08-14

    KENNEDY SPACE CENTER, FLA. - In the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station, the top of the fairing is seen as it moves into place around the Space Infrared Telescope Facility (SIRTF). SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Consisting of a 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF will be the largest infrared telescope ever launched into space. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” Its highly sensitive instruments will give a unique view of the Universe and peer into regions of space that are hidden from optical telescopes.

  8. KENNEDY SPACE CENTER, FLA. - In the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station, workers watch as the first half of the fairing moves closer around the Space Infrared Telescope Facility (SIRTF). SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Consisting of a 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF will be the largest infrared telescope ever launched into space. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” Its highly sensitive instruments will give a unique view of the Universe and peer into regions of space that are hidden from optical telescopes.

    NASA Image and Video Library

    2003-08-14

    KENNEDY SPACE CENTER, FLA. - In the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station, workers watch as the first half of the fairing moves closer around the Space Infrared Telescope Facility (SIRTF). SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Consisting of a 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF will be the largest infrared telescope ever launched into space. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” Its highly sensitive instruments will give a unique view of the Universe and peer into regions of space that are hidden from optical telescopes.

  9. KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility are preparing to determine weight and center of gravity for the Mars Exploration Rover 2 (MER-2). NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. Launch of MER-2 is scheduled for June 5 from Cape Canaveral Air Force Station.

    NASA Image and Video Library

    2003-05-09

    KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility are preparing to determine weight and center of gravity for the Mars Exploration Rover 2 (MER-2). NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. Launch of MER-2 is scheduled for June 5 from Cape Canaveral Air Force Station.

  10. KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, the Mars Exploration Rover 2 (MER-2) is moved to a spin table. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. The MER-2 is scheduled to launch June 5 from Launch Pad 17-A, Cape Canaveral Air Force Station.

    NASA Image and Video Library

    2003-05-19

    KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, the Mars Exploration Rover 2 (MER-2) is moved to a spin table. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. The MER-2 is scheduled to launch June 5 from Launch Pad 17-A, Cape Canaveral Air Force Station.

  11. KENNEDY SPACE CENTER, FLA. - Workers on the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station, wait for the Space Infrared Telescope Facility (SIRTF) to reach their level. SIRTF will be attached to the Delta II rocket and encapsulated in its fairing before launch. Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA’s largest infrared telescopes to be launched. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-10

    KENNEDY SPACE CENTER, FLA. - Workers on the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station, wait for the Space Infrared Telescope Facility (SIRTF) to reach their level. SIRTF will be attached to the Delta II rocket and encapsulated in its fairing before launch. Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA’s largest infrared telescopes to be launched. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  12. KENNEDY SPACE CENTER, FLA. - Workers on the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station, watch as the Space Infrared Telescope Facility (SIRTF) clears the platform. SIRTF will be attached to the Delta II rocket and encapsulated in its fairing before launch. Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA’s largest infrared telescopes to be launched. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-10

    KENNEDY SPACE CENTER, FLA. - Workers on the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station, watch as the Space Infrared Telescope Facility (SIRTF) clears the platform. SIRTF will be attached to the Delta II rocket and encapsulated in its fairing before launch. Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA’s largest infrared telescopes to be launched. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  13. KENNEDY SPACE CENTER, FLA. - After dawn, the Space Infrared Telescope Facility (SIRTF) is lifted up the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station. SIRTF will be attached to the Delta II rocket and encapsulated in its fairing before launch. Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA’s largest infrared telescopes to be launched. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-10

    KENNEDY SPACE CENTER, FLA. - After dawn, the Space Infrared Telescope Facility (SIRTF) is lifted up the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station. SIRTF will be attached to the Delta II rocket and encapsulated in its fairing before launch. Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA’s largest infrared telescopes to be launched. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  14. KENNEDY SPACE CENTER, FLA. - The Space Infrared Telescope Facility (SIRTF) is lowered into the opening of the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station. SIRTF will be attached to the Delta II rocket and encapsulated in its fairing before launch. Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA’s largest infrared telescopes to be launched. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-10

    KENNEDY SPACE CENTER, FLA. - The Space Infrared Telescope Facility (SIRTF) is lowered into the opening of the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station. SIRTF will be attached to the Delta II rocket and encapsulated in its fairing before launch. Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA’s largest infrared telescopes to be launched. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  15. KENNEDY SPACE CENTER, FLA. - Viewed from below, the Space Infrared Telescope Facility (SIRTF) is lifted up the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station. SIRTF will be attached to the Delta II rocket and encapsulated in its fairing before launch. Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA’s largest infrared telescopes to be launched. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-10

    KENNEDY SPACE CENTER, FLA. - Viewed from below, the Space Infrared Telescope Facility (SIRTF) is lifted up the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station. SIRTF will be attached to the Delta II rocket and encapsulated in its fairing before launch. Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA’s largest infrared telescopes to be launched. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  16. KSC-2012-4089

    NASA Image and Video Library

    2012-07-30

    CAPE CANAVERAl, Fla. - Dr. Ray Wheeler, left, explains plant growth experimentation facilities to Dr. Mason Peck, NASA's chief Technologist, during a tour of the Space Life Sciences Laboratory at Kennedy. Peck toured the lab facility during a visit to the space center. Photo credit: NASA/Frankie Martin

  17. Langley Storage facility which houses remains of Apollo 204 craft

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Apollo 204 command module is seen in storage at Langley Research Center in Virginia. The command module, damaged in the 1967 Apollo fire, its heat shield, booster protective cover and 81 cartons of related hardware and investigative data occupy 3,300 cubic feet of Langley's storage space. Astronauts Virgil I. Grissom, Roger B. Chaffee and Edward H. White II perished in the Apollo 204 spacecraft fire on Jan. 27, 1967 on Launch Complex 34, Cape Canaveral. The hardware has been stored at Langley since 1967. PLEASE NOTE UPDATE: In early May of 1990, NASA announced plans to move the hardware and related data to permanent storage at the site of all the Challenger debris in an abandoned missile silo at Cape Canaveral Air Force Station (CCAFS), Florida. However, at month's end, NASA announced it had decided to keep the capsule at Langley for an indefinite period of time.

  18. Langley Storage facility which houses remains of Apollo 204 craft

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Apollo 204 command module is seen in storage at Langley Research Center in Virginia. The command module, damaged in the 1967 Apollo fire, its heat shield, booster protective cover and 81 cartons of related hardware and investigative data occupy 3,300 cubic feet of warehouse storage space. Astronauts Virgil I. Grissom, Roger B. Chaffee and Edward H. White II perished in the Apollo 204 spacecraft fire on Jan. 27, 1967 on Launch Complex 34 at Cape Canaveral. The hardware has been stored at Langley since 1967. PLEASE NOTE UPDATE: In early May of 1990, NASA announced plans to move the hardware and related data to permanent storage with the Challenger debris in an abandoned missile silo at Cape Canaveral Air Force Station (CCAFS), Florida. However, at month's end, NASA announced it had decided to keep the capsule at Langley for an indefinite period of time.

  19. Langley Storage facility which houses remains of Apollo 204 craft

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A warehouse holding Apollo 204 hardware and investigative data is seen at Langley Research Center in Virginia. The command module, damaged in the 1967 Apollo fire, its heat shield, booster protective cover and 81 cartons of data and other related materials occupy 3,300 cubic feet. Astronauts Virgil I. Grissom, Roger B. Chaffee and Edward H. White II perished in the Apollo 204 spacecraft fire on Jan. 27, 1967 on Launch Complex 34 at Cape Canaveral. The hardware has been stored at Langley since 1967. PLEASE NOTE UPDATE: In early May of 1990, NASA announced plans to move the hardware and related data to permanent storage with the Challenger debris in an abandoned missile silo at Cape Canaveral Air Force Station (CCAFS), Florida. However, at month's end, NASA announced it had decided to keep the capsule at Langley for an indefinite period of time.

  20. Langley Storage facility which houses remains of Apollo 204 craft

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Part of 81 cartons of Apollo 204 hardware and investigation data are seen in storage at Langley Research Center in Virginia. The command module, damaged in the 1967 Apollo fire, its heat shield, booster protective cover and the cartons occupy 3,300 cubic feet of Langley's storage space. Astronauts Virgil I. Grissom, Roger B. Chaffee and Edward H. White II perished in the Apollo 204 spacecraft fire on Jan. 27, 1967 on Launch Complex 34, Cape Canaveral. The hardware has been stored at Langley since 1967. PLEASE NOTE UPDATE: In early May of 1990, NASA announced plans to move the hardware and related data to permanent storage with the Challenger debris in an abandoned missile silo at Cape Canaveral Air Force Station (CCAFS), Florida. However, at month's end, NASA announced it had decided to keep the capsule at Langley for an indefinite period of time.

  1. Objective Lightning Forecasting at Kennedy Space Center/Cape Canaveral Air Force Station using Cloud-to-Ground Lightning Surveillance System Data

    NASA Technical Reports Server (NTRS)

    Lambert, Winifred; Wheeler, Mark

    2004-01-01

    The 45th Weather Squadron (45 WS) forecasters at Cape Canaveral Air Force Station (CCAFS) in Florida include a probability of thunderstorm occurrence in their daily morning briefings. This information is used by personnel involved in determining the possibility of violating Launch Commit Criteria, evaluating Flight Rules for the Space Shuttle, and daily planning for ground operation activities on Kennedy Space Center (KSC)/CCAFS. Much of the current lightning probability forecast is based on a subjective analysis of model and observational data. The forecasters requested that a lightning probability forecast tool based on statistical analysis of historical warm-season (May - September) data be developed in order to increase the objectivity of the daily thunderstorm probability forecast. The tool is a set of statistical lightning forecast equations that provide a lightning occurrence probability for the day by 1100 UTC (0700 EDT) during the warm season. This study used 15 years (1989-2003) of warm season data to develop the objective forecast equations. The local CCAFS 1000 UTC sounding was used to calculate stability parameters for equation predictors. The Cloud-to-Ground Lightning Surveillance System (CGLSS) data were used to determine lightning occurrence for each day. The CGLSS data have been found to be more reliable indicators of lightning in the area than surface observations through local informal analyses. This work was based on the results from two earlier research projects. Everitt (1999) used surface observations and rawinsonde data to develop logistic regression equations that forecast the daily thunderstorm probability at CCAFS. The Everitt (1999) equations showed an improvement in skill over the Neumann-Pfeffer thunderstorm index (Neumann 1971), which uses multiple linear regression, and also persistence and climatology forecasts. Lericos et al. (2002) developed lightning distributions over the Florida peninsula based on specific flow regimes. The

  2. KSC-2011-4983

    NASA Image and Video Library

    2011-06-27

    CAPE CANAVERAL, Fla. -- At Astrotech's Hazardous Processing Facility in Titusville, Fla., technicians guide NASA's Juno spacecraft onto a fueling stand where the spacecraft will be loaded with the propellant necessary for orbit maneuvers and the attitude control system. Juno is scheduled to launch aboard a United Launch Alliance Atlas V rocket from Cape Canaveral, Fla., Aug. 5.The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. For more information visit: www.nasa.gov/juno. Photo credit: NASA/Troy Cryder

  3. KSC-2011-4960

    NASA Image and Video Library

    2011-06-27

    CAPE CANAVERAL, Fla. -- Workers deliver NASA's Juno spacecraft to Astrotech's Hazardous Processing Facility in Titusville, Fla., for fueling. The spacecraft will be loaded with the propellant necessary for orbit maneuvers and the attitude control system. Juno is scheduled to launch aboard a United Launch Alliance Atlas V rocket from Cape Canaveral, Fla., Aug. 5.The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. For more information visit: www.nasa.gov/juno. Photo credit: NASA/Troy Cryder

  4. KSC-2011-4959

    NASA Image and Video Library

    2011-06-27

    CAPE CANAVERAL, Fla. -- Workers deliver NASA's Juno spacecraft to Astrotech's Hazardous Processing Facility in Titusville, Fla., for fueling. The spacecraft will be loaded with the propellant necessary for orbit maneuvers and the attitude control system. Juno is scheduled to launch aboard a United Launch Alliance Atlas V rocket from Cape Canaveral, Fla., Aug. 5.The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. For more information visit: www.nasa.gov/juno. Photo credit: NASA/Troy Cryder

  5. KSC-2011-4985

    NASA Image and Video Library

    2011-06-27

    CAPE CANAVERAL, Fla. -- At Astrotech's Hazardous Processing Facility in Titusville, Fla., technicians secure NASA's Juno spacecraft to a fueling stand where the spacecraft will be loaded with the propellant necessary for orbit maneuvers and the attitude control system. Juno is scheduled to launch aboard a United Launch Alliance Atlas V rocket from Cape Canaveral, Fla., Aug. 5.The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. For more information visit: www.nasa.gov/juno. Photo credit: NASA/Troy Cryder

  6. KSC-2011-4986

    NASA Image and Video Library

    2011-06-27

    CAPE CANAVERAL, Fla. -- At Astrotech's Hazardous Processing Facility in Titusville, Fla., NASA's Juno spacecraft is secured to a fueling stand where the spacecraft will be loaded with the propellant necessary for orbit maneuvers and the attitude control system. Juno is scheduled to launch aboard a United Launch Alliance Atlas V rocket from Cape Canaveral, Fla., Aug. 5.The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. For more information visit: www.nasa.gov/juno. Photo credit: NASA/Troy Cryder

  7. KSC-2011-4984

    NASA Image and Video Library

    2011-06-27

    CAPE CANAVERAL, Fla. -- At Astrotech's Hazardous Processing Facility in Titusville, Fla., technicians secure NASA's Juno spacecraft to a fueling stand where the spacecraft will be loaded with the propellant necessary for orbit maneuvers and the attitude control system. Juno is scheduled to launch aboard a United Launch Alliance Atlas V rocket from Cape Canaveral, Fla., Aug. 5.The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. For more information visit: www.nasa.gov/juno. Photo credit: NASA/Troy Cryder

  8. KSC-2011-4962

    NASA Image and Video Library

    2011-06-27

    CAPE CANAVERAL, Fla. -- At Astrotech's Hazardous Processing Facility in Titusville, Fla., technicians prepare the fueling stand for NASA's Juno spacecraft where the spacecraft will be loaded with the propellant necessary for orbit maneuvers and the attitude control system. Juno is scheduled to launch aboard a United Launch Alliance Atlas V rocket from Cape Canaveral, Fla., Aug. 5.The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. For more information visit: www.nasa.gov/juno. Photo credit: NASA/Troy Cryder

  9. KSC-2013-3478

    NASA Image and Video Library

    2013-08-27

    CAPE CANAVERAL, Fla. – Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, a technician cleans one of the cells of the electricity-producing solar arrays for the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. MAVEN is being prepared for its scheduled launch in November from Cape Canaveral Air Force Station, Fla. atop a United Launch Alliance Atlas V rocket. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. For more information, visit: http://www.nasa.gov/mission_pages/maven/main/index.html Photo credit: NASA/ Jim Grossmann

  10. KSC-2013-3465

    NASA Image and Video Library

    2013-08-27

    CAPE CANAVERAL, Fla. – Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, technicians test a cell from one of the electricity-producing solar arrays for the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. MAVEN is being prepared for its scheduled launch in November from Cape Canaveral Air Force Station, Fla. atop a United Launch Alliance Atlas V rocket. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. For more information, visit: http://www.nasa.gov/mission_pages/maven/main/index.html Photo credit: NASA/ Jim Grossmann

  11. KSC-2013-3467

    NASA Image and Video Library

    2013-08-27

    CAPE CANAVERAL, Fla. – Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, a technician inspects a cell from one of the electricity-producing solar arrays for the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. MAVEN is being prepared for its scheduled launch in November from Cape Canaveral Air Force Station, Fla. atop a United Launch Alliance Atlas V rocket. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. For more information, visit: http://www.nasa.gov/mission_pages/maven/main/index.html Photo credit: NASA/ Jim Grossmann

  12. KSC-2013-3464

    NASA Image and Video Library

    2013-08-27

    CAPE CANAVERAL, Fla. – Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, a technician tests a cell from one of the electricity-producing solar arrays for the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. MAVEN is being prepared for its scheduled launch in November from Cape Canaveral Air Force Station, Fla. atop a United Launch Alliance Atlas V rocket. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. For more information, visit: http://www.nasa.gov/mission_pages/maven/main/index.html Photo credit: NASA/ Jim Grossmann

  13. Obama Kennedy Space Center Visit

    NASA Image and Video Library

    2010-04-14

    President Barack Obama, left, Air Force Col. Lee Rosen, Commander, 45th Launch Group, center, and SpaceX CEO Elon Musk talk with Dr. John P. Holdren is Assistant to the President for Science and Technology during a tour of the commercial rocket processing facility of Space Exploration Technologies, known as SpaceX, at Cape Canaveral Air Force Station, Cape Canaveral, Fla. on Thursday, April 15, 2010. Obama also visited the NASA Kennedy Space Center to deliver remarks on the bold new course the administration is charting to maintain U.S. leadership in human space flight. Photo Credit: (NASA/Bill Ingalls)

  14. ULA Delta IV Heavy Common Booster Cores for the Parker Solar Pro

    NASA Image and Video Library

    2017-07-28

    A United Launch Alliance Delta IV Heavy common booster core arrives by truck at Cape Canaveral Air Force Station's Launch Complex 37 Horizontal Processing Facility. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection. Liftoff atop the Delta IV Heavy rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 37 in summer 2018.

  15. ULA Delta IV Heavy Common Booster Cores for the Parker Solar Pro

    NASA Image and Video Library

    2017-07-28

    A United Launch Alliance Delta IV Heavy common booster core is transported by truck inside Cape Canaveral Air Force Station's Launch Complex 37 Horizontal Processing Facility. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection. Liftoff atop the Delta IV Heavy rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 37 in summer 2018.

  16. ULA Delta IV Heavy Second Stage & Port Common Booster Core for t

    NASA Image and Video Library

    2017-08-30

    A United Launch Alliance Delta IV Heavy common booster core arrives at the Horizontal Integration Facility at Cape Canaveral Air Force Station for preflight processing. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection. Liftoff atop the Delta IV Heavy rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 37 in summer 2018.

  17. KSC-03pd0517

    NASA Image and Video Library

    2003-02-19

    KENNEDY SPACE CENTER, FLA. -- - At NASA's Family & Community Mars Exploration Day, held in Cape Canaveral, Fla., Kristie Durham (left), Martha Vreeland (center), and Jeanne Hawkins (right), with Expendable Launch Vehicle Services, offer information about the facility. The event informed students and the general public about Florida's key role as NASA's "Gateway to Mars" and offered an opportunity to meet with scientists, engineers, educators and others working Mars exploration missions. The Mars Exploration Rovers are being prepared for launch this spring aboard Boeing Delta II rockets from the Cape Canaveral Air Force Station. They will land on Mars and start exploring in January 2004.

  18. KSC-03PD-0517

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. -- - At NASA's Family & Community Mars Exploration Day, held in Cape Canaveral, Fla., Kristie Durham (left), Martha Vreeland (center), and Jeanne Hawkins (right), with Expendable Launch Vehicle Services, offer information about the facility. The event informed students and the general public about Florida's key role as NASA's 'Gateway to Mars' and offered an opportunity to meet with scientists, engineers, educators and others working Mars exploration missions. The Mars Exploration Rovers are being prepared for launch this spring aboard Boeing Delta II rockets from the Cape Canaveral Air Force Station. They will land on Mars and start exploring in January 2004.

  19. KSC-03pd0150

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. - In the Multi-Purpose Processing Facility, the Pegasus launch vehicle is ready for installation of the Solar Radiation and Climate Experiment (SORCE) satellite. Built by Orbital Sciences Corporation (OSC), SORCE will study and measure solar irradiance as a source of energy in the Earth's atmosphere. The launch of SORCE is scheduled for Jan. 25 at 3:14 p.m. from Cape Canaveral Air Force Station, Fla. The drop of the Pegasus will be from OSC's L-1011 aircraft at an altitude of 39,000 feet over the Atlantic Ocean approximately 100 miles east-southeast of Cape Canaveral.

  20. KSC-08pd0783

    NASA Image and Video Library

    2008-03-21

    CAPE CANAVERAL, Fla. --- In the Astrotech payload processing facility, the mechanism on NASA's Gamma-Ray Large Area Space Telescope, or GLAST, solar arrays has been released. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Jim Grossmann

  1. KSC-08pd0784

    NASA Image and Video Library

    2008-03-21

    CAPE CANAVERAL, Fla. --- In the Astrotech payload processing facility, NASA's Gamma-Ray Large Area Space Telescope, or GLAST, completes the test of the deployment mechanism on its solar arrays. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Jim Grossmann

  2. Space X-3 Social Media Tour of KSC Facilities

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – A group of news media and social media tweeters toured the Launch Abort System Facility and viewed the launch abort system for the Orion spacecraft at NASA's Kennedy Space Center in Florida. Speaking to the group is Scott Wilson, manager of Production Operations for the Orion Program. The group also toured the Launch Control Center and Vehicle Assembly Building, legacy facilities that are being upgraded by the Ground Systems Development and Operations Program at Kennedy to prepare for processing and launch of NASA's Space Launch System and Orion spacecraft. NASA is developing the Space Launch System and Orion spacecraft to provide an entirely new capability for human exploration beyond low-Earth orbit, with the flexibility to launch spacecraft for crew and cargo missions, including to an asteroid and Mars. Orion’s first unpiloted test flight is scheduled to launch later this year atop a Delta IV rocket. A second uncrewed flight test is scheduled for fiscal year 2018 on the Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston

  3. KENNEDY SPACE CENTER, FLA. -- NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (left) tours a solid rocket booster (SRB) retrieval ship at Cape Canaveral. NASA and United Space Alliance (USA) Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (left) tours a solid rocket booster (SRB) retrieval ship at Cape Canaveral. NASA and United Space Alliance (USA) Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  4. TDRS-L spacecraft lift to mate on Atlas V

    NASA Image and Video Library

    2014-01-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Vertical Integration Facility at Launch Complex 41, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft is moved into position for mating atop a United Launch Alliance Atlas V rocket. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on Jan. 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html Photo credit: NASA/Dimitri Gerondidakis

  5. KSC-2013-4402

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, engineers and technicians support lifting the first stage of the United Launch Alliance Atlas V rocket during stacking operations in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  6. KSC-2013-4420

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – The United Launch Alliance Centaur second stage that will help boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit arrives at Cape Canaveral Air Force Station's Launch Complex 41. It will be lifted and mounted atop the Atlas V first stage already in position inside the Vertical Integration Facility. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  7. KSC-2013-4412

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, engineers and technicians support lifting the first stage of the United Launch Alliance Atlas V rocket during stacking operations in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  8. KSC-2013-4404

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, engineers and technicians support lifting the first stage of the United Launch Alliance Atlas V rocket during stacking operations in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  9. KSC-2012-4843

    NASA Image and Video Library

    2012-09-05

    CAPE CANAVERAL, Fla. – A steel beam after being fitted to the highest point of a new exhibit facility under construction at the Kennedy Space Center Visitor Complex. The 90,000-square-foot facility will house space shuttle Atlantis and 62 shuttle program exhibits. Photo credit: NASA/Kim Shiflett

  10. KSC-2012-4840

    NASA Image and Video Library

    2012-09-05

    CAPE CANAVERAL, Fla. – A steel beam is lifted to the highest point of a new exhibit facility under construction at the Kennedy Space Center Visitor Complex. The 90,000-square-foot facility will house space shuttle Atlantis and 62 shuttle program exhibits. Photo credit: NASA/Kim Shiflett

  11. KSC-2012-4841

    NASA Image and Video Library

    2012-09-05

    CAPE CANAVERAL, Fla. – A steel beam is lifted to the highest point of a new exhibit facility under construction at the Kennedy Space Center Visitor Complex. The 90,000-square-foot facility will house space shuttle Atlantis and 62 shuttle program exhibits. Photo credit: NASA/Kim Shiflett

  12. KSC-2012-4842

    NASA Image and Video Library

    2012-09-05

    CAPE CANAVERAL, Fla. – A steel beam after being fitted to the highest point of a new exhibit facility under construction at the Kennedy Space Center Visitor Complex. The 90,000-square-foot facility will house space shuttle Atlantis and 62 shuttle program exhibits. Photo credit: NASA/Kim Shiflett

  13. KSC-2012-4844

    NASA Image and Video Library

    2012-09-05

    CAPE CANAVERAL, Fla. – A steel beam after being fitted to the highest point of a new exhibit facility under construction at the Kennedy Space Center Visitor Complex. The 90,000-square-foot facility will house space shuttle Atlantis and 62 shuttle program exhibits. Photo credit: NASA/Kim Shiflett

  14. KSC-2011-6092

    NASA Image and Video Library

    2011-07-30

    CAPE CANAVERAL, Fla. -- Preparations are under way to transport the protective canister housing NASA's twin Gravity Recovery and Interior Laboratory lunar spacecraft to the Hazardous Processing Facility (HPF) at Astrotech Space Operation's payload processing facility in Titusville, Fla. In the HPF, the spacecraft will undergo two days of fueling activities. GRAIL will fly in tandem orbits around the moon for several months to measure its gravity field. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. Launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 17B on Cape Canaveral Air Force Station is scheduled for Sept. 8. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Charisse Nahser

  15. KSC-2011-6104

    NASA Image and Video Library

    2011-07-30

    CAPE CANAVERAL, Fla. -- Lockheed Martin technicians examine NASA's twin Gravity Recovery and Interior Laboratory lunar spacecraft before they are moved onto workstands in the Hazardous Processing Facility (HPF) at Astrotech Space Operation's payload processing facility in Titusville, Fla. In the HPF, the spacecraft will undergo two days of fueling activities. GRAIL will fly in tandem orbits around the moon for several months to measure its gravity field. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. Launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 17B on Cape Canaveral Air Force Station is scheduled for Sept. 8. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Charisse Nahser

  16. KSC-2011-6099

    NASA Image and Video Library

    2011-07-30

    CAPE CANAVERAL, Fla. -- Lockheed Martin technicians push NASA's mylar-covered twin Gravity Recovery and Interior Laboratory lunar spacecraft toward the work area of the Hazardous Processing Facility (HPF) at Astrotech Space Operation's payload processing facility in Titusville, Fla. In the HPF, the spacecraft will undergo two days of fueling activities. GRAIL will fly in tandem orbits around the moon for several months to measure its gravity field. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. Launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 17B on Cape Canaveral Air Force Station is scheduled for Sept. 8. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Charisse Nahser

  17. 76 FR 38302 - Safety Zone; Cape Charles Fireworks, Cape Charles Harbor, Cape Charles, VA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-30

    ... the Town of Cape Charles will sponsor a fireworks display on the shoreline of the navigable waters of...-AA00 Safety Zone; Cape Charles Fireworks, Cape Charles Harbor, Cape Charles, VA AGENCY: Coast Guard... navigable waters of Cape Charles City Harbor in Cape Charles, VA in support of the Fourth of July Fireworks...

  18. KSC-2012-4834

    NASA Image and Video Library

    2012-09-05

    CAPE CANAVERAL, Fla. – Signatures on a steel beam that was placed at the highest point of a new exhibit facility under construction at the Kennedy Space Center Visitor Complex. The 90,000-square-foot facility will house space shuttle Atlantis and 62 shuttle program exhibits. Photo credit: NASA/Kim Shiflett

  19. Health conditions and support needs of persons living in residential facilities for adults with intellectual disability in Western Cape Province.

    PubMed

    McKenzie, J; McConkey, R; Adnams, C

    2013-04-17

    Intellectual disability (ID) is a relatively high-incidence disability, with an increased risk of poor physical and mental health. Persons with ID also have lifelong support needs that must be met if they are to achieve an acceptable quality of life. Little is known about these health conditions and support needs in the African context. This study examines persons over the age of 18 years with ID in residential facilities in Western Cape Province. To analyse the health conditions and support needs of persons with ID in Western Cape Province. A survey of residents' health conditions and support needs was conducted in face-to-face interviews with the managers of 37 out of 41 identified facilities. The survey comprised 2 098 residents (54% of them female), representing less than 2% of the estimated population of persons with ID in the province. The survey suggests that such persons experience a wide range of health conditions (notably mental health and behavioural issues) but have limited access to general health care and rehabilitation services. Furthermore, the daily living supports required for an acceptable quality of life are limited. The findings highlight the need for better health and support provision to persons with ID.

  20. Coordinated field study for CaPE: Analysis of energy and water budgets

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Duchon, Claude; Kanemasu, Edward T.; Smith, Eric A.; Crosson, William; Laymon, Chip; Luvall, Jeff

    1993-01-01

    The objectives of this hydrologic cycle study are to understand and model (1) surface energy and land-atmosphere water transfer processes, and (2) interactions between convective storms and surface energy fluxes. A surface energy budget measurement campaign was carried out by an interdisciplinary science team during the period July 8 - August 19, 1991 as part of the Convection and Precipitation/Electrification Experiment (CaPE) in the vicinity of Cape Canaveral, FL. Among the research themes associated with CaPE is the remote estimation of rainfall. Thus, in addition to surface radiation and energy budget measurements, surface mesonet, special radiosonde, precipitation, high-resolution satellite (SPOT) data, geosynchronous (GOES) and polar orbiting (DMSP SSM/I, OLS; NOAA AVHRR) satellite data, and high altitude airplane data (AMPR, MAMS, HIS) were collected. Initial quality control of the seven surface flux station data sets has begun. Ancillary data sets are being collected and assembled for analysis. Browsing of GOES and radar data has begun to classify days as disturbed/undisturbed to identify the larger scale forcing of the pre-convective environment, convection storms and precipitation. The science analysis plan has been finalized and tasks assigned to various investigators.

  1. Orion Core Stage & Booster Offload, Move to HIF

    NASA Image and Video Library

    2014-03-04

    CAPE CANAVERAL, Fla. – The core booster for the United Launch Alliance Delta IV heavy for NASA’s upcoming Exploration Flight Test-1, or EFT-1, mission with the Orion spacecraft, was transported to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station in Florida. The core booster and starboard booster arrived by barge at the U.S. Army Outpost wharf at Port Canaveral. The port booster and the upper stage are planned to be shipped to Cape Canaveral in April. At the HIF, all three boosters will be processed and checked out before being moved to the nearby launch pad and hoisted into position. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett

  2. Orion Core Stage & Booster Offload, Move to HIF

    NASA Image and Video Library

    2014-03-04

    CAPE CANAVERAL, Fla. – A barge arrives at the U.S. Army Outpost wharf at Port Canaveral in Florida, carrying two of the three United Launch Alliance Delta IV heavy boosters for NASA’s upcoming Exploration Flight Test-1, or EFT-1, mission with the Orion spacecraft. The core booster and starboard booster will be offloaded and then transported to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station. The port booster and the upper stage are planned to be shipped to Cape Canaveral in April. At the HIF, all three boosters will be processed and checked out before being moved to the nearby launch pad and hoisted into position. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett

  3. Orion Core Stage & Booster Offload, Move to HIF

    NASA Image and Video Library

    2014-03-04

    CAPE CANAVERAL, Fla. – Two of the three United Launch Alliance Delta IV heavy boosters for NASA’s upcoming Exploration Flight Test-1, or EFT-1, mission with the Orion spacecraft, have arrived by barge at the U.S. Army Outpost wharf at Port Canaveral in Florida. The core booster and starboard booster will be offloaded and then transported to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station. The port booster and the upper stage are planned to be shipped to Cape Canaveral in April. At the HIF, all three boosters will be processed and checked out before being moved to the nearby launch pad and hoisted into position. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett

  4. Orion Core Stage & Booster Offload, Move to HIF

    NASA Image and Video Library

    2014-03-04

    CAPE CANAVERAL, Fla. – Two of the three United Launch Alliance Delta IV heavy boosters for NASA’s upcoming Exploration Flight Test-1, or EFT-1, mission with the Orion spacecraft, arrived by barge at the U.S. Army Outpost wharf at Port Canaveral in Florida. The core booster and starboard booster were offloaded and are being transported to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station. The port booster and the upper stage are planned to be shipped to Cape Canaveral in April. At the HIF, all three boosters will be processed and checked out before being moved to the nearby launch pad and hoisted into position. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett

  5. Orion Core Stage & Booster Offload, Move to HIF

    NASA Image and Video Library

    2014-03-04

    CAPE CANAVERAL, Fla. – Two of the three United Launch Alliance Delta IV heavy boosters for NASA’s upcoming Exploration Flight Test-1, or EFT-1, mission with the Orion spacecraft, arrived by barge at the U.S. Army Outpost wharf at Port Canaveral in Florida. The core booster, shown in this photo, and starboard booster were offloaded and will be transported to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station. The port booster and the upper stage are planned to be shipped to Cape Canaveral in April. At the HIF, all three boosters will be processed and checked out before being moved to the nearby launch pad and hoisted into position. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett

  6. Orion Core Stage & Booster Offload, Move to HIF

    NASA Image and Video Library

    2014-03-04

    CAPE CANAVERAL, Fla. – Two of the three United Launch Alliance Delta IV heavy boosters for NASA’s upcoming Exploration Flight Test-1, or EFT-1, mission with the Orion spacecraft, have arrived by barge at the U.S. Army Outpost wharf at Port Canaveral in Florida. The core booster and starboard booster are being offloaded and will be transported to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station. The port booster and the upper stage are planned to be shipped to Cape Canaveral in April. At the HIF, all three boosters will be processed and checked out before being moved to the nearby launch pad and hoisted into position. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett

  7. Orion Core Stage & Booster Offload, Move to HIF

    NASA Image and Video Library

    2014-03-04

    CAPE CANAVERAL, Fla. – Two of the three United Launch Alliance Delta IV heavy boosters for NASA’s upcoming Exploration Flight Test-1, or EFT-1, mission with the Orion spacecraft, arrived by barge at the U.S. Army Outpost wharf at Port Canaveral in Florida. The core booster and starboard booster have been offloaded and will be transported to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station. The port booster and the upper stage are planned to be shipped to Cape Canaveral in April. At the HIF, all three boosters will be processed and checked out before being moved to the nearby launch pad and hoisted into position. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett

  8. Orion Core Stage & Booster Offload, Move to HIF

    NASA Image and Video Library

    2014-03-04

    CAPE CANAVERAL, Fla. – Two of the three United Launch Alliance Delta IV heavy boosters for NASA’s upcoming Exploration Flight Test-1, or EFT-1, mission with the Orion spacecraft, arrived by barge at the U.S. Army Outpost wharf at Port Canaveral in Florida. The core booster, shown in this photo, and starboard booster were offloaded and transported to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station. The port booster and the upper stage are planned to be shipped to Cape Canaveral in April. At the HIF, all three boosters will be processed and checked out before being moved to the nearby launch pad and hoisted into position. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett

  9. 76 FR 27970 - Safety Zone; Cape Charles Fireworks, Cape Charles Harbor, Cape Charles, VA.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-13

    ... Charles will sponsor a fireworks display on the shoreline of the navigable waters of Cape Charles City...[deg]01'30'' W (NAD 1983). This safety zone will be established in the vicinity of Cape Charles, VA...-AA00 Safety Zone; Cape Charles Fireworks, Cape Charles Harbor, Cape Charles, VA. AGENCY: Coast Guard...

  10. KSC-2012-4833

    NASA Image and Video Library

    2012-09-05

    CAPE CANAVERAL, Fla. – Workers sign a steel beam before it is placed at the highest point of a new exhibit facility under construction at the Kennedy Space Center Visitor Complex. The 90,000-square-foot facility will house space shuttle Atlantis and 62 shuttle program exhibits. Photo credit: NASA/Kim Shiflett

  11. KSC-2012-4832

    NASA Image and Video Library

    2012-09-05

    CAPE CANAVERAL, Fla. – A worker signs a steel beam before it is placed at the highest point of a new exhibit facility under construction at the Kennedy Space Center Visitor Complex. The 90,000-square-foot facility will house space shuttle Atlantis and 62 shuttle program exhibits. Photo credit: NASA/Kim Shiflett

  12. KSC-2012-4830

    NASA Image and Video Library

    2012-09-05

    CAPE CANAVERAL, Fla. – Workers sign a steel beam before it is placed at the highest point of a new exhibit facility under construction at the Kennedy Space Center Visitor Complex. The 90,000-square-foot facility will house space shuttle Atlantis and 62 shuttle program exhibits. Photo credit: NASA/Kim Shiflett

  13. KSC-2012-4829

    NASA Image and Video Library

    2012-09-05

    CAPE CANAVERAL, Fla. – Workers sign a steel beam before it is placed at the highest point of a new exhibit facility under construction at the Kennedy Space Center Visitor Complex. The 90,000-square-foot facility will house space shuttle Atlantis and 62 shuttle program exhibits. Photo credit: NASA/Kim Shiflett

  14. KSC-2011-4974

    NASA Image and Video Library

    2011-06-27

    CAPE CANAVERAL, Fla. -- At Astrotech's Hazardous Processing Facility in Titusville, Fla., technicians prepare an overhead crane to move NASA's Juno spacecraft to a fueling stand where the spacecraft will be loaded with the propellant necessary for orbit maneuvers and the attitude control system. Juno is scheduled to launch aboard a United Launch Alliance Atlas V rocket from Cape Canaveral, Fla., Aug. 5.The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. For more information visit: www.nasa.gov/juno. Photo credit: NASA/Troy Cryder

  15. KSC-2011-4972

    NASA Image and Video Library

    2011-06-27

    CAPE CANAVERAL, Fla. -- At Astrotech's Hazardous Processing Facility in Titusville, Fla., technicians will prepare NASA's Juno spacecraft for its move to a fueling stand where the spacecraft will be loaded with the propellant necessary for orbit maneuvers and the attitude control system. Juno is scheduled to launch aboard a United Launch Alliance Atlas V rocket from Cape Canaveral, Fla., Aug. 5.The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. For more information visit: www.nasa.gov/juno. Photo credit: NASA/Troy Cryder

  16. KSC-2011-4978

    NASA Image and Video Library

    2011-06-27

    CAPE CANAVERAL, Fla. -- At Astrotech's Hazardous Processing Facility in Titusville, Fla., technicians disconnect NASA's Juno spacecraft from its transport prior to its move to a fueling stand where the spacecraft will be loaded with the propellant necessary for orbit maneuvers and the attitude control system. Juno is scheduled to launch aboard a United Launch Alliance Atlas V rocket from Cape Canaveral, Fla., Aug. 5.The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. For more information visit: www.nasa.gov/juno. Photo credit: NASA/Troy Cryder

  17. KSC-2011-4976

    NASA Image and Video Library

    2011-06-27

    CAPE CANAVERAL, Fla. -- At Astrotech's Hazardous Processing Facility in Titusville, Fla., technicians attach an overhead crane to NASA's Juno spacecraft for its move to a fueling stand where the spacecraft will be loaded with the propellant necessary for orbit maneuvers and the attitude control system. Juno is scheduled to launch aboard a United Launch Alliance Atlas V rocket from Cape Canaveral, Fla., Aug. 5.The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. For more information visit: www.nasa.gov/juno. Photo credit: NASA/Troy Cryder

  18. KSC-2011-4973

    NASA Image and Video Library

    2011-06-27

    CAPE CANAVERAL, Fla. -- At Astrotech's Hazardous Processing Facility in Titusville, Fla., technicians prepare an overhead crane to move NASA's Juno spacecraft to a fueling stand where the spacecraft will be loaded with the propellant necessary for orbit maneuvers and the attitude control system. Juno is scheduled to launch aboard a United Launch Alliance Atlas V rocket from Cape Canaveral, Fla., Aug. 5.The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. For more information visit: www.nasa.gov/juno. Photo credit: NASA/Troy Cryder

  19. KSC-2011-4977

    NASA Image and Video Library

    2011-06-27

    CAPE CANAVERAL, Fla. -- At Astrotech's Hazardous Processing Facility in Titusville, Fla., technicians disconnect NASA's Juno spacecraft from its transport prior to its move to a fueling stand where the spacecraft will be loaded with the propellant necessary for orbit maneuvers and the attitude control system. Juno is scheduled to launch aboard a United Launch Alliance Atlas V rocket from Cape Canaveral, Fla., Aug. 5.The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. For more information visit: www.nasa.gov/juno. Photo credit: NASA/Troy Cryder

  20. KSC-2011-4961

    NASA Image and Video Library

    2011-06-27

    CAPE CANAVERAL, Fla. -- At Astrotech's Hazardous Processing Facility in Titusville, Fla., technicians prepare NASA's Juno spacecraft for its move to a fueling stand. The spacecraft will be loaded with the propellant necessary for orbit maneuvers and the attitude control system. Juno is scheduled to launch aboard a United Launch Alliance Atlas V rocket from Cape Canaveral, Fla., Aug. 5.The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. For more information visit: www.nasa.gov/juno. Photo credit: NASA/Troy Cryder

  1. KSC-2011-4975

    NASA Image and Video Library

    2011-06-27

    CAPE CANAVERAL, Fla. -- At Astrotech's Hazardous Processing Facility in Titusville, Fla., technicians attach an overhead crane to NASA's Juno spacecraft for its move to a fueling stand where the spacecraft will be loaded with the propellant necessary for orbit maneuvers and the attitude control system. Juno is scheduled to launch aboard a United Launch Alliance Atlas V rocket from Cape Canaveral, Fla., Aug. 5.The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. For more information visit: www.nasa.gov/juno. Photo credit: NASA/Troy Cryder

  2. KSC-2011-4981

    NASA Image and Video Library

    2011-06-27

    CAPE CANAVERAL, Fla. -- At Astrotech's Hazardous Processing Facility in Titusville, Fla., technicians using an overhead crane lower NASA's Juno spacecraft to a fueling stand where the spacecraft will be loaded with the propellant necessary for orbit maneuvers and the attitude control system. Juno is scheduled to launch aboard a United Launch Alliance Atlas V rocket from Cape Canaveral, Fla., Aug. 5.The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. For more information visit: www.nasa.gov/juno. Photo credit: NASA/Troy Cryder

  3. KSC-2011-4982

    NASA Image and Video Library

    2011-06-27

    CAPE CANAVERAL, Fla. -- At Astrotech's Hazardous Processing Facility in Titusville, Fla., technicians using an overhead crane lower NASA's Juno spacecraft to a fueling stand where the spacecraft will be loaded with the propellant necessary for orbit maneuvers and the attitude control system. Juno is scheduled to launch aboard a United Launch Alliance Atlas V rocket from Cape Canaveral, Fla., Aug. 5.The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. For more information visit: www.nasa.gov/juno. Photo credit: NASA/Troy Cryder

  4. KSC-2011-4979

    NASA Image and Video Library

    2011-06-27

    CAPE CANAVERAL, Fla. -- At Astrotech's Hazardous Processing Facility in Titusville, Fla., technicians using an overhead crane move NASA's Juno spacecraft to a fueling stand where the spacecraft will be loaded with the propellant necessary for orbit maneuvers and the attitude control system. Juno is scheduled to launch aboard a United Launch Alliance Atlas V rocket from Cape Canaveral, Fla., Aug. 5.The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. For more information visit: www.nasa.gov/juno. Photo credit: NASA/Troy Cryder

  5. KSC-2011-4980

    NASA Image and Video Library

    2011-06-27

    CAPE CANAVERAL, Fla. -- At Astrotech's Hazardous Processing Facility in Titusville, Fla., technicians using an overhead crane lower NASA's Juno spacecraft to a fueling stand where the spacecraft will be loaded with the propellant necessary for orbit maneuvers and the attitude control system. Juno is scheduled to launch aboard a United Launch Alliance Atlas V rocket from Cape Canaveral, Fla., Aug. 5.The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. For more information visit: www.nasa.gov/juno. Photo credit: NASA/Troy Cryder

  6. KSC-2010-4654

    NASA Image and Video Library

    2010-09-15

    CAPE CANAVERAL, Fla. -- NASA's Kennedy Space Center and Brevard Workforce host a job fair in Kennedy's Operations Support Building II and Space Station Processing Facility to help center employees with future planning and placement as the Space Shuttle Program comes to an end. Recruiters included federal, state and local government agencies and organizations, as well as private companies from across the country. The second part of the job fair is scheduled for Sept. 16 at a hotel in Cape Canaveral, Fla. Kennedy's Human Resources Office also has hosted workshops, seminars and other events to prepare employees as much as possible for future opportunities. Photo credit: NASA/Kim Shiflett

  7. KSC-2010-4652

    NASA Image and Video Library

    2010-09-15

    CAPE CANAVERAL, Fla. -- NASA's Kennedy Space Center and Brevard Workforce host a job fair in Kennedy's Operations Support Building II and Space Station Processing Facility to help center employees with future planning and placement as the Space Shuttle Program comes to an end. Recruiters included federal, state and local government agencies and organizations, as well as private companies from across the country. The second part of the job fair is scheduled for Sept. 16 at a hotel in Cape Canaveral, Fla. Kennedy's Human Resources Office also has hosted workshops, seminars and other events to prepare employees as much as possible for future opportunities. Photo credit: NASA/Kim Shiflett

  8. KSC-2010-4659

    NASA Image and Video Library

    2010-09-16

    CAPE CANAVERAL, Fla. -- NASA's Kennedy Space Center and Brevard Workforce host a job fair at a hotel in Cape Canaveral, Fla., to help center employees with future planning and placement as the Space Shuttle Program comes to an end. Recruiters included federal, state and local government agencies and organizations, as well as private companies from across the country. The first part of the job fair took place Sept. 15 in Kennedy's Operations Support Building II and Space Station Processing Facility. Kennedy's Human Resources Office also has hosted workshops, seminars and other events to prepare employees as much as possible for future opportunities. Photo credit: NASA/Jack Pfaller

  9. KSC-2010-4653

    NASA Image and Video Library

    2010-09-15

    CAPE CANAVERAL, Fla. -- NASA's Kennedy Space Center and Brevard Workforce host a job fair in Kennedy's Operations Support Building II and Space Station Processing Facility to help center employees with future planning and placement as the Space Shuttle Program comes to an end. Recruiters included federal, state and local government agencies and organizations, as well as private companies from across the country. The second part of the job fair is scheduled for Sept. 16 at a hotel in Cape Canaveral, Fla. Kennedy's Human Resources Office also has hosted workshops, seminars and other events to prepare employees as much as possible for future opportunities. Photo credit: NASA/Kim Shiflett

  10. KSC-2010-4657

    NASA Image and Video Library

    2010-09-16

    CAPE CANAVERAL, Fla. -- NASA's Kennedy Space Center and Brevard Workforce host a job fair at a hotel in Cape Canaveral, Fla., to help center employees with future planning and placement as the Space Shuttle Program comes to an end. Recruiters included federal, state and local government agencies and organizations, as well as private companies from across the country. The first part of the job fair took place Sept. 15 in Kennedy's Operations Support Building II and Space Station Processing Facility. Kennedy's Human Resources Office also has hosted workshops, seminars and other events to prepare employees as much as possible for future opportunities. Photo credit: NASA/Jack Pfaller

  11. KSC-2010-4658

    NASA Image and Video Library

    2010-09-16

    CAPE CANAVERAL, Fla. -- NASA's Kennedy Space Center and Brevard Workforce host a job fair at a hotel in Cape Canaveral, Fla., to help center employees with future planning and placement as the Space Shuttle Program comes to an end. Recruiters included federal, state and local government agencies and organizations, as well as private companies from across the country. The first part of the job fair took place Sept. 15 in Kennedy's Operations Support Building II and Space Station Processing Facility. Kennedy's Human Resources Office also has hosted workshops, seminars and other events to prepare employees as much as possible for future opportunities. Photo credit: NASA/Jack Pfaller

  12. KSC-2010-4656

    NASA Image and Video Library

    2010-09-15

    CAPE CANAVERAL, Fla. -- NASA's Kennedy Space Center and Brevard Workforce host a job fair in Kennedy's Operations Support Building II and Space Station Processing Facility to help center employees with future planning and placement as the Space Shuttle Program comes to an end. Recruiters included federal, state and local government agencies and organizations, as well as private companies from across the country. The second part of the job fair is scheduled for Sept. 16 at a hotel in Cape Canaveral, Fla. Kennedy's Human Resources Office also has hosted workshops, seminars and other events to prepare employees as much as possible for future opportunities. Photo credit: NASA/Kim Shiflett

  13. KSC-2010-4655

    NASA Image and Video Library

    2010-09-15

    CAPE CANAVERAL, Fla. -- NASA's Kennedy Space Center and Brevard Workforce host a job fair in Kennedy's Operations Support Building II and Space Station Processing Facility to help center employees with future planning and placement as the Space Shuttle Program comes to an end. Recruiters included federal, state and local government agencies and organizations, as well as private companies from across the country. The second part of the job fair is scheduled for Sept. 16 at a hotel in Cape Canaveral, Fla. Kennedy's Human Resources Office also has hosted workshops, seminars and other events to prepare employees as much as possible for future opportunities. Photo credit: NASA/Kim Shiflett

  14. ULA Delta IV Heavy Second Stage & Port Common Booster Core for t

    NASA Image and Video Library

    2017-08-28

    A United Launch Alliance Delta IV Heavy second stage, packaged in its shipping container, arrives at the Horizontal Integration Facility at Cape Canaveral Air Force Station for preflight processing. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection. Liftoff atop the Delta IV Heavy rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 37 in summer 2018.

  15. KSC-2009-2834

    NASA Image and Video Library

    2009-04-27

    CAPE CANAVERAL, Fla. –– The Atlas V first stage arrives at the Vertical Integration Facility on Cape Canaveral Air Force Station's Launch Complex 41. The Atlas V/Centaur is the launch vehicle for the Lunar Reconnaissance Orbiter, or LRO. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. Launch of LRO is targeted no earlier than June 2. Photo credit: NASA/Kim Shiflett

  16. KSC-2009-2833

    NASA Image and Video Library

    2009-04-27

    CAPE CANAVERAL, Fla. –– The Atlas V first stage arrives at the Vertical Integration Facility on Cape Canaveral Air Force Station's Launch Complex 41. The Atlas V/Centaur is the launch vehicle for the Lunar Reconnaissance Orbiter, or LRO. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. Launch of LRO is targeted no earlier than June 2. Photo credit: NASA/Kim Shiflett

  17. KSC-2009-3185

    NASA Image and Video Library

    2009-05-15

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations Facility in Titusville, Fla., technicians observe NASA's Lunar Reconnaissance Orbiter, or LRO, with and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS, during installation of the fairing. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The LRO includes five instruments: DIVINER, LAMP, LEND, LOLA and LROC. They will be launched aboard an Atlas V/Centaur rocket no earlier than June 17 from Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller

  18. KSC-2009-3193

    NASA Image and Video Library

    2009-05-15

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations Facility in Titusville, Fla., the fairing halves have been joined to enclose NASA's Lunar Reconnaissance Orbiter, or LRO, and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The LRO includes five instruments: DIVINER, LAMP, LEND, LOLA and LROC. They will be launched aboard an Atlas V/Centaur rocket no earlier than June 17 from Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller

  19. KSC-2013-1226

    NASA Image and Video Library

    2013-01-29

    CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Space Launch Complex 41, the United Launch Alliance Atlas V rocket set to carry NASA's Tracking and Data Relay Satellite, TDRS-K, nears the launch pad after leaving the Vertical Integration Facility. Liftoff for the TDRS-K is planned for Jan. 30, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/Kim Shiflett

  20. KSC-2013-1234

    NASA Image and Video Library

    2013-01-29

    CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Space Launch Complex 41, the United Launch Alliance Atlas V rocket set to carry NASA's Tracking and Data Relay Satellite, TDRS-K, arrives at the launch pad after leaving the Vertical Integration Facility. Liftoff for the TDRS-K is planned for Jan. 30, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/Kim Shiflett

  1. KSC-2013-1238

    NASA Image and Video Library

    2013-01-29

    CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Space Launch Complex 41, the United Launch Alliance Atlas V rocket set to carry NASA's Tracking and Data Relay Satellite, TDRS-K, stands at the launch pad after leaving the Vertical Integration Facility. Liftoff for the TDRS-K is planned for Jan. 30, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/Kim Shiflett

  2. KSC-2013-1230

    NASA Image and Video Library

    2013-01-29

    CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Space Launch Complex 41, the United Launch Alliance Atlas V rocket set to carry NASA's Tracking and Data Relay Satellite, TDRS-K, arrives at the launch pad after leaving the Vertical Integration Facility. Liftoff for the TDRS-K is planned for Jan. 30, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/Kim Shiflett

  3. KSC-2013-1217

    NASA Image and Video Library

    2013-01-29

    CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Space Launch Complex 41, the United Launch Alliance Atlas V rocket set to carry NASA's Tracking and Data Relay Satellite, TDRS-K, moves from the Vertical Integration Facility to the launch pad. Liftoff for the TDRS-K is planned for Jan. 30, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/Kim Shiflett

  4. KSC-2013-1219

    NASA Image and Video Library

    2013-01-29

    CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Space Launch Complex 41, the United Launch Alliance Atlas V rocket set to carry NASA's Tracking and Data Relay Satellite, TDRS-K, moves toward the launch pad after leaving the Vertical Integration Facility. . Liftoff for the TDRS-K is planned for Jan. 30, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/Kim Shiflett

  5. KSC-2013-1228

    NASA Image and Video Library

    2013-01-29

    CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Space Launch Complex 41, the United Launch Alliance Atlas V rocket set to carry NASA's Tracking and Data Relay Satellite, TDRS-K, nears the launch pad after leaving the Vertical Integration Facility. Liftoff for the TDRS-K is planned for Jan. 30, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/Kim Shiflett

  6. KSC-2013-1221

    NASA Image and Video Library

    2013-01-29

    CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Space Launch Complex 41, the United Launch Alliance Atlas V rocket set to carry NASA's Tracking and Data Relay Satellite, TDRS-K, moves toward the launch pad after leaving the Vertical Integration Facility. Liftoff for the TDRS-K is planned for Jan. 30, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/Kim Shiflett

  7. KSC-2013-1239

    NASA Image and Video Library

    2013-01-29

    CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Space Launch Complex 41, the United Launch Alliance Atlas V rocket set to carry NASA's Tracking and Data Relay Satellite, TDRS-K, stands at the launch pad after leaving the Vertical Integration Facility. Liftoff for the TDRS-K is planned for Jan. 30, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/Kim Shiflett

  8. KSC-2013-1232

    NASA Image and Video Library

    2013-01-29

    CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Space Launch Complex 41, the United Launch Alliance Atlas V rocket set to carry NASA's Tracking and Data Relay Satellite, TDRS-K, arrives at the launch pad after leaving the Vertical Integration Facility. Liftoff for the TDRS-K is planned for Jan. 30, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/Kim Shiflett

  9. KSC-2013-1236

    NASA Image and Video Library

    2013-01-29

    CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Space Launch Complex 41, the United Launch Alliance Atlas V rocket set to carry NASA's Tracking and Data Relay Satellite, TDRS-K, stands at the launch pad after leaving the Vertical Integration Facility. Liftoff for the TDRS-K is planned for Jan. 30, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/Kim Shiflett

  10. KSC-2013-1223

    NASA Image and Video Library

    2013-01-29

    CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Space Launch Complex 41, the United Launch Alliance Atlas V rocket set to carry NASA's Tracking and Data Relay Satellite, TDRS-K, nears the launch pad after leaving the Vertical Integration Facility. Liftoff for the TDRS-K is planned for Jan. 30, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/Kim Shiflett

  11. KSC-2013-1235

    NASA Image and Video Library

    2013-01-29

    CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Space Launch Complex 41, the United Launch Alliance Atlas V rocket set to carry NASA's Tracking and Data Relay Satellite, TDRS-K, stands at the launch pad after leaving the Vertical Integration Facility. Liftoff for the TDRS-K is planned for Jan. 30, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/Kim Shiflett

  12. KSC-2013-1222

    NASA Image and Video Library

    2013-01-29

    CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Space Launch Complex 41, the United Launch Alliance Atlas V rocket set to carry NASA's Tracking and Data Relay Satellite, TDRS-K, moves toward the launch pad after leaving the Vertical Integration Facility. Liftoff for the TDRS-K is planned for Jan. 30, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/Kim Shiflett

  13. KSC-2013-1227

    NASA Image and Video Library

    2013-01-29

    CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Space Launch Complex 41, the United Launch Alliance Atlas V rocket set to carry NASA's Tracking and Data Relay Satellite, TDRS-K, nears the launch pad after leaving the Vertical Integration Facility. Liftoff for the TDRS-K is planned for Jan. 30, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/Kim Shiflett

  14. KSC-2013-1218

    NASA Image and Video Library

    2013-01-29

    CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Space Launch Complex 41, the United Launch Alliance Atlas V rocket set to carry NASA's Tracking and Data Relay Satellite, TDRS-K, moves toward the launch pad after leaving the Vertical Integration Facility. . Liftoff for the TDRS-K is planned for Jan. 30, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/Kim Shiflett

  15. KSC-2013-1220

    NASA Image and Video Library

    2013-01-29

    CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Space Launch Complex 41, the United Launch Alliance Atlas V rocket set to carry NASA's Tracking and Data Relay Satellite, TDRS-K, moves toward the launch pad after leaving the Vertical Integration Facility. . Liftoff for the TDRS-K is planned for Jan. 30, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/Kim Shiflett

  16. KSC-2013-1225

    NASA Image and Video Library

    2013-01-29

    CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Space Launch Complex 41, the United Launch Alliance Atlas V rocket set to carry NASA's Tracking and Data Relay Satellite, TDRS-K, nears the launch pad after leaving the Vertical Integration Facility. Liftoff for the TDRS-K is planned for Jan. 30, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/Kim Shiflett

  17. KSC-2013-1237

    NASA Image and Video Library

    2013-01-29

    CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Space Launch Complex 41, the United Launch Alliance Atlas V rocket set to carry NASA's Tracking and Data Relay Satellite, TDRS-K, stands at the launch pad after leaving the Vertical Integration Facility. Liftoff for the TDRS-K is planned for Jan. 30, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/Kim Shiflett

  18. KSC-2013-1224

    NASA Image and Video Library

    2013-01-29

    CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Space Launch Complex 41, the United Launch Alliance Atlas V rocket set to carry NASA's Tracking and Data Relay Satellite, TDRS-K, nears the launch pad after leaving the Vertical Integration Facility. Liftoff for the TDRS-K is planned for Jan. 30, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/Kim Shiflett

  19. KSC-2013-1229

    NASA Image and Video Library

    2013-01-29

    CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Space Launch Complex 41, the United Launch Alliance Atlas V rocket set to carry NASA's Tracking and Data Relay Satellite, TDRS-K, nears the launch pad after leaving the Vertical Integration Facility. Liftoff for the TDRS-K is planned for Jan. 30, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/Kim Shiflett

  20. KSC-2013-1231

    NASA Image and Video Library

    2013-01-29

    CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Space Launch Complex 41, the United Launch Alliance Atlas V rocket set to carry NASA's Tracking and Data Relay Satellite, TDRS-K, arrives at the launch pad after leaving the Vertical Integration Facility. Liftoff for the TDRS-K is planned for Jan. 30, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/Kim Shiflett

  1. KSC-2013-1233

    NASA Image and Video Library

    2013-01-29

    CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Space Launch Complex 41, the United Launch Alliance Atlas V rocket set to carry NASA's Tracking and Data Relay Satellite, TDRS-K, arrives at the launch pad after leaving the Vertical Integration Facility. Liftoff for the TDRS-K is planned for Jan. 30, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/Kim Shiflett

  2. TDRS-M Atlas V 1st Stage Erection Launch Vehicle on Stand

    NASA Image and Video Library

    2017-07-12

    A United Launch Alliance Atlas V first stage is lifted at the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The rocket is scheduled to launch the Tracking and Data Relay Satellite, TDRS-M. It will be the latest spacecraft destined for the agency's constellation of communications satellites that allows nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop the ULA Atlas V rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 41 on Aug. 3, 2017 at 9:02 a.m. EDT.

  3. KSC-03pd0156

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. -- In the Multi-Purpose Processing Facility, the Pegasus XL launch vehicle is ready for installation of the Solar Radiation and Climate Experiment (SORCE) satellite after encapsulation. Built by Orbital Sciences Corporation (OSC), SORCE will study and measure solar irradiance as a source of energy in the Earth's atmosphere. The launch of SORCE is scheduled for Jan. 25 at 3:14 p.m. from Cape Canaveral Air Force Station, Fla. The drop of the Pegasus will be from OSC's L-1011 aircraft at an altitude of 39,000 feet over the Atlantic Ocean approximately 100 miles east-southeast of Cape Canaveral.

  4. KSC-03pd0165

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. -- In the Multi-Purpose Processing Facility, the Pegasus XL launch vehicle is ready to be moved toward the Solar Radiation and Climate Experiment (SORCE) satellite in front of it. Built by Orbital Sciences Corporation (OSC), SORCE will study and measure solar irradiance as a source of energy in the Earth's atmosphere. The launch of SORCE is scheduled for Jan. 25 at 3:14 p.m. from Cape Canaveral Air Force Station, Fla. The drop of the Pegasus will be from OSC's L-1011 aircraft at an altitude of 39,000 feet over the Atlantic Ocean approximately 100 miles east-southeast of Cape Canaveral.

  5. KSC-03pd0164

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. -- Workers in the Multi-Purpose Processing Facility look over the encapsulation of the Solar Radiation and Climate Experiment (SORCE) satellite. The satellite will next be installed in the Pegasus XL launch vehicle. Built by Orbital Sciences Corporation (OSC), SORCE will study and measure solar irradiance as a source of energy in the Earth's atmosphere. The launch of SORCE is scheduled for Jan. 25 at 3:14 p.m. from Cape Canaveral Air Force Station, Fla. The drop of the Pegasus will be from OSC's L-1011 aircraft at an altitude of 39,000 feet over the Atlantic Ocean approximately 100 miles east-southeast of Cape Canaveral.

  6. KSC-08pd0781

    NASA Image and Video Library

    2008-03-21

    CAPE CANAVERAL, Fla. --- In the Astrotech payload processing facility, a General Dynamics technician prepares to test the deployment mechanism on the solar arrays on NASA's Gamma-Ray Large Area Space Telescope, or GLAST. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Jim Grossmann

  7. KSC-08pd0782

    NASA Image and Video Library

    2008-03-21

    CAPE CANAVERAL, Fla. --- In the Astrotech payload processing facility, a General Dynamics technician prepares to test the deployment mechanism of the solar arrays on NASA's Gamma-Ray Large Area Space Telescope, or GLAST. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Jim Grossmann

  8. KSC-08pd0771

    NASA Image and Video Library

    2008-03-20

    CAPE CANAVERAL, Fla. --- In the Astrotech payload processing facility, a General Dynamics technician finishes the installation of the second of twin solar arrays on NASA's Gamma-Ray Large Area Space Telescope, or GLAST. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Chris Rhodes

  9. KSC-05PD-1461

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. At the Shuttle Landing Facility on NASAs Kennedy Space Center, KSC Director Jim Kennedy talks to attendees at the ribbon-cutting ceremony for the new NASA Air Traffic Control Tower. The dedication took place in the SLFs new media facilities, which were built for the Return to Flight mission STS-114 and the landing of Shuttle Discovery. The facilities are co-located with the new control tower. The dedication and ribbon cutting were held at the base of the tower and included Center Director Jim Kennedy, Space Gateway Support President William A. Sample, External Relations Director Lisa Malone, Center Operations Director Scott D. Kerr, and KSC Safety Aviation Officer Albert E. Taff. The structure rises 110 feet over the midpoint of the runway and offers air traffic controllers a magnificent 360-degree view of Kennedy Space Center, Cape Canaveral Air Force Station and north Brevard County. It replaces the small, portable tower installed at the edge of the runway in 1986. The new control tower will manage all landings and departures from the SLF, including air traffic within the Kennedy Space Center-Cape Canaveral restricted airspace. The facility provides a 24-hour weather-observing facility providing official hourly weather observations for the SLF and the Cape Canaveral vicinity, including special observations for all launches and landings. State-of-the-art, weather-observing equipment has been installed for Space Shuttle landings and for serving conventional aircraft landing at the SLF. At this location, weather observers will have a multi- directional view of the weather conditions at the runway and Launch Complex 39.

  10. A Probabilistic, Facility-Centric Approach to Lightning Strike Location

    NASA Technical Reports Server (NTRS)

    Huddleston, Lisa L.; Roeder, William p.; Merceret, Francis J.

    2012-01-01

    A new probabilistic facility-centric approach to lightning strike location has been developed. This process uses the bivariate Gaussian distribution of probability density provided by the current lightning location error ellipse for the most likely location of a lightning stroke and integrates it to determine the probability that the stroke is inside any specified radius of any location, even if that location is not centered on or even with the location error ellipse. This technique is adapted from a method of calculating the probability of debris collisionith spacecraft. Such a technique is important in spaceport processing activities because it allows engineers to quantify the risk of induced current damage to critical electronics due to nearby lightning strokes. This technique was tested extensively and is now in use by space launch organizations at Kennedy Space Center and Cape Canaveral Air Force Station. Future applications could include forensic meteorology.

  11. KSC-07pd3060

    NASA Image and Video Library

    2007-11-01

    KENNEDY SPACE CENTER, FLA. -- At ground-breaking ceremonies for SpaceX's new Falcon 9 rocket launch facilities at Space Launch Complex 40 at Cape Canaveral, Elon Musk, founder and CEO of Space Exploration Technologies, talks about opportunity for both SpaceX and the 45th Space Wing that the new facility will provide. As part of NASA’s Commercial Orbital Transportation Services, or COTS, competition, SpaceX will launch a Falcon 9 with a cargo-carrying payload on a series of three demonstration missions from Cape Canaveral to the International Space Station, culminating with the delivery of supplies to the $100 billion dollar orbiting laboratory. SpaceX intends to demonstrate its launch, maneuvering, berthing and return abilities by 2009 – a year before NASA has scheduled the conclusion of Space Shuttle operations. Photo credit: NASA/George Shelton

  12. KSC-2011-6055

    NASA Image and Video Library

    2011-07-27

    CAPE CANAVERAL, Fla. -- At Space Launch Complex 41, the Atlas rocket stacked inside the Vertical Integration Facility stands ready to receive the Juno spacecraft, enclosed in an Atlas payload fairing. The spacecraft was prepared for launch in the Astrotech Space Operations' payload processing facility in Titusville, Fla. The fairing will protect the spacecraft from the impact of aerodynamic pressure and heating during ascent and will be jettisoned once the spacecraft is outside the Earth's atmosphere. Juno is scheduled to launch Aug. 5 aboard a United Launch Alliance Atlas V rocket from Cape Canaveral Air Force Station in Florida. The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. For more information, visit www.nasa.gov/juno. Photo credit: NASA/Cory Huston

  13. KSC-2011-6111

    NASA Image and Video Library

    2011-07-30

    CAPE CANAVERAL, Fla. -- Lockheed Martin technicians inspect the second of NASA's twin Gravity Recovery and Interior Laboratory lunar spacecraft as they prepare to move it to a workstand in the Hazardous Processing Facility (HPF) at Astrotech Space Operation's payload processing facility in Titusville, Fla. In the HPF, the spacecraft will undergo two days of fueling activities. GRAIL will fly in tandem orbits around the moon for several months to measure its gravity field. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. Launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 17B on Cape Canaveral Air Force Station is scheduled for Sept. 8. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Charisse Nahser

  14. KSC-2011-6097

    NASA Image and Video Library

    2011-07-30

    CAPE CANAVERAL, Fla. -- The protective canister housing NASA's twin Gravity Recovery and Interior Laboratory lunar spacecraft is lifted from around the mylar-covered spacecraft in the Hazardous Processing Facility (HPF) at Astrotech Space Operation's payload processing facility in Titusville, Fla. In the HPF, the spacecraft will undergo two days of fueling activities. GRAIL will fly in tandem orbits around the moon for several months to measure its gravity field. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. Launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 17B on Cape Canaveral Air Force Station is scheduled for Sept. 8. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Charisse Nahser

  15. KSC-2011-6110

    NASA Image and Video Library

    2011-07-30

    CAPE CANAVERAL, Fla. -- Preparations are under way to lift the second of NASA's twin Gravity Recovery and Interior Laboratory lunar spacecraft to a workstand in the Hazardous Processing Facility (HPF) at Astrotech Space Operation's payload processing facility in Titusville, Fla. In the HPF, the spacecraft will undergo two days of fueling activities. GRAIL will fly in tandem orbits around the moon for several months to measure its gravity field. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. Launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 17B on Cape Canaveral Air Force Station is scheduled for Sept. 8. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Charisse Nahser

  16. KSC-2011-6095

    NASA Image and Video Library

    2011-07-30

    CAPE CANAVERAL, Fla. -- Lockheed Martin technicians oversee the lift of the protective canister housing NASA's twin Gravity Recovery and Interior Laboratory lunar spacecraft from the transporter in the Hazardous Processing Facility (HPF) at Astrotech Space Operation's payload processing facility in Titusville, Fla. In the HPF, the spacecraft will undergo two days of fueling activities. GRAIL will fly in tandem orbits around the moon for several months to measure its gravity field. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. Launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 17B on Cape Canaveral Air Force Station is scheduled for Sept. 8. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Charisse Nahser

  17. KSC-2011-6105

    NASA Image and Video Library

    2011-07-30

    CAPE CANAVERAL, Fla. -- Preparations are under way to lift one of NASA's twin Gravity Recovery and Interior Laboratory lunar spacecraft onto a workstand in the Hazardous Processing Facility (HPF) at Astrotech Space Operation's payload processing facility in Titusville, Fla. In the HPF, the spacecraft will undergo two days of fueling activities. GRAIL will fly in tandem orbits around the moon for several months to measure its gravity field. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. Launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 17B on Cape Canaveral Air Force Station is scheduled for Sept. 8. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Charisse Nahser

  18. KSC-2011-6096

    NASA Image and Video Library

    2011-07-30

    CAPE CANAVERAL, Fla. -- Lockheed Martin technicians oversee the placement of the protective canister housing NASA's twin Gravity Recovery and Interior Laboratory lunar spacecraft on the workroom floor in the Hazardous Processing Facility (HPF) at Astrotech Space Operation's payload processing facility in Titusville, Fla. In the HPF, the spacecraft will undergo two days of fueling activities. GRAIL will fly in tandem orbits around the moon for several months to measure its gravity field. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. Launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 17B on Cape Canaveral Air Force Station is scheduled for Sept. 8. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Charisse Nahser

  19. KSC-2012-4831

    NASA Image and Video Library

    2012-09-05

    CAPE CANAVERAL, Fla. – An event observer signs a steel beam before it is placed at the highest point of a new exhibit facility under construction at the Kennedy Space Center Visitor Complex. The 90,000-square-foot facility will house space shuttle Atlantis and 62 shuttle program exhibits. Photo credit: NASA/Kim Shiflett

  20. 77 FR 29929 - Safety Zone; Town of Cape Charles Fireworks, Cape Charles Harbor, Cape Charles, VA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-21

    ... section of this notice. Basis and Purpose On July 4, 2012 the Town of Cape Charles will sponsor a...-AA00 Safety Zone; Town of Cape Charles Fireworks, Cape Charles Harbor, Cape Charles, VA AGENCY: Coast... temporary safety zone on the waters of Cape Charles City Harbor in Cape Charles, VA in support of the Fourth...

  1. KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility prepare to lift and move the backshell that will cover the Mars Exploration Rover 1 (MER-1) and its lander. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

    NASA Image and Video Library

    2003-05-10

    KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility prepare to lift and move the backshell that will cover the Mars Exploration Rover 1 (MER-1) and its lander. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

  2. KENNEDY SPACE CENTER, FLA. - Workers on the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station, help guide the Space Infrared Telescope Facility (SIRTF) toward the opening in the foreground. SIRTF will be attached to the Delta II rocket and encapsulated in its fairing before launch. Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA’s largest infrared telescopes to be launched. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-10

    KENNEDY SPACE CENTER, FLA. - Workers on the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station, help guide the Space Infrared Telescope Facility (SIRTF) toward the opening in the foreground. SIRTF will be attached to the Delta II rocket and encapsulated in its fairing before launch. Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA’s largest infrared telescopes to be launched. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  3. KENNEDY SPACE CENTER, FLA. - The Space Infrared Telescope Facility (SIRTF) is rolled out of the hangar at Cape Canaveral Air Force Station during pre-dawn hours. It is being transported to Launch Pad 17-B where it will be lifted into the mobile service tower and prepared for launch. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA’s largest infrared telescopes to be launched. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-10

    KENNEDY SPACE CENTER, FLA. - The Space Infrared Telescope Facility (SIRTF) is rolled out of the hangar at Cape Canaveral Air Force Station during pre-dawn hours. It is being transported to Launch Pad 17-B where it will be lifted into the mobile service tower and prepared for launch. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA’s largest infrared telescopes to be launched. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  4. KENNEDY SPACE CENTER, FLA. - Before dawn, the Space Infrared Telescope Facility (SIRTF) is attached to an overhead crane that will lift it up the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station. SIRTF will be attached to the Delta II rocket and encapsulated in its fairing before launch. Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA’s largest infrared telescopes to be launched. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-10

    KENNEDY SPACE CENTER, FLA. - Before dawn, the Space Infrared Telescope Facility (SIRTF) is attached to an overhead crane that will lift it up the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station. SIRTF will be attached to the Delta II rocket and encapsulated in its fairing before launch. Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA’s largest infrared telescopes to be launched. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  5. KENNEDY SPACE CENTER, FLA. - The Mars Exploration Rover 1 (MER-B) is moved out of the Payload Hazardous Servicing Facility for transfer to Launch Pad 17-B, Cape Canaveral Air Force Station. The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-B is scheduled to launch June 26 at one of two available times, 12:27:31 a.m. EDT or 1:08:45 a.m. EDT.

    NASA Image and Video Library

    2003-06-17

    KENNEDY SPACE CENTER, FLA. - The Mars Exploration Rover 1 (MER-B) is moved out of the Payload Hazardous Servicing Facility for transfer to Launch Pad 17-B, Cape Canaveral Air Force Station. The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-B is scheduled to launch June 26 at one of two available times, 12:27:31 a.m. EDT or 1:08:45 a.m. EDT.

  6. Orion EM-1 Interim Cryogenic Propulsion Stage (ICPS) move from HIF to DOC

    NASA Image and Video Library

    2017-04-12

    The Orion EM-1 Interim Cryogenic Propulsion Stage is moved from the Horizontal Integration Facility (HIF) to the Delta Operations Center (DOC) at Cape Canaveral Air Force Station to continue processing for it's future mission on the Space Launch System rocket.

  7. KSC-2012-4087

    NASA Image and Video Library

    2012-07-30

    CAPE CANAVERAl, Fla. - Dr. Mason Peck, NASA's chief Technologist, saw some plant experiments during a tour of the Space Life Sciences Laboratory at Kennedy. Peck toured the lab facility during a visit to the space center. Photo credit: NASA/Frankie Martin

  8. KSC-2012-4094

    NASA Image and Video Library

    2012-07-30

    CAPE CANAVERAl, Fla. - Dr. Mason Peck, NASA's chief Technologist, speaks during a visit to the Space Life Sciences Laboratory at Kennedy Space Center. Peck toured the lab facility during a visit to the space center. Photo credit: NASA/Frankie Martin

  9. KSC-04pd1726

    NASA Image and Video Library

    2004-09-08

    KENNEDY SPACE CENTER, FLA. - The second floor of the Thermal Protection System Facility sustained significant damage from Hurricane Frances. The storm's path over Florida took it through Cape Canaveral and KSC property during Labor Day weekend. Located in Launch Complex 39, the facility is used to manufacture both internal and external insulation products for the Space Shuttle orbiters.

  10. KSC-2014-2938

    NASA Image and Video Library

    2014-06-09

    CAPE CANAVERAL, Fla. – John Elbon, The Boeing Company's vice president general manager of Boeing Space Systems, discusses the CST-100 spacecraft during a ceremony inside Orbiter Processing Facility 3 at NASA's Kennedy Space Center in Florida. Photo credit: NASA/Kim Shiflett

  11. KSC-2012-4084

    NASA Image and Video Library

    2012-07-30

    CAPE CANAVERAl, Fla. - Dr. Mason Peck, left, NASA's chief Technologist, examines an innovative conductive material during a tour of the Space Life Sciences Laboratory at Kennedy. Peck toured the lab facility during a visit to the space center. Photo credit: NASA/Frankie Martin

  12. KSC-2014-4578

    NASA Image and Video Library

    2014-11-24

    CAPE CANAVERAL, Fla. – The solar arrays on NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, are unfurled in the Building 1 high bay at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is targeted for early 2015 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Ben Smegelsky

  13. KSC-2011-4964

    NASA Image and Video Library

    2011-06-27

    CAPE CANAVERAL, Fla. -- At Astrotech's Hazardous Processing Facility in Titusville, Fla., technicians prepare an overhead crane to lift the cover from NASA's Juno spacecraft before its move to a fueling stand where the spacecraft will be loaded with the propellant necessary for orbit maneuvers and the attitude control system. Juno is scheduled to launch aboard a United Launch Alliance Atlas V rocket from Cape Canaveral, Fla., Aug. 5.The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. For more information visit: www.nasa.gov/juno. Photo credit: NASA/Troy Cryder

  14. KSC-2011-4963

    NASA Image and Video Library

    2011-06-27

    CAPE CANAVERAL, Fla. -- At Astrotech's Hazardous Processing Facility in Titusville, Fla., technicians prepare cable for an overhead crane to lift the cover from NASA's Juno spacecraft before its move to a fueling stand where the spacecraft will be loaded with the propellant necessary for orbit maneuvers and the attitude control system. Juno is scheduled to launch aboard a United Launch Alliance Atlas V rocket from Cape Canaveral, Fla., Aug. 5.The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. For more information visit: www.nasa.gov/juno. Photo credit: NASA/Troy Cryder

  15. KSC-2011-4966

    NASA Image and Video Library

    2011-06-27

    CAPE CANAVERAL, Fla. -- At Astrotech's Hazardous Processing Facility in Titusville, Fla., technicians use an overhead crane to lift the cover from NASA's Juno spacecraft before its move to a fueling stand where the spacecraft will be loaded with the propellant necessary for orbit maneuvers and the attitude control system. Juno is scheduled to launch aboard a United Launch Alliance Atlas V rocket from Cape Canaveral, Fla., Aug. 5.The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. For more information visit: www.nasa.gov/juno. Photo credit: NASA/Troy Cryder

  16. KSC-2011-4971

    NASA Image and Video Library

    2011-06-27

    CAPE CANAVERAL, Fla. -- At Astrotech's Hazardous Processing Facility in Titusville, Fla., technicians use an overhead crane to lift the cover from NASA's Juno spacecraft before its move to a fueling stand where the spacecraft will be loaded with the propellant necessary for orbit maneuvers and the attitude control system. Juno is scheduled to launch aboard a United Launch Alliance Atlas V rocket from Cape Canaveral, Fla., Aug. 5.The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. For more information visit: www.nasa.gov/juno. Photo credit: NASA/Troy Cryder

  17. KSC-2011-4969

    NASA Image and Video Library

    2011-06-27

    CAPE CANAVERAL, Fla. -- At Astrotech's Hazardous Processing Facility in Titusville, Fla., technicians use an overhead crane to lift the cover from NASA's Juno spacecraft before its move to a fueling stand where the spacecraft will be loaded with the propellant necessary for orbit maneuvers and the attitude control system. Juno is scheduled to launch aboard a United Launch Alliance Atlas V rocket from Cape Canaveral, Fla., Aug. 5.The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. For more information visit: www.nasa.gov/juno. Photo credit: NASA/Troy Cryder

  18. KSC-2011-4965

    NASA Image and Video Library

    2011-06-27

    CAPE CANAVERAL, Fla. -- At Astrotech's Hazardous Processing Facility in Titusville, Fla., technicians use an overhead crane to lift the cover from NASA's Juno spacecraft before its move to a fueling stand where the spacecraft will be loaded with the propellant necessary for orbit maneuvers and the attitude control system. Juno is scheduled to launch aboard a United Launch Alliance Atlas V rocket from Cape Canaveral, Fla., Aug. 5.The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. For more information visit: www.nasa.gov/juno. Photo credit: NASA/Troy Cryder

  19. KSC-2011-4970

    NASA Image and Video Library

    2011-06-27

    CAPE CANAVERAL, Fla. -- At Astrotech's Hazardous Processing Facility in Titusville, Fla., technicians use an overhead crane to lift the cover from NASA's Juno spacecraft before its move to a fueling stand where the spacecraft will be loaded with the propellant necessary for orbit maneuvers and the attitude control system. Juno is scheduled to launch aboard a United Launch Alliance Atlas V rocket from Cape Canaveral, Fla., Aug. 5.The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. For more information visit: www.nasa.gov/juno. Photo credit: NASA/Troy Cryder

  20. KSC-2011-4968

    NASA Image and Video Library

    2011-06-27

    CAPE CANAVERAL, Fla. -- At Astrotech's Hazardous Processing Facility in Titusville, Fla., technicians use an overhead crane to lift the cover from NASA's Juno spacecraft before its move to a fueling stand where the spacecraft will be loaded with the propellant necessary for orbit maneuvers and the attitude control system. Juno is scheduled to launch aboard a United Launch Alliance Atlas V rocket from Cape Canaveral, Fla., Aug. 5.The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. For more information visit: www.nasa.gov/juno. Photo credit: NASA/Troy Cryder

  1. KSC-2011-4967

    NASA Image and Video Library

    2011-06-27

    CAPE CANAVERAL, Fla. -- At Astrotech's Hazardous Processing Facility in Titusville, Fla., technicians use an overhead crane to lift the cover from NASA's Juno spacecraft before its move to a fueling stand where the spacecraft will be loaded with the propellant necessary for orbit maneuvers and the attitude control system. Juno is scheduled to launch aboard a United Launch Alliance Atlas V rocket from Cape Canaveral, Fla., Aug. 5.The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. For more information visit: www.nasa.gov/juno. Photo credit: NASA/Troy Cryder

  2. KSC-2013-3597

    NASA Image and Video Library

    2013-09-16

    CAPE CANAVERAL, Fla. – Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, engineers and technicians deploy the Solar Wind Electron Analyzer boom on the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. The analyzer will measure the solar wind and electrons in the ionosphere of the Red Planet. MAVEN is being prepared for its scheduled launch in November from Cape Canaveral Air Force Station, Fla. atop a United Launch Alliance Atlas V rocket. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. For more information, visit: http://www.nasa.gov/mission_pages/maven/main/index.html Photo credit: NASA/Kim Shiflett

  3. KSC-2013-3594

    NASA Image and Video Library

    2013-09-16

    CAPE CANAVERAL, Fla. – Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, engineers and technicians prepare to deploy the Solar Wind Electron Analyzer boom on the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. The analyzer will measure the solar wind and electrons in the ionosphere of the Red Planet. MAVEN is being prepared for its scheduled launch in November from Cape Canaveral Air Force Station, Fla. atop a United Launch Alliance Atlas V rocket. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. For more information, visit: http://www.nasa.gov/mission_pages/maven/main/index.html Photo credit: NASA/Kim Shiflett

  4. KSC-2013-3598

    NASA Image and Video Library

    2013-09-16

    CAPE CANAVERAL, Fla. – Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, engineers and technicians deploy the Solar Wind Electron Analyzer boom on the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. The analyzer will measure the solar wind and electrons in the ionosphere of the Red Planet. MAVEN is being prepared for its scheduled launch in November from Cape Canaveral Air Force Station, Fla. atop a United Launch Alliance Atlas V rocket. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. For more information, visit: http://www.nasa.gov/mission_pages/maven/main/index.html Photo credit: NASA/Kim Shiflett

  5. KSC-2013-3596

    NASA Image and Video Library

    2013-09-16

    CAPE CANAVERAL, Fla. – Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, engineers and technicians deploy the Solar Wind Electron Analyzer boom on the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. The analyzer will measure the solar wind and electrons in the ionosphere of the Red Planet. MAVEN is being prepared for its scheduled launch in November from Cape Canaveral Air Force Station, Fla. atop a United Launch Alliance Atlas V rocket. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. For more information, visit: http://www.nasa.gov/mission_pages/maven/main/index.html Photo credit: NASA/Kim Shiflett

  6. KSC-2013-3600

    NASA Image and Video Library

    2013-09-16

    CAPE CANAVERAL, Fla. – Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, engineers and technicians deploy the Solar Wind Electron Analyzer boom on the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. The analyzer will measure the solar wind and electrons in the ionosphere of the Red Planet. MAVEN is being prepared for its scheduled launch in November from Cape Canaveral Air Force Station, Fla. atop a United Launch Alliance Atlas V rocket. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. For more information, visit: http://www.nasa.gov/mission_pages/maven/main/index.html Photo credit: NASA/Kim Shiflett

  7. KSC-2013-3601

    NASA Image and Video Library

    2013-09-16

    CAPE CANAVERAL, Fla. – Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, engineers and technicians deploy the Solar Wind Electron Analyzer boom on the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. The analyzer will measure the solar wind and electrons in the ionosphere of the Red Planet. MAVEN is being prepared for its scheduled launch in November from Cape Canaveral Air Force Station, Fla. atop a United Launch Alliance Atlas V rocket. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. For more information, visit: http://www.nasa.gov/mission_pages/maven/main/index.html Photo credit: NASA/Kim Shiflett

  8. KSC-2013-3592

    NASA Image and Video Library

    2013-09-16

    CAPE CANAVERAL, Fla. – Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, engineers and technicians prepare to deploy the Solar Wind Electron Analyzer boom on the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. The analyzer will measure the solar wind and electrons in the ionosphere of the Red Planet. MAVEN is being prepared for its scheduled launch in November from Cape Canaveral Air Force Station, Fla. atop a United Launch Alliance Atlas V rocket. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. For more information, visit: http://www.nasa.gov/mission_pages/maven/main/index.html Photo credit: NASA/Kim Shiflett

  9. KSC-2013-3599

    NASA Image and Video Library

    2013-09-16

    CAPE CANAVERAL, Fla. – Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, engineers and technicians deploy the Solar Wind Electron Analyzer boom on the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. The analyzer will measure the solar wind and electrons in the ionosphere of the Red Planet. MAVEN is being prepared for its scheduled launch in November from Cape Canaveral Air Force Station, Fla. atop a United Launch Alliance Atlas V rocket. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. For more information, visit: http://www.nasa.gov/mission_pages/maven/main/index.html Photo credit: NASA/Kim Shiflett

  10. KSC-2013-3595

    NASA Image and Video Library

    2013-09-16

    CAPE CANAVERAL, Fla. – Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, engineers and technicians deploy the Solar Wind Electron Analyzer boom on the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. The analyzer will measure the solar wind and electrons in the ionosphere of the Red Planet. MAVEN is being prepared for its scheduled launch in November from Cape Canaveral Air Force Station, Fla. atop a United Launch Alliance Atlas V rocket. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. For more information, visit: http://www.nasa.gov/mission_pages/maven/main/index.html Photo credit: NASA/Kim Shiflett

  11. KSC-2009-2839

    NASA Image and Video Library

    2009-04-27

    CAPE CANAVERAL, Fla. –– On Cape Canaveral Air Force Station's Launch Complex 41, the Atlas V first stage is being moved into the Vertical Integration Facility. The Atlas V/Centaur is the launch vehicle for the Lunar Reconnaissance Orbiter, or LRO. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. Launch of LRO is targeted no earlier than June 2. Photo credit: NASA/Kim Shiflett

  12. KSC-2009-2838

    NASA Image and Video Library

    2009-04-27

    CAPE CANAVERAL, Fla. –– When the Atlas V first stage is raised to vertical, it will be lifted into the Vertical Integration Facility on Cape Canaveral Air Force Station's Launch Complex 41. The Atlas V/Centaur is the launch vehicle for the Lunar Reconnaissance Orbiter, or LRO. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. Launch of LRO is targeted no earlier than June 2. Photo credit: NASA/Kim Shiflett

  13. KSC-2009-2840

    NASA Image and Video Library

    2009-04-27

    CAPE CANAVERAL, Fla. –– On Cape Canaveral Air Force Station's Launch Complex 41, the Atlas V first stage is being moved into the Vertical Integration Facility. The Atlas V/Centaur is the launch vehicle for the Lunar Reconnaissance Orbiter, or LRO. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. Launch of LRO is targeted no earlier than June 2. Photo credit: NASA/Kim Shiflett

  14. KSC-2009-2841

    NASA Image and Video Library

    2009-04-27

    CAPE CANAVERAL, Fla. –– On Cape Canaveral Air Force Station's Launch Complex 41, the Atlas V first stage is being moved into the Vertical Integration Facility. The Atlas V/Centaur is the launch vehicle for the Lunar Reconnaissance Orbiter, or LRO. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. Launch of LRO is targeted no earlier than June 2. Photo credit: NASA/Kim Shiflett

  15. KSC-2009-3192

    NASA Image and Video Library

    2009-05-15

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations Facility in Titusville, Fla., technicians closely watch as the fairing halves move together to enclose NASA's Lunar Reconnaissance Orbiter, or LRO, and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The LRO includes five instruments: DIVINER, LAMP, LEND, LOLA and LROC. They will be launched aboard an Atlas V/Centaur rocket no earlier than June 17 from Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller

  16. KSC-2009-3183

    NASA Image and Video Library

    2009-05-15

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations Facility in Titusville, Fla., NASA's Lunar Reconnaissance Orbiter, or LRO, and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS,wait for fairing installation. The fairing halves are on left and right of the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The LRO includes five instruments: DIVINER, LAMP, LEND, LOLA and LROC. They will be launched aboard an Atlas V/Centaur rocket no earlier than June 17 from Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller

  17. KSC-2009-3188

    NASA Image and Video Library

    2009-05-15

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations Facility in Titusville, Fla., technicians closely watch the joining of the fairing halves around NASA's Lunar Reconnaissance Orbiter, or LRO, and and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The LRO includes five instruments: DIVINER, LAMP, LEND, LOLA and LROC. They will be launched aboard an Atlas V/Centaur rocket no earlier than June 17 from Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller

  18. KSC-2009-3190

    NASA Image and Video Library

    2009-05-15

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations Facility in Titusville, Fla., the fairing halves are moved together for another attempt at installation around NASA's Lunar Reconnaissance Orbiter, or LRO, and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The LRO includes five instruments: DIVINER, LAMP, LEND, LOLA and LROC. They will be launched aboard an Atlas V/Centaur rocket no earlier than June 17 from Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller

  19. KSC-2009-3184

    NASA Image and Video Library

    2009-05-15

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations Facility in Titusville, Fla., technicians move the first half of the fairing toward NASA's Lunar Reconnaissance Orbiter, or LRO, with NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS, for installation. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The LRO includes five instruments: DIVINER, LAMP, LEND, LOLA and LROC. They will be launched aboard an Atlas V/Centaur rocket no earlier than June 17 from Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller

  20. KSC-2009-3189

    NASA Image and Video Library

    2009-05-15

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations Facility in Titusville, Fla., the fairing halves are moved apart for another attempt at installation around NASA's Lunar Reconnaissance Orbiter, or LRO, and and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The LRO includes five instruments: DIVINER, LAMP, LEND, LOLA and LROC. They will be launched aboard an Atlas V/Centaur rocket no earlier than June 17 from Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller

  1. KSC-2009-3187

    NASA Image and Video Library

    2009-05-15

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations Facility in Titusville, Fla., technicians closely watch as the fairing halves come together around NASA's Lunar Reconnaissance Orbiter, or LRO, and and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent.The LRO includes five instruments: DIVINER, LAMP, LEND, LOLA and LROC. They will be launched aboard an Atlas V/Centaur rocket no earlier than June 17 from Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller

  2. KSC-2009-3191

    NASA Image and Video Library

    2009-05-15

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations Facility in Titusville, Fla., technicians closely watch as the fairing halves move together to enclose NASA's Lunar Reconnaissance Orbiter, or LRO, and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The LRO includes five instruments: DIVINER, LAMP, LEND, LOLA and LROC. They will be launched aboard an Atlas V/Centaur rocket no earlier than June 17 from Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller

  3. TDRS-M Departure from Astrotech and Transport to VIF Pad 41

    NASA Image and Video Library

    2017-08-09

    Enclosed in its payload fairing, NASA's Tracking and Data Relay Satellite (TDRS-M) is transported from Astrotech Space Operations Facilityin Titusville Florida to the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station. TDRS-M will be stacked atop the United Launch Alliance Atlas V Centaur upper stage. It will be the latest spacecraft destined for the agency's constellation of communications satellites that allows nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop the ULA Atlas V rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 41 on Aug. 18, 2017.

  4. KSC-2009-5066

    NASA Image and Video Library

    2009-08-27

    CAPE CANAVERAL, Fla. – The enclosed Space Tracking and Surveillance System – Demonstrators, or STSS-Demo, spacecraft moves out of the Astrotech payload processing facility. It is being moved to Cape Canaveral Air Force Station's Launch Pad 17-B. The STSS Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jack Pfaller

  5. KSC-2009-5067

    NASA Image and Video Library

    2009-08-27

    CAPE CANAVERAL, Fla. – The enclosed Space Tracking and Surveillance System – Demonstrators, or STSS-Demo, spacecraft leaves the Astrotech payload processing facility on its way to Cape Canaveral Air Force Station's Launch Pad 17-B. The STSS Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jack Pfaller

  6. SIRTF Encapsulation

    NASA Image and Video Library

    2003-04-10

    In the launch tower on Launch Complex 17-B, Cape Canaveral Air Force Station, the first part of the fairing is place around the Space Infrared Telescope Facility (SIRTF). The fairing protects the spacecraft during launch. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground. Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF is currently scheduled for launch April 18 aboard a Delta II rocket from Launch Complex 17-B, Cape Canaveral Air Force Station.

  7. KSC-2011-1910

    NASA Image and Video Library

    2011-02-28

    CAPE CANAVERAL, Fla. -- The left spent booster used during space shuttle Discovery's final launch is guided into a hoisting slip at the Solid Rocket Booster Disassembly Facility at Hangar AF on Cape Canaveral Air Force Station in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Jim Grossmann

  8. KSC-2011-1918

    NASA Image and Video Library

    2011-02-28

    CAPE CANAVERAL, Fla. -- The left spent booster used during space shuttle Discovery's final launch hangs in a hoisting device at the Solid Rocket Booster Disassembly Facility at Hangar AF on Cape Canaveral Air Force Station in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Jim Grossmann

  9. KSC-2011-1909

    NASA Image and Video Library

    2011-02-28

    CAPE CANAVERAL, Fla. -- The left spent booster used during space shuttle Discovery's final launch is moved into a hoisting slip at the Solid Rocket Booster Disassembly Facility at Hangar AF on Cape Canaveral Air Force Station in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Jim Grossmann

  10. KSC-2011-1921

    NASA Image and Video Library

    2011-02-28

    CAPE CANAVERAL, Fla. -- Workers at the Solid Rocket Booster Disassembly Facility at Hangar AF on Cape Canaveral Air Force Station in Florida, accompany the left spent booster, used during space shuttle Discovery's final launch, into the building for processing. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Jim Grossmann

  11. KSC-2011-1912

    NASA Image and Video Library

    2011-02-28

    CAPE CANAVERAL, Fla. -- The left spent booster used during space shuttle Discovery's final launch is guided into a hoisting slip at the Solid Rocket Booster Disassembly Facility at Hangar AF on Cape Canaveral Air Force Station in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Jim Grossmann

  12. KSC-05PD-1782

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. Workers in the Payload Hazardous Servicing Facility maneuver the second half of the fairing toward the Mars Reconnaissance Orbiter (right) for installation. The fairing protects the spacecraft during launch and flight through the atmosphere. Once in space, it is jettisoned. Launch of the MRO aboard an Atlas V rocket will be from Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The MRO is the next major step in Mars exploration and scheduled for launch from Cape Canaveral Air Force Station in a window opening Aug. 10. The MRO is an important next step in fulfilling NASAs vision of space exploration and ultimately sending human explorers to Mars and beyond.

  13. KSC-2009-1832

    NASA Image and Video Library

    2009-02-24

    CAPE CANAVERAL, Fla. – On Complex 37 at Cape Canaveral Air Force Station in Florida, workers ensure the GOES-O and Delta IV second stage are ready to leave the Horizontal Integration Facility for the launch pad. GOES-O is one of a series of Geostationary Operational Environmental Satellites. The multi-mission GOES series N-P will be a vital contributor to weather, solar and space operations and science. NASA and the National Oceanic and Atmospheric Administration, or NOAA, are actively engaged in a cooperative program to expand the existing GOES system with the launch of the GOES N-P satellites. Launch of the GOES-O is targeted for no earlier than April 2009. Photo credit: NASA/Jim Grossmann

  14. KSC-2009-1833

    NASA Image and Video Library

    2009-02-24

    CAPE CANAVERAL, Fla. – On Complex 37 at Cape Canaveral Air Force Station in Florida, workers ensure the GOES-O and Delta IV second stage are ready to leave the Horizontal Integration Facility for the launch pad. GOES–O is one of a series of Geostationary Operational Environmental Satellites. The multi-mission GOES series N-P will be a vital contributor to weather, solar and space operations and science. NASA and the National Oceanic and Atmospheric Administration, or NOAA, are actively engaged in a cooperative program to expand the existing GOES system with the launch of the GOES N-P satellites. Launch of the GOES-O is targeted for no earlier than April 2009. Photo credit: NASA/Jim Grossmann

  15. KSC-03pd0163

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. -- Workers in the Multi-Purpose Processing Facility check the fairing placed around the Solar Radiation and Climate Experiment (SORCE) satellite. When fully encapsulated, the satellite will be installed in the Pegasus XL launch vehicle. Built by Orbital Sciences Corporation (OSC), SORCE will study and measure solar irradiance as a source of energy in the Earth's atmosphere. The launch of SORCE is scheduled for Jan. 25 at 3:14 p.m. from Cape Canaveral Air Force Station, Fla. The drop of the Pegasus will be from OSC's L-1011 aircraft at an altitude of 39,000 feet over the Atlantic Ocean approximately 100 miles east-southeast of Cape Canaveral.

  16. KSC-03pd0157

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. - Workers in the Multi-Purpose Processing Facility check the outside of the fairing around the Solar Radiation and Climate Experiment (SORCE) satellite. When completely encapsulated, the satellite will be installed in the Pegasus XL launch vehicle. Built by Orbital Sciences Corporation (OSC), SORCE will study and measure solar irradiance as a source of energy in the Earth's atmosphere. The launch of SORCE is scheduled for Jan. 25 at 3:14 p.m. from Cape Canaveral Air Force Station, Fla. The drop of the Pegasus will be from OSC's L-1011 aircraft at an altitude of 39,000 feet over the Atlantic Ocean approximately 100 miles east-southeast of Cape Canaveral.

  17. KSC-03pd0158

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. -- Workers in the Multi-Purpose Processing Facility move part of the fairing toward the Solar Radiation and Climate Experiment (SORCE) satellite for encapsulation. The satellite will be installed in the Pegasus XL launch vehicle. Built by Orbital Sciences Corporation (OSC), SORCE will study and measure solar irradiance as a source of energy in the Earth's atmosphere. The launch of SORCE is scheduled for Jan. 25 at 3:14 p.m. from Cape Canaveral Air Force Station, Fla. The drop of the Pegasus will be from OSC's L-1011 aircraft at an altitude of 39,000 feet over the Atlantic Ocean approximately 100 miles east-southeast of Cape Canaveral.

  18. KSC-2009-1471

    NASA Image and Video Library

    2009-02-02

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility, technicians secure the protective cover over NASA's Kepler spacecraft. Kepler will be moved to the Hazardous Processing Facility for fueling. Kepler is designed to survey more than 100,000 stars in our galaxy to determine the number of sun-like stars that have Earth-size and larger planets, including those that lie in a star's "habitable zone," a region where liquid water, and perhaps life, could exist. If these Earth-size worlds do exist around stars like our sun, Kepler is expected to be the first to find them and the first to measure how common they are. The liftoff of Kepler aboard a Delta II rocket is currently planned for 10:48 p.m. EST March 5 from Space Launch Complex 17 on Cape Canaveral Air Force Station. Photo credit: NASA/Jack Pfaller

  19. KSC-2009-1469

    NASA Image and Video Library

    2009-02-02

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility, another protective cover is lowered over NASA's Kepler spacecraft. When covered, Kepler will be moved to the Hazardous Processing Facility for fueling. Kepler is designed to survey more than 100,000 stars in our galaxy to determine the number of sun-like stars that have Earth-size and larger planets, including those that lie in a star's "habitable zone," a region where liquid water, and perhaps life, could exist. If these Earth-size worlds do exist around stars like our sun, Kepler is expected to be the first to find them and the first to measure how common they are. The liftoff of Kepler aboard a Delta II rocket is currently planned for 10:48 p.m. EST March 5 from Space Launch Complex 17 on Cape Canaveral Air Force Station. Photo credit: NASA/Jack Pfaller

  20. KSC-2013-3366

    NASA Image and Video Library

    2013-08-21

    CAPE CANAVERAL, Fla. – Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, a technician inspects a cell from one of the electricity-producing solar arrays for the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. MAVEN is being prepared for its scheduled launch in November from Cape Canaveral Air Force Station, Fla. atop a United Launch Alliance Atlas V rocket. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. For more information, visit: http://www.nasa.gov/mission_pages/maven/main/index.html Photo credit: NASA/Jim Grossmann MAVEN is being prepared inside the facility for its scheduled November launch aboard a United Launch Alliance Atlas V rocket to Mars. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. Photo credit: NASA/Jim Grossmann

  1. KSC-2013-3367

    NASA Image and Video Library

    2013-08-21

    CAPE CANAVERAL, Fla. – Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, a technician repairs a cell from one of the electricity-producing solar arrays for the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. MAVEN is being prepared for its scheduled launch in November from Cape Canaveral Air Force Station, Fla. atop a United Launch Alliance Atlas V rocket. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. For more information, visit: http://www.nasa.gov/mission_pages/maven/main/index.html Photo credit: NASA/Jim Grossmann MAVEN is being prepared inside the facility for its scheduled November launch aboard a United Launch Alliance Atlas V rocket to Mars. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. Photo credit: NASA/Jim Grossmann

  2. KSC-2013-3372

    NASA Image and Video Library

    2013-08-21

    CAPE CANAVERAL, Fla. – Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, a technician cleans a cell from one of the electricity-producing solar arrays for the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. MAVEN is being prepared for its scheduled launch in November from Cape Canaveral Air Force Station, Fla. atop a United Launch Alliance Atlas V rocket. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. For more information, visit: http://www.nasa.gov/mission_pages/maven/main/index.html Photo credit: NASA/Jim Grossmann MAVEN is being prepared inside the facility for its scheduled November launch aboard a United Launch Alliance Atlas V rocket to Mars. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. Photo credit: NASA/Jim Grossmann

  3. KSC-2013-3365

    NASA Image and Video Library

    2013-08-21

    CAPE CANAVERAL, Fla. – Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, a technician inspects a cell from one of the electricity-producing solar arrays for the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. MAVEN is being prepared for its scheduled launch in November from Cape Canaveral Air Force Station, Fla. atop a United Launch Alliance Atlas V rocket. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. For more information, visit: http://www.nasa.gov/mission_pages/maven/main/index.html Photo credit: NASA/Jim Grossmann MAVEN is being prepared inside the facility for its scheduled November launch aboard a United Launch Alliance Atlas V rocket to Mars. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. Photo credit: NASA/Jim Grossmann

  4. KSC-2014-4149

    NASA Image and Video Library

    2014-09-25

    CAPE CANAVERAL, Fla. – Coupled Florida East Coast Railway, or FEC, locomotives No. 433 and No. 428 make the first run past the Orbiter Processing Facility and Thermal Protection System Facility in Launch Complex 39 at NASA’s Kennedy Space Center in Florida during the Rail Vibration Test for the Canaveral Port Authority. Seismic monitors are collecting data as the train passes by. The purpose of the test is to collect amplitude, frequency and vibration test data utilizing two Florida East Coast locomotives operating on KSC tracks to ensure that future railroad operations will not affect launch vehicle processing at the center. Buildings instrumented for the test include the Rotation Processing Surge Facility, Thermal Protection Systems Facility, Vehicle Assembly Building, Orbiter Processing Facility and Booster Fabrication Facility. Photo credit: NASA/Daniel Casper

  5. EAARL Coastal Topography--Cape Canaveral, Florida, 2009: First Surface

    USGS Publications Warehouse

    Bonisteel-Cormier, J.M.; Nayegandhi, Amar; Plant, Nathaniel; Wright, C.W.; Nagle, D.B.; Serafin, K.S.; Klipp, E.S.

    2011-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography datasets were produced collaboratively by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Kennedy Space Center, FL. This project provides highly detailed and accurate datasets of a portion of the eastern Florida coastline beachface, acquired on May 28, 2009. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral color-infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine aircraft, but the instrument was deployed on a Pilatus PC-6. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed

  6. Modeling vegetation community responses to sea-level rise on Barrier Island systems: A case study on the Cape Canaveral Barrier Island complex, Florida, USA

    PubMed Central

    Foster, Tammy E.; Stolen, Eric D.; Hall, Carlton R.; Schaub, Ronald; Duncan, Brean W.; Hunt, Danny K.; Drese, John H.

    2017-01-01

    Society needs information about how vegetation communities in coastal regions will be impacted by hydrologic changes associated with climate change, particularly sea level rise. Due to anthropogenic influences which have significantly decreased natural coastal vegetation communities, it is important for us to understand how remaining natural communities will respond to sea level rise. The Cape Canaveral Barrier Island complex (CCBIC) on the east central coast of Florida is within one of the most biologically diverse estuarine systems in North America and has the largest number of threatened and endangered species on federal property in the contiguous United States. The high level of biodiversity is susceptible to sea level rise. Our objective was to model how vegetation communities along a gradient ranging from hydric to upland xeric on CCBIC will respond to three sea level rise scenarios (0.2 m, 0.4 m, and 1.2 m). We used a probabilistic model of the current relationship between elevation and vegetation community to determine the impact sea level rise would have on these communities. Our model correctly predicted the current proportions of vegetation communities on CCBIC based on elevation. Under all sea level rise scenarios the model predicted decreases in mesic and xeric communities, with the greatest losses occurring in the most xeric communities. Increases in total area of salt marsh were predicted with a 0.2 and 0.4 m rise in sea level. With a 1.2 m rise in sea level approximately half of CCBIC’s land area was predicted to transition to open water. On the remaining land, the proportions of most of the vegetation communities were predicted to remain similar to that of current proportions, but there was a decrease in proportion of the most xeric community (oak scrub) and an increase in the most hydric community (salt marsh). Our approach provides a first approximation of the impacts of sea level rise on terrestrial vegetation communities, including important

  7. KSC-04pd1722

    NASA Image and Video Library

    2004-09-08

    KENNEDY SPACE CENTER, FLA. - KSC employees clean up inside the second floor of the Thermal Protection System Facility damaged by Hurricane Frances. The storm's path over Florida took it through Cape Canaveral and KSC property during Labor Day weekend. Located in Launch Complex 39, the facility is used to manufacture both internal and external insulation products for the Space Shuttle orbiters.

  8. KSC-04pd1727

    NASA Image and Video Library

    2004-09-08

    KENNEDY SPACE CENTER, FLA. - KSC workers survey the considerable damage sustained by the second floor of the Thermal Protection System Facility from Hurricane Frances. The storm's path over Florida took it through Cape Canaveral and KSC property during Labor Day weekend. Located in Launch Complex 39, the facility is used to manufacture both internal and external insulation products for the Space Shuttle orbiters.

  9. KSC-04pd1723

    NASA Image and Video Library

    2004-09-08

    KENNEDY SPACE CENTER, FLA. - KSC employees clean up inside the second floor of the Thermal Protection System Facility damaged by Hurricane Frances. The storm's path over Florida took it through Cape Canaveral and KSC property during Labor Day weekend. Located in Launch Complex 39, the facility is used to manufacture both internal and external insulation products for the Space Shuttle orbiters.

  10. KSC-04pd1724

    NASA Image and Video Library

    2004-09-08

    KENNEDY SPACE CENTER, FLA. - KSC employees clean up inside the second floor of the Thermal Protection System Facility damaged by Hurricane Frances. The storm's path over Florida took it through Cape Canaveral and KSC property during Labor Day weekend. Located in Launch Complex 39, the facility is used to manufacture both internal and external insulation products for the Space Shuttle orbiters.

  11. New NRO Eastern Processing Facility at Cape Canaveral Air Force Station Florida. Environmental Assessment:

    DTIC Science & Technology

    2005-08-31

    to the launch complex is considered a hazardous operation. Transportation of fueled payloads will comply with AFSPCMAN 91 - 710 , Range Safety User...April. 45th Space Wing (SW). 1996b. Hazardous Materials Response Plan 32- 3 , Volume I, March. 45th Space Wing (SW). 2001. Integrated Natural...control number. 1. REPORT DATE 31 AUG 2005 2. REPORT TYPE 3 . DATES COVERED 00-00-2005 to 00-00-2005 4. TITLE AND SUBTITLE Final Environmental

  12. KSC-2012-4874

    NASA Image and Video Library

    2012-09-05

    CAPE CANAVERAL, Fla. – Cape Canaveral Air Force Station's Solid Motor Assembly and Readiness Facility, or SMARF, Space Launch Complex 40, and Space Exploration Technologies, or SpaceX, facility, is seen in the distance during a field-guided boat tour of NASA's Kennedy Space Center in Florida. As part of the center's first-ever Innovation Expo, the tour, called "Living Outdoor Laboratory for Environmental Sustainability," is giving employees the opportunity to see the unique estuarine ecosystems that are protected from development by the presence of Kennedy and the Merritt Island National Wildlife Refuge. The diverse and healthy area encompassing about 140,000 acres of central Florida's east coast has been closed to the public for 50 years, allowing the coastal dunes, saltwater estuaries and marshes, freshwater impoundments, scrub, pine flatwoods, and hardwood hammocks to provide habitats for more than 1,000 species of plants and animals. Innovation Expo is showcasing the innovative work taking place throughout the center's facilities and labs to encourage employees to work together to solve future challenges. For more information, visit http://www.nasa.gov/kennedy. Photo credit: NASA

  13. KSC-2014-4140

    NASA Image and Video Library

    2014-09-25

    CAPE CANAVERAL, Fla. – Coupled Florida East Coast Railway, or FEC, locomotives No. 433 and No. 428 pass the Vehicle Assembly Building in Launch Complex 39 at NASA’s Kennedy Space Center in Florida on their way to NASA's Locomotive Maintenance Facility. Kennedy's Center Planning and Development Directorate has enlisted the locomotives to support a Rail Vibration Test for the Canaveral Port Authority. The purpose of the test is to collect amplitude, frequency and vibration test data utilizing two Florida East Coast locomotives operating on KSC tracks to ensure that future railroad operations will not affect launch vehicle processing at the center. Buildings instrumented for the test include the Rotation Processing Surge Facility, Thermal Protection Systems Facility, Vehicle Assembly Building, Orbiter Processing Facility and Booster Fabrication Facility. Photo credit: NASA/Daniel Casper

  14. KSC-2012-4083

    NASA Image and Video Library

    2012-07-30

    CAPE CANAVERAl, Fla. - Dr. Mason Peck, center, NASA's chief Technologist, listens as Michael Hogue, right, explains an innovation during Pecks' tour of the Space Life Sciences Laboratory at Kennedy. Peck toured the lab facility during a visit to the space center. Photo credit: NASA/Frankie Martin

  15. KSC-2012-4092

    NASA Image and Video Library

    2012-07-30

    CAPE CANAVERAl, Fla. - James Stanley, chief technologist for Qinetiq North America, speaks during a visit by Dr. Mason Peck, NASA's chief Technologist, to Kennedy Space Center's Space Life Sciences Laboratory. Peck toured the lab facility during a visit to the space center. Photo credit: NASA/Frankie Martin

  16. KSC-2012-4088

    NASA Image and Video Library

    2012-07-30

    CAPE CANAVERAl, Fla. - Dr. Ray Wheeler, left, explains a plant experiment to Dr. Mason Peck, NASA's chief Technologist, during a tour of the Space Life Sciences Laboratory at Kennedy. Peck toured the lab facility during a visit to the space center. Photo credit: NASA/Frankie Martin

  17. KSC-2011-6843

    NASA Image and Video Library

    2011-09-08

    CAPE CANAVERAL, Fla. -- The Vertical Integration Facility is reflected in the water standing near the facility at Space Launch Complex 41 on Cape Canaveral Air Force Station following the arrival of the first stage of the Atlas V rocket for NASA's Mars Science Laboratory (MSL) mission. A United Launch Alliance Atlas V-541 configuration will be used to loft MSL into space. Curiosity’s 10 science instruments are designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. MSL is scheduled to launch Nov. 25 with a window extending to Dec. 18 and arrival at Mars Aug. 2012. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Cory Huston

  18. KSC-2011-6054

    NASA Image and Video Library

    2011-07-27

    CAPE CANAVERAL, Fla. -- At Space Launch Complex 41, the Juno spacecraft, enclosed in an Atlas payload fairing, nears the top of the Vertical Integration Facility where it will be positioned on top of the Atlas rocket already stacked inside. The spacecraft was prepared for launch in the Astrotech Space Operations' payload processing facility in Titusville, Fla. The fairing will protect the spacecraft from the impact of aerodynamic pressure and heating during ascent and will be jettisoned once the spacecraft is outside the Earth's atmosphere. Juno is scheduled to launch Aug. 5 aboard a United Launch Alliance Atlas V rocket from Cape Canaveral Air Force Station in Florida. The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. For more information, visit www.nasa.gov/juno. Photo credit: NASA/Cory Huston

  19. KSC-2015-1240

    NASA Image and Video Library

    2015-01-18

    CAPE CANAVERAL, Fla. – Preparations to launch NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, near completion in the Building 1 high bay of the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is targeted for no earlier than Feb. 8 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Kim Shiflett

  20. KSC-2014-4545

    NASA Image and Video Library

    2014-11-20

    CAPE CANAVERAL, Fla. – NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, wrapped in plastic, comes into view as the protective shipping container is lifted from around the spacecraft at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is currently scheduled for January 2015 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Kim Shiflett

  1. KSC-2014-4580

    NASA Image and Video Library

    2014-11-24

    CAPE CANAVERAL, Fla. – Workers conduct a light test on the solar arrays on NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, in the Building 1 high bay at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is targeted for early 2015 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Ben Smegelsky

  2. KSC-2014-4582

    NASA Image and Video Library

    2014-11-24

    CAPE CANAVERAL, Fla. – Workers conduct a light test on the solar arrays on NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, in the Building 1 high bay at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is targeted for early 2015 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Ben Smegelsky

  3. KSC-2014-4581

    NASA Image and Video Library

    2014-11-24

    CAPE CANAVERAL, Fla. – Workers conduct a light test on the solar arrays on NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, in the Building 1 high bay at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is targeted for early 2015 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Ben Smegelsky

  4. KSC-2015-1241

    NASA Image and Video Library

    2015-01-18

    CAPE CANAVERAL, Fla. – Preparations to launch NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, near completion in the Building 1 high bay of the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is targeted for no earlier than Feb. 8 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Kim Shiflett

  5. KSC-2014-4568

    NASA Image and Video Library

    2014-11-20

    CAPE CANAVERAL, Fla. – NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, has been uncovered and is ready for processing in the high bay of Building 1 at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is currently scheduled for January 2015 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Kim Shiflett

  6. KSC-2015-1239

    NASA Image and Video Library

    2015-01-18

    CAPE CANAVERAL, Fla. – Preparations to launch NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, near completion in the Building 1 high bay of the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is targeted for no earlier than Feb. 8 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Kim Shiflett

  7. KSC-2014-4547

    NASA Image and Video Library

    2014-11-20

    CAPE CANAVERAL, Fla. – A lifting device is attached to NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, wrapped in plastic, to remove it from its transportation pallet at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is currently scheduled for January 2015 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Kim Shiflett

  8. KSC-97PC-1336

    NASA Image and Video Library

    1997-08-22

    CAPE CANAVERAL, Fla. -- In the Payload Hazardous Servicing Facility PHSF at NASA's Kennedy Space Center in Florida, the Cassini spacecraft is being lifted for placement on a transporter which will move it to Launch Complex 40 at Cape Canaveral Air Force Station. Cassini is an international mission conducted by NASA, the European Space Agency and the Italian Space Agency. The two-story-tall spacecraft, scheduled for launch on Oct. 6, 1997, is destined to arrive at Saturn in July 2004, where it will study the planet, its rings, moons and magnetic environment in detail over a four-year period. The Cassini mission is managed for NASA's Office of Space Science by the Jet Propulsion Laboratory, a division of the California Institute of Technology. Photo Credit: NASA

  9. KSC-2009-1044

    NASA Image and Video Library

    2009-01-07

    CAPE CANAVERAL, Fla. -- At the Astrotech payload processing facility in Titusville, Fla., NASA's Kepler spacecraft is prepared for testing. A NASA Discovery mission, Kepler is specifically designed to survey our region of the Milky Way galaxy to discover hundreds of Earth-size and smaller planets in or near the habitable zone and determine how many of the billions of stars in our galaxy have such planets. Results from this mission will allow us to place our solar system within the continuum of planetary systems in the Galaxy. After processing at Astrotech, Kepler will be carried to its launch pad at Cape Canaveral. .NASA's planet-hunting Kepler mission is scheduled to launch no earlier than March 5 atop a Delta II rocket. Photo credit: NASA/Kim Shiflett

  10. KSC-2014-3682

    NASA Image and Video Library

    2014-08-04

    CAPE CANAVERAL, Fla. – The United Launch Alliance Delta IV port booster is being mated to the core booster inside the Horizontal Integration Facility at Space Launch Complex 37 on Cape Canaveral Air Force Station in Florida. The Delta IV Heavy rocket will launch an uncrewed Orion spacecraft on Exploration Flight Test-1. During the mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Ben Smegelsky

  11. KSC-2013-1669

    NASA Image and Video Library

    2013-02-27

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett

  12. KSC-2013-1665

    NASA Image and Video Library

    2013-02-27

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett

  13. KSC-2013-1663

    NASA Image and Video Library

    2013-02-27

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett

  14. KSC-2013-1661

    NASA Image and Video Library

    2013-02-27

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett

  15. KSC-2013-1662

    NASA Image and Video Library

    2013-02-27

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett

  16. KSC-2013-1667

    NASA Image and Video Library

    2013-02-27

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett

  17. KSC-2013-1668

    NASA Image and Video Library

    2013-02-27

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett

  18. KSC-2013-1666

    NASA Image and Video Library

    2013-02-27

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett

  19. KSC-2013-1664

    NASA Image and Video Library

    2013-02-27

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett

  20. KSC-2013-1660

    NASA Image and Video Library

    2013-02-27

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett