Sample records for facility control system

  1. Energy Systems Integration Facility Control Room | Energy Systems

    Science.gov Websites

    Integration Facility | NREL Energy Systems Integration Facility Control Room Energy Systems Integration Facility Control Room The Energy Systems Integration Facility control room allows system engineers as the monitoring point for the facility's integrated safety and control systems. Photo of employees

  2. Thermal Vacuum Control Systems Options for Test Facilities

    NASA Technical Reports Server (NTRS)

    Marchetti, John

    2008-01-01

    This presentation suggests several Thermal Vacuum System (TVAC) control design approach methods for TVAC facilities. Over the past several years many aerospace companies have or are currently upgrading their TVAC testing facilities whether it be by upgrading old equipment or purchasing new. In doing so they are updating vacuum pumping and thermal capabilities of their chambers as well as their control systems. Although control systems are sometimes are considered second to the vacuum or thermal system upgrade process, they should not be taken lightly and must be planned and implemented with the equipment it is to control. Also, emphasis should be placed on how the operators will use the system as well as the requirements of "their" customers. Presented will be various successful methods of TVAC control systems from Programmable Logic Controller (PLC) based to personal computer (PC) based control.

  3. Providing security for automated process control systems at hydropower engineering facilities

    NASA Astrophysics Data System (ADS)

    Vasiliev, Y. S.; Zegzhda, P. D.; Zegzhda, D. P.

    2016-12-01

    This article suggests the concept of a cyberphysical system to manage computer security of automated process control systems at hydropower engineering facilities. According to the authors, this system consists of a set of information processing tools and computer-controlled physical devices. Examples of cyber attacks on power engineering facilities are provided, and a strategy of improving cybersecurity of hydropower engineering systems is suggested. The architecture of the multilevel protection of the automated process control system (APCS) of power engineering facilities is given, including security systems, control systems, access control, encryption, secure virtual private network of subsystems for monitoring and analysis of security events. The distinctive aspect of the approach is consideration of interrelations and cyber threats, arising when SCADA is integrated with the unified enterprise information system.

  4. National Ignition Facility Control and Information System Operational Tools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, C D; Beeler, R G; Bowers, G A

    The National Ignition Facility (NIF) in Livermore, California, is the world's highest-energy laser fusion system and one of the premier large scale scientific projects in the United States. The system is designed to setup and fire a laser shot to a fusion ignition or high energy density target at rates up to a shot every 4 hours. NIF has 192 laser beams delivering up to 1.8 MJ of energy to a {approx}2 mm target that is planned to produce >100 billion atm of pressure and temperatures of >100 million degrees centigrade. NIF is housed in a ten-story building footprint themore » size of three football fields as shown in Fig. 1. Commissioning was recently completed and NIF will be formally dedicated at Lawrence Livermore National Laboratory on May 29, 2009. The control system has 60,000 hardware controls points and employs 2 million lines of control system code. The control room has highly automated equipment setup prior to firing laser system shots. This automation has a data driven implementation that is conducive to dynamic modification and optimization depending on the shot goals defined by the end user experimenters. NIF has extensive facility machine history and infrastructure maintenance workflow tools both under development and deployed. An extensive operational tools suite has been developed to support facility operations including experimental shot setup, machine readiness, machine health and safety, and machine history. The following paragraphs discuss the current state and future upgrades to these four categories of operational tools.« less

  5. Control System Upgrade for a Mass Property Measurement Facility

    NASA Technical Reports Server (NTRS)

    Chambers, William; Hinkle, R. Kenneth (Technical Monitor)

    2002-01-01

    The Mass Property Measurement Facility (MPMF) at the Goddard Space Flight Center has undergone modifications to ensure the safety of Flight Payloads and the measurement facility. The MPMF has been technically updated to improve reliability and increase the accuracy of the measurements. Modifications include the replacement of outdated electronics with a computer based software control system, the addition of a secondary gas supply in case of a catastrophic failure to the gas supply and a motor controlled emergency stopping feature instead of a hard stop.

  6. Preliminary control system design and analysis for the Space Station Furnace Facility thermal control system

    NASA Technical Reports Server (NTRS)

    Jackson, M. E.

    1995-01-01

    This report presents the Space Station Furnace Facility (SSFF) thermal control system (TCS) preliminary control system design and analysis. The SSFF provides the necessary core systems to operate various materials processing furnaces. The TCS is defined as one of the core systems, and its function is to collect excess heat from furnaces and to provide precise cold temperature control of components and of certain furnace zones. Physical interconnection of parallel thermal control subsystems through a common pump implies the description of the TCS by coupled nonlinear differential equations in pressure and flow. This report formulates the system equations and develops the controllers that cause the interconnected subsystems to satisfy flow rate tracking requirements. Extensive digital simulation results are presented to show the flow rate tracking performance.

  7. The deep space network, volume 18. [Deep Space Instrumentation Facility, Ground Communication Facility, and Network Control System

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The objectives, functions, and organization of the Deep Space Network are summarized. The Deep Space Instrumentation Facility, the Ground Communications Facility, and the Network Control System are described.

  8. Environmental Control and Life Support Systems Test Facility at MSFC

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Marshall Space Flight Center (MSFC) is responsible for designing and building the life support systems that will provide the crew of the International Space Station (ISS) a comfortable environment in which to live and work. Scientists and engineers at the MSFC are working together to provide the ISS with systems that are safe, efficient, and cost-effective. These compact and powerful systems are collectively called the Environmental Control and Life Support Systems, or simply, ECLSS. In this photograph, the life test area on the left of the MSFC ECLSS test facility is where various subsystems and components are tested to determine how long they can operate without failing and to identify components needing improvement. Equipment tested here includes the Carbon Dioxide Removal Assembly (CDRA), the Urine Processing Assembly (UPA), the mass spectrometer filament assemblies and sample pumps for the Major Constituent Analyzer (MCA). The Internal Thermal Control System (ITCS) simulator facility (in the module in the right) duplicates the function and operation of the ITCS in the ISS U.S. Laboratory Module, Destiny. This facility provides support for Destiny, including troubleshooting problems related to the ITCS.

  9. Control and Information Systems for the National Ignition Facility

    DOE PAGES

    Brunton, Gordon; Casey, Allan; Christensen, Marvin; ...

    2017-03-23

    Orchestration of every National Ignition Facility (NIF) shot cycle is managed by the Integrated Computer Control System (ICCS), which uses a scalable software architecture running code on more than 1950 front-end processors, embedded controllers, and supervisory servers. The ICCS operates laser and industrial control hardware containing 66 000 control and monitor points to ensure that all of NIF’s laser beams arrive at the target within 30 ps of each other and are aligned to a pointing accuracy of less than 50 μm root-mean-square, while ensuring that a host of diagnostic instruments record data in a few billionths of a second.more » NIF’s automated control subsystems are built from a common object-oriented software framework that distributes the software across the computer network and achieves interoperation between different software languages and target architectures. A large suite of business and scientific software tools supports experimental planning, experimental setup, facility configuration, and post-shot analysis. Standard business services using open-source software, commercial workflow tools, and database and messaging technologies have been developed. An information technology infrastructure consisting of servers, network devices, and storage provides the foundation for these systems. Thus, this work is an overview of the control and information systems used to support a wide variety of experiments during the National Ignition Campaign.« less

  10. Control and Information Systems for the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunton, Gordon; Casey, Allan; Christensen, Marvin

    Orchestration of every National Ignition Facility (NIF) shot cycle is managed by the Integrated Computer Control System (ICCS), which uses a scalable software architecture running code on more than 1950 front-end processors, embedded controllers, and supervisory servers. The ICCS operates laser and industrial control hardware containing 66 000 control and monitor points to ensure that all of NIF’s laser beams arrive at the target within 30 ps of each other and are aligned to a pointing accuracy of less than 50 μm root-mean-square, while ensuring that a host of diagnostic instruments record data in a few billionths of a second.more » NIF’s automated control subsystems are built from a common object-oriented software framework that distributes the software across the computer network and achieves interoperation between different software languages and target architectures. A large suite of business and scientific software tools supports experimental planning, experimental setup, facility configuration, and post-shot analysis. Standard business services using open-source software, commercial workflow tools, and database and messaging technologies have been developed. An information technology infrastructure consisting of servers, network devices, and storage provides the foundation for these systems. Thus, this work is an overview of the control and information systems used to support a wide variety of experiments during the National Ignition Campaign.« less

  11. Aeropropulsion facilities configuration control: Procedures manual

    NASA Technical Reports Server (NTRS)

    Lavelle, James J.

    1990-01-01

    Lewis Research Center senior management directed that the aeropropulsion facilities be put under configuration control. A Configuration Management (CM) program was established by the Facilities Management Branch of the Aeropropulsion Facilities and Experiments Division. Under the CM program, a support service contractor was engaged to staff and implement the program. The Aeronautics Directorate has over 30 facilities at Lewis of various sizes and complexities. Under the program, a Facility Baseline List (FBL) was established for each facility, listing which systems and their documents were to be placed under configuration control. A Change Control System (CCS) was established requiring that any proposed changes to FBL systems or their documents were to be processed as per the CCS. Limited access control of the FBL master drawings was implemented and an audit system established to ensure all facility changes are properly processed. This procedures manual sets forth the policy and responsibilities to ensure all key documents constituting a facilities configuration are kept current, modified as needed, and verified to reflect any proposed change. This is the essence of the CM program.

  12. Sliding Mode Thermal Control System for Space Station Furnace Facility

    NASA Technical Reports Server (NTRS)

    Jackson Mark E.; Shtessel, Yuri B.

    1998-01-01

    The decoupled control of the nonlinear, multiinput-multioutput, and highly coupled space station furnace facility (SSFF) thermal control system is addressed. Sliding mode control theory, a subset of variable-structure control theory, is employed to increase the performance, robustness, and reliability of the SSFF's currently designed control system. This paper presents the nonlinear thermal control system description and develops the sliding mode controllers that cause the interconnected subsystems to operate in their local sliding modes, resulting in control system invariance to plant uncertainties and external and interaction disturbances. The desired decoupled flow-rate tracking is achieved by optimization of the local linear sliding mode equations. The controllers are implemented digitally and extensive simulation results are presented to show the flow-rate tracking robustness and invariance to plant uncertainties, nonlinearities, external disturbances, and variations of the system pressure supplied to the controlled subsystems.

  13. A control system of a mini survey facility for photometric monitoring

    NASA Astrophysics Data System (ADS)

    Tsutsui, Hironori; Yanagisawa, Kenshi; Izumiura, Hideyuki; Shimizu, Yasuhiro; Hanaue, Takumi; Ita, Yoshifusa; Ichikawa, Takashi; Komiyama, Takahiro

    2016-08-01

    We have built a control system for a mini survey facility dedicated to photometric monitoring of nearby bright (K<5) stars in the near-infrared region. The facility comprises a 4-m-diameter rotating dome and a small (30-mm aperture) wide-field (5 × 5 sq. deg. field of view) infrared (1.0-2.5 microns) camera on an equatorial fork mount, as well as power sources and other associated equipment. All the components other than the camera are controlled by microcomputerbased I/O boards that were developed in-house and are in many of the open-use instruments in our observatory. We present the specifications and configuration of the facility hardware, as well as the structure of its control software.

  14. The automatic control system and stand-by facilities of the TDMA-40 equipment

    NASA Astrophysics Data System (ADS)

    Gudenko, D. V.; Pankov, G. Kh.; Pauk, A. G.; Tsirlin, V. M.

    1980-10-01

    When a controlling station in a satellite communications system is out of order, a complex algorithm must be carried out for automatic operation of the stand-by equipment. A processor has been developed to perform this algorithm, as well as operations involving the stand-by facilities of the receiving-transmitting equipment of the station. The design principles and solutions to problems in developing the equipment for the monitoring and controlling systems are described. These systems are based on multistation access using time division multiplexing. Algorithms are presented for the operation of the synchronizing processor and the control processor of the equipment. The automatic control system and stand-by facilities make it possible to reduce the service personnel and to design an unattended station.

  15. DKIST facility management system integration

    NASA Astrophysics Data System (ADS)

    White, Charles R.; Phelps, LeEllen

    2016-07-01

    The Daniel K. Inouye Solar Telescope (DKIST) Observatory is under construction at Haleakalā, Maui, Hawai'i. When complete, the DKIST will be the largest solar telescope in the world. The Facility Management System (FMS) is a subsystem of the high-level Facility Control System (FCS) and directly controls the Facility Thermal System (FTS). The FMS receives operational mode information from the FCS while making process data available to the FCS and includes hardware and software to integrate and control all aspects of the FTS including the Carousel Cooling System, the Telescope Chamber Environmental Control Systems, and the Temperature Monitoring System. In addition it will integrate the Power Energy Management System and several service systems such as heating, ventilation, and air conditioning (HVAC), the Domestic Water Distribution System, and the Vacuum System. All of these subsystems must operate in coordination to provide the best possible observing conditions and overall building management. Further, the FMS must actively react to varying weather conditions and observational requirements. The physical impact of the facility must not interfere with neighboring installations while operating in a very environmentally and culturally sensitive area. The FMS system will be comprised of five Programmable Automation Controllers (PACs). We present a pre-build overview of the functional plan to integrate all of the FMS subsystems.

  16. Take a Tour of Our Facility | Energy Systems Integration Facility | NREL

    Science.gov Websites

    Take a Tour of Our Facility Take a Tour of Our Facility The Energy Systems Integration Facility Optical Characterization Laboratory System Performance Laboratory Power Systems Integration Laboratory Control Room Energy Storage Laboratory Outdoor Testing Areas Outdoor Testing Areas Energy Systems

  17. The MSG Central Facility - A Mission Control System for Windows NT

    NASA Astrophysics Data System (ADS)

    Thompson, R.

    The MSG Central Facility, being developed by Science Systems for EUMETSAT1, represents the first of a new generation of satellite mission control systems, based on the Windows NT operating system. The system makes use of a range of new technologies to provide an integrated environment for the planning, scheduling, control and monitoring of the entire Meteosat Second Generation mission. It supports packetised TM/TC and uses Science System's Space UNiT product to provide automated operations support at both Schedule (Timeline) and Procedure levels. Flexible access to historical data is provided through an operations archive based on ORACLE Enterprise Server, hosted on a large RAID array and off-line tape jukebox. Event driven real-time data distribution is based on the CORBA standard. Operations preparation and configuration control tools form a fully integrated element of the system.

  18. Systems development of a stall/spin research facility using remotely controlled/augmented aircraft models. Volume 1: Systems overview

    NASA Technical Reports Server (NTRS)

    Montoya, R. J.; Jai, A. R.; Parker, C. D.

    1979-01-01

    A ground based, general purpose, real time, digital control system simulator (CSS) is specified, developed, and integrated with the existing instrumentation van of the testing facility. This CSS is built around a PDP-11/55, and its operational software was developed to meet the dual goal of providing the immediate capability to represent the F-18 drop model control laws and the flexibility for expansion to represent more complex control laws typical of control configured vehicles. Overviews of the two CSS's developed are reviewed as well as the overall system after their integration with the existing facility. Also the latest version of the F-18 drop model control laws (REV D) is described and the changes needed for its incorporation in the digital and analog CSS's are discussed.

  19. Supervisory Control and Data Acquisition System | Energy Systems

    Science.gov Websites

    Integration Facility | NREL Supervisory Control and Data Acquisition System Supervisory Control supervisory control and data acquisition (SCADA) system monitors and controls safety systems and gathers real Energy Systems Integration Facility control room. The Energy Systems Integration Facility's SCADA system

  20. Supervisory control and diagnostics system for the mirror fusion test facility: overview and status 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGoldrick, P.R.

    1981-01-01

    The Mirror Fusion Test Facility (MFTF) is a complex facility requiring a highly-computerized Supervisory Control and Diagnostics System (SCDS) to monitor and provide control over ten subsystems; three of which require true process control. SCDS will provide physicists with a method of studying machine and plasma behavior by acquiring and processing up to four megabytes of plasma diagnostic information every five minutes. A high degree of availability and throughput is provided by a distributed computer system (nine 32-bit minicomputers on shared memory). Data, distributed across SCDS, is managed by a high-bandwidth Distributed Database Management System. The MFTF operators' control roommore » consoles use color television monitors with touch sensitive screens; this is a totally new approach. The method of handling deviations to normal machine operation and how the operator should be notified and assisted in the resolution of problems has been studied and a system designed.« less

  1. Network information attacks on the control systems of power facilities belonging to the critical infrastructure

    NASA Astrophysics Data System (ADS)

    Loginov, E. L.; Raikov, A. N.

    2015-04-01

    The most large-scale accidents occurred as a consequence of network information attacks on the control systems of power facilities belonging to the United States' critical infrastructure are analyzed in the context of possibilities available in modern decision support systems. Trends in the development of technologies for inflicting damage to smart grids are formulated. A volume matrix of parameters characterizing attacks on facilities is constructed. A model describing the performance of a critical infrastructure's control system after an attack is developed. The recently adopted measures and legislation acts aimed at achieving more efficient protection of critical infrastructure are considered. Approaches to cognitive modeling and networked expertise of intricate situations for supporting the decision-making process, and to setting up a system of indicators for anticipatory monitoring of critical infrastructure are proposed.

  2. 7 CFR 1726.176 - Communications and control facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Communications and control facilities. 1726.176... SERVICE, DEPARTMENT OF AGRICULTURE ELECTRIC SYSTEM CONSTRUCTION POLICIES AND PROCEDURES General Plant § 1726.176 Communications and control facilities. This section covers the purchase of microwave and power...

  3. Adjustment of automatic control systems of production facilities at coal processing plants using multivariant physico- mathematical models

    NASA Astrophysics Data System (ADS)

    Evtushenko, V. F.; Myshlyaev, L. P.; Makarov, G. V.; Ivushkin, K. A.; Burkova, E. V.

    2016-10-01

    The structure of multi-variant physical and mathematical models of control system is offered as well as its application for adjustment of automatic control system (ACS) of production facilities on the example of coal processing plant.

  4. Space Station Environmental Control and Life Support System Test Facility at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Springer, Darlene

    1989-01-01

    Different aspects of Space Station Environmental Control and Life Support System (ECLSS) testing are currently taking place at Marshall Space Flight Center (MSFC). Unique to this testing is the variety of test areas and the fact that all are located in one building. The north high bay of building 4755, the Core Module Integration Facility (CMIF), contains the following test areas: the Subsystem Test Area, the Comparative Test Area, the Process Material Management System (PMMS), the Core Module Simulator (CMS), the End-use Equipment Facility (EEF), and the Pre-development Operational System Test (POST) Area. This paper addresses the facility that supports these test areas and briefly describes the testing in each area. Future plans for the building and Space Station module configurations will also be discussed.

  5. Optimal control of hydroelectric facilities

    NASA Astrophysics Data System (ADS)

    Zhao, Guangzhi

    This thesis considers a simple yet realistic model of pump-assisted hydroelectric facilities operating in a market with time-varying but deterministic power prices. Both deterministic and stochastic water inflows are considered. The fluid mechanical and engineering details of the facility are described by a model containing several parameters. We present a dynamic programming algorithm for optimizing either the total energy produced or the total cash generated by these plants. The algorithm allows us to give the optimal control strategy as a function of time and to see how this strategy, and the associated plant value, varies with water inflow and electricity price. We investigate various cases. For a single pumped storage facility experiencing deterministic power prices and water inflows, we investigate the varying behaviour for an oversimplified constant turbine- and pump-efficiency model with simple reservoir geometries. We then generalize this simple model to include more realistic turbine efficiencies, situations with more complicated reservoir geometry, and the introduction of dissipative switching costs between various control states. We find many results which reinforce our physical intuition about this complicated system as well as results which initially challenge, though later deepen, this intuition. One major lesson of this work is that the optimal control strategy does not differ much between two differing objectives of maximizing energy production and maximizing its cash value. We then turn our attention to the case of stochastic water inflows. We present a stochastic dynamic programming algorithm which can find an on-average optimal control in the face of this randomness. As the operator of a facility must be more cautious when inflows are random, the randomness destroys facility value. Following this insight we quantify exactly how much a perfect hydrological inflow forecast would be worth to a dam operator. In our final chapter we discuss the

  6. Description of the PMAD systems test bed facility and data system

    NASA Technical Reports Server (NTRS)

    Trase, Larry; Fong, Don; Adkins, Vicki; Birchenough, Arthur

    1992-01-01

    The power management and distribution (PMAD) systems test bed facility, including the power sources and loads available, is discussed, and the PMAD data system (PDS) is described. The PDS controls the test-bed facility hardware, and monitors and records the electric power system control data bus and external data. The PDS architecture is discussed, and each of the subsystems is described.

  7. Safety Analysis and Protection Measures of the Control System of the Pulsed High Magnetic Field Facility in WHMFC

    NASA Astrophysics Data System (ADS)

    Shi, J. T.; Han, X. T.; Xie, J. F.; Yao, L.; Huang, L. T.; Li, L.

    2013-03-01

    A Pulsed High Magnetic Field Facility (PHMFF) has been established in Wuhan National High Magnetic Field Center (WHMFC) and various protection measures are applied in its control system. In order to improve the reliability and robustness of the control system, the safety analysis of the PHMFF is carried out based on Fault Tree Analysis (FTA) technique. The function and realization of 5 protection systems, which include sequence experiment operation system, safety assistant system, emergency stop system, fault detecting and processing system and accident isolating protection system, are given. The tests and operation indicate that these measures improve the safety of the facility and ensure the safety of people.

  8. 40 CFR 792.43 - Test system care facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 31 2010-07-01 2010-07-01 true Test system care facilities. 792.43 Section 792.43 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) GOOD LABORATORY PRACTICE STANDARDS Facilities § 792.43 Test system care facilities...

  9. Upgrade of U.S. EPA's Experimental Stream Facility Supervisory Control and Data Acquisition System

    EPA Science Inventory

    The Supervisory control and data acquisition (SCADA) system for the U.S. EPA’s Experimental Stream Facility (ESF) was upgraded using Camile hardware and software in 2015. The upgrade added additional hardwired connections, new wireless capabilities, and included a complete rewrit...

  10. Team processes in airway facilities operations control centers.

    DOT National Transportation Integrated Search

    2000-07-01

    In October 2000, the Airway Facilities organization plans to transition the National Airspace System (NAS) monitoring responsibilities to three regional Operations Control Centers (OCCs). Teams in these facilities will be different from those that cu...

  11. System Control Facilities: Head-Ends and Central Processors. A Survey of Technical Requirements for Broadband Cable Teleservices; Volume Four.

    ERIC Educational Resources Information Center

    Smith, Ernest K.; And Others

    The system control facilities in broadband communication systems are discussed in this report. These facilities consist of head-ends and central processors. The first section summarizes technical problems and needs, and the second offers a cursory overview of systems, along with an incidental mention of processors. Section 3 looks at the question…

  12. Cryogenic Controls for Fermilab's Srf Cavities and Test Facility

    NASA Astrophysics Data System (ADS)

    Norris, B.; Bossert, R.; Klebaner, A.; Lackey, S.; Martinez, A.; Pei, L.; Soyars, W.; Sirotenko, V.

    2008-03-01

    A new superconducting radio frequency (SRF) cavities test facility is now operational at Fermilab's Meson Detector Building (MDB). The Cryogenic Test Facility (CTF), located in a separate building 500 m away, supplies the facility with cryogens. The design incorporates ambient temperature pumping for superfluid helium production, as well as three 0.6 kW at 4.5 K refrigerators, five screw compressors, a helium purifier, helium and nitrogen inventory, cryogenic distribution system, and a variety of test cryostats. To control and monitor the vastly distributed cryogenic system, a flexible scheme has been developed. Both commercial and experimental physics tools are used. APACS+™, a process automation control system from Siemens-Moore, is at the heart of the design. APACS+™ allows engineers to configure an ever evolving test facility while maintaining control over the plant and distribution system. APACS+™ nodes at CTF and MDB are coupled by a fiber optic network. DirectLogic205 PLCs by KOYO® are used as the field level interface to most I/O. The top layer of this system uses EPICS (Experimental Physics and Industrial Control System) as a SCADA/HMI. Utilities for graphical display, control loop setting, real time/historical plotting and alarming have been implemented by using the world-wide library of applications for EPICS. OPC client/server technology is used to bridge across each different platform. This paper presents this design and its successful implementation.

  13. Overview of the NASA Wallops Flight Facility Mobile Range Control System

    NASA Technical Reports Server (NTRS)

    Davis, Rodney A.; Semancik, Susan K.; Smith, Donna C.; Stancil, Robert K.

    1999-01-01

    The NASA GSFC's Wallops Flight Facility (WFF) Mobile Range Control System (MRCS) is based on the functionality of the WFF Range Control Center at Wallops Island, Virginia. The MRCS provides real time instantaneous impact predictions, real time flight performance data, and other critical information needed by mission and range safety personnel in support of range operations at remote launch sites. The MRCS integrates a PC telemetry processing system (TELPro), a PC radar processing system (PCDQS), multiple Silicon Graphics display workstations (IRIS), and communication links within a mobile van for worldwide support of orbital, suborbital, and aircraft missions. This paper describes the MRCS configuration; the TELPro's capability to provide single/dual telemetry tracking and vehicle state data processing; the PCDQS' capability to provide real time positional data and instantaneous impact prediction for up to 8 data sources; and the IRIS' user interface for setup/display options. With portability, PC-based data processing, high resolution graphics, and flexible multiple source support, the MRCS system is proving to be responsive to the ever-changing needs of a variety of increasingly complex missions.

  14. DOE LeRC photovoltaic systems test facility

    NASA Technical Reports Server (NTRS)

    Cull, R. C.; Forestieri, A. F.

    1978-01-01

    The facility was designed and built and is being operated as a national facility to serve the needs of the entire DOE National Photovoltaic Program. The object of the facility is to provide a place where photovoltaic systems may be assembled and electrically configured, without specific physical configuration, for operation and testing to evaluate their performance and characteristics. The facility as a breadboard system allows investigation of operational characteristics and checkout of components, subsystems and systems before they are mounted in field experiments or demonstrations. The facility as currently configured consist of 10 kW of solar arrays built from modules, two inverter test stations, a battery storage system, interface with local load and the utility grid, and instrumentation and control necessary to make a flexible operating facility. Expansion to 30 kW is planned for 1978. Test results and operating experience are summaried to show the variety of work that can be done with this facility.

  15. Enhancing Three-dimensional Movement Control System for Assemblies of Machine-Building Facilities

    NASA Astrophysics Data System (ADS)

    Kuzyakov, O. N.; Andreeva, M. A.

    2018-01-01

    Aspects of enhancing three-dimensional movement control system are given in the paper. Such system is to be used while controlling assemblies of machine-building facilities, which is a relevant issue. The base of the system known is three-dimensional movement control device with optical principle of action. The device consists of multi point light emitter and light receiver matrix. The processing of signals is enhanced to increase accuracy of measurements by switching from discrete to analog signals. Light receiver matrix is divided into four areas, and the output value of each light emitter in each matrix area is proportional to its luminance level. Thus, determing output electric signal value of each light emitter in corresponding area leads to determing position of multipoint light emitter and position of object tracked. This is done by using Case-based reasoning method, the precedent in which is described as integral signal value of each matrix area, coordinates of light receivers, which luminance level is high, and decision to be made in this situation.

  16. Controllable Grid Interface Test System | Energy Systems Integration

    Science.gov Websites

    Facility | NREL Controllable Grid Interface Test System Controllable Grid Interface Test System NREL's controllable grid interface (CGI) test system can reduce certification testing time and costs grid interface is the first test facility in the United States that has fault simulation capabilities

  17. Pointing and control system design study for the space infrared telescope facility (SIRTF)

    NASA Technical Reports Server (NTRS)

    Lorell, K. R.; Aubrun, J. N.; Sridhar, B.; Cochran, R. W.

    1984-01-01

    The design and performance of pointing and control systems for two space infrared telescope facility vehicles were examined. The need for active compensation of image jitter using the secondary mirror or other optical elements was determined. In addition, a control system to allow the telescope to perform small angle slews, and to accomplish large angle slews at the rate of 15 deg per minute was designed. Both the 98 deg and the 28 deg inclination orbits were examined, and spacecraft designs were developed for each. The results indicate that active optical compensation of line-of-sight errors is not necessary if the system is allowed to settle for roughly ten seconds after a slew maneuver. The results are contingent on the assumption of rigid body dynamics, and a single structural mode between spacecraft and telescope. Helium slosh for a half full 4000 liter tank was analyzed, and did not represent a major control problem.

  18. 75 FR 18572 - Facility Control Numbers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-12

    ... DEPARTMENT OF THE TREASURY Internal Revenue Service Facility Control Numbers AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Notice of planned use of Facility Control Numbers. SUMMARY: The IRS has developed and is publishing in this issue of the Federal Register, Facility Control Numbers to...

  19. Implementation of a Water Flow Control System into the ISS'S Planned Fluids & Combustion Facility

    NASA Technical Reports Server (NTRS)

    Edwards, Daryl A.

    2003-01-01

    The Fluids and Combustion Facility (FCF) will become an ISS facility capable of performing basic combustion and fluids research. The facility consists of two independent payload racks specifically configured to support multiple experiments over the life of the ISS. Both racks will depend upon the ISS's Moderate Temperature Loop (MTL) for removing waste heat generated by the avionics and experiments operating within the racks. By using the MTL, constraints are imposed by the ISS vehicle on how the coolant resource is used. On the other hand, the FCF depends upon effective thermal control for maximizing life of the hardware and for supplying proper boundary conditions for the experiments. In the implementation of a design solution, significant factors in the selection of the hardware included ability to measure and control relatively low flow rates, ability to throttle flow within the time constraints of the ISS MTL, conserve energy usage, observe low mass and small volume requirements. An additional factor in the final design solution selection was considering how the system would respond to a loss of power event. This paper describes the method selected to satisfy the FCF design requirements while maintaining the constraints applied by the ISS vehicle.

  20. Controlling Infrastructure Costs: Right-Sizing the Mission Control Facility

    NASA Technical Reports Server (NTRS)

    Martin, Keith; Sen-Roy, Michael; Heiman, Jennifer

    2009-01-01

    Johnson Space Center's Mission Control Center is a space vehicle, space program agnostic facility. The current operational design is essentially identical to the original facility architecture that was developed and deployed in the mid-90's. In an effort to streamline the support costs of the mission critical facility, the Mission Operations Division (MOD) of Johnson Space Center (JSC) has sponsored an exploratory project to evaluate and inject current state-of-the-practice Information Technology (IT) tools, processes and technology into legacy operations. The general push in the IT industry has been trending towards a data-centric computer infrastructure for the past several years. Organizations facing challenges with facility operations costs are turning to creative solutions combining hardware consolidation, virtualization and remote access to meet and exceed performance, security, and availability requirements. The Operations Technology Facility (OTF) organization at the Johnson Space Center has been chartered to build and evaluate a parallel Mission Control infrastructure, replacing the existing, thick-client distributed computing model and network architecture with a data center model utilizing virtualization to provide the MCC Infrastructure as a Service. The OTF will design a replacement architecture for the Mission Control Facility, leveraging hardware consolidation through the use of blade servers, increasing utilization rates for compute platforms through virtualization while expanding connectivity options through the deployment of secure remote access. The architecture demonstrates the maturity of the technologies generally available in industry today and the ability to successfully abstract the tightly coupled relationship between thick-client software and legacy hardware into a hardware agnostic "Infrastructure as a Service" capability that can scale to meet future requirements of new space programs and spacecraft. This paper discusses the benefits

  1. Environmental Validation of Legionella Control in a VHA Facility Water System.

    PubMed

    Jinadatha, Chetan; Stock, Eileen M; Miller, Steve E; McCoy, William F

    2018-03-01

    OBJECTIVES We conducted this study to determine what sample volume, concentration, and limit of detection (LOD) are adequate for environmental validation of Legionella control. We also sought to determine whether time required to obtain culture results can be reduced compared to spread-plate culture method. We also assessed whether polymerase chain reaction (PCR) and in-field total heterotrophic aerobic bacteria (THAB) counts are reliable indicators of Legionella in water samples from buildings. DESIGN Comparative Legionella screening and diagnostics study for environmental validation of a healthcare building water system. SETTING Veterans Health Administration (VHA) facility water system in central Texas. METHODS We analyzed 50 water samples (26 hot, 24 cold) from 40 sinks and 10 showers using spread-plate cultures (International Standards Organization [ISO] 11731) on samples shipped overnight to the analytical lab. In-field, on-site cultures were obtained using the PVT (Phigenics Validation Test) culture dipslide-format sampler. A PCR assay for genus-level Legionella was performed on every sample. RESULTS No practical differences regardless of sample volume filtered were observed. Larger sample volumes yielded more detections of Legionella. No statistically significant differences at the 1 colony-forming unit (CFU)/mL or 10 CFU/mL LOD were observed. Approximately 75% less time was required when cultures were started in the field. The PCR results provided an early warning, which was confirmed by spread-plate cultures. The THAB results did not correlate with Legionella status. CONCLUSIONS For environmental validation at this facility, we confirmed that (1) 100 mL sample volumes were adequate, (2) 10× concentrations were adequate, (3) 10 CFU/mL LOD was adequate, (4) in-field cultures reliably reduced time to get results by 75%, (5) PCR provided a reliable early warning, and (6) THAB was not predictive of Legionella results. Infect Control Hosp Epidemiol 2018;39:259-266.

  2. INDUSTRIAL CONTROL SYSTEM CYBER SECURITY: QUESTIONS AND ANSWERS RELEVANT TO NUCLEAR FACILITIES, SAFEGUARDS AND SECURITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert S. Anderson; Mark Schanfein; Trond Bjornard

    2011-07-01

    Typical questions surrounding industrial control system (ICS) cyber security always lead back to: What could a cyber attack do to my system(s) and; how much should I worry about it? These two leading questions represent only a fraction of questions asked when discussing cyber security as it applies to any program, company, business, or organization. The intent of this paper is to open a dialog of important pertinent questions and answers that managers of nuclear facilities engaged in nuclear facility security and safeguards should examine, i.e., what questions should be asked; and how do the answers affect an organization's abilitymore » to effectively safeguard and secure nuclear material. When a cyber intrusion is reported, what does that mean? Can an intrusion be detected or go un-noticed? Are nuclear security or safeguards systems potentially vulnerable? What about the digital systems employed in process monitoring, and international safeguards? Organizations expend considerable efforts to ensure that their facilities can maintain continuity of operations against physical threats. However, cyber threats particularly on ICSs may not be well known or understood, and often do not receive adequate attention. With the disclosure of the Stuxnet virus that has recently attacked nuclear infrastructure, many organizations have recognized the need for an urgent interest in cyber attacks and defenses against them. Several questions arise including discussions about the insider threat, adequate cyber protections, program readiness, encryption, and many more. These questions, among others, are discussed so as to raise the awareness and shed light on ways to protect nuclear facilities and materials against such attacks.« less

  3. Analysis of LNG peakshaving-facility release-prevention systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pelto, P.J.; Baker, E.G.; Powers, T.B.

    1982-05-01

    The purpose of this study is to provide an analysis of release prevention systems for a reference LNG peakshaving facility. An overview assessment of the reference peakshaving facility, which preceeded this effort, identified 14 release scenarios which are typical of the potential hazards involved in the operation of LNG peakshaving facilities. These scenarios formed the basis for this more detailed study. Failure modes and effects analysis and fault tree analysis were used to estimate the expected frequency of each release scenario for the reference peakshaving facility. In addition, the effectiveness of release prevention, release detection, and release control systems weremore » evaluated.« less

  4. A free-piston Stirling engine/linear alternator controls and load interaction test facility

    NASA Technical Reports Server (NTRS)

    Rauch, Jeffrey S.; Kankam, M. David; Santiago, Walter; Madi, Frank J.

    1992-01-01

    A test facility at LeRC was assembled for evaluating free-piston Stirling engine/linear alternator control options, and interaction with various electrical loads. This facility is based on a 'SPIKE' engine/alternator. The engine/alternator, a multi-purpose load system, a digital computer based load and facility control, and a data acquisition system with both steady-periodic and transient capability are described. Preliminary steady-periodic results are included for several operating modes of a digital AC parasitic load control. Preliminary results on the transient response to switching a resistive AC user load are discussed.

  5. Man-Vehicle Systems Research Facility - Design and operating characteristics

    NASA Technical Reports Server (NTRS)

    Shiner, Robert J.; Sullivan, Barry T.

    1992-01-01

    This paper describes the full-mission flight simulation facility at the NASA Ames Research Center. The Man-Vehicle Systems Research Facility (MVSRF) supports aeronautical human factors research and consists of two full-mission flight simulators and an air-traffic-control simulator. The facility is used for a broad range of human factors research in both conventional and advanced aviation systems. The objectives of the research are to improve the understanding of the causes and effects of human errors in aviation operations, and to limit their occurrence. The facility is used to: (1) develop fundamental analytical expressions of the functional performance characteristics of aircraft flight crews; (2) formulate principles and design criteria for aviation environments; (3) evaluate the integration of subsystems in contemporary flight and air traffic control scenarios; and (4) develop training and simulation technologies.

  6. Instrument Systems Analysis and Verification Facility (ISAVF) users guide

    NASA Technical Reports Server (NTRS)

    Davis, J. F.; Thomason, J. O.; Wolfgang, J. L.

    1985-01-01

    The ISAVF facility is primarily an interconnected system of computers, special purpose real time hardware, and associated generalized software systems, which will permit the Instrument System Analysts, Design Engineers and Instrument Scientists, to perform trade off studies, specification development, instrument modeling, and verification of the instrument, hardware performance. It is not the intent of the ISAVF to duplicate or replace existing special purpose facilities such as the Code 710 Optical Laboratories or the Code 750 Test and Evaluation facilities. The ISAVF will provide data acquisition and control services for these facilities, as needed, using remote computer stations attached to the main ISAVF computers via dedicated communication lines.

  7. Modeling and HIL Simulation of Flight Conditions Simulating Control System for the Altitude Test Facility

    NASA Astrophysics Data System (ADS)

    Zhou, Jun; Shen, Li; Zhang, Tianhong

    2016-12-01

    Simulated altitude test is an essential exploring, debugging, verification and validation means during the development of aero-engine. Free-jet engine test can simulate actual working conditions of aero-engine more realistically than direct-connect engine test but with relatively lower cost compared to propulsion wind tunnel test, thus becoming an important developing area of simulated altitude test technology. The Flight Conditions Simulating Control System (FCSCS) is of great importance to the Altitude Test Facility (ATF) but the development of that is a huge challenge. Aiming at improving the design efficiency and reducing risks during the development of FCSCS for ATFs, a Hardware- in-the-Loop (HIL) simulation system was designed and the mathematical models of key components such as the pressure stabilizing chamber, free-jet nozzle, control valve and aero-engine were built in this paper. Moreover, some HIL simulation experiments were carried out. The results show that the HIL simulation system designed and established in this paper is reasonable and effective, which can be used to adjust control parameters conveniently and assess the software and hardware in the control system immediately.

  8. The 4MOST facility control software

    NASA Astrophysics Data System (ADS)

    Pramskiy, Alexander; Mandel, Holger; Rothmaier, Florian; Stilz, Ingo; Winkler, Roland; Hahn, Thomas

    2016-07-01

    The 4-m Multi-Object Spectrographic Telescope (4MOST) is one high-resolution (R 18000) and two lowresolution (R fi 5000) spectrographs covering the wavelength range between 390 and 950 nm. The spectrographs will be installed on ESO VISTA telescope and will be fed by approximately 2400 fibres. The instrument is capable to simultaneously obtain spectra of about 2400 objects distributed over an hexagonal field-of-view of four square degrees. This paper aims at giving an overview of the control software design, which is based on the standard ESO VLT software architecture and customised to fit the needs of the 4MOST instrument. In particular, the facility control software is intended to arrange the precise positioning of the fibres, to schedule and observe many surveys in parallel, and to combine the output from the three spectrographs. Moreover, 4MOST's software will include user-friendly graphical user interfaces that enable users to interact with the facility control system and to monitor all data-taking and calibration tasks of the instrument. A secondary guiding system will be implemented to correct for any fibre exure and thus to improve 4MOST's guiding performance. The large amount of fibres requires the custom design of data exchange to avoid performance issues. The observation sequences are designed to use spectrographs in parallel with synchronous points for data exchange between subsystems. In order to control hardware devices, Programmable Logic Controller (PLC) components will be used, the new standard for future instruments at ESO.

  9. Plum Brook Reactor Facility Control Room during Facility Startup

    NASA Image and Video Library

    1961-02-21

    Operators test the National Aeronautics and Space Administration’s (NASA) Plum Brook Reactor Facility systems in the months leading up to its actual operation. The “Reactor On” signs are illuminated but the reactor core was not yet ready for chain reactions. Just a couple weeks after this photograph, Plum Brook Station held a media open house to unveil the 60-megawatt test reactor near Sandusky, Ohio. More than 60 members of the print media and radio and television news services met at the site to talk with community leaders and representatives from NASA and Atomic Energy Commission. The Plum Brook reactor went critical for the first time on the evening of June 14, 1961. It was not until April 1963 that the reactor reached its full potential of 60 megawatts. The reactor control room, located on the second floor of the facility, was run by licensed operators. The operators manually operated the shim rods which adjusted the chain reaction in the reactor core. The regulating rods could partially or completely shut down the reactor. The control room also housed remote area monitoring panels and other monitoring equipment that allowed operators to monitor radiation sensors located throughout the facility and to scram the reactor instantly if necessary. The color of the indicator lights corresponded with the elevation of the detectors in the various buildings. The reactor could also shut itself down automatically if the monitors detected any sudden irregularities.

  10. Centrifuge facility conceptual system study. Volume 2: Facility systems and study summary

    NASA Technical Reports Server (NTRS)

    Synnestvedt, Robert (Editor); Blair, Patricia; Cartledge, Alan; Garces-Porcile, Jorge; Garin, Vladimir; Guerrero, Mike; Haddeland, Peter; Horkachuck, Mike; Kuebler, Ulrich; Nguyen, Frank

    1991-01-01

    The Centrifuge Facility is a major element of the biological research facility for the implementation of NASA's Life Science Research Program on Space Station Freedom using nonhuman species (small primates, rodents, plants, insects, cell tissues, etc.). The Centrifuge Facility consists of a variable gravity Centrifuge to provide artificial gravity up to 2 earth G's' a Holding System to maintain specimens at microgravity levels, a Glovebox, and a Service Unit for servicing specimen chambers. The following subject areas are covered: (1) Holding System; (2) Centrifuge System; (3) Glovebox System; (4) Service System; and (5) system study summary.

  11. Study of the ubiquitous hog farm system using wireless sensor networks for environmental monitoring and facilities control.

    PubMed

    Hwang, Jeonghwan; Yoe, Hyun

    2010-01-01

    Many hog farmers are now suffering from high pig mortality rates due to various wasting diseases and increased breeding costs, etc. It is therefore necessary for hog farms to implement systematic and scientific pig production technology to increase productivity and produce high quality pork in order to solve these problems. In this study, we describe such a technology by suggesting a ubiquitous hog farm system which applies WSN (Wireless Sensor Network) technology to the pig industry. We suggest that a WSN and CCTV (Closed-circuit television) should be installed on hog farms to collect environmental and image information which shall then help producers not only in monitoring the hog farm via the Web from outside the farm, but also facilitate the control of hog farm facilities in remote locations. In addition, facilities can be automatically controlled based on breeding environment parameters which are already set up and a SMS notice service to notify of deviations shall provide users with convenience. Hog farmers may increase production and improve pork quality through this ubiquitous hog farm system and prepare a database with information collected from environmental factors and the hog farm control devices, which is expected to provide information needed to design and implement suitable control strategies for hog farm operation.

  12. Study of the Ubiquitous Hog Farm System Using Wireless Sensor Networks for Environmental Monitoring and Facilities Control

    PubMed Central

    Hwang, Jeonghwan; Yoe, Hyun

    2010-01-01

    Many hog farmers are now suffering from high pig mortality rates due to various wasting diseases and increased breeding costs, etc. It is therefore necessary for hog farms to implement systematic and scientific pig production technology to increase productivity and produce high quality pork in order to solve these problems. In this study, we describe such a technology by suggesting a ubiquitous hog farm system which applies WSN (Wireless Sensor Network) technology to the pig industry. We suggest that a WSN and CCTV (Closed-circuit television) should be installed on hog farms to collect environmental and image information which shall then help producers not only in monitoring the hog farm via the Web from outside the farm, but also facilitate the control of hog farm facilities in remote locations. In addition, facilities can be automatically controlled based on breeding environment parameters which are already set up and a SMS notice service to notify of deviations shall provide users with convenience. Hog farmers may increase production and improve pork quality through this ubiquitous hog farm system and prepare a database with information collected from environmental factors and the hog farm control devices, which is expected to provide information needed to design and implement suitable control strategies for hog farm operation. PMID:22163497

  13. The design and implementation of the Technical Facilities Controller (TFC) for the Goldstone deep space communications complex

    NASA Technical Reports Server (NTRS)

    Killian, D. A.; Menninger, F. J.; Gorman, T.; Glenn, P.

    1988-01-01

    The Technical Facilities Controller is a microprocessor-based energy management system that is to be implemented in the Deep Space Network facilities. This system is used in conjunction with facilities equipment at each of the complexes in the operation and maintenance of air-conditioning equipment, power generation equipment, power distribution equipment, and other primary facilities equipment. The implementation of the Technical Facilities Controller was completed at the Goldstone Deep Space Communications Complex and is now operational. The installation completed at the Goldstone Complex is described and the utilization of the Technical Facilities Controller is evaluated. The findings will be used in the decision to implement a similar system at the overseas complexes at Canberra, Australia, and Madrid, Spain.

  14. RETROFITTING CONTROL FACILITIES FOR WET-WEATHER FLOW CONTROL

    EPA Science Inventory

    Available technologies were evaluated to demonstrate the feasibility and cost effectiveness of retrofitting existing facilities to handle wet-weather flow (WWF). Cost/benefit relationships were compared to construction of new conventional control and treatment facilities. Desktop...

  15. BIOPACK: the ground controlled late access biological research facility.

    PubMed

    van Loon, Jack J W A

    2004-03-01

    Future Space Shuttle flights shall be characterized by activities necessary to further build the International Space Station, ISS. During these missions limited resources are available to conduct biological experiments in space. The Shuttles' Middeck is a very suitable place to conduct science during the ISS assembly missions or dedicated science missions. The BIOPACK, which flew its first mission during the STS-107, provides a versatile Middeck Locker based research tool for gravitational biology studies. The core facility occupies the space of only two Middeck Lockers. Experiment temperatures are controlled for bacteria, plant, invertebrate and mammalian cultures. Gravity levels and profiles can be set ranging from 0 to 2.0 x g on three independent centrifuges. This provides the experimenter with a 1.0 x g on-board reference and intermediate hypogravity and hypergravity data points to investigate e.g. threshold levels in biological responses. Temperature sensitive items can be stored in the facilities' -10 degrees C and +4 degrees C stowage areas. During STS-107 the facility also included a small glovebox (GBX) and passive temperature controlled units (PTCU). The GBX provides the experimenter with two extra levels of containment for safe sample handling. This biological research facility is a late access (L-10 hrs) laboratory, which, when reaching orbit, could automatically be starting up reducing important experiment lag-time and valuable crew time. The system is completely telecommanded when needed. During flight system parameters like temperatures, centrifuge speeds, experiment commanding or sensor readouts can be monitored and changed when needed. Although ISS provides a wide range of research facilities there is still need for an STS-based late access facility such as the BIOPACK providing experimenters with a very versatile research cabinet for biological experiments under microgravity and in-flight control conditions.

  16. Modeling, simulation and control for a cryogenic fluid management facility, preliminary report

    NASA Technical Reports Server (NTRS)

    Turner, Max A.; Vanbuskirk, P. D.

    1986-01-01

    The synthesis of a control system for a cryogenic fluid management facility was studied. The severe demand for reliability as well as instrumentation and control unique to the Space Station environment are prime considerations. Realizing that the effective control system depends heavily on quantitative description of the facility dynamics, a methodology for process identification and parameter estimation is postulated. A block diagram of the associated control system is also produced. Finally, an on-line adaptive control strategy is developed utilizing optimization of the velocity form control parameters (proportional gains, integration and derivative time constants) in appropriate difference equations for direct digital control. Of special concern are the communications, software and hardware supporting interaction between the ground and orbital systems. It is visualized that specialist in the OSI/ISO utilizing the Ada programming language will influence further development, testing and validation of the simplistic models presented here for adaptation to the actual flight environment.

  17. Energy System Integration Facility Secure Data Center | Energy Systems

    Science.gov Websites

    Integration Facility | NREL Energy System Integration Facility Secure Data Center Energy System Integration Facility Secure Data Center The Energy Systems Integration Facility's Secure Data Center provides

  18. Energy Systems Integration Facility Videos | Energy Systems Integration

    Science.gov Websites

    Facility | NREL Energy Systems Integration Facility Videos Energy Systems Integration Facility Integration Facility NREL + SolarCity: Maximizing Solar Power on Electrical Grids Redefining What's Possible for Renewable Energy: Grid Integration Robot-Powered Reliability Testing at NREL's ESIF Microgrid

  19. Numerical simulation of the actuation system for the ALDF's propulsion control valve. [Aircraft Landing Dynamics Facility

    NASA Technical Reports Server (NTRS)

    Korte, John J.

    1990-01-01

    A numerical simulation of the actuation system for the propulsion control valve (PCV) of the NASA Langley Aircraft Landing Dynamics Facility was developed during the preliminary design of the PCV and used throughout the entire project. The simulation is based on a predictive model of the PCV which is used to evaluate and design the actuation system. The PCV controls a 1.7 million-pound thrust water jet used in propelling a 108,000-pound test carriage. The PCV can open and close in 0.300 second and deliver over 9,000 gallons of water per sec at pressures up to 3150 psi. The numerical simulation results are used to predict transient performance and valve opening characteristics, specify the hydraulic control system, define transient loadings on components, and evaluate failure modes. The mathematical model used for numerically simulating the mechanical fluid power system is described, and numerical results are demonstrated for a typical opening and closing cycle of the PCV. A summary is then given on how the model is used in the design process.

  20. A survey of experiments and experimental facilities for control of flexible structures

    NASA Technical Reports Server (NTRS)

    Sparks, Dean W., Jr.; Juang, Jer-Nan; Klose, Gerhard J.

    1989-01-01

    This paper presents a survey of U.S. ground experiments and facilities dedicated to the study of active control of flexible structures. The facilities will be briefly described in terms of capability, configuration, size and instrumentation. Topics on the experiments include vibration suppression, slewing and system identification. Future research directions, particularly of the NASA Langley Research Center's Controls/Structures Interaction (CSI) ground test program, will be discussed.

  1. Prototyping Control and Data Acquisition for the ITER Neutral Beam Test Facility

    NASA Astrophysics Data System (ADS)

    Luchetta, Adriano; Manduchi, Gabriele; Taliercio, Cesare; Soppelsa, Anton; Paolucci, Francesco; Sartori, Filippo; Barbato, Paolo; Breda, Mauro; Capobianco, Roberto; Molon, Federico; Moressa, Modesto; Polato, Sandro; Simionato, Paola; Zampiva, Enrico

    2013-10-01

    The ITER Neutral Beam Test Facility will be the project's R&D facility for heating neutral beam injectors (HNB) for fusion research operating with H/D negative ions. Its mission is to develop technology to build the HNB prototype injector meeting the stringent HNB requirements (16.5 MW injection power, -1 MeV acceleration energy, 40 A ion current and one hour continuous operation). Two test-beds will be built in sequence in the facility: first SPIDER, the ion source test-bed, to optimize the negative ion source performance, second MITICA, the actual prototype injector, to optimize ion beam acceleration and neutralization. The SPIDER control and data acquisition system is under design. To validate the main architectural choices, a system prototype has been assembled and performance tests have been executed to assess the prototype's capability to meet the control and data acquisition system requirements. The prototype is based on open-source software frameworks running under Linux. EPICS is the slow control engine, MDSplus is the data handler and MARTe is the fast control manager. The prototype addresses low and high-frequency data acquisition, 10 kS/s and 10 MS/s respectively, camera image acquisition, data archiving, data streaming, data retrieval and visualization, real time fast control with 100 μs control cycle and supervisory control.

  2. Thermal Vacuum Facility for Testing Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Knutson, Jeffrey R.; Sikora, Joseph G.

    2002-01-01

    A thermal vacuum facility for testing launch vehicle thermal protection systems by subjecting them to transient thermal conditions simulating re-entry aerodynamic heating is described. Re-entry heating is simulated by controlling the test specimen surface temperature and the environmental pressure in the chamber. Design requirements for simulating re-entry conditions are briefly described. A description of the thermal vacuum facility, the quartz lamp array and the control system is provided. The facility was evaluated by subjecting an 18 by 36 in. Inconel honeycomb panel to a typical re-entry pressure and surface temperature profile. For most of the test duration, the average difference between the measured and desired pressures was 1.6% of reading with a standard deviation of +/- 7.4%, while the average difference between measured and desired temperatures was 7.6% of reading with a standard deviation of +/- 6.5%. The temperature non-uniformity across the panel was 12% during the initial heating phase (t less than 500 sec.), and less than 2% during the remainder of the test.

  3. Control Room at the NACA’s Rocket Engine Test Facility

    NASA Image and Video Library

    1957-05-21

    Test engineers monitor an engine firing from the control room of the Rocket Engine Test Facility at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The Rocket Engine Test Facility, built in the early 1950s, had a rocket stand designed to evaluate high-energy propellants and rocket engine designs. The facility was used to study numerous different types of rocket engines including the Pratt and Whitney RL-10 engine for the Centaur rocket and Rocketdyne’s F-1 and J-2 engines for the Saturn rockets. The Rocket Engine Test Facility was built in a ravine at the far end of the laboratory because of its use of the dangerous propellants such as liquid hydrogen and liquid fluorine. The control room was located in a building 1,600 feet north of the test stand to protect the engineers running the tests. The main control and instrument consoles were centrally located in the control room and surrounded by boards controlling and monitoring the major valves, pumps, motors, and actuators. A camera system at the test stand allowed the operators to view the tests, but the researchers were reliant on data recording equipment, sensors, and other devices to provide test data. The facility’s control room was upgraded several times over the years. Programmable logic controllers replaced the electro-mechanical control devices. The new controllers were programed to operate the valves and actuators controlling the fuel, oxidant, and ignition sequence according to a predetermined time schedule.

  4. Video model deformation system for the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Snow, W. L.; Goad, W. K.

    1983-01-01

    A photogrammetric closed circuit television system to measure model deformation at the National Transonic Facility is described. The photogrammetric approach was chosen because of its inherent rapid data recording of the entire object field. Video cameras are used to acquire data instead of film cameras due to the inaccessibility of cameras which must be housed within the cryogenic, high pressure plenum of this facility. A rudimentary theory section is followed by a description of the video-based system and control measures required to protect cameras from the hostile environment. Preliminary results obtained with the same camera placement as planned for NTF are presented and plans for facility testing with a specially designed test wing are discussed.

  5. Man-vehicle systems research facility: Design and operating characteristics

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The Man-Vehicle Systems Research Facility (MVSRF) provides the capability of simulating aircraft (two with full crews), en route and terminal air traffic control and aircrew interactions, and advanced cockpit (1995) display representative of future generations of aircraft, all within the full mission context. The characteristics of this facility derive from research, addressing critical human factors issues that pertain to: (1) information requirements for the utilization and integration of advanced electronic display systems, (2) the interaction and distribution of responsibilities between aircrews and ground controllers, and (3) the automation of aircrew functions. This research has emphasized the need for high fidelity in simulations and for the capability to conduct full mission simulations of relevant aircraft operations. This report briefly describes the MVSRF design and operating characteristics.

  6. Nike Facility Diagnostics and Data Acquisition System

    NASA Astrophysics Data System (ADS)

    Chan, Yung; Aglitskiy, Yefim; Karasik, Max; Kehne, David; Obenschain, Steve; Oh, Jaechul; Serlin, Victor; Weaver, Jim

    2013-10-01

    The Nike laser-target facility is a 56-beam krypton fluoride system that can deliver 2 to 3 kJ of laser energy at 248 nm onto targets inside a two meter diameter vacuum chamber. Nike is used to study physics and technology issues related to laser direct-drive ICF fusion, including hydrodynamic and laser-plasma instabilities, material behavior at extreme pressures, and optical and x-ray diagnostics for laser-heated targets. A suite of laser and target diagnostics are fielded on the Nike facility, including high-speed, high-resolution x-ray and visible imaging cameras, spectrometers and photo-detectors. A centrally-controlled, distributed computerized data acquisition system provides robust data management and near real-time analysis feedback capability during target shots. Work supported by DOE/NNSA.

  7. Reduction of external noise of mobile energy facilities by using active noise control system in muffler

    NASA Astrophysics Data System (ADS)

    Polivaev, O. I.; Kuznetsov, A. N.; Larionov, A. N.; Beliansky, R. G.

    2018-03-01

    The paper describes a method for the reducing emission of low-frequency noise of modern automotive vehicles into the environment. The importance of reducing the external noise of modern mobile energy facilities made in Russia is substantiated. Standard methods for controlling external noise in technology are of low efficiency when low-frequency sound waves are reduced. In this case, it is in the low-frequency zone of the sound range that the main power of the noise emitted by the machinery lies. The most effective way to reduce such sound waves is to use active noise control systems. A design of a muffler using a similar system is presented. This muffler allowed one to reduce the emission of increased noise levels into the environment by 7-11 dB and to increase acoustic comfort at the operator's workplace by 3-5 dB.

  8. Strategic avionics technology definition studies. Subtask 3-1A3: Electrical Actuation (ELA) Systems Test Facility

    NASA Technical Reports Server (NTRS)

    Rogers, J. P.; Cureton, K. L.; Olsen, J. R.

    1994-01-01

    Future aerospace vehicles will require use of the Electrical Actuator systems for flight control elements. This report presents a proposed ELA Test Facility for dynamic evaluation of high power linear Electrical Actuators with primary emphasis on Thrust Vector Control actuators. Details of the mechanical design, power and control systems, and data acquisition capability of the test facility are presented. A test procedure for evaluating the performance of the ELA Test Facility is also included.

  9. Thermal Distribution System | Energy Systems Integration Facility | NREL

    Science.gov Websites

    Thermal Distribution System Thermal Distribution System The Energy Systems Integration Facility's integrated thermal distribution system consists of a thermal water loop connected to a research boiler and . Photo of the roof of the Energy Systems Integration Facility. The thermal distribution bus allows

  10. EPA Facility Registry System (FRS): NEPT

    EPA Pesticide Factsheets

    This web feature service contains location and facility identification information from EPA's Facility Registry System (FRS) for the subset of facilities that link to the National Environmental Performance Track (NEPT) Program dataset. FRS identifies and geospatially locates facilities, sites or places subject to environmental regulations or of environmental interest. Using vigorous verification and data management procedures, FRS integrates facility data from EPA's national program systems, other federal agencies, and State and tribal master facility records and provides EPA with a centrally managed, single source of comprehensive and authoritative information on facilities. Additional information on FRS is available at the EPA website https://www.epa.gov/enviro/facility-registry-service-frs

  11. Control and materials characterization System for 6T Superconducting Cryogen Free Magnet Facility at IUAC, New Delhi

    NASA Astrophysics Data System (ADS)

    Dutt, R. N.; Meena, D. K.; Kar, S.; Soni, V.; Nadaf, A.; Das, A.; Singh, F.; Datta, T. S.

    2017-02-01

    A system for carrying out automatic experimental measurements of various electrical transport characteristics and their relation to magnetic fields for samples mounted on the sample holder on a Variable Temperature Insert (VTI) of the Cryogen Free Superconducting Magnet System (CFMS) has been developed. The control and characterization system is capable of monitoring, online plotting and history logging in real-time of cryogenic temperatures with the Silicon (Si) Diode and Zirconium Oxy-Nitride sensors installed inside the magnet facility. Electrical transport property measurements have been automated with implementation of current reversal resistance measurements and automatic temperature set-point ramping with the parameters of interest available in real-time as well as for later analysis. The Graphical User Interface (GUI) based system is user friendly to facilitate operations. An ingenious electronics for reading Zirconium Oxy-Nitride temperature sensors has been used. Price to performance ratio has been optimized by using in house developed measurement techniques mixed with specialized commercial cryogenic measurement / control equipment.

  12. Facilities and support systems for a 90-day test of a regenerative life support system

    NASA Technical Reports Server (NTRS)

    Malin, R. L.

    1972-01-01

    A 90-day test is reported of a regenerative life support system which was completed in a space station simulator. The long duration of the test and the fact that it was manned, imposed rigid reliability and safety requirements on the facility. Where adequate reliability could not be built into essential facility systems, either backup systems or components were provided. Awareness was intensified by: (1) placing signs on every piece of equipment that could affect the test, (2) painting switches on all breaker panels a bright contrasting color, (3) restricting access to the test control area, and (4) informing personnel in the facility (other than test personnel) of test activities. It is concluded that the basic facility is satisfactory for conducting long-duration manned tests, and it is recommended that all monitor and alarm functions be integrated into a single operation.

  13. Large-Scale Cryogen Systems and Test Facilities

    NASA Technical Reports Server (NTRS)

    Johnson, R. G.; Sass, J. P.; Hatfield, W. H.

    2007-01-01

    NASA has completed initial construction and verification testing of the Integrated Systems Test Facility (ISTF) Cryogenic Testbed. The ISTF is located at Complex 20 at Cape Canaveral Air Force Station, Florida. The remote and secure location is ideally suited for the following functions: (1) development testing of advanced cryogenic component technologies, (2) development testing of concepts and processes for entire ground support systems designed for servicing large launch vehicles, and (3) commercial sector testing of cryogenic- and energy-related products and systems. The ISTF Cryogenic Testbed consists of modular fluid distribution piping and storage tanks for liquid oxygen/nitrogen (56,000 gal) and liquid hydrogen (66,000 gal). Storage tanks for liquid methane (41,000 gal) and Rocket Propellant 1 (37,000 gal) are also specified for the facility. A state-of-the-art blast proof test command and control center provides capability for remote operation, video surveillance, and data recording for all test areas.

  14. 40 CFR 160.47 - Facilities for handling test, control, and reference substances.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the test systems and shall be adequate to preserve the identity, strength, purity, and stability of... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Facilities for handling test, control... for handling test, control, and reference substances. (a) As necessary to prevent contamination or...

  15. 40 CFR 160.47 - Facilities for handling test, control, and reference substances.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the test systems and shall be adequate to preserve the identity, strength, purity, and stability of... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Facilities for handling test, control... for handling test, control, and reference substances. (a) As necessary to prevent contamination or...

  16. 40 CFR 160.47 - Facilities for handling test, control, and reference substances.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the test systems and shall be adequate to preserve the identity, strength, purity, and stability of... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Facilities for handling test, control... for handling test, control, and reference substances. (a) As necessary to prevent contamination or...

  17. 40 CFR 160.47 - Facilities for handling test, control, and reference substances.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the test systems and shall be adequate to preserve the identity, strength, purity, and stability of... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Facilities for handling test, control... for handling test, control, and reference substances. (a) As necessary to prevent contamination or...

  18. EPA Facility Registry Service (FRS): Facility Interests Dataset

    EPA Pesticide Factsheets

    This web feature service consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are available in the FRS individual feature layers. The layers comprise the FRS major program databases, including:Assessment Cleanup and Redevelopment Exchange System (ACRES) : brownfields sites ; Air Facility System (AFS) : stationary sources of air pollution ; Air Quality System (AQS) : ambient air pollution data from monitoring stations; Bureau of Indian Affairs (BIA) : schools data on Indian land; Base Realignment and Closure (BRAC) facilities; Clean Air Markets Division Business System (CAMDBS) : market-based air pollution control programs; Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS) : hazardous waste sites; Integrated Compliance Information System (ICIS) : integrated enforcement and compliance information; National Compliance Database (NCDB) : Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Toxic Substances Control Act (TSCA); National Pollutant Discharge Elimination System (NPDES) module of ICIS : NPDES surface water permits; Radiation Information Database (RADINFO) : radiation and radioactivity facilities; RACT/BACT/LAER Clearinghouse (RBLC) : best available air pollution technology requirements; Resource Conservation and Recovery Act Information System (RCRAInfo) : tracks generators, transporters, treaters, storers, and disposers of haz

  19. EPA Facility Registry Service (FRS): Facility Interests Dataset Download

    EPA Pesticide Factsheets

    This downloadable data package consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are available in the FRS individual feature layers. The layers comprise the FRS major program databases, including:Assessment Cleanup and Redevelopment Exchange System (ACRES) : brownfields sites ; Air Facility System (AFS) : stationary sources of air pollution ; Air Quality System (AQS) : ambient air pollution data from monitoring stations; Bureau of Indian Affairs (BIA) : schools data on Indian land; Base Realignment and Closure (BRAC) facilities; Clean Air Markets Division Business System (CAMDBS) : market-based air pollution control programs; Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS) : hazardous waste sites; Integrated Compliance Information System (ICIS) : integrated enforcement and compliance information; National Compliance Database (NCDB) : Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Toxic Substances Control Act (TSCA); National Pollutant Discharge Elimination System (NPDES) module of ICIS : NPDES surface water permits; Radiation Information Database (RADINFO) : radiation and radioactivity facilities; RACT/BACT/LAER Clearinghouse (RBLC) : best available air pollution technology requirements; Resource Conservation and Recovery Act Information System (RCRAInfo) : tracks generators, transporters, treaters, storers, and disposers

  20. Facility and Laboratory Equipment | Energy Systems Integration Facility |

    Science.gov Websites

    Energy Systems Integration Facility is its infrastructure. In addition to extensive fixed laboratory . Photo of researchers testing building loads and power networks in the Systems Performance Laboratory

  1. Energy Systems Integration Facility Overview

    ScienceCinema

    Arvizu, Dan; Chistensen, Dana; Hannegan, Bryan; Garret, Bobi; Kroposki, Ben; Symko-Davies, Martha; Post, David; Hammond, Steve; Kutscher, Chuck; Wipke, Keith

    2018-01-16

    The U.S. Department of Energy's Energy Systems Integration Facility (ESIF) is located at the National Renewable Energy Laboratory is the right tool, at the right time... a first-of-its-kind facility that addresses the challenges of large-scale integration of clean energy technologies into the energy systems that power the nation.

  2. 26 CFR 1.169-1 - Amortization of pollution control facilities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 2 2011-04-01 2011-04-01 false Amortization of pollution control facilities. 1....169-1 Amortization of pollution control facilities. (a) Allowance of deduction—(1) In general. Under... amortization of the amortizable basis (as defined in § 1.169-3) of any certified pollution control facility (as...

  3. 26 CFR 1.169-1 - Amortization of pollution control facilities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 2 2010-04-01 2010-04-01 false Amortization of pollution control facilities. 1....169-1 Amortization of pollution control facilities. (a) Allowance of deduction—(1) In general. Under... amortization of the amortizable basis (as defined in § 1.169-3) of any certified pollution control facility (as...

  4. 26 CFR 1.169-1 - Amortization of pollution control facilities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 2 2012-04-01 2012-04-01 false Amortization of pollution control facilities. 1....169-1 Amortization of pollution control facilities. (a) Allowance of deduction—(1) In general. Under... amortization of the amortizable basis (as defined in § 1.169-3) of any certified pollution control facility (as...

  5. 26 CFR 1.169-1 - Amortization of pollution control facilities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 2 2014-04-01 2014-04-01 false Amortization of pollution control facilities. 1....169-1 Amortization of pollution control facilities. (a) Allowance of deduction—(1) In general. Under... amortization of the amortizable basis (as defined in § 1.169-3) of any certified pollution control facility (as...

  6. 26 CFR 1.169-1 - Amortization of pollution control facilities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 2 2013-04-01 2013-04-01 false Amortization of pollution control facilities. 1....169-1 Amortization of pollution control facilities. (a) Allowance of deduction—(1) In general. Under... amortization of the amortizable basis (as defined in § 1.169-3) of any certified pollution control facility (as...

  7. Infection control challenges in deployed US military treatment facilities.

    PubMed

    Hospenthal, Duane R; Crouch, Helen K

    2009-04-01

    Personnel sustaining combat-related injuries in current overseas conflicts continue to have their care complicated by infections caused by multidrug-resistant organisms, including Acinetobacter, Klebsiella, and Pseudomonas. Although presumed to be due to multiple factors both within and outside of the combat theater, concern has been raised about the difficulties in establishing and maintaining standard infection control (IC) practices in deployed medical treatment facilities and in the evacuation of the injured back to the United States. Level III facilities (hospitals capable of holding patients >72 hours) in Iraq and Afghanistan and the evacuation system from Iraq to the continental US were reviewed by an expert IC-infectious disease team. All reviewed facilities had established IC programs, but these were staffed by personnel with limited IC experience, often without perceived adequate time dedicated to perform their duties, and without uniform levels of command emphasis or support. Proper hand hygiene between patients was not always ideal. Isolation and cohorting of patients to decrease multidrug-resistant organism colonization and infection varied among facilities. Review of standard operating procedures found variability among institutions and in quality of these documents. Application of US national and theater-specific guidelines and of antimicrobial control measures also varied among facilities. Effective IC practices are often difficult to maintain in modern US hospitals. In the deployed setting, with ever-changing personnel in a less than optimal practice environment, IC is even more challenging. Standardization of practice with emphasis on the basics of IC practice (e.g., hand hygiene and isolation procedures) needs to be emplaced and maintained in the deployed setting.

  8. EPA Facility Registry Service (FRS): Facility Interests Dataset - Intranet Download

    EPA Pesticide Factsheets

    This downloadable data package consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are available in the FRS individual feature layers. The layers comprise the FRS major program databases, including:Assessment Cleanup and Redevelopment Exchange System (ACRES) : brownfields sites ; Air Facility System (AFS) : stationary sources of air pollution ; Air Quality System (AQS) : ambient air pollution data from monitoring stations; Bureau of Indian Affairs (BIA) : schools data on Indian land; Base Realignment and Closure (BRAC) facilities; Clean Air Markets Division Business System (CAMDBS) : market-based air pollution control programs; Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS) : hazardous waste sites; Integrated Compliance Information System (ICIS) : integrated enforcement and compliance information; National Compliance Database (NCDB) : Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Toxic Substances Control Act (TSCA); National Pollutant Discharge Elimination System (NPDES) module of ICIS : NPDES surface water permits; Radiation Information Database (RADINFO) : radiation and radioactivity facilities; RACT/BACT/LAER Clearinghouse (RBLC) : best available air pollution technology requirements; Resource Conservation and Recovery Act Information System (RCRAInfo) : tracks generators, transporters, treaters, storers, and disposers

  9. How to implement security controls for an information security program at CBRN facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lenaeus, Joseph D.; O'Neil, Lori Ross; Leitch, Rosalyn M.

    This document was prepared by PNNL within the framework of Project 19 of the European Union Chemical Biological Radiological and Nuclear Risk Mitigation Centres of Excellence Initiative entitled, ''Development of procedures and guidelines to create and improve secure information management systems and data exchange mechanisms for CBRN materials under regulatory control.'' It provides management and workers at CBRN facilities, parent organization managers responsible for those facilities, and regulatory agencies (governmental and nongovernmental) with guidance on the best practices for protecting information security. The security mitigation approaches presented in this document were chosen because they present generally accepted guidance in anmore » easy-to-understand manner, making it easier for facility personnel to grasp key concepts and envision how security controls could be implemented by the facility. This guidance is presented from a risk management perspective.« less

  10. EPA Facility Registry System (FRS): NCES

    EPA Pesticide Factsheets

    This web feature service contains location and facility identification information from EPA's Facility Registry System (FRS) for the subset of facilities that link to the National Center for Education Statistics (NCES). The primary federal database for collecting and analyzing data related to education in the United States and other Nations, NCES is located in the U.S. Department of Education, within the Institute of Education Sciences. FRS identifies and geospatially locates facilities, sites or places subject to environmental regulations or of environmental interest. Using vigorous verification and data management procedures, FRS integrates facility data from EPA00e2??s national program systems, other federal agencies, and State and tribal master facility records and provides EPA with a centrally managed, single source of comprehensive and authoritative information on facilities. This data set contains the subset of FRS integrated facilities that link to NCES school facilities once the NCES data has been integrated into the FRS database. Additional information on FRS is available at the EPA website http://www.epa.gov/enviro/html/fii/index.html.

  11. EPA Facility Registry Service (FRS): Facility Interests Dataset - Intranet

    EPA Pesticide Factsheets

    This web feature service consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are available in the FRS individual feature layers. The layers comprise the FRS major program databases, including:Assessment Cleanup and Redevelopment Exchange System (ACRES) : brownfields sites ; Air Facility System (AFS) : stationary sources of air pollution ; Air Quality System (AQS) : ambient air pollution data from monitoring stations; Bureau of Indian Affairs (BIA) : schools data on Indian land; Base Realignment and Closure (BRAC) facilities; Clean Air Markets Division Business System (CAMDBS) : market-based air pollution control programs; Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS) : hazardous waste sites; Integrated Compliance Information System (ICIS) : integrated enforcement and compliance information; National Compliance Database (NCDB) : Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Toxic Substances Control Act (TSCA); National Pollutant Discharge Elimination System (NPDES) module of ICIS : NPDES surface water permits; Radiation Information Database (RADINFO) : radiation and radioactivity facilities; RACT/BACT/LAER Clearinghouse (RBLC) : best available air pollution technology requirements; Resource Conservation and Recovery Act Information System (RCRAInfo) : tracks generators, transporters, treaters, storers, and disposers of haz

  12. Stochastic modeling and control system designs of the NASA/MSFC Ground Facility for large space structures: The maximum entropy/optimal projection approach

    NASA Technical Reports Server (NTRS)

    Hsia, Wei-Shen

    1986-01-01

    In the Control Systems Division of the Systems Dynamics Laboratory of the NASA/MSFC, a Ground Facility (GF), in which the dynamics and control system concepts being considered for Large Space Structures (LSS) applications can be verified, was designed and built. One of the important aspects of the GF is to design an analytical model which will be as close to experimental data as possible so that a feasible control law can be generated. Using Hyland's Maximum Entropy/Optimal Projection Approach, a procedure was developed in which the maximum entropy principle is used for stochastic modeling and the optimal projection technique is used for a reduced-order dynamic compensator design for a high-order plant.

  13. Energy Systems Test Area (ESTA). Power Systems Test Facilities

    NASA Technical Reports Server (NTRS)

    Situ, Cindy H.

    2010-01-01

    This viewgraph presentation provides a detailed description of the Johnson Space Center's Power Systems Facility located in the Energy Systems Test Area (ESTA). Facilities and the resources used to support power and battery systems testing are also shown. The contents include: 1) Power Testing; 2) Power Test Equipment Capabilities Summary; 3) Source/Load; 4) Battery Facilities; 5) Battery Test Equipment Capabilities Summary; 6) Battery Testing; 7) Performance Test Equipment; 8) Battery Test Environments; 9) Battery Abuse Chambers; 10) Battery Abuse Capabilities; and 11) Battery Test Area Resources.

  14. Energy Systems Integration Facility (ESIF) Facility Stewardship Plan: Revision 2.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torres, Juan; Anderson, Art

    The U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), has established the Energy Systems Integration Facility (ESIF) on the campus of the National Renewable Energy Laboratory (NREL) and has designated it as a DOE user facility. This 182,500-ft2 research facility provides state-of-the-art laboratory and support infrastructure to optimize the design and performance of electrical, thermal, fuel, and information technologies and systems at scale. This Facility Stewardship Plan provides DOE and other decision makers with information about the existing and expected capabilities of the ESIF and the expected performance metrics to be applied to ESIF operations.more » This plan is a living document that will be updated and refined throughout the lifetime of the facility.« less

  15. Guidelines for Management Information Systems in Canadian Health Care Facilities

    PubMed Central

    Thompson, Larry E.

    1987-01-01

    The MIS Guidelines are a comprehensive set of standards for health care facilities for the recording of staffing, financial, workload, patient care and other management information. The Guidelines enable health care facilities to develop management information systems which identify resources, costs and products to more effectively forecast and control costs and utilize resources to their maximum potential as well as provide improved comparability of operations. The MIS Guidelines were produced by the Management Information Systems (MIS) Project, a cooperative effort of the federal and provincial governments, provincial hospital/health associations, under the authority of the Canadian Federal/Provincial Advisory Committee on Institutional and Medical Services. The Guidelines are currently being implemented on a “test” basis in ten health care facilities across Canada and portions integrated in government reporting as finalized.

  16. ISHN Ion Source Control System. First Steps Toward an EPICS Based ESS-Bilbao Accelerator Control System

    NASA Astrophysics Data System (ADS)

    Eguiraun, M.; Jugo, J.; Arredondo, I.; del Campo, M.; Feuchtwanger, J.; Etxebarria, V.; Bermejo, F. J.

    2013-04-01

    ISHN (Ion Source Hydrogen Negative) consists of a Penning type ion source in operation at ESS-Bilbao facilities. From the control point of view, this source is representative of the first steps and decisions taken towards the general control architecture of the whole accelerator to be built. The ISHN main control system is based on a PXI architecture, under a real-time controller which is programmed using LabVIEW. This system, with additional elements, is connected to the general control system. The whole system is based on EPICS for the control network, and the modularization of the communication layers of the accelerator plays an important role in the proposed control architecture.

  17. Operators in the Plum Brook Reactor Facility Control Room

    NASA Image and Video Library

    1970-03-21

    Donald Rhodes, left, and Clyde Greer, right, monitor the operation of the National Aeronautics and Space Administration’s (NASA) Plum Brook Reactor Facility from the control room. The 60-megawatt test reactor, NASA’s only reactor, was the eighth largest test reactor in the world. The facility was built by the Lewis Research Center in the late 1950s to study the effects of radiation on different materials that could be used to construct nuclear propulsion systems for aircraft or rockets. The reactor went critical for the first time in 1961. For the next two years, two operators were on duty 24 hours per day working on the fission process until the reactor reached its full-power level in 1963. Reactor Operators were responsible for monitoring and controlling the reactor systems. Once the reactor was running under normal operating conditions, the work was relatively uneventful. Normally the reactor was kept at a designated power level within certain limits. Occasionally the operators had to increase the power for a certain test. The shift supervisor and several different people would get together and discuss the change before boosting the power. All operators were required to maintain a Reactor Operator License from the Atomic Energy Commission. The license included six months of training, an eight-hour written exam, a four-hour walkaround, and testing on the reactor controls.

  18. TECHNICAL GUIDANCE DOCUMENT: QUALITY ASSURANCE AND QUALITY CONTROL FOR WASTE CONTAINMENT FACILITIES

    EPA Science Inventory

    This Technical Guidance Document provides comprehensive guidance on procedures for quality assurance and quality control for waste containment facilities. he document includes a discussion of principles and concepts, compacted soil liners, soil drainage systems, geosynthetic drai...

  19. TECHNICAL GUIDANCE DOCUMENT: QUALITY ASSURANCE AND QUALITY CONTROL FOR WASTE CONTAINMENT FACILITIES

    EPA Science Inventory

    This Technical Guidance Document provides comprehensive guidance on procedures for quality assurance and quality control for waste containment facilities. The document includes a discussion of principles and concepts, compacted soil liners, soil drainage systems, geosynthetic dr...

  20. Municipal sludge composting facility emissions -- comparison of wet scrubber and biofiltration control performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holzman, M.I.; Gammie, L.A.; Gilbert, P.E.

    1997-12-31

    The Metropolitan District (MDC) Water Pollution Control Plant located in Hartford, Connecticut operates a state-of-the-art composting facility to process municipal sewage sludge. An air emissions test program was performed to determine emission rates of criteria and non-criteria pollutants and to evaluate the performance of two types of emissions/odor control systems (biofiltration and wet scrubbing). The purpose of this report is to further the limited available emissions and control performance data on a municipal sewage sludge composting facility operation. The MDC`s sludge composting facility consists of a Biocell train and a Cure Cell train, each of which can currently receive approximatelymore » 20 wet tons per hour of sludge at 60% of full capacity. The minimum retention time in each train is 10.5 days. Air emissions from the Biocell train are treated by both a biofiltration system and a three-stage wet scrubber system. The biofilter and wet scrubber system operate in parallel, so as to allow direct comparison of performance. Emissions from the Cure Cell train are treated by a single biofiltration system. The wet scrubber system consists of a first stage reducing absorber (ammonia solution), followed by a second stage oxidation absorber (sodium hypochlorite and sulfuric acid), and a final residual scrubber (sodium hydroxide solution). The two biofiltration systems are identically sized at 10,000 square feet surface area and three feet depth. The emissions testing program was designed to obtain simultaneous inlet and outlet data across each control device. The measured pollutants included organo-sulfides, alcohols, aldehydes, ketones, pinenes, terpenes, total reduced sulfur compounds, chlorinated hydrocarbons, sulfuric acid, sodium hydroxide, ammonia, carbon monoxide and volatile organic compounds.« less

  1. 40 CFR 160.43 - Test system care facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... testing facility shall have a number of animal rooms or other test system areas separate from those... GOOD LABORATORY PRACTICE STANDARDS Facilities § 160.43 Test system care facilities. (a) A testing facility shall have a sufficient number of animal rooms or other test system areas, as needed, to ensure...

  2. 40 CFR 160.43 - Test system care facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... testing facility shall have a number of animal rooms or other test system areas separate from those... GOOD LABORATORY PRACTICE STANDARDS Facilities § 160.43 Test system care facilities. (a) A testing facility shall have a sufficient number of animal rooms or other test system areas, as needed, to ensure...

  3. Support systems of the orbiting quarantine facility

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The physical support systems, the personnel management structure, and the contingency systems necessary to permit the Orbiting Quarantine Facility (OQF) to function as an integrated system are described. The interactions between the subsystems within the preassembled modules are illustrated. The Power Module generates and distributes electrical power throughout each of the four modules, stabilizes the OQF's attitude, and dissipates heat generated throughout the system. The Habitation Module is a multifunctional structure designed to monitor and control all aspects of the system's activities. The Logistics Module stores the supplies needed for 30 days of operation and provides storage for waste materials generated during the mission. The Laboratory Module contains the equipment necessary for executing the protocol, as well as an independent life support system.

  4. NASA Data Acquisition System Software Development for Rocket Propulsion Test Facilities

    NASA Technical Reports Server (NTRS)

    Herbert, Phillip W., Sr.; Elliot, Alex C.; Graves, Andrew R.

    2015-01-01

    Current NASA propulsion test facilities include Stennis Space Center in Mississippi, Marshall Space Flight Center in Alabama, Plum Brook Station in Ohio, and White Sands Test Facility in New Mexico. Within and across these centers, a diverse set of data acquisition systems exist with different hardware and software platforms. The NASA Data Acquisition System (NDAS) is a software suite designed to operate and control many critical aspects of rocket engine testing. The software suite combines real-time data visualization, data recording to a variety formats, short-term and long-term acquisition system calibration capabilities, test stand configuration control, and a variety of data post-processing capabilities. Additionally, data stream conversion functions exist to translate test facility data streams to and from downstream systems, including engine customer systems. The primary design goals for NDAS are flexibility, extensibility, and modularity. Providing a common user interface for a variety of hardware platforms helps drive consistency and error reduction during testing. In addition, with an understanding that test facilities have different requirements and setups, the software is designed to be modular. One engine program may require real-time displays and data recording; others may require more complex data stream conversion, measurement filtering, or test stand configuration management. The NDAS suite allows test facilities to choose which components to use based on their specific needs. The NDAS code is primarily written in LabVIEW, a graphical, data-flow driven language. Although LabVIEW is a general-purpose programming language; large-scale software development in the language is relatively rare compared to more commonly used languages. The NDAS software suite also makes extensive use of a new, advanced development framework called the Actor Framework. The Actor Framework provides a level of code reuse and extensibility that has previously been difficult

  5. Control of large flexible structures - An experiment on the NASA Mini-Mast facility

    NASA Technical Reports Server (NTRS)

    Hsieh, Chen; Kim, Jae H.; Liu, Ketao; Zhu, Guoming; Skelton, Robert E.

    1991-01-01

    The output variance constraint controller design procedure is integrated with model reduction by modal cost analysis. A procedure is given for tuning MIMO controller designs to find the maximal rms performance of the actual system. Controller designs based on a finite-element model of the system are compared with controller designs based on an identified model (obtained using the Q-Markov Cover algorithm). The identified model and the finite-element model led to similar closed-loop performance, when tested in the Mini-Mast facility at NASA Langley.

  6. Energy Systems Integration Facility Insight Center | Energy Systems

    Science.gov Websites

    simulation data. Photo of researchers studying data on a 3-D power system profile depicting the interaction of renewable energy resources on the grid. Capabilities The Insight Center offers the following Integration Facility Insight Center Located adjacent to the Energy System Integration Facility's High

  7. Multi-axis transient vibration testing of space objects: Test philosophy, test facility, and control strategy

    NASA Technical Reports Server (NTRS)

    Lachenmayr, Georg

    1992-01-01

    IABG has been using various servohydraulic test facilities for many years for the reproduction of service loads and environmental loads on all kinds of test objects. For more than 15 years, a multi-axis vibration test facility has been under service, originally designed for earthquake simulation but being upgraded to the demands of space testing. First tests with the DFS/STM showed good reproduction accuracy and demonstrated the feasibility of transient vibration testing of space objects on a multi-axis hydraulic shaker. An approach to structural qualification is possible by using this test philosophy. It will be outlined and its obvious advantages over the state-of-the-art single-axis test will be demonstrated by example results. The new test technique has some special requirements to the test facility exceeding those of earthquake testing. Most important is the high reproduction accuracy demanded for a sophisticated control system. The state-of-the-art approach of analog closed-loop control circuits for each actuator combined with a static decoupling network and an off-line iterative waveform control is not able to meet all the demands. Therefore, the future over-all control system is implemented as hierarchical full digital closed-loop system on a highly parallel transputer network. The innermost layer is the digital actuator controller, the second one is the MDOF-control of the table movement. The outermost layer would be the off-line iterative waveform control, which is dedicated only to deal with the interaction of test table and test object or non-linear effects. The outline of the system will be presented.

  8. PBF (PER620) interior. System control racks, secondary control and equipment ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF (PER-620) interior. System control racks, secondary control and equipment room. Date: May 2004. INEEL negative no. HD-41-6-2 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  9. RETROFITTING CONTROL FACILITIES FOR WET-WEATHER FLOW TREATMENT

    EPA Science Inventory

    Available technologies were evaluated to demonstrate the technical feasibility and cost effectiveness of retrofitting existing facilities to handle wet-weather flow. Cost/benefit relationships were also compared to construction of new conventional control and treatment facilities...

  10. Alignment system for SGII-Up laser facility

    NASA Astrophysics Data System (ADS)

    Gao, Yanqi; Cui, Yong; Li, Hong; Gong, Lei; Lin, Qiang; Liu, Daizhong; Zhu, Baoqiang; Ma, Weixin; Zhu, Jian; Lin, Zunqi

    2018-03-01

    The SGII-Up laser facility in Shanghai is one of the most important high-power laser facilities in China. It is designed to obtain 24 kJ (3ω) of energy with a square pulse of 3 ns using eight laser beams (two bundles). To satisfy the requirements for the safety, efficiency, and quality, an alignment system is developed for this facility. This alignment system can perform automatic alignment of the preamplifier system, main amplifier system, and harmonic conversion system within 30 min before every shot during the routine operation of the facility. In this article, an overview of the alignment system is first presented. Then, its alignment characteristics are discussed, along with the alignment process. Finally, experimental results, including the alignment results and the facility performance, are reported. The results show that the far-field beam pointing alignment accuracy is better than 3 μrad, and the alignment error of the near-field beam centering is no larger than 1 mm. These satisfy the design requirements very well.

  11. Controlling changes - lessons learned from waste management facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, B.M.; Koplow, A.S.; Stoll, F.E.

    This paper discusses lessons learned about change control at the Waste Reduction Operations Complex (WROC) and Waste Experimental Reduction Facility (WERF) of the Idaho National Engineering Laboratory (INEL). WROC and WERF have developed and implemented change control and an as-built drawing process and have identified structures, systems, and components (SSCS) for configuration management. The operations have also formed an Independent Review Committee to minimize costs and resources associated with changing documents. WROC and WERF perform waste management activities at the INEL. WROC activities include storage, treatment, and disposal of hazardous and mixed waste. WERF provides volume reduction of solid low-levelmore » waste through compaction, incineration, and sizing operations. WROC and WERF`s efforts aim to improve change control processes that have worked inefficiently in the past.« less

  12. A Programmable System for Motion Control

    NASA Technical Reports Server (NTRS)

    Nowlin, Brent C.

    2003-01-01

    The need for improved flow measurements in the flow path of aeronautics testing facilities has led the NASA Glenn Research Center to develop a new motion control system. The new system is programmable, offering a flexibility unheard of in previous systems. The motion control system is PLC-based, which leads to highly accurate positioning ability, as well as reliability. The user interface is a software-based HMI package, which also adds flexibility to the overall system. The system also has the ability to create and execute motion profiles. This paper discusses the system's operation, control implementation, and experiences.

  13. Systems test facilities existing capabilities compilation

    NASA Technical Reports Server (NTRS)

    Weaver, R.

    1981-01-01

    Systems test facilities (STFS) to test total photovoltaic systems and their interfaces are described. The systems development (SD) plan is compilation of existing and planned STFs, as well as subsystem and key component testing facilities. It is recommended that the existing capabilities compilation is annually updated to provide and assessment of the STF activity and to disseminate STF capabilities, status and availability to the photovoltaics program.

  14. Description of the Spacecraft Control Laboratory Experiment (SCOLE) facility

    NASA Technical Reports Server (NTRS)

    Williams, Jeffrey P.; Rallo, Rosemary A.

    1987-01-01

    A laboratory facility for the study of control laws for large flexible spacecraft is described. The facility fulfills the requirements of the Spacecraft Control Laboratory Experiment (SCOLE) design challenge for a laboratory experiment, which will allow slew maneuvers and pointing operations. The structural apparatus is described in detail sufficient for modelling purposes. The sensor and actuator types and characteristics are described so that identification and control algorithms may be designed. The control implementation computer and real-time subroutines are also described.

  15. Description of the Spacecraft Control Laboratory Experiment (SCOLE) facility

    NASA Technical Reports Server (NTRS)

    Williams, Jeffrey P.; Rallo, Rosemary A.

    1987-01-01

    A laboratory facility for the study of control laws for large flexible spacecraft is described. The facility fulfills the requirements of the Spacecraft Control Laboratory Experiment (SCOLE) design challenge for laboratory experiments, which will allow slew maneuvers and pointing operations. The structural apparatus is described in detail sufficient for modelling purposes. The sensor and actuator types and characteristics are described so that identification and control algorithms may be designed. The control implementation computer and real-time subroutines are also described.

  16. Facilities Data System Manual.

    ERIC Educational Resources Information Center

    Acridge, Charles W.; Ford, Tim M.

    The purposes of this manual are to set forth the scope and procedures for the maintenance and operation of the University of California facilities Data System (FDX) and to serve as a reference document for users of the system. FDX is an information system providing planning and management data about the existing physical plant. That is, it…

  17. Centrifuge Facility Conceptual System Study. Volume 1: Facility overview and habitats

    NASA Technical Reports Server (NTRS)

    Synnestvedt, Robert (Editor)

    1990-01-01

    The results are presented for a NASA Phase 1 study conducted from mid 1987 through mid 1989 at Ames Research Center. The Centrifuge Facility is the major element of the biological research facility for the implementation of NASA's Life Science Research Program on Space Station Freedom using non-human specimens (such as small primates, rodents, plants, insects, cell tissues). Five systems are described which comprise the Facility: habitats, holding units, centrifuge, glovebox, and service unit. Volume 1 presents a facility overview and describes the habitats - modular units which house living specimens.

  18. Biotechnology System Facility: Risk Mitigation on Mir

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R., III; Galloway, Steve R.

    2003-01-01

    NASA is working with its international partners to develop space vehicles and facilities that will give researchers the opportunity to conduct scientific investigations in space. As part of this activity, NASA's Biotechnology Cell Science Program (BCSP) at the Johnson Space Center (JSC) is developing a world-class biotechnology laboratory facility for the International Space Station (ISS). This report describes the BCSP, including the role of the BTS. We identify the purpose and objectives of the BTS and a detailed description of BTS facility design and operational concept, BTS facility and experiment-specific hardware, and scientific investigations conducted in the facility. We identify the objectives, methods, and results of risk mitigation investigations of the effects of microgravity and cosmic radiation on the BTS data acquisition and control system. These results may apply to many other space experiments that use commercial, terrestrial-based data acquisition technology. Another focal point is a description of the end-to-end process of integrating and operating biotechnology experiments on a variety of space vehicles. The identification of lessons learned that can be applied to future biotechnology experiments is an overall theme of the report. We include a brief summary of the science results, but this is not the focus of the report. The report provides some discussion on the successful 130-day tissue engineering experiment performed in BTS on Mir and describes a seminal gene array investigation that identified a set of unique genes that are activated in space.

  19. Photovoltaic Systems Test Facilities: Existing capabilities compilation

    NASA Technical Reports Server (NTRS)

    Volkmer, K.

    1982-01-01

    A general description of photovoltaic systems test facilities (PV-STFs) operated under the U.S. Department of Energy's photovoltaics program is given. Descriptions of a number of privately operated facilities having test capabilities appropriate to photovoltaic hardware development are given. A summary of specific, representative test capabilities at the system and subsystem level is presented for each listed facility. The range of system and subsystem test capabilities available to serve the needs of both the photovoltaics program and the private sector photovoltaics industry is given.

  20. 21 CFR 110.37 - Sanitary facilities and controls.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... food-packaging materials, or for employee sanitary facilities. (b) Plumbing. Plumbing shall be of... understandable signs directing employees handling unproteced food, unprotected food-packaging materials, of food... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Sanitary facilities and controls. 110.37 Section...

  1. 21 CFR 110.37 - Sanitary facilities and controls.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... HUMAN FOOD Buildings and Facilities § 110.37 Sanitary facilities and controls. Each plant shall be... water to required locations throughout the plant. (2) Properly convey sewage and liquid disposable waste from the plant. (3) Avoid constituting a source of contamination to food, water supplies, equipment, or...

  2. 21 CFR 110.37 - Sanitary facilities and controls.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... HUMAN FOOD Buildings and Facilities § 110.37 Sanitary facilities and controls. Each plant shall be... water to required locations throughout the plant. (2) Properly convey sewage and liquid disposable waste from the plant. (3) Avoid constituting a source of contamination to food, water supplies, equipment, or...

  3. 21 CFR 110.37 - Sanitary facilities and controls.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... HUMAN FOOD Buildings and Facilities § 110.37 Sanitary facilities and controls. Each plant shall be... water to required locations throughout the plant. (2) Properly convey sewage and liquid disposable waste from the plant. (3) Avoid constituting a source of contamination to food, water supplies, equipment, or...

  4. 7 CFR 1424.10 - Succession and control of facilities and production.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Succession and control of facilities and production... § 1424.10 Succession and control of facilities and production. A person who obtains a facility that is... grant such request if it is determined that permitting such succession would serve the purposes of the...

  5. 7 CFR 1424.10 - Succession and control of facilities and production.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Succession and control of facilities and production... § 1424.10 Succession and control of facilities and production. A person who obtains a facility that is... grant such request if it is determined that permitting such succession would serve the purposes of the...

  6. 7 CFR 1424.10 - Succession and control of facilities and production.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Succession and control of facilities and production... § 1424.10 Succession and control of facilities and production. A person who obtains a facility that is... grant such request if it is determined that permitting such succession would serve the purposes of the...

  7. 7 CFR 1424.10 - Succession and control of facilities and production.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Succession and control of facilities and production... § 1424.10 Succession and control of facilities and production. A person who obtains a facility that is... grant such request if it is determined that permitting such succession would serve the purposes of the...

  8. 7 CFR 1424.10 - Succession and control of facilities and production.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Succession and control of facilities and production... § 1424.10 Succession and control of facilities and production. A person who obtains a facility that is... grant such request if it is determined that permitting such succession would serve the purposes of the...

  9. National Ignition Facility main laser stray light analysis and control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    English, R E; Miller, J L; Peterson, G

    1998-06-26

    Stray light analysis has been carried out for the main laser section of the National Ignition Facility main laser section using a comprehensive non-sequential ray trace model supplemented with additional ray trace and diffraction propagation modeling. This paper describes the analysis and control methodology, gives examples of ghost paths and required tilted lenses, baffles, absorbers, and beam dumps, and discusses analysis of stray light "pencil beams" in the system.

  10. Software solutions manage the definition, operation, maintenance and configuration control of the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobson, D; Churby, A; Krieger, E

    2011-07-25

    The National Ignition Facility (NIF) is the world's largest laser composed of millions of individual parts brought together to form one massive assembly. Maintaining control of the physical definition, status and configuration of this structure is a monumental undertaking yet critical to the validity of the shot experiment data and the safe operation of the facility. The NIF business application suite of software provides the means to effectively manage the definition, build, operation, maintenance and configuration control of all components of the National Ignition Facility. State of the art Computer Aided Design software applications are used to generate a virtualmore » model and assemblies. Engineering bills of material are controlled through the Enterprise Configuration Management System. This data structure is passed to the Enterprise Resource Planning system to create a manufacturing bill of material. Specific parts are serialized then tracked along their entire lifecycle providing visibility to the location and status of optical, target and diagnostic components that are key to assessing pre-shot machine readiness. Nearly forty thousand items requiring preventive, reactive and calibration maintenance are tracked through the System Maintenance & Reliability Tracking application to ensure proper operation. Radiological tracking applications ensure proper stewardship of radiological and hazardous materials and help provide a safe working environment for NIF personnel.« less

  11. Implementation of tuberculosis infection control in health facilities in Mukono and Wakiso districts, Uganda

    PubMed Central

    2013-01-01

    Background Tuberculosis infection control (TBIC) is rarely implemented in the health facilities in resource limited settings. Understanding the reasons for low level of implementation is critical. The study aim was to assess TBIC practices and barriers to implementation in two districts in Uganda. Methods We conducted a cross-sectional study in 51 health facilities in districts of Mukono and Wakiso. The study included: a facility survey, observations of practices and eight focus group discussions with health workers. Results Quantitative: Only 16 facilities (31%) had a TBIC plan. Five facilities (10%) were screening patients for cough. Two facilities (4%) reported providing masks to patients with cough. Ventilation in the waiting areas was inadequate for TBIC in 43% (22/51) of the facilities. No facility possessed N95 particulate respirators. Qualitative: Barriers that hamper implementation of TBIC elicited included: under-staffing, lack of space for patient separation, lack of funds to purchase masks, and health workers not appreciating the importance of TBIC. Conclusion TBIC measures were not implemented in health facilities in the two Ugandan districts where the survey was done. Health system factors like lack of staff, space and funds are barriers to implement TBIC. Effective implementation of TBIC measures occurs when the fundamental health system building blocks -governance and stewardship, financing, infrastructure, procurement and supply chain management are in place and functioning appropriately. PMID:23915376

  12. Implementation of tuberculosis infection control in health facilities in Mukono and Wakiso districts, Uganda.

    PubMed

    Buregyeya, Esther; Nuwaha, Fred; Verver, Suzanne; Criel, Bart; Colebunders, Robert; Wanyenze, Rhoda; Kalyango, Joan N; Katamba, Achilles; Mitchell, Ellen Mh

    2013-08-01

    Tuberculosis infection control (TBIC) is rarely implemented in the health facilities in resource limited settings. Understanding the reasons for low level of implementation is critical. The study aim was to assess TBIC practices and barriers to implementation in two districts in Uganda. We conducted a cross-sectional study in 51 health facilities in districts of Mukono and Wakiso. The study included: a facility survey, observations of practices and eight focus group discussions with health workers. Quantitative: Only 16 facilities (31%) had a TBIC plan. Five facilities (10%) were screening patients for cough. Two facilities (4%) reported providing masks to patients with cough. Ventilation in the waiting areas was inadequate for TBIC in 43% (22/51) of the facilities. No facility possessed N95 particulate respirators. Qualitative: Barriers that hamper implementation of TBIC elicited included: under-staffing, lack of space for patient separation, lack of funds to purchase masks, and health workers not appreciating the importance of TBIC. TBIC measures were not implemented in health facilities in the two Ugandan districts where the survey was done. Health system factors like lack of staff, space and funds are barriers to implement TBIC. Effective implementation of TBIC measures occurs when the fundamental health system building blocks--governance and stewardship, financing, infrastructure, procurement and supply chain management are in place and functioning appropriately.

  13. Fuel Distribution Systems | Energy Systems Integration Facility | NREL

    Science.gov Websites

    Fuel Distribution Systems Fuel Distribution Systems The Energy Systems Integration Facility's integrated fuel distribution systems provide natural gas, hydrogen, and diesel throughout its laboratories in two laboratories: the Power Systems Integration Laboratory and the Energy Storage Laboratory. Each

  14. Modernization of B-2 Data, Video, and Control Systems Infrastructure

    NASA Technical Reports Server (NTRS)

    Cmar, Mark D.; Maloney, Christian T.; Butala, Vishal D.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) Plum Brook Station (PBS) Spacecraft Propulsion Research Facility, commonly referred to as B-2, is NASA s third largest thermal-vacuum facility with propellant systems capability. B-2 has completed a modernization effort of its facility legacy data, video and control systems infrastructure to accommodate modern integrated testing and Information Technology (IT) Security requirements. Integrated systems tests have been conducted to demonstrate the new data, video and control systems functionality and capability. Discrete analog signal conditioners have been replaced by new programmable, signal processing hardware that is integrated with the data system. This integration supports automated calibration and verification of the analog subsystem. Modern measurement systems analysis (MSA) tools are being developed to help verify system health and measurement integrity. Legacy hard wired digital data systems have been replaced by distributed Fibre Channel (FC) network connected digitizers where high speed sampling rates have increased to 256,000 samples per second. Several analog video cameras have been replaced by digital image and storage systems. Hard-wired analog control systems have been replaced by Programmable Logic Controllers (PLC), fiber optic networks (FON) infrastructure and human machine interface (HMI) operator screens. New modern IT Security procedures and schemes have been employed to control data access and process control flows. Due to the nature of testing possible at B-2, flexibility and configurability of systems has been central to the architecture during modernization.

  15. Modernization of B-2 Data, Video, and Control Systems Infrastructure

    NASA Technical Reports Server (NTRS)

    Cmar, Mark D.; Maloney, Christian T.; Butala, Vishal D.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) Plum Brook Station (PBS) Spacecraft Propulsion Research Facility, commonly referred to as B-2, is NASA's third largest thermal-vacuum facility with propellant systems capability. B-2 has completed a modernization effort of its facility legacy data, video and control systems infrastructure to accommodate modern integrated testing and Information Technology (IT) Security requirements. Integrated systems tests have been conducted to demonstrate the new data, video and control systems functionality and capability. Discrete analog signal conditioners have been replaced by new programmable, signal processing hardware that is integrated with the data system. This integration supports automated calibration and verification of the analog subsystem. Modern measurement systems analysis (MSA) tools are being developed to help verify system health and measurement integrity. Legacy hard wired digital data systems have been replaced by distributed Fibre Channel (FC) network connected digitizers where high speed sampling rates have increased to 256,000 samples per second. Several analog video cameras have been replaced by digital image and storage systems. Hard-wired analog control systems have been replaced by Programmable Logic Controllers (PLC), fiber optic networks (FON) infrastructure and human machine interface (HMI) operator screens. New modern IT Security procedures and schemes have been employed to control data access and process control flows. Due to the nature of testing possible at B-2, flexibility and configurability of systems has been central to the architecture during modernization.

  16. (NTF) National Transonic Facility Test 213-SFW Flow Control II,

    NASA Image and Video Library

    2012-11-19

    (NTF) National Transonic Facility Test 213-SFW Flow Control II, Fast-MAC Model: The fundamental Aerodynamics Subsonic Transonic-Modular Active Control (Fast-MAC) Model was tested for the 2nd time in the NTF. The objectives were to document the effects of Reynolds numbers on circulation control aerodynamics and to develop and open data set for CFD code validation. Image taken in building 1236, National Transonic Facility

  17. Development and Integration of Control System Models

    NASA Technical Reports Server (NTRS)

    Kim, Young K.

    1998-01-01

    The computer simulation tool, TREETOPS, has been upgraded and used at NASA/MSFC to model various complicated mechanical systems and to perform their dynamics and control analysis with pointing control systems. A TREETOPS model of Advanced X-ray Astrophysics Facility - Imaging (AXAF-1) dynamics and control system was developed to evaluate the AXAF-I pointing performance for Normal Pointing Mode. An optical model of Shooting Star Experiment (SSE) was also developed and its optical performance analysis was done using the MACOS software.

  18. Phytochrome-mediated responses: Implications for controlled environment research facilities

    NASA Technical Reports Server (NTRS)

    Smith, Harry

    1994-01-01

    Light is undoubtedly the most important environmental variable for plant growth and development; plants not only use radiant energy in photosynthesis, they also respond to the quantity, quality, direction and timing of incident radiation through photomorphogenic response that can have huge effects on the rate of growth and the pattern of development. It is surprising, therefore, that the manufacturers and suppliers of controlled environment facilities have been singularly uninventive in the design of the lighting assemblies they provide. The consumer has one choice only - a lighting assembly that provides irradiance levels usually only a fraction of sunlight, and a control system that is limited to regulating the timing of the on-off switch. The reasons for these limitations are partly technological, but in the main they result from ignorance on the part of both the consumer and the manufacturer. A specific and powerful example of this ignorance relates to the importance of the so-called far-red wavelengths (FR = 700-800 nm). Because the human eye can hardly detect wavelengths above 700 nm, and photosynthesis also cuts off at about 700 nm, the majority of plant and crop physiologists are still almost completely unaware that FR radiation can have massive effects on growth rate and development. In consequence, most growth cabinets have light sources based on fluorescent tubes, and provide very little FR apart from that emitted by a token number of small incandescent bulbs. Larger growth facilities often use broader spectrum light sources, but growth facilities that provide the capability to vary the FR incident upon the plants are about as abundant as seals in the Sahara. This article sets the background of the significance of FR radiation in the natural environment and its importance for plant growth and development in the hope that it might inform intelligently those concerned with improving the design of plant growth facilities.

  19. Gemini Observatory base facility operations: systems engineering process and lessons learned

    NASA Astrophysics Data System (ADS)

    Serio, Andrew; Cordova, Martin; Arriagada, Gustavo; Adamson, Andy; Close, Madeline; Coulson, Dolores; Nitta, Atsuko; Nunez, Arturo

    2016-08-01

    Gemini North Observatory successfully began nighttime remote operations from the Hilo Base Facility control room in November 2015. The implementation of the Gemini North Base Facility Operations (BFO) products was a great learning experience for many of our employees, including the author of this paper, the BFO Systems Engineer. In this paper we focus on the tailored Systems Engineering processes used for the project, the various software tools used in project support, and finally discuss the lessons learned from the Gemini North implementation. This experience and the lessons learned will be used both to aid our implementation of the Gemini South BFO in 2016, and in future technical projects at Gemini Observatory.

  20. The evolution of the ISOLDE control system

    NASA Astrophysics Data System (ADS)

    Jonsson, O. C.; Catherall, R.; Deloose, I.; Drumm, P.; Evensen, A. H. M.; Gase, K.; Focker, G. J.; Fowler, A.; Kugler, E.; Lettry, J.; Olesen, G.; Ravn, H. L.; Isolde Collaboration

    The ISOLDE on-line mass separator facility is operating on a Personal Computer based control system since spring 1992. Front End Computers accessing the hardware are controlled from consoles running Microsoft Windows ™ through a Novell NetWare4 ™ local area network. The control system is transparently integrated in the CERN wide office network and makes heavy use of the CERN standard office application programs to control and to document the running of the ISOLDE isotope separators. This paper recalls the architecture of the control system, shows its recent developments and gives some examples of its graphical user interface.

  1. The evolution of the ISOLDE control system

    NASA Astrophysics Data System (ADS)

    Jonsson, O. C.; Catherall, R.; Deloose, I.; Evensen, A. H. M.; Gase, K.; Focker, G. J.; Fowler, A.; Kugler, E.; Lettry, J.; Olesen, G.; Ravn, H. L.; Drumm, P.

    1996-04-01

    The ISOLDE on-line mass separator facility is operating on a Personal Computer based control system since spring 1992. Front End Computers accessing the hardware are controlled from consoles running Microsoft Windows® through a Novell NetWare4® local area network. The control system is transparently integrated in the CERN wide office network and makes heavy use of the CERN standard office application programs to control and to document the running of the ISOLDE isotope separators. This paper recalls the architecture of the control system, shows its recent developments and gives some examples of its graphical user interface.

  2. SPring-8 beamline control system.

    PubMed

    Ohata, T; Konishi, H; Kimura, H; Furukawa, Y; Tamasaku, K; Nakatani, T; Tanabe, T; Matsumoto, N; Ishii, M; Ishikawa, T

    1998-05-01

    The SPring-8 beamline control system is now taking part in the control of the insertion device (ID), front end, beam transportation channel and all interlock systems of the beamline: it will supply a highly standardized environment of apparatus control for collaborative researchers. In particular, ID operation is very important in a third-generation synchrotron light source facility. It is also very important to consider the security system because the ID is part of the storage ring and is therefore governed by the synchrotron ring control system. The progress of computer networking systems and the technology of security control require the development of a highly flexible control system. An interlock system that is independent of the control system has increased the reliability. For the beamline control system the so-called standard model concept has been adopted. VME-bus (VME) is used as the front-end control system and a UNIX workstation as the operator console. CPU boards of the VME-bus are RISC processor-based board computers operated by a LynxOS-based HP-RT real-time operating system. The workstation and the VME are linked to each other by a network, and form the distributed system. The HP 9000/700 series with HP-UX and the HP 9000/743rt series with HP-RT are used. All the controllable apparatus may be operated from any workstation.

  3. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov Websites

    NREL News Energy Systems Integration News A monthly recap of the latest happenings at the Energy Systems Integration Facility and developments in energy systems integration (ESI) research at NREL ; said Vahan Gevorgian, chief engineer with NREL's Power Systems Engineering Center. "Results of

  4. Army Corrosion Prevention and Control (CPC) Program for Facilities and Infrastructure

    DTIC Science & Technology

    2010-02-01

    FY2009 - 2011 • Benefits: Reduced corrosion due to elimination of metallic rebar , reduced weight equates to reduced dead load and increased dynamic...Decks as Replacement for Steel Reinforced Concrete Decks F09AR04: Corrosion Resistant Roofs with Integrated Sustainable PV Power Systems • Where...Army Corrosion Prevention and Control (CPC) Program for Facilities and Infrastructure Dr. Craig E. College Deputy Assistant Chief of Staff for

  5. An inventory of aeronautical ground research facilities. Volume 4: Engineering flight simulation facilities

    NASA Technical Reports Server (NTRS)

    Pirrello, C. J.; Hardin, R. D.; Capelluro, L. P.; Harrison, W. D.

    1971-01-01

    The general purpose capabilities of government and industry in the area of real time engineering flight simulation are discussed. The information covers computer equipment, visual systems, crew stations, and motion systems, along with brief statements of facility capabilities. Facility construction and typical operational costs are included where available. The facilities provide for economical and safe solutions to vehicle design, performance, control, and flying qualities problems of manned and unmanned flight systems.

  6. Advanced Motor Control Test Facility for NASA GRC Flywheel Energy Storage System Technology Development Unit

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.; Kascak, Peter E.; Hofmann, Heath; Mackin, Michael; Santiago, Walter; Jansen, Ralph

    2001-01-01

    This paper describes the flywheel test facility developed at the NASA Glenn Research Center with particular emphasis on the motor drive components and control. A four-pole permanent magnet synchronous machine, suspended on magnetic bearings, is controlled with a field orientation algorithm. A discussion of the estimation of the rotor position and speed from a "once around signal" is given. The elimination of small dc currents by using a concurrent stationary frame current regulator is discussed and demonstrated. Initial experimental results are presented showing the successful operation and control of the unit at speeds up to 20,000 rpm.

  7. Test Facilities and Experience on Space Nuclear System Developments at the Kurchatov Institute

    NASA Astrophysics Data System (ADS)

    Ponomarev-Stepnoi, Nikolai N.; Garin, Vladimir P.; Glushkov, Evgeny S.; Kompaniets, George V.; Kukharkin, Nikolai E.; Madeev, Vicktor G.; Papin, Vladimir K.; Polyakov, Dmitry N.; Stepennov, Boris S.; Tchuniyaev, Yevgeny I.; Tikhonov, Lev Ya.; Uksusov, Yevgeny I.

    2004-02-01

    The complexity of space fission systems and rigidity of requirement on minimization of weight and dimension characteristics along with the wish to decrease expenditures on their development demand implementation of experimental works which results shall be used in designing, safety substantiation, and licensing procedures. Experimental facilities are intended to solve the following tasks: obtainment of benchmark data for computer code validations, substantiation of design solutions when computational efforts are too expensive, quality control in a production process, and ``iron'' substantiation of criticality safety design solutions for licensing and public relations. The NARCISS and ISKRA critical facilities and unique ORM facility on shielding investigations at the operating OR nuclear research reactor were created in the Kurchatov Institute to solve the mentioned tasks. The range of activities performed at these facilities within the implementation of the previous Russian nuclear power system programs is briefly described in the paper. This experience shall be analyzed in terms of methodological approach to development of future space nuclear systems (this analysis is beyond this paper). Because of the availability of these facilities for experiments, the brief description of their critical assemblies and characteristics is given in this paper.

  8. Utilisation of real-scale renewable energy test facility for validation of generic wind turbine and wind power plant controller models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeni, Lorenzo; Hesselbæk, Bo; Bech, John

    This article presents an example of application of a modern test facility conceived for experiments regarding the integration of renewable energy in the power system. The capabilities of the test facility are used to validate dynamic simulation models of wind power plants and their controllers. The models are based on standard and generic blocks. The successful validation of events related to the control of active power (control phenomena in <10 Hz range, including frequency control and power oscillation damping) is described, demonstrating the capabilities of the test facility and drawing the track for future work and improvements.

  9. Energy Systems Sensor Laboratory | Energy Systems Integration Facility |

    Science.gov Websites

    NREL Sensor Laboratory Energy Systems Sensor Laboratory The Energy Systems Integration Facility's Energy Systems Sensor Laboratory is designed to support research, development, testing, and evaluation of advanced hydrogen sensor technologies to support the needs of the emerging hydrogen

  10. 39 CFR 501.14 - Postage Evidencing System inventory control processes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 39 Postal Service 1 2011-07-01 2011-07-01 false Postage Evidencing System inventory control... control processes. (a) Each authorized provider of Postage Evidencing Systems must permanently hold title... sufficient facilities for and records of the distribution, control, storage, maintenance, repair, replacement...

  11. Demonstration of Standard HVAC Single-Loop Digital Control Systems

    DTIC Science & Technology

    1993-01-01

    AD-A265 372 T N FEAP-TR-FE-93/05 REPORT January 1993 FACILITIES ENGINEERING APPLICATIONS PROGRAM Demonstration of Standard HVAC Single-Loop Digital...AND DATES COVERED January 1993 Final 4. TITLE AND SUBTITLE [5. FUNDING NUMBERS Demonstration of Standard HVAC Single-Loop Digital Control Systems FEAP...conditioning ( HVAC ) control systems provide guidance on designing and specifying standard HVAC control systems that use single-loop digital controllers

  12. Infection prevention and control in deployed military medical treatment facilities.

    PubMed

    Hospenthal, Duane R; Green, Andrew D; Crouch, Helen K; English, Judith F; Pool, Jane; Yun, Heather C; Murray, Clinton K

    2011-08-01

    Infections have complicated the care of combat casualties throughout history and were at one time considered part of the natural history of combat trauma. Personnel who survived to reach medical care were expected to develop and possibly succumb to infections during their care in military hospitals. Initial care of war wounds continues to focus on rapid surgical care with debridement and irrigation, aimed at preventing local infection and sepsis with bacteria from the environment (e.g., clostridial gangrene) or the casualty's own flora. Over the past 150 years, with the revelation that pathogens can be spread from patient to patient and from healthcare providers to patients (including via unwashed hands of healthcare workers, the hospital environment and fomites), a focus on infection prevention and control aimed at decreasing transmission of pathogens and prevention of these infections has developed. Infections associated with combat-related injuries in the recent operations in Iraq and Afghanistan have predominantly been secondary to multidrug-resistant pathogens, likely acquired within the military healthcare system. These healthcare-associated infections seem to originate throughout the system, from deployed medical treatment facilities through the chain of care outside of the combat zone. Emphasis on infection prevention and control, including hand hygiene, isolation, cohorting, and antibiotic control measures, in deployed medical treatment facilities is essential to reducing these healthcare-associated infections. This review was produced to support the Guidelines for the Prevention of Infections Associated With Combat-Related Injuries: 2011 Update contained in this supplement of Journal of Trauma.

  13. Airport Economics: Management Control Financial Reporting Systems

    NASA Technical Reports Server (NTRS)

    Buchbinder, A.

    1972-01-01

    The development of management control financial reporting systems for airport operation is discussed. The operation of the system to provide the reports required for determining the specific revenue producing facilities of airports is described. The organization of the cost reporting centers to show the types of information provided by the system is analyzed.

  14. US-CERT Control System Center Input/Output (I/O) Conceputal Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2005-02-01

    This document was prepared for the US-CERT Control Systems Center of the National Cyber Security Division (NCSD) of the Department of Homeland Security (DHS). DHS has been tasked under the Homeland Security Act of 2002 to coordinate the overall national effort to enhance the protection of the national critical infrastructure. Homeland Security Presidential Directive HSPD-7 directs the federal departments to identify and prioritize critical infrastructure and protect it from terrorist attack. The US-CERT National Strategy for Control Systems Security was prepared by the NCSD to address the control system security component addressed in the National Strategy to Secure Cyberspace andmore » the National Strategy for the Physical Protection of Critical Infrastructures and Key Assets. The US-CERT National Strategy for Control Systems Security identified five high-level strategic goals for improving cyber security of control systems; the I/O upgrade described in this document supports these goals. The vulnerability assessment Test Bed, located in the Information Operations Research Center (IORC) facility at Idaho National Laboratory (INL), consists of a cyber test facility integrated with multiple test beds that simulate the nation's critical infrastructure. The fundamental mission of the Test Bed is to provide industry owner/operators, system vendors, and multi-agency partners of the INL National Security Division a platform for vulnerability assessments of control systems. The Input/Output (I/O) upgrade to the Test Bed (see Work Package 3.1 of the FY-05 Annual Work Plan) will provide for the expansion of assessment capabilities within the IORC facility. It will also provide capabilities to connect test beds within the Test Range and other Laboratory resources. This will allow real time I/O data input and communication channels for full replications of control systems (Process Control Systems [PCS], Supervisory Control and Data Acquisition Systems [SCADA], and

  15. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov Websites

    -matter experts to develop cyber-physical systems security testing methodologies and resilience best the Energy Systems Integration Facility as part of NREL's work with SolarCity and the Hawaiian Electric Companies. Photo by Amy Glickson, NREL Welcome to Energy Systems Integration News, NREL's monthly

  16. NASA's Advanced Life Support Systems Human-Rated Test Facility

    NASA Technical Reports Server (NTRS)

    Henninger, D. L.; Tri, T. O.; Packham, N. J.

    1996-01-01

    Future NASA missions to explore the solar system will be long-duration missions, requiring human life support systems which must operate with very high reliability over long periods of time. Such systems must be highly regenerative, requiring minimum resupply, to enable the crews to be largely self-sufficient. These regenerative life support systems will use a combination of higher plants, microorganisms, and physicochemical processes to recycle air and water, produce food, and process wastes. A key step in the development of these systems is establishment of a human-rated test facility specifically tailored to evaluation of closed, regenerative life supports systems--one in which long-duration, large-scale testing involving human test crews can be performed. Construction of such a facility, the Advanced Life Support Program's (ALS) Human-Rated Test Facility (HRTF), has begun at NASA's Johnson Space Center, and definition of systems and development of initial outfitting concepts for the facility are underway. This paper will provide an overview of the HRTF project plan, an explanation of baseline configurations, and descriptive illustrations of facility outfitting concepts.

  17. A digital control system for high level acoustic noise generation

    NASA Technical Reports Server (NTRS)

    Lee, John P.; Bosco, Jerry H.

    1986-01-01

    As part of the modernization of the Acoustic Test Facility at Lockheed Missiles and Space Company, Sunnyvale, a digital acoustic control system was designed and built. The requirements imposed by Lockheed on the control system and the degree to which those requirements were met are discussed. Acceptance test results as well as some of the features of the digital control system not found in traditional manual control systems are discussed.

  18. The F-18 systems research aircraft facility

    NASA Technical Reports Server (NTRS)

    Sitz, Joel R.

    1992-01-01

    To help ensure that new aerospace initiatives rapidly transition to competitive U.S. technologies, NASA Dryden Flight Research Facility has dedicated a systems research aircraft facility. The primary goal is to accelerate the transition of new aerospace technologies to commercial, military, and space vehicles. Key technologies include more-electric aircraft concepts, fly-by-light systems, flush airdata systems, and advanced computer architectures. Future aircraft that will benefit are the high-speed civil transport and the National AeroSpace Plane. This paper describes the systems research aircraft flight research vehicle and outlines near-term programs.

  19. Personnel reliability impact on petrochemical facilities monitoring system's failure skipping probability

    NASA Astrophysics Data System (ADS)

    Kostyukov, V. N.; Naumenko, A. P.

    2017-08-01

    The paper dwells upon urgent issues of evaluating impact of actions conducted by complex technological systems operators on their safe operation considering application of condition monitoring systems for elements and sub-systems of petrochemical production facilities. The main task for the research is to distinguish factors and criteria of monitoring system properties description, which would allow to evaluate impact of errors made by personnel on operation of real-time condition monitoring and diagnostic systems for machinery of petrochemical facilities, and find and objective criteria for monitoring system class, considering a human factor. On the basis of real-time condition monitoring concepts of sudden failure skipping risk, static and dynamic error, monitoring systems, one may solve a task of evaluation of impact that personnel's qualification has on monitoring system operation in terms of error in personnel or operators' actions while receiving information from monitoring systems and operating a technological system. Operator is considered as a part of the technological system. Although, personnel's behavior is usually a combination of the following parameters: input signal - information perceiving, reaction - decision making, response - decision implementing. Based on several researches on behavior of nuclear powers station operators in USA, Italy and other countries, as well as on researches conducted by Russian scientists, required data on operator's reliability were selected for analysis of operator's behavior at technological facilities diagnostics and monitoring systems. The calculations revealed that for the monitoring system selected as an example, the failure skipping risk for the set values of static (less than 0.01) and dynamic (less than 0.001) errors considering all related factors of data on reliability of information perception, decision-making, and reaction fulfilled is 0.037, in case when all the facilities and error probability are under

  20. Environmental Control Systems for Exploration Missions One and Two

    NASA Technical Reports Server (NTRS)

    Falcone, Mark A.

    2017-01-01

    In preparing for Exploration Missions One and Two (EM-1 & EM-2), the Ground Systems Development and Operations Program has significant updates to be made to nearly all facilities. This is all being done to accommodate the Space Launch System, which will be the world’s largest rocket in history upon fruition. Facilitating the launch of such a rocket requires an updated Vehicle Assembly Building, an upgraded Launchpad, Payload Processing Facility, and more. In this project, Environmental Control Systems across several facilities were involved, though there is a focus around the Mobile Launcher and Launchpad. Parts were ordered, analysis models were updated, design drawings were updated, and more.

  1. 7 CFR 4288.25 - Succession and control of facilities and production.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Succession and control of facilities and production... Repowering Assistance Payments to Eligible Biorefineries § 4288.25 Succession and control of facilities and... that, the party is eligible, and permitting such succession would serve the purposes of the program. If...

  2. 7 CFR 4288.25 - Succession and control of facilities and production.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Succession and control of facilities and production... Repowering Assistance Payments to Eligible Biorefineries § 4288.25 Succession and control of facilities and... that, the party is eligible, and permitting such succession would serve the purposes of the program. If...

  3. 7 CFR 4288.25 - Succession and control of facilities and production.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Succession and control of facilities and production... Repowering Assistance Payments to Eligible Biorefineries § 4288.25 Succession and control of facilities and... that, the party is eligible, and permitting such succession would serve the purposes of the program. If...

  4. The ERDA/LeRC photovoltaic systems test facility

    NASA Technical Reports Server (NTRS)

    Forestieri, A. F.

    1977-01-01

    A test facility was designed, and built to provide a place where photovoltaic systems may be assembled and electrically configured, to evaluate system performance and characteristics. The facility consists of a solar cell array of an initial 10-kW peak power rating, test hardware for several alternate methods of power conditioning, a variety of loads, an electrical energy storage system, and an instrumentation and data acquisition system.

  5. Facility-level variation in diabetes and blood pressure control in patients with diabetes: Findings from the Veterans Affairs national database.

    PubMed

    Rehman, Hasan; Akeroyd, Julia M; Ramsey, David; Ahmed, Sarah T; Merchant, Anwar T; Navaneethan, Sankar D; Petersen, Laura A; Virani, Salim S

    2017-11-01

    Intensive glycemic and blood pressure (BP) control in diabetic patients is associated with improved cardiovascular outcomes. We hypothesized that there is suboptimal glycemic and BP control with significant facility-level variation in patients with diabetes. We identified patients with diabetes receiving care in 130 facilities in the Veterans Affairs Health Care System. We assessed facility-level rates of glycemic (hemoglobin [Hb]A1c <7%), BP (BP <140/90 mmHg), and combined glycemic and BP control (HbA1c <7% and BP <140/90 mmHg), and their facility-level variation in using median rate ratios (MRR). Among 1 103 302 patients with diabetes, 50.2% participants had an HbA1c <7%, 77.5% had a BP <140/90 mmHg, and 39.8% had both, HbA1c <7% and BP <140/90 mmHg. Median facility-level rates were 50.3% (interquartile range [IQR], 47.9%-52.4%) for glycemic control, 78.4% (IQR, 75.2%-80.0%) for BP control, and 39.9% (IQR, 38.14%-42.34%) for combined glycemic and BP control. Unadjusted MRR for glycemic control was 1.61 (95% confidence interval [CI]: 1.51-1.70) which decreased to 1.16 (95% CI: 1.14-1.19) after adjusting for patient and facility-level variables, indicating a 16% variation in glycemic control between 2 identical patients receiving care at 2 random facilities. Unadjusted MRR for BP control was 1.49 (95% CI: 1.41-1.56), which decreased to 1.25 (95% CI: 1.21-1.28), whereas unadjusted MRR for combined glycemic and BP control was 1.59 (95% CI: 1.50-1.68), which decreased to 1.15 (95% CI: 1.13-1.17) after adjustment. Facility-level rates for BP control and glycemic control remain low with significant facility-level variation. Much of this is explained by patient and facility-level variables although 16%, 25%, and 15% variation in glycemic, BP, and combined glycemic and BP control remains unexplained. © 2017 Wiley Periodicals, Inc.

  6. Phytochrome-mediated responses implications for controlled environment research facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, H.

    1994-12-31

    Light is undoubtedly the most important environmental variable for plant growth and development; plants not only use radiant energy in photosynthesis, they also respond to the quantity, quality, direction and timing of incident radiation through photomorphogenic responses that can have huge effects on the rate of growth and the pattern of development. It is surprising, therefore, that the manufacturers and suppliers of controlled environment facilities have been singularly uninventive in the design of the lighting assemblies they provide. The consumer has one choice only - a lighting assembly that provides irradiance levels usually only a fraction of sunlight, and amore » control system that is limited to regulating the timing of the on-off switch. The reasons for these limitations are partly technological, but in the main they result from ignorance on the part of both the consumer and the manufacturer. A specific and powerful example of this ignorance relates to the importance of the so-called far-red wavelengths (FR = 700-800 nm). Because the human eye can hardly detect wavelengths above 700 nm, and photosynthesis also cuts off at ca. 700 mn, the majority of plant and crop physiologists are still almost completely unaware that FR radiation can have massive effects on growth rate and development. In consequence, most growth cabinets have light sources based on fluorescent tubes, and provide very little FR apart from that emitted by a token number of small incandescent bulbs. Larger growth facilities often use broader spectrum light sources, but growth facilities that provide the capability to vary the FR incident upon the plants are about as abundant as seals in the Sahara. This article sets the background of the significance of FR radiation in the natural environment and its importance for plant growth and development in the hope that it might inform intelligently those concerned with improving the design of plant growth facilities.« less

  7. Techniques employed by the NASA White Sands Test Facility to ensure oxygen system component safety

    NASA Technical Reports Server (NTRS)

    Stradling, J. S.; Pippen, D. L.; Frye, G. W.

    1983-01-01

    Methods of ascertaining the safety and suitability of a variety of oxygen system components are discussed. Additionally, qualification and batch control requirements for soft goods in oxygen systems are presented. Current oxygen system component qualification test activities in progress at White Sands Test Facility are described.

  8. 40 CFR 792.47 - Facilities for handling test, control, and reference substances.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 32 2014-07-01 2014-07-01 false Facilities for handling test, control... § 792.47 Facilities for handling test, control, and reference substances. (a) As necessary to prevent contamination or mixups, there shall be separate areas for: (1) Receipt and storage of the test, control, and...

  9. 40 CFR 792.47 - Facilities for handling test, control, and reference substances.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 32 2011-07-01 2011-07-01 false Facilities for handling test, control... § 792.47 Facilities for handling test, control, and reference substances. (a) As necessary to prevent contamination or mixups, there shall be separate areas for: (1) Receipt and storage of the test, control, and...

  10. 40 CFR 792.47 - Facilities for handling test, control, and reference substances.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 33 2013-07-01 2013-07-01 false Facilities for handling test, control... § 792.47 Facilities for handling test, control, and reference substances. (a) As necessary to prevent contamination or mixups, there shall be separate areas for: (1) Receipt and storage of the test, control, and...

  11. 40 CFR 792.47 - Facilities for handling test, control, and reference substances.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 33 2012-07-01 2012-07-01 false Facilities for handling test, control... § 792.47 Facilities for handling test, control, and reference substances. (a) As necessary to prevent contamination or mixups, there shall be separate areas for: (1) Receipt and storage of the test, control, and...

  12. Cryogenic Fluid Management Facility

    NASA Technical Reports Server (NTRS)

    Eberhardt, R. N.; Bailey, W. J.

    1985-01-01

    The Cryogenic Fluid Management Facility is a reusable test bed which is designed to be carried within the Shuttle cargo bay to investigate the systems and technologies associated with the efficient management of cryogens in space. Cryogenic fluid management consists of the systems and technologies for: (1) liquid storage and supply, including capillary acquisition/expulsion systems which provide single-phase liquid to the user system, (2) both passive and active thermal control systems, and (3) fluid transfer/resupply systems, including transfer lines and receiver tanks. The facility contains a storage and supply tank, a transfer line and a receiver tank, configured to provide low-g verification of fluid and thermal models of cryogenic storage and transfer processes. The facility will provide design data and criteria for future subcritical cryogenic storage and transfer system applications, such as Space Station life support, attitude control, power and fuel depot supply, resupply tankers, external tank (ET) propellant scavenging, and ground-based and space-based orbit transfer vehicles (OTV).

  13. Lewis Research Center space station electric power system test facilities

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur G.; Martin, Donald F.

    1988-01-01

    NASA Lewis Research Center facilities were developed to support testing of the Space Station Electric Power System. The capabilities and plans for these facilities are described. The three facilities which are required in the Phase C/D testing, the Power Systems Facility, the Space Power Facility, and the EPS Simulation Lab, are described in detail. The responsibilities of NASA Lewis and outside groups in conducting tests are also discussed.

  14. Research Summary Multipollutant Control Research Facility (MPCRF)

    EPA Science Inventory

    The U.S. Environmental Protection Agency’s (EPA) Multipollutant Control Research Facility (MPCRF) is located at their Research Triangle Park, North Carolina, campus. The MPCRF combustor is a pulverized coal-, natural gas-, and biomass-fired furnace with a maximum firing rate of 4...

  15. MODIS Information, Data, and Control System (MIDACS) system specifications and conceptual design

    NASA Technical Reports Server (NTRS)

    Han, D.; Salomonson, V.; Ormsby, J.; Ardanuy, P.; Mckay, A.; Hoyt, D.; Jaffin, S.; Vallette, B.; Sharts, B.; Folta, D.

    1988-01-01

    The MODIS Information, Data, and Control System (MIDACS) Specifications and Conceptual Design Document discusses system level requirements, the overall operating environment in which requirements must be met, and a breakdown of MIDACS into component subsystems, which include the Instrument Support Terminal, the Instrument Control Center, the Team Member Computing Facility, the Central Data Handling Facility, and the Data Archive and Distribution System. The specifications include sizing estimates for the processing and storage capacities of each data system element, as well as traffic analyses of data flows between the elements internally, and also externally across the data system interfaces. The specifications for the data system, as well as for the individual planning and scheduling, control and monitoring, data acquisition and processing, calibration and validation, and data archive and distribution components, do not yet fully specify the data system in the complete manner needed to achieve the scientific objectives of the MODIS instruments and science teams. The teams have not yet been formed; however, it was possible to develop the specifications and conceptual design based on the present concept of EosDIS, the Level-1 and Level-2 Functional Requirements Documents, the Operations Concept, and through interviews and meetings with key members of the scientific community.

  16. Identification of Communication and Coordination Issues in the US Air Traffic Control System

    NASA Technical Reports Server (NTRS)

    Davison, Hayley J.; Hansman, R. John

    2001-01-01

    Today's air traffic control system is approaching the point of saturation, as evidenced by increasing delays across the National Airspace System (NAS). There exists an opportunity to enhance NAS efficiency and reduce delays by improving strategic communication throughout the ATC system. Although several measures have been taken to improve communication (e.g., Collaborative Decision Making tools), communication issues between ATC facilities remain. It is hypothesized that by identifying the key issues plaguing inter-facility strategic communication, steps can be taken to enhance these communications, and therefore ATC system efficiency. In this report, a series of site visits were performed at Boston and New York ATC facilities as well as at the Air Traffic Control System Command Center. The results from these site visits were used to determine the current communication and coordination structure of Traffic Management Coordinators, who hold a pivotal role in inter-facility communications. Several themes emerged from the study, including: ambiguity of organizational structure in the current ATC system, awkward coordination between ATC facilities, information flow issues, organizational culture issues, and negotiation behaviors used to cope with organizational culture issues.

  17. Access Control Management for SCADA Systems

    NASA Astrophysics Data System (ADS)

    Hong, Seng-Phil; Ahn, Gail-Joon; Xu, Wenjuan

    The information technology revolution has transformed all aspects of our society including critical infrastructures and led a significant shift from their old and disparate business models based on proprietary and legacy environments to more open and consolidated ones. Supervisory Control and Data Acquisition (SCADA) systems have been widely used not only for industrial processes but also for some experimental facilities. Due to the nature of open environments, managing SCADA systems should meet various security requirements since system administrators need to deal with a large number of entities and functions involved in critical infrastructures. In this paper, we identify necessary access control requirements in SCADA systems and articulate access control policies for the simulated SCADA systems. We also attempt to analyze and realize those requirements and policies in the context of role-based access control that is suitable for simplifying administrative tasks in large scale enterprises.

  18. Core commands across airway facilities systems.

    DOT National Transportation Integrated Search

    2003-05-01

    This study takes a high-level approach to evaluate computer systems without regard to the specific method of : interaction. This document analyzes the commands that Airway Facilities (AF) use across different systems and : the meanings attributed to ...

  19. 40 CFR 160.43 - Test system care facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... facility shall have a sufficient number of animal rooms or other test system areas, as needed, to ensure... a room or area by housing them separately in different chambers or aquaria. Separation of species is... testing facility shall have a number of animal rooms or other test system areas separate from those...

  20. 40 CFR 792.43 - Test system care facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... (a) A testing facility shall have a sufficient number of animal rooms or other test system areas, as... accomplished within a room or area by housing them separately in different chambers or aquaria. Separation of... different tests. (b) A testing facility shall have a number of animal rooms or other test system areas...

  1. 40 CFR 792.43 - Test system care facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... (a) A testing facility shall have a sufficient number of animal rooms or other test system areas, as... accomplished within a room or area by housing them separately in different chambers or aquaria. Separation of... different tests. (b) A testing facility shall have a number of animal rooms or other test system areas...

  2. 40 CFR 792.43 - Test system care facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... (a) A testing facility shall have a sufficient number of animal rooms or other test system areas, as... accomplished within a room or area by housing them separately in different chambers or aquaria. Separation of... different tests. (b) A testing facility shall have a number of animal rooms or other test system areas...

  3. 40 CFR 160.43 - Test system care facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... facility shall have a sufficient number of animal rooms or other test system areas, as needed, to ensure... a room or area by housing them separately in different chambers or aquaria. Separation of species is... testing facility shall have a number of animal rooms or other test system areas separate from those...

  4. DOE/DHS INDUSTRIAL CONTROL SYSTEM CYBER SECURITY PROGRAMS: A MODEL FOR USE IN NUCLEAR FACILITY SAFEGUARDS AND SECURITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert S. Anderson; Mark Schanfein; Trond Bjornard

    2011-07-01

    Many critical infrastructure sectors have been investigating cyber security issues for several years especially with the help of two primary government programs. The U.S. Department of Energy (DOE) National SCADA Test Bed and the U.S. Department of Homeland Security (DHS) Control Systems Security Program have both implemented activities aimed at securing the industrial control systems that operate the North American electric grid along with several other critical infrastructure sectors (ICS). These programs have spent the last seven years working with industry including asset owners, educational institutions, standards and regulating bodies, and control system vendors. The programs common mission is tomore » provide outreach, identification of cyber vulnerabilities to ICS and mitigation strategies to enhance security postures. The success of these programs indicates that a similar approach can be successfully translated into other sectors including nuclear operations, safeguards, and security. The industry regulating bodies have included cyber security requirements and in some cases, have incorporated sets of standards with penalties for non-compliance such as the North American Electric Reliability Corporation Critical Infrastructure Protection standards. These DOE and DHS programs that address security improvements by both suppliers and end users provide an excellent model for nuclear facility personnel concerned with safeguards and security cyber vulnerabilities and countermeasures. It is not a stretch to imagine complete surreptitious collapse of protection against the removal of nuclear material or even initiation of a criticality event as witnessed at Three Mile Island or Chernobyl in a nuclear ICS inadequately protected against the cyber threat.« less

  5. Force Measurement Improvements to the National Transonic Facility Sidewall Model Support System

    NASA Technical Reports Server (NTRS)

    Goodliff, Scott L.; Balakrishna, Sundareswara; Butler, David; Cagle, C. Mark; Chan, David; Jones, Gregory S.; Milholen, William E., II

    2016-01-01

    The National Transonic Facility is a transonic pressurized cryogenic facility. The development of the high Reynolds number semi-span capability has advanced over the years to include transonic active flow control and powered testing using the sidewall model support system. While this system can be used in total temperatures down to -250Â F for conventional unpowered configurations, it is limited to temperatures above -60Â F when used with powered models that require the use of the high-pressure air delivery system. Thermal instabilities and non-repeatable mechanical arrangements revealed several data quality shortfalls by the force and moment measurement system. Recent modifications to the balance cavity recirculation system have improved the temperature stability of the balance and metric model-to-balance hardware. Changes to the mechanical assembly of the high-pressure air delivery system, particularly hardware that interfaces directly with the model and balance, have improved the repeatability of the force and moment measurement system. Drag comparisons with the high-pressure air system removed will also be presented in this paper.

  6. 40 CFR 792.47 - Facilities for handling test, control, and reference substances.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 31 2010-07-01 2010-07-01 true Facilities for handling test, control, and reference substances. 792.47 Section 792.47 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) GOOD LABORATORY PRACTICE STANDARDS Facilities...

  7. Information security management system planning for CBRN facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lenaeu, Joseph D.; O'Neil, Lori Ross; Leitch, Rosalyn M.

    The focus of this document is to provide guidance for the development of information security management system planning documents at chemical, biological, radiological, or nuclear (CBRN) facilities. It describes a risk-based approach for planning information security programs based on the sensitivity of the data developed, processed, communicated, and stored on facility information systems.

  8. Strengthening TB infection control in specialized health facilities in Romania--using a participatory approach.

    PubMed

    Turusbekova, N; Popa, C; Dragos, M; van der Werf, M J; Dinca, I

    2016-02-01

    engineers. Out of 42 key TB-IC service providers who were trained, only eighteen responded to the questionnaire (no reminders were sent). Out of these, 14 had used the TB-IC plan template after the project team disseminated it to them by email. The remaining four TB-IC service providers indicated that they were planning to use the template to develop or update their facility TB-IC plans. Related to the use of TB-IC plan template, the following broader challenges in TB-IC were identified: a lack of authority of the individuals responsible for TB-IC to implement the TB-IC measures, lack of training among facility epidemiologists on TB, underdeveloped system for reporting TB in healthcare workers, difficulties with triage of the TB suspects, and poor facility infrastructure hampering implementation of TB-IC measures. Implementing TB-IC plans in Romanian health care facilities proved to be challenging, mainly due to the fact that the national infection control plan for TB was not yet adopted at the time of project implementation, and therefore there was neither a regulatory framework to support TB facility-IC planning nor any related budget allocations for the implementation of the facilities' TB-IC plans. Nonetheless, most respondents who answered the questionnaire (18 of 42 responded) indicated that they had started using the TB-IC plan template, which represents a full package of infection control measures that, when implemented effectively and in its entirety, may be expected to reduce nosocomial transmission. The study's limitations are: very low survey response rate, thus there is a likelihood of responder bias. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Facility Design Considerations.

    ERIC Educational Resources Information Center

    Chase, William W.

    1967-01-01

    Increasing need for vocational education under the impetus of federal aid is generating a demand for vocational teaching facilities. Factors to be considered in planning these facilities inclued--(1) site development, (2) program needs, (3) administrative considerations, (4) environmental controls. (5) mechanical systems, and (6) area and space…

  10. CHALLENGES IN SETTING UP QUALITY CONTROL IN DIAGNOSTIC RADIOLOGY FACILITIES IN NIGERIA.

    PubMed

    Inyang, S O; Egbe, N O; Ekpo, E

    2015-01-01

    The Nigerian Nuclear Regulatory Authority (NNRA) was established to regulate and control the use of radioactive and radiation emitting sources in Nigeria. Quality control (QC) on diagnostic radiology equipment form part of the fundamental requirements for the authorization of diagnostic radiology facilities in the Country. Some quality control tests (output, exposure linearity and reproducibility) were measured on the x-ray machines in the facilities that took part in the study. Questionnaire was developed to evaluate the frequencies at which QC tests were conducted in the facilities and the challenges in setting up QC. Results show great variation in the values of the QC parameters measured. Inadequate cooperation by facilities management, lack of QC equipment and insufficient staff form the major challenges in setting up QC in the facilities under study. The responses on the frequencies at which QC tests should be conducted did not correspond to the recommended standards; indicating that personnel were not familiar with QC implementation and may require further training on QC.

  11. Alaska SAR Facility mass storage, current system

    NASA Technical Reports Server (NTRS)

    Cuddy, David; Chu, Eugene; Bicknell, Tom

    1993-01-01

    This paper examines the mass storage systems that are currently in place at the Alaska SAR Facility (SAF). The architecture of the facility will be presented including specifications of the mass storage media that are currently used and the performances that we have realized from the various media. The distribution formats and media are also discussed. Because the facility is expected to service future sensors, the new requirements and possible solutions to these requirements are also discussed.

  12. The Development of an Information System Master Plan for the Pacific Missile Range Facility, Barking Sands, Hawaii

    DTIC Science & Technology

    1992-03-01

    sites and support facilities are located on the islands of Niihau and Oahu. Figure 1 depicts the overall layout of PMRF. [Ref. 4: p. 2] In addition...the HIANG facility at Kokee: • a wideband microwave system serving Niihau Island remotely controls operation of the AN/APS-134 surveillance radar, and...provides relay of digitized radar data, control data and voice between the remotely operated, unmanned radar on Niihau Island and Barking Sands

  13. Naval Air Systems Command Mobile Facility Program

    DTIC Science & Technology

    2009-11-03

    Julie Trossbach 301-757-3073 Database Manager – Emi McCutcheon 301-757- 8347 BFM – Michelle Moorman 301-757-8328 Comptroller Analyst – Kathy...Jamie McDonald (757) 444-1428 NAVAIR Mobile Facilities MFTool/Database AIR 6.7.6.2 Emi McCutcheon (301) 757-8347 NAVAIR Mobile Facilities Logistics...requirement for mobile trailer -type vans for peculiar jet aircraft maintenance – Needed dust free, temperature & humidity-controlled maintenance

  14. RAMI modeling of plant systems for proposed tritium production and extraction facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanchard, A.

    2000-04-05

    The control of life-cycle cost is a primary concern during the development, construction, operation, and decommissioning of DOE systems and facilities. An effective tool that can be used to control these costs, beginning with the design stage, is called a reliability, availability, maintainability, and inspectability analysis or, simply, RAMI for short. In 1997, RAMI technology was introduced to the Savannah River Site with applications at the conceptual design stage beginning with the Accelerator Production of Tritium (APT) Project and later extended to the Commercial Light Water Reactor (CLWR) Tritium Extraction Facility (TEF) Project. More recently it has been applied tomore » the as-build Water Treatment Facilities designed for ground water environmental restoration. This new technology and database was applied to the assessment of balance-of-plant systems for the APT Conceptual Design Report. Initial results from the Heat Removal System Assessment revealed that the system conceptual design would cause the APT to fall short of its annual production goal. Using RAM technology to immediately assess this situation, it was demonstrated that the product loss could be gained back by upgrading the system's chiller unit capacity at a cost of less than $1.3 million. The reclaimed production is worth approximately $100 million. The RAM technology has now been extended to assess the conceptual design for the CLWR-TEF Project. More specifically, this technology and database is being used to translate high level availability goals into lower level system design requirements that will ensure the TEF meets its production goal. Results, from the limited number of system assessments performed to date, have already been used to modify the conceptual design for a remote handling system, improving its availability to the point that a redundant system, with its associated costs of installation and operation may no longer be required. RAMI results were also used to justify the

  15. WTEC monograph on instrumentation, control and safety systems of Canadian nuclear facilities

    NASA Technical Reports Server (NTRS)

    Uhrig, Robert E.; Carter, Richard J.

    1993-01-01

    This report updates a 1989-90 survey of advanced instrumentation and controls (I&C) technologies and associated human factors issues in the U.S. and Canadian nuclear industries carried out by a team from Oak Ridge National Laboratory (Carter and Uhrig 1990). The authors found that the most advanced I&C systems are in the Canadian CANDU plants, where the newest plant (Darlington) has digital systems in almost 100 percent of its control systems and in over 70 percent of its plant protection system. Increased emphasis on human factors and cognitive science in modern control rooms has resulted in a reduced workload for the operators and the elimination of many human errors. Automation implemented through digital instrumentation and control is effectively changing the role of the operator to that of a systems manager. The hypothesis that properly introducing digital systems increases safety is supported by the Canadian experience. The performance of these digital systems has been achieved using appropriate quality assurance programs for both hardware and software development. Recent regulatory authority review of the development of safety-critical software has resulted in the creation of isolated software modules with well defined interfaces and more formal structure in the software generation. The ability of digital systems to detect impending failures and initiate a fail-safe action is a significant safety issue that should be of special interest to nuclear utilities and regulatory authorities around the world.

  16. Facility for the evaluation of space communications and related systems

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Svoboda, James S.; Kachmar, Brian A.

    1995-01-01

    NASA Lewis Research Center's Communications Projects Branch has developed a facility for the evaluation of space communications systems and related types of systems, called the Advanced Space Communications (ASC) Laboratory. The ASC Lab includes instrumentation, testbed hardware, and experiment control and monitor software for the evaluation of components, subsystems, systems, and networks. The ASC lab has capabilities to perform radiofrequency (RF), microwave, and millimeter-wave characterizations as well as measurements using low, medium, or high data rate digital signals. In addition to laboratory measurements, the ASC Lab also includes integrated satellite ground terminals allowing experimentation and measurements accessing operational satellites through real space links.

  17. Infection prevention and control in the design of healthcare facilities.

    PubMed

    Farrow, Tye S; Black, Stephen M

    2009-01-01

    The lead paper, "Healthcare-Associated Infections as Patient Safety Indicators," written by Gardam, Lemieux, Reason, van Dijk and Goel, puts forward the design of healthcare facilities as one of many strategies to improve patient safety with respect to healthcare-associated infections. This commentary explores some of the issues in balancing infection prevention and control priorities with other needs and values brought to the design process. This balance is challenged not only by a lack of supporting evidence but also by the superficial nature in which infection prevention and control are often discussed within a design context. For the physical environment to support any patient safety initiative, the design of the processes must be developed in conjunction with that of the physical environment so that compliance can be natural and convenient. Finally, consideration is given to the value of documenting decision-making related to infection prevention and control in facility design and ongoing assessments of existing facilities.

  18. Experience with synchronous and asynchronous digital control systems

    NASA Technical Reports Server (NTRS)

    Regenie, V. A.; Chacon, C. V.; Lock, W. P.

    1986-01-01

    Flight control systems have undergone a revolution since the days of simple mechanical linkages; presently the most advanced systems are full-authority, full-time digital systems controlling unstable aircraft. With the use of advanced control systems, the aerodynamic design can incorporate features that allow greater performance and fuel savings, as can be seen on the new Airbus design and advanced tactical fighter concepts. These advanced aircraft will be and are relying on the flight control system to provide the stability and handling qualities required for safe flight and to allow the pilot to control the aircraft. Various design philosophies have been proposed and followed to investigate system architectures for these advanced flight control systems. One major area of discussion is whether a multichannel digital control system should be synchronous or asynchronous. This paper addressed the flight experience at the Dryden Flight Research Facility of NASA's Ames Research Center with both synchronous and asynchronous digital flight control systems. Four different flight control systems are evaluated against criteria such as software reliability, cost increases, and schedule delays.

  19. Satellite control system nucleus for the Brazilian complete space mission

    NASA Astrophysics Data System (ADS)

    Yamaguti, Wilson; Decarvalhovieira, Anastacio Emanuel; Deoliveira, Julia Leocadia; Cardoso, Paulo Eduardo; Dacosta, Petronio Osorio

    1990-10-01

    The nucleus of the satellite control system for the Brazilian data collecting and remote sensing satellites is described. The system is based on Digital Equipment Computers and the VAX/VMS operating system. The nucleus provides the access control, the system configuration, the event management, history files management, time synchronization, wall display control, and X25 data communication network access facilities. The architecture of the nucleus and its main implementation aspects are described. The implementation experience acquired is considered.

  20. 40 CFR 160.47 - Facilities for handling test, control, and reference substances.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Facilities for handling test, control, and reference substances. 160.47 Section 160.47 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS GOOD LABORATORY PRACTICE STANDARDS Facilities § 160.47 Facilities...

  1. DFL, Canada's Space AIT Facilities - Current and Planned Capabilities

    NASA Astrophysics Data System (ADS)

    Singhal, R.; Mishra, S.; Choueiry, E.; Dumoulin, J.; Ahmed, S.

    2004-08-01

    The David Florida Laboratory (DFL) of the Canadian Space Agency is the Canadian national ISO 9001:2000 registered facility for the assembly, integration, and (environmental) testing of space hardware. This paper briefly describes the three main qualification facilities: Structural Qualification Facilities (SQF); Radio Frequency Qualification Facilities (RFQF); and Thermal Qualification Facilities (TQF). The paper also describes the planned/new upgrades/improvements to the DFL's existing capabilities. These include: cylindrical near-field antenna measurement system, current capabilities in multi-frequency multi-band passive intermodulation (PIM) measurement; combined thermal/vibration test facility, improvement in efficiency and performance of the photogrammetry capability, acquisition of an additional mass properties measurement system for small and micro-satellites; combined control and data acquisition system for all existing thermal vacuum facilities, plus a new automatic thermal control system and hypobaric chamber.

  2. Attitude and articulation control system testing for Project Galileo

    NASA Technical Reports Server (NTRS)

    Rasmussen, R. D.

    1981-01-01

    A type of facility required to integrate and test a complex autonomous spacecraft subsystem is presented, using the attitude and articulation control subsystem (AACS) of Project Galileo as an example. The equipment created for testing the AACS at both the subsystem and spacecraft system levels is described, including a description of the support equipment (SE) architecture in its two main configurations, closed loop simulation techniques, the user interface to the SE, and plans for the use of the facility beyond the test period. This system is capable of providing a flight-like functional environment through the use of accurate real-time models and carefully chosen points of interaction, and flexible control capability and high visibility to the test operator.

  3. RETROFITTING CONTROL FACILITIES FOR WET WEATHER FLOW TREATMENT

    EPA Science Inventory

    Available technologies were evaluated to demonstrate the technical feasibility and cost-effectiveness of retrofitting existing facilities to handle wet-weather flow. Cost/benefit relationships were also compared to construction of new conventional control and treatment facilitie...

  4. Tuberculosis in healthcare workers and infection control measures at primary healthcare facilities in South Africa.

    PubMed

    Claassens, Mareli M; van Schalkwyk, Cari; du Toit, Elizabeth; Roest, Eline; Lombard, Carl J; Enarson, Donald A; Beyers, Nulda; Borgdorff, Martien W

    2013-01-01

    Challenges exist regarding TB infection control and TB in hospital-based healthcare workers in South Africa. However, few studies report on TB in non-hospital based healthcare workers such as primary or community healthcare workers. Our objectives were to investigate the implementation of TB infection control measures at primary healthcare facilities, the smear positive TB incidence rate amongst primary healthcare workers and the association between TB infection control measures and all types of TB in healthcare workers. One hundred and thirty three primary healthcare facilities were visited in five provinces of South Africa in 2009. At each facility, a TB infection control audit and facility questionnaire were completed. The number of healthcare workers who had had TB during the past three years was obtained. The standardised incidence ratio of smear positive TB in primary healthcare workers indicated an incidence rate of more than double that of the general population. In a univariable logistic regression, the infection control audit score was significantly associated with reported cases of TB in healthcare workers (OR=1.04, 95%CI 1.01-1.08, p=0.02) as was the number of staff (OR=3.78, 95%CI 1.77-8.08). In the multivariable analysis, the number of staff remained significantly associated with TB in healthcare workers (OR=3.33, 95%CI 1.37-8.08). The high rate of TB in healthcare workers suggests a substantial nosocomial transmission risk, but the infection control audit tool which was used did not perform adequately as a measure of this risk. Infection control measures should be monitored by validated tools developed and tested locally. Different strategies, such as routine surveillance systems, could be used to evaluate the burden of TB in healthcare workers in order to calculate TB incidence, monitor trends and implement interventions to decrease occupational TB.

  5. Tuberculosis in Healthcare Workers and Infection Control Measures at Primary Healthcare Facilities in South Africa

    PubMed Central

    Claassens, Mareli M.; van Schalkwyk, Cari; du Toit, Elizabeth; Roest, Eline; Lombard, Carl J.; Enarson, Donald A.; Beyers, Nulda; Borgdorff, Martien W.

    2013-01-01

    Background Challenges exist regarding TB infection control and TB in hospital-based healthcare workers in South Africa. However, few studies report on TB in non-hospital based healthcare workers such as primary or community healthcare workers. Our objectives were to investigate the implementation of TB infection control measures at primary healthcare facilities, the smear positive TB incidence rate amongst primary healthcare workers and the association between TB infection control measures and all types of TB in healthcare workers. Methods One hundred and thirty three primary healthcare facilities were visited in five provinces of South Africa in 2009. At each facility, a TB infection control audit and facility questionnaire were completed. The number of healthcare workers who had had TB during the past three years was obtained. Results The standardised incidence ratio of smear positive TB in primary healthcare workers indicated an incidence rate of more than double that of the general population. In a univariable logistic regression, the infection control audit score was significantly associated with reported cases of TB in healthcare workers (OR=1.04, 95%CI 1.01-1.08, p=0.02) as was the number of staff (OR=3.78, 95%CI 1.77-8.08). In the multivariable analysis, the number of staff remained significantly associated with TB in healthcare workers (OR=3.33, 95%CI 1.37-8.08). Conclusion The high rate of TB in healthcare workers suggests a substantial nosocomial transmission risk, but the infection control audit tool which was used did not perform adequately as a measure of this risk. Infection control measures should be monitored by validated tools developed and tested locally. Different strategies, such as routine surveillance systems, could be used to evaluate the burden of TB in healthcare workers in order to calculate TB incidence, monitor trends and implement interventions to decrease occupational TB. PMID:24098461

  6. Development of a Work Control System for Propulsion Testing at NASA Stennis

    NASA Technical Reports Server (NTRS)

    Messer, Elizabeth A.

    2005-01-01

    In 1996 Stennis Space Center was given management authority for all Propulsion Testing for NASA. Over the next few years several research and development (R&D) test facilities were completed and brought up to full operation in what is known as the E-Complex Test Facility at Stennis Space Center. To construct, activate and operate these test facilities, a manual paper-based work control system was created. After utilizing this paper-based work control system for approximately three years, it became apparent that the research and development test area needed a better method to execute, monitor, and report on tasks required to further propulsion testing. The paper based system did not provide the engineers adequate visibility into work tasks or the tracking of testing or hardware discrepancies. This system also restricted the engineer s ability to utilize and access past knowledge and experiences given the severe schedule limitations for most R&D propulsion testing projects. Therefore a system was developed to meet the growing need of Test Operations called the Propulsion Test Directorate (PTD) Work Control System. This system is used to plan, perform, and track tasks that support testing and also to capture lessons learned while doing so.

  7. Common Data Acquisition Systems (DAS) Software Development for Rocket Propulsion Test (RPT) Test Facilities

    NASA Technical Reports Server (NTRS)

    Hebert, Phillip W., Sr.; Davis, Dawn M.; Turowski, Mark P.; Holladay, Wendy T.; Hughes, Mark S.

    2012-01-01

    The advent of the commercial space launch industry and NASA's more recent resumption of operation of Stennis Space Center's large test facilities after thirty years of contractor control resulted in a need for a non-proprietary data acquisition systems (DAS) software to support government and commercial testing. The software is designed for modularity and adaptability to minimize the software development effort for current and future data systems. An additional benefit of the software's architecture is its ability to easily migrate to other testing facilities thus providing future commonality across Stennis. Adapting the software to other Rocket Propulsion Test (RPT) Centers such as MSFC, White Sands, and Plumbrook Station would provide additional commonality and help reduce testing costs for NASA. Ultimately, the software provides the government with unlimited rights and guarantees privacy of data to commercial entities. The project engaged all RPT Centers and NASA's Independent Verification & Validation facility to enhance product quality. The design consists of a translation layer which provides the transparency of the software application layers to underlying hardware regardless of test facility location and a flexible and easily accessible database. This presentation addresses system technical design, issues encountered, and the status of Stennis development and deployment.

  8. Advanced technologies for maintenance of electrical systems and equipment at the Savannah River Site Defense Waste Processing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Husler, R.O.; Weir, T.J.

    1991-01-01

    An enhanced maintenance program is being established to characterize and monitor cables, components, and process response at the Savannah River Site, Defense Waste Processing Facility. This facility was designed and constructed to immobilize the radioactive waste currently stored in underground storage tanks and is expected to begin operation in 1993. The plant is initiating the program to baseline and monitor instrument and control (I C) and electrical equipment, remote process equipment, embedded instrument and control cables, and in-cell jumper cables used in the facility. This program is based on the electronic characterization and diagnostic (ECAD) system which was modified tomore » include process response analysis and to meet rigid Department of Energy equipment requirements. The system consists of computer-automated, state-of-the-art electronics. The data that are gathered are stored in a computerized database for analysis, trending, and troubleshooting. It is anticipated that the data which are gathered and trended will aid in life extension for the facility.« less

  9. Advanced technologies for maintenance of electrical systems and equipment at the Savannah River Site Defense Waste Processing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Husler, R.O.; Weir, T.J.

    1991-12-31

    An enhanced maintenance program is being established to characterize and monitor cables, components, and process response at the Savannah River Site, Defense Waste Processing Facility. This facility was designed and constructed to immobilize the radioactive waste currently stored in underground storage tanks and is expected to begin operation in 1993. The plant is initiating the program to baseline and monitor instrument and control (I&C) and electrical equipment, remote process equipment, embedded instrument and control cables, and in-cell jumper cables used in the facility. This program is based on the electronic characterization and diagnostic (ECAD) system which was modified to includemore » process response analysis and to meet rigid Department of Energy equipment requirements. The system consists of computer-automated, state-of-the-art electronics. The data that are gathered are stored in a computerized database for analysis, trending, and troubleshooting. It is anticipated that the data which are gathered and trended will aid in life extension for the facility.« less

  10. Closed Ecological Life Support Systems (CELSS) Test Facility

    NASA Technical Reports Server (NTRS)

    Macelroy, Robert D.

    1992-01-01

    The CELSS Test Facility (CTF) is being developed for installation on Space Station Freedom (SSF) in August 1999. It is designed to conduct experiments that will determine the effects of microgravity on the productivity of higher (crop) plants. The CTF will occupy two standard SSF racks and will accommodate approximately one square meter of growing area and a canopy height of 80 cm. The growth volume will be isolated from the external environment, allowing stringent control of environmental conditions. Temperature, humidity, oxygen, carbon dioxide, and light levels will all be closely controlled to prescribed set points and monitored. This level of environmental control is needed to prevent stress and allow accurate assessment of microgravity effect (10-3 to 10-6 x g). Photosynthetic rates and respiration rates, calculated through continuous recording of gas concentrations, transpiration, and total and edible biomass produced will be measured. Toxic byproducts will be monitored and scrubbed. Transpiration water will be collected within the chamber and recycled into the nutrient solution. A wide variety of crop plants, e.g., wheat, soy beans, lettuce, potatoes, can be accommodated and various nutrient delivery systems and light delivery systems will be available. In the course of its development, the CTF will exploit fully, and contribute importantly, to the state-of-art in closed system technology and plant physiology.

  11. Environmental Control and Life Support Systems Test Facility at MSFC

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Marshall Space Flight Center (MSFC) is responsible for designing and building the life support systems that will provide the crew of the International Space Station (ISS) a comfortable environment in which to live and work. Scientists and engineers at the MSFC are working together to provide the ISS with systems that are safe, efficient, and cost-effective. These compact and powerful systems are collectively called the Environmental Control and Life Support Systems, or simply, ECLSS. This photograph shows the development Water Processor located in two racks in the ECLSS test area at the Marshall Space Flight Center. Actual waste water, simulating Space Station waste, is generated and processed through the hardware to evaluate the performance of technologies in the flight Water Processor design.

  12. Refurbishment and Automation of Thermal Vacuum Facilities at NASA/GSFC

    NASA Technical Reports Server (NTRS)

    Dunn, Jamie; Gomez, Carlos; Donohue, John; Johnson, Chris; Palmer, John; Sushon, Janet

    1999-01-01

    The thermal vacuum facilities located at the Goddard Space Flight Center (GSFC) have supported both manned and unmanned space flight since the 1960s. Of the eleven facilities, currently ten of the systems are scheduled for refurbishment or replacement as part of a five-year implementation. Expected return on investment includes the reduction in test schedules, improvements in safety of facility operations, and reduction in the personnel support required for a test. Additionally, GSFC will become a global resource renowned for expertise in thermal engineering, mechanical engineering, and for the automation of thermal vacuum facilities and tests. Automation of the thermal vacuum facilities includes the utilization of Programmable Logic Controllers (PLCs), the use of Supervisory Control and Data Acquisition (SCADA) systems, and the development of a centralized Test Data Management System. These components allow the computer control and automation of mechanical components such as valves and pumps. The project of refurbishment and automation began in 1996 and has resulted in complete computer control of one facility (Facility 281), and the integration of electronically controlled devices and PLCs in multiple others.

  13. Refurbishment and Automation of Thermal Vacuum Facilities at NASA/GSFC

    NASA Technical Reports Server (NTRS)

    Dunn, Jamie; Gomez, Carlos; Donohue, John; Johnson, Chris; Palmer, John; Sushon, Janet

    1998-01-01

    The thermal vacuum facilities located at the Goddard Space Flight Center (GSFC) have supported both manned and unmanned space flight since the 1960s. Of the eleven facilities, currently ten of the systems are scheduled for refurbishment or replacement as part of a five-year implementation. Expected return on investment includes the reduction in test schedules, improvements in safety of facility operations, and reduction in the personnel support required for a test. Additionally, GSFC will become a global resource renowned for expertise in thermal engineering, mechanical engineering, and for the automation of thermal vacuum facilities and tests. Automation of the thermal vacuum facilities includes the utilization of Programmable Logic Controllers (PLCs), the use of Supervisory Control and Data Acquisition (SCADA) systems, and the development of a centralized Test Data Management System. These components allow the computer control and automation of mechanical components such as valves and pumps. The project of refurbishment and automation began in 1996 and has resulted in complete computer control of one facility (Facility 281), and the integration of electronically controlled devices and PLCs in multiple others.

  14. Cold Vacuum Drying facility civil structural system design description (SYS 06)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PITKOFF, C.C.

    This document describes the Cold Vacuum Drying (CVD) Facility civil - structural system. This system consists of the facility structure, including the administrative and process areas. The system's primary purpose is to provide for a facility to house the CVD process and personnel and to provide a tertiary level of containment. The document provides a description of the facility and demonstrates how the design meets the various requirements imposed by the safety analysis report and the design requirements document.

  15. The use of an automated flight test management system in the development of a rapid-prototyping flight research facility

    NASA Technical Reports Server (NTRS)

    Duke, Eugene L.; Hewett, Marle D.; Brumbaugh, Randal W.; Tartt, David M.; Antoniewicz, Robert F.; Agarwal, Arvind K.

    1988-01-01

    An automated flight test management system (ATMS) and its use to develop a rapid-prototyping flight research facility for artificial intelligence (AI) based flight systems concepts are described. The ATMS provides a flight test engineer with a set of tools that assist in flight planning and simulation. This system will be capable of controlling an aircraft during the flight test by performing closed-loop guidance functions, range management, and maneuver-quality monitoring. The rapid-prototyping flight research facility is being developed at the Dryden Flight Research Facility of the NASA Ames Research Center (Ames-Dryden) to provide early flight assessment of emerging AI technology. The facility is being developed as one element of the aircraft automation program which focuses on the qualification and validation of embedded real-time AI-based systems.

  16. A laboratory facility for electric vehicle propulsion system testing

    NASA Technical Reports Server (NTRS)

    Sargent, N. B.

    1980-01-01

    The road load simulator facility located at the NASA Lewis Research Center enables a propulsion system or any of its components to be evaluated under a realistic vehicle inertia and road loads. The load is applied to the system under test according to the road load equation: F(net)=K1F1+K2F2V+K3 sq V+K4(dv/dt)+K5 sin theta. The coefficient of each term in the equation can be varied over a wide range with vehicle inertial representative of vehicles up to 7500 pounds simulated by means of flywheels. The required torque is applied by the flywheels, a hydroviscous absorber and clutch, and a drive motor integrated by a closed loop control system to produce a smooth, continuous load up to 150 horsepower.

  17. TREAT Reactor Control and Protection System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipinski, W.C.; Brookshier, W.K.; Burrows, D.R.

    1985-01-01

    The main control algorithm of the Transient Reactor Test Facility (TREAT) Automatic Reactor Control System (ARCS) resides in Read Only Memory (ROM) and only experiment specific parameters are input via keyboard entry. Prior to executing an experiment, the software and hardware of the control computer is tested by a closed loop real-time simulation. Two computers with parallel processing are used for the reactor simulation and another computer is used for simulation of the control rod system. A monitor computer, used as a redundant diverse reactor protection channel, uses more conservative setpoints and reduces challenges to the Reactor Trip System (RTS).more » The RTS consists of triplicated hardwired channels with one out of three logic. The RTS is automatically tested by a digital Dedicated Microprocessor Tester (DMT) prior to the execution of an experiment. 6 refs., 5 figs., 1 tab.« less

  18. Wavefront control of high-power laser beams in the National Ignition Facility (NIF)

    NASA Astrophysics Data System (ADS)

    Zacharias, Richard A.; Bliss, Erlan S.; Winters, Scott; Sacks, Richard A.; Feldman, Mark; Grey, Andrew; Koch, Jeffrey A.; Stolz, Christopher J.; Toeppen, John S.; Van Atta, Lewis; Woods, Bruce W.

    2000-04-01

    The use of lasers as the driver for inertial confinement fusion and weapons physics experiments is based on their ability to produce high-energy short pulses in a beam with low divergence. Indeed, the focusability of high quality laser beams far exceeds alternate technologies and is a major factor in the rationale for building high power lasers for such applications. The National Ignition Facility (NIF) is a large, 192-beam, high-power laser facility under construction at the Lawrence Livermore National Laboratory for fusion and weapons physics experiments. Its uncorrected minimum focal spot size is limited by laser system aberrations. The NIF includes a Wavefront Control System to correct these aberrations to yield a focal spot small enough for its applications. Sources of aberrations to be corrected include prompt pump-induced distortions in the laser amplifiers, previous-shot thermal distortions, beam off-axis effects, and gravity, mounting, and coating-induced optic distortions. Aberrations from gas density variations and optic-manufacturing figure errors are also partially corrected. This paper provides an overview of the NIF Wavefront Control System and describes the target spot size performance improvement it affords. It describes provisions made to accommodate the NIF's high fluence (laser beam and flashlamp), large wavefront correction range, wavefront temporal bandwidth, temperature and humidity variations, cleanliness requirements, and exception handling requirements (e.g. wavefront out-of-limits conditions).

  19. Facile fabrication of highly controllable gating systems based on the combination of inverse opal structure and dynamic covalent chemistry.

    PubMed

    Wang, Chen; Yang, Haowei; Tian, Li; Wang, Shiqiang; Gao, Ning; Zhang, Wanlin; Wang, Peng; Yin, Xianpeng; Li, Guangtao

    2017-06-01

    A three-dimensional (3D) inverse opal with periodic and porous structures has shown great potential for applications not only in optics and optoelectronics, but also in functional membranes. In this work, the benzaldehyde group was initially introduced into a 3D nanoporous inverse opal, serving as a platform for fabricating functional membranes. By employing the dynamic covalent approach, a highly controllable gating system was facilely fabricated to achieve modulable and reversible transport features. It was found that the physical/chemical properties and pore size of the gating system could easily be regulated through post-modification with amines. As a demonstration, the gated nanopores were modified with three kinds of amines to control the wettability, surface charge and nanopore size which in turn was exploited to achieve selective mass transport, including hydrophobic molecules, cations and anions, and the transport with respect to the physical steric hindrance. In particular, the gating system showed extraordinary reversibility and could recover to its pristine state by simply changing pH values. Due to the unlimited variety provided by the Schiff base reaction, the inverse opal described here exhibits a significant extendibility and could be easily post-modified with stimuli-responsive molecules for special purposes. Furthermore, this work can be extended to employ other dynamic covalent routes, for example Diels-Alder, ester exchange and disulfide exchange-based routes.

  20. Plant model of KIPT neutron source facility simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Yan; Wei, Thomas Y.; Grelle, Austin L.

    2016-02-01

    Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine are collaborating on constructing a neutron source facility at KIPT, Kharkov, Ukraine. The facility has 100-kW electron beam driving a subcritical assembly (SCA). The electron beam interacts with a natural uranium target or a tungsten target to generate neutrons, and deposits its power in the target zone. The total fission power generated in SCA is about 300 kW. Two primary cooling loops are designed to remove 100-kW and 300-kW from the target zone and the SCA, respectively. A secondary cooling system ismore » coupled with the primary cooling system to dispose of the generated heat outside the facility buildings to the atmosphere. In addition, the electron accelerator has a low efficiency for generating the electron beam, which uses another secondary cooling loop to remove the generated heat from the accelerator primary cooling loop. One of the main functions the KIPT neutron source facility is to train young nuclear specialists; therefore, ANL has developed the KIPT Neutron Source Facility Simulator for this function. In this simulator, a Plant Control System and a Plant Protection System were developed to perform proper control and to provide automatic protection against unsafe and improper operation of the facility during the steady-state and the transient states using a facility plant model. This report focuses on describing the physics of the plant model and provides several test cases to demonstrate its capabilities. The plant facility model uses the PYTHON script language. It is consistent with the computer language of the plant control system. It is easy to integrate with the simulator without an additional interface, and it is able to simulate the transients of the cooling systems with system control variables changing on real-time.« less

  1. Neutron Source Facility Training Simulator Based on EPICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Young Soo; Wei, Thomas Y.; Vilim, Richard B.

    A plant operator training simulator is developed for training the plant operators as well as for design verification of plant control system (PCS) and plant protection system (PPS) for the Kharkov Institute of Physics and Technology Neutron Source Facility. The simulator provides the operator interface for the whole plant including the sub-critical assembly coolant loop, target coolant loop, secondary coolant loop, and other facility systems. The operator interface is implemented based on Experimental Physics and Industrial Control System (EPICS), which is a comprehensive software development platform for distributed control systems. Since its development at Argonne National Laboratory, it has beenmore » widely adopted in the experimental physics community, e.g. for control of accelerator facilities. This work is the first implementation for a nuclear facility. The main parts of the operator interface are the plant control panel and plant protection panel. The development involved implementation of process variable database, sequence logic, and graphical user interface (GUI) for the PCS and PPS utilizing EPICS and related software tools, e.g. sequencer for sequence logic, and control system studio (CSS-BOY) for graphical use interface. For functional verification of the PCS and PPS, a plant model is interfaced, which is a physics-based model of the facility coolant loops implemented as a numerical computer code. The training simulator is tested and demonstrated its effectiveness in various plant operation sequences, e.g. start-up, shut-down, maintenance, and refueling. It was also tested for verification of the plant protection system under various trip conditions.« less

  2. 75 FR 65151 - Marine Vapor Control Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-21

    ...The Coast Guard proposes to increase maritime domain safety by revising existing safety regulations for facility and vessel vapor control systems (VCSs). The proposed changes would make VCS requirements more compatible with new Federal and State environmental requirements, reflect industry advancements in VCS technology, and codify the standards for the design and operation of a VCS at tank barge cleaning facilities. These changes would increase the safety of operations by regulating the design, installation, and use of VCSs, but would not require anyone to install or use VCSs.

  3. Evaluating the Maturity of Cybersecurity Programs for Building Control Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glantz, Clifford S.; Somasundaram, Sriram; Mylrea, Michael E.

    The cyber-physical security threat to buildings is complex, non-linear, and rapidly evolving as operational and information technologies converge and connect buildings to cyberspace. Cyberattacks on buildings can exploit smart building controls and breach corporate networks, causing financial and reputational damage. This may result in the loss of sensitive building information or the disruption of, or damage to, the systems necessary for the safe and efficient operation of buildings. For the buildings and facility infrastructure, there is a need for a robust national cybersecurity strategy for buildings, guidance on the selection and implementation of appropriate cybersecurity controls for buildings, an approachmore » to evaluate the maturity and adequacy of the cybersecurity programs. To provide an approach for evaluating the maturity of the cybersecurity programs for building control systems, the US Department of Energy’s widely used Cybersecurity Capability and Maturity Model (C2M2) has been adapted into a building control systems version. The revised model, the Buildings-C2M2 (B-C2M2) provides maturity level indicators for cybersecurity programmatic domains. A “B-C2M2 Lite” version allows facility managers and building control system engineers, or information technology personnel to perform rapid self-assessments of their cybersecurity program. Both tools have been pilot tested on several facilities. This paper outlines the concept of a maturity model, describes the B-C2M2 tools, presents results and observations from the pilot assessments, and lays out plans for future work.« less

  4. A survey of experiments and experimental facilities for active control of flexible structures

    NASA Technical Reports Server (NTRS)

    Sparks, Dean W., Jr.; Horner, Garnett C.; Juang, Jer-Nan; Klose, Gerhard

    1989-01-01

    A brief survey of large space structure control related experiments and facilities was presented. This survey covered experiments performed before and up to 1982, and those of the present period (1982-...). Finally, the future planned experiments and facilities in support of the control-structure interaction (CSI) program were reported. It was stated that new, improved ground test facilities are needed to verify the new CSI design techniques that will allow future space structures to perform planned NASA missions.

  5. Control Systems Cyber Security:Defense in Depth Strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Kuipers; Mark Fabro

    2006-05-01

    Information infrastructures across many public and private domains share several common attributes regarding IT deployments and data communications. This is particularly true in the control systems domain. A majority of the systems use robust architectures to enhance business and reduce costs by increasing the integration of external, business, and control system networks. However, multi-network integration strategies often lead to vulnerabilities that greatly reduce the security of an organization, and can expose mission-critical control systems to cyber threats. This document provides guidance and direction for developing ‘defense-in-depth’ strategies for organizations that use control system networks while maintaining a multi-tier information architecturemore » that requires: Maintenance of various field devices, telemetry collection, and/or industrial-level process systems Access to facilities via remote data link or modem Public facing services for customer or corporate operations A robust business environment that requires connections among the control system domain, the external Internet, and other peer organizations.« less

  6. Control Systems Cyber Security: Defense-in-Depth Strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mark Fabro

    2007-10-01

    Information infrastructures across many public and private domains share several common attributes regarding IT deployments and data communications. This is particularly true in the control systems domain. A majority of the systems use robust architectures to enhance business and reduce costs by increasing the integration of external, business, and control system networks. However, multi-network integration strategies often lead to vulnerabilities that greatly reduce the security of an organization, and can expose mission-critical control systems to cyber threats. This document provides guidance and direction for developing ‘defense-in-depth’ strategies for organizations that use control system networks while maintaining a multi-tier information architecturemore » that requires: • Maintenance of various field devices, telemetry collection, and/or industrial-level process systems • Access to facilities via remote data link or modem • Public facing services for customer or corporate operations • A robust business environment that requires connections among the control system domain, the external Internet, and other peer organizations.« less

  7. Development of a model protection and dynamic response monitoring system for the national transonic facility

    NASA Technical Reports Server (NTRS)

    Young, Clarence P., Jr.; Balakrishna, S.; Kilgore, W. Allen

    1995-01-01

    A state-of-the-art, computerized mode protection and dynamic response monitoring system has been developed for the NASA Langley Research Center National Transonic Facility (NTF). This report describes the development of the model protection and shutdown system (MPSS). A technical description of the system is given along with discussions on operation and capabilities of the system. Applications of the system to vibration problems are presented to demonstrate the system capabilities, typical applications, versatility, and investment research return derived from the system to date. The system was custom designed for the NTF but can be used at other facilities or for other dynamic measurement/diagnostic applications. Potential commercial uses of the system are described. System capability has been demonstrated for forced response testing and for characterizing and quantifying bias errors for onboard inertial model attitude measurement devices. The system is installed in the NTF control room and has been used successfully for monitoring, recording and analyzing the dynamic response of several model systems tested in the NTF.

  8. 40 CFR 792.45 - Test system supply facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 31 2010-07-01 2010-07-01 true Test system supply facilities. 792.45 Section 792.45 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES... facilities. (a) There shall be storage areas, as needed, for feed, nutrients, soils, bedding, supplies, and...

  9. Constellation Training Facility Support

    NASA Technical Reports Server (NTRS)

    Flores, Jose M.

    2008-01-01

    The National Aeronautics and Space Administration is developing the next set of vehicles that will take men back to the moon under the Constellation Program. The Constellation Training Facility (CxTF) is a project in development that will be used to train astronauts, instructors, and flight controllers on the operation of Constellation Program vehicles. It will also be used for procedure verification and validation of flight software and console tools. The CxTF will have simulations for the Crew Exploration Vehicle (CEV), Crew Module (CM), CEV Service Module (SM), Launch Abort System (LAS), Spacecraft Adapter (SA), Crew Launch Vehicle (CLV), Pressurized Cargo Variant CM, Pressurized Cargo Variant SM, Cargo Launch Vehicle, Earth Departure Stage (EDS), and the Lunar Surface Access Module (LSAM). The Facility will consist of part-task and full-task trainers, each with a specific set of mission training capabilities. Part task trainers will be used for focused training on a single vehicle system or set of related systems. Full task trainers will be used for training on complete vehicles and all of its subsystems. Support was provided in both software development and project planning areas of the CxTF project. Simulation software was developed for the hydraulic system of the Thrust Vector Control (TVC) of the ARES I launch vehicle. The TVC system is in charge of the actuation of the nozzle gimbals for navigation control of the upper stage of the ARES I rocket. Also, software was developed using C standards to send and receive data to and from hand controllers to be used in CxTF cockpit simulations. The hand controllers provided movement in all six rotational and translational axes. Under Project Planning & Control, support was provided to the development and maintenance of integrated schedules for both the Constellation Training Facility and Missions Operations Facilities Division. These schedules maintain communication between projects in different levels. The Cx

  10. Los Alamos Plutonium Facility Waste Management System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, K.; Montoya, A.; Wieneke, R.

    1997-02-01

    This paper describes the new computer-based transuranic (TRU) Waste Management System (WMS) being implemented at the Plutonium Facility at Los Alamos National Laboratory (LANL). The Waste Management System is a distributed computer processing system stored in a Sybase database and accessed by a graphical user interface (GUI) written in Omnis7. It resides on the local area network at the Plutonium Facility and is accessible by authorized TRU waste originators, count room personnel, radiation protection technicians (RPTs), quality assurance personnel, and waste management personnel for data input and verification. Future goals include bringing outside groups like the LANL Waste Management Facilitymore » on-line to participate in this streamlined system. The WMS is changing the TRU paper trail into a computer trail, saving time and eliminating errors and inconsistencies in the process.« less

  11. Research and test facilities

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A description is given of each of the following Langley research and test facilities: 0.3-Meter Transonic Cryogenic Tunnel, 7-by 10-Foot High Speed Tunnel, 8-Foot Transonic Pressure Tunnel, 13-Inch Magnetic Suspension & Balance System, 14-by 22-Foot Subsonic Tunnel, 16-Foot Transonic Tunnel, 16-by 24-Inch Water Tunnel, 20-Foot Vertical Spin Tunnel, 30-by 60-Foot Wind Tunnel, Advanced Civil Transport Simulator (ACTS), Advanced Technology Research Laboratory, Aerospace Controls Research Laboratory (ACRL), Aerothermal Loads Complex, Aircraft Landing Dynamics Facility (ALDF), Avionics Integration Research Laboratory, Basic Aerodynamics Research Tunnel (BART), Compact Range Test Facility, Differential Maneuvering Simulator (DMS), Enhanced/Synthetic Vision & Spatial Displays Laboratory, Experimental Test Range (ETR) Flight Research Facility, General Aviation Simulator (GAS), High Intensity Radiated Fields Facility, Human Engineering Methods Laboratory, Hypersonic Facilities Complex, Impact Dynamics Research Facility, Jet Noise Laboratory & Anechoic Jet Facility, Light Alloy Laboratory, Low Frequency Antenna Test Facility, Low Turbulence Pressure Tunnel, Mechanics of Metals Laboratory, National Transonic Facility (NTF), NDE Research Laboratory, Polymers & Composites Laboratory, Pyrotechnic Test Facility, Quiet Flow Facility, Robotics Facilities, Scientific Visualization System, Scramjet Test Complex, Space Materials Research Laboratory, Space Simulation & Environmental Test Complex, Structural Dynamics Research Laboratory, Structural Dynamics Test Beds, Structures & Materials Research Laboratory, Supersonic Low Disturbance Pilot Tunnel, Thermal Acoustic Fatigue Apparatus (TAFA), Transonic Dynamics Tunnel (TDT), Transport Systems Research Vehicle, Unitary Plan Wind Tunnel, and the Visual Motion Simulator (VMS).

  12. Flight control system design factors for applying automated testing techniques

    NASA Technical Reports Server (NTRS)

    Sitz, Joel R.; Vernon, Todd H.

    1990-01-01

    Automated validation of flight-critical embedded systems is being done at ARC Dryden Flight Research Facility. The automated testing techniques are being used to perform closed-loop validation of man-rated flight control systems. The principal design features and operational experiences of the X-29 forward-swept-wing aircraft and F-18 High Alpha Research Vehicle (HARV) automated test systems are discussed. Operationally applying automated testing techniques has accentuated flight control system features that either help or hinder the application of these techniques. The paper also discusses flight control system features which foster the use of automated testing techniques.

  13. ALTERNATE VOC CONTROL TECHNIQUE OPTIONS FOR SMALL ROTOGRAVURE AND FLEXOGRAPHY FACILITIES

    EPA Science Inventory

    The report identifies Available Control Techniques (ACTs) for states to use as a referenec when implementing Reasonable Available Control Technilogy (RACT) for graphic arts facilities that are covered by the Control Technologies Guidelines (CTGs), but emit less than 91 tonnes of ...

  14. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov Websites

    for its novel approach to energy reduction. The ultra-efficient ESIF data center features a chiller "chips to bricks" approach to sustainability integrates the data center into the facility systems, rather than trying to optimize each in isolation. Key to the approach was collaboration with

  15. A microprocessor controlled pressure scanning system

    NASA Technical Reports Server (NTRS)

    Anderson, R. C.

    1976-01-01

    A microprocessor-based controller and data logger for pressure scanning systems is described. The microcomputer positions and manages data from as many as four 48-port electro-mechanical pressure scanners. The maximum scanning rate is 80 pressure measurements per second (20 ports per second on each of four scanners). The system features on-line calibration, position-directed data storage, and once-per-scan display in engineering units of data from a selected port. The system is designed to be interfaced to a facility computer through a shared memory. System hardware and software are described. Factors affecting measurement error in this type of system are also discussed.

  16. Astronomic Telescope Facility: Preliminary systems definition study report. Volume 2: Technical description

    NASA Technical Reports Server (NTRS)

    Sobeck, Charlie (Editor)

    1987-01-01

    The Astrometric Telescope Facility (AFT) is to be an earth-orbiting facility designed specifically to measure the change in relative position of stars. The primary science investigation for the facility will be the search for planets and planetary systems outside the solar system. In addition the facility will support astrophysics investigations dealing with the location or motions of stars. The science objective and facility capabilities for astrophysics investigations are discussed.

  17. The automation of an inlet mass flow control system

    NASA Technical Reports Server (NTRS)

    Supplee, Frank; Tcheng, Ping; Weisenborn, Michael

    1989-01-01

    The automation of a closed-loop computer controlled system for the inlet mass flow system (IMFS) developed for a wind tunnel facility at Langley Research Center is presented. This new PC based control system is intended to replace the manual control system presently in use in order to fully automate the plug positioning of the IMFS during wind tunnel testing. Provision is also made for communication between the PC and a host-computer in order to allow total animation of the plug positioning and data acquisition during the complete sequence of predetermined plug locations. As extensive running time is programmed for the IMFS, this new automated system will save both manpower and tunnel running time.

  18. Multiloop Integral System Test (MIST): MIST Facility Functional Specification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habib, T F; Koksal, C G; Moskal, T E

    1991-04-01

    The Multiloop Integral System Test (MIST) is part of a multiphase program started in 1983 to address small-break loss-of-coolant accidents (SBLOCAs) specific to Babcock and Wilcox designed plants. MIST is sponsored by the US Nuclear Regulatory Commission, the Babcock Wilcox Owners Group, the Electric Power Research Institute, and Babcock and Wilcox. The unique features of the Babcock and Wilcox design, specifically the hot leg U-bends and steam generators, prevented the use of existing integral system data or existing integral facilities to address the thermal-hydraulic SBLOCA questions. MIST was specifically designed and constructed for this program, and an existing facility --more » the Once Through Integral System (OTIS) -- was also used. Data from MIST and OTIS are used to benchmark the adequacy of system codes, such as RELAP5 and TRAC, for predicting abnormal plant transients. The MIST Functional Specification documents as-built design features, dimensions, instrumentation, and test approach. It also presents the scaling basis for the facility and serves to define the scope of work for the facility design and construction. 13 refs., 112 figs., 38 tabs.« less

  19. A Unique Power System For The ISS Fluids And Combustion Facility

    NASA Technical Reports Server (NTRS)

    Fox, David A.; Poljak, Mark D.

    2001-01-01

    Unique power control technology has been incorporated into an electrical power control unit (EPCU) for the Fluids and Combustion Facility (FCF). The objective is to maximize science throughput by providing a flexible power system that is easily reconfigured by the science payload. Electrical power is at a premium on the International Space Station (ISS). The EPCU utilizes advanced power management techniques to maximize the power available to the FCF experiments. The EPCU architecture enables dynamic allocation of power from two ISS power channels for experiments. Because of the unique flexible remote power controller (FRPC) design, power channels can be paralleled while maintaining balanced load sharing between the channels. With an integrated and redundant architecture, the EPCU can tolerate multiple faults and still maintain FCF operation. It is important to take full advantage of the EPCU functionality. The EPCU acts as a buffer between the experimenter and the ISS power system with all its complex requirements. However, FCF science payload developers will still need to follow guidelines when designing the FCF payload power system. This is necessary to ensure power system stability, fault coordination, electromagnetic compatibility, and maximum use of available power for gathering scientific data.

  20. A rapid prototyping facility for flight research in advanced systems concepts

    NASA Technical Reports Server (NTRS)

    Duke, Eugene L.; Brumbaugh, Randal W.; Disbrow, James D.

    1989-01-01

    The Dryden Flight Research Facility of the NASA Ames Research Facility of the NASA Ames Research Center is developing a rapid prototyping facility for flight research in flight systems concepts that are based on artificial intelligence (AI). The facility will include real-time high-fidelity aircraft simulators, conventional and symbolic processors, and a high-performance research aircraft specially modified to accept commands from the ground-based AI computers. This facility is being developed as part of the NASA-DARPA automated wingman program. This document discusses the need for flight research and for a national flight research facility for the rapid prototyping of AI-based avionics systems and the NASA response to those needs.

  1. Evaluation of a Quartz Bourdon Pressure Gage of Wind Tunnel Mach Number Control System Application

    NASA Technical Reports Server (NTRS)

    Chapin, W. G.

    1986-01-01

    A theoretical and experimental study was undertaken to determine the feasibility of using the National Transonic Facility's high accuracy Mach number measurement system as part of a closed loop Mach number control system. The theoretical and experimental procedures described are applicable to the engineering design of pressure control systems. The results show that the dynamic response characteristics of the NTF Mach number gage (a Ruska DDR-6000 quartz absolute pressure gage) coupled to a typical length of pressure tubing were only marginally acceptable within a limited range of the facility's total pressure envelope and could not be used in the Mach number control system.

  2. The development of the Canadian Mobile Servicing System Kinematic Simulation Facility

    NASA Technical Reports Server (NTRS)

    Beyer, G.; Diebold, B.; Brimley, W.; Kleinberg, H.

    1989-01-01

    Canada will develop a Mobile Servicing System (MSS) as its contribution to the U.S./International Space Station Freedom. Components of the MSS will include a remote manipulator (SSRMS), a Special Purpose Dexterous Manipulator (SPDM), and a mobile base (MRS). In order to support requirements analysis and the evaluation of operational concepts related to the use of the MSS, a graphics based kinematic simulation/human-computer interface facility has been created. The facility consists of the following elements: (1) A two-dimensional graphics editor allowing the rapid development of virtual control stations; (2) Kinematic simulations of the space station remote manipulators (SSRMS and SPDM), and mobile base; and (3) A three-dimensional graphics model of the space station, MSS, orbiter, and payloads. These software elements combined with state of the art computer graphics hardware provide the capability to prototype MSS workstations, evaluate MSS operational capabilities, and investigate the human-computer interface in an interactive simulation environment. The graphics technology involved in the development and use of this facility is described.

  3. NASA Plum Brook's B-2 Test Facility: Thermal Vacuum and Propellant Test Facility

    NASA Technical Reports Server (NTRS)

    Kudlac, Maureen T.; Weaver, Harold F.; Cmar, Mark D.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) Plum Brook Station (PBS) Spacecraft Propulsion Research Facility, commonly referred to as B-2, is NASA's third largest thermal vacuum facility. It is the largest designed to store and transfer large quantities of liquid hydrogen and liquid oxygen, and is perfectly suited to support developmental testing of upper stage chemical propulsion systems as well as fully integrated stages. The facility is also capable of providing thermal-vacuum simulation services to support testing of large lightweight structures, Cryogenic Fluid Management (CFM) systems, electric propulsion test programs, and other In-Space propulsion programs. A recently completed integrated system test demonstrated the refurbished thermal vacuum capabilities of the facility. The test used the modernized data acquisition and control system to monitor the facility. The heat sink provided a uniform temperature environment of approximately 77 K. The modernized infrared lamp array produced a nominal heat flux of 1.4 kW/sq m. With the lamp array and heat sink operating simultaneously, the thermal systems produced a heat flux pattern simulating radiation to space on one surface and solar exposure on the other surface.

  4. Modeling, system identification, and control of ASTREX

    NASA Technical Reports Server (NTRS)

    Abhyankar, Nandu S.; Ramakrishnan, J.; Byun, K. W.; Das, A.; Cossey, Derek F.; Berg, J.

    1993-01-01

    The modeling, system identification and controller design aspects of the ASTREX precision space structure are presented in this work. Modeling of ASTREX is performed using NASTRAN, TREETOPS and I-DEAS. The models generated range from simple linear time-invariant models to nonlinear models used for large angle simulations. Identification in both the time and frequency domains are presented. The experimental set up and the results from the identification experiments are included. Finally, controller design for ASTREX is presented. Simulation results using this optimal controller demonstrate the controller performance. Finally the future directions and plans for the facility are addressed.

  5. VETA x ray data acquisition and control system

    NASA Technical Reports Server (NTRS)

    Brissenden, Roger J. V.; Jones, Mark T.; Ljungberg, Malin; Nguyen, Dan T.; Roll, John B., Jr.

    1992-01-01

    We describe the X-ray Data Acquisition and Control System (XDACS) used together with the X-ray Detection System (XDS) to characterize the X-ray image during testing of the AXAF P1/H1 mirror pair at the MSFC X-ray Calibration Facility. A variety of X-ray data were acquired, analyzed and archived during the testing including: mirror alignment, encircled energy, effective area, point spread function, system housekeeping and proportional counter window uniformity data. The system architecture is presented with emphasis placed on key features that include a layered UNIX tool approach, dedicated subsystem controllers, real-time X-window displays, flexibility in combining tools, network connectivity and system extensibility. The VETA test data archive is also described.

  6. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov Websites

    , consider the tangible benefits it can bring to utilities and the developer community, and discuss the Energy Systems Integration Facility on July 13 and 14, 2016, to discuss current and future R&D to researching this topic from a technology, business process, and policy perspective. This workshop is an

  7. Optical system for the Protein Crystallisation Diagnostics Facility (PCDF) on board the ISS

    NASA Astrophysics Data System (ADS)

    Joannes, Luc; Dupont, Olivier; Dewandel, Jean-Luc; Ligot, Renaud; Algrain, Hervé

    2004-06-01

    The Protein Crystallisation Diagnostic Facility (PCDF) is a multi-user facility to study the protein crystallisation under the conditions of micro-gravity onboard the International Space Station (ISS) Columbus facility. Large size protein crystals will growth under reduced gravity in thermally controlled reactors. A combination of diagnostic tools like video system, microscope, interferometer, and light scattering device shall help to understand the growth phenomena. Common methods of protein crystallisation shall be performed in PCDF: Dialysis where the protein solution and the salt solution are separated by a semi-permeable membrane. Extended Length Dialysis Batch where the saturation to get crystals is achieved by changing the concentration of the protein in the sample liquid. The overall ESA project is leaded by EADS Space Transportation, Friedrichshafen, Germany. Lambda-X is responsible for the Optical System (OS), with Verhaert Design and Development as sub-contractor for the mechanical design. The OS includes different compact parts: Original illumination systems based on LEDs of difference colours; Quantitative Mach-Zehnder interferometers to measure the concentration distribution around crystals; Imaging assemblies to visualize the protein volume with different field of views. The paper concentrates on the description of each part, and in particular on the imaging assembly which allow switching from one field of view to another by passive elements only.

  8. PROGRAMMABLE EXPOSURE CONTROL SYSTEM FOR DETERMINATION OF THE EFFECTS OF POLLUTANT EXPOSURE REGIMES ON PLANT GROWTH

    EPA Science Inventory

    A field-exposure research facility was constructed to provide a controlled environment to determine the influence of the various components of ozone exposure on plant response. The facility uses modified open-top chambers and an automated control system for continuous delivery an...

  9. National Ignition Facility Laser System Performance

    DOE PAGES

    Spaeth, Mary L.; Manes, Kenneth R.; Bowers, M.; ...

    2017-03-23

    The National Ignition Facility (NIF) laser is the culmination of more than 40 years of work at Lawrence Livermore National Laboratory dedicated to the delivery of laser systems capable of driving experiments for the study of high-energy-density physics. Although NIF was designed to support a number of missions, it was clear from the beginning that its biggest challenge was to meet the requirements for pursuit of inertial confinement fusion. Meeting the Project Completion Criteria for NIF in 2009 and for the National Ignition Campaign (NIC) in 2012 included meeting the NIF Functional Requirements and Primary Criteria that were established formore » the project in 1994. Finally, during NIC and as NIF transitioned to a user facility, its goals were expanded to include requirements defined by the broader user community as well as by laser system designers and operators.« less

  10. Control of Listeria species food safety at a poultry food production facility.

    PubMed

    Fox, Edward M; Wall, Patrick G; Fanning, Séamus

    2015-10-01

    Surveillance and control of food-borne human pathogens, such as Listeria monocytogenes, is a critical aspect of modern food safety programs at food production facilities. This study evaluated contamination patterns of Listeria species at a poultry food production facility, and evaluated the efficacy of procedures to control the contamination and transfer of the bacteria throughout the plant. The presence of Listeria species was studied along the production chain, including raw ingredients, food-contact, non-food-contact surfaces, and finished product. All isolates were sub-typed by pulsed-field gel electrophoresis (PFGE) to identify possible entry points for Listeria species into the production chain, as well as identifying possible transfer routes through the facility. The efficacy of selected in-house sanitizers against a sub-set of the isolates was evaluated. Of the 77 different PFGE-types identified, 10 were found among two or more of the five categories/areas (ingredients, food preparation, cooking and packing, bulk packing, and product), indicating potential transfer routes at the facility. One of the six sanitizers used was identified as unsuitable for control of Listeria species. Combining PFGE data, together with information on isolate location and timeframe, facilitated identification of a persistent Listeria species contamination that had colonized the facility, along with others that were transient. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. A hydrologic retention system and water quality monitoring program for a human decomposition research facility: concept and design.

    PubMed

    Wozniak, Jeffrey R; Thies, Monte L; Bytheway, Joan A; Lutterschmidt, William I

    2015-01-01

    Forensic taphonomy is an essential research field; however, the decomposition of human cadavers at forensic science facilities may lead to nutrient loading and the introduction of unique biological compounds to adjacent areas. The infrastructure of a water retention system may provide a mechanism for the biogeochemical processing and retention of nutrients and compounds, ensuring the control of runoff from forensic facilities. This work provides a proof of concept for a hydrologic retention system and an autonomous water quality monitoring program designed to mitigate runoff from The Southeast Texas Applied Forensic Science (STAFS) Facility. Water samples collected along a sample transect were analyzed for total phosphorous, total nitrogen, NO3-, NO2-, NH4, F(-), and Cl(-). Preliminary water quality analyses confirm the overall effectiveness of the water retention system. These results are discussed with relation to how this infrastructure can be expanded upon to monitor additional, more novel, byproducts of forensic science research facilities. © 2014 American Academy of Forensic Sciences.

  12. Environmental Control and Life Support Systems Testing Facility at MSFC

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Marshall Space Flight Center (MSFC) is responsible for designing and building the life support systems that will provide the crew of the International Space Station (ISS) a comfortable environment in which to live and work. Scientists and engineers at the MSFC are working together to provide the ISS with systems that are safe, efficient, and cost-effective. These compact and powerful systems are collectively called the Environmental Control and Life Support Systems, or simply, ECLSS. This photograph shows the Urine Processor Assembly (UPA) which utilizes the Vapor Compression Distillation (VCD) technology. The VCD is used for integrated testing of the entire Water Recovery System (WRS) and development testing of the Urine Processor Assembly. The UPA accepts and processes pretreated crewmember urine to allow it to be processed along with other wastewaters in the Water Processor Assembly (WPA). The WPA removes free gas, organic, and nonorganic constituents before the water goes through a series of multifiltration beds for further purification. Product water quality is monitored primarily through conductivity measurements. Unacceptable water is sent back through the WPA for reprocessing. Clean water is sent to a storage tank.

  13. Environmental Control and Life Support Systems Testing Facility at MSFC

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Marshall Space Flight Center (MSFC) is responsible for designing and building the life support systems that will provide the crew of the International Space Station (ISS) a comfortable environment in which to live and work. Scientists and engineers at the MSFC are working together to provide the ISS with systems that are safe, efficient, and cost-effective. These compact and powerful systems are collectively called the Environmental Control and Life Support Systems, or simply, ECLSS. This photograph shows the fifth generation Urine Processor Development Hardware. The Urine Processor Assembly (UPA) is a part of the Water Recovery System (WRS) on the ISS. It uses a chase change process called vapor compression distillation technology to remove contaminants from urine. The UPA accepts and processes pretreated crewmember urine to allow it to be processed along with other wastewaters in the Water Processor Assembly (WPA). The WPA removes free gas, organic, and nonorganic constituents before the water goes through a series of multifiltration beds for further purification. Product water quality is monitored primarily through conductivity measurements. Unacceptable water is sent back through the WPA for reprocessing. Clean water is sent to a storage tank.

  14. Excluded Facility Financial Status and Options for Payment System Modification

    PubMed Central

    Schneider, John E.; Cromwell, Jerry; McGuire, Thomas P.

    1993-01-01

    Psychiatric, rehabilitation, long-term care, and children's facilities have remained under the reimbursement system established under the Tax Equity and Fiscal Responsibility Act (TEFRA) of 1982 (Public Law 97-248). The number of TEFRA facilities and discharges has been increasing while their average profit rates have been steadily declining. Modifying TEFRA would require either rebasing the target amount or adjusting cost sharing for facilities exceeding their cost target. Based on our simulations of alternative payment systems, we recommend rebasing facilities' target amounts using a 50/50 blend of own costs and national average costs. Cost sharing above the target amount could be increased to include more government sharing of losses. PMID:10135345

  15. Integrated Component-based Data Acquisition Systems for Aerospace Test Facilities

    NASA Technical Reports Server (NTRS)

    Ross, Richard W.

    2001-01-01

    The Multi-Instrument Integrated Data Acquisition System (MIIDAS), developed by the NASA Langley Research Center, uses commercial off the shelf (COTS) products, integrated with custom software, to provide a broad range of capabilities at a low cost throughout the system s entire life cycle. MIIDAS combines data acquisition capabilities with online and post-test data reduction computations. COTS products lower purchase and maintenance costs by reducing the level of effort required to meet system requirements. Object-oriented methods are used to enhance modularity, encourage reusability, and to promote adaptability, reducing software development costs. Using only COTS products and custom software supported on multiple platforms reduces the cost of porting the system to other platforms. The post-test data reduction capabilities of MIIDAS have been installed at four aerospace testing facilities at NASA Langley Research Center. The systems installed at these facilities provide a common user interface, reducing the training time required for personnel that work across multiple facilities. The techniques employed by MIIDAS enable NASA to build a system with a lower initial purchase price and reduced sustaining maintenance costs. With MIIDAS, NASA has built a highly flexible next generation data acquisition and reduction system for aerospace test facilities that meets customer expectations.

  16. Energy Center Structure Optimization by using Smart Technologies in Process Control System

    NASA Astrophysics Data System (ADS)

    Shilkina, Svetlana V.

    2018-03-01

    The article deals with practical application of fuzzy logic methods in process control systems. A control object - agroindustrial greenhouse complex, which includes its own energy center - is considered. The paper analyzes object power supply options taking into account connection to external power grids and/or installation of own power generating equipment with various layouts. The main problem of a greenhouse facility basic process is extremely uneven power consumption, which forces to purchase redundant generating equipment idling most of the time, which quite negatively affects project profitability. Energy center structure optimization is largely based on solving the object process control system construction issue. To cut investor’s costs it was proposed to optimize power consumption by building an energy-saving production control system based on a fuzzy logic controller. The developed algorithm of automated process control system functioning ensured more even electric and thermal energy consumption, allowed to propose construction of the object energy center with a smaller number of units due to their more even utilization. As a result, it is shown how practical use of microclimate parameters fuzzy control system during object functioning leads to optimization of agroindustrial complex energy facility structure, which contributes to a significant reduction in object construction and operation costs.

  17. Pegasus power system facility upgrades

    NASA Astrophysics Data System (ADS)

    Lewicki, B. T.; Kujak-Ford, B. A.; Winz, G. R.

    2008-11-01

    Two key Pegasus systems have been recently upgraded: the Ohmic-transformer IGCT bridge control system, and the plasma-gun injector power system. The Ohmic control system contains two new microprocessor controlled components to provide an interface between the PWM controller and the IGCT bridges. An interface board conditions the command signals from the PWM controller. A splitter/combiner board routes the conditioned PWM commands to an array of IGCT bridges and interprets IGCT bridge status. This system allows for any PWM controller to safely control IGCT bridges. Future developments will include a transition to a polyphasic bridge control. This will allow for 3 to 4 times the present pulse length and provide a much higher switching frequency. The plasma gun injector system now includes active current feedback control on gun bias current via PWM buck type power supplies. Near term goals include a doubling or tripling of the applied bias voltage. Future arc bias system power supplies may include a simpler boost type system which will allow access to even higher voltages using existing low voltage energy storage systems.

  18. Hospitalizations and Costs Incurred at the Facility Level after Scale-up of Malaria Control: Pre-Post Comparisons from Two Hospitals in Zambia

    PubMed Central

    Comfort, Alison B.; van Dijk, Janneke H.; Mharakurwa, Sungano; Stillman, Kathryn; Gabert, Rose; Korde, Sonali; Nachbar, Nancy; Derriennic, Yann; Musau, Stephen; Hamazakaza, Petan; Zyambo, Khozya D.; Zyongwe, Nancy M.; Hamainza, Busiku; Thuma, Philip E.

    2014-01-01

    There is little evidence on the impact of malaria control on the health system, particularly at the facility level. Using retrospective, longitudinal facility-level and patient record data from two hospitals in Zambia, we report a pre-post comparison of hospital admissions and outpatient visits for malaria and estimated costs incurred for malaria admissions before and after malaria control scale-up. The results show a substantial reduction in inpatient admissions and outpatient visits for malaria at both hospitals after the scale-up, and malaria cases accounted for a smaller proportion of total hospital visits over time. Hospital spending on malaria admissions also decreased. In one hospital, malaria accounted for 11% of total hospital spending before large-scale malaria control compared with < 1% after malaria control. The findings demonstrate that facility-level resources are freed up as malaria is controlled, potentially making these resources available for other diseases and conditions. PMID:24218409

  19. Construction bidding cost of KSC's space shuttle facilities

    NASA Technical Reports Server (NTRS)

    Brown, Joseph Andrew

    1977-01-01

    The bidding cost of the major Space Transportation System facilities constructed under the responsibility of the John F. Kennedy Space Center (KSC) is described and listed. These facilities and Ground Support Equipment (GSE) are necessary for the receiving, assembly, testing, and checkout of the Space Shuttle for launch and landing missions at KSC. The Shuttle launch configuration consists of the Orbiter, the External Tank, and the Solid Rocket Boosters (SRB). The reusable Orbiter and SRB's is the major factor in the program that will result in lowering space travel costs. The new facilities are the Landing Facility; Orbiter Processing Facility; Orbiter Approach and Landing Test Facility (Dryden Test Center, California); Orbiter Mating Devices; Sound Suppression Water System; and Emergency Power System for LC-39. Also, a major factor was to use as much Apollo facilities and hardware as possible to reduce the facilities cost. The alterations to existing Apollo facilities are the VAB modifications; Mobile Launcher Platforms; Launch Complex 39 Pads A and B (which includes a new concept - the Rotary Service Structure), which was featured in ENR, 3 Feb. 1977, 'Hinged Space Truss will Support Shuttle Cargo Room'; Launch Control Center mods; External Tank and SRB Processing and Storage; Fluid Test Complex mods; O&C Spacelab mods; Shuttle mods for Parachute Facility; SRB Recovery and Disassembly Facility at Hangar 'AF'; and an interesting GSE item - the SRB Dewatering Nozzle Plug Sets (Remote Controlled Submarine System) used to inspect and acquire for reuse of SRB's.

  20. NASA Glenn PSL-3 and 4 Control System Upgrade

    NASA Technical Reports Server (NTRS)

    Lizanich, Paul J.

    2010-01-01

    An overview of the PSL-3&4 Jet Engine Test Facility control system; including its history, a description of the present effort to upgrade from Emerson Ovation v2.2 to V3.3.1, and future upgrade plans is shown.

  1. Looking East at Motor Control System, Clarity Columns and Blend ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking East at Motor Control System, Clarity Columns and Blend Tank Along East Side of Recycle Recovery Building - Hematite Fuel Fabrication Facility, Recycle Recovery Building, 3300 State Road P, Festus, Jefferson County, MO

  2. Control of a solar-energy-supplied electrical-power system without intermediate circuitry

    NASA Astrophysics Data System (ADS)

    Leistner, K.

    A computer control system is developed for electric-power systems comprising solar cells and small numbers of users with individual centrally controlled converters (and storage facilities when needed). Typical system structures are reviewed; the advantages of systems without an intermediate network are outlined; the demands on a control system in such a network (optimizing generator working point and power distribution) are defined; and a flexible modular prototype system is described in detail. A charging station for lead batteries used in electric automobiles is analyzed as an example. The power requirements of the control system (30 W for generator control and 50 W for communications and distribution control) are found to limit its use to larger networks.

  3. Experience with synchronous and asynchronous digital control systems. [for flight

    NASA Technical Reports Server (NTRS)

    Regenie, Victoria A.; Chacon, Claude V.; Lock, Wilton P.

    1986-01-01

    Flight control systems have undergone a revolution since the days of simple mechanical linkages; presently the most advanced systems are full-authority, full-time digital systems controlling unstable aircraft. With the use of advanced control systems, the aerodynamic design can incorporate features that allow greater performance and fuel savings, as can be seen on the new Airbus design and advanced tactical fighter concepts. These advanced aircraft will be and are relying on the flight control system to provide the stability and handling qualities required for safe flight and to allow the pilot to control the aircraft. Various design philosophies have been proposed and followed to investigate system architectures for these advanced flight control systems. One major area of discussion is whether a multichannel digital control system should be synchronous or asynchronous. This paper addressed the flight experience at the Dryden Flight Research Facility of NASA's Ames Research Center with both synchronous and asynchronous digital flight control systems. Four different flight control systems are evaluated against criteria such as software reliability, cost increases, and schedule delays.

  4. DACS II - A distributed thermal/mechanical loads data acquisition and control system

    NASA Technical Reports Server (NTRS)

    Zamanzadeh, Behzad; Trover, William F.; Anderson, Karl F.

    1987-01-01

    A distributed data acquisition and control system has been developed for the NASA Flight Loads Research Facility. The DACS II system is composed of seven computer systems and four array processors configured as a main computer system, three satellite computer systems, and 13 analog input/output systems interconnected through three independent data networks. Up to three independent heating and loading tests can be run concurrently on different test articles or the entire system can be used on a single large test such as a full scale hypersonic aircraft. Thermal tests can include up to 512 independent adaptive closed loop control channels. The control system can apply up to 20 MW of heating to a test specimen while simultaneously applying independent mechanical loads. Each thermal control loop is capable of heating a structure at rates of up to 150 F per second over a temperature range of -300 to +2500 F. Up to 64 independent mechanical load profiles can be commanded along with thermal control. Up to 1280 analog inputs monitor temperature, load, displacement and strain on the test specimens with real time data displayed on up to 15 terminals as color plots and tabular data displays. System setup and operation is accomplished with interactive menu-driver displays with extensive facilities to assist the users in all phases of system operation.

  5. Lead Coolant Test Facility Systems Design, Thermal Hydraulic Analysis and Cost Estimate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soli Khericha; Edwin Harvego; John Svoboda

    2012-01-01

    The Idaho National Laboratory prepared a preliminary technical and functional requirements (T&FR), thermal hydraulic design and cost estimate for a lead coolant test facility. The purpose of this small scale facility is to simulate lead coolant fast reactor (LFR) coolant flow in an open lattice geometry core using seven electrical rods and liquid lead or lead-bismuth eutectic coolant. Based on review of current world lead or lead-bismuth test facilities and research needs listed in the Generation IV Roadmap, five broad areas of requirements were identified as listed: (1) Develop and Demonstrate Feasibility of Submerged Heat Exchanger; (2) Develop and Demonstratemore » Open-lattice Flow in Electrically Heated Core; (3) Develop and Demonstrate Chemistry Control; (4) Demonstrate Safe Operation; and (5) Provision for Future Testing. This paper discusses the preliminary design of systems, thermal hydraulic analysis, and simplified cost estimate. The facility thermal hydraulic design is based on the maximum simulated core power using seven electrical heater rods of 420 kW; average linear heat generation rate of 300 W/cm. The core inlet temperature for liquid lead or Pb/Bi eutectic is 4200 C. The design includes approximately seventy-five data measurements such as pressure, temperature, and flow rates. The preliminary estimated cost of construction of the facility is $3.7M (in 2006 $). It is also estimated that the facility will require two years to be constructed and ready for operation.« less

  6. Industrial Control Systems/SCADA systems risk assessment in the energy sector

    NASA Astrophysics Data System (ADS)

    Falodun, Babatunde

    The energy sector is one of the most critical components of our national infrastructure. It not only provides the electrical power and petroleum required to run day-to-day operations and mechanisms in society, it's also an important element that directly impacts the economy with regard to growth and stability. Industrial Control Systems (ICS) /Supervisory Control and Data Acquisition Systems (SCADA) are computerized mechanisms, they are both software and hardware that are used to control real time processes and operations in power plants and oil production facilities. A significant attack on these control systems that leads to widespread disruption of energy could result in catastrophic consequences for any major city and even the nation. This research paper explores cyber threats and vulnerabilities faced by ICS/SCADA systems in the energy sector and also highlights possible outcomes of a successful breach. Furthermore, the research underscores mitigation strategies that could be used to prevent and respond to an attack. Keywords: Cybersecurity, SCADA, Cyber Attacks, Threats, Vulnerabilities, Risk Assessment, Dr. Albert Orbinati.

  7. CVD facility electrical system captor/dapper study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SINGH, G.

    1999-10-28

    Project W-441, CVD Facility Electrical System CAPTOWDAPPER Study validates Meier's hand calculations. This study includes Load flow, short circuit, voltage drop, protective device coordination, and transient motor starting (TMS) analyses.

  8. System identification of the Large-Angle Magnetic Suspension Test Facility (LAMSTF)

    NASA Technical Reports Server (NTRS)

    Huang, Jen-Kuang

    1993-01-01

    The Large-Angle Magnetic Suspension Test Facility (LAMSTF), a laboratory-scale research project to demonstrate the magnetic suspension of objects over wide ranges of attitudes, has been developed. This system represents a scaled model of a planned Large-Gap Magnetic Suspension System (LGMSS). The LAMSTF system consists of a planar array of five copper electromagnets which actively suspend a small cylindrical permanent magnet. The cylinder is a rigid body and can be controlled to move in five independent degrees of freedom. Five position variables are sensed indirectly by using infra-red light-emitting diodes and light-receiving phototransistors. The motion of the suspended cylinder is in general nonlinear and hence only the linear, time-invariant perturbed motion about an equilibrium state is considered. One of the main challenges in this project is the control of the suspended element over a wide range of orientations. An accurate dynamic model plans an essential role in controller design. The analytical model of the LAMSTF system includes highly unstable real poles (about 10 Hz) and low-frequency flexible modes (about 0.16 Hz). Projection filters are proposed to identify the state space model from closed-loop test data in time domain. A canonical transformation matrix is also derived to transform the identified state space model into the physical coordinate. The LAMSTF system is stabilized by using a linear quadratic regulator (LQR) feedback controller. The rate information is obtained by calculating the back difference of the sensed position signals. The reference inputs contain five uncorrelated random signals. This control input and the system reponse are recorded as input/output data to identify the system directly from the projection filters. The sampling time is 4 ms and the model is fairly accurate in predicting the step responses for different controllers while the analytical model has a deficiency in the pitch axis.

  9. The Orbital Maneuvering Vehicle Training Facility visual system concept

    NASA Technical Reports Server (NTRS)

    Williams, Keith

    1989-01-01

    The purpose of the Orbital Maneuvering Vehicle (OMV) Training Facility (OTF) is to provide effective training for OMV pilots. A critical part of the training environment is the Visual System, which will simulate the video scenes produced by the OMV Closed-Circuit Television (CCTV) system. The simulation will include camera models, dynamic target models, moving appendages, and scene degradation due to the compression/decompression of video signal. Video system malfunctions will also be provided to ensure that the pilot is ready to meet all challenges the real-world might provide. One possible visual system configuration for the training facility that will meet existing requirements is described.

  10. Pressure Control System Design for a Closed Crop Growth Chamber

    NASA Technical Reports Server (NTRS)

    Tsai, K.; Blackwell, C.; Harper, Lynn D. (Technical Monitor)

    1994-01-01

    The Controlled Ecological Life Support System (CELSS) is an area of active research at NASA. CELSS is a plant-based bioregenerative life support system for long term manned space flights where resupply is costly or impractical. The plants in a CELSS will function to convert the carbon dioxide (exhaled by the crew) into oxygen, purify non-potable water into potable quality water, and provide food for the crew. Prior to implementing a CELSS life support system, one must have knowledge on growing plants in a closed chamber under low gravity. This information will come from research to be conducted on the CELSS Test Facility that will operate on the Space Station Freedom. Currently a ground-based CELSS Test Facility is being built at NASA Ames Research Center. It is called the EDU (Engineering Development Unit). This system will allow researchers to identify issues that may cause difficulties in the development of the CELSS Test Facility and aid in the development of new needed technologies. The EDU consists of a 1 m2 crop growth chamber that is surrounded by a containment enclosure. The containment enclosure isolates the system so there is very little mass and thermal exchange with the ambient. The leakage rate is on the order of 1 % of the enclosure's volume per day (with 0.2S psi pressure difference). The thermal leakage is less than 0.5% of the electrical power supplied to the system per degree Celsius difference from the surrounding. The pressure in the containment enclosure is regulated at 62.5 Pa below the ambient by an active controller. The goal is to maintain this set point for a variety of conditions, such as a range of operating temperatures, heat load variations that occur when the lights are turned on and off, and fluctuations in ambient pressure. In addition certain transition tracking performance is required. This paper illustrates the application of some advanced systems control methods to the task of synthesizing the EDU's pressure control system.

  11. Fuel conditioning facility zone-to-zone transfer administrative controls.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pope, C. L.

    2000-06-21

    The administrative controls associated with transferring containers from one criticality hazard control zone to another in the Argonne National Laboratory (ANL) Fuel Conditioning Facility (FCF) are described. FCF, located at the ANL-West site near Idaho Falls, Idaho, is used to remotely process spent sodium bonded metallic fuel for disposition. The process involves nearly forty widely varying material forms and types, over fifty specific use container types, and over thirty distinct zones where work activities occur. During 1999, over five thousand transfers from one zone to another were conducted. Limits are placed on mass, material form and type, and container typesmore » for each zone. Ml material and containers are tracked using the Mass Tracking System (MTG). The MTG uses an Oracle database and numerous applications to manage the database. The database stores information specific to the process, including material composition and mass, container identification number and mass, transfer history, and the operators involved in each transfer. The process is controlled using written procedures which specify the zone, containers, and material involved in a task. Transferring a container from one zone to another is called a zone-to-zone transfer (ZZT). ZZTs consist of four distinct phases, select, request, identify, and completion.« less

  12. 40 CFR 112.8 - Spill Prevention, Control, and Countermeasure Plan requirements for onshore facilities (excluding...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... drainage from diked storage areas by valves to prevent a discharge into the drainage system or facility... facility drainage systems from undiked areas with a potential for a discharge (such as where piping is... pumps. Whatever techniques you use, you must engineer facility drainage systems to prevent a discharge...

  13. 21 CFR 58.47 - Facilities for handling test and control articles.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Facilities for handling test and control articles... for handling test and control articles. (a) As necessary to prevent contamination or mixups, there shall be separate areas for: (1) Receipt and storage of the test and control articles. (2) Mixing of the...

  14. 21 CFR 58.47 - Facilities for handling test and control articles.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Facilities for handling test and control articles... for handling test and control articles. (a) As necessary to prevent contamination or mixups, there shall be separate areas for: (1) Receipt and storage of the test and control articles. (2) Mixing of the...

  15. 21 CFR 58.47 - Facilities for handling test and control articles.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Facilities for handling test and control articles... for handling test and control articles. (a) As necessary to prevent contamination or mixups, there shall be separate areas for: (1) Receipt and storage of the test and control articles. (2) Mixing of the...

  16. 21 CFR 58.47 - Facilities for handling test and control articles.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Facilities for handling test and control articles... for handling test and control articles. (a) As necessary to prevent contamination or mixups, there shall be separate areas for: (1) Receipt and storage of the test and control articles. (2) Mixing of the...

  17. Design and performance of vacuum system for high heat flux test facility

    NASA Astrophysics Data System (ADS)

    Swamy Kidambi, Rajamannar; Mokaria, Prakash; Khirwadkar, Samir; Belsare, Sunil; Khan, M. S.; Patel, Tushar; Krishnan, Deepu S.

    2017-04-01

    High heat flux test facility (HHFTF) at IPR is used for testing thermal performance of plasma facing materials or components. It consists of various subsystems like vacuum system, high power electron beam system, diagnostic and calibration system, data acquisition and control system and high pressure high temperature water circulation system. Vacuum system consists of large D-shaped chamber, target handling system, pumping systems and support structure. The net volume of vacuum chamber is 5 m3 was maintained at the base pressure of the order of 10-6 mbar for operation of electron gun with minimum beam diameter which is achieved with turbo-molecular pump (TMP) and cryo pump. A variable conductance gate valve is used for maintaining required vacuum in the chamber. Initial pumping of the chamber was carried out by using suitable rotary and root pumps. PXI and PLC based faster real time data acquisition and control system is implemented for performing the various operations like remote operation, online vacuum data measurements, display and status indication of all vacuum equipments. This paper describes in detail the design and implementation of various vacuum system for HHFTF.

  18. ERDA/Lewis research center photovoltaic systems test facility

    NASA Technical Reports Server (NTRS)

    Forestieri, A. F.; Johnson, J. A.; Knapp, W. D.; Rigo, H.; Stover, J.; Suhay, R.

    1977-01-01

    A national photovoltaic power systems test facility (of initial 10-kW peak power rating) is described. It consists of a solar array to generate electrical power, test-hardware for several alternate methods of power conversion, electrical energy storage systems, and an instrumentation and data acquisition system.

  19. Impact of Nitrification on the Formation of N-Nitrosamines and Halogenated Disinfection Byproducts within Distribution System Storage Facilities.

    PubMed

    Zeng, Teng; Mitch, William A

    2016-03-15

    Distribution system storage facilities are a critical, yet often overlooked, component of the urban water infrastructure. This study showed elevated concentrations of N-nitrosodimethylamine (NDMA), total N-nitrosamines (TONO), regulated trihalomethanes (THMs) and haloacetic acids (HAAs), 1,1-dichloropropanone (1,1-DCP), trichloroacetaldehyde (TCAL), haloacetonitriles (HANs), and haloacetamides (HAMs) in waters with ongoing nitrification as compared to non-nitrifying waters in storage facilities within five different chloraminated drinking water distribution systems. The concentrations of NDMA, TONO, HANs, and HAMs in the nitrifying waters further increased upon application of simulated distribution system chloramination. The addition of a nitrifying biofilm sample collected from a nitrifying facility to its non-nitrifying influent water led to increases in N-nitrosamine and halogenated DBP formation, suggesting the release of precursors from nitrifying biofilms. Periodic treatment of two nitrifying facilities with breakpoint chlorination (BPC) temporarily suppressed nitrification and reduced precursor levels for N-nitrosamines, HANs, and HAMs, as reflected by lower concentrations of these DBPs measured after re-establishment of a chloramine residual within the facilities than prior to the BPC treatment. However, BPC promoted the formation of halogenated DBPs while a free chlorine residual was maintained. Strategies that minimize application of free chlorine while preventing nitrification are needed to control DBP precursor release in storage facilities.

  20. Security Encryption Scheme for Communication of Web Based Control Systems

    NASA Astrophysics Data System (ADS)

    Robles, Rosslin John; Kim, Tai-Hoon

    A control system is a device or set of devices to manage, command, direct or regulate the behavior of other devices or systems. The trend in most systems is that they are connected through the Internet. Traditional Supervisory Control and Data Acquisition Systems (SCADA) is connected only in a limited private network Since the internet Supervisory Control and Data Acquisition Systems (SCADA) facility has brought a lot of advantages in terms of control, data viewing and generation. Along with these advantages, are security issues regarding web SCADA, operators are pushed to connect Control Systems through the internet. Because of this, many issues regarding security surfaced. In this paper, we discuss web SCADA and the issues regarding security. As a countermeasure, a web SCADA security solution using crossed-crypto-scheme is proposed to be used in the communication of SCADA components.

  1. Advanced Group Support Systems and Facilities

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)

    1999-01-01

    The document contains the proceedings of the Workshop on Advanced Group Support Systems and Facilities held at NASA Langley Research Center, Hampton, Virginia, July 19-20, 1999. The workshop was jointly sponsored by the University of Virginia Center for Advanced Computational Technology and NASA. Workshop attendees came from NASA, other government agencies, industry, and universities. The objectives of the workshop were to assess the status of advanced group support systems and to identify the potential of these systems for use in future collaborative distributed design and synthesis environments. The presentations covered the current status and effectiveness of different group support systems.

  2. Drainage facility management system : final report, June 2009.

    DOT National Transportation Integrated Search

    2009-06-01

    This research project identified requirements for a drainage facility management system for the Oregon Department of Transportation. It also estimated the personnel resources needed to collect the inventory to populate such a system with data. A tota...

  3. 49 CFR 191.17 - Transmission systems; gathering systems; and liquefied natural gas facilities: Annual report.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... liquefied natural gas facilities: Annual report. 191.17 Section 191.17 Transportation Other Regulations...; gathering systems; and liquefied natural gas facilities: Annual report. (a) Transmission or Gathering. Each..., 2011. (b) LNG. Each operator of a liquefied natural gas facility must submit an annual report for that...

  4. 49 CFR 191.15 - Transmission systems; gathering systems; and liquefied natural gas facilities: Incident report.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... under § 191.5 of this part. (b) LNG. Each operator of a liquefied natural gas plant or facility must... liquefied natural gas facilities: Incident report. 191.15 Section 191.15 Transportation Other Regulations...; gathering systems; and liquefied natural gas facilities: Incident report. (a) Transmission or Gathering...

  5. Assessment of Malaria Reporting and Epidemic Preparedness Systems in Health Facilities in Eldoret West District, Uasin Gishu County, Kenya

    PubMed Central

    Kirinyet, Ruth C.; Juma, Ahmad

    2016-01-01

    The most important factor in reducing the impact of an epidemic is a timely response with implementation of effective control measures at the point of detection. This study sought to assess the malaria reporting and epidemic preparedness systems of health facilities in Eldoret West District, Kenya. A cross-sectional study design was adapted. A census technique was used to select all the forty five health facilities in the district comprising of government, mission and non-governmental facilities. An interviewer administered questionnaire was used for data collection and analysis done using Stata. Categorical variables were summarized as frequencies and corresponding percentages. The overall reporting rate was 91.7% for all the health facilities. Only 15 health facilities (33%) plotted malaria trend lines for number of cases of malaria. Malaria epidemics were reported within 24 hours in 22 health facilities but they lacked the appropriate supplies to respond to confirmed cases or epidemics. The overall malaria reporting completeness rate was above 90% implying that the malaria surveillance system was generally good. Concerted efforts by concerned stakeholders should ensure improvement of malaria epidemic preparedness system in all health facilities and provision of information to health personnel on malaria outbreak response strategies. PMID:28299154

  6. Design of Electrical Systems for Rocket Propulsion Test Facilities at the John C. Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Hughes, Mark S.; Davis, Dawn M.; Bakker, Henry J.; Jensen, Scott L.

    2007-01-01

    This viewgraph presentation reviews the design of the electrical systems that are required for the testing of rockets at the Rocket Propulsion Facility at NASA Stennis Space Center (NASA SSC). NASA/SSC s Mission in Rocket Propulsion Testing Is to Acquire Test Performance Data for Verification, Validation and Qualification of Propulsion Systems Hardware. These must be accurate reliable comprehensive and timely. Data acquisition in a rocket propulsion test environment is challenging: severe temporal transient dynamic environments, large thermal gradients, vacuum to 15 ksi pressure regimes SSC has developed and employs DAS, control systems and control systems and robust instrumentation that effectively satisfies these challenges.

  7. Design of control software for the closed ecology experiment facilities (CEEF)

    NASA Astrophysics Data System (ADS)

    Miyajima, H.; Abe, K.; Hirosaki, T.; Ishikawa, Y.

    A habitation experiment using a closed ecology experiment facilities CEEF was started in fiscal 2005 three experiments in which two humans stayed for one week were conducted Their stays will be extended gradually until fiscal 2009 when an experiment will be launched with two humans staying for four months The CEEF has an ambitious target of acquiring the technology of an advanced life support system and the system is being developed based on the technology of conventional plant systems Especially in respect to supervision and control of the system the system still has little automation This system has many manual operation parts whose starts and stops are determined by human judgment There are even several parts requiring off-line measurements that include analyses performed by hand At present a CEEF behavioral prediction system CPS is being developed as the first stage for controlling such a system In this CPS an operator creates an operational schedule after due consideration However creation of the operational schedule of the complex CEEF is not easy and it is above the operator s capability to fully cope with alterations of the operational schedule that occur during a long-term habitation experiment Therefore we are going to develop an automatic creation function of the operational schedule that will be incorporated into the CPS by the beginning of the habitation experiment in fiscal 2009 This function will enable automation of most of the operational schedule that human operators currently set up In this paper we examine

  8. NREL's Energy Systems Integration Supporting Facilities - Continuum

    Science.gov Websites

    Integration Facility opened in December, 2012. Photo by Dennis Schroeder, NREL NREL's Energy Systems capabilities. Photo by Dennis Schroeder, NREL This research electrical distribution bus (REDB) works as a power

  9. Power Systems Development Facility Gasification Test Campaing TC18

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Southern Company Services

    2005-08-31

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device (PCD), advanced syngas cleanup systems, and high pressure solids handling systems. This report details Test Campaign TC18 of the PSDF gasification process. Test campaign TC18 began on June 23, 2005, and ended on August 22, 2005, with the gasifiermore » train accumulating 1,342 hours of operation using Powder River Basin (PRB) subbituminous coal. Some of the testing conducted included commissioning of a new recycle syngas compressor for gasifier aeration, evaluation of PCD filter elements and failsafes, testing of gas cleanup technologies, and further evaluation of solids handling equipment. At the conclusion of TC18, the PSDF gasification process had been operated for more than 7,750 hours.« less

  10. Multicoordination Control Strategy Performance in Hybrid Power Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pezzini, Paolo; Bryden, Kenneth M.; Tucker, David

    This paper evaluates a state-space methodology of a multi-input multi-output (MIMO) control strategy using a 2 × 2 tightly coupled scenario applied to a physical gas turbine fuel cell hybrid power system. A centralized MIMO controller was preferred compared to a decentralized control approach because previous simulation studies showed that the coupling effect identified during the simultaneous control of the turbine speed and cathode airflow was better minimized. The MIMO controller was developed using a state-space dynamic model of the system that was derived using first-order transfer functions empirically obtained through experimental tests. The controller performance was evaluated in termsmore » of disturbance rejection through perturbations in the gas turbine operation, and setpoint tracking maneuver through turbine speed and cathode airflow steps. The experimental results illustrate that a multicoordination control strategy was able to mitigate the coupling of each actuator to each output during the simultaneous control of the system, and improved the overall system performance during transient conditions. On the other hand, the controller showed different performance during validation in simulation environment compared to validation in the physical facility, which will require a better dynamic modeling of the system for the implementation of future multivariable control strategies.« less

  11. Multicoordination Control Strategy Performance in Hybrid Power Systems

    DOE PAGES

    Pezzini, Paolo; Bryden, Kenneth M.; Tucker, David

    2018-04-11

    This paper evaluates a state-space methodology of a multi-input multi-output (MIMO) control strategy using a 2 × 2 tightly coupled scenario applied to a physical gas turbine fuel cell hybrid power system. A centralized MIMO controller was preferred compared to a decentralized control approach because previous simulation studies showed that the coupling effect identified during the simultaneous control of the turbine speed and cathode airflow was better minimized. The MIMO controller was developed using a state-space dynamic model of the system that was derived using first-order transfer functions empirically obtained through experimental tests. The controller performance was evaluated in termsmore » of disturbance rejection through perturbations in the gas turbine operation, and setpoint tracking maneuver through turbine speed and cathode airflow steps. The experimental results illustrate that a multicoordination control strategy was able to mitigate the coupling of each actuator to each output during the simultaneous control of the system, and improved the overall system performance during transient conditions. On the other hand, the controller showed different performance during validation in simulation environment compared to validation in the physical facility, which will require a better dynamic modeling of the system for the implementation of future multivariable control strategies.« less

  12. Development of a Work Control System for Propulsion Testing at Stennis Space Center (SSC)

    NASA Technical Reports Server (NTRS)

    Messer, Elizabeth A.

    2004-01-01

    In 1996, Stennis Space Center was given management authority for all Propulsion Testing for NASA. Over the next few years several research and development (R&D) test facilities were completed and brought up to full operation in what is known as the E-Complex Test Facility at Stennis Space Center. This paper will explain the requirements and steps taken to develop the current Test Operations' electronic work control system. The Work Control System developed includes work authorization documents such as test preparation sheets, discrepancy reports, pre-test briefing reports, and test requests.

  13. Student Control as a Planning and Design Factor in Educational Facilities.

    ERIC Educational Resources Information Center

    Lilley, H. Edward

    Appropriate school facility design promotes a balance between student freedom and control. This report evaluates research on architectural approaches affecting student control and offers design recommendations. Since 1960, school discipline and vandalism problems have exploded. Senator Birch Bayh's committee reported that certain crimes are…

  14. MicroArray Facility: a laboratory information management system with extended support for Nylon based technologies.

    PubMed

    Honoré, Paul; Granjeaud, Samuel; Tagett, Rebecca; Deraco, Stéphane; Beaudoing, Emmanuel; Rougemont, Jacques; Debono, Stéphane; Hingamp, Pascal

    2006-09-20

    High throughput gene expression profiling (GEP) is becoming a routine technique in life science laboratories. With experimental designs that repeatedly span thousands of genes and hundreds of samples, relying on a dedicated database infrastructure is no longer an option.GEP technology is a fast moving target, with new approaches constantly broadening the field diversity. This technology heterogeneity, compounded by the informatics complexity of GEP databases, means that software developments have so far focused on mainstream techniques, leaving less typical yet established techniques such as Nylon microarrays at best partially supported. MAF (MicroArray Facility) is the laboratory database system we have developed for managing the design, production and hybridization of spotted microarrays. Although it can support the widely used glass microarrays and oligo-chips, MAF was designed with the specific idiosyncrasies of Nylon based microarrays in mind. Notably single channel radioactive probes, microarray stripping and reuse, vector control hybridizations and spike-in controls are all natively supported by the software suite. MicroArray Facility is MIAME supportive and dynamically provides feedback on missing annotations to help users estimate effective MIAME compliance. Genomic data such as clone identifiers and gene symbols are also directly annotated by MAF software using standard public resources. The MAGE-ML data format is implemented for full data export. Journalized database operations (audit tracking), data anonymization, material traceability and user/project level confidentiality policies are also managed by MAF. MicroArray Facility is a complete data management system for microarray producers and end-users. Particular care has been devoted to adequately model Nylon based microarrays. The MAF system, developed and implemented in both private and academic environments, has proved a robust solution for shared facilities and industry service providers alike.

  15. MicroArray Facility: a laboratory information management system with extended support for Nylon based technologies

    PubMed Central

    Honoré, Paul; Granjeaud, Samuel; Tagett, Rebecca; Deraco, Stéphane; Beaudoing, Emmanuel; Rougemont, Jacques; Debono, Stéphane; Hingamp, Pascal

    2006-01-01

    Background High throughput gene expression profiling (GEP) is becoming a routine technique in life science laboratories. With experimental designs that repeatedly span thousands of genes and hundreds of samples, relying on a dedicated database infrastructure is no longer an option. GEP technology is a fast moving target, with new approaches constantly broadening the field diversity. This technology heterogeneity, compounded by the informatics complexity of GEP databases, means that software developments have so far focused on mainstream techniques, leaving less typical yet established techniques such as Nylon microarrays at best partially supported. Results MAF (MicroArray Facility) is the laboratory database system we have developed for managing the design, production and hybridization of spotted microarrays. Although it can support the widely used glass microarrays and oligo-chips, MAF was designed with the specific idiosyncrasies of Nylon based microarrays in mind. Notably single channel radioactive probes, microarray stripping and reuse, vector control hybridizations and spike-in controls are all natively supported by the software suite. MicroArray Facility is MIAME supportive and dynamically provides feedback on missing annotations to help users estimate effective MIAME compliance. Genomic data such as clone identifiers and gene symbols are also directly annotated by MAF software using standard public resources. The MAGE-ML data format is implemented for full data export. Journalized database operations (audit tracking), data anonymization, material traceability and user/project level confidentiality policies are also managed by MAF. Conclusion MicroArray Facility is a complete data management system for microarray producers and end-users. Particular care has been devoted to adequately model Nylon based microarrays. The MAF system, developed and implemented in both private and academic environments, has proved a robust solution for shared facilities and

  16. Functional requirements for the man-vehicle systems research facility. [identifying and correcting human errors during flight simulation

    NASA Technical Reports Server (NTRS)

    Clement, W. F.; Allen, R. W.; Heffley, R. K.; Jewell, W. F.; Jex, H. R.; Mcruer, D. T.; Schulman, T. M.; Stapleford, R. L.

    1980-01-01

    The NASA Ames Research Center proposed a man-vehicle systems research facility to support flight simulation studies which are needed for identifying and correcting the sources of human error associated with current and future air carrier operations. The organization of research facility is reviewed and functional requirements and related priorities for the facility are recommended based on a review of potentially critical operational scenarios. Requirements are included for the experimenter's simulation control and data acquisition functions, as well as for the visual field, motion, sound, computation, crew station, and intercommunications subsystems. The related issues of functional fidelity and level of simulation are addressed, and specific criteria for quantitative assessment of various aspects of fidelity are offered. Recommendations for facility integration, checkout, and staffing are included.

  17. TACS Central Control Facility.

    DTIC Science & Technology

    1981-02-12

    PULSE RTC REAL TIME CLOCK -{> I . SIGNAL INVERSION UASC UNIVERSAL ASYNCHRONOUS SERIAL - ---- 4w SPECIAL INTERFACE CONTROLLER Fiq. 2-1. MAC hardware...34 Universal Asynchronous Serial Controller" (UASC) cards. The cards implement an RS-232 standard interface. All controllers are set to operate at a data...Bridwell and I. Richer, "A Preliminary Design of a TDMA System for FLEETSAT," Technical Note 1975-5, Lincoln Laboratory, M.I.T. (12 March 1975), DDC

  18. Validation of Digital Systems in Avionics and Flight Control Applications Handbook. Volume 1.

    DTIC Science & Technology

    1983-07-01

    will also be available to Airways Facilities, Systems Research and Development Service, Air Traffic Control Service, and Flight Standards elements...2114, March 12-14, 1979. 3. Validation Methods Research for Fault-Tolerant Avionics and Control Systems-- *r Working Group Meeting II, NASA...command generation with the multiple methods becoming avail- able for closure of the outer control loop necessitates research on alternative integration

  19. An automated system for positive reinforcement training of group-housed macaque monkeys at breeding and research facilities.

    PubMed

    Tulip, Jennifer; Zimmermann, Jonas B; Farningham, David; Jackson, Andrew

    2017-06-15

    Behavioural training through positive reinforcement techniques is a well-recognised refinement to laboratory animal welfare. Behavioural neuroscience research requires subjects to be trained to perform repetitions of specific behaviours for food/fluid reward. Some animals fail to perform at a sufficient level, limiting the amount of data that can be collected and increasing the number of animals required for each study. We have implemented automated positive reinforcement training systems (comprising a button press task with variable levels of difficulty using LED cues and a fluid reward) at the breeding facility and research facility, to compare performance across these different settings, to pre-screen animals for selection and refine training protocols. Animals learned 1- and 4-choice button tasks within weeks of home enclosure training, with some inter-individual differences. High performance levels (∼200-300 trials per 60min session at ∼80% correct) were obtained without food or fluid restriction. Moreover, training quickly transferred to a laboratory version of the task. Animals that acquired the task at the breeding facility subsequently performed better both in early home enclosure sessions upon arrival at the research facility, and also in laboratory sessions. Automated systems at the breeding facility may be used to pre-screen animals for suitability for behavioural neuroscience research. In combination with conventional training, both the breeding and research facility systems facilitate acquisition and transference of learning. Automated systems have the potential to refine training protocols and minimise requirements for food/fluid control. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Shoreline Erosion and Proposed Control at Experimental Facility 15-Spesutie Island

    DTIC Science & Technology

    2017-09-01

    Island, it is made up of various facilities and ranges designed for weapons testing as well as automotive testing . These ranges belong to the...ARL-SR-0383 ● SEP 2017 US Army Research Laboratory Shoreline Erosion and Proposed Control at Experimental Facility 15–Spesutie...in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents. Citation

  1. Chiller Controls-related Energy Saving Opportunities in FederalFacilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webster, Tom

    2003-01-01

    Chillers are a significant component of large facility energy use. The focus of much of the development of chilled water systems in recent years has been on optimization of set point and staging controls, improvements in chiller design to increase efficiency and accommodate chlorofluorocarbon (CFC) refrigerant replacements. Other improvements have been made by upgrading controls to the latest digital technologies, improving access and monitoring via communications and sophisticated liquid crystal displays (LCD), more robust fault diagnostics and operating and maintenance information logging. Advances have also been made in how chiller plant systems are designed and operated, and in the diversitymore » of chiller products that are available to support innovative approaches. As in many industries, these improvements have been facilitated by advances in, and lower costs for, enabling technologies, such as refrigerants, compressor design, electronics for controls and variable frequency drives (VFD). Along with the improvements in electronics one would expect that advances have also been made in the functionality of unit controls included with chillers. Originally, the primary purpose of this project was to investigate the state of practice of chiller unit controllers in terms of their energy saving capabilities. However, early in the study it was discovered that advances in this area did not include incorporation of significantly different capabilities than had existed 10-15 years ago. Thus the scope has been modified to provide an overview of some of the basic controls-related energy saving strategies that are currently available along with guideline estimates of their potential and applicability. We have minimized consideration of strategies that could be primarily implemented via design practices such as chiller selection and plant design, and those that can only be implemented by a building management system (BMS). Also, since most of the floor space of federal

  2. Production Facility SCADA Design Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dale, Gregory E.; Holloway, Michael Andrew; Baily, Scott A.

    2015-03-23

    The following report covers FY 14 activities to develop supervisory control and data acquisition (SCADA) system for the Northstar Moly99 production facility. The goal of this effort is to provide Northstar with a baseline system design.

  3. Telescope Array Control System Based on Wireless Touch Screen Platform

    NASA Astrophysics Data System (ADS)

    Fu, Xia-nan; Huang, Lei; Wei, Jian-yan

    2017-10-01

    Ground-based Wide Angle Cameras (GMAC) are the ground-based observational facility for the SVOM (Space Variable Object Monitor) astronomical satellite of Sino-French cooperation, and Mini-GWAC is the pathfinder and supplement of GWAC. In the context of the Mini-GWAC telescope array, this paper introduces the design and implementation of a kind of telescope array control system based on the wireless touch screen platform. We describe the development and implementation of the system in detail in terms of control system principle, system hardware structure, software design, experiment, and test etc. The system uses a touch-control PC which is based on the Windows CE system as the upper computer, while the wireless transceiver module and PLC (Programmable Logic Controller) are taken as the system kernel. It has the advantages of low cost, reliable data transmission, and simple operation. And the control system has been applied to the Mini-GWAC successfully.

  4. 78 FR 67223 - Proposed Guidance for Fuel Cycle Facility; Material Control and Accounting Plans and Completing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-08

    ..., 72, et al. Proposed Guidance for Fuel Cycle Facility; Material Control and Accounting Plans and Completing NRC Form 327 and Amendments to Material Control and Accounting Regulations; Proposed Rules #0;#0... Guidance for Fuel Cycle Facility; Material Control and Accounting Plans and Completing NRC Form 327 AGENCY...

  5. Common Data Acquisition Systems (DAS) Software Development for Rocket Propulsion Test (RPT) Test Facilities - A General Overview

    NASA Technical Reports Server (NTRS)

    Hebert, Phillip W., Sr.; Hughes, Mark S.; Davis, Dawn M.; Turowski, Mark P.; Holladay, Wendy T.; Marshall, PeggL.; Duncan, Michael E.; Morris, Jon A.; Franzl, Richard W.

    2012-01-01

    The advent of the commercial space launch industry and NASA's more recent resumption of operation of Stennis Space Center's large test facilities after thirty years of contractor control resulted in a need for a non-proprietary data acquisition system (DAS) software to support government and commercial testing. The software is designed for modularity and adaptability to minimize the software development effort for current and future data systems. An additional benefit of the software's architecture is its ability to easily migrate to other testing facilities thus providing future commonality across Stennis. Adapting the software to other Rocket Propulsion Test (RPT) Centers such as MSFC, White Sands, and Plumbrook Station would provide additional commonality and help reduce testing costs for NASA. Ultimately, the software provides the government with unlimited rights and guarantees privacy of data to commercial entities. The project engaged all RPT Centers and NASA's Independent Verification & Validation facility to enhance product quality. The design consists of a translation layer which provides the transparency of the software application layers to underlying hardware regardless of test facility location and a flexible and easily accessible database. This presentation addresses system technical design, issues encountered, and the status of Stennis' development and deployment.

  6. Environmental Control System Development

    NASA Technical Reports Server (NTRS)

    Stewart, Raymond

    2017-01-01

    With the ever-growing desire for mankind to reach destinations whose distances had been deemed impossible to transit, the largest rocket known to man was designed and is being developed. The Space Launch System (SLS), National Aeronautics and Space Administration’s (NASA) solution for deep space travel, will begin its missions with the launch of Exploration Mission 1 (EM-1) and Exploration Mission 2 (EM-2). In order to accommodate the larger rocket, Kennedy Space Center made crucial upgrades to its existing facilities. At Launch Complex 39B, an entirely new Environmental Control System (ECS) was developed to supply the vehicle with the appropriate air or nitrogen gas mixture for launch. The new ECS displays must undergo Validation and Verification (V&V) using testing procedures developed to meet this requirement.

  7. Development and testing of a novel subsea production system and control buoy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-04-01

    The remoteness of Australia`s northwest shelf presents challenges for the economic viability of offshore resource-development projects. Accordingly, the East Spar development has been designed to minimize capital and life-cycle costs to ensure the long-term viability of this offshore gas field. The offshore facilities are made up of a novel unmanned navigation, communication, and control (NCC) buoy linked to a subsea-production system that includes heat exchangers, insert-retrievable choke valves, multiphase flow-meters, and an on-line pipeline-corrosion monitoring system. The technological building blocks for field development are industry proved. However, the novel arrangement of this proven technology into a remotely controlled, self-contained, minimum-maintenancemore » unmanned facility is unique and has led to many challenges during the design and testing of the NCC buoy and subsea facilities. Among these challenges has been the formulation of an integration test program of the NCC buoy and subsea hardware that proves, as far as reasonably possible, the complete functionality of each equipment item and interface, subject to constraints imposed by schedule, cost, and logistics. Integration testing is particularly important to confirm that the offshore facilities will operate as designed with sufficient reliability and system redundancy to ensure continuous operation throughout the 20-year field life.« less

  8. System configuration management plan for 101-SY Hydrogen Mitigation Test Project Mini-Data Acquisition and Control System of Tank Waste Remediation System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vargo, G.F. Jr.

    1994-10-11

    The DOE Standard defines the configuration management program by the five basic program elements of ``program management,`` ``design requirements,`` ``document control,`` ``change control,`` and ``assessments,`` and the two adjunct recovery programs of ``design reconstitution,`` and ``material condition and aging management. The C-M model of five elements and two adjunct programs strengthen the necessary technical and administrative control to establish and maintain a consistent technical relationship among the requirements, physical configuration, and documentation. Although the DOE Standard was originally developed for the operational phase of nuclear facilities, this plan has the flexibility to be adapted and applied to all life-cycle phasesmore » of both nuclear and non-nuclear facilities. The configuration management criteria presented in this plan endorses the DOE Standard and has been tailored specifically to address the technical relationship of requirements, physical configuration, and documentation during the full life-cycle of the 101-SY Hydrogen Mitigation Test Project Mini-Data Acquisition and Control System of Tank Waste Remediation System.« less

  9. Variable gravity research facility

    NASA Technical Reports Server (NTRS)

    Allan, Sean; Ancheta, Stan; Beine, Donna; Cink, Brian; Eagon, Mark; Eckstein, Brett; Luhman, Dan; Mccowan, Daniel; Nations, James; Nordtvedt, Todd

    1988-01-01

    Spin and despin requirements; sequence of activities required to assemble the Variable Gravity Research Facility (VGRF); power systems technology; life support; thermal control systems; emergencies; communication systems; space station applications; experimental activities; computer modeling and simulation of tether vibration; cost analysis; configuration of the crew compartments; and tether lengths and rotation speeds are discussed.

  10. Proposed Facility Modifications to Support Propulsion Systems Testing Under Simulated Space Conditions at Plum Brook Station's Spacecraft Propulsion Research Facility (B-2)

    NASA Technical Reports Server (NTRS)

    Edwards, Daryl A.

    2008-01-01

    Preparing NASA's Plum Brook Station's Spacecraft Propulsion Research Facility (B-2) to support NASA's new generation of launch vehicles has raised many challenges for B-2's support staff. The facility provides a unique capability to test chemical propulsion systems/vehicles while simulating space thermal and vacuum environments. Designed and constructed in the early 1960s to support upper stage cryogenic engine/vehicle system development, the Plum Brook Station B-2 facility will require modifications to support the larger, more powerful, and more advanced engine systems for the next generation of vehicles leaving earth's orbit. Engine design improvements over the years have included large area expansion ratio nozzles, greater combustion chamber pressures, and advanced materials. Consequently, it has become necessary to determine what facility changes are required and how the facility can be adapted to support varying customers and their specific test needs. Exhaust system performance, including understanding the present facility capabilities, is the primary focus of this work. A variety of approaches and analytical tools are being employed to gain this understanding. This presentation discusses some of the challenges in applying these tools to this project and expected facility configuration to support the varying customer needs.

  11. A User's Guide for the Spacecraft Fire Safety Facility

    NASA Technical Reports Server (NTRS)

    Goldmeer, Jeffrey S.

    2000-01-01

    The Spacecraft Fire Safety Facility (SFSF) is a test facility that can be flown on NASA's reduced gravity aircraft to perform various types of combustion experiments under a variety of experimental conditions. To date, this facility has flown numerous times on the aircraft and has been used to perform experiments ranging from an examination of the effects transient depressurization on combustion, to ignition and flame spread. A list of pubfications/presentations based on experiments performed in the SFSF is included in the reference section. This facility consists of five main subsystems: combustion chamber, sample holders, gas flow system, imaging system, and the data acquisition/control system. Each of these subsystems will be reviewed in more detail. These subsystems provide the experiment operator with the ability to monitor and/or control numerous experimental parameters.

  12. EPA Facility Registry Service (FRS): CAMDBS

    EPA Pesticide Factsheets

    This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of facilities that link to the Clean Air Markets Division Business System (CAMDBS). Administered by the EPA Clean Air Markets Division, within the Office of Air and Radiation, CAMDBS supports the implementation of market-based air pollution control programs, including the Acid Rain Program and regional programs designed to reduce the transport of ozone. FRS identifies and geospatially locates facilities, sites or places subject to environmental regulations or of environmental interest. Using vigorous verification and data management procedures, FRS integrates facility data from EPA's national program systems, other federal agencies, and State and tribal master facility records and provides EPA with a centrally managed, single source of comprehensive and authoritative information on facilities. This data set contains the subset of FRS integrated facilities that link to CAMDBS facilities once the CAMDBS data has been integrated into the FRS database. Additional information on FRS is available at the EPA website https://www.epa.gov/enviro/facility-registry-service-frs.

  13. International Space Station Internal Thermal Control System Lab Module Simulator Build-Up and Validation

    NASA Technical Reports Server (NTRS)

    Wieland, Paul; Miller, Lee; Ibarra, Tom

    2003-01-01

    As part of the Sustaining Engineering program for the International Space Station (ISS), a ground simulator of the Internal Thermal Control System (ITCS) in the Lab Module was designed and built at the Marshall Space Flight Center (MSFC). To support prediction and troubleshooting, this facility is operationally and functionally similar to the flight system and flight-like components were used when available. Flight software algorithms, implemented using the LabVIEW(Registered Trademark) programming language, were used for monitoring performance and controlling operation. Validation testing of the low temperature loop was completed prior to activation of the Lab module in 2001. Assembly of the moderate temperature loop was completed in 2002 and validated in 2003. The facility has been used to address flight issues with the ITCS, successfully demonstrating the ability to add silver biocide and to adjust the pH of the coolant. Upon validation of the entire facility, it will be capable not only of checking procedures, but also of evaluating payload timelining, operational modifications, physical modifications, and other aspects affecting the thermal control system.

  14. 75 FR 18255 - Passenger Facility Charge Database System for Air Carrier Reporting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-09

    ... Facility Charge Database System for Air Carrier Reporting AGENCY: Federal Aviation Administration (FAA... the Passenger Facility Charge (PFC) database system to report PFC quarterly report information. In... developed a national PFC database system in order to more easily track the PFC program on a nationwide basis...

  15. Instrumentation, control and data management for the MIST (Modular Integrated Utility System) Facility

    NASA Technical Reports Server (NTRS)

    Celino, V. A.

    1977-01-01

    An appendix providing the technical data required for computerized control and/or monitoring of selected MIST subsystems is presented. Specific computerized functions to be performed are as follows: (1) Control of the MIST heating load simulator and monitoring of the diesel engine generators' cooling system; (2) Control of the MIST heating load simulator and MIST heating subsystem including the heating load simulator; and (3) Control of the MIST air conditioning load simulator subsystem and the MIST air conditioning subsystem, including cold thermal storage and condenser water flows.

  16. Users Guide for the National Transonic Facility Research Data System

    NASA Technical Reports Server (NTRS)

    Foster, Jean M.; Adcock, Jerry B.

    1996-01-01

    The National Transonic Facility is a complex cryogenic wind tunnel facility. This report briefly describes the facility, the data systems, and the instrumentation used to acquire research data. The computational methods and equations are discussed in detail and many references are listed for those who need additional technical information. This report is intended to be a user's guide, not a programmer's guide; therefore, the data reduction code itself is not documented. The purpose of this report is to assist personnel involved in conducting a test in the National Transonic Facility.

  17. Motion control system of MAX IV Laboratory soft x-ray beamlines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjöblom, Peter, E-mail: peter.sjoblom@maxlab.lu.se; Lindberg, Mirjam, E-mail: mirjam.lindberg@maxlab.lu.se; Forsberg, Johan, E-mail: johan.forsberg@maxlab.lu.se

    2016-07-27

    At the MAX IV Laboratory, five new soft x-ray beamlines are under development. The first is Species and it will be used to develop and set the standard of the control system, which will be common across the facility. All motion axes at MAX IV will be motorized using stepper motors steered by the IcePAP motion controller and a mixture of absolute and incremental encoders following a predefined coordinate system. The control system software is built in Tango and uses the Python-based Sardana framework. The user controls the entire beamline through a synoptic overview and Sardana is used to runmore » the scans.« less

  18. Refurbishment and Automation of the Thermal/Vacuum Facilities at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Donohue, John T.; Johnson, Chris; Ogden, Rick; Sushon, Janet

    1998-01-01

    The thermal/vacuum facilities located at the Goddard Space Flight Center (GSFC) have supported both manned and unmanned space flight since the 1960s. Of the 11 facilities, currently 10 of the systems are scheduled for refurbishment and/or replacement as part of a 5-year implementation. Expected return on investment includes the reduction in test schedules, improvements in the safety of facility operations, reduction in the complexity of a test and the reduction in personnel support required for a test. Additionally, GSFC will become a global resource renowned for expertise in thermal engineering, mechanical engineering and for the automation of thermal/vacuum facilities and thermal/vacuum tests. Automation of the thermal/vacuum facilities includes the utilization of Programmable Logic Controllers (PLCs) and the use of Supervisory Control and Data Acquisition (SCADA) systems. These components allow the computer control and automation of mechanical components such as valves and pumps. In some cases, the chamber and chamber shroud require complete replacement while others require only mechanical component retrofit or replacement. The project of refurbishment and automation began in 1996 and has resulted in the computer control of one Facility (Facility #225) and the integration of electronically controlled devices and PLCs within several other facilities. Facility 225 has been successfully controlled by PLC and SCADA for over one year. Insignificant anomalies have occurred and were resolved with minimal impact to testing and operations. The amount of work remaining to be performed will occur over the next four to five years. Fiscal year 1998 includes the complete refurbishment of one facility, computer control of the thermal systems in two facilities, implementation of SCADA and PLC systems to support multiple facilities and the implementation of a Database server to allow efficient test management and data analysis.

  19. A fail safe laser activated switch used as an emergency control link at the Langley Vortex Research Facility

    NASA Technical Reports Server (NTRS)

    Kassel, P. C., Jr.

    1978-01-01

    A fail safe light activated switch was used as an emergency control link at the Langley Vortex Research Facility. In this facility aircraft models were towed through a still air test chamber by a gasoline powered vehicle which was launched from one end of a 427-meter track and attained velocities to 31 m/sec in the test chamber. A 5 mW HeNe laser with a mechanical copper provided a connecting link with the moving tow vehicle on which a silicon photodiode receiver with a specially designed amplifier provided a fail safe switching action. This system provided an emergency means of stopping the vehicle by turning off the laser to interrupt the power to the vehicle ignition and brake release systems.

  20. 21 CFR 58.47 - Facilities for handling test and control articles.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Facilities for handling test and control articles. 58.47 Section 58.47 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... for handling test and control articles. (a) As necessary to prevent contamination or mixups, there...

  1. Design of barrier bucket kicker control system

    NASA Astrophysics Data System (ADS)

    Ni, Fa-Fu; Wang, Yan-Yu; Yin, Jun; Zhou, De-Tai; Shen, Guo-Dong; Zheng, Yang-De.; Zhang, Jian-Chuan; Yin, Jia; Bai, Xiao; Ma, Xiao-Li

    2018-05-01

    The Heavy-Ion Research Facility in Lanzhou (HIRFL) contains two synchrotrons: the main cooler storage ring (CSRm) and the experimental cooler storage ring (CSRe). Beams are extracted from CSRm, and injected into CSRe. To apply the Barrier Bucket (BB) method on the CSRe beam accumulation, a new BB technology based kicker control system was designed and implemented. The controller of the system is implemented using an Advanced Reduced Instruction Set Computer (RISC) Machine (ARM) chip and a field-programmable gate array (FPGA) chip. Within the architecture, ARM is responsible for data presetting and floating number arithmetic processing. The FPGA computes the RF phase point of the two rings and offers more accurate control of the time delay. An online preliminary experiment on HIRFL was also designed to verify the functionalities of the control system. The result shows that the reference trigger point of two different sinusoidal RF signals for an arbitrary phase point was acquired with a matched phase error below 1° (approximately 2.1 ns), and the step delay time better than 2 ns were realized.

  2. Fuel Flexible Gas Turbine Combustor Flametube Facility Upgraded

    NASA Technical Reports Server (NTRS)

    Little, James E.; Nemets, Steve A.; Tornabene, Robert T.; Smith, Timothy D.; Frankenfeld, Bruce J.

    2004-01-01

    In fiscal year 2003, test cell 23 of the Research Combustion Laboratory (RCL 23) at the NASA Glenn Research Center was upgraded with the addition of gaseous hydrogen as a working propellant and the addition of a 450-psig air-supply system. Test flexibility was further enhanced by upgrades to the facility control systems. RCL 23 can now test with gaseous hydrogen flow rates up to 0.05 lbm/sec and jet fuel flow rates up to 0.62 lbm/sec. Research airflow rates up to 3 lbm/sec are possible with the 450-psig supply system over a range of inlet temperatures. Nonvitiated, heated air is supplied from a shell and tube heat exchanger. The maximum nonvitiated facility air temperature is 1100 F at 1.5 lbm/sec. Research-section exhaust temperatures are limited to 3200 F because of material and cooling capacity limits. A variety of support systems are available depending on the research hardware configuration. Test section ignition can be provided via either a hydrogen air torch system or an electronic spark system. Emissions measurements are obtained with either pneumatically or electromechanically actuated gas sample probes, and the electromechanical system allows for radial measurements at a user-specified axial location for measurement of emissions profiles. Gas analysis data can be obtained for a variety of species, including carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NO and NOx), oxygen (O2), unburnt hydrocarbons, and unburnt hydrogen. Facility control is accomplished with a programmable logic control system. Facility operations have been upgraded to a system based on graphical user interface control screens. A data system is available for real-time acquisition and monitoring of both measurements in engineering units and performance calculations. The upgrades have made RCL 23 a highly flexible facility for research into low emissions gas turbine combustor concepts, and the flame tube configuration inherently allows for a variety of fuel nozzle

  3. Thermionic system evaluated test (TSET) facility description

    NASA Astrophysics Data System (ADS)

    Fairchild, Jerry F.; Koonmen, James P.; Thome, Frank V.

    1992-01-01

    A consortium of US agencies are involved in the Thermionic System Evaluation Test (TSET) which is being supported by the Strategic Defense Initiative Organization (SDIO). The project is a ground test of an unfueled Soviet TOPAZ-II in-core thermionic space reactor powered by electrical heat. It is part of the United States' national thermionic space nuclear power program. It will be tested in Albuquerque, New Mexico at the New Mexico Engineering Research Institute complex by the Phillips Laboratoty, Sandia National Laboratories, Los Alamos National Laboratory, and the University of New Mexico. One of TSET's many objectives is to demonstrate that the US can operate and test a complete space nuclear power system, in the electrical heater configuration, at a low cost. Great efforts have been made to help reduce facility costs during the first phase of this project. These costs include structural, mechanical, and electrical modifications to the existing facility as well as the installation of additional emergency systems to mitigate the effects of utility power losses and alkali metal fires.

  4. The Portuguese gamma irradiation facility

    NASA Astrophysics Data System (ADS)

    Mendes, C. M.; Almeida, J. C.; Botelho, M. L.; Cavaco, M. C.; Almeida-Vara, E.; Andrade, M. E.

    A Gamma Radiation Facility was built up in the National Laboratory of Industrial Technology and Engineering (LNETI), Lisbon, Portugal. This plant (UTR GAMA-Pi) is a Cobalt-60 dry storage continuous facility with a nominal capacity of 1.5X10 16 Bq. The initial activity is 1.1X10 16 Bq and the troughput capacity 10 3 ton/year for product with a bulk density of 0.2 g/cm 3 treated with a minimum absorbed dose of 25 kGy. Complementary control devices were installed: ventilation system, closed water refrigeration circuit, internal TV system, detection and extinction fire system and emergency power group. It must be emphasized that the best attention was given to the conception and efficiency of the interlock safety systems. This facility will be utilized mainly for radiosterilization of medical articles and decontamination of wine cork stoppers.

  5. A beamline systems model for Accelerator-Driven Transmutation Technology (ADTT) facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todd, A.M.M.; Paulson, C.C.; Peacock, M.A.

    1995-10-01

    A beamline systems code, that is being developed for Accelerator-Driven Transmutation Technology (ADTT) facility trade studies, is described. The overall program is a joint Grumman, G.H. Gillespie Associates (GHGA) and Los Alamos National Laboratory effort. The GHGA Accelerator Systems Model (ASM) has been adopted as the framework on which this effort is based. Relevant accelerator and beam transport models from earlier Grumman systems codes are being adapted to this framework. Preliminary physics and engineering models for each ADTT beamline component have been constructed. Examples noted include a Bridge Coupled Drift Tube Linac (BCDTL) and the accelerator thermal system. A decisionmore » has been made to confine the ASM framework principally to beamline modeling, while detailed target/blanket, balance-of-plant and facility costing analysis will be performed externally. An interfacing external balance-of-plant and facility costing model, which will permit the performance of iterative facility trade studies, is under separate development. An ABC (Accelerator Based Conversion) example is used to highlight the present models and capabilities.« less

  6. A beamline systems model for Accelerator-Driven Transmutation Technology (ADTT) facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todd, Alan M. M.; Paulson, C. C.; Peacock, M. A.

    1995-09-15

    A beamline systems code, that is being developed for Accelerator-Driven Transmutation Technology (ADTT) facility trade studies, is described. The overall program is a joint Grumman, G. H. Gillespie Associates (GHGA) and Los Alamos National Laboratory effort. The GHGA Accelerator Systems Model (ASM) has been adopted as the framework on which this effort is based. Relevant accelerator and beam transport models from earlier Grumman systems codes are being adapted to this framework. Preliminary physics and engineering models for each ADTT beamline component have been constructed. Examples noted include a Bridge Coupled Drift Tube Linac (BCDTL) and the accelerator thermal system. Amore » decision has been made to confine the ASM framework principally to beamline modeling, while detailed target/blanket, balance-of-plant and facility costing analysis will be performed externally. An interfacing external balance-of-plant and facility costing model, which will permit the performance of iterative facility trade studies, is under separate development. An ABC (Accelerator Based Conversion) example is used to highlight the present models and capabilities.« less

  7. Integration, design, and construction of a CELSS breadboard facility for bioregenerative life support system research

    NASA Technical Reports Server (NTRS)

    Prince, R.; Knott, W.; Buchanan, Paul

    1987-01-01

    Design criteria for the Biomass Production Chamber (BPC), preliminary operating procedures, and requirements for the future development of the Controlled Ecological Life Support System (CELSS) are discussed. CELSS, which uses a bioregenerative system, includes the following three major units: (1) a biomass production component to grow plants under controlled conditions; (2) food processing components to derive maximum edible content from all plant parts; and (3) waste management components to recover and recycle all solids, liquids, and gases necessary to support life. The current status of the CELSS breadboard facility is reviewed; a block diagram of a simplified version of CELSS and schematic diagrams of the BPS are included.

  8. Tritium Mitigation/Control for Advanced Reactor System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xiaodong; Christensen, Richard; Saving, John P.

    A tritium removal facility, which is similar to the design used for tritium recovery in fusion reactors, is proposed in this study for fluoride-salt-cooled high-temperature reactors (FHRs) to result in a two-loop FHR design with the elimination of an intermediate loop. Using this approach, an economic benefit can potentially be obtained by removing the intermediate loop, while the safety concern of tritium release can be mitigated. In addition, an intermediate heat exchanger (IHX) that can yield a similar tritium permeation rate to the production rate of 1.9 Ci/day in a 1,000 MWe PWR needs to be designed to prevent themore » residual tritium that is not captured in the tritium removal system from escaping into the power cycle and ultimately the environment. The main focus of this study is to aid the mitigation of tritium permeation issue from the FHR primary side to significantly reduce the concentration of tritium in the secondary side and the process heat application side (if applicable). The goal of the research is to propose a baseline FHR system without the intermediate loop. The specific objectives to accomplish the goals are: To estimate tritium permeation behavior in FHRs; To design a tritium removal system for FHRs; To meet the same tritium permeation level in FHRs as the tritium production rate of 1.9 Ci/day in 1,000 MWe PWRs; To demonstrate economic benefits of the proposed FHR system via comparing with the three-loop FHR system. The objectives were accomplished by designing tritium removal facilities, developing a tritium analysis code, and conducting an economic analysis. In the fusion reactor community, tritium extraction has been widely investigated and researched. Borrowing the experiences from the fusion reactor community, a tritium control and mitigation system was proposed. Based on mass transport theories, a tritium analysis code was developed, and the tritium behaviors were analyzed using the developed code. Tritium removal facilities were

  9. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov Websites

    hierarchical control architecture that enables a hybrid control approach, where centralized control systems will be complemented by distributed control algorithms for solar inverters and autonomous control of ), involves developing a novel control scheme that provides system-wide monitoring and control using a small

  10. Tri-axial square Helmholtz coil system at the Alibag Magnetic Observatory: upgraded to a magnetic sensor calibration facility

    NASA Astrophysics Data System (ADS)

    Mahavarkar, Prasanna; John, Jacob; Dhapre, Vijay; Dongre, Varun; Labde, Sachin

    2018-04-01

    A tri-axial square Helmholtz coil system for the study of palaeomagnetic studies, manufactured by GEOFYZIKA (former Czechoslovakia), was successfully commissioned at the Alibag Magnetic Observatory (IAGA code: ABG) in the year 1985. This system was used for a few years, after which the system encountered technical problems with the control unit. Rectification of the unit could not be undertaken, as the information document related to this system was not available, and as a result the system had been lying in an unused state for a long time, until 2015, when the system was recommissioned and upgraded to a test facility for calibrating the magnetometer sensors. We have upgraded the system with a constant current source and a data-logging unit. Both of these units have been designed and developed in the institute laboratory. Also, re-measurements of the existing system have been made thoroughly. The upgraded system is semi-automatic, enabling non-specialists to operate it after a brief period of instruction. This facility is now widely used at the parent institute and external institutions to calibrate magnetometers and it also serves as a national facility. Here the design of this system with the calibration results for the space-borne fluxgate magnetometers is presented.

  11. Power Up with Methane Gas: Struthers Water Pollution Control Facility

    EPA Pesticide Factsheets

    The city of Struthers received $5.4 million in ARRA funding from the Ohio’s CWSRF for a project that uses methane gas produced at the Struthers Water Pollution Control Facility to power unit treatment processes and offset the facility’s energy footprint.

  12. Safety systems in gamma irradiation facilities.

    PubMed

    Drndarevic, V

    1997-08-01

    A new electronic device has been developed to guard against individuals gaining entry through the product entry and exit ports into our irradiation facility for industrial sterilization. This device uses the output from electronic sensors and pressure mats to assure that only the transport cabins may pass through these ports. Any intention of personnel trespassing is detected, the process is stopped by the safety system, and the source is placed in safe position. Owing to a simple construction, the new device enables reliable operation, is inexpensive, easy to implement, and improves the existing safety systems.

  13. 48 CFR 952.204-73 - Facility clearance.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ....204-73 Section 952.204-73 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CLAUSES AND... granted by the Secretary of Energy. In addition, a Facility Clearance and foreign ownership, control and... Department of Energy Facility Clearance generally need not resubmit the following foreign ownership...

  14. 48 CFR 952.204-73 - Facility clearance.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ....204-73 Section 952.204-73 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CLAUSES AND... granted by the Secretary of Energy. In addition, a Facility Clearance and foreign ownership, control and... Department of Energy Facility Clearance generally need not resubmit the following foreign ownership...

  15. 48 CFR 952.204-73 - Facility clearance.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ....204-73 Section 952.204-73 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CLAUSES AND... granted by the Secretary of Energy. In addition, a Facility Clearance and foreign ownership, control and... Department of Energy Facility Clearance generally need not resubmit the following foreign ownership...

  16. 48 CFR 952.204-73 - Facility clearance.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ....204-73 Section 952.204-73 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CLAUSES AND... granted by the Secretary of Energy. In addition, a Facility Clearance and foreign ownership, control and... Department of Energy Facility Clearance generally need not resubmit the following foreign ownership...

  17. 48 CFR 952.204-73 - Facility clearance.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....204-73 Section 952.204-73 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CLAUSES AND... granted by the Secretary of Energy. In addition, a Facility Clearance and foreign ownership, control and... Department of Energy Facility Clearance generally need not resubmit the following foreign ownership...

  18. How Maryland increased infection prevention and control activity in long-term care facilities, 2003-2008.

    PubMed

    Roup, Brenda J; Scaletta, Joseph M

    2011-05-01

    In January 2003, the Maryland Department of Health and Mental Hygiene (DHMH) assessed the state of infection prevention and control (IPC) resources and practices in all long-term care facilities (LTC) in the state. Only 8.1% of facilities that responded employed a trained IPC professional (IP) who managed the facility IPC program. Between 2003 and 2008, the DHMH partnered with long-term care industry trade associations and spearheaded regulatory, educational, and financial initiatives to improve this situation. In January 2008, all LTC facilities in the state were resurveyed to determine the impact of these initiatives on IPC activities. The 2008 survey indicated that 44% of LTC facilities used a trained IP who managed the IPC program, a 5-fold increase from 2003. Unpublished DHMH outbreak data indicated that LTC facilities with a trained IP recognized and reported outbreaks to the local health department 2 days sooner than facilities without a trained IP, resulting in fewer cases of disease. Multiple initiatives with concerned stakeholders and LTC partners over the course of 5 years resulted in increased numbers of LTC facilities with trained IPs who recognized and responded to outbreaks sooner than facilities without trained IPs. Copyright © 2011 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  19. Research Electrical Distribution Bus | Energy Systems Integration Facility

    Science.gov Websites

    | NREL Research Electrical Distribution Bus Research Electrical Distribution Bus The research electrical distribution bus (REDB) is the heart of the Energy Systems Integration Facility electrical system throughout the laboratories. Photo of a technician performing maintenance on the Research Electrical

  20. Developing a control system for ARES 2

    NASA Technical Reports Server (NTRS)

    Fitzsimons, Philip M.

    1992-01-01

    A great deal of analysis and testing is conducted at the NASA Langley Research Center to support the development of safe and reliable helicopter rotor systems. This work is performed by the Rotorcraft Aeroelasticity Group located in the Transonic Dynamics Tunnel (TDT) facility. Over the past two decades a wide variety of tests have been successfully conducted in the TDT and their results have contributed significantly to the understanding of aeromechanical phenomena in rotor systems. This has led to improved tools for analysis and design, and ultimately to the development, of improved rotor systems. The TDT facility is ideally suited for these tests due to its unique ability to use a heavy gas as a working medium. This allows the model to be scaled such that the results obtained may be readily extrapolated to full scale. Until recently, the rotor system to be tested has been mounted on a fixed balance which is attached to the longeron which is attached to the stand through a single pitching degree of freedom. The testbed used is known as the Aeroelastic Rotor Experimental System (ARES 1). In order to extend the experimental capabilities to investigate the full rotor/body dynamic coupling present in a rotorcraft, a very ambitious project has been undertaken to design and construct a six degree of freedom system that can be controlled so as to emulate the inertial characteristics of a prescribed model fuselage. The electronic and mechanical hardware for this system has already been designed and constructed. This system is known ar ARES II. The rotor and its drive system are mounted on the balance which is attached to the longeron via six hydraulic actuators. This six degree of freedom parallel linkage is referred to in the literature as a Stuart Platform. By properly adjusting the length of the hydraulic actuators it is possible to position and orient the balance relative to the longeron. The longeron is attached to the stand via a pitch degree of freedom to allow

  1. Materials Characterization Laboratory | Energy Systems Integration Facility

    Science.gov Websites

    | NREL Materials Characterization Laboratory Materials Characterization Laboratory The Energy Systems Integration Facility's Materials Characterization Laboratory supports the physical and photo -electrochemical characterization of novel materials. Photo of an NREL researcher preparing samples for a gas

  2. Upgrades at the NASA Langley Research Center National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Paryz, Roman W.

    2012-01-01

    Several projects have been completed or are nearing completion at the NASA Langley Research Center (LaRC) National Transonic Facility (NTF). The addition of a Model Flow-Control/Propulsion Simulation test capability to the NTF provides a unique, transonic, high-Reynolds number test capability that is well suited for research in propulsion airframe integration studies, circulation control high-lift concepts, powered lift, and cruise separation flow control. A 1992 vintage Facility Automation System (FAS) that performs the control functions for tunnel pressure, temperature, Mach number, model position, safety interlock and supervisory controls was replaced using current, commercially available components. This FAS upgrade also involved a design study for the replacement of the facility Mach measurement system and the development of a software-based simulation model of NTF processes and control systems. The FAS upgrades were validated by a post upgrade verification wind tunnel test. The data acquisition system (DAS) upgrade project involves the design, purchase, build, integration, installation and verification of a new DAS by replacing several early 1990's vintage computer systems with state of the art hardware/software. This paper provides an update on the progress made in these efforts. See reference 1.

  3. Terminal configured vehicle program: Test facilities guide

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The terminal configured vehicle (TCV) program was established to conduct research and to develop and evaluate aircraft and flight management system technology concepts that will benefit conventional take off and landing operations in the terminal area. Emphasis is placed on the development of operating methods for the highly automated environment anticipated in the future. The program involves analyses, simulation, and flight experiments. Flight experiments are conducted using a modified Boeing 737 airplane equipped with highly flexible display and control equipment and an aft flight deck for research purposes. The experimental systems of the Boeing 737 are described including the flight control computer systems, the navigation/guidance system, the control and command panel, and the electronic display system. The ground based facilities used in the program are described including the visual motion simulator, the fixed base simulator, the verification and validation laboratory, and the radio frequency anechoic facility.

  4. Optical mass memory system (AMM-13). AMM/DBMS interface control document

    NASA Technical Reports Server (NTRS)

    Bailey, G. A.

    1980-01-01

    The baseline for external interfaces of a 10 to the 13th power bit, optical archival mass memory system (AMM-13) is established. The types of interfaces addressed include data transfer; AMM-13, Data Base Management System, NASA End-to-End Data System computer interconnect; data/control input and output interfaces; test input data source; file management; and facilities interface.

  5. Disease and disaster: Optimal deployment of epidemic control facilities in a spatially heterogeneous population with changing behaviour.

    PubMed

    Gaythorpe, Katy; Adams, Ben

    2016-05-21

    Epidemics of water-borne infections often follow natural disasters and extreme weather events that disrupt water management processes. The impact of such epidemics may be reduced by deployment of transmission control facilities such as clinics or decontamination plants. Here we use a relatively simple mathematical model to examine how demographic and environmental heterogeneities, population behaviour, and behavioural change in response to the provision of facilities, combine to determine the optimal configurations of limited numbers of facilities to reduce epidemic size, and endemic prevalence. We show that, if the presence of control facilities does not affect behaviour, a good general rule for responsive deployment to minimise epidemic size is to place them in exactly the locations where they will directly benefit the most people. However, if infected people change their behaviour to seek out treatment then the deployment of facilities offering treatment can lead to complex effects that are difficult to foresee. So careful mathematical analysis is the only way to get a handle on the optimal deployment. Behavioural changes in response to control facilities can also lead to critical facility numbers at which there is a radical change in the optimal configuration. So sequential improvement of a control strategy by adding facilities to an existing optimal configuration does not always produce another optimal configuration. We also show that the pre-emptive deployment of control facilities has conflicting effects. The configurations that minimise endemic prevalence are very different to those that minimise epidemic size. So cost-benefit analysis of strategies to manage endemic prevalence must factor in the frequency of extreme weather events and natural disasters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Waste receiving and processing plant control system; system design description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LANE, M.P.

    1999-02-24

    The Plant Control System (PCS) is a heterogeneous computer system composed of numerous sub-systems. The PCS represents every major computer system that is used to support operation of the Waste Receiving and Processing (WRAP) facility. This document, the System Design Description (PCS SDD), includes several chapters and appendices. Each chapter is devoted to a separate PCS sub-system. Typically, each chapter includes an overview description of the system, a list of associated documents related to operation of that system, and a detailed description of relevant system features. Each appendice provides configuration information for selected PCS sub-systems. The appendices are designed asmore » separate sections to assist in maintaining this document due to frequent changes in system configurations. This document is intended to serve as the primary reference for configuration of PCS computer systems. The use of this document is further described in the WRAP System Configuration Management Plan, WMH-350, Section 4.1.« less

  7. Development of an integrated control and measurement system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manges, W.W.

    1984-03-01

    This thesis presents a tutorial on the issues involved in the development of a minicomputer-based, distributed intelligence data acquisition and process control system to support complex experimental facilities. The particular system discussed in this thesis is under development for the Atomic Vapor Laser Isotope Separation (AVLIS) Program at the Oak Ridge Gaseous Diffusion Plant (ORGDP). In the AVLIS program, we were careful to integrate the computer sections of the implementation into the instrumentation system rather than adding them as an appendage. We then addressed the reliability and availability of the system as a separate concern. Thus, our concept of anmore » integrated control and measurement (ICAM) system forms the basis for this thesis. This thesis details the logic and philosophy that went into the development of this system and explains why the commercially available turn-key systems generally are not suitable. Also, the issues involved in the specification of the components for such an integrated system are emphasized.« less

  8. Rapid prototyping facility for flight research in artificial-intelligence-based flight systems concepts

    NASA Technical Reports Server (NTRS)

    Duke, E. L.; Regenie, V. A.; Deets, D. A.

    1986-01-01

    The Dryden Flight Research Facility of the NASA Ames Research Facility of the NASA Ames Research Center is developing a rapid prototyping facility for flight research in flight systems concepts that are based on artificial intelligence (AI). The facility will include real-time high-fidelity aircraft simulators, conventional and symbolic processors, and a high-performance research aircraft specially modified to accept commands from the ground-based AI computers. This facility is being developed as part of the NASA-DARPA automated wingman program. This document discusses the need for flight research and for a national flight research facility for the rapid prototyping of AI-based avionics systems and the NASA response to those needs.

  9. Proposed Facility Modifications to Support Propulsion Systems Testing Under Simulated Space Conditions at Plum Brook Station's Spacecraft Propulsion Research Facility (B-2)

    NASA Technical Reports Server (NTRS)

    Edwards, Daryl A.

    2007-01-01

    Preparing NASA's Plum Brook Station's Spacecraft Propulsion Research Facility (B-2) to support NASA's new generation of launch vehicles has raised many challenges for B-2 s support staff. The facility provides a unique capability to test chemical propulsion systems/vehicles while simulating space thermal and vacuum environments. Designed and constructed 4 decades ago to support upper stage cryogenic engine/vehicle system development, the Plum Brook Station B-2 facility will require modifications to support the larger, more powerful, and more advanced engine systems for the next generation of vehicles leaving earth's orbit. Engine design improvements over the years have included large area expansion ratio nozzles, greater combustion chamber pressures, and advanced materials. Consequently, it has become necessary to determine what facility changes are required and how the facility can be adapted to support varying customers and their specific test needs. Instrumental in this task is understanding the present facility capabilities and identifying what reasonable changes can be implemented. A variety of approaches and analytical tools are being employed to gain this understanding. This paper discusses some of the challenges in applying these tools to this project and expected facility configuration to support the varying customer needs.

  10. Dual-Spool Turbine Facility Design Overview

    NASA Technical Reports Server (NTRS)

    Giel, Paul; Pachlhofer, Pete

    2003-01-01

    The next generation of aircraft engines, both commercial and military, will attempt to capitalize on the benefits of close-coupled, vaneless, counter-rotating turbine systems. Experience has shown that significant risks and challenges are present with close-coupled systems in terms of efficiency and durability. The UEET program needs to demonstrate aerodynamic loading and efficiency goals for close-coupled, reduced-stage HP/LP turbine systems as a Level 1 Milestone for FY05. No research facility exists in the U.S. to provide risk reduction for successful development of close-coupled, high and low pressure turbine systems for the next generations of engines. To meet these objectives, the design, construction, and integrated systems testing of a Dual-Spool Turbine Facility (DSTF) facility has been initiated at the NASA Glenn Research Center. The facility will be a warm (-IOOO'F), continuous flow facility for overall aerodynamic performance and detailed flow field measurement acquisition. The facility will have state-of-the-art instrumentation to capture flow physics details. Accurate and reliable speed control will be achieved by utilizing the existing Variable Frequency Drive System. Utilization of this and other existing GRC centralized utilities will reduce the overall construction costs. The design allows for future installation of a turbine inlet combustor profile simulator. This presentation details the objectives of the facility and the concepts used in specifying its capabilities. Some preliminary design results will be presented along with a discussion of plans and schedules.

  11. Evaluation of power control concepts using the PMAD systems test bed. [Power Management and Distribution

    NASA Technical Reports Server (NTRS)

    Beach, R. F.; Kimnach, G. L.; Jett, T. A.; Trash, L. M.

    1989-01-01

    The Lewis Research Center's Power Management and Distribution (PMAD) System testbed and its use in the evaluation of control concepts applicable to the NASA Space Station Freedom electric power system (EPS) are described. The facility was constructed to allow testing of control hardware and software in an environment functionally similar to the space station electric power system. Control hardware and software have been developed to allow operation of the testbed power system in a manner similar to a supervisory control and data acquisition (SCADA) system employed by utility power systems for control. The system hardware and software are described.

  12. Development, application, and validation of a survey for infectious disease control practices at equine boarding facilities.

    PubMed

    Kirby, Alanna T; Traub-Dargatz, Josie L; Hill, Ashley E; Kogan, Lori R; Morley, Paul S; Heird, James C

    2010-11-15

    To develop a questionnaire for self-assessment of biosecurity practices at equine boarding facilities and to evaluate infectious disease control practices in these facilities in Colorado. Cross-sectional study. 64 equine boarding facilities in Colorado. Survey questions were rated according to importance for prevention and containment of equine infectious diseases. Point values (range, 0 to 20) were assigned for possible responses, with greater values given for optimal infection control methods. Questionnaires were mailed to equine boarding facilities in Colorado advertised on the World Wide Web. Survey responses were compared with assessments made by a member of the research team during visits to 30 randomly selected facilities. Agreement among results was analyzed via a kappa test and rated as poor, fair, moderate, substantial, or nearly perfect. Survey responses were received for 64 of 163 (39%) equine boarding facilities. Scores ranged from 106 to 402 points (maximum possible score, 418). Most facilities received better scores for movement and housing of equids than for other sections of the survey. Respondents at 24 of 48 (50%) facilities that routinely received new equids reported isolation of new arrivals. Agreement between self-assessment by survey respondents and evaluation by a member of the research team was determined to be fair to substantial. Most equine boarding facilities have opportunities to improve measures for prevention or containment of contagious diseases (eg, isolation of newly arrived equids and use of written health management protocols). Most self-assessments of infection control practices were accurate.

  13. Manufacturing Laboratory | Energy Systems Integration Facility | NREL

    Science.gov Websites

    Manufacturing Laboratory Manufacturing Laboratory Researchers in the Energy Systems Integration Facility's Manufacturing Laboratory develop methods and technologies to scale up renewable energy technology manufacturing capabilities. Photo of researchers and equipment in the Manufacturing Laboratory. Capability Hubs

  14. 47 CFR 74.750 - Transmission system facilities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Translator, and TV Booster Stations § 74.750 Transmission system facilities. (a) A low power TV, TV translator, or TV booster station shall operate with a transmitter that is either certificated for licensing... rebroadcasting TV booster transmitting equipment using a modulation process must meet the following requirements...

  15. 47 CFR 74.750 - Transmission system facilities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Translator, and TV Booster Stations § 74.750 Transmission system facilities. (a) A low power TV, TV translator, or TV booster station shall operate with a transmitter that is either certificated for licensing... rebroadcasting TV booster transmitting equipment using a modulation process must meet the following requirements...

  16. 47 CFR 74.750 - Transmission system facilities.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Translator, and TV Booster Stations § 74.750 Transmission system facilities. (a) A low power TV, TV translator, or TV booster station shall operate with a transmitter that is either certificated for licensing... rebroadcasting TV booster transmitting equipment using a modulation process must meet the following requirements...

  17. Mission Control Center (MCC) system specification for the shuttle Orbital Flight Test (OFT) timeframe

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The Mission Control Center Shuttle (MCC) Shuttle Orbital Flight Test (OFT) Data System (OFTDS) provides facilities for flight control and data systems personnel to monitor and control the Shuttle flights from launch (tower clear) to rollout (wheels stopped on runway). It also supports the preparation for flight (flight planning, flight controller and crew training, and integrated vehicle and network testing activities). The MCC Shuttle OFTDS is described in detail. Three major support systems of the OFTDS and the data types and sources of data entering or exiting the MCC were illustrated. These systems are the communication interface system, the data computation complex, and the display and control system.

  18. Automation and Upgrade of Thermal System for Large 38-Year-Young Test Facility

    NASA Technical Reports Server (NTRS)

    Webb, Andrew T.; Powers, Edward I. (Technical Monitor)

    2000-01-01

    The Goddard Space Flight Center's Space Environment Simulator (SES) facility has been improved by the upgrade of its thermal control hardware and software. This paper describes the preliminary design process, funding constraints, and the proposed enhancements as well as the installation details, the testing difficulties, and the overall benefits realized from this upgrade. The preliminary design process was discussed in a paper presented in October 1996 and will be recapped in this paper to provide background and comparison to actual product. Structuring the procurement process to match the funding constraints allowed Goddard to enhance its capabilities in an environment of reduced budgets. The installation of the new system into a location that has been occupied for over 38 years was one of the driving design factors for the size of the equipment. The installation was completed on time and under budget. The tuning of the automatic sequences for the new thermal system to the existing shroud system required more time and ultimately presented some setbacks to the vendor and the final completion of the system. However, the end product and its benefits to Goddard's thermal vacuum test portfolio will carry the usefulness of this facility well into the next century.

  19. Automation and Upgrade of Thermal System for Large 38-Year Young Test Facility

    NASA Technical Reports Server (NTRS)

    Webb, Andrew

    2000-01-01

    The Goddard Space Flight Center's Space Environment Simulator (SES) facility has been improved by the upgrade of its thermal control hardware and software. This paper describes the preliminary design process, funding constraints, and the proposed enhancements as well as the installation details, the testing difficulties, and the overall benefits realized from this upgrade. The preliminary design process was discussed in a paper presented in October 1996 and will be recapped in this paper to provide background and comparison to actual product. Structuring the procurement process to match the funding constraints allowed Goddard to enhance its capabilities in an environment of reduced budgets. The installation of the new system into a location that has been occupied for over 38-years was one of the driving design factors for the size of the equipment. The installation was completed on-time and under budget. The tuning of the automatic sequences for the new thermal system to the existing shroud system required more time and ultimately presented some setbacks to the vendor and the final completion of the system. However, the end product and its benefits to Goddard's thermal vacuum test portfolio will carry the usefulness of this facility well into the next century.

  20. Brayton Cycle Power System in the Space Power Facility

    NASA Image and Video Library

    1969-07-21

    Set up of a Brayton Cycle Power System test in the Space Power Facility’s massive vacuum chamber at the National Aeronautics and Space Administration’s (NASA) Plum Brook Station in Sandusky, Ohio. The $28.4-million facility, which began operations in 1969, is the largest high vacuum chamber ever built. The chamber is 100 feet in diameter and 120 feet high. It can produce a vacuum deep enough to simulate the conditions at 300 miles altitude. The Space Power Facility was originally designed to test nuclear-power sources for spacecraft, but it was never used for that purpose. The Space Power Facility was first used to test a 15 to 20-kilowatt Brayton Cycle Power System for space applications. Three different methods of simulating solar heat were employed during the tests. Lewis researchers studied the Brayton power system extensively in the 1960s and 1970s. The Brayton engine converted solar thermal energy into electrical power. The system operated on a closed-loop Brayton thermodynamic cycle with a helium-xenon gas mixture as its working fluid. A space radiator was designed to serve as the system’s waste heat rejecter. The radiator was later installed in the vacuum chamber and tested in a simulated space environment to determine its effect on the power conversion system. The Brayton system was subjected to simulated orbits with 62 minutes of sun and 34 minutes of shade.

  1. Pitfalls and Security Measures for the Mobile EMR System in Medical Facilities.

    PubMed

    Yeo, Kiho; Lee, Keehyuck; Kim, Jong-Min; Kim, Tae-Hun; Choi, Yong-Hoon; Jeong, Woo-Jin; Hwang, Hee; Baek, Rong Min; Yoo, Sooyoung

    2012-06-01

    The goal of this paper is to examine the security measures that should be reviewed by medical facilities that are trying to implement mobile Electronic Medical Record (EMR) systems designed for hospitals. The study of the security requirements for a mobile EMR system is divided into legal considerations and sectional security investigations. Legal considerations were examined with regard to remote medical services, patients' personal information and EMR, medical devices, the establishment of mobile systems, and mobile applications. For the 4 sectional security investigations, the mobile security level SL-3 from the Smartphone Security Standards of the National Intelligence Service (NIS) was used. From a compliance perspective, legal considerations for various laws and guidelines of mobile EMR were executed according to the model of the legal considerations. To correspond to the SL-3, separation of DMZ and wireless network is needed. Mobile access servers must be located in only the smartphone DMZ. Furthermore, security measures like 24-hour security control, WIPS, VPN, MDM, and ISMS for each section are needed to establish a secure mobile EMR system. This paper suggested a direction for applying regulatory measures to strengthen the security of a mobile EMR system in accordance with the standard security requirements presented by the Smartphone Security Guideline of the NIS. A future study on the materialization of these suggestions after their application at actual medical facilities can be used as an illustrative case to determine the degree to which theory and reality correspond with one another.

  2. 76 FR 20588 - FDA Food Safety Modernization Act: Focus on Preventive Controls for Facilities; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    .... FDA-2011-N-0251] FDA Food Safety Modernization Act: Focus on Preventive Controls for Facilities... comment. SUMMARY: The Food and Drug Administration (FDA) is announcing a public meeting entitled ``FDA... controls for facilities provisions of the recently enacted FDA Food Safety Modernization Act (FSMA). FDA is...

  3. Facility Systems, Ground Support Systems, and Ground Support Equipment General Design Requirements

    NASA Technical Reports Server (NTRS)

    Thaxton, Eric A.; Mathews, Roger E.

    2014-01-01

    This standard establishes requirements and guidance for design and fabrication of ground systems (GS) that includes: ground support equipment (GSE), ground support systems (GSS), and facility ground support systems (F GSS) to provide uniform methods and processes for design and development of robust, safe, reliable, maintainable, supportable, and cost-effective GS in support of space flight and institutional programs and projects.

  4. Cryogenic Fluid Management Facility

    NASA Technical Reports Server (NTRS)

    Eberhardt, R. N.; Bailey, W. J.; Symons, E. P.; Kroeger, E. W.

    1984-01-01

    The Cryogenic Fluid Management Facility (CFMF) is a reusable test bed which is designed to be carried into space in the Shuttle cargo bay to investigate systems and technologies required to efficiently and effectively manage cryogens in space. The facility hardware is configured to provide low-g verification of fluid and thermal models of cryogenic storage, transfer concepts and processes. Significant design data and criteria for future subcritical cryogenic storage and transfer systems will be obtained. Future applications include space-based and ground-based orbit transfer vehicles (OTV), space station life support, attitude control, power and fuel depot supply, resupply tankers, external tank (ET) propellant scavenging, space-based weapon systems and space-based orbit maneuvering vehicles (OMV). This paper describes the facility and discusses the cryogenic fluid management technology to be investigated. A brief discussion of the integration issues involved in loading and transporting liquid hydrogen within the Shuttle cargo bay is also included.

  5. Simulation of mass storage systems operating in a large data processing facility

    NASA Technical Reports Server (NTRS)

    Holmes, R.

    1972-01-01

    A mass storage simulation program was written to aid system designers in the design of a data processing facility. It acts as a tool for measuring the overall effect on the facility of on-line mass storage systems, and it provides the means of measuring and comparing the performance of competing mass storage systems. The performance of the simulation program is demonstrated.

  6. Operational viewpoint of the X-29A digital flight control system

    NASA Technical Reports Server (NTRS)

    Chacon, Vince; Mcbride, David

    1988-01-01

    In the past few years many flight control systems have been implemented as full-authority, full-time digital systems. The digital design has allowed flight control systems to make use of many enhanced elements that are generally considered too complex to implement in an analog system. Examples of these elements are redundant information exchanged between channels to allow for continued operation after multiple failures and multiple variable gain schedules to optimize control of the aircraft throughout its flight envelope and in all flight modes. The introduction of the digital system for flight control also created the problem of obtaining information from the system in an understandable and useful format. This paper presents how the X-29A was dealt with during its operations at NASA Ames-Dryden Flight Research Facility. A brief description of the X-29A control system, a discussion of the tools developed to aid in daily operations, and the troubleshooting of the aircraft are included.

  7. PSL Icing Facility Upgrade Overview

    NASA Technical Reports Server (NTRS)

    Griffin, Thomas A.; Dicki, Dennis J.; Lizanich, Paul J.

    2014-01-01

    The NASA Glenn Research Center Propulsion Systems Lab (PSL) was recently upgraded to perform engine inlet ice crystal testing in an altitude environment. The system installed 10 spray bars in the inlet plenum for ice crystal generation using 222 spray nozzles. As an altitude test chamber, the PSL is capable of simulating icing events at altitude in a groundtest facility. The system was designed to operate at altitudes from 4,000 to 40,000 ft at Mach numbers up to 0.8M and inlet total temperatures from -60 to +15 degF. This paper and presentation will be part of a series of presentations on PSL Icing and will cover the development of the icing capability through design, developmental testing, installation, initial calibration, and validation engine testing. Information will be presented on the design criteria and process, spray bar developmental testing at Cox and Co., system capabilities, and initial calibration and engine validation test. The PSL icing system was designed to provide NASA and the icing community with a facility that could be used for research studies of engine icing by duplicating in-flight events in a controlled ground-test facility. With the system and the altitude chamber we can produce flight conditions and cloud environments to simulate those encountered in flight. The icing system can be controlled to set various cloud uniformities, droplet median volumetric diameter (MVD), and icing water content (IWC) through a wide variety of conditions. The PSL chamber can set altitudes, Mach numbers, and temperatures of interest to the icing community and also has the instrumentation capability of measuring engine performance during icing testing. PSL last year completed the calibration and initial engine validation of the facility utilizing a Honeywell ALF502-R5 engine and has duplicated in-flight roll back conditions experienced during flight testing. This paper will summarize the modifications and buildup of the facility to accomplish these tests.

  8. Honey Lake Power Facility under construction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-12-01

    Geothermal energy and wood waste are primary energy sources for the 30 megawatt, net, Honey Lake Power Facility, a cogeneration power plant. The facility 60% completed in January 1989, will use 1,300 tons per day of fuel obtained from selective forest thinnings and from logging residue combined with mill wastes. The power plant will be the largest industrial facility to use some of Lassen County's geothermal resources. The facility will produce 236 million kilowatt-hours of electricity annually. The plant consists of a wood-fired traveling grate furnace with a utility-type high pressure boiler. Fluids from a geothermal well will pass throughmore » a heat exchange to preheat boiler feedwater. Used geothermal fluid will be disposed of in an injection well. Steam will be converted to electrical power through a 35.5-megawatt turbine generator and transmitted 22 miles to Susanville over company-owned and maintained transmission lines. The plant includes pollution control for particulate removal, ammonia injection for removal of nitrogen oxides, and computer-controlled combustion systems to control carbon monoxide and hydrocarbons. The highly automated wood yard consists of systems to remove metal, handle oversized material, receive up to six truck loads of wood products per hour, and continuously deliver 58 tons per hour of fuel through redundant systems to ensure maximum on-line performance. The plant is scheduled to become operational in mid-1989.« less

  9. 33 CFR 149.418 - What fire protection system must a helicopter fueling facility have?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... a helicopter fueling facility have? 149.418 Section 149.418 Navigation and Navigable Waters COAST... protection system must a helicopter fueling facility have? In addition to the portable fire extinguishers required under table 149.409, each helicopter fueling facility must have a fire protection system complying...

  10. 33 CFR 149.418 - What fire protection system must a helicopter fueling facility have?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... a helicopter fueling facility have? 149.418 Section 149.418 Navigation and Navigable Waters COAST... protection system must a helicopter fueling facility have? In addition to the portable fire extinguishers required under table 149.409, each helicopter fueling facility must have a fire protection system complying...

  11. 33 CFR 149.418 - What fire protection system must a helicopter fueling facility have?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... a helicopter fueling facility have? 149.418 Section 149.418 Navigation and Navigable Waters COAST... protection system must a helicopter fueling facility have? In addition to the portable fire extinguishers required under table 149.409, each helicopter fueling facility must have a fire protection system complying...

  12. The Deep Space Network. [tracking and communication functions and facilities

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The objectives, functions, and organization of the Deep Space Network are summarized. The Deep Space Instrumentation Facility, the Ground Communications Facility, and the Network Control System are described.

  13. Design requirements for SRB production control system. Volume 2: System requirements and conceptual description

    NASA Technical Reports Server (NTRS)

    1981-01-01

    In the development of the business system for the SRB automated production control system, special attention had to be paid to the unique environment posed by the space shuttle. The issues posed by this environment, and the means by which they were addressed, are reviewed. The change in management philosphy which will be required as NASA switches from one-of-a-kind launches to multiple launches is discussed. The implications of the assembly process on the business system are described. These issues include multiple missions, multiple locations and facilities, maintenance and refurbishment, multiple sources, and multiple contractors. The implications of these aspects on the automated production control system are reviewed including an assessment of the six major subsystems, as well as four other subsystem. Some general system requirements which flow through the entire business system are described.

  14. 47 CFR 74.750 - Transmission system facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Translator, and TV Booster Stations § 74.750 Transmission system facilities. (a) A low power TV, TV translator, or TV booster station shall operate with a transmitter that is either certificated for licensing... and TV translator transmitters will be certificated by the FCC: (1) The equipment shall be so designed...

  15. Compliance with infection prevention and control in oral health-care facilities: a global perspective.

    PubMed

    Oosthuysen, Jeanné; Potgieter, Elsa; Fossey, Annabel

    2014-12-01

    Many publications are available on the topic of compliance with infection prevention and control in oral health-care facilities all over the world. The approaches of developing and developed countries show wide variation, but the principles of infection prevention and control are the same globally. This study is a systematic review and global perspective of the available literature on infection prevention and control in oral health-care facilities. Nine focus areas on compliance with infection-control measures were investigated: knowledge of infectious occupational hazards; personal hygiene and care of hands; correct application of personal protective equipment; use of environmental barriers and disposable items; sterilisation (recirculation) of instruments and handpieces; disinfection (surfaces) and housekeeping; management of waste disposal; quality control of dental unit waterlines, biofilms and water; and some special considerations. Various international studies from developed countries have reported highly scientific evidence-based information. In developed countries, the resources for infection prevention and control are freely available, which is not the case in developing countries. The studies in developing countries also indicate serious shortcomings with regard to infection prevention and control knowledge and education in oral health-care facilities. This review highlights the fact that availability of resources will always be a challenge, but more so in developing countries. This presents unique challenges and the opportunity for innovative thinking to promote infection prevention and control. © 2014 FDI World Dental Federation.

  16. The Generic Data Capture Facility

    NASA Technical Reports Server (NTRS)

    Connell, Edward B.; Barnes, William P.; Stallings, William H.

    1987-01-01

    The Generic Data Capture Facility, which can provide data capture support for a variety of different types of spacecraft while enabling operations costs to be carefully controlled, is discussed. The data capture functions, data protection, isolation of users from data acquisition problems, data reconstruction, and quality and accounting are addressed. The TDM and packet data formats utilized by the system are described, and the development of generic facilities is considered.

  17. Executive control systems in the engineering design environment

    NASA Technical Reports Server (NTRS)

    Hurst, P. W.; Pratt, T. W.

    1985-01-01

    Executive Control Systems (ECSs) are software structures for the unification of various engineering design application programs into comprehensive systems with a central user interface (uniform access) method and a data management facility. Attention is presently given to the most significant determinations of a research program conducted for 24 ECSs, used in government and industry engineering design environments to integrate CAD/CAE applications programs. Characterizations are given for the systems' major architectural components and the alternative design approaches considered in their development. Attention is given to ECS development prospects in the areas of interdisciplinary usage, standardization, knowledge utilization, and computer science technology transfer.

  18. Demonstration of Antimicrobial Corrosion-Resisting Interior Coating Systems for Military Facilities in Warm, Humid Locations

    DTIC Science & Technology

    2017-06-01

    ER D C/ CE RL T R- 17 -1 9 DoD Corrosion Prevention and Control Program Demonstration of Antimicrobial Corrosion- Resisting Interior ...Demonstration of Antimicrobial Corrosion- Resisting Interior Coating Systems for Military Facilities in Warm, Humid Locations Final Report on...Under Project F10-AR04, “Application of New Corrosion-Resistant Mold Abatement Technologies for Interior Surfaces of Buildings at Fort Polk, LA” ERDC

  19. An empirical study on energy efficiency improvement through photovoltaic systems and a LED lighting control system

    NASA Astrophysics Data System (ADS)

    Choi, Young Kwan; Lee, Jae Hyeong

    2015-09-01

    In this research, a facility was constructed and its performance was analyzed to improve the energy efficiency of a vertical-type water treatment building. After the design and construction of a fixed tilt Photovoltaic in Building (PVIB) on the rooftop using a crystalline silicon solar cell module and photovoltaic generator integrated with the building by using a Building Integrated Photovoltaic System (BIPV), a thin-film module on the rooftop and outer wall of water treatment building, and the generation efficiency was analyzed. Also, a DC distribution was established for use of a brushless DC (BLDC) pump motor, and the existing lighting-facility-based manual on-off method was turned into a system for energy conservation by controlling light emitting diode (LED) through a wireless motion sensor and dimming control. In addition, a Building Energy Management System (BEMS) for a real-time analysis of the energy efficiency for a vertical0type water treatment building was prepared and tested. The vertical-type water treatment building developed in this study is currently operating the BEMS. The vertical-type water treatment building reported in this paper is expected to reduce energy consumption by about 30% compared to existing water treatment systems.

  20. Auditing radiation sterilization facilities

    NASA Astrophysics Data System (ADS)

    Beck, Jeffrey A.

    The diversity of radiation sterilization systems available today places renewed emphasis on the need for thorough Quality Assurance audits of these facilities. Evaluating compliance with Good Manufacturing Practices is an obvious requirement, but an effective audit must also evaluate installation and performance qualification programs (validation_, and process control and monitoring procedures in detail. The present paper describes general standards that radiation sterilization operations should meet in each of these key areas, and provides basic guidance for conducting QA audits of these facilities.

  1. Operation and Maintenance of Water Pollution Control Facilities: A WPCF White Paper.

    ERIC Educational Resources Information Center

    Hill, William R.; And Others

    1979-01-01

    Presented are the recommendations of the Water Pollution Control Federation for operation and maintenance consideration during the planning design, construction, and operation of wastewater treatment facilities. (CS)

  2. The MOVE study: a study protocol for a randomised controlled trial assessing interventions to maximise attendance at physical activity facilities.

    PubMed

    Newton, Joshua D; Klein, Ruth; Bauman, Adrian; Newton, Fiona J; Mahal, Ajay; Gilbert, Kara; Piterman, Leon; Ewing, Michael T; Donovan, Robert J; Smith, Ben J

    2015-04-18

    Physical activity is associated with a host of health benefits, yet many individuals do not perform sufficient physical activity to realise these benefits. One approach to rectifying this situation is through modifying the built environment to make it more conducive to physical activity, such as by building walking tracks or recreational physical activity facilities. Often, however, modifications to the built environment are not connected to efforts aimed at encouraging their use. The purpose of the Monitoring and Observing the Value of Exercise (MOVE) study is to evaluate the effectiveness of two interventions designed to encourage the ongoing use of a new, multi-purpose, community-based physical activity facility. A two-year, randomised controlled trial with yearly survey points (baseline, 12 months follow-up, 24 months follow-up) will be conducted among 1,300 physically inactive adult participants aged 18-70 years. Participants will be randomly assigned to one of three groups: control, intervention 1 (attendance incentives), or intervention 2 (attendance incentives and tailored support following a model based on customer relationship management). Primary outcome measures will include facility usage, physical activity participation, mental and physical wellbeing, community connectedness, social capital, friendship, and social support. Secondary outcome measures will include stages of change for facility usage and social cognitive decision-making variables. This study will assess whether customer relationship management systems, a tool commonly used in commercial marketing settings, can encourage the ongoing use of a physical activity facility. Findings may also indicate the population segments among which the use of such systems are most effective, as well as their cost-effectiveness. Australian New Zealand Clinical Trials Registry: ACTRN12615000012572 (registered 9 January 2015).

  3. Supplemental multilayer insulation research facility

    NASA Technical Reports Server (NTRS)

    Dempsey, P. J.; Stochl, R. J.

    1995-01-01

    The Supplemental Multilayer Insulation Research Facility (SMIRF) provides a small scale test bed for conducting cryogenic experiments in a vacuum environment. The facility vacuum system is capable of simulating a Space Shuttle launch pressure profile as well as providing a steady space vacuum environment of 1.3 x 10(exp -4) Newton/sq meter (1 x 10(exp -6) torr). Warm side boundary temperatures can be maintained constant between 111 K (200 R) and 361 K (650 R) using a temperature controlled shroud. The shroud can also simulate a typical lunar day-night temperature profile. The test hardware consists of a cryogenic calorimeter supported by the lid of the vacuum chamber. A 0.45 cu meter (120 gallon) vacuum jacketed storage/supply tank is available for conditioning the cryogen prior to use in the calorimeter. The facility was initially designed to evaluate the thermal performance of insulation systems for long-term storage in space. The facility has recently been used to evaluate the performance of various new insulation systems for LH2 and LN2 ground storage dewars.

  4. International Space Station Sustaining Engineering: A Ground-Based Test Bed for Evaluating Integrated Environmental Control and Life Support System and Internal Thermal Control System Flight Performance

    NASA Technical Reports Server (NTRS)

    Ray, Charles D.; Perry, Jay L.; Callahan, David M.

    2000-01-01

    As the International Space Station's (ISS) various habitable modules are placed in service on orbit, the need to provide for sustaining engineering becomes increasingly important to ensure the proper function of critical onboard systems. Chief among these are the Environmental Control and Life Support System (ECLSS) and the Internal Thermal Control System (ITCS). Without either, life onboard the ISS would prove difficult or nearly impossible. For this reason, a ground-based ECLSS/ITCS hardware performance simulation capability has been developed at NASA's Marshall Space Flight Center. The ECLSS/ITCS Sustaining Engineering Test Bed will be used to assist the ISS Program in resolving hardware anomalies and performing periodic performance assessments. The ISS flight configuration being simulated by the test bed is described as well as ongoing activities related to its preparation for supporting ISS Mission 5A. Growth options for the test facility are presented whereby the current facility may be upgraded to enhance its capability for supporting future station operation well beyond Mission 5A. Test bed capabilities for demonstrating technology improvements of ECLSS hardware are also described.

  5. Data Acquisition System Architecture and Capabilities At NASA GRC Plum Brook Station's Space Environment Test Facilities

    NASA Technical Reports Server (NTRS)

    Evans, Richard K.; Hill, Gerald M.

    2012-01-01

    Very large space environment test facilities present unique engineering challenges in the design of facility data systems. Data systems of this scale must be versatile enough to meet the wide range of data acquisition and measurement requirements from a diverse set of customers and test programs, but also must minimize design changes to maintain reliability and serviceability. This paper presents an overview of the common architecture and capabilities of the facility data acquisition systems available at two of the world?s largest space environment test facilities located at the NASA Glenn Research Center?s Plum Brook Station in Sandusky, Ohio; namely, the Space Propulsion Research Facility (commonly known as the B-2 facility) and the Space Power Facility (SPF). The common architecture of the data systems is presented along with details on system scalability and efficient measurement systems analysis and verification. The architecture highlights a modular design, which utilizes fully-remotely managed components, enabling the data systems to be highly configurable and support multiple test locations with a wide-range of measurement types and very large system channel counts.

  6. Data Acquisition System Architecture and Capabilities at NASA GRC Plum Brook Station's Space Environment Test Facilities

    NASA Technical Reports Server (NTRS)

    Evans, Richard K.; Hill, Gerald M.

    2014-01-01

    Very large space environment test facilities present unique engineering challenges in the design of facility data systems. Data systems of this scale must be versatile enough to meet the wide range of data acquisition and measurement requirements from a diverse set of customers and test programs, but also must minimize design changes to maintain reliability and serviceability. This paper presents an overview of the common architecture and capabilities of the facility data acquisition systems available at two of the world's largest space environment test facilities located at the NASA Glenn Research Center's Plum Brook Station in Sandusky, Ohio; namely, the Space Propulsion Research Facility (commonly known as the B-2 facility) and the Space Power Facility (SPF). The common architecture of the data systems is presented along with details on system scalability and efficient measurement systems analysis and verification. The architecture highlights a modular design, which utilizes fully-remotely managed components, enabling the data systems to be highly configurable and support multiple test locations with a wide-range of measurement types and very large system channel counts.

  7. A Description of the Development, Capabilities, and Operational Status of the Test SLATE Data Acquisition System at the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Cramer, Christopher J.; Wright, James D.; Simmons, Scott A.; Bobbitt, Lynn E.; DeMoss, Joshua A.

    2015-01-01

    The paper will present a brief background of the previous data acquisition system at the National Transonic Facility (NTF) and the reasoning and goals behind the upgrade to the current Test SLATE (Test Software Laboratory and Automated Testing Environments) data acquisition system. The components, performance characteristics, and layout of the Test SLATE system within the NTF control room will be discussed. The development, testing, and integration of Test SLATE within NTF operations will be detailed. The operational capabilities of the system will be outlined including: test setup, instrumentation calibration, automatic test sequencer setup, data recording, communication between data and facility control systems, real time display monitoring, and data reduction. The current operational status of the Test SLATE system and its performance during recent NTF testing will be highlighted including high-speed, frame-by-frame data acquisition with conditional sampling post-processing applied. The paper concludes with current development work on the system including the capability for real-time conditional sampling during data acquisition and further efficiency enhancements to the wind tunnel testing process.

  8. Higher Education Facilities: The SmartGrid Earns a Doctorate in Economics

    ERIC Educational Resources Information Center

    Tysseling, John C.; Zibelman, Audrey; Freifeld, Allen

    2011-01-01

    Most higher education facilities have already accomplished some measure of a "microgrid" investment with building control systems (BCS), energy management systems (EMS), and advanced metering infrastructure (AMI) installations. Available energy production facilities may include boilers, chillers, cogeneration, thermal storage, electrical…

  9. Open control/display system for a telerobotics work station

    NASA Technical Reports Server (NTRS)

    Keslowitz, Saul

    1987-01-01

    A working Advanced Space Cockpit was developed that integrated advanced control and display devices into a state-of-the-art multimicroprocessor hardware configuration, using window graphics and running under an object-oriented, multitasking real-time operating system environment. This Open Control/Display System supports the idea that the operator should be able to interactively monitor, select, control, and display information about many payloads aboard the Space Station using sets of I/O devices with a single, software-reconfigurable workstation. This is done while maintaining system consistency, yet the system is completely open to accept new additions and advances in hardware and software. The Advanced Space Cockpit, linked to Grumman's Hybrid Computing Facility and Large Amplitude Space Simulator (LASS), was used to test the Open Control/Display System via full-scale simulation of the following tasks: telerobotic truss assembly, RCS and thermal bus servicing, CMG changeout, RMS constrained motion and space constructible radiator assembly, HPA coordinated control, and OMV docking and tumbling satellite retrieval. The proposed man-machine interface standard discussed has evolved through many iterations of the tasks, and is based on feedback from NASA and Air Force personnel who performed those tasks in the LASS.

  10. Developing Mobile BIM/2D Barcode-Based Automated Facility Management System

    PubMed Central

    Chen, Yen-Pei

    2014-01-01

    Facility management (FM) has become an important topic in research on the operation and maintenance phase. Managing the work of FM effectively is extremely difficult owing to the variety of environments. One of the difficulties is the performance of two-dimensional (2D) graphics when depicting facilities. Building information modeling (BIM) uses precise geometry and relevant data to support the facilities depicted in three-dimensional (3D) object-oriented computer-aided design (CAD). This paper proposes a new and practical methodology with application to FM that uses an integrated 2D barcode and the BIM approach. Using 2D barcode and BIM technologies, this study proposes a mobile automated BIM-based facility management (BIMFM) system for FM staff in the operation and maintenance phase. The mobile automated BIMFM system is then applied in a selected case study of a commercial building project in Taiwan to verify the proposed methodology and demonstrate its effectiveness in FM practice. The combined results demonstrate that a BIMFM-like system can be an effective mobile automated FM tool. The advantage of the mobile automated BIMFM system lies not only in improving FM work efficiency for the FM staff but also in facilitating FM updates and transfers in the BIM environment. PMID:25250373

  11. Developing mobile BIM/2D barcode-based automated facility management system.

    PubMed

    Lin, Yu-Cheng; Su, Yu-Chih; Chen, Yen-Pei

    2014-01-01

    Facility management (FM) has become an important topic in research on the operation and maintenance phase. Managing the work of FM effectively is extremely difficult owing to the variety of environments. One of the difficulties is the performance of two-dimensional (2D) graphics when depicting facilities. Building information modeling (BIM) uses precise geometry and relevant data to support the facilities depicted in three-dimensional (3D) object-oriented computer-aided design (CAD). This paper proposes a new and practical methodology with application to FM that uses an integrated 2D barcode and the BIM approach. Using 2D barcode and BIM technologies, this study proposes a mobile automated BIM-based facility management (BIMFM) system for FM staff in the operation and maintenance phase. The mobile automated BIMFM system is then applied in a selected case study of a commercial building project in Taiwan to verify the proposed methodology and demonstrate its effectiveness in FM practice. The combined results demonstrate that a BIMFM-like system can be an effective mobile automated FM tool. The advantage of the mobile automated BIMFM system lies not only in improving FM work efficiency for the FM staff but also in facilitating FM updates and transfers in the BIM environment.

  12. EPA Facility Registry Service (FRS): OIL

    EPA Pesticide Factsheets

    This dataset contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of facilities that link to the Oil database. The Oil database contains information on Spill Prevention, Control, and Countermeasure (SPCC) and Facility Response Plan (FRP) subject facilities to prevent and respond to oil spills. FRP facilities are referred to as substantial harm facilities due to the quantities of oil stored and facility characteristics. FRS identifies and geospatially locates facilities, sites or places subject to environmental regulations or of environmental interest. Using vigorous verification and data management procedures, FRS integrates facility data from EPA's national program systems, other federal agencies, and State and tribal master facility records and provides EPA with a centrally managed, single source of comprehensive and authoritative information on facilities. This data set contains the subset of FRS integrated facilities that link to Oil facilities once the Oil data has been integrated into the FRS database. Additional information on FRS is available at the EPA website https://www.epa.gov/enviro/facility-registry-service-frs.

  13. Design and Testing of a Breadboard Electrical Power Control Unit for the Fluid Combustion Facility Experiment

    NASA Technical Reports Server (NTRS)

    Kimnach, Greg L.; Lebron, Ramon C.

    1999-01-01

    The Fluid Combustion Facility (FCF) Project and the Power Technology Division at the NASA Glenn Research Center (GRC) at Lewis Field in Cleveland, OH along with the Sundstrand Corporation in Rockford, IL are jointly developing an Electrical Power Converter Unit (EPCU) for the Fluid Combustion Facility to be flown on the International Space Station (ISS). The FCF facility experiment contains three racks: A core rack, a combustion rack, and a fluids rack. The EPCU will be used as the power interface to the ISS 120V(sub dc) power distribution system by each FCF experiment rack which requires 28V(sub dc). The EPCU is a modular design which contains three 120V(sub dc)-to-28V(sub dc) full-bridge, power converters rated at 1 kW(sub e) each bus transferring input relays and solid-state, current-limiting input switches, 48 current-limiting, solid-state, output switches; and control and telemetry hardware. The EPCU has all controls required to autonomously share load demand between the power feeds and--if absolutely necessary--shed loads. The EPCU, which maximizes the usage of allocated ISS power and minimizes loss of power to loads, can be paralleled with other EPCUs. This paper overviews the electrical design and operating characteristics of the EPCU and presents test data from the breadboard design.

  14. Recent advances in automatic alignment system for the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Wilhelmsen, Karl; Awwal, Abdul A. S.; Kalantar, Dan; Leach, Richard; Lowe-Webb, Roger; McGuigan, David; Miller Kamm, Vicki

    2011-03-01

    The automatic alignment system for the National Ignition Facility (NIF) is a large-scale parallel system that directs all 192 laser beams along the 300-m optical path to a 50-micron focus at target chamber in less than 50 minutes. The system automatically commands 9,000 stepping motors to adjust mirrors and other optics based upon images acquired from high-resolution digital cameras viewing beams at various locations. Forty-five control loops per beamline request image processing services running on a LINUX cluster to analyze these images of the beams and references, and automatically steer the beams toward the target. This paper discusses the upgrades to the NIF automatic alignment system to handle new alignment needs and evolving requirements as related to various types of experiments performed. As NIF becomes a continuously-operated system and more experiments are performed, performance monitoring is increasingly important for maintenance and commissioning work. Data, collected during operations, is analyzed for tuning of the laser and targeting maintenance work. Handling evolving alignment and maintenance needs is expected for the planned 30-year operational life of NIF.

  15. Pitfalls and Security Measures for the Mobile EMR System in Medical Facilities

    PubMed Central

    Yeo, Kiho; Lee, Keehyuck; Kim, Jong-Min; Kim, Tae-Hun; Choi, Yong-Hoon; Jeong, Woo-Jin; Hwang, Hee; Baek, Rong Min

    2012-01-01

    Objectives The goal of this paper is to examine the security measures that should be reviewed by medical facilities that are trying to implement mobile Electronic Medical Record (EMR) systems designed for hospitals. Methods The study of the security requirements for a mobile EMR system is divided into legal considerations and sectional security investigations. Legal considerations were examined with regard to remote medical services, patients' personal information and EMR, medical devices, the establishment of mobile systems, and mobile applications. For the 4 sectional security investigations, the mobile security level SL-3 from the Smartphone Security Standards of the National Intelligence Service (NIS) was used. Results From a compliance perspective, legal considerations for various laws and guidelines of mobile EMR were executed according to the model of the legal considerations. To correspond to the SL-3, separation of DMZ and wireless network is needed. Mobile access servers must be located in only the smartphone DMZ. Furthermore, security measures like 24-hour security control, WIPS, VPN, MDM, and ISMS for each section are needed to establish a secure mobile EMR system. Conclusions This paper suggested a direction for applying regulatory measures to strengthen the security of a mobile EMR system in accordance with the standard security requirements presented by the Smartphone Security Guideline of the NIS. A future study on the materialization of these suggestions after their application at actual medical facilities can be used as an illustrative case to determine the degree to which theory and reality correspond with one another. PMID:22844648

  16. Computational Control of Flexible Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Sharpe, Lonnie, Jr.; Shen, Ji Yao

    1994-01-01

    The main objective of this project is to establish a distributed parameter modeling technique for structural analysis, parameter estimation, vibration suppression and control synthesis of large flexible aerospace structures. This report concentrates on the research outputs produced in the last two years of the project. The main accomplishments can be summarized as follows. A new version of the PDEMOD Code had been completed. A theoretical investigation of the NASA MSFC two-dimensional ground-based manipulator facility by using distributed parameter modelling technique has been conducted. A new mathematical treatment for dynamic analysis and control of large flexible manipulator systems has been conceived, which may provide a embryonic form of a more sophisticated mathematical model for future modified versions of the PDEMOD Codes.

  17. Controlled Ecological Life Support Systems (CELSS) conceptual design option study

    NASA Technical Reports Server (NTRS)

    Oleson, Melvin; Olson, Richard L.

    1986-01-01

    Results are given of a study to explore options for the development of a Controlled Ecological Life Support System (CELSS) for a future Space Station. In addition, study results will benefit the design of other facilities such as the Life Sciences Research Facility, a ground-based CELSS demonstrator, and will be useful in planning longer range missions such as a lunar base or manned Mars mission. The objectives were to develop weight and cost estimates for one CELSS module selected from a set of preliminary plant growth unit (PGU) design options. Eleven Space Station CELSS module conceptual PGU designs were reviewed, components and subsystems identified and a sensitivity analysis performed. Areas where insufficient data is available were identified and divided into the categories of biological research, engineering research, and technology development. Topics which receive significant attention are lighting systems for the PGU, the use of automation within the CELSS system, and electric power requirements. Other areas examined include plant harvesting and processing, crop mix analysis, air circulation and atmosphere contaminant flow subsystems, thermal control considerations, utility routing including accessibility and maintenance, and nutrient subsystem design.

  18. Flight-testing of the self-repairing flight control system using the F-15 highly integrated digital electronic control flight research facility

    NASA Technical Reports Server (NTRS)

    Stewart, James F.; Shuck, Thomas L.

    1990-01-01

    Flight tests conducted with the self-repairing flight control system (SRFCS) installed on the NASA F-15 highly integrated digital electronic control aircraft are described. The development leading to the current SRFCS configuration is highlighted. Key objectives of the program are outlined: (1) to flight-evaluate a control reconfiguration strategy with three types of control surface failure; (2) to evaluate a cockpit display that will inform the pilot of the maneuvering capacity of the damage aircraft; and (3) to flight-evaluate the onboard expert system maintenance diagnostics process using representative faults set to occur only under maneuvering conditions. Preliminary flight results addressing the operation of the overall system, as well as the individual technologies, are included.

  19. 7 CFR 1726.176 - Communications and control facilities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... line carrier communications systems, load control, and supervisory control and data acquisition (SCADA...) Load control systems, communications systems, and SCADA systems—(1) Contract forms. The borrower must...

  20. 7 CFR 1726.176 - Communications and control facilities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... line carrier communications systems, load control, and supervisory control and data acquisition (SCADA...) Load control systems, communications systems, and SCADA systems—(1) Contract forms. The borrower must...

  1. 7 CFR 1726.176 - Communications and control facilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... line carrier communications systems, load control, and supervisory control and data acquisition (SCADA...) Load control systems, communications systems, and SCADA systems—(1) Contract forms. The borrower must...

  2. 7 CFR 1726.176 - Communications and control facilities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... line carrier communications systems, load control, and supervisory control and data acquisition (SCADA...) Load control systems, communications systems, and SCADA systems—(1) Contract forms. The borrower must...

  3. Current prevention and control of health care-associated infections in long-term care facilities for the elderly in Japan.

    PubMed

    Kariya, Naoko; Sakon, Naomi; Komano, Jun; Tomono, Kazunori; Iso, Hiroyasu

    2018-05-01

    Residents of long-term care facilities for the elderly are vulnerable to health care-associated infections. However, compared to medical institutions, long-term care facilities for the elderly lag behind in health care-associated infection control and prevention. We conducted a epidemiologic study to clarify the current status of infection control in long-term care facilities for the elderly in Japan. A questionnaire survey on the aspects of infection prevention and control was developed according to SHEA/APIC guidelines and was distributed to 617 long-term care facilities for the elderly in the province of Osaka during November 2016 and January 2017. The response rate was 16.9%. The incidence rates of health care-associated infection outbreaks and residents with health care-associated infections were 23.4 per 100 facility-years and 0.18 per 1,000 resident-days, respectively. Influenza and acute gastroenteritis were reported most frequently. Active surveillance to identify the carrier of multiple drug-resistant organisms was not common. The overall compliance with 21 items selected from the SHEA/APIC guidelines was approximately 79.2%. All facilities had infection control manuals and an assigned infection control professional. The economic burdens of infection control were approximately US$ 182.6 per resident-year during fiscal year 2015. Importantly, these data implied that physicians and nurses were actively contributed to higher SHEA/APIC guideline compliance rates and the advancement of infection control measures in long-term care facilities for the elderly. Key factors are discussed to further improve the infection control in long-term care facilities for the elderly, particularly from economic and social structural standpoints. Copyright © 2017 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  4. Nuclear Rocket Facility Decommissioning Project: Controlled Explosive Demolition of Neutron-Activated Shield Wall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael R. Kruzic

    2008-06-01

    Located in Area 25 of the Nevada Test Site (NTS), the Test Cell A (TCA) Facility (Figure 1) was used in the early to mid-1960s for testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program, to further space travel. Nuclear rocket testing resulted in the activation of materials around the reactors and the release of fission products and fuel particles. The TCA facility, known as Corrective Action Unit 115, was decontaminated and decommissioned (D&D) from December 2004 to July 2005 using the Streamlined Approach for Environmental Restoration (SAFER) process, under the Federal Facility Agreement and Consentmore » Order. The SAFER process allows environmental remediation and facility closure activities (i.e., decommissioning) to occur simultaneously, provided technical decisions are made by an experienced decision maker within the site conceptual site model. Facility closure involved a seven-step decommissioning strategy. First, preliminary investigation activities were performed, including review of process knowledge documentation, targeted facility radiological and hazardous material surveys, concrete core drilling and analysis, shield wall radiological characterization, and discrete sampling, which proved to be very useful and cost-effective in subsequent decommissioning planning and execution and worker safety. Second, site setup and mobilization of equipment and personnel were completed. Third, early removal of hazardous materials, including asbestos, lead, cadmium, and oil, was performed ensuring worker safety during more invasive demolition activities. Process piping was to be verified void of contents. Electrical systems were de-energized and other systems were rendered free of residual energy. Fourth, areas of high radiological contamination were decontaminated using multiple methods. Contamination levels varied across the facility. Fixed beta/gamma contamination levels ranged up to 2 million disintegrations per minute (dpm)/100

  5. Consolidated Laser-Induced Fluorescence Diagnostic Systems for the NASA Ames Arc Jet Facilities

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay H.; Wilder, Michael C.; Porter, Barry J.; Brown, Jeffrey D.; Yeung, Dickson; Battazzo, Stephen J.; Brubaker, Timothy R.

    2016-01-01

    The spectroscopic diagnostic technique of two photon absorption laser-induced fluorescence (TALIF) of atomic species for non-intrusive arc jet flow property measurement was first implemented at NASA Ames in the mid-1990s. Use of TALIF expanded at NASA Ames and to NASA Johnson's arc jet facility in the late 2000s. In 2013-2014, NASA combined the agency's large-scale arc jet test capabilities at NASA Ames. Concurrent with that effort, the agency also sponsored a project to establish two comprehensive LIF diagnostic systems for the Aerodynamic Heating Facility (AHF) and Interaction Heating Facility (IHF) arc jets. The scope of the project enabled further engineering development of the existing IHF LIF system as well as the complete reconstruction of the original AHF LIF system. The updated LIF systems are identical in design and capability. They represent the culmination of over 20 years of development experience in transitioning a specialized laboratory research tool into a measurement system for large-scale, high-demand test facilities. This paper documents the overall system design from measurement requirements to implementation. Representative data from the redeveloped AHF and IHF LIF systems are also presented.

  6. Consolidated Laser-Induced Fluorescence Diagnostic Systems for the NASA Ames Arc Jet Facilities

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay; Wilder, Michael C.; Porter, Barry; Brown, Jeff; Yeung, Dickson; Battazzo, Steve; Brubaker, Tim

    2016-01-01

    The spectroscopic diagnostic technique of two photon absorption laser-induced fluorescence (TALIF) of atomic species for non-intrusive arc jet flow property measurement was first implemented at NASA Ames in the mid-1990s. Use of TALIF expanded at NASA Ames and to NASA Johnsons arc jet facility in the late 2000s. In 2013-2014, NASA combined the agency's large-scale arc jet test capabilities at NASA Ames. Concurrent with that effort, the agency also sponsored a project to establish two comprehensive LIF diagnostic systems for the Aerodynamic Heating Facility (AHF) and Interaction Heating Facility (IHF) arc jets. The scope of the project enabled further engineering development of the existing IHF LIF system as well as the complete reconstruction of the original AHF LIF system. The updated LIF systems are identical in design and capability. They represent the culmination of over 20 years of development experience in transitioning a specialized laboratory research tool into a measurement system for large-scale, high-demand test facilities. This paper documents the overall system design from measurement requirements to implementation. Representative data from the redeveloped AHF and IHF LIF systems are also presented.

  7. A test matrix sequencer for research test facility automation

    NASA Technical Reports Server (NTRS)

    Mccartney, Timothy P.; Emery, Edward F.

    1990-01-01

    The hardware and software configuration of a Test Matrix Sequencer, a general purpose test matrix profiler that was developed for research test facility automation at the NASA Lewis Research Center, is described. The system provides set points to controllers and contact closures to data systems during the course of a test. The Test Matrix Sequencer consists of a microprocessor controlled system which is operated from a personal computer. The software program, which is the main element of the overall system is interactive and menu driven with pop-up windows and help screens. Analog and digital input/output channels can be controlled from a personal computer using the software program. The Test Matrix Sequencer provides more efficient use of aeronautics test facilities by automating repetitive tasks that were once done manually.

  8. 340 Facility secondary containment and leak detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bendixsen, R.B.

    1995-01-31

    This document presents a preliminary safety evaluation for the 340 Facility Secondary Containment and Leak Containment system, Project W-302. Project W-302 will construct Building 340-C which has been designed to replace the current 340 Building and vault tank system for collection of liquid wastes from the Pacific Northwest Laboratory buildings in the 300 Area. This new nuclear facility is Hazard Category 3. The vault tank and related monitoring and control equipment are Safety Class 2 with the remainder of the structure, systems and components as Safety Class 3 or 4.

  9. Spacelab Data Processing Facility (SLDPF) quality assurance expert systems development

    NASA Technical Reports Server (NTRS)

    Kelly, Angelita C.; Basile, Lisa; Ames, Troy; Watson, Janice; Dallam, William

    1987-01-01

    Spacelab Data Processing Facility (SLDPF) expert system prototypes were developed to assist in the quality assurance of Spacelab and/or Attached Shuttle Payload (ASP) processed telemetry data. The SLDPF functions include the capturing, quality monitoring, processing, accounting, and forwarding of mission data to various user facilities. Prototypes for the two SLDPF functional elements, the Spacelab Output Processing System and the Spacelab Input Processing Element, are described. The prototypes have produced beneficial results including an increase in analyst productivity, a decrease in the burden of tedious analyses, the consistent evaluation of data, and the providing of concise historical records.

  10. Spacelab Data Processing Facility (SLDPF) quality assurance expert systems development

    NASA Technical Reports Server (NTRS)

    Kelly, Angelita C.; Basile, Lisa; Ames, Troy; Watson, Janice; Dallam, William

    1987-01-01

    Spacelab Data Processing Facility (SLDPF) expert system prototypes have been developed to assist in the quality assurance of Spacelab and/or Attached Shuttle Payload (ASP) processed telemetry data. SLDPF functions include the capturing, quality monitoring, processing, accounting, and forwarding of mission data to various user facilities. Prototypes for the two SLDPF functional elements, the Spacelab Output Processing System and the Spacelab Input Processing Element, are described. The prototypes have produced beneficial results including an increase in analyst productivity, a decrease in the burden of tedious analyses, the consistent evaluation of data, and the providing of concise historical records.

  11. Closed-Loop Control for Sonic Fatigue Testing Systems

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Bossaert, Guido

    2001-01-01

    This article documents recent improvements to the acoustic control system of the Thermal Acoustic Fatigue Apparatus (TAFA), a progressive wave tube test facility at the NASA Langley Research Center, Hampton, VA. A brief summary of past acoustic performance is first given to serve as a basis of comparison with the new performance data using a multiple-input, closed-loop, narrow-band controller. Performance data in the form of test section acoustic power spectral densities and coherence are presented for a variety of input spectra including uniform, band-limited random and an expendable launch vehicle payload bay environment.

  12. PIMS sequencing extension: a laboratory information management system for DNA sequencing facilities

    PubMed Central

    2011-01-01

    Background Facilities that provide a service for DNA sequencing typically support large numbers of users and experiment types. The cost of services is often reduced by the use of liquid handling robots but the efficiency of such facilities is hampered because the software for such robots does not usually integrate well with the systems that run the sequencing machines. Accordingly, there is a need for software systems capable of integrating different robotic systems and managing sample information for DNA sequencing services. In this paper, we describe an extension to the Protein Information Management System (PIMS) that is designed for DNA sequencing facilities. The new version of PIMS has a user-friendly web interface and integrates all aspects of the sequencing process, including sample submission, handling and tracking, together with capture and management of the data. Results The PIMS sequencing extension has been in production since July 2009 at the University of Leeds DNA Sequencing Facility. It has completely replaced manual data handling and simplified the tasks of data management and user communication. Samples from 45 groups have been processed with an average throughput of 10000 samples per month. The current version of the PIMS sequencing extension works with Applied Biosystems 3130XL 96-well plate sequencer and MWG 4204 or Aviso Theonyx liquid handling robots, but is readily adaptable for use with other combinations of robots. Conclusions PIMS has been extended to provide a user-friendly and integrated data management solution for DNA sequencing facilities that is accessed through a normal web browser and allows simultaneous access by multiple users as well as facility managers. The system integrates sequencing and liquid handling robots, manages the data flow, and provides remote access to the sequencing results. The software is freely available, for academic users, from http://www.pims-lims.org/. PMID:21385349

  13. PIMS sequencing extension: a laboratory information management system for DNA sequencing facilities.

    PubMed

    Troshin, Peter V; Postis, Vincent Lg; Ashworth, Denise; Baldwin, Stephen A; McPherson, Michael J; Barton, Geoffrey J

    2011-03-07

    Facilities that provide a service for DNA sequencing typically support large numbers of users and experiment types. The cost of services is often reduced by the use of liquid handling robots but the efficiency of such facilities is hampered because the software for such robots does not usually integrate well with the systems that run the sequencing machines. Accordingly, there is a need for software systems capable of integrating different robotic systems and managing sample information for DNA sequencing services. In this paper, we describe an extension to the Protein Information Management System (PIMS) that is designed for DNA sequencing facilities. The new version of PIMS has a user-friendly web interface and integrates all aspects of the sequencing process, including sample submission, handling and tracking, together with capture and management of the data. The PIMS sequencing extension has been in production since July 2009 at the University of Leeds DNA Sequencing Facility. It has completely replaced manual data handling and simplified the tasks of data management and user communication. Samples from 45 groups have been processed with an average throughput of 10000 samples per month. The current version of the PIMS sequencing extension works with Applied Biosystems 3130XL 96-well plate sequencer and MWG 4204 or Aviso Theonyx liquid handling robots, but is readily adaptable for use with other combinations of robots. PIMS has been extended to provide a user-friendly and integrated data management solution for DNA sequencing facilities that is accessed through a normal web browser and allows simultaneous access by multiple users as well as facility managers. The system integrates sequencing and liquid handling robots, manages the data flow, and provides remote access to the sequencing results. The software is freely available, for academic users, from http://www.pims-lims.org/.

  14. Overview of laser systems for the Orion facility at the AWE.

    PubMed

    Hopps, Nicholas; Danson, Colin; Duffield, Stuart; Egan, David; Elsmere, Stephen; Girling, Mark; Harvey, Ewan; Hillier, David; Norman, Michael; Parker, Stefan; Treadwell, Paul; Winter, David; Bett, Thomas

    2013-05-20

    The commissioning of the Orion laser facility at the Atomic Weapons Establishment (AWE) in the UK has recently been completed. The facility is a twelve beam Nd:glass-based system for studying high energy density physics. It consists of ten frequency-tripled beam-lines operating with nanosecond pulses, synchronized with two beam-lines with subpicosecond pulses, each capable of delivering 500 J to target. One of the short pulse beams has the option of frequency doubling, at reduced aperture, to yield up to 100 J at 527 nm in a subpicosecond pulse with high temporal contrast. An extensive array of target diagnostics is provided. This article describes the laser design and commissioning and presents key performance data of the facility's laser systems.

  15. Laser systems for the combustion research facility - Diana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, C.K.; Lavasek, J.W.; Jones, E.D.

    1982-03-01

    A 5-Joule/pulse, 1.8-..mu..s-pulse-width, 10-ppS flashlamp-pumped tunable-dye-laser system, called Diana, has been built for use in experiments to be performed at the Combustion Research Facility, Sandia National Laboratories, Livermore. Design specifications for the system and details of construction are described, and it is noted that performance of the laser meets or exceeds all design criteria. Areas for further performance improvements are discussed, and updates are suggested to enhance system usefulness.

  16. Infection prevention and control standards in assisted living facilities: are residents' needs being met?

    PubMed

    Kossover, Rachel A; Chi, Carolyn J; Wise, Matthew E; Tran, Alvin H; Chande, Neha D; Perz, Joseph F

    2014-01-01

    Assisted living facilities (ALFs) provide housing and care to persons unable to live independently, and who often have increasing medical needs. Disease outbreaks illustrate challenges of maintaining adequate resident protections in these facilities. Describe current state laws on assisted living admissions criteria, medical oversight, medication administration, vaccination requirements, and standards for infection control training. We abstracted laws and regulations governing assisted living facilities for the 50 states using a structured abstraction tool. Selected characteristics were compared according to the time period in which the regulation took effect. Selected state health departments were queried regarding outbreaks identified in assisted living facilities. Of the 50 states, 84% specify health-based admissions criteria to assisted living facilities; 60% require licensed health care professionals to oversee medical care; 88% specifically allow subcontracting with outside entities to provide routine medical services onsite; 64% address medication administration by assisted living facility staff; 54% specify requirements for some form of initial infection control training for all staff; 50% require reporting of disease outbreaks to the health department; 18% specify requirements to offer or require vaccines to staff; 30% specify requirements to offer or require vaccines to residents. Twelve states identified approximately 1600 outbreaks from 2010 to 2013, with influenza or norovirus infections predominating. There is wide variation in how assisted living facilities are regulated in the United States. States may wish to consider regulatory changes that ensure safe health care delivery, and minimize risks of infections, outbreaks of disease, and other forms of harm among assisted living residents. Published by Elsevier Inc.

  17. 25 CFR 170.806 - What is an IRR Transportation Facilities Maintenance Management System?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... AND WATER INDIAN RESERVATION ROADS PROGRAM BIA Road Maintenance § 170.806 What is an IRR Transportation Facilities Maintenance Management System? An IRR Transportation Facilities Maintenance Management... 25 Indians 1 2010-04-01 2010-04-01 false What is an IRR Transportation Facilities Maintenance...

  18. Engineering Challenges for Closed Ecological System facilities

    NASA Astrophysics Data System (ADS)

    Dempster, William; Nelson, Mark; Allen, John P.

    2012-07-01

    Engineering challenges for closed ecological systems include methods of achieving closure for structures of different materials, and developing methods of allowing energy (for heating and cooling) and information transfer through the materially closed structure. Methods of calculating degree of closure include measuring degradation rates of inert trace gases introduced into the system. An allied problem is developing means of locating where leaks are located so that they may be repaired and degree of closure maintained. Once closure is achieved, methods of dealing with the pressure differentials between inside and outside are needed: from inflatable structures which might adjust to the pressure difference to variable volume chambers attached to the life systems component. These issues are illustrated through the engineering employed at Biosphere 2, the Biosphere 2 Test Module and the Laboratory Biosphere and a discussion of methods used by other closed ecological system facility engineers. Ecological challenges include being able to handle faster cycling rates and accentuated daily and seasonal fluxes of critical life elements such as carbon dioxide, oxygen, water, macro- and mico-nutrients. The problems of achieving sustainability in closed systems for life support include how to handle atmospheric dynamics including trace gases, producing a complete human diet and recycling nutrients and maintaining soil fertility, healthy air and water and preventing the loss of crucial elements from active circulation. In biospheric facilities the challenge is also to produce analogue to natural biomes and ecosystems, studying processes of self-organization and adaptation in systems that allow specification or determination of state variables and cycles which may be followed through all interactions from atmosphere to soils.

  19. Achieving control and interoperability through unified model-based systems and software engineering

    NASA Technical Reports Server (NTRS)

    Rasmussen, Robert; Ingham, Michel; Dvorak, Daniel

    2005-01-01

    Control and interoperation of complex systems is one of the most difficult challenges facing NASA's Exploration Systems Mission Directorate. An integrated but diverse array of vehicles, habitats, and supporting facilities, evolving over the long course of the enterprise, must perform ever more complex tasks while moving steadily away from the sphere of ground support and intervention.

  20. Initial experimental results from the Laboratory Biosphere closed ecological system facility

    NASA Astrophysics Data System (ADS)

    Alling, A.; Allen, J.; Dempster, W.; Nelson, M.; Silverstone, S.; van Thillo, M.

    Results from the closure and initial closed ecological system research in the "Laboratory Biosphere" facility in Santa Fe, New Mexico (USA) will be presented. The facility was initially sealed in April 2002; and the first crop experiments with soybeans commenced in May 2002. The Laboratory Biosphere was created by the team which invented, built and operated Biosphere 2 during its years of closed ecological system functioning (1991-94) and is a testbed to build upon the lessons learned. It is an opportunity to continue experiments with a sustainable soil based agriculture system unlike most bioregenerative systems which use hydroponic systems dependent on a supply of nutrient solution. Because of the small volume of the system (34-45 m3), developing mechanisms to keep parameters like carbon dioxide within acceptable limits will be critical. Recycle of nutrients within the system to maintain soil fertility; and the ability of the inherent complex ecology of soils and a soil bed reactor to handle trace gas buildups are primary research goals. Other research goals are determination of short and long-term exchanges between soil, plants and atmosphere, especially for carbon dioxide, oxygen, nitrogen, NOX, and methane, impact of cultivation (tillage) on soil/atmospheric exchanges., investigation and development of strategies to return nutrients to the soil to maintain fertility, e.g. shredding biomass vs. composting, impact on soil chemistry of returning leachate water to the soil as irrigation water. The microbiological status of soils prior to experiments and over time will allow measurement of changes in microbial diversity and the determination of the role of soil microbes in biogeochemical cycles. Integration of automated sensor and control in the system with real-time modeling has importance for operation, research and educational outreach programs. The Laboratory Biosphere is intended to test and develop a "cybersphere" (network of shared intelligence) that may be

  1. An Electronic Pressure Profile Display system for aeronautic test facilities

    NASA Technical Reports Server (NTRS)

    Woike, Mark R.

    1990-01-01

    The NASA Lewis Research Center has installed an Electronic Pressure Profile Display system. This system provides for the real-time display of pressure readings on high resolution graphics monitors. The Electronic Pressure Profile Display system will replace manometer banks currently used in aeronautic test facilities. The Electronic Pressure Profile Display system consists of an industrial type Digital Pressure Transmitter (DPI) unit which interfaces with a host computer. The host computer collects the pressure data from the DPI unit, converts it into engineering units, and displays the readings on a high resolution graphics monitor in bar graph format. Software was developed to accomplish the above tasks and also draw facility diagrams as background information on the displays. Data transfer between host computer and DPT unit is done with serial communications. Up to 64 channels are displayed with one second update time. This paper describes the system configuration, its features, and its advantages over existing systems.

  2. An electronic pressure profile display system for aeronautic test facilities

    NASA Technical Reports Server (NTRS)

    Woike, Mark R.

    1990-01-01

    The NASA Lewis Research Center has installed an Electronic Pressure Profile Display system. This system provides for the real-time display of pressure readings on high resolution graphics monitors. The Electronic Pressure Profile Display system will replace manometer banks currently used in aeronautic test facilities. The Electronic Pressure Profile Display system consists of an industrial type Digital Pressure Transmitter (DPT) unit which interfaces with a host computer. The host computer collects the pressure data from the DPT unit, converts it into engineering units, and displays the readings on a high resolution graphics monitor in bar graph format. Software was developed to accomplish the above tasks and also draw facility diagrams as background information on the displays. Data transfer between host computer and DPT unit is done with serial communications. Up to 64 channels are displayed with one second update time. This paper describes the system configuration, its features, and its advantages over existing systems.

  3. Emergency positioning system accuracy with infrared LEDs in high-security facilities

    NASA Astrophysics Data System (ADS)

    Knoch, Sierra N.; Nelson, Charles; Walker, Owens

    2017-05-01

    Instantaneous personnel location presents a challenge in Department of Defense applications where high levels of security restrict real-time tracking of crew members. During emergency situations, command and control requires immediate accountability of all personnel. Current radio frequency (RF) based indoor positioning systems can be unsuitable due to RF leakage and electromagnetic interference with sensitively calibrated machinery on variable platforms like ships, submarines and high-security facilities. Infrared light provide a possible solution to this problem. This paper proposes and evaluates an indoor line-of-sight positioning system that is comprised of IR and high-sensitivity CMOS camera receivers. In this system the movement of the LEDs is captured by the camera, uploaded and analyzed; the highest point of power is located and plotted to create a blueprint of crewmember location. Results provided evaluate accuracy as a function of both wavelength and environmental conditions. Research will further evaluate the accuracy of the LED transmitter and CMOS camera receiver system. Transmissions in both the 780 and 850nm IR are analyzed.

  4. Mobile terawatt laser propagation facility (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shah, Lawrence; Roumayah, Patrick; Bodnar, Nathan; Bradford, Joshua D.; Maukonen, Douglas; Richardson, Martin C.

    2017-03-01

    This presentation will describe the design and construction status of a new mobile high-energy femtosecond laser systems producing 500 mJ, 100 fs pulses at 10 Hz. This facility is built into a shipping container and includes a cleanroom housing the laser system, a separate section for the beam director optics with a retractable roof, and the environmental control equipment necessary to maintain stable operation. The laser system includes several innovations to improve the utility of the system for "in field" experiments. For example, this system utilizes a fiber laser oscillator and a monolithic chirped Bragg grating stretcher to improve system robustness/size and employs software to enable remote monitoring and system control. Uniquely, this facility incorporates a precision motion-controlled gimbal altitude-azimuth mount with a coudé path to enable aiming of the beam over a wide field of view. In addition to providing the ability to precisely aim at multiple targets, it is also possible to coordinate the beam with separate tracking/diagnostic sensing equipment as well as other laser systems. This mobile platform will be deployed at the Townes Institute Science and Technology Experimental Facility (TISTEF) located at the Kennedy Space Center in Florida, to utilize the 1-km secured laser propagation range and the wide array of meteorological instrumentation for atmospheric and turbulence characterization. This will provide significant new data on the propagation of high peak power ultrashort laser pulses and detailed information on the atmospheric conditions in a coastal semi-tropical environment.

  5. 40 CFR 160.45 - Test system supply facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Test system supply facilities. 160.45 Section 160.45 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS... be storage areas, as needed, for feed, nutrients, soils, bedding, supplies, and equipment. Storage...

  6. Thermal Storage Materials Laboratory | Energy Systems Integration Facility

    Science.gov Websites

    | NREL Materials Laboratory Thermal Storage Materials Laboratory In the Energy Systems Integration Facility's Thermal Storage Materials Laboratory, researchers investigate materials that can be used as high-temperature heat transfer fluids or thermal energy storage media in concentrating solar

  7. Simulation and control of a 20 kHz spacecraft power system

    NASA Technical Reports Server (NTRS)

    Wasynczuk, O.; Krause, P. C.

    1988-01-01

    A detailed computer representation of four Mapham inverters connected in a series, parallel arrangement has been implemented. System performance is illustrated by computer traces for the four Mapham inverters connected to a Litz cable with parallel resistance and dc receiver loads at the receiving end of the transmission cable. Methods of voltage control and load sharing between the inverters are demonstrated. Also, the detailed computer representation is used to design and to demonstrate the advantages of a feed-forward voltage control strategy. It is illustrated that with a computer simulation of this type, the performance and control of spacecraft power systems may be investigated with relative ease and facility.

  8. System integration of RF based negative ion experimental facility at IPR

    NASA Astrophysics Data System (ADS)

    Bansal, G.; Bandyopadhyay, M.; Singh, M. J.; Gahlaut, A.; Soni, J.; Pandya, K.; Parmar, K. G.; Sonara, J.; Chakraborty, A.

    2010-02-01

    The setting up of RF based negative ion experimental facility shall witness the beginning of experiments on the negative ion source fusion applications in India. A 1 MHz RF generator shall launch 100 kW RF power into a single driver on the plasma source to produce a plasma of density ~5 × 1012 cm-3. The source can deliver a negative ion beam of ~10 A with a current density of ~30 mA/cm2 and accelerated to 35 kV through an electrostatic ion accelerator. The experimental system is similar to a RF based negative ion source, BATMAN, presently operating at IPP. The subsystems for source operation are designed and procured principally from indigenous resources, keeping the IPP configuration as a base line. The operation of negative ion source is supported by many subsystems e.g. vacuum pumping system with gate valves, cooling water system, gas feed system, cesium delivery system, RF generator, high voltage power supplies, data acquisition and control system, and different diagnostics. The first experiments of negative ion source are expected to start at IPR from the middle of 2009.

  9. Realistic Development and Testing of Fission System at a Non-Nuclear Testing Facility

    NASA Technical Reports Server (NTRS)

    Godfroy, Tom; VanDyke, Melissa; Dickens, Ricky; Pedersen, Kevin; Lenard, Roger; Houts, Mike

    2000-01-01

    The use of resistance heaters to simulate heat from fission allows extensive development of fission systems to be performed in non-nuclear test facilities, saving time and money. Resistance heated tests on a module has been performed at the Marshall Space Flight Center in the Propellant Energy Source Testbed (PEST). This paper discusses the experimental facilities and equipment used for performing resistance heated tests. Recommendations are made for improving non-nuclear test facilities and equipment for simulated testing of nuclear systems.

  10. Realistic development and testing of fission systems at a non-nuclear testing facility

    NASA Astrophysics Data System (ADS)

    Godfroy, Tom; van Dyke, Melissa; Dickens, Ricky; Pedersen, Kevin; Lenard, Roger; Houts, Mike

    2000-01-01

    The use of resistance heaters to simulate heat from fission allows extensive development of fission systems to be performed in non-nuclear test facilities, saving time and money. Resistance heated tests on a module has been performed at the Marshall Space Flight Center in the Propellant Energy Source Testbed (PEST). This paper discusses the experimental facilities and equipment used for performing resistance heated tests. Recommendations are made for improving non-nuclear test facilities and equipment for simulated testing of nuclear systems. .

  11. Dynamics of System of Systems and Applications to Net Zero Energy Facilities

    DTIC Science & Technology

    2017-10-05

    collections and applied it in a variety of ways to energy - related problems. 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY...UU UU 05-10-2017 1-Oct-2011 30-Sep-2016 Dynamics of System of Systems and Applications to Net Zero Energy Facilities The views, opinions and/or...Research Triangle Park, NC 27709-2211 Koopman operator analysis, Energy systems REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10

  12. Optical design of the National Ignition Facility main laser and switchyard/target area beam transport systems

    NASA Astrophysics Data System (ADS)

    Miller, John L.; English, R. Edward, Jr.; Korniski, Ronald J.; Rodgers, J. Michael

    1999-07-01

    The optical design of the main laser and transport mirror sections of the National Ignition Facility are described. For the main laser the configuration, layout constraints, multiple beam arrangement, pinhole layout and beam paths, clear aperture budget, ray trace models, alignment constraints, lens designs, wavefront performance, and pupil aberrations are discussed. For the transport mirror system the layout, alignment controls and clear aperture budget are described.

  13. Developing mobile- and BIM-based integrated visual facility maintenance management system.

    PubMed

    Lin, Yu-Cheng; Su, Yu-Chih

    2013-01-01

    Facility maintenance management (FMM) has become an important topic for research on the operation phase of the construction life cycle. Managing FMM effectively is extremely difficult owing to various factors and environments. One of the difficulties is the performance of 2D graphics when depicting maintenance service. Building information modeling (BIM) uses precise geometry and relevant data to support the maintenance service of facilities depicted in 3D object-oriented CAD. This paper proposes a new and practical methodology with application to FMM using BIM technology. Using BIM technology, this study proposes a BIM-based facility maintenance management (BIMFMM) system for maintenance staff in the operation and maintenance phase. The BIMFMM system is then applied in selected case study of a commercial building project in Taiwan to verify the proposed methodology and demonstrate its effectiveness in FMM practice. Using the BIMFMM system, maintenance staff can access and review 3D BIM models for updating related maintenance records in a digital format. Moreover, this study presents a generic system architecture and its implementation. The combined results demonstrate that a BIMFMM-like system can be an effective visual FMM tool.

  14. Developing Mobile- and BIM-Based Integrated Visual Facility Maintenance Management System

    PubMed Central

    Su, Yu-Chih

    2013-01-01

    Facility maintenance management (FMM) has become an important topic for research on the operation phase of the construction life cycle. Managing FMM effectively is extremely difficult owing to various factors and environments. One of the difficulties is the performance of 2D graphics when depicting maintenance service. Building information modeling (BIM) uses precise geometry and relevant data to support the maintenance service of facilities depicted in 3D object-oriented CAD. This paper proposes a new and practical methodology with application to FMM using BIM technology. Using BIM technology, this study proposes a BIM-based facility maintenance management (BIMFMM) system for maintenance staff in the operation and maintenance phase. The BIMFMM system is then applied in selected case study of a commercial building project in Taiwan to verify the proposed methodology and demonstrate its effectiveness in FMM practice. Using the BIMFMM system, maintenance staff can access and review 3D BIM models for updating related maintenance records in a digital format. Moreover, this study presents a generic system architecture and its implementation. The combined results demonstrate that a BIMFMM-like system can be an effective visual FMM tool. PMID:24227995

  15. The Fluids and Combustion Facility

    NASA Technical Reports Server (NTRS)

    Kundu, Sampa

    2004-01-01

    Microgravity is an environment with very weak gravitational effects. The Fluids and Combustion Facility (FCF) on the International Space Station (ISS) will support the study of fluid physics and combustion science in a long-duration microgravity environment. The Fluid Combustion Facility's design will permit both independent and remote control operations from the Telescience Support Center. The crew of the International Space Station will continue to insert and remove the experiment module, store and reload removable data storage and media data tapes, and reconfigure diagnostics on either side of the optics benches. Upon completion of the Fluids Combustion Facility, about ten experiments will be conducted within a ten-year period. Several different areas of fluid physics will be studied in the Fluids Combustion Facility. These areas include complex fluids, interfacial phenomena, dynamics and instabilities, and multiphase flows and phase change. Recently, emphasis has been placed in areas that relate directly to NASA missions including life support, power, propulsion, and thermal control systems. By 2006 or 2007, a Fluids Integrated Rack (FIR) and a Combustion Integrated Rack (CIR) will be installed inside the International Space Station. The Fluids Integrated Rack will contain all the hardware and software necessary to perform experiments in fluid physics. A wide range of experiments that meet the requirements of the international space station, including research from other specialties, will be considered. Experiments will be contained in subsystems such as the international standard payload rack, the active rack isolation system, the optics bench, environmental subsystem, electrical power control unit, the gas interface subsystem, and the command and data management subsystem. In conclusion, the Fluids and Combustion Facility will allow researchers to study fluid physics and combustion science in a long-duration microgravity environment. Additional information is

  16. Automatic control study of the icing research tunnel refrigeration system

    NASA Technical Reports Server (NTRS)

    Kieffer, Arthur W.; Soeder, Ronald H.

    1991-01-01

    The Icing Research Tunnel (IRT) at the NASA Lewis Research Center is a subsonic, closed-return atmospheric tunnel. The tunnel includes a heat exchanger and a refrigeration plant to achieve the desired air temperature and a spray system to generate the type of icing conditions that would be encountered by aircraft. At the present time, the tunnel air temperature is controlled by manual adjustment of freon refrigerant flow control valves. An upgrade of this facility calls for these control valves to be adjusted by an automatic controller. The digital computer simulation of the IRT refrigeration plant and the automatic controller that was used in the simulation are discussed.

  17. Remote network control plasma diagnostic system for Tokamak T-10

    NASA Astrophysics Data System (ADS)

    Troynov, V. I.; Zimin, A. M.; Krupin, V. A.; Notkin, G. E.; Nurgaliev, M. R.

    2016-09-01

    The parameters of molecular plasma in closed magnetic trap is studied in this paper. Using the system of molecular diagnostics, which was designed by the authors on the «Tokamak T-10» facility, the radiation of hydrogen isotopes at the plasma edge is investigated. The scheme of optical radiation registration within visible spectrum is described. For visualization, identification and processing of registered molecular spectra a new software is developed using MatLab environment. The software also includes electronic atlas of electronic-vibrational-rotational transitions for molecules of protium and deuterium. To register radiation from limiter cross-section a network control system is designed using the means of the Internet/Intranet. Remote control system diagram and methods are given. The examples of web-interfaces for working out equipment control scenarios and viewing of results are provided. After test run in Intranet, the remote diagnostic system will be accessible through Internet.

  18. Assessment of radiological protection systems among diagnostic radiology facilities in North East India.

    PubMed

    Singh, Thokchom Dewan; Jayaraman, T; Arunkumar Sharma, B

    2017-03-01

    This study aims to assess the adequacy level of radiological protection systems available in the diagnostic radiology facilities located in three capital cities of North East (NE) India. It further attempts to understand, using a multi-disciplinary approach, how the safety codes/standards in diagnostic radiology framed by the Atomic Energy Regulatory Board (AERB) and the International Atomic Energy Agency (IAEA) to achieve adequate radiological protection in facilities, have been perceived, conceptualized, and applied accordingly in these facilities. About 30 diagnostic radiology facilities were randomly selected from three capitals of states in NE India; namely Imphal (Manipur), Shillong (Meghalaya) and Guwahati (Assam). A semi-structured questionnaire developed based on a multi-disciplinary approach was used for this study. It was observed that radiological practices undertaken in these facilities were not exactly in line with safety codes/standards in diagnostic radiology of the AERB and the IAEA. About 50% of the facilities had registered/licensed x-ray equipment with the AERB. More than 80% of the workers did not use radiation protective devices, although these devices were available in the facilities. About 85% of facilities had no institutional risk management system. About 70% of the facilities did not carry out periodic quality assurance testing of their x-ray equipment or surveys of radiation leakage around the x-ray room, and did not display radiation safety indicators in the x-ray rooms. Workers in these facilities exhibited low risk perception about the risks associated with these practices. The majority of diagnostic radiology facilities in NE India did not comply with the radiological safety codes/standards framed by the AERB and IAEA. The study found inadequate levels of radiological protection systems in the majority of facilities. This study suggests a need to establish firm measures that comply with the radiological safety codes/standards of the

  19. Development of a Control Optimization System for Real Time Monitoring of Managed Aquifer Recharge and Recovery Systems Using Intelligent Sensors

    NASA Astrophysics Data System (ADS)

    Smits, K. M.; Drumheller, Z. W.; Lee, J. H.; Illangasekare, T. H.; Regnery, J.; Kitanidis, P. K.

    2015-12-01

    Aquifers around the world show troubling signs of irreversible depletion and seawater intrusion as climate change, population growth, and urbanization lead to reduced natural recharge rates and overuse. Scientists and engineers have begun to revisit the technology of managed aquifer recharge and recovery (MAR) as a means to increase the reliability of the diminishing and increasingly variable groundwater supply. Unfortunately, MAR systems remain wrought with operational challenges related to the quality and quantity of recharged and recovered water stemming from a lack of data-driven, real-time control. This research seeks to develop and validate a general simulation-based control optimization algorithm that relies on real-time data collected though embedded sensors that can be used to ease the operational challenges of MAR facilities. Experiments to validate the control algorithm were conducted at the laboratory scale in a two-dimensional synthetic aquifer under both homogeneous and heterogeneous packing configurations. The synthetic aquifer used well characterized technical sands and the electrical conductivity signal of an inorganic conservative tracer as a surrogate measure for water quality. The synthetic aquifer was outfitted with an array of sensors and an autonomous pumping system. Experimental results verified the feasibility of the approach and suggested that the system can improve the operation of MAR facilities. The dynamic parameter inversion reduced the average error between the simulated and observed pressures between 12.5 and 71.4%. The control optimization algorithm ran smoothly and generated optimal control decisions. Overall, results suggest that with some improvements to the inversion and interpolation algorithms, which can be further advanced through testing with laboratory experiments using sensors, the concept can successfully improve the operation of MAR facilities.

  20. Power system monitoring and source control of the Space Station Freedom DC power system testbed

    NASA Technical Reports Server (NTRS)

    Kimnach, Greg L.; Baez, Anastacio N.

    1992-01-01

    Unlike a terrestrial electric utility which can purchase power from a neighboring utility, the Space Station Freedom (SSF) has strictly limited energy resources; as a result, source control, system monitoring, system protection, and load management are essential to the safe and efficient operation of the SSF Electric Power System (EPS). These functions are being evaluated in the DC Power Management and Distribution (PMAD) Testbed which NASA LeRC has developed at the Power System Facility (PSF) located in Cleveland, Ohio. The testbed is an ideal platform to develop, integrate, and verify power system monitoring and control algorithms. State Estimation (SE) is a monitoring tool used extensively in terrestrial electric utilities to ensure safe power system operation. It uses redundant system information to calculate the actual state of the EPS, to isolate faulty sensors, to determine source operating points, to verify faults detected by subsidiary controllers, and to identify high impedance faults. Source control and monitoring safeguard the power generation and storage subsystems and ensure that the power system operates within safe limits while satisfying user demands with minimal interruptions. System monitoring functions, in coordination with hardware implemented schemes, provide for a complete fault protection system. The objective of this paper is to overview the development and integration of the state estimator and the source control algorithms.

  1. Power system monitoring and source control of the Space Station Freedom dc-power system testbed

    NASA Technical Reports Server (NTRS)

    Kimnach, Greg L.; Baez, Anastacio N.

    1992-01-01

    Unlike a terrestrial electric utility which can purchase power from a neighboring utility, the Space Station Freedom (SSF) has strictly limited energy resources; as a result, source control, system monitoring, system protection, and load management are essential to the safe and efficient operation of the SSF Electric Power System (EPS). These functions are being evaluated in the dc Power Management and Distribution (PMAD) Testbed which NASA LeRC has developed at the Power System Facility (PSF) located in Cleveland, Ohio. The testbed is an ideal platform to develop, integrate, and verify power system monitoring and control algorithms. State Estimation (SE) is a monitoring tool used extensively in terrestrial electric utilities to ensure safe power system operation. It uses redundant system information to calculate the actual state of the EPS, to isolate faulty sensors, to determine source operating points, to verify faults detected by subsidiary controllers, and to identify high impedance faults. Source control and monitoring safeguard the power generation and storage subsystems and ensure that the power system operates within safe limits while satisfying user demands with minimal interruptions. System monitoring functions, in coordination with hardware implemented schemes, provide for a complete fault protection system. The objective of this paper is to overview the development and integration of the state estimator and the source control algorithms.

  2. An Astrometric Facility For Planetary Detection On The Space Station

    NASA Astrophysics Data System (ADS)

    Nishioka, Kenji; Scargle, Jeffrey D.; Givens, John J.

    1987-09-01

    An Astrometric Telescope Facility (ATF) for planetary detection is being studied as a potential Space Station initial operating capability payload. The primary science objective of this mission is the detection and study of planetary systems around other stars. In addition, the facility will be capable of other astrometric measurements such as stellar motions of other galaxies and highly precise direct measurement of stellar distances within the Milky Way Galaxy. This paper summarizes the results of a recently completed ATF preliminary systems definition study. Results of this study indicate that the preliminary concept for the facility is fully capable of meeting the science objectives without the development of any new technologies. This preliminary systems study started with the following basic assumptions: 1) the facility will be placed in orbit by a single Shuttle launch, 2) the Space Station will provide a coarse pointing system , electrical power, communications, assembly and checkout, maintenance and refurbishment services, and 3) the facility will be operated from a ground facility. With these assumptions and the science performance requirements a preliminary "strawman" facility was designed. The strawman facility design with a prime-focus telescope of 1.25-m aperture, f-ratio of 13 and a single prime-focus instrument was chosen to minimize random and systemmatic errors. Total facility mass is 5100 kg and overall dimensions are 1.85-m diam by 21.5-m long. A simple straightforward operations approach has been developed for ATF. A real-time facility control is not normally required, but does maintain a near real-time ground monitoring capability for facility and science data stream on a full-time basis. Facility observational sequences are normally loaded once a week. In addition, the preliminary system is designed to be fail-safe and single-fault tolerant. Routine interactions by the Space Station crew with ATF will not be necessary, but onboard controls

  3. Cyber Security Testing and Training Programs for Industrial Control Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel Noyes

    2012-03-01

    Service providers rely on industrial control systems (ICS) to manage the flow of water at dams, open breakers on power grids, control ventilation and cooling in nuclear power plants, and more. In today's interconnected environment, this can present a serious cyber security challenge. To combat this growing challenge, government, private industry, and academia are working together to reduce cyber risks. The Idaho National Laboratory (INL) is a key contributor to the Department of Energy National SCADA Test Bed (NSTB) and the Department of Homeland Security (DHS) Control Systems Security Program (CSSP), both of which focus on improving the overall securitymore » posture of ICS in the national critical infrastructure. In support of the NSTB, INL hosts a dedicated SCADA testing facility which consists of multiple control systems supplied by leading national and international manufacturers. Within the test bed, INL researchers systematically examine control system components and work to identify vulnerabilities. In support of the CSSP, INL develops and conducts training courses which are designed to increase awareness and defensive capabilities for IT/Control System professionals. These trainings vary from web-based cyber security trainings for control systems engineers to more advanced hands-on training that culminates with a Red Team/ Blue Team exercise that is conducted within an actual control systems environment. INL also provides staffing and operational support to the DHS Industrial Control Systems Cyber Emergency Response Team (ICS-CERT) Security Operations Center which responds to and analyzes control systems cyber incidents across the 18 US critical infrastructure sectors.« less

  4. Conceptual Design, Implementation and Commissioning of Data Acquisition and Control System for Negative Ion Source at IPR

    NASA Astrophysics Data System (ADS)

    Soni, Jignesh; Yadav, Ratnakar; Gahlaut, A.; Bansal, G.; Singh, M. J.; Bandyopadhyay, M.; Parmar, K. G.; Pandya, K.; Chakraborty, A.

    2011-09-01

    Negative ion Experimental facility has been setup at IPR. The facility consists of a RF based negative ion source (ROBIN)—procured under a license agreement with IPP Garching, as a replica of BATMAN, presently operating in IPP, 100 kW 1 MHz RF generators and a set of low and high voltage power supplies, vacuum system and diagnostics. 35 keV 10A H- beam is expected from this setup. Automated successful operation of the system requires an advanced, rugged, time proven and flexible control system. Further the data generated in the experimental phase needs to be acquired, monitored and analyzed to verify and judge the system performance. In the present test bed, this is done using a combination of PLC based control system and a PXI based data acquisition system. The control system consists of three different Siemens PLC systems viz. (1) S-7 400 PLC as a Master Control, (2) S-7 300 PLC for Vacuum system control and (3) C-7 PLC for RF generator control. Master control PLC directly controls all the subsystems except the Vacuum system and RF generator. The Vacuum system and RF generator have their own dedicated PLCs (S-7 300 and C-7 respectively). Further, these two PLC systems work as a slave for the Master control PLC system. Communication between PLC S-7 400, S-7 300 and central control room computer is done through Industrial Ethernet (IE). Control program and GUI are developed in Siemens Step-7 PLC programming software and Wincc SCADA software, respectively. There are approximately 150 analog and 200 digital control and monitoring signals required to perform complete closed loop control of the system. Since the source floats at high potential (˜35 kV); a combination of galvanic and fiber optic isolation has been implemented. PXI based Data Acquisition system (DAS) is a combination of PXI RT (Real time) system, front end signal conditioning electronics, host system and DAQ program. All the acquisition signals coming from various sub-systems are connected and

  5. A facility specialist model for improving retention of nursing home staff: results from a randomized, controlled study.

    PubMed

    Pillemer, Karl; Meador, Rhoda; Henderson, Charles; Robison, Julie; Hegeman, Carol; Graham, Edwin; Schultz, Leslie

    2008-07-01

    This article reports on a randomized, controlled intervention study designed to reduce employee turnover by creating a retention specialist position in nursing homes. We collected data three times over a 1-year period in 30 nursing homes, sampled in stratified random manner from facilities in New York State and Connecticut and randomly assigned to treatment and control conditions. Staff outcomes were measured through certified nursing assistant interviews, and turnover rates were measured over the course of the year. In the intervention condition, a staff member was selected to be the facility retention specialist, who would advocate for and implement programs to improve staff retention and commitment throughout the facility. Retention specialists received an intensive 3-day training in retention leadership and in a number of evidence-based retention programs. Ongoing support was provided throughout the project. Treatment facilities experienced significant declines in turnover rates compared to control facilities. As predicted, we found positive effects on certified nursing assistant assessments of the quality of retention efforts and of care provided in the facility; we did not find effects for job satisfaction or stress. The study provides evidence for the effectiveness of the retention specialist model. Findings from a detailed process evaluation suggest modifications of the program that may increase program effects.

  6. Consolidated Laser-Induced Fluorescence Diagnostic Systems for the NASA Ames Arc Jet Facilities

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay H.; Wilder, Michael C.; Porter, Barry J.; Brown, Jeffrey D.; Yeung, Dickson; Battazzo, Stephen J.; Brubaker, Timothy R.

    2016-01-01

    The spectroscopic diagnostic technique of two photon absorption laser-induced fluorescence (LIF) of atomic species for non-intrusive arc jet flow property measurement was first implemented at NASA Ames in the mid-1990s. In 2013-2014, NASA combined the agency's large-scale arc jet test capabilities at NASA Ames. Concurrent with that effort, the agency also sponsored a project to establish two comprehensive LIF diagnostic systems for the Aerodynamic Heating Facility (AHF) and Interaction Heating Facility (IHF) arc jets. The scope of the project enabled further engineering development of the existing IHF LIF system as well as the complete reconstruction of the AHF LIF system. The updated LIF systems are identical in design and capability. They represent the culmination of over 20 years of development experience in transitioning a specialized laboratory research tool into a measurement system for large-scale, high-demand test facilities. This paper will document the latest improvements of the LIF system design and demonstrations of the redeveloped AHF and IHF LIF systems.

  7. Overload control of artificial gravity facility using spinning tether system for high eccentricity transfer orbits

    NASA Astrophysics Data System (ADS)

    Gou, Xing-wang; Li, Ai-jun; Tian, Hao-chang; Wang, Chang-qing; Lu, Hong-shi

    2018-06-01

    As the major part of space life supporting systems, artificial gravity requires further study before it becomes mature. Spinning tether system is a good alternative solution to provide artificial gravity for the whole spacecraft other than additional devices, and its longer tether length could significantly reduce spinning velocity and thus enhance comfortability. An approximated overload-based feedback method is proposed to provide estimated spinning velocity signals for controller, so that gravity level could be accurately controlled without complicated GPS modules. System behavior in high eccentricity transfer orbits is also studied to give a complete knowledge of the spinning stabilities. The application range of the proposed method is studied in various orbit cases and spinning velocities, indicating that it is accurate and reliable for most of the mission phases especially for the final constant gravity level phase. In order to provide stable gravity level for transfer orbit missions, a sliding mode controller based on estimated angular signals is designed for closed-loop control. Numerical results indicate that the combination of overload-based feedback and sliding mode controller could satisfy most of the long-term artificial gravity missions. It is capable of forming flexible gravity environment in relatively good accuracy even in the lowest possible orbital radiuses and high eccentricity orbits of crewed space missions. The proposed scheme provides an effective tether solution for the artificial gravity construction in interstellar travel.

  8. The Regional Healthcare Ecosystem Analyst (RHEA): a simulation modeling tool to assist infectious disease control in a health system.

    PubMed

    Lee, Bruce Y; Wong, Kim F; Bartsch, Sarah M; Yilmaz, S Levent; Avery, Taliser R; Brown, Shawn T; Song, Yeohan; Singh, Ashima; Kim, Diane S; Huang, Susan S

    2013-06-01

    As healthcare systems continue to expand and interconnect with each other through patient sharing, administrators, policy makers, infection control specialists, and other decision makers may have to take account of the entire healthcare 'ecosystem' in infection control. We developed a software tool, the Regional Healthcare Ecosystem Analyst (RHEA), that can accept user-inputted data to rapidly create a detailed agent-based simulation model (ABM) of the healthcare ecosystem (ie, all healthcare facilities, their adjoining community, and patient flow among the facilities) of any region to better understand the spread and control of infectious diseases. To demonstrate RHEA's capabilities, we fed extensive data from Orange County, California, USA, into RHEA to create an ABM of a healthcare ecosystem and simulate the spread and control of methicillin-resistant Staphylococcus aureus. Various experiments explored the effects of changing different parameters (eg, degree of transmission, length of stay, and bed capacity). Our model emphasizes how individual healthcare facilities are components of integrated and dynamic networks connected via patient movement and how occurrences in one healthcare facility may affect many other healthcare facilities. A decision maker can utilize RHEA to generate a detailed ABM of any healthcare system of interest, which in turn can serve as a virtual laboratory to test different policies and interventions.

  9. Cybersecurity through Real-Time Distributed Control Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kisner, Roger A; Manges, Wayne W; MacIntyre, Lawrence Paul

    2010-04-01

    Critical infrastructure sites and facilities are becoming increasingly dependent on interconnected physical and cyber-based real-time distributed control systems (RTDCSs). A mounting cybersecurity threat results from the nature of these ubiquitous and sometimes unrestrained communications interconnections. Much work is under way in numerous organizations to characterize the cyber threat, determine means to minimize risk, and develop mitigation strategies to address potential consequences. While it seems natural that a simple application of cyber-protection methods derived from corporate business information technology (IT) domain would lead to an acceptable solution, the reality is that the characteristics of RTDCSs make many of those methods inadequatemore » and unsatisfactory or even harmful. A solution lies in developing a defense-in-depth approach that ranges from protection at communications interconnect levels ultimately to the control system s functional characteristics that are designed to maintain control in the face of malicious intrusion. This paper summarizes the nature of RTDCSs from a cybersecurity perspec tive and discusses issues, vulnerabilities, candidate mitigation approaches, and metrics.« less

  10. Australian national networked tele-test facility for integrated systems

    NASA Astrophysics Data System (ADS)

    Eshraghian, Kamran; Lachowicz, Stefan W.; Eshraghian, Sholeh

    2001-11-01

    The Australian Commonwealth government recently announced a grant of 4.75 million as part of a 13.5 million program to establish a world class networked IC tele-test facility in Australia. The facility will be based on a state-of-the-art semiconductor tester located at Edith Cowan University in Perth that will operate as a virtual centre spanning Australia. Satellite nodes will be located at the University of Western Australia, Griffith University, Macquarie University, Victoria University and the University of Adelaide. The facility will provide vital equipment to take Australia to the frontier of critically important and expanding fields in microelectronics research and development. The tele-test network will provide state of the art environment for the electronics and microelectronics research and the industry community around Australia to test and prototype Very Large Scale Integrated (VLSI) circuits and other System On a Chip (SOC) devices, prior to moving to the manufacturing stage. Such testing is absolutely essential to ensure that the device performs to specification. This paper presents the current context in which the testing facility is being established, the methodologies behind the integration of design and test strategies and the target shape of the tele-testing Facility.

  11. The US National Transonic Facility, NTF

    NASA Technical Reports Server (NTRS)

    Bruce, Walter E., Jr.; Gloss, Blair B.

    1989-01-01

    The construction of the National Transonic Facility was completed in September 1982 and the start-up and checkout of tunnel systems were performed over the next two years. In August 1984, the Operational Readiness Review (ORR) was conducted and the facility was declared operational for final checkout of cryogenic instrumentation and control systems, and for the aerodynamic calibration and testing to commence. Also, the model access system for the cryogenic mode of operation would be placed into operation along with tunnel testing. Since the ORR, a host of operating problems resulting from the cryogenic environment were identified and solved. These range from making mechanical and electrical systems functional to eliminating temperature induced model vibration to coping with the outgassing of moisture from the thermal insulation. Additionally, a series of aerodynamic tests have demonstrated data quality and provided research data on several configurations. Some of the more significant efforts are reviewed since the ORR and the NTF status concerning hardware, instrumentation and process controls systems, operating constraints imposed by the cryogenic environment, and data quality are summarized.

  12. The MELISSA pilot plant facility as as integration test-bed for advanced life support systems

    NASA Technical Reports Server (NTRS)

    Godia, F.; Albiol, J.; Perez, J.; Creus, N.; Cabello, F.; Montras, A.; Masot, A.; Lasseur, Ch

    2004-01-01

    The different advances in the Micro Ecological Life Support System Alternative project (MELISSA), fostered and coordinated by the European Space Agency, as well as in other associated technologies, are integrated and demonstrated in the MELISSA Pilot Plant laboratory. During the first period of operation, the definition of the different compartments at an individual basis has been achieved, and the complete facility is being re-designed to face a new period of integration of all these compartments. The final objective is to demonstrate the potentiality of biological systems such as MELISSA as life support systems. The facility will also serve as a test bed to study the robustness and stability of the continuous operation of a complex biological system. This includes testing of the associated instrumentation and control for a safe operation, characterization of the chemical and microbial safety of the system, as well as tracking the genetic stability of the microbial strains used. The new period is envisaged as a contribution to the further development of more complete biological life support systems for long-term manned missions, that should be better defined from the knowledge to be gained from this integration phase. This contribution summarizes the current status of the Pilot Plant and the planned steps for the new period. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  13. Louisiana SIP: LAC 33:III Ch 2132. Stage II Vapor Recovery Systems for Control of Vehicle Refuelling Emissions at Gasoline Dispensing Facilities; SIP effective 2011-08-04 (LAd34) and 2016-02-29 (LAd47) to 2017-09-27

    EPA Pesticide Factsheets

    Louisiana SIP: LAC 33:III Ch 2132. Stage II Vapor Recovery Systems for Control of Vehicle Refuelling Emissions at Gasoline Dispensing Facilities; SIP effective 2011-08-04 (LAd34) and 2016-02-29 (LAd47) to 2017-09-27

  14. An astrometric facility for planetary detection on the space station

    NASA Technical Reports Server (NTRS)

    Nishioka, Kenji; Scargle, Jeffrey D.; Givens, John J.

    1987-01-01

    An Astrometric Telescope Facility (ATF) for planetary detection is being studied as a potential space station initial operating capability payload. The primary science objective of this mission is the detection and study of planetary systems around other stars. In addition, the facility will be capable of other astrometric measurements such as stellar motions of other galaxies and highly precise direct measurement of stellar distance within the Milky Way Galaxy. The results of a recently completed ATF preliminary systems definition study are summarized. Results of this study indicate that the preliminary concept for the facility is fully capable of meeting the science objective without the development of any new technologies. A simple straightforward operations approach was developed for the ATF. A real-time facility control is not normally required, but does maintain a near real-time ground monitoring capability for the facility and science data stream on a full-time basis. Facility observational sequences are normally loaded once a week. In addition, the preliminary system is designed to be fail-safe and single-fault tolerant. Routine interactions by the space station crew with the ATF will not be necessary, but onboard controls are provided for crew override as required for emergencies and maintenance.

  15. Design of a control system for the LECR3

    NASA Astrophysics Data System (ADS)

    Zhou, Wen-Xiong; Wang, Yan-Yu; Zhou, De-Tai; Lin, Fu-Yuan; Luo, Jin-Fu; Yu, Yan-Juan; Feng, Yu-Cheng; Lu, Wang

    2013-11-01

    The Lanzhou Electron Cyclotron Resonance Ion Source No. 3 (LECR3) plays an important role in supplying many kinds of ion beams to the Heavy Ion Research Facility in Lanzhou (HIRFL). In this paper, we provide a detailed description of a new remote control system for the LECR3 that we designed and implemented. This system uses typical distribution control for both the LECR3 and the newly-built Lanzhou All Permanent Magnet ECR Ion Source No. 1 (LAPECR1). The entire project, including the construction of hardware and the software, was completed in September 2012. The hardware consists of an industry computer (IPC), an intranet composed of a switch, and various controllers with Ethernet access functions. The software is written in C++ and is used to control all of the respective equipment through the intranet to ensure that the useful information is stored in a database for later analysis. The entire system can efficiently acquire the necessary data from the respective equipment at a speed of 3 times per second, after which the data is stored in the database. The system can also complete the interlock protection and alarm process in one second.

  16. Intelligent vehicle control: Opportunities for terrestrial-space system integration

    NASA Technical Reports Server (NTRS)

    Shoemaker, Charles

    1994-01-01

    For 11 years the Department of Defense has cooperated with a diverse array of other Federal agencies including the National Institute of Standards and Technology, the Jet Propulsion Laboratory, and the Department of Energy, to develop robotics technology for unmanned ground systems. These activities have addressed control system architectures supporting sharing of tasks between the system operator and various automated subsystems, man-machine interfaces to intelligent vehicles systems, video compression supporting vehicle driving in low data rate digital communication environments, multiple simultaneous vehicle control by a single operator, path planning and retrace, and automated obstacle detection and avoidance subsystem. Performance metrics and test facilities for robotic vehicles were developed permitting objective performance assessment of a variety of operator-automated vehicle control regimes. Progress in these areas will be described in the context of robotic vehicle testbeds specifically developed for automated vehicle research. These initiatives, particularly as regards the data compression, task sharing, and automated mobility topics, also have relevance in the space environment. The intersection of technology development interests between these two communities will be discussed in this paper.

  17. A unique facility for V/STOL aircraft hover testing

    NASA Technical Reports Server (NTRS)

    Culpepper, R. G.; Murphy, R. D.

    1979-01-01

    The paper discusses the Navy's XFV-12A tethered hover testing capabilities utilizing NASA's Impact Dynamic Research Facility (IDRF) at Langley. The facility allows for both static and dynamic tethered hover test operations to be undertaken with safety. The installation which consists of the 'Z' system (tether), restraint system, static tiedowns and the control room and console, is presented in detail. Among the capabilities demonstrated were the ability to recover the aircraft anytime during a test, to rapidly and safely define control limits, and to provide a realistic environment for pilot training and proficiency in VTOL flight.

  18. Treatment of CELSS and PCELSS waste to produce nutrients for plant growth. [Controlled Ecological Life Support Systems and Partially Controlled Ecological Life Support Systems

    NASA Technical Reports Server (NTRS)

    Modell, M.; Meissner, H.; Karel, M.; Carden, J.; Lewis, S.

    1981-01-01

    The research program entitled 'Development of a Prototype Experiment for Treating CELSS (Controlled Ecological Life Support Systems) and PCELSS (Partially Controlled Ecological Life Support Systems) Wastes to Produce Nutrients for Plant Growth' consists of two phases: (1) the development of the neccessary facilities, chemical methodologies and models for meaningful experimentation, and (2) the application of what methods and devices are developed to the interfacing of waste oxidation with plant growth. Homogeneous samples of freeze-dried human feces and urine have been prepared to ensure comparability of test results between CELSS waste treatment research groups. A model of PCELSS food processing wastes has been developed, and an automated gas chromatographic system to analyze oxidizer effluents was designed and brought to operational status. Attention is given the component configuration of the wet oxidation system used by the studies.

  19. Computer-Aided Facilities Management Systems (CAFM).

    ERIC Educational Resources Information Center

    Cyros, Kreon L.

    Computer-aided facilities management (CAFM) refers to a collection of software used with increasing frequency by facilities managers. The six major CAFM components are discussed with respect to their usefulness and popularity in facilities management applications: (1) computer-aided design; (2) computer-aided engineering; (3) decision support…

  20. Biotechnology Facility (BTF) for ISS

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Engineering mockup shows the general arrangement of the plarned Biotechnology Facility inside an EXPRESS rack aboard the International Space Station. This layout includes a gas supply module (bottom left), control computer and laptop interface (bottom right), two rotating wall vessels (top right), and support systems.

  1. EV-Grid Integration (EVGI) Control and System Implementation - Research Overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kisacikoglu, Mithat; Markel, Tony; Meintz, Andrew

    2016-03-23

    Plug-in electric vehicles (PEVs) are being increasingly adopted in industry today. Microgrid applications of PEVs require the development of charging and discharging algorithms and individual characterization of vehicles including the on-board chargers and vehicle mobility. This study summarizes the capabilities of the Electric Vehicle Grid Integration (EVGI) Team at NREL and underlines different recent projects of the Team. Our studies include V1G, V2G, and V2H control of PEVs as well as test and analysis of stationary and dynamic wireless power transfer (WPT) systems. The presentation also includes the future scope of study which implements real-time simulation of PEVs in amore » microgrid scenario. The capabilities at Vehicle Testing and Integration Facility (VTIF) and Energy Systems Integration Facility (ESIF) were described within the scope of the EVGI research.« less

  2. 41 CFR 102-74.190 - Are portable heaters, fans and other such devices allowed in Government-controlled facilities?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., fans and other such devices allowed in Government-controlled facilities? 102-74.190 Section 102-74.190... § 102-74.190 Are portable heaters, fans and other such devices allowed in Government-controlled facilities? Federal agencies are prohibited from operating portable heaters, fans, and other such devices in...

  3. The Fermilab Accelerator control system

    NASA Astrophysics Data System (ADS)

    Bogert, Dixon

    1986-06-01

    With the advent of the Tevatron, considerable upgrades have been made to the controls of all the Fermilab Accelerators. The current system is based on making as large an amount of data as possible available to many operators or end-users. Specifically there are about 100 000 separate readings, settings, and status and control registers in the various machines, all of which can be accessed by seventeen consoles, some in the Main Control Room and others distributed throughout the complex. A "Host" computer network of approximately eighteen PDP-11/34's, seven PDP-11/44's, and three VAX-11/785's supports a distributed data acquisition system including Lockheed MAC-16's left from the original Main Ring and Booster instrumentation and upwards of 1000 Z80, Z8002, and M68000 microprocessors in dozens of configurations. Interaction of the various parts of the system is via a central data base stored on the disk of one of the VAXes. The primary computer-hardware communication is via CAMAC for the new Tevatron and Antiproton Source; certain subsystems, among them vacuum, refrigeration, and quench protection, reside in the distributed microprocessors and communicate via GAS, an in-house protocol. An important hardware feature is an accurate clock system making a large number of encoded "events" in the accelerator supercycle available for both hardware modules and computers. System software features include the ability to save the current state of the machine or any subsystem and later restore it or compare it with the state at another time, a general logging facility to keep track of specific variables over long periods of time, detection of "exception conditions" and the posting of alarms, and a central filesharing capability in which files on VAX disks are available for access by any of the "Host" processors.

  4. Biosecurity measures in 48 isolation facilities managing highly infectious diseases.

    PubMed

    Puro, Vincenzo; Fusco, Francesco M; Schilling, Stefan; Thomson, Gail; De Iaco, Giuseppina; Brouqui, Philippe; Maltezou, Helena C; Bannister, Barbara; Gottschalk, René; Brodt, Hans-Rheinhard; Ippolito, Giuseppe

    2012-06-01

    Biosecurity measures are traditionally applied to laboratories, but they may also be usefully applied in highly specialized clinical settings, such as the isolation facilities for the management of patients with highly infectious diseases (eg, viral hemorrhagic fevers, SARS, smallpox, potentially severe pandemic flu, and MDR- and XDR-tuberculosis). In 2009 the European Network for Highly Infectious Diseases conducted a survey in 48 isolation facilities in 16 European countries to determine biosecurity measures for access control to the facility. Security personnel are present in 39 facilities (81%). In 35 facilities (73%), entrance to the isolation area is restricted; control methods include electronic keys, a PIN system, closed-circuit TV, and guards at the doors. In 25 facilities (52%), identification and registration of all staff entering and exiting the isolation area are required. Access control is used in most surveyed centers, but specific lacks exist in some facilities. Further data are needed to assess other biosecurity aspects, such as the security measures during the transportation of potentially contaminated materials and measures to address the risk of an "insider attack."

  5. Biosecurity Measures in 48 Isolation Facilities Managing Highly Infectious Diseases

    PubMed Central

    Puro, Vincenzo; Schilling, Stefan; Thomson, Gail; De Iaco, Giuseppina; Brouqui, Philippe; Maltezou, Helena C.; Bannister, Barbara; Gottschalk, René; Brodt, Hans-Rheinhard; Ippolito, Giuseppe

    2012-01-01

    Biosecurity measures are traditionally applied to laboratories, but they may also be usefully applied in highly specialized clinical settings, such as the isolation facilities for the management of patients with highly infectious diseases (eg, viral hemorrhagic fevers, SARS, smallpox, potentially severe pandemic flu, and MDR- and XDR-tuberculosis). In 2009 the European Network for Highly Infectious Diseases conducted a survey in 48 isolation facilities in 16 European countries to determine biosecurity measures for access control to the facility. Security personnel are present in 39 facilities (81%). In 35 facilities (73%), entrance to the isolation area is restricted; control methods include electronic keys, a PIN system, closed-circuit TV, and guards at the doors. In 25 facilities (52%), identification and registration of all staff entering and exiting the isolation area are required. Access control is used in most surveyed centers, but specific lacks exist in some facilities. Further data are needed to assess other biosecurity aspects, such as the security measures during the transportation of potentially contaminated materials and measures to address the risk of an “insider attack.” PMID:22571373

  6. The EPICS-based remote control system for muon beam line devices at J-PARC MUSE

    NASA Astrophysics Data System (ADS)

    Ito, T. U.; Nakahara, K.; Kawase, M.; Fujimori, H.; Kobayashi, Y.; Higemoto, W.; Miyake, Y.

    2010-04-01

    The remote control system for muon beam line devices of J-PARC MUSE has been developed with the Experimental Physics and Industrial Control System (EPICS). The EPICS input/output controller was installed in standard Linux PCs for slow control of the devices. Power supplies for 21 magnetic elements and four slit controllers for the decay-surface muon beam line in the Materials and Life Science Experimental Facility are now accessible via Ethernet from a graphical user interface which has been composed using the Motif Editor and Display Manger.

  7. Common Utilities in the Energy Systems Integration Facility | Energy

    Science.gov Websites

    Systems Integration Facility. Common utilities include: Power: Three-phase 480/277 VAC, 208/120 VAC, 240 split-phase VAC, and 120 single-phase VAC Water: Process heating and cooling and research cooling

  8. Lightning Protection System for HE Facilities at LLNL - Certification Template

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clancy, T J; Ong, M M; Brown, C G

    2005-12-08

    This document is meant as a template to assist in the development of your own lighting certification process. Aside from this introduction and the mock representative name of the building (Building A), this document is nearly identical to a lightning certification report issued by the Engineering Directorate at Lawrence Livermore National Laboratory. At the date of this release, we have certified over 70 HE processing and storage cells at our Site 300 facilities. In Chapters 1 and 2 respectively, we address the need and methods of lightning certification for HE processing and storage facilities at LLNL. We present the preferredmore » method of lightning protection in Chapter 3, as well as the likely building modifications that are needed to comply with this method. In Chapter 4, we present the threat assessment and resulting safe work areas within a cell. After certification, there may be changes to operations during a lightning alert, and this is discussed in Chapter 5. Chapter 6 lists the maintenance requirements for the continuation of lighting certification status. Appendices of this document are meant as an aid in developing your own certification process, and they include a bonding list, an inventory of measurement equipment, surge suppressors in use at LLNL, an Integrated Work and Safety form (IWS), and a template certification sign-off sheet. The lightning certification process involves more that what is spelled out in this document. The first steps involve considerable planning, the securing of funds, and management and explosives safety buy-in. Permits must be obtained, measurement equipment must be assembled and tested, and engineers and technicians must be trained in their use. Cursory building inspections are also recommended, and surge suppression for power systems must be addressed. Upon completion of a certification report and its sign-off by management, additional work is required. Training will be needed in order to educate workers and facility

  9. Opportunities for Automated Demand Response in California Wastewater Treatment Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aghajanzadeh, Arian; Wray, Craig; McKane, Aimee

    Previous research over a period of six years has identified wastewater treatment facilities as good candidates for demand response (DR), automated demand response (Auto-­DR), and Energy Efficiency (EE) measures. This report summarizes that work, including the characteristics of wastewater treatment facilities, the nature of the wastewater stream, energy used and demand, as well as details of the wastewater treatment process. It also discusses control systems and automated demand response opportunities. Furthermore, this report summarizes the DR potential of three wastewater treatment facilities. In particular, Lawrence Berkeley National Laboratory (LBNL) has collected data at these facilities from control systems, submetered processmore » equipment, utility electricity demand records, and governmental weather stations. The collected data were then used to generate a summary of wastewater power demand, factors affecting that demand, and demand response capabilities. These case studies show that facilities that have implemented energy efficiency measures and that have centralized control systems are well suited to shed or shift electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. In summary, municipal wastewater treatment energy demand in California is large, and energy-­intensive equipment offers significant potential for automated demand response. In particular, large load reductions were achieved by targeting effluent pumps and centrifuges. One of the limiting factors to implementing demand response is the reaction of effluent turbidity to reduced aeration at an earlier stage of the process. Another limiting factor is that cogeneration capabilities of municipal facilities, including existing power purchase agreements and utility receptiveness to purchasing electricity from cogeneration facilities, limit a facility’s potential to participate in other DR activities.« less

  10. 242A Distributed Control System Year 2000 Acceptance Test Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TEATS, M.C.

    1999-08-31

    This report documents acceptance test results for the 242-A Evaporator distributive control system upgrade to D/3 version 9.0-2 for year 2000 compliance. This report documents the test results obtained by acceptance testing as directed by procedure HNF-2695. This verification procedure will document the initial testing and evaluation of the potential 242-A Distributed Control System (DCS) operating difficulties across the year 2000 boundary and the calendar adjustments needed for the leap year. Baseline system performance data will be recorded using current, as-is operating system software. Data will also be collected for operating system software that has been modified to correct yearmore » 2000 problems. This verification procedure is intended to be generic such that it may be performed on any D/3{trademark} (GSE Process Solutions, Inc.) distributed control system that runs with the VMSTM (Digital Equipment Corporation) operating system. This test may be run on simulation or production systems depending upon facility status. On production systems, DCS outages will occur nine times throughout performance of the test. These outages are expected to last about 10 minutes each.« less

  11. The control system of the multi-strip ionization chamber for the HIMM

    NASA Astrophysics Data System (ADS)

    Li, Min; Yuan, Y. J.; Mao, R. S.; Xu, Z. G.; Li, Peng; Zhao, T. C.; Zhao, Z. L.; Zhang, Nong

    2015-03-01

    Heavy Ion Medical Machine (HIMM) is a carbon ion cancer treatment facility which is being built by the Institute of Modern Physics (IMP) in China. In this facility, transverse profile and intensity of the beam at the treatment terminals will be measured by the multi-strip ionization chamber. In order to fulfill the requirement of the beam position feedback to accomplish the beam automatic commissioning, less than 1 ms reaction time of the Data Acquisition (DAQ) of this detector must be achieved. Therefore, the control system and software framework for DAQ have been redesigned and developed with National Instruments Compact Reconfigurable Input/Output (CompactRIO) instead of PXI 6133. The software is Labview-based and developed following the producer-consumer pattern with message mechanism and queue technology. The newly designed control system has been tested with carbon beam at the Heavy Ion Research Facility at Lanzhou-Cooler Storage Ring (HIRFL-CSR) and it has provided one single beam profile measurement in less than 1 ms with 1 mm beam position resolution. The fast reaction time and high precision data processing during the beam test have verified the usability and maintainability of the software framework. Furthermore, such software architecture is easy-fitting to applications with different detectors such as wire scanner detector.

  12. PLANNING AND COORDINATION OF ACTIVITIES SUPPORTING THE RUSSIAN SYSTEM OF CONTROL AND ACCOUNTING OF NUCLEAR MATERIALS AT ROSATOM FACILITIES IN THE FRAMEWORK OF THE U.S.-RUSSIAN COOPERATION.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SVIRIDOVA, V.V.; ERASTOV, V.V.; ISAEV, N.V.

    2005-05-16

    The MC&A Equipment and Methodological Support Strategic Plan (MEMS SP) for implementing modern MC&A equipment and methodologies at Rosatom facilities has been developed within the framework of the U.S.-Russian MPC&A Program. This plan developed by the Rosatom's Russian MC&A Equipment and Methodologies (MEM) Working Group and is coordinated by that group with support and coordination provided by the MC&A Measurements Project, Office of National Infrastructure and Sustainability, US DOE. Implementation of different tasks of the MEMS Strategic Plan is coordinated by Rosatom and US-DOE in cooperation with different U.S.-Russian MC&A-related working groups and joint site project teams. This cooperation allowsmore » to obtain and analyze information about problems, current needs and successes at Rosatom facilities and facilitates solution of the problems, satisfying the facilities' needs and effective exchange of expertise and lessons learned. The objective of the MEMS Strategic Plan is to enhance effectiveness of activities implementing modern equipment and methodologies in the Russian State MC&A system. These activities are conducted within the joint Russian-US MPC&A program aiming at reduction of possibility for theft or diversion of nuclear materials and enhancement of control of nuclear materials.« less

  13. An atmosphere protection subsystem in the thermal power station automated process control system

    NASA Astrophysics Data System (ADS)

    Parchevskii, V. M.; Kislov, E. A.

    2014-03-01

    Matters concerned with development of methodical and mathematical support for an atmosphere protection subsystem in the thermal power station automated process control system are considered taking as an example the problem of controlling nitrogen oxide emissions at a gas-and-oil-fired thermal power station. The combined environmental-and-economic characteristics of boilers, which correlate the costs for suppressing emissions with the boiler steam load and mass discharge of nitrogen oxides in analytic form, are used as the main tool for optimal control. A procedure for constructing and applying environmental-and-economic characteristics on the basis of technical facilities available in modern instrumentation and control systems is presented.

  14. Towards energy efficient operation of Heating, Ventilation and Air Conditioning systems via advanced supervisory control design

    NASA Astrophysics Data System (ADS)

    Oswiecinska, A.; Hibbs, J.; Zajic, I.; Burnham, K. J.

    2015-11-01

    This paper presents conceptual control solution for reliable and energy efficient operation of heating, ventilation and air conditioning (HVAC) systems used in large volume building applications, e.g. warehouse facilities or exhibition centres. Advanced two-level scalable control solution, designed to extend capabilities of the existing low-level control strategies via remote internet connection, is presented. The high-level, supervisory controller is based on Model Predictive Control (MPC) architecture, which is the state-of-the-art for indoor climate control systems. The innovative approach benefits from using passive heating and cooling control strategies for reducing the HVAC system operational costs, while ensuring that required environmental conditions are met.

  15. Spacelab Data Processing Facility

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The Spacelab Data Processing Facility (SDPF) processes, monitors, and accounts for the payload data from Spacelab and other Shuttle missions and forwards relevant data to various user facilities worldwide. The SLDPF is divided into the Spacelab Input Processing System (SIPS) and the Spacelab Output Processing System (SOPS). The SIPS division demultiplexes, synchronizes, time tags, quality checks, accounts for the data, and formats the data onto tapes. The SOPS division further edits, blocks, formats, and records the data on tape for shipment to users. User experiments must conform to the Spacelab's onboard High Rate Multiplexer (HRM) format for maximum process ability. Audio, analog, instrumentation, high density, experiment data, input/output data, quality control and accounting, and experimental channel tapes along with a variety of spacelab ancillary tapes are provided to the user by SLDPF.

  16. Sample Federal Facility Land Use Control ROD Checklist and Suggested Language (LUC Checklist)

    EPA Pesticide Factsheets

    The LUC Checklist provides direction on describing and documenting land use controls (LUCs) in federal facility actrions under CERCLA in Records of Decision (RODs), remedial designs (RDs), and remedial action work plans (RAWPs).

  17. Improving district facility readiness: a 12-month evaluation of a data-driven health systems strengthening intervention in rural Rwanda.

    PubMed

    Iyer, Hari S; Kamanzi, Emmanuel; Mugunga, Jean Claude; Finnegan, Karen; Uwingabiye, Alice; Shyaka, Edward; Niyonzima, Saleh; Hirschhorn, Lisa R; Drobac, Peter C

    2015-01-01

    While health systems strengthening (HSS) interventions are recommended by global health policy experts to improve population health in resource-limited settings, few examples exist of evaluations of HSS interventions conducted at the district level. In 2009, a partnership between Partners In Health (PIH), a non-governmental organization, and the Rwandan Ministry of Health (RMOH) was provided funds to implement and evaluate a district-level HSS intervention in two rural districts of Rwanda. The partnership provided limited funds to 14 health centers for targeted systems support in 2010; six others received support prior to the intervention (reference). RMOH health systems norms were mapped across the WHO HSS framework, scored from 0 to 10 and incorporated into a rapid survey assessing 11 domains of facility readiness. Stakeholder meetings allowed partnership leaders to review results, set priorities, and allocate resources. Investments included salary support, infrastructure improvements, medical equipment, and social support for patients. We compared facility domain scores from the start of the intervention to 12 months and tested for correlation between change in score and change in funding allocation to assess equity in our approach. We found significant improvements among intervention facilities from baseline to 12 months across several domains [infrastructure (+4, p=0.0001), clinical services (+1.2, p=0.03), infection and sanitation control (+0.6, p=0.03), medical equipment (+1.0, p=0.02), information use (+2, p=0.002)]. Composite score across domains improved from 6.2 at baseline to 7.4 at 12 months (p=0.002). Across facilities, 50% had composite scores greater than the average score among reference facilities (7.4) at 12 months compared to none at baseline. Rapid facility surveys, stakeholder engagement, and information feedback can be used for gap analysis and resource allocation. This approach can achieve effective use of limited resources, improve facility

  18. Improving district facility readiness: a 12-month evaluation of a data-driven health systems strengthening intervention in rural Rwanda

    PubMed Central

    Iyer, Hari S.; Kamanzi, Emmanuel; Mugunga, Jean Claude; Finnegan, Karen; Uwingabiye, Alice; Shyaka, Edward; Niyonzima, Saleh; Hirschhorn, Lisa R.; Drobac, Peter C.

    2015-01-01

    Background While health systems strengthening (HSS) interventions are recommended by global health policy experts to improve population health in resource-limited settings, few examples exist of evaluations of HSS interventions conducted at the district level. In 2009, a partnership between Partners In Health (PIH), a non-governmental organization, and the Rwandan Ministry of Health (RMOH) was provided funds to implement and evaluate a district-level HSS intervention in two rural districts of Rwanda. Design The partnership provided limited funds to 14 health centers for targeted systems support in 2010; six others received support prior to the intervention (reference). RMOH health systems norms were mapped across the WHO HSS framework, scored from 0 to 10 and incorporated into a rapid survey assessing 11 domains of facility readiness. Stakeholder meetings allowed partnership leaders to review results, set priorities, and allocate resources. Investments included salary support, infrastructure improvements, medical equipment, and social support for patients. We compared facility domain scores from the start of the intervention to 12 months and tested for correlation between change in score and change in funding allocation to assess equity in our approach. Results We found significant improvements among intervention facilities from baseline to 12 months across several domains [infrastructure (+4, p=0.0001), clinical services (+1.2, p=0.03), infection and sanitation control (+0.6, p=0.03), medical equipment (+1.0, p=0.02), information use (+2, p=0.002)]. Composite score across domains improved from 6.2 at baseline to 7.4 at 12 months (p=0.002). Across facilities, 50% had composite scores greater than the average score among reference facilities (7.4) at 12 months compared to none at baseline. Conclusions Rapid facility surveys, stakeholder engagement, and information feedback can be used for gap analysis and resource allocation. This approach can achieve effective use

  19. 33 CFR 149.418 - What fire protection system must a helicopter fueling facility have?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... a helicopter fueling facility have? 149.418 Section 149.418 Navigation and Navigable Waters COAST... protection system must a helicopter fueling facility have? In addition to the portable fire extinguishers required under Table 149.409 of this part, each helicopter fueling facility must have a fire protection...

  20. 33 CFR 149.418 - What fire protection system must a helicopter fueling facility have?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... a helicopter fueling facility have? 149.418 Section 149.418 Navigation and Navigable Waters COAST... protection system must a helicopter fueling facility have? In addition to the portable fire extinguishers required under Table 149.409 of this part, each helicopter fueling facility must have a fire protection...

  1. Internet Protocol Display Sharing Solution for Mission Control Center Video System

    NASA Technical Reports Server (NTRS)

    Brown, Michael A.

    2009-01-01

    With the advent of broadcast television as a constant source of information throughout the NASA manned space flight Mission Control Center (MCC) at the Johnson Space Center (JSC), the current Video Transport System (VTS) characteristics provides the ability to visually enhance real-time applications as a broadcast channel that decision making flight controllers come to rely on, but can be difficult to maintain and costly. The Operations Technology Facility (OTF) of the Mission Operations Facility Division (MOFD) has been tasked to provide insight to new innovative technological solutions for the MCC environment focusing on alternative architectures for a VTS. New technology will be provided to enable sharing of all imagery from one specific computer display, better known as Display Sharing (DS), to other computer displays and display systems such as; large projector systems, flight control rooms, and back supporting rooms throughout the facilities and other offsite centers using IP networks. It has been stated that Internet Protocol (IP) applications are easily readied to substitute for the current visual architecture, but quality and speed may need to be forfeited for reducing cost and maintainability. Although the IP infrastructure can support many technologies, the simple task of sharing ones computer display can be rather clumsy and difficult to configure and manage to the many operators and products. The DS process shall invest in collectively automating the sharing of images while focusing on such characteristics as; managing bandwidth, encrypting security measures, synchronizing disconnections from loss of signal / loss of acquisitions, performance latency, and provide functions like, scalability, multi-sharing, ease of initial integration / sustained configuration, integration with video adjustments packages, collaborative tools, host / recipient controllability, and the utmost paramount priority, an enterprise solution that provides ownership to the whole

  2. Adaptive identification and control of structural dynamics systems using recursive lattice filters

    NASA Technical Reports Server (NTRS)

    Sundararajan, N.; Montgomery, R. C.; Williams, J. P.

    1985-01-01

    A new approach for adaptive identification and control of structural dynamic systems by using least squares lattice filters thar are widely used in the signal processing area is presented. Testing procedures for interfacing the lattice filter identification methods and modal control method for stable closed loop adaptive control are presented. The methods are illustrated for a free-free beam and for a complex flexible grid, with the basic control objective being vibration suppression. The approach is validated by using both simulations and experimental facilities available at the Langley Research Center.

  3. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov Websites

    DOE-funded research projects that are integrating cybersecurity controls with power systems principles Management, a hardware and software system that mimics the communications, power systems, and cybersecurity

  4. {open_quotes}Radon{close_quotes} - the system of Soviet designed regional waste management facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horak, W.C.; Reisman, A.; Purvis, E.E. III

    1997-07-01

    The Soviet Union established a system of specialized regional facilities to dispose of radioactive waste generated by sources other than the nuclear fuel cycle. The system had 16 facilities in Russia, 5 in Ukraine, one in each of the other CIS states, and one in each of the Baltic Republics. These facilities are still being used. The major generators of radioactive waste they process these are research and industrial organizations, medical and agricultural institution and other activities not related to nuclear power. Waste handled by these facilities is mainly beta- and gamma-emitting nuclides with half lives of less than 30more » years. The long-lived and alpha-emitting isotopic content is insignificant. Most of the radwaste has low and medium radioactivity levels. The facilities also handle spent radiation sources, which are highly radioactive and contain 95-98 percent of the activity of all the radwaste buried at these facilities.« less

  5. The Cortex project A quasi-real-time information system to build control systems for high energy physics experiments

    NASA Astrophysics Data System (ADS)

    Barillere, R.; Cabel, H.; Chan, B.; Goulas, I.; Le Goff, J. M.; Vinot, L.; Willmott, C.; Milcent, H.; Huuskonen, P.

    1994-12-01

    The Cortex control information system framework is being developed at CERN. It offers basic functions to allow the sharing of information, control and analysis functions; it presents a uniform human interface for such information and functions; it permits upgrades and additions without code modification and it is sufficiently generic to allow its use by most of the existing or future control systems at CERN. Services will include standard interfaces to user-supplied functions, analysis, archive and event management. Cortex does not attempt to carry out the direct data acquisition or control of the devices; these are activities which are highly specific to the application and are best done by commercial systems or user-written programs. Instead, Cortex integrates these application-specific pieces and supports them by supplying other commonly needed facilities such as collaboration, analysis, diagnosis and user assistance.

  6. Performance of active feedforward control systems in non-ideal, synthesized diffuse sound fields.

    PubMed

    Misol, Malte; Bloch, Christian; Monner, Hans Peter; Sinapius, Michael

    2014-04-01

    The acoustic performance of passive or active panel structures is usually tested in sound transmission loss facilities. A reverberant sending room, equipped with one or a number of independent sound sources, is used to generate a diffuse sound field excitation which acts as a disturbance source on the structure under investigation. The spatial correlation and coherence of such a synthesized non-ideal diffuse-sound-field excitation, however, might deviate significantly from the ideal case. This has consequences for the operation of an active feedforward control system which heavily relies on the acquisition of coherent disturbance source information. This work, therefore, evaluates the spatial correlation and coherence of ideal and non-ideal diffuse sound fields and considers the implications on the performance of a feedforward control system. The system under consideration is an aircraft-typical double panel system, equipped with an active sidewall panel (lining), which is realized in a transmission loss facility. Experimental results for different numbers of sound sources in the reverberation room are compared to simulation results of a comparable generic double panel system excited by an ideal diffuse sound field. It is shown that the number of statistically independent noise sources acting on the primary structure of the double panel system depends not only on the type of diffuse sound field but also on the sample lengths of the processed signals. The experimental results show that the number of reference sensors required for a defined control performance exhibits an inverse relationship to control filter length.

  7. Preliminary design for a maglev development facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coffey, H.T.; He, J.L.; Chang, S.L.

    1992-04-01

    A preliminary design was made of a national user facility for evaluating magnetic-levitation (maglev) technologies in sizes intermediate between laboratory experiments and full-scale systems. A technical advisory committee was established and a conference was held to obtain advice on the potential requirements of operational systems and how the facility might best be configured to test these requirements. The effort included studies of multiple concepts for levitating, guiding, and propelling maglev vehicles, as well as the controls, communications, and data-acquisition and -reduction equipment that would be required in operating the facility. Preliminary designs for versatile, dual 2-MVA power supplies capable ofmore » powering attractive or repulsive systems were developed. Facility site requirements were identified. Test vehicles would be about 7.4 m (25 ft) long, would weigh form 3 to 7 metric tons, and would operate at speeds up to 67 m/s (150 mph) on a 3.3-km (2.05-mi) elevated guideway. The facility would utilize modular vehicles and guideways, permitting the substitution of levitation, propulsion, and guideway components of different designs and materials for evaluation. The vehicle would provide a test cell in which individual suspension or propulsion components or subsystems could be tested under realistic conditions. The system would allow economical evaluation of integrated systems under varying weather conditions and in realistic geometries.« less

  8. 2-kW Solar Dynamic Space Power System Tested in Lewis' Thermal Vacuum Facility

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Working together, a NASA/industry team successfully operated and tested a complete solar dynamic space power system in a large thermal vacuum facility with a simulated sun. This NASA Lewis Research Center facility, known as Tank 6 in building 301, accurately simulates the temperatures, high vacuum, and solar flux encountered in low-Earth orbit. The solar dynamic space power system shown in the photo in the Lewis facility, includes the solar concentrator and the solar receiver with thermal energy storage integrated with the power conversion unit. Initial testing in December 1994 resulted in the world's first operation of an integrated solar dynamic system in a relevant environment.

  9. Report: EPA Lacks Internal Controls to Prevent Misuse of Emergency Drinking Water Facilities

    EPA Pesticide Factsheets

    Report #11-P-0001, October 12, 2010. EPA cannot accurately assess the risk of public water systems delivering contaminated drinking water from emergency facilities because of limitations in Safe Drinking Water Information System (SDWIS) data management.

  10. Tracking and data relay satellite system configuration and tradeoff study. Volume 4: TDRS system operation and control and telecommunications service system, part 1

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Major study areas treated in this volume are: 1) operations and control and 2) the telecommunication service system. The TDRS orbit selection, orbital deployment, ground station visibility, sequence of events from launch to final orbit position, and TDRS control center functions required for stationkeeping, repositioning, attitude control, and antenna pointing are briefly treated as part of the operations and control section. The last topic of this section concerns the operations required for efficiently providing the TDRSS user telecommunication services. The discussion treats functions of the GSFC control and data processing facility, ground station, and TDRS control center. The second major portion of this volume deals with the Telecommunication Service System (TSS) which consists of the ground station, TDRS communication equipment and the user transceiver. A summary of the requirements and objectives for the telecommunication services and a brief summary of the TSS capabilities is followed by communication system analysis, signal design, and equipment design. Finally, descriptions of the three TSS elements are presented.

  11. 40. View of dual projector system located in MWOC facility ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. View of dual projector system located in MWOC facility in transmitter building no. 102 by Bessler Company. System used to project images in MWOC on backlit screen system with fiber optic electro/mechanical system linked to computer output to indicate information on screen linked with display from projector system. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  12. A microprocessor-based position control system for a telescope secondary mirror

    NASA Technical Reports Server (NTRS)

    Lorell, K. R.; Barrows, W. F.; Clappier, R. R.; Lee, G. K.

    1983-01-01

    The pointing requirements for the Shuttle IR Telescope Facility (SIRTF), which consists of an 0.85-m cryogenically cooled IR telescope, call for an image stability of 0.25 arcsec. Attention is presently given to a microprocessor-based position control system developed for the control of the SIRTF secondary mirror, employing a special control law (to minimize energy dissipation), a precision capacitive position sensor, and a specially designed power amplifier/actuator combination. The microprocessor generates the command angular position and rate waveforms in order to maintain a 90 percent dwell time/10 percent transition time ratio independently of chop frequency or amplitude. Performance and test results of a prototype system designed for use with a demonstration model of the SIRTF focal plane fine guidance sensor are presented.

  13. Monitoring System for Storm Readiness and Recovery of Test Facilities: Integrated System Health Management (ISHM) Approach

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Morris, Jon; Turowski, Mark; Franzl, Richard; Walker, Mark; Kapadia, Ravi; Venkatesh, Meera; Schmalzel, John

    2010-01-01

    Severe weather events are likely occurrences on the Mississippi Gulf Coast. It is important to rapidly diagnose and mitigate the effects of storms on Stennis Space Center's rocket engine test complex to avoid delays to critical test article programs, reduce costs, and maintain safety. An Integrated Systems Health Management (ISHM) approach and technologies are employed to integrate environmental (weather) monitoring, structural modeling, and the suite of available facility instrumentation to provide information for readiness before storms, rapid initial damage assessment to guide mitigation planning, and then support on-going assurance as repairs are effected and finally support recertification. The system is denominated Katrina Storm Monitoring System (KStorMS). Integrated Systems Health Management (ISHM) describes a comprehensive set of capabilities that provide insight into the behavior the health of a system. Knowing the status of a system allows decision makers to effectively plan and execute their mission. For example, early insight into component degradation and impending failures provides more time to develop work around strategies and more effectively plan for maintenance. Failures of system elements generally occur over time. Information extracted from sensor data, combined with system-wide knowledge bases and methods for information extraction and fusion, inference, and decision making, can be used to detect incipient failures. If failures do occur, it is critical to detect and isolate them, and suggest an appropriate course of action. ISHM enables determining the condition (health) of every element in a complex system-of-systems or SoS (detect anomalies, diagnose causes, predict future anomalies), and provide data, information, and knowledge (DIaK) to control systems for safe and effective operation. ISHM capability is achieved by using a wide range of technologies that enable anomaly detection, diagnostics, prognostics, and advise for control: (1

  14. Status of Activities to Implement a Sustainable System of MC&A Equipment and Methodological Support at Rosatom Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.D. Sanders

    Under the U.S.-Russian Material Protection, Control and Accounting (MPC&A) Program, the Material Control and Accounting Measurements (MCAM) Project has supported a joint U.S.-Russian effort to coordinate improvements of the Russian MC&A measurement system. These efforts have resulted in the development of a MC&A Equipment and Methodological Support (MEMS) Strategic Plan (SP), developed by the Russian MEM Working Group. The MEMS SP covers implementation of MC&A measurement equipment, as well as the development, attestation and implementation of measurement methodologies and reference materials at the facility and industry levels. This paper provides an overview of the activities conducted under the MEMS SP,more » as well as a status on current efforts to develop reference materials, implement destructive and nondestructive assay measurement methodologies, and implement sample exchange, scrap and holdup measurement programs across Russian nuclear facilities.« less

  15. Assessment of air velocity sensors for use in animal produciton facilities

    USDA-ARS?s Scientific Manuscript database

    Ventilation is an integral part of thermal environment control in animal production facilities. Accurately measuring the air velocity distribution within these facilities is cumbersome using the traverse method and a distributed velocity measurement system would reduce the time necessary to perform ...

  16. Development of the advanced life support Systems Integration Research Facility at NASA's Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Tri, Terry O.; Thompson, Clifford D.

    1992-01-01

    Future NASA manned missions to the moon and Mars will require development of robust regenerative life support system technologies which offer high reliability and minimal resupply. To support the development of such systems, early ground-based test facilities will be required to demonstrate integrated, long-duration performance of candidate regenerative air revitalization, water recovery, and thermal management systems. The advanced life support Systems Integration Research Facility (SIRF) is one such test facility currently being developed at NASA's Johnson Space Center. The SIRF, when completed, will accommodate unmanned and subsequently manned integrated testing of advanced regenerative life support technologies at ambient and reduced atmospheric pressures. This paper provides an overview of the SIRF project, a top-level description of test facilities to support the project, conceptual illustrations of integrated test article configurations for each of the three SIRF systems, and a phased project schedule denoting projected activities and milestones through the next several years.

  17. Analysis of the Parameters Required for Performance Monitoring and Assessment of Military Communications Systems by Military Technical Controller

    DTIC Science & Technology

    1975-12-01

    139 APPENDIX A* BASIC CONCEPT OF MILITARY TECHNICAL CONTROL.142 6 APIENDIX Es TEST EQUIPMENI REQUIRED FOR lEASURF.4ENr OF 1AF’AMETE RS...Control ( SATEC ) Automatic Facilities heport Army Automated Quality Monitoring Reporting System (AQMPS) Army Autcmated Technical Control-Semi (ATC-Semi...technical control then beco.. es equipment status monitoring. All the major equipment in a system wculd have internal sensors with properly selected parameters

  18. Recommendations for control of pathogens and infectious diseases in fish research facilities

    USGS Publications Warehouse

    Kent, M.L.; Feist, S.W.; Harper, C.; Hoogstraten-Miller, S.; Law, J.M.; Sanchez-Morgado, J. M.; Tanguay, R.L.; Sanders, G.E.; Spitsbergen, J.M.; Whipps, Christopher M.

    2009-01-01

    Concerns about infectious diseases in fish used for research have risen along with the dramatic increase in the use of fish as models in biomedical research. In addition to acute diseases causing severe morbidity and mortality, underlying chronic conditions that cause low-grade or subclinical infections may confound research results. Here we present recommendations and strategies to avoid or minimize the impacts of infectious agents in fishes maintained in the research setting. There are distinct differences in strategies for control of pathogens in fish used for research compared to fishes reared as pets or in aquaculture. Also, much can be learned from strategies and protocols for control of diseases in rodents used in research, but there are differences. This is due, in part, the unique aquatic environment that is modified by the source and quality of the water provided and the design of facilities. The process of control of pathogens and infectious diseases in fish research facilities is relatively new, and will be an evolving process over time. Nevertheless, the goal of documenting, detecting, and excluding pathogens in fish is just as important as in mammalian research models.

  19. The Altitude Wind Tunnel (AWT): A unique facility for propulsion system and adverse weather testing

    NASA Technical Reports Server (NTRS)

    Chamberlin, R.

    1985-01-01

    A need has arisen for a new wind tunnel facility with unique capabilities for testing propulsion systems and for conducting research in adverse weather conditions. New propulsion system concepts, new aircraft configurations with an unprecedented degree of propulsion system/aircraft integration, and requirements for aircraft operation in adverse weather dictate the need for a new test facility. Required capabilities include simulation of both altitude pressure and temperature, large size, full subsonic speed range, propulsion system operation, and weather simulation (i.e., icing, heavy rain). A cost effective rehabilitation of the NASA Lewis Research Center's Altitude Wind Tunnel (AWT) will provide a facility with all these capabilities.

  20. 78 FR 7334 - Port Authority Access to Facility Vulnerability Assessments and the Integration of Security Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ... to Facility Vulnerability Assessments and the Integration of Security Systems AGENCY: Coast Guard...-sharing measures. Security System Integration Alternatives Require each MTSA-regulated facility owner or... other forms of security system integration. Information Requested 1. We request comments on the...