Sample records for facility core conversion

  1. DUF6 Conversion Facility EISs

    Science.gov Websites

    Conversion EIS Documents News FAQs Internet Resources Glossary Home » Conversion Facility EISs EIS Logo Guide | DU Uses | DUF6 Management | DUF6 Conversion Facility EISs | Documents News | FAQs | Internet

  2. Challenges for proteomics core facilities.

    PubMed

    Lilley, Kathryn S; Deery, Michael J; Gatto, Laurent

    2011-03-01

    Many analytical techniques have been executed by core facilities established within academic, pharmaceutical and other industrial institutions. The centralization of such facilities ensures a level of expertise and hardware which often cannot be supported by individual laboratories. The establishment of a core facility thus makes the technology available for multiple researchers in the same institution. Often, the services within the core facility are also opened out to researchers from other institutions, frequently with a fee being levied for the service provided. In the 1990s, with the onset of the age of genomics, there was an abundance of DNA analysis facilities, many of which have since disappeared from institutions and are now available through commercial sources. Ten years on, as proteomics was beginning to be utilized by many researchers, this technology found itself an ideal candidate for being placed within a core facility. We discuss what in our view are the daily challenges of proteomics core facilities. We also examine the potential unmet needs of the proteomics core facility that may also be applicable to proteomics laboratories which do not function as core facilities. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. 7 CFR 1450.101 - Qualified biomass conversion facility.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Qualified biomass conversion facility. 1450.101... (BCAP) Matching Payments § 1450.101 Qualified biomass conversion facility. (a) To be considered a qualified biomass conversion facility, a biomass conversion facility must enter into an agreement with CCC...

  4. 7 CFR 1450.101 - Qualified biomass conversion facility.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Qualified biomass conversion facility. 1450.101... CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Matching Payments § 1450.101 Qualified biomass conversion facility. (a) To be considered a...

  5. 7 CFR 1450.101 - Qualified biomass conversion facility.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Qualified biomass conversion facility. 1450.101... CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Matching Payments § 1450.101 Qualified biomass conversion facility. (a) To be considered a...

  6. 7 CFR 1450.101 - Qualified biomass conversion facility.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Qualified biomass conversion facility. 1450.101... CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Matching Payments § 1450.101 Qualified biomass conversion facility. (a) To be considered a...

  7. Integration of Biosafety into Core Facility Management

    PubMed Central

    Fontes, Benjamin

    2013-01-01

    This presentation will discuss the implementation of biosafety policies for small, medium and large core laboratories with primary shared objectives of ensuring the control of biohazards to protect core facility operators and assure conformity with applicable state and federal policies, standards and guidelines. Of paramount importance is the educational process to inform core laboratories of biosafety principles and policies and to illustrate the technology and process pathways of the core laboratory for biosafety professionals. Elevating awareness of biohazards and the biosafety regulatory landscape among core facility operators is essential for the establishment of a framework for both project and material risk assessment. The goal of the biohazard risk assessment process is to identify the biohazard risk management parameters to conduct the procedure safely and in compliance with applicable regulations. An evaluation of the containment, protective equipment and work practices for the procedure for the level of risk identified is facilitated by the establishment of a core facility registration form for work with biohazards and other biological materials with potential risk. The final step in the biocontainment process is the assumption of Principal Investigator role with full responsibility for the structure of the site-specific biosafety program plan by core facility leadership. The presentation will provide example biohazard protocol reviews and accompanying containment measures for core laboratories at Yale University.

  8. Facilities Performance Indicators Report, 2004-05. Facilities Core Data Survey

    ERIC Educational Resources Information Center

    Glazner, Steve, Ed.

    2006-01-01

    The purpose of "Facilities Performance Indicators" is to provide a representative set of statistics about facilities in educational institutions. The second iteration of the web-based Facilities Core Data Survey was posted and available to facilities professionals at more than 3,000 institutions in the Fall of 2005. The website offered a printed…

  9. A Sketch of the Taiwan Zebrafish Core Facility.

    PubMed

    You, May-Su; Jiang, Yun-Jin; Yuh, Chiou-Hwa; Wang, Chien-Ming; Tang, Chih-Hao; Chuang, Yung-Jen; Lin, Bo-Hung; Wu, Jen-Leih; Hwang, Sheng-Ping L

    2016-07-01

    In the past three decades, the number of zebrafish laboratories has significantly increased in Taiwan. The Taiwan Zebrafish Core Facility (TZCF), a government-funded core facility, was launched to serve this growing community. The Core Facility was built on two sites, one located at the National Health Research Institutes (NHRI, called Taiwan Zebrafish Core Facility at NHRI or TZeNH) and the other is located at the Academia Sinica (Taiwan Zebrafish Core Facility at AS a.k.a. TZCAS). The total surface area of the TZCF is about 180 m(2) encompassing 2880 fish tanks. Each site has a separate quarantine room and centralized water recirculating systems, monitoring key water parameters. To prevent diseases, three main strategies have been implemented: (1) imported fish must be quarantined; (2) only bleached embryos are introduced into the main facilities; and (3) working practices were implemented to minimize pathogen transfer between stocks and facilities. Currently, there is no health program in place; however, a fourth measure for the health program, specific regular pathogen tests, is being planned. In March 2015, the TZCF at NHRI has been AAALAC accredited. It is our goal to ensure that we provide "disease-free" fish and embryos to the Taiwanese research community.

  10. A framework for managing core facilities within the research enterprise.

    PubMed

    Haley, Rand

    2009-09-01

    Core facilities represent increasingly important operational and strategic components of institutions' research enterprises, especially in biomolecular science and engineering disciplines. With this realization, many research institutions are placing more attention on effectively managing core facilities within the research enterprise. A framework is presented for organizing the questions, challenges, and opportunities facing core facilities and the academic units and institutions in which they operate. This framework is intended to assist in guiding core facility management discussions in the context of a portfolio of facilities and within the overall institutional research enterprise.

  11. DUF6 Conversion Facility EIS Alternatives

    Science.gov Websites

    in the Depleted UF6 Conversion Facility EISs. Proposed Action The proposed action evaluated in each Action Alternative No Action Alternative. Under the "no action" alternative, cylinder

  12. Public Involvement Opportunities for the DUF6 Conversion Facility EISs

    Science.gov Websites

    and Uses DUF6 Conversion EIS Documents News FAQs Internet Resources Glossary Home » Conversion Management | DUF6 Conversion Facility EISs | Documents News | FAQs | Internet Resources | Glossary Help

  13. Public Involvement Opportunities for the DUF6 Conversion Facility EISs

    Science.gov Websites

    and Uses DUF6 Conversion EIS Documents News FAQs Internet Resources Glossary Home » Conversion | DU Uses | DUF6 Management | DUF6 Conversion Facility EISs | Documents News | FAQs | Internet

  14. Metrics for Success: Strategies for Enabling Core Facility Performance and Assessing Outcomes

    PubMed Central

    Hockberger, Philip E.; Meyn, Susan M.; Nicklin, Connie; Tabarini, Diane; Auger, Julie A.

    2016-01-01

    Core Facilities are key elements in the research portfolio of academic and private research institutions. Administrators overseeing core facilities (core administrators) require assessment tools for evaluating the need and effectiveness of these facilities at their institutions. This article discusses ways to promote best practices in core facilities as well as ways to evaluate their performance across 8 of the following categories: general management, research and technical staff, financial management, customer base and satisfaction, resource management, communications, institutional impact, and strategic planning. For each category, we provide lessons learned that we believe contribute to the effective and efficient overall management of core facilities. If done well, we believe that encouraging best practices and evaluating performance in core facilities will demonstrate and reinforce the importance of core facilities in the research and educational mission of institutions. It will also increase job satisfaction of those working in core facilities and improve the likelihood of sustainability of both facilities and personnel. PMID:26848284

  15. Metrics for Success: Strategies for Enabling Core Facility Performance and Assessing Outcomes.

    PubMed

    Turpen, Paula B; Hockberger, Philip E; Meyn, Susan M; Nicklin, Connie; Tabarini, Diane; Auger, Julie A

    2016-04-01

    Core Facilities are key elements in the research portfolio of academic and private research institutions. Administrators overseeing core facilities (core administrators) require assessment tools for evaluating the need and effectiveness of these facilities at their institutions. This article discusses ways to promote best practices in core facilities as well as ways to evaluate their performance across 8 of the following categories: general management, research and technical staff, financial management, customer base and satisfaction, resource management, communications, institutional impact, and strategic planning. For each category, we provide lessons learned that we believe contribute to the effective and efficient overall management of core facilities. If done well, we believe that encouraging best practices and evaluating performance in core facilities will demonstrate and reinforce the importance of core facilities in the research and educational mission of institutions. It will also increase job satisfaction of those working in core facilities and improve the likelihood of sustainability of both facilities and personnel.

  16. Widespread Gene Conversion in Centromere Cores

    PubMed Central

    Shi, Jinghua; Wolf, Sarah E.; Burke, John M.; Presting, Gernot G.; Ross-Ibarra, Jeffrey; Dawe, R. Kelly

    2010-01-01

    Centromeres are the most dynamic regions of the genome, yet they are typified by little or no crossing over, making it difficult to explain the origin of this diversity. To address this question, we developed a novel CENH3 ChIP display method that maps kinetochore footprints over transposon-rich areas of centromere cores. A high level of polymorphism made it possible to map a total of 238 within-centromere markers using maize recombinant inbred lines. Over half of the markers were shown to interact directly with kinetochores (CENH3) by chromatin immunoprecipitation. Although classical crossing over is fully suppressed across CENH3 domains, two gene conversion events (i.e., non-crossover marker exchanges) were identified in a mapping population. A population genetic analysis of 53 diverse inbreds suggests that historical gene conversion is widespread in maize centromeres, occurring at a rate >1×10−5/marker/generation. We conclude that gene conversion accelerates centromere evolution by facilitating sequence exchange among chromosomes. PMID:20231874

  17. Data management integration for biomedical core facilities

    NASA Astrophysics Data System (ADS)

    Zhang, Guo-Qiang; Szymanski, Jacek; Wilson, David

    2007-03-01

    We present the design, development, and pilot-deployment experiences of MIMI, a web-based, Multi-modality Multi-Resource Information Integration environment for biomedical core facilities. This is an easily customizable, web-based software tool that integrates scientific and administrative support for a biomedical core facility involving a common set of entities: researchers; projects; equipments and devices; support staff; services; samples and materials; experimental workflow; large and complex data. With this software, one can: register users; manage projects; schedule resources; bill services; perform site-wide search; archive, back-up, and share data. With its customizable, expandable, and scalable characteristics, MIMI not only provides a cost-effective solution to the overarching data management problem of biomedical core facilities unavailable in the market place, but also lays a foundation for data federation to facilitate and support discovery-driven research.

  18. MIMI: multimodality, multiresource, information integration environment for biomedical core facilities.

    PubMed

    Szymanski, Jacek; Wilson, David L; Zhang, Guo-Qiang

    2009-10-01

    The rapid expansion of biomedical research has brought substantial scientific and administrative data management challenges to modern core facilities. Scientifically, a core facility must be able to manage experimental workflow and the corresponding set of large and complex scientific data. It must also disseminate experimental data to relevant researchers in a secure and expedient manner that facilitates collaboration and provides support for data interpretation and analysis. Administratively, a core facility must be able to manage the scheduling of its equipment and to maintain a flexible and effective billing system to track material, resource, and personnel costs and charge for services to sustain its operation. It must also have the ability to regularly monitor the usage and performance of its equipment and to provide summary statistics on resources spent on different categories of research. To address these informatics challenges, we introduce a comprehensive system called MIMI (multimodality, multiresource, information integration environment) that integrates the administrative and scientific support of a core facility into a single web-based environment. We report the design, development, and deployment experience of a baseline MIMI system at an imaging core facility and discuss the general applicability of such a system in other types of core facilities. These initial results suggest that MIMI will be a unique, cost-effective approach to addressing the informatics infrastructure needs of core facilities and similar research laboratories.

  19. Institutional management of core facilities during challenging financial times.

    PubMed

    Haley, Rand

    2011-12-01

    The economic downturn is likely to have lasting effects on institutions of higher education, prioritizing proactive institutional leadership and planning. Although by design, core research facilities are more efficient and effective than supporting individual pieces of research equipment, cores can have significant underlying financial requirements and challenges. This paper explores several possible institutional approaches to managing core facilities during challenging financial times.

  20. Testing of an Integrated Reactor Core Simulator and Power Conversion System with Simulated Reactivity Feedback

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Hervol, David S.; Godfroy, Thomas J.

    2009-01-01

    A Direct Drive Gas-Cooled (DDG) reactor core simulator has been coupled to a Brayton Power Conversion Unit (BPCU) for integrated system testing at NASA Glenn Research Center (GRC) in Cleveland, OH. This is a closed-cycle system that incorporates an electrically heated reactor core module, turbo alternator, recuperator, and gas cooler. Nuclear fuel elements in the gas-cooled reactor design are replaced with electric resistance heaters to simulate the heat from nuclear fuel in the corresponding fast spectrum nuclear reactor. The thermodynamic transient behavior of the integrated system was the focus of this test series. In order to better mimic the integrated response of the nuclear-fueled system, a simulated reactivity feedback control loop was implemented. Core power was controlled by a point kinetics model in which the reactivity feedback was based on core temperature measurements; the neutron generation time and the temperature feedback coefficient are provided as model inputs. These dynamic system response tests demonstrate the overall capability of a non-nuclear test facility in assessing system integration issues and characterizing integrated system response times and response characteristics.

  1. Testing of an Integrated Reactor Core Simulator and Power Conversion System with Simulated Reactivity Feedback

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Hervol, David S.; Godfroy, Thomas J.

    2010-01-01

    A Direct Drive Gas-Cooled (DDG) reactor core simulator has been coupled to a Brayton Power Conversion Unit (BPCU) for integrated system testing at NASA Glenn Research Center (GRC) in Cleveland, Ohio. This is a closed-cycle system that incorporates an electrically heated reactor core module, turboalternator, recuperator, and gas cooler. Nuclear fuel elements in the gas-cooled reactor design are replaced with electric resistance heaters to simulate the heat from nuclear fuel in the corresponding fast spectrum nuclear reactor. The thermodynamic transient behavior of the integrated system was the focus of this test series. In order to better mimic the integrated response of the nuclear-fueled system, a simulated reactivity feedback control loop was implemented. Core power was controlled by a point kinetics model in which the reactivity feedback was based on core temperature measurements; the neutron generation time and the temperature feedback coefficient are provided as model inputs. These dynamic system response tests demonstrate the overall capability of a non-nuclear test facility in assessing system integration issues and characterizing integrated system response times and response characteristics.

  2. Neutronics and Transient Calculations for the Conversion of the Transient Reactor Rest Facility (TREAT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kontogeorgakos, Dimitrios C.; Connaway, Heather M.; Papadias, Dionissios D.

    2015-01-01

    The Transient Reactor Test Facility (TREAT) is a graphite-reflected, graphitemoderated, and air-cooled reactor fueled with 93.1% enriched UO2 particles dispersed in graphite, with a carbon-to-235U ratio of ~10000:1. TREAT was used to simulate accident conditions by subjecting fuel test samples placed at the center of the core to high energy transient pulses. The transient pulse production is based on the core’s selflimiting nature due to the negative reactivity feedback provided by the fuel graphite as the core temperature rises. The analysis of the conversion of TREAT to low enriched uranium (LEU) is currently underway. This paper presents the analytical methodsmore » used to calculate the transient performance of TREAT in terms of power pulse production and resulting peak core temperatures. The validation of the HEU neutronics TREAT model, the calculation of the temperature distribution and the temperature reactivity feedback as well as the number of fissions generated inside fuel test samples are discussed.« less

  3. Nurses' fidelity to theory-based core components when implementing Family Health Conversations - a qualitative inquiry.

    PubMed

    Östlund, Ulrika; Bäckström, Britt; Lindh, Viveca; Sundin, Karin; Saveman, Britt-Inger

    2015-09-01

    A family systems nursing intervention, Family Health Conversation, has been developed in Sweden by adapting the Calgary Family Assessment and Intervention Models and the Illness Beliefs Model. The intervention has several theoretical assumptions, and one way translate the theory into practice is to identify core components. This may produce higher levels of fidelity to the intervention. Besides information about how to implement an intervention in accordance to how it was developed, evaluating whether it was actually implemented as intended is important. Accordingly, we describe the nurses' fidelity to the identified core components of Family Health Conversation. Six nurses, working in alternating pairs, conducted Family Health Conversations with seven families in which a family member younger than 65 had suffered a stroke. The intervention contained a series of three-1-hour conversations held at 2-3 week intervals. The nurses followed a conversation structure based on 12 core components identified from theoretical assumptions. The transcripts of the 21 conversations were analysed using manifest qualitative content analysis with a deductive approach. The 'core components' seemed to be useful even if nurses' fidelity varied among the core components. Some components were followed relatively well, but others were not. This indicates that the process for achieving fidelity to the intervention can be improved, and that it is necessary for nurses to continually learn theory and to practise family systems nursing. We suggest this can be accomplished through reflections, role play and training on the core components. Furthermore, as in this study, joint reflections on how the core components have been implemented can lead to deeper understanding and knowledge of how Family Health Conversation can be delivered as intended. © 2014 Nordic College of Caring Science.

  4. Fast neutrino flavor conversions near the supernova core with realistic flavor-dependent angular distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dasgupta, Basudeb; Sen, Manibrata; Mirizzi, Alessandro, E-mail: bdasgupta@theory.tifr.res.in, E-mail: alessandro.mirizzi@ba.infn.it, E-mail: manibrata.sen@gmail.com

    2017-02-01

    It has been recently pointed out that neutrino fluxes from a supernova can show substantial flavor conversions almost immediately above the core. Using linear stability analyses and numerical solutions of the fully nonlinear equations of motion, we perform a detailed study of these fast conversions , focussing on the region just above the supernova core. We carefully specify the instabilities for evolution in space or time, and find that neutrinos travelling towards the core make fast conversions more generic, i.e., possible for a wider range of flux ratios and angular asymmetries that produce a crossing between the zenith-angle spectra ofmore » ν {sub e} and ν-bar {sub e} . Using fluxes and angular distributions predicted by supernova simulations, we find that fast conversions can occur within tens of nanoseconds, only a few meters away from the putative neutrinospheres. If these fast flavor conversions indeed take place, they would have important implications for the supernova explosion mechanism and nucleosynthesis.« less

  5. TRAC analyses for CCTF and SCTF tests and UPTF design/operation. [Cylindrical Core Test Facility; Slab Core Test Facility; Upper Plenum Test Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spore, J.W.; Cappiello, M.W.; Dotson, P.J.

    The analytical support in 1985 for Cylindrical Core Test Facility (CCTF), Slab Core Test Facility (SCTF), and Upper Plenum Test Facility (UPTF) tests involves the posttest analysis of 16 tests that have already been run in the CCTF and the SCTF and the pretest analysis of 3 tests to be performed in the UPTF. Posttest analysis is used to provide insight into the detailed thermal-hydraulic phenomena occurring during the refill and reflood tests performed in CCTF and SCTF. Pretest analysis is used to ensure that the test facility is operated in a manner consistent with the expected behavior of anmore » operating full-scale plant during an accident. To obtain expected behavior of a plant during an accident, two plant loss-of-coolant-accident (LOCA) calculations were performed: a 200% cold-leg-break LOCA calculation for a 2772 MW(t) Babcock and Wilcox plant and a 200% cold-leg-break LOCA calculation for a 3315 MW(t) Westinghouse plant. Detailed results are presented for several CCTF UPI tests and the Westinghouse plant analysis.« less

  6. Best Practices for Core Facilities: Handling External Customers

    PubMed Central

    Hockberger, Philip; Meyn, Susan; Nicklin, Connie; Tabarini, Diane; Turpen, Paula; Auger, Julie

    2013-01-01

    This article addresses the growing interest among U.S. scientific organizations and federal funding agencies in strengthening research partnerships between American universities and the private sector. It outlines how core facilities at universities can contribute to this partnership by offering services and access to high-end instrumentation to both nonprofit organizations and commercial organizations. We describe institutional policies (best practices) and procedures (terms and conditions) that are essential for facilitating and enabling such partnerships. In addition, we provide an overview of the relevant federal regulations that apply to external use of academic core facilities and offer a set of guidelines for handling them. We conclude by encouraging directors and managers of core facilities to work with the relevant organizational offices to promote and nurture such partnerships. If handled appropriately, we believe such partnerships can be a win-win situation for both organizations that will support research and bolster the American economy. PMID:23814500

  7. Electrodeposited Nanolaminated CoNiFe Cores for Ultracompact DC-DC Power Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, J; Kim, M; Herrault, F

    2015-09-01

    Laminated metallic alloy cores (i.e., alternating layers of thin film metallic alloy and insulating material) of appropriate lamination thickness enable suppression of eddy current losses at high frequencies. Magnetic cores comprised of many such laminations yield substantial overall magnetic volume, thereby enabling high-power operation. Previously, we reported nanolaminated permalloy (Ni-80 Fe-20) cores based on a sequential electrodeposition technique, demonstrating negligible eddy current losses at peak flux densities up to 0.5 T and operating at megahertz frequencies. This paper demonstrates improved performance of nanolaminated cores comprising tens to hundreds of layers of 300-500-nm-thick CoNiFe films that exhibit superior magnetic properties (e.g.,more » higher saturation flux density and lower coercivity) than permalloy. Nanolaminated CoNiFe cores can be operated up to a peak flux density of 0.9 T, demonstrating improved power handling capacity and exhibiting 30% reduced volumetric core loss, attributed to lowered hysteresis losses compared to the nanolaminated permalloy core of the same geometry. Operating these cores in a buck dc-dc power converter at a switching frequency of 1 MHz, the nanolaminated CoNiFe cores achieved a conversion efficiency exceeding 90% at output power levels up to 7 W, compared to an achieved permalloy core conversion efficiency below 86% at 6 W.« less

  8. Environmental monitoring handbook for coal conversion facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salk, M.S.; DeCicco, S.G.

    1978-05-01

    The primary objectives of the Department of Energy's (DOE) coal conversion program are to demonstrate the environmental acceptability, technical feasibility, and economic viability of various technologies for gaseous, liquid, and solid fuels from coal. The Environmental Monitoring Handbook for Coal Conversion Facilities will help accomplish the objective of environmental acceptability by guiding the planning and execution of socioeconomic and environmental monitoring programs for demonstration facilities. These programs will provide information adequate to (1) predict, insofar as is possible, the potential impacts of construction and operation of a coal conversion plant, (2) verify the occurrence of these or any other impactsmore » during construction and operation, (3) determine the adequacy of mitigating measures to protect the environment, (4) develop effluent source terms for process discharges, and (5) determine the effectiveness of pollution control equipment. Although useful in a variety of areas, the handbook is intended primarily for contractors who, as industrial partners with DOE, are building coal conversion plants. For the contractor it is a practical guide on (1) the methodology for developing site- and process-specific environmental monitoring programs, (2) state-of-the-art sampling and analytical techniques, and (3) impact analyses.To correspond to the phases of project activity, the subject matter is divided into four stages of monitoring: (1) a reconnaissance or synoptic survey, (2) preconstruction or baseline, (3) construction, and (4) operation, including process monitoring (prepared by Radian Corp., McLean, Va.). For each stage of monitoring, guidelines are given on socioeconomics, aquatic and terrestrial ecology, air quality and meteorology, surface and groundwater quality, geohydrology and soil survey, and surface water hydrology.« less

  9. Single-mode fiber laser based on core-cladding mode conversion.

    PubMed

    Suzuki, Shigeru; Schülzgen, Axel; Peyghambarian, N

    2008-02-15

    A single-mode fiber laser based on an intracavity core-cladding mode conversion is demonstrated. The fiber laser consists of an Er-doped active fiber and two fiber Bragg gratings. One Bragg grating is a core-cladding mode converter, and the other Bragg grating is a narrowband high reflector that selects the lasing wavelength. Coupling a single core mode and a single cladding mode by the grating mode converter, the laser operates as a hybrid single-mode laser. This approach for designing a laser cavity provides a much larger mode area than conventional large-mode-area step-index fibers.

  10. Optimize out-of-core thermionic energy conversion for nuclear electric propulsion

    NASA Technical Reports Server (NTRS)

    Morris, J. F.

    1977-01-01

    Current designs for out of core thermionic energy conversion (TEC) to power nuclear electric propulsion (NEP) were evaluated. Approaches to improve out of core TEC are emphasized and probabilities for success are indicated. TEC gains are available with higher emitter temperatures and greater power densities. Good potentialities for accommodating external high temperature, high power density TEC with heat pipe cooled reactors exist.

  11. 78 FR 33475 - Core Principles and Other Requirements for Swap Execution Facilities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-04

    ... Core Principles and Other Requirements for Swap Execution Facilities; Final Rule #0;#0;Federal Register... FUTURES TRADING COMMISSION 17 CFR Part 37 RIN 3038-AD18 Core Principles and Other Requirements for Swap... Core Principles 1. Subpart B--Core Principle 1 (Compliance With Core Principles) 2. Subpart C--Core...

  12. Development of suspended core soft glass fibers for far-detuned parametric conversion

    NASA Astrophysics Data System (ADS)

    Rampur, Anupamaa; Ciąćka, Piotr; Cimek, Jarosław; Kasztelanic, Rafał; Buczyński, Ryszard; Klimczak, Mariusz

    2018-04-01

    Light sources utilizing χ (2) parametric conversion combine high brightness with attractive operation wavelengths in the near and mid-infrared. In optical fibers, it is possible to use χ (3) degenerate four-wave mixing in order to obtain signal-to-idler frequency detuning of over 100 THz. We report on a test series of nonlinear soft glass suspended core fibers intended for parametric conversion of 1000-1100 nm signal wavelengths available from an array of mature lasers into the near-to-mid-infrared range of 2700-3500 nm under pumping with an erbium sub-picosecond laser system. The presented discussion includes modelling of the fiber properties, details of their physical development and characterization, and experimental tests of parametric conversion.

  13. 76 FR 1213 - Core Principles and Other Requirements for Swap Execution Facilities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-07

    ... Part II Commodity Futures Trading Commission 17 CFR Part 37 Core Principles and Other Requirements... RIN Number 3038-AD18 Core Principles and Other Requirements for Swap Execution Facilities AGENCY... Compliance With the Core Principles III. Effective Date and Transition Period IV. Related Matters A...

  14. Vector mode conversion based on tilted fiber Bragg grating in ring-core fibers

    NASA Astrophysics Data System (ADS)

    Mi, Yuean; Ren, Guobin; Gao, Yixiao; Li, Haisu; Zhu, Bofeng; Liu, Yu

    2018-03-01

    We propose a vector mode conversion approach based on tilted fiber Bragg grating (TFBG) written in ring-core fiber with effective separation of eigenmodes. The mode coupling properties of TFBG are numerically investigated. It is shown that under the constraint of phase matching, the conversion of high-order vector modes could be achieved at specific wavelengths. Moreover, the polarization of incident light and tilt angle of TFBG play critical roles in mode coupling process. The proposed TFBG provides an efficient method to realize high-order vector mode conversion, and it shows great potential for fibers based OAM beam generation and fiber lasers with vortex beams output.

  15. Nanolaminated Permalloy Core for High-Flux, High-Frequency Ultracompact Power Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, J; Kim, M; Galle, P

    2013-09-01

    Metallic magnetic materials have desirable magnetic properties, including high permeability, and high saturation flux density, when compared with their ferrite counterparts. However, eddy-current losses preclude their use in many switching converter applications, due to the challenge of simultaneously achieving sufficiently thin laminations such that eddy currents are suppressed (e.g., 500 nm-1 mu m for megahertz frequencies), while simultaneously achieving overall core thicknesses such that substantial power can be handled. A CMOS-compatible fabrication process based on robot-assisted sequential electrodeposition followed by selective chemical etching has been developed for the realization of a core of substantial overall thickness (tens to hundreds ofmore » micrometers) comprised of multiple, stacked permalloy (Ni80Fe20) nanolaminations. Tests of toroidal inductors with nanolaminated cores showed negligible eddy-current loss relative to total core loss even at a peak flux density of 0.5 T in the megahertz frequency range. To illustrate the use of these cores, a buck power converter topology is implemented with switching frequencies of 1-2 MHz. Power conversion efficiency greater than 85% with peak operating flux density of 0.3-0.5 T in the core and converter output power level exceeding 5 W was achieved.« less

  16. Core characterization of the new CABRI Water Loop Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ritter, G.; Rodiac, F.; Beretz, D.

    2011-07-01

    The CABRI experimental reactor is located at the Cadarache nuclear research center, southern France. It is operated by the Atomic Energy Commission (CEA) and devoted to IRSN (Institut de Radioprotection et de Surete Nucleaire) safety programmes. It has been successfully operated during the last 30 years, enlightening the knowledge of FBR and LWR fuel behaviour during Reactivity Insertion Accident (RIA) and Loss Of Coolant Accident (LOCA) transients in the frame of IPSN (Institut de Protection et de Surete Nucleaire) and now IRSN programmes devoted to reactor safety. This operation was interrupted in 2003 to allow for a whole facility renewalmore » programme for the need of the CABRI International Programme (CIP) carried out by IRSN under the OECD umbrella. The principle of operation of the facility is based on the control of {sup 3}He, a major gaseous neutron absorber, in the core geometry. The purpose of this paper is to illustrate how several dosimetric devices have been set up to better characterize the core during the upcoming commissioning campaign. It presents the schemes and tools dedicated to core characterization. (authors)« less

  17. Review of the TREAT Conversion Conceptual Design and Fuel Qualification Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diamond, David

    The U.S. Department of Energy (DOE) is preparing to re establish the capability to conduct transient testing of nuclear fuels at the Idaho National Laboratory (INL) Transient Reactor Test (TREAT) facility. The original TREAT core went critical in February 1959 and operated for more than 6,000 reactor startups before plant operations were suspended in 1994. DOE is now planning to restart the reactor using the plant's original high-enriched uranium (HEU) fuel. At the same time, the National Nuclear Security Administration (NNSA) Office of Material Management and Minimization Reactor Conversion Program is supporting analyses and fuel fabrication studies that will allowmore » for reactor conversion to low-enriched uranium (LEU) fuel (i.e., fuel with less than 20% by weight 235U content) after plant restart. The TREAT Conversion Program's objectives are to perform the design work necessary to generate an LEU replacement core, to restore the capability to fabricate TREAT fuel element assemblies, and to implement the physical and operational changes required to convert the TREAT facility to use LEU fuel.« less

  18. Analytical methods in the high conversion reactor core design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeggel, W.; Oldekop, W.; Axmann, J.K.

    High conversion reactor (HCR) design methods have been used at the Technical University of Braunschweig (TUBS) with the technological support of Kraftwerk Union (KWU). The present state and objectives of this cooperation between KWU and TUBS in the field of HCRs have been described using existing design models and current activities aimed at further development and validation of the codes. The hard physical and thermal-hydraulic boundary conditions of pressurized water reactor (PWR) cores with a high degree of fuel utilization result from the tight packing of the HCR fuel rods and the high fissionable plutonium content of the fuel. Inmore » terms of design, the problem will be solved with rod bundles whose fuel rods are adjusted by helical spacers to the proposed small rod pitches. These HCR properties require novel computational models for neutron physics, thermal hydraulics, and fuel rod design. By means of a survey of the codes, the analytical procedure for present-day HCR core design is presented. The design programs are currently under intensive development, as design tools with a solid, scientific foundation and with essential parameters that are widely valid and are required for a promising optimization of the HCR core. Design results and a survey of future HCR development are given. In this connection, the reoptimization of the PWR core in the direction of an HCR is considered a fascinating scientific task, with respect to both economic and safety aspects.« less

  19. Who is Responsible for the DUF6 Conversion Facility EISs?

    Science.gov Websites

    project and web site. your e-mail address Sign Me Up Search: OK Button DUF6 Guide DU Uses DUF6 Management U.S. DOE Office of Environmental Management is preparing the two Depleted UF6 Conversion Facility EISs Energy (DOE), Office of Environmental Management (EM) is responsible for preparation of the Depleted UF6

  20. Supplemental materials for the ICDP-USGS Eyreville A, B, and C core holes, Chesapeake Bay impact structure: Core-box photographs, coring-run tables, and depth-conversion files

    USGS Publications Warehouse

    Durand, C.T.; Edwards, L.E.; Malinconico, M.L.; Powars, D.S.

    2009-01-01

    During 2005-2006, the International Continental Scientific Drilling Program and the U.S. Geological Survey drilled three continuous core holes into the Chesapeake Bay impact structure to a total depth of 1766.3 m. A collection of supplemental materials that presents a record of the core recovery and measurement data for the Eyreville cores is available on CD-ROM at the end of this volume and in the GSA Data Repository. The supplemental materials on the CD-ROM include digital photographs of each core box from the three core holes, tables of the three coring-run logs, as recorded on site, and a set of depth-conversion programs. In this chapter, the contents, purposes, and basic applications of the supplemental materials are briefly described. With this information, users can quickly decide if the materials will apply to their specific research needs. ?? 2009 The Geological Society of America.

  1. Optimize out-of-core thermionic energy conversion for nuclear electric propulsion

    NASA Technical Reports Server (NTRS)

    Morris, J. F.

    1978-01-01

    Thermionic energy conversion (TEC) potentialities for nuclear electric propulsion (NEP) are examined. Considering current designs, their limitations, and risks raises critical questions about the use of TEC for NEP. Apparently a reactor cooled by hotter-than-1675 K heat pipes has good potentialities. TEC with higher temperatures and greater power densities than the currently proposed 1650 K, 5-to-6 W/sq cm version offers substantial gains. Other approaches to high-temperature electric isolation appear also promising. A high-power-density, high-temperature TEC for NEP appears, therefore, attainable. It is recommended to optimize out-of-core thermionic energy conversion for nuclear electric propulsion. Although current TEC designs for NEP seem unnecessary compared with Brayton versions, large gains are apparently possible with increased temperatures and greater power densities.

  2. The Common Core of a Child Care Center. Child Care Facility Design.

    ERIC Educational Resources Information Center

    Moore, Gary T.

    1997-01-01

    Examines the notion of an early childhood education center organized as a series of houses around a common core of shared facilities. Discusses examples of child-care centers in Sweden and explores ideas that can promote functional facilities. Suggestions include ideas about physical-motor activities areas, administration offices, centralized…

  3. Broadband absorption and enhanced photothermal conversion property of octopod-like Ag@Ag2S core@shell structures with gradually varying shell thickness.

    PubMed

    Jiang, Qian; Zeng, Wenxia; Zhang, Canying; Meng, Zhaoguo; Wu, Jiawei; Zhu, Qunzhi; Wu, Daxiong; Zhu, Haitao

    2017-12-19

    Photothermal conversion materials have promising applications in many fields and therefore they have attracted tremendous attention. However, the multi-functionalization of a single nanostructure to meet the requirements of multiple photothermal applications is still a challenge. The difficulty is that most nanostructures have specific absoprtion band and are not flexible to different demands. In the current work, we reported the synthesis and multi-band photothermal conversion of Ag@Ag 2 S core@shell structures with gradually varying shell thickness. We synthesized the core@shell structures through the sulfidation of Ag nanocubes by taking the advantage of their spatially different reactivity. The resulting core@shell structures show an octopod-like mopgorlogy with a Ag 2 S bulge sitting at each corner of the Ag nanocubes. The thickness of the Ag 2 S shell gradually increases from the central surface towards the corners of the structure. The synthesized core@shell structures show a broad band absorption spectrum from 300 to 1100 nm. Enhanced photothermal conversion effect is observed under the illuminations of 635, 808, and 1064 nm lasers. The results indicate that the octopod-like Ag@Ag 2 S core@shell structures have characteristics of multi-band photothermal conversion. The current work might provide a guidance for the design and synthesis of multifunctional photothermal conversion materials.

  4. Challenges and Opportunities for Biological Mass Spectrometry Core Facilities in the Developing World.

    PubMed

    Bell, Liam; Calder, Bridget; Hiller, Reinhard; Klein, Ashwil; Soares, Nelson C; Stoychev, Stoyan H; Vorster, Barend C; Tabb, David L

    2018-04-01

    The developing world is seeing rapid growth in the availability of biological mass spectrometry (MS), particularly through core facilities. As proteomics and metabolomics becomes locally feasible for investigators in these nations, application areas associated with high burden in these nations, such as infectious disease, will see greatly increased research output. This article evaluates the rapid growth of MS in South Africa (currently approaching 20 laboratories) as a model for establishing MS core facilities in other nations of the developing world. Facilities should emphasize new services rather than new instruments. The reduction of the delays associated with reagent and other supply acquisition would benefit both facilities and the users who make use of their services. Instrument maintenance and repair, often mediated by an in-country business for an international vendor, is also likely to operate on a slower schedule than in the wealthiest nations. A key challenge to facilities in the developing world is educating potential facility users in how best to design experiments for proteomics and metabolomics, what reagents are most likely to introduce problematic artifacts, and how to interpret results from the facility. Here, we summarize the experience of 6 different institutions to raise the level of biological MS available to researchers in South Africa.

  5. A Spatial Index for Identifying Opportunity Zones for Woody Cellulosic Conversion Facilities

    Treesearch

    Xia Huang; James H. Perdue; Timothy M. Young

    2012-01-01

    A challenge in the development of renewable energy is the ability to spatially assess the risk of feedstock supply to conversion facilities. Policy makers and investors need improved methods to identify the interactions associated with landscape features, socioeconomic conditions, and ownership patterns, and the influence these variables have on the geographic location...

  6. Radioactive Waste Management at the New Conversion Facility of 'TVEL'{sup R} Fuel Company - 13474

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Indyk, S.I.; Volodenko, A.V.; Tvilenev, K.A.

    2013-07-01

    The project on the new conversion facility construction is being implemented by Joint Stock Company (JSC) 'Siberian Group of Chemical Enterprises' (SGChE) within TVEL{sup R} Fuel Company. The objective is to construct the up-to-date facility ensuring the industrial and environmental safety with the reduced impact on the community and environment in compliance with the Russian new regulatory framework on radioactive waste (RW) management. The history of the SGChE development, as well as the concepts and approaches to RW management implemented by now are shown. The SGChE future image is outlined, together with its objectives and concept on RW management inmore » compliance with the new act 'On radioactive waste management' adopted in Russia in 2011. Possible areas of cooperation with international companies are discussed in the field of RW management with the purpose of deploying the best Russian and world practices on RW management at the new conversion facility. (authors)« less

  7. Effect of the shell material and confinement type on the conversion efficiency of core/shell quantum dot nanocrystal solar cells

    NASA Astrophysics Data System (ADS)

    Sahin, Mehmet

    2018-05-01

    In this study, the effects of the shell material and confinement type on the conversion efficiency of core/shell quantum dot nanocrystal (QDNC) solar cells have been investigated in detail. For this purpose, the conventional, i.e. original, detailed balance model, developed by Shockley and Queisser to calculate an upper limit for the conversion efficiency of silicon p–n junction solar cells, is modified in a simple and effective way to calculate the conversion efficiency of core/shell QDNC solar cells. Since the existing model relies on the gap energy () of the solar cell, it does not make an estimation about the effect of QDNC materials on the efficiency of the solar cells, and gives the same efficiency values for several QDNC solar cells with the same . The proposed modification, however, estimates a conversion efficiency in relation to the material properties and also the confinement type of the QDNCs. The results of the modified model show that, in contrast to the original one, the conversion efficiencies of different QDNC solar cells, even if they have the same , become different depending upon the confinement type and shell material of the core/shell QDNCs, and this is crucial in the design and fabrication of the new generation solar cells to predict the confinement type and also appropriate QDNC materials for better efficiency.

  8. Effect of the shell material and confinement type on the conversion efficiency of core/shell quantum dot nanocrystal solar cells.

    PubMed

    Sahin, Mehmet

    2018-05-23

    In this study, the effects of the shell material and confinement type on the conversion efficiency of core/shell quantum dot nanocrystal (QDNC) solar cells have been investigated in detail. For this purpose, the conventional, i.e. original, detailed balance model, developed by Shockley and Queisser to calculate an upper limit for the conversion efficiency of silicon p-n junction solar cells, is modified in a simple and effective way to calculate the conversion efficiency of core/shell QDNC solar cells. Since the existing model relies on the gap energy ([Formula: see text]) of the solar cell, it does not make an estimation about the effect of QDNC materials on the efficiency of the solar cells, and gives the same efficiency values for several QDNC solar cells with the same [Formula: see text]. The proposed modification, however, estimates a conversion efficiency in relation to the material properties and also the confinement type of the QDNCs. The results of the modified model show that, in contrast to the original one, the conversion efficiencies of different QDNC solar cells, even if they have the same [Formula: see text], become different depending upon the confinement type and shell material of the core/shell QDNCs, and this is crucial in the design and fabrication of the new generation solar cells to predict the confinement type and also appropriate QDNC materials for better efficiency.

  9. Bringing the Pieces Together – Placing Core Facilities at the Core of Universities and Institutions: Lessons from Mergers, Acquisitions and Consolidations

    PubMed Central

    Mundoma, Claudius

    2013-01-01

    As organizations expand and grow, the core facilities have become more dispersed disconnected. This is happening at a time when collaborations within the organization is a driver to increased productivity. Stakeholders are looking at the best way to bring the pieces together. It is inevitable that core facilities at universities and research institutes have to be integrated in order to streamline services and facilitate ease of collaboration. The path to integration often goes through consolidation, merging and shedding of redundant services. Managing this process requires a delicate coordination of two critical factors: the human (lab managers) factor and the physical assets factor. Traditionally more emphasis has been placed on reorganizing the physical assets without paying enough attention to the professionals who have been managing the assets for years, if not decades. The presentation focuses on how a systems approach can be used to effect a smooth core facility integration process. Managing the human element requires strengthening existing channels of communication and if necessary, creating new ones throughout the organization to break cultural and structural barriers. Managing the physical assets requires a complete asset audit and this requires direct input from the administration as well as the facility managers. Organizations can harness the power of IT to create asset visibility. Successfully managing the physical assets and the human assets increases productivity and efficiency within the organization.

  10. Finding a Place for Energy: Siting Coal Conversion Facilities. Resource Publications in Geography.

    ERIC Educational Resources Information Center

    Calzonetti, Frank J.; Eckert, Mark S.

    The process of identifying, licensing, and developing energy facility sites for the conversion of coal into more useful forms is the focus of this book, intended for geography students, professors, and researchers. The use of domestic coal resources will ameliorate U.S. dependency on imported fuel. However, because coal is a bulky, dirty fuel…

  11. 78 FR 25484 - License Amendment for Anadarko Petroleum Corporation, Bear Creek Facility, Converse County, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-01

    ... NUCLEAR REGULATORY COMMISSION [Docket No.: 40-8452; NRC-2012-0095] License Amendment for Anadarko Petroleum Corporation, Bear Creek Facility, Converse County, Wyoming AGENCY: Nuclear Regulatory Commission... License SUA- 1310 issued to Anadarko Petroleum Corporation (APC or the licensee) to authorize alternate...

  12. Naval facility energy conversion plants as resource recovery system components

    NASA Astrophysics Data System (ADS)

    Capps, A. G.

    1980-01-01

    This interim report addresses concepts for recovering energy from solid waste by using Naval facilities steam plants as principle building blocks of candidate solid waste/resource recovery systems at Navy installations. The major conclusions of this portion of the project are: although it is technically feasible to adapt Navy energy conversion systems to fire Waste Derived Fuels (WDF) in one or more of its forms, the optimal form selected should be a site-specific total system; near- to intermediate-term programs should probably continue to give first consideration to waterwall incinerators and to the cofiring of solid WDF in coal-capable plants; package incinerators and conversions of oil burning plants to fire a fluff form of solid waste fuel may be the options with the greatest potential for the intermediate term because waterwalls would be uneconomical in many small plants and because the majority of medium-sized oil-burning plants will not be converted to burn coal; and pyrolytic processes to produce gaseous and liquid fuels have not been sufficiently developed as yet to be specified for commerical operation.

  13. Evidence of significant down-conversion in a Si-based solar cell using CuInS2/ZnS core shell quantum dots

    NASA Astrophysics Data System (ADS)

    Gardelis, Spiros; Nassiopoulou, Androula G.

    2014-05-01

    We report on the increase of up to 37.5% in conversion efficiency of a Si-based solar cell after deposition of light-emitting Cd-free, CuInS2/ZnS core shell quantum dots on the active area of the cell due to the combined effect of down-conversion and the anti- reflecting property of the dots. We clearly distinguished the effect of down-conversion from anti-reflection and estimated an enhancement of up to 10.5% in the conversion efficiency due to down-conversion.

  14. DUF6 Conversion Facility EIS Schedule

    Science.gov Websites

    and Uses DUF6 Conversion EIS Documents News FAQs Internet Resources Glossary Home » Conversion News | FAQs | Internet Resources | Glossary Help | Mailing Services | Contact Us | About Us | Security

  15. H2 Ortho-to-para Conversion on Grains: A Route to Fast Deuterium Fractionation in Dense Cloud Cores?

    NASA Astrophysics Data System (ADS)

    Bovino, S.; Grassi, T.; Schleicher, D. R. G.; Caselli, P.

    2017-11-01

    Deuterium fractionation, I.e., the enhancement of deuterated species with respect to non-deuterated ones, is considered to be a reliable chemical clock of star-forming regions. This process is strongly affected by the ortho-to-para H2 ratio. In this Letter we explore the effect of the ortho-para (o-p) H2 conversion on grains on the deuteration timescale in fully-depleted dense cores, including the most relevant uncertainties that affect this complex process. We show that (I) the o-p H2 conversion on grains is not strongly influenced by the uncertainties on the conversion time and the sticking coefficient, and (II) that the process is controlled by the temperature and the residence time of ortho-H2 on the surface, I.e., by the binding energy. We find that for binding energies between 330 and 550 K, depending on the temperature, the o-p H2 conversion on grains can shorten the deuterium fractionation timescale by orders of magnitude, opening a new route for explaining the large observed deuteration fraction D frac in dense molecular cloud cores. Our results suggest that the star formation timescale, when estimated through the timescale to reach the observed deuteration fractions, might be shorter than previously proposed. However, more accurate measurements of the binding energy are needed in order to better assess the overall role of this process.

  16. Gains in efficiency and scientific potential of continental climate reconstruction provided by the LRC LacCore Facility, University of Minnesota

    NASA Astrophysics Data System (ADS)

    Noren, A.; Brady, K.; Myrbo, A.; Ito, E.

    2007-12-01

    Lacustrine sediment cores comprise an integral archive for the determination of continental paleoclimate, for their potentially high temporal resolution and for their ability to resolve spatial variability in climate across vast sections of the globe. Researchers studying these archives now have a large, nationally-funded, public facility dedicated to the support of their efforts. The LRC LacCore Facility, funded by NSF and the University of Minnesota, provides free or low-cost assistance to any portion of research projects, depending on the specific needs of the project. A large collection of field equipment (site survey equipment, coring devices, boats/platforms, water sampling devices) for nearly any lacustrine setting is available for rental, and Livingstone-type corers and drive rods may be purchased. LacCore staff can accompany field expeditions to operate these devices and curate samples, or provide training prior to device rental. The Facility maintains strong connections to experienced shipping agents and customs brokers, which vastly improves transport and importation of samples. In the lab, high-end instrumentation (e.g., multisensor loggers, high-resolution digital linescan cameras) provides a baseline of fundamental analyses before any sample material is consumed. LacCore staff provide support and training in lithological description, including smear-slide, XRD, and SEM analyses. The LRC botanical macrofossil reference collection is a valuable resource for both core description and detailed macrofossil analysis. Dedicated equipment and space for various subsample analyses streamlines these endeavors; subsamples for several analyses may be submitted for preparation or analysis by Facility technicians for a fee (e.g., carbon and sulfur coulometry, grain size, pollen sample preparation and analysis, charcoal, biogenic silica, LOI, freeze drying). The National Lacustrine Core Repository now curates ~9km of sediment cores from expeditions around the world

  17. Analysis on Reactor Criticality Condition and Fuel Conversion Capability Based on Different Loaded Plutonium Composition in FBR Core

    NASA Astrophysics Data System (ADS)

    Permana, Sidik; Saputra, Geby; Suzuki, Mitsutoshi; Saito, Masaki

    2017-01-01

    Reactor criticality condition and fuel conversion capability are depending on the fuel arrangement schemes, reactor core geometry and fuel burnup process as well as the effect of different fuel cycle and fuel composition. Criticality condition of reactor core and breeding ratio capability have been investigated in this present study based on fast breeder reactor (FBR) type for different loaded fuel compositions of plutonium in the fuel core regions. Loaded fuel of Plutonium compositions are based on spent nuclear fuel (SNF) of light water reactor (LWR) for different fuel burnup process and cooling time conditions of the reactors. Obtained results show that different initial fuels of plutonium gives a significant chance in criticality conditions and fuel conversion capability. Loaded plutonium based on higher burnup process gives a reduction value of criticality condition or less excess reactivity. It also obtains more fuel breeding ratio capability or more breeding gain. Some loaded plutonium based on longer cooling time of LWR gives less excess reactivity and in the same time, it gives higher breeding ratio capability of the reactors. More composition of even mass plutonium isotopes gives more absorption neutron which affects to decresing criticality or less excess reactivity in the core. Similar condition that more absorption neutron by fertile material or even mass plutonium will produce more fissile material or odd mass plutonium isotopes to increase the breeding gain of the reactor.

  18. Neutronics Analyses of the Minimum Original HEU TREAT Core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kontogeorgakos, D.; Connaway, H.; Yesilyurt, G.

    2014-04-01

    This work was performed to support the feasibility study on the potential conversion of the Transient Reactor Test Facility (TREAT) at Idaho National Laboratory from the use of high-enriched uranium (HEU) fuel to the use of low-enriched uranium (LEU) fuel. The analyses were performed by the GTRI Reactor Conversion staff at the Argonne National Laboratory (ANL). The objective of this study was to validate the MCNP model of the TREAT reactor with the well-documented measurements which were taken during the start-up and early operation of TREAT. Furthermore, the effect of carbon graphitization was also addressed. The graphitization level was assumedmore » to be 100% (ANL/GTRI/TM-13/4). For this purpose, a set of experiments was chosen to validate the TREAT MCNP model, involving the approach to criticality procedure, in-core neutron flux measurements with foils, and isothermal temperature coefficient and temperature distribution measurements. The results of this study extended the knowledge base for the TREAT MCNP calculations and established the credibility of the MCNP model to be used in the core conversion feasibility analysis.« less

  19. Development of As-Se tapered suspended-core fibers for ultra-broadband mid-IR wavelength conversion

    NASA Astrophysics Data System (ADS)

    Anashkina, E. A.; Shiryaev, V. S.; Koptev, M. Y.; Stepanov, B. S.; Muravyev, S. V.

    2018-01-01

    We designed and developed tapered suspended-core fibers of high-purity As39Se61 glass for supercontinuum generation in the mid-IR with a standard fiber laser pump source at 2 ${\\mu}$m. It was shown that microstructuring allows shifting a zero dispersion wavelength to the range shorter than 2 ${\\mu}$m in the fiber waist with a core diameter of about 1 ${\\mu}$m. In this case, supercontinuum generation in the 1-10 ${\\mu}$m range was obtained numerically with 150-fs 100-pJ pump pulses at 2 ${\\mu}$m. We also performed experiments on wavelength conversion of ultrashort optical pulses at 1.57 ${\\mu}$m from Er: fiber laser system in the manufactured As-Se tapered fibers. The measured broadening spectra were in a good agreement with the ones simulated numerically.

  20. H{sub 2} Ortho-to-para Conversion on Grains: A Route to Fast Deuterium Fractionation in Dense Cloud Cores?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bovino, S.; Grassi, T.; Schleicher, D. R. G.

    Deuterium fractionation, i.e., the enhancement of deuterated species with respect to non-deuterated ones, is considered to be a reliable chemical clock of star-forming regions. This process is strongly affected by the ortho-to-para H{sub 2} ratio. In this Letter we explore the effect of the ortho–para (o–p) H{sub 2} conversion on grains on the deuteration timescale in fully-depleted dense cores, including the most relevant uncertainties that affect this complex process. We show that (i) the o–p H{sub 2} conversion on grains is not strongly influenced by the uncertainties on the conversion time and the sticking coefficient, and (ii) that the processmore » is controlled by the temperature and the residence time of ortho-H{sub 2} on the surface, i.e., by the binding energy. We find that for binding energies between 330 and 550 K, depending on the temperature, the o–p H{sub 2} conversion on grains can shorten the deuterium fractionation timescale by orders of magnitude, opening a new route for explaining the large observed deuteration fraction D {sub frac} in dense molecular cloud cores. Our results suggest that the star formation timescale, when estimated through the timescale to reach the observed deuteration fractions, might be shorter than previously proposed. However, more accurate measurements of the binding energy are needed in order to better assess the overall role of this process.« less

  1. Ownership conversions and nursing home performance.

    PubMed

    Grabowski, David C; Stevenson, David G

    2008-08-01

    To examine the effects of ownership conversions on nursing home performance. Online Survey, Certification, and Reporting system data from 1993 to 2004, and the Minimum Data Set (MDS) facility reports from 1998 to 2004. Regression specification incorporating facility fixed effects, with terms to identify trends in the pre- and postconversion periods. The annual rate of nursing home conversions almost tripled between 1994 and 2004. Our regression results indicate converting facilities are generally different throughout the pre/postconversion years, suggesting little causal effect of ownership conversions on nursing home performance. Before and after conversion, nursing homes converting from nonprofit to for-profit status generally exhibit deterioration in their performance, while nursing homes converting from for-profit to nonprofit status generally exhibit improvement. Policy makers have expressed concern regarding the implications of ownership conversions for nursing home performance. Our results imply that regulators and policy makers should not only monitor the outcomes of nursing home conversions, but also the targets of these conversions.

  2. One-pot facile synthesis of reusable tremella-like M1@M2@M1(OH)2 (M1 = Co, Ni, M2 = Pt/Pd, Pt, Pd and Au) three layers core-shell nanostructures as highly efficient catalysts

    NASA Astrophysics Data System (ADS)

    Liu, Yadong; Fang, Zhen; Kuai, Long; Geng, Baoyou

    2014-07-01

    In this work, a general, facile, successive and eco-friendly method for multilayer nanostructures has been established for the first time. We take full advantage of the structural and compositional character of M1@M2 (M1 = Co, Ni, M2 = Pt/Pd, Pt, Pd and Au) core-shell nanostructures to prepare a series of reusable tremella-like M1@M2@M1(OH)2 three layer core-shell or yolk-shell nanocomposites with a magnetic core, a porous noble metal shell, and an ultrathin cobalt or nickel hydroxide shell. We evaluated their catalytic performance using a model reaction based on the reduction of 4-nitrophenol. These novel M1@M2@M1(OH)2 nanomaterials with a unique internal micro environment promoted the efficiency of the catalytic reaction, prolonged the service life of the catalyst and enhanced the overall activity of the catalyst in the catalytic process. The novel three layer core-shell nanocomposites can be extended to other applications such as biomedical detection, energy conversion and storage systems.In this work, a general, facile, successive and eco-friendly method for multilayer nanostructures has been established for the first time. We take full advantage of the structural and compositional character of M1@M2 (M1 = Co, Ni, M2 = Pt/Pd, Pt, Pd and Au) core-shell nanostructures to prepare a series of reusable tremella-like M1@M2@M1(OH)2 three layer core-shell or yolk-shell nanocomposites with a magnetic core, a porous noble metal shell, and an ultrathin cobalt or nickel hydroxide shell. We evaluated their catalytic performance using a model reaction based on the reduction of 4-nitrophenol. These novel M1@M2@M1(OH)2 nanomaterials with a unique internal micro environment promoted the efficiency of the catalytic reaction, prolonged the service life of the catalyst and enhanced the overall activity of the catalyst in the catalytic process. The novel three layer core-shell nanocomposites can be extended to other applications such as biomedical detection, energy conversion and

  3. DUF6 Conversion Facility EISs

    Science.gov Websites

    DUF6 Guide DU Uses DUF6 Management and Uses DUF6 Conversion EIS Documents News FAQs Internet Resources EISs | Documents News | FAQs | Internet Resources | Glossary Help | Mailing Services | Contact Us

  4. Complete Au@ZnO core-shell nanoparticles with enhanced plasmonic absorption enabling significantly improved photocatalysis

    NASA Astrophysics Data System (ADS)

    Sun, Yiqiang; Sun, Yugang; Zhang, Tao; Chen, Guozhu; Zhang, Fengshou; Liu, Dilong; Cai, Weiping; Li, Yue; Yang, Xianfeng; Li, Cuncheng

    2016-05-01

    Nanostructured ZnO exhibits high chemical stability and unique optical properties, representing a promising candidate among photocatalysts in the field of environmental remediation and solar energy conversion. However, ZnO only absorbs the UV light, which accounts for less than 5% of total solar irradiation, significantly limiting its applications. In this article, we report a facile and efficient approach to overcome the poor wettability between ZnO and Au by carefully modulating the surface charge density on Au nanoparticles (NPs), enabling rapid synthesis of Au@ZnO core-shell NPs at room temperature. The resulting Au@ZnO core-shell NPs exhibit a significantly enhanced plasmonic absorption in the visible range due to the Au NP cores. They also show a significantly improved photocatalytic performance in comparison with their single-component counterparts, i.e., the Au NPs and ZnO NPs. Moreover, the high catalytic activity of the as-synthesized Au@ZnO core-shell NPs can be maintained even after many cycles of photocatalytic reaction. Our results shed light on the fact that the Au@ZnO core-shell NPs represent a promising class of candidates for applications in plasmonics, surface-enhanced spectroscopy, light harvest devices, solar energy conversion, and degradation of organic pollutants.Nanostructured ZnO exhibits high chemical stability and unique optical properties, representing a promising candidate among photocatalysts in the field of environmental remediation and solar energy conversion. However, ZnO only absorbs the UV light, which accounts for less than 5% of total solar irradiation, significantly limiting its applications. In this article, we report a facile and efficient approach to overcome the poor wettability between ZnO and Au by carefully modulating the surface charge density on Au nanoparticles (NPs), enabling rapid synthesis of Au@ZnO core-shell NPs at room temperature. The resulting Au@ZnO core-shell NPs exhibit a significantly enhanced plasmonic

  5. TREAT Transient Analysis Benchmarking for the HEU Core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kontogeorgakos, D. C.; Connaway, H. M.; Wright, A. E.

    2014-05-01

    This work was performed to support the feasibility study on the potential conversion of the Transient Reactor Test Facility (TREAT) at Idaho National Laboratory from the use of high enriched uranium (HEU) fuel to the use of low enriched uranium (LEU) fuel. The analyses were performed by the GTRI Reactor Conversion staff at the Argonne National Laboratory (ANL). The objective of this study was to benchmark the transient calculations against temperature-limited transients performed in the final operating HEU TREAT core configuration. The MCNP code was used to evaluate steady-state neutronics behavior, and the point kinetics code TREKIN was used tomore » determine core power and energy during transients. The first part of the benchmarking process was to calculate with MCNP all the neutronic parameters required by TREKIN to simulate the transients: the transient rod-bank worth, the prompt neutron generation lifetime, the temperature reactivity feedback as a function of total core energy, and the core-average temperature and peak temperature as a functions of total core energy. The results of these calculations were compared against measurements or against reported values as documented in the available TREAT reports. The heating of the fuel was simulated as an adiabatic process. The reported values were extracted from ANL reports, intra-laboratory memos and experiment logsheets and in some cases it was not clear if the values were based on measurements, on calculations or a combination of both. Therefore, it was decided to use the term “reported” values when referring to such data. The methods and results from the HEU core transient analyses will be used for the potential LEU core configurations to predict the converted (LEU) core’s performance.« less

  6. Dose and Dose Risk Caused by Natural Phenomena - Proposed Powder Metallurgy Core Manufacturing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holmes, W.G.

    2001-08-16

    The offsite radiological effects from high velocity straight winds, tornadoes, and earthquakes have been estimated for a proposed facility for manufacturing enriched uranium fuel cores by powder metallurgy. Projected doses range up to 30 mrem/event to the maximum offsite individual for high winds and up to 85 mrem/event for very severe earthquakes. Even under conservative assumptions on meteorological conditions, the maximum offsite dose would be about 20 per cent of the DOE limit for accidents involving enriched uranium storage facilities. The total dose risk is low and is dominated by the risk from earthquakes. This report discusses this test.

  7. Monodisperse core/shell Ni/FePt nanoparticles and their con-version to Ni/Pt to catalyze oxygen reduction

    DOE PAGES

    Zhang, Sen; Hao, Yizhou; Su, Dong; ...

    2014-10-28

    We report a size-controllable synthesis of monodisperse core/shell Ni/FePt nanoparticles (NPs) via a seed-mediated growth and their subsequent conversion to Ni/Pt NPs. Preventing surface oxidation of the Ni seeds is essential for the growth of uniform FePt shells. These Ni/FePt NPs have a thin (≈ 1 nm) FePt shell, and can be converted to Ni/Pt by acetic acid wash to yield active catalysts for oxygen reduction reaction (ORR). Tuning the core size allow for optimization of their electrocatalytic activity. The specific activity and mass activity of 4.2 nm/0.8 nm core/shell Ni/FePt reach 1.95 mA/cm² and 490 mA/mg Pt at 0.9more » V ( vs. reversible hydrogen electrode, RHE), which are much higher than those of benchmark commercial Pt catalyst (0.34 mA/cm² and 92 mA/mg Pt at 0.9 V). Our studies provide a robust approach to monodisperse core/shell NPs with non-precious metal core, making it possible to develop advanced NP catalysts with ultralow Pt content for ORR and many other heterogeneous reactions.« less

  8. A High-Throughput Biological Calorimetry Core: Steps to Startup, Run, and Maintain a Multiuser Facility.

    PubMed

    Yennawar, Neela H; Fecko, Julia A; Showalter, Scott A; Bevilacqua, Philip C

    2016-01-01

    Many labs have conventional calorimeters where denaturation and binding experiments are setup and run one at a time. While these systems are highly informative to biopolymer folding and ligand interaction, they require considerable manual intervention for cleaning and setup. As such, the throughput for such setups is limited typically to a few runs a day. With a large number of experimental parameters to explore including different buffers, macromolecule concentrations, temperatures, ligands, mutants, controls, replicates, and instrument tests, the need for high-throughput automated calorimeters is on the rise. Lower sample volume requirements and reduced user intervention time compared to the manual instruments have improved turnover of calorimetry experiments in a high-throughput format where 25 or more runs can be conducted per day. The cost and efforts to maintain high-throughput equipment typically demands that these instruments be housed in a multiuser core facility. We describe here the steps taken to successfully start and run an automated biological calorimetry facility at Pennsylvania State University. Scientists from various departments at Penn State including Chemistry, Biochemistry and Molecular Biology, Bioengineering, Biology, Food Science, and Chemical Engineering are benefiting from this core facility. Samples studied include proteins, nucleic acids, sugars, lipids, synthetic polymers, small molecules, natural products, and virus capsids. This facility has led to higher throughput of data, which has been leveraged into grant support, attracting new faculty hire and has led to some exciting publications. © 2016 Elsevier Inc. All rights reserved.

  9. Updated procedures for using drill cores and cuttings at the Lithologic Core Storage Library, Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Hodges, Mary K.V.; Davis, Linda C.; Bartholomay, Roy C.

    2018-01-30

    In 1990, the U.S. Geological Survey, in cooperation with the U.S. Department of Energy Idaho Operations Office, established the Lithologic Core Storage Library at the Idaho National Laboratory (INL). The facility was established to consolidate, catalog, and permanently store nonradioactive drill cores and cuttings from subsurface investigations conducted at the INL, and to provide a location for researchers to examine, sample, and test these materials.The facility is open by appointment to researchers for examination, sampling, and testing of cores and cuttings. This report describes the facility and cores and cuttings stored at the facility. Descriptions of cores and cuttings include the corehole names, corehole locations, and depth intervals available.Most cores and cuttings stored at the facility were drilled at or near the INL, on the eastern Snake River Plain; however, two cores drilled on the western Snake River Plain are stored for comparative studies. Basalt, rhyolite, sedimentary interbeds, and surficial sediments compose most cores and cuttings, most of which are continuous from land surface to their total depth. The deepest continuously drilled core stored at the facility was drilled to 5,000 feet below land surface. This report describes procedures and researchers' responsibilities for access to the facility and for examination, sampling, and return of materials.

  10. Conversion Preliminary Safety Analysis Report for the NIST Research Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diamond, D. J.; Baek, J. S.; Hanson, A. L.

    The NIST Center for Neutron Research (NCNR) is a reactor-laboratory complex providing the National Institute of Standards and Technology (NIST) and the nation with a world-class facility for the performance of neutron-based research. The heart of this facility is the NIST research reactor (aka NBSR); a heavy water moderated and cooled reactor operating at 20 MW. It is fueled with high-enriched uranium (HEU) fuel elements. A Global Threat Reduction Initiative (GTRI) program is underway to convert the reactor to low-enriched uranium (LEU) fuel. This program includes the qualification of the proposed fuel, uranium and molybdenum alloy foil clad in anmore » aluminum alloy, and the development of the fabrication techniques. This report is a preliminary version of the Safety Analysis Report (SAR) that would be submitted to the U.S. Nuclear Regulatory Commission (NRC) for approval prior to conversion. The report follows the recommended format and content from the NRC codified in NUREG-1537, “Guidelines for Preparing and Reviewing Applications for the Licensing of Non-power Reactors,” Chapter 18, “Highly Enriched to Low-Enriched Uranium Conversions.” The emphasis in any conversion SAR is to explain the differences between the LEU and HEU cores and to show the acceptability of the new design; there is no need to repeat information regarding the current reactor that will not change upon conversion. Hence, as seen in the report, the bulk of the SAR is devoted to Chapter 4, Reactor Description, and Chapter 13, Safety Analysis.« less

  11. Nanoscale semiconductor-insulator-metal core/shell heterostructures: facile synthesis and light emission

    NASA Astrophysics Data System (ADS)

    Li, Gong Ping; Chen, Rui; Guo, Dong Lai; Wong, Lai Mun; Wang, Shi Jie; Sun, Han Dong; Wu, Tom

    2011-08-01

    Controllably constructing hierarchical nanostructures with distinct components and designed architectures is an important theme of research in nanoscience, entailing novel but reliable approaches of bottom-up synthesis. Here, we report a facile method to reproducibly create semiconductor-insulator-metal core/shell nanostructures, which involves first coating uniform MgO shells onto metal oxide nanostructures in solution and then decorating them with Au nanoparticles. The semiconductor nanowire core can be almost any material and, herein, ZnO, SnO2 and In2O3 are used as examples. We also show that linear chains of short ZnO nanorods embedded in MgO nanotubes and porous MgO nanotubes can be obtained by taking advantage of the reduced thermal stability of the ZnO core. Furthermore, after MgO shell-coating and the appropriate annealing treatment, the intensity of the ZnO near-band-edge UV emission becomes much stronger, showing a 25-fold enhancement. The intensity ratio of the UV/visible emission can be increased further by decorating the surface of the ZnO/MgO nanowires with high-density plasmonic Au nanoparticles. These heterostructured semiconductor-insulator-metal nanowires with tailored morphologies and enhanced functionalities have great potential for use as nanoscale building blocks in photonic and electronic applications.Controllably constructing hierarchical nanostructures with distinct components and designed architectures is an important theme of research in nanoscience, entailing novel but reliable approaches of bottom-up synthesis. Here, we report a facile method to reproducibly create semiconductor-insulator-metal core/shell nanostructures, which involves first coating uniform MgO shells onto metal oxide nanostructures in solution and then decorating them with Au nanoparticles. The semiconductor nanowire core can be almost any material and, herein, ZnO, SnO2 and In2O3 are used as examples. We also show that linear chains of short ZnO nanorods embedded in

  12. Initial Neutronics Analyses for HEU to LEU Fuel Conversion of the Transient Reactor Test Facility (TREAT) at the Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kontogeorgakos, D.; Derstine, K.; Wright, A.

    2013-06-01

    The purpose of the TREAT reactor is to generate large transient neutron pulses in test samples without over-heating the core to simulate fuel assembly accident conditions. The power transients in the present HEU core are inherently self-limiting such that the core prevents itself from overheating even in the event of a reactivity insertion accident. The objective of this study was to support the assessment of the feasibility of the TREAT core conversion based on the present reactor performance metrics and the technical specifications of the HEU core. The LEU fuel assembly studied had the same overall design, materials (UO 2more » particles finely dispersed in graphite) and impurities content as the HEU fuel assembly. The Monte Carlo N–Particle code (MCNP) and the point kinetics code TREKIN were used in the analyses.« less

  13. Access to Core Facilities and Other Research Resources Provided by the Clinical and Translational Science Awards

    PubMed Central

    2012-01-01

    Abstract  Principal investigators who received Clinical and Translational Science Awards created academic homes for biomedical research. They developed program‐supported websites to offer coordinated access to a range of core facilities and other research resources. Visitors to the 60 websites will find at least 170 generic services, which this review has categorized in the following seven areas: (1) core facilities, (2) biomedical informatics, (3) funding, (4) regulatory knowledge and support, (5) biostatistics, epidemiology, research design, and ethics, (6) participant and clinical interaction resources, and (7) community engagement. In addition, many websites facilitate access to resources with search engines, navigators, studios, project development teams, collaboration tools, communication systems, and teaching tools. Each of these websites may be accessed from a single site, http://www.CTSAcentral.org. The ability to access the research resources from 60 of the nation's academic health centers presents a novel opportunity for investigators engaged in clinical and translational research. Clin Trans Sci 2012; Volume #: 1–5 PMID:22376262

  14. Access to core facilities and other research resources provided by the Clinical and Translational Science Awards.

    PubMed

    Rosenblum, Daniel

    2012-02-01

    Principal investigators who received Clinical and Translational Science Awards created academic homes for biomedical research. They developed program-supported websites to offer coordinated access to a range of core facilities and other research resources. Visitors to the 60 websites will find at least 170 generic services, which this review has categorized in the following seven areas: (1) core facilities, (2) biomedical informatics, (3) funding, (4) regulatory knowledge and support, (5) biostatistics, epidemiology, research design, and ethics, (6) participant and clinical interaction resources, and (7) community engagement. In addition, many websites facilitate access to resources with search engines, navigators, studios, project development teams, collaboration tools, communication systems, and teaching tools. Each of these websites may be accessed from a single site, http://www.CTSAcentral.org. The ability to access the research resources from 60 of the nation's academic health centers presents a novel opportunity for investigators engaged in clinical and translational research. © 2012 Wiley Periodicals, Inc.

  15. NIR stimulus-responsive core-shell type nanoparticles based on photothermal conversion for enhanced antitumor efficacy through chemo-photothermal therapy.

    PubMed

    Sun, Kai; You, Chaoqun; Wang, Senlin; Gao, Zhiguo; Wu, Hongshuai; Tao, W Andy; Zhu, Xiaoli; Sun, Baiwang

    2018-07-13

    A novel core-shell type nanoparticle (CSNP) was designed here to target co-delivery of doxorubicin (DOX) and photosensitizer indocyanine green (ICG) to tumor sites by the aid of NIR induced photothermal conversion effect for the purpose of synergistic chemo-photothermal cancer therapy. The electrostatically self-assembled CSNPs were prepared by amino-functionalized mesoporous silica nanoparticles (MSN-NH 2 ) as the positive inner core and DSPE-PEG 2000 -COOH and DSPE-PEG 2000 -FA modified lecithin as the negative outer shell. The obtained CSNPs were nanospheres with a uniform size of 47 nm, which were kept stable at 4 °C in PBS (pH = 7). Research on the release of NIR stimulus (808 nm, 1.54 W cm -2 , 6 min) manifested that the release property of the CSNPs was controllable under low pH conditions. In addition, specific concentration (40 μg ml -1 ) ICG-loaded CSNPs, achieving an appropriate temperature up to 45 °C, indicated a desired photothermal conversion efficiency. For targeting the folate receptor, the folate modified CSNPs enabled us to reach a higher cellular uptake by the mean fluorescence intensity. In vitro cell assay, the prepared CSNPs showed outstanding inhibitory efficiency (2.07% cell viability and 91.8% cell apoptosis) on MCF-7 cells for 24 h when irradiated by an 808 nm laser with a power of 1.54 W cm -2 for 6 min. Our research highlights that the prepared nanoparticles hold potential promise for cancer treatment based on photothermal conversion performance and FA-targeted delivery.

  16. Uranium Conversion & Enrichment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karpius, Peter Joseph

    2017-02-06

    The isotopes of uranium that are found in nature, and hence in ‘fresh’ Yellowcake’, are not in relative proportions that are suitable for power or weapons applications. The goal of conversion then is to transform the U 3O 8 yellowcake into UF 6. Conversion and enrichment of uranium is usually required to obtain material with enough 235U to be usable as fuel in a reactor or weapon. The cost, size, and complexity of practical conversion and enrichment facilities aid in nonproliferation by design.

  17. Thermionic energy conversion technology - Present and future

    NASA Technical Reports Server (NTRS)

    Shimada, K.; Morris, J. F.

    1977-01-01

    Aerospace and terrestrial applications of thermionic direct energy conversion and advances in direct energy conversion (DEC) technology are surveyed. Electrode materials, the cesium plasma drop (the difference between the barrier index and the collector work function), DEC voltage/current characteristics, conversion efficiency, and operating temperatures are discussed. Attention is centered on nuclear reactor system thermionic DEC devices, for in-core or out-of-core operation. Thermionic fuel elements, the radiation shield, power conditions, and a waste heat rejection system are considered among the thermionic DEC system components. Terrestrial applications include topping power systems in fossil fuel and solar power generation.

  18. Conversational Competence in Academic Settings

    ERIC Educational Resources Information Center

    Bowman, Richard F.

    2014-01-01

    Conversational competence is a process, not a state. Ithaca does not exist, only the voyage to Ithaca. Vibrant campuses are a series of productive conversations. At its core, communicative competence in academic settings mirrors a collective search for meaning regarding the purpose and direction of a campus community. Communicative competence…

  19. Opportunity to Save Historical Railway Infrastructure - Adaptation and Functional Conversion of Facilities

    NASA Astrophysics Data System (ADS)

    Podwojewska, Magdalena

    2017-10-01

    After years of neglect and underinvestment, the Polish railways are now witnessing a rapid modernization of both their technical facilities and rolling stock. However, this is true only of the main railway lines connecting major urban complexes. It is worth pointing out that a great number of secondary lines, railway stations and halts still has not been covered by the transformation process. Railway facilities, warehouses and service features are in decay. Rapid technological developments have caused numerous architectural structures of historical interest and service features to fall out of use. There are historical railway facilities dating back to the late 19th or early 20th centuries, whose condition is constantly deteriorating. The only way to save these structures is to change the manner, in which they are being used, and attract new investors and operators. The adaptation of buildings may be carried out in a number of ways by following different strategies. The process depends on the structure’s current condition and significance for the railway network. The facilities which are disused as a result of technological changes in the rolling stock and infrastructure include workshops, steam locomotive bays, turntables and warehouses. Their size and location within a city make them a perfect place for commercial services, exhibitions, heritage sites, concerts and other events attracting great numbers of people. Other strategies may be used for constructions located next to railways lines, whose role has declined. Such constructions include small railway stations, warehouses, reloading and forwarding facilities, railway ramps, railway staff buildings as well as residences for railway employees. Railway stations located at large junctions can handle passenger traffic or freight loading operations. As well as acting as the only window to the world, railway stations in small towns housed all the services available in the place. At the same time, they served as

  20. Targeted proteomics coming of age - SRM, PRM and DIA performance evaluated from a core facility perspective.

    PubMed

    Kockmann, Tobias; Trachsel, Christian; Panse, Christian; Wahlander, Asa; Selevsek, Nathalie; Grossmann, Jonas; Wolski, Witold E; Schlapbach, Ralph

    2016-08-01

    Quantitative mass spectrometry is a rapidly evolving methodology applied in a large number of omics-type research projects. During the past years, new designs of mass spectrometers have been developed and launched as commercial systems while in parallel new data acquisition schemes and data analysis paradigms have been introduced. Core facilities provide access to such technologies, but also actively support the researchers in finding and applying the best-suited analytical approach. In order to implement a solid fundament for this decision making process, core facilities need to constantly compare and benchmark the various approaches. In this article we compare the quantitative accuracy and precision of current state of the art targeted proteomics approaches single reaction monitoring (SRM), parallel reaction monitoring (PRM) and data independent acquisition (DIA) across multiple liquid chromatography mass spectrometry (LC-MS) platforms, using a readily available commercial standard sample. All workflows are able to reproducibly generate accurate quantitative data. However, SRM and PRM workflows show higher accuracy and precision compared to DIA approaches, especially when analyzing low concentrated analytes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Validation of gamma-ray detection techniques for safeguards monitoring at natural uranium conversion facilities

    DOE PAGES

    Dewji, Shaheen A.; Lee, Denise L.; Croft, Stephen; ...

    2016-03-28

    Recent IAEA circulars and policy papers have sought to implement safeguards when any purified aqueous uranium solution or uranium oxides suitable for isotopic enrichment or fuel fabrication exists. Under the revised policy, IAEA Policy Paper 18, the starting point for nuclear material under safeguards was reinterpreted, suggesting that purified uranium compounds should be subject to safeguards procedures no later than the first point in the conversion process. In response to this technical need, a combination of simulation models and experimental measurements were employed to develop and validate concepts of nondestructive assay monitoring systems in a natural uranium conversion plant (NUCP).more » In particular, uranyl nitrate (UO 2(NO 3) 2) solution exiting solvent extraction was identified as a key measurement point (KMP), where gamma-ray spectroscopy was selected as the process monitoring tool. The Uranyl Nitrate Calibration Loop Equipment (UNCLE) facility at Oak Ridge National Laboratory was employed to simulate the full-scale operating conditions of a purified uranium-bearing aqueous stream exiting the solvent extraction process in an NUCP. Nondestructive assay techniques using gamma-ray spectroscopy were evaluated to determine their viability as a technical means for drawing safeguards conclusions at NUCPs, and if the IAEA detection requirements of 1 significant quantity (SQ) can be met in a timely way. This work investigated gamma-ray signatures of uranyl nitrate circulating in the UNCLE facility and evaluated various gamma-ray detector sensitivities to uranyl nitrate. These detector validation activities include assessing detector responses to the uranyl nitrate gamma-ray signatures for spectrometers based on sodium iodide, lanthanum bromide, and high-purity germanium detectors. The results of measurements under static and dynamic operating conditions at concentrations ranging from 10–90 g U/L of natural uranyl nitrate are presented. A range of gamma

  2. Validation of gamma-ray detection techniques for safeguards monitoring at natural uranium conversion facilities

    NASA Astrophysics Data System (ADS)

    Dewji, S. A.; Lee, D. L.; Croft, S.; Hertel, N. E.; Chapman, J. A.; McElroy, R. D.; Cleveland, S.

    2016-07-01

    Recent IAEA circulars and policy papers have sought to implement safeguards when any purified aqueous uranium solution or uranium oxides suitable for isotopic enrichment or fuel fabrication exists. Under the revised policy, IAEA Policy Paper 18, the starting point for nuclear material under safeguards was reinterpreted, suggesting that purified uranium compounds should be subject to safeguards procedures no later than the first point in the conversion process. In response to this technical need, a combination of simulation models and experimental measurements were employed to develop and validate concepts of nondestructive assay monitoring systems in a natural uranium conversion plant (NUCP). In particular, uranyl nitrate (UO2(NO3)2) solution exiting solvent extraction was identified as a key measurement point (KMP), where gamma-ray spectroscopy was selected as the process monitoring tool. The Uranyl Nitrate Calibration Loop Equipment (UNCLE) facility at Oak Ridge National Laboratory was employed to simulate the full-scale operating conditions of a purified uranium-bearing aqueous stream exiting the solvent extraction process in an NUCP. Nondestructive assay techniques using gamma-ray spectroscopy were evaluated to determine their viability as a technical means for drawing safeguards conclusions at NUCPs, and if the IAEA detection requirements of 1 significant quantity (SQ) can be met in a timely way. This work investigated gamma-ray signatures of uranyl nitrate circulating in the UNCLE facility and evaluated various gamma-ray detector sensitivities to uranyl nitrate. These detector validation activities include assessing detector responses to the uranyl nitrate gamma-ray signatures for spectrometers based on sodium iodide, lanthanum bromide, and high-purity germanium detectors. The results of measurements under static and dynamic operating conditions at concentrations ranging from 10-90 g U/L of natural uranyl nitrate are presented. A range of gamma-ray lines is

  3. Nanoscale semiconductor-insulator-metal core/shell heterostructures: facile synthesis and light emission.

    PubMed

    Li, Gong Ping; Chen, Rui; Guo, Dong Lai; Wong, Lai Mun; Wang, Shi Jie; Sun, Han Dong; Wu, Tom

    2011-08-01

    Controllably constructing hierarchical nanostructures with distinct components and designed architectures is an important theme of research in nanoscience, entailing novel but reliable approaches of bottom-up synthesis. Here, we report a facile method to reproducibly create semiconductor-insulator-metal core/shell nanostructures, which involves first coating uniform MgO shells onto metal oxide nanostructures in solution and then decorating them with Au nanoparticles. The semiconductor nanowire core can be almost any material and, herein, ZnO, SnO(2) and In(2)O(3) are used as examples. We also show that linear chains of short ZnO nanorods embedded in MgO nanotubes and porous MgO nanotubes can be obtained by taking advantage of the reduced thermal stability of the ZnO core. Furthermore, after MgO shell-coating and the appropriate annealing treatment, the intensity of the ZnO near-band-edge UV emission becomes much stronger, showing a 25-fold enhancement. The intensity ratio of the UV/visible emission can be increased further by decorating the surface of the ZnO/MgO nanowires with high-density plasmonic Au nanoparticles. These heterostructured semiconductor-insulator-metal nanowires with tailored morphologies and enhanced functionalities have great potential for use as nanoscale building blocks in photonic and electronic applications. This journal is © The Royal Society of Chemistry 2011

  4. Trichloroethylene (TCE) in tree cores to complement a subsurface investigation on residential property near a former electroplating facility.

    PubMed

    Wilcox, Jeffrey D; Johnson, Kathy M

    2016-10-01

    Tree cores were collected and analyzed for trichloroethylene (TCE) on a private property between a former electroplating facility in Asheville, North Carolina (USA), and a contaminated wetland/spring complex. TCE was detected in 16 of 31 trees, the locations of which were largely consistent with a "plume core" delineated by a more detailed subsurface investigation nearly 2 years later. Concentrations in tree cores and nearby soil borings were not correlated, perhaps due to heterogeneities in both geologic and tree root structure, spatial and temporal variability in transpiration rates, or interferences caused by other contaminants at the site. Several tree cores without TCE provided evidence for significantly lower TCE concentrations in shallow groundwater along the margins of the contaminated spring complex in an area with limited accessibility. This study demonstrates that tree core analyses can complement a more extensive subsurface investigation, particularly in residential or ecologically sensitive areas.

  5. Partnership between CTSI and Business Schools Can Promote Best Practices for Core Facilities and Resources

    PubMed Central

    Reeves, Lilith; Dunn‐Jensen, Linda M.; Baldwin, Timothy T.; Tatikonda, Mohan V.

    2013-01-01

    Abstract Biomedical research enterprises require a large number of core facilities and resources to supply the infrastructure necessary for translational research. Maintaining the financial viability and promoting efficiency in an academic environment can be particularly challenging for medical schools and universities. The Indiana Clinical and Translational Sciences Institute sought to improve core and service programs through a partnership with the Indiana University Kelley School of Business. The program paired teams of Masters of Business Administration students with cores and programs that self‐identified the need for assistance in project management, financial management, marketing, or resource efficiency. The projects were developed by CTSI project managers and business school faculty using service‐learning principles to ensure learning for students who also received course credit for their participation. With three years of experience, the program demonstrates a successful partnership that improves clinical research infrastructure by promoting business best practices and providing a valued learning experience for business students. PMID:23919365

  6. Partnership between CTSI and business schools can promote best practices for core facilities and resources.

    PubMed

    Reeves, Lilith; Dunn-Jensen, Linda M; Baldwin, Timothy T; Tatikonda, Mohan V; Cornetta, Kenneth

    2013-08-01

    Biomedical research enterprises require a large number of core facilities and resources to supply the infrastructure necessary for translational research. Maintaining the financial viability and promoting efficiency in an academic environment can be particularly challenging for medical schools and universities. The Indiana Clinical and Translational Sciences Institute sought to improve core and service programs through a partnership with the Indiana University Kelley School of Business. The program paired teams of Masters of Business Administration students with cores and programs that self-identified the need for assistance in project management, financial management, marketing, or resource efficiency. The projects were developed by CTSI project managers and business school faculty using service-learning principles to ensure learning for students who also received course credit for their participation. With three years of experience, the program demonstrates a successful partnership that improves clinical research infrastructure by promoting business best practices and providing a valued learning experience for business students. © 2013 Wiley Periodicals, Inc.

  7. The National Ignition Facility: Transition to a User Facility

    NASA Astrophysics Data System (ADS)

    Moses, E. I.; Atherton, J.; Lagin, L.; Larson, D.; Keane, C.; MacGowan, B.; Patterson, R.; Spaeth, M.; Van Wonterghem, B.; Wegner, P.; Kauffman, R.

    2016-03-01

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) has been operational since March 2009 and has been transitioning to a user facility supporting ignition science, high energy density science (HEDS), national security applications, and fundamental science. The facility has achieved its design goal of 1.8 MJ and 500 TW of 3ω light on target, and has performed target experiments with 1.9 MJ at peak powers of 410 TW. The facility is on track to perform over 200 target shots this year in support of all of its user communities. The facility has nearly 60 diagnostic systems operational and has shown flexibility in laser pulse shape and performance to meet the requirements of its multiple users. Progress continues on its goal of demonstrating thermonuclear burn in the laboratory. It has performed over 40 indirect-drive experiments with cryogenic-layered capsules. New platforms are being developed for HEDS and fundamental science. Equation-of-state and material strength experiments have been done on a number of materials with pressures of over 50 MBars obtained in diamond, conditions never previously encountered in the laboratory and similar to those found in planetary interiors. Experiments are also in progress investigating radiation transport, hydrodynamic instabilities, and direct drive implosions. NIF continues to develop as an experimental facility. Advanced Radiographic Capability (ARC) is now being installed on NIF for producing high-energy radiographs of the imploded cores of ignition targets and for short pulse laser-plasma interaction experiments. One NIF beam is planned for conversion to two picosecond beams in 2014. Other new diagnostics such as x-ray Thomson scattering, low energy neutron spectrometer, and multi-layer reflecting x-ray optics are also planned. Incremental improvements in laser performance such as improved optics damage performance, beam balance, and back reflection control are being pursued.

  8. Facile synthesis of hierarchical Co3O4@MnO2 core-shell arrays on Ni foam for asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Huang, Ming; Zhang, Yuxin; Li, Fei; Zhang, Lili; Wen, Zhiyu; Liu, Qing

    2014-04-01

    Hierarchical Co3O4@MnO2 core-shell arrays on Ni foam have been fabricated by a facile hydrothermal approach and further investigated as the electrode for high-performance supercapacitors. Owing to the high conductivity of the well-defined mesoporous Co3O4 nanowire arrays in combination with the large surface area provided by the ultrathin MnO2 nanosheets, the unique designed Co3O4@MnO2 core-shell arrays on Ni foam have exhibited a high specific capacitance (560 F g-1 at a current density of 0.2 A g-1), good rate capability, and excellent cycling stability (95% capacitance retention after 5000 cycles). An asymmetric supercapacitor with Co3O4@MnO2 core-shell nanostructure as the positive electrode and activated microwave exfoliated graphite oxide activated graphene (MEGO) as the negative electrode yielded an energy density of 17.7 Wh kg-1 and a maximum power density of 158 kW kg-1. The rational design of the unique core-shell array architectures demonstrated in this work provides a new and facile approach to fabricate high-performance electrode for supercapacitors.

  9. Effect of core quantum-dot size on power-conversion-efficiency for silicon solar-cells implementing energy-down-shift using CdSe/ZnS core/shell quantum dots.

    PubMed

    Baek, Seung-Wook; Shim, Jae-Hyoung; Seung, Hyun-Min; Lee, Gon-Sub; Hong, Jin-Pyo; Lee, Kwang-Sup; Park, Jea-Gun

    2014-11-07

    Silicon solar cells mainly absorb visible light, although the sun emits ultraviolet (UV), visible, and infrared light. Because the surface reflectance of a textured surface with SiNX film on a silicon solar cell in the UV wavelength region (250-450 nm) is higher than ∼27%, silicon solar-cells cannot effectively convert UV light into photo-voltaic power. We implemented the concept of energy-down-shift using CdSe/ZnS core/shell quantum-dots (QDs) on p-type silicon solar-cells to absorb more UV light. CdSe/ZnS core/shell QDs demonstrated clear evidence of energy-down-shift, which absorbed UV light and emitted green-light photoluminescence signals at a wavelength of 542 nm. The implementation of 0.2 wt% (8.8 nm QDs layer) green-light emitting CdSe/ZnS core/shell QDs reduced the surface reflectance of the textured surface with SiNX film on a silicon solar-cell from 27% to 15% and enhanced the external quantum efficiency (EQE) of silicon solar-cells to around 30% in the UV wavelength region, thereby enhancing the power conversion efficiency (PCE) for p-type silicon solar-cells by 5.5%.

  10. STEADY STATE MODELING OF THE MINIMUM CRITICAL CORE OF THE TRANSIENT REACTOR TEST FACILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anthony L. Alberti; Todd S. Palmer; Javier Ortensi

    2016-05-01

    With the advent of next generation reactor systems and new fuel designs, the U.S. Department of Energy (DOE) has identified the need for the resumption of transient testing of nuclear fuels. The DOE has decided that the Transient Reactor Test Facility (TREAT) at Idaho National Laboratory (INL) is best suited for future testing. TREAT is a thermal neutron spectrum, air-cooled, nuclear test facility that is designed to test nuclear fuels in transient scenarios. These specific scenarios range from simple temperature transients to full fuel melt accidents. DOE has expressed a desire to develop a simulation capability that will accurately modelmore » the experiments before they are irradiated at the facility. It is the aim for this capability to have an emphasis on effective and safe operation while minimizing experimental time and cost. The multi physics platform MOOSE has been selected as the framework for this project. The goals for this work are to identify the fundamental neutronics properties of TREAT and to develop an accurate steady state model for future multiphysics transient simulations. In order to minimize computational cost, the effect of spatial homogenization and angular discretization are investigated. It was found that significant anisotropy is present in TREAT assemblies and to capture this effect, explicit modeling of cooling channels and inter-element gaps is necessary. For this modeling scheme, single element calculations at 293 K gave power distributions with a root mean square difference of 0.076% from those of reference SERPENT calculations. The minimum critical core configuration with identical gap and channel treatment at 293 K resulted in a root mean square, total core, radial power distribution 2.423% different than those of reference SERPENT solutions.« less

  11. Why Are the DUF6 Conversion Facility EISs Needed?

    Science.gov Websites

    Depleted UF6 Conversion EISs are needed to assess the potential environmental impacts of constructing the potential environmental impacts of constructing, operating, maintaining, and decontaminating and ; alternative. The EISs will aid decision making on DUF6 conversion by evaluating the environmental impacts of

  12. Full-spectrum volumetric solar thermal conversion via photonic nanofluids.

    PubMed

    Liu, Xianglei; Xuan, Yimin

    2017-10-12

    Volumetric solar thermal conversion is an emerging technique for a plethora of applications such as solar thermal power generation, desalination, and solar water splitting. However, achieving broadband solar thermal absorption via dilute nanofluids is still a daunting challenge. In this work, full-spectrum volumetric solar thermal conversion is demonstrated over a thin layer of the proposed 'photonic nanofluids'. The underlying mechanism is found to be the photonic superposition of core resonances, shell plasmons, and core-shell resonances at different wavelengths, whose coexistence is enabled by the broken symmetry of specially designed composite nanoparticles, i.e., Janus nanoparticles. The solar thermal conversion efficiency can be improved by 10.8% compared with core-shell nanofluids. The extinction coefficient of Janus dimers with various configurations is also investigated to unveil the effects of particle couplings. This work provides the possibility to achieve full-spectrum volumetric solar thermal conversion, and may have potential applications in efficient solar energy harvesting and utilization.

  13. Mercury free microscopy: an opportunity for core facility directors.

    PubMed

    Baird, T Regan; Kaufman, Daniel; Brown, Claire M

    2014-07-01

    Mercury Free Microscopy (MFM) is a new movement that encourages microscope owners to choose modern mercury free light sources to replace more traditional mercury based arc lamps. Microscope performance is enhanced with new solid state technologies because they offer a more stable light intensity output and have a more uniform light output across the visible spectrum. Solid state sources not only eliminate mercury but also eliminate the cost of consumable bulbs (lifetime ∼200 hours), use less energy, reduce the instrument down time when bulbs fail and reduce the staff time required to replace and align bulbs. With lifetimes on the order of tens of thousands of hours, solid state replacements can pay for themselves over their lifetime with the omission of consumable, staff (no need to replace and align bulbs) and energy costs. Solid state sources are also sustainable and comply with institutional and government body mandates to reduce energy consumption, carbon footprints and hazardous waste. MFM can be used as a mechanism to access institutional financial resources for sustainable technology through a variety of stakeholders to defray the cost to microscope owners for the initial purchase of solid state sources or the replacement cost of mercury based sources. Core facility managers can take a lead in this area as "green" ambassadors for their institution by championing a local MFM program that will save their institution money and energy and eliminate mercury from the waste stream. Managers can leverage MFM to increase the visibility of their facility, their impact within the institution, and as a vital educational resource for scientific and administrative consultation.

  14. The issue of FM to AM conversion on the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Browning, D F; Rothenberg, J E; Wilcox, R B

    1998-08-13

    The National Ignition Facility (NIF) baseline configuration for inertial confinement fusion requires phase modulation for two purposes. First, ~ 1Å of frequency modulation (FM) bandwidth at low modulation frequency is required to suppress buildup of Stimulated Brioullin Scattering (SBS) in the large aperture laser optics. Also ~ 3 Å or more bandwidth at high modulation frequency is required for smoothing of the speckle pattern illuminating the target by the smoothing by spectral dispersion method (SSD). Ideally, imposition of bandwidth by pure phase modulation does not affect the beam intensity. However, as a result of a large number of effects, themore » FM converts to amplitude modulation (AM). In general this adversely affects the laser performance, e.g. by reducing the margin against damage to the optics. In particular, very large conversion of FM to AM has been observed in the NIF all-fiber master oscillator and distribution systems. The various mechanisms leading to AM are analyzed and approaches to minimizing their effects are discussed.« less

  15. Managing Conversations: The Medium for Achieving "Breakthrough" Results.

    ERIC Educational Resources Information Center

    Bolton, Robert

    1998-01-01

    Unlike traditional management development, use of conversations in coaching high-performance work teams addresses core processes of speaking and listening. Management of conversations aims to create learning that will lead to breakthroughs in team performance. (SK)

  16. Performance and Fabrication Status of TREAT LEU Conversion Conceptual Design Concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    IJ van Rooyen; SR Morrell; AE Wright

    2014-10-01

    Resumption of transient testing at the TREAT facility was approved in February 2014 to meet U.S. Department of Energy (DOE) objectives. The National Nuclear Security Administration’s Global Threat Reduction Initiative Convert Program is evaluating conversion of TREAT from its existing highly enriched uranium (HEU) core to a new core containing low enriched uranium (LEU). This paper describes briefly the initial pre-conceptual designs screening decisions with more detailed discussions on current feasibility, qualification and fabrication approaches. Feasible fabrication will be shown for a LEU fuel element assembly that can meet TREAT design, performance, and safety requirements. The statement of feasibility recognizesmore » that further development, analysis, and testing must be completed to refine the conceptual design. Engineering challenges such as cladding oxidation, high temperature material properties, and fuel block fabrication along with neutronics performance, will be highlighted. Preliminary engineering and supply chain evaluation provided confidence that the conceptual designs can be achieved.« less

  17. Xylopiana A, a Dimeric Guaiane with a Case-Shaped Core from Xylopia vielana: Structural Elucidation and Biomimetic Conversion.

    PubMed

    Zhang, Ya-Long; Zhou, Xu-Wei; Wang, Xiao-Bing; Wu, Lin; Yang, Ming-Hua; Luo, Jun; Yin, Yong; Luo, Jian-Guang; Kong, Ling-Yi

    2017-06-02

    Xylopiana A (1), a dimeric guaiane with an unprecedented pentacyclo[5.2.1.0 1,2 .0 4,5' .0 5,4' ]decane-3,2'-dione core, and three biosynthetically related intermediates, compounds 2-4, were isolated from the leaves of Xylopia vielana. Their structures and absolute configurations were determined by a combination of spectroscopic data, X-ray crystallography, electronic circular dichroism calculations, and chemical conversion. The structure of known vielanin A was revised to be compound 3. Compound 4 exerted a 3.7-fold potentiation effect on doxorubicin susceptibility at the tested concentration of 10 μM.

  18. In-core flux sensor evaluations at the ATR critical facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troy Unruh; Benjamin Chase; Joy Rempe

    2014-09-01

    Flux detector evaluations were completed as part of a joint Idaho State University (ISU) / Idaho National Laboratory (INL) / French Atomic Energy commission (CEA) ATR National Scientific User Facility (ATR NSUF) project to compare the accuracy, response time, and long duration performance of several flux detectors. Special fixturing developed by INL allows real-time flux detectors to be inserted into various ATRC core positions and perform lobe power measurements, axial flux profile measurements, and detector cross-calibrations. Detectors initially evaluated in this program include the French Atomic Energy Commission (CEA)-developed miniature fission chambers; specialized self-powered neutron detectors (SPNDs) developed by themore » Argentinean National Energy Commission (CNEA); specially developed commercial SPNDs from Argonne National Laboratory. As shown in this article, data obtained from this program provides important insights related to flux detector accuracy and resolution for subsequent ATR and CEA experiments and flux data required for bench-marking models in the ATR V&V Upgrade Initiative.« less

  19. Projected impact of the ICD-10-CM/PCS conversion on longitudinal data and the Joint Commission Core Measures.

    PubMed

    Fenton, Susan H; Benigni, Mary Sue

    2014-01-01

    The transition from ICD-9-CM to ICD-10-CM/PCS is expected to result in longitudinal data discontinuities, as occurred with cause-of-death in 1999. The General Equivalence Maps (GEMs), while useful for suggesting potential maps do not provide guidance regarding the frequency of any matches. Longitudinal data comparisons can only be reliable if they use comparability ratios or factors which have been calculated using records coded in both classification systems. This study utilized 3,969 de-identified dually coded records to examine raw comparability ratios, as well as the comparability ratios between the Joint Commission Core Measures. The raw comparability factor results range from 16.216 for Nicotine dependence, unspecified, uncomplicated to 118.009 for Chronic obstructive pulmonary disease, unspecified. The Joint Commission Core Measure comparability factor results range from 27.15 for Acute Respiratory Failure to 130.16 for Acute Myocardial Infarction. These results indicate significant differences in comparability between ICD-9-CM and ICD-10-CM code assignment, including when the codes are used for external reporting such as the Joint Commission Core Measures. To prevent errors in decision-making and reporting, all stakeholders relying on longitudinal data for measure reporting and other purposes should investigate the impact of the conversion on their data.

  20. Highly efficient photocatalytic conversion of solar energy to hydrogen by WO3/BiVO4 core-shell heterojunction nanorods

    NASA Astrophysics Data System (ADS)

    Kosar, Sonya; Pihosh, Yuriy; Bekarevich, Raman; Mitsuishi, Kazutaka; Mawatari, Kazuma; Kazoe, Yutaka; Kitamori, Takehiko; Tosa, Masahiro; Tarasov, Alexey B.; Goodilin, Eugene A.; Struk, Yaroslav M.; Kondo, Michio; Turkevych, Ivan

    2018-04-01

    Photocatalytic splitting of water under solar light has proved itself to be a promising approach toward the utilization of solar energy and the generation of environmentally friendly fuel in a form of hydrogen. In this work, we demonstrate highly efficient solar-to-hydrogen conversion efficiency of 7.7% by photovoltaic-photoelectrochemical (PV-PEC) device based on hybrid MAPbI3 perovskite PV cell and WO3/BiVO4 core-shell nanorods PEC cell tandem that utilizes spectral splitting approach. Although BiVO4 is characterized by intrinsically high recombination rate of photogenerated carriers, this is not an issue for WO3/BiVO4 core-shell nanorods, where highly conductive WO3 cores are combined with extremely thin absorber BiVO4 shell layer. Since the BiVO4 layer is thinner than the characteristic carrier diffusion length, the photogenerated charge carriers are separated at the WO3/BiVO4 heterojunction before their recombination. Also, such architecture provides sufficient optical thickness even for extremely thin BiVO4 layer due to efficient light trapping in the core-shell WO3/BiVO4 nanorods with high aspect ratio. We also demonstrate that the concept of fill factor can be used to compare I-V characteristics of different photoanodes regarding their optimization for PV/PEC tandem devices.

  1. Aptamer-Mediated Up-conversion Core/MOF Shell Nanocomposites for Targeted Drug Delivery and Cell Imaging

    PubMed Central

    Deng, Kerong; Hou, Zhiyao; Li, Xuejiao; Li, Chunxia; Zhang, Yuanxin; Deng, Xiaoran; Cheng, Ziyong; Lin, Jun

    2015-01-01

    Multifunctional nanocarriers for targeted bioimaging and drug delivery have attracted much attention in early diagnosis and therapy of cancer. In this work, we develop a novel aptamer-guided nanocarrier based on the mesoporous metal-organic framework (MOF) shell and up-conversion luminescent NaYF4:Yb3+/Er3+ nanoparticles (UCNPs) core for the first time to achieve these goals. These UCNPs, chosen as optical labels in biological assays and medical imaging, could emit strong green emission under 980 nm laser. The MOF structure based on iron (III) carboxylate materials [MIL-100 (Fe)] possesses high porosity and non-toxicity, which is of great value as nanocarriers for drug storage/delivery. As a unique nanoplatform, the hybrid inorganic-organic drug delivery vehicles show great promising for simultaneous targeted labeling and therapy of cancer cells. PMID:25597762

  2. DISTRIBUTION COEFICIENTS (KD) GENERATED FROM A CORE SAMPLE COLLECTED FROM THE SALTSTONE DISPOSAL FACILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almond, P.; Kaplan, D.

    Core samples originating from Vault 4, Cell E of the Saltstone Disposal Facility (SDF) were collected in September of 2008 (Hansen and Crawford 2009, Smith 2008) and sent to SRNL to measure chemical and physical properties of the material including visual uniformity, mineralogy, microstructure, density, porosity, distribution coefficients (K{sub d}), and chemical composition. Some data from these experiments have been reported (Cozzi and Duncan 2010). In this study, leaching experiments were conducted with a single core sample under conditions that are representative of saltstone performance. In separate experiments, reducing and oxidizing environments were targeted to obtain solubility and Kd valuesmore » from the measurable species identified in the solid and aqueous leachate. This study was designed to provide insight into how readily species immobilized in saltstone will leach from the saltstone under oxidizing conditions simulating the edge of a saltstone monolith and under reducing conditions, targeting conditions within the saltstone monolith. Core samples were taken from saltstone poured in December of 2007 giving a cure time of nine months in the cell and a total of thirty months before leaching experiments began in June 2010. The saltstone from Vault 4, Cell E is comprised of blast furnace slag, class F fly ash, portland cement, and Deliquification, Dissolution, and Adjustment (DDA) Batch 2 salt solution. The salt solution was previously analyzed from a sample of Tank 50 salt solution and characterized in the 4QCY07 Waste Acceptance Criteria (WAC) report (Zeigler and Bibler 2009). Subsequent to Tank 50 analysis, additional solution was added to the tank solution from the Effluent Treatment Project as well as from inleakage from Tank 50 pump bearings (Cozzi and Duncan 2010). Core samples were taken from three locations and at three depths at each location using a two-inch diameter concrete coring bit (1-1, 1-2, 1-3; 2-1, 2-2, 2-3; 3-1, 3-2, 3-3) (Hansen

  3. 17 CFR 37.6 - Compliance with core principles.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 1 2011-04-01 2011-04-01 false Compliance with core... DERIVATIVES TRANSACTION EXECUTION FACILITIES § 37.6 Compliance with core principles. (a) In general. To... transaction execution facility must have the capacity to be, and be, in compliance with the core principles of...

  4. 17 CFR 37.6 - Compliance with core principles.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 1 2010-04-01 2010-04-01 false Compliance with core... DERIVATIVES TRANSACTION EXECUTION FACILITIES § 37.6 Compliance with core principles. (a) In general. To... transaction execution facility must have the capacity to be, and be, in compliance with the core principles of...

  5. Proposed Design and Operation of a Heat Pipe Reactor using the Sandia National Laboratories Annular Core Test Facility and Existing UZrH Fuel Pins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Steven A.; Lipinski, Ronald J.; Pandya, Tara

    2005-02-06

    Heat Pipe Reactors (HPR) for space power conversion systems offer a number of advantages not easily provided by other systems. They require no pumping, their design easily deals with freezing and thawing of the liquid metal, and they can provide substantial levels of redundancy. Nevertheless, no reactor has ever been operated and cooled with heat pipes, and the startup and other operational characteristics of these systems remain largely unknown. Signification deviations from normal reactor heat removal mechanisms exist, because the heat pipes have fundamental heat removal limits due to sonic flow issues at low temperatures. This paper proposes an earlymore » prototypic test of a Heat Pipe Reactor (using existing 20% enriched nuclear fuel pins) to determine the operational characteristics of the HPR. The proposed design is similar in design to the HOMER and SAFE-300 HPR designs (Elliot, Lipinski, and Poston, 2003; Houts, et. al, 2003). However, this reactor uses existing UZrH fuel pins that are coupled to potassium heat pipes modules. The prototype reactor would be located in the Sandia Annular Core Research Reactor Facility where the fuel pins currently reside. The proposed reactor would use the heat pipes to transport the heat from the UZrH fuel pins to a water pool above the core, and the heat transport to the water pool would be controlled by adjusting the pressure and gas type within a small annulus around each heat pipe. The reactor would operate as a self-critical assembly at power levels up to 200 kWth. Because the nuclear heated HPR test uses existing fuel and because it would be performed in an existing facility with the appropriate safety authorization basis, the test could be performed rapidly and inexpensively. This approach makes it possible to validate the operation of a HPR and also measure the feedback mechanisms for a typical HPR design. A test of this nature would be the world's first operating Heat Pipe Reactor. This reactor is therefore

  6. Platinum-nanoparticle-supported core-shell polymer nanospheres with unexpected water stability and facile further modification

    NASA Astrophysics Data System (ADS)

    Yuan, Conghui; Xu, Yiting; Luo, Weiang; Zeng, Birong; Qiu, Wuhui; Liu, Jie; Huang, Huiling; Dai, Lizong

    2012-05-01

    Core-shell nanospheres (CSNSs) with hydrophobic cores and hydrophilic shells were fabricated via a simple mini-emulsion polymerization for the stabilization of platinum nanoparticles (Pt-NPs). The CSNSs showed extremely high loading capacity of Pt-NPs (the largest loading amount of the Pt-NPs was about 49.2 wt%). Importantly, the Pt-NPs/CSNSs nanocomposites had unexpected stability in aqueous solution. DLS results revealed that the CSNSs loaded with Pt-NPs exhibited almost no aggregation after standing for a long time . However, the Pt-NPs immobilized on the CSNSs were not straitlaced: they could transport and redistribute between CSNSs freely when the environmental temperature was higher than the melting point of the CSNS shell. Owing to their excellent stability in aqueous solution, the surface of the Pt-NPs/CSNSs nanocomposites could be further decorated easily. For example, polyaniline (PANI)-coated Pt-NPs/CSNSs, nickel (Ni)-coated Pt-NPs/CSNSs and PANI/Pt-NPs dual-layer hollow nanospheres were facilely fabricated from the Pt-NPs/CSNS nanocomposites.

  7. Modification of Ga2O3 by an Ag-Cr core-shell cocatalyst enhances photocatalytic CO evolution for the conversion of CO2 by H2O.

    PubMed

    Pang, Rui; Teramura, Kentaro; Tatsumi, Hiroyuki; Asakura, Hiroyuki; Hosokawa, Saburo; Tanaka, Tsunehiro

    2018-01-25

    A core-shell structure of Ag-Cr dual cocatalyst loaded-Ga 2 O 3 was found to significantly enhance the formation rate of CO and selectivity toward CO evolution for the photocatalytic conversion of CO 2 where H 2 O is used as an electron donor.

  8. Radiation Characterization Summary: ACRR Polyethylene-Lead-Graphite (PLG) Bucket Located in the Central Cavity on the 32-Inch Pedestal at the Core Centerline (ACRR-PLG-CC-32-cl).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parma, Edward J.,; Vehar, David W.; Lippert, Lance L.

    2015-06-01

    This document presents the facility-recommended characterization of the neutron, prompt gamma-ray, and delayed gamma-ray radiation fields in the Annular Core Research Reactor (ACRR) for the polyethylene-lead-graphite (PLG) bucket in the central cavity on the 32-inch pedestal at the core centerline. The designation for this environment is ACRR-PLG-CC-32-cl. The neutron, prompt gamma-ray, and delayed gamma-ray energy spectra, uncertainties, and covariance matrices are presented as well as radial and axial neutron and gamma-ray fluence profiles within the experiment area of the bucket. Recommended constants are given to facilitate the conversion of various dosimetry readings into radiation metrics desired by experimenters. Representative pulsemore » operations are presented with conversion examples. Acknowledgements The authors wish to thank the Annular Core Research Reactor staff and the Radiation Metrology Laboratory staff for their support of this work. Also thanks to David Ames for his assistance in running MCNP on the Sandia parallel machines.« less

  9. Facile in situ synthesis of wurtzite ZnS/ZnO core/shell heterostructure with highly efficient visible-light photocatalytic activity and photostability

    NASA Astrophysics Data System (ADS)

    Xiao, Jian-Hua; Huang, Wei-Qing; Hu, Yong-sheng; Zeng, Fan; Huang, Qin-Yi; Zhou, Bing-Xin; Pan, Anlian; Li, Kai; Huang, Gui-Fang

    2018-02-01

    High photocatalytic activity and photostability are the pursuit of the goal for designing promising photocatalysts. Herein, using ZnO to encapsulate ZnS nanoparticles is proposed as an effective strategy to enhance photocatalytic activity and anti-photocorrosion. The ZnS/ZnO core/shell heterostructures are obtained via an annealing treatment of ZnS nanoparticles produced by a facile wet chemical approach. Due to its small size, the nascent cubic sphalerite ZnS (s-ZnS) converts into a hexagonal wurtzite ZnS (w-ZnS)/ZnO core/shell structure after annealing treatment. In situ oxidation leads to increasing ZnO, simultaneously decreasing the w-ZnS content in the resultant w-ZnS/ZnO with thermal annealing time. The w-ZnS/ZnO core/shell heterostructures show high photocatalytic activity, demonstrated by the photodegradation rate of methylene blue being up to ten-fold and seven-fold higher than that of s-ZnS under UV and visible light irradiation, respectively, and the high capability of degrading rhodamine B. The enhanced photocatalytic activity may be attributed to the large specific surface and improved charge carrier separation at the core/shell interface. Moreover, it displays high photostability owing to the protection of the ZnO shell, greatly inhibiting the photocorrosion of ZnS. This facile in situ oxidation is effective and easily scalable, providing opportunities for developing novel core/shell structure photocatalysts with high activity and photostability.

  10. Facile preparation of magnetic metal organic frameworks core-shell nanoparticles for stimuli-responsive drug carrier

    NASA Astrophysics Data System (ADS)

    Li, Sheng; Bi, Ke; Xiao, Ling; Shi, Xiaowen

    2017-12-01

    Facile synthesis of core-shell magnetic MOFs for drug delivery is of significance due to the advantages of high drug load and easy separation. In this work, magnetic metal organic frameworks (MOFs, Fe3O4-NH2@MIL101-NH2) core-shell nanoparticles were synthesized rapidly in water phase by microwave irradiation using Fe3+ and 2-amino-1,4-benzenedicarboxylate (BDC-NH2) as metal ions and ligands respectively. The resulting magnetic MOFs exhibit large surface areas (96.04 m2 g-1), excellent magnetic response (20.47 emu g-1) and large mesopore volume (22.07 cm3 g-1) along with spherical morphologies with the diameters ranging from 140-330 nm. Using doxorubicin (DOX) as a model drug, the drug loading capacity of Fe3O4-NH2@MIL101-NH2 could reach 36.02%, substantially higher than pristine MIL101-NH2. Importantly, the release of DOX could be controlled by pH as well as the meso pore size of MOFs. The cytotoxicity assay showed that the magnetic MOFs have low cytotoxicity and good biocompatibility. The results suggest great potential of the magnetic MOFs core-shell nanoparticles fabricated in this study on controlled drug release of DOX.

  11. Facile preparation of magnetic metal organic frameworks core-shell nanoparticles for stimuli-responsive drug carrier.

    PubMed

    Li, Sheng; Bi, Ke; Xiao, Ling; Shi, Xiaowen

    2017-12-08

    Facile synthesis of core-shell magnetic MOFs for drug delivery is of significance due to the advantages of high drug load and easy separation. In this work, magnetic metal organic frameworks (MOFs, Fe 3 O 4 -NH 2 @MIL101-NH 2 ) core-shell nanoparticles were synthesized rapidly in water phase by microwave irradiation using Fe 3+ and 2-amino-1,4-benzenedicarboxylate (BDC-NH 2 ) as metal ions and ligands respectively. The resulting magnetic MOFs exhibit large surface areas (96.04 m 2 g -1 ), excellent magnetic response (20.47 emu g -1 ) and large mesopore volume (22.07 cm 3 g -1 ) along with spherical morphologies with the diameters ranging from 140-330 nm. Using doxorubicin (DOX) as a model drug, the drug loading capacity of Fe 3 O 4 -NH 2 @MIL101-NH 2 could reach 36.02%, substantially higher than pristine MIL101-NH 2 . Importantly, the release of DOX could be controlled by pH as well as the meso pore size of MOFs. The cytotoxicity assay showed that the magnetic MOFs have low cytotoxicity and good biocompatibility. The results suggest great potential of the magnetic MOFs core-shell nanoparticles fabricated in this study on controlled drug release of DOX.

  12. Overview of the Core Commitments Initiative

    ERIC Educational Resources Information Center

    McTighe Musil, Caryn

    2013-01-01

    This chapter provides an overview of the Core Commitments Initiative conducted by the Association of American Colleges and Universities (AAC&U). Core Commitments was intended to reinvigorate the conversation about personal and social responsibility within higher education, and served as the impetus for this "New Directions" volume.

  13. U.S. National Institutes of Health core consolidation-investing in greater efficiency.

    PubMed

    Chang, Michael C; Birken, Steven; Grieder, Franziska; Anderson, James

    2015-04-01

    The U.S. National Institutes of Health (NIH) invests substantial resources in core research facilities (cores) that support research by providing advanced technologies and scientific and technical expertise as a shared resource. In 2010, the NIH issued an initiative to consolidate multiple core facilities into a single, more efficient core. Twenty-six institutions were awarded supplements to consolidate a number of similar core facilities. Although this approach may not work for all core settings, this effort resulted in consolidated cores that were more efficient and of greater benefit to investigators. The improvements in core operations resulted in both increased services and more core users through installation of advanced instrumentation, access to higher levels of management expertise; integration of information management and data systems; and consolidation of billing; purchasing, scheduling, and tracking services. Cost recovery to support core operations also benefitted from the consolidation effort, in some cases severalfold. In conclusion, this program of core consolidation resulted in improvements in the effective operation of core facilities, benefiting both investigators and their supporting institutions.

  14. Coal conversion products Industrial applications

    NASA Technical Reports Server (NTRS)

    Warren, D.; Dunkin, J.

    1980-01-01

    The synfuels economic evaluation model was utilized to analyze cost and product economics of the TVA coal conversion facilities. It is concluded that; (1) moderate yearly future escalations ( 6%) in current natural gas prices will result in medium-Btu gas becoming competitive with natural gas at the plant boundary; (2) utilizing DRI price projections, the alternate synfuel products, except for electricity, will be competitive with their counterparts; (3) central site fuel cell generation of electricity, utilizing MBG, is economically less attractive than the other synthetic fuels, given projected price rises in electricity produced by other means; and (4) because of estimated northern Alabama synfuels market demands, existing conventional fuels, infrastructure and industrial synfuels retrofit problems, a diversity of transportable synfuels products should be produced by the conversion facility.

  15. ANA position statement on privatization and for-profit conversion. American Nurses Association.

    PubMed

    1998-01-01

    The American Nurses Association (ANA) believes that the health of communities benefits from a mix of health care facilities, including both public and nonprofit private facilities where feasible. ANA is concerned by the rate of conversion of nonprofit facilities and plans to for-profit status. Privatization of public facilities and the conversion of nonprofit facilities and health plans to for-profit status requires careful public oversight to ensure continued access to affordable, quality services, including a maintenance of uncompensated care; a fair accounting of the assets of the entity being privatized or converted; and an assurance that converted assets are used to maintain and improve access to affordable, safe and quality health care services. The rights and benefits of employees must be carefully safe-guarded in any privatization or conversion move. All hospitals, regardless of ownership or tax status, should be held accountable for the delivery of safe, quality services, and should be required to disclose data regarding staffing, patient outcomes, cost and delivery of uncompensated care. Continued data collection will be necessary to guide further development of public policy to address privatization and for-profit conversion.

  16. Advanced light microscopy core facilities: Balancing service, science and career

    PubMed Central

    Hartmann, Hella; Reymann, Jürgen; Ansari, Nariman; Utz, Nadine; Fried, Hans‐Ulrich; Kukat, Christian; Peychl, Jan; Liebig, Christian; Terjung, Stefan; Laketa, Vibor; Sporbert, Anje; Weidtkamp‐Peters, Stefanie; Schauss, Astrid; Zuschratter, Werner; Avilov, Sergiy

    2016-01-01

    ABSTRACT Core Facilities (CF) for advanced light microscopy (ALM) have become indispensable support units for research in the life sciences. Their organizational structure and technical characteristics are quite diverse, although the tasks they pursue and the services they offer are similar. Therefore, throughout Europe, scientists from ALM‐CFs are forming networks to promote interactions and discuss best practice models. Here, we present recommendations for ALM‐CF operations elaborated by the workgroups of the German network of ALM‐CFs, German Bio‐Imaging (GerBI). We address technical aspects of CF planning and instrument maintainance, give advice on the organization and management of an ALM‐CF, propose a scheme for the training of CF users, and provide an overview of current resources for image processing and analysis. Further, we elaborate on the new challenges and opportunities for professional development and careers created by CFs. While some information specifically refers to the German academic system, most of the content of this article is of general interest for CFs in the life sciences. Microsc. Res. Tech. 79:463–479, 2016. © 2016 THE AUTHORS MICROSCOPY RESEARCH AND TECHNIQUE PUBLISHED BY WILEY PERIODICALS, INC. PMID:27040755

  17. RADIATION FACILITY FOR NUCLEAR REACTORS

    DOEpatents

    Currier, E.L. Jr.; Nicklas, J.H.

    1961-12-12

    A radiation facility is designed for irradiating samples in close proximity to the core of a nuclear reactor. The facility comprises essentially a tubular member extending through the biological shield of the reactor and containing a manipulatable rod having the sample carrier at its inner end, the carrier being longitudinally movable from a position in close proximity to the reactor core to a position between the inner and outer faces of the shield. Shield plugs are provided within the tubular member to prevent direct radiation from the core emanating therethrough. In this device, samples may be inserted or removed during normal operation of the reactor without exposing personnel to direct radiation from the reactor core. A storage chamber is also provided within the radiation facility to contain an irradiated sample during the period of time required to reduce the radioactivity enough to permit removal of the sample for external handling. (AEC)

  18. Fuel Breeding and Core Behavior Analyses on In Core Fuel Management of Water Cooled Thorium Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Permana, Sidik; Department of Physics, Bandung Institute of Technology, Gedung Fisika, Jl. Ganesha 10, Bandung 40132; Sekimoto, Hiroshi

    2010-12-23

    Thorium fuel cycle with recycled U-233 has been widely recognized having some contributions to improve the water-cooled breeder reactor program which has been shown by a feasible area of breeding and negative void reactivity which confirms that fissile of 233U contributes to better fuel breeding and effective for obtaining negative void reactivity coefficient as the main fissile material. The present study has the objective to estimate the effect of whole core configuration as well as burnup effects to the reactor core profile by adopting two dimensional model of fuel core management. About more than 40 months of cycle period hasmore » been employed for one cycle fuel irradiation of three batches fuel system for large water cooled thorium reactors. All position of fuel arrangement contributes to the total core conversion ratio which gives conversion ratio less than unity of at the BOC and it contributes to higher than unity (1.01) at the EOC after some irradiation process. Inner part and central part give the important part of breeding contribution with increasing burnup process, while criticality is reduced with increasing the irradiation time. Feasibility of breeding capability of water-cooled thorium reactors for whole core fuel arrangement has confirmed from the obtained conversion ratio which shows higher than unity. Whole core analysis on evaluating reactivity change which is caused by the change of voided condition has been employed for conservative assumption that 100% coolant and moderator are voided. It obtained always a negative void reactivity coefficient during reactor operation which shows relatively more negative void coefficient at BOC (fresh fuel composition), and it becomes less negative void coefficient with increasing the operation time. Negative value of void reactivity coefficient shows the reactor has good safety properties in relation to the reactivity profile which is the main parameter in term of criticality safety analysis. Therefore

  19. Facile deposition of gold nanoparticles on core-shell Fe3O4@polydopamine as recyclable nanocatalyst

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Yeh, Yaowen; Liu, Rui; You, Jinmao; Qu, Fengli

    2015-07-01

    A simple and green method for the controllable synthesis of core-shell Fe3O4 polydopamine nanoparticles (Fe3O4@PDA NPs) with tunable shell thickness and their application as a recyclable nanocatalyst support is presented. Magnetite Fe3O4 NPs formed in a one-pot process by the hydrothermal approach with a diameter of ˜240 nm were coated with a polydopamine shell layer with a tunable thickness of 15-45 nm. The facile deposition of Au NPs atop Fe3O4@PDA NPs was achieved by utilizing PDA as both the reducing agent and the coupling agent. The satellite nanocatalysts exhibited high catalytic performance for the reduction of p-nitrophenol. Furthermore, the recovery and reuse of the catalyst was demonstrated 8 times without detectible loss in activity. The synergistic combination of unique features of PDA and magnetic nanoparticles establishes these core-shell NPs as a versatile platform for potential applications.

  20. Magnetically Recoverable Pd/Fe 3O 4 Core-Shell Nanowire Clusters with Increased Hydrogenation Activity

    DOE PAGES

    Watt, John; Kotula, Paul G.; Huber, Dale L.

    2017-02-06

    Core-shell nanostructures are promising candidates for the next generation of catalysts due to synergistic effects which can arise from having two active species in close contact, leading to increased activity. Likewise, catalysts displaying added functionality, such as a magnetic response, can increase their scientific and industrial potential. Here, we synthesize Pd/Fe 3O 4 core-shell nanowire clusters and apply them as hydrogenation catalysts for an industrially important hydrogenation reaction; the conversion of acetophenone to 1-phenylethanol. During synthesis, the palladium nanowires self-assemble into clusters which act as a high surface area framework for the growth of a magnetic iron oxide shell. Wemore » demonstrate excellent catalytic activity due to the presence of palladium while the strong magnetic properties provided by the iron oxide shell enable facile catalyst recovery.« less

  1. Core commands across airway facilities systems.

    DOT National Transportation Integrated Search

    2003-05-01

    This study takes a high-level approach to evaluate computer systems without regard to the specific method of : interaction. This document analyzes the commands that Airway Facilities (AF) use across different systems and : the meanings attributed to ...

  2. 49 CFR 180.513 - Repairs, alterations, conversions, and modifications.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Repairs, alterations, conversions, and modifications. 180.513 Section 180.513 Transportation Other Regulations Relating to Transportation (Continued..., alterations, conversions, and modifications. (a) In order to repair tank cars, the tank car facility must...

  3. Radiation Characterization Summary: ACRR Cadmium-Polyethylene (CdPoly) Bucket Located in the Central Cavity on the 32-Inch Pedestal at the Core Centerline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parma, Edward J.; Naranjo, Gerald E.; Kaiser, Krista Irene

    This document presents the facility-recommended characterization of the neutron, prompt gamma-ray, and delayed gamma-ray radiation fields in the Annular Core Research Reactor (ACRR) for the cadmium-polyethylene (CdPoly) bucket in the central cavity on the 32-inch pedestal at the core centerline. The designation for this environment is ACRR-CdPoly-CC-32-cl. The neutron, prompt gamma-ray, and delayed gamma-ray energy spectra, uncertainties, and covariance matrices are presented as well as radial and axial neutron and gamma-ray fluence profiles within the experiment area of the bucket. Recommended constants are given to facilitate the conversion of various dosimetry readings into radiation metrics desired by experimenters. Representative pulsemore » operations are presented with conversion examples. Acknowledgements The authors wish to thank the Annular Core Research Reactor staff and the Radiation Metrology Laboratory staff for their support of this work. Also thanks to Drew Tonigan for helping field the activation experiments in ACRR, David Samuel for helping to finalize the drawings and get the parts fabricated, and Elliot Pelfrey for preparing the active dosimetry plots.« less

  4. Outreach, Diversity, and Education Supported by NSF Facilities LacCore and the Continental Scientific Drilling Coordination Office (CSDCO), University of Minnesota

    NASA Astrophysics Data System (ADS)

    Myrbo, A.

    2015-12-01

    Climatic and environmental change are a powerful hook to engage students and the public with geoscience. Recent lake sediments often feature visual and compositional evidence of anthropogenic changes, which can pique curiosity and serve as a gateway for interest in more remote past changes. Cores provide an integrative, place-based geoscience education/outreach platform: lake dynamics incorporate principles of chemistry, physics, and biology; lake basin formation and sedimentary signals trace back to numerous geoscience subdisciplines. Lakes reflect local changes, and so are inherently place-based and relevant to both rural and urban populations. The esthetics of lakes in the landscape and sediments under the microscope spark the artistic sensibilities of those who do not consider themselves scientists: lakes are readymade for STEAM education. LacCore has exploited the magic of lake sediment cores in its 15 years as an NSF Facility, and now expands to additional environments as the NSF Continental Scientific Drilling Coordination Office. Part of scaling up is the formalization of major support for the Broader Impacts (BI) activities of Facility users. LacCore/CSDCO now musters its collaborative experiences in site REUs and other undergrad research projects, in-depth training of students, teachers, and faculty, a long list of informal education experiences, and common-good software development, to provide assistance to researchers seeking meaningful broader impacts and educators seeking extra- or co-curricular field and laboratory research experiences for their students. Outreach, diversity, and education support includes dissemination of best practices, as well as coordination, administration, and basic capacity for such activities in collaboration with project PIs and students, through no-cost support, or collaborative proposals or supplements from NSF where necessary for project scale. Community-driven research and broadening participation are central to the

  5. Latest developments on fibered MOPA in mJ range with hollow-core fiber beam delivery and fiber beam shaping used as seeder for large scale laser facilities (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Gleyze, Jean-François; Scol, Florent; Perrin, Arnaud; Gouriou, Pierre; Valentin, Constance; Bouwmans, Géraud; Hugonnot, Emmanuel

    2017-05-01

    The Laser Megajoule (LMJ) is a French large scale laser facility dedicated to inertial fusion and plasma physics research. LMJ front-ends are based on fiber laser technology at nanojoule range [1]. Scaling the energy of those fiber seeders to the millijoule range is a way to upgrade LMJ's front ends architecture and could also be used as seeder for lasers for ELI project for example. However, required performances are so restrictive (optical-signal-to-noise ratio higher than 50 dB, temporally-shaped nanosecond pulses and spatial single-mode top-hat beam output) that such fiber systems are very tricky to build. High-energy fiber amplifiers In 2015, we have demonstrated, an all-fiber MOPA prototype able to produce a millijoule seeder, but unfortunately not 100% conform for all LMJ's performances. A major difficulty was to manage the frequency modulation used to avoid stimulated Brillouin scattering, to amplitude modulation (FM-AM) conversion, this limits the energy at 170µJ. For upgrading the energy to the millijoule range, it's necessary to use an amplifier with a larger core fiber. However, this fiber must still be flexible; polarization maintaining and exhibit a strictly single-mode behaviour. We are thus developing a new amplifier architecture based on an Yb-doped tapered fiber: its core diameter is from a narrow input to a wide output (MFD 8 to 26 µm). A S² measurement on a 2,5m long tapered fiber rolled-up on 22 cm diameter confirmed that this original geometry allows obtaining strictly single-mode behaviour. In a 1 kHz repetition rate regime, we already obtain 750 µJ pulses, and we are on the way to mJ, respecting LMJ performances. Beam delivery In LMJ architecture the distance between the nanojoule fiber seeder and the amplifier stages is about 16 m. Beam delivery is achieved with a standard PM fiber, such a solution is no longer achievable with hundreds of kilowatt peak powers. An efficient way to minimize nonlinear effects is to use hollow-core (HC

  6. The Nature of Primary Students' Conversation in Technology Education

    ERIC Educational Resources Information Center

    Fox-Turnbull, Wendy H.

    2016-01-01

    Classroom conversations are core to establishing successful learning for students. This research explores the nature of conversation in technology education in the primary classroom and the implications for teaching and learning. Over a year, two units of work in technology were taught in two primary classrooms. Most data was gathered in Round 2…

  7. Advanced light microscopy core facilities: Balancing service, science and career.

    PubMed

    Ferrando-May, Elisa; Hartmann, Hella; Reymann, Jürgen; Ansari, Nariman; Utz, Nadine; Fried, Hans-Ulrich; Kukat, Christian; Peychl, Jan; Liebig, Christian; Terjung, Stefan; Laketa, Vibor; Sporbert, Anje; Weidtkamp-Peters, Stefanie; Schauss, Astrid; Zuschratter, Werner; Avilov, Sergiy

    2016-06-01

    Core Facilities (CF) for advanced light microscopy (ALM) have become indispensable support units for research in the life sciences. Their organizational structure and technical characteristics are quite diverse, although the tasks they pursue and the services they offer are similar. Therefore, throughout Europe, scientists from ALM-CFs are forming networks to promote interactions and discuss best practice models. Here, we present recommendations for ALM-CF operations elaborated by the workgroups of the German network of ALM-CFs, German Bio-Imaging (GerBI). We address technical aspects of CF planning and instrument maintainance, give advice on the organization and management of an ALM-CF, propose a scheme for the training of CF users, and provide an overview of current resources for image processing and analysis. Further, we elaborate on the new challenges and opportunities for professional development and careers created by CFs. While some information specifically refers to the German academic system, most of the content of this article is of general interest for CFs in the life sciences. Microsc. Res. Tech. 79:463-479, 2016. © 2016 THE AUTHORS MICROSCOPY RESEARCH AND TECHNIQUE PUBLISHED BY WILEY PERIODICALS, INC. © 2016 The Authors Microscopy Research and Technique Published by Wiley Periodicals, Inc.

  8. Mesoscopic photosystems for solar light harvesting and conversion: facile and reversible transformation of metal-halide perovskites.

    PubMed

    Harms, Hauke Arne; Tétreault, Nicolas; Pellet, Norman; Bensimon, Michaël; Grätzel, Michael

    2014-01-01

    Recently, hybrid organic-inorganic metal halide perovskites have gained prominence as potent light harvesters in thin film solid-state photovoltaics. In particular the solar-to-electric power conversion efficiency (PCE) of devices using CH(3)NH(3)PbI(3) as sensitizer has increased from 3 to 20.1% within only a few years. This key material can be prepared by solution processing from PbI(2) and CH(3)NH(3)I in one step or by sequential deposition. In the latter case an electron capturing support such as TiO(2) is first covered with PbI(2), which upon exposure to a CH(3)NH(3)I solution is converted to the perovskite. Here we apply for the first time quartz crystal microbalance (QCMD) measurements in conjunction with X-ray diffraction and scanning electron microscopy to analyse the dynamics of the conversion of PbI(2) to CH(3)NH(3)PbI(3). Employing 200 nm thick PbI(2) films as substrates we discover that the CH(3)NH(3)I insertion in the PbI(2) is reversible, with the extraction into the solvent isopropanol occurring on the same time scale of seconds as the intercalation process. This offers an explanation for the strikingly rapid and facile exchange of halide ions in CH(3)NH(3)PbX(3) by solution processing at room temperature.

  9. Noise measurements in a free-jet, flight simulation facility - Shear layer refraction and facility-to-flight corrections

    NASA Technical Reports Server (NTRS)

    Morfey, C. L.; Tester, B. J.

    1976-01-01

    The conversion of free-jet facility into equivalent flyover results is discussed. The essential problem is to 'calibrate out' the acoustic influence of the outer free-jet shear layer on the measurement, since this is absent in the flight case. Results are presented which illustrate the differences between current simplified models (vortex-sheet and geometric acoustics), and a more complete model based on the Lilley equation. Finally, the use of geometric acoustics for facility-to-flight data conversion is discussed.

  10. Alleviation of Facility/Engine Interactions in an Open-Jet Scramjet Test Facility

    NASA Technical Reports Server (NTRS)

    Albertson, Cindy W.; Emami, Saied

    2001-01-01

    Results of a series of shakedown tests to eliminate facility/engine interactions in an open-jet scramjet test facility are presented. The tests were conducted with the NASA DFX (Dual-Fuel eXperimental scramjet) engine in the NASA Langley Combustion Heated Scramjet Test Facility (CHSTF) in support of the Hyper-X program, The majority of the tests were conducted at a total enthalpy and pressure corresponding to Mach 5 flight at a dynamic pressure of 734 psf. The DFX is the largest engine ever tested in the CHSTF. Blockage, in terms of the projected engine area relative to the nozzle exit area, is 81% with the engine forebody leading edge aligned with the upper edge of the facility nozzle such that it ingests the nozzle boundary layer. The blockage increases to 95% with the engine forebody leading edge positioned 2 in. down in the core flow. Previous engines successfully tested in the CHSTF have had blockages of no more than 51%. Oil flow studies along with facility and engine pressure measurements were used to define flow behavior. These results guided modifications to existing aeroappliances and the design of new aeroappliances. These changes allowed fueled tests to be conducted without facility interaction effects in the data with the engine forebody leading edge positioned to ingest the facility nozzle boundary layer. Interaction effects were also reduced for tests with the engine forebody leading edge positioned 2 in. into the core flow, however some interaction effects were still evident in the engine data. A new shroud and diffuser have been designed with the goal of allowing fueled tests to be conducted with the engine forebody leading edge positioned in the core without facility interaction effects in the data. Evaluation tests of the new shroud and diffuser will be conducted once ongoing fueled engine tests have been completed.

  11. BIOLOGICAL IRRADIATION FACILITY

    DOEpatents

    McCorkle, W.H.; Cern, H.S.

    1962-04-24

    A facility for irradiating biological specimens with neutrons is described. It includes a reactor wherein the core is off center in a reflector. A high-exposure room is located outside the reactor on the side nearest the core while a low-exposure room is located on the opposite side. Means for converting thermal neutrons to fast neutrons are movably disposed between the reactor core and the high and low-exposure rooms. (AEC)

  12. Space Station Furnace Facility Core. Requirements definition and conceptual design study. Volume 2: Technical report. Appendix 6: Technical summary reports

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Space Station Furnace Facility (SSFF) is a modular facility for materials research in the microgravity environment of the Space Station Freedom (SSF). The SSFF is designed for crystal growth and solidification research in the fields of electronic and photonic materials, metals and alloys, and glasses and ceramics and will allow for experimental determination of the role of gravitational forces in the solidification process. The facility will provide a capability for basic scientific research and will evaluate the commercial viability of low-gravity processing of selected technologically important materials. The facility is designed to support a complement of furnace modules as outlined in the Science Capabilities Requirements Document (SCRD). The SSFF is a three rack facility that provides the functions, interfaces, and equipment necessary for the processing of the furnaces and consists of two main parts: the SSFF Core Rack and the two Experiment Racks. The facility is designed to accommodate two experimenter-provided furnace modules housed within the two experiment racks, and is designed to operate these two furnace modules simultaneously. The SCRD specifies a wide range of furnace requirements and serves as the basis for the SSFF conceptual design. SSFF will support automated processing during the man-tended operations and is also designed for crew interface during the permanently manned configuration. The facility is modular in design and facilitates changes as required, so the SSFF is adept to modifications, maintenance, reconfiguration, and technology evolution.

  13. How Metric Conversion Affects Administrative Practices

    ERIC Educational Resources Information Center

    Straka, M. K.

    1977-01-01

    Changes necessary in the administrative activities of educational institutions following conversion to the metric system are outlined for secretarial practices, purchasing, internal reporting and forms, computer operations, travel, publications, buildings and plant, new buildings, sport facilities, and health services. (MF)

  14. A facile approach for cupric ion detection in aqueous media using polyethyleneimine/PMMA core-shell fluorescent nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Zeng, Fang; Wu, Shuizhu; Su, Junhua; Zhao, Jianqing; Tong, Zhen

    2009-09-01

    A facile approach was developed to produce a dye-doped core-shell nanoparticle chemosensor for detecting Cu2+ in aqueous media. The core-shell nanoparticle sensor was prepared by a one-step emulsifier-free polymerization, followed by the doping of the fluorescent dye Nile red (9-diethylamino- 5H-benzo[alpha] phenoxazine-5-one, NR) into the particles. For the nanoparticles, the hydrophilic polyethyleneimine (PEI) chain segments serve as the shell and the hydrophobic polymethyl methacrylate (PMMA) constitutes the core of the nanoparticles. The non-toxic and biocompatible PEI chain segments on the nanoparticle surface exhibit a high affinity for Cu2+ ions in aqueous media, and the quenching of the NR fluorescence is observed upon binding of Cu2+ ions. This makes the core-shell nanoparticle system a water-dispersible chemosensor for Cu2+ ion detection. The quenching of fluorescence arises through intraparticle energy transfer (FRET) from the dye in the hydrophobic PMMA core to the Cu2+/PEI complexes on the nanoparticle surface. The energy transfer efficiency for PEI/PMMA particles with different diameters was determined, and it is found that the smaller nanoparticle sample exhibits higher quenching efficiency, and the limit for Cu2+ detection is 1 µM for a nanoparticle sample with a diameter of ~30 nm. The response of the fluorescent nanoparticle towards different metal ions was investigated and the nanoparticle chemosensor displays high selectivity and antidisturbance for the Cu2+ ion among the metal ions examined (Na+, K+, Mg2+, Ca2+, Zn2+, Hg2+, Mn2+, Fe2+, Ni2+, Co2+ and Pb2+). This emulsifier-free, biocompatible and sensitive fluorescent nanoparticle sensor may find applications in cupric ion detection in the biological and environmental areas.

  15. A facile approach for cupric ion detection in aqueous media using polyethyleneimine/PMMA core-shell fluorescent nanoparticles.

    PubMed

    Chen, Jian; Zeng, Fang; Wu, Shuizhu; Su, Junhua; Zhao, Jianqing; Tong, Zhen

    2009-09-09

    A facile approach was developed to produce a dye-doped core-shell nanoparticle chemosensor for detecting Cu(2+) in aqueous media. The core-shell nanoparticle sensor was prepared by a one-step emulsifier-free polymerization, followed by the doping of the fluorescent dye Nile red (9-diethylamino- 5H-benzo[alpha] phenoxazine-5-one, NR) into the particles. For the nanoparticles, the hydrophilic polyethyleneimine (PEI) chain segments serve as the shell and the hydrophobic polymethyl methacrylate (PMMA) constitutes the core of the nanoparticles. The non-toxic and biocompatible PEI chain segments on the nanoparticle surface exhibit a high affinity for Cu(2+) ions in aqueous media, and the quenching of the NR fluorescence is observed upon binding of Cu(2+) ions. This makes the core-shell nanoparticle system a water-dispersible chemosensor for Cu(2+) ion detection. The quenching of fluorescence arises through intraparticle energy transfer (FRET) from the dye in the hydrophobic PMMA core to the Cu(2+)/PEI complexes on the nanoparticle surface. The energy transfer efficiency for PEI/PMMA particles with different diameters was determined, and it is found that the smaller nanoparticle sample exhibits higher quenching efficiency, and the limit for Cu(2+) detection is 1 microM for a nanoparticle sample with a diameter of approximately 30 nm. The response of the fluorescent nanoparticle towards different metal ions was investigated and the nanoparticle chemosensor displays high selectivity and antidisturbance for the Cu(2+) ion among the metal ions examined (Na(+), K(+), Mg(2+), Ca(2+), Zn(2+), Hg(2+), Mn(2+), Fe(2+), Ni(2+), Co(2+) and Pb(2+)). This emulsifier-free, biocompatible and sensitive fluorescent nanoparticle sensor may find applications in cupric ion detection in the biological and environmental areas.

  16. Facile fabrication of core cross-linked micelles by RAFT polymerization and enzyme-mediated reaction.

    PubMed

    Wu, Yukun; Lai, Quanyong; Lai, Shuqi; Wu, Jing; Wang, Wei; Yuan, Zhi

    2014-06-01

    Polymeric micelles formed in aqueous solution by assembly of amphiphilic block copolymers have been extensively investigated due to their great potential as drug carriers. However, the stability of polymeric assembly is still one of the major challenges in delivering drugs to tissues and cells. Here, we report a facile route to fabricate core cross-linked (CCL) micelles using an enzymatic polymerization as the cross-linking method. We present synthesis of poly(ethylene glycol)-block-poly(N-isopropyl acrylamide-co-N-(4-hydroxyphenethyl) acrylamide) diblock copolymer PEG-b-P(NIPAAm-co-NHPAAm) via reversible addition-fragmentation chain transfer (RAFT) polymerization. The diblock copolymer was then self-assembled into non-cross-linked (NCL) micelles upon heating above the lower critical solution temperature (LCST), and subsequently cross-linked using horseradish peroxidase (HRP) and hydrogen peroxide (H2O2) as enzyme and oxidant. The characterization of the diblock copolymer and micelles were studied by NMR, DLS, UV-vis, and fluorescence spectroscopy. The fluorescence study reveals that the cross-linking process endows the micelles with much lower critical micelle concentration (CMC). In addition, the drug release study shows that the CCL micelles have lower release amount of doxorubicin (DOX) than the NCL micelles due to the enhanced stability of the CCL micelles by core cross-linking process. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Finite element simulation of core inspection in helicopter rotor blades using guided waves.

    PubMed

    Chakrapani, Sunil Kishore; Barnard, Daniel; Dayal, Vinay

    2015-09-01

    This paper extends the work presented earlier on inspection of helicopter rotor blades using guided Lamb modes by focusing on inspecting the spar-core bond. In particular, this research focuses on structures which employ high stiffness, high density core materials. Wave propagation in such structures deviate from the generic Lamb wave propagation in sandwich panels. To understand the various mode conversions, finite element models of a generalized helicopter rotor blade were created and subjected to transient analysis using a commercial finite element code; ANSYS. Numerical simulations showed that a Lamb wave excited in the spar section of the blade gets converted into Rayleigh wave which travels across the spar-core section and mode converts back into Lamb wave. Dispersion of Rayleigh waves in multi-layered half-space was also explored. Damage was modeled in the form of a notch in the core section to simulate a cracked core, and delamination was modeled between the spar and core material to simulate spar-core disbond. Mode conversions under these damaged conditions were examined numerically. The numerical models help in assessing the difficulty of using nondestructive evaluation for complex structures and also highlight the physics behind the mode conversions which occur at various discontinuities. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. In Conversation with Jim Schuck: Nano-optics

    ScienceCinema

    Jim Schuck and Alice Egan

    2017-12-09

    Sponsored by Berkeley Lab's Materials Sciences Division (MSD), "In Conversation with" is a next generation science seminar series. Host Alice Egan is the assistant to MSD Director Miquel Salmeron. Alice conducts a fun and informative interview, touching on the lives and work of the guest. The first In Conversation With took place July 9 with Jim Schuck, a staff scientist in the Molecular Foundry's Imaging and Manipulation Facility as our first guest. He discussed the world of Nano-optics.

  19. In Conversation with Jim Schuck: Nano-optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jim Schuck and Alice Egan

    Sponsored by Berkeley Lab's Materials Sciences Division (MSD), "In Conversation with" is a next generation science seminar series. Host Alice Egan is the assistant to MSD Director Miquel Salmeron. Alice conducts a fun and informative interview, touching on the lives and work of the guest. The first In Conversation With took place July 9 with Jim Schuck, a staff scientist in the Molecular Foundry's Imaging and Manipulation Facility as our first guest. He discussed the world of Nano-optics.

  20. Facile one-step synthesis of Ag@Fe3O4 core-shell nanospheres for reproducible SERS substrates

    NASA Astrophysics Data System (ADS)

    Sun, Lijuan; He, Jiang; An, Songsong; Zhang, Junwei; Ren, Dong

    2013-08-01

    A facile approach has been developed to synthesize Ag@Fe3O4 core-shell nanospheres, in which the Ag nanoparticle core was well wrapped by a permeable Fe3O4 shell. An in situ reduction of AgNO3 and Fe(NO3)3 was the basis of this one-step method with ethylene glycol as the reducing agent. The as-obtained Ag@Fe3O4 nanospheres were a highly efficient surface-enhanced Raman scattering (SERS) substrate; high reproducibility, stability, and reusability were obtained by employing 4-aminothiophenol (4-ATP) and rhodamine 6G (R6G) as the Raman probe molecules. It was revealed that the SERS signals of 4-ATP and R6G on the Ag@Fe3O4 nanospheres were much stronger than those on the pure Ag nanoparticles, demonstrating that the magnetic enrichment procedures can improve SERS detection sensitivity efficiently. A highly efficient and recyclable SERS substrate was produced by the new model system that has potential applications in chemical and biomolecular assays.

  1. Consensus-based approach to develop a measurement framework and identify a core set of indicators to track implementation and progress towards effective coverage of facility-based Kangaroo Mother Care.

    PubMed

    Guenther, Tanya; Moxon, Sarah; Valsangkar, Bina; Wetzel, Greta; Ruiz, Juan; Kerber, Kate; Blencowe, Hannah; Dube, Queen; Vani, Shashi N; Vivio, Donna; Magge, Hema; De Leon-Mendoza, Socorro; Patterson, Janna; Mazia, Goldy

    2017-12-01

    As efforts to scale up the delivery of Kangaroo Mother Care (KMC) in facilities are increasing, a standardized approach to measure implementation and progress towards effective coverage is needed. Here, we describe a consensus-based approach to develop a measurement framework and identify a core set of indicators for monitoring facility-based KMC that would be feasible to measure within existing systems. The KMC measurement framework and core list of indicators were developed through: 1) scoping exercise to identify potential indicators through literature review and requests from researchers and program implementers; and 2) face-to-face consultations with KMC and measurement experts working at country and global levels to review candidate indicators and finalize selection and definitions. The KMC measurement framework includes two main components: 1) service readiness, based on the WHO building blocks framework; and 2) service delivery action sequence covering identification, service initiation, continuation to discharge, and follow-up to graduation. Consensus was reached on 10 core indicators for KMC, which were organized according to the measurement framework. We identified 4 service readiness indicators, capturing national level policy for KMC, availability of KMC indicators in HMIS, costed operational plans for KMC and availability of KMC services at health facilities with inpatient maternity services. Six indicators were defined for service delivery, including weighing of babies at birth, identification of those ≤2000 g, initiation of facility-based KMC, monitoring the quality of KMC, status of babies at discharge from the facility and levels of follow-up (according to country-specific protocol). These core KMC indicators, identified with input from a wide range of global and country-level KMC and measurement experts, can aid efforts to strengthen monitoring systems and facilitate global tracking of KMC implementation. As data collection systems advance, we

  2. Planetary image conversion task

    NASA Technical Reports Server (NTRS)

    Martin, M. D.; Stanley, C. L.; Laughlin, G.

    1985-01-01

    The Planetary Image Conversion Task group processed 12,500 magnetic tapes containing raw imaging data from JPL planetary missions and produced an image data base in consistent format on 1200 fully packed 6250-bpi tapes. The output tapes will remain at JPL. A copy of the entire tape set was delivered to US Geological Survey, Flagstaff, Ariz. A secondary task converted computer datalogs, which had been stored in project specific MARK IV File Management System data types and structures, to flat-file, text format that is processable on any modern computer system. The conversion processing took place at JPL's Image Processing Laboratory on an IBM 370-158 with existing software modified slightly to meet the needs of the conversion task. More than 99% of the original digital image data was successfully recovered by the conversion task. However, processing data tapes recorded before 1975 was destructive. This discovery is of critical importance to facilities responsible for maintaining digital archives since normal periodic random sampling techniques would be unlikely to detect this phenomenon, and entire data sets could be wiped out in the act of generating seemingly positive sampling results. Reccomended follow-on activities are also included.

  3. Facile consecutive solvothermal growth of highly fluorescent InP/ZnS core/shell quantum dots using a safer phosphorus source.

    PubMed

    Byun, Ho-June; Song, Woo-Seuk; Yang, Heesun

    2011-06-10

    The work presents a facile, stepwise synthetic approach for the production of highly fluorescent InP/ZnS core/shell quantum dots (QDs) by using a safer phosphorus (P) precursor. First, InP quantum dots (QDs) were solvothermally prepared at 180 °C for 24 h by using a P source of P(N(CH(3))(2))(3). The as-grown InP QDs were consecutively placed in another solvothermal condition for ZnS shell overcoating. In contrast to the almost non-fluorescent InP QDs, due to their highly defective surface states, the ZnS-coated InP QDs were highly fluorescent as a result of effective surface passivation. After the shell growth, the resulting InP/ZnS core/shell QDs were subjected to a size-sorting processing, by which red- to green-emitting QDs with quantum yields (QYs) of 24-60% were produced. Solvothermal shell growth parameters such as the reaction time and Zn/In solution concentration ratio were varied and optimized toward the highest QYs of core/shell QDs.

  4. Facile consecutive solvothermal growth of highly fluorescent InP/ZnS core/shell quantum dots using a safer phosphorus source

    NASA Astrophysics Data System (ADS)

    Byun, Ho-June; Song, Woo-Seuk; Yang, Heesun

    2011-06-01

    The work presents a facile, stepwise synthetic approach for the production of highly fluorescent InP/ZnS core/shell quantum dots (QDs) by using a safer phosphorus (P) precursor. First, InP quantum dots (QDs) were solvothermally prepared at 180 °C for 24 h by using a P source of P(N(CH3)2)3. The as-grown InP QDs were consecutively placed in another solvothermal condition for ZnS shell overcoating. In contrast to the almost non-fluorescent InP QDs, due to their highly defective surface states, the ZnS-coated InP QDs were highly fluorescent as a result of effective surface passivation. After the shell growth, the resulting InP/ZnS core/shell QDs were subjected to a size-sorting processing, by which red- to green-emitting QDs with quantum yields (QYs) of 24-60% were produced. Solvothermal shell growth parameters such as the reaction time and Zn/In solution concentration ratio were varied and optimized toward the highest QYs of core/shell QDs.

  5. Core Facility of the Juelich Observatory for Cloud Evolution (JOYCE - CF)

    NASA Astrophysics Data System (ADS)

    Beer, J.; Troemel, S.

    2017-12-01

    A multiple and holistic multi-sensor monitoring of clouds and precipitation processes is a challenging but promising task in the meteorological community. Instrument synergies offer detailed views in microphysical and dynamical developments of clouds. Since 2017 The the Juelich Observatory for Cloud Evolution (JOYCE) is transformed into a Core Facility (JOYCE - CF). JOYCE - CF offers multiple long-term remote sensing observations of the atmosphere, develops an easy access to all observations and invites scientists word wide to exploit the existing data base for their research but also to complement JOYCE-CF with additional long-term or campaign instrumentation. The major instrumentation contains a twin set of two polarimetric X-band radars, a microwave profiler, two cloud radars, an infrared spectrometer, a Doppler lidar and two ceilometers. JOYCE - CF offers easy and open access to database and high quality calibrated observations of all instruments. E.g. the two polarimetric X-band radars which are located in 50 km distance are calibrated using the self-consistency method, frequently repeated vertical pointing measurements as well as instrument synergy with co-located micro-rain radar and distrometer measurements. The presentation gives insights into calibration procedures, the standardized operation procedures and recent synergistic research exploiting our radars operating at three different frequencies.

  6. Development of evaluation models of manpower needs for dismantling the dry conversion process-related equipment in uranium refining and conversion plant (URCP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sari Izumo; Hideo Usui; Mitsuo Tachibana

    Evaluation models for determining the manpower needs for dismantling various types of equipment in uranium refining and conversion plant (URCP) have been developed. The models are widely applicable to other uranium handling facilities. Additionally, a simplified model was developed for easily and accurately calculating the manpower needs for dismantling dry conversion process-related equipment (DP equipment). It is important to evaluate beforehand project management data such as manpower needs to prepare an optimized decommissioning plan and implement effective dismantling activity. The Japan Atomic Energy Agency (JAEA) has developed the project management data evaluation system for dismantling activities (PRODIA code), which canmore » generate project management data using evaluation models. For preparing an optimized decommissioning plan, these evaluation models should be established based on the type of nuclear facility and actual dismantling data. In URCP, the dry conversion process of reprocessed uranium and others was operated until 1999, and the equipment related to the main process was dismantled from 2008 to 2011. Actual data such as manpower for dismantling were collected during the dismantling activities, and evaluation models were developed using the collected actual data on the basis of equipment classification considering the characteristics of uranium handling facility. (authors)« less

  7. 36 CFR 59.3 - Conversion requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... not been dedicated or managed for recreation/conservation use may be used as replacement land even if... proposed conversion and substitution constitute significant changes to the original Land and Water... approval is not necessarily required, however, for each and every facility use change. Rather, a project...

  8. An Analysis of How Carl Rogers Enacted Client-Centered Conversation with Gloria.

    ERIC Educational Resources Information Center

    Wickman, Scott A.; Campbell, Cynthia

    2003-01-01

    This study analyzed Carl Rogers's session with Gloria in "Three Approaches to Psychotherapy" to determine how Rogers's conversational style functioned to enact his core conditions of empathy, genuineness, and unconditional positive regard. Rogers's conversational style was found to be congruent with his espoused theory as well as a…

  9. Experiment/facility requirements document for the Space Station Furnace Facility. Section 1: Integrated configuration

    NASA Astrophysics Data System (ADS)

    1992-05-01

    The function of the Space Station Furnace Facility (SSFF) is to support materials research into the crystal growth and solidification processes of electronic and photonic materials, metals and alloys, and glasses and ceramics. To support this broad base of research requirements, the SSFF will employ a variety of furnace modules which will be operated, regulated, and supported by a core of common subsystems. Furnace modules may be reconfigured or specifically developed to provide unique solidification conditions for each set of experiments. The SSFF modular approach permits the addition of new or scaled-up furnace modules to support the evolution of the facility as new science requirements are identified. The SSFF Core is of modular design to permit augmentation for enhanced capabilities. The fully integrated configuration of the SSFF will consist of three racks with the capability of supporting up to two furnace modules per rack. The initial configuration of the SSFF will consist of two of the three racks and one furnace module. This Experiment/Facility Requirements Document (E/FRD) describes the integrated facility requirements for the Space Station Freedom (SSF) Integrated Configuration-1 (IC1) mission. The IC1 SSFF will consist of two racks: the Core Rack, with the centralized subsystem equipment; and the Experiment Rack-1, with Furnace Module-1 and the distributed subsystem equipment to support the furnace. The SSFF support functions are provided by the following Core subsystems: power conditioning and distribution subsystem (SSFF PCDS); data management subsystem (SSFF DMS); thermal control Subsystem (SSFF TCS); gas distribution subsystem (SSFF GDS); and mechanical structures subsystem (SSFF MSS).

  10. Experiment/facility requirements document for the Space Station Furnace Facility. Section 1: Integrated configuration

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The function of the Space Station Furnace Facility (SSFF) is to support materials research into the crystal growth and solidification processes of electronic and photonic materials, metals and alloys, and glasses and ceramics. To support this broad base of research requirements, the SSFF will employ a variety of furnace modules which will be operated, regulated, and supported by a core of common subsystems. Furnace modules may be reconfigured or specifically developed to provide unique solidification conditions for each set of experiments. The SSFF modular approach permits the addition of new or scaled-up furnace modules to support the evolution of the facility as new science requirements are identified. The SSFF Core is of modular design to permit augmentation for enhanced capabilities. The fully integrated configuration of the SSFF will consist of three racks with the capability of supporting up to two furnace modules per rack. The initial configuration of the SSFF will consist of two of the three racks and one furnace module. This Experiment/Facility Requirements Document (E/FRD) describes the integrated facility requirements for the Space Station Freedom (SSF) Integrated Configuration-1 (IC1) mission. The IC1 SSFF will consist of two racks: the Core Rack, with the centralized subsystem equipment; and the Experiment Rack-1, with Furnace Module-1 and the distributed subsystem equipment to support the furnace. The SSFF support functions are provided by the following Core subsystems: power conditioning and distribution subsystem (SSFF PCDS); data management subsystem (SSFF DMS); thermal control Subsystem (SSFF TCS); gas distribution subsystem (SSFF GDS); and mechanical structures subsystem (SSFF MSS).

  11. Novel, Integrated Reactor/Power Conversion System (LMR-AMTEC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dmitry V. Paramonov, Lead Collaborator

    2001-07-31

    The overall objective of NERI Project Number 99-0198 is to assess the technical and economic feasibility, develop engineering solutions and determine a range of potential applications for ''Novel Integrated Reactor/Energy conversion Systems''. The near term goal is the design of a power supply for developing countries in remote locations in a proliferation resistant, reliable and economical way. The heart of the concept is the use of a single loop liquid metal fast reactor (LMR) with conversion of the heat directly into electricity in a Alkali Metal Thermal to Electric Converter (AMTEC). The first year of the project focused on themore » feasibility issues with a long life, high temperature liquid metal-cooled core; selection of the working fluid, core-to-AMTEC coupling scheme and interface parameters; and, energy conversion systems design and performance. Report Number STD-ES-01-0028, Revision 0, dated July 31, 2001, summarizes the work performed by Westinghouse personnel in Year One and report number UNM-ISNPS-3-2000, dated October 2000, summarizes the work performed by the Institute for Space and Nuclear Power Studies at the University of New Mexico in Year One.« less

  12. Controlled formation of intense hot spots in Pd@Ag core-shell nanooctapods for efficient photothermal conversion

    NASA Astrophysics Data System (ADS)

    Liu, Maochang; Yang, Yang; Li, Naixu; Du, Yuanchang; Song, Dongxing; Ma, Lijing; Wang, Yi; Zheng, Yiqun; Jing, Dengwei

    2017-08-01

    Plasmonic Ag nanostructures have been of great interest for such applications in cancer therapy and catalysis, etc. However, the relatively week Ag-Ag interaction and spontaneous atom diffusion make it very difficult to generate concaved or branched structures in Ag nanocrystals with sizes less than 100 nm, which has been considered very favorable for plasmonic effects. Herein, by employing a cubic Pd seed and a specific reducing agent to restrict the surface diffusion of Ag atoms, Pd@Ag core-shell nanooctapod structures where Ag atoms can be selectively deposited onto the corner sites of the Pd cubes were obtained. Such selective decoration enables us to precisely control the locations for the hot spot formation during light irradiation. We find that the branched nanooctapod structure shows strong absorption in the visible-light region and generates intense hot spots around the octapod arms of Ag. As such, the photothermal conversion efficiency could be significantly improved by more than 50% with a colloid solution containing only ppm-level nanooctapods compared with pure water. The reported nanostructure is expected to find extensive applications due to its controlled formation of light-induced hot spots at certain points on the crystal surface.

  13. Comparison of x ray computed tomography number to proton relative linear stopping power conversion functions using a standard phantom.

    PubMed

    Moyers, M F

    2014-06-01

    Adequate evaluation of the results from multi-institutional trials involving light ion beam treatments requires consideration of the planning margins applied to both targets and organs at risk. A major uncertainty that affects the size of these margins is the conversion of x ray computed tomography numbers (XCTNs) to relative linear stopping powers (RLSPs). Various facilities engaged in multi-institutional clinical trials involving proton beams have been applying significantly different margins in their patient planning. This study was performed to determine the variance in the conversion functions used at proton facilities in the U.S.A. wishing to participate in National Cancer Institute sponsored clinical trials. A simplified method of determining the conversion function was developed using a standard phantom containing only water and aluminum. The new method was based on the premise that all scanners have their XCTNs for air and water calibrated daily to constant values but that the XCTNs for high density/high atomic number materials are variable with different scanning conditions. The standard phantom was taken to 10 different proton facilities and scanned with the local protocols resulting in 14 derived conversion functions which were compared to the conversion functions used at the local facilities. For tissues within ±300 XCTN of water, all facility functions produced converted RLSP values within ±6% of the values produced by the standard function and within 8% of the values from any other facility's function. For XCTNs corresponding to lung tissue, converted RLSP values differed by as great as ±8% from the standard and up to 16% from the values of other facilities. For XCTNs corresponding to low-density immobilization foam, the maximum to minimum values differed by as much as 40%. The new method greatly simplifies determination of the conversion function, reduces ambiguity, and in the future could promote standardization between facilities. Although it

  14. Passive, Low Cost Neutron Detectors for Neutron Diagnostics at the National Ignition Facility

    DTIC Science & Technology

    2013-03-01

    Facility PTFE Polytetrafluoroethylene TLD Thermoluminescent Dosimeter α Conversion Coefficient (Conversion...because they required a large investment in automated track counting equipment. Thermoluminescent dosimeters ( TLDs ) remained as a viable option. They...necessary to predict radiation damage to measurement electronics . Due to programmatic and facility limitations, traditional neutron measurement

  15. Synthesis and Plasmonic Understanding of Core/Satellite and Core Shell Nanostructures

    NASA Astrophysics Data System (ADS)

    Ruan, Qifeng

    Localized surface plasmon resonance, which stems from the collective oscillations of conduction-band electrons, endows Au nanocrystals with unique optical properties. Au nanocrystals possess extremely large scattering/absorption cross-sections and enhanced local electromagnetic field, both of which are synthetically tunable. Moreover, when Au nanocrystals are closely placed or hybridized with semiconductors, the coupling and interaction between the individual components bring about more fascinating phenomena and promising applications, including plasmon-enhanced spectroscopies, solar energy harvesting, and cancer therapy. The continuous development in the field of plasmonics calls for further advancements in the preparation of high-quality plasmonic nanocrystals, the facile construction of hybrid plasmonic nanostructures with desired functionalities, as well as deeper understanding and efficient utilization of the interaction between plasmonic nanocrystals and semiconductor components. In this thesis, I developed a seed-mediated growth method for producing size-controlled Au nanospheres with high monodispersity and assembled Au nanospheres of different sizes into core/satellite nanostructures for enhancing Raman signals. For investigating the interactions between Au nanocrystals and semiconductors, I first prepared (Au core) (TiO2 shell) nanostructures, and then studied their synthetically controlled plasmonic properties and light-harvesting applications. Au nanocrystals with spherical shapes are desirable in plasmon-coupled systems owing to their high geometrical symmetry, which facilitates the analysis of electrodynamic responses in a classical electromagnetic framework and the investigation of quantum tunneling and nonlocal effects. I prepared remarkably uniform Au nanospheres with diameters ranging from 20 nm to 220 nm using a simple seed-mediated growth method associated with mild oxidation. Core/satellite nanostructures were assembled out of differently sized

  16. Space Station Furnace Facility. Experiment/Facility Requirements Document (E/FRD), volume 2, appendix 5

    NASA Technical Reports Server (NTRS)

    Kephart, Nancy

    1992-01-01

    The function of the Space Station Furnace Facility (SSFF) is to support materials research into the crystal growth and solidification processes of electronic and photonic materials, metals and alloys, and glasses and ceramics. To support this broad base of research requirements, the SSFF will employ a variety of furnace modules operated, regulated, and supported by a core of common subsystems. Furnace modules may be reconfigured or specifically developed to provide unique solidifcation conditions for each set of experiments. The SSFF modular approach permits the addition of new or scaled-up furnace modules to support the evolution of the facility as new science requirements are identified. The SSFF Core is of modular design to permit augmentation for enhanced capabilities. The fully integrated configuration of the SSFF will consist of three racks with the capability of supporting up to two furnace modules per rack. The initial configuration of the SSFF will consist of two of the three racks and one furnace module. This Experiment/Facility Requirements Document (E/FRD) describes the integrated facility requirements for the Space Station Freedom (SSF) Integrated Configuration-1 (IC1) mission. The IC1 SSFF will consist of two racks: the Core Rack, with the centralized subsystem equipment, and the Experiment Rack-1, with Furnace Module-1 and the distributed subsystem equipment to support the furnace.

  17. Resonant Spin-Flavor Conversion of Supernova Neutrinos

    NASA Astrophysics Data System (ADS)

    Ando, Shin'ichiro; Sato, K.

    2003-07-01

    We investigate resonant spin-flavor (RSF) conversions of supernova neutrinos which are induced by the interaction of neutrino magnetic moment and supernova magnetic fields. With a new diagram we propose, it is found that four conversions occur in supernovae, two are induced by the RSF effect and two by the pure Mikheyev-Smirnov-Wolfenstein (MSW) effect. The realistic numerical calculation of neutrino conversions indicates that the RSF-induced νe ↔ ντ tran¯ -12 9 -1 sition occurs efficiently, when µν > 10 µB (B0 /5 × 10 G) , where B0 is the strength of the magnetic field at the surface of iron core. We also evaluate the energy spectrum as a function of µν B0 at the super-Kamiokande detector using the calculated conversion probabilities, and find that the spectral deformation might have possibility to provide useful information on the neutrino magnetic moment as well as the magnetic field strength in supernovae.

  18. A TiO2/FeMnP Core/Shell Nanorod Array Photoanode for Efficient Photoelectrochemical Oxygen Evolution.

    PubMed

    Schipper, Desmond E; Zhao, Zhenhuan; Leitner, Andrew P; Xie, Lixin; Qin, Fan; Alam, Md Kamrul; Chen, Shuo; Wang, Dezhi; Ren, Zhifeng; Wang, Zhiming; Bao, Jiming; Whitmire, Kenton H

    2017-04-25

    A variety of catalysts have recently been developed for electrocatalytic oxygen evolution, but very few of them can be readily integrated with semiconducting light absorbers for photoelectrochemical or photocatalytic water splitting. Here, we demonstrate an efficient core/shell photoanode with a highly active oxygen evolution electrocatalyst shell (FeMnP) and semiconductor core (rutile TiO 2 ) for photoelectrochemical oxygen evolution reaction. Metal-organic chemical vapor deposition from a single-source precursor was used to ensure good contact between the FeMnP and the TiO 2 . The TiO 2 /FeMnP core/shell photoanode reaches the theoretical photocurrent density for rutile TiO 2 of 1.8 mA cm -2 at 1.23 V vs reversible hydrogen electrode under simulated 100 mW cm -2 (1 sun) irradiation. The dramatic enhancement is a result of the synergistic effects of the high oxygen evolution reaction activity of FeMnP (delivering an overpotential of 300 mV with a Tafel slope of 65 mV dec -1 in 1 M KOH) and the conductive interlayer between the surface active sites and semiconductor core which boosts the interfacial charge transfer and photocarrier collection. The facile fabrication of the TiO 2 /FeMnP core/shell nanorod array photoanode offers a compelling strategy for preparing highly efficient photoelectrochemical solar energy conversion devices.

  19. Biotechnology Protein Expression and Purification Facility

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The purpose of the Project Scientist Core Facility is to provide purified proteins, both recombinant and natural, to the Biotechnology Science Team Project Scientists and the NRA-Structural Biology Test Investigators. Having a core facility for this purpose obviates the need for each scientist to develop the necessary expertise and equipment for molecular biology, protein expression, and protein purification. Because of this, they are able to focus their energies as well as their funding on the crystallization and structure determination of their target proteins.

  20. Facile preparation of core-shell magnetic metal-organic framework nanospheres for the selective enrichment of endogenous peptides.

    PubMed

    Xiong, Zhichao; Ji, Yongsheng; Fang, Chunli; Zhang, Quanqing; Zhang, Lingyi; Ye, Mingliang; Zhang, Weibing; Zou, Hanfa

    2014-06-10

    Facile preparation of core-shell magnetic metal-organic framework nanospheres by a layer-by-layer approach is presented. The nanospheres have high surface area (285.89 cm(2)  g(-1)), large pore volume (0.18 cm(3)  g(-1)), two kinds of mesopores (2.50 and 4.72 nm), excellent magnetic responsivity (55.65 emu g(-1)), structural stability, and good dispersibility. The combination of porosity, hydrophobicity, and uniform magnetism was exploited for effective enrichment of peptides with simultaneous exclusion of high molecular weight proteins. The nanospheres were successfully applied in the selective enrichment of endogenous peptides in human serum. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. An Experimental Test Facility to Support Development of the Fluoride Salt Cooled High Temperature Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoder Jr, Graydon L; Aaron, Adam M; Cunningham, Richard Burns

    2014-01-01

    The need for high-temperature (greater than 600 C) energy exchange and delivery systems is significantly increasing as the world strives to improve energy efficiency and develop alternatives to petroleum-based fuels. Liquid fluoride salts are one of the few energy transport fluids that have the capability of operating at high temperatures in combination with low system pressures. The Fluoride Salt-Cooled High-Temperature Reactor design uses fluoride salt to remove core heat and interface with a power conversion system. Although a significant amount of experimentation has been performed with these salts, specific aspects of this reactor concept will require experimental confirmation during themore » development process. The experimental facility described here has been constructed to support the development of the Fluoride Salt Cooled High Temperature Reactor concept. The facility is capable of operating at up to 700 C and incorporates a centrifugal pump to circulate FLiNaK salt through a removable test section. A unique inductive heating technique is used to apply heat to the test section, allowing heat transfer testing to be performed. An air-cooled heat exchanger removes added heat. Supporting loop infrastructure includes a pressure control system; trace heating system; and a complement of instrumentation to measure salt flow, temperatures, and pressures around the loop. The initial experiment is aimed at measuring fluoride salt heat transfer inside a heated pebble bed similar to that used for the core of the pebble bed advanced high-temperature reactor. This document describes the details of the loop design, auxiliary systems used to support the facility, the inductive heating system, and facility capabilities.« less

  2. Oak Ridge National Laboratory Core Competencies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberto, J.B.; Anderson, T.D.; Berven, B.A.

    1994-12-01

    A core competency is a distinguishing integration of capabilities which enables an organization to deliver mission results. Core competencies represent the collective learning of an organization and provide the capacity to perform present and future missions. Core competencies are distinguishing characteristics which offer comparative advantage and are difficult to reproduce. They exhibit customer focus, mission relevance, and vertical integration from research through applications. They are demonstrable by metrics such as level of investment, uniqueness of facilities and expertise, and national impact. The Oak Ridge National Laboratory (ORNL) has identified four core competencies which satisfy the above criteria. Each core competencymore » represents an annual investment of at least $100M and is characterized by an integration of Laboratory technical foundations in physical, chemical, and materials sciences; biological, environmental, and social sciences; engineering sciences; and computational sciences and informatics. The ability to integrate broad technical foundations to develop and sustain core competencies in support of national R&D goals is a distinguishing strength of the national laboratories. The ORNL core competencies are: 9 Energy Production and End-Use Technologies o Biological and Environmental Sciences and Technology o Advanced Materials Synthesis, Processing, and Characterization & Neutron-Based Science and Technology. The distinguishing characteristics of each ORNL core competency are described. In addition, written material is provided for two emerging competencies: Manufacturing Technologies and Computational Science and Advanced Computing. Distinguishing institutional competencies in the Development and Operation of National Research Facilities, R&D Integration and Partnerships, Technology Transfer, and Science Education are also described. Finally, financial data for the ORNL core competencies are summarized in the appendices.« less

  3. Preelectroplating Treatment Of Titanium Honeycomb Core

    NASA Technical Reports Server (NTRS)

    Kelly, Michael L.; Harvey, James S.

    1992-01-01

    New technique used to treat titanium honeycomb core electrochemically by applying conversion coat to keep honeycomb active and receptive to electroplating with solution of sodium bichromate and hydrofluoric acid. Maskant permits electroplating of controlled amount of filler metal on edge of honeycomb. Eliminates excess copper filler.

  4. Identification and Quantification of Carbon Phases in Conversion Fuel for the Transient Reactor Test Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steele, Robert; Mata, Angelica; Dunzik-Gougar, Mary Lou

    2016-06-01

    As part of an overall effort to convert US research reactors to low-enriched uranium (LEU) fuel use, a LEU conversion fuel is being designed for the Transient Reactor Test Facility (TREAT) at the Idaho National Laboratory. TREAT fuel compacts are comprised of UO2 fuel particles in a graphitic matrix material. In order to refine heat transfer modeling, as well as determine other physical and nuclear characteristics of the fuel, the amount and type of graphite and non-graphite phases within the fuel matrix must be known. In this study, we performed a series of complementary analyses, designed to allow detailed characterizationmore » of the graphite and phenolic resin based fuel matrix. Methods included Scanning Electron and Transmission Electron Microscopies, Raman spectroscopy, X-ray Diffraction, and Dual-Beam Focused Ion Beam Tomography. Our results indicate that no single characterization technique will yield all of the desired information; however, through the use of statistical and empirical data analysis, such as curve fitting, partial least squares regression, volume extrapolation and spectra peak ratios, a degree of certainty for the quantity of each phase can be obtained.« less

  5. Facile green in situ synthesis of Mg/CuO core/shell nanoenergetic arrays with a superior heat-release property and long-term storage stability.

    PubMed

    Zhou, Xiang; Xu, Daguo; Zhang, Qiaobao; Lu, Jian; Zhang, Kaili

    2013-08-14

    We report a facile green method for the in situ synthesis of Mg/CuO core/shell nanoenergetic arrays on silicon, with Mg nanorods as the core and CuO as the shell. Mg nanorods are first prepared by glancing angle deposition. CuO is then deposited around the Mg nanorods by reactive magnetron sputtering to realize the core/shell structure. Various characterization techniques are used to investigate the prepared Mg/CuO core/shell nanoenergetic arrays, including scanning electron microscopy, transmission electron microscopy, X-ray energy dispersive spectroscopy, X-ray diffraction, and thermal analysis. Uniform mixing and intimate contact between the Mg nanorods and CuO are confirmed from both visual inspection of the morphological images and analyses of the heat-release curves. The nanoenergetic arrays exhibit a low-onset reaction temperature (∼300 °C) and high heat of reaction (∼3400 J/g). Most importantly, the nanoenergetic arrays possess long-term storage stability resulting from the stable CuO shell. This study provides a potential general strategy for the synthesis of various Mg nanorod-based stable nanoenergetic arrays.

  6. Evaporation Of Hanford Waste Treatment Plant Direct Feed Low Activity Waste Effluent Management Facility Core Simulant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamson, D.; Nash, C.; Mcclane, D.

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation, and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator, in the Effluent Management Facility (EMF), and then return it tomore » the LAW melter. It is important to understand the composition of the effluents from the melter and new evaporator, so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of the LMOGC stream would eliminate recycling of problematic components, and would reduce the need for closely integrated operation of the LAW melter and the Pretreatment Facilities. Long-term implementation of this option after WTP start-up would decrease the LAW vitrification mission duration and quantity of glass waste, amongst the other operational complexities such a recycle stream presents. In order to accurately plan for the disposition path, it is key to experimentally determine the fate of contaminants. To do this, testing is needed to accurately account for the buffering chemistry of the components, determine the achievable evaporation end point, identify insoluble solids that form, and determine the distribution of key regulatory-impacting constituents. The LAW Melter Off-Gas Condensate stream will contain components that are volatile at melter temperatures, have limited solubility in the glass waste form, and represent a materials corrosion concern, such as halides and sulfate. Because this stream will recycle within WTP, these components will accumulate in the Melter

  7. Multiphysics Computational Analysis of a Solid-Core Nuclear Thermal Engine Thrust Chamber

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Canabal, Francisco; Cheng, Gary; Chen, Yen-Sen

    2007-01-01

    The objective of this effort is to develop an efficient and accurate computational heat transfer methodology to predict thermal, fluid, and hydrogen environments for a hypothetical solid-core, nuclear thermal engine - the Small Engine. In addition, the effects of power profile and hydrogen conversion on heat transfer efficiency and thrust performance were also investigated. The computational methodology is based on an unstructured-grid, pressure-based, all speeds, chemically reacting, computational fluid dynamics platform, while formulations of conjugate heat transfer were implemented to describe the heat transfer from solid to hydrogen inside the solid-core reactor. The computational domain covers the entire thrust chamber so that the afore-mentioned heat transfer effects impact the thrust performance directly. The result shows that the computed core-exit gas temperature, specific impulse, and core pressure drop agree well with those of design data for the Small Engine. Finite-rate chemistry is very important in predicting the proper energy balance as naturally occurring hydrogen decomposition is endothermic. Locally strong hydrogen conversion associated with centralized power profile gives poor heat transfer efficiency and lower thrust performance. On the other hand, uniform hydrogen conversion associated with a more uniform radial power profile achieves higher heat transfer efficiency, and higher thrust performance.

  8. Comparative assessment of out-of-core nuclear thermionic power systems

    NASA Technical Reports Server (NTRS)

    Estabrook, W. C.; Koenig, D. R.; Prickett, W. Z.

    1975-01-01

    The hardware selections available for fabrication of a nuclear electric propulsion stage for planetary exploration were explored. The investigation was centered around a heat-pipe-cooled, fast-spectrum nuclear reactor for an out-of-core power conversion system with sufficient detail for comparison with the in-core system studies completed previously. A survey of competing power conversion systems still indicated that the modular reliability of thermionic converters makes them the desirable choice to provide the 240-kWe end-of-life power for at least 20,000 full power hours. The electrical energy will be used to operate a number of mercury ion bombardment thrusters with a specific impulse in the range of about 4,000-5,000 seconds.

  9. Facile fabrication of core-in-shell particles by the slow removal of the core and its use in the encapsulation of metal nanoparticles.

    PubMed

    Choi, Won San; Koo, Hye Young; Kim, Dong-Yu

    2008-05-06

    Core-in-shell particles with controllable core size have been fabricated from core-shell particles by means of the controlled core-dissolution method. These cores in inorganic shells were employed as scaffolds for the synthesis of metal nanoparticles. After dissolution of the cores, metal nanoparticles embedded in cores were encapsulated into the interior of shell, without any damage or change. This article describes a very simple method for deriving core-in-shell particles with controllable core size and encapsulation of nanoparticles into the interior of shell.

  10. Innovative practice: Conversational use of English in bilingual adults with dementia.

    PubMed

    Kokorelias, Kristina M; Ryan, Ellen B; Elliot, Gail

    2017-02-01

    Regression to mother tongue is common in those with dementia. In two long-term care facilities, we explored the use of bilinguals' two languages for five older adults with mild-moderate dementia who have begun to regress to Greek. We also examined the role of Montessori DementiAbility Methods: The Montessori Way-based English language activities in fostering conversational use of English. Over 10 sessions, participants' vocabulary or grammatical structure in English did not improve. However, four of the five participants were able to maintain a conversation in English for longer periods of time. This study contributes to strategies for optimizing meaningful conversation for bilingual long-term care residents with dementia. Moreover, the data suggest a change in the policy and practice for dementia care so that there are more opportunities for residents to speak English in non-English mother-tongue facilities. Greater attention to the specific language needs of bilinguals in English-dominant settings would also be advisable.

  11. Active-sterile neutrino conversion: consequences for the r-process and supernova neutrino detection

    NASA Astrophysics Data System (ADS)

    Fetter, J.; McLaughlin, G. C.; Balantekin, A. B.; Fuller, G. M.

    2003-02-01

    We examine active-sterile neutrino conversion in the late time post-core-bounce supernova environment. By including the effect of feedback on the Mikheyev-Smirnov-Wolfenstein (MSW) conversion potential, we obtain a large range of neutrino mixing parameters which produce a favorable environment for the r-process. We look at the signature of this effect in the current generation of neutrino detectors now coming on line. We also investigate the impact of the neutrino-neutrino forward-scattering-induced potential on the MSW conversion.

  12. High-energy (>70 keV) x-ray conversion efficiency measurement on the ARC laser at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Hermann, M. R.; Kalantar, D. H.; Martinez, D. A.; Di Nicola, P.; Tommasini, R.; Landen, O. L.; Alessi, D.; Bowers, M.; Browning, D.; Brunton, G.; Budge, T.; Crane, J.; Di Nicola, J.-M.; Döppner, T.; Dixit, S.; Erbert, G.; Fishler, B.; Halpin, J.; Hamamoto, M.; Heebner, J.; Hernandez, V. J.; Hohenberger, M.; Homoelle, D.; Honig, J.; Hsing, W.; Izumi, N.; Khan, S.; LaFortune, K.; Lawson, J.; Nagel, S. R.; Negres, R. A.; Novikova, L.; Orth, C.; Pelz, L.; Prantil, M.; Rushford, M.; Shaw, M.; Sherlock, M.; Sigurdsson, R.; Wegner, P.; Widmayer, C.; Williams, G. J.; Williams, W.; Whitman, P.; Yang, S.

    2017-03-01

    The Advanced Radiographic Capability (ARC) laser system at the National Ignition Facility (NIF) is designed to ultimately provide eight beamlets with a pulse duration adjustable from 1 to 30 ps, and energies up to 1.5 kJ per beamlet. Currently, four beamlets have been commissioned. In the first set of 6 commissioning target experiments, the individual beamlets were fired onto gold foil targets with energy up to 1 kJ per beamlet at 20-30 ps pulse length. The x-ray energy distribution and pulse duration were measured, yielding energy conversion efficiencies of 4-9 × 10-4 for x-rays with energies greater than 70 keV. With greater than 3 J of such x-rays, ARC provides a high-precision x-ray backlighting capability for upcoming inertial confinement fusion and high-energy-density physics experiments on NIF.

  13. Auger Up-Conversion of Low-Intensity Infrared Light in Engineered Quantum Dots

    DOE PAGES

    Makarov, Nikolay S.; Lin, Qianglu; Pietryga, Jeffrey M.; ...

    2016-11-29

    One source of efficiency losses in photovoltaic cells is their transparency toward solar photons with energies below the band gap of the absorbing layer. This loss can be reduced using a process of up-conversion whereby two or more sub-band-gap photons generate a single above-gap exciton. Traditional approaches to up-conversion, such as nonlinear two-photon absorption (2PA) or triplet fusion, suffer from low efficiency at solar light intensities, a narrow absorption bandwidth, nonoptimal absorption energies, and difficulties for implementing in practical devices. We show that these deficiencies can be alleviated using the effect of Auger up-conversion in thick-shell PbSe/CdSe quantum dots. Thismore » process relies on Auger recombination whereby two low-energy, core-based excitons are converted into a single higher-energy, shell-based exciton. When compared to their monocomponent counterparts, the tailored PbSe/CdSe heterostructures feature enhanced absorption cross-sections, a higher efficiency of the “productive” Auger pathway involving re-excitation of a hole, and longer lifetimes of both core- and shell-localized excitons. These features lead to effective up-conversion cross-sections that are more than 6 orders of magnitude higher than for standard nonlinear 2PA, which allows for efficient up-conversion of continuous wave infrared light at intensities as low as a few watts per square centimeter.« less

  14. Ni@Ru and NiCo@Ru Core-Shell Hexagonal Nanosandwiches with a Compositionally Tunable Core and a Regioselectively Grown Shell.

    PubMed

    Hwang, Hyeyoun; Kwon, Taehyun; Kim, Ho Young; Park, Jongsik; Oh, Aram; Kim, Byeongyoon; Baik, Hionsuck; Joo, Sang Hoon; Lee, Kwangyeol

    2018-01-01

    The development of highly active electrocatalysts is crucial for the advancement of renewable energy conversion devices. The design of core-shell nanoparticle catalysts represents a promising approach to boost catalytic activity as well as save the use of expensive precious metals. Here, a simple, one-step synthetic route is reported to prepare hexagonal nanosandwich-shaped Ni@Ru core-shell nanoparticles (Ni@Ru HNS), in which Ru shell layers are overgrown in a regioselective manner on the top and bottom, and around the center section of a hexagonal Ni nanoplate core. Notably, the synthesis can be extended to NiCo@Ru core-shell nanoparticles with tunable core compositions (Ni 3 Co x @Ru HNS). Core-shell HNS structures show superior electrocatalytic activity for the oxygen evolution reaction (OER) to a commercial RuO 2 black catalyst, with their OER activity being dependent on their core compositions. The observed trend in OER activity is correlated to the population of Ru oxide (Ru 4+ ) species, which can be modulated by the core compositions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Kinetics of Scheelite Conversion in Sulfuric Acid

    NASA Astrophysics Data System (ADS)

    Shen, Leiting; Li, Xiaobin; Zhou, Qiusheng; Peng, Zhihong; Liu, Guihua; Qi, Tiangui; Taskinen, Pekka

    2018-02-01

    Complete conversion of scheelite in H2SO4 solution plays a key role in exploration of cleaner technology for producing ammonium paratungstate. In this work, the factors influencing scheelite conversion were investigated experimentally to model its kinetics. The results indicated that the conversion rate increases with increasing temperature and reducing particle size, but is almost independent of stirring speed. Moreover, although the conversion rate increases with increasing initial H2SO4 concentration (≤ 1.25 mol/L), it decreases rapidly at 1.5 mol/L H2SO4 after 10 min due to formation of a H2WO4 layer. The experimental data agree quite well with the shrinking core model under chemical reaction control in ≤ 1.25 mol/L H2SO4 solution, and the kinetic equation was established as: 1- ( 1- α )^{ 1 / 3} = 2 2 2 5 4 6. 6\\cdot C_{{{H}_{ 2} {SO}_{ 4} }}^{ 1. 2 2 6} \\cdot r_{ 0}^{ - 1} \\cdot e^{{ - 3 9 2 6 0/RT}} \\cdot t (t, min). This work could contribute to better understanding of scheelite conversion in H2SO4 solution and development of a new route for ammonium paratungstate production.

  16. Facile synthesis of 3D few-layered MoS2 coated TiO2 nanosheet core-shell nanostructures for stable and high-performance lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Chen, Biao; Zhao, Naiqin; Guo, Lichao; He, Fang; Shi, Chunsheng; He, Chunnian; Li, Jiajun; Liu, Enzuo

    2015-07-01

    Uniform transition metal sulfide deposition on a smooth TiO2 surface to form a coating structure is a well-known challenge, caused mainly due to their poor affinities. Herein, we report a facile strategy for fabricating mesoporous 3D few-layered (<4 layers) MoS2 coated TiO2 nanosheet core-shell nanocomposites (denoted as 3D FL-MoS2@TiO2) by a novel two-step method using a smooth TiO2 nanosheet as a template and glucose as a binder. The core-shell structure has been systematically examined and corroborated by transmission electron microscopy, scanning transmission electron microscopy, and X-ray photoelectron spectroscopy analyses. It is found that the resultant 3D FL-MoS2@TiO2 as a lithium-ion battery anode delivers an outstanding high-rate capability with an excellent cycling performance, relating to the unique structure of 3D FL-MoS2@TiO2. The 3D uniform coverage of few-layered (<4 layers) MoS2 onto the TiO2 can remarkably enhance the structure stability and effectively shortens the transfer paths of both lithium ions and electrons, while the strong synergistic effect between MoS2 and TiO2 can significantly facilitate the transport of ions and electrons across the interfaces, especially in the high-rate charge-discharge process. Moreover, the facile fabrication strategy can be easily extended to design other oxide/carbon-sulfide/oxide core-shell materials for extensive applications.Uniform transition metal sulfide deposition on a smooth TiO2 surface to form a coating structure is a well-known challenge, caused mainly due to their poor affinities. Herein, we report a facile strategy for fabricating mesoporous 3D few-layered (<4 layers) MoS2 coated TiO2 nanosheet core-shell nanocomposites (denoted as 3D FL-MoS2@TiO2) by a novel two-step method using a smooth TiO2 nanosheet as a template and glucose as a binder. The core-shell structure has been systematically examined and corroborated by transmission electron microscopy, scanning transmission electron microscopy

  17. Conversion of Questionnaire Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, Danny H; Elwood Jr, Robert H

    During the survey, respondents are asked to provide qualitative answers (well, adequate, needs improvement) on how well material control and accountability (MC&A) functions are being performed. These responses can be used to develop failure probabilities for basic events performed during routine operation of the MC&A systems. The failure frequencies for individual events may be used to estimate total system effectiveness using a fault tree in a probabilistic risk analysis (PRA). Numeric risk values are required for the PRA fault tree calculations that are performed to evaluate system effectiveness. So, the performance ratings in the questionnaire must be converted to relativemore » risk values for all of the basic MC&A tasks performed in the facility. If a specific material protection, control, and accountability (MPC&A) task is being performed at the 'perfect' level, the task is considered to have a near zero risk of failure. If the task is performed at a less than perfect level, the deficiency in performance represents some risk of failure for the event. As the degree of deficiency in performance increases, the risk of failure increases. If a task that should be performed is not being performed, that task is in a state of failure. The failure probabilities of all basic events contribute to the total system risk. Conversion of questionnaire MPC&A system performance data to numeric values is a separate function from the process of completing the questionnaire. When specific questions in the questionnaire are answered, the focus is on correctly assessing and reporting, in an adjectival manner, the actual performance of the related MC&A function. Prior to conversion, consideration should not be given to the numeric value that will be assigned during the conversion process. In the conversion process, adjectival responses to questions on system performance are quantified based on a log normal scale typically used in human error analysis (see A.D. Swain and H

  18. 78 FR 47154 - Core Principles and Other Requirements for Swap Execution Facilities; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-05

    ... COMMODITY FUTURES TRADING COMMISSION 17 CFR Part 37 RIN 3038-AD18 Core Principles and Other... this chapter. Appendix B to Part 37--Guidance on, and Acceptable Practices in, Compliance With Core Principles [Corrected] 2. On page 33600, in the second column, under the heading Core Principle 3 of Section...

  19. High-energy (> 70 KeV) x-ray conversion efficiency measurement on the ARC laser at the National Ignition Facility

    DOE PAGES

    Chen, Hui; Hermann, M. R.; Kalantar, D. H.; ...

    2017-03-16

    Here, the Advanced Radiographic Capability (ARC) laser system at the National Ignition Facility (NIF) is designed to ultimately provide eight beamlets with a pulse duration adjustable from 1 to 30 ps, and energies up to 1.5 kJ per beamlet. Currently, four beamlets have been commissioned. In the first set of 6 commissioning target experiments, the individual beamlets were fired onto gold foil targets with energy up to 1 kJ per beamlet at 20–30 ps pulse length. The x-ray energy distribution and pulse duration were measured, yielding energy conversion efficiencies of 4–9 × 10 –4 for x-rays with energies greater thanmore » 70 keV. With greater than 3 J of such x-rays, ARC provides a high-precision x-ray backlighting capability for upcoming inertial confinement fusion and high-energy-density physics experiments on NIF.« less

  20. 17 CFR 37.1400 - Core Principle 14-System safeguards.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... procedures, and automated systems, that: (1) Are reliable and secure; and (2) Have adequate scalable capacity... 17 Commodity and Securities Exchanges 1 2014-04-01 2014-04-01 false Core Principle 14-System... SWAP EXECUTION FACILITIES System Safeguards § 37.1400 Core Principle 14—System safeguards. The swap...

  1. Redeployment as an alternative to decommissioning. Conversion of a US Department of Energy facility to fish rearing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, B.N.; Herborn, D.I.

    1994-03-01

    The Hanford Site and the Tri-Cities community have before them an unprecedented opportunity to create an economic renaissance based on the unparalleled environmental cleanup mission. The nation and the world await the emergence of the post-Cold War economy and conversion of the national defense complex into new national economic thrusts. The legacy of the Hanford Site national defense mission must not end up simply with the Site being cleaned up and land being restored to near-original conditions. There also needs to be a future economic legacy of a dynamic Tri-Cities community resulting from the cumulative current activities that will havemore » a positive impact for years to come. In anticipation of the eventual completion of the Hanford Site cleanup mission, the US Department of Energy (DOE) has established the Office of Economic Transition to identify and implement policies and actions that will support the cleanup mission of the Site and the long-term economic development of the Tri-Cities area. In the future, it is envisioned that one phase of a vibrant regional economy with a diversified economic job base will be the capability to compete in national and international environmental services markets. Recently, it was realized that the K Area water treatments facilities might be suitable for the rearing of fish. A `marketing` effort was undertaken to match the facility with potential users. At this time, four fish-rearing projects have either been conducted or are in various stages of progress or implementation. These will be described to explain the participants, the purposes, and the scope of each project.« less

  2. Hollow TiO2@Co9S8 Core-Branch Arrays as Bifunctional Electrocatalysts for Efficient Oxygen/Hydrogen Production.

    PubMed

    Deng, Shengjue; Zhong, Yu; Zeng, Yinxiang; Wang, Yadong; Wang, Xiuli; Lu, Xihong; Xia, Xinhui; Tu, Jiangping

    2018-03-01

    Designing ever more efficient and cost-effective bifunctional electrocatalysts for oxygen/hydrogen evolution reactions (OER/HER) is greatly vital and challenging. Here, a new type of binder-free hollow TiO 2 @Co 9 S 8 core-branch arrays is developed as highly active OER and HER electrocatalysts for stable overall water splitting. Hollow core-branch arrays of TiO 2 @Co 9 S 8 are readily realized by the rational combination of crosslinked Co 9 S 8 nanoflakes on TiO 2 core via a facile and powerful sulfurization strategy. Arising from larger active surface area, richer/shorter transfer channels for ions/electrons, and reinforced structural stability, the as-obtained TiO 2 @Co 9 S 8 core-branch arrays show noticeable exceptional electrocatalytic performance, with low overpotentials of 240 and 139 mV at 10 mA cm -2 as well as low Tafel slopes of 55 and 65 mV Dec -1 for OER and HER in alkaline medium, respectively. Impressively, the electrolysis cell based on the TiO 2 @Co 9 S 8 arrays as both cathode and anode exhibits a remarkably low water splitting voltage of 1.56 V at 10 mA cm -2 and long-term durability with no decay after 10 d. The versatile fabrication protocol and smart branch-core design provide a new way to construct other advanced metal sulfides for energy conversion and storage.

  3. Core-Noise

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2010-01-01

    This presentation is a technical progress report and near-term outlook for NASA-internal and NASA-sponsored external work on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system level noise metrics for the 2015, 2020, and 2025 timeframes; the emerging importance of core noise and its relevance to the SFW Reduced-Noise-Aircraft Technical Challenge; the current research activities in the core-noise area, with some additional details given about the development of a high-fidelity combustion-noise prediction capability; the need for a core-noise diagnostic capability to generate benchmark data for validation of both high-fidelity work and improved models, as well as testing of future noise-reduction technologies; relevant existing core-noise tests using real engines and auxiliary power units; and examples of possible scenarios for a future diagnostic facility. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The SFW Reduced-Noise-Aircraft Technical Challenge aims to enable concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries. This reduction of aircraft noise is critical for enabling the anticipated large increase in future air traffic. Noise generated in the jet engine core, by sources such as the compressor, combustor, and turbine, can be a significant contribution to the overall noise signature at low-power conditions, typical of approach flight. At high engine power during takeoff, jet and fan noise have traditionally dominated over core noise. However, current design trends and expected technological advances in engine-cycle design as well as noise-reduction methods are likely to reduce non-core noise even at engine-power points higher than approach. In addition, future low-emission combustor designs could increase

  4. The Role of Protected Areas in the Avoidance of Anthropogenic Conversion in a High Pressure Region: A Matching Method Analysis in the Core Region of the Brazilian Cerrado

    PubMed Central

    Paiva, Rodrigo José Oliveira; Brites, Ricardo Seixas; Machado, Ricardo Bomfim

    2015-01-01

    Global efforts to avoid anthropogenic conversion of natural habitat rely heavily on the establishment of protected areas. Studies that evaluate the effectiveness of these areas with a focus on preserving the natural habitat define effectiveness as a measure of the influence of protected areas on total avoided conversion. Changes in the estimated effectiveness are related to local and regional differences, evaluation methods, restriction categories that include the protected areas, and other characteristics. The overall objective of this study was to evaluate the effectiveness of protected areas to prevent the advance of the conversion of natural areas in the core region of the Brazil’s Cerrado Biome, taking into account the influence of the restriction degree, governmental sphere, time since the establishment of the protected area units, and the size of the area on the performance of protected areas. The evaluation was conducted using matching methods and took into account the following two fundamental issues: control of statistical biases caused by the influence of covariates on the likelihood of anthropogenic conversion and the non-randomness of the allocation of protected areas throughout the territory (spatial correlation effect) and the control of statistical bias caused by the influence of auto-correlation and leakage effect. Using a sample design that is not based on ways to control these biases may result in outcomes that underestimate or overestimate the effectiveness of those units. The matching method accounted for a bias reduction in 94–99% of the estimation of the average effect of protected areas on anthropogenic conversion and allowed us to obtain results with a reduced influence of the auto-correlation and leakage effects. Most protected areas had a positive influence on the maintenance of natural habitats, although wide variation in this effectiveness was dependent on the type, restriction, governmental sphere, size and age group of the unit

  5. Ultrahigh temperature vapor core reactor-MHD system for space nuclear electric power

    NASA Technical Reports Server (NTRS)

    Maya, Isaac; Anghaie, Samim; Diaz, Nils J.; Dugan, Edward T.

    1991-01-01

    The conceptual design of a nuclear space power system based on the ultrahigh temperature vapor core reactor with MHD energy conversion is presented. This UF4 fueled gas core cavity reactor operates at 4000 K maximum core temperature and 40 atm. Materials experiments, conducted with UF4 up to 2200 K, demonstrate acceptable compatibility with tungsten-molybdenum-, and carbon-based materials. The supporting nuclear, heat transfer, fluid flow and MHD analysis, and fissioning plasma physics experiments are also discussed.

  6. Biological assessment of the effects of construction and operation of adepleted uranium hexafluoride conversion facility at the Portsmouth, Ohio,site.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Lonkhuyzen, R.

    The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF{sub 6} inventory to a moremore » stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This biological assessment (BA) has been prepared by DOE, pursuant to the National Environmental Policy Act of 1969 and the Endangered Species Act of 1974, to evaluate potential impacts to federally listed species from the construction and operation of a conversion facility at the DOE Portsmouth site. The Indiana bat is known to occur in the area of the Portsmouth site and may potentially occur on the site during spring or summer. Evaluations of the Portsmouth site indicated that most of the site was found to have poor summer habitat for the Indiana bat because of the small size, isolation, and insufficient maturity of the few woodlands on the site. Potential summer habitat for the Indiana bat was identified outside the developed area

  7. Plum Brook Reactor Facility Control Room during Facility Startup

    NASA Image and Video Library

    1961-02-21

    Operators test the National Aeronautics and Space Administration’s (NASA) Plum Brook Reactor Facility systems in the months leading up to its actual operation. The “Reactor On” signs are illuminated but the reactor core was not yet ready for chain reactions. Just a couple weeks after this photograph, Plum Brook Station held a media open house to unveil the 60-megawatt test reactor near Sandusky, Ohio. More than 60 members of the print media and radio and television news services met at the site to talk with community leaders and representatives from NASA and Atomic Energy Commission. The Plum Brook reactor went critical for the first time on the evening of June 14, 1961. It was not until April 1963 that the reactor reached its full potential of 60 megawatts. The reactor control room, located on the second floor of the facility, was run by licensed operators. The operators manually operated the shim rods which adjusted the chain reaction in the reactor core. The regulating rods could partially or completely shut down the reactor. The control room also housed remote area monitoring panels and other monitoring equipment that allowed operators to monitor radiation sensors located throughout the facility and to scram the reactor instantly if necessary. The color of the indicator lights corresponded with the elevation of the detectors in the various buildings. The reactor could also shut itself down automatically if the monitors detected any sudden irregularities.

  8. Survey of solar thermal test facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masterson, K.

    The facilities that are presently available for testing solar thermal energy collection and conversion systems are briefly described. Facilities that are known to meet ASHRAE standard 93-77 for testing flat-plate collectors are listed. The DOE programs and test needs for distributed concentrating collectors are identified. Existing and planned facilities that meet these needs are described and continued support for most of them is recommended. The needs and facilities that are suitable for testing components of central receiver systems, several of which are located overseas, are identified. The central contact point for obtaining additional details and test procedures for these facilitiesmore » is the Solar Thermal Test Facilities Users' Association in Albuquerque, N.M. The appendices contain data sheets and tables which give additional details on the technical capabilities of each facility. Also included is the 1975 Aerospace Corporation report on test facilities that is frequently referenced in the present work.« less

  9. Influence of SiO2 shell thickness on power conversion efficiency in plasmonic polymer solar cells with Au nanorod@SiO2 core-shell structures

    PubMed Central

    Zhang, Ran; Zhou, Yongfang; Peng, Ling; Li, Xue; Chen, Shufen; Feng, Xiaomiao; Guan, Yuqiao; Huang, Wei

    2016-01-01

    Locating core-shell metal nanoparticles into a photoactive layer or at the interface of photoactive layer/hole extraction layer is beneficial for fully employing surface plasmon energy, thus enhancing power conversion efficiency (PCE) in plasmonic organic photovoltaic devices (OPVs). Herein, we first investigated the influence of silica shell thickness in Au nanorods (NRs)@SiO2 core-shell structures on OPV performances by inserting them into poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) and thieno[3,4-b]thiophene/benzodithiophene (PTB7) interface, and amazedly found that a 2–3 nm silica shell onto Au NRs induces a highest short-circuit current density of 21.2 mA cm−2 and PCE of 9.55%. This is primarily due to an extremely strong local field and a much slower attenuation of localized surface plasmon resonance around ultrathin silica-coated Au NRs, with which the field intensity remains a high value in the active layer, thus sufficiently improves the absorption of PTB7. Our work provides a clear design concept on precise control of the shell of metal nanoparticles to realize high performances in plasmonic OPVs. PMID:27125309

  10. Influence of SiO2 shell thickness on power conversion efficiency in plasmonic polymer solar cells with Au nanorod@SiO2 core-shell structures.

    PubMed

    Zhang, Ran; Zhou, Yongfang; Peng, Ling; Li, Xue; Chen, Shufen; Feng, Xiaomiao; Guan, Yuqiao; Huang, Wei

    2016-04-29

    Locating core-shell metal nanoparticles into a photoactive layer or at the interface of photoactive layer/hole extraction layer is beneficial for fully employing surface plasmon energy, thus enhancing power conversion efficiency (PCE) in plasmonic organic photovoltaic devices (OPVs). Herein, we first investigated the influence of silica shell thickness in Au nanorods (NRs)@SiO2 core-shell structures on OPV performances by inserting them into poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) and thieno[3,4-b]thiophene/benzodithiophene (PTB7) interface, and amazedly found that a 2-3 nm silica shell onto Au NRs induces a highest short-circuit current density of 21.2 mA cm(-2) and PCE of 9.55%. This is primarily due to an extremely strong local field and a much slower attenuation of localized surface plasmon resonance around ultrathin silica-coated Au NRs, with which the field intensity remains a high value in the active layer, thus sufficiently improves the absorption of PTB7. Our work provides a clear design concept on precise control of the shell of metal nanoparticles to realize high performances in plasmonic OPVs.

  11. [caCORE: core architecture of bioinformation on cancer research in America].

    PubMed

    Gao, Qin; Zhang, Yan-lei; Xie, Zhi-yun; Zhang, Qi-peng; Hu, Zhang-zhi

    2006-04-18

    A critical factor in the advancement of biomedical research is the ease with which data can be integrated, redistributed and analyzed both within and across domains. This paper summarizes the Biomedical Information Core Infrastructure built by National Cancer Institute Center for Bioinformatics in America (NCICB). The main product from the Core Infrastructure is caCORE--cancer Common Ontologic Reference Environment, which is the infrastructure backbone supporting data management and application development at NCICB. The paper explains the structure and function of caCORE: (1) Enterprise Vocabulary Services (EVS). They provide controlled vocabulary, dictionary and thesaurus services, and EVS produces the NCI Thesaurus and the NCI Metathesaurus; (2) The Cancer Data Standards Repository (caDSR). It provides a metadata registry for common data elements. (3) Cancer Bioinformatics Infrastructure Objects (caBIO). They provide Java, Simple Object Access Protocol and HTTP-XML application programming interfaces. The vision for caCORE is to provide a common data management framework that will support the consistency, clarity, and comparability of biomedical research data and information. In addition to providing facilities for data management and redistribution, caCORE helps solve problems of data integration. All NCICB-developed caCORE components are distributed under open-source licenses that support unrestricted usage by both non-profit and commercial entities, and caCORE has laid the foundation for a number of scientific and clinical applications. Based on it, the paper expounds caCORE-base applications simply in several NCI projects, of which one is CMAP (Cancer Molecular Analysis Project), and the other is caBIG (Cancer Biomedical Informatics Grid). In the end, the paper also gives good prospects of caCORE, and while caCORE was born out of the needs of the cancer research community, it is intended to serve as a general resource. Cancer research has historically

  12. Impact of HFIR LEU Conversion on Beryllium Reflector Degradation Factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilas, Dan

    2013-10-01

    An assessment of the impact of low enriched uranium (LEU) conversion on the factors that may cause the degradation of the beryllium reflector is performed for the High Flux Isotope Reactor (HFIR). The computational methods, models, and tools, comparisons with previous work, along with the results obtained are documented and discussed in this report. The report documents the results for the gas and neutronic poison production, and the heating in the beryllium reflector for both the highly enriched uranium (HEU) and LEU HFIR configurations, and discusses the impact that the conversion to LEU may have on these quantities. A time-averagingmore » procedure was developed to calculate the isotopic (gas and poisons) production in reflector. The sensitivity of this approach to different approximations is gauged and documented. The results show that the gas is produced in the beryllium reflector at a total rate of 0.304 g/cycle for the HEU configuration; this rate increases by ~12% for the LEU case. The total tritium production rate in reflector is 0.098 g/cycle for the HEU core and approximately 11% higher for the LEU core. A significant increase (up to ~25%) in the neutronic poisons production in the reflector during the operation cycles is observed for the LEU core, compared to the HEU case, for regions close to the core s horizontal midplane. The poisoning level of the reflector may increase by more than two orders of magnitude during long periods of downtime. The heating rate in the reflector is estimated to be approximately 20% lower for the LEU core than for the HEU core. The decrease is due to a significantly lower contribution of the heating produced by the gamma radiation for the LEU core. Both the isotopic (gas and neutronic poisons) production and the heating rates are spatially non-uniform throughout the beryllium reflector volume. The maximum values typically occur in the removable reflector and close to the midplane.« less

  13. Oral Conversations Online: Redefining Oral Competence in Synchronous Environments

    ERIC Educational Resources Information Center

    Lamy, Marie-Noelle

    2004-01-01

    In this article the focus is on methodology for analysing learner-learner oral conversations mediated by computers. With the increasing availability of synchronous voice-based groupware and the additional facilities offered by audio-graphic tools, language learners have opportunities for collaborating on oral tasks, supported by visual and textual…

  14. Principal Prep for Common Core Gaining Traction

    ERIC Educational Resources Information Center

    Gewertz, Catherine

    2012-01-01

    A year ago, top officials in the school leadership world were worried. It seemed to them that principals were being overlooked in national conversations about how to get educators ready for the Common Core State Standards. But that is changing. The past six months have seen a surge of activity to acquaint principals with the new standards and…

  15. Conceptual Core Analysis of Long Life PWR Utilizing Thorium-Uranium Fuel Cycle

    NASA Astrophysics Data System (ADS)

    Rouf; Su'ud, Zaki

    2016-08-01

    Conceptual core analysis of long life PWR utilizing thorium-uranium based fuel has conducted. The purpose of this study is to evaluate neutronic behavior of reactor core using combined thorium and enriched uranium fuel. Based on this fuel composition, reactor core have higher conversion ratio rather than conventional fuel which could give longer operation length. This simulation performed using SRAC Code System based on library SRACLIB-JDL32. The calculation carried out for (Th-U)O2 and (Th-U)C fuel with uranium composition 30 - 40% and gadolinium (Gd2O3) as burnable poison 0,0125%. The fuel composition adjusted to obtain burn up length 10 - 15 years under thermal power 600 - 1000 MWt. The key properties such as uranium enrichment, fuel volume fraction, percentage of uranium are evaluated. Core calculation on this study adopted R-Z geometry divided by 3 region, each region have different uranium enrichment. The result show multiplication factor every burn up step for 15 years operation length, power distribution behavior, power peaking factor, and conversion ratio. The optimum core design achieved when thermal power 600 MWt, percentage of uranium 35%, U-235 enrichment 11 - 13%, with 14 years operation length, axial and radial power peaking factor about 1.5 and 1.2 respectively.

  16. Surface profile control of FeNiPt/Pt core/shell nanowires for oxygen reduction reaction

    DOE PAGES

    Zhu, Huiyuan; Zhang, Sen; Su, Dong; ...

    2015-03-18

    The ever-increasing energy demand requires renewable energy schemes with low environmental impacts. Electrochemical energy conversion devices, such as fuel cells, combine fuel oxidization and oxygen reduction reactions and have been studied extensively for renewable energy applications. However, their energy conversion efficiency is often limited by kinetically sluggish chemical conversion reactions, especially oxygen reduction reaction (ORR). [1-5] To date, extensive efforts have been put into developing efficient ORR catalysts with controls on catalyst sizes, compositions, shapes and structures. [6-12] Recently, Pt-based catalysts with core/shell and one-dimensional nanowire (NW) morphologies were found to be promising to further enhance ORR catalysis.more » With the core/shell structure, the ORR catalysis of a nanoparticle (NP) catalyst can be tuned by both electronic and geometric effects at the core/shell interface. [10,13,14] With the NW structure, the catalyst interaction with the conductive support can be enhanced to facilitate electron transfer between the support and the NW catalyst and to promote ORR. [11,15,16]« less

  17. Conversion of far ultraviolet to visible radiation: absolute measurements of the conversion efficiency of tetraphenyl butadiene

    NASA Astrophysics Data System (ADS)

    Vest, Robert E.; Coplan, Michael A.; Clark, Charles W.

    Far ultraviolet (FUV) scintillation of noble gases is used in dark matter and neutrino research and in neutron detection. Upon collisional excitation, noble gas atoms recombine into excimer molecules that decay by FUV emission. Direct detection of FUV is difficult. Another approach is to convert it to visible light using a wavelength-shifting medium. One such medium, tetraphenyl butadiene (TPB) can be vapor-deposited on substrates. Thus the quality of thin TPB films can be tightly controlled. We have measured the absolute efficiency of FUV-to-visible conversion by 1 μm-thick TPB films vs. FUV wavelengths between 130 and 300 nm, with 1 nm resolution. The energy efficiency of FUV to visible conversion varies between 1% and 5%. We make comparisons with other recent results. Work performed at the NIST SURF III Synchrotron Ultraviolet Radiation Facility,.

  18. Pricing the Services of Scientific Cores. Part I: Charging Subsidized and Unsubsidized Users.

    ERIC Educational Resources Information Center

    Fife, Jerry; Forrester, Robert

    2002-01-01

    Explaining that scientific cores at research institutions support shared resources and facilities, discusses devising a method of charging users for core services and controlling and managing the rates. Proposes the concept of program-based management to cover sources of core support that are funding similar work. (EV)

  19. Lead Coolant Test Facility Systems Design, Thermal Hydraulic Analysis and Cost Estimate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soli Khericha; Edwin Harvego; John Svoboda

    2012-01-01

    The Idaho National Laboratory prepared a preliminary technical and functional requirements (T&FR), thermal hydraulic design and cost estimate for a lead coolant test facility. The purpose of this small scale facility is to simulate lead coolant fast reactor (LFR) coolant flow in an open lattice geometry core using seven electrical rods and liquid lead or lead-bismuth eutectic coolant. Based on review of current world lead or lead-bismuth test facilities and research needs listed in the Generation IV Roadmap, five broad areas of requirements were identified as listed: (1) Develop and Demonstrate Feasibility of Submerged Heat Exchanger; (2) Develop and Demonstratemore » Open-lattice Flow in Electrically Heated Core; (3) Develop and Demonstrate Chemistry Control; (4) Demonstrate Safe Operation; and (5) Provision for Future Testing. This paper discusses the preliminary design of systems, thermal hydraulic analysis, and simplified cost estimate. The facility thermal hydraulic design is based on the maximum simulated core power using seven electrical heater rods of 420 kW; average linear heat generation rate of 300 W/cm. The core inlet temperature for liquid lead or Pb/Bi eutectic is 4200 C. The design includes approximately seventy-five data measurements such as pressure, temperature, and flow rates. The preliminary estimated cost of construction of the facility is $3.7M (in 2006 $). It is also estimated that the facility will require two years to be constructed and ready for operation.« less

  20. Facile preparation of polymer microspheres and fibers with a hollow core and porous shell for oil adsorption and oil/water separation

    NASA Astrophysics Data System (ADS)

    Gao, Jiefeng; Song, Xin; Huang, Xuewu; Wang, Ling; Li, Bei; Xue, Huaiguo

    2018-05-01

    Non-solvent assisted electrospinning was proposed for fabricating Polymethylmethacrylate (PMMA) microspheres and fibers with a hollow core and porous shell, which could be used for oil adsorption and oil/water separation. Propanediol was chosen as the non-solvent because of its high surface tension and viscosity as well as large phase separation tendency with polymer, which was beneficial to the formation of both the hollow core and porous shell during the electrospinning. With the increase of the polymer solution concentration, the microsphere gradually evolved to the bead-on-string geometry and finally to a continuous fiber form, indicating the transition from electro-spraying to electrospinning. The hollow core and dense surface pores enhanced the hydrophobicity, oleophilicity, permeability, and specific surface area of the fibers, and hence imparted the fibrous mat a high oil adsorption capacity. When the porous hollow microspheres were electro-sprayed onto the stainless steel mesh followed by the PDMS modification, the modified mesh became super-hydrophobic and super-oleophilic with the contact angle of 153° and sliding angle of 4°. The as-prepared mesh showed rapid oil/water separation with high efficiency and excellent recycling performance. The flux for separation of oil/water mixture could reach as high as 11,000 L m-2 h-1. This facile non-solvent assisted electrospinning method provides a new avenue for preparation of multifunctional porous materials which possess potential applications in large-scale oil/water separation.

  1. Pricing the Services of Scientific Cores. Part II: Charging Outside Users.

    ERIC Educational Resources Information Center

    Fife, Jerry; Forrester, Robert

    2002-01-01

    Explaining that scientific cores at research institutions support shared resources and facilities, considers pricing of services to users from outside the institution. Proposes a method of allocating charges from the cores to projects with multiple funding sources through program-based management. Describes aspects of an example program: price of…

  2. Nuclear thermal propulsion test facility requirements and development strategy

    NASA Technical Reports Server (NTRS)

    Allen, George C.; Warren, John; Clark, J. S.

    1991-01-01

    The Nuclear Thermal Propulsion (NTP) subpanel of the Space Nuclear Propulsion Test Facilities Panel evaluated facility requirements and strategies for nuclear thermal propulsion systems development. High pressure, solid core concepts were considered as the baseline for the evaluation, with low pressure concepts an alternative. The work of the NTP subpanel revealed that a wealth of facilities already exists to support NTP development, and that only a few new facilities must be constructed. Some modifications to existing facilities will be required. Present funding emphasis should be on long-lead-time items for the major new ground test facility complex and on facilities supporting nuclear fuel development, hot hydrogen flow test facilities, and low power critical facilities.

  3. Imaging of High-Z doped, Imploded Capsule Cores

    NASA Astrophysics Data System (ADS)

    Prisbrey, Shon T.; Edwards, M. John; Suter, Larry J.

    2006-10-01

    The ability to correctly ascertain the shape of imploded fusion capsules is critical to be able to achieve the spherical symmetry needed to maximize the energy yield of proposed fusion experiments for the National Ignition Facility. Implosion of the capsule creates a hot, dense core. The introduction of a high-Z dopant into the gas-filled core of the capsule increases the amount of bremsstrahlung radiation produced in the core and should make the imaging of the imploded core easier. Images of the imploded core can then be analyzed to ascertain the symmetry of the implosion. We calculate that the addition of Ne gas into a deuterium gas core will increase the amount of radiation emission while preserving the surrogacy of the radiation and hydrodynamics in the indirect drive NIF hohlraum in the proposed cryogenic hohlraums. The increased emission will more easily enable measurement of asymmetries and tuning of the implosion.

  4. Titanium dioxide@polypyrrole core-shell nanowires for all solid-state flexible supercapacitors

    NASA Astrophysics Data System (ADS)

    Yu, Minghao; Zeng, Yinxiang; Zhang, Chong; Lu, Xihong; Zeng, Chenghui; Yao, Chenzhong; Yang, Yangyi; Tong, Yexiang

    2013-10-01

    Herein, we developed a facile two-step process to synthesize TiO2@PPy core-shell nanowires (NWs) on carbon cloth and reported their improved electrochemical performance for flexible supercapacitors (SCs). The fabricated solid-state SC device based on TiO2@PPy core-shell NWs not only has excellent flexibility, but also exhibits remarkable electrochemical performance.Herein, we developed a facile two-step process to synthesize TiO2@PPy core-shell nanowires (NWs) on carbon cloth and reported their improved electrochemical performance for flexible supercapacitors (SCs). The fabricated solid-state SC device based on TiO2@PPy core-shell NWs not only has excellent flexibility, but also exhibits remarkable electrochemical performance. Electronic supplementary information (ESI) available: Experimental details, XRD pattern, FT-IR absorption spectrum and CV curves of TiO2@PPy NWs, and SEM images of the PPy. See DOI: 10.1039/c3nr03578f

  5. Resonant spin-flavor conversion of supernova neutrinos: Dependence on presupernova models and future prospects

    NASA Astrophysics Data System (ADS)

    Ando, Shin'ichiro; Sato, Katsuhiko

    2003-07-01

    We study the resonant spin-flavor (RSF) conversion of supernova neutrinos, which is induced by the interaction between the nonzero neutrino magnetic moment and the supernova magnetic fields, and its dependence on presupernova models. As the presupernova models, we adopt the latest ones by Woosley, Heger, and Weaver, and, further, models with both solar and zero metallicity are investigated. Since the (1-2Ye) profile of the new presupernova models, which is responsible for the RSF conversion, suddenly drops at the resonance region, the completely adiabatic RSF conversion is not realized, even if μνB0=(10-12μB)(1010 G), where B0 is the strength of the magnetic field at the surface of the iron core. In particular for the model with zero metallicity, the conversion is highly nonadiabatic in the high energy region, reflecting the (1-2Ye) profile of the model. In calculating the flavor conversion, we find that the shock wave propagation, which changes density profiles drastically, is a much more severe problem than it is for the pure Mikheyev-Smirnov-Wolfenstein (MSW) conversion case. This is because the RSF effect occurs at a far deeper region than the MSW effect. To avoid the uncertainty concerning the shock propagation, we restrict our discussion to 0.5 s after the core bounce (and for more conservative discussion, 0.25 s), during which the shock wave is not expected to affect the RSF region. We also evaluate the energy spectrum at the Super-Kamiokande detector for various models using the calculated conversion probabilities, and find that it is very difficult to obtain useful information on the supernova metallicities and magnetic fields or on the neutrino magnetic moment from the supernova neutrino observation. Future prospects are also discussed.

  6. IJS procedure for RELAP5 to TRACE input model conversion using SNAP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prosek, A.; Berar, O. A.

    2012-07-01

    The TRAC/RELAP Advanced Computational Engine (TRACE) advanced, best-estimate reactor systems code developed by the U.S. Nuclear Regulatory Commission comes with a graphical user interface called Symbolic Nuclear Analysis Package (SNAP). Much of efforts have been done in the past to develop the RELAP5 input decks. The purpose of this study is to demonstrate the Institut 'Josef Stefan' (IJS) conversion procedure from RELAP5 to TRACE input model of BETHSY facility. The IJS conversion procedure consists of eleven steps and is based on the use of SNAP. For calculations of the selected BETHSY 6.2TC test the RELAP5/MOD3.3 Patch 4 and TRACE V5.0more » Patch 1 were used. The selected BETHSY 6.2TC test was 15.24 cm equivalent diameter horizontal cold leg break in the reference pressurized water reactor without high pressure and low pressure safety injection. The application of the IJS procedure for conversion of BETHSY input model showed that it is important to perform the steps in proper sequence. The overall calculated results obtained with TRACE using the converted RELAP5 model were close to experimental data and comparable to RELAP5/MOD3.3 calculations. Therefore it can be concluded, that proposed IJS conversion procedure was successfully demonstrated on the BETHSY integral test facility input model. (authors)« less

  7. Space Launch System, Core Stage, Structural Test Design and Implementation

    NASA Technical Reports Server (NTRS)

    Shaughnessy, Ray

    2017-01-01

    As part of the National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, engineers at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama are working to design, develop and implement the SLS Core Stage structural testing. The SLS will have the capability to return humans to the Moon and beyond and its first launch is scheduled for December of 2017. The SLS Core Stage consist of five major elements; Forward Skirt, Liquid Oxygen (LOX) tank, Intertank (IT), Liquid Hydrogen (LH2) tank and the Engine Section (ES). Structural Test Articles (STA) for each of these elements are being designed and produced by Boeing at Michoud Assembly Facility located in New Orleans, La. The structural test for the Core Stage STAs (LH2, LOX, IT and ES) are to be conducted by the MSFC Test Laboratory. Additionally, the MSFC Test Laboratory manages the Structural Test Equipment (STE) design and development to support the STAs. It was decided early (April 2012) in the project life that the LH2 and LOX tank STAs would require new test stands and the Engine Section and Intertank would be tested in existing facilities. This decision impacted schedules immediately because the new facilities would require Construction of Facilities (C of F) funds that require congressional approval and long lead times. The Engine Section and Intertank structural test are to be conducted in existing facilities which will limit lead times required to support the first launch of SLS. With a SLS launch date of December, 2017 Boeing had a need date for testing to be complete by September of 2017 to support flight certification requirements. The test facilities were required to be ready by October of 2016 to support test article delivery. The race was on to get the stands ready before Test Article delivery and meet the test complete date of September 2017. This paper documents the past and current design and development phases and the supporting processes, tools, and

  8. Optimal siting of solid waste-to-value-added facilities through a GIS-based assessment.

    PubMed

    Khan, Md Mohib-Ul-Haque; Vaezi, Mahdi; Kumar, Amit

    2018-01-01

    Siting a solid waste conversion facility requires an assessment of solid waste availability as well as ensuring compliance with environmental, social, and economic factors. The main idea behind this study was to develop a methodology to locate suitable locations for waste conversion facilities considering waste availability as well as environmental and social constraints. A geographic information system (GIS) spatial analysis was used to identify the most suitable areas and to screen out unsuitable lands. The analytic hierarchy process (AHP) was used for a multi-criteria evaluation of relative preferences of different environmental and social factors. A case study was conducted for Alberta, a western province in Canada, by performing a province-wide waste availability assessment. The total available waste considered in this study was 4,077,514tonnes/year for 19 census divisions collected from 79 landfills. Finally, a location-allocation analysis was performed to determine suitable locations for 10 waste conversion facilities across the province. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Carbon-Coated Gold Nanorods: A Facile Route to Biocompatible Materials for Photothermal Applications.

    PubMed

    Kaneti, Yusuf Valentino; Chen, Chuyang; Liu, Minsu; Wang, Xiaochun; Yang, Jia Lin; Taylor, Robert Allen; Jiang, Xuchuan; Yu, Aibing

    2015-11-25

    Gold nanorods and their core-shell nanocomposites have been widely studied because of their well-defined anisotropy and unique optical properties and applications. This study demonstrates a facile hydrothermal synthesis strategy for generating carbon coating on gold nanorods (AuNRs@C) under mild conditions (<200 °C), where the carbon shell is composed of polymerized sugar molecules (glucose). The structure and composition of the produced core-shell nanocomposites were characterized using advanced microscopic and spectroscopic techniques. The functional properties, particularly the photothermal and biocompatibility properties of the produced AuNRs@C, were quantified to assess their potential in photothermal hyperthermia. These AuNRs@C were tested in vitro (under representative treatment conditions) using near-infrared (NIR) light irradiation. It was found that the AuNRs produced here exhibit exemplary heat generation capability. Temperature changes of 10.5, 9, and 8 °C for AuNRs@C were observed with carbon shell thicknesses of 10, 17, and 25 nm, respectively, at a concentration of 50 μM, after 600 s of irradiation with a laser power of 0.17 W/cm(2). In addition, the synthesized AuNRs@C also exhibit good biocompatibility toward two soft tissue sarcoma cell lines (HT1080, a fibrosarcoma; and GCT, a fibrous histiocytoma). The cell viability study shows that AuNRs@C (at a concentration of <0.1 mg/mL) core-shell particles induce significantly lower cytotoxicity on both HT1080 and GCT cell lines, as compared with cetyltrimethylammonium bromide (CTAB)-capped AuNRs. Furthermore, similar to PEG-modified AuNRs, they are also safe to both HT1080 and GCT cell lines. This biocompatibility results from a surface full of -OH or -COH groups, which are suitable for linking and are nontoxic Therefore, the AuNRs@C represent a viable alternative to PEG-coated AuNRs for facile synthesis and improved photothermal conversion. Overall, these findings open up a new class of carbon

  10. Megawatt Class Nuclear Space Power Systems (MCNSPS) conceptual design and evaluation report. Volume 3, technologies 2: Power conversion

    NASA Technical Reports Server (NTRS)

    Wetch, J. R.

    1988-01-01

    The major power conversion concepts considered for the Megawatt Class Nuclear Space Power System (MCNSPS) are discussed. These concepts include: (1) Rankine alkali-metal-vapor turbine alternators; (2) in-core thermionic conversion; (3) Brayton gas turbine alternators; and (4) free piston Stirling engine linear alternators. Considerations important to the coupling of these four conversion alternatives to an appropriate nuclear reactor heat source are examined along with the comparative performance characteristics of the combined systems meeting MCNSPS requirements.

  11. Common Core Preparation in Special Education Teacher Education Programs: Beginning the Conversation

    ERIC Educational Resources Information Center

    Murphy, Michelle R.; Marshall, Kathleen J.

    2015-01-01

    The Common Core State Standards (CCSS) were developed to encourage a common focus of instruction and evaluation in the areas of mathematics, reading/language arts, writing, speaking, and listening. As of 2011, all but five states have adopted CCSS for math and English Language Arts (ELA), with another adopting only the standards for ELA. With…

  12. 17 CFR 37.900 - Core Principle 9-Timely publication of trading information.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... publication of trading information. 37.900 Section 37.900 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION SWAP EXECUTION FACILITIES Timely Publication of Trading Information § 37.900 Core Principle 9—Timely publication of trading information. (a) In general. The swap execution facility shall...

  13. Estimate of radiation release from MIT reactor with un-finned LEU core during Maximum Hypothetical Accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Kaichao; Hu, Lin-wen; Newton, Thomas

    2017-05-01

    The Massachusetts Institute of Technology Reactor (MITR-II) is a research reactor in Cambridge, Massachusetts designed primarily for experiments using neutron beam and in-core irradiation facilities. At 6 MW, it delivers neutron flux and energy spectrum comparable to light water reactor (LWR) power reactors in a compact core using highly enriched uranium (HEU) fuel. In the framework of nonproliferation policy, the international community aims to minimize the use of HEU in civilian facilities. Within this context, research and test reactors have started a program to convert HEU fuel to low enriched uranium (LEU) fuel. A new type of LEU fuel basedmore » on a high density alloy of uranium and molybdenum (U-10Mo) is expected to allow the conversion of U.S. domestic high performance reactors like MITR. The current study focuses on the impacts of MITR Maximum Hypothetical Accident (MHA), which is also the Design Basis Accident (DBA), with LEU fuel. The MHA for the MITR is postulated to be a coolant flow blockage in the fuel element that contains the hottest fuel plate. It is assumed that the entire active portion of five fuel plates melts. The analysis shows that, within a 2-h period and by considering all the possible radiation sources and dose pathways, the overall off-site dose is 302.1 mrem (1 rem ¼ 0.01 Sv) Total Effective Dose Equivalent (TEDE) at 8 m exclusion area boundary (EAB) and a higher dose of 392.8 mrem TEDE is found at 21 m EAB. In all cases the dose remains below the 500 mrem total TEDE limit goal based on NUREG-1537 guidelines.« less

  14. Facile formation of 2D Co2P@Co3O4 microsheets through in-situ toptactic conversion and surface corrosion: Bifunctional electrocatalysts towards overall water splitting

    NASA Astrophysics Data System (ADS)

    Yao, Lihua; Zhang, Nan; Wang, Yin; Ni, Yuanman; Yan, Dongpeng; Hu, Changwen

    2018-01-01

    Exploring efficient non-precious electrocatalysts for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is crucial for many renewable energy conversion processes. In this work, we report that 2D Co2P@Co3O4 microsheets can be prepared through an in-situ toptactic conversion from single-crystal β-Co(OH)2 microplatelets, associated with a surface phosphatization and corrosion process. The resultant Co2P@Co3O4 2D hybrid materials can further serve as self-supported bifunctional catalytic electrodes to drive the overall water splitting for HER and OER simultaneously, with low overpotentials and high long-term stability. Furthermore, a water electrolyzer based on Co2P@Co3O4 hybrid as both anode and cathode is fabricated, which achieves 10 mA cm-2 current at only 1.57 V during water splitting process. Therefore, this work provides a facile strategy to obtain 2D Co2P-based micro/nanostructures, which act as low-cost and highly active electrocatalysts towards overall water splitting application.

  15. Design of batch audio/video conversion platform based on JavaEE

    NASA Astrophysics Data System (ADS)

    Cui, Yansong; Jiang, Lianpin

    2018-03-01

    With the rapid development of digital publishing industry, the direction of audio / video publishing shows the diversity of coding standards for audio and video files, massive data and other significant features. Faced with massive and diverse data, how to quickly and efficiently convert to a unified code format has brought great difficulties to the digital publishing organization. In view of this demand and present situation in this paper, basing on the development architecture of Sptring+SpringMVC+Mybatis, and combined with the open source FFMPEG format conversion tool, a distributed online audio and video format conversion platform with a B/S structure is proposed. Based on the Java language, the key technologies and strategies designed in the design of platform architecture are analyzed emphatically in this paper, designing and developing a efficient audio and video format conversion system, which is composed of “Front display system”, "core scheduling server " and " conversion server ". The test results show that, compared with the ordinary audio and video conversion scheme, the use of batch audio and video format conversion platform can effectively improve the conversion efficiency of audio and video files, and reduce the complexity of the work. Practice has proved that the key technology discussed in this paper can be applied in the field of large batch file processing, and has certain practical application value.

  16. Efficient tungsten oxide/bismuth oxyiodide core/shell photoanode for photoelectrochemical water splitting

    NASA Astrophysics Data System (ADS)

    Ma, Haipeng; Zhang, Jing; Liu, Zhifeng

    2017-11-01

    The novel WO3 nanorods (NRs)/BiOI core/shell structure composite is used as an efficient photoanode applied in photoelectrochemical (PEC) water splitting for the first time. It is synthesized via facile hydrothermal method and, successive ionic layer adsorption and reaction (SILAR) process. This facile synthesis route can achieve uniform WO3/BiOI core/shell composite nanostructures and obtain varied BiOI morphologies simultaneously. The WO3 NRs/BiOI-20 composite exhibits enhanced PEC activity compared to pristine WO3 with a photocurrent density of 0.79 mA cm-2 measured at 0.8 V vs. RHE under AM 1.5G. This excellent performance benefits from the broader absorption spectrum and suppressed electron-hole recombination. This novel core/shell composite may provide insight in developing more efficient solar driven photoelectrodes.

  17. POWER-BURST FACILITY (PBF) CONCEPTUAL DESIGN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wasserman, A.A.; Johnson, S.O.; Heffner, R.E.

    1963-06-21

    A description is presented of the conceptual design of a high- performance, pulsed reactor called the Power Burst Facility (PBF). This reactor is designed to generate power bursts with initial asymptotic periods as short as 1 msec, producing energy releases large enough to destroy entire fuel subassemblies placed in a capsule or flow loop mounted in the reactor, all without damage to the reactor itself. It will be used primarily to evaluate the consequences and hazards of very rapid destructive accidents in reactors representing the entire range of current nuclear technology as applied to power generation, propulsion, and testing. Itmore » will also be used to carry out detailed studies of nondestructive reactivity feedback mechanisms in the shortperiod domain. The facility was designed to be sufficiently flexible to accommodate future cores of even more advanced design. The design for the first reactor core is based upon proven technology; hence, completion of the final design of this core will involve no significant development delays. Construction of the PBF is proposed to begin in September 1984, and is expected to take approximately 20 months to complete. (auth)« less

  18. TREE Simulation Facilities, Second Edition, Revision 2

    DTIC Science & Technology

    1979-01-01

    included radiation effects on propellants , ordnance, electronics and chemicals, vehicle shielding, neutron radiography , dosimetry, and health physics...Special Capabilities 2.11.10.1 Radiography Facility 2.11.10.2 Flexo-Rabbit System Support Capabilities 2.11.11.1 Staff 2.11.11.2 Electronics...5,400-MW pulsing operation (experimental dosimetry values for a typical core loading of 94 fuel elements). 2-156 2-46 ACPR radiography facility

  19. Investigation of the Performance of D 2O-Cooled High-Conversion Reactors for Fuel Cycle Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiruta, Hikaru; Youinou, Gilles

    2013-09-01

    This report presents FY13 activities for the analysis of D 2O cooled tight-pitch High-Conversion PWRs (HCPWRs) with U-Pu and Th-U fueled cores aiming at break-even or near breeder conditions while retaining the negative void reactivity. The analyses are carried out from several aspects which could not be covered in FY12 activities. SCALE 6.1 code system is utilized, and a series of simple 3D fuel pin-cell models are developed in order to perform Monte Carlo based criticality and burnup calculations. The performance of U-Pu fueled cores with axial and internal blankets is analyzed in terms of their impact on the relativemore » fissile Pu mass balance, initial Pu enrichment, and void coefficient. In FY12, Pu conversion performances of D 2O-cooled HCPWRs fueled with MOX were evaluated with small sized axial/internal DU blankets (approximately 4cm of axial length) in order to ensure the negative void reactivity, which evidently limits the conversion performance of HCPWRs. In this fiscal year report, the axial sizes of DU blankets are extended up to 30 cm in order to evaluate the amount of DU necessary to reach break-even and/or breeding conditions. Several attempts are made in order to attain the milestone of the HCPWR designs (i.e., break-even condition and negative void reactivity) by modeling of HCPWRs under different conditions such as boiling of D 2O coolant, MOX with different 235U enrichment, and different target burnups. A similar set of analyses are performed for Th-U fueled cores. Several promising characteristics of 233U over other fissile like 239Pu and 235U, most notably its higher fission neutrons per absorption in thermal and epithermal ranges combined with lower ___ in the fast range than 239Pu allows Th-U cores to be taller than MOX ones. Such an advantage results in 4% higher relative fissile mass balance than that of U-Pu fueled cores while retaining the negative void reactivity until the target burnup of 51 GWd/t. Several other distinctions

  20. CHANG-ES - XI. Circular polarization in the cores of nearby galaxies

    NASA Astrophysics Data System (ADS)

    Irwin, Judith A.; Henriksen, Richard N.; WeŻgowiec, Marek; Damas-Segovia, Ancor; Wang, Q. Daniel; Krause, Marita; Heald, George; Dettmar, Ralf-Jürgen; Li, Jiang-Tao; Wiegert, Theresa; Stein, Yelena; Braun, Timothy T.; Im, Jisung; Schmidt, Philip; Macdonald, Scott; Miskolczi, Arpad; Merritt, Alison; Mora-Partiarroyo, S. C.; Saikia, D. J.; Sotomayor, Carlos; Yang, Yang

    2018-06-01

    We detect five galaxies in the Continuum Halos in Nearby Galaxies - an EVLA Survey (CHANG-ES) sample that show circular polarization (CP) at L band in our high-resolution data sets. Two of the galaxies (NGC 4388 and NGC 4845) show strong Stokes V/I ≡ mC ˜ 2 per cent, two (NGC 660 and NGC 3628) have values of mC ˜ 0.3 per cent, and NGC 3079 is a marginal detection at mC ˜ 0.2 per cent. The two strongest mC galaxies also have the most luminous X-ray cores and the strongest internal absorption in X-rays. We have expanded on our previous Faraday conversion interpretation and analysis and provide analytical expressions for the expected V signal for a general case in which the cosmic ray (CR) electron energy spectral index can take on any value. We provide examples as to how such expressions could be used to estimate magnetic field strengths and the lower energy cut-off for CR electrons. Four of our detections are resolved, showing unique structures, including a jet in NGC 4388 and a CP `conversion disc' in NGC 4845. The conversion disc is inclined to the galactic disc but is perpendicular to a possible outflow direction. Such CP structures have never before been seen in any galaxy to our knowledge. None of the galaxy cores show linear polarization at L band. Thus radio CP may provide a unique probe of the physical conditions in the cores of active galactic nuclei.

  1. St. Petersburg Coastal and Marine Science Center's Core Archive Portal

    USGS Publications Warehouse

    Reich, Chris; Streubert, Matt; Dwyer, Brendan; Godbout, Meg; Muslic, Adis; Umberger, Dan

    2012-01-01

    This Web site contains information on rock cores archived at the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC). Archived cores consist of 3- to 4-inch-diameter coral cores, 1- to 2-inch-diameter rock cores, and a few unlabeled loose coral and rock samples. This document - and specifically the archive Web site portal - is intended to be a 'living' document that will be updated continually as additional cores are collected and archived. This document may also contain future references and links to a catalog of sediment cores. Sediment cores will include vibracores, pushcores, and other loose sediment samples collected for research purposes. This document will: (1) serve as a database for locating core material currently archived at the USGS SPCMSC facility; (2) provide a protocol for entry of new core material into the archive system; and, (3) set the procedures necessary for checking out core material for scientific purposes. Core material may be loaned to other governmental agencies, academia, or non-governmental organizations at the discretion of the USGS SPCMSC curator.

  2. Organizations as machines, organizations as conversations: two core metaphors and their consequences.

    PubMed

    Suchman, Anthony L

    2011-12-01

    One factor contributing to the limited success of organizational change initiatives is the use of an outmoded conceptual model: the organization as machine. This metaphor leads to the creation of detailed blueprints for desired changes; invites unrealistic expectations of control; and creates anxiety, blame and defensiveness when events inevitably do not proceed according to plan, thus hindering the work. An alternative conceptualization--the organization as conversation--portrays an organization not as a reified object upon which we can act but as self-organizing patterns of thinking (organizational identity and knowledge) and relating (organizational culture) that exist in the medium of human interaction in which we participate. Principles of complexity dynamics (self-organization) have important implications for organizational change practices. (1) Organizational change requires mindful participation--reflecting on and talking about what we are doing together here and now, what patterns of thinking and interacting we are enacting, and what new behaviors might interrupt old patterns or give rise to new ones. (2) Diversity and responsiveness favor the emergence of novel patterns. Skilled facilitation can enhance these characteristics when novelty is desirable; checklists and protocols can diminish these characteristics when consistency and reliability are needed. (3) We cannot know in advance the outcomes of our actions so we need to hold plans lightly, value "not knowing" and practice emergent design. The organization-as-conversation perspective also has important implications for T3 translational research, redefining its purpose, suggesting new methodologies, and requiring new approaches for evaluating proposed and completed projects.

  3. Topic Negotiation in Peer Group Oral Assessment Situations: A Conversation Analytic Approach

    ERIC Educational Resources Information Center

    Gan, Zhengdong; Davison, Chris; Hamp-Lyons, Liz

    2009-01-01

    This study examines the production of topical talk in peer collaborative negotiation in an interactive assessment innovation context. The ability to stay on topic, to move from topic to topic and to introduce new topics appropriately is at the core of communicative competence. Applying conversation analysis (CA), we describe and analyze how one…

  4. Monodisperse Metal-Organic Framework Nanospheres with Encapsulated Core-Shell Nanoparticles Pt/Au@Pd@{Co2(oba)4(3-bpdh)2}4H2O for the Highly Selective Conversion of CO2 to CO.

    PubMed

    Zhao, Xi; Xu, Haitao; Wang, XiaoXiao; Zheng, Zhizhong; Xu, Zhenliang; Ge, Jianping

    2018-05-02

    A new microporous metal-organic framework (MOF) with formula {Co 2 (oba) 4 (3-bpdh) 2 }4H 2 O [oba = 4,4'-oxybis(benzoic acid); 3-bpdh = N, N'-bis-(1-pyridine-3-yl-ethylidene)-hydrazine] was assembled, and its morphology was found to undergo a microrod-to-nanosphere transformation with temperature variation. Core-shell Au@Pd functional nanoparticles (NPs) were successfully encapsulated in the center of the monodisperse nanospheres, and Pt NPs were well-dispersed and fully immobilized on the surface of Au@Pd@1Co to build the Pt/Au@Pd@1Co composites, which exhibited NPs catalytic activity for the reverse water gas shift reaction. The core-shell Au@Pd NPs in MOF significantly enchanced the CO selectivity of the catalyst, and the Pt NP loading on the surface of the nanosphere afforded a desirable CO 2 conversion.

  5. Synthesis, Structural Characterization and Up-Conversion Luminescence Properties of NaYF4:Er3+,Yb3+@MOFs Nanocomposites

    NASA Astrophysics Data System (ADS)

    Giang, Lam Thi Kieu; Marciniak, Lukasz; Huy, Tran Quang; Vu, Nguyen; Le, Ngo Thi Hong; Binh, Nguyen Thanh; Lam, Tran Dai; Minh, Le Quoc

    2017-10-01

    This paper describes a facile synthesis of NaYF4:Er3+,Yb3+ nanoparticles embraced in metal-organic frameworks (MOFs), known as NaYF4:Er3+, Yb3+@MOFs core/shell nanostructures, by using iron(III) carboxylate (MIL-100) and zeolitic imidazolate frameworks (ZIF-8). Morphological, structural and optical characterization of these nanostructures were investigated by field emission-scanning electron microscopy, Fourier transform infrared spectroscopy, x-ray diffraction, and up-conversion luminescence measurements. Results showed that spherical-shaped NaYF4:Er3+,Yb3+@MIL-100 nanocomposites with diameters of 150-250 nm, and rod-shaped NaYF4:Er3+,Yb3+@ZIF-8 nanocomposites with lengths of 300-550 nm, were successfully synthesized. Under a 980-nm laser excitation at room temperature, the NaYF4:Er3+,Yb3+@MOFs nanocomposites exhibited strong up-conversion luminescence with two emission bands in the green part of spectrum at 520 nm and 540 nm corresponding to the 2H11/2 → 4I15/2 and 4S3/2 → 4I15/2 transitions of Er3+ ions, respectively, and a red emission band at 655 nm corresponding to the 4F9/2 → 4I15/2 transition of Er3+ ions. The above properties of NaYF4:Er3+,Yb3+@MOFs make them promising candidates for applications in biotechnology.

  6. Facile Synthesis of Core/Shell-like NiCo2O4-Decorated MWCNTs and its Excellent Electrocatalytic Activity for Methanol Oxidation

    PubMed Central

    Ko, Tae-Hoon; Devarayan, Kesavan; Seo, Min-Kang; Kim, Hak-Yong; Kim, Byoung-Suhk

    2016-01-01

    The design and development of an economic and highly active non-precious electrocatalyst for methanol electrooxidation is challenging due to expensiveness of the precursors as well as processes and non-ecofriendliness. In this study, a facile preparation of core-shell-like NiCo2O4 decorated MWCNTs based on a dry synthesis technique was proposed. The synthesized NiCo2O4/MWCNTs were characterized by infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and selected area energy dispersive spectrum. The bimetal oxide nanoparticles with an average size of 6 ± 2 nm were homogeneously distributed onto the surface of the MWCNTs to form a core-shell-like nanostructure. The NiCo2O4/MWCNTs exhibited excellent electrocatalytic activity for the oxidation of methanol in an alkaline solution. The NiCo2O4/MWCNTs exhibited remarkably higher current density of 327 mA/cm2 and a lower onset potential of 0.128 V in 1.0 M KOH with as high as 5.0 M methanol. The impressive electrocatalytic activity of the NiCo2O4/MWCNTs is promising for development of direct methanol fuel cell based on non-Pt catalysts. PMID:26828633

  7. Environmental assessment of an aircraft conversion, Montana Air National Guard, Great Falls, Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, G.; Policastro, A.; Krummel, J.

    1986-08-01

    It is proposed that the 120th Fighter Interceptor Group of the Montana Air National Guard convert from 18 F-106 to 18 F-16 aircraft. Associated with this conversion are building modifications, land acquisition, and facility construction. The environmental assessment determined that the primary impacts of the conversion would be positive. Noise modeling using the NOISEMAP methodology showed that the maximum noise reduction, resulting from the conversion, at any ground receptor point is about 5 dB on the L/sub dn/ scale. The noise reductions vary with the distance of a receptor point from the runways - the greater the distance, the smallermore » the noise reduction. Conversion to the F-16 prior to completion of a ''hush house'' would result in a temporary increase in noise to the southeast of the airport over a commercial and industrial area. In addition, total air pollutant emissions from aircraft operations would be reduced as a consequence of the conversion. No significant adverse impacts are predicted as a result of the conversion from F-106s to F-16s.« less

  8. Safeguards Options for Natural Uranium Conversion Facilities ? A Collaborative Effort between the U.S. Department of Energy (DOE) and the National Nuclear Energy Commission of Brazil (CNEN)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raffo-Caiado, Ana Claudia; Begovich, John M; Ferrada, Juan J

    2008-01-01

    In 2005, the National Nuclear Energy Commission of Brazil (CNEN) and the U.S. Department of Energy (DOE) agreed on a collaborative effort to evaluate measures that can strengthen the effectiveness of international safeguards at a natural uranium conversion plant (NUCP). The work was performed by DOE's Oak Ridge National Laboratory and CNEN. A generic model of an NUCP was developed and typical processing steps were defined. The study, completed in early 2007, identified potential safeguards measures and evaluated their effectiveness and impacts on operations. In addition, advanced instrumentation and techniques for verification purposes were identified and investigated. The scope ofmore » the work was framed by the International Atomic Energy Agency's (IAEA's) 2003 revised policy concerning the starting point of safeguards at uranium conversion facilities. Before this policy, only the final products of the uranium conversion plant were considered to be of composition and purity suitable for use in the nuclear fuel cycle and, therefore, subject to AEA safeguards control. DOE and CNEN have explored options for implementing the IAEA policy, although Brazil understands that the new policy established by the IAEA is beyond the framework of the Quadripartite Agreement of which it is one of the parties, together with Argentina, the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials, and the IAEA. This paper highlights the findings of this joint collaborative effort and identifies technical measures to strengthen international safeguards in NUCPs.« less

  9. Space Station Furnace Facility. Volume 2: Appendix 1: Contract End Item specification (CEI), part 1

    NASA Technical Reports Server (NTRS)

    Seabrook, Craig

    1992-01-01

    This specification establishes the performance, design, development, and verification requirements for the Space Station Furnace Facility (SSFF) Core. The definition of the SSFF Core and its interfaces, specifies requirements for the SSFF Core performance, specifies requirements for the SSFF Core design, and construction are presented, and the verification requirements are established.

  10. 17 CFR 37.400 - Core Principle 4-Monitoring of trading and trade processing.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... trading and trade processing. 37.400 Section 37.400 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION SWAP EXECUTION FACILITIES Monitoring of Trading and Trade Processing § 37.400 Core Principle 4—Monitoring of trading and trade processing. The swap execution facility shall: (a) Establish and...

  11. A broadening temperature sensitivity range with a core-shell YbEr@YbNd double ratiometric optical nanothermometer

    NASA Astrophysics Data System (ADS)

    Marciniak, L.; Prorok, K.; Francés-Soriano, L.; Pérez-Prieto, J.; Bednarkiewicz, A.

    2016-02-01

    The chemical architecture of lanthanide doped core-shell up-converting nanoparticles can be engineered to purposely design the properties of luminescent nanomaterials, which are typically inaccessible to their homogeneous counterparts. Such an approach allowed to shift the up-conversion excitation wavelength from ~980 to the more relevant ~808 nm or enable Tb or Eu up-conversion emission, which was previously impossible to obtain or inefficient. Here, we address the issue of limited temperature sensitivity range of optical lanthanide based nano-thermometers. By covering Yb-Er co-doped core nanoparticles with the Yb-Nd co-doped shell, we have intentionally combined temperature dependent Er up-conversion together with temperature dependent Nd --> Yb energy transfer, and thus have expanded the temperature response range ΔT of a single nanoparticle based optical nano-thermometer under single ~808 nm wavelength photo-excitation from around ΔT = 150 K to over ΔT = 300 K (150-450 K). Such engineered nanocrystals are suitable for remote optical temperature measurements in technology and biotechnology at the sub-micron scale.The chemical architecture of lanthanide doped core-shell up-converting nanoparticles can be engineered to purposely design the properties of luminescent nanomaterials, which are typically inaccessible to their homogeneous counterparts. Such an approach allowed to shift the up-conversion excitation wavelength from ~980 to the more relevant ~808 nm or enable Tb or Eu up-conversion emission, which was previously impossible to obtain or inefficient. Here, we address the issue of limited temperature sensitivity range of optical lanthanide based nano-thermometers. By covering Yb-Er co-doped core nanoparticles with the Yb-Nd co-doped shell, we have intentionally combined temperature dependent Er up-conversion together with temperature dependent Nd --> Yb energy transfer, and thus have expanded the temperature response range ΔT of a single nanoparticle

  12. ERDA/Lewis research center photovoltaic systems test facility

    NASA Technical Reports Server (NTRS)

    Forestieri, A. F.; Johnson, J. A.; Knapp, W. D.; Rigo, H.; Stover, J.; Suhay, R.

    1977-01-01

    A national photovoltaic power systems test facility (of initial 10-kW peak power rating) is described. It consists of a solar array to generate electrical power, test-hardware for several alternate methods of power conversion, electrical energy storage systems, and an instrumentation and data acquisition system.

  13. The Current Status of the Space Station Biological Research Project: a Core Facility Enabling Multi-Generational Studies under Slectable Gravity Levels

    NASA Astrophysics Data System (ADS)

    Santos, O.

    2002-01-01

    The Space Station Biological Research Project (SSBRP) has developed a new plan which greatly reduces the development costs required to complete the facility. This new plan retains core capabilities while allowing for future growth. The most important piece of equipment required for quality biological research, the 2.5 meter diameter centrifuge capable of accommodating research specimen habitats at simulated gravity levels ranging from microgravity to 2.0 g, is being developed by NASDA, the Japanese space agency, for the SSBRP. This is scheduled for flight to the ISS in 2007. The project is also developing a multi-purpose incubator, an automated cell culture unit, and two microgravity habitat holding racks, currently scheduled for launch in 2005. In addition the Canadian Space Agency is developing for the project an insect habitat, which houses Drosophila melanogaster, and provides an internal centrifuge for 1 g controls. NASDA is also developing for the project a glovebox for the contained manipulation and analysis of biological specimens, scheduled for launch in 2006. This core facility will allow for experimentation on small plants (Arabidopsis species), nematode worms (C. elegans), fruit flies (Drosophila melanogaster), and a variety of microorganisms, bacteria, yeast, and mammalian cells. We propose a plan for early utilization which focuses on surveys of changes in gene expression and protein structure due to the space flight environment. In the future, the project is looking to continue development of a rodent habitat and a plant habitat that can be accommodated on the 2.5 meter centrifuge. By utilizing the early phases of the ISS to broadly answer what changes occur at the genetic and protein level of cells and organisms exposed to the ISS low earth orbit environment, we can generate interest for future experiments when the ISS capabilities allow for direct manipulation and intervention of experiments. The ISS continues to hold promise for high quality, long

  14. From core to coax: extending core RF modelling to include SOL, Antenna, and PFC

    NASA Astrophysics Data System (ADS)

    Shiraiwa, Syun'ichi

    2017-10-01

    A new technique for the calculation of RF waves in toroidal geometry enables the simultaneous incorporation of antenna geometry, plasma facing components (PFCs), the scrape off-layer (SOL), and core propagation. Traditionally, core RF wave propagation and antenna coupling has been calculated separately both using rather simplified SOL plasmas. The new approach, instead, allows capturing wave propagation in the SOL and its interactions with non-conforming PFCs permitting self-consistent calculation of core absorption and edge power loss, as well as investigating far and near field impurity generation from RF sheaths and a breakdown issue from antenna electric fields. Our approach combines the field solutions obtained from a core spectral code with a hot plasma dielectric and an edge FEM code using a cold plasma approximation via surface admittance-like matrix. Our approach was verified using the TORIC core ICRF spectral code and the commercial COMSOL FEM package, and was extended to 3D torus using open-source scalable MFEM library. The simulation result revealed that as the core wave damping gets weaker, the wave absorption in edge could become non-negligible. Three dimensional capabilities with non axisymmetric edge are being applied to study the antenna characteristic difference between the field aligned and toroidally aligned antennas on Alcator C-Mod, as well as the surface wave excitation on NSTX-U. Work supported by the U.S. DoE, OFES, using User Facility Alcator C-Mod, DE-FC02-99ER54512 and Contract No. DE-FC02-01ER54648.

  15. Application of core-shell-structured CdTe@SiO2 quantum dots synthesized via a facile solution method for improving latent fingerprint detection

    NASA Astrophysics Data System (ADS)

    Gao, Feng; Han, Jiaxing; Lv, Caifeng; Wang, Qin; Zhang, Jun; Li, Qun; Bao, Liru; Li, Xin

    2012-10-01

    Fingerprint detection is important in criminal investigation. This paper reports a facile powder brushing technique for improving latent fingerprint detection using core-shell-structured CdTe@SiO2 quantum dots (QDs) as fluorescent labeling marks. Core-shell-structured CdTe@SiO2 QDs are prepared via a simple solution-based approach using NH2NH2·H2O as pH adjustor and stabilizer, and their application for improving latent fingerprint detection is explored. The obtained CdTe@SiO2 QDs show spherical shapes with well-defined core-shell structures encapsulating different amounts of QDs depending on the type of the pH adjustor and stabilizer. Moreover, the fluorescence of CdTe@SiO2 QDs is largely enhanced by surface modification of the SiO2 shell. The CdTe@SiO2 QDs overcome the oxidation problem of pure CdTe QDs in air, thus affording better variability with strong adhesive ability, better resolution, and bright emission colors for practical application in latent fingerprint detection. In comparison with the conventional fluorescence powders, silver powders, and others, the effectiveness of CdTe@SiO2 QD powders for detection of latent fingerprints present on a large variety of object surfaces is greatly improved. The synthesis method for CdTe@SiO2 QDs is simple, cheap, and easy for large-scale production, and thus offers many advantages in the practical application of fingerprint detection.

  16. Biomass Feedstock and Conversion Supply System Design and Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobson, Jacob J.; Roni, Mohammad S.; Lamers, Patrick

    Idaho National Laboratory (INL) supports the U.S. Department of Energy’s bioenergy research program. As part of the research program INL investigates the feedstock logistics economics and sustainability of these fuels. A series of reports were published between 2000 and 2013 to demonstrate the feedstock logistics cost. Those reports were tailored to specific feedstock and conversion process. Although those reports are different in terms of conversion, some of the process in the feedstock logistic are same for each conversion process. As a result, each report has similar information. A single report can be designed that could bring all commonality occurred inmore » the feedstock logistics process while discussing the feedstock logistics cost for different conversion process. Therefore, this report is designed in such a way that it can capture different feedstock logistics cost while eliminating the need of writing a conversion specific design report. Previous work established the current costs based on conventional equipment and processes. The 2012 programmatic target was to demonstrate a delivered biomass logistics cost of $55/dry ton for woody biomass delivered to fast pyrolysis conversion facility. The goal was achieved by applying field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model. The goal of the 2017 Design Case is to enable expansion of biofuels production beyond highly productive resource areas by breaking the reliance of cost-competitive biofuel production on a single, low-cost feedstock. The 2017 programmatic target is to supply feedstock to the conversion facility that meets the in-feed conversion process quality specifications at a total logistics cost of $80/dry T. The $80/dry T. target encompasses total delivered feedstock cost, including both grower payment and logistics costs, while meeting all conversion in-feed quality

  17. The NASA Lewis Research Center Water Tunnel Facility

    NASA Technical Reports Server (NTRS)

    Wasserbauer, Charles A.

    1997-01-01

    A water tunnel facility specifically designed to investigate internal fluid duct flows has been built at the NASA Research Center. It is built in a modular fashion so that a variety of internal flow test hardware can be installed in the facility with minimal facility reconfiguration. The facility and test hardware interfaces are discussed along with design constraints for future test hardware. The inlet chamber flow conditioning approach is also detailed. Instrumentation and data acquisition capabilities are discussed. The incoming flow quality has been documented for about one quarter of the current facility operating range. At that range, there is some scatter in the data in the turbulent boundary layer which approaches 10 percent of the duct radius leading to a uniform core.

  18. Amyloid cores in prion domains: Key regulators for prion conformational conversion.

    PubMed

    Fernández, María Rosario; Batlle, Cristina; Gil-García, Marcos; Ventura, Salvador

    2017-01-02

    Despite the significant efforts devoted to decipher the particular protein features that encode for a prion or prion-like behavior, they are still poorly understood. The well-characterized yeast prions constitute an ideal model system to address this question, because, in these proteins, the prion activity can be univocally assigned to a specific region of their sequence, known as the prion forming domain (PFD). These PFDs are intrinsically disordered, relatively long and, in many cases, of low complexity, being enriched in glutamine/asparagine residues. Computational analyses have identified a significant number of proteins having similar domains in the human proteome. The compositional bias of these regions plays an important role in the transition of the prions to the amyloid state. However, it is difficult to explain how composition alone can account for the formation of specific contacts that position correctly PFDs and provide the enthalpic force to compensate for the large entropic cost of immobilizing these domains in the initial assemblies. We have hypothesized that short, sequence-specific, amyloid cores embedded in PFDs can perform these functions and, accordingly, act as preferential nucleation centers in both spontaneous and seeded aggregation. We have shown that the implementation of this concept in a prediction algorithm allows to score the prion propensities of putative PFDs with high accuracy. Recently, we have provided experimental evidence for the existence of such amyloid cores in the PFDs of Sup35, Ure2, Swi1, and Mot3 yeast prions. The fibrils formed by these short stretches may recognize and promote the aggregation of the complete proteins inside cells, being thus a promising tool for targeted protein inactivation.

  19. Core-core and core-valence correlation

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1988-01-01

    The effect of (1s) core correlation on properties and energy separations was analyzed using full configuration-interaction (FCI) calculations. The Be 1 S - 1 P, the C 3 P - 5 S and CH+ 1 Sigma + or - 1 Pi separations, and CH+ spectroscopic constants, dipole moment and 1 Sigma + - 1 Pi transition dipole moment were studied. The results of the FCI calculations are compared to those obtained using approximate methods. In addition, the generation of atomic natural orbital (ANO) basis sets, as a method for contracting a primitive basis set for both valence and core correlation, is discussed. When both core-core and core-valence correlation are included in the calculation, no suitable truncated CI approach consistently reproduces the FCI, and contraction of the basis set is very difficult. If the (nearly constant) core-core correlation is eliminated, and only the core-valence correlation is included, CASSCF/MRCI approached reproduce the FCI results and basis set contraction is significantly easier.

  20. Nuclear electric propulsion development and qualification facilities

    NASA Technical Reports Server (NTRS)

    Dutt, D. S.; Thomassen, K.; Sovey, J.; Fontana, Mario

    1991-01-01

    This paper summarizes the findings of a Tri-Agency panel consisting of members from the National Aeronautics and Space Administration (NASA), U.S. Department of Energy (DOE), and U.S. Department of Defense (DOD) that were charged with reviewing the status and availability of facilities to test components and subsystems for megawatt-class nuclear electric propulsion (NEP) systems. The facilities required to support development of NEP are available in NASA centers, DOE laboratories, and industry. However, several key facilities require significant and near-term modification in order to perform the testing required to meet a 2014 launch date. For the higher powered Mars cargo and piloted missions, the priority established for facility preparation is: (1) a thruster developmental testing facility, (2) a thruster lifetime testing facility, (3) a dynamic energy conversion development and demonstration facility, and (4) an advanced reactor testing facility (if required to demonstrate an advanced multiwatt power system). Facilities to support development of the power conditioning and heat rejection subsystems are available in industry, federal laboratories, and universities. In addition to the development facilities, a new preflight qualifications and acceptance testing facility will be required to support the deployment of NEP systems for precursor, cargo, or piloted Mars missions. Because the deployment strategy for NEP involves early demonstration missions, the demonstration of the SP-100 power system is needed by the early 2000's.

  1. Titanium dioxide@polypyrrole core-shell nanowires for all solid-state flexible supercapacitors.

    PubMed

    Yu, Minghao; Zeng, Yinxiang; Zhang, Chong; Lu, Xihong; Zeng, Chenghui; Yao, Chenzhong; Yang, Yangyi; Tong, Yexiang

    2013-11-21

    Herein, we developed a facile two-step process to synthesize TiO2@PPy core-shell nanowires (NWs) on carbon cloth and reported their improved electrochemical performance for flexible supercapacitors (SCs). The fabricated solid-state SC device based on TiO2@PPy core-shell NWs not only has excellent flexibility, but also exhibits remarkable electrochemical performance.

  2. A space debris simulation facility for spacecraft materials evaluation

    NASA Technical Reports Server (NTRS)

    Taylor, Roy A.

    1987-01-01

    A facility to simulate the effects of space debris striking an orbiting spacecraft is described. This facility was purchased in 1965 to be used as a micrometeoroid simulation facility. Conversion to a Space Debris Simulation Facility began in July 1984 and it was placed in operation in February 1985. The facility consists of a light gas gun with a 12.7-mm launch tube capable of launching 2.5-12.7 mm projectiles with a mass of 4-300 mg and velocities of 2-8 km/sec, and three target tanks of 0.067 m, 0.53 a m and 28.5 a m. Projectile velocity measurements are accomplished via pulsed X-ray, laser diode detectors, and a Hall photographic station. This facility is being used to test development structural configurations and candidate materials for long duration orbital spacecraft. A summary of test results are also described.

  3. Identifying Core Vocabulary for Urdu Language Speakers Using Augmentative Alternative Communication

    ERIC Educational Resources Information Center

    Mukati, Abdul Samad

    2013-01-01

    The purpose of this research is to identify a core set of vocabulary used by native Urdu language (UL) speakers during dyadic conversation for social interaction and relationship building. This study was conducted in Karachi, Pakistan at an institution of higher education. This research seeks to distinguish between general (nonspecific…

  4. 43 CFR 3212.24 - How will the production incentive apply to a new facility?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL... Royalty Rate Conversions § 3212.24 How will the production incentive apply to a new facility? (a) If BLM... electricity from the new facility. (b) The amount of the production incentive is established in MMS...

  5. 43 CFR 3212.24 - How will the production incentive apply to a new facility?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL... Royalty Rate Conversions § 3212.24 How will the production incentive apply to a new facility? (a) If BLM... electricity from the new facility. (b) The amount of the production incentive is established in MMS...

  6. 43 CFR 3212.24 - How will the production incentive apply to a new facility?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL... Royalty Rate Conversions § 3212.24 How will the production incentive apply to a new facility? (a) If BLM... electricity from the new facility. (b) The amount of the production incentive is established in MMS...

  7. Heavy Gas Conversion of the NASA Langley Transonic Dynamics Tunnel

    NASA Technical Reports Server (NTRS)

    Corliss, James M.; Cole, Stanley, R.

    1998-01-01

    The heavy gas test medium has recently been changed in the Transonic Dynamics Tunnel (TDT) at the NASA Langley Research Center. A NASA Construction of Facilities project has converted the TDT heavy gas from dichlorodifluoromethane (R12) to 1,1,1,2 tetrafluoroethane (R134a). The facility s heavy gas processing system was extensively modified to implement the conversion to R134a. Additional system modifications have improved operator interfaces, hardware reliability, and quality of the research data. The facility modifications included improvements to the heavy gas compressor and piping, the cryogenic heavy gas reclamation system, and the heavy gas control room. A series of wind tunnel characterization and calibration tests are underway. Results of the flow characterization tests show the TDT operating envelope in R134a to be very similar to the previous operating envelope in R12.

  8. Trial coring in LLRW trenches at Chalk River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donders, R.E.; Killey, R.W.D.; Franklin, K.J.

    1996-12-31

    As part of a program to better characterize the low-hazard radioactive waste managed by AECL at Chalk River, coring techniques in waste trenches are being assessed. Trial coring has demonstrated that sampling in waste regions is possible, and that boreholes can be placed through the waste trenches. Such coring provides a valuable information gathering technique. Information available from trench coring includes: (1) trench cover depth, waste region depth, waste compaction level, and detailed stratigraphic data; (2) soil moisture content and facility drainage performance; (3) borehole gamma logs that indicate radiation levels in the region of the borehole; (4) biochemical conditionsmore » in the waste regions, vadose zone, and groundwater; (5) site specific information relevant to contaminant migration modelling or remedial actions; (6) information on contaminant releases and inventories. Boreholes through the trenches can also provide a means for early detection of potential contaminant releases.« less

  9. Core Noise - Increasing Importance

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2011-01-01

    This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system-level noise metrics for the 2015, 2020, and 2025 timeframes; turbofan design trends and their aeroacoustic implications; the emerging importance of core noise and its relevance to the SFW Reduced-Perceived-Noise Technical Challenge; and the current research activities in the core-noise area, with additional details given about the development of a high-fidelity combustor-noise prediction capability as well as activities supporting the development of improved reduced-order, physics-based models for combustor-noise prediction. The need for benchmark data for validation of high-fidelity and modeling work and the value of a potential future diagnostic facility for testing of core-noise-reduction concepts are indicated. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The SFW Reduced-Perceived-Noise Technical Challenge aims to develop concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries. This reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic. Noise generated in the jet engine core, by sources such as the compressor, combustor, and turbine, can be a significant contribution to the overall noise signature at low-power conditions, typical of approach flight. At high engine power during takeoff, jet and fan noise have traditionally dominated over core noise. However, current design trends and expected technological advances in engine-cycle design as well as noise-reduction methods are likely to reduce non-core noise even at engine-power points higher than approach. In addition, future low-emission combustor

  10. Polyethylenimine-immobilized core-shell nanoparticles: synthesis, characterization, and biocompatibility test.

    PubMed

    Ratanajanchai, Montri; Soodvilai, Sunhapas; Pimpha, Nuttaporn; Sunintaboon, Panya

    2014-01-01

    Herein, we prepared PEI-immobilized core-shell particles possessing various types of polymer cores via a visible light-induced surfactant-free emulsion polymerization (SFEP) of three vinyl monomers: styrene (St), methyl methacrylate (MMA), and 2-hydroxyethyl methacrylate (HEMA). An effect of monomers on the polymerization and characteristics of resulting products was investigated. Monomers with high polarity can provide high monomer conversion, high percentage of grafted PEI, stable particles with uniform size distribution but less amino groups per particles. All prepared nanoparticles exhibited a core-shell nanostructure, containing PEI on the shell with hydrodynamic size around 140-230nm. For in-vitro study in Caco-2 cells, we found that the incorporation of PEI into these core-shell nanoparticles can significantly reduce its cytotoxic effect and also be able to internalized within the cells. Accordingly, these biocompatible particles would be useful for various biomedical applications, including gene transfection and intracellular drug delivery. © 2013.

  11. Conversion of Indigenous Agricultural Waste Feedstocks to Fuel Ethanol. Cooperative Research and Development Final Report, CRADA Number CRD-13-504

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elander, Richard

    This Cooperative Research and Development Agreement (CRADA) is between the National Renewable Energy Laboratory (NREL), a world leader in biomass conversion research and Ecopetrol American Inc., Ecopetrol S.A.'s U.S. subsidiary. The research and development efforts described in the Joint Work Statement (JWS) will take advantage of the strengths of both parties. NREL will use its Integrated Biorefinery Facility and vast experience in the conversion of lignocellulosic feedstocks to fuel ethanol to develop processes for the conversion of Ecopetrol's feedstocks. Ecopetrol will establish the infrastructure in Columbia to commercialize the conversion process.

  12. Core stability training: applications to sports conditioning programs.

    PubMed

    Willardson, Jeffrey M

    2007-08-01

    In recent years, fitness practitioners have increasingly recommended core stability exercises in sports conditioning programs. Greater core stability may benefit sports performance by providing a foundation for greater force production in the upper and lower extremities. Traditional resistance exercises have been modified to emphasize core stability. Such modifications have included performing exercises on unstable rather than stable surfaces, performing exercises while standing rather than seated, performing exercises with free weights rather than machines, and performing exercises unilaterally rather than bilaterally. Despite the popularity of core stability training, relatively little scientific research has been conducted to demonstrate the benefits for healthy athletes. Therefore, the purpose of this review was to critically examine core stability training and other issues related to this topic to determine useful applications for sports conditioning programs. Based on the current literature, prescription of core stability exercises should vary based on the phase of training and the health status of the athlete. During preseason and in-season mesocycles, free weight exercises performed while standing on a stable surface are recommended for increases in core strength and power. Free weight exercises performed in this manner are specific to the core stability requirements of sports-related skills due to moderate levels of instability and high levels of force production. Conversely, during postseason and off-season mesocycles, Swiss ball exercises involving isometric muscle actions, small loads, and long tension times are recommended for increases in core endurance. Furthermore, balance board and stability disc exercises, performed in conjunction with plyometric exercises, are recommended to improve proprioceptive and reactive capabilities, which may reduce the likelihood of lower extremity injuries.

  13. Interface engineered ferrite@ferroelectric core-shell nanostructures: A facile approach to impart superior magneto-electric coupling

    NASA Astrophysics Data System (ADS)

    Abraham, Ann Rose; Raneesh, B.; Das, Dipankar; Oluwafemi, Oluwatobi Samuel; Thomas, Sabu; Kalarikkal, Nandakumar

    2018-04-01

    The electric field control of magnetism in multiferroics is attractive for the realization of ultra-fast and miniaturized low power device applications like nonvolatile memories. Room temperature hybrid multiferroic heterostructures with core-shell (0-0) architecture (ferrite core and ferroelectric shell) were developed via a two-step method. High-Resolution Transmission Electron Microscopy (HRTEM) images confirm the core-shell structure. The temperature dependant magnetization measurements and Mossbauer spectra reveal superparamagnetic nature of the core-shell sample. The ferroelectric hysteresis loops reveal leaky nature of the samples. The results indicate the promising applications of the samples for magneto-electric memories and spintronics.

  14. Interior of the Plum Brook Reactor Facility

    NASA Image and Video Library

    1961-02-21

    A view inside the 55-foot high containment vessel of the National Aeronautics and Space Administration (NASA) Plum Brook Reactor Facility in Sandusky, Ohio. The 60-megawatt test reactor went critical for the first time in 1961 and began its full-power research operations in 1963. From 1961 to 1973, this reactor performed some of the nation’s most advanced nuclear research. The reactor was designed to determine the behavior of metals and other materials after long durations of irradiation. The materials would be used to construct a nuclear-powered rocket. The reactor core, where the chain reaction occurred, sat at the bottom of the tubular pressure vessel, seen here at the center of the shielding pool. The core contained fuel rods with uranium isotopes. A cooling system was needed to reduce the heat levels during the reaction. A neutron-impervious reflector was also employed to send many of the neutrons back to the core. The Plum Brook Reactor Facility was constructed from high-density concrete and steel to prevent the excess neutrons from escaping the facility, but the water in the pool shielded most of the radiation. The water, found in three of the four quadrants served as a reflector, moderator, and coolant. In this photograph, the three 20-ton protective shrapnel shields and hatch have been removed from the top of the pressure tank revealing the reactor tank. An overhead crane could be manipulated to reach any section of this room. It was used to remove the shrapnel shields and transfer equipment.

  15. Universals and cultural variation in turn-taking in conversation

    PubMed Central

    Stivers, Tanya; Enfield, N. J.; Brown, Penelope; Englert, Christina; Hayashi, Makoto; Heinemann, Trine; Hoymann, Gertie; Rossano, Federico; de Ruiter, Jan Peter; Yoon, Kyung-Eun; Levinson, Stephen C.

    2009-01-01

    Informal verbal interaction is the core matrix for human social life. A mechanism for coordinating this basic mode of interaction is a system of turn-taking that regulates who is to speak and when. Yet relatively little is known about how this system varies across cultures. The anthropological literature reports significant cultural differences in the timing of turn-taking in ordinary conversation. We test these claims and show that in fact there are striking universals in the underlying pattern of response latency in conversation. Using a worldwide sample of 10 languages drawn from traditional indigenous communities to major world languages, we show that all of the languages tested provide clear evidence for a general avoidance of overlapping talk and a minimization of silence between conversational turns. In addition, all of the languages show the same factors explaining within-language variation in speed of response. We do, however, find differences across the languages in the average gap between turns, within a range of 250 ms from the cross-language mean. We believe that a natural sensitivity to these tempo differences leads to a subjective perception of dramatic or even fundamental differences as offered in ethnographic reports of conversational style. Our empirical evidence suggests robust human universals in this domain, where local variations are quantitative only, pointing to a single shared infrastructure for language use with likely ethological foundations. PMID:19553212

  16. Facile synthesis of Ag@ZIF-8 core-shell heterostructure nanowires for improved antibacterial activities

    NASA Astrophysics Data System (ADS)

    Guo, Yu-Feng; Fang, Wei-Jun; Fu, Jie-Ru; Wu, Yun; Zheng, Jun; Gao, Gui-Qi; Chen, Cheng; Yan, Rui-Wen; Huang, Shou-Guo; Wang, Chun-Chang

    2018-03-01

    Compared with pure MOFs, core-shell heterostructures of noble-metal@MOFs have attracted tremendous interest due to their unique structure and extensive applications. In the present study, we have successfully synthesized well-defined core-shell Ag@ZIF-8 nanowires. The products growth process has been investigated by examining the products obtained at different intervals and the thickness of ZIF-8 shell ranging from 30 to 100 nm can be technically obtained by tuning the quantity of Ag nanowires. Ag@ZIF-8 has been proven to possess large specific surfaces and high thermal stability. Additionally, the antibacterial activity of Ag@ZIF-8 is further tested against Bacillus subtilis and Escherichia coli BL21. The results reveal that Ag@ZIF-8 core-shell heterostructure nanowires have effective activities against the two types of bacterial strains.

  17. Intramolecular Redox-Mannich Reactions: Facile Access to the Tetrahydroprotoberberine Core.

    PubMed

    Ma, Longle; Seidel, Daniel

    2015-09-07

    Cyclic amines such as pyrrolidine undergo redox-annulations with 2-formylaryl malonates. Concurrent oxidative amine α-CH bond functionalization and reductive N-alkylation render this transformation redox-neutral. This redox-Mannich process provides regioisomers of classic Reinhoudt reaction products as an entry to the tetrahydroprotoberberine core, enabling the synthesis of (±)-thalictricavine and its epimer. An unusually mild amine-promoted dealkoxycarbonylation was discovered in the course of these studies. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Learning Gains for Core Concepts in a Serious Game on Scientific Reasoning

    ERIC Educational Resources Information Center

    Forsyth, Carol; Pavlik, Philip, Jr.; Graesser, Arthur C.; Cai, Zhiqiang; Germany, Mae-lynn; Millis, Keith; Dolan, Robert P.; Butler, Heather; Halpern, Diane

    2012-01-01

    "OperationARIES!" is an Intelligent Tutoring System that teaches scientific inquiry skills in a game-like atmosphere. Students complete three different training modules, each with natural language conversations, in order to acquire deep-level knowledge of 21 core concepts of research methodology (e.g., correlation does not mean…

  19. Alignment system for SGII-Up laser facility

    NASA Astrophysics Data System (ADS)

    Gao, Yanqi; Cui, Yong; Li, Hong; Gong, Lei; Lin, Qiang; Liu, Daizhong; Zhu, Baoqiang; Ma, Weixin; Zhu, Jian; Lin, Zunqi

    2018-03-01

    The SGII-Up laser facility in Shanghai is one of the most important high-power laser facilities in China. It is designed to obtain 24 kJ (3ω) of energy with a square pulse of 3 ns using eight laser beams (two bundles). To satisfy the requirements for the safety, efficiency, and quality, an alignment system is developed for this facility. This alignment system can perform automatic alignment of the preamplifier system, main amplifier system, and harmonic conversion system within 30 min before every shot during the routine operation of the facility. In this article, an overview of the alignment system is first presented. Then, its alignment characteristics are discussed, along with the alignment process. Finally, experimental results, including the alignment results and the facility performance, are reported. The results show that the far-field beam pointing alignment accuracy is better than 3 μrad, and the alignment error of the near-field beam centering is no larger than 1 mm. These satisfy the design requirements very well.

  20. Magnetohydrodynamic Convection in the Outer Core and its Geodynamic Consequences

    NASA Technical Reports Server (NTRS)

    Kuang, Weijia; Chao, Benjamin F.; Fang, Ming

    2004-01-01

    The Earth's fluid outer core is in vigorous convection through much of the Earth's history. In addition to generating and maintaining Earth s time-varying magnetic field (geodynamo), the core convection also generates mass redistribution in the core and a dynamical pressure field on the core-mantle boundary (CMB). All these shall result in various core-mantle interactions, and contribute to surface geodynamic observables. For example, electromagnetic core-mantle coupling arises from finite electrically conducting lower mantle; gravitational interaction occurs between the cores and the heterogeneous mantle; mechanical coupling may also occur when the CMB topography is aspherical. Besides changing the mantle rotation via the coupling torques, the mass-redistribution in the core shall produce a spatial-temporal gravity anomaly. Numerical modeling of the core dynamical processes contributes in several geophysical disciplines. It helps explain the physical causes of surface geodynamic observables via space geodetic techniques and other means, e.g. Earth's rotation variation on decadal time scales, and secular time-variable gravity. Conversely, identification of the sources of the observables can provide additional insights on the dynamics of the fluid core, leading to better constraints on the physics in the numerical modeling. In the past few years, our core dynamics modeling efforts, with respect to our MoSST model, have made significant progress in understanding individual geophysical consequences. However, integrated studies are desirable, not only because of more mature numerical core dynamics models, but also because of inter-correlation among the geophysical phenomena, e.g. mass redistribution in the outer core produces not only time-variable gravity, but also gravitational core-mantle coupling and thus the Earth's rotation variation. They are expected to further facilitate multidisciplinary studies of core dynamics and interactions of the core with other

  1. Identifying a New Mechanism of HIV Core Formation | Center for Cancer Research

    Cancer.gov

    During the maturation of human immunodeficiency virus 1 (HIV-1), viral particles transition from a noninfectious form to an infectious one, and this conversion requires the cleavage of the HIV-1 Gag polyprotein. Gag is made up of three structural proteins—matrix (MA), capsid (CA), and nucleocapsid (NC)—connected by linkers. MA anchors Gag in the membrane, CA surrounds the HIV-1 core, and NC packages the viral RNA within the core. Current models of the development of HIV-1 suggest that when CA is cleaved from Gag it dissociates from the membrane and moves into the virus interior before nucleating, in a concentration-dependent manner, into the core, which is the last step in virus maturation. The core is thought to grow from its narrow end stopping only when it reaches the opposite side of the virus membrane. Since blocking the formation of infectious viral particles is an important therapeutic strategy, it is critical to understand the detailed mechanism of core maturation.

  2. Hierarchical Mesoporous NiO/MnO2@PANI Core-Shell Microspheres, Highly Efficient and Stable Bifunctional Electrocatalysts for Oxygen Evolution and Reduction Reactions.

    PubMed

    He, Junkai; Wang, Mingchao; Wang, Wenbo; Miao, Ran; Zhong, Wei; Chen, Sheng-Yu; Poges, Shannon; Jafari, Tahereh; Song, Wenqiao; Liu, Jiachen; Suib, Steven L

    2017-12-13

    We report on the new facile synthesis of mesoporous NiO/MnO 2 in one step by modifying inverse micelle templated UCT (University of Connecticut) methods. The catalyst shows excellent electrocatalytic activity and stability for both the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR) in alkaline media after further coating with polyaniline (PANI). For electrochemical performance, the optimized catalyst exhibits a potential gap, ΔE, of 0.75 V to achieve a current of 10 mA cm -2 for the OER and -3 mA cm -2 for the ORR in 0.1 M KOH solution. Extensive characterization methods were applied to investigate the structure-property of the catalyst for correlations with activity (e.g., XRD, BET, SEM, HRTEM, FIB-TEM, XPS, TGA, and Raman). The high electrocatalytic activity of the catalyst closely relates to the good electrical conductivity of PANI, accessible mesoporous structure, high surface area, as well as the synergistic effect of the specific core-shell structure. This work opens a new avenue for the rational design of core-shell structure catalysts for energy conversion and storage applications.

  3. Lunar Polar Coring Lander

    NASA Technical Reports Server (NTRS)

    Angell, David; Bealmear, David; Benarroche, Patrice; Henry, Alan; Hudson, Raymond; Rivellini, Tommaso; Tolmachoff, Alex

    1990-01-01

    Plans to build a lunar base are presently being studied with a number of considerations. One of the most important considerations is qualifying the presence of water on the Moon. The existence of water on the Moon implies that future lunar settlements may be able to use this resource to produce things such as drinking water and rocket fuel. Due to the very high cost of transporting these materials to the Moon, in situ production could save billions of dollars in operating costs of the lunar base. Scientists have suggested that the polar regions of the Moon may contain some amounts of water ice in the regolith. Six possible mission scenarios are suggested which would allow lunar polar soil samples to be collected for analysis. The options presented are: remote sensing satellite, two unmanned robotic lunar coring missions (one is a sample return and one is a data return only), two combined manned and robotic polar coring missions, and one fully manned core retrieval mission. One of the combined manned and robotic missions has been singled out for detailed analysis. This mission proposes sending at least three unmanned robotic landers to the lunar pole to take core samples as deep as 15 meters. Upon successful completion of the coring operations, a manned mission would be sent to retrieve the samples and perform extensive experiments of the polar region. Man's first step in returning to the Moon is recommended to investigate the issue of lunar polar water. The potential benefits of lunar water more than warrant sending either astronauts, robots or both to the Moon before any permanent facility is constructed.

  4. Conversing Cooperatively: Using "Mini-Conversations" to Develop Conversational Knowledge and Skill

    ERIC Educational Resources Information Center

    Jones, Elizabeth B.

    2017-01-01

    Courses: Interpersonal communication, relational communication, language and social interaction, professional communication, interviewing practices. Objectives: This single class activity enables students to understand the theoretical foundations of conversation and to develop their conversational skills by talking in dyads with classmates. Upon…

  5. Core-Shell PdPb@Pd Aerogels with Multiply-Twinned Intermetallic Nanostructures: Facile Synthesis with Accelerated Gelation Kinetics and Their Enhanced Electrocatalytic Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Chengzhou; Shi, Qiurong; Fu, Shaofang

    2018-04-04

    Delicately engineering the well-defined noble metal aerogels with favorable structural and compositional features is of vital importance for wide applications. Here, we reported one-pot and facile method for synthesizing core-shell PdPb@Pd hydrogels/aerogels with multiply-twinned grains and ordered intermetallic phase using sodium hypophosphite as a multifunctional reducing agent. Due to the accelerated gelation kinetics induced by increased reaction temperature and specific function of sodium hypophosphite, the formation of hydrogels can be completed within 4 hrs, far faster than the previous reports. Owe to their unique porous structure and favorable geometric and electronic effects, the optimized PdPb@Pd aerogels exhibit enhanced electrochemical performancemore » towards ethylene glycol oxidation with a mass activity of 5.8 times higher than Pd black.« less

  6. Three-generation study of neutrino spin-flavor conversion in supernovae and implication for the neutrino magnetic moment

    NASA Astrophysics Data System (ADS)

    Ando, Shin'ichiro; Sato, Katsuhiko

    2003-01-01

    We investigate resonant spin-flavor (RSF) conversions of supernova neutrinos which are induced by the interaction of neutrino magnetic moment and supernova magnetic fields. From the formulation which includes all three-flavor neutrinos and antineutrinos, we give a new crossing diagram that includes not only ordinary Mikheyev-Smirnov-Wolfenstein (MSW) resonance but also a magnetically induced RSF effect. With the diagram, it is found that four conversions occur in supernovae: two are induced by the RSF effect and two by the pure MSW effect. We also numerically calculate neutrino conversions in supernova matter, using neutrino mixing parameters inferred from recent experimental results and a realistic supernova progenitor model. The results indicate that until 0.5 sec after the core bounce, the RSF-induced ν¯e↔ντ transition occurs efficiently (adiabatic resonance), when μν≳10- 12μB(B0/5×109 G)-1, where B0 is the strength of the magnetic field at the surface of iron core. We also evaluate the energy spectrum as a function of μνB0 at the super-Kamiokande detector and the Sudbury Neutrino Observatory using the calculated conversion probabilities, and find that the spectral deformation might have the possibility to provide useful information on the neutrino magnetic moment as well as the magnetic field strength in supernovae.

  7. Life sciences space station planning document: A reference payload for the exobiology research facilities

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Cosmic Dust Collection and Gas Grain Simulation Facilities represent collaborative efforts between the Life Sciences and Solar System Exploration Divisions designed to strengthen a natural exobiology/Planetary Sciences connection. The Cosmic Dust Collection Facility is a Planetary Science facility, with Exobiology a primary user. Conversely, the Gas Grain Facility is an exobiology facility, with Planetary Science a primary user. Requirements for the construction and operation of the two facilities, contained herein, were developed through joint workshops between the two disciplines, as were representative experiments comprising the reference payloads. In the case of the Gas Grain Simulation Facility, the astrophysics Division is an additional potential user, having participated in the workshop to select experiments and define requirements.

  8. LaF3 core/shell nanoparticles for subcutaneous heating and thermal sensing in the second biological-window

    NASA Astrophysics Data System (ADS)

    Ximendes, Erving Clayton; Rocha, Uéslen; Kumar, Kagola Upendra; Jacinto, Carlos; Jaque, Daniel

    2016-06-01

    We report on Ytterbium and Neodymium codoped LaF3 core/shell nanoparticles capable of simultaneous heating and thermal sensing under single beam infrared laser excitation. Efficient light-to-heat conversion is produced at the Neodymium highly doped shell due to non-radiative de-excitations. Thermal sensing is provided by the temperature dependent Nd3+ → Yb3+ energy transfer processes taking place at the core/shell interface. The potential application of these core/shell multifunctional nanoparticles for controlled photothermal subcutaneous treatments is also demonstrated.

  9. Electrically Heated Testing of the Kilowatt Reactor Using Stirling Technology (KRUSTY) Experiment Using a Depleted Uranium Core

    NASA Technical Reports Server (NTRS)

    Briggs, Maxwell H.; Gibson, Marc A.; Sanzi, James

    2017-01-01

    The Kilopower project aims to develop and demonstrate scalable fission-based power technology for systems capable of delivering 110 kW of electric power with a specific power ranging from 2.5 - 6.5 Wkg. This technology could enable high power science missions or could be used to provide surface power for manned missions to the Moon or Mars. NASA has partnered with the Department of Energys National Nuclear Security Administration, Los Alamos National Labs, and Y-12 National Security Complex to develop and test a prototypic reactor and power system using existing facilities and infrastructure. This technology demonstration, referred to as the Kilowatt Reactor Using Stirling TechnologY (KRUSTY), will undergo nuclear ground testing in the summer of 2017 at the Nevada Test Site. The 1 kWe variation of the Kilopower system was chosen for the KRUSTY demonstration. The concept for the 1 kWe flight system consist of a 4 kWt highly enriched Uranium-Molybdenum reactor operating at 800 degrees Celsius coupled to sodium heat pipes. The heat pipes deliver heat to the hot ends of eight 125 W Stirling convertors producing a net electrical output of 1 kW. Waste heat is rejected using titanium-water heat pipes coupled to carbon composite radiator panels. The KRUSTY test, based on this design, uses a prototypic highly enriched uranium-molybdenum core coupled to prototypic sodium heat pipes. The heat pipes transfer heat to two Advanced Stirling Convertors (ASC-E2s) and six thermal simulators, which simulate the thermal draw of full scale power conversion units. Thermal simulators and Stirling engines are gas cooled. The most recent project milestone was the completion of non-nuclear system level testing using an electrically heated depleted uranium (non-fissioning) reactor core simulator. System level testing at the Glenn Research Center (GRC) has validated performance predictions and has demonstrated system level operation and control in a test configuration that replicates the one

  10. Evidence for a core gut microbiota in the zebrafish

    PubMed Central

    Roeselers, Guus; Mittge, Erika K; Stephens, W Zac; Parichy, David M; Cavanaugh, Colleen M; Guillemin, Karen; Rawls, John F

    2011-01-01

    Experimental analysis of gut microbial communities and their interactions with vertebrate hosts is conducted predominantly in domesticated animals that have been maintained in laboratory facilities for many generations. These animal models are useful for studying coevolved relationships between host and microbiota only if the microbial communities that occur in animals in lab facilities are representative of those that occur in nature. We performed 16S rRNA gene sequence-based comparisons of gut bacterial communities in zebrafish collected recently from their natural habitat and those reared for generations in lab facilities in different geographic locations. Patterns of gut microbiota structure in domesticated zebrafish varied across different lab facilities in correlation with historical connections between those facilities. However, gut microbiota membership in domesticated and recently caught zebrafish was strikingly similar, with a shared core gut microbiota. The zebrafish intestinal habitat therefore selects for specific bacterial taxa despite radical differences in host provenance and domestication status. PMID:21472014

  11. The NASA thermionic-conversion (TEC-ART) program

    NASA Technical Reports Server (NTRS)

    Morris, J. F.

    1977-01-01

    The current emphasis is on out-of-core thermionic conversion (TEC). The additional degrees of freedom offer new potentialities, but high-temperature material effects determine the level and lifetime of TEC performance: New electrodes not only raise power outputs but also maintain them regardless of emitter-vapor deposition on collectors. In addition, effective electrodes serve compatibly with hot-shell alloys. Space TEC withstands external and internal high-temperature vaporization problems, and terrestrial TEC tolerates hot corrosive atmospheres outside and near-vacuum inside. Finally, reduction of losses between converter electrodes is essential even though rather demanding geometries appear to be required for some modes of enhanced operation.

  12. NCI Core Open House Shines Spotlight on Supportive Science and Basic Research | Poster

    Cancer.gov

    The lobby of Building 549 at NCI at Frederick bustled with activity for two hours on Tuesday, May 1, as several dozen scientists and staff gathered for the NCI Core Open House. The event aimed to encourage discussion and educate visitors about the capabilities of the cores, laboratories, and facilities that offer support to NCI’s Center for Cancer Research.

  13. Single-mode annular chirally-coupled core fibers for fiber lasers

    NASA Astrophysics Data System (ADS)

    Zhang, Haitao; Hao, He; He, Linlu; Gong, Mali

    2018-03-01

    Chirally-coupled core (CCC) fiber can transmit single fundamental mode and effectively suppresses higher-order mode (HOM) propagation, thus improve the beam quality. However, the manufacture of CCC fiber is complicated due to its small side core. To decrease the manufacture difficulty in China, a novel fiber structure is presented, defined as annular chirally-coupled core (ACCC) fiber, replacing the small side core by a larger side annulus. In this paper, we designed the fiber parameters of this new structure, and demonstrated that the new structure has a similar property of single mode with traditional CCC fiber. Helical coordinate system was introduced into the finite element method (FEM) to analyze the mode field in the fiber, and the beam propagation method (BPM) was employed to analyze the influence of the fiber parameters on the mode loss. Based on the result above, the fiber structure was optimized for efficient single-mode transmission, in which the core diameter is 35 μm with beam quality M2 value of 1.04 and an optical to optical conversion efficiency of 84%. In this fiber, fundamental mode propagates in an acceptable loss, while the HOMs decay rapidly.

  14. Feedstock Supply System Design and Economics for Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels Conversion Pathway: Fast Pyrolysis and Hydrotreating Bio-Oil Pathway "The 2017 Design Case"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevin L. Kenney; Kara G. Cafferty; Jacob J. Jacobson

    The U.S. Department of Energy promotes the production of liquid fuels from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass sustainable supply, logistics, conversion, and overall system sustainability. As part of its involvement in this program, Idaho National Laboratory (INL) investigates the feedstock logistics economics and sustainability of these fuels. Between 2000 and 2012, INL quantified and the economics and sustainability of moving biomass from the field or stand to the throat of the conversion process using conventional equipment and processes. All previous work to 2012 was designed to improve themore » efficiency and decrease costs under conventional supply systems. The 2012 programmatic target was to demonstrate a biomass logistics cost of $55/dry Ton for woody biomass delivered to fast pyrolysis conversion facility. The goal was achieved by applying field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model.« less

  15. The effect of the DSSC photoanode area based on TiO2/Ag on the conversion efficiency of solar energy into electrical energy

    NASA Astrophysics Data System (ADS)

    Ibrayev, N.; Serikov, T.; Zavgorodniy, A.; Sadykova, A.

    2018-01-01

    A module based on dye-sensitized solar cells with Ag/TiO2 structure was developed. It is shown that the addition of the core-shell structure to the semiconductor film of titanium dioxide, where the nanoparticle Ag serves as the core, and the TiO2 is shell, increases the coefficient of solar energy conversion into electrical energy. The effect of the photoanode area on the efficiency of conversion of solar energy into electrical energy is studied. It is shown that the density of the photocurrent decreases with increasing of the photoanode area, which leads to a drop in the efficiency of solar cells.

  16. An Automated Approach to Examining Conversational Dynamics between People with Dementia and Their Carers

    PubMed Central

    Atay, Christina; Conway, Erin R.; Angus, Daniel; Wiles, Janet; Baker, Rosemary; Chenery, Helen J.

    2015-01-01

    The progressive neuropathology involved in dementia frequently causes a gradual decline in communication skills. Communication partners who are unaware of the specific communication problems faced by people with dementia (PWD) can inadvertently challenge their conversation partner, leading to distress and a reduced flow of information between speakers. Previous research has produced an extensive literature base recommending strategies to facilitate conversational engagement in dementia. However, empirical evidence for the beneficial effects of these strategies on conversational dynamics is sparse. This study uses a time-efficient computational discourse analysis tool called Discursis to examine the link between specific communication behaviours and content-based conversational engagement in 20 conversations between PWD living in residential aged-care facilities and care staff members. Conversations analysed here were baseline conversations recorded before staff members underwent communication training. Care staff members spontaneously exhibited a wide range of facilitative and non-facilitative communication behaviours, which were coded for analysis of conversation dynamics within these baseline conversations. A hybrid approach combining manual coding and automated Discursis metric analysis provides two sets of novel insights. Firstly, this study revealed nine communication behaviours that, if used by the care staff member in a given turn, significantly increased the appearance of subsequent content-based engagement in the conversation by PWD. Secondly, the current findings reveal alignment between human- and computer-generated labelling of communication behaviour for 8 out of the total 22 behaviours under investigation. The approach demonstrated in this study provides an empirical procedure for the detailed evaluation of content-based conversational engagement associated with specific communication behaviours. PMID:26658135

  17. The NASA Lewis Research Center Internal Fluid Mechanics Facility

    NASA Technical Reports Server (NTRS)

    Porro, A. R.; Hingst, W. R.; Wasserbauer, C. A.; Andrews, T. B.

    1991-01-01

    An experimental facility specifically designed to investigate internal fluid duct flows is described. It is built in a modular fashion so that a variety of internal flow test hardware can be installed in the facility with minimal facility reconfiguration. The facility and test hardware interfaces are discussed along with design constraints of future test hardware. The plenum flow conditioning approach is also detailed. Available instrumentation and data acquisition capabilities are discussed. The incoming flow quality was documented over the current facility operating range. The incoming flow produces well behaved turbulent boundary layers with a uniform core. For the calibration duct used, the boundary layers approached 10 percent of the duct radius. Freestream turbulence levels at the various operating conditions varied from 0.64 to 0.69 percent of the average freestream velocity.

  18. Enzyme immobilization in novel alginate-chitosan core-shell microcapsules.

    PubMed

    Taqieddin, Ehab; Amiji, Mansoor

    2004-05-01

    Alginate-chitosan core-shell microcapsules were prepared in order to develop a biocompatible matrix for enzyme immobilization, where the protein is retained either in a liquid or solid core and the shell allows permeability control over substrates and products. The permeability coefficients of different molecular weight compounds (vitamin B2, vitamin B12, and myoglobin) were determined through sodium tripolyphosphate (Na-TPP)-crosslinked chitosan membrane. The microcapsule core was formed by crosslinking sodium alginate with either calcium or barium ions. The crosslinked alginate core was uniformly coated with a chitosan layer and crosslinked with Na-TPP. In the case of calcium alginate, the phosphate ions of Na-TPP were able to extract the calcium ions from alginate and liquefy the core. A model enzyme, beta-galactosidase, was immobilized in the alginate core and the catalytic activity was measured with o-nitrophenyl-beta-D-galactopyranoside (ONPG). Change in the activity of free and immobilized enzyme was determined at three different temperatures. Na-TPP crosslinked chitosan membranes were found to be permeable to solutes of up to 17,000Da molecular weight. The enzyme loading efficiency was higher in the barium alginate core (100%) as compared to the calcium alginate core (60%). The rate of ONPG conversion to o-nitrophenol was faster in the case of calcium alginate-chitosan microcapsules as compared to barium alginate-chitosan microcapsules. Barium alginate-chitosan microcapsules, however, did improve the stability of the enzyme at 37 degrees C relative to calcium alginate-chitosan microcapsules or free enzyme. This study illustrates a new method of enzyme immobilization for biotechnology applications using liquid or solid core and shell microcapsule technology.

  19. Determining the spatial variability of wetland soil bulk density, organic matter, and the conversion factor between organic matter and organic carbon across coastal Louisiana, U.S.A.

    USGS Publications Warehouse

    Wang, Hongqing; Piazza, Sarai C.; Sharp, Leigh A.; Stagg, Camille L.; Couvillion, Brady R.; Steyer, Gregory D.; McGinnis, Thomas E.

    2016-01-01

    Soil bulk density (BD), soil organic matter (SOM) content, and a conversion factor between SOM and soil organic carbon (SOC) are often used in estimating SOC sequestration and storage. Spatial variability in BD, SOM, and the SOM–SOC conversion factor affects the ability to accurately estimate SOC sequestration, storage, and the benefits (e.g., land building area and vertical accretion) associated with wetland restoration efforts, such as marsh creation and sediment diversions. There are, however, only a few studies that have examined large-scale spatial variability in BD, SOM, and SOM–SOC conversion factors in coastal wetlands. In this study, soil cores, distributed across the entire coastal Louisiana (approximately 14,667 km2) were used to examine the regional-scale spatial variability in BD, SOM, and the SOM–SOC conversion factor. Soil cores for BD and SOM analyses were collected during 2006–09 from 331 spatially well-distributed sites in the Coastwide Reference Monitoring System network. Soil cores for the SOM–SOC conversion factor analysis were collected from 15 sites across coastal Louisiana during 2006–07. Results of a split-plot analysis of variance with incomplete block design indicated that BD and SOM varied significantly at a landscape level, defined by both hydrologic basins and vegetation types. Vertically, BD and SOM varied significantly among different vegetation types. The SOM–SOC conversion factor also varied significantly at the landscape level. This study provides critical information for the assessment of the role of coastal wetlands in large regional carbon budgets and the estimation of carbon credits from coastal restoration.

  20. A facile one-pot oxidation-assisted dealloying protocol to massively synthesize monolithic core-shell architectured nanoporous copper@cuprous oxide nanonetworks for photodegradation of methyl orange

    PubMed Central

    Liu, Wenbo; Chen, Long; Dong, Xin; Yan, Jiazhen; Li, Ning; Shi, Sanqiang; Zhang, Shichao

    2016-01-01

    In this report, a facile and effective one-pot oxidation-assisted dealloying protocol has been developed to massively synthesize monolithic core-shell architectured nanoporous copper@cuprous oxide nanonetworks (C-S NPC@Cu2O NNs) by chemical dealloying of melt-spun Al 37 at.% Cu alloy in an oxygen-rich alkaline solution at room temperature, which possesses superior photocatalytic activity towards photodegradation of methyl orange (MO). The experimental results show that the as-prepared nanocomposite exhibits an open, bicontinuous interpenetrating ligament-pore structure with length scales of 20 ± 5 nm, in which the ligaments comprising Cu and Cu2O are typical of core-shell architecture with uniform shell thickness of ca. 3.5 nm. The photodegradation experiments of C-S NPC@Cu2O NNs show their superior photocatalytic activities for the MO degradation under visible light irradiation with degradation rate as high as 6.67 mg min−1 gcat−1, which is a diffusion-controlled kinetic process in essence in light of the good linear correlation between photodegradation ratio and square root of irradiation time. The excellent photocatalytic activity can be ascribed to the synergistic effects between unique core-shell architecture and 3D nanoporous network with high specific surface area and fast mass transfer channel, indicating that the C-S NPC@Cu2O NNs will be a promising candidate for photocatalysts of MO degradation. PMID:27830720

  1. A facile one-pot oxidation-assisted dealloying protocol to massively synthesize monolithic core-shell architectured nanoporous copper@cuprous oxide nanonetworks for photodegradation of methyl orange

    NASA Astrophysics Data System (ADS)

    Liu, Wenbo; Chen, Long; Dong, Xin; Yan, Jiazhen; Li, Ning; Shi, Sanqiang; Zhang, Shichao

    2016-11-01

    In this report, a facile and effective one-pot oxidation-assisted dealloying protocol has been developed to massively synthesize monolithic core-shell architectured nanoporous copper@cuprous oxide nanonetworks (C-S NPC@Cu2O NNs) by chemical dealloying of melt-spun Al 37 at.% Cu alloy in an oxygen-rich alkaline solution at room temperature, which possesses superior photocatalytic activity towards photodegradation of methyl orange (MO). The experimental results show that the as-prepared nanocomposite exhibits an open, bicontinuous interpenetrating ligament-pore structure with length scales of 20 ± 5 nm, in which the ligaments comprising Cu and Cu2O are typical of core-shell architecture with uniform shell thickness of ca. 3.5 nm. The photodegradation experiments of C-S NPC@Cu2O NNs show their superior photocatalytic activities for the MO degradation under visible light irradiation with degradation rate as high as 6.67 mg min-1 gcat-1, which is a diffusion-controlled kinetic process in essence in light of the good linear correlation between photodegradation ratio and square root of irradiation time. The excellent photocatalytic activity can be ascribed to the synergistic effects between unique core-shell architecture and 3D nanoporous network with high specific surface area and fast mass transfer channel, indicating that the C-S NPC@Cu2O NNs will be a promising candidate for photocatalysts of MO degradation.

  2. Scientific Design of the New Neutron Radiography Facility (SANRAD) at SAFARI-1 for South Africa

    NASA Astrophysics Data System (ADS)

    de Beer, F. C.; Gruenauer, F.; Radebe, J. M.; Modise, T.; Schillinger, B.

    The final scientific design for an upgraded neutron radiography/tomography facility at beam port no.2 of the SAFARI-1 nuclear research reactor has been performed through expert advice from Physics Consulting, FRMII in Germany and IPEN, Brazil. A need to upgrade the facility became apparent due to the identification of various deficiencies of the current SANRAD facility during an IAEA-sponsored expert mission of international scientists to Necsa, South Africa. A lack of adequate shielding that results in high neutron background on the beam port floor, a mismatch in the collimator aperture to the core that results in a high gradient in neutron flux on the imaging plane and due to a relative low L/D the quality of the radiographs are poor, are a number of deficiencies to name a few.The new design, based on results of Monte Carlo (MCNP-X) simulations of neutron- and gamma transport from the reactor core and through the new facility, is being outlined. The scientific design philosophy, neutron optics and imaging capabilities that include the utilization of fission neutrons, thermal neutrons, and gamma-rays emerging from the core of SAFARI-1 are discussed.

  3. Critical need for MFE: the Alcator DX advanced divertor test facility

    NASA Astrophysics Data System (ADS)

    Vieira, R.; Labombard, B.; Marmar, E.; Irby, J.; Wolf, S.; Bonoli, P.; Fiore, C.; Granetz, R.; Greenwald, M.; Hutchinson, I.; Hubbard, A.; Hughes, J.; Lin, Y.; Lipschultz, B.; Parker, R.; Porkolab, M.; Reinke, M.; Rice, J.; Shiraiwa, S.; Terry, J.; Theiler, C.; Wallace, G.; White, A.; Whyte, D.; Wukitch, S.

    2013-10-01

    Three critical challenges must be met before a steady-state, power-producing fusion reactor can be realized: how to (1) safely handle extreme plasma exhaust power, (2) completely suppress material erosion at divertor targets and (3) do this while maintaining a burning plasma core. Advanced divertors such as ``Super X'' and ``X-point target'' may allow a fully detached, low temperature plasma to be produced in the divertor while maintaining a hot boundary layer around a clean plasma core - a potential game-changer for magnetic fusion. No facility currently exists to test these ideas at the required parallel heat flux densities. Alcator DX will be a national facility, employing the high magnetic field technology of Alcator combined with high-power ICRH and LHCD to test advanced divertor concepts at FNSF/DEMO power exhaust densities and plasma pressures. Its extended vacuum vessel contains divertor cassettes with poloidal field coils for conventional, snowflake, super-X and X-point target geometries. Divertor and core plasma performance will be explored in regimes inaccessible in conventional devices. Reactor relevant ICRF and LH drivers will be developed, utilizing high-field side launch platforms for low PMI. Alcator DX will inform the conceptual development and accelerate the readiness-for-deployment of next-step fusion facilities.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stillman, J. A.; Feldman, E. E.; Wilson, E. H.

    This report contains the results of reactor accident analyses for the University of Missouri Research Reactor (MURR). The calculations were performed as part of the conversion from the use of highly-enriched uranium (HEU) fuel to the use of low-enriched uranium (LEU) fuel. The analyses were performed by staff members of the Global Threat Reduction Initiative (GTRI) Reactor Conversion Program at the Argonne National Laboratory (ANL), the MURR Facility, and the Nuclear Engineering Program – College of Engineering, University of Missouri-Columbia. The core conversion to LEU is being performed with financial support from the U. S. government. This report contains themore » results of reactor accident analyses for the University of Missouri Research Reactor (MURR). The calculations were performed as part of the conversion from the use of highly-enriched uranium (HEU) fuel to the use of low-enriched uranium (LEU) fuel. The analyses were performed by staff members of the Global Threat Reduction Initiative (GTRI) Reactor Conversion Program at the Argonne National Laboratory (ANL), the MURR Facility, and the Nuclear Engineering Program – College of Engineering, University of Missouri-Columbia. The core conversion to LEU is being performed with financial support from the U. S. government. In the framework of non-proliferation policies, the international community presently aims to minimize the amount of nuclear material available that could be used for nuclear weapons. In this geopolitical context most research and test reactors, both domestic and international, have started a program of conversion to the use of LEU fuel. A new type of LEU fuel based on an alloy of uranium and molybdenum (U-Mo) is expected to allow the conversion of U.S. domestic high performance reactors like MURR. This report presents the results of a study of core behavior under a set of accident conditions for MURR cores fueled with HEU U-Alx dispersion fuel or LEU monolithic U-Mo alloy fuel with

  5. Hypervelocity Impact Evaluation of Metal Foam Core Sandwich Structures

    NASA Technical Reports Server (NTRS)

    Yasensky, John; Christiansen, Eric L.

    2007-01-01

    A series of hypervelocity impact (HVI) tests were conducted by the NASA Johnson Space Center (JSC) Hypervelocity Impact Technology Facility (HITF) [1], building 267 (Houston, Texas) between January 2003 and December 2005 to test the HVI performance of metal foams, as compared to the metal honeycomb panels currently in service. The HITF testing was conducted at the NASA JSC White Sands Testing Facility (WSTF) at Las Cruces, New Mexico. Eric L. Christiansen, Ph.D., and NASA Lead for Micro-Meteoroid Orbital Debris (MMOD) Protection requested these hypervelocity impact tests as part of shielding research conducted for the JSC Center Director Discretionary Fund (CDDF) project. The structure tested is a metal foam sandwich structure; a metal foam core between two metal facesheets. Aluminum and Titanium metals were tested for foam sandwich and honeycomb sandwich structures. Aluminum honeycomb core material is currently used in Orbiter Vehicle (OV) radiator panels and in other places in space structures. It has many desirable characteristics and performs well by many measures, especially when normalized by density. Aluminum honeycomb does not perform well in Hypervelocity Impact (HVI) Testing. This is a concern, as honeycomb panels are often exposed to space environments, and take on the role of Micrometeoroid / Orbital Debris (MMOD) shielding. Therefore, information on possible replacement core materials which perform adequately in all necessary functions of the material would be useful. In this report, HVI data is gathered for these two core materials in certain configurations and compared to gain understanding of the metal foam HVI performance.

  6. Video Intertank for the Core Stage for the first SLS Flight

    NASA Image and Video Library

    2017-06-29

    This video shows the Space Launch System interank, which recently completed assembly at NASA's Michoud Assembly Facility in New Orleans. This tank was bolted together with more than 7,000 bolts. It is the only part of the SLS core stage assembly with bolts rather than by welding. The rocket's interank is located between the core stage liquid oxygen and liquid hydrogen fuel tanks. It has to be strong because the two SLS solid rocket boosters attache to the sides of it. This flight article will be connected to four other parts to form the core stage for the first integrated flight of SLS and Orion.

  7. Sexy gene conversions: locating gene conversions on the X-chromosome.

    PubMed

    Lawson, Mark J; Zhang, Liqing

    2009-08-01

    Gene conversion can have a profound impact on both the short- and long-term evolution of genes and genomes. Here, we examined the gene families that are located on the X-chromosomes of human (Homo sapiens), chimpanzee (Pan troglodytes), mouse (Mus musculus) and rat (Rattus norvegicus) for evidence of gene conversion. We identified seven gene families (WD repeat protein family, Ferritin Heavy Chain family, RAS-related Protein RAB-40 family, Diphosphoinositol polyphosphate phosphohydrolase family, Transcription Elongation Factor A family, LDOC1-related family, Zinc Finger Protein ZIC, and GLI family) that show evidence of gene conversion. Through phylogenetic analyses and synteny evidence, we show that gene conversion has played an important role in the evolution of these gene families and that gene conversion has occurred independently in both primates and rodents. Comparing the results with those of two gene conversion prediction programs (GENECONV and Partimatrix), we found that both GENECONV and Partimatrix have very high false negative rates (i.e. failed to predict gene conversions), which leads to many undetected gene conversions. The combination of phylogenetic analyses with physical synteny evidence exhibits high resolution in the detection of gene conversions.

  8. System Design for a Nuclear Electric Spacecraft Utilizing Out-of-core Thermionic Conversion

    NASA Technical Reports Server (NTRS)

    Estabrook, W. C.; Phillips, W. M.; Hsieh, T.

    1976-01-01

    Basic guidelines are presented for a nuclear space power system which utilizes heat pipes to transport thermal power from a fast nuclear reactor to an out of core thermionic converter array. Design parameters are discussed for the nuclear reactor, heat pipes, thermionic converters, shields (neutron and gamma), waste heat rejection systems, and the electrical bus bar-cable system required to transport the high current/low voltage power to the processing equipment. Dimensions are compatible with shuttle payload bay constraints.

  9. Approaches to N-Methylwelwitindolinone C Isothiocyanate: Facile Synthesis of the Tetracyclic Core

    PubMed Central

    Heidebrecht, Richard W.; Gulledge, Brian; Martin, Stephen F.

    2010-01-01

    The synthesis of a functionalized, tetracyclic core of N-methylwelwitindolinone C isothiocyanate is reported. The approach features a convergent coupling between an indole iminium ion and a highly functionalized vinylogous silyl ketene acetal followed by an intramolecular palladium-catalyzed cyclization that proceeds via an enolate arylation. PMID:20446675

  10. Materials Science Clean Room Facility at Tulane University (Final Technical Report)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altiero, Nicholas

    2010-09-30

    The project involves conversion of a 3,000 sq. ft. area into a clean room facility for materials science research. It will be accomplished in phases. Phase I will involve preparation of the existing space, acquisition and installation of clean room equipped with a pulsed laser deposition (PLD) processing system, and conversion of ancillary space to facilitate the interface with the clean room. From a capital perspective, Phases II and III will involve the acquisition of additional processing, fabrication, and characterization equipment and capabilities.

  11. Dual-enhanced photothermal conversion properties of reduced graphene oxide-coated gold superparticles for light-triggered acoustic and thermal theranostics

    NASA Astrophysics Data System (ADS)

    Lin, Li-Sen; Yang, Xiangyu; Niu, Gang; Song, Jibin; Yang, Huang-Hao; Chen, Xiaoyuan

    2016-01-01

    A rational design of highly efficient photothermal agents that possess excellent light-to-heat conversion properties is a fascinating topic in nanotheranostics. Herein, we present a facile route to fabricate size-tunable reduced graphene oxide (rGO)-coated gold superparticles (rGO-GSPs) and demonstrate their dual-enhanced photothermal conversion properties for photoacoustic imaging and photothermal therapy. For the first time, graphene oxide (GO) was directly used as an emulsifying agent for the preparation of gold superparticles (GSPs) with near-infrared absorption by the emulsion method. Moreover, GO spontaneously deposited on the surface of GSPs could also act as the precursor of the rGO shell. Importantly, both the plasmonic coupling of the self-assembled gold nanoparticles and the interaction between GSPs and rGO endow rGO-GSPs with enhanced photothermal conversion properties, allowing rGO-GSPs to be used for sensitive photoacoustic detection and efficient photothermal ablation of tumours in vivo. This study provides a facile approach to prepare colloidal superparticles-graphene hybrid nanostructures and will pave the way toward the design and optimization of photothermal nanomaterials with improved properties for theranostic applications.A rational design of highly efficient photothermal agents that possess excellent light-to-heat conversion properties is a fascinating topic in nanotheranostics. Herein, we present a facile route to fabricate size-tunable reduced graphene oxide (rGO)-coated gold superparticles (rGO-GSPs) and demonstrate their dual-enhanced photothermal conversion properties for photoacoustic imaging and photothermal therapy. For the first time, graphene oxide (GO) was directly used as an emulsifying agent for the preparation of gold superparticles (GSPs) with near-infrared absorption by the emulsion method. Moreover, GO spontaneously deposited on the surface of GSPs could also act as the precursor of the rGO shell. Importantly, both the

  12. Vice President Pence Visits SLS Engineering Test Facility

    NASA Image and Video Library

    2017-09-25

    The Vice President toured the SLS engineering facility where the engine section of the rocket’s massive core stage is undergoing a major stress test. The rocket’s four RS-25 engines and the two solid rocket boosters that attach to the SLS engine section will produce more than 8 million pounds of thrust to launch the Orion spacecraft beyond low-Earth orbit. More than 3,000 measurements using sensors installed on the test section will help ensure the core stage for all SLS missions can withstand the extreme forces of flight.

  13. LP01 to LP11 mode convertor based on side-polished small-core single-mode fiber

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Li, Yang; Li, Wei-dong

    2018-03-01

    An all-fiber LP01-LP11 mode convertor based on side-polished small-core single-mode fibers (SMFs) is numerically demonstrated. The linearly polarized incident beam in one arm experiences π shift through a fiber half waveplate, and the side-polished parts merge into an equivalent twin-core fiber (TCF) which spatially shapes the incident LP01 modes to the LP11 mode supported by the step-index few-mode fiber (FMF). Optimum conditions for the highest conversion efficiency are investigated using the beam propagation method (BPM) with an approximate efficiency as high as 96.7%. The proposed scheme can operate within a wide wavelength range from 1.3 μm to1.7 μm with overall conversion efficiency greater than 95%. The effective mode area and coupling loss are also characterized in detail by finite element method (FEM).

  14. Pollution prevention and the use of low-VOC/HAP coatings at wood furniture manufacturing facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, A.M.; Spaight, J.L.; Jones, J.W.

    1999-07-01

    Midwest Research Institute, under a cooperative agreement with the Air Pollution Prevention and Control Division of the U.S. Environmental Protection Agency's (EPA's) National Risk Management Research Laboratory, is conducting a study to identify wood furniture and cabinet manufacturing facilities that have converted to low-volatile organic compound/hazardous air pollutant (VOC/HAP) coatings and to develop case studies for those facilities. The case studies include: (1) a discussion of the types of products each facility manufactures; (2) the types of low-VOC/HAP coatings each facility is using; (3) problems encountered in converting to low-VOC/HAP coatings; (4) equipment changes that were required; (5) the costsmore » associated with the conversion process, including capital costs associated with equipment purchases, research and development costs, and operating costs such as operator training in new application techniques; (6) advantages/disadvantages of the low-VOC/HAP coatings; and (7) customer feedback on products finished with the low-VOC/HAP coatings. The primary goals of the project are (1) to demonstrate that low-VOC/HAP coatings can be used successfully by many wood furniture manufacturing facilities, and (2) to assist other wood furniture manufacturing facilities in their conversion to low-VOC/HAP coatings, in particular facilities that do not have the resources to devote to extensive coatings research. This paper discusses the progress of the project and pollution prevention options at wood furniture manufacturing facilities and the regulatory requirements (e.g., the National Emissions Standards for Hazardous Air Pollutants [NESHAP] for Wood Furniture Manufacturing Operations) that these facilities face.« less

  15. Feedstock Supply System Design and Economics for Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Conversion Pathway: Biological Conversion of Sugars to Hydrocarbons The 2017 Design Case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevin Kenney; Kara G. Cafferty; Jacob J. Jacobson

    The U.S. Department of Energy promotes the production of a range of liquid fuels and fuel blendstocks from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass collection, conversion, and sustainability. As part of its involvement in this program, the Idaho National Laboratory (INL) investigates the feedstock logistics economics and sustainability of these fuels. Between 2000 and 2012, INL conducted a campaign to quantify the economics and sustainability of moving biomass from standing in the field or stand to the throat of the biomass conversion process. The goal of this program wasmore » to establish the current costs based on conventional equipment and processes, design improvements to the current system, and to mark annual improvements based on higher efficiencies or better designs. The 2012 programmatic target was to demonstrate a delivered biomass logistics cost of $35/dry ton. This goal was successfully achieved in 2012 by implementing field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model. Looking forward to 2017, the programmatic target is to supply biomass to the conversion facilities at a total cost of $80/dry ton and on specification with in-feed requirements. The goal of the 2017 Design Case is to enable expansion of biofuels production beyond highly productive resource areas by breaking the reliance of cost-competitive biofuel production on a single, abundant, low-cost feedstock. If this goal is not achieved, biofuel plants are destined to be small and/or clustered in select regions of the country that have a lock on low-cost feedstock. To put the 2017 cost target into perspective of past accomplishments of the cellulosic ethanol pathway, the $80 target encompasses total delivered feedstock cost, including both grower payment and logistics costs, while

  16. PRELIMINARY DRILLING IN THE POWDER RIVER BASIN, CONVERSE, CAMPBELL, AND JOHNSON COUNTRIES, WYOMING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geslin, H.E.; Bromley, C.P.

    1957-06-01

    On July 16, 1953, a diamond core-drilling program was begun in the pumpkin Buttes area to secure geologic information. Drilling was terminated March 11, 1964, after 12 holes had been completed for a total of 5,813 feet. An investigational rotary noncore-drilling project was conducted from June l4, to September 17, 1954, in the southern part of the Powder River Basin, Campbell, Johnson, and Converse Counties, Wyoming. Drilling was done in the Pumpkin Buttes area and the Converse County area. A total of 52,267 feet was drilled and the average depth of hole was 75.3 feet. Forty-one anomalous areas in themore » Powder River Basin were drilled; of these, three in Converse County were found to contain possible commercial ore bodies. All of the drilling was done in the Wasatch formation of Eocene age except one locality, which was in the Fort Union formation of Paleocene age. (auth)« less

  17. Assessment of subsurface chlorinated solvent contamination using tree cores at the front street site and a former dry cleaning facility at the Riverfront Superfund site, New Haven, Missouri, 1999-2003

    USGS Publications Warehouse

    Schumacher, John G.; Struckhoff, Garrett C.; Burken, Joel G.

    2004-01-01

    Tree-core sampling has been a reliable and inexpensive tool to quickly assess the presence of shallow (less than about 30 feet deep) tetrachloroethene (PCE) and trichloroethene (TCE) contamination in soils and ground water at the Riverfront Superfund Site. This report presents the results of tree-core sampling that was successfully used to determine the presence and extent of chlorinated solvent contamination at two sites, the Front Street site (operable unit OU1) and the former dry cleaning facility, that are part of the overall Riverfront Superfund Site. Traditional soil and ground-water sampling at these two sites later confirmed the results from the tree-core sampling. Results obtained from the tree-core sampling were used to design and focus subsequent soil and ground-water investigations, resulting in substantial savings in time and site assessment costs. The Front Street site is a small (less than 1-acre) site located on the Missouri River alluvium in downtown New Haven, Missouri, about 500 feet from the south bank of the Missouri River. Tree-core sampling detected the presence of subsurface PCE contamination at the Front Street site and beneath residential property downgradient from the site. Core samples from trees at the site contained PCE concentrations as large as 3,850 mg-h/kg (micrograms in headspace per kilogram of wet core) and TCE concentrations as large as 249 mg-h/kg. Soils at the Front Street site contained PCE concentrations as large as 6,200,000 mg/kg (micrograms per kilogram) and ground-water samples contained PCE concentrations as large as 11,000 mg/L (micrograms per liter). The former dry cleaning facility is located at the base of the upland that forms the south bank of the Missouri River alluvial valley. Tree-core sampling did not indicate the presence of PCE or TCE contamination at the former dry cleaning facility, a finding that was later confirmed by the analyses of soil samples collected from the site. The lateral extent of PCE

  18. Optical absorption of carbon-gold core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Zhaolong; Quan, Xiaojun; Zhang, Zhuomin; Cheng, Ping

    2018-01-01

    In order to enhance the solar thermal energy conversion efficiency, we propose to use carbon-gold core-shell nanoparticles dispersed in liquid water. This work demonstrates theoretically that an absorbing carbon (C) core enclosed in a plasmonic gold (Au) nanoshell can enhance the absorption peak while broadening the absorption band; giving rise to a much higher solar absorption than most previously studied core-shell combinations. The exact Mie solution is used to evaluate the absorption efficiency factor of spherical nanoparticles in the wavelength region from 300 nm to 1100 nm as well as the electric field and power dissipation profiles inside the nanoparticles at specified wavelengths (mostly at the localized surface plasmon resonance wavelength). The field enhancement by the localized plasmons at the gold surfaces boosts the absorption of the carbon particle, resulting in a redshift of the absorption peak with increased peak height and bandwidth. In addition to spherical nanoparticles, we use the finite-difference time-domain method to calculate the absorption of cubic core-shell nanoparticles. Even stronger enhancement can be achieved with cubic C-Au core-shell structures due to the localized plasmonic resonances at the sharp edges of the Au shell. The solar absorption efficiency factor can exceed 1.5 in the spherical case and reach 2.3 in the cubic case with a shell thickness of 10 nm. Such broadband absorption enhancement is in great demand for solar thermal applications including steam generation.

  19. Plasmonic enhancement of light-harvesting efficiency in tandem dye-sensitized solar cells using multiplexed gold core/silica shell nanorods

    NASA Astrophysics Data System (ADS)

    Zheng, Yan-Zhen; Tao, Xia; Zhang, Jin-Wen; Lai, Xue-Sen; Li, Nan

    2018-02-01

    Incorporation of plasmonic metal nanocrystals is a promising approach for broadening and enhancing the light harvesting of dye-sensitized solar cells (DSSCs). In this work, we report a facile and versatile route to tune the photoresponse of tandem DSSCs via incorporating Au nanorods with multiplexed length-to-diameter aspect ratios in the two sub-cells. Plasmonic Au nanorods with length-to-diameter aspect ratio of 2.5 (Au NRs-1) and 3.9 (Au NRs-2) are prepared, exhibiting their plasmon band at 500-700 nm and 500-900 nm, respectively. Au NRs-1 core/SiO2 shell (Au NRs@SiO2-1) and Au NRs-2 core/SiO2 shell (Au NRs@SiO2-2) are separately incorporated in TiO2 photoanodes and then coupled with commercial dye N719 and N749 for the top and bottom sub-cells of a tandem DSSC, achieving a power conversion efficiency (PCE) of 10.73% for relative to 9.02% of reference (TiO2 only) devices. By virtue of morphological, spectral and electrochemical characterizations and analysis, we find that the integration of Au NRs within dye-sensitized TiO2 photoanode film enables to increase the sunlight harvesting from visible to near infrared region by plasmonic enhancement effect, reduce the charge recombination probability and facilitate charge transport via Au NRs, leading to enhancement of PCE.

  20. Space Station Environmental Control and Life Support System Test Facility at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Springer, Darlene

    1989-01-01

    Different aspects of Space Station Environmental Control and Life Support System (ECLSS) testing are currently taking place at Marshall Space Flight Center (MSFC). Unique to this testing is the variety of test areas and the fact that all are located in one building. The north high bay of building 4755, the Core Module Integration Facility (CMIF), contains the following test areas: the Subsystem Test Area, the Comparative Test Area, the Process Material Management System (PMMS), the Core Module Simulator (CMS), the End-use Equipment Facility (EEF), and the Pre-development Operational System Test (POST) Area. This paper addresses the facility that supports these test areas and briefly describes the testing in each area. Future plans for the building and Space Station module configurations will also be discussed.

  1. Au@TiO2 yolk-shell nanostructures for enhanced performance in both photoelectric and photocatalytic solar conversion

    NASA Astrophysics Data System (ADS)

    He, Qinrong; Sun, Hang; Shang, Yinxing; Tang, Yanan; She, Ping; Zeng, Shan; Xu, Kongliang; Lu, Guolong; Liang, Song; Yin, Shengyan; Liu, Zhenning

    2018-05-01

    Solar energy conversion is an important field gaining increasing interest. Herein, bio-inspired Au@TiO2 yolk-shell nanoparticles (NPs) have been prepared via a facial one-pot hydrothermal approach. The Au@TiO2 yolk-shell NPs can self-assemble into 3D-structure to form photoelectrode for photoelectric conversion. The obtained photoelectrode demonstrates a swift and stable photocurrent of 3.5 μA/cm2, which is 4.2 and 1.6 times higher than those of the photocurrents generated by the counterparts of commercial TiO2 and Au@TiO2 core-shell NPs, respectively. Moreover, compared to the commercial TiO2 and Au@TiO2 core-shell NPs, the Au@TiO2 yolk-shell NPs also exhibit superior photocatalytic activity, delivering a H2 evolution rate of 4.92 mmol/g h. The performance improvement observed for the Au@TiO2 yolk-shell NPs is likely contributed by two synergistic factors, i.e. the incorporation of AuNPs and the unique hollow structure, which benefit the activity by simultaneously enhancing light utilization, charge separation and reaction site accessibility. The rational design and fabrication of Au@TiO2 yolk-shell NPs hold great promise for future application in efficient solar energy conversion.

  2. Tuning the synthesis of platinum-copper nanoparticles with a hollow core and porous shell for the selective hydrogenation of furfural to furfuryl alcohol

    NASA Astrophysics Data System (ADS)

    Huang, Shuangshuang; Yang, Nating; Wang, Shibin; Sun, Yuhan; Zhu, Yan

    2016-07-01

    Pt-Cu nanoparticles constructed with a hollow core and porous shell have been synthesized in which Pt-Cu cages with multiporous outermost shells are formed at the initial stage and then the Pt and Cu atoms in solution continuously fed these hollow-core of cages by passing through the porous tunnels of the outermost shells, finally leading to the formation of hollow structures with different sizes. Furthermore, these hollow-core Pt-Cu nanoparticles are more effective than the solid-core Pt-Cu nanoparticles for the catalytic hydrogenation of furfural toward furfuryl alcohol. The former can achieve almost 100% conversion of furfural with 100% selectivity toward the alcohol.Pt-Cu nanoparticles constructed with a hollow core and porous shell have been synthesized in which Pt-Cu cages with multiporous outermost shells are formed at the initial stage and then the Pt and Cu atoms in solution continuously fed these hollow-core of cages by passing through the porous tunnels of the outermost shells, finally leading to the formation of hollow structures with different sizes. Furthermore, these hollow-core Pt-Cu nanoparticles are more effective than the solid-core Pt-Cu nanoparticles for the catalytic hydrogenation of furfural toward furfuryl alcohol. The former can achieve almost 100% conversion of furfural with 100% selectivity toward the alcohol. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03894h

  3. Frontal Conversion and Uniformity in 3D Printing by Photopolymerisation

    PubMed Central

    Vitale, Alessandra; Cabral, João T.

    2016-01-01

    We investigate the impact of the non-uniform spatio-temporal conversion, intrinsic to photopolymerisation, in the context of light-driven 3D printing of polymers. The polymerisation kinetics of a series of model acrylate and thiol-ene systems, both neat and doped with a light-absorbing dye, is investigated experimentally and analysed according to a descriptive coarse-grained model for photopolymerisation. In particular, we focus on the relative kinetics of polymerisation with those of 3D printing, by comparing the evolution of the position of the conversion profile (zf) to the sequential displacement of the object stage (∆z). After quantifying the characteristic sigmoidal monomer-to-polymer conversion of the various systems, with a combination of patterning experiments, FT-IR mapping, and modelling, we compute representative regimes for which zf is smaller, commensurate with, or larger than ∆z. While non-monotonic conversion can be detrimental to 3D printing, for instance in causing differential shrinkage of inhomogeneity in material properties, we identify opportunities for facile fabrication of modulated materials in the z-direction (i.e., along the illuminated axis). Our simple framework and model, based on directly measured parameters, can thus be employed in photopolymerisation-based 3D printing, both in process optimisation and in the precise design of complex, internally stratified materials by coupling the z-stage displacement and frontal polymerisation kinetics. PMID:28773881

  4. MHD compressor---expander conversion system integrated with GCR inside a deployable reflector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuninetti, G.; Botta, E.; Criscuolo, C.

    1989-04-20

    This work originates from the proposal MHD Compressor-Expander Conversion System Integrated with a GCR Inside a Deployable Reflector''. The proposal concerned an innovative concept of nuclear, closed-cycle MHD converter for power generation on space-based systems in the multi-megawatt range. The basic element of this converter is the Power Conversion Unit (PCU) consisting of a gas core reactor directly coupled to an MHD expansion channel. Integrated with the PCU, a deployable reflector provides reactivity control. The working fluid could be either uranium hexafluoride or a mixture of uranium hexafluoride and helium, added to enhance the heat transfer properties. The original Statementmore » of Work, which concerned the whole conversion system, was subsequently redirected and focused on the basic mechanisms of neutronics, reactivity control, ionization and electrical conductivity in the PCU. Furthermore, the study was required to be inherently generic such that the study was required to be inherently generic such that the analysis an results can be applied to various nuclear reactor and/or MHD channel designs''.« less

  5. Crew Member Interface with Space Station Furnace Facility

    NASA Technical Reports Server (NTRS)

    Cash, Martha B.

    1997-01-01

    The Space Station Furnace Facility (SSFF) is a facility located in the International Space Station United States Laboratory (ISS US Lab) for materials research in the microgravity environment. The SSFF will accommodate basic research, commercial applications, and studies of phenomena of metals and alloys, electronic and photonic materials, and glasses and ceramics. To support this broad base of research requirements, the SSFF will operate, regulate, and support a variety of Experiment Modules (EMs). To meet station requirements concerning the microgravity level needed for experiments, station is providing an active vibration isolation system, and SSFF provides the interface. SSFF physically consists of a Core Rack and two instrument racks (IRs) that occupy three adjacent ISS US Lab rack locations within the International Space Station (ISS). All SSFF racks are modified International Standard Payload Racks (ISPR). SSFF racks will have a 50% larger pass through area on the lower sides than ISPRs to accommodate the many rack to rack interconnections. The Instrument Racks are further modified with lowered floors and an additional removable panel (15" x 22") on top of the rack for access if needed. The Core Rack shall contain all centralized Core subsystems and ISS subsystem equipment. The two Instrument Racks shall contain the distributed Core subsystem equipment, ISS subsystem equipment, and the EMs. The Core System, which includes the Core Rack, the IR structures, and subsystem components located in the IRs serves as the central control and management for the IRs and the EMs. The Core System receives the resources provided by the International Space Station (ISS) and modifies, allocates, and distributes these resources to meet the operational requirements of the furnace. The Core System is able to support a total of four EMs and can control, support, and activate/deactivate the operations of two EMs, simultaneously. The IRs can be configured to house two small EMs or

  6. New core-pyrene π structure organophotocatalysts usable as highly efficient photoinitiators

    PubMed Central

    Telitel, Sofia; Dumur, Frédéric; Faury, Thomas; Graff, Bernadette; Tehfe, Mohamad-Ali; Fouassier, Jean-Pierre

    2013-01-01

    Summary Eleven di- and trifunctional compounds based on a core-pyrene π structure (Co_Py) were synthesized and investigated for the formation of free radicals. The application of two- and three-component photoinitiating systems (different Co_Pys with the addition of iodonium or sulfonium salts, alkyl halide or amine) was investigated in detail for cationic and radical photopolymerization reactions under near-UV–vis light. The proposed compounds can behave as new photocatalysts. Successful results in terms of rates of polymerization and final conversions were obtained. The strong MO coupling between the six different cores and the pyrene moiety was studied by DFT calculations. The different chemical intermediates are characterized by ESR and laser flash photolysis experiments. The mechanisms involved in the initiation step are discussed, and relationships between the core structure, the Co_Py absorption property, and the polymerization ability are tentatively proposed. PMID:23766803

  7. Core-shell-like Y2O3:[(Tb3+-Yb3+), Li+]/CdZnS heterostructure synthesized by super-close-space sublimation for broadband down-conversion

    NASA Astrophysics Data System (ADS)

    Wu, Xiaojie; Zhang, Zhenzhong; Meng, Fanzhi; Yu, Yingning; Han, Lin; Liu, Xiaojuan; Meng, Jian

    2014-04-01

    Combination with semiconductors is a promising approach to the realization of broadband excitation of light conversion materials based on rare earth compounds, to boost the energy efficiency of silicon solar cells. Cd1-xZnxS is a wide bandgap semiconductor with large exciton binding energy. By changing its composition, the bandgap of Cd1-xZnxS can be tuned to match the absorption of trivalent lanthanide (Ln) ions, which makes it a competent energy donor for the Ln3+-Yb3+ couple. In this work, we designed a clean route to a broadband down-converter based on a core-shell-like Y2O3:[(Tb3+-Yb3+), Li+]/Cd0.81Zn0.19S (CdZnS) heterostructure. By hot-pressing and subsequent annealing of a Y2O3:[(Tb3+-Yb3+), Li+]/CdZnS mixture, highly pure CdZnS was sublimated and deposited on the Y2O3:[(Tb3+-Yb3+), Li+] grains while maintaining the original composition of the precursor. The CdZnS shell acted as a light absorber and energy donor for the Tb3+-Yb3+ quantum cutting couple. Because the use of solvents was avoided during the formation of the heterostructures, few impurities were incorporated into the samples, and the non-radiative transition was therefore markedly suppressed. The Y2O3:[(Tb3+-Yb3+), Li+]/CdZnS heterostructures possess strong near-infrared (NIR) luminescence from Yb3+. Broadband down-conversion to the Yb3+ NIR emission was obtained in a wide range of 250-650 nm.

  8. Directors' duty to obtain a fair price in the conversion of nonprofit hospitals.

    PubMed

    Tower, E S

    1997-01-01

    Boards of Directors of tax-exempt hospitals are increasingly struggling with whether to convert their facilities to for-profit status. Other than the traditional duties of loyalty and fair dealings imposed upon directors, there is currently little guidance to assure that boards obtain a fair price for the hospital in such conversions. The author provides recommendations to assure proper valuation.

  9. LUMA: A many-core, Fluid-Structure Interaction solver based on the Lattice-Boltzmann Method

    NASA Astrophysics Data System (ADS)

    Harwood, Adrian R. G.; O'Connor, Joseph; Sanchez Muñoz, Jonathan; Camps Santasmasas, Marta; Revell, Alistair J.

    2018-01-01

    The Lattice-Boltzmann Method at the University of Manchester (LUMA) project was commissioned to build a collaborative research environment in which researchers of all abilities can study fluid-structure interaction (FSI) problems in engineering applications from aerodynamics to medicine. It is built on the principles of accessibility, simplicity and flexibility. The LUMA software at the core of the project is a capable FSI solver with turbulence modelling and many-core scalability as well as a wealth of input/output and pre- and post-processing facilities. The software has been validated and several major releases benchmarked on supercomputing facilities internationally. The software architecture is modular and arranged logically using a minimal amount of object-orientation to maintain a simple and accessible software.

  10. A facile single-step synthesis of ternary multicore magneto-plasmonic nanoparticles.

    PubMed

    Benelmekki, Maria; Bohra, Murtaza; Kim, Jeong-Hwan; Diaz, Rosa E; Vernieres, Jerome; Grammatikopoulos, Panagiotis; Sowwan, Mukhles

    2014-04-07

    We report a facile single-step synthesis of ternary hybrid nanoparticles (NPs) composed of multiple dumbbell-like iron-silver (FeAg) cores encapsulated by a silicon (Si) shell using a versatile co-sputter gas-condensation technique. In comparison to previously reported binary magneto-plasmonic NPs, the advantage conferred by a Si shell is to bind the multiple magneto-plasmonic (FeAg) cores together and prevent them from aggregation at the same time. Further, we demonstrate that the size of the NPs and number of cores in each NP can be modulated over a wide range by tuning the experimental parameters.

  11. Converse and Head at Space and Rocket Center

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Vincent W. Converse, high school student from Rockford, Illinois, discussed a mass measurement device he proposed for the Skylab mission with Dr. Robert Head of the Marshall Space Flight Center (MSFC) during his visit to the center. The lunar surface scene in the background is one of many space exhibits at the Alabama Space and Rocket Center in nearby Huntsville, Alabama. Converse was among 25 winners of a contest in which some 3,500 high school students proposed experiments for the following year's Skylab mission. The nationwide scientific competition was sponsored by the National Science Teachers Association and the National Aeronautics and Space Administration (NASA). The winning students, along with their parents and sponsor teachers, visited MSFC where they met with scientists and engineers, participated in design reviews for their experiments, and toured MSFC facilities. Of the 25 students, 6 did not see their experiments conducted on Skylab because the experiments were not compatible with Skylab hardware and timelines. Of the 19 remaining, 11 experiments required the manufacture of additional equipment.

  12. Molecular approaches to solar energy conversion: the energetic cost of charge separation from molecular-excited states.

    PubMed

    Durrant, James R

    2013-08-13

    This review starts with a brief overview of the technological potential of molecular-based solar cell technologies. It then goes on to focus on the core scientific challenge associated with using molecular light-absorbing materials for solar energy conversion, namely the separation of short-lived, molecular-excited states into sufficiently long-lived, energetic, separated charges capable of generating an external photocurrent. Comparisons are made between different molecular-based solar cell technologies, with particular focus on the function of dye-sensitized photoelectrochemical solar cells as well as parallels with the function of photosynthetic reaction centres. The core theme of this review is that generating charge carriers with sufficient lifetime and a high quantum yield from molecular-excited states comes at a significant energetic cost-such that the energy stored in these charge-separated states is typically substantially less than the energy of the initially generated excited state. The role of this energetic loss in limiting the efficiency of solar energy conversion by such devices is emphasized, and strategies to minimize this energy loss are compared and contrasted.

  13. Novel Nuclear Powered Photocatalytic Energy Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White,John R.; Kinsmen,Douglas; Regan,Thomas M.

    2005-08-29

    and fabrication of a range of new cell materials and geometries at Konarka's manufacturing facilities, and the irradiation testing and evaluation of these new cell designs within the UML Radiation Laboratory. The primary focus of all this work was to establish the proof of concept of the basic gammavoltaic principle using a new class of dye-sensitized photon converter (DSPC) materials based on KTI's original DSSC design. In achieving this goal, this report clearly establishes the viability of the basic gammavoltaic energy conversion concept, yet it also identifies a set of challenges that must be met for practical implementation of this new technology.« less

  14. Open Core Data approaches to exposing facility data to support FAIR principles

    NASA Astrophysics Data System (ADS)

    Fils, D.; Lehnert, K.; Noren, A. J.

    2017-12-01

    The Open Core Data (OCD) award from NSF is focused on exposing scientific drilling data from the JOIDES Resolution Science Operator (JRSO) and Continental Scientific Drilling Coordination Office (CSDCO) following guidance from the Force 11 FAIR principles and the W3C "best practices" recommendations and notes. The goal of this implementation is to provide the identification, access, citation and provenance of these data to support the research community. OCD employs Linked Open Data (LOD) patterns and HTML5 microdata publishing via JSON-LD using various vocabularies. These vocabularies include schema.org, GeoLink and other relevant community vocabularies. Attention is paid to enabling hypermedia navigation between resources to aid in fast and efficient harvesting of the metadata directly from the LOD approach using web architecture patterns. Further, the vocabularies are employed to address the need of both DOI assignment and creation of data citation entries following ESIP data citation recommendations. The use of LOD, community vocabularies and persistent identifiers has enabled linking between hosted and remote data resources. In addition to the semantic metadata and LOD pattern, OCD is implementing approaches to data packaging to facilitate data use. OCD is currently using the CSV for the Web approach but is moving to implement frictionless data packages. This data package model provide access to a large suite of tools, libraries and workbenches to support data utilization, validation and visualization. Further, a basic reference implementation of the W3C PROV-AQ pingback pattern is under testing. This work is done in coordination with the RDA Provenance Patterns WG and follows patterns already employed by Geoscience Australia. This development is also done in coordination with ESIP provenance work. As needed, more traditional Application Program Interfaces (APIs) are exposed following best practices in RESTful services. All these capabilities are implemented

  15. Changes in core food intake among Australian children between 1995 and 2007.

    PubMed

    Rangan, A M; Kwan, J S L; Louie, J C Y; Flood, V M; Gill, T P

    2011-11-01

    To assess the changes in the consumption of core foods among Australian children between the 1995 National Nutrition Survey (1995 NNS) and the 2007 Australian National Children's Nutrition and Physical Activity Survey (2007 Children's Survey). Core food consumption was analysed using 24-h recall data from 2-16 year old children using the 1995 NNS (n=2435) and the 2007 Children's Survey (n=4380). Differences in percent consuming, amounts consumed and percent energy contribution were assessed. The consumption of core foods increased significantly between the 1995 and 2007 surveys, including per-capita consumption and percent energy contribution (both P0.001). Core foods contributed to 59% of energy intake in 1995 compared with 65% in 2007. The types of core foods consumed also changed during this time period with more children reporting eating healthy options such as wholemeal bread, reduced-fat milk, reduced-fat cheese and fruit in the 2007 Children's Survey. Conversely, the consumption of white bread, full-fat milk and low-fibre breakfast cereals was lower in 2007. Overall, reported dietary intake had improved from 1995 to 2007 among Australian children with an increase in the amounts of core foods consumed and healthier types of foods being chosen. Continued health-promotion activities and monitoring of food consumption are highly warranted.

  16. Analysis on fuel breeding capability of FBR core region based on minor actinide recycling doping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Permana, Sidik; Novitrian,; Waris, Abdul

    Nuclear fuel breeding based on the capability of fuel conversion capability can be achieved by conversion ratio of some fertile materials into fissile materials during nuclear reaction processes such as main fissile materials of U-233, U-235, Pu-239 and Pu-241 and for fertile materials of Th-232, U-238, and Pu-240 as well as Pu-238. Minor actinide (MA) loading option which consists of neptunium, americium and curium will gives some additional contribution from converted MA into plutonium such as conversion Np-237 into Pu-238 and it's produced Pu-238 converts to Pu-239 via neutron capture. Increasing composition of Pu-238 can be used to produce fissilemore » material of Pu-239 as additional contribution. Trans-uranium (TRU) fuel (Mixed fuel loading of MOX (U-Pu) and MA composition) and mixed oxide (MOX) fuel compositions are analyzed for comparative analysis in order to show the effect of MA to the plutonium productions in core in term of reactor criticality condition and fuel breeding capability. In the present study, neptunium (Np) nuclide is used as a representative of MAin trans-uranium (TRU) fuel composition as Np-MOX fuel type. It was loaded into the core region gives significant contribution to reduce the excess reactivity in comparing to mixed oxide (MOX) fuel and in the same time it contributes to increase nuclear fuel breeding capability of the reactor. Neptunium fuel loading scheme in FBR core region gives significant production of Pu-238 as fertile material to absorp neutrons for reducing excess reactivity and additional contribution for fuel breeding.« less

  17. Ultrasound phase rotation beamforming on multi-core DSP.

    PubMed

    Ma, Jieming; Karadayi, Kerem; Ali, Murtaza; Kim, Yongmin

    2014-01-01

    Phase rotation beamforming (PRBF) is a commonly-used digital receive beamforming technique. However, due to its high computational requirement, it has traditionally been supported by hardwired architectures, e.g., application-specific integrated circuits (ASICs) or more recently field-programmable gate arrays (FPGAs). In this study, we investigated the feasibility of supporting software-based PRBF on a multi-core DSP. To alleviate the high computing requirement, the analog front-end (AFE) chips integrating quadrature demodulation in addition to analog-to-digital conversion were defined and used. With these new AFE chips, only delay alignment and phase rotation need to be performed by DSP, substantially reducing the computational load. We implemented the delay alignment and phase rotation modules on a Texas Instruments C6678 DSP with 8 cores. We found it takes 200 μs to beamform 2048 samples from 64 channels using 2 cores. With 4 cores, 20 million samples can be beamformed in one second. Therefore, ADC frequencies up to 40 MHz with 2:1 decimation in AFE chips or up to 20 MHz with no decimation can be supported as long as the ADC-to-DSP I/O requirement can be met. The remaining 4 cores can work on back-end processing tasks and applications, e.g., color Doppler or ultrasound elastography. One DSP being able to handle both beamforming and back-end processing could lead to low-power and low-cost ultrasound machines, benefiting ultrasound imaging in general, particularly portable ultrasound machines. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. High resolution A/D conversion based on piecewise conversion at lower resolution

    DOEpatents

    Terwilliger, Steve [Albuquerque, NM

    2012-06-05

    Piecewise conversion of an analog input signal is performed utilizing a plurality of relatively lower bit resolution A/D conversions. The results of this piecewise conversion are interpreted to achieve a relatively higher bit resolution A/D conversion without sampling frequency penalty.

  19. Reversed Cherenkov emission of terahertz waves from an ultrashort laser pulse in a sandwich structure with nonlinear core and left-handed cladding.

    PubMed

    Bakunov, M I; Mikhaylovskiy, R V; Bodrov, S B; Luk'yanchuk, B S

    2010-01-18

    We propose a scheme for an experimental verification of the reversed Cherenkov effect in left-handed media. The scheme uses optical-to-terahertz conversion in a planar sandwichlike structure that consists of a nonlinear core cladded with a material that exhibits left-handedness at terahertz frequencies. The focused into a line femtosecond laser pulse propagates in the core and emits Cherenkov wedge of terahertz waves in the cladding. We developed a theory that describes terahertz generation in such a structure and calculated spatial distribution of the generated terahertz field, its energy spectrum, and optical-to-terahertz conversion efficiency. The proposed structure can be a useful tool for characterization of the electromagnetic properties of metamaterials in the terahertz frequency range.

  20. Is the closest facility the one actually used? An assessment of travel time estimation based on mammography facilities.

    PubMed

    Alford-Teaster, Jennifer; Lange, Jane M; Hubbard, Rebecca A; Lee, Christoph I; Haas, Jennifer S; Shi, Xun; Carlos, Heather A; Henderson, Louise; Hill, Deirdre; Tosteson, Anna N A; Onega, Tracy

    2016-02-18

    Characterizing geographic access depends on a broad range of methods available to researchers and the healthcare context to which the method is applied. Globally, travel time is one frequently used measure of geographic access with known limitations associated with data availability. Specifically, due to lack of available utilization data, many travel time studies assume that patients use the closest facility. To examine this assumption, an example using mammography screening data, which is considered a geographically abundant health care service in the United States, is explored. This work makes an important methodological contribution to measuring access--which is a critical component of health care planning and equity almost everywhere. We analyzed one mammogram from each of 646,553 women participating in the US based Breast Cancer Surveillance Consortium for years 2005-2012. We geocoded each record to street level address data in order to calculate travel time to the closest and to the actually used mammography facility. Travel time between the closest and the actual facility used was explored by woman-level and facility characteristics. Only 35% of women in the study population used their closest facility, but nearly three-quarters of women not using their closest facility used a facility within 5 min of the closest facility. Individuals that by-passed the closest facility tended to live in an urban core, within higher income neighborhoods, or in areas where the average travel times to work was longer. Those living in small towns or isolated rural areas had longer closer and actual median drive times. Since the majority of US women accessed a facility within a few minutes of their closest facility this suggests that distance to the closest facility may serve as an adequate proxy for utilization studies of geographically abundant services like mammography in areas where the transportation networks are well established.

  1. A Monte Carlo modeling alternative for the API Gamma Ray Calibration Facility.

    PubMed

    Galford, J E

    2017-04-01

    The gamma ray pit at the API Calibration Facility, located on the University of Houston campus, defines the API unit for natural gamma ray logs used throughout the petroleum logging industry. Future use of the facility is uncertain. An alternative method is proposed to preserve the gamma ray API unit definition as an industry standard by using Monte Carlo modeling to obtain accurate counting rate-to-API unit conversion factors for gross-counting and spectral gamma ray tool designs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Study of an amorphous alloy core transformer

    NASA Astrophysics Data System (ADS)

    Nafalski, A.; Frost, D. C.

    1994-05-01

    Amorphous core transformers (ACT) have become a technological and commercial reality and there are an estimated 400,000 units installed worldwide [1]. Their applications reflect changes in buying practices, where the efficiency evaluation is an important factor in the purchasing decision for distribution transformers. Use of the total ownership cost (TOC) concept facilities the selection of a transformer on the basis of its performance. This concept is used in this paper to investigate the feasibility of applying a distribution ACT in Western Australian (WA). A 10 kVA ACT, evaluated by the TOC method, was compared with a traditional silicon iron core transformer of the same rating. The cost of amorphous metal (relative to alternative materials), the distribution load profile, and the values of capitalised loss costs are factors which affect the cost effectiveness of ACTs.

  3. From MODFLOW-96 to MODFLOW-2005, ParFlow and Others: Updates and a Workflow for Up- and Out- Conversion

    NASA Astrophysics Data System (ADS)

    Pierce, S. A.; Hardesty Lewis, D.

    2017-12-01

    MODFLOW (MF) has served for decades as a de facto standard for groundwater modelling. Despite successive versions, legacy MF-96 simulations are still commonly encountered cases. Such is the case for many of the groundwater availability models of the State of Texas. Unfortunately, even the existence of converters to MF's newer versions has not necessarily stimulated their adoption, let alone re-creation of legacy models. This state of affairs may be due to the unfamiliarity of the modeller with the terminal or the FORTRAN programming language, resulting in an inability to address the minor or major bugs, nuances, or limitations in compilation or execution of the conversion programs. Here, we present a workflow that addresses the above intricacies all the while attempting to maintain portability in implementation. This workflow is contructed in the form of a Bash script and - with the geoscience-oriented in mind - re-presented as a Jupyter notebook. First, one may choose whether this executable will run with POSIX-compliance or with a preference towards the Bash facilities, both widely adopted by operating systems. In the same vein, it attempts to function within minimal command environments, which reduces any dependencies. Finally, it is designed to offer parallelism across as many cores and nodes as necessary or as few as desired, whether upon a personal or super-computer. Underlying this workflow are patches such that antiquated tools may compile and execute upon modern hardware. Also, fixes to long-standing bugs and limitations in the existing MF converters have been prepared. Specifically, support for the conversion of -96- and Horizontal Flow Barrier-coupled simulations has been added. More radically, we have laid the foundations of a conversion utility between MF and a similar modeller, ParFlow. Furthermore, the modular approach followed may extend to an application which inter-operates between arbitrary groundwater simulators. In short, an accessible and

  4. Controllable all-fiber generation/conversion of circularly polarized orbital angular momentum beams using long period fiber gratings

    NASA Astrophysics Data System (ADS)

    Han, Ya; Liu, Yan-Ge; Wang, Zhi; Huang, Wei; Chen, Lei; Zhang, Hong-Wei; Yang, Kang

    2018-01-01

    Mode-division multiplexing (MDM) is a promising technology for increasing the data-carrying capacity of a single few-mode optical fiber. The flexible mode manipulation would be highly desired in a robust MDM network. Recently, orbital angular momentum (OAM) modes have received wide attention as a new spatial mode basis. In this paper, we firstly proposed a long period fiber grating (LPFG) system to realize mode conversions between the higher order LP core modes in four-mode fiber. Based on the proposed system, we, for the first time, demonstrate the controllable all-fiber generation and conversion of the higher order LP core modes to the first and second order circularly polarized OAM beams with all the combinations of spin and OAM. Therefore, the proposed LPFG system can be potentially used as a controllable higher order OAM beam switch and a physical layer of the translating protocol from the conventional LP modes communication to the OAM modes communication in the future mode carrier telecommunication system and light calculation protocols.

  5. Dual-enhanced photothermal conversion properties of reduced graphene oxide-coated gold superparticles for light-triggered acoustic and thermal theranostics†

    PubMed Central

    Lin, Li-Sen; Yang, Xiangyu; Niu, Gang

    2017-01-01

    A rational design of highly efficient photothermal agents that possess excellent light-to-heat conversion properties is a fascinating topic in nanotheranostics. Herein, we present a facile route to fabricate size-tunable reduced graphene oxide (rGO)-coated gold superparticles (rGO-GSPs) and demonstrate their dual-enhanced photothermal conversion properties for photoacoustic imaging and photothermal therapy. For the first time, graphene oxide (GO) was directly used as an emulsifying agent for the preparation of gold superparticles (GSPs) with near-infrared absorption by the emulsion method. Moreover, GO spontaneously deposited on the surface of GSPs could also act as the precursor of the rGO shell. Importantly, both the plasmonic coupling of the self-assembled gold nanoparticles and the interaction between GSPs and rGO endow rGO-GSPs with enhanced photothermal conversion properties, allowing rGO-GSPs to be used for sensitive photoacoustic detection and efficient photothermal ablation of tumours in vivo. This study provides a facile approach to prepare colloidal superparticles–graphene hybrid nanostructures and will pave the way toward the design and optimization of photothermal nanomaterials with improved properties for theranostic applications. PMID:26726809

  6. Core-Sheath Paraffin-Wax-Loaded Nanofibers by Electrospinning for Heat Storage.

    PubMed

    Lu, Yuan; Xiao, Xiudi; Zhan, Yongjun; Huan, Changmeng; Qi, Shuai; Cheng, Haoliang; Xu, Gang

    2018-04-18

    Paraffin wax (PW) is widely used for smart thermoregulation materials due to its good thermal performance. However, the leakage and low thermal conductivity of PW hinder its application in the heat storage field. Accordingly, developing effective methods to address these issues is of great importance. In this study, we explored a facile approach to obtain PW-loaded core-sheath structured flexible nanofibers films via coaxial electrospinning technique. The PW as the core layer was successfully encapsulated by the sheath-layer poly(methyl methacrylate). The diameter of the fiber core increased from 395 to 848 nm as the core solution speed rate increased from 0.1 to 0.5 mL/h. In addition, it can be seen that higher core solution speed rate could lead to higher PW encapsulation efficiency according to the transmission electron microscopy results. The core-sheath nanofiber films, moreover, possessed the highest latent heat of 58.25 J/g and solidifying enthalpy of -56.49 J/g. In addition, we found that after 200 thermal cycles, there was little change in latent heat, which demonstrated that it is beneficial for the PW-loaded core-sheath structure to overcome the leakage issue and enhance thermal stability properties for the thermoregulation film.

  7. Conversion from thrice- to twice-daily pregabalin dosing for pain: Economic and clinical outcomes in a veteran population.

    PubMed

    Okolo, Chike; Malmstrom, Robert; Duncan, Karsten; Lopez, Julio

    2015-09-01

    Results of a study analyzing economic and clinical outcomes one year after conversion from thrice- to twice-daily pregabalin dosing for pain are presented. A retrospective chart review was conducted at two Veterans Affairs facilities. The analyzed population included all patients receiving pregabalin for pain whose dosing was converted from thrice- to twice-daily pregabalin dosing during a one-year period. The primary endpoint was the economic impact of the conversion. Secondary endpoints included reversion to thrice-daily pregabalin dosing, pregabalin discontinuation, addition of medications for pain, and unscheduled neuropathy-related visits. Among the 57 patients included in the data analysis, 41 continued to take pregabalin twice daily, 10 had pregabalin discontinued, and 6 had dosing reverted to thrice daily. The mean age of patients and the distribution of add-on pain medications did not differ significantly between patients whose pregabalin dosing frequency remained at twice daily and patients whose frequency reverted to thrice daily. The costs associated with pregabalin therapy differed significantly between the preconversion and postconversion periods. A savings of $115,867 was realized from this conversion for both facilities combined over the course of one year. In patients receiving pregabalin for pain, conversion from thrice- to twice-daily pregabalin dosing-while maintaining the same daily dose-resulted in substantial cost savings while having little effect on clinical outcomes. Copyright © 2015 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  8. Metric Conversion

    Atmospheric Science Data Center

    2013-03-12

    Metric Weights and Measures The metric system is based on 10s.  For example, 10 millimeters = 1 centimeter, 10 ... Special Publications: NIST Guide to SI Units: Conversion Factors NIST Guide to SI Units: Conversion Factors listed ...

  9. Spatially-controlled NiCo2O4@MnO2 core-shell nanoarray with hollow NiCo2O4 cores and MnO2 flake shells: an efficient catalyst for oxygen evolution reaction.

    PubMed

    Xue, Hairong; Yu, Hongjie; Li, Yinghao; Deng, Kai; Xu, You; Li, Xiaonian; Wang, Hongjing; Wang, Liang

    2018-07-13

    Control of structures and components of the nanoarray catalysts is very important for electrochemical energy conversion. Herein, unique NiCo 2 O 4 @MnO 2 core-shell nanoarray with hollow NiCo 2 O 4 Cores and MnO 2 flake shells is in situ fabricated on carbon textile via a two-step hydrothermal treatment followed by a subsequent annealing. The as-made nanoarray is highly active and durable catalyst for oxygen evolution reaction in alkaline media attribute to the synergetic effect derived from spatially separated nanoarray with favorable NiCo 2 O 4 and MnO 2 compositions.

  10. Learning through Conversation.

    ERIC Educational Resources Information Center

    Kelly, Patricia R.; Klein, Adria F.; Pinnell, Gay Su

    1996-01-01

    Through teacher-child conversation, experts use oral language to help novices take on more complex tasks; and Reading Recovery children, who are obviously having difficulty with school-based learning, are especially in need of significant conversations with adults. Reading and writing processes are supported through conversation with Reading…

  11. Effective Charge Carrier Utilization in Photocatalytic Conversions.

    PubMed

    Zhang, Peng; Wang, Tuo; Chang, Xiaoxia; Gong, Jinlong

    2016-05-17

    morphology of nanostructured photocatalysts can reduce the migration distance of charge carriers. Improving the conductivity of photocatalysts by using graphitic materials can also improve the transport of charge carriers. Upon charge carrier migration, electrons and holes also tend to recombine. The suppression of recombination can be achieved by constructing heterojunctions that enhance charge separation in the photocatalysts. Surface states acting as recombination centers should also be removed to improve the photocatalytic efficiency. Moreover, surface reactions, which are the core chemical processes during the solar energy conversion, can be enhanced by applying cocatalysts as well as suppressing side reactions. All of these strategies have been proved to be essential for enhancing the activities of semiconductor photocatalysts. It is hoped that delicate manipulation of photogenerated charge carriers in semiconductor photocatalysts will hold the key to effective solar-to-chemical energy conversion.

  12. Supplemental Thermal-Hydraulic Transient Analyses of BR2 in Support of Conversion to LEU Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Licht, J.; Dionne, B.; Sikik, E.

    2016-01-01

    Belgian Reactor 2 (BR2) is a research and test reactor located in Mol, Belgium and is primarily used for radioisotope production and materials testing. The Materials Management and Minimization (M3) Reactor Conversion Program of the National Nuclear Security Administration (NNSA) is supporting the conversion of the BR2 reactor from Highly Enriched Uranium (HEU) fuel to Low Enriched Uranium (LEU) fuel. The RELAP5/Mod 3.3 code has been used to perform transient thermal-hydraulic safety analyses of the BR2 reactor to support reactor conversion. A RELAP5 model of BR2 has been validated against select transient BR2 reactor experiments performed in 1963 by showingmore » agreement with measured cladding temperatures. Following the validation, the RELAP5 model was then updated to represent the current use of the reactor; taking into account core configuration, neutronic parameters, trip settings, component changes, etc. Simulations of the 1963 experiments were repeated with this updated model to re-evaluate the boiling risks associated with the currently allowed maximum heat flux limit of 470 W/cm 2 and temporary heat flux limit of 600 W/cm 2. This document provides analysis of additional transient simulations that are required as part of a modern BR2 safety analysis report (SAR). The additional simulations included in this report are effect of pool temperature, reduced steady-state flow rate, in-pool loss of coolant accidents, and loss of external cooling. The simulations described in this document have been performed for both an HEU- and LEU-fueled core.« less

  13. NASA Data Acquisition System Software Development for Rocket Propulsion Test Facilities

    NASA Technical Reports Server (NTRS)

    Herbert, Phillip W., Sr.; Elliot, Alex C.; Graves, Andrew R.

    2015-01-01

    Current NASA propulsion test facilities include Stennis Space Center in Mississippi, Marshall Space Flight Center in Alabama, Plum Brook Station in Ohio, and White Sands Test Facility in New Mexico. Within and across these centers, a diverse set of data acquisition systems exist with different hardware and software platforms. The NASA Data Acquisition System (NDAS) is a software suite designed to operate and control many critical aspects of rocket engine testing. The software suite combines real-time data visualization, data recording to a variety formats, short-term and long-term acquisition system calibration capabilities, test stand configuration control, and a variety of data post-processing capabilities. Additionally, data stream conversion functions exist to translate test facility data streams to and from downstream systems, including engine customer systems. The primary design goals for NDAS are flexibility, extensibility, and modularity. Providing a common user interface for a variety of hardware platforms helps drive consistency and error reduction during testing. In addition, with an understanding that test facilities have different requirements and setups, the software is designed to be modular. One engine program may require real-time displays and data recording; others may require more complex data stream conversion, measurement filtering, or test stand configuration management. The NDAS suite allows test facilities to choose which components to use based on their specific needs. The NDAS code is primarily written in LabVIEW, a graphical, data-flow driven language. Although LabVIEW is a general-purpose programming language; large-scale software development in the language is relatively rare compared to more commonly used languages. The NDAS software suite also makes extensive use of a new, advanced development framework called the Actor Framework. The Actor Framework provides a level of code reuse and extensibility that has previously been difficult

  14. MPF: A portable message passing facility for shared memory multiprocessors

    NASA Technical Reports Server (NTRS)

    Malony, Allen D.; Reed, Daniel A.; Mcguire, Patrick J.

    1987-01-01

    The design, implementation, and performance evaluation of a message passing facility (MPF) for shared memory multiprocessors are presented. The MPF is based on a message passing model conceptually similar to conversations. Participants (parallel processors) can enter or leave a conversation at any time. The message passing primitives for this model are implemented as a portable library of C function calls. The MPF is currently operational on a Sequent Balance 21000, and several parallel applications were developed and tested. Several simple benchmark programs are presented to establish interprocess communication performance for common patterns of interprocess communication. Finally, performance figures are presented for two parallel applications, linear systems solution, and iterative solution of partial differential equations.

  15. Cultural analysis of communication behaviors among juveniles in a correctional facility.

    PubMed

    Sanger, D D; Creswell, J W; Dworak, J; Schultz, L

    2000-01-01

    This study addressed communication behaviors of female juvenile delinquents in a correctional facility. Qualitative methodology was used to study 78 participants ranging in age from 13.1 to 18.9 (years; months), over a five-month period. Data collection consisted of observations, participant observation, interviews, and a review of documents. Additionally, participants were tested on the Clinical Evaluation of Language Fundamentals-3. Listening and following rules, utterance types, topics of conversion, politeness, and conversational management emerged as themes. Findings indicated that as many as 22% of participants were potential candidates for language services. Implications for speech-language pathologists (SLPs) providing communication services will be provided.

  16. The Pressure Dependence of Thermal Expansion of Core-Forming Alloys: A Key Parameter in Determining the Convective Style of Planetary Cores

    NASA Astrophysics Data System (ADS)

    Williams, Q. C.; Manghnani, M. H.

    2017-12-01

    The convective style of planetary cores is critically dependent on the thermal properties of iron alloys. In particular, the relation between the adiabatic gradient and the melting curve governs whether planetary cores solidify from their top down (when the adiabat is steeper than the melting curve) or the bottom up (the converse). Molten iron alloys, in general, have large, ambient pressure thermal expansions: values in excess of 1.2 x 10^-4/K are dictated by data derived from levitated and sessile drop techniques. These high values of the thermal expansion imply that the adiabatic gradients within early planetesimals and present day moons that have comparatively low-pressure, iron-rich cores are steep (typically greater than 35 K/GPa at low pressures): values, at low pressures, that are greater than the slope of the melting curve, and hence show that the cores of small solar system objects probably crystallize from the top-down. Here, we deploy a different manifestation of these large values of thermal expansion to determine the pressure dependence of thermal expansion in iron-rich liquids: a difficult parameter to experimentally measure, and critical for determining the size range of cores in which top-down core solidification predominates. In particular, the difference between the adiabatic and isothermal bulk moduli of iron liquids is in the 20-30% range at the melting temperature, and scales as the product of the thermal expansion, the Grüneisen parameter, and the temperature. Hence, ultrasonic (and adiabatic) moduli of iron alloy liquids, when coupled with isothermal sink-float measurements, can yield quantitative constraints on the pressure dependence of thermal expansion. For liquid iron alloys containing 17 wt% Si, we find that the thermal expansion is reduced by 50% over the first 8 GPa of compression. This "squeezing out" of the anomalously high low-pressure thermal expansion of iron-rich alloys at relatively modest conditions likely limits the size

  17. Radiation Characterization Summary: ACRR Central Cavity Free-Field Environment with the 32-Inch Pedestal at the Core Centerline (ACRR-FF-CC-32-cl).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vega, Richard Manuel; Parma, Edward J.; Naranjo, Gerald E.

    2015-08-01

    This document presents the facilit y - recommended characteri zation o f the neutron, prompt gamma - ray, and delayed gamma - ray radiation fields in the Annular Core Research Reactor ( ACRR ) for the cen tral cavity free - field environment with the 32 - inch pedestal at the core centerline. The designation for this environmen t is ACRR - FF - CC - 32 - cl. The neutron, prompt gamma - ray , and delayed gamma - ray energy spectra , uncertainties, and covariance matrices are presented as well as radial and axial neutron and gamma -more » ray fluence profiles within the experiment area of the cavity . Recommended constants are given to facilitate the conversion of various dosimetry readings into radiation metrics desired by experimenters. Representative pulse operations are presented with conversion examples . Acknowledgements The authors wish to th ank the Annular Core Research Reactor staff and the Radiation Metrology Laboratory staff for their support of this work . Also thanks to David Ames for his assistance in running MCNP on the Sandia parallel machines.« less

  18. Those conversion blues.

    PubMed

    Forgione, D A

    1999-01-01

    With the ever-increasing market penetration of capitated payment systems throughout health care markets, average payment rates for health services have dropped correspondingly. At the same time, the added competitive pressures from managed care organizations have served to increase the demand for new capital investment in information systems, lower cost facilities, and innovative modes for delivering all types of health care services. As a result, many nonprofit health care organizations have converted, or have attempted to convert, to for-profit status in an effort to gain access to the public equity capital markets. As hospitals, Blue Cross and Blue Shield organizations, and other nonprofit health care organizations across the U.S. seek to convert to for-profit status, they are finding the path is not easy. Access to capital, operating efficiencies, and the need to accelerate movement into new markets are offset by public benefit obligations, potential private inurement, and significant political cost issues. The bottom line is whether the conversion will be structured to both protect the public interest and allow the health care organization the flexibility and access to capital it needs in order to continue as a viable, competitive organization into the next millennium.

  19. The NASA Glen Research Center's Hypersonic Tunnel Facility. Chapter 16

    NASA Technical Reports Server (NTRS)

    Woike, Mark R.; Willis, Brian P.

    2001-01-01

    The NASA Glenn Research Center's Hypersonic Tunnel Facility (HTF) is a blow-down, freejet wind tunnel that provides true enthalpy flight conditions for Mach numbers of 5, 6, and 7. The Hypersonic Tunnel Facility is unique due to its large scale and use of non-vitiated (clean air) flow. A 3MW graphite core storage heater is used to heat the test medium of gaseous nitrogen to the high stagnation temperatures required to produce true enthalpy conditions. Gaseous oxygen is mixed into the heated test flow to generate the true air simulation. The freejet test section is 1.07m (42 in.) in diameter and 4.3m (14 ft) in length. The facility is well suited for the testing of large scale airbreathing propulsion systems. In this chapter, a brief history and detailed description of the facility are presented along with a discussion of the facility's application towards hypersonic airbreathing propulsion testing.

  20. Development and Use of a Virtual NMR Facility

    NASA Astrophysics Data System (ADS)

    Keating, Kelly A.; Myers, James D.; Pelton, Jeffrey G.; Bair, Raymond A.; Wemmer, David E.; Ellis, Paul D.

    2000-03-01

    We have developed a "virtual NMR facility" (VNMRF) to enhance access to the NMR spectrometers in Pacific Northwest National Laboratory's Environmental Molecular Sciences Laboratory (EMSL). We use the term virtual facility to describe a real NMR facility made accessible via the Internet. The VNMRF combines secure remote operation of the EMSL's NMR spectrometers over the Internet with real-time videoconferencing, remotely controlled laboratory cameras, real-time computer display sharing, a Web-based electronic laboratory notebook, and other capabilities. Remote VNMRF users can see and converse with EMSL researchers, directly and securely control the EMSL spectrometers, and collaboratively analyze results. A customized Electronic Laboratory Notebook allows interactive Web-based access to group notes, experimental parameters, proposed molecular structures, and other aspects of a research project. This paper describes our experience developing a VNMRF and details the specific capabilities available through the EMSL VNMRF. We show how the VNMRF has evolved during a test project and present an evaluation of its impact in the EMSL and its potential as a model for other scientific facilities. All Collaboratory software used in the VNMRF is freely available from http://www.emsl.pnl.gov:2080/docs/collab.

  1. Recurrence of conversion disorder symptoms in a successfully treated 16-year-old female.

    PubMed

    Shapiro, Michael; Mehta, Anuja; Avila, Jorge; Nguyen, Mathew

    2015-01-01

    We present a case of a 16-year-old Caucasian female with a history of major depressive disorder and post-traumatic stress disorder who was admitted to an inpatient adolescent psychiatric unit with symptoms of conversion disorder, including non-epileptic seizures, an inability to speak or walk, and not eating on her own. She has a history of multiple previous medical and psychiatric hospitalizations without any significant resolution of symptoms, and extensive medical workups have all been negative. Treatment ultimately involved reassuring the patient and family that there was no underlying medical condition and emphasizing the conversion disorder diagnosis. The patient participated daily in physical therapy to improve mobility, deconditioning, and functioning. Hospital staff was instructed on the nature of the non-epileptic seizures, which continued to occur during the hospitalization. After one month, the patient was discharged home fully functional: walking, speaking, and eating on her own. One week after discharge, the patient presented with the same symptoms and was readmitted to the psychiatric facility. She subsequently never regained her previous level of functioning, and she was ultimately transferred to a residential treatment facility. We will discuss factors that led to the initial improvement and the factors that led to recurrence and persistence of symptoms. © The Author(s) 2015.

  2. Forging Ahead! Teachers Reflect on the Early Adopter Program to Implement the Common Core State Standards

    ERIC Educational Resources Information Center

    Koning, Erin; Houghtby, Beth; Izard, Patrice; Schuler, Jennifer

    2014-01-01

    This "water cooler" column features e-mail conversations between Erin Koning and three teachers--Beth, Jenna, and Patrice--and is a reflection of their participation in a Chicago Public School (CPS), professional development series designed to support the implementation of the Common Core State Standards (CCSS) in grades K-12. At the…

  3. Improvement of energy conversion efficiency and power generation in direct borohydride-hydrogen peroxide fuel cell: The effect of Ni-M core-shell nanoparticles (M = Pt, Pd, Ru)/Multiwalled Carbon Nanotubes on the cell performance

    NASA Astrophysics Data System (ADS)

    Hosseini, M. G.; Mahmoodi, R.

    2017-12-01

    In this study, core@shell nanoparticles with Ni as a core material and Pt, Pd and Ru as shell materials are synthesized on multiwalled carbon nanotube (MWCNT) as catalyst support using the sequence reduction method. The influence of Ni@Pt, Ni@Pd and Ni@Ru core@shell nanoparticles on MWCNT toward borohydride oxidation in alkaline solution is investigated by various three-electrode electrochemical techniques. Also, the impact of these anodic electrocatalysts on the performance of direct borohydride-hydrogen peroxide fuel cell (DBHPFC) is evaluated. The structural and morphological properties of electrocatalysts are studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). The results of three electrode investigations show that Ni@Pd/MWCNT has excellent catalytic activity since borohydride oxidation current density on Ni@Pd/MWCNT (34773.27 A g-1) is 1.37 and 9.19 times higher than those of Ni@Pt/MWCNT (25347.27 A g-1) and Ni@Ru/MWCNT (3782.83 A g-1), respectively. Also, the energy conversion efficiency and power density of DBHPFC with Ni@Pd/MWCNT (246.82 mW cm-2) increase to 34.27% and 51.53% respect to Ni@Pt/MWCNT (162.24 mW cm-2) and Ni@Ru/MWCNT (119.62 mW cm-2), respectively. This study reveals that Ni@Pd/MWCNT has highest activity toward borohydride oxidation and stability in fuel cell.

  4. 2-kW Solar Dynamic Space Power System Tested in Lewis' Thermal Vacuum Facility

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Working together, a NASA/industry team successfully operated and tested a complete solar dynamic space power system in a large thermal vacuum facility with a simulated sun. This NASA Lewis Research Center facility, known as Tank 6 in building 301, accurately simulates the temperatures, high vacuum, and solar flux encountered in low-Earth orbit. The solar dynamic space power system shown in the photo in the Lewis facility, includes the solar concentrator and the solar receiver with thermal energy storage integrated with the power conversion unit. Initial testing in December 1994 resulted in the world's first operation of an integrated solar dynamic system in a relevant environment.

  5. TRAC-PD2 posttest analysis of CCTF Test C1-16 (Run 025). [Cylindrical Core Test Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugimoto, J.

    The TRAC-PD2 code version was used to analyze CCTF Test C1-16 (Run 025). The results indicate that the core heater rod temperatures, the liquid mass in the vessel, and differential pressures in the primary loop are predicted well, but the void fraction distribution in the core and water accumulation in the upper plenum are not in good agreement with the data.

  6. Identifying mechanisms of change in a conversation therapy for aphasia using behaviour change theory and qualitative methods

    PubMed Central

    Best, Wendy; Beckley, Firle Christina; Maxim, Jane; Beeke, Suzanne

    2016-01-01

    Abstract Background Conversation therapy for aphasia is a complex intervention comprising multiple components and targeting multiple outcomes. UK Medical Research Council (MRC) guidelines published in 2008 recommend that in addition to measuring the outcomes of complex interventions, evaluation should seek to clarify how such outcomes are produced, including identifying the hypothesized mechanisms of change. Aims To identify mechanisms of change within a conversation therapy for people with aphasia and their partners. Using qualitative methods, the study draws on behaviour change theory to understand how and why participants make changes in conversation during and after therapy. Methods & Procedures Data were derived from 16 participants (eight people with aphasia; eight conversation partners) who were recruited to the Better Conversations with Aphasia research project and took part in an eight session conversation therapy programme. The dataset consists of in‐therapy discussions and post‐therapy interviews, which are analysed using Framework Analysis. Outcomes & Results Seven mechanisms of conversational behaviour change are identified and linked to theory. These show how therapy can activate changes to speakers’ skills and motivation for using specific behaviours, and to the conversational opportunities available for strategy use. Conclusions & Implications These clinically relevant findings offer guidance about the processes involved in producing behavioural change via conversation therapy. A distinction is made between the process involved in motivating change and that involved in embedding change. Differences are also noted between the process engaged in reducing unhelpful behaviour and that supporting new uses of compensatory strategies. Findings are expected to have benefits for those seeking to replicate therapy's core processes both in clinical practice and in future research. PMID:27882642

  7. Identifying mechanisms of change in a conversation therapy for aphasia using behaviour change theory and qualitative methods.

    PubMed

    Johnson, Fiona M; Best, Wendy; Beckley, Firle Christina; Maxim, Jane; Beeke, Suzanne

    2017-05-01

    Conversation therapy for aphasia is a complex intervention comprising multiple components and targeting multiple outcomes. UK Medical Research Council (MRC) guidelines published in 2008 recommend that in addition to measuring the outcomes of complex interventions, evaluation should seek to clarify how such outcomes are produced, including identifying the hypothesized mechanisms of change. To identify mechanisms of change within a conversation therapy for people with aphasia and their partners. Using qualitative methods, the study draws on behaviour change theory to understand how and why participants make changes in conversation during and after therapy. Data were derived from 16 participants (eight people with aphasia; eight conversation partners) who were recruited to the Better Conversations with Aphasia research project and took part in an eight session conversation therapy programme. The dataset consists of in-therapy discussions and post-therapy interviews, which are analysed using Framework Analysis. Seven mechanisms of conversational behaviour change are identified and linked to theory. These show how therapy can activate changes to speakers' skills and motivation for using specific behaviours, and to the conversational opportunities available for strategy use. These clinically relevant findings offer guidance about the processes involved in producing behavioural change via conversation therapy. A distinction is made between the process involved in motivating change and that involved in embedding change. Differences are also noted between the process engaged in reducing unhelpful behaviour and that supporting new uses of compensatory strategies. Findings are expected to have benefits for those seeking to replicate therapy's core processes both in clinical practice and in future research. © 2016 Royal College of Speech and Language Therapists.

  8. Conversion Disorder.

    PubMed

    Feinstein, Anthony

    2018-06-01

    This article provides a broad overview of conversion disorder, encompassing diagnostic criteria, epidemiology, etiologic theories, functional neuroimaging findings, outcome data, prognostic indicators, and treatment. Two important changes have been made to the recent Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) diagnostic criteria: the criteria that conversion symptoms must be shown to be involuntary and occurring as the consequence of a recent stressor have been dropped. Outcome studies show that the rate of misdiagnosis has declined precipitously since the 1970s and is now around 4%. Functional neuroimaging has revealed a fairly consistent pattern of hypoactivation in brain regions linked to the specific conversion symptom, accompanied by ancillary activations in limbic, paralimbic, and basal ganglia structures. Cognitive-behavioral therapy looks promising as the psychological treatment of choice, although more definitive data are still awaited, while preliminary evidence indicates that repetitive transcranial magnetic stimulation could prove beneficial as well. Symptoms of conversion are common in neurologic and psychiatric settings, affecting up to 20% of patients. The full syndrome of conversion disorder, while less prevalent, is associated with a guarded prognosis and a troubled psychosocial outcome. Much remains uncertain with respect to etiology, although advances in neuroscience and technology are providing reproducible findings and new insights. Given the confidence with which the diagnosis can be made, treatment should not be delayed, as symptom longevity can influence outcome.

  9. Systems Check: Community Colleges Turn to Facilities Assessments to Plan Capital Projects and Avoid Expensive Emergency Repairs

    ERIC Educational Resources Information Center

    Joch, Alan

    2014-01-01

    With an emphasis on planning and cutting costs to make better use of resources, facilities managers at community colleges across the nation have undertaken facilities audits usually with the help of outside engineers. Such assessments analyze the history and structural integrity of buildings and core components on campus, including heating…

  10. To Build or Not to Build: Addressing Facilities Needs While Controlling Costs

    ERIC Educational Resources Information Center

    Kadamus, James A.

    2015-01-01

    When trustees, presidents, and senior college administrators meet, one topic dominates the conversation: how to keep education quality high and costs down. To keep quality high, college leaders need to have strong faculties and state-of-the-art facilities for teaching and research. Quality counts but it also costs, and that is where the pressures…

  11. The Core and Seasonal Microbiota of Raw Bovine Milk in Tanker Trucks and the Impact of Transfer to a Milk Processing Facility

    PubMed Central

    Kable, Mary E.; Srisengfa, Yanin; Laird, Miles; Zaragoza, Jose; McLeod, Jeremy; Heidenreich, Jessie

    2016-01-01

    ABSTRACT Currently, the bacterial composition of raw milk in tanker trucks and the outcomes of transfer and storage of that milk at commercial processing facilities are not well understood. We set out to identify the bacteria in raw milk collected for large-scale dairy product manufacturing. Raw bovine milk samples from 899 tanker trucks arriving at two dairy processors in San Joaquin Valley of California during three seasons (spring, summer, and fall) were analyzed by community 16S rRNA gene sequencing. This analysis revealed highly diverse bacterial populations, which exhibited seasonal differences. Raw milk collected in the spring contained the most diverse bacterial communities, with the highest total cell numbers and highest proportions being those of Actinobacteria. Even with this complexity, a core microbiota was present, consisting of 29 taxonomic groups and high proportions of Streptococcus and Staphylococcus and unidentified members of Clostridiales. Milk samples were also collected from five large-volume silos and from 13 to 25 tankers whose contents were unloaded into each of them during 2 days in the summer. Transfer of the milk to storage silos resulted in two community types. One group of silos contained a high proportion of Streptococcus spp. and was similar in that respect to the tankers that filled them. The community found in the other group of silos was distinct and dominated by Acinetobacter. Overall, despite highly diverse tanker milk community structures, distinct milk bacterial communities were selected within the processing facility environment. This knowledge can inform the development of new sanitation procedures and process controls to ensure the consistent production of safe and high-quality dairy products on a global scale. PMID:27555305

  12. Spent Fuel Test-Climax: core logging for site investigation and instrumentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilder, D.G.; Yow, J.L. Jr.; Thorpe, R.K.

    1982-05-28

    As an integral part of the Spent Fuel Test-Climax 5150 ft (1570 m) of granite core was obtained. This core was diamond drilled in various sizes, mainly 38-mm and 76-mm diameters. The core was teken with single tube core barrels and was unoriented. Techniques used to drill and log this core are discussed, as well as techniques to orient the core. Of the 5150 ft (1570 m) of core more than 3645 ft (1111 m) was retained and logged in some detail. As a result of the core logging, geologic discontinuities were identified, joint frequency and spacing characterized. Discontinuities identifiedmore » included several joint sets, shear zones and faults. Correlations based on coring along were generally found to be impossible, even for the more prominent features. The only feature properly correlated from the exploratory drilling was the fault system at the end of the facility, but it was not identified from the exploratory core as a fault. Identification of discontinuities was later helped by underground mapping that identified several different joint sets with different characteristics. It was found that joint frequency varied from 0.3 to 1.1 joint per foot of core for open fractures and from 0.3 to 3.3/ft for closed or healed fractures. Histograms of fracture spacing indicate that there is likely a random distribution of spacing superimposed upon uniformly spaced fractures. It was found that a low angle joint set had a persistent mean orientation. These joints were healed and had pervasive wall rock alteration which made identification of joints in this set possible. The recognition of a joint set with known attitude allowed orientation of much of the core. This orientation technique was found to be effective. 10 references, 25 figures, 4 tables.« less

  13. Gas detection for alternate-fuel vehicle facilities.

    PubMed

    Ferree, Steve

    2003-05-01

    Alternative fuel vehicles' safety is driven by local, state, and federal regulations in which fleet owners in key metropolitan [table: see text] areas convert much of their fleet to cleaner-burning fuels. Various alternative fuels are available to meet this requirement, each with its own advantages and requirements. This conversion to alternative fuels leads to special requirements for safety monitoring in the maintenance facilities and refueling stations. A comprehensive gas and flame monitoring system needs to meet the needs of both the user and the local fire marshal.

  14. Core Hunter 3: flexible core subset selection.

    PubMed

    De Beukelaer, Herman; Davenport, Guy F; Fack, Veerle

    2018-05-31

    Core collections provide genebank curators and plant breeders a way to reduce size of their collections and populations, while minimizing impact on genetic diversity and allele frequency. Many methods have been proposed to generate core collections, often using distance metrics to quantify the similarity of two accessions, based on genetic marker data or phenotypic traits. Core Hunter is a multi-purpose core subset selection tool that uses local search algorithms to generate subsets relying on one or more metrics, including several distance metrics and allelic richness. In version 3 of Core Hunter (CH3) we have incorporated two new, improved methods for summarizing distances to quantify diversity or representativeness of the core collection. A comparison of CH3 and Core Hunter 2 (CH2) showed that these new metrics can be effectively optimized with less complex algorithms, as compared to those used in CH2. CH3 is more effective at maximizing the improved diversity metric than CH2, still ensures a high average and minimum distance, and is faster for large datasets. Using CH3, a simple stochastic hill-climber is able to find highly diverse core collections, and the more advanced parallel tempering algorithm further increases the quality of the core and further reduces variability across independent samples. We also evaluate the ability of CH3 to simultaneously maximize diversity, and either representativeness or allelic richness, and compare the results with those of the GDOpt and SimEli methods. CH3 can sample equally representative cores as GDOpt, which was specifically designed for this purpose, and is able to construct cores that are simultaneously more diverse, and either are more representative or have higher allelic richness, than those obtained by SimEli. In version 3, Core Hunter has been updated to include two new core subset selection metrics that construct cores for representativeness or diversity, with improved performance. It combines and outperforms the

  15. Taking mHealth Forward: Examining the Core Characteristics

    PubMed Central

    2016-01-01

    The emergence of mobile health (mHealth) offers unique and varied opportunities to address some of the most difficult problems of health. Some of the most promising and active efforts of mHealth involve the engagement of mobile phone technology. As this technology has spread and as this technology is still evolving, we begin a conversation about the core characteristics of mHealth relevant to any mobile phone platform. We assert that the relevance of these characteristics to mHealth will endure as the technology advances, so an understanding of these characteristics is essential to the design, implementation, and adoption of mHealth-based solutions. The core characteristics we discuss are (1) the penetration or adoption into populations, (2) the availability and form of apps, (3) the availability and form of wireless broadband access to the Internet, and (4) the tethering of the device to individuals. These collectively act to both enable and constrain the provision of population health in general, as well as personalized and precision individual health in particular. PMID:27511612

  16. GPU color space conversion

    NASA Astrophysics Data System (ADS)

    Chase, Patrick; Vondran, Gary

    2011-01-01

    Tetrahedral interpolation is commonly used to implement continuous color space conversions from sparse 3D and 4D lookup tables. We investigate the implementation and optimization of tetrahedral interpolation algorithms for GPUs, and compare to the best known CPU implementations as well as to a well known GPU-based trilinear implementation. We show that a 500 NVIDIA GTX-580 GPU is 3x faster than a 1000 Intel Core i7 980X CPU for 3D interpolation, and 9x faster for 4D interpolation. Performance-relevant GPU attributes are explored including thread scheduling, local memory characteristics, global memory hierarchy, and cache behaviors. We consider existing tetrahedral interpolation algorithms and tune based on the structure and branching capabilities of current GPUs. Global memory performance is improved by reordering and expanding the lookup table to ensure optimal access behaviors. Per multiprocessor local memory is exploited to implement optimally coalesced global memory accesses, and local memory addressing is optimized to minimize bank conflicts. We explore the impacts of lookup table density upon computation and memory access costs. Also presented are CPU-based 3D and 4D interpolators, using SSE vector operations that are faster than any previously published solution.

  17. Tuning the synthesis of platinum-copper nanoparticles with a hollow core and porous shell for the selective hydrogenation of furfural to furfuryl alcohol.

    PubMed

    Huang, Shuangshuang; Yang, Nating; Wang, Shibin; Sun, Yuhan; Zhu, Yan

    2016-08-07

    Pt-Cu nanoparticles constructed with a hollow core and porous shell have been synthesized in which Pt-Cu cages with multiporous outermost shells are formed at the initial stage and then the Pt and Cu atoms in solution continuously fed these hollow-core of cages by passing through the porous tunnels of the outermost shells, finally leading to the formation of hollow structures with different sizes. Furthermore, these hollow-core Pt-Cu nanoparticles are more effective than the solid-core Pt-Cu nanoparticles for the catalytic hydrogenation of furfural toward furfuryl alcohol. The former can achieve almost 100% conversion of furfural with 100% selectivity toward the alcohol.

  18. A Study of Mars Dust Environment Simulation at NASA Johnson Space Center Energy Systems Test Area Resource Conversion Test Facility

    NASA Technical Reports Server (NTRS)

    Chen, Yuan-Liang Albert

    1999-01-01

    The dust environment on Mars is planned to be simulated in a 20 foot thermal-vacuum chamber at the Johnson Space Center, Energy Systems Test Area Resource Conversion Test Facility in Houston, Texas. This vacuum chamber will be used to perform tests and study the interactions between the dust in Martian air and ISPP hardware. This project is to research, theorize, quantify, and document the Mars dust/wind environment needed for the 20 foot simulation chamber. This simulation work is to support the safety, endurance, and cost reduction of the hardware for the future missions. The Martian dust environment conditions is discussed. Two issues of Martian dust, (1) Dust Contamination related hazards, and (2) Dust Charging caused electrical hazards, are of our interest. The different methods of dust particles measurement are given. The design trade off and feasibility were studied. A glass bell jar system is used to evaluate various concepts for the Mars dust/wind environment simulation. It was observed that the external dust source injection is the best method to introduce the dust into the simulation system. The dust concentration of 30 Mg/M3 should be employed for preparing for the worst possible Martian atmosphere condition in the future. Two approaches thermal-panel shroud for the hardware conditioning are discussed. It is suggested the wind tunnel approach be used to study the dust charging characteristics then to be apply to the close-system cyclone approach. For the operation cost reduction purpose, a dehumidified ambient air could be used to replace the expensive CO2 mixture for some tests.

  19. Integration of the Common Core State Standards into CTE: Challenges and Strategies of Career and Technical Teachers

    ERIC Educational Resources Information Center

    Asunda, Paul A.; Finnell, Alicia M.; Berry, Nicholas R.

    2015-01-01

    In recent years, conversations about the importance of education standards in our school systems have intensified. Common Core State Standards (CCSS) are being implemented across most of the country. The standards require a major shift in instruction and the needed supports really are not there. This study investigated the common barriers,…

  20. Combination of carbon nitride and carbon nanotubes: synergistic catalysts for energy conversion.

    PubMed

    Gong, Yutong; Wang, Jing; Wei, Zhongzhe; Zhang, Pengfei; Li, Haoran; Wang, Yong

    2014-08-01

    Due to their versatile features and environmental friendliness, functionalized carbon materials show great potential in practical applications, especially in energy conversion. Developing carbon composites with properties that can be modulated by simply changing the ratio of the original materials is an intriguing synthetic strategy. Here, we took cyanamide and multiwalled carbon nanotubes as precursors and introduced a facile method to fabricate a series of graphitic carbon nitride/carbon nanotubes (g-C3 N4 /CNTs) composites. These composites demonstrated different practical applications with different weight ratios of the components, that is, they showed synergistic effects in optoelectronic conversion when g-C3 N4 was the main ingredient and in oxygen reduction reaction (ORR) when CNTs dominated the composites. Our experiments indicated that the high electrical conductivity of carbon nanotubes promoted the transmission of the charges in both cases. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Conversion of an 800 MW oil fired generating unit to burn Orimulsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blum, J.; Halpin, M.; Morgan, D.

    1998-07-01

    Florida Power and Light Company (FPL) is proposing to convert the two existing 800 megawatt (MW) residual oil fired generating units at its Manatee Plant located in Parrish, Florida, to burn Ormulsion. Ormulsion is the registered trademark name for a mixture of water and a naturally occurring heavy hydrocarbon known as bitumen. Orimulsion, which originates in Venezuela, will be shipped to Port Manatee in double-hulled vessels, stored at FPL's existing Port Manatee Terminal, and transported via FPL's existing fuel pipeline to the Manatee Plant. The proposed conversion involves modifications of the existing fuel handling facilities, enhancements of the boiler heatmore » transfer surfaces and soot blowing system, and addition of new pollution control equipment. The Manatee Orimulsion conversion will result in overall environmental benefits and significant savings to FPL's customers. This paper summarizes the overall objectives of the project and briefly describes these modifications.« less

  2. Conversion of an 800 MW oil fired generating unit to burn Orimulsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blum, J.; Halpin, M.; Morgan, D.

    1998-04-01

    Florida Power & Light Company (FPL) is proposing to convert the two existing 800 megawatt (MW) residual oil fired generating units at its Manatee Plant located in Parrish, Florida, to burn Orimulsion. Orimulsion is the registered trademark name for a mixture of water and a naturally occurring heavy hydrocarbon known as bitumen. Orimulsion, which originates in Venezuela, will be shipped to Port Manatee in double-hulled vessels, stored at FPL`s existing Port Manatee Terminal, and transported via FPL`s existing fuel pipeline to the Manatee Plant. The proposed conversion involves modifications of the existing fuel handling facilities, enhancements of the boiler heatmore » transfer surfaces and soot blowing system, and addition of new pollution control equipment. The Manatee Orimulsion conversion will result in overall environmental benefits and significant savings to FPL`s customers. This paper summarizes the overall objectives of the project and briefly describes these modifications.« less

  3. Humidity effects on soluble core mechanical and thermal properties (polyvinyl alcohol/microballoon composite) type CG extendospheres, volume 2

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This document constitutes the final report for the study of humidity effects and loading rate on soluble core (PVA/MB composite material) mechanical and thermal properties under Contract No. 100345. This report describes test results procedures employed, and any unusual occurrences or specific observations associated with this test program. The primary objective of this work was to determine if cured soluble core filler material regains its tensile and compressive strength after exposure to high humidity conditions and following a drying cycle. Secondary objectives include measurements of tensile and compressive modulus, and Poisson's ratio, and coefficient of thermal expansion (CTE) for various moisture exposure states. A third objective was to compare the mechanical and thermal properties of the composite using 'SG' and 'CG' type extendospheres. The proposed facility for the manufacture of soluble cores at the Yellow Creek site incorporates no capability for the control of humidity. Recent physical property tests performed with the soluble core filler material showed that prolonged exposure to high humidity significantly degradates in strength. The purpose of these tests is to determine if the product, process or facility designs require modification to avoid imparting a high risk condition to the ASRM.

  4. Augmentation of Solar Thermal Propulsion Systems Via Phase Change Thermal Energy Storage and Thermal Electric Conversion

    DTIC Science & Technology

    2012-04-01

    vapor infiltration on erosion and thermal properties of porous carbon/carbon composite on thermal insulation . Carbon, (38):441– 449, 2000. [14] J. Mueller...Thermal Energy Storage and Thermal Electric Conversion 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...with thermo-acoustic instabilities. Results will be reported on the flame structure, liquid core length and spreading rate, and comparison with data

  5. Conversing with Computers

    NASA Technical Reports Server (NTRS)

    2004-01-01

    I/NET, Inc., is making the dream of natural human-computer conversation a practical reality. Through a combination of advanced artificial intelligence research and practical software design, I/NET has taken the complexity out of developing advanced, natural language interfaces. Conversational capabilities like pronoun resolution, anaphora and ellipsis processing, and dialog management that were once available only in the laboratory can now be brought to any application with any speech recognition system using I/NET s conversational engine middleware.

  6. Morphology-Controlled Synthesis of Au/Cu₂FeSnS₄ Core-Shell Nanostructures for Plasmon-Enhanced Photocatalytic Hydrogen Generation.

    PubMed

    Ha, Enna; Lee, Lawrence Yoon Suk; Man, Ho-Wing; Tsang, Shik Chi Edman; Wong, Kwok-Yin

    2015-05-06

    Copper-based chalcogenides of earth-abundant elements have recently arisen as an alternate material for solar energy conversion. Cu2FeSnS4 (CITS), a quaternary chalcogenide that has received relatively little attention, has the potential to be developed into a low-cost and environmentlly friendly material for photovoltaics and photocatalysis. Herein, we report, for the first time, the synthesis, characterization, and growth mechanism of novel Au/CITS core-shell nanostructures with controllable morphology. Precise manipulations in the core-shell dimensions are demonstrated to yield two distinct heterostructures with spherical and multipod gold nanoparticle (NP) cores (Au(sp)/CITS and Au(mp)/CITS). In photocatalytic hydrogen generation with as-synthesized Au/CITS NPs, the presence of Au cores inside the CITS shell resulted in higher hydrogen generation rates, which can be attributed to the surface plasmon resonance (SPR) effect. The Au(sp)/CITS and Au(mp)/CITS core-shell NPs enhanced the photocatalytic hydrogen generation by about 125% and 240%, respectively, compared to bare CITS NPs.

  7. Efficient 1.5-μm Raman generation in ethane-filled hollow-core fiber

    NASA Astrophysics Data System (ADS)

    Chen, Yubin; Gu, Bo; Wang, Zefeng; Lu, Qisheng

    2016-11-01

    We demonstrated for the first time a novel and effective method for obtaining both high peak-power and narrow linewidth 1.5 μm fiber sources through gas Raman effect in hollow core fibers. An Ethane-filled ice-cream antiresonance hollow-core fiber is pumped with a high peak-power pulse 1064 nm microchip laser, generating 1552.7 nm Stokes wave by pure vibrational stimulated Raman scattering of ethane molecules. A maximum peak-power of about 400 kW is achieved with 6 meter fiber length at 2 bar pressure, and the linewidth is about 6.3 GHz. The maximum Raman conversion efficiency of 1064 nm to 1552.7 nm is about 38%, and the corresponding laser slope efficiency is about 61.5%.

  8. Preliminary conceptual design for geothermal space heating conversion of school district 50 joint facilities at Pagosa Springs, Colorado. GTA report no. 6

    NASA Astrophysics Data System (ADS)

    Engen, I. A.

    1981-11-01

    This feasibility study and preliminary conceptual design effect assesses the conversion of a high school and gym, and a middle school building to geothermal space heating is assessed. A preliminary cost benefit assessment made on the basis of estimated costs for conversion, system maintenance, debt service, resource development, electricity to power pumps, and savings from from reduced natural gas consumption concluded that an economic conversion depended on development of an adequate geothermal resource (approximately 1500F, 400 gpm). Material selection assumed that the geothermal water to the main supply system was isolated to minimize effects of corrosion and deposition, and that system compatible components are used for the building modifications. Asbestos cement distribution pipe, a stainless steel heat exchanger, and stainless steel lined valves were recommended for the supply, heat transfer, and disposal mechanisms, respectively. A comparison of the calculated average gas consumption cost, escalated at 10% per year, with conversion project cost, both in 1977 dollars, showed that the project could be amortized over less than 20 years at current interest rates.

  9. Design and characterization of an irradiation facility with real-time monitoring

    NASA Astrophysics Data System (ADS)

    Braisted, Jonathan David

    Radiation causes performance degradation in electronics by inducing atomic displacements and ionizations. While radiation hardened components are available, non-radiation hardened electronics can be preferable because they are generally more compact, require less power, and less expensive than radiation tolerant equivalents. It is therefore important to characterize the performance of electronics, both hardened and non-hardened, to prevent costly system or mission failures. Radiation effects tests for electronics generally involve a handful of step irradiations, leading to poorly-resolved data. Step irradiations also introduce uncertainties in electrical measurements due to temperature annealing effects. This effect may be intensified if the time between exposure and measurement is significant. Induced activity in test samples also complicates data collection of step irradiated test samples. The University of Texas at Austin operates a 1.1 MW Mark II TRIGA research reactor. An in-core irradiation facility for radiation effects testing with a real-time monitoring capability has been designed for the UT TRIGA reactor. The facility is larger than any currently available non-central location in a TRIGA, supporting testing of larger electronic components as well as other in-core irradiation applications requiring significant volume such as isotope production or neutron transmutation doping of silicon. This dissertation describes the design and testing of the large in-core irradiation facility and the experimental campaign developed to test the real-time monitoring capability. This irradiation campaign was performed to test the real-time monitoring capability at various reactor power levels. The device chosen for characterization was the 4N25 general-purpose optocoupler. The current transfer ratio, which is an important electrical parameter for optocouplers, was calculated as a function of neutron fluence and gamma dose from the real-time voltage measurements. The

  10. Effect of varying core thicknesses and artificial aging on the color difference of different all-ceramic materials.

    PubMed

    Dikicier, Sibel; Ayyildiz, Simel; Ozen, Julide; Sipahi, Cumhur

    2014-11-01

    Clinicians should reserve all-ceramics with high translucency for clinical applications in which high-level esthetics are required. Furthermore, it is unclear whether a correlation exists between core thickness and color change. The aim of this study was to examine the effects of different core thicknesses and artificial aging on the color stability of three all-ceramic systems. Ninety disc-shaped cores with different thicknesses (0.5 mm, 0.8 mm and 1.0 mm) were prepared from three all-ceramic systems, In-Ceram Alumina (IC), IPS e.max Press (EM) and Katana (K). The colors of the samples were measured with a spectrophotometer and the color parameters (L*, a*, b*, ΔE) were calculated according to the CIE L*a*b* (Commission Internationale de L'Eclairage) color system before and after aging. The effects of aging on color parameters were statistically significant (p < 0.001), regardless of core thickness. For all systems, the CIE a* values increased as the thickness of the core increased. Conversely, such increases in core porcelain thickness were correlated with decreasing CIE L* and b* values. Core thickness had a statistically significant effect on color change among the groups. Different core thicknesses (from 1.0-0.5 mm) and artificial aging affected color stability of the all-ceramic materials tested.

  11. Metal-Organic Framework-Stabilized CO2/Water Interfacial Route for Photocatalytic CO2 Conversion.

    PubMed

    Luo, Tian; Zhang, Jianling; Li, Wei; He, Zhenhong; Sun, Xiaofu; Shi, Jinbiao; Shao, Dan; Zhang, Bingxing; Tan, Xiuniang; Han, Buxing

    2017-11-29

    Here, we propose a CO 2 /water interfacial route for photocatalytic CO 2 conversion by utilizing a metal-organic framework (MOF) as both an emulsifier and a catalyst. The CO 2 reduction occurring at the CO 2 /water interface produces formate with remarkably enhanced efficiency as compared with that in conventional solvent. The route is efficient, facile, adjustable, and environmentally benign, which is applicable for the CO 2 transformation photocatalyzed by different kinds of MOFs.

  12. Solar thermal conversion

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K.

    1978-01-01

    A brief review of the fundamentals of the conversion of solar energy into mechanical work (or electricity via generators) is given. Both past and present work on several conversion concepts are discussed. Solar collectors, storage systems, energy transport, and various types of engines are examined. Ongoing work on novel concepts of collectors, energy storage and thermal energy conversion are outlined and projections for the future are described. Energy costs for various options are predicted and margins and limitations are discussed.

  13. Core-to-core uniformity improvement in multi-core fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Lindley, Emma; Min, Seong-Sik; Leon-Saval, Sergio; Cvetojevic, Nick; Jovanovic, Nemanja; Bland-Hawthorn, Joss; Lawrence, Jon; Gris-Sanchez, Itandehui; Birks, Tim; Haynes, Roger; Haynes, Dionne

    2014-07-01

    Multi-core fiber Bragg gratings (MCFBGs) will be a valuable tool not only in communications but also various astronomical, sensing and industry applications. In this paper we address some of the technical challenges of fabricating effective multi-core gratings by simulating improvements to the writing method. These methods allow a system designed for inscribing single-core fibers to cope with MCFBG fabrication with only minor, passive changes to the writing process. Using a capillary tube that was polished on one side, the field entering the fiber was flattened which improved the coverage and uniformity of all cores.

  14. Sanford Underground Research Facility - The United State's Deep Underground Research Facility

    NASA Astrophysics Data System (ADS)

    Vardiman, D.

    2012-12-01

    The 2.5 km deep Sanford Underground Research Facility (SURF) is managed by the South Dakota Science and Technology Authority (SDSTA) at the former Homestake Mine site in Lead, South Dakota. The US Department of Energy currently supports the development of the facility using a phased approach for underground deployment of experiments as they obtain an advanced design stage. The geology of the Sanford Laboratory site has been studied during the 125 years of operations at the Homestake Mine and more recently as part of the preliminary geotechnical site investigations for the NSF's Deep Underground Science and Engineering Laboratory project. The overall geology at DUSEL is a well-defined stratigraphic sequence of schist and phyllites. The three major Proterozoic units encountered in the underground consist of interbedded schist, metasediments, and amphibolite schist which are crosscut by Tertiary rhyolite dikes. Preliminary geotechnical site investigations included drift mapping, borehole drilling, borehole televiewing, in-situ stress analysis, laboratory analysis of core, mapping and laser scanning of new excavations, modeling and analysis of all geotechnical information. The investigation was focused upon the determination if the proposed site rock mass could support the world's largest (66 meter diameter) deep underground excavation. While the DUSEL project has subsequently been significantly modified, these data are still available to provide a baseline of the ground conditions which may be judiciously extrapolated throughout the entire Proterozoic rock assemblage for future excavations. Recommendations for facility instrumentation and monitoring were included in the preliminary design of the DUSEL project design and include; single and multiple point extensometers, tape extensometers and convergence measurements (pins), load cells and pressure cells, smart cables, inclinometers/Tiltmeters, Piezometers, thermistors, seismographs and accelerometers, scanners (laser

  15. Is self disturbance the core of borderline personality disorder? An outcome study of borderline personality factors.

    PubMed

    Meares, Russell; Gerull, Friederike; Stevenson, Janine; Korner, Anthony

    2011-03-01

    To determine which constellation of clinical features constitutes the core of borderline personality disorder (BPD). The criterion of endurance was used to identify the constellation of features which are most basic, or core, in borderline personality disorder. Two sets of constellations of DSM-III features were tested, each consisting of three groupings. The first set of constellations was constructed according to Clarkin's factor analysis; the second was theoretically derived. Broadly speaking, the three groupings concerned 'self', 'emotional regulation', and 'impulse'. Changes of these constellations were charted over one year in a comparison of the effect of treatment by the Conversational Model (n = 29) with treatment as usual (n = 31). In addition, measures of typical depression (Zung) were scored before and after the treatment period. The changes in the constellations were considered in relation to authoritative opinion. The changes in the two sets of constellations were similar. In the treatment as usual (TAU) group, 'self' endured unchanged, while 'emotional regulation' and 'impulse' improved. In the Conversational Model cohort, 'self' improved, 'emotional regulation' improved more greatly than the TAU group, while 'impulse' improved but not more than the treatment as usual group. Depression scores were not particularly associated with any grouping. A group of features including self/identity disturbance, emptiness and fear of abandonment may be at the core of BPD. Correlations between the three groupings and Zung scores favoured the view that the core affect is not typical depression. Rather, the central state may be 'painful incoherence'. It is suggested that the findings have implications for the refinement and elaboration of treatment methods in borderline personality disorder.

  16. Template-Free Hydrothermal Synthesis, Mechanism, and Photocatalytic Properties of Core-Shell CeO2 Nanospheres

    NASA Astrophysics Data System (ADS)

    Li, Huijie; Meng, Fanming; Gong, Jinfeng; Fan, Zhenghua; Qin, Rui

    2018-03-01

    CeO2 nanospheres with the core-shell nanostructure have been successfully synthesized by a template-free hydrothermal method. The structures, morphologies and optical properties of core-shell CeO2 nanospheres were analyzed by X-ray diffraction (XRD), TG, Fourier transform infrared spectroscopy, XRD, EDS, SAED, scanning electron microscopy and transmission electron microscopy, UV-Vis diffuse reflectance spectra, Raman analyses. The degradation efficiencies of core-shell CeO2 nanospheres for methyl orange were as high as 93.49, 95.67 and 98.28% within 160 min, and the rates of photo degradation of methyl orange by core-shell CeO2 nanospheres under UV-light were 0.01693, 0.01782 and 0.02375 min-1. Methyl orange was degraded in photocatalytic oxidation processes, which mainly gave the credit to a large number of reactive species including h+, surface superoxide species ·O2 -, and ·OH radicals. The core-shell structure, small crystallite size and the conversion between Ce3+ and Ce4+ of CeO2 nanospheres were of importance for its catalytic activity. These results demonstrated the possibility of improving the efficient catalysts of the earth abundant CeO2 catalysts.

  17. Nonlinear seismic analysis of a reactor structure impact between core components

    NASA Technical Reports Server (NTRS)

    Hill, R. G.

    1975-01-01

    The seismic analysis of the FFTF-PIOTA (Fast Flux Test Facility-Postirradiation Open Test Assembly), subjected to a horizontal DBE (Design Base Earthquake) is presented. The PIOTA is the first in a set of open test assemblies to be designed for the FFTF. Employing the direct method of transient analysis, the governing differential equations describing the motion of the system are set up directly and are implicitly integrated numerically in time. A simple lumped-nass beam model of the FFTF which includes small clearances between core components is used as a "driver" for a fine mesh model of the PIOTA. The nonlinear forces due to the impact of the core components and their effect on the PIOTA are computed.

  18. On the conversion of infrared radiation from fission reactor-based photon engine into parallel beam

    NASA Astrophysics Data System (ADS)

    Gulevich, Andrey V.; Levchenko, Vladislav E.; Loginov, Nicolay I.; Kukharchuk, Oleg F.; Evtodiev, Denis A.; Zrodnikov, Anatoly V.

    2002-01-01

    The efficiency of infrared radiation conversion from photon engine based on fission reactor into parallel photon beam is discussed. Two different ways of doing that are considered. One of them is to use the parabolic mirror to convert of infrared radiation into parallel photon beam. The another one is based on the use of special lattice consisting of numerous light conductors. The experimental facility and some results are described. .

  19. Direct Conversion of Energy.

    ERIC Educational Resources Information Center

    Corliss, William R.

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Direct energy conversion involves energy transformation without moving parts. The concepts of direct and dynamic energy conversion plus the laws governing energy conversion are investigated. Among the topics…

  20. HTR-PROTEUS PEBBLE BED EXPERIMENTAL PROGRAM CORE 4: RANDOM PACKING WITH A 1:1 MODERATOR-TO-FUEL PEBBLE RATIO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John D. Bess; Leland M. Montierth

    2013-03-01

    In its deployment as a pebble bed reactor (PBR) critical facility from 1992 to 1996, the PROTEUS facility was designated as HTR-PROTEUS. This experimental program was performed as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters.more » One benchmark experiment was evaluated in this report: Core 4. Core 4 represents the only configuration with random pebble packing in the HTR-PROTEUS series of experiments, and has a moderator-to-fuel pebble ratio of 1:1. Three random configurations were performed. The initial configuration, Core 4.1, was rejected because the method for pebble loading, separate delivery tubes for the moderator and fuel pebbles, may not have been completely random; this core loading was rejected by the experimenters. Cores 4.2 and 4.3 were loaded using a single delivery tube, eliminating the possibility for systematic ordering effects. The second and third cores differed slightly in the quantity of pebbles loaded (40 each of moderator and fuel pebbles), stacked height of the pebbles in the core cavity (0.02 m), withdrawn distance of the stainless steel control rods (20 mm), and withdrawn distance of the autorod (30 mm). The 34 coolant channels in the upper axial reflector and the 33 coolant channels in the lower axial reflector were open. Additionally, the axial graphite fillers used in all other HTR-PROTEUS configurations to create a 12-sided core cavity were not used in the randomly packed cores. Instead, graphite fillers were placed on the cavity floor, creating a funnel-like base, to discourage

  1. HTR-proteus pebble bed experimental program core 4: random packing with a 1:1 moderator-to-fuel pebble ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bess, John D.; Montierth, Leland M.; Sterbentz, James W.

    2014-03-01

    In its deployment as a pebble bed reactor (PBR) critical facility from 1992 to 1996, the PROTEUS facility was designated as HTR-PROTEUS. This experimental program was performed as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters.more » One benchmark experiment was evaluated in this report: Core 4. Core 4 represents the only configuration with random pebble packing in the HTR-PROTEUS series of experiments, and has a moderator-to-fuel pebble ratio of 1:1. Three random configurations were performed. The initial configuration, Core 4.1, was rejected because the method for pebble loading, separate delivery tubes for the moderator and fuel pebbles, may not have been completely random; this core loading was rejected by the experimenters. Cores 4.2 and 4.3 were loaded using a single delivery tube, eliminating the possibility for systematic ordering effects. The second and third cores differed slightly in the quantity of pebbles loaded (40 each of moderator and fuel pebbles), stacked height of the pebbles in the core cavity (0.02 m), withdrawn distance of the stainless steel control rods (20 mm), and withdrawn distance of the autorod (30 mm). The 34 coolant channels in the upper axial reflector and the 33 coolant channels in the lower axial reflector were open. Additionally, the axial graphite fillers used in all other HTR-PROTEUS configurations to create a 12-sided core cavity were not used in the randomly packed cores. Instead, graphite fillers were placed on the cavity floor, creating a funnel-like base, to discourage

  2. 17 CFR Appendix B to Part 37 - Guidance on Compliance With Core Principles

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., resources and authority to detect and deter abuses by effectively and affirmatively enforcing its rules... privileges but having no, or only nominal equity, in the facility and non-member market participants or, in... transparent to the member or market participant. Core Principle 3 of section 5a(d) of the Act: MONITORING OF...

  3. Laser energy conversion

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.

    1989-01-01

    The conversion of laser energy to other, more useful, forms is an important element of any space power transmission system employing lasers. In general the user, at the receiving sight, will require the energy in a form other than laser radiation. In particular, conversion to rocket power and electricity are considered to be two major areas where one must consider various conversion techniques. Three systems (photovoltaic cells, MHD generators, and gas turbines) have been identified as the laser-to-electricity conversion systems that appear to meet most of the criteria for a space-based system. The laser thruster also shows considerable promise as a space propulsion system. At this time one cannot predict which of the three laser-to-electric converters will be best suited to particular mission needs. All three systems have some particular advantages, as well as disadvantages. It would be prudent to continue research on all three systems, as well as the laser rocket thruster. Research on novel energy conversion systems, such as the optical rectenna and the reverse free-electron laser, should continue due to their potential for high payoff.

  4. Isomolybdate conversion coatings

    NASA Technical Reports Server (NTRS)

    Minevski, Zoran (Inventor); Maxey, Jason (Inventor); Nelson, Carl (Inventor); Eylem, Cahit (Inventor)

    2002-01-01

    A conversion coating solution and process forms a stable and corrosion-resistant layer on metal substrates or layers or, more preferably, on a boehmite layer or other base conversion coating. The conversion coating process involves contacting the substrate, layer or coating with an aqueous alkali metal isomolybdate solution in order to convert the surface of the substrate, layer or coating to a stable conversion coating. The aqueous alkali metal molybdates are selected from sodium molybdate (Na.sub.2 MoO.sub.4), lithium molybdate (Li.sub.2 MoO.sub.4), potassium molybdate (K.sub.2 MoO.sub.4), or combinations thereof, with the most preferred alkali metal molybdate being sodium molybdate. The concentration of alkali metal molybdates in the solution is preferably less than 5% by weight. In addition to the alkali metal molybdates, the conversion coating solution may include alkaline metal passivators selected from lithium nitrate (LiNO.sub.3), sodium nitrate (NaNO.sub.3), ammonia nitrate (NH.sub.4 NO.sub.3), and combinations thereof; lithium chloride, potassium hexafluorozirconate (K.sub.2 ZrF.sub.6) or potassium hexafluorotitanate (K.sub.2 TiF.sub.6).

  5. Conversation Compass© Communication Screener: A Conversation Screener for Teachers

    ERIC Educational Resources Information Center

    Gardner, Shari L.; Curenton, Stephanie M.

    2017-01-01

    The purpose of this study was to report preliminary reliability and validity data from the Conversation Compass© Communication Screener (CCCS), a teacher-reported language screener intended to capture children's skills related to classroom conversations with peers and teachers. Three preschool teachers completed the CCCS and the Child Observation…

  6. Conversion of PCDP Dialogs.

    ERIC Educational Resources Information Center

    Bork, Alfred M.

    An introduction to the problems involved in conversion of computer dialogues from one computer language to another is presented. Conversion of individual dialogues by complete rewriting is straightforward, if tedious. To make a general conversion of a large group of heterogeneous dialogue material from one language to another at one step is more…

  7. Interpretation of the results of the CORA-33 dry core BWR test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ott, L.J.; Hagen, S.

    All BWR degraded core experiments performed prior to CORA-33 were conducted under ``wet`` core degradation conditions for which water remains within the core and continuous steaming feeds metal/steam oxidation reactions on the in-core metallic surfaces. However, one dominant set of accident scenarios would occur with reduced metal oxidation under ``dry`` core degradation conditions and, prior to CORA-33, this set had been neglected experimentally. The CORA-33 experiment was designed specifically to address this dominant set of BWR ``dry`` core severe accident scenarios and to partially resolve phenomenological uncertainties concerning the behavior of relocating metallic melts draining into the lower regions ofmore » a ``dry`` BWR core. CORA-33 was conducted on October 1, 1992, in the CORA tests facility at KfK. Review of the CORA-33 data indicates that the test objectives were achieved; that is, core degradation occurred at a core heatup rate and a test section axial temperature profile that are prototypic of full-core nuclear power plant (NPP) simulations at ``dry`` core conditions. Simulations of the CORA-33 test at ORNL have required modification of existing control blade/canister materials interaction models to include the eutectic melting of the stainless steel/Zircaloy interaction products and the heat of mixing of stainless steel and Zircaloy. The timing and location of canister failure and melt intrusion into the fuel assembly appear to be adequately simulated by the ORNL models. This paper will present the results of the posttest analyses carried out at ORNL based upon the experimental data and the posttest examination of the test bundle at KfK. The implications of these results with respect to degraded core modeling and the associated safety issues are also discussed.« less

  8. Core-core and core-valence correlation energy atomic and molecular benchmarks for Li through Ar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ranasinghe, Duminda S.; Frisch, Michael J.; Petersson, George A., E-mail: gpetersson@wesleyan.edu

    2015-12-07

    We have established benchmark core-core, core-valence, and valence-valence absolute coupled-cluster single double (triple) correlation energies (±0.1%) for 210 species covering the first- and second-rows of the periodic table. These species provide 194 energy differences (±0.03 mE{sub h}) including ionization potentials, electron affinities, and total atomization energies. These results can be used for calibration of less expensive methodologies for practical routine determination of core-core and core-valence correlation energies.

  9. Analysis of Monolith Cores from an Engineering Scale Demonstration of a Prospective Cast Stone Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C. L.; Cozzi, A. D.; Hill, K. A.

    2016-06-01

    The primary disposition path of Low Activity Waste (LAW) at the DOE Hanford Site is vitrification. A cementitious waste form is one of the alternatives being considered for the supplemental immobilization of the LAW that will not be treated by the primary vitrification facility. Washington River Protection Solutions (WRPS) has been directed to generate and collect data on cementitious or pozzolanic waste forms such as Cast Stone. This report documents the coring and leach testing of monolithic samples cored from an engineering-scale demonstration (ES Demo) with non-radioactive simulants. The ES Demo was performed at SRNL in October of 2013 usingmore » the Scaled Continuous Processing Facility (SCPF) to fill an 8.5 ft. diameter x 3.25 ft. high container with simulated Cast Stone grout. The Cast Stone formulation was chosen from the previous screening tests. Legacy salt solution from previous Hanford salt waste testing was adjusted to correspond to the average LAW composition generated from the Hanford Tank Waste Operation Simulator (HTWOS). The dry blend materials, ordinary portland cement (OPC), Class F fly ash, and ground granulated blast furnace slag (GGBFS or BFS), were obtained from Lafarge North America in Pasco, WA. In 2014 core samples originally obtained approximately six months after filling the ES Demo were tested along with bench scale molded samples that were collected during the original pour. A latter set of core samples were obtained in late March of 2015, eighteen months after completion of the original ES Demo. Core samples were obtained using a 2” diameter x 11” long coring bit. The ES Demo was sampled in three different regions consisting of an outer ring, a middle ring and an inner core zone. Cores from these three lateral zones were further segregated into upper, middle and lower vertical segments. Monolithic core samples were tested using the Environmental Protection Agency (EPA) Method 1315, which is designed to provide mass transfer

  10. OPERATION OF A PUBLIC GEOLOGIC CORE AND SAMPLE REPOSITORY IN HOUSTON, TEXAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott W. Tinker; Beverly Blakeney DeJarnett; Laura C. Zahm

    2005-04-01

    The Bureau of Economic Geology's Houston Research Center (HRC) is well established as a premier regional research center for geologic research serving not only Houston, but geoscientists from around Texas, the U. S., and even the world. As reported in the 2003-2004 technical progress report to the DOE, the HRC provides a state-of-the-art core viewing facility, two fully equipped conference rooms, and a comprehensive technical library, all available for public use. In addition, the HRC currently houses over 500,000 boxes of rock material, and has space to hold approximately 400,000 more boxes. Use of the facility has continued to increasemore » during this third year of operation; over the past twelve months the HRC has averaged approximately 200 patrons per month. This usage is a combination of individuals describing core, groups of geoscientists holding seminars and workshops, and various industry and government-funded groups holding short courses, workshops, and seminars. The BEG/HRC secured several substantial donations of rock materials and/or cash during this operating period. All of these funds went directly into the endowment. Outreach during 2004 and 2005 included many technical presentations and several publications on the HRC. Several field trips to the facility were held for geoscience professionals and grade school students alike. Goals for the upcoming year involve securing more donations of rock material and cash in order to fully fund the HRC endowment. BEG will also continue to increase the number of patrons using the facility, and we will strive to raise awareness of the HRC's 100,000-volume geoscience technical library.« less

  11. A Small Fission Power System with Stirling Power Conversion for NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Mason, Lee; Carmichael, Chad

    2011-01-01

    In early 2010, a joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) study team developed a concept for a 1 kWe Fission Power System with a 15-year design life that could be available for a 2020 launch to support future NASA science missions. The baseline concept included a solid block uranium-molybdenum reactor core with embedded heat pipes and distributed thermoelectric converters directly coupled to aluminum radiator fins. A short follow-on study was conducted at NASA Glenn Research Center (GRC) to evaluate an alternative power conversion approach. The GRC study considered the use of free-piston Stirling power conversion as a substitution to the thermoelectric converters. The resulting concept enables a power increase to 3 kWe with the same reactor design and scalability to 10 kW without changing the reactor technology. This paper presents the configuration layout, system performance, mass summary, and heat transfer analysis resulting from the study.

  12. [Conversation analysis for improving nursing communication].

    PubMed

    Yi, Myungsun

    2007-08-01

    Nursing communication has become more important than ever before because quality of nursing services largely depends on the quality of communication in a very competitive health care environment. This article was to introduce ways to improve nursing communication using conversation analysis. This was a review study on conversation analysis, critically examining previous studies in nursing communication and interpersonal relationships. This study provided theoretical backgrounds and basic assumptions of conversation analysis which was influenced by ethnomethodology, phenomenology, and sociolinguistic. In addition, the characteristics and analysis methods of conversation analysis were illustrated in detail. Lastly, how conversation analysis could help improve communication was shown, by examining researches using conversation analysis not only for ordinary conversations but also for extraordinary or difficult conversations such as conversations between patients with dementia and their professional nurses. Conversation analysis can help in improving nursing communication by providing various structures and patterns as well as prototypes of conversation, and by suggesting specific problems and problem-solving strategies in communication.

  13. 24 CFR 884.123 - Conversions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 4 2011-04-01 2011-04-01 false Conversions. 884.123 Section 884... RENTAL HOUSING PROJECTS Applicability, Scope and Basic Policies § 884.123 Conversions. (a) Conversion of... and an appropriate PHA to agree, if they are willing, to a conversion of any such project to a Private...

  14. 24 CFR 884.123 - Conversions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Conversions. 884.123 Section 884... RENTAL HOUSING PROJECTS Applicability, Scope and Basic Policies § 884.123 Conversions. (a) Conversion of... and an appropriate PHA to agree, if they are willing, to a conversion of any such project to a Private...

  15. MYRRHA: A multipurpose nuclear research facility

    NASA Astrophysics Data System (ADS)

    Baeten, P.; Schyns, M.; Fernandez, Rafaël; De Bruyn, Didier; Van den Eynde, Gert

    2014-12-01

    MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) is a multipurpose research facility currently being developed at SCK•CEN. MYRRHA is based on the ADS (Accelerator Driven System) concept where a proton accelerator, a spallation target and a subcritical reactor are coupled. MYRRHA will demonstrate the ADS full concept by coupling these three components at a reasonable power level to allow operation feedback. As a flexible irradiation facility, the MYRRHA research facility will be able to work in both critical as subcritical modes. In this way, MYRRHA will allow fuel developments for innovative reactor systems, material developments for GEN IV and fusion reactors, and radioisotope production for medical and industrial applications. MYRRHA will be cooled by lead-bismuth eutectic and will play an important role in the development of the Pb-alloys technology needed for the LFR (Lead Fast Reactor) GEN IV concept. MYRRHA will also contribute to the study of partitioning and transmutation of high-level waste. Transmutation of minor actinides (MA) can be completed in an efficient way in fast neutron spectrum facilities, so both critical reactors and subcritical ADS are potential candidates as dedicated transmutation systems. However critical reactors heavily loaded with fuel containing large amounts of MA pose reactivity control problems, and thus safety problems. A subcritical ADS operates in a flexible and safe manner, even with a core loading containing a high amount of MA leading to a high transmutation rate. In this paper, the most recent developments in the design of the MYRRHA facility are presented.

  16. Structural control of InP/ZnS core/shell quantum dots enables high-quality white LEDs.

    PubMed

    Kumar, Baskaran Ganesh; Sadeghi, Sadra; Melikov, Rustamzhon; Aria, Mohammad Mohammadi; Jalali, Houman Bahmani; Ow-Yang, Cleva W; Nizamoglu, Sedat

    2018-08-24

    Herein, we demonstrate that the structural and optical control of InP-based quantum dots (QDs) can lead to high-performance light-emitting diodes (LEDs). Zinc sulphide (ZnS) shells passivate the InP QD core and increase the quantum yield in green-emitting QDs by 13-fold and red-emitting QDs by 8-fold. The optimised QDs are integrated in the liquid state to eliminate aggregation-induced emission quenching and we fabricated white LEDs with a warm, neutral and cool-white appearance by the down-conversion mechanism. The QD-functionalized white LEDs achieve luminous efficiency (LE) up to 14.7 lm W -1 and colour-rendering index up to 80. The structural and optical control of InP/ZnS core/shell QDs enable 23-fold enhancement in LE of white LEDs compared to ones containing only QDs of InP core.

  17. A beamline systems model for Accelerator-Driven Transmutation Technology (ADTT) facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todd, A.M.M.; Paulson, C.C.; Peacock, M.A.

    1995-10-01

    A beamline systems code, that is being developed for Accelerator-Driven Transmutation Technology (ADTT) facility trade studies, is described. The overall program is a joint Grumman, G.H. Gillespie Associates (GHGA) and Los Alamos National Laboratory effort. The GHGA Accelerator Systems Model (ASM) has been adopted as the framework on which this effort is based. Relevant accelerator and beam transport models from earlier Grumman systems codes are being adapted to this framework. Preliminary physics and engineering models for each ADTT beamline component have been constructed. Examples noted include a Bridge Coupled Drift Tube Linac (BCDTL) and the accelerator thermal system. A decisionmore » has been made to confine the ASM framework principally to beamline modeling, while detailed target/blanket, balance-of-plant and facility costing analysis will be performed externally. An interfacing external balance-of-plant and facility costing model, which will permit the performance of iterative facility trade studies, is under separate development. An ABC (Accelerator Based Conversion) example is used to highlight the present models and capabilities.« less

  18. A beamline systems model for Accelerator-Driven Transmutation Technology (ADTT) facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todd, Alan M. M.; Paulson, C. C.; Peacock, M. A.

    1995-09-15

    A beamline systems code, that is being developed for Accelerator-Driven Transmutation Technology (ADTT) facility trade studies, is described. The overall program is a joint Grumman, G. H. Gillespie Associates (GHGA) and Los Alamos National Laboratory effort. The GHGA Accelerator Systems Model (ASM) has been adopted as the framework on which this effort is based. Relevant accelerator and beam transport models from earlier Grumman systems codes are being adapted to this framework. Preliminary physics and engineering models for each ADTT beamline component have been constructed. Examples noted include a Bridge Coupled Drift Tube Linac (BCDTL) and the accelerator thermal system. Amore » decision has been made to confine the ASM framework principally to beamline modeling, while detailed target/blanket, balance-of-plant and facility costing analysis will be performed externally. An interfacing external balance-of-plant and facility costing model, which will permit the performance of iterative facility trade studies, is under separate development. An ABC (Accelerator Based Conversion) example is used to highlight the present models and capabilities.« less

  19. Ultrasonic approach to the synthesis of HMX@TATB core-shell microparticles with improved mechanical sensitivity.

    PubMed

    Huang, Bing; Hao, Xiaofei; Zhang, Haobin; Yang, Zhijian; Ma, Zhigang; Li, Hongzhen; Nie, Fude; Huang, Hui

    2014-07-01

    To improve the safety of sensitive explosive HMX while maintaining explosion performance, a moderately powerful but insensitive explosive TATB was used to coat HMX microparticles via a facile ultrasonic method. By using Estane as surface modifier and nano-sized TATB as the shell layer, the HMX@TATB core-shell microparticles with a monodisperse size and compact shell structure were successfully constructed. Both scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) results confirmed the formation of perfect core-shell structured composites. Based on a systematic and comparative study of the effect of experimental conditions, a possible formation mechanism of core-shell structure was proposed in detail. Moreover, the perfect core-shell HMX@TATB microparticles exhibited a unique thermal behavior and significantly improved mechanical sensitivity compared with that of the physical mixture. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. 12 CFR 563b.365 - May other voting members purchase conversion shares in the conversion?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false May other voting members purchase conversion shares in the conversion? 563b.365 Section 563b.365 Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY CONVERSIONS FROM MUTUAL TO STOCK FORM Standard Conversions Offers and Sales of...

  1. 12 CFR 563b.365 - May other voting members purchase conversion shares in the conversion?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 5 2011-01-01 2011-01-01 false May other voting members purchase conversion shares in the conversion? 563b.365 Section 563b.365 Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY CONVERSIONS FROM MUTUAL TO STOCK FORM Standard Conversions Offers and Sales of...

  2. Children's science learning: A core skills approach.

    PubMed

    Tolmie, Andrew K; Ghazali, Zayba; Morris, Suzanne

    2016-09-01

    Research has identified the core skills that predict success during primary school in reading and arithmetic, and this knowledge increasingly informs teaching. However, there has been no comparable work that pinpoints the core skills that underlie success in science. The present paper attempts to redress this by examining candidate skills and considering what is known about the way in which they emerge, how they relate to each other and to other abilities, how they change with age, and how their growth may vary between topic areas. There is growing evidence that early-emerging tacit awareness of causal associations is initially separated from language-based causal knowledge, which is acquired in part from everyday conversation and shows inaccuracies not evident in tacit knowledge. Mapping of descriptive and explanatory language onto causal awareness appears therefore to be a key development, which promotes unified conceptual and procedural understanding. This account suggests that the core components of initial science learning are (1) accurate observation, (2) the ability to extract and reason explicitly about causal connections, and (3) knowledge of mechanisms that explain these connections. Observational ability is educationally inaccessible until integrated with verbal description and explanation, for instance, via collaborative group work tasks that require explicit reasoning with respect to joint observations. Descriptive ability and explanatory ability are further promoted by managed exposure to scientific vocabulary and use of scientific language. Scientific reasoning and hypothesis testing are later acquisitions that depend on this integration of systems and improved executive control. © 2016 The British Psychological Society.

  3. Composite Cores

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Spang & Company's new configuration of converter transformer cores is a composite of gapped and ungapped cores assembled together in concentric relationship. The net effect of the composite design is to combine the protection from saturation offered by the gapped core with the lower magnetizing requirement of the ungapped core. The uncut core functions under normal operating conditions and the cut core takes over during abnormal operation to prevent power surges and their potentially destructive effect on transistors. Principal customers are aerospace and defense manufacturers. Cores also have applicability in commercial products where precise power regulation is required, as in the power supplies for large mainframe computers.

  4. Preliminary Assessment of the Impact on Reactor Vessel dpa Rates Due to Installation of a Proposed Low Enriched Uranium (LEU) Core in the High Flux Isotope Reactor (HFIR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daily, Charles R.

    2015-10-01

    An assessment of the impact on the High Flux Isotope Reactor (HFIR) reactor vessel (RV) displacements-per-atom (dpa) rates due to operations with the proposed low enriched uranium (LEU) core described by Ilas and Primm has been performed and is presented herein. The analyses documented herein support the conclusion that conversion of HFIR to low-enriched uranium (LEU) core operations using the LEU core design of Ilas and Primm will have no negative impact on HFIR RV dpa rates. Since its inception, HFIR has been operated with highly enriched uranium (HEU) cores. As part of an effort sponsored by the National Nuclearmore » Security Administration (NNSA), conversion to LEU cores is being considered for future HFIR operations. The HFIR LEU configurations analyzed are consistent with the LEU core models used by Ilas and Primm and the HEU balance-of-plant models used by Risner and Blakeman in the latest analyses performed to support the HFIR materials surveillance program. The Risner and Blakeman analyses, as well as the studies documented herein, are the first to apply the hybrid transport methods available in the Automated Variance reduction Generator (ADVANTG) code to HFIR RV dpa rate calculations. These calculations have been performed on the Oak Ridge National Laboratory (ORNL) Institutional Cluster (OIC) with version 1.60 of the Monte Carlo N-Particle 5 (MCNP5) computer code.« less

  5. Common conversion factors.

    PubMed

    2001-05-01

    This appendix presents tables of some of the more common conversion factors for units of measure used throughout Current Protocols manuals, as well as prefixes indicating powers of ten for SI units. Another table gives conversions between temperatures on the Celsius (Centigrade) and Fahrenheit scales.

  6. Postoperative conversion disorder.

    PubMed

    Afolabi, Kola; Ali, Sameer; Gahtan, Vivian; Gorji, Reza; Li, Fenghua; Nussmeier, Nancy A

    2016-05-01

    Conversion disorder is a psychiatric disorder in which psychological stress causes neurologic deficits. A 28-year-old female surgical patient had uneventful general anesthesia and emergence but developed conversion disorder 1 hour postoperatively. She reported difficulty speaking, right-hand numbness and weakness, and right-leg paralysis. Neurologic examination and imaging revealed no neuronal damage, herniation, hemorrhage, or stroke. The patient mentioned failing examinations the day before surgery and discontinuing her prescribed antidepressant medication, leading us to diagnose conversion disorder, with eventual confirmation by neuroimaging and follow-up examinations. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Core-shell heterojunction of silicon nanowire arrays and carbon quantum dots for photovoltaic devices and self-driven photodetectors.

    PubMed

    Xie, Chao; Nie, Biao; Zeng, Longhui; Liang, Feng-Xia; Wang, Ming-Zheng; Luo, Linbao; Feng, Mei; Yu, Yongqiang; Wu, Chun-Yan; Wu, Yucheng; Yu, Shu-Hong

    2014-04-22

    Silicon nanostructure-based solar cells have lately intrigued intensive interest because of their promising potential in next-generation solar energy conversion devices. Herein, we report a silicon nanowire (SiNW) array/carbon quantum dot (CQD) core-shell heterojunction photovoltaic device by directly coating Ag-assisted chemical-etched SiNW arrays with CQDs. The heterojunction with a barrier height of 0.75 eV exhibited excellent rectifying behavior with a rectification ratio of 10(3) at ±0.8 V in the dark and power conversion efficiency (PCE) as high as 9.10% under AM 1.5G irradiation. It is believed that such a high PCE comes from the improved optical absorption as well as the optimized carrier transfer and collection capability. Furthermore, the heterojunction could function as a high-performance self-driven visible light photodetector operating in a wide switching wavelength with good stability, high sensitivity, and fast response speed. It is expected that the present SiNW array/CQD core-shell heterojunction device could find potential applications in future high-performance optoelectronic devices.

  8. Optimizing performance by improving core stability and core strength.

    PubMed

    Hibbs, Angela E; Thompson, Kevin G; French, Duncan; Wrigley, Allan; Spears, Iain

    2008-01-01

    Core stability and core strength have been subject to research since the early 1980s. Research has highlighted benefits of training these processes for people with back pain and for carrying out everyday activities. However, less research has been performed on the benefits of core training for elite athletes and how this training should be carried out to optimize sporting performance. Many elite athletes undertake core stability and core strength training as part of their training programme, despite contradictory findings and conclusions as to their efficacy. This is mainly due to the lack of a gold standard method for measuring core stability and strength when performing everyday tasks and sporting movements. A further confounding factor is that because of the differing demands on the core musculature during everyday activities (low load, slow movements) and sporting activities (high load, resisted, dynamic movements), research performed in the rehabilitation sector cannot be applied to the sporting environment and, subsequently, data regarding core training programmes and their effectiveness on sporting performance are lacking. There are many articles in the literature that promote core training programmes and exercises for performance enhancement without providing a strong scientific rationale of their effectiveness, especially in the sporting sector. In the rehabilitation sector, improvements in lower back injuries have been reported by improving core stability. Few studies have observed any performance enhancement in sporting activities despite observing improvements in core stability and core strength following a core training programme. A clearer understanding of the roles that specific muscles have during core stability and core strength exercises would enable more functional training programmes to be implemented, which may result in a more effective transfer of these skills to actual sporting activities.

  9. Analysis of the TREAT LEU Conceptual Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connaway, H. M.; Kontogeorgakos, D. C.; Papadias, D. D.

    2016-03-01

    Analyses were performed to evaluate the performance of the low enriched uranium (LEU) conceptual design fuel for the conversion of the Transient Reactor Test Facility (TREAT) from its current highly enriched uranium (HEU) fuel. TREAT is an experimental nuclear reactor designed to produce high neutron flux transients for the testing of reactor fuels and other materials. TREAT is currently in non-operational standby, but is being restarted under the U.S. Department of Energy’s Resumption of Transient Testing Program. The conversion of TREAT is being pursued in keeping with the mission of the Department of Energy National Nuclear Security Administration’s Material Managementmore » and Minimization (M3) Reactor Conversion Program. The focus of this study was to demonstrate that the converted LEU core is capable of maintaining the performance of the existing HEU core, while continuing to operate safely. Neutronic and thermal hydraulic simulations have been performed to evaluate the performance of the LEU conceptual-design core under both steady-state and transient conditions, for both normal operation and reactivity insertion accident scenarios. In addition, ancillary safety analyses which were performed for previous LEU design concepts have been reviewed and updated as-needed, in order to evaluate if the converted LEU core will function safely with all existing facility systems. Simulations were also performed to evaluate the detailed behavior of the UO 2-graphite fuel, to support future fuel manufacturing decisions regarding particle size specifications. The results of these analyses will be used in conjunction with work being performed at Idaho National Laboratory and Los Alamos National Laboratory, in order to develop the Conceptual Design Report project deliverable.« less

  10. Metric Conversion: Remedy or Rip-Off?

    ERIC Educational Resources Information Center

    Schenck, John P.

    1975-01-01

    Opinions on metric conversion from seven large industrial organizations reflect inadequate evidence predicating conversion, no compelling need for conversion, opposition to hard conversion, lack of information about the financial and social costs of conversion, and feelings that metrics as the sole language of measurement will be regressive.…

  11. SOFIA/EXES High Spectral Resolution Observations of the Orion Hot Core

    NASA Astrophysics Data System (ADS)

    Rangwala, Naseem; Colgan, Sean; Le Gal, Romane; Acharya, Kinsuk; Huang, Xinchuan; Herbst, Eric; Lee, Timothy J.; Richter, Matthew J.; Boogert, Adwin

    2018-01-01

    The Orion hot core has one of the richest molecular chemistries observed in the ISM. In the MIR, the Orion hot core composition is best probed by the closest, compact, bright background continuum source in this region, IRc2. We present high-spectral resolution observations from 12.96 - 13.33 μm towards Orion IRc2 using the mid-infrared spectrograph, EXES, on SOFIA, to probe the physical and chemical conditions of the Orion hot core. All ten of the rovibrational C2H2 transitions expected in our spectral coverage, are detected with high S/N, yielding continuous coverage of the R-branch lines from J=9-8 to J=18-17, including both ortho and para species. Eight of these rovibrational transitions are newly reported detections. These data show distinct ortho and para ladders towards the Orion hot core for the first time, with an ortho to para ratio (OPR) of only 0.6 - much lower than the high temperature equilibrium value of 3. A non-equilibrium OPR is a further indication of the Orion hot core being heated externally by shocks likely resulting from a well-known explosive event which occurred 500 yrs ago. The OPR conversion timescales are much longer than the 500 yr shock timescale and thus a low OPR might be a remnant from an earlier colder pre-stellar phase before the density enhancement (now the hot core) was impacted by shocks.We will also present preliminary results from an on-going SOFIA Cycle-5 impact program to use EXES to conduct an unbiased, high-S/N, continuous, molecular line survey of the Orion hot core from 12.5 - 28.3 microns. This survey is expected to be 50 times better than ISO in detecting isolated, narrow lines to (a) resolve the ro-vibrational structure of the gas phase molecules and their kinematics, (b) detect new gas phase molecules missed by ISO, and (c) provide useful constraints on the hot core chemistry and the source of Orion hot core excitation. This survey will greatly enhance the inventory of resolved line features in the MIR for hot cores

  12. Conversational Flow Promotes Solidarity

    PubMed Central

    Koudenburg, Namkje; Postmes, Tom; Gordijn, Ernestine H.

    2013-01-01

    Social interaction is fundamental to the development of various aspects of “we-ness”. Previous research has focused on the role the content of interaction plays in establishing feelings of unity, belongingness and shared reality (a cluster of variables referred to as solidarity here). The present paper is less concerned with content, but focuses on the form of social interaction. We propose that the degree to which conversations flow smoothly or not is, of itself, a cue to solidarity. We test this hypothesis in samples of unacquainted and acquainted dyads who communicate via headsets. Conversational flow is disrupted by introducing a delay in the auditory feedback (vs. no delay). Results of three studies show that smoothly coordinated conversations (compared with disrupted conversations and a control condition) increase feelings of belonging and perceptions of group entitativity, independently of conversation content. These effects are driven by the subjective experience of conversational flow. Our data suggest that this process occurs largely beyond individuals' control. We conclude that the form of social interaction is a powerful cue for inferring group solidarity. Implications for the impact of modern communication technology on developing a shared social identity are discussed. PMID:24265683

  13. Conversational flow promotes solidarity.

    PubMed

    Koudenburg, Namkje; Postmes, Tom; Gordijn, Ernestine H

    2013-01-01

    Social interaction is fundamental to the development of various aspects of "we-ness". Previous research has focused on the role the content of interaction plays in establishing feelings of unity, belongingness and shared reality (a cluster of variables referred to as solidarity here). The present paper is less concerned with content, but focuses on the form of social interaction. We propose that the degree to which conversations flow smoothly or not is, of itself, a cue to solidarity. We test this hypothesis in samples of unacquainted and acquainted dyads who communicate via headsets. Conversational flow is disrupted by introducing a delay in the auditory feedback (vs. no delay). Results of three studies show that smoothly coordinated conversations (compared with disrupted conversations and a control condition) increase feelings of belonging and perceptions of group entitativity, independently of conversation content. These effects are driven by the subjective experience of conversational flow. Our data suggest that this process occurs largely beyond individuals' control. We conclude that the form of social interaction is a powerful cue for inferring group solidarity. Implications for the impact of modern communication technology on developing a shared social identity are discussed.

  14. The Colorado Plateau Coring Project: A Continuous Cored Non-Marine Record of Early Mesozoic Environmental and Biotic Change

    NASA Astrophysics Data System (ADS)

    Irmis, Randall; Olsen, Paul; Geissman, John; Gehrels, George; Kent, Dennis; Mundil, Roland; Rasmussen, Cornelia; Giesler, Dominique; Schaller, Morgan; Kürschner, Wolfram; Parker, William; Buhedma, Hesham

    2017-04-01

    The early Mesozoic is a critical time in earth history that saw the origin of modern ecosystems set against the back-drop of mass extinction and sudden climate events in a greenhouse world. Non-marine sedimentary strata in western North America preserve a rich archive of low latitude terrestrial ecosystem and environmental change during this time. Unfortunately, frequent lateral facies changes, discontinuous outcrops, and a lack of robust geochronologic constraints make lithostratigraphic and chronostratigraphic correlation difficult, and thus prevent full integration of these paleoenvironmental and paleontologic data into a regional and global context. The Colorado Plateau Coring Project (CPCP) seeks to remedy this situation by recovering a continuous cored record of early Mesozoic sedimentary rocks from the Colorado Plateau of the western United States. CPCP Phase 1 was initiated in 2013, with NSF- and ICDP-funded drilling of Triassic units in Petrified Forest National Park, northern Arizona, U.S.A. This phase recovered a 520 m core (1A) from the northern part of the park, and a 240 m core (2B) from the southern end of the park, comprising the entire Lower-Middle Triassic Moenkopi Formation, and most of the Upper Triassic Chinle Formation. Since the conclusion of drilling, the cores have been CT scanned at the University of Texas - Austin, and split, imaged, and scanned (e.g., XRF, gamma, and magnetic susceptibility) at the University of Minnesota LacCore facility. Subsequently, at the Rutgers University Core Repository, core 1A was comprehensively sampled for paleomagnetism, zircon geochronology, petrography, palynology, and soil carbonate stable isotopes. LA-ICPMS U-Pb zircon analyses are largely complete, and CA-TIMS U-Pb zircon, paleomagnetic, petrographic, and stable isotope analyses are on-going. Initial results reveal numerous horizons with a high proportion of Late Triassic-aged primary volcanic zircons, the age of which appears to be a close

  15. Bacterial communities associated with production facilities of two newly drilled thermogenic natural gas wells in the Barnett Shale (Texas, USA).

    PubMed

    Davis, James P; Struchtemeyer, Christopher G; Elshahed, Mostafa S

    2012-11-01

    We monitored the bacterial communities in the gas-water separator and water storage tank of two newly drilled natural gas wells in the Barnett Shale in north central Texas, using a 16S rRNA gene pyrosequencing approach over a period of 6 months. Overall, the communities were composed mainly of moderately halophilic and halotolerant members of the phyla Firmicutes and Proteobacteria (classes Βeta-, Gamma-, and Epsilonproteobacteria) in both wells at all sampling times and locations. Many of the observed lineages were encountered in prior investigations of microbial communities from various fossil fluid formations and production facilities. In all of the samples, multiple H(2)S-producing lineages were encountered; belonging to the sulfate- and sulfur-reducing class Deltaproteobacteria, order Clostridiales, and phylum Synergistetes, as well as the thiosulfate-reducing order Halanaerobiales. The bacterial communities from the separator and tank samples bore little resemblance to the bacterial communities in the drilling mud and hydraulic-fracture waters that were used to drill these wells, suggesting the in situ development of the unique bacterial communities in such well components was in response to the prevalent geochemical conditions present. Conversely, comparison of the bacterial communities on temporal and spatial scales suggested the establishment of a core microbial community in each sampled location. The results provide the first overview of bacterial dynamics and colonization patterns in newly drilled, thermogenic natural gas wells and highlights patterns of spatial and temporal variability observed in bacterial communities in natural gas production facilities.

  16. Modelling the carbonation of cementitious matrixes by means of the unreacted-core model, UR-CORE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castellote, M.; Andrade, C.

    This paper presents a model for the carbonation of cementitious matrixes (UR-CORE). The model is based on the principles of the 'unreacted-core' systems, typical of chemical engineering processes, in which the reacted product remains in the solid as a layer of inert ash, adapted for the specific case of carbonation. Development of the model has been undertaken in three steps: 1) Establishment of the controlling step in the global carbonation rate, by using data of fractional conversion of different phases of the cementitious matrixes, obtained by the authors through neutron diffraction data experiments, and reported in [M. Castellote, C. Andrade,more » X. Turrillas, J. Campo, G. Cuello, Accelerated carbonation of cement pastes in situ monitored by neutron diffraction, Cem. Concr. Res. (2008), doi:10.1016/j.cemconres.2008.07.002]. 2) Then, the model has been adapted and applied to the cementitious materials using different concentrations of CO{sub 2}, with the introduction of the needed assumptions and factors. 3) Finally, the model has been validated with laboratory data at different concentrations (taken from literature) and for long term natural exposure of concretes. As a result, the model seems to be reliable enough to be applied to cementitious materials, being able to extrapolate the results from accelerated tests in any conditions to predict the rate of carbonation in natural exposure, being restricted, at present stage, to conditions with a constant relative humidity.« less

  17. Impact of the High Flux Isotope Reactor HEU to LEU Fuel Conversion on Cold Source Nuclear Heat Generation Rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandler, David

    2014-03-01

    Under the sponsorship of the US Department of Energy National Nuclear Security Administration, staff members at the Oak Ridge National Laboratory have been conducting studies to determine whether the High Flux Isotope Reactor (HFIR) can be converted from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. As part of these ongoing studies, an assessment of the impact that the HEU to LEU fuel conversion has on the nuclear heat generation rates in regions of the HFIR cold source system and its moderator vessel was performed and is documented in this report. Silicon production rates in the coldmore » source aluminum regions and few-group neutron fluxes in the cold source moderator were also estimated. Neutronics calculations were performed with the Monte Carlo N-Particle code to determine the nuclear heat generation rates in regions of the HFIR cold source and its vessel for the HEU core operating at a full reactor power (FP) of 85 MW(t) and the reference LEU core operating at an FP of 100 MW(t). Calculations were performed with beginning-of-cycle (BOC) and end-of-cycle (EOC) conditions to bound typical irradiation conditions. Average specific BOC heat generation rates of 12.76 and 12.92 W/g, respectively, were calculated for the hemispherical region of the cold source liquid hydrogen (LH2) for the HEU and LEU cores, and EOC heat generation rates of 13.25 and 12.86 W/g, respectively, were calculated for the HEU and LEU cores. Thus, the greatest heat generation rates were calculated for the EOC HEU core, and it is concluded that the conversion from HEU to LEU fuel and the resulting increase of FP from 85 MW to 100 MW will not impact the ability of the heat removal equipment to remove the heat deposited in the cold source system. Silicon production rates in the cold source aluminum regions are estimated to be about 12.0% greater at BOC and 2.7% greater at EOC for the LEU core in comparison to the HEU core. Silicon is aluminum s major transmutation

  18. Event Reconstruction for Many-core Architectures using Java

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graf, Norman A.; /SLAC

    Although Moore's Law remains technically valid, the performance enhancements in computing which traditionally resulted from increased CPU speeds ended years ago. Chip manufacturers have chosen to increase the number of core CPUs per chip instead of increasing clock speed. Unfortunately, these extra CPUs do not automatically result in improvements in simulation or reconstruction times. To take advantage of this extra computing power requires changing how software is written. Event reconstruction is globally serial, in the sense that raw data has to be unpacked first, channels have to be clustered to produce hits before those hits are identified as belonging tomore » a track or shower, tracks have to be found and fit before they are vertexed, etc. However, many of the individual procedures along the reconstruction chain are intrinsically independent and are perfect candidates for optimization using multi-core architecture. Threading is perhaps the simplest approach to parallelizing a program and Java includes a powerful threading facility built into the language. We have developed a fast and flexible reconstruction package (org.lcsim) written in Java that has been used for numerous physics and detector optimization studies. In this paper we present the results of our studies on optimizing the performance of this toolkit using multiple threads on many-core architectures.« less

  19. Integration of the SSPM and STAGE with the MPACT Virtual Facility Distributed Test Bed.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cipiti, Benjamin B.; Shoman, Nathan

    The Material Protection Accounting and Control Technologies (MPACT) program within DOE NE is working toward a 2020 milestone to demonstrate a Virtual Facility Distributed Test Bed. The goal of the Virtual Test Bed is to link all MPACT modeling tools, technology development, and experimental work to create a Safeguards and Security by Design capability for fuel cycle facilities. The Separation and Safeguards Performance Model (SSPM) forms the core safeguards analysis tool, and the Scenario Toolkit and Generation Environment (STAGE) code forms the core physical security tool. These models are used to design and analyze safeguards and security systems and generatemore » performance metrics. Work over the past year has focused on how these models will integrate with the other capabilities in the MPACT program and specific model changes to enable more streamlined integration in the future. This report describes the model changes and plans for how the models will be used more collaboratively. The Virtual Facility is not designed to integrate all capabilities into one master code, but rather to maintain stand-alone capabilities that communicate results between codes more effectively.« less

  20. The National Ignition Facility: The world's largest optical system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stolz, C J

    2007-10-15

    The National Ignition Facility (NIF), a 192-beam fusion laser, is presently under construction at the Lawrence Livermore National Laboratory with an expected completion in 2008. The facility contains 7,456 meter-scale optics for amplification, beam steering, vacuum barriers, focusing, polarization rotation, and wavelength conversion. A multiphase program was put in place to increase the monthly optical manufacturing rate by up to 20x while simultaneously reducing cost by up to 3x through a sub-scale development, full-scale facilitization, and a pilot production phase. Currently 80% of the optics are complete with over 50% installed. In order to manufacture the high quality optics atmore » desired manufacturing rate of over 100 precision optics per month, new more deterministic advanced fabrication technologies had to be employed over those used to manufacture previous fusion lasers.« less

  1. MRI Evaluation of Post Core Decompression Changes in Avascular Necrosis of Hip.

    PubMed

    Nori, Madhavi; Marupaka, Sravan Kumar; Alluri, Swathi; Md, Naseeruddin; Irfan, Kazi Amir; Jampala, Venkateshwarlu; Apsingi, Sunil; Eachempati, Krishna Kiran

    2015-12-01

    Avascular necrosis of hip typically presents in young patients. Core decompression in precollapse stage provides pain relief and preservation of femoral head. The results of core decompression vary considerably despite early diagnosis. The role of MRI in monitoring patients post surgically has not been clearly defined. To study pre and post core decompression MRI changes in avascular necrosis of hip. This is a contiguous observational cohort of 40 hips treated by core decompression for precollapse avascular necrosis of femoral head, who had a baseline MRI performed before surgery. Core decompression of the femoral head was performed within 4 weeks. Follow up radiograph and MRI scans were done at six months. Harris hip score preoperatively, 1 month and 6 months after the surgery was noted. Success in this study was defined as postoperative increase in Harris hip score (HHS) by 20 points and no additional femoral collapse. End point of clinical adverse outcome as defined by fall in Harris hip score was conversion or intention to convert to total hip replacement (THR). MRI parameters in the follow up scan were compared to the preoperative MRI. Effect of core decompression on bone marrow oedema and femoral head collapse was noted. Results were analysed using SPSS software version. Harris hip score improved from 57 to 80 in all patients initially. Six hips had a fall in Harris hip score to mean value of 34.1 during follow up (9 to 12 months) and underwent total hip replacement. MRI predictors of positive outcome are lesions with grade A extent, Grade A & B location. Bone marrow oedema with lesions less than 50% involvement, medial and central location. Careful selection of patients by MR criteria for core decompression provides satisfactory outcome in precollapse stage of avascular necrosis of hip.

  2. MRI Evaluation of Post Core Decompression Changes in Avascular Necrosis of Hip

    PubMed Central

    Marupaka, Sravan Kumar; Alluri, Swathi; MD, Naseeruddin; Irfan, Kazi Amir; Jampala, Venkateshwarlu; Apsingi, Sunil; Eachempati, Krishna Kiran

    2015-01-01

    Introduction Avascular necrosis of hip typically presents in young patients. Core decompression in precollapse stage provides pain relief and preservation of femoral head. The results of core decompression vary considerably despite early diagnosis. The role of MRI in monitoring patients post surgically has not been clearly defined. Aim To study pre and post core decompression MRI changes in avascular necrosis of hip. Materials and Methods This is a contiguous observational cohort of 40 hips treated by core decompression for precollapse avascular necrosis of femoral head, who had a baseline MRI performed before surgery. Core decompression of the femoral head was performed within 4 weeks. Follow up radiograph and MRI scans were done at six months. Harris hip score preoperatively, 1 month and 6 months after the surgery was noted. Success in this study was defined as postoperative increase in Harris hip score (HHS) by 20 points and no additional femoral collapse. End point of clinical adverse outcome as defined by fall in Harris hip score was conversion or intention to convert to total hip replacement (THR). MRI parameters in the follow up scan were compared to the preoperative MRI. Effect of core decompression on bone marrow oedema and femoral head collapse was noted. Results were analysed using SPSS software version. Results Harris hip score improved from 57 to 80 in all patients initially. Six hips had a fall in Harris hip score to mean value of 34.1 during follow up (9 to 12 months) and underwent total hip replacement. MRI predictors of positive outcome are lesions with grade A extent, Grade A & B location. Bone marrow oedema with lesions less than 50% involvement, medial and central location. Conclusion Careful selection of patients by MR criteria for core decompression provides satisfactory outcome in precollapse stage of avascular necrosis of hip. PMID:26816966

  3. Development and psychometric evaluation of the Core Nurse Resource Scale.

    PubMed

    Simpson, Michelle R

    2010-11-01

    To examine the factor structure, internal consistency reliability and concurrent-related validity of the Core Nurse Resource Scale. A cross-sectional survey study design was used to obtain a sample of 149 nurses and nursing staff [Registered Nurse (RNs), Licensed Practical Nurse (LPNs) and Certified Nursing Assistant (CNAs)] working in long-term care facilities. Exploratory factor analysis, Cronbach's alpha and bivariate correlations were used to evaluate validity and reliability. Exploratory factor analysis yielded a scale with 18 items on three factors, accounting for 52% of the variance in scores. Internal consistency reliability for the composite and Core Nurse Resource Scale factors ranged from 0.79 to 0.91. The Core Nurse Resource Scale composite scale and subscales correlated positively with a measure of work engagement (r=0.247-0.572). The initial psychometric evaluation of the Core Nurse Resource Scale demonstrates it is a sound measure. Further validity and reliability assessment will need to be explored and assessed among nurses and other nursing staff working in other practice settings. The intent of the Core Nurse Resource Scale is to evaluate the presence of physical, psychological and social resources of the nursing work environment, to identify workplaces at risk for disengaged (low work engagement) nursing staff and to provide useful diagnostic information to healthcare administrators interested in interventions to improve the nursing work environment. © 2010 The Author. Journal compilation © 2010 Blackwell Publishing Ltd.

  4. Brünnich's guillemots (Uria lomvia) maintain high temperature in the body core during dives.

    PubMed

    Niizuma, Yasuaki; Gabrielsen, Geir W; Sato, Katsufumi; Watanuki, Yutaka; Naito, Yasuhiko

    2007-06-01

    A major challenge for diving birds, reptiles, and mammals is regulating body temperature while conserving oxygen through a reduction in metabolic processes. To gain insight into how these needs are met, we measured dive depth and body temperatures at the core or periphery between the skin and abdominal muscles simultaneously in freely diving Brünnich's guillemots (Uria lomvia), an arctic seabird, using an implantable data logger (16-mm diameter, 50-mm length, 14-g mass, Little Leonardo Ltd., Tokyo). Guillemots exhibited increased body core temperatures, but decreased peripheral temperatures, during diving. Heat conservation within the body core appeared to result from the combined effect of peripheral vasoconstriction and a high wing beat frequency that generates heat. Conversely, the observed tissue hypothermia in the periphery should reduce metabolic processes as well as heat loss to the water. These physiological effects are likely one of the key physiological adaptations that makes guillemots to perform as an efficient predator in arctic waters.

  5. Synergistic plasmonic and photonic crystal light-trapping: architectures for optical up-conversion in thin-film solar cells.

    PubMed

    Le, Khai Q; John, Sajeev

    2014-01-13

    We demonstrate, numerically, that with a 60 nanometer layer of optical up-conversion material, embedded with plasmonic core-shell nano-rings and placed below a sub-micron silicon conical-pore photonic crystal it is possible to absorb sunlight well above the Lambertian limit in the 300-1100 nm range. With as little as 500 nm, equivalent bulk thickness of silicon, the maximum achievable photo-current density (MAPD) is about 36 mA/cm2, using above-bandgap sunlight. This MAPD increases to about 38 mA/cm2 for one micron of silicon. Our architecture also provides solar intensity enhancement by a factor of at least 1400 at the sub-bandgap wavelength of 1500 nm, due to plasmonic and photonic crystal resonances, enabling a further boost of photo-current density from up-conversion of sub-bandgap sunlight. With an external solar concentrator, providing 100 suns, light intensities sufficient for significant nonlinear up-conversion can be realized. Two-photon absorption of sub-bandgap sunlight is further enhanced by the large electromagnetic density of states in the photonic crystal at the re-emission wavelength near 750 nm. It is suggested that this synergy of plasmonic and photonic crystal resonances can lead to unprecedented power conversion efficiency in ultra-thin-film silicon solar cells.

  6. Conversation after Right Hemisphere Brain Damage: Motivations for Applying Conversation Analysis

    ERIC Educational Resources Information Center

    Barnes, Scott; Armstrong, Elizabeth

    2010-01-01

    Despite the well documented pragmatic deficits that can arise subsequent to Right Hemisphere Brain Damage (RHBD), few researchers have directly studied everyday conversations involving people with RHBD. In recent years, researchers have begun applying Conversation Analysis (CA) to the everyday talk of people with aphasia. This research programme…

  7. Precursor engineering and controlled conversion for the synthesis of monodisperse thiolate-protected metal nanoclusters

    NASA Astrophysics Data System (ADS)

    Yu, Yong; Yao, Qiaofeng; Luo, Zhentao; Yuan, Xun; Lee, Jim Yang; Xie, Jianping

    2013-05-01

    In very recent years, thiolate-protected metal nanoclusters (or thiolated MNCs) with core sizes smaller than 2 nm have emerged as a new direction in nanoparticle research due to their discrete and size dependent electronic structures and molecular-like properties, such as HOMO-LUMO transitions in optical absorptions, quantized charging, and strong luminescence. Synthesis of monodisperse thiolated MNCs in sufficiently large quantities (up to several hundred micrograms) is necessary for establishing reliable size-property relationships and exploring potential applications. This Feature Article reviews recent progress in the development of synthetic strategies for the production of monodisperse thiolated MNCs. The preparation of monodisperse thiolated MNCs is viewed as an engineerable process where both the precursors (input) and their conversion chemistry (processing) may be rationally designed to achieve the desired outcome - monodisperse thiolated MNCs (output). Several strategies for tailoring the precursor and the conversion process are analyzed to arrive at a unifying understanding of the processes involved.

  8. Integrated liquid-core optical fibers for ultra-efficient nonlinear liquid photonics.

    PubMed

    Kieu, K; Schneebeli, L; Norwood, R A; Peyghambarian, N

    2012-03-26

    We have developed a novel integrated platform for liquid photonics based on liquid core optical fiber (LCOF). The platform is created by fusion splicing liquid core optical fiber to standard single-mode optical fiber making it fully integrated and practical - a major challenge that has greatly hindered progress in liquid-photonic applications. As an example, we report here the realization of ultralow threshold Raman generation using an integrated CS₂ filled LCOF pumped with sub-nanosecond pulses at 532 nm and 1064 nm. The measured energy threshold for the Stokes generation is 1nJ, about three orders of magnitude lower than previously reported values in the literature for hydrogen gas, a popular Raman medium. The integrated LCOF platform opens up new possibilities for ultralow power nonlinear optics such as efficient white light generation for displays, mid-IR generation, slow light generation, parametric amplification, all-optical switching and wavelength conversion using liquids that have orders of magnitude larger optical nonlinearities compared with silica glass.

  9. 24 CFR 972.218 - Conversion assessment components.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Conversion assessment components... URBAN DEVELOPMENT CONVERSION OF PUBLIC HOUSING TO TENANT-BASED ASSISTANCE Voluntary Conversion of Public Housing Developments Conversion Assessments § 972.218 Conversion assessment components. The conversion...

  10. 24 CFR 972.218 - Conversion assessment components.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 4 2011-04-01 2011-04-01 false Conversion assessment components... URBAN DEVELOPMENT CONVERSION OF PUBLIC HOUSING TO TENANT-BASED ASSISTANCE Voluntary Conversion of Public Housing Developments Conversion Assessments § 972.218 Conversion assessment components. The conversion...

  11. Guidelines for the conversion of urban four-lane undivided roadways to three-lane two-way left-turn lane facilities

    DOT National Transportation Integrated Search

    2001-04-01

    The primary objective of this research project was to develop a set of guidelines to assist in the selection of candidate roadways for urban four-lane undivided to three-lane cross section conversions. The authors evaluated and assessed the physical,...

  12. A Strategy for Fabricating Porous PdNi@Pt Core-shell Nanostructures and Their Enhanced Activity and Durability for the Methanol Electrooxidation

    PubMed Central

    Liu, Xinyu; Xu, Guangrui; Chen, Yu; Lu, Tianhong; Tang, Yawen; Xing, Wei

    2015-01-01

    Three-dimensionally (3D) porous morphology of nanostructures can effectively improve their electrocatalytic activity and durability for various electrochemical reactions owing to big surface area and interconnected structure. Cyanogel, a jelly-like inorganic polymer, can be used to synthesize various three-dimensionally (3D) porous alloy nanomaterials owing to its double-metal property and particular 3D backbone. Here, 3D porous PdNi@Pt core-shell nanostructures (CSNSs) are facilely synthesized by first preparing the Pd-Ni alloy networks (Pd-Ni ANWs) core via cyanogel-reduction method followed by a galvanic displacement reaction to generate the Pt-rich shell. The as-synthesized PdNi@Pt CSNSs exhibit a much improved catalytic activity and durability for the methanol oxidation reaction (MOR) in the acidic media compared to the commercial used Pt black because of their specific structural characteristics. The facile and mild method described herein is highly attractive for the synthisis of 3D porous core-shell nanostructures. PMID:25557190

  13. Educational Design as Conversation: A Conversation Analytical Perspective on Teacher Dialogue

    ERIC Educational Resources Information Center

    van Kruiningen, Jacqueline F.

    2013-01-01

    The aim of this methodological paper is to expound on and demonstrate the value of conversation-analytical research in the area of (informal) teacher learning. The author discusses some methodological issues in current research on interaction in teacher learning and holds a plea for conversation-analytical research on interactional processes in…

  14. Facility for testing ice drills

    NASA Astrophysics Data System (ADS)

    Nielson, Dennis L.; Delahunty, Chris; Goodge, John W.; Severinghaus, Jeffery P.

    2017-05-01

    The Rapid Access Ice Drill (RAID) is designed for subsurface scientific investigations in Antarctica. Its objectives are to drill rapidly through ice, to core samples of the transition zone and bedrock, and to leave behind a borehole observatory. These objectives required the engineering and fabrication of an entirely new drilling system that included a modified mining-style coring rig, a unique fluid circulation system, a rod skid, a power unit, and a workshop with areas for the storage of supplies and consumables. An important milestone in fabrication of the RAID was the construction of a North American Test (NAT) facility where we were able to test drilling and fluid processing functions in an environment that is as close as possible to that expected in Antarctica. Our criteria for site selection was that the area should be cold during the winter months, be located in an area of low heat flow, and be at relatively high elevation. We selected a site for the facility near Bear Lake, Utah, USA. The general design of the NAT well (NAT-1) started with a 27.3 cm (10.75 in.) outer casing cemented in a 152 m deep hole. Within that casing, we hung a 14 cm (5.5 in.) casing string, and, within that casing, a column of ice was formed. The annulus between the 14 and 27.3 cm casings provided the path for circulation of a refrigerant. After in-depth study, we chose to use liquid CO2 to cool the hole. In order to minimize the likelihood of the casing splitting due to the volume increase associated with freezing water, the hole was first cooled and then ice was formed in increments from the bottom upward. First, ice cubes were placed in the inner liner and then water was added. Using this method, a column of ice was incrementally prepared for drilling tests. The drilling tests successfully demonstrated the functioning of the RAID system. Reproducing such a facility for testing of other ice drilling systems could be advantageous to other research programs in the future.

  15. Changing Our Conversations

    ERIC Educational Resources Information Center

    Porto, Mark

    2007-01-01

    In this article, a principal is inspired to change the conversations with students and staff members from discipline and deficit to hope and planning for future achievement. He wants conversations to be more about academic goals and decision making and less about discipline and random acceptance of postsecondary plans. He has asked all staff…

  16. The Conversation Class

    ERIC Educational Resources Information Center

    Jackson, Acy L.

    2012-01-01

    The conversation class occupies a unique place in the process of learning English as a second or foreign language. From the author's own experience in conducting special conversation classes with Persian-speaking adults, he has drawn up a number of simple but important guidelines, some of which he hopes may provide helpful suggestions for the…

  17. Water, sanitation and hygiene in Jordan's healthcare facilities.

    PubMed

    Khader, Yousef Saleh

    2017-08-14

    Purpose The purpose of this paper is to determine water availability, sanitation and hygiene (WSH) services, and healthcare waste management in Jordan healthcare facilities. Design/methodology/approach In total, 19 hospitals (15 public and four private) were selected. The WSH services were assessed in hospitals using the WSH in health facilities assessment tool developed for this purpose. Findings All hospitals (100 percent) had a safe water source and most (84.2 percent) had functional water sources to provide enough water for users' needs. All hospitals had appropriate and sufficient gender separated toilets in the wards and 84.2 percent had the same in outpatient settings. Overall, 84.2 percent had sufficient and functioning handwashing basins with soap and water, and 79.0 percent had sufficient showers. Healthcare waste management was appropriately practiced in all hospitals. Practical implications Jordan hospital managers achieved major achievements providing access to drinking water and improved sanitation. However, there are still areas that need improvements, such as providing toilets for patients with special needs, establishing handwashing basins with water and soap near toilets, toilet maintenance and providing sufficient trolleys for collecting hazardous waste. Efforts are needed to integrate WSH service policies with existing national policies on environmental health in health facilities, establish national standards and targets for the various healthcare facilities to increase access and improve services. Originality/value There are limited WSH data on healthcare facilities and targets for basic coverage in healthcare facilities are also lacking. A new assessment tool was developed to generate core WSH indicators and to assess WSH services in Jordan's healthcare facilities. This tool can be used by a non-WSH specialist to quickly assess healthcare facility-related WSH services and sanitary hazards in other countries. This tool identified some areas

  18. Space Station Furnace Facility Preliminary Project Implementation Plan (PIP). Volume 2, Appendix 2

    NASA Technical Reports Server (NTRS)

    Perkey, John K.

    1992-01-01

    The Space Station Furnace Facility (SSFF) is an advanced facility for materials research in the microgravity environment of the Space Station Freedom and will consist of Core equipment and various sets of Furnace Module (FM) equipment in a three-rack configuration. This Project Implementation Plan (PIP) document was developed to satisfy the requirements of Data Requirement Number 4 for the SSFF study (Phase B). This PIP shall address the planning of the activities required to perform the detailed design and development of the SSFF for the Phase C/D portion of this contract.

  19. Energy-Cascaded Upconversion in an Organic Dye-Sensitized Core/Shell Fluoride Nanocrystal.

    PubMed

    Chen, Guanying; Damasco, Jossana; Qiu, Hailong; Shao, Wei; Ohulchanskyy, Tymish Y; Valiev, Rashid R; Wu, Xiang; Han, Gang; Wang, Yan; Yang, Chunhui; Ågren, Hans; Prasad, Paras N

    2015-11-11

    Lanthanide-doped upconversion nanoparticles hold promises for bioimaging, solar cells, and volumetric displays. However, their emission brightness and excitation wavelength range are limited by the weak and narrowband absorption of lanthanide ions. Here, we introduce a concept of multistep cascade energy transfer, from broadly infrared-harvesting organic dyes to sensitizer ions in the shell of an epitaxially designed core/shell inorganic nanostructure, with a sequential nonradiative energy transfer to upconverting ion pairs in the core. We show that this concept, when implemented in a core-shell architecture with suppressed surface-related luminescence quenching, yields multiphoton (three-, four-, and five-photon) upconversion quantum efficiency as high as 19% (upconversion energy conversion efficiency of 9.3%, upconversion quantum yield of 4.8%), which is about ~100 times higher than typically reported efficiency of upconversion at 800 nm in lanthanide-based nanostructures, along with a broad spectral range (over 150 nm) of infrared excitation and a large absorption cross-section of 1.47 × 10(-14) cm(2) per single nanoparticle. These features enable unprecedented three-photon upconversion (visible by naked eye as blue light) of an incoherent infrared light excitation with a power density comparable to that of solar irradiation at the Earth surface, having implications for broad applications of these organic-inorganic core/shell nanostructures with energy-cascaded upconversion.

  20. A facile chemical conversion synthesis of Sb2S3 nanotubes and the visible light-driven photocatalytic activities

    PubMed Central

    2012-01-01

    We report a simple chemical conversion and cation exchange technique to realize the synthesis of Sb2S3 nanotubes at a low temperature of 90°C. The successful chemical conversion from ZnS nanotubes to Sb2S3 ones benefits from the large difference in solubility between ZnS and Sb2S3. The as-grown Sb2S3 nanotubes have been transformed from a weak crystallization to a polycrystalline structure via successive annealing. In addition to the detailed structural, morphological, and optical investigation of the yielded Sb2S3 nanotubes before and after annealing, we have shown high photocatalytic activities of Sb2S3 nanotubes for methyl orange degradation under visible light irradiation. This approach offers an effective control of the composition and structure of Sb2S3 nanomaterials, facilitates the production at a relatively low reaction temperature without the need of organics, templates, or crystal seeds, and can be extended to the synthesis of hollow structures with various compositions and shapes for unique properties. PMID:22448960

  1. Direct conversion technology

    NASA Technical Reports Server (NTRS)

    Massier, Paul F.; Bankston, C. P.; Williams, R.; Underwood, M.; Jeffries-Nakamura, B.; Fabris, G.

    1989-01-01

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC), and on the Two-Phase Liquid-Metal Magnetohydrodynamic Electrical Generator (LMMHD) for the period January 1, 1989 through December 31, 1989. Research on these concepts was initiated during October 1987. Reports prepared on previous occasions contain discussions on the following other direct conversion concepts: thermoelectric, pyroelectric, thermionic, thermophotovoltaic, thermoacoustic, thermomagnetic, thermoelastic (nitinol heat engines); and also, more complete discussions of AMTEC and LMMHD systems.

  2. HTR-PROTEUS Pebble Bed Experimental Program Cores 1, 1A, 2, and 3: Hexagonal Close Packing with a 1:2 Moderator-to-Fuel Pebble Ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John D. Bess; Barbara H. Dolphin; James W. Sterbentz

    2013-03-01

    In its deployment as a pebble bed reactor (PBR) critical facility from 1992 to 1996, the PROTEUS facility was designated as HTR-PROTEUS. This experimental program was performed as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters.more » Four benchmark experiments were evaluated in this report: Cores 1, 1A, 2, and 3. These core configurations represent the hexagonal close packing (HCP) configurations of the HTR-PROTEUS experiment with a moderator-to-fuel pebble ratio of 1:2. Core 1 represents the only configuration utilizing ZEBRA control rods. Cores 1A, 2, and 3 use withdrawable, hollow, stainless steel control rods. Cores 1 and 1A are similar except for the use of different control rods; Core 1A also has one less layer of pebbles (21 layers instead of 22). Core 2 retains the first 16 layers of pebbles from Cores 1 and 1A and has 16 layers of moderator pebbles stacked above the fueled layers. Core 3 retains the first 17 layers of pebbles but has polyethylene rods inserted between pebbles to simulate water ingress. The additional partial pebble layer (layer 18) for Core 3 was not included as it was used for core operations and not the reported critical configuration. Cores 1, 1A, 2, and 3 were determined to be acceptable benchmark experiments.« less

  3. HTR-PROTEUS Pebble Bed Experimental Program Cores 1, 1A, 2, and 3: Hexagonal Close Packing with a 1:2 Moderator-to-Fuel Pebble Ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John D. Bess; Barbara H. Dolphin; James W. Sterbentz

    2012-03-01

    In its deployment as a pebble bed reactor (PBR) critical facility from 1992 to 1996, the PROTEUS facility was designated as HTR-PROTEUS. This experimental program was performed as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters.more » Four benchmark experiments were evaluated in this report: Cores 1, 1A, 2, and 3. These core configurations represent the hexagonal close packing (HCP) configurations of the HTR-PROTEUS experiment with a moderator-to-fuel pebble ratio of 1:2. Core 1 represents the only configuration utilizing ZEBRA control rods. Cores 1A, 2, and 3 use withdrawable, hollow, stainless steel control rods. Cores 1 and 1A are similar except for the use of different control rods; Core 1A also has one less layer of pebbles (21 layers instead of 22). Core 2 retains the first 16 layers of pebbles from Cores 1 and 1A and has 16 layers of moderator pebbles stacked above the fueled layers. Core 3 retains the first 17 layers of pebbles but has polyethylene rods inserted between pebbles to simulate water ingress. The additional partial pebble layer (layer 18) for Core 3 was not included as it was used for core operations and not the reported critical configuration. Cores 1, 1A, 2, and 3 were determined to be acceptable benchmark experiments.« less

  4. 24 CFR 972.230 - Conversion plan components.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Conversion plan components. 972.230... DEVELOPMENT CONVERSION OF PUBLIC HOUSING TO TENANT-BASED ASSISTANCE Voluntary Conversion of Public Housing Developments Conversion Plans § 972.230 Conversion plan components. A conversion plan must: (a) Describe the...

  5. 24 CFR 972.230 - Conversion plan components.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 4 2011-04-01 2011-04-01 false Conversion plan components. 972.230... DEVELOPMENT CONVERSION OF PUBLIC HOUSING TO TENANT-BASED ASSISTANCE Voluntary Conversion of Public Housing Developments Conversion Plans § 972.230 Conversion plan components. A conversion plan must: (a) Describe the...

  6. 5 CFR 317.301 - Conversion coverage.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 1 2011-01-01 2011-01-01 false Conversion coverage. 317.301 Section 317... THE SENIOR EXECUTIVE SERVICE Conversion to the Senior Executive Service § 317.301 Conversion coverage. (a) When applicable. These conversion provisions apply in the following circumstances. (1) The...

  7. 5 CFR 317.301 - Conversion coverage.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Conversion coverage. 317.301 Section 317... THE SENIOR EXECUTIVE SERVICE Conversion to the Senior Executive Service § 317.301 Conversion coverage. (a) When applicable. These conversion provisions apply in the following circumstances. (1) The...

  8. 16 CFR 1012.7 - Telephone conversations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Telephone conversations. 1012.7 Section 1012... AGENCY PERSONNEL AND OUTSIDE PARTIES § 1012.7 Telephone conversations. (a) Telephone conversations... meet with Agency employees. However, because telephone conversations, by their very nature, are not...

  9. Facile transformation of FeO/Fe3O4 core-shell nanocubes to Fe3O4 via magnetic stimulation

    NASA Astrophysics Data System (ADS)

    Lak, Aidin; Niculaes, Dina; Anyfantis, George C.; Bertoni, Giovanni; Barthel, Markus J.; Marras, Sergio; Cassani, Marco; Nitti, Simone; Athanassiou, Athanassia; Giannini, Cinzia; Pellegrino, Teresa

    2016-09-01

    Here, we propose the use of magnetic hyperthermia as a means to trigger the oxidation of Fe1-xO/Fe3-δO4 core-shell nanocubes to Fe3-δO4 phase. As a first relevant consequence, the specific absorption rate (SAR) of the initial core-shell nanocubes doubles after exposure to 25 cycles of alternating magnetic field stimulation. The improved SAR value was attributed to a gradual transformation of the Fe1-xO core to Fe3-δO4, as evidenced by structural analysis including high resolution electron microscopy and Rietveld analysis of X-ray diffraction patterns. The magnetically oxidized nanocubes, having large and coherent Fe3-δO4 domains, reveal high saturation magnetization and behave superparamagnetically at room temperature. In comparison, the treatment of the same starting core-shell nanocubes by commonly used thermal annealing process renders a transformation to γ-Fe2O3. In contrast to other thermal annealing processes, the method here presented has the advantage of promoting the oxidation at a macroscopic temperature below 37 °C. Using this soft oxidation process, we demonstrate that biotin-functionalized core-shell nanocubes can undergo a mild self-oxidation transformation without losing their functional molecular binding activity.

  10. Conversational Agents in E-Learning

    NASA Astrophysics Data System (ADS)

    Kerry, Alice; Ellis, Richard; Bull, Susan

    This paper discusses the use of natural language or 'conversational' agents in e-learning environments. We describe and contrast the various applications of conversational agent technology represented in the e-learning literature, including tutors, learning companions, language practice and systems to encourage reflection. We offer two more detailed examples of conversational agents, one which provides learning support, and the other support for self-assessment. Issues and challenges for developers of conversational agent systems for e-learning are identified and discussed.

  11. Green synthesis of CuInS2/ZnS core-shell quantum dots by facile solvothermal route with enhanced optical properties

    NASA Astrophysics Data System (ADS)

    Jindal, Shikha; Giripunje, Sushama M.; Kondawar, Subhash B.; Koinkar, Pankaj

    2018-03-01

    We report an eco-friendly green synthesis of highly luminescent CuInS2/ZnS core-shell quantum dots (QDs) with average particle size ∼ 3.9 nm via solvothermal process. The present study embodies the intensification of CuInS2/ZnS QDs properties by the shell growth on the CuInS2 QDs. The as-prepared CuInS2 core and CuInS2/ZnS core-shell QDs have been characterized using a range of optical and structural techniques. By adopting a low temperature growth of CuInS2 core and high temperature growth of CuInS2/ZnS core-shell growth, the tuning of absorption and photoluminescence emission spectra were observed. Optical absorption and photoluminescence spectroscopy probe the effect of ZnS passivation on the electronic structure of the CuInS2 dots. In addition, QDs have been scrutinized using ultra violet photoelectron spectroscopy (UPS) to explore their electronic band structure. The band level positions of CuInS2 and CuInS2/ZnS QDs suffices the demand of non-toxic acceptor material for electronic devices. The variation in electronic energy levels of CuInS2 core with the coating of wide band gap ZnS shell influence the removal of trap assisted recombination on the surface of the core. QDs exhibited tunable emission from red to orange region. These studies reveal the feasibility of QDs in photovoltaic and light emitting diodes.

  12. 10 CFR 60.132 - Additional design criteria for surface facilities in the geologic repository operations area.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... conversion to a form suitable for disposal at an alternative site in accordance with any regulations that are... 10 Energy 2 2014-01-01 2014-01-01 false Additional design criteria for surface facilities in the geologic repository operations area. 60.132 Section 60.132 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED...

  13. 10 CFR 60.132 - Additional design criteria for surface facilities in the geologic repository operations area.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... conversion to a form suitable for disposal at an alternative site in accordance with any regulations that are... 10 Energy 2 2012-01-01 2012-01-01 false Additional design criteria for surface facilities in the geologic repository operations area. 60.132 Section 60.132 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED...

  14. 10 CFR 60.132 - Additional design criteria for surface facilities in the geologic repository operations area.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... conversion to a form suitable for disposal at an alternative site in accordance with any regulations that are... 10 Energy 2 2013-01-01 2013-01-01 false Additional design criteria for surface facilities in the geologic repository operations area. 60.132 Section 60.132 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED...

  15. 10 CFR 60.132 - Additional design criteria for surface facilities in the geologic repository operations area.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... conversion to a form suitable for disposal at an alternative site in accordance with any regulations that are... 10 Energy 2 2011-01-01 2011-01-01 false Additional design criteria for surface facilities in the geologic repository operations area. 60.132 Section 60.132 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED...

  16. Final Report for the “WSU Neutron Capture Therapy Facility Support”

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerald E. Tripard; Keith G. Fox

    2006-08-24

    The objective for the cooperative research program for which this report has been written was to provide separate NCT facility user support for the students, faculty and scientists who would be doing the U.S. Department of Energy Office (DOE) of Science supported advanced radiotargeted research at the WSU 1 megawatt TRIGA reactor. The participants were the Idaho National laboratory (INL, P.I., Dave Nigg), the Veterinary Medical Research Center of Washington State University (WSU, Janean Fidel and Patrick Gavin), and the Washington State University Nuclear Radiation Center (WSU, P.I., Gerald Tripard). A significant number of DOE supported modifications were made tomore » the WSU reactor in order to create an epithermal neutron beam while at the same time maintaining the other activities of the 1 MW reactor. These modifications were: (1) Removal of the old thermal column. (2) Construction and insertion of a new epithermal filter, collimator and shield. (3) Construction of a shielded room that could accommodate the very high radiation field created by an intense neutron beam. (4) Removal of the previous reactor core fuel cluster arrangement. (5) Design and loading of the new reactor core fuel cluster arrangement in order to optimize the neutron flux entering the epithermal neutron filter. (6) The integration of the shielded rooms interlocks and radiological controls into the SCRAM chain and operating electronics of the reactor. (7) Construction of a motorized mechanism for moving and remotely controlling the position of the entire reactor bridge. (8) The integration of the reactor bridge control electronics into the SCRAM chain and operating electronics of the reactor. (9) The design, construction and attachment to the support structure of the reactor of an irradiation box that could be inserted into position next to the face of the reactor. (Necessitated by the previously mentioned core rearrangement). All of the above modifications were successfully completed and

  17. Si-depleted outer core inferred from sound velocity measurements of liquid Fe-Si alloys

    NASA Astrophysics Data System (ADS)

    Nakajima, Y.; Imada, S.; Hirose, K.; Kuwayama, Y.; Sinmyo, R.; Tateno, S.; Ozawa, H.; Tsutsui, S.; Uchiyama, H.; Baron, A. Q. R.

    2016-12-01

    Recent core formation models [1,2] suggested that a large amount of Si could have been incorporated into the core forming metals in the early stage of the Earth. These studies gave estimates for the Si content in the core, from 2 to 9 wt.%. In order to constrain the Si content of the outer core, we have determined the sound wave velocity of liquid Fe-Si alloys under high pressures and high temperatures. Starting materials of Fe-Si alloys with 6.5 and 9 wt.% Si were melted in a laser-heated diamond-anvil cell. The longitudinal acoustic phonon excitation of a liquid metal was measured up to 52 GPa and 3200 K by using high resolution inelastic X-ray scattering spectroscopy at beamline BL35XU [3] of the SPring-8 synchrotron facility. Our results show that silicon significantly increases the P-wave velocity of liquid Fe. Seismological observation shows that the P-wave velocity in the outer core is 3-4% faster than in pure iron. Comparing the present results with seismological observations, the silicon content of the outer core should be limited to be <2 wt.%, significantly lower than previous estimates based on the element partitioning between core forming mental and silicate magma ocean during core formation processes. This indicates that the present-day core is depleted in Si relative to the ancient core just after core formation, which agrees with the recent proposal [4] that the Si content in the outer core has been diminished by SiO2 crystallization through the core cooling history. [1] Rubie et al. (2011) Earth Planet. Sci. Lett. 301, 31-42. [2] Siebert et al. (2013) Science 339, 1194-1197. [3] Baron et al. (2000) J. Phys. Chem. Solids 61, 461-465 [4] Hirose et al. (2015) Abstract presented at AGU Fall Meeting 2015.

  18. Space Station Furnace Facility. Volume 2: Requirements definition and conceptual design study

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Space Station Freedom Furnace (SSFF) Project is divided into two phases: phase 1, a definition study phase, and phase 2, a design and development phase. TBE was awarded a research study entitled, 'Space Station Furnace Facility Requirements Definition and Conceptual Design Study' on June 2, 1989. This report addresses the definition study phase only. Phase 2 is to be complete after completion of phase 1. The contract encompassed a requirements definition study and culminated in hardware/facility conceptual designs and hardware demonstration development models to test these conceptual designs. The study was divided into two parts. Part 1 (the basic part of the effort) encompassed preliminary requirements definition and assessment; conceptional design of the SSFF Core; fabrication of mockups; and preparation for the support of a conceptional design review (CoDR). Part 2 (the optional part of the effort) included detailed definition of the engineering and design requirements, as derived from the science requirements; refinement of the conceptual design of the SSFF Core; fabrication and testing of the 'breadboards' or development models; and preparation for and support of a requirements definition review.

  19. Influence of Nonfused Cores on the Photovoltaic Performance of Linear Triphenylamine-Based Hole-Transporting Materials for Perovskite Solar Cells.

    PubMed

    Wu, Yungen; Wang, Zhihui; Liang, Mao; Cheng, Hua; Li, Mengyuan; Liu, Liyuan; Wang, Baiyue; Wu, Jinhua; Prasad Ghimire, Raju; Wang, Xuda; Sun, Zhe; Xue, Song; Qiao, Qiquan

    2018-05-30

    The core plays a crucial role in achieving high performance of linear hole transport materials (HTMs) toward the perovskite solar cells (PSCs). Most studies focused on the development of fused heterocycles as cores for HTMs. Nevertheless, nonfused heterocycles deserve to be studied since they can be easily synthesized. In this work, we reported a series of low-cost triphenylamine HTMs (M101-M106) with different nonfused cores. Results concluded that the introduced core has a significant influence on conductivity, hole mobility, energy level, and solubility of linear HTMs. M103 and M104 with nonfused oligothiophene cores are superior to other HTMs in terms of conductivity, hole mobility, and surface morphology. PSCs based on M104 exhibited the highest power conversion efficiency of 16.50% under AM 1.5 sun, which is comparable to that of spiro-OMeTAD (16.67%) under the same conditions. Importantly, the employment of M104 is highly economical in terms of the cost of synthesis as compared to that of spiro-OMeTAD. This work demonstrated that nonfused heterocycles, such as oligothiophene, are promising cores for high performance of linear HTMs toward PSCs.

  20. Assessment of the core and support functions of the Integrated Disease Surveillance system in Maharashtra, India

    PubMed Central

    2013-01-01

    Background Monitoring the progress of the Integrated Disease Surveillance (IDS) strategy is an important component to ensure its sustainability in the state of Maharashtra in India. The purpose of the study was to document the baseline performance of the system on its core and support functions and to understand the challenges for its transition from an externally funded “project” to a state owned surveillance “program”. Methods Multi-centre, retrospective cross-sectional evaluation study to assess the structure, core and support surveillance functions using modified WHO generic questionnaires. All 34 districts in the state and randomly identified 46 facilities and 25 labs were included in the study. Results Case definitions were rarely used at the periphery. Limited laboratory capacity at all levels compromised case and outbreak confirmation. Only 53% districts could confirm all priority diseases. Stool sample processing was the weakest at the periphery. Availability of transport media, trained staff, and rapid diagnostic tests were main challenges at the periphery. Data analysis was weak at both district and facility levels. Outbreak thresholds were better understood at facility level (59%) than at the district (18%). None of the outbreak indicator targets were met and submission of final outbreak report was the weakest. Feedback and training was significantly better (p < 0.0001) at district level (65%; 76%) than at facility level (15%; 37%). Supervision was better at the facility level (37%) than at district (18%) and so were coordination, communication and logistic resources. Contractual part time positions, administrative delays in recruitment, and vacancies (30%) were main human resource issues that hampered system performance. Conclusions Significant progress has been made in the core and support surveillance functions in Maharashtra, however some challenges exist. Support functions (laboratory, transport and communication equipment, training

  1. 43 CFR 3140.4 - Conversion.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Conversion. 3140.4 Section 3140.4 Public... OF THE INTERIOR MINERALS MANAGEMENT (3000) LEASING IN SPECIAL TAR SAND AREAS Conversion of Existing Oil and Gas Leases and Valid Claims Based on Mineral Locations § 3140.4 Conversion. ...

  2. 31 CFR 800.205 - Conversion.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Conversion. 800.205 Section 800.205 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF INVESTMENT... FOREIGN PERSONS Definitions § 800.205 Conversion. The term conversion means the exercise of a right...

  3. Scalable Direct Writing of Lanthanide-Doped KMnF3 Perovskite Nanowires into Aligned Arrays with Polarized Up-Conversion Emission.

    PubMed

    Shi, Shuo; Sun, Ling-Dong; Xue, Ying-Xian; Dong, Hao; Wu, Ke; Guo, Shi-Chen; Wu, Bo-Tao; Yan, Chun-Hua

    2018-05-09

    The use of one-dimensional nano- and microstructured semiconductor and lanthanide materials is attractive for polarized-light-emission studies. Up-conversion emission from single-nanorod or anisotropic nanoparticles with a degree of polarization has also been discussed. However, microscale arrays of nanoparticles, especially well-aligned one-dimensional nanostructures as well as their up-conversion polarization characterization, have not been investigated yet. Herein, we present a novel and facile paradigm for preparing highly aligned arrays of lanthanide-doped KMnF 3 (KMnF 3 :Ln) perovskite nanowires, which are good candidates for polarized up-conversion emission studies. These perovskite nanowires, with a width of 10 nm and length of a few micrometers, are formed through the oriented attachment of KMnF 3 :Ln nanocubes along the [001] direction. By the employment of KMnF 3 :Ln nanowire gel as nanoink, a direct-writing method is developed to obtain diverse types of aligned patterns from the nanoscale to the wafer scale. Up-conversion emissions from the highly aligned nanowire arrays are polarized along the array direction with a polarization degree up to 60%. Taking advantage of microscopic nanowire arrays, these polarized up-conversion emissions should offer potential applications in light or information transportation.

  4. Core Conversations with Educative Dragging

    ERIC Educational Resources Information Center

    Wanko, Jeffrey J.; Edwards, Michael Todd; Phelps, Steve

    2012-01-01

    The Sliding along a Side task was presented at a National Council of Teachers of Mathematics (NCTM) conference session for high school teachers. According to the authors, while exploring this task with this group of experienced mathematics educators and classroom teachers, they shared a "gasp!" moment. With the aid of the dynamic mathematics…

  5. 5 CFR 536.303 - Geographic conversion.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Geographic conversion. 536.303 Section... PAY RETENTION Pay Retention § 536.303 Geographic conversion. (a) Geographic conversion at time of... basic pay resulting from this geographic conversion is not a basis for entitlement to pay retention. The...

  6. 5 CFR 536.303 - Geographic conversion.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 1 2011-01-01 2011-01-01 false Geographic conversion. 536.303 Section... PAY RETENTION Pay Retention § 536.303 Geographic conversion. (a) Geographic conversion at time of... basic pay resulting from this geographic conversion is not a basis for entitlement to pay retention. The...

  7. 34. DESPATCH CORE OVENS, GREY IRON FOUNDRY CORE ROOM, BAKES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. DESPATCH CORE OVENS, GREY IRON FOUNDRY CORE ROOM, BAKES CORES THAT ARE NOT MADE ON HEATED OR COLD BOX CORE MACHINES, TO SET BINDING AGENTS MIXED WITH THE SAND CREATING CORES HARD ENOUGH TO WITHSTAND THE FLOW OF MOLTEN IRON INSIDE A MOLD. - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  8. Mesoporous activated carbon from corn stalk core for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Li, Yi; Li, Chun; Qi, Hui; Yu, Kaifeng; Liang, Ce

    2018-04-01

    A novel mesoporous activated carbon (AC) derived from corn stalk core is prepared via a facile and effective method which including the decomposition and carbonization of corn stalk core under an inert gas atmosphere and further activation process with KOH solution. The mesoporous activated carbon (AC) is characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) measurements. These biomass waste derived from activated carbon is proved to be promising anode materials for high specific capacity lithium ion batteries. The activated carbon anode possesses excellent reversible capacity of 504 mAh g-1 after 100 cycles at 0.2C. Compared with the unactivated carbon (UAC), the electrochemical performance of activated carbon is significantly improved due to its mesoporous structure.

  9. Facile synthesis of core-shell Cu2O@ ZnO structure with enhanced photocatalytic H2 production

    NASA Astrophysics Data System (ADS)

    Zhang, Yong-Hui; Jiu, Bei-Bei; Gong, Fei-Long; Lu, Kuan; Jiang, Nan; Zhang, Hao-Li; Chen, Jun-Li

    2018-05-01

    Core-shell Cu2O@ZnO composites were synthesized successfully based on a one-pot hydrothermal method in the presence of dioctyl sulfosuccinate sodium salt (AOT) surfactant. The Cu2O can be converted to rough core-shell Cu2O@ZnO structure by adjusting the amount of zinc powder added. The as-synthesized Cu2O@ZnO composites exhibited excellent photocatalytic activity and the amount of H2 generated using these composites was 4.5-fold more than that produced with Cu2O cubes. A possible photocatalytic mechanism for the Cu2O@ZnO composites with enhanced photocatalytic activity could be the separation by ZnO of the effective charge carriers.

  10. NUCLEAR CONVERSION APPARATUS

    DOEpatents

    Seaborg, G.T.

    1960-09-13

    A nuclear conversion apparatus is described which comprises a body of neutron moderator, tubes extending therethrough, uranium in the tubes, a fluid- circulating system associated with the tubes, a thorium-containing fluid coolant in the system and tubes, and means for withdrawing the fluid from the system and replacing it in the system whereby thorium conversion products may be recovered.

  11. Magnetic resonance imaging in laboratory petrophysical core analysis

    NASA Astrophysics Data System (ADS)

    Mitchell, J.; Chandrasekera, T. C.; Holland, D. J.; Gladden, L. F.; Fordham, E. J.

    2013-05-01

    Magnetic resonance imaging (MRI) is a well-known technique in medical diagnosis and materials science. In the more specialized arena of laboratory-scale petrophysical rock core analysis, the role of MRI has undergone a substantial change in focus over the last three decades. Initially, alongside the continual drive to exploit higher magnetic field strengths in MRI applications for medicine and chemistry, the same trend was followed in core analysis. However, the spatial resolution achievable in heterogeneous porous media is inherently limited due to the magnetic susceptibility contrast between solid and fluid. As a result, imaging resolution at the length-scale of typical pore diameters is not practical and so MRI of core-plugs has often been viewed as an inappropriate use of expensive magnetic resonance facilities. Recently, there has been a paradigm shift in the use of MRI in laboratory-scale core analysis. The focus is now on acquiring data in the laboratory that are directly comparable to data obtained from magnetic resonance well-logging tools (i.e., a common physics of measurement). To maintain consistency with well-logging instrumentation, it is desirable to measure distributions of transverse (T2) relaxation time-the industry-standard metric in well-logging-at the laboratory-scale. These T2 distributions can be spatially resolved over the length of a core-plug. The use of low-field magnets in the laboratory environment is optimal for core analysis not only because the magnetic field strength is closer to that of well-logging tools, but also because the magnetic susceptibility contrast is minimized, allowing the acquisition of quantitative image voxel (or pixel) intensities that are directly scalable to liquid volume. Beyond simple determination of macroscopic rock heterogeneity, it is possible to utilize the spatial resolution for monitoring forced displacement of oil by water or chemical agents, determining capillary pressure curves, and estimating

  12. A techno-economic analysis of using mobile distributed pyrolysis facilities to deliver a forest residue resource.

    PubMed

    Brown, Duncan; Rowe, Andrew; Wild, Peter

    2013-12-01

    Distributed mobile conversion facilities using either fast pyrolysis or torrefaction processes can be used to convert forest residues to more energy dense substances (bio-oil, bio-slurry or torrefied wood) that can be transported as feedstock for bio-fuel facilities. Results show that the levelised delivered cost of a forest residue resource using mobile facility networks can be lower than using conventional woodchip delivery methods under appropriate conditions. Torrefied wood is the lowest cost pathway of delivering a forest residue resource when using mobile facilities. Cost savings occur against woodchip delivery for annual forest residue harvests above 2.5 million m(3) or when transport distances greater than 300 km are required. Important parameters that influence levelised delivered costs are transport distances (forest residue spatial density), haul cost factors, and initial moisture content of forest residues. Relocating mobile facilities can be optimised for lowest cost delivery as transport distances of raw biomass are reduced. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Core Formation Process and Light Elements in the Planetary Core

    NASA Astrophysics Data System (ADS)

    Ohtani, E.; Sakairi, T.; Watanabe, K.; Kamada, S.; Sakamaki, T.; Hirao, N.

    2015-12-01

    Si, O, and S are major candidates for light elements in the planetary core. In the early stage of the planetary formation, the core formation started by percolation of the metallic liquid though silicate matrix because Fe-S-O and Fe-S-Si eutectic temperatures are significantly lower than the solidus of the silicates. Therefore, in the early stage of accretion of the planets, the eutectic liquid with S enrichment was formed and separated into the core by percolation. The major light element in the core at this stage will be sulfur. The internal pressure and temperature increased with the growth of the planets, and the metal component depleted in S was molten. The metallic melt contained both Si and O at high pressure in the deep magma ocean in the later stage. Thus, the core contains S, Si, and O in this stage of core formation. Partitioning experiments between solid and liquid metals indicate that S is partitioned into the liquid metal, whereas O is weakly into the liquid. Partitioning of Si changes with the metallic iron phases, i.e., fcc iron-alloy coexisting with the metallic liquid below 30 GPa is depleted in Si. Whereas hcp-Fe alloy above 30 GPa coexisting with the liquid favors Si. This contrast of Si partitioning provides remarkable difference in compositions of the solid inner core and liquid outer core among different terrestrial planets. Our melting experiments of the Fe-S-Si and Fe-O-S systems at high pressure indicate the core-adiabats in small planets, Mercury and Mars, are greater than the slope of the solidus and liquidus curves of these systems. Thus, in these planets, the core crystallized at the top of the liquid core and 'snowing core' formation occurred during crystallization. The solid inner core is depleted in both Si and S whereas the liquid outer core is relatively enriched in Si and S in these planets. On the other hand, the core adiabats in large planets, Earth and Venus, are smaller than the solidus and liquidus curves of the systems. The

  14. Frequency conversion system

    NASA Technical Reports Server (NTRS)

    Sanders, Steven (Inventor); Waarts, Robert G. (Inventor)

    2001-01-01

    A frequency conversion system comprises first and second gain sources providing first and second frequency radiation outputs where the second gain source receives as input the output of the first gain source and, further, the second gain source comprises a Raman or Brillouin gain fiber for wave shifting a portion of the radiation of the first frequency output into second frequency radiation output to provided a combined output of first and second frequencies. Powers are gain enhanced by the addition of a rare earth amplifier or oscillator, or a Raman/Brillouin amplifier or oscillator between the high power source and the NFM device. Further, polarization conversion using Raman or Brillouin wavelength shifting is provided to optimize frequency conversion efficiency in the NFM device.

  15. Bromine catalyzed conversion of S-tert-butyl groups into versatile and, for self-assembly processes accessible, acetyl-protected thiols.

    PubMed

    Blaszczyk, Alfred; Elbing, Mark; Mayor, Marcel

    2004-10-07

    The facile and efficient conversion of a tert-butyl protecting group to an acetyl protecting group for thiols by catalytic amounts of bromine in acetyl chloride and the presence of acetic acid has been developed. The fairly mild reaction conditions are of particular interest for new protecting group strategies for sulfur functionalised target structures. Copyright 2004 The Royal Society of Chemistry

  16. Self-induced conversion in dense neutrino gases: Pendulum in flavor space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hannestad, Steen; Max-Planck-Institut fuer Physik; Raffelt, Georg G.

    Neutrino-neutrino interactions can lead to collective flavor conversion effects in supernovae and in the early universe. We demonstrate that the case of bipolar oscillations, where a dense gas of neutrinos and antineutrinos in equal numbers completely converts from one flavor to another even if the mixing angle is small, is equivalent to a pendulum in flavor space. Bipolar flavor conversion corresponds to the swinging of the pendulum, which begins in an unstable upright position (the initial flavor), and passes through momentarily the vertically downward position (the other flavor) in the course of its motion. The time scale to complete onemore » cycle of oscillation depends logarithmically on the vacuum mixing angle. Likewise, the presence of an ordinary medium can be shown analytically to contribute to a logarithmic increase in the bipolar conversion period. We further find that a more complex (and realistic) system of unequal numbers of neutrinos and antineutrinos is analogous to a spinning top subject to a torque. This analogy easily explains how such a system can oscillate in both the bipolar and the synchronized mode, depending on the neutrino density and the size of the neutrino-antineutrino asymmetry. Our simple model applies strictly only to isotropic neutrino gasses. In more general cases, and especially for neutrinos streaming from a supernova core, different modes couple to each other with unequal strength, an effect that can lead to kinematical decoherence in flavor space rather than collective oscillations. The exact circumstances under which collective oscillations occur in nonisotropic media remain to be understood.« less

  17. [Neuropsychological assessment in conversion disorder].

    PubMed

    Demır, Süleyman; Çelıkel, Feryal Çam; Taycan, Serap Erdoğan; Etıkan, İlker

    2013-01-01

    Conversion disorder is characterized by functional impairment in motor, sensory, or neurovegetative systems that cannot be explained by a general medical condition. Diagnostic systems emphasize the absence of an organic basis for the dysfunction observed in conversion disorder. Nevertheless, there is a growing body of data on the specific functional brain correlates of conversion symptoms, particularly those obtained via neuroimaging and neurophysiological assessment. The present study aimed to determine if there are differences in measures of cognitive functioning between patients with conversion disorder and healthy controls. The hypothesis of the study was that the patients with conversion disorder would have poorer neurocognitive performance than the controls. The patient group included 43 patients diagnosed as conversion disorder and other psychiatric comorbidities according to DSM-IV-TR. Control group 1 included 44 patients diagnosed with similar psychiatric comorbidities, but not conversion diosorder, and control group 2 included 43 healthy individuals. All participants completed a sociodemographic questionnaire and were administered the SCID-I and a neuropsychological test battery of 6 tests, including the Serial Digit Learning Test (SDLT), Auditory Verbal Learning Test (AVLT), Wechsler Memory Scale, Stroop Color Word Interference Test, Benton Judgment of Line Orientation Test (BJLOT), and Cancellation Test. The patient group had significantly poorer performance on the SDLT, AVLT, Stroop Color Word Interference Test, and BJLOT than both control groups. The present findings highlight the differences between the groups in learning and memory, executive and visuospatial functions, and attention, which seemed to be specific to conversion disorder.

  18. Alternative Fuels Data Center: Vehicle Conversions

    Science.gov Websites

    : Vehicle Conversions to someone by E-mail Share Alternative Fuels Data Center: Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Vehicle

  19. How cores grow by pebble accretion. I. Direct core growth

    NASA Astrophysics Data System (ADS)

    Brouwers, M. G.; Vazan, A.; Ormel, C. W.

    2018-03-01

    Context. Planet formation by pebble accretion is an alternative to planetesimal-driven core accretion. In this scenario, planets grow by the accretion of cm- to m-sized pebbles instead of km-sized planetesimals. One of the main differences with planetesimal-driven core accretion is the increased thermal ablation experienced by pebbles. This can provide early enrichment to the planet's envelope, which influences its subsequent evolution and changes the process of core growth. Aims: We aim to predict core masses and envelope compositions of planets that form by pebble accretion and compare mass deposition of pebbles to planetesimals. Specifically, we calculate the core mass where pebbles completely evaporate and are absorbed before reaching the core, which signifies the end of direct core growth. Methods: We model the early growth of a protoplanet by calculating the structure of its envelope, taking into account the fate of impacting pebbles or planetesimals. The region where high-Z material can exist in vapor form is determined by the temperature-dependent vapor pressure. We include enrichment effects by locally modifying the mean molecular weight of the envelope. Results: In the pebble case, three phases of core growth can be identified. In the first phase (Mcore < 0.23-0.39 M⊕), pebbles impact the core without significant ablation. During the second phase (Mcore < 0.5M⊕), ablation becomes increasingly severe. A layer of high-Z vapor starts to form around the core that absorbs a small fraction of the ablated mass. The rest of the material either rains out to the core or instead mixes outwards, slowing core growth. In the third phase (Mcore > 0.5M⊕), the high-Z inner region expands outwards, absorbing an increasing fraction of the ablated material as vapor. Rainout ends before the core mass reaches 0.6 M⊕, terminating direct core growth. In the case of icy H2O pebbles, this happens before 0.1 M⊕. Conclusions: Our results indicate that pebble accretion can

  20. Experimental and code simulation of a station blackout scenario for APR1400 with test facility ATLAS and MARS code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, X. G.; Kim, Y. S.; Choi, K. Y.

    2012-07-01

    A SBO (station blackout) experiment named SBO-01 was performed at full-pressure IET (Integral Effect Test) facility ATLAS (Advanced Test Loop for Accident Simulation) which is scaled down from the APR1400 (Advanced Power Reactor 1400 MWe). In this study, the transient of SBO-01 is discussed and is subdivided into three phases: the SG fluid loss phase, the RCS fluid loss phase, and the core coolant depletion and core heatup phase. In addition, the typical phenomena in SBO-01 test - SG dryout, natural circulation, core coolant boiling, the PRZ full, core heat-up - are identified. Furthermore, the SBO-01 test is reproduced bymore » the MARS code calculation with the ATLAS model which represents the ATLAS test facility. The experimental and calculated transients are then compared and discussed. The comparison reveals there was malfunction of equipments: the SG leakage through SG MSSV and the measurement error of loop flow meter. As the ATLAS model is validated against the experimental results, it can be further employed to investigate the other possible SBO scenarios and to study the scaling distortions in the ATLAS. (authors)« less

  1. 5 CFR 317.302 - Conversion procedures.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 1 2011-01-01 2011-01-01 false Conversion procedures. 317.302 Section... IN THE SENIOR EXECUTIVE SERVICE Conversion to the Senior Executive Service § 317.302 Conversion... pursuant to § 317.305(b)(4) or § 317.306(b)(4); If the employee is offered conversion, the notice shall...

  2. 5 CFR 317.302 - Conversion procedures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Conversion procedures. 317.302 Section... IN THE SENIOR EXECUTIVE SERVICE Conversion to the Senior Executive Service § 317.302 Conversion... pursuant to § 317.305(b)(4) or § 317.306(b)(4); If the employee is offered conversion, the notice shall...

  3. 23. CORE WORKER OPERATING A COREBLOWER THAT PNEUMATICALLY FILLED CORE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. CORE WORKER OPERATING A CORE-BLOWER THAT PNEUMATICALLY FILLED CORE BOXES WITH RESIGN IMPREGNATED SAND AND CREATED A CORE THAT THEN REQUIRED BAKING, CA. 1950. - Stockham Pipe & Fittings Company, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  4. 4 Birds 1 Stone to Inhibit 5androstane-3alpha,17beta-diol Conversion to DHT

    DTIC Science & Technology

    2016-09-01

    GFP and ARE-luciferase were tested by our laboratory and the Roswell Park Cancer Institute Small Molecule Screening Facility (SMSF). PC-3 cells that...outside UNC-Lineberger Comprehensive Cancer and Roswell Park Cancer Institute. Administration Core A will have direct responsibility for organization...Supporting Agency: Roswell Park Alliance Foundation Name and address of the Funding Agency’s Procuring Contracting/Grants Officer: Judith Epstein

  5. Erythrocyte membrane cholesterol and lipid core growth in a rabbit model of atherosclerosis: modulatory effects of rosuvastatin.

    PubMed

    Tziakas, Dimitrios; Chalikias, Georgios; Kapelouzou, Alkistis; Tentes, Ioannis; Schäfer, Katrin; Karayannakos, Panagiotis; Kostakis, Alkiviadis; Boudoulas, Harissios; Konstantinides, Stavros

    2013-12-10

    Lipid core expansion is partly responsible for the conversion of a stable atherosclerotic lesion to a rupture-prone plaque. Intraplaque hemorrhage contributes to the accumulation of cholesterol within unstable plaques. In the present study, we investigated, using a rabbit model of atherosclerosis, the extent to which diet-induced increases in cholesterol content of erythrocyte membranes (CEM) contribute to lipid core expansion and the modulatory effect of rosuvastatin use. Rabbits fed with atherogenic diet (0.75% cholesterol) for 5 months exhibited advanced atherosclerotic lesions (mean plaque area, 0.39 ± 0.03 mm(2)), and lipid core size was associated with the concentration-time integral (CTI) of CEM levels (r=0.567, P=0.004) independent of other established predictors of lipid core size. Further experiments were performed by feeding rabbits atherogenic diet (1% cholesterol) for 3 months, followed by either normal diet or normal diet plus rosuvastatin for the next 3 months. Although no differences were observed in total plaque area between both groups, administration of rosuvastatin was associated with significantly smaller lipid cores, fewer macrophages within the lipid core, less microvessels as well as with lower CTI of CEM levels compared to normal diet alone. Moreover, intraplaque erythrocyte membranes covered a smaller lipid core area in rabbits under rosuvastatin plus normal diet as opposed to rabbits under diet alone. Increased CEM levels, induced by high-cholesterol diet, are associated with lipid core growth. Ingestion of a potent HMG-CoA reductase inhibitor (rosuvastatin) may decrease CEM levels, and this effect may contribute to regression of the lipid core. © 2013.

  6. Changing the conversation: the influence of emotions on conversational valence and alcohol consumption.

    PubMed

    Hendriks, Hanneke; van den Putte, Bas; de Bruijn, Gert-Jan

    2014-10-01

    Health campaign effects may be improved by taking interpersonal communication processes into account. The current study, which employed an experimental, pretest-posttest, randomized exposure design (N = 208), investigated whether the emotions induced by anti-alcohol messages influence conversational valence about alcohol and subsequent persuasion outcomes. The study produced three main findings. First, an increase in the emotion fear induced a negative conversational valence about alcohol. Second, fear was most strongly induced by a disgusting message, whereas a humorous appeal induced the least fear. Third, a negative conversational valence elicited healthier binge drinking attitudes, subjective norms, perceived behavioral control, intentions, and behaviors. Thus, health campaign planners and health researchers should pay special attention to the emotional characteristics of health messages and should focus on inducing a healthy conversational valence.

  7. Analysis of pan-genome to identify the core genes and essential genes of Brucella spp.

    PubMed

    Yang, Xiaowen; Li, Yajie; Zang, Juan; Li, Yexia; Bie, Pengfei; Lu, Yanli; Wu, Qingmin

    2016-04-01

    Brucella spp. are facultative intracellular pathogens, that cause a contagious zoonotic disease, that can result in such outcomes as abortion or sterility in susceptible animal hosts and grave, debilitating illness in humans. For deciphering the survival mechanism of Brucella spp. in vivo, 42 Brucella complete genomes from NCBI were analyzed for the pan-genome and core genome by identification of their composition and function of Brucella genomes. The results showed that the total 132,143 protein-coding genes in these genomes were divided into 5369 clusters. Among these, 1710 clusters were associated with the core genome, 1182 clusters with strain-specific genes and 2477 clusters with dispensable genomes. COG analysis indicated that 44 % of the core genes were devoted to metabolism, which were mainly responsible for energy production and conversion (COG category C), and amino acid transport and metabolism (COG category E). Meanwhile, approximately 35 % of the core genes were in positive selection. In addition, 1252 potential essential genes were predicted in the core genome by comparison with a prokaryote database of essential genes. The results suggested that the core genes in Brucella genomes are relatively conservation, and the energy and amino acid metabolism play a more important role in the process of growth and reproduction in Brucella spp. This study might help us to better understand the mechanisms of Brucella persistent infection and provide some clues for further exploring the gene modules of the intracellular survival in Brucella spp.

  8. Towards better light harvesting capability for DSSC (dye sensitized solar cells) through addition of Au@SiO2 core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Fadhilah, Nur; Alhadi, Emha Riyadhul Jinan; Risanti, Doty Dewi

    2018-04-01

    The Au nanoparticles as core can increase the light harvesting due to the strong near-field effect LSPR (Localized Surface Plasmon Resonance), effectively minimized the electron recombination process and also can improve the optical absorption of the dye sensitized. Au@SiO2 core-shell nanoparticles were prepared using SiO2 extracted from Sidoarjo mud volcano. In this work investigated the influence of pH solution and silica shell volume fraction in Au@SiO2 nanoparticles core-shell structure on DSSC loaded with Ru-based dye. From XRD characterization it was found that core-shell contains SiO2, Au, γAl2O3 and traces NaCl. UV-Vis absorption spectra of core-shell showed the position of the surface plasmon AuNP band in the range of 500-600 nm. The Au@SiO2 core-shell with volume fraction of 30ml silica has the highest peak absorbance. The enhanced light absorption is primarily attributed to the LSPR effect of the Au core. Our results on incident photon-to-current conversion efficiency indicates that the presence of SiO2 depending on its volume fraction tends to shift to longer wavelength.

  9. Roadmap on optical energy conversion

    NASA Astrophysics Data System (ADS)

    Boriskina, Svetlana V.; Green, Martin A.; Catchpole, Kylie; Yablonovitch, Eli; Beard, Matthew C.; Okada, Yoshitaka; Lany, Stephan; Gershon, Talia; Zakutayev, Andriy; Tahersima, Mohammad H.; Sorger, Volker J.; Naughton, Michael J.; Kempa, Krzysztof; Dagenais, Mario; Yao, Yuan; Xu, Lu; Sheng, Xing; Bronstein, Noah D.; Rogers, John A.; Alivisatos, A. Paul; Nuzzo, Ralph G.; Gordon, Jeffrey M.; Wu, Di M.; Wisser, Michael D.; Salleo, Alberto; Dionne, Jennifer; Bermel, Peter; Greffet, Jean-Jacques; Celanovic, Ivan; Soljacic, Marin; Manor, Assaf; Rotschild, Carmel; Raman, Aaswath; Zhu, Linxiao; Fan, Shanhui; Chen, Gang

    2016-07-01

    For decades, progress in the field of optical (including solar) energy conversion was dominated by advances in the conventional concentrating optics and materials design. In recent years, however, conceptual and technological breakthroughs in the fields of nanophotonics and plasmonics combined with a better understanding of the thermodynamics of the photon energy-conversion processes reshaped the landscape of energy-conversion schemes and devices. Nanostructured devices and materials that make use of size quantization effects to manipulate photon density of states offer a way to overcome the conventional light absorption limits. Novel optical spectrum splitting and photon-recycling schemes reduce the entropy production in the optical energy-conversion platforms and boost their efficiencies. Optical design concepts are rapidly expanding into the infrared energy band, offering new approaches to harvest waste heat, to reduce the thermal emission losses, and to achieve noncontact radiative cooling of solar cells as well as of optical and electronic circuitries. Light-matter interaction enabled by nanophotonics and plasmonics underlie the performance of the third- and fourth-generation energy-conversion devices, including up- and down-conversion of photon energy, near-field radiative energy transfer, and hot electron generation and harvesting. Finally, the increased market penetration of alternative solar energy-conversion technologies amplifies the role of cost-driven and environmental considerations. This roadmap on optical energy conversion provides a snapshot of the state of the art in optical energy conversion, remaining challenges, and most promising approaches to address these challenges. Leading experts authored 19 focused short sections of the roadmap where they share their vision on a specific aspect of this burgeoning research field. The roadmap opens up with a tutorial section, which introduces major concepts and terminology. It is our hope that the roadmap

  10. Dating sediment cores from Hudson River marshes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robideau, R.; Bopp, R.F.

    1993-03-01

    There are several methods for determining sediment accumulation rates in the Hudson River estuary. One involves the analysis of the concentration of certain radionuclides in sediment core sections. Radionuclides occur in the Hudson River as a result of: natural sources, fallout from nuclear weapons testing and low level aqueous releases from the Indian Point Nuclear Power Facility. The following radionuclides have been studied in the authors work: Cesium-137, which is derived from global fallout that started in the 1950's and has peaked in 1963. Beryllium-7, a natural radionuclide with a 53 day half-life and found associated with very recently depositedmore » sediments. Another useful natural radionuclide is Lead-210 derived from the decay of Radon-222 in the atmosphere. Lead-210 has a half-life of 22 years and can be used to date sediments up to about 100 years old. In the Hudson River, Cobalt-60 is a marker for Indian Point Nuclear Reactor discharges. The author's research involved taking sediment core samples from four sites in the Hudson River Estuarine Research Reserve areas. These core samples were sectioned, dried, ground and analyzed for the presence of radionuclides by the method of gamma-ray spectroscopy. The strength of each current pulse is proportional to the energy level of the gamma ray absorbed. Since different radionuclides produce gamma rays of different energies, several radionuclides can be analyzed simultaneously in each of the samples. The data obtained from this research will be compared to earlier work to obtain a complete chronology of sediment deposition in these Reserve areas of the river. Core samples may then by analyzed for the presence of PCB's, heavy metals and other pollutants such as pesticides to construct a pollution history of the river.« less

  11. Radon exposure at a radioactive waste storage facility.

    PubMed

    Manocchi, F H; Campos, M P; Dellamano, J C; Silva, G M

    2014-06-01

    The Waste Management Department of Nuclear and Energy Research Institute (IPEN) is responsible for the safety management of the waste generated at all internal research centers and that of other waste producers such as industry, medical facilities, and universities in Brazil. These waste materials, after treatment, are placed in an interim storage facility. Among them are (226)Ra needles used in radiotherapy, siliceous cake arising from conversion processes, and several other classes of waste from the nuclear fuel cycle, which contain Ra-226 producing (222)Rn gas daughter.In order to estimate the effective dose for workers due to radon inhalation, the radon concentration at the storage facility has been assessed within this study. Radon measurements have been carried out through the passive method with solid-state nuclear track detectors (CR-39) over a period of nine months, changing detectors every month in order to determine the long-term average levels of indoor radon concentrations. The radon concentration results, covering the period from June 2012 to March 2013, varied from 0.55 ± 0.05 to 5.19 ± 0.45 kBq m(-3). The effective dose due to (222)Rn inhalation was further assessed following ICRP Publication 65.

  12. The national ignition facility and atomic data

    NASA Astrophysics Data System (ADS)

    Crandall, David H.

    1998-07-01

    The National Ignition Facility (NIF) is under construction, capping over 25 years of development of the inertial confinement fusion concept by providing the facility to obtain fusion ignition in the laboratory for the first time. The NIF is a 192 beam glass laser to provide energy controlled in space and time so that a millimeter-scale capsule containing deuterium and tritium can be compressed to fusion conditions. Light transport, conversion of light in frequency, interaction of light with matter in solid and plasma forms, and diagnostics of extreme material conditions on small scale all use atomic data in preparing for use of the NIF. The NIF will provide opportunity to make measurements of atomic data in extreme physical environments related to fusion energy, nuclear weapon detonation, and astrophysics. The first laser beams of NIF should be operational in 2001 and the full facility completed at the end of 2003. NIF is to provide 1.8 megajoule of blue light on fusion targets and is intended to achieve fusion ignition by about the end of 2007. Today's inertial fusion development activities use atomic data to design and predict fusion capsule performance and in non-fusion applications to analyze radiation transport and radiation effects on matter. Conditions investigated involve radiation temperature of hundreds of eV, pressures up to gigabars and time scales of femptoseconds.

  13. The rates of charge separation and energy destructive charge recombination processes within an organic dyad in presence of metal-semiconductor core shell nanocomposites.

    PubMed

    Mandal, Gopa; Bhattacharya, Sudeshna; Das, Subrata; Ganguly, Tapan

    2012-01-01

    Steady state and time resolved spectroscopic measurements were made at the ambient temperature on an organic dyad, 1-(4-Chloro-phenyl)-3-(4-methoxy-naphthalen-1-yl)-propenone (MNCA), where the donor 1-methoxynaphthalene (1 MNT) is connected with the acceptor p-chloroacetophenone (PCA) by an unsaturated olefinic bond, in presence of Ag@TiO2 nanoparticles. Time resolved fluorescence and absorption measurements reveal that the rate parameters associated with charge separation, k(CS), within the dyad increases whereas charge recombination rate k(CR) reduces significantly when the surrounding medium is changed from only chloroform to mixture of chloroform and Ag@TiO2 (noble metal-semiconductor) nanocomposites. The observed results indicate that the dyad being combined with core-shell nanocomposites may form organic-inorganic nanocomposite system useful for developing light energy conversion devices. Use of metal-semiconductor nanoparticles may provide thus new ways to modulate charge recombination processes in light energy conversion devices. From comparison with the results obtained in our earlier investigations with only TiO2 nanoparticles, it is inferred that much improved version of light energy conversion device, where charge-separated species could be protected for longer period of time of the order of millisecond, could be designed by using metal-semiconductor core-shell nanocomposites rather than semiconductor nanoparticles only.

  14. Core-Cutoff Tool

    NASA Technical Reports Server (NTRS)

    Gheen, Darrell

    2007-01-01

    A tool makes a cut perpendicular to the cylindrical axis of a core hole at a predetermined depth to free the core at that depth. The tool does not damage the surrounding material from which the core was cut, and it operates within the core-hole kerf. Coring usually begins with use of a hole saw or a hollow cylindrical abrasive cutting tool to make an annular hole that leaves the core (sometimes called the plug ) in place. In this approach to coring as practiced heretofore, the core is removed forcibly in a manner chosen to shear the core, preferably at or near the greatest depth of the core hole. Unfortunately, such forcible removal often damages both the core and the surrounding material (see Figure 1). In an alternative prior approach, especially applicable to toxic or fragile material, a core is formed and freed by means of milling operations that generate much material waste. In contrast, the present tool eliminates the damage associated with the hole-saw approach and reduces the extent of milling operations (and, hence, reduces the waste) associated with the milling approach. The present tool (see Figure 2) includes an inner sleeve and an outer sleeve and resembles the hollow cylindrical tool used to cut the core hole. The sleeves are thin enough that this tool fits within the kerf of the core hole. The inner sleeve is attached to a shaft that, in turn, can be attached to a drill motor or handle for turning the tool. This tool also includes a cutting wire attached to the distal ends of both sleeves. The cutting wire is long enough that with sufficient relative rotation of the inner and outer sleeves, the wire can cut all the way to the center of the core. The tool is inserted in the kerf until its distal end is seated at the full depth. The inner sleeve is then turned. During turning, frictional drag on the outer core pulls the cutting wire into contact with the core. The cutting force of the wire against the core increases with the tension in the wire and

  15. Explosion symmetry improvement of polyimide-coated tungsten wire in vacuum on negative discharge facility

    NASA Astrophysics Data System (ADS)

    Li, Mo; Wu, Jian; Lu, Yihan; Li, Xingwen; Li, Yang; Qiu, Mengtong

    2018-01-01

    Tungsten wire explosion is very asymmetric when fast current rate and insulated coatings are both applied on negative discharge facility using a 24-mm-diameter cathode geometry, which is commonly used on mega-ampere facilities. It is inferred, based on an analytical treatment of the guiding center drift and COMSOL simulations, that the large negative radial electric field causes early voltage breakdown and terminates energy deposition into the wire core on the anode side of the wire. After the anode side is short circuited, the radial electric field along the wire surface on the cathode side will change its polarity and thus leading to additional energy deposition into the wire core. This change causes ˜10 times larger energy deposition and ˜14 times faster explosion velocity in the cathode side than the anode side. In order to reduce this asymmetry, a hollow cylindrical cathode geometry was used to reverse the polarity of radial electric field and was optimized to use on multi-MA facilities. In this case, fully vaporized polyimide-coated tungsten wire with great symmetry improvement was achieved with energy deposition of ˜8.8 eV/atom. The atomic and electronic density distributions for the two different load geometries were obtained by the double-wavelength measurement.

  16. 24 CFR 972.109 - Conversion of developments.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 4 2011-04-01 2011-04-01 false Conversion of developments. 972.109... DEVELOPMENT CONVERSION OF PUBLIC HOUSING TO TENANT-BASED ASSISTANCE Required Conversion of Public Housing Developments Required Conversion Process § 972.109 Conversion of developments. (a)(1) The PHA may proceed to...

  17. 24 CFR 972.130 - Conversion plan components.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Conversion plan components. 972.130... DEVELOPMENT CONVERSION OF PUBLIC HOUSING TO TENANT-BASED ASSISTANCE Required Conversion of Public Housing Developments Conversion Plans § 972.130 Conversion plan components. (a) With respect to any development that is...

  18. 24 CFR 972.109 - Conversion of developments.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Conversion of developments. 972.109... DEVELOPMENT CONVERSION OF PUBLIC HOUSING TO TENANT-BASED ASSISTANCE Required Conversion of Public Housing Developments Required Conversion Process § 972.109 Conversion of developments. (a)(1) The PHA may proceed to...

  19. 24 CFR 972.130 - Conversion plan components.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 4 2011-04-01 2011-04-01 false Conversion plan components. 972.130... DEVELOPMENT CONVERSION OF PUBLIC HOUSING TO TENANT-BASED ASSISTANCE Required Conversion of Public Housing Developments Conversion Plans § 972.130 Conversion plan components. (a) With respect to any development that is...

  20. Temporal Change of Seismic Earth's Inner Core Phases: Inner Core Differential Rotation Or Temporal Change of Inner Core Surface?

    NASA Astrophysics Data System (ADS)

    Yao, J.; Tian, D.; Sun, L.; Wen, L.

    2017-12-01

    Since Song and Richards [1996] first reported seismic evidence for temporal change of PKIKP wave (a compressional wave refracted in the inner core) and proposed inner core differential rotation as its explanation, it has generated enormous interests in the scientific community and the public, and has motivated many studies on the implications of the inner core differential rotation. However, since Wen [2006] reported seismic evidence for temporal change of PKiKP wave (a compressional wave reflected from the inner core boundary) that requires temporal change of inner core surface, both interpretations for the temporal change of inner core phases have existed, i.e., inner core rotation and temporal change of inner core surface. In this study, we discuss the issue of the interpretation of the observed temporal changes of those inner core phases and conclude that inner core differential rotation is not only not required but also in contradiction with three lines of seismic evidence from global repeating earthquakes. Firstly, inner core differential rotation provides an implausible explanation for a disappearing inner core scatterer between a doublet in South Sandwich Islands (SSI), which is located to be beneath northern Brazil based on PKIKP and PKiKP coda waves of the earlier event of the doublet. Secondly, temporal change of PKIKP and its coda waves among a cluster in SSI is inconsistent with the interpretation of inner core differential rotation, with one set of the data requiring inner core rotation and the other requiring non-rotation. Thirdly, it's not reasonable to invoke inner core differential rotation to explain travel time change of PKiKP waves in a very small time scale (several months), which is observed for repeating earthquakes in Middle America subduction zone. On the other hand, temporal change of inner core surface could provide a consistent explanation for all the observed temporal changes of PKIKP and PKiKP and their coda waves. We conclude that