46 CFR 160.151-41 - Approval of servicing facilities.
Code of Federal Regulations, 2010 CFR
2010-10-01
... of the facility; (2) The name(s) of its competent servicing technician(s); (3) Identification of the... section. A currently trained servicing technician shall successfully demonstrate the complete service to... a Coast Guard inspector or of a third-party inspector accepted by the OCMI, or such technician shall...
14 CFR 147.37 - Maintenance of facilities, equipment, and material.
Code of Federal Regulations, 2010 CFR
2010-01-01
... TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES AVIATION MAINTENANCE TECHNICIAN SCHOOLS... maintenance technician school shall provide facilities, equipment, and material equal to the standards...
ERIC Educational Resources Information Center
Macconnell, James D., And Others
The twelfth in a series also including guides for facilities for medical x-ray technologist, medical assistant, and medical secretary programs, the document is intended for use in the preparation of educational specifications for facilities for dental laboratory technician programs. Designed for use by those responsible for planning facilities,…
Data analyst technician: an innovative role for the pharmacy technician.
Ervin, K C; Skledar, S; Hess, M M; Ryan, M
2001-10-01
The development of an innovative role for the pharmacy technician is described. The role of the pharmacy technician was based on a needs assessment and the expertise of the pharmacy technician selected. Initial responsibilities of the technician included chart reviews, benchmarking surveys, monthly financial impact analysis, initiative assessment, and quality improvement reporting. As the drug-use and disease-state management (DUDSM) program expanded, pharmacist activities increased, requiring the expansion of data analyst technician (DAT) duties. These new responsibilities included participation in patient assessment, data collection and interpretation, and formulary enforcement. Most recently, technicians' expanded duties include maintenance of a physician compliance profiling database, quality improvement reporting and graphing, active role in patient risk assessment and database management for adult vaccination, and support of financial impact monitoring for other institutions within the health system. This pharmacist-technician collaboration resulted a threefold increase in patient assessments completed per day. In addition, as the DUDSM program continues to expand across the health system, an increase in DAT resources from 0.5 to 1.0 full-time equivalent was obtained. The role of the DAT has increased the efficiency of the DUDSM program and has provided an innovative role for the pharmacy technician.
Establishing a clinical pharmacy technician at a United States Army military treatment facility.
Evans, Jennifer L; Gladd, Ellen M; Gonzalez, Alicia C; Tranam, Salman; Larrabee, Joni M; Lipphardt, Sarah E; Chen, Tina T; Ronn, Michael D; Spain, John
2016-01-01
To describe the creation of a clinical pharmacy technician position within the U.S. Army and to identify the personal skills and characteristics required to meet the demands of this role. An outpatient military treatment facility located in Maryland. The clinical pharmacy technician position was designed to support clinical pharmacy services within a patient-centered medical home. Funding and a position description were established to hire a clinical pharmacy technician. Expected duties included administrative (45%), patient education (30%), and dispensing (25%). Local policy, in accordance with federal law and U.S. Army regulations, was developed to define the expanded technician responsibility to deliver patient medication education. In the initial 3 months, the clinical pharmacy technician spent 24 hours per week on clinical activities, affording an additional 10-15 hours per week for clinical pharmacists to provide patient care. Completed consults increased from 41% to 56%, and patient-pharmacist encounters increased from 240 to 290 per month. The technician, acting as a clinical pharmacist extender, also completed an average of 90 patient encounters independently each month. As a result of these improvements, the decision was made to hire a second technician. Currently, the technicians spend 28-40 hours per week on clinical activities, offsetting an average of 26 hours per week for the clinical pharmacists. A patient-centered medical home clinical pharmacy technician can reduce the administrative workload for clinical pharmacists, improve their efficiency, and enhance the use of clinical pharmacy services. Several characteristics, particularly medication knowledge, make pharmacy technicians particularly suited for this role. The results from the implementation of a clinical pharmacy technician at this military treatment facility resulted in an Army-wide expansion of the position and suggested applicability in other practice sites, particularly in federal pharmacies. Published by Elsevier Inc.
Job satisfaction and patient care practices of hemodialysis nurses and technicians.
Perumal, Seena; Sehgal, Ashwini R
2003-10-01
The quality of hemodialysis care has been the focus of intense scrutiny, yet little is known about the job satisfaction of the nurses and technicians providing this care. We identified 240 nurses and technicians from 307 randomly selected American facilities and asked them about (a) specific domains of job satisfaction, (b) overall job satisfaction, and (c) self-reported patient care practices. Fewer than half of nurses and technicians were satisfied with their pay or their opportunities for advancement. Almost all subjects were satisfied with their personal delivery of patient care, their chance to do things for others, and their job security. About three-fourths of nurses and technicians expressed overall satisfaction with their jobs. Higher job satisfaction was associated with increased attention to patient psychosocial and educational needs. We urge local and national associations of nurses and technicians to collaborate with dialysis facilities, chains, and regulatory agencies to address specific aspects of job satisfaction.
Los Alamos Plutonium Facility Waste Management System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, K.; Montoya, A.; Wieneke, R.
1997-02-01
This paper describes the new computer-based transuranic (TRU) Waste Management System (WMS) being implemented at the Plutonium Facility at Los Alamos National Laboratory (LANL). The Waste Management System is a distributed computer processing system stored in a Sybase database and accessed by a graphical user interface (GUI) written in Omnis7. It resides on the local area network at the Plutonium Facility and is accessible by authorized TRU waste originators, count room personnel, radiation protection technicians (RPTs), quality assurance personnel, and waste management personnel for data input and verification. Future goals include bringing outside groups like the LANL Waste Management Facilitymore » on-line to participate in this streamlined system. The WMS is changing the TRU paper trail into a computer trail, saving time and eliminating errors and inconsistencies in the process.« less
Instructor Quality Affecting Emergency Medical Technician (EMT) Preparedness: A LEADS Project
ERIC Educational Resources Information Center
Russ-Eft, Darlene F.; Dickison, Philip D.; Levine, Roger
2005-01-01
This represents one of a series of studies of the Longitudinal Emergency Medical Technician Attributes and Demographics Study (LEADS) being undertaken by the National Registry of Emergency Medical Technicians and the National Highway Traffic Safety Administration (NHTSA). This secondary analysis of the LEADS database, which provides a…
Fiber Optics Technician. Curriculum Research Project. Final Report.
ERIC Educational Resources Information Center
Whittington, Herschel K.
A study examined the role of technicians in the fiber optics industry and determined those elements that should be included in a comprehensive curriculum to prepare fiber optics technicians for employment in the Texas labor market. First the current literature, including the ERIC database and equipment manufacturers' journals were reviewed. After…
Agricultural Biotechnology Technician. National Voluntary Occupational Skill Standards.
ERIC Educational Resources Information Center
National Future Farmers of America Foundation, Madison, WI.
The skill standards in this document were developed as a result of meetings between representatives of the agricultural industry and educational institutions to determine the skills and educational preparation required of an agricultural biotechnology technician, verified by technicians working in laboratories, greenhouses, animal facilities, and…
14 CFR 147.13 - Facilities, equipment, and material requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES AVIATION MAINTENANCE TECHNICIAN SCHOOLS... aviation maintenance technician school certificate and rating, or for an additional rating, must have at...
Advancing technician practice: Deliberations of a regulatory board.
Adams, Alex J
2018-01-01
In 2016, the Idaho State Board of Pharmacy (U.S.) undertook a major rulemaking initiative to advance pharmacy practice by broadening the ability of pharmacists to delegate tasks to pharmacy technicians. The new rules of the Board thus moved the locus of control in technician scope of practice from law to pharmacist delegation. Pharmacist delegation is individualistic and takes into account the individual technician's capabilities, the pharmacist's comfort level, facility policies, and the risk mitigation strategies present at the facility, among other factors. State law limits, by contrast, are rigid and can mean that pharmacists are unable to delegate tasks that are or could otherwise be within the abilities of their technicians. The expanded technician duties are in two domains: 1) medication dispensing support (e.g., tech-check-tech, accepting verbal prescriptions, transferring prescriptions, and performing remote data entry); and 2) technical support for pharmacist clinical services (e.g., administering immunizations). This commentary reviews the evidence behind these expanded duties, as well as the key regulatory decision points for each task. The Board's rules and approach may prove useful to other states and even other governing bodies outside the U.S. as they consider similar issues. Copyright © 2017 Elsevier Inc. All rights reserved.
2017-12-08
Inside the Prototype Development Laboratory at NASA's Kennedy Space Center in Florida, engineers and technicians hold a banner marking the successful delivery of a liquid oxygen test tank called Tardis. From left, are Todd Steinrock, chief, Fabrication and Development Branch, Prototype Development Lab; David McLaughlin, electrical engineering technician; Phil Stroda, mechanical engineering technician; Perry Dickey, lead electrical engineering technician; and Harold McAmis, lead mechanical engineering technician. Engineers and technicians worked together to develop the tank and build it at the lab to support cryogenic testing at Johnson Space Center's White Sands Test Facility in Las Cruces, New Mexico. The 12-foot-tall, 3,810-pound aluminum tank will be shipped to White Sands for testing.
46 CFR 160.151-47 - Requirements for owners or operators of servicing facilities.
Code of Federal Regulations, 2010 CFR
2010-10-01
...— (a) Ensure that servicing technicians have received sufficient information and training to follow... direct supervision of a servicing technician who has completed the requirements of either § 160.151-39 (a...
Technicians monitor USMP-4 experiments being prepared for flight on STS-87 in the SSPF
NASA Technical Reports Server (NTRS)
1997-01-01
Technicians are monitoring experiments on the United States Microgravity Payload-4 (USMP-4) in preparation for its scheduled launch aboard STS-87 on Nov. 19 from Kennedy Space Center (KSC). USMP-4 experiments are prepared in the Space Station Processing Facility at KSC. The large white vertical cylinder at the right of the photo is the Advanced Automated Directional Solidification Furnace (AADSF ), which is a sophisticated materials science facility used for studying a common method of processing semiconductor crystals called directional solidification. The technician in the middle of the photo is leaning over MEPHISTO, a cooperative American-French investigation of the fundamentals of crystal growth.
Warner, Amy E; Schaefer, Melissa K; Patel, Priti R; Drobeniuc, Jan; Xia, Guoliang; Lin, Yulin; Khudyakov, Yury; Vonderwahl, Candace W; Miller, Lisa; Thompson, Nicola D
2015-01-01
Drug diversion by health care personnel poses a risk for serious patient harm. Public health identified 2 patients diagnosed with acute hepatitis C virus (HCV) infection who shared a common link with a hospital. Further investigation implicated a drug-diverting, HCV-infected surgical technician who was subsequently employed at an ambulatory surgical center. Patients at the 2 facilities were offered testing for HCV infection if they were potentially exposed. Serum from the surgical technician and patients testing positive for HCV but without evidence of infection before their surgical procedure was further tested to determine HCV genotype and quasi-species sequences. Parenteral medication handling practices at the 2 facilities were evaluated. The 2 facilities notified 5970 patients of their possible exposure to HCV, 88% of whom were tested and had results reported to the state public health departments. Eighteen patients had HCV highly related to the surgical technician's virus. The surgical technician gained unauthorized access to fentanyl owing to limitations in procedures for securing controlled substances. Public health surveillance identified an outbreak of HCV infection due to an infected health care provider engaged in diversion of injectable narcotics. The investigation highlights the value of public health surveillance in identifying HCV outbreaks and uncovering a method of drug diversion and its impacts on patients. Copyright © 2015 Association for Professionals in Infection Control and Epidemiology, Inc. All rights reserved.
STS-55 MS3 Harris listens to technician during JSC WETF egress exercises
NASA Technical Reports Server (NTRS)
1992-01-01
STS-55 Columbia, Orbiter Vehicle (OV) 102, Mission Specialist 3 (MS3) Bernard A. Harris, Jr, wearing launch and entry suit (LES), launch and entry helmet (LEH), and parachute, listens to technician Karen Porter's instructions prior to launch emergency egress (bailout) exercises. The session, held in JSC's Weightless Environment Training Facility (WETF) Bldg 29, used the facility's 25-foot deep pool to simulate the ocean as Harris and other crewmembers practiced water bailout procedures.
Fixing Maintenance Productivity.
ERIC Educational Resources Information Center
Fickes, Michael
2003-01-01
Describes how one university's facility managers use Nextel communications technology in conjunction with a Famis Software maintenance management system to improve the productivity of its maintenance technicians. The system uses a wireless Internet connection to automate the flow of work order information to and from technicians. The key to these…
Advancing Your Career at LLNL: Meet NIF’s Radiation Control Technicians
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zarco, Judy; Gutierrez, Myrna; Beale, Richard
2017-04-26
Myrna Gutierrez and Judy Zarco took advantage of LLNL's legacy of encouraging continuing education to get the necessary degrees and training to advance their careers at the Lab. As Radiation Control Technicians, they help maintain safety at the National Ignition Facility.
Personal History Questionnaire.
ERIC Educational Resources Information Center
Educational Testing Service, Princeton, NJ.
A questionnaire given to 450 cartographic technicians at U.S. Army TOPOCOM is provided. A few questions from the preliminary questionnaire (see TM 001 465) were included, such as sex, age, and GS level. Additional questions deal with parents' education and occupation, technicians' English language facility, level of education reached, and several…
STS-45 MS Foale dons EMU with technicians' help in JSC's WETF Bldg 29
NASA Technical Reports Server (NTRS)
1991-01-01
STS-45 Atlantis, Orbiter Vehicle (OV) 104, Mission Specialist (MS) C. Michael Foale stands on a platform as technicians help him don his extravehicular mobility unit (EMU). The technicians are preparing to connect the EMU upper and lower torsos at the waist ring. When fully suited, Foale will be lowered into a nearby 25 ft deep pool for an underwater simulation of contingency extravehicular activity (EVA) procedures. The pool is located in JSC's Weightless Environment Training Facility (WETF) Bldg 29.
STS-55 Payload Specialist Schlegel with technicians during JSC WETF bailout
NASA Technical Reports Server (NTRS)
1992-01-01
STS-55 Columbia, Orbiter Vehicle (OV) 102, Payload Specialist 2 Hans Schlegel, wearing launch and entry suit (LES), launch and entry helmet (LEH), and parachute, discusses procedures with technicians Karen Porter and Todd Bailey prior to launch emergency egress (bailout) exercises. The session, held in JSC's Weightless Environment Training Facility (WETF) Bldg 29, used the facility's 25-foot deep pool to simulate the ocean as Schlegel and other crewmembers practiced water bailout procedures. Schlegel represents the DLR for the upcoming Spacelab Deutsche 2 (SL-D2) mission.
Advanced Microcomputer Service Technician. Teacher Edition.
ERIC Educational Resources Information Center
Brown, A. O., III; Fulkerson, Dan, Ed.
This manual is the second of a three-text microcomputer service and repair series. This text addresses the training needs of "chip level" technicians who work with digital troubleshooting instruments to solve the complex microcomputer problems that are sent to them from computer stores that do not have full-service facilities. The manual contains…
Hemolytic Uremic Syndrome in Children
... in a health care provider's office or a commercial facility. For the test, a nurse or technician ... at a health care provider's office or a commercial facility and sending the sample to a lab ...
Warner, Amy E.; Schaefer, Melissa K.; Patel, Priti R.; Drobeniuc, Jan; Xia, Guoliang; Lin, Yulin; Khudyakov, Yury; Vonderwahl, Candace W.; Miller, Lisa; Thompson, Nicola D.
2015-01-01
Background Drug diversion by health care personnel poses a risk for serious patient harm. Public health identified 2 patients diagnosed with acute hepatitis C virus (HCV) infection who shared a common link with a hospital. Further investigation implicated a drug-diverting, HCV-infected surgical technician who was subsequently employed at an ambulatory surgical center. Methods Patients at the 2 facilities were offered testing for HCV infection if they were potentially exposed. Serum from the surgical technician and patients testing positive for HCV but without evidence of infection before their surgical procedure was further tested to determine HCV genotype and quasi-species sequences. Parenteral medication handling practices at the 2 facilities were evaluated. Results The 2 facilities notified 5970 patients of their possible exposure to HCV, 88% of whom were tested and had results reported to the state public health departments. Eighteen patients had HCV highly related to the surgical technician’s virus. The surgical technician gained unauthorized access to fentanyl owing to limitations in procedures for securing controlled substances. Conclusions Public health surveillance identified an outbreak of HCV infection due to an infected health care provider engaged in diversion of injectable narcotics. The investigation highlights the value of public health surveillance in identifying HCV outbreaks and uncovering a method of drug diversion and its impacts on patients. PMID:25442395
Decision Model for Forecasting Projected Naval Enlisted Reserve Attainments
2008-12-01
Command CM Construction Mechanic CS Culinary Specialist CTA Cryptologic Technician - Administrative CTI Cryptologic Technician - Interpretive...services are utilized to compile databases of active duty and reserve accession and loss Category Arts and Photography Journalist (JO) Photographer’s...MM) Mineman (MN) Torpedoman’s Mate (TM) Food, Restaurant, and Lodging Culinary Specialist (CS) Human Resources Navy Counselor (NC) Personnelman (PN
Orbiter processing facility service platform failure and redesign
NASA Technical Reports Server (NTRS)
Harris, Jesse L.
1988-01-01
In a high bay of the Orbiter Processing Facility (OPF) at the Kennedy Space Center, technicians were preparing the space shuttle orbiter Discovery for rollout to the Vehicle Assembly Building (VAB). A service platform, commonly referred to as an OPF Bucket, was being retracted when it suddenly fell, striking a technician and impacting Discovery's payload bay door. A critical component in the OPF Bucket hoist system had failed, allowing the platform to fall. The incident was thoroughly investigated by both NASA and Lockheed, revealing many design deficiencies within the system. The deficiencies and the design changes made to correct them are reviewed.
2003-11-05
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, a technician takes readings for pre-assembly measurements on the Japanese Experiment Module (JEM). Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.
2003-11-05
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, technicians begin pre-assembly measurements on the Japanese Experiment Module (JEM). Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.
2003-11-05
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, technicians take readings for pre-assembly measurements on the Japanese Experiment Module (JEM). Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.
STS-88 crew members and technicians participate in their CEIT in the SSPF
NASA Technical Reports Server (NTRS)
1997-01-01
Pilot Rick Sturckow and Mission Specialist Jerry Ross, both members of the STS-88 crew, participate with technicians in the Crew Equipment Interface Test for that mission in KSC's Space Station Processing Facility. STS-88, the first International Space Station assembly flight, is targeted for launch in July 1998 aboard Space Shuttle Endeavour.
STS-53 MS Clifford, in EMU, dons gloves with technicians' assistance at JSC
NASA Technical Reports Server (NTRS)
1992-01-01
STS-53 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) Michael R.U. Clifford, wearing extravehicular mobility unit (EMU) and communications carrier assembly (CCA), dons gloves with assistance from two technicians. Clifford is preparing for an underwater contingency extravehicular activity (EVA) simulation in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool.
STS-53 MS Voss,in EMU, dons gloves with technicians' assistance at JSC's WETF
NASA Technical Reports Server (NTRS)
1992-01-01
STS-53 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) James S. Voss, wearing extravehicular mobility unit (EMU) and communications carrier assembly (CCA), dons his gloves with assistance from two technicians. Voss is preparing for an underwater contingency extravehicular activity (EVA) simulation in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool.
STS-99 Atlantis, Shuttle Radar Topography Mission (SRTM) in the MPPF with Technicians working
NASA Technical Reports Server (NTRS)
1999-01-01
The primary objective of the STS-99 mission was to complete high resolution mapping of large sections of the Earth's surface using the Shuttle Radar Topography Mission (SRTM), a specially modified radar system. This videotape shows technicians in clean room suits working on the SRTM in the Multi-Payload Processing Facility (MPPF).
ERIC Educational Resources Information Center
Macconnell, James D.; And Others
The major purpose of this guide is to develop the necessary information for the writing of educational specifications to house medical x-ray technician programs. The guide is also designed to: (1) assist planners in the formation of creative housing solutions for desired educational programs, (2) prevent important considerations from being…
The Education of Librarians for Data Administration.
ERIC Educational Resources Information Center
Koenig, Michael E. D.; Kochoff, Stephen T.
1983-01-01
Argues that the increasing importance of database management systems (DBMS) and recognition of the information dependency of business planning are creating new job opportunities for librarians/information technicians. Highlights include development and functions of DBMSs, data and database administration, potential for librarians, and implications…
42 CFR 416.61 - Scope of facility services.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 3 2010-10-01 2010-10-01 false Scope of facility services. 416.61 Section 416.61 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES... are not limited to— (1) Nursing, technician, and related services; (2) Use of the facilities where the...
Potential allergy and irritation incidents among health care workers.
Alamgir, Hasanat; Yu, Shicheng; Chavoshi, Negar; Ngan, Karen
2008-07-01
This study describes the types, causes, and outcomes of potential irritation and allergy incidents among workers in British Columbia's health care industry. Data on occupation-induced allergy and irritation incidents were extracted from a standardized database using the number of productive hours obtained from payroll data as a denominator during a 1-year period from three British Columbia health regions. Younger workers, female workers, facility support service workers, laboratory assistants and technicians, and maintenance and acute care workers were found to be at higher risk for allergy and irritation incidents. Major causes of allergy and irritation incidents included chemicals, blood and body fluids, food and objects, communicable diseases, air quality, and latex. A larger proportion of chemically induced incidents resulted in first aid care only, whereas non-chemical incidents required more emergency room visits.
Uptake and impact of regulated pharmacy technicians in Ontario community pharmacies.
Grootendorst, Paul; Shim, Minsup; Tieu, Jimmy
2018-01-01
Since 2010, most provincial Colleges of Pharmacists have licensed pharmacy technicians. The colleges hoped this would give pharmacists time to provide "expanded scope" activities such as medication reviews. Little is known, however, about the uptake and impact of pharmacy technicians on pharmacists' provision of such services. We address these questions using data for Ontario community pharmacies. Data on pharmacists and pharmacy technicians were obtained from the Ontario College of Pharmacists website in September 2016. Their place of employment was used to calculate the number of full-time equivalent (FTE) pharmacists and technicians employed at each community pharmacy. Pharmacy claims data for the 12-month period ending March 31, 2016, were obtained from the Ontario Public Drug Programs (OPDP). These data included number of MedsChecks performed, type of MedsCheck and number of prescriptions dispensed to OPDP beneficiaries. Pharmacy technicians were employed in 24% of the pharmacies in our sample. Technician employment rates were highest in Central Fill pharmacies and pharmacies serving long-term care facilities. In general, pharmacies employing 1 or fewer technician full-time equivalents (FTEs) had a slightly higher probability of providing MedsChecks and, of those that did provide Meds Checks Annuals, provided more of them. Pharmacies that hired 3 or more technician FTEs were markedly less likely to provide MedsChecks. Pharmacies differ in their employment of technicians and in the apparent impact of technicians on the provision of MedsChecks. However, these represent associations. Additional research is needed to assess the causal effect of technician employment on the provision of MedsChecks.
Uptake and impact of regulated pharmacy technicians in Ontario community pharmacies
Grootendorst, Paul; Shim, Minsup
2018-01-01
Background: Since 2010, most provincial Colleges of Pharmacists have licensed pharmacy technicians. The colleges hoped this would give pharmacists time to provide “expanded scope” activities such as medication reviews. Little is known, however, about the uptake and impact of pharmacy technicians on pharmacists’ provision of such services. We address these questions using data for Ontario community pharmacies. Methods: Data on pharmacists and pharmacy technicians were obtained from the Ontario College of Pharmacists website in September 2016. Their place of employment was used to calculate the number of full-time equivalent (FTE) pharmacists and technicians employed at each community pharmacy. Pharmacy claims data for the 12-month period ending March 31, 2016, were obtained from the Ontario Public Drug Programs (OPDP). These data included number of MedsChecks performed, type of MedsCheck and number of prescriptions dispensed to OPDP beneficiaries. Results: Pharmacy technicians were employed in 24% of the pharmacies in our sample. Technician employment rates were highest in Central Fill pharmacies and pharmacies serving long-term care facilities. In general, pharmacies employing 1 or fewer technician full-time equivalents (FTEs) had a slightly higher probability of providing MedsChecks and, of those that did provide Meds Checks Annuals, provided more of them. Pharmacies that hired 3 or more technician FTEs were markedly less likely to provide MedsChecks. Conclusions: Pharmacies differ in their employment of technicians and in the apparent impact of technicians on the provision of MedsChecks. However, these represent associations. Additional research is needed to assess the causal effect of technician employment on the provision of MedsChecks. PMID:29796133
The Infrastructure of Academic Research.
ERIC Educational Resources Information Center
Davey, Ken
1996-01-01
Canadian university infrastructures have eroded as seen in aging equipment, deteriorating facilities, and fewer skilled personnel to maintain and operate research equipment. Research infrastructure includes administrative overhead, facilities and equipment, and research personnel including faculty, technicians, and students. The biggest erosion of…
STS-41 MS Akers assisted by technician on SMS middeck at JSC
NASA Technical Reports Server (NTRS)
1990-01-01
STS-41 Mission Specialist (MS) Thomas D. Akers, wearing launch and entry suit (LES) and launch and entry helmet (LEH), is assisted by a technician on the middeck of JSC's Shuttle Mission Simulator (SMS). Akers seated in the mission specialists chairis participating in a simulation of mission events. The SMS is located in JSC's Mission Simulation and Training Facility Bldg 5.
A voice-actuated wind tunnel model leak checking system
NASA Technical Reports Server (NTRS)
Larson, William E.
1989-01-01
A computer program has been developed that improves the efficiency of wind tunnel model leak checking. The program uses a voice recognition unit to relay a technician's commands to the computer. The computer, after receiving a command, can respond to the technician via a voice response unit. Information about the model pressure orifice being checked is displayed on a gas-plasma terminal. On command, the program records up to 30 seconds of pressure data. After the recording is complete, the raw data and a straight line fit of the data are plotted on the terminal. This allows the technician to make a decision on the integrity of the orifice being checked. All results of the leak check program are stored in a database file that can be listed on the line printer for record keeping purposes or displayed on the terminal to help the technician find unchecked orifices. This program allows one technician to check a model for leaks instead of the two or three previously required.
Online Searching of Bibliographic Databases: Microcomputer Access to National Information Systems.
ERIC Educational Resources Information Center
Coons, Bill
This paper describes the range and scope of various information databases available for technicians, researchers, and managers employed in forestry and the forest products industry. Availability of information on reports of field and laboratory research, business trends, product prices, and company profiles through national distributors of…
14 CFR 147.37 - Maintenance of facilities, equipment, and material.
Code of Federal Regulations, 2011 CFR
2011-01-01
... material. 147.37 Section 147.37 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES AVIATION MAINTENANCE TECHNICIAN SCHOOLS Operating Rules § 147.37 Maintenance of facilities, equipment, and material. (a) Each certificated aviation...
14 CFR 147.13 - Facilities, equipment, and material requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Facilities, equipment, and material requirements. 147.13 Section 147.13 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES AVIATION MAINTENANCE TECHNICIAN SCHOOLS...
14 CFR 147.13 - Facilities, equipment, and material requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Facilities, equipment, and material requirements. 147.13 Section 147.13 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES AVIATION MAINTENANCE TECHNICIAN SCHOOLS...
14 CFR 147.37 - Maintenance of facilities, equipment, and material.
Code of Federal Regulations, 2012 CFR
2012-01-01
... material. 147.37 Section 147.37 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES AVIATION MAINTENANCE TECHNICIAN SCHOOLS Operating Rules § 147.37 Maintenance of facilities, equipment, and material. (a) Each certificated aviation...
14 CFR 147.13 - Facilities, equipment, and material requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Facilities, equipment, and material requirements. 147.13 Section 147.13 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES AVIATION MAINTENANCE TECHNICIAN SCHOOLS...
14 CFR 147.37 - Maintenance of facilities, equipment, and material.
Code of Federal Regulations, 2014 CFR
2014-01-01
... material. 147.37 Section 147.37 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES AVIATION MAINTENANCE TECHNICIAN SCHOOLS Operating Rules § 147.37 Maintenance of facilities, equipment, and material. (a) Each certificated aviation...
14 CFR 147.13 - Facilities, equipment, and material requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Facilities, equipment, and material requirements. 147.13 Section 147.13 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES AVIATION MAINTENANCE TECHNICIAN SCHOOLS...
14 CFR 147.37 - Maintenance of facilities, equipment, and material.
Code of Federal Regulations, 2013 CFR
2013-01-01
... material. 147.37 Section 147.37 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES AVIATION MAINTENANCE TECHNICIAN SCHOOLS Operating Rules § 147.37 Maintenance of facilities, equipment, and material. (a) Each certificated aviation...
Cosmonaut Sergei Krikalev receives assistance from suit technician
NASA Technical Reports Server (NTRS)
1994-01-01
Sergei Krikalev, alternative mission specialist for STS-63, gets help from Dawn Mays, a Boeing suit technician. The cosmonaut was about to participate in a training session at JSC's Weightless Environment Training Facility (WETF). Wearing the training version of the extravehicular mobility unit (EMU) space suit, weighted to allow neutral buoyancy in the 25 feet deep WETF pool, Krikalev minutes later was underwater simulating a contingency spacewalk, or extravehicular activity (EVA).
Technicians monitor USMP-4 experiments being prepared for flight on STS-87 in the SSPF
NASA Technical Reports Server (NTRS)
1997-01-01
Technicians are monitoring experiments on the United States Microgravity Payload-4 (USMP-4) in preparation for its scheduled launch aboard STS-87 on Nov. 19 from Kennedy Space Center (KSC). USMP-4 experiments are prepared in the Space Station Processing Facility at KSC. The large white vertical cylinder in the center of the photo is the Advanced Automated Directional Solidification Furnace (AADSF), which is a sophisticated materials science facility used for studying a common method of processing semiconductor crystals called directional solidification. The white horizontal tube to the right is the Isothermal Dendritic Growth Experiment (IDGE), which will be used to study the dendritic solidification of molten materials in the microgravity environment.
Capabilities of the Materials Contamination Team at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Burns, H. D.; Finckenor, M. M.; Boothe, R. E.; Albyn, K. C.; Finchum, C. A.
2003-01-01
The Materials Contamination Team of the Environmental Effects Group, Materials, Processes, and Manufacturing Department, has been recognized for its contribution to space flight, including space transportation, space science and flight projects, such as the reusable solid rocket motor, Chandra X-Ray Observatory, and the International Space Station. The Materials Contamination Team s realm of responsibility encompasses all phases of hardware development including design, manufacturing, assembly, test, transportation, launch-site processing, on-orbit exposure, return, and refurbishment if required. Contamination is a concern in the Space Shuttle with sensitivity bondlines and reactive fluid (liquid oxygen) compatibility as well as for sensitive optics, particularly spacecraft such as Hubble Space Telescope and Chandra X-Ray Observatory. The Materials Contamination Team has a variety of facilities and instrumentation capable of contaminant detection identification, and monitoring. The team addresses material applications dealing with environments, including production facilities, clean rooms, and on-orbit exposure. The team of engineers and technicians also develop and evaluates new surface cleanliness inspection technologies. Databases are maintained by the team for proces! materials as well as outgassing and optical compatibility test results for specific environments.
ChemTechLinks: Alliances for Chemical Technician Education
NASA Astrophysics Data System (ADS)
Nameroff, Tamara
2003-09-01
ChemTechLinks (CTL) is a project of the American Chemical Society (ACS) Educational and International Activities Division and funded by the National Science Foundation to support and advance chemistry-based technician education. The project aims to help improve technician education programs, foster academic-industry alliances, provide professional development opportunities for faculty, and increase student recruitment into chemical technology. The CTL Web site serves as an information clearinghouse and link to other ACS resources and programs, including a Web-based, Voluntary Industry Standards (VIS) database, the Chemistry Technician Program Approval Service, the College Chemistry Consultants Service, summer workshops for high school teachers and two-year college faculty that emphasize a technology-oriented curriculum, scholarships for two-year college faculty to attend ACS Short Courses, a self-study instructional guide for faculty to use in preparing for classroom instruction, and information and free recruitment materials about career opportunities in chemistry technology.
DOT National Transportation Integrated Search
1979-03-01
Air traffic control specialists (ATCSs) and airway facility technicians (AFTs) were compared on measures of job attitudes and interests. A total of 792 ATCSs and 2,366 AFTs completed the Strong Vocational Interest Blank (SVIB) and questionnaires conc...
42 CFR 93.214 - Institutional member.
Code of Federal Regulations, 2010 CFR
2010-10-01
... support staff, researchers, research coordinators, clinical technicians, postdoctoral and other fellows... EFFECTS STUDIES OF HAZARDOUS SUBSTANCES RELEASES AND FACILITIES PUBLIC HEALTH SERVICE POLICIES ON RESEARCH...
2002-07-12
Technicians at General Atomics Aeronautical Systems, Inc., (GA-ASI) facility at Adelanto, Calif., carefully thread control lines through a bulkhead during engine installation on NASA's Altair aircraft.
Hubble Space Telescope (HST) at Lockheed Facility during preflight assembly
1988-03-31
A mechanical arm positions the axial scientific instrument (SI) module (orbital replacement unit (ORU)) just outside the open doors of the Hubble Space Telescope (HST) Support System Module (SSM) as clean-suited technicians oversee the process. HST assembly is being completed at the Lockheed Facility in Sunnyvale, California.
Battery Second Use for Plug-In Electric Vehicles Analysis | Transportation
batteries, and how much will it cost? NREL's investigation found that regional repurposing facilities . As technician labor is the primary cost element of such an operation, repurposing facilities are /kilowatt-hour (kWh)-nameplate. NREL's repurposing cost calculator is available freely for download
Research Electrical Distribution Bus | Energy Systems Integration Facility
| NREL Research Electrical Distribution Bus Research Electrical Distribution Bus The research electrical distribution bus (REDB) is the heart of the Energy Systems Integration Facility electrical system throughout the laboratories. Photo of a technician performing maintenance on the Research Electrical
Finishing Touches for Space Infrared Telescope Facility (SIRTF)
NASA Technical Reports Server (NTRS)
2003-01-01
Technicians put final touches on NASA's Space Infrared Telescope Facility at Lockheed Martin Aeronautics in Sunnyvale, Calif. It will soon be shipped to Cape Canaveral, Florida, where it is scheduled to launch on April 15. The mission will observe the coldest, oldest and most dust-obscured objects in the universe.
Replacement of Atlantis', OV-104's, right orbital maneuvering system pod
NASA Technical Reports Server (NTRS)
1988-01-01
Atlantis', Orbiter Vehicle (OV) 104's, right orbital maneuvering system (OMS) pod (RP01) is placed in a checkout cell at Kennedy Space Center's (KSC's) Hypergolic Maintenance Facility (HMF). Technicians steady OMS mounted on ground handling cart as third technician, standing on ladder, secures support frame. At the HMF, a group of specially-equipped buildings in the KSC Industrial Area, the OMS pods are undergoing extensive processing, including removal of certain components that will undergo modification at vendor facilities prior to the Shuttle's return to flight. The OMS pods are bolted to the aft fuselage of the orbiter and contain the engines and thrusters used to maneuver the spaceship in orbit. View provided by KSC with alternate number KSC-87PC-93.
STS-48 MS Gemar dons EMU with technicians' assistance prior to JSC WETF dive
NASA Technical Reports Server (NTRS)
1991-01-01
STS-48 Mission Specialist (MS) Charles D. Gemar, wearing an extravehicular mobility unit (EMU) and communications carrier assembly (CCA), smiles as he watches technicians adjust his sleeves prior to donning his EMU gloves. Gemar is preparing for an underwater extravehicular activity (EVA) training session in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Once underwater, Gemar will practice contingency EVA operations for his upcoming mission aboard Discovery, Orbiter Vehicle (OV) 103.
KSC technicians inspect TDRS-C, an STS-26 payload, in VPF clean room
NASA Technical Reports Server (NTRS)
1988-01-01
Kennedy Space Center (KSC) clean-suited technicians inspect tracking and data relay satellite C (TDRS-C) in KSC's Vertical Processing Facility (VPF) clean room. TDRS-C is the primary satellite payload aboard STS-26 Discovery, Orbiter Vehicle (OV) 103. TDRS-C will relay data from low Earth orbiting spacecraft, and air-to-ground voice communications and television from Space Shuttle orbiters when operational. View provided by KSC with alternate number KSC-88PC-363.
2012-04-03
CAPE CANAVERAL, Fla. – Jeremy Schwarz, left, quality assurance technician, and Mike Williams, right, a thermal protection system technician, both with United Space Alliance, prepare the right wing of space shuttle Endeavour for tile bonding. Endeavour is inside Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida. Ongoing transition and retirement activities are preparing the spacecraft for public display at the California Science Center in Los Angeles. Endeavour flew 25 missions during its 19-year career. Photo credit: NASA/Cory Huston
2002-07-12
Technicians at General Atomics Aeronautical Systems, Inc., (GA-ASI) facility at Adelanto, Calif., carefully install a turboprop engine to the rear fuselage of NASA's Altair aircraft during final assembly operations.
New Mexico energy research resource registry. Researchers and facilities
NASA Technical Reports Server (NTRS)
1975-01-01
Human resources and facilities in New Mexico available for application to energy research and development are listed. Information regarding individuals with expertise in the environmental, socio-economic, legal, and management and planning areas of the energy effort is included as well as those scientists, engineers, and technicians involved directly in energy research and development.
2002-07-12
Technician Dave Brown installs a drilling template during construction of the all-composite left wing of NASA's Altair aircraft at General Atomics Aeronautical Systems, Inc., (GA-ASI) facility at Adelanto, Calif.
2012-04-03
CAPE CANAVERAL, Fla. – Jeremy Schwarz, left, quality assurance technician, and Mike Williams, right, a thermal protection system technician, both with United Space Alliance, apply adhesive to space shuttle Endeavour's right wing. The work is being done in preparation for tile bonding. Endeavour is inside Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida. Ongoing transition and retirement activities are preparing the spacecraft for public display at the California Science Center in Los Angeles. Endeavour flew 25 missions during its 19-year career. Photo credit: NASA/Cory Huston
2009-09-01
should be in place for consulting with local medical facilities or Coast Guard assigned Public Health Service medical doctors. 1.6.4 International SAR...accordance with the Chapter 12 of the CG Aids to Navigation Manual - Administrative . Charts of NAVTEX service areas are available on the CG NAVCEN...and equipment. Some Coast Guard operating units have Emergency Medical Technicians (EMTs); a few units have a Health Services Technician attached
2008-04-18
Technicians at the NASA Dryden Aircraft Operations Facility in Palmdale, Calif., removed the German-built primary mirror assembly from the Stratospheric Observatory for Infrared Astronomy, or SOFIA, April 18, 2008 in preparation for the final finish coating of the mirror. A precision crane lifted the more than two-ton mirror assembly from its cavity in the rear fuselage of the highly modified Boeing 747SP. The assembly was then secured in its transport dolly and moved to a clean room where it was prepared for shipment to NASA Ames Research Center at Moffett Field near Mountain View, Calif. where it would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.
2003-12-19
KENNEDY SPACE CENTER, FLA. -- NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (top) discusses the inner workings of Shuttle Atlantis in Orbiter Processing Facility Bay 1 with a United Space Alliance (USA) technician (bottom). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.
2003-12-19
KENNEDY SPACE CENTER, FLA. -- NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (right) discusses a speed brake on Shuttle Discovery in Orbiter Processing Facility Bay 3 with a United Space Alliance (USA) technician (left). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.
Perceptions of Culture of Safety in Hemodialysis Centers.
Davis, Kristina K; Harris, Kathleen G; Mahishi, Vrinda; Bartholomew, Edward G; Kenward, Kevin
2016-01-01
Staff members, physicians, nurse practitioners, and physician assistants from a sample of hemodialysis facilities in Network 6 (North Carolina, South Carolina, and Georgia) and Network 11 (Michigan, Minnesota, North Dakota, South Dakota, and Wisconsin) completed a 10-item assessment with modified questions from the Hospital Survey on Patient Safety Culture, with an emphasis on safety culture related to vascular access infections. A composite score was constructed, which was the average of the percent-positive scores of the items. Overall, scores were high, indicating a positive patient safety culture. Composite scores varied by role type, with nurses, patient care technicians, and other technicians reporting the lowest composite scores. Network 6 participants reported higher scores on two of the survey items. Fewer staff within a facility were associated with higher composite scores.
2002-07-12
Technician Shawn Warren carefully smoothes out the composite skin of an instrument fairingatop the upper fuselage of the Altair unmanned aerial vehicle (UAV) at General Atomics Aeronautical Systems, Inc., facility at Adelanto, Calif.
Working Out Works for Shawn Kelly | Poster
By Nancy Parrish, Staff Writer When Shawn Kelly found out last year that he had high blood pressure, he was determined to do something about it. Luckily for Kelly, an instrumentation technician III, Facilities Maintenance and Engineering, he works at the Advanced Technology Research Facility (ATRF), where he can take advantage of the gym there, known as the Wellness Center.
Code of Federal Regulations, 2013 CFR
2013-04-01
... until such time as interest is required to be charged under section 482 and the regulations thereunder... operates a research facility in foreign country X. At the research facility employees of Corporation A who are full time scientists, engineers, and technicians regularly perform experiments, tests, and other...
Code of Federal Regulations, 2012 CFR
2012-04-01
... until such time as interest is required to be charged under section 482 and the regulations thereunder... operates a research facility in foreign country X. At the research facility employees of Corporation A who are full time scientists, engineers, and technicians regularly perform experiments, tests, and other...
Mars Reconnaissance Orbiter Taking Shape
2004-08-09
Lockheed Martin Space Systems engineer Terry Kampmann left and lead technician Jack Farmerie work on assembly and test of NASA Mars Reconnaissance Orbiter spacecraft bus in a cleanroom at the company Denver facility.
2015-01-21
In the Astrotech payload processing facility on Vandenberg Air Force Base in California, technicians secure a transportation canister around NASA Soil Moisture Active Passive SMAP spacecraft for its move to the launch pad.
Training and qualification of health and safety technicians at a national laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egbert, W.F.; Trinoskey, P.A.
1994-10-01
Over the last 30 years, Lawrence Livermore National Laboratory (LLNL) has successfully implemented the concept of a multi-disciplined technician. LLNL Health and Safety Technicians have responsibilities in industrial hygiene, industrial safety, health physics, as well as fire, explosive, and criticality safety. One of the major benefits to this approach is the cost-effective use of workers who display an ownership of health and safety issues which is sometimes lacking when responsibilities are divided. Although LLNL has always promoted the concept of a multi-discipline technician, this concept is gaining interest within the Department of Energy (DOE) community. In November 1992, individuals frommore » Oak Ridge Institute of Science and Education (ORISE) and RUST Geotech, joined by LLNL established a committee to address the issues of Health and Safety Technicians. In 1993, the DOE Office of Environmental, Safety and Health, in response to the Defense Nuclear Facility Safety Board Recommendation 91-6, stated DOE projects, particularly environmental restoration, typically present hazards other than radiation such as chemicals, explosives, complex construction activities, etc., which require additional expertise by Radiological Control Technicians. They followed with a commitment that a training guide would be issued. The trend in the last two decades has been toward greater specialization in the areas of health and safety. In contrast, the LLNL has moved toward a generalist approach integrating the once separate functions of the industrial hygiene and health physics technician into one function.« less
A Drug Discovery Partnership for Personalized Breast Cancer Therapy
2015-09-01
antagonists) and then virtually screen the USDA Phytochemical, Chinese Herbal Medicine , and the FDA Marketed Drug Databases for new estrogens. Task 1...and antagonists that are in the registered pharmaceuticals and herbal medicine databases. The 29 analogs obtained have been characterized for...Marleesa Bastian, Technician at Xavier University (Sridhar lab and is now pursuing graduation at Meharry Medical College school of Medicine , Tennessee
2012-03-02
A spacecraft technician is performing closeout work inside the fairing that will be installed around NASA Nuclear Spectroscopic Telescope Array NuSTAR spacecraft in a processing facility at Vandenberg Air Force Base in California.
2003-11-07
In the Payload Hazardous Servicing Facility, the lander petals of the Mars Exploration Rover 2 MER-2 have been reopened and its solar panels deployed to allow technicians access to the spacecraft to remove one of its circuit boards.
2003-12-19
KENNEDY SPACE CENTER, FLA. -- A United Space Alliance (USA) technician (center) discusses aspects of Shuttle processing performed in the Solid Rocket Booster (SRB) Assembly and Refurbishment Facility (ARF) with NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (right). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.
Installation of new Generation General Purpose Computer (GPC) compact unit
NASA Technical Reports Server (NTRS)
1991-01-01
In the Kennedy Space Center's (KSC's) Orbiter Processing Facility (OPF) high bay 2, Spacecraft Electronics technician Ed Carter (right), wearing clean suit, prepares for (26864) and installs (26865) the new Generation General Purpose Computer (GPC) compact IBM unit in Atlantis', Orbiter Vehicle (OV) 104's, middeck avionics bay as Orbiter Systems Quality Control technician Doug Snider looks on. Both men work for NASA contractor Lockheed Space Operations Company. All three orbiters are being outfitted with the compact IBM unit, which replaces a two-unit earlier generation computer.
Johnson Space Center: Workmanship Training
NASA Technical Reports Server (NTRS)
Patterson, Ashley; Sikes, Larry; Corbin, Cheryl; Rucka, Becky
2015-01-01
Special processes require special skills, knowledge and experienced application. For over 15 years, the NASA Johnson Space Center's Receiving, Inspection and Test Facility (RITF) has provided Agency-wide NASA Workmanship Standards compliance training, issuing more than 500 to 800 training completion certificates annually. It is critical that technicians and inspectors are trained and that they maintain their proficiency to implement the applicable standards and specifications. Training services include "hands-on" training to engineers, technicians, and inspectors in the areas of electrostatic discharge (ESD), soldering, surface mount technology (SMT), crimping, conformal coating, and fiber-optic terminations.
NASA Technical Reports Server (NTRS)
Patterson, Ashley; Sikes, Larry; Corbin, Cheryl; Rucka, Rebecca
2015-01-01
Special processes require special skills, knowledge and experienced application. For over 15 years, the NASA Johnson Space Center's Receiving, Inspection and Test Facility (RITF) has provided Workmanship Standards compliance training, issuing more than 500 to 800 training completion certificates annually. It is critical that technicians and inspectors are trained and that they maintain their proficiency to implement the applicable standards and specifications. Training services include 'hands-on' training to engineers, technicians, and inspectors in the areas of electrostatic discharge (ESD), soldering, fiber optics, lithium battery handling, torque and wire safety, and wire wrapping.
ERIC Educational Resources Information Center
Banks, Walter E.
2012-01-01
Schools have identified that the use of Teacher Assistants often provides needed additional support in the school setting. In a Health Care Facility that provides inpatient psychiatric services, children ages 5-14 are required to engage in school activities. Currently there are no Teacher Assistants trained in the facility. This study focuses on…
ERIC Educational Resources Information Center
United Nations Educational, Scientific, and Cultural Organization, Paris (France).
This monograph is intended to guide teachers of water resources, technicians and university students in establishing physical facilities which can introduce learners to methods, techniques, and instruments used in water resources management and assessment. It is not intended to serve as an exhaustive list of equipment and their descriptions or as…
High Vacuum Creep Facility in the Materials Processing Laboratory
1973-01-21
Technicians at work in the Materials Processing Laboratory’s Creep Facility at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The technicians supported the engineers’ studies of refractory materials, metals, and advanced superalloys. The Materials Processing Laboratory contained laboratories and test areas equipped to prepare and develop these metals and materials. The ultra-high vacuum lab, seen in this photograph, contained creep and tensile test equipment. Creep testing is used to study a material’s ability to withstand long durations under constant pressure and temperatures. The equipment measured the strain over a long period of time. Tensile test equipment subjects the test material to strain until the material fails. The two tests were used to determine the strength and durability of different materials. The Materials Processing Laboratory also housed arc and electron beam melting furnaces, a hydraulic vertical extrusion press, compaction and forging equipment, and rolling mills and swagers. There were cryogenic and gas storage facilities and mechanical and oil diffusion vacuum pumps. The facility contained both instrumental and analytical chemistry laboratories for work on radioactive or toxic materials and the only shop to machine toxic materials in the Midwest.
2003-10-22
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-115 Mission Specialist Joseph Tanner (second from left, foreground) works with technicians to learn more about the Japanese Experiment Module (JEM), known as Kibo. The JEM consists of six components: two research facilities - the Pressurized Module and the Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. Equipment familiarization is a routine part of astronaut training and launch preparations.
2003-10-22
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-115 Mission Specialist Joseph Tanner (center, foreground) works with technicians to learn more about the Japanese Experiment Module (JEM), known as Kibo. The JEM consists of six components: two research facilities - the Pressurized Module and the Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. Equipment familiarization is a routine part of astronaut training and launch preparations.
Final Steps in Mating NuSTAR to its Rocket
2012-02-23
Inside an environmental enclosure at Vandenberg Air Force Base processing facility in California, technicians complete the final steps in mating NASA Nuclear Spectroscopic Telescope Array NuSTAR and its Orbital Sciences Pegasus XL rocket.
Peregrine Rocket Motor Test at the Ames Outdoor Aerodynamic Rese
2017-02-15
(Left): Kyle Botteon (front) and Hunjpp Kim (Behind), NASA JPL. (Right): Gregory Zilliac, Advance Propulsion Technician. NASA Ames, preparing the Peregrine Hybrid Rocket Engine at the Outdoor Aerodynamic Research Facility (OARF, N-249).
Cruise Stage Testing for Mars Science Laboratory
2010-09-02
Testing of the cruise stage for NASA Mars Science Laboratory in August 2010 included a session in a facility that simulates the environment found in interplanetary space. Spacecraft technicians at JPL prepare a space-simulation test.
What Does A Clean Room Look Like at the National Ignition Facility? (360)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2017-03-31
Inside this Clean Room, engineering technicians use mechatronics to fabricate targets for NIF experiments. The goal is to improve our understanding of the universe and ensure the nation's nuclear stockpile.
Illinois Occupational Skill Standards: Information Technology Operate Cluster.
ERIC Educational Resources Information Center
Illinois Occupational Skill Standards and Credentialing Council, Carbondale.
This document contains Illinois Occupational Skill Standards for occupations in the Information Technology Operate Cluster (help desk support, computer maintenance and technical support technician, systems operator, application and computer support specialist, systems administrator, network administrator, and database administrator). The skill…
2003-12-19
KENNEDY SPACE CENTER, FLA. -- NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (left) discusses some of the working parts inside the nose of Shuttle Discovery in Orbiter Processing Facility Bay 3 with a United Space Alliance (USA) technician (back to camera). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.
2014-02-28
From left, Wayne Arrington, a Boeing Company technician, and Steve Presti, a mechanical technician at NASA's Marshall Space Flight Center in Huntsville, Ala., install Developmental Flight Instrumentation Data Acquisition Units in Marshall's Systems Integration and Test Facility. The units are part of NASA's Space Launch System (SLS) core stage avionics, which will guide the biggest, most powerful rocket in history to deep space missions. When completed, the core stage will be more than 200 feet tall and store cryogenic liquid hydrogen and liquid oxygen that will feed the vehicle's RS-25 engines. The hardware, software and operating systems for the SLS are arranged in flight configuration in the facility for testing. The new Data Acquisition Units will monitor vehicle behavior in flight -- like acceleration, thermal environments, shock and vibration. That data will then be used to validate previous ground tests and analyses models that were used in the development of the SLS vehicle.
2003-09-24
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, technicians on the floor watch as a tray is extended from inside the Pressurized Module, or PM, part of the Japanese Experiment Module (JEM). The PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.
A technician monitors the CHeX, a USMP-4 experiment which will be flown on STS-87, in the SSPF
NASA Technical Reports Server (NTRS)
1997-01-01
United States Microgravity Payload-4 (USMP-4) experiments are prepared to be flown on Space Shuttle mission STS-87 in the Space Station Processing Facility at Kennedy Space Center (KSC). Here, a technician is monitoring the Confined Helium Experiment, or CHeX, that will use microgravity to study one of the basic influences on the behavior and properties of materials by using liquid helium confined between silicon disks. CHeX and several other experiments are scheduled for launch aboard STS-87 on Nov. 19 from KSC.
Technicians listen to instructions during STS-44 DSP / IUS transfer operation
NASA Technical Reports Server (NTRS)
1991-01-01
Clean-suited technicians, wearing headsets, listen to instructions during Defense Support Program (DSP) satellite / inertial upper stage (IUS) transfer operations in a processing facility at Cape Canaveral Air Force Station. In the background, the DSP satellite atop an inertial upper stage (IUS) is readied for transfer to a payload canister transporter. DSP, a surveillance satellite that can detect missle and space launches as well as nuclear detonations will be boosted into geosynchronous Earth orbit by the IUS during STS-44 mission. View provided by the Kennedy Space Center (KSC) with alternate number KSC-91PC-1748.
STS-48 MS Buchli dons EMU with technicians' assistance prior to JSC WETF dive
NASA Technical Reports Server (NTRS)
1991-01-01
STS-48 Mission Specialist (MS) James F. Buchli, wearing an extravehicular mobility unit (EMU) and communications carrier assembly (CCA), smiles as he listens to a technician's instructions prior to an underwater extravehicular activity (EMU) session in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Buchli is fully suited with the exception of his helmet as he stands on the WETF platform. He will be lowered into the WETF's 25-foot deep pool and once underwater he will practice contingency EVA operations for his upcoming mission aboard Discovery, Orbiter Vehicle (OV) 103.
STS-88 crew members and technicians participate in their CEIT in the SSPF
NASA Technical Reports Server (NTRS)
1997-01-01
STS-88 crew members participate in the Crew Equipment Interface Test (CEIT) in KSC's Space Station Processing Facility. Working on a high voltage box for electrical connections for the International Space Station (ISS) are, left to right, a technician, Pilot Rick Sturckow, Mission Specialist Jerry Ross (with glasses), and Commander Bob Cabana (back to camera). The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. STS-88, the first ISS assembly flight, is targeted for launch in July 1998 aboard Space Shuttle Endeavour.
SchafheutleEllen, I; Noyce, Peter R; Cutts, Christopher
2009-08-01
This study aimed to explore hospital trusts' uptake of Learning@Lunch (L@L), a new vocational learning programme for hospital pharmacists and pharmacy technicians in acute and mental health trusts in England, recently introduced by the Centre for Pharmacy Postgraduate Education (CPPE). The CPPE's ordering database for the first eight L@L modules, with addition of hospital trust and pharmacy characteristics, was analysed using SPSS, providing simple frequencies and chi2 cross-tabulations. The CPPE database contained data for 168 acute and 73 mental health trusts, about a third of each being foundation trusts. One-third (33.3%) of acute trusts were teaching, and the majority of them (91.1%) offered pre-registration places for 2009, the mean number being 3.39; only three mental health trusts offered places. L@L uptake by specialist and mental health trusts was lower than by those providing general services. Uptake was highest in the North and South, and lowest in London. Acute trusts with zero to two pre-registration places had a higher uptake than those offering three or more. Despite limitations of the database, analysis provides interesting insights into the uptake of this new learning programme, which are of interest to CPPE, as well as pharmacy academics and educationalists. L@L uptake by specialist and mental health trusts was significantly lower than that by acute trusts providing general services. Reasons for this need to be explored further to ensure that CPPE and other learning providers can meet the needs of hospital pharmacists and pharmacy technicians working in specialist areas, thus ensuring refresher training in core clinical areas.
2012-06-05
Technicians install lockers on the middeck of space shuttle Atlantis as the spacecraft is prepared for public display. The work is taking place as Atlantis sits inside Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida. Photo credit: NASA/Dmitri Gerondidakis
2012-06-05
Technicians install lockers on the middeck of space shuttle Atlantis as the spacecraft is prepared for public display. The work is taking place as Atlantis sits inside Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida. Photo credit: NASA/Dmitri Gerondidakis
Haralur, Satheesh B.; Al-Qahtani, Ali S.; Al-Qarni, Marie M.; Al-Homrany, Rami M.; Aboalkhair, Ayyob E.; Madalakote, Sujatha S.
2015-01-01
Aim: To study the awareness, attitude, practice and facilities among the different categories of dental laboratories in Abha city. Materials and Methods: A total of 80 dental technicians were surveyed in the study. The dental laboratories included in the study were teaching institute (Group I), Government Hospital (Group II), Private Dental Clinic (Group III) and Independent laboratory (Group IV). The pre-tested anonymous questionnaire was used to understand knowledge, attitude, facilities, practice and orientation regarding biomedical waste management. Results: The knowledge of biomedical waste categories, colour coding and segregation was better among Group I (55-65%) and Group II (65-75%). The lowest standard of waste disposal was practiced at Group IV (15-20%) and Group III (25-35%). The availability of disposal facilities was poor at Group IV. The continuous education on biomedical waste management lacked in all the Groups. Conclusion: The significant improvement in disposal facilities was required at Group III and Group IV laboratories. All dental technicians were in need of regular training of biomedical waste management. Clinical Significance: The dental laboratories are an integral part of dental practice. The dental laboratories are actively involved in the generation, handling and disposal of biomedical waste. Hence, it is important to assess the biomedical waste management knowledge, attitude, facilities and practice among different categories of dental laboratories. PMID:26962373
32 CFR 701.53 - FOIA fee schedule.
Code of Federal Regulations, 2011 CFR
2011-07-01
... monitoring by a human, that human time may be also assessed as computer search. The terms “programmer/operator” shall not be limited to the traditional programmers or operators. Rather, the terms shall be.... technician, administrative support, operator, programmer, database administrator, or action officer). (2...
Library-Information Education in Algeria.
ERIC Educational Resources Information Center
Boumarafi, B. B.; Haythornthwaite, J.
1988-01-01
Reviews the development of educational programs for library technicians, librarians, and information professionals in Algeria and describes the current educational structure. Topics discussed include the need for improvements in curriculum development, teaching staff development, library facilities, and the use of information technologies. (CLB)
Technician Program Uses Advanced Instruments.
ERIC Educational Resources Information Center
Stinson, Stephen
1981-01-01
Describes various aspects of a newly-developed computer-assisted drafting/computer-assisted manufacture (CAD/CAM) facility in the chemical engineering technology department at Broome Community College, Binghamton, New York. Stresses the use of new instruments such as microcomputers and microprocessor-equipped instruments. (CS)
Scotney, Rebekah L; McLaughlin, Deirdre; Keates, Helen L
2015-11-15
The study of occupational stress and compassion fatigue in personnel working in animal-related occupations has gained momentum over the last decade. However, there remains incongruence in understanding what is currently termed compassion fatigue and the associated unique contributory factors. Furthermore, there is minimal established evidence of the likely influence of these conditions on the health and well-being of individuals working in various animal-related occupations. To assess currently available evidence and terminology regarding occupational stress and compassion fatigue in personnel working in animal shelters, veterinary clinics, and biomedical research facilities. Studies were identified by searching the following electronic databases with no publication date restrictions: ProQuest Research Library, ProQuest Social Science Journals, PsycARTICLES, Web of Science, Science Direct, Scopus, PsychINFO databases, and Google Scholar. Search terms included (euthanasia AND animals) OR (compassion fatigue AND animals) OR (occupational stress AND animals). Only articles published in English in peer-reviewed journals that included use of quantitative or qualitative techniques to investigate the incidence of occupational stress or compassion fatigue in the veterinary profession or animal-related occupations were included. On the basis of predefined criteria, 1 author extracted articles, and the data set was then independently reviewed by the other 2 authors. 12 articles met the selection criteria and included a variety of study designs and methods of data analysis. Seven studies evaluated animal shelter personnel, with the remainder evaluating veterinary nurses and technicians (2), biomedical research technicians (1), and personnel in multiple animal-related occupations (2). There was a lack of consistent terminology and agreed definitions for the articles reviewed. Personnel directly engaged in euthanasia reported significantly higher levels of work stress and lower levels of job satisfaction, which may have resulted in higher employee turnover, psychological distress, and other stress-related conditions. Results of this review suggested a high incidence of occupational stress and euthanasia-related strain in animal care personnel. The disparity of nomenclature and heterogeneity of research methods may contribute to general misunderstanding and confusion and impede the ability to generate high-quality evidence regarding the unique stressors experienced by personnel working with animals. The present systematic review provided insufficient foundation from which to identify consistent causal factors and outcomes to use as a basis for development of evidence-based stress management programs, and it highlights the need for further research.
2016-09-07
NASA Glenn technician Ariana Miller prepares an ultrahigh vacuum chamber used to test the materials used in silicon carbide based sensors and electronics that can operate at extremely high temperatures (500 degrees Celsius and higher) for applications such as sensor systems for aircraft engines and Venus exploration.
2012-06-05
A technician installs a set of lockers on the middeck of space shuttle Atlantis as the spacecraft is prepared for public display. The work is taking place as Atlantis sits inside Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida. Photo credit: NASA/Dmitri Gerondidakis
2012-06-05
A technician installs a set of lockers on the middeck of space shuttle Atlantis as the spacecraft is prepared for public display. The work is taking place as Atlantis sits inside Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida. Photo credit: NASA/Dmitri Gerondidakis
2007-10-05
KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, a United Space Alliance technician prepares the surface of Atlantis for installation of a thermal protection system tile. Space shuttle Atlantis is targeted for launch on mission STS-122 on Dec. 6. Photo credit: NASA/Jack Pfaller
JPL Tech Works Mars 2020 Descent Stage
2018-03-13
A technician works on the descent stage for NASA's Mars 2020 mission inside JPL's Spacecraft Assembly Facility. Mars 2020 is slated to carry NASA's next Mars rover to the Red Planet in July of 2020. https://photojournal.jpl.nasa.gov/catalog/PIA22342
Commerical Crew Program - SpaceX
2016-04-25
A technician works on the interior structure of the SpaceX Crew Dragon spacecraft at the company's facility in Hawthorne, California. SpaceX is developing its Crew Dragon in partnership with NASA’s Commercial Crew Program to carry astronauts to and from the International Space Station.
Lead and methylene chloride exposures among automotive repair technicians.
Enander, Richard T; Cohen, Howard J; Gute, David M; Brown, Linfield C; Desmaris, Anne Marie C; Missaghian, Richard
2004-02-01
Potential exposures among repair technicians engaged in vehicle resurfacing operations prior to spray painting have not been thoroughly characterized. Environmental and personal air monitoring conducted in the State of Rhode Island have shown that automotive repair technicians may be exposed to metal particulates in sanding dust and methylene chloride vapors during vehicle paint removal operations. Hand wipe samples demonstrated that metals in sanding dust adhered to the hands of workers throughout the duration of the work day and were available for incidental ingestion from the handling of food/nonfood items and hand-to-mouth contact. A blood lead (PbB) screening effort among 21 workers at 2 facilities showed that 4 non-/less-exposed workers had mean PbB levels at the U.S. geometric mean of 2.8 microg/dL, while 2 out of 9 (22%) dedicated vehicle repair technicians had PbB levels at or above 30 microg Pb/dL whole blood--the level for potential adverse reproductive effects. Methylene chloride exposures were also found to exceed the Occupational Safety and Health Administrations (OSHA) 8-hr time-weighted average (TWA) action level and permissible exposure limit (PEL) in a limited number of samples (120 and 26 ppm, integrated work shift samples). Our findings suggest that thousands of professional technicians and vocational high school students may be at increased risk of adverse reproductive and/or other systemic effects.
Soviet Naval Aviation: Continuity and Change
1984-12-01
result, technicians and pilots are encouraged to work together during long voyages as a means of further checking the craft to limit the mechanic’s...facilities for the repair and housing of the craft. The Duma budget of 1913 allocated funds to the navy for a program to provide and maintain 330 planes...acknowledges, were plagued by a poor industrial base, principally in the area of aviation. Despite these problems, Soviet repair facilities were able to
Software Manages Documentation in a Large Test Facility
NASA Technical Reports Server (NTRS)
Gurneck, Joseph M.
2001-01-01
The 3MCS computer program assists and instrumentation engineer in performing the 3 essential functions of design, documentation, and configuration management of measurement and control systems in a large test facility. Services provided by 3MCS are acceptance of input from multiple engineers and technicians working at multiple locations;standardization of drawings;automated cross-referencing; identification of errors;listing of components and resources; downloading of test settings; and provision of information to customers.
Boeing technicians join Node 1 for ISS to PMA-1 in the SSPF
NASA Technical Reports Server (NTRS)
1997-01-01
Boeing technicians join Node 1 for the International Space Station (ISS) with the Pressurized Mating Adapter (PMA)-1 in KSC's Space Station Processing Facility. This PMA, identifiable by its bright red ring, is a cone-shaped connector for the space station's structural building block, known as Node 1. Seen here surrounded by scaffolding, Node 1 will have two PMAs attached, the second of which is scheduled for mating to the node in January 1998. The node and PMAs, which will be the first element of the ISS, are scheduled to be launched aboard the Space Shuttle Endeavour on STS-88 in July 1998.
STS-57 MS2 Sherlock dons EMU upper torso with technicians' help at JSC's WETF
NASA Technical Reports Server (NTRS)
1992-01-01
STS-57 Mission Specialist 2 (MS2) Nancy J. Sherlock, wearing the liquid cooling and ventilation garment (LCVG) and an extravehicular mobility unit (EMU) lower torso, squats under the EMU upper torso and prepares to raise her arms into the sleeves. Technicians stand on either side of Sherlock and are ready to assist her in donning the upper torso. When fully suited the platform Sherlock is on will be lowered into the 25 foot deep pool located in JSC's Weightless Environment Training Facility (WETF) Bldg 29. During the underwater simulation, Sherlock will practice extravehicular activity (EVA) procedures.
Lytvynets, A; Langrova, I; Lachout, J; Vadlejch, J
2013-01-01
Pinworms (Nematoda: Oxyurida) are common contaminants in most laboratory rodent colonies. The aim of the study was to monitor the transmission of Syphacia muris eggs in laboratory rat breeding facilities. Dust in a breeding room was investigated using special grids (free fallout, or through the help suction chamber). Furthermore, the ventilation system, breeding cages and the hands of the laboratory technical staff were examined. In the case of free fallout, the percentage of positive grids increased slightly over time: from 5.5% (after 24 h) to 8.2% (72 h). Similar values were also found when using the suction chamber (7.6%). Many more pinworm eggs were found in samples collected every second month from suction holes of the ventilation system (28.7%). One-half of the samples taken from the breeding cages (before washing) exhibited pinworm eggs (50.8%). Examination of the hands of technical staff showed positive detection in 37.9% of cases. In this study, certain transmission factors (dust, unclean cages and technicians) were proved to be significant in the distribution of pinworm infection in laboratory rodent facilities.
Data management in Oceanography at SOCIB
NASA Astrophysics Data System (ADS)
Joaquin, Tintoré; March, David; Lora, Sebastian; Sebastian, Kristian; Frontera, Biel; Gómara, Sonia; Pau Beltran, Joan
2014-05-01
SOCIB, the Balearic Islands Coastal Ocean Observing and Forecasting System (http://www.socib.es), is a Marine Research Infrastructure, a multiplatform distributed and integrated system, a facility of facilities that extends from the nearshore to the open sea and provides free, open and quality control data. SOCIB is a facility o facilities and has three major infrastructure components: (1) a distributed multiplatform observing system, (2) a numerical forecasting system, and (3) a data management and visualization system. We present the spatial data infrastructure and applications developed at SOCIB. One of the major goals of the SOCIB Data Centre is to provide users with a system to locate and download the data of interest (near real-time and delayed mode) and to visualize and manage the information. Following SOCIB principles, data need to be (1) discoverable and accessible, (2) freely available, and (3) interoperable and standardized. In consequence, SOCIB Data Centre Facility is implementing a general data management system to guarantee international standards, quality assurance and interoperability. The combination of different sources and types of information requires appropriate methods to ingest, catalogue, display, and distribute this information. SOCIB Data Centre is responsible for directing the different stages of data management, ranging from data acquisition to its distribution and visualization through web applications. The system implemented relies on open source solutions. In other words, the data life cycle relies in the following stages: • Acquisition: The data managed by SOCIB mostly come from its own observation platforms, numerical models or information generated from the activities in the SIAS Division. • Processing: Applications developed at SOCIB to deal with all collected platform data performing data calibration, derivation, quality control and standardization. • Archival: Storage in netCDF and spatial databases. • Distribution: Data web services using Thredds, Geoserver and RESTful own services. • Catalogue: Metadata is provided through the ncISO plugin in Thredds and Geonetwork. • Visualization: web and mobile applications to present SOCIB data to different user profiles. SOCIB data services and applications have been developed to provide response to science and society needs (eg. European initiatives such as Emodnet or Copernicus), by targeting different user profiles (eg. researchers, technicians, policy and decision makers, educators, students, and society in general). For example, SOCIB has developed applications to: 1) allow researchers and technicians to access oceanographic information; 2) provide decision support for oil spills response; 3) disseminate information about the coastal state for tourists and recreational users; 4) present coastal research in educational programs; and 5) offer easy and fast access to marine information through mobile devices. In conclusion, the organizational and conceptual structure of SOCIB's Data Centre and the components developed provide an example of marine information systems within the framework of new ocean observatories and/or marine research infrastructures.
White, Christina A; Jones, Marshall R; Kuester, Melanie K; Myers, Kelly L; Schnarr, Barbara A
2015-05-01
To establish a cost-effective centralized pharmacy call center to serve the patients of Veterans Integrated Service Network (VISN) 11 that would meet established performance metrics. A pilot project began in August 2011 with the Indianapolis VA Medical Center (VAMC) and the Health Resource Center (HRC) in Topeka, Kansas. The Indianapolis VAMC used a first-call resolution business model consisting of pharmacy technicians receiving tier 1 phone calls that could be escalated to a tier 2 line that consisted of lead technicians and pharmacists, while the HRC utilized general telephone agents that would transfer unresolved calls to the primary facility. Pre- and post-VISN 11 Pharmacy Call Center performance metrics were compared for each of the 7 facilities in the network with the goals being monthly average abandoned call rate less than 5% and average speed to answer less than 30 seconds. Cost per call was also compared. The average abandoned call rate for the network during the year prior to VISN 11 Pharmacy Call Center implementation (August 2010-July 2011) was 15.66% and decreased to 3% in July 2014. The average abandoned call rate decreased for each individual facility. In fiscal year 2014, the VISN 11 Pharmacy Call Center was operating at a cost of $4.35 per call while providing more services than the HRC, resulting in less workload being transferred back to the individual facilities. A centralized VISN pharmacy call center is a reasonable alternative to individual facility call centers or the HRC.
Government and the Climate for Science
ERIC Educational Resources Information Center
Cloud, Preston
1969-01-01
Discusses what the government might do to affect the environment for science favorably, including its influence on the inclination of youth to enter a scientific career. The need to have new planned urban facilities, trained technicians and greater government efforts for science education is emphasized. (LC)
14 CFR 147.5 - Application and issue.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES AVIATION MAINTENANCE TECHNICIAN SCHOOLS General § 147.5 Application and... of the proposed curriculum; (2) A list of the facilities and materials to be used; (3) A list of its...
14 CFR 147.5 - Application and issue.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES AVIATION MAINTENANCE TECHNICIAN SCHOOLS General § 147.5 Application and... of the proposed curriculum; (2) A list of the facilities and materials to be used; (3) A list of its...
14 CFR 147.5 - Application and issue.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES AVIATION MAINTENANCE TECHNICIAN SCHOOLS General § 147.5 Application and... of the proposed curriculum; (2) A list of the facilities and materials to be used; (3) A list of its...
14 CFR 147.5 - Application and issue.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES AVIATION MAINTENANCE TECHNICIAN SCHOOLS General § 147.5 Application and... of the proposed curriculum; (2) A list of the facilities and materials to be used; (3) A list of its...
2003-08-27
KENNEDY SPACE CENTER, FLA. - During power-up of the orbiter Discovery in the Orbiter Processing Facility, a technician moves a switch. Discovery has been undergoing Orbiter Major Modifications in the past year, ranging from wiring, control panels and black boxes to gaseous and fluid systems tubing and components. These systems were deserviced, disassembled, inspected, modified, reassembled, checked out and reserviced, as were most other systems onboard. The work includes the installation of the Multifunction Electronic Display Subsystem (MEDS) - a state-of-the-art “glass cockpit.”
2003-08-27
KENNEDY SPACE CENTER, FLA. - During power-up of the orbiter Discovery in the Orbiter Processing Facility, a technician turns on a switch. Discovery has been undergoing Orbiter Major Modifications in the past year, ranging from wiring, control panels and black boxes to gaseous and fluid systems tubing and components. These systems were deserviced, disassembled, inspected, modified, reassembled, checked out and reserviced, as were most other systems onboard. The work includes the installation of the Multifunction Electronic Display Subsystem (MEDS) - a state-of-the-art “glass cockpit.”
2003-09-24
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Japanese astronaut Koichi Wakata, dressed in blue protective clothing (at right), looks at the inside of the Pressurized Module, or PM, part of the Japanese Experiment Module (JEM), along with technicians. The PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.
2003-12-19
KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Program Manager of the Space Shuttle Program Michael Wetmore, United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, and a USA technician examine cold plates in Orbiter Processing Facility Bay 2. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.
2003-12-19
KENNEDY SPACE CENTER, FLA. -- From left, a United Space Alliance (USA) technician discusses aspects of Shuttle processing performed in the Solid Rocket Booster (SRB) Assembly and Refurbishment Facility (ARF) with USA Vice President and Space Shuttle Program Manager Howard DeCastro and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.
2003-12-19
KENNEDY SPACE CENTER, FLA. -- United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro (left) and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (center) are briefed on the use of a cold plate in Orbiter Processing Facility Bay 2 by a USA technician (right). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.
2003-12-19
KENNEDY SPACE CENTER, FLA. -- In Orbiter Processing Facility Bay 1, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (left) and United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro (right) are briefed by a USA technician (center) on Shuttle processing in the payload bay of orbiter Atlantis. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.
2003-09-24
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Japanese astronaut Koichi Wakata (top left) and technicians watch as a tray is extended from inside the Pressurized Module, or PM, part of the Japanese Experiment Module (JEM). The PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.
Shepherd, Marilyn Murphy; Wipke-Tevis, Deidre D.; Alexander, Gregory L.
2015-01-01
Purpose The purpose of this study was to compare pressure ulcer prevention programs in 2 long term care facilities (LTC) with diverse Information Technology Sophistication (ITS), one with high sophistication and one with low sophistication, and to identify implications for the Wound Ostomy Continence Nurse (WOC Nurse) Design Secondary analysis of narrative data obtained from a mixed methods study. Subjects and Setting The study setting was 2 LTC facilities in the Midwestern United States. The sample comprised 39 staff from 2 facilities, including 26 from a high ITS facility and 13 from the low ITS facility. Respondents included Certified Nurse Assistants,, Certified Medical Technicians, Restorative Medical Technicians, Social Workers, Registered Nurses, Licensed Practical Nurses, Information Technology staff, Administrators, and Directors. Methods This study is a secondary analysis of interviews regarding communication and education strategies in two longterm care agencies. This analysis focused on focus group interviews, which included both direct and non-direct care providers. Results Eight themes (codes) were identified in the analysis. Three themes are presented individually with exemplars of communication and education strategies. The analysis revealed specific differences between the high ITS and low ITS facility in regards to education and communication involving pressure ulcer prevention. These differences have direct implications for WOC nurses consulting in the LTC setting. Conclusions Findings from this study suggest that effective strategies for staff education and communication regarding PU prevention differ based on the level of ITS within a given facility. Specific strategies for education and communication are suggested for agencies with high ITS and agencies with low ITS sophistication. PMID:25945822
Atmospheric Radiation Measurement Program facilities newsletter, July 2000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sisterson, D. L.; Holdridge, D. J., ed.
2000-08-03
For improved safety in and around the ARM SGP CART site, the ARM Program recently purchased and installed an aircraft detection radar system at the central facility near Lamont, Oklahoma. The new system will enhance safety measures already in place at the central facility. The SGP CART site, especially the central facility, houses several instruments employing laser technology. These instruments are designed to be eye-safe and are not a hazard to personnel at the site or pilots of low-flying aircraft over the site. However, some of the specialized equipment brought to the central facility by visiting scientists during scheduled intensivemore » observation periods (IOPs) might use higher-power laser beams that point skyward to make measurements of clouds or aerosols in the atmosphere. If these beams were to strike the eye of a person in an aircraft flying above the instrument, damage to the person's eyesight could result. During IOPs, CART site personnel have obtained Federal Aviation Administration (FAA) approval to temporarily close the airspace directly over the central facility and keep aircraft from flying into the path of the instrument's laser beam. Information about the blocked airspace is easily transmitted to commercial aircraft, but that does not guarantee that the airspace remains completely plane-free. For this reason, during IOPs in which non-eye-safe lasers were in use in the past, ARM technicians watched for low-flying aircraft in and around the airspace over the central facility. If the technicians spotted such an aircraft, they would manually trigger a safety shutter to block the laser beam's path skyward until the plane had cleared the area.« less
2007-05-28
KENNEDY SPACE CENTER, FLA. -- At Astrotech's Payload Processing Facility, technicians check the Dawn spacecraft as it is lowered onto a transporter. Dawn will be moved to the Hazardous Processing Facility for fueling. Dawn is scheduled to launch June 30 aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Photo credit: NASA/Charisse Nahser
2007-05-28
KENNEDY SPACE CENTER, FLA. --At Astrotech's Payload Processing Facility, technicians maneuver the shipping container to place around the Dawn spacecraft, at right. Dawn will be moved to the Hazardous Processing Facility for fueling. Dawn is scheduled to launch June 30 aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Photo credit: NASA/Charisse Nahser
2008-09-30
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Japanese Aerospace Exploration Agency, or JAXA, technicians begin to deploy an antenna from the Inter Orbit Communication System Extended Facility, or ICS-EF. The antenna and a pointing mechanism will be used to communicate with JAXA’s Data Relay Test Satellite, or DRTS. The ICS-EF will be launched, along with the Extended Facility and Experiment Logistics Module-Exposed Section, to the International Space Station aboard the space shuttle Endeavour on the STS-127mission targeted for launch on May 15, 2009. Photo credit: NASA/Kim Shiflett
2008-09-30
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Japanese Aerospace Exploration Agency, or JAXA, technicians test the deployment of an antenna from the Inter Orbit Communication System Extended Facility, or ICS-EF. The antenna and a pointing mechanism will be used to communicate with JAXA’s Data Relay Test Satellite, or DRTS. The ICS-EF will be launched, along with the Extended Facility and Experiment Logistics Module-Exposed Section, to the International Space Station aboard the space shuttle Endeavour on the STS-127mission targeted for launch on May 15, 2009. Photo credit: NASA/Kim Shiflett
2008-09-30
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Japanese Aerospace Exploration Agency, or JAXA, technicians test the deployment of an antenna and boom from the Inter Orbit Communication System Extended Facility, or ICS-EF. The antenna and a pointing mechanism will be used to communicate with JAXA’s Data Relay Test Satellite, or DRTS. The ICS-EF will be launched, along with the Extended Facility and Experiment Logistics Module-Exposed Section, to the International Space Station aboard the space shuttle Endeavour on the STS-127mission targeted for launch on May 15, 2009. Photo credit: NASA/Kim Shiflett
2008-09-30
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Japanese Aerospace Exploration Agency, or JAXA, technicians test the deployment of an antenna from the Inter Orbit Communication System Extended Facility, or ICS-EF. The antenna and a pointing mechanism will be used to communicate with JAXA’s Data Relay Test Satellite, or DRTS. The ICS-EF will be launched, along with the Extended Facility and Experiment Logistics Module-Exposed Section, to the International Space Station aboard the space shuttle Endeavour on the STS-127mission targeted for launch on May 15, 2009. Photo credit: NASA/Kim Shiflett
2008-09-30
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Japanese Aerospace Exploration Agency, or JAXA, technicians begin to deploy an antenna from the Inter Orbit Communication System Extended Facility, or ICS-EF. The antenna and a pointing mechanism will be used to communicate with JAXA’s Data Relay Test Satellite, or DRTS. The ICS-EF will be launched, along with the Extended Facility and Experiment Logistics Module-Exposed Section, to the International Space Station aboard the space shuttle Endeavour on the STS-127mission targeted for launch on May 15, 2009. Photo credit: NASA/Kim Shiflett
2008-09-30
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Japanese Aerospace Exploration Agency, or JAXA, technicians deploy an antenna from the Inter Orbit Communication System Extended Facility, or ICS-EF. The antenna and a pointing mechanism will be used to communicate with JAXA’s Data Relay Test Satellite, or DRTS. The ICS-EF will be launched, along with the Extended Facility and Experiment Logistics Module-Exposed Section, to the International Space Station aboard the space shuttle Endeavour on the STS-127mission targeted for launch on May 15, 2009. Photo credit: NASA/Kim Shiflett
2008-09-30
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Japanese Aerospace Exploration Agency, or JAXA, technicians test the deployment of an antenna and boom from the Inter Orbit Communication System Extended Facility, or ICS-EF. The antenna and a pointing mechanism will be used to communicate with JAXA’s Data Relay Test Satellite, or DRTS. The ICS-EF will be launched, along with the Extended Facility and Experiment Logistics Module-Exposed Section, to the International Space Station aboard the space shuttle Endeavour on the STS-127mission targeted for launch on May 15, 2009. Photo credit: NASA/Kim Shiflett
2008-09-30
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Japanese Aerospace Exploration Agency, or JAXA, technicians test the deployment of an antenna and boom from the Inter Orbit Communication System Extended Facility, or ICS-EF. The antenna and a pointing mechanism will be used to communicate with JAXA’s Data Relay Test Satellite, or DRTS. The ICS-EF will be launched, along with the Extended Facility and Experiment Logistics Module-Exposed Section, to the International Space Station aboard the space shuttle Endeavour on the STS-127mission targeted for launch on May 15, 2009. Photo credit: NASA/Kim Shiflett
Dental laboratory communication regarding removable dental prosthesis design in the UAE.
Haj-Ali, Reem; Al Quran, Firas; Adel, Omar
2012-07-01
The purpose of this study was to determine the methods dental practitioners in the United Arab Emirates (UAE) use to communicate cast removable dental prosthesis (RDP) design to dental laboratories; identify common practices taken by dentists/dental technicians prior to fabrication of RDP framework; and seek out dental technicians' attitudes toward their role in RDP design decisions. All dental laboratories (n = 28) listed in a local telephone directory were invited to complete a questionnaire through a face-to-face interview. They were also requested to examine RDP cases fabricated in the past 2 months and identify steps taken by dentists/dental technicians prior to fabrication of the framework. Descriptive statistics were used to report frequencies and percentages. Twenty-one (75%) dental laboratories agreed to participate, out of which 19 had the facilities to fabricate chrome-cobalt RDPs. Cast RDPs comprised approximately 4.04% (±2.67) of services provided. A reported 84.2% of dentists frequently communicate through generic lab script, with 89.5% rarely/never giving details regarding RDP design. While 52.6% of labs agree/strongly agree that it is the dentist's responsibility to decide the final RDP design, 94.7% agree/strongly agree that dentists should depend on dental technicians for design-making decisions. A total of 19 RDP cases were reviewed. All 19 were surveyed and designed by dental technicians but received dentist approval of design prior to fabrication. Thirteen (68.4%) had rest-seat preparations done by dentists after approval, and new impressions sent to the lab. No other tooth modifications were noted. The responsibility of RDP design appeared to be largely delegated to dental technicians. Importance of tooth modifications seemed to be undervalued and not completed prior to framework fabrication. © 2012 by the American College of Prosthodontists.
2011-01-07
CAPE CANAVERAL, Fla. -- Finishing touches adorn the Propellants North Administrative and Maintenance Facility at NASA's Kennedy Space Center in Florida. Artwork for the facility was produced by Greg Lee, a graphics specialist with Abacus Technology Corp., with input from the facility's future occupants. The environmentally friendly facility is slated to be NASA's second Platinum-rated by the U.S. Green Building Council's (USGBC) Leadership in Environmental and Energy Design (LEED) certification system. It will be the space agency's first net-zero facility, which means it will produce enough energy onsite from renewable sources to offset what it requires to operate. The facility consists of a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy, and a single-story shop to store cryogenic fuel transfer equipment. Photo credit: NASA/Frankie Martin
2005-11-01
KENNEDY SPACE CENTER, FLA. - In NASA’s Orbiter Processing Facility Bay 3, United Space Alliance technicians Gene Peavler (left) and Richard McGehee (right) are on a stand removing gap filler and inspecting tile repair on Discovery’s underside. Discovery processing is under way for the second return to flight test mission, STS-121.
1984-01-01
Services and Facilities • .......... Uti I .ties. . % ? Energy Resources - - 0 Transportati on * 0) • ::::: ’:’::::’ ::::: Land Use - - :::~: i...RNs, 31 LPNs, 31 nurses aides, 3 pharmacists , 2 dieticians, 3 physical therapists, and 18 specialized technicians. The physician staff levels of
Education and Training in New and Renewable Sources of Energy.
ERIC Educational Resources Information Center
Beresovski, T.; And Others
1981-01-01
Identifies past and present efforts and future directions for UNESCO activities related to energy but focusing on alternative energy sources. Reports results of an international survey and analysis of programs, facilities, and needs in alternative energy education and training. Outlines curricula for policymakers, specialists, and technicians. (DC)
Proof-of-Principle High Speed Electronic Imaging System. Phase 2.
1988-03-01
Winchenbach George Streckmann I Martha Martinez John Krieger Joe Parker John Morris Ann Coverston ." Karen Hollis Gregg Abate I... , .. ", .t ii i...R. J. Kelley, manager of the research facility, allocated space and locations for the equipment, and assigned John Krieger , technician, to us to
2000-07-26
JSC2000-05370 (7 June 2000) --- With the aid of technicians, astronaut William Shepherd is about to complete the donning his Orlan space suit in order to participate in an underwater spacewalk simulation in the Hydrolab facility at the Gagarin Cosmonaut Training Center in Russia. Shepherd is mission commander for ISS Expedition One.
2017-06-12
In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Jacobs Test and Operations Support Contract, or TOSC, technicians fill portable breathing apparatuses, or PBAS. The PBAs are to be use on board the International Space Staton to provide astronauts with breathable air in the event of a fire or other emergency situation.
41 CFR 101-25.202 - Factors to be used to determine assignment of purchase responsibility.
Code of Federal Regulations, 2011 CFR
2011-07-01
... of items. (d) Custodianship and operation of special facilities such as research and testing... agency, such as scientific, research, and operating technicians, especially qualified or experienced in... areas. (j) Physical proximity of the agency purchasing offices in relation to engineering or design...
1960-01-01
A NASA technician is dwarfed by the gigantic Third Stage (S-IVB) as it rests on supports in a facility at KSC. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.
2011-01-07
CAPE CANAVERAL, Fla. -- Finishing touches adorn the second-floor conference room of the Propellants North Administrative and Maintenance Facility at NASA's Kennedy Space Center in Florida. The environmentally friendly facility is slated to be NASA's second Platinum-rated by the U.S. Green Building Council's (USGBC) Leadership in Environmental and Energy Design (LEED) certification system. It will be the space agency's first net-zero facility, which means it will produce enough energy onsite from renewable sources to offset what it requires to operate. The facility consists of a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy, and a single-story shop to store cryogenic fuel transfer equipment. Photo credit: NASA/Frankie Martin
Orion Crew Module Structural Test Article Unbagging
2016-11-15
Inside the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, Lockheed Martin technicians remove the protective covering from the Orion crew module structural test article (STA). The STA arrived aboard NASA's Super Guppy aircraft at the Shuttle Landing Facility operated by Space Florida. The test article was moved inside the facility's high bay for further testing. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.
2012-02-03
CAPE CANAVERAL, Fla. -- In Orbiter Processing Facility-2 at NASA’s Kennedy Space Center in Florida, technicians begin to open space shuttle Endeavour’s payload bay doors in order to retract an antenna. Space Shuttle Program transition and retirement work continues on Discovery and Endeavour in the orbiter processing facilities, while shuttle Atlantis is in temporary storage in high bay 4 of the Vehicle Assembly Building. Endeavour is being prepared for display at the California Science Center in Los Angeles. Photo credit: NASA/Kim Shiflett
2012-02-03
CAPE CANAVERAL, Fla. – In Orbiter Processing Facility-2 at NASA’s Kennedy Space Center in Florida, technicians prepare to open space shuttle Endeavour’s payload bay doors in order to retract an antenna. Space Shuttle Program transition and retirement work continues on Discovery and Endeavour in the orbiter processing facilities, while shuttle Atlantis is in temporary storage in high bay 4 of the Vehicle Assembly Building. Endeavour is being prepared for display at the California Science Center in Los Angeles. Photo credit: NASA/Kim Shiflett
A technician-delivered 'virtual clinic' for triaging low-risk glaucoma referrals.
Kotecha, A; Brookes, J; Foster, P J
2017-06-01
PurposeThe purpose of this study is to describe the outcomes of a technician-delivered glaucoma referral triaging service with 'virtual review' of resultant data by a consultant ophthalmologist.Patients and methodsThe Glaucoma Screening Clinic reviewed new optometrist or GP-initiated glaucoma suspect referrals into a specialist ophthalmic hospital. Patients underwent testing by three ophthalmic technicians in a dedicated clinical facility. Data were reviewed at a different time and date by a consultant glaucoma ophthalmologist. Approximately 10% of discharged patients were reviewed in a face-to-face consultant-led clinic to examine the false-negative rate of the service.ResultsBetween 1 March 2014 and 31 March 2016, 1380 patients were seen in the clinic. The number of patients discharged following consultant virtual review was 855 (62%). The positive predictive value of onward referrals was 84%. Three of the 82 patients brought back for face-to-face review were deemed to require treatment, equating to negative predictive value of 96%.ConclusionsOur technician-delivered glaucoma referral triaging clinic incorporates consultant 'virtual review' to provide a service model that significantly reduces the number of onward referrals into the glaucoma outpatient department. This model may be an alternative to departments where there are difficulties in implementing optometrist-led community-based referral refinement schemes.
Mills, Katelyn E.; Han, Zetta; Robbins, Jesse
2018-01-01
The use of animals in research is controversial and often takes place under a veil of secrecy. Lab animal technicians responsible for the care of animals at research institutions are sometimes described as performing ‘dirty work’ (i.e. professions that are viewed as morally tainted), and may be stigmatized by negative perceptions of their job. This study assessed if transparency affects public perceptions of lab animal technicians and support for animal research. Participants (n = 550) were randomly assigned to one of six scenarios (using a 3x2 design) that described identical research varying only the transparency of the facility (low, high) and the species used (mice, dogs, cows). Participants provided Likert-type and open-ended responses to questions about the personal characteristics (warmth, competence) of a hypothetical lab technician ‘Cathy’ and their support for the described research. Quantitative analysis showed participants in the low-transparency condition perceived Cathy to be less warm and were less supportive of the research regardless of animal species. Qualitative responses varied greatly, with some participants expressing support for both Cathy and the research. These results suggest that increasing transparency in lab animal institutions could result in a more positive perception of lab animal researchers and the work that they do. PMID:29466425
Mills, Katelyn E; Han, Zetta; Robbins, Jesse; Weary, Daniel M
2018-01-01
The use of animals in research is controversial and often takes place under a veil of secrecy. Lab animal technicians responsible for the care of animals at research institutions are sometimes described as performing 'dirty work' (i.e. professions that are viewed as morally tainted), and may be stigmatized by negative perceptions of their job. This study assessed if transparency affects public perceptions of lab animal technicians and support for animal research. Participants (n = 550) were randomly assigned to one of six scenarios (using a 3x2 design) that described identical research varying only the transparency of the facility (low, high) and the species used (mice, dogs, cows). Participants provided Likert-type and open-ended responses to questions about the personal characteristics (warmth, competence) of a hypothetical lab technician 'Cathy' and their support for the described research. Quantitative analysis showed participants in the low-transparency condition perceived Cathy to be less warm and were less supportive of the research regardless of animal species. Qualitative responses varied greatly, with some participants expressing support for both Cathy and the research. These results suggest that increasing transparency in lab animal institutions could result in a more positive perception of lab animal researchers and the work that they do.
Jones, Marshall R.; Kuester, Melanie K.; Myers, Kelly L.; Schnarr, Barbara A.
2015-01-01
Purpose: To establish a cost-effective centralized pharmacy call center to serve the patients of Veterans Integrated Service Network (VISN) 11 that would meet established performance metrics. Methods: A pilot project began in August 2011 with the Indianapolis VA Medical Center (VAMC) and the Health Resource Center (HRC) in Topeka, Kansas. The Indianapolis VAMC used a first-call resolution business model consisting of pharmacy technicians receiving tier 1 phone calls that could be escalated to a tier 2 line that consisted of lead technicians and pharmacists, while the HRC utilized general telephone agents that would transfer unresolved calls to the primary facility. Pre- and post-VISN 11 Pharmacy Call Center performance metrics were compared for each of the 7 facilities in the network with the goals being monthly average abandoned call rate less than 5% and average speed to answer less than 30 seconds. Cost per call was also compared. Results: The average abandoned call rate for the network during the year prior to VISN 11 Pharmacy Call Center implementation (August 2010-July 2011) was 15.66% and decreased to 3% in July 2014. The average abandoned call rate decreased for each individual facility. In fiscal year 2014, the VISN 11 Pharmacy Call Center was operating at a cost of $4.35 per call while providing more services than the HRC, resulting in less workload being transferred back to the individual facilities. Conclusion: A centralized VISN pharmacy call center is a reasonable alternative to individual facility call centers or the HRC. PMID:26405322
Compliance with infection control practices in sputum microscopy centres: a study from Kerala, India
Ubaid, N. P.; Nagaraja, S. B.; Shewade, H. D.; Padmanabhan, K. V.; Naik, B. R.; Satpati, M.; Blesson, S.; Jayasree, A. K.
2015-01-01
Background: One of the strategies of the Revised National Tuberculosis Control Programme in India to achieve tuberculosis control is by increasing case detection through a nationwide network of designated microscopy centres (DMC). Practice of standard precautions for infection control in these DMCs is very important to prevent transmission of infection not only to the laboratory personnel, but also to the general population. However, in India this has not been evaluated by an external agency. Method: A cross-sectional study was carried out to assess knowledge, facilities and compliance regarding infection control practices (ICP) in all 38 DMCs in Kannur district, Kerala, India, in 2015. Using observations and interviews, the investigators collected data in a structured format. Results: Overall knowledge about infection control was found to be satisfactory among 29% of laboratory technicians. Overall facilities for infection control were satisfactory in 61% of the DMCs, while adherence to ICP was satisfactory in 45% of the DMCs. Knowledge regarding ICP was better in government DMCs, whereas facilities for ICP and adherence to biomedical waste management guidelines were better in private DMCs. Conclusion: Given the higher risk of infection among laboratory technicians, there is an urgent need to address the shortcomings in infection control practices. PMID:26767180
75 FR 18255 - Passenger Facility Charge Database System for Air Carrier Reporting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-09
... Facility Charge Database System for Air Carrier Reporting AGENCY: Federal Aviation Administration (FAA... the Passenger Facility Charge (PFC) database system to report PFC quarterly report information. In... developed a national PFC database system in order to more easily track the PFC program on a nationwide basis...
Data-Acquisition System With Remotely Adjustable Amplifiers
NASA Technical Reports Server (NTRS)
Nurge, Mark A.; Larson, William E.; Hallberg, Carl G.; Thayer, Steven W.; Ake, Jeffrey C.; Gleman, Stuart M.; Thompson, David L.; Medelius, Pedro J.; Crawford, Wayne A.; Vangilder, Richard M.;
1994-01-01
Improved data-acquisition system has both centralized and decentralized characteristics developed. Provides infrastructure for automation and standardization of operation, maintenance, calibration, and adjustment of many transducers. Increases efficiency by reducing need for diminishing work force of highly trained technicians to perform routine tasks. Large industrial and academic laboratory facilities benefit from systems like this one.
A Laser Technology Program Does Not Start with the Speed of Light.
ERIC Educational Resources Information Center
Gebert, John H.
1982-01-01
Describes the personnel, equipment, and facilities problems encountered by North Central Technical Institute in the development of a laser technician program, and the program's enrollment and job placement rates. Advocates financial support for such programs to meet the national demand for laser and other high technology personnel. (WL)
2015-05-06
OVERSEEING ORION HEAT SHIELD WORK IN MARSHALL'S SEVEN-AXIS MILLING AND MACHINING FACILITY ARE, FROM LEFT, JOHN KOWAL, MANAGER OF ORION'S THERMAL PROTECTION SYSTEM AT JOHNSON SPACE CENTER; NICHOLAS CROWLEY, AN AMES ENGINEERING TECHNICIAN; AND ROB KORNIENKO, AMES ENGINEERING BRANCH CHIEF. THE HEAT SHIELD FLEW TO SPACE DURING THE EFT-1 FULL SCALE FLIGHT TEST OF ORION IN DECEMBER, 2014
A STUDY OF THE NEED FOR TECHNICIAN TRAINING IN AGRICULTURE AND WELDING AT YUBA COLLEGE.
ERIC Educational Resources Information Center
ORUM, EARL
OBJECTIVES OF THE STUDY INCLUDED INVESTIGATION OF THE INTEREST OF LOCAL HIGH SCHOOL STUDENTS IN THESE OCCUPATIONS, ESTABLISHING THE NEEDS FOR PERSONS SO TRAINED, DETERMINING THE TYPE OF TRAINING NECESSARY, DEVELOPING THE CURRICULA, AND OBTAINING INFORMATION USEFUL FOR PLANNING FACILITIES AND NECESSARY EQUIPMENT. THE FOUR AREAS SPECIFICALLY CHOSEN…
47. Historic photo of Building 202 test cell interior, test ...
47. Historic photo of Building 202 test cell interior, test stand A with technician working on zone injector engine, June 3, 1996. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA photo number C-66-2396. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
40 CFR 745.225 - Accreditation of training programs: target housing and child-occupied facilities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... equipment to be used for lecture and hands-on training. (B) A copy of the course test blueprint for each..., the delivery of the lecture, course test, hands-on training, and assessment activities. This includes... containment and cleanup methods, and post-renovation cleaning verification. (vii) The dust sampling technician...
40 CFR 745.225 - Accreditation of training programs: target housing and child-occupied facilities.
Code of Federal Regulations, 2011 CFR
2011-07-01
... equipment to be used for lecture and hands-on training. (B) A copy of the course test blueprint for each..., the delivery of the lecture, course test, hands-on training, and assessment activities. This includes... containment and cleanup methods, and post-renovation cleaning verification. (vii) The dust sampling technician...
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. In the Orbiter Processing Facility at NASAs Kennedy Space Center, United Space Alliance tile technician Jimmy Carter works on instrument wire spot bonding on Atlantis vertical tail/rudder speed brake. Atlantis is being processed for launch on the second Return to Flight mission, STS-121, which is scheduled to fly in July.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. In the Orbiter Processing Facility at NASAs Kennedy Space Center, United Space Alliance tile technician Jimmy Carter works on instrument wire spot bonding on Atlantis vertical tail/rudder speed brake. Atlantis is being processed for launch on the second Return to Flight mission, STS-121, which is scheduled to fly in July.
Preliminary Design Study of a National Program for Training Skilled Aviation Personnel.
ERIC Educational Resources Information Center
Arizona State Univ., Tempe.
This study supplementing a 1967 study of Arizona State University, recommends preliminary plans for the design of a national training center capable of accommodating 2,200 fliers and aviation technicians and the steps that should be taken to complete the facility by September 1972. Specific recommendations are: (1) negotiations between the…
Guidelines to Career Development for Wastewater Treatment Plant Personnel.
ERIC Educational Resources Information Center
Environmental Protection Agency, Washington, DC. Office of Education and Manpower Planning.
The guidelines were written to promote job growth and improvement in the personnel who manage, operate, and maintain wastewater treatment plants. Trained operators and technicians are the key components in any water pollution control facility. The approach is to move from employment to training through specific modules for 21 standard job…
NASA Technical Reports Server (NTRS)
1960-01-01
A NASA technician is dwarfed by the gigantic Third Stage (S-IVB) as it rests on supports in a facility at KSC. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.
2008-09-01
Fish and Wildlife Services Amir Mott Program Manager 88 ABW/CECW Zachary Olds WPAFB Air and Water Program Technician 88 ABW/CEV Warren Richardson...Building 22 Wright Patterson AFB, OH 45433-5209 Dear Mr. Baker: BOARD OF DIRECTORS William E. Lukens Gayle B. Price, Jr. Thomas B. Rentschler GENERAL
2003-09-08
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, technicians remove the cover from the Minus Eighty Lab Freezer for ISS(MELFI) provided as Laboratory Support Equipment by the European Space Agency for the International Space Station. The lab will provide cooling and storage for reagents, samples and perishable materials in four insulated containers called dewars with independently selectable temperatures of -80°C, -26°C, and +4°C. It also will be used to transport samples to and from the station. The MELFI is planned for launch on the ULF-1 mission.
2003-09-03
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility (OPF), a United Space Alliance technician examines the attachment points for the spars on the exterior of a wing of Space Shuttle Atlantis. Reinforced Carbon Carbon (RCC) panels are mechanically attached to the wing with a series of floating joints - spars - to reduce loading on the panels caused by wing deflections. The aluminum and the metallic attachments are protected from exceeding temperature limits by internal insulation. The next launch of Atlantis will be on mission STS-114, a utilization and logistics flight to the International Space Station.
2003-09-03
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility (OPF), United Space Alliance technicians replace the attachment points for the spars on the interior of a wing of Space Shuttle Atlantis. Reinforced Carbon Carbon (RCC) panels are mechanically attached to the wing with a series of floating joints - spars - to reduce loading on the panels caused by wing deflections. The aluminum and the metallic attachments are protected from exceeding temperature limits by internal insulation. The next launch of Atlantis will be on mission STS-114, a utilization and logistics flight to the International Space Station.
2003-09-03
KENNEDY SPACE CENTER, FLA. -In the Orbiter Processing Facility (OPF), a United Space Alliance technician examines the attachment points for the spars on the exterior of a wing of Space Shuttle Atlantis. Reinforced Carbon Carbon (RCC) panels are mechanically attached to the wing with a series of floating joints - spars - to reduce loading on the panels caused by wing deflections. The aluminum and the metallic attachments are protected from exceeding temperature limits by internal insulation. The next launch of Atlantis will be on mission STS-114, a utilization and logistics flight to the International Space Station.
2003-12-19
KENNEDY SPACE CENTER, FLA. -- From left, a United Space Alliance (USA) technician briefs NASA Deputy Program Manager of the Space Shuttle Program Michael Wetmore, USA Vice President and Space Shuttle Program Manager Howard DeCastro, and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik on the use of cold plates in Orbiter Processing Facility Bay 2. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.
2003-08-27
KENNEDY SPACE CENTER, FLA. - During power-up of the orbiter Discovery in the Orbiter Processing Facility, a technician (left) looks at the circuit breaker lights in the cabin. Discovery has been undergoing Orbiter Major Modifications in the past year, ranging from wiring, control panels and black boxes to gaseous and fluid systems tubing and components. These systems were deserviced, disassembled, inspected, modified, reassembled, checked out and reserviced, as were most other systems onboard. The work includes the installation of the Multifunction Electronic Display Subsystem (MEDS) - a state-of-the-art “glass cockpit.”
2010-12-21
CAPE CANAVERAL, Fla. -- The Propellants North Administrative and Maintenance Facility in the Launch Complex 39 area of NASA's Kennedy Space Center in Florida is ready for business. The environmentally friendly facility is slated to be NASA's second Platinum-rated by the U.S. Green Building Council's (USGBC) Leadership in Environmental and Energy Design (LEED) certification system. It will be the space agency's first carbon-neutral facility, which means it will produce enough energy onsite from renewable sources to offset what it requires to operate. The facility consists of a two-story administrative building, which will house managers, mechanics and technicians who fuel spacecraft at Kennedy, and a single-story shop that will be used to store cryogenic fuel transfer equipment. Photo credit: NASA/Frank Michaux
2010-12-21
CAPE CANAVERAL, Fla. -- The Propellants North Administrative and Maintenance Facility in the Launch Complex 39 area of NASA's Kennedy Space Center in Florida is ready for business. The environmentally friendly facility is slated to be NASA's second Platinum-rated by the U.S. Green Building Council's (USGBC) Leadership in Environmental and Energy Design (LEED) certification system. It will be the space agency's first carbon-neutral facility, which means it will produce enough energy onsite from renewable sources to offset what it requires to operate. The facility consists of a two-story administrative building, which will house managers, mechanics and technicians who fuel spacecraft at Kennedy, and a single-story shop that will be used to store cryogenic fuel transfer equipment. Photo credit: NASA/Frank Michaux
2010-12-17
CAPE CANAVERAL, Fla. -- Kennedy Space Center's Propellants North Administrative and Maintenance Facility with the NASA insignia glistens a shade of green in the Launch Complex 39 area. The environmentally friendly facility is slated to be NASA's second Platinum-rated by the U.S. Green Building Council's (USGBC) Leadership in Environmental and Energy Design (LEED) certification system. It will be the space agency's first carbon-neutral facility, which means it will produce enough energy onsite from renewable sources to offset what it requires to operate. Shown here is the facility's two-story administrative building, which will house managers, mechanics and technicians who fuel spacecraft at Kennedy. Next door is a single-story shop that will be used to store cryogenic fuel transfer equipment. Photo credit: NASA/Frank Michaux
2010-12-17
CAPE CANAVERAL, Fla. -- The NASA insignia glistens a shade of green on Kennedy Space Center's Propellants North Administrative and Maintenance Facility in the Launch Complex 39 area. The environmentally friendly facility is slated to be NASA's second Platinum-rated by the U.S. Green Building Council's (USGBC) Leadership in Environmental and Energy Design (LEED) certification system. It will be the space agency's first carbon-neutral facility, which means it will produce enough energy onsite from renewable sources to offset what it requires to operate. The facility consists of a two-story administrative building, which will house managers, mechanics and technicians who fuel spacecraft at Kennedy, and a single-story shop that will be used to store cryogenic fuel transfer equipment. Photo credit: NASA/Frank Michaux
2010-11-24
CAPE CANAVERAL, Fla. -- Construction begins to wrap up at the Propellants North Administrative and Maintenance Facility in the Launch Complex 39 area of NASA's Kennedy Space Center in Florida. This is the facility's two-story administrative building, which will house managers, mechanics and technicians who fuel spacecraft at Kennedy. Next door is a single-story shop that will be used to store cryogenic fuel transfer equipment. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design (LEED) Platinum certification, which is the highest of LEED ratings. The facility, set to be complete in December 2010, was designed for NASA by Jones Edmunds and Associates. H. W. Davis Construction is the construction contractor. Photo credit: NASA/Frankie Martin
2010-11-24
CAPE CANAVERAL, Fla. -- Construction begins to wrap up at the Propellants North Administrative and Maintenance Facility in the Launch Complex 39 area of NASA's Kennedy Space Center in Florida. This is the facility's two-story administrative building, which will house managers, mechanics and technicians who fuel spacecraft at Kennedy. Next door is a single-story shop that will be used to store cryogenic fuel transfer equipment. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design (LEED) Platinum certification, which is the highest of LEED ratings. The facility, set to be complete in December 2010, was designed for NASA by Jones Edmunds and Associates. H. W. Davis Construction is the construction contractor. Photo credit: NASA/Frankie Martin
2010-11-24
CAPE CANAVERAL, Fla. -- Construction begins to wrap up at the Propellants North Administrative and Maintenance Facility in the Launch Complex 39 area of NASA's Kennedy Space Center in Florida. On the left is the facility's single-story shop, which will be used to store cryogenic fuel transfer equipment. On the right is a two-story administrative building that will house managers, mechanics and technicians who fuel spacecraft at Kennedy. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design (LEED) Platinum certification, which is the highest of LEED ratings. The facility, set to be complete in December 2010, was designed for NASA by Jones Edmunds and Associates. H. W. Davis Construction is the construction contractor. Photo credit: NASA/Frankie Martin
2008-05-01
Technicians at NASA's Dryden Aircraft Operations Facility in Palmdale, Calif., loaded the German-built primary mirror assembly of the Stratospheric Observatory for Infrared Astronomy, or SOFIA, onto an Air Force C-17 for shipment to NASA's Ames Research Center on May 1, 2008. In preparation for the final finish coating of the mirror, the more than two-ton mirror assembly had been removed from its cavity in the rear fuselage of the highly modified SOFIA Boeing 747SP two weeks earlier. After arrival at NASA Ames at Moffett Field near Mountain View, Calif., the mirror would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.
1997-09-23
Technicians at the SPACEHAB Payload Processing Facility in Cape Canaveral prepare a Russian replacement computer for stowage aboard the Space Shuttle Atlantis shortly before the scheduled launch of Mission STS-86, slated to be the seventh docking of the Space Shuttle with the Russian Space Station Mir. The last-minute cargo addition requested by the Russians will be mounted on the aft bulkhead of the SPACEHAB Double Module, which is being used as a pressurized cargo container for science/logistical equipment and supplies that will be exchanged between Atlantis and the Mir. Using the Module Vertical Access Kit (MVAC), technicians will be lowered inside the module to install the computer for flight. Liftoff of STS-86 is scheduled Sept. 25 at 10:34 p.m. from Launch Pad 39A
2011-08-19
CAPE CANAVERAL, Fla. -- In Orbiter Processing Facility-2 at NASA’s Kennedy Space Center in Florida, technicians monitor the progress as they use a Hyster forklift to position an engine removal device on Engine #3 on space shuttle Atlantis. Inside the aft section, a technician disconnects hydraulic, fluid and electrical lines. The forklift will be used to remove the engine and transport it to the Engine Shop for possible future use. Each of the three space shuttle main engines is 14 feet long and weighs 7,800 pounds. Removal of the space shuttle main engines is part of the Transition and Retirement work that is being performed in order to prepare Atlantis for eventual display at the Kennedy Space Center Visitor Complex in Florida. Photo credit: Frankie Martin
2011-01-12
VANDENBERG AIR FORCE BASE, Calif. -- Inside the Astrotech processing facility at Vandenberg Air Force Base in California, technicians prepare to transfer NASA's Glory spacecraft to a processing dolly. Next, technicians will take off Glory's protective covering before it is encapsulated in a protective payload fairing for flight. In early February, Glory is scheduled to be transported Space Launch Complex 576-E where it will be joined with the Taurus XL rocket, which is manufactured by Orbital Sciences Corp. Once Glory reaches orbit, it will collect data on the properties of aerosols and black carbon. It also will help scientists understand how the sun's irradiance affects Earth's climate. Launch is scheduled for 5:09 a.m. EST Feb. 23. For information, visit www.nasa.gov/glory. Photo credit: NASA/Ed Henry, VAFB
2011-01-12
VANDENBERG AIR FORCE BASE, Calif. -- Inside the Astrotech processing facility at Vandenberg Air Force Base in California, technicians prepare to remove the shipping container surrounding NASA's Glory spacecraft. Next, technicians will take off Glory's protective covering before it is encapsulated in a protective payload fairing for flight. In early February, Glory is scheduled to be transported Space Launch Complex 576-E where it will be joined with the Taurus XL rocket, which is manufactured by Orbital Sciences Corp. Once Glory reaches orbit, it will collect data on the properties of aerosols and black carbon. It also will help scientists understand how the sun's irradiance affects Earth's climate. Launch is scheduled for 5:09 a.m. EST Feb. 23. For information, visit www.nasa.gov/glory. Photo credit: NASA/Ed Henry, VAFB
2011-01-12
VANDENBERG AIR FORCE BASE, Calif. -- Inside the Astrotech processing facility at Vandenberg Air Force Base in California, technicians remove the shipping container surrounding NASA's Glory spacecraft. Next, technicians will take off Glory's protective covering before it is encapsulated in a protective payload fairing for flight. In early February, Glory is scheduled to be transported Space Launch Complex 576-E where it will be joined with the Taurus XL rocket, which is manufactured by Orbital Sciences Corp. Once Glory reaches orbit, it will collect data on the properties of aerosols and black carbon. It also will help scientists understand how the sun's irradiance affects Earth's climate. Launch is scheduled for 5:09 a.m. EST Feb. 23. For information, visit www.nasa.gov/glory. Photo credit: NASA/Ed Henry, VAFB
2011-01-12
VANDENBERG AIR FORCE BASE, Calif. -- Inside the Astrotech processing facility at Vandenberg Air Force Base in California, technicians remove the shipping container surrounding NASA's Glory spacecraft. Next, technicians will take off Glory's protective covering before it is encapsulated in a protective payload fairing for flight. In early February, Glory is scheduled to be transported Space Launch Complex 576-E where it will be joined with the Taurus XL rocket, which is manufactured by Orbital Sciences Corp. Once Glory reaches orbit, it will collect data on the properties of aerosols and black carbon. It also will help scientists understand how the sun's irradiance affects Earth's climate. Launch is scheduled for 5:09 a.m. EST Feb. 23. For information, visit www.nasa.gov/glory. Photo credit: NASA/Ed Henry, VAFB
Orion EM-1 Crew Module Structural Test Article Prepped for Trans
2017-04-24
Inside the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, technicians secure the transport container with the Orion Exploration Mission-1 (EM-1) structural test article onto a transport vehicle for the move to the Shuttle Landing Facility. The test article will be loaded in NASA's Super Guppy airplane and transported to Lockheed Martin's Denver facility for testing. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission.
Orion Crew Module Structural Test Article Lift & Uncrating
2016-11-15
Inside the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, technicians with Lockheed Martin assist as a crane lifts the cover away from the container holding the Orion crew module structural test article (STA). The STA arrived aboard NASA's Super Guppy aircraft at the Shuttle Landing Facility operated by Space Florida. The test article was moved inside the facility's high bay for further testing. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.
Orion EM-1 Crew Module Structural Test Article Prepped for Trans
2017-04-24
Inside the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, technicians secure the Orion Exploration Mission-1 (EM-1) structural test article in its transport container onto a transport vehicle for the move to the Shuttle Landing Facility. The test article will be loaded in NASA's Super Guppy airplane and transported to Lockheed Martin's Denver facility for testing. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission.
Orion Crew Module Structural Test Article Unbagging
2016-11-15
Inside the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, technicians with Lockheed Martin look over the Orion crew module structural test article (STA) secured on the bottom of its transport container. The STA arrived aboard NASA's Super Guppy aircraft at the Shuttle Landing Facility operated by Space Florida. The test article was moved inside the facility's high bay for further testing. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.
2009-04-02
CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, a technician prepares the Science Instrument Command and Data Handling Unit, or SIC&DH, for its move to the Multi-Use Lightweight Equipment Carrier in the facility. The SIC&DH will be installed on the Hubble Space Telescope during space shuttle Atlantis' STS-125 mission. This unit will replace the one that suffered a failure aboard the orbiting telescope on Sept. 27, 2008. Atlantis is targeted for launch on May 12. Photo credit: NASA/Dimitri Gerondidakis
2009-04-02
CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, technicians look over the Science Instrument Command and Data Handling Unit, or SIC&DH. The SIC&DH will be installed on the Multi-Use Lightweight Equipment Carrier in the facility. The SIC&DH will be installed on the Hubble Space Telescope during space shuttle Atlantis' STS-125 mission. This unit will replace the one that suffered a failure aboard the orbiting telescope on Sept. 27, 2008. Atlantis is targeted for launch on May 12. Photo credit: NASA/Dimitri Gerondidakis
2012-02-03
CAPE CANAVERAL, Fla. – In Orbiter Processing Facility-2 at NASA’s Kennedy Space Center in Florida, a technician monitors the progress as one of space shuttle Endeavour’s payload bay doors is opened so that an antenna can be retracted. Space Shuttle Program transition and retirement work continues on Discovery and Endeavour in the orbiter processing facilities, while shuttle Atlantis is in temporary storage in high bay 4 of the Vehicle Assembly Building. Endeavour is being prepared for display at the California Science Center in Los Angeles. Photo credit: NASA/Kim Shiflett
2013-08-09
CAPE CANAVERAL, Fla. – Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, technicians prepare a thermal blanket for installation on the MAVEN spacecraft's parabolic high gain antenna. MAVEN stands for Mars Atmosphere and Volatile Evolution. The antenna will communicate vast amounts of data to Earth during the mission. MAVEN is being prepared inside the facility for its scheduled November launch aboard a United Launch Alliance Atlas V rocket to Mars. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. Photo credit: NASA/Jim Grossmann
2013-08-09
CAPE CANAVERAL, Fla. – Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, technicians install a thermal blanket on the parabolic high gain antenna of the Mars Atmosphere and Volatile Evolution, or MAVEN spacecraft. The antenna will communicate vast amounts of data to Earth during the mission. MAVEN is being prepared inside the facility for its scheduled November launch aboard a United Launch Alliance Atlas V rocket to Mars. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. Photo credit: NASA/Jim Grossmann
2013-08-09
CAPE CANAVERAL, Fla. – Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, technicians apply tape to the thermal blanket for the MAVEN spacecraft's parabolic high gain antenna. MAVEN stands for Mars Atmosphere and Volatile Evolution. The antenna will communicate vast amounts of data to Earth during the mission. MAVEN is being prepared inside the facility for its scheduled November launch aboard a United Launch Alliance Atlas V rocket to Mars. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. Photo credit: NASA/Jim Grossmann
1999-03-26
In the Vertical Processing Facility, TRW technicians check the point of attachment of the solar panel array at right. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93
STS-55 backup Payload Specialist Thiele with technician in JSC's WETF
NASA Technical Reports Server (NTRS)
1992-01-01
STS-55 Columbia, Orbiter Vehicle (OV) 102, backup German Payload Specialist Dr. P. Gerhard Thiele, wearing launch and entry suit (LES), launch and entry helmet (LEH), and parachute, seated on the poolside waits his turn to participate in launch emergency egress (bailout) exercises. The session, held in JSC's Weightless Environment Training Facility (WETF) Bldg 29, used the facility's 25-foot deep pool to simulate the ocean as Thiele and other crewmembers practiced water bailout procedures. Thiele represents the DLR for the upcoming Spacelab Deutsche 2 (SL-D2) mission.
Successful MPPF Pneumatics Verification and Validation Testing
2017-03-28
Engineers and technicians completed verification and validation testing of several pneumatic systems inside and outside the Multi-Payload Processing Facility (MPPF) at NASA's Kennedy Space Center in Florida. In view is the service platform for Orion spacecraft processing. The MPPF will be used for offline processing and fueling of the Orion spacecraft and service module stack before launch. Orion also will be de-serviced in the MPPF after a mission. The Ground Systems Development and Operations Program (GSDO) is overseeing upgrades to the facility. The Engineering Directorate led the recent pneumatic tests.
Successful MPPF Pneumatics Verification and Validation Testing
2017-03-28
Engineers and technicians completed verification and validation testing of several pneumatic systems inside and outside the Multi-Payload Processing Facility (MPPF) at NASA's Kennedy Space Center in Florida. In view is the top level of the service platform for Orion spacecraft processing. The MPPF will be used for offline processing and fueling of the Orion spacecraft and service module stack before launch. Orion also will be de-serviced in the MPPF after a mission. The Ground Systems Development and Operations Program (GSDO) is overseeing upgrades to the facility. The Engineering Directorate led the recent pneumatic tests.
Operational evaluation of rapid diagnostic testing for Ebola Virus Disease in Guinean laboratories
Aho, Josephine; Franklin, Kristyn; Likofata, Jacques; Kamgang, Jean Baptiste; Keita, Sakoba; Koivogui, Lamine; Magassouba, N’Faly; Martel, Lise D.; Dahourou, Anicet George
2017-01-01
Background Rapid Diagnostic Tests (RDTs) for Ebola Virus Disease (EVD) at the point of care have the potential to increase access and acceptability of EVD testing and the speed of patient isolation and secure burials for suspect cases. A pilot program for EVD RDTs in high risk areas of Guinea was introduced in October 2015. This paper presents concordance data between EVD RDTs and PCR testing in the field as well as an assessment of the acceptability, feasibility, and quality assurance of the RDT program. Methods and findings Concordance data were compiled from laboratory surveillance databases. The operational measures of the laboratory-based EVD RDT program were evaluated at all 34 sentinel sites in Guinea through: (1) a technical questionnaire filled by the lab technicians who performed the RDTs, (2) a checklist filled by the evaluator during the site visits, and (3) direct observation of the lab technicians performing the quality control test. Acceptability of the EVD RDT was good for technicians, patients, and families although many technicians (69.8%) expressed concern for their safety while performing the test. The feasibility of the program was good based on average technician knowledge scores (6.6 out of 8) but basic infrastructure, equipment, and supplies were lacking. There was much room for improvement in quality assurance of the program. Conclusions The implementation of new diagnostics in weak laboratory systems requires general training in quality assurance, biosafety and communication with patients in addition to specific training for the new test. Corresponding capacity building in terms of basic equipment and a long-term commitment to transfer supervision and quality improvement to national public health staff are necessary for successful implementation. PMID:29190713
Operational evaluation of rapid diagnostic testing for Ebola Virus Disease in Guinean laboratories.
VanSteelandt, Amanda; Aho, Josephine; Franklin, Kristyn; Likofata, Jacques; Kamgang, Jean Baptiste; Keita, Sakoba; Koivogui, Lamine; Magassouba, N'Faly; Martel, Lise D; Dahourou, Anicet George
2017-01-01
Rapid Diagnostic Tests (RDTs) for Ebola Virus Disease (EVD) at the point of care have the potential to increase access and acceptability of EVD testing and the speed of patient isolation and secure burials for suspect cases. A pilot program for EVD RDTs in high risk areas of Guinea was introduced in October 2015. This paper presents concordance data between EVD RDTs and PCR testing in the field as well as an assessment of the acceptability, feasibility, and quality assurance of the RDT program. Concordance data were compiled from laboratory surveillance databases. The operational measures of the laboratory-based EVD RDT program were evaluated at all 34 sentinel sites in Guinea through: (1) a technical questionnaire filled by the lab technicians who performed the RDTs, (2) a checklist filled by the evaluator during the site visits, and (3) direct observation of the lab technicians performing the quality control test. Acceptability of the EVD RDT was good for technicians, patients, and families although many technicians (69.8%) expressed concern for their safety while performing the test. The feasibility of the program was good based on average technician knowledge scores (6.6 out of 8) but basic infrastructure, equipment, and supplies were lacking. There was much room for improvement in quality assurance of the program. The implementation of new diagnostics in weak laboratory systems requires general training in quality assurance, biosafety and communication with patients in addition to specific training for the new test. Corresponding capacity building in terms of basic equipment and a long-term commitment to transfer supervision and quality improvement to national public health staff are necessary for successful implementation.
2010-01-07
CAPE CANAVERAL, Fla. – At the Astrotech Space Operations facility in Titusville, Fla., spacecraft fueling technicians from Kennedy Space Center prepare to sample the monomethylhydrazine propellant that will be loaded aboard the Solar Dynamics Observatory, or SDO. From left are SDO technician Brian Kittle and ASTROTECH mission/facility manager Gerard Gleeson. The hydrazine fuel is being sampled for purity before it is loaded aboard the spacecraft. The technicians are dressed in self-contained atmospheric protective ensemble suits, or SCAPE suits, as a safety precaution in the unlikely event that any of the highly toxic chemical should escape from the storage tank. The nitrogen tetroxide oxidizer was loaded earlier in the week which is customarily followed by loading of the fuel. Propellant loading is one of the final processing milestones before the spacecraft is encapsulated in its fairing for launch. SDO is the first mission in NASA's Living With a Star Program and is designed to study the causes of solar variability and its impacts on Earth. The spacecraft's long-term measurements will give solar scientists in-depth information to help characterize the interior of the Sun, the Sun's magnetic field, the hot plasma of the solar corona, and the density of radiation that creates the ionosphere of the planets. The information will be used to create better forecasts of space weather needed to protect the aircraft, satellites and astronauts living and working in space. Liftoff aboard an Atlas V rocket is targeted for Feb. 9 from Launch Complex 41 on Cape Canaveral Air Force Station. For information on SDO, visit http://www.nasa.gov/sdo. Photo credit: NASA/Jack Pfaller
2010-01-07
CAPE CANAVERAL, Fla. – At the Astrotech Space Operations facility in Titusville, Fla., spacecraft fueling technicians from Kennedy Space Center prepare to sample the monomethylhydrazine propellant that will be loaded aboard the Solar Dynamics Observatory, or SDO. From left are Boeing technician Steve Lay and ASTROTECH mission/facility manager Gerard Gleeson. The hydrazine fuel is being sampled for purity before it is loaded aboard the spacecraft. The technicians are dressed in self-contained atmospheric protective ensemble suits, or SCAPE suits, as a safety precaution in the unlikely event that any of the highly toxic chemical should escape from the storage tank. The nitrogen tetroxide oxidizer was loaded earlier in the week which is customarily followed by loading of the fuel. Propellant loading is one of the final processing milestones before the spacecraft is encapsulated in its fairing for launch. SDO is the first mission in NASA's Living With a Star Program and is designed to study the causes of solar variability and its impacts on Earth. The spacecraft's long-term measurements will give solar scientists in-depth information to help characterize the interior of the Sun, the Sun's magnetic field, the hot plasma of the solar corona, and the density of radiation that creates the ionosphere of the planets. The information will be used to create better forecasts of space weather needed to protect the aircraft, satellites and astronauts living and working in space. Liftoff aboard an Atlas V rocket is targeted for Feb. 9 from Launch Complex 41 on Cape Canaveral Air Force Station. For information on SDO, visit http://www.nasa.gov/sdo. Photo credit: NASA/Jack Pfaller
2010-01-07
CAPE CANAVERAL, Fla. – At the Astrotech Space Operations facility in Titusville, Fla., spacecraft fueling technicians from Kennedy Space Center prepare to sample the monomethylhydrazine propellant that will be loaded aboard the Solar Dynamics Observatory, or SDO. From left are Boeing technician Steve Lay and ASTROTECH mission/facility manager Gerard Gleeson. The hydrazine fuel is being sampled for purity before it is loaded aboard the spacecraft. The technicians are dressed in self-contained atmospheric protective ensemble suits, or SCAPE suits, as a safety precaution in the unlikely event that any of the highly toxic chemical should escape from the storage tank. The nitrogen tetroxide oxidizer was loaded earlier in the week which is customarily followed by loading of the fuel. Propellant loading is one of the final processing milestones before the spacecraft is encapsulated in its fairing for launch. SDO is the first mission in NASA's Living With a Star Program and is designed to study the causes of solar variability and its impacts on Earth. The spacecraft's long-term measurements will give solar scientists in-depth information to help characterize the interior of the Sun, the Sun's magnetic field, the hot plasma of the solar corona, and the density of radiation that creates the ionosphere of the planets. The information will be used to create better forecasts of space weather needed to protect the aircraft, satellites and astronauts living and working in space. Liftoff aboard an Atlas V rocket is targeted for Feb. 9 from Launch Complex 41 on Cape Canaveral Air Force Station. For information on SDO, visit http://www.nasa.gov/sdo. Photo credit: NASA/Jack Pfaller
2009-12-11
CAPE CANAVERAL, Fla. - Trenches are prepared to support the walls of the Propellants North Administrative and Maintenance Facility in Launch Complex 39 at NASA's Kennedy Space Center in Florida. The facility will have a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy adjacent to an 1,800-square-foot single-story shop to store cryogenic fuel transfer equipment. The new facility will feature high-efficiency roofs and walls, “Cool Dry Quiet” air conditioning with energy recovery technology, efficient lighting, and other sustainable features. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design, or LEED, Platinum certification. If successful, Propellants North will be the first Kennedy facility to achieve this highest of LEED ratings after it is completed in the summer of 2010. The facility was designed for NASA by Jones Edmunds and Associates. Photo credit: NASA/Jim Grossmann
2009-12-11
CAPE CANAVERAL, Fla. - Construction of the Propellants North Administrative and Maintenance Facility begins in Launch Complex 39 at NASA's Kennedy Space Center in Florida. The facility will have a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy adjacent to an 1,800-square-foot single-story shop to store cryogenic fuel transfer equipment. The new facility will feature high-efficiency roofs and walls, “Cool Dry Quiet” air conditioning with energy recovery technology, efficient lighting, and other sustainable features. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design, or LEED, Platinum certification. If successful, Propellants North will be the first Kennedy facility to achieve this highest of LEED ratings after it is completed in the summer of 2010. The facility was designed for NASA by Jones Edmunds and Associates. Photo credit: NASA/Jim Grossmann
The DuPont Conference: Implications for the Chemical Technology Curriculum
NASA Astrophysics Data System (ADS)
Kenkel, John; Rutledge, Sue; Kelter, Paul B.
1998-05-01
Southeast Community College (SCC) hosted the first DuPont Conference for Chemical Technology Education at its Lincoln, Nebraska campus October 4-6, 1997. The conference brought together fourteen practicing chemists and chemistry technicians and five college and university faculty members for the express purpose of suggesting new laboratory activities that would help relate the real world of work to the education of chemical laboratory technicians in community colleges. Participants included seven men and seven women from DuPont, Procter & Gamble, Eastman Chemical, Eastman Kodak, Dow Chemical, Air Products and Chemicals, Monsanto, Union Carbide, the Nebraska Agriculture Laboratory, and the University of Nebraska Biological Process Development Facility, Department of Food Science. The conference, sponsored by the E. I. DuPont DeNemours & Company through a grant awarded to SCC in June 1997, was intended to help further the goals of the two major projects underway at SCC, funded by the National Science Foundation's Advanced Technological Education Program. These projects, dubbed "Assignment: Chemical Technology I and II", or ACT-I and ACT-II, are curriculum and materials development projects. The invited scientists had between 2 and 32 years of experience that ranged from bench work to management levels. Many are or have been active on the national scene as members and officers of the American Chemical Society's Division of Chemical Technicians and the ACS Committee on Technician Activities.
2011-01-07
CAPE CANAVERAL, Fla. -- Finishing touches adorn the second-floor conference room of the Propellants North Administrative and Maintenance Facility at NASA's Kennedy Space Center in Florida. Artwork for the conference room was produced by Greg Lee, a graphics specialist with Abacus Technology Corp., with input from the facility's future occupants. The environmentally friendly facility is slated to be NASA's second Platinum-rated by the U.S. Green Building Council's (USGBC) Leadership in Environmental and Energy Design (LEED) certification system. It will be the space agency's first net-zero facility, which means it will produce enough energy onsite from renewable sources to offset what it requires to operate. The facility consists of a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy, and a single-story shop to store cryogenic fuel transfer equipment. Photo credit: NASA/Frankie Martin
2011-01-07
CAPE CANAVERAL, Fla. -- Finishing touches adorn the second-floor conference room of the Propellants North Administrative and Maintenance Facility at NASA's Kennedy Space Center in Florida. Artwork for the conference room was produced by Greg Lee, a graphics specialist with Abacus Technology Corp., with input from the facility's future occupants. The environmentally friendly facility is slated to be NASA's second Platinum-rated by the U.S. Green Building Council's (USGBC) Leadership in Environmental and Energy Design (LEED) certification system. It will be the space agency's first net-zero facility, which means it will produce enough energy onsite from renewable sources to offset what it requires to operate. The facility consists of a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy, and a single-story shop to store cryogenic fuel transfer equipment. Photo credit: NASA/Frankie Martin
Specialized Veterinary Manpower Needs through 1990,
1982-01-01
vaccines and diagnostic tests; and the increased technical sophistication in artificial insemination , embryo culture and transplantation, and hormonal...are included. Artificial insemination , synchronization of estrus, endocrine therapy, spermatozoan and ovum genetic engineering, and ovum and embryo...hospital facility surrounded by satellite clinics that offer restricted medical and surgical services. 26 Qualified animal-health technicians are used to a
An engine awaits processing in the new engine shop at KSC
NASA Technical Reports Server (NTRS)
1998-01-01
In the Space Shuttle Main Engine Processing Facility (SSMEPF), a new Block 2A engine sits on the workstand as technicians process it. The engine is scheduled to fly on the Space Shuttle Endeavour during the STS-88 mission in December 1998. The SSMEPF officially opened on July 6, replacing the Shuttle Main Engine Shop.
GRACE Follow-On Moves Closer to Launch
2018-05-11
Technicians inspect the twin GRACE Follow-On satellites and their multi-satellite dispenser at the SpaceX facility at Vandenberg Air Force Base in California. The satellites were subsequently stacked atop another satellite dispenser containing the five Iridium NEXT communications satellites they will share a ride to orbit with. https://photojournal.jpl.nasa.gov/catalog/PIA22452
Emergency Medical Services; Recommendations For An Approach To An Urgent National Problem.
ERIC Educational Resources Information Center
American Coll. of Surgeons, Chicago, IL.
Medical technicians such as ambulance attendants must be trained to administer life-saving measures to the acutely ill and injured and transport them safely to a medical facility. Thus, the purpose of this conference was to bring together, for a discussion of all aspects of emergency medical services, representatives of all those groups which are…
EM-1 Booster Prep, Left Aft Skirt Work-In-Progress
2016-10-30
Inside the Booster Fabrication Facility at NASA's Kennedy Space Center in Florida, the left hand aft skirt for the agency's Space Launch System (SLS) rocket is ready for the assembly process. From left, are Chad Goetz, quality technician with Orbital ATK, and Robbie Blaue, quality assurance specialist with the Defense Contract Management Agency. The aft skirt was refurbished and painted in support facilities at the Hangar AF facility at Cape Canaveral Air Force Station in Florida. The space shuttle-era aft skirt will be used on the left hand booster of the SLS for Exploration Mission 1 (EM-1). NASA is preparing for EM-1, deep space missions, and the Journey to Mars.
STS-34 Galileo processing at KSC's SAEF-2 planetary spacecraft facility
1989-07-21
At the Kennedy Space Center's (KSC's) Spacecraft and Assembly Encapsulation Facility 2 (SAEF-2), the planetary spacecraft checkout facility, clean-suited technicians work on the Galileo spacecraft prior to moving it to the Vehicle Processing Facility (VPF) for mating with the inertial upper stage (IUS). Galileo is scheduled for launch aboard Atlantis, Orbiter Vehicle (OV) 104, on Space Shuttle Mission STS-34 in October 1989. It will be sent to the planet Jupiter, a journey which will taken more than six years to complete. In December 1995 as the two and one half ton spacecraft orbits Jupiter with its ten scientific instruments, a probe will be released to parachute into the Jovian atmosphere. NASA's Jet Propulsion Laboratory (JPL) manages the Galileo project. View provided by KSC.
2008-04-18
Technicians at the NASA Dryden Aircraft Operations Facility in Palmdale, Calif., removed the German-built primary mirror assembly from the Stratospheric Observatory for Infrared Astronomy, or SOFIA, April 18, 2008 in preparation for the final finish coating of the mirror. A precision crane lifted the more than two-ton mirror assembly from its cavity in the rear fuselage of the highly modified Boeing 747SP. The assembly was then secured in its transport dolly and moved to a clean room where it was prepared for shipment to NASA Ames Research Center at Moffett Field near Mountain View, Calif. where it would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.
2008-04-18
Technicians at the NASA Dryden Aircraft Operations Facility in Palmdale, Calif., removed the German-built primary mirror assembly from the Stratospheric Observatory for Infrared Astronomy, or SOFIA, April 18, 2008 in preparation for the final finish coating of the mirror. A precision crane lifted the more than two-ton mirror assembly from its cavity in the rear fuselage of the highly modified Boeing 747SP. The assembly was then secured in its transport dolly and moved to a clean room where it was prepared for shipment to NASA Ames Research Center at Moffett Field near Mountain View, Calif. where it would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.
2008-04-18
Technicians at the NASA Dryden Aircraft Operations Facility in Palmdale, Calif., removed the German-built primary mirror assembly from the Stratospheric Observatory for Infrared Astronomy, or SOFIA, April 18, 2008 in preparation for the final finish coating of the mirror. A precision crane lifted the more than two-ton mirror assembly from its cavity in the rear fuselage of the highly modified Boeing 747SP. The assembly was then secured in its transport dolly and moved to a clean room where it was prepared for shipment to NASA Ames Research Center at Moffett Field near Mountain View, Calif. where it would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.
STS-55 MS3 Harris dons EMU with technician's assistance in JSC's WETF Bldg 29
NASA Technical Reports Server (NTRS)
1991-01-01
STS-55 Columbia, Orbiter Vehicle (OV) 102, Mission Specialist 3 (MS3) Bernard A. Harris, Jr, partially suited in his extravehicular mobility unit (EMU), and a technician take a break from suiting procedures to watch nearby activity (out of frame) in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Harris has donned the EMU upper and lower torsos which are not yet connected at the waist ring. Once fully suited in the EMU, Harris will be lowered into the WETF's 25-foot pool for an underwater contingency extravehicular activity (EVA) simulation. There is no scheduled EVA for the 1993 flight but each spaceflight crew includes astronauts trained for a variety of contingency tasks that could require exiting the shirt-sleeve environment of a Shuttle's cabin.
Survey of 2014 behavioral management programs for laboratory primates in the United States.
Baker, Kate C
2016-07-01
The behavioral management of laboratory nonhuman primates in the United States has not been thoroughly characterized since 2003. This article presents the results of a survey behavioral management programs at 27 facilities and covering a total of 59,636 primates, 27,916 housed in indoor cages and 31,720 in group enclosures. The survey included questions regarding program structure, implementation, and methodology associated with social housing, positive reinforcement training, positive human interaction, exercise enclosures, and several categories of inanimate enrichment. The vast majority of laboratory primates are housed socially (83%). Since 2003, the proportion of indoor-housed primates reported to be housed singly has fallen considerably, from 59% to 35% in the facilities surveyed. The use of social housing remains significantly constrained by: 1) research protocol requirements, highlighting the value of closely involved IACUCs for harmonizing research and behavioral management; and 2) the unavailability of compatible social partners, underscoring the necessity of objective analysis of the methods used to foster and maintain compatibility. Positive reinforcement training appears to have expanded and is now used at all facilities responding to the survey. The use of enrichment devices has also increased in the participating facilities. For most behavioral management techniques, concerns over the possibility of negative consequences to animals are expressed most frequently for social housing and destructible enrichment, while skepticism regarding efficacy is limited almost exclusively to sensory enrichment. Behavioral management program staffing has expanded over time in the facilities surveyed, due not only to increased numbers of dedicated behavioral management technicians but also to greater involvement of animal care technicians, suggesting an increase in the integration of behavioral care into animal husbandry. Broad awareness of common practice may assist facilities with program evaluation and assessment of progress in the field can generate recommendations for continuing the advancement of primate behavioral management programs. Am. J. Primatol. 78:780-796, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Survey of 2014 Behavioral Management Programs for Laboratory Primates in the United States
BAKER, KATE C.
2016-01-01
The behavioral management of laboratory nonhuman primates in the United States has not been thoroughly characterized since 2003. This article presents the results of a survey behavioral management programs at 27 facilities and covering a total of 59,636 primates, 27,916 housed in indoor cages and 31,720 in group enclosures. The survey included questions regarding program structure, implementation, and methodology associated with social housing, positive reinforcement training, positive human interaction, exercise enclosures, and several categories of inanimate enrichment. The vast majority of laboratory primates are housed socially (83%). Since 2003, the proportion of indoor-housed primates reported to be housed singly has fallen considerably, from 59% to 35% in the facilities surveyed. The use of social housing remains significantly constrained by: 1) research protocol requirements, highlighting the value of closely involved IACUCs for harmonizing research and behavioral management; and 2) the unavailability of compatible social partners, underscoring the necessity of objective analysis of the methods used to foster and maintain compatibility. Positive reinforcement training appears to have expanded and is now used at all facilities responding to the survey. The use of enrichment devices has also increased in the participating facilities. For most behavioral management techniques, concerns over the possibility of negative consequences to animals are expressed most frequently for social housing and destructible enrichment, while skepticism regarding efficacy is limited almost exclusively to sensory enrichment. Behavioral management program staffing has expanded over time in the facilities surveyed, due not only to increased numbers of dedicated behavioral management technicians but also to greater involvement of animal care technicians, suggesting an increase in the integration of behavioral care into animal husbandry. Broad awareness of common practice may assist facilities with program evaluation and assessment of progress in the field can generate recommendations for continuing the advancement of primate behavioral management programs. PMID:26971575
Installing a Carrier Panel on Endeavor in OPF 2
2007-01-19
In Orbiter Processing Facility bay 2, technicians Jesus Rodrigues (left) and James Johnson install a leading edge subsystem carrier panel on the right wing of Endeavour. The orbiter is scheduled for mission STS-118, targeted for launch on June 28. The mission will be the 22nd flight to the International Space Station, carrying another starboard array, S5, for installation.
Installing a Carrier Panel on Endeavor in OPF 2
2007-01-19
In Orbiter Processing Facility bay 2, technicians James Johnson (left) and Jesus Rodrigues install a leading edge subsystem carrier panel on the right wing of Endeavour. The orbiter is scheduled for mission STS-118, targeted for launch on June 28. The mission will be the 22nd flight to the International Space Station, carrying another starboard array, S5, for installation.
48. Historic photo of Building 202 test cell interior, test ...
48. Historic photo of Building 202 test cell interior, test stand A with zone injector engine; technician is working on equipment panel in foreground, June 3, 1966. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA photo number C-66-2397. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
2006-02-18
KENNEDY SPACE CENTER, FLA. - In NASA Kennedy Space Center's Orbiter Processing Facility bay 3, United Space Alliance shuttle technicians remove the hard cover from a window on Space Shuttle Discovery to enable STS-121 crew members to inspect the window from the cockpit. Launch of Space Shuttle Discovery on mission STS-121, the second return-to-flight mission, is scheduled no earlier than May.
General view of the shop floor looking north in the ...
General view of the shop floor looking north in the Vertical Processing Area of the Space Shuttle Main Engine (SSME) Processing Facility at Kennedy Space Center. SSME number 2061's nozzle is being inspected by an SSME technician in the foreground. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Astronaut David Wolf participates in training for contingency EVA in WETF
NASA Technical Reports Server (NTRS)
1993-01-01
Astronaut David A. Wolf participates in training for contingency extravehicular activity (EVA) for the STS-58 mission. The mission specialist was about to be submerged to a point of neutral buoyancy in the JSC Weightless Environment Training Facility (WETF). In this view, Wolf is aided by technicians in donning the gloves for his extravehicular mobility unit (EMU).
2003-01-05
KENNEDY SPACE CENTER, FLA. - Technicians in the Multi-Purpose Processing Facility move NASA's Solar Radiation and Climate Experiment (SORCE) toward the Pegasus XL Expendable Launch Vehicle for mating. SORCE will study and measure solar irradiance as a source of energy in the Earth's atmosphere. The launch of SORCE is scheduled for Jan. 25 at 3:14 p.m. from Cape Canaveral Air Force Station, Fla.
2003-10-30
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, technicians make adjustments to the orbital maneuvering system (OMS) pod being installed on Atlantis. The OMS pod is one of two that are attached to the upper aft fuselage left and right sides. Fabricated primarily of graphite epoxy composite and aluminum, each pod is 21.8 feet long and 11.37 feet wide at its aft end and 8.41 feet wide at its forward end, with a surface area of approximately 435 square feet. Each pod houses the Reaction Control System propulsion components used for inflight maneuvering and is attached to the aft fuselage with 11 bolts.
2003-10-30
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, technicians move an orbital maneuvering system (OMS) pod into the correct position on Atlantis. The OMS pod is one of two that are attached to the upper aft fuselage left and right sides. Fabricated primarily of graphite epoxy composite and aluminum, each pod is 21.8 feet long and 11.37 feet wide at its aft end and 8.41 feet wide at its forward end, with a surface area of approximately 435 square feet. Each pod houses the Reaction Control System propulsion components used for inflight maneuvering and is attached to the aft fuselage with 11 bolts.
2010-09-20
CAPE CANAVERAL, Fla. - Workers of Superior Solar LLC in Longwood, Fla., begin to install more than 300 solar panels on the roof of the Propellants North Administrative and Maintenance Facility at NASA's Kennedy Space Center in Florida. Each panel, built in Sharp Corp.'s Memphis, Tenn., plant, will produce 235 watts of clean energy. The green facility in Kennedy's Launch Complex 39 area will have a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy adjacent to a single-story shop to store cryogenic fuel transfer equipment. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design (LEED) Platinum certification. If successful, it will be the first NASA facility to achieve this highest of LEED ratings after it is completed. The facility was designed for NASA by Jones Edmunds and Associates. H. W. Davis Construction is the construction contractor. Photo credit: NASA/Jim Grossmann
2010-09-20
CAPE CANAVERAL, Fla. - Workers of Superior Solar LLC in Longwood, Fla., begin to install more than 300 solar panels on the roof of the Propellants North Administrative and Maintenance Facility at NASA's Kennedy Space Center in Florida. Each panel, built in Sharp Corp.'s Memphis, Tenn., plant, will produce 235 watts of clean energy. The green facility in Kennedy's Launch Complex 39 area will have a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy adjacent to a single-story shop to store cryogenic fuel transfer equipment. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design (LEED) Platinum certification. If successful, it will be the first NASA facility to achieve this highest of LEED ratings after it is completed. The facility was designed for NASA by Jones Edmunds and Associates. H. W. Davis Construction is the construction contractor. Photo credit: NASA/Jim Grossmann
2010-09-20
CAPE CANAVERAL, Fla. - Workers of Superior Solar LLC in Longwood, Fla., prepare to install more than 300 solar panels on the roof of the Propellants North Administrative and Maintenance Facility at NASA's Kennedy Space Center in Florida. Each panel, built in Sharp Corp.'s Memphis, Tenn., plant, will produce 235 watts of clean energy. The green facility in Kennedy's Launch Complex 39 area will have a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy adjacent to a single-story shop to store cryogenic fuel transfer equipment. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design (LEED) Platinum certification. If successful, it will be the first NASA facility to achieve this highest of LEED ratings after it is completed. The facility was designed for NASA by Jones Edmunds and Associates. H. W. Davis Construction is the construction contractor. Photo credit: NASA/Jim Grossmann
2010-09-20
CAPE CANAVERAL, Fla. - Workers of Superior Solar LLC in Longwood, Fla., begin to install more than 300 solar panels on the roof of the Propellants North Administrative and Maintenance Facility at NASA's Kennedy Space Center in Florida. Each panel, built in Sharp Corp.'s Memphis, Tenn., plant, will produce 235 watts of clean energy. The green facility in Kennedy's Launch Complex 39 area will have a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy adjacent to a single-story shop to store cryogenic fuel transfer equipment. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design (LEED) Platinum certification. If successful, it will be the first NASA facility to achieve this highest of LEED ratings after it is completed. The facility was designed for NASA by Jones Edmunds and Associates. H. W. Davis Construction is the construction contractor. Photo credit: NASA/Jim Grossmann
Orion EM-1 Crew Module Structural Test Article Prepped for Trans
2017-04-24
Inside the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, the Orion Exploration Mission-1 (EM-1) structural test article is secured inside its transport container. Technicians monitor the progress as a crane is used to move the container toward a transport vehicle for the move to the Shuttle Landing Facility. The test article will be loaded in NASA's Super Guppy airplane and transported to Lockheed Martin's Denver facility for testing. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission.
STS-30 Magellan spacecraft is unpacked at Kennedy Space Center (KSC) SAEF-2
NASA Technical Reports Server (NTRS)
1989-01-01
At the Kennedy Space Center (KSC) inside the Space Assembly and Encapsulation Facility 2 (SAEF-2) (planetary checkout facility), the cover of the Payload Environmental Transportation System (PETS) is removed so that the Magellan spacecraft can be hoisted from the PETS trailer to the clean room floor. Clean-suited technicians guide the cover above plastic-wrapped spacecraft using rope. The spacecraft, destined for unprecedented studies of the Venusian topographic features, is to be deployed by the crew of NASA STS-30 mission in April 1989. View provided by KSC with alternate number KSC-88PC-1083.
1999-03-26
TRW technicians in the Vertical Processing Facility check the fitting of the solar panel array being attached to the Chandra X-ray Observatory. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93
Successful MPPF Pneumatics Verification and Validation Testing
2017-03-28
Engineers and technicians completed verification and validation testing of several pneumatic systems inside and outside the Multi-Payload Processing Facility (MPPF) at NASA's Kennedy Space Center in Florida. In view is the service platform for Orion spacecraft processing. To the left are several pneumatic panels. The MPPF will be used for offline processing and fueling of the Orion spacecraft and service module stack before launch. Orion also will be de-serviced in the MPPF after a mission. The Ground Systems Development and Operations Program (GSDO) is overseeing upgrades to the facility. The Engineering Directorate led the recent pneumatic tests.
Nordgren, Leslie D; Gerberich, Susan G; Alexander, Bruce H; Church, Timothy R; Bender, Jeff B; Ryan, Andrew D
2014-08-15
To identify risk and protective factors for work-related bite injuries among veterinary technicians certified in Minnesota. Nested case-control study. 868 certified veterinary technicians (CVTs). A questionnaire was mailed to CVTs who previously participated in a survey regarding work-related injuries and did (cases; 301 surveys sent) or did not (controls; 567) report qualifying work-related animal bite injuries in the preceding 12 months. Descriptive statistics were summarized. Demographic and work-related variables for the month preceding the bite injury (for cases) or a randomly selected month (controls) were assessed with univariate analysis (489 CVTs) and multivariate analysis of a subset of 337 CVTs who worked in small or mixed mostly small animal facilities. Responses were received from 176 case and 313 control CVTs. For the subset of 337 CVTs, risk of bite injury was higher for those < 25 years of age (OR, 3.82; 95% confidence interval [CI], 1.84 to 7.94) than for those ≥ 35 years of age, for those who had worked < 5 years (OR, 3.24; 95% CI, 1.63 to 6.45) versus ≥ 10 years in any veterinary facility, and for those who handled ≥ 5 species/d (OR, 1.99; 95% CI, 1.06 to 3.74) versus < 3 species/d. Risk was lower for CVTs who handled < 10 versus ≥ 20 animals/d (OR, 0.23; 95% CI, 0.08 to 0.71). Several work-related factors were associated with the risk of work-related bite injury to CVTs. These findings may serve as a basis for development of intervention efforts and future research regarding work-related injuries among veterinary staff.
Accelerator boom hones China's engineering expertise
NASA Astrophysics Data System (ADS)
Normile, Dennis
2018-02-01
In raising the curtain on the China Spallation Neutron Source, China has joined just four other nations in having mastered the technology of accelerating and controlling beams of protons. The $277 million facility, set to open to users this spring in Dongguan, is expected to yield big dividends in materials science, chemistry, and biology. More world class machines are on the way, as China this year starts construction on four other major accelerator facilities. The building boom is prompting a scramble to find enough engineers and technicians to finish the projects. But if they all come off as planned, the facilities would position China to tackle the next global megaproject: a giant accelerator that would pick up where Europe's Large Hadron Collider leaves off.
2010-12-21
CAPE CANAVERAL, Fla. -- The Vehicle Assembly Building towers over the new Propellants North Administrative and Maintenance Facility in the Launch Complex 39 area of NASA's Kennedy Space Center in Florida. The environmentally friendly facility is slated to be NASA's second Platinum-rated by the U.S. Green Building Council's (USGBC) Leadership in Environmental and Energy Design (LEED) certification system. It will be the space agency's first carbon-neutral facility, which means it will produce enough energy onsite from renewable sources to offset what it requires to operate. On the right is the facility's two-story administrative building, which will house managers, mechanics and technicians who fuel spacecraft at Kennedy. On the left is a single-story shop that will be used to store cryogenic fuel transfer equipment. In the parking lot is a solar-powered parking station for alternative fuel vehicles. Photo credit: NASA/Frank Michaux
2010-12-21
CAPE CANAVERAL, Fla. -- The Propellants North Administrative and Maintenance Facility in the Launch Complex 39 area of NASA's Kennedy Space Center in Florida is ready for business. The environmentally friendly facility is slated to be NASA's second Platinum-rated by the U.S. Green Building Council's (USGBC) Leadership in Environmental and Energy Design (LEED) certification system. It will be the space agency's first carbon-neutral facility, which means it will produce enough energy onsite from renewable sources to offset what it requires to operate. On the right is the facility's two-story administrative building, which will house managers, mechanics and technicians who fuel spacecraft at Kennedy. On the left is a single-story shop that will be used to store cryogenic fuel transfer equipment. In the parking lot is a solar-powered parking station for alternative fuel vehicles. Photo credit: NASA/Frank Michaux
2010-12-21
CAPE CANAVERAL, Fla. -- The Propellants North Administrative and Maintenance Facility in the Launch Complex 39 area of NASA's Kennedy Space Center in Florida is ready for business. The environmentally friendly facility is slated to be NASA's second Platinum-rated by the U.S. Green Building Council's (USGBC) Leadership in Environmental and Energy Design (LEED) certification system. It will be the space agency's first carbon-neutral facility, which means it will produce enough energy onsite from renewable sources to offset what it requires to operate. On the right is the facility's two-story administrative building, which will house managers, mechanics and technicians who fuel spacecraft at Kennedy. On the left is a single-story shop that will be used to store cryogenic fuel transfer equipment. In the parking lot is a solar-powered parking station for alternative fuel vehicles. Photo credit: NASA/Frank Michaux
2010-12-21
CAPE CANAVERAL, Fla. -- The Propellants North Administrative and Maintenance Facility in the Launch Complex 39 area of NASA's Kennedy Space Center in Florida is ready for business. The environmentally friendly facility is slated to be NASA's second Platinum-rated by the U.S. Green Building Council's (USGBC) Leadership in Environmental and Energy Design (LEED) certification system. It will be the space agency's first carbon-neutral facility, which means it will produce enough energy onsite from renewable sources to offset what it requires to operate. On the right is the facility's two-story administrative building, which will house managers, mechanics and technicians who fuel spacecraft at Kennedy. On the left is a single-story shop that will be used to store cryogenic fuel transfer equipment. In the parking lot is a solar-powered parking station for alternative fuel vehicles. Photo credit: NASA/Frank Michaux
2010-12-21
CAPE CANAVERAL, Fla. -- The Propellants North Administrative and Maintenance Facility in the Launch Complex 39 area of NASA's Kennedy Space Center in Florida is ready for business. The environmentally friendly facility is slated to be NASA's second Platinum-rated by the U.S. Green Building Council's (USGBC) Leadership in Environmental and Energy Design (LEED) certification system. It will be the space agency's first carbon-neutral facility, which means it will produce enough energy onsite from renewable sources to offset what it requires to operate. On the right is the facility's two-story administrative building, which will house managers, mechanics and technicians who fuel spacecraft at Kennedy. On the left is a single-story shop that will be used to store cryogenic fuel transfer equipment. In the parking lot is a solar-powered parking station for alternative fuel vehicles. Photo credit: NASA/Frank Michaux
2010-12-21
CAPE CANAVERAL, Fla. -- This is the back view of the new Propellants North Administrative and Maintenance Facility in the Launch Complex 39 area of NASA's Kennedy Space Center in Florida. The environmentally friendly facility is slated to be NASA's second Platinum-rated by the U.S. Green Building Council's (USGBC) Leadership in Environmental and Energy Design (LEED) certification system. It will be the space agency's first carbon-neutral facility, which means it will produce enough energy onsite from renewable sources to offset what it requires to operate. On the right is the facility's single-story shop that will be used to store cryogenic fuel transfer equipment. On the left is a two-story administrative building, which will house managers, mechanics and technicians who fuel spacecraft at Kennedy. In the parking lot is a solar-powered parking station for alternative fuel vehicles. Photo credit: NASA/Frank Michaux
EPA Facility Registry Service (FRS): OIL
This dataset contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of facilities that link to the Oil database. The Oil database contains information on Spill Prevention, Control, and Countermeasure (SPCC) and Facility Response Plan (FRP) subject facilities to prevent and respond to oil spills. FRP facilities are referred to as substantial harm facilities due to the quantities of oil stored and facility characteristics. FRS identifies and geospatially locates facilities, sites or places subject to environmental regulations or of environmental interest. Using vigorous verification and data management procedures, FRS integrates facility data from EPA's national program systems, other federal agencies, and State and tribal master facility records and provides EPA with a centrally managed, single source of comprehensive and authoritative information on facilities. This data set contains the subset of FRS integrated facilities that link to Oil facilities once the Oil data has been integrated into the FRS database. Additional information on FRS is available at the EPA website https://www.epa.gov/enviro/facility-registry-service-frs.
2010-05-12
Kendal Van Dyke, a database professional that is followed on Twitter @twitter.com/sqldba, takes part in the two-day STS-132 Launch Tweetup at Kennedy Space Center, Thursday, May 13, 2010, in Cape Canaveral, Fla. NASA Twitter followers in attendance will have the opportunity to take a tour of NASA's Kennedy Space Center, view the space shuttle launch and speak with shuttle technicians, engineers, astronauts and managers. Photo Credit: (NASA/Paul E. Alers)
2012-02-01
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, technicians walk alongside as space shuttle Endeavour is being towed from the Vehicle Assembly Building to Orbiter Processing Facility-2. Shuttle Endeavour will remain in OPF-2 so that the orbiter maneuvering system (OMS) pods and forward reaction control system can be installed. Technicians also will offload water and Freon gas from lines located in Endeavour’s midbody. The work is part of Endeavour’s transition and retirement processing. The spacecraft is being prepared for public display at the California Science Center in Los Angeles. Endeavour flew 25 missions, spent 299 days in space, orbited Earth 4,671 times and traveled 122, 883, 151 miles over the course of its 19-year career. Endeavour’s STS-134 and final mission was completed after landing on June 1, 2011. Photo credit: Kim Shiflett
2012-02-01
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, technicians walk alongside as space shuttle Endeavour is being towed from the Vehicle Assembly Building to Orbiter Processing Facility-2. Shuttle Endeavour will remain in OPF-2 so that the orbiter maneuvering system (OMS) pods and forward reaction control system can be installed. Technicians also will offload water and Freon gas from lines located in Endeavour’s midbody. The work is part of Endeavour’s transition and retirement processing. The spacecraft is being prepared for public display at the California Science Center in Los Angeles. Endeavour flew 25 missions, spent 299 days in space, orbited Earth 4,671 times and traveled 122, 883, 151 miles over the course of its 19-year career. Endeavour’s STS-134 and final mission was completed after landing on June 1, 2011. Photo credit: Kim Shiflett
2012-02-01
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, technicians assist as space shuttle Endeavour is being towed from the Vehicle Assembly Building to Orbiter Processing Facility-2 (OPF-2). Shuttle Endeavour will remain in OPF-2 so that the orbiter maneuvering system (OMS) pods and forward reaction control system can be installed. Technicians also will offload water and Freon gas from lines located in Endeavour’s midbody. The work is part of Endeavour’s transition and retirement processing. The spacecraft is being prepared for public display at the California Science Center in Los Angeles. Endeavour flew 25 missions, spent 299 days in space, orbited Earth 4,671 times and traveled 122, 883, 151 miles over the course of its 19-year career. Endeavour’s STS-134 and final mission was completed after landing on June 1, 2011. Photo credit: Kim Shiflett
2012-02-01
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, technicians walk alongside as space shuttle Endeavour is being towed from the Vehicle Assembly Building to Orbiter Processing Facility-2. Shuttle Endeavour will remain in OPF-2 so that the orbiter maneuvering system (OMS) pods and forward reaction control system can be installed. Technicians also will offload water and Freon gas from lines located in Endeavour’s midbody. The work is part of Endeavour’s transition and retirement processing. The spacecraft is being prepared for public display at the California Science Center in Los Angeles. Endeavour flew 25 missions, spent 299 days in space, orbited Earth 4,671 times and traveled 122, 883, 151 miles over the course of its 19-year career. Endeavour’s STS-134 and final mission was completed after landing on June 1, 2011. Photo credit: Kim Shiflett
2012-02-01
CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, technicians prepare space shuttle Endeavour for its move to Orbiter Processing Facility-2 (OPF-2). Shuttle Endeavour will remain in OPF-2 so that the orbiter maneuvering system (OMS) pods and forward reaction control system can be installed. Technicians also will offload water and Freon gas from lines located in Endeavour’s midbody. The work is part of Endeavour’s transition and retirement processing. The spacecraft is being prepared for public display at the California Science Center in Los Angeles. Endeavour flew 25 missions, spent 299 days in space, orbited Earth 4,671 times and traveled 122, 883, 151 miles over the course of its 19-year career. Endeavour’s STS-134 and final mission was completed after landing on June 1, 2011. Photo credit: Kim Shiflett
2012-02-01
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, technicians assist as space shuttle Endeavour is being towed from the Vehicle Assembly Building to Orbiter Processing Facility-2 (OPF-2). Shuttle Endeavour will remain in OPF-2 so that the orbiter maneuvering system (OMS) pods and forward reaction control system can be installed. Technicians also will offload water and Freon gas from lines located in Endeavour’s midbody. The work is part of Endeavour’s transition and retirement processing. The spacecraft is being prepared for public display at the California Science Center in Los Angeles. Endeavour flew 25 missions, spent 299 days in space, orbited Earth 4,671 times and traveled 122, 883, 151 miles over the course of its 19-year career. Endeavour’s STS-134 and final mission was completed after landing on June 1, 2011. Photo credit: Kim Shiflett
2012-02-01
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, technicians walk alongside as space shuttle Endeavour is being towed from the Vehicle Assembly Building to Orbiter Processing Facility-2. Shuttle Endeavour will remain in OPF-2 so that the orbiter maneuvering system (OMS) pods and forward reaction control system can be installed. Technicians also will offload water and Freon gas from lines located in Endeavour’s midbody. The work is part of Endeavour’s transition and retirement processing. The spacecraft is being prepared for public display at the California Science Center in Los Angeles. Endeavour flew 25 missions, spent 299 days in space, orbited Earth 4,671 times and traveled 122, 883, 151 miles over the course of its 19-year career. Endeavour’s STS-134 and final mission was completed after landing on June 1, 2011. Photo credit: Kim Shiflett
2005-11-30
KENNEDY SPACE CENTER, FLA. - In Orbiter Processing Facility Bay 2, United Space Alliance technician Michael Vanwart installs thermal protection system blankets in the nose cap of space shuttle Endeavour. Endeavour recently came out of a nearly two-year Orbiter Major Modification period which began in December 2003. Engineers and technicians spent 900,000 hours performing 124 modifications to the vehicle. These included all recommended return-to-flight safety modifications, bonding more than 1,000 thermal protection system tiles and inspecting more than 150 miles of wiring throughout the orbiter. Shuttle major modification periods are scheduled at regular intervals to enhance safety and performance, infuse new technology, and allow for thorough inspections of the airframe and wiring of the vehicles. This was the second of these modification periods performed entirely at Kennedy Space Center. Endeavour's previous modification was completed in March 1997.
2005-11-30
KENNEDY SPACE CENTER, FLA. - In Orbiter Processing Facility bay 2, United Space Alliance technician Michael Vanwart prepares to install thermal protection system blankets in the nose cap of space shuttle Endeavour. Endeavour recently came out of a nearly two-year Orbiter Major Modification period which began in December 2003. Engineers and technicians spent 900,000 hours performing 124 modifications to the vehicle. These included all recommended return-to-flight safety modifications, bonding more than 1,000 thermal protection system tiles and inspecting more than 150 miles of wiring throughout the orbiter. Shuttle major modification periods are scheduled at regular intervals to enhance safety and performance, infuse new technology, and allow for thorough inspections of the airframe and wiring of the vehicles. This was the second of these modification periods performed entirely at Kennedy Space Center. Endeavour's previous modification was completed in March 1997.
2005-11-30
KENNEDY SPACE CENTER, FLA. - In Orbiter Processing Facility Bay 2, United Space Alliance technician Michael Vanwart installs thermal protection system blankets in the nose cap of space shuttle Endeavour. Endeavour recently came out of a nearly two-year Orbiter Major Modification period which began in December 2003. Engineers and technicians spent 900,000 hours performing 124 modifications to the vehicle. These included all recommended return-to-flight safety modifications, bonding more than 1,000 thermal protection system tiles and inspecting more than 150 miles of wiring throughout the orbiter. Shuttle major modification periods are scheduled at regular intervals to enhance safety and performance, infuse new technology, and allow for thorough inspections of the airframe and wiring of the vehicles. This was the second of these modification periods performed entirely at Kennedy Space Center. Endeavour's previous modification was completed in March 1997.
1997-09-23
Boeing technicians, from right, John Pearce Jr., Mike Vawter and Rob Ferraro prepare a Russian replacement computer for stowage aboard the Space Shuttle Atlantis shortly before the scheduled launch of Mission STS-86, slated to be the seventh docking of the Space Shuttle with the Russian Space Station Mir. The preparations are being made at the SPACEHAB Payload Processing Facility in Cape Canaveral. The last-minute cargo addition requested by the Russians will be mounted on the aft bulkhead of the SPACEHAB Double Module, which is being used as a pressurized cargo container for science/logistical equipment and supplies that will be exchanged between Atlantis and the Mir. Using the Module Vertical Access Kit (MVAC), technicians will be lowered inside the module to install the computer for flight. Liftoff of STS-86 is scheduled Sept. 25 at 10:34 p.m. from Launch Pad 39A
1997-09-23
Boeing technicians John Pearce Jr., at left, and Mike Vawter prepare a Russian replacement computer for stowage aboard the Space Shuttle Atlantis shortly before the scheduled launch of Mission STS-86, slated to be the seventh docking of the Space Shuttle with the Russian Space Station Mir. The preparations are being made at the SPACEHAB Payload Processing Facility in Cape Canaveral. The last-minute cargo addition requested by the Russians will be mounted on the aft bulkhead of the SPACEHAB Double Module, which is being used as a pressurized cargo container for science/logistical equipment and supplies that will be exchanged between Atlantis and the Mir. Using the Module Vertical Access Kit (MVAC), technicians will be lowered inside the module to install the computer for flight. Liftoff of STS-86 is scheduled Sept. 25 at 10:34 p.m. from Launch Pad 39A
Electronics technician Bill Clark assembling a cannon plug with the help of Jim Lewis
NASA Technical Reports Server (NTRS)
1991-01-01
There is always something needed for a NASA aircraft before a research flight can take place. This photo shows William J. Clark working on one of those 'somethings' while Jimmie C. Lewis watches ready to help. Working on a research project is a challenge, for there is no set pattern to follow. From the drawings to the final product there are many people who contribute to that final product -- the flight. The electronic technicians in the Instrumentation Laboratory at NASA Ames-Dryden Flight Research Facility are no exception. Bill Clark is busy creating a cannon plug to be used on the CV-990. He is soldering wires in the appropriate order so the plug will transmit electrical currents correctly when installed in the airplane. Jim stands by to give help and support on the project.
A technician works on the Mars Climate Orbiter in SAEF-2
NASA Technical Reports Server (NTRS)
1998-01-01
In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), a technician works on the Mars Climate Orbiter which is scheduled to launch on Dec. 10, 1998, aboard a Boeing Delta II rocket. The Mars Climate Orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface.
Boeing technicians discuss mating PMA-2 to Node 1 in the SSPF as STS-88 launch preparations continue
NASA Technical Reports Server (NTRS)
1998-01-01
Boeing technicians discuss mating Pressurized Mating Adapter (PMA)-2 to Node 1 of the International Space Station (ISS) in KSC's Space Station Processing Facility (SSPF). The node is the first element of the ISS to be manufactured in the United States and is currently scheduled to lift off aboard the Space Shuttle Endeavour on STS-88 later this year, along with PMAs 1 and 2. This PMA is a cone-shaped connector to Node 1, which will have two PMAs attached once this mate is completed. Once in space, Node 1 will function as a connecting passageway to the living and working areas of the ISS. It has six hatches that will serve as docking ports to the U.S. laboratory module, U.S. habitation module, an airlock and other space station elements.
Higashi, Takahiro; Machii, Ryoko; Aoki, Ayako; Hamashima, Chisato; Saito, Hiroshi
2010-11-01
To evaluate the appropriateness of current checklists created by a governmental committee to assess screening programs run by municipal governments and service provider facilities for gastric and colorectal cancer, and to accumulate expert opinions to provide insights aimed at the next revision. We convened an expert panel that consisted of physicians nominated by regional offices of the Japanese Society for Gastrointestinal Cancer Screening and radiology technicians nominated by the technician chapter of the society. The panel rated the appropriateness of each checklist item on a scale of 1-9 (1, extremely inappropriate; 9, extremely appropriate) twice, between which they had a face-to-face discussion meeting. During the process they were allowed to propose modifications and additions to the items. In the first round of rating, the panelists rated all 57 and 56 checklists items for gastric and colorectal cancer, respectively, as appropriate based on an acceptance rule determined a priori. During the process of the face-to-face discussion, however, the panel proposed modifications to 23 (40%) and 22 (39%) items, respectively, and the addition of 27 new items each. After integrating overlapping items and rating again for appropriateness, 66 and 64 items, respectively, were accepted as the revised checklist set. The expert panel considered current checklists for colorectal and gastric cancer-screening programs and facilities to be suitable. Their proposals for a new set of checklist items will help further improve the checklists.
2004-02-18
KENNEDY SPACE CENTER, FLA. - Volunteers from the KSC Fire-Rescue team dressed in launch and entry suits settle into seats in an orbiter crew compartment mock-up under the guidance of George Brittingham, USA suit technician on the Closeout Crew. Brittingham is helping Catherine Di Biase, a nurse with Bionetics Life Sciences. They are all taking part in a “Mode VII” emergency landing simulation at Kennedy Space Center. The purpose is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews will respond to the volunteer “astronauts” simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
DOE Office of Scientific and Technical Information (OSTI.GOV)
David A. King
2011-06-27
Summary of recent ORAU decommissioning activities at the Oak Ridge National Laboratory (ORNL) and the East Tennessee Technology Park (ETTP). Project objective was to generate approved Waste Lot Profiles for legacy facilities scheduled for demolition and shipment to the Environmental Management Waste Management Facility (EMWMF) or appropriate alternate facility. The form and content of process knowledge (PK) reports were developed with input from the EMWMF Waste Acceptance Criteria (WAC) Attainment Team and regulators. PK may be defined as the knowledge of the design and the history of operations that occurs during the life cycle of a facility (paraphrased from SRNLmore » guidance) - similar to the MARSSIM historical site assessment. Some types of PK data used to decommission ORNL and ETTP facilities include: (1) Design drawings; (2) Historical documents [e.g., History of the Oak Ridge National Laboratory by Thomas (1963) and A Brief History of the Chemical Technical Division (ORNL/M-2733)]; (3) Historical photographs; (4) Radiological survey reports; (5) Facility-specific databases - (a) Spill history, (b) Waste Information Tracking System (WITS), and (c) Hazardous Materials Management Information System (HMMIS); (6) Facility walkdown summary reports; and (7) Living memory data. Facility walkdowns are critical for worker safety planning and to assure on-the-ground-conditions match historical descriptions. For Oak Ridge operations, investigators also document the nature and number of items requiring special handling or disposition planning, such as the following: (1) Items containing polychlorinated biphenyls, asbestos, lead, or refrigerants; (2) Items with physical WAC restriction (e.g., large items, pipes, and concrete); and (3) Too 'hot' for EMWMF. Special emphasis was made to interview facility managers, scientists, technicians, or anyone with direct knowledge of process-related activities. Interviews often led to more contact names and reports but also offered anecdotal accounts of releases, process-related operations, maintenance activities, and other relevant information not addressed in the written record. 'Fun' part of PK data gathering. Often got not-so-useful information such as, 'The operations manager was a jerk and we all hated him.' PK data are used to indicate the presence or absence of contaminants. Multiple lines of investigation are necessary for characterization planning and to help determine which disposal facility is best suited for targeted wastes. The model used by ORAU assisted remediation contractors and EMWMF managers by identifying anomalous waste and items requiring special handling.« less
APOLLO CREW (NAA) - ASTRONAUT EDWARD H. WHITE - TRAINING
1966-06-24
The members of the prime crew of the first manned Apollo space flight Apollo/Saturn 204 (AS-204) inspect spacecraft equipment during a tour of North American Aviation's (NAA) Downey facility. In the foreground, left to right, are astronauts Roger B. Chaffee, Virgil I. Grissom, and Edward H. White, II. NAA engineers and technicians are in the background. NORTH AMERICAN AVIATION, INC., DOWNEY, CA B&W
Government Shutdown: Operations of Department of Defense During a Lapse in Appropriations
2011-04-01
proactive in working with creditors to reschedule debt repayments under these circumstances… c. Military personnel: During a shutdown of DoD activities due...creditors to reschedule debt repayments under these circumstances. The key point that both the creditor and the soldier should remember is that the...including Uniformed Services Treatment Facilities) including doctors, nurses , medical technicians, dentists, and essential support personnel (cooks
Cutting of Gold Foil in the Genesis Laboratory
2005-02-15
The facility for storing and examining Genesis solar wind samples consists of two adjacent laboratories. In these laboratories, the cutting of gold foil to be used in the gathering of the solar wind dust aboard the Genesis spacecraft. Views include: The process of cutting gold foil to be used aboard the Genesis spacecraft. The technicians use Gore-Tex suits with filters as to not contaminate the items.
2011-08-18
CAPE CANAVERAL, Fla. -- In the Engine Shop at NASA’s Kennedy Space Center in Florida, space shuttle main engine #2 sits on a transporter after technicians removed it from space shuttle Atlantis in Orbiter Processing Facility-2. All three main engines are being removed from Atlantis so that the vehicle can be decommissioned and prepared for eventual display at the Kennedy Space Center Visitor Complex in Florida. Photo credit: Frankie Martin
Training Guide for the Management Analyst Industrial Engineer Technician
1979-07-01
comtemporary work operations, and blending traditional and modern organization concepts, the student devwlops the facility to analyze and create organization...training, the attendee will know the functions of a computer as it processes business data to produce information for improved management. He will...action which is most cost effective when considering proposed investments. Emphasis is placed on the adaption of general business practices to
2007-04-10
In clean room C of Astrotech's Payload Processing Facility, technicians dressed in "bunny suits," or clean-room attire, begin working on the Dawn spacecraft. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C.
2007-01-19
KENNEDY SPACE CENTER, FLA. -- In Orbiter Processing Facility bay 2, technicians Jesus Rodrigues (left) and James Johnson install a leading edge subsystem carrier panel on the right wing of Endeavour. The orbiter is scheduled for mission STS-118, targeted for launch on June 28. The mission will be the 22nd flight to the International Space Station, carrying another starboard array, S5, for installation. Photo credit: NASA/George Shelton
2007-01-19
KENNEDY SPACE CENTER, FLA. -- In Orbiter Processing Facility bay 2, technicians James Johnson (left) and Jesus Rodrigues install a leading edge subsystem carrier panel on the right wing of Endeavour. The orbiter is scheduled for mission STS-118, targeted for launch on June 28. The mission will be the 22nd flight to the International Space Station, carrying another starboard array, S5, for installation. Photo credit: NASA/George Shelton
Nuclear Energy Infrastructure Database Description and User’s Manual
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heidrich, Brenden
In 2014, the Deputy Assistant Secretary for Science and Technology Innovation initiated the Nuclear Energy (NE)–Infrastructure Management Project by tasking the Nuclear Science User Facilities, formerly the Advanced Test Reactor National Scientific User Facility, to create a searchable and interactive database of all pertinent NE-supported and -related infrastructure. This database, known as the Nuclear Energy Infrastructure Database (NEID), is used for analyses to establish needs, redundancies, efficiencies, distributions, etc., to best understand the utility of NE’s infrastructure and inform the content of infrastructure calls. The Nuclear Science User Facilities developed the database by utilizing data and policy direction from amore » variety of reports from the U.S. Department of Energy, the National Research Council, the International Atomic Energy Agency, and various other federal and civilian resources. The NEID currently contains data on 802 research and development instruments housed in 377 facilities at 84 institutions in the United States and abroad. The effort to maintain and expand the database is ongoing. Detailed information on many facilities must be gathered from associated institutions and added to complete the database. The data must be validated and kept current to capture facility and instrumentation status as well as to cover new acquisitions and retirements. This document provides a short tutorial on the navigation of the NEID web portal at NSUF-Infrastructure.INL.gov.« less
2011-06-27
CAPE CANAVERAL, Fla., -- At the Astrotech Payload Processing Facility in Titusville, Fla., technicians stretch a protective cover over NASA's Juno spacecraft. Juno is being prepared for its move to the Hazardous Processing Facility for fueling. The spacecraft will be loaded with the propellant necessary for orbit maneuvers and the attitude control system. Juno is scheduled to launch aboard a United Launch Alliance Atlas V rocket from Cape Canaveral, Fla., Aug. 5.The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. For more information visit: www.nasa.gov/juno. Photo credit: NASA/Troy Cryder
2011-06-27
CAPE CANAVERAL, Fla. -- At the Astrotech Payload Processing Facility in Titusville, Fla., , technicians secure a protective cover over NASA's Juno spacecraft. Juno is being prepared for its move to the Hazardous Processing Facility for fueling. The spacecraft will be loaded with the propellant necessary for orbit maneuvers and the attitude control system. Juno is scheduled to launch aboard a United Launch Alliance Atlas V rocket from Cape Canaveral, Fla., Aug. 5.The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. For more information visit: www.nasa.gov/juno. Photo credit: NASA/Troy Cryder
2012-12-04
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a technician installs hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Jim Grossmann
2012-12-04
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a technician tests hazard avoidance instrumentation recently installed on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Jim Grossmann
SRB Processing Facilities Media Event
2016-03-01
Members of the news media view the high bay inside the Rotation, Processing and Surge Facility (RPSF) at NASA’s Kennedy Space Center in Florida. Inside the RPSF, engineers and technicians with Jacobs Engineering on the Test and Operations Support Contract, explain the various test stands. In the far corner is one of two pathfinders, or test versions, of solid rocket booster segments for NASA’s Space Launch System rocket. The Ground Systems Development and Operations Program and Jacobs are preparing the booster segments, which are inert, for a series of lifts, moves and stacking operations to prepare for Exploration Mission-1, deep-space missions and the journey to Mars.
1999-03-26
In the Vertical Processing Facility, TRW technicians get ready to attach and deploy a solar panel array on the Chandra X-ray Observatory, which is sitting on a workstand. The panel is to the right. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93
1999-03-26
In the Vertical Processing Facility, a TRW technician checks the attachment of the solar panel array (out of sight to the right) to the Chandra X-ray Observatory, at left. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93
2011-01-07
CAPE CANAVERAL, Fla. -- Workers hang artwork in the second-floor lobby of the Propellants North Administrative and Maintenance Facility at NASA's Kennedy Space Center in Florida. The artwork was produced by Greg Lee, a graphics specialist with Abacus Technology Corp., and features a silhouette of a shuttle, one of the most recognizable American icons, rolling out to Launch Complex 39. The environmentally friendly facility is slated to be NASA's second Platinum-rated by the U.S. Green Building Council's (USGBC) Leadership in Environmental and Energy Design (LEED) certification system. It will be the space agency's first net-zero facility, which means it will produce enough energy onsite from renewable sources to offset what it requires to operate. The facility consists of a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy, and a single-story shop to store cryogenic fuel transfer equipment. Photo credit: NASA/Frankie Martin
2011-01-07
CAPE CANAVERAL, Fla. -- Finishing touches adorn the second-floor lobby of the new Propellants North Administrative and Maintenance Facility at NASA's Kennedy Space Center in Florida. The artwork on the wall was produced by Greg Lee, a graphics specialist with Abacus Technology Corp., and depicts the mystery of nature with a photo of the Merritt Island National Wildlife Refuge. The environmentally friendly facility is slated to be NASA's second Platinum-rated by the U.S. Green Building Council's (USGBC) Leadership in Environmental and Energy Design (LEED) certification system. It will be the space agency's first net-zero facility, which means it will produce enough energy onsite from renewable sources to offset what it requires to operate. The facility consists of a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy, and a single-story shop to store cryogenic fuel transfer equipment. Photo credit: NASA/Frankie Martin
2011-01-07
CAPE CANAVERAL, Fla. -- Finishing touches adorn the second-floor lobby of the Propellants North Administrative and Maintenance Facility at NASA's Kennedy Space Center in Florida. At right, are recycled firing room windows that are set at the same angle and orientation as they were in Kennedy's Launch Control Center, looking out toward Launch Pads 39A and B. The environmentally friendly facility is slated to be NASA's second Platinum-rated by the U.S. Green Building Council's (USGBC) Leadership in Environmental and Energy Design (LEED) certification system. It will be the space agency's first net-zero facility, which means it will produce enough energy onsite from renewable sources to offset what it requires to operate. The facility consists of a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy, and a single-story shop to store cryogenic fuel transfer equipment. Photo credit: NASA/Frankie Martin
2009-12-11
CAPE CANAVERAL, Fla. - Concrete is poured into the trenches that will provide the foundation for the walls of the Propellants North Administrative and Maintenance Facility in Launch Complex 39 at NASA's Kennedy Space Center in Florida. A tilt-up construction method is being used to erect a THERMOMASS concrete wall insulation system for the facility's walls. The facility will have a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy adjacent to an 1,800-square-foot single-story shop to store cryogenic fuel transfer equipment. The new facility will feature high-efficiency roofs and walls, “Cool Dry Quiet” air conditioning with energy recovery technology, efficient lighting, and other sustainable features. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design, or LEED, Platinum certification. If successful, Propellants North will be the first Kennedy facility to achieve this highest of LEED ratings after it is completed in the summer of 2010. The facility was designed for NASA by Jones Edmunds and Associates. Photo credit: NASA/Jim Grossmann
2008-10-01
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, STS-127 crew members watch as Japanese Aerospace Exploration Agency, or JAXA, technicians maneuver the antenna in the Inter Orbit Communication System Extended Facility, or ICS-EF. Standing at right are Mission Specialists Dave Wolf, Christopher Cassidy, Tim Kopra and Tom Marshburn. Equipment familiarization is part of a Crew Equipment Interface Test. The antenna and a pointing mechanism will be used to communicate with JAXA’s Data Relay Test Satellite, or DRTS. The ICS-EF will be launched, along with the Extended Facility and Experiment Logistics Module-Exposed Section, to the International Space Station aboard the space shuttle Endeavour on the STS-127 mission targeted for launch on May 15, 2009. Photo credit: NASA/Kim Shiflett
2008-10-01
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, STS-127 crew members get a look at the antenna in the Inter Orbit Communication System Extended Facility, or ICS-EF. Standing next to a Japanese Aerospace Exploration Agency, or JAXA, technician at left are Mission Specialists Dave Wolf and Christopher Cassidy and Commander Mark Polansky. Equipment familiarization is part of a Crew Equipment Interface Test. The antenna and a pointing mechanism will be used to communicate with JAXA’s Data Relay Test Satellite, or DRTS. The ICS-EF will be launched, along with the Extended Facility and Experiment Logistics Module-Exposed Section, to the International Space Station aboard the space shuttle Endeavour on the STS-127 mission targeted for launch on May 15, 2009. Photo credit: NASA/Kim Shiflett
2006-01-11
KENNEDY SPACE CENTER, FLA. - In the Thermal Protection System Facility, Tim Wright, engineering manager with United Space Alliance, tests a new tile, called "Boeing replacement insulation" or "BRI-18." The new tiles will gradually replace older tiles around main landing gear doors, external tank doors and nose landing gear doors. Currently, 10 tiles have been processed inside the facility. Discovery will receive the first BRI-18 tiles. Technicians inside the Orbiter Processing Facility are performing fit checks and will begin bonding the tiles to the vehicle this month. The raw material is manufactured by The Boeing Company in Huntington Beach, Calif. Replacing older tile with the BRI-18 tile in strategic areas is one of the Columbia Accident Investigation Board's recommendations to strengthen the orbiters. The tiles are more impact resistant than previous designs, enhancing the crew’s safety.
STS-51 preparation: ACTS, ORFEUS, Discovery in VAB
NASA Technical Reports Server (NTRS)
1993-01-01
In NASA's building AM on Cape Canaveral Air Force Station, STS-51 mission specialist Carl Walz (right) and Deutsche Aerospace technician Gregor Dawidowitsch check over the scientific instruments mounted on the Shuttle Pallet Satellite (SPAS) carrier (38573); The Orbiting and Retrievable Far and Extreme Ultraviolet Spectrometer (ORFEUS) and SPAS is readied for hoisting into a test cell at the Vertical Processing Facility (VPF) (38574); Mating of the Advanced Communications Technology Satellite (ACTS) with the Transfer Orbit Stage (TOS) booster is under way in the Payload Hazardous Servicing Facility (PHSF) (38575); The mated ACTS and TOS are ready to be moved from the PHSF to the Vertical Processsing Facility (VPF) (38576); The orbiter Discovery is rolled into the Vehicle Assembly Building (VAB) for mating with the external tank and twin solid rocket boosters (38577-8).
2006-01-11
KENNEDY SPACE CENTER, FLA. - In the Thermal Protection System Facility, Tim Wright, engineering manager with United Space Alliance, tests a new tile, called "Boeing replacement insulation" or "BRI-18." The new tiles will gradually replace older tiles around main landing gear doors, external tank doors and nose landing gear doors. Currently, 10 tiles have been processed inside the facility. Discovery will receive the first BRI-18 tiles. Technicians inside the Orbiter Processing Facility are performing fit checks and will begin bonding the tiles to the vehicle this month. The raw material is manufactured by The Boeing Company in Huntington Beach, Calif. Replacing older tile with the BRI-18 tile in strategic areas is one of the Columbia Accident Investigation Board's recommendations to strengthen the orbiters. The tiles are more impact resistant than previous designs, enhancing the crew’s safety.
2010-01-07
CAPE CANAVERAL, Fla. – At the Astrotech Space Operations facility in Titusville, Fla., spacecraft fueling technicians from Kennedy Space Center prepare to sample the monomethylhydrazine propellant that will be loaded aboard the Solar Dynamics Observatory, or SDO. From left are Boeing technicians Richard Gillman and Steve Lay, and SDO technician Brian Kittle. The hydrazine fuel is being sampled for purity before it is loaded aboard the spacecraft. The technicians are dressed in self-contained atmospheric protective ensemble suits, or SCAPE suits, as a safety precaution in the unlikely event that any of the highly toxic chemical should escape from the storage tank. The nitrogen tetroxide oxidizer was loaded earlier in the week which is customarily followed by loading of the fuel. Propellant loading is one of the final processing milestones before the spacecraft is encapsulated in its fairing for launch. SDO is the first mission in NASA's Living With a Star Program and is designed to study the causes of solar variability and its impacts on Earth. The spacecraft's long-term measurements will give solar scientists in-depth information to help characterize the interior of the Sun, the Sun's magnetic field, the hot plasma of the solar corona, and the density of radiation that creates the ionosphere of the planets. The information will be used to create better forecasts of space weather needed to protect the aircraft, satellites and astronauts living and working in space. Liftoff aboard an Atlas V rocket is targeted for Feb. 9 from Launch Complex 41 on Cape Canaveral Air Force Station. For information on SDO, visit http://www.nasa.gov/sdo. Photo credit: NASA/Jack Pfaller
Sen, Sanchita; Siemianowski, Laura; Murphy, Michelle; McAllister, Susan Coutinho
2014-01-01
An inpatient medication reconciliation (MR) program emphasizing pharmacy technicians' role in the MR process is described. As part of quality-improvement (QI) efforts focused on MR-related adverse drug events, an urban academic medical center in New Jersey implemented a pharmacy technician-centered MR (PTMR) program targeting patients on its internal medicine, oncology, and clinical decision units. The program is staffed by five full- or part-time technicians who are trained in MR methods and work under direct pharmacist supervision, interviewing newly admitted patients and using other information sources (e.g., community pharmacies, physician offices, nursing facilities) to compile an accurate and complete medication list. About 30% of all patients admitted to the hospital are served by the PTMR program, which averages more than 500 cases each month. During one three-month period, 1748 discrepancies on preadmission medication lists were identified, most of which involved the omission of drugs (65.7% of cases) and incorrect information on dose and frequency of use (14.4%). Efforts to overcome resource constraints and other program challenges (e.g., privacy concerns, delays in community pharmacy transmittal of prescription refill lists) are ongoing. To date, most research on PTMR has been conducted in emergency departments or perioperative settings; experience with the PTMR program suggests that this approach can be applied in other hospital areas to improve MR processes and, ultimately, enhance pharmacotherapy safety and effectiveness across transitions of care. Based on experience, providers' perspectives, and QI data, the PTMR program is an effective method to obtain, document, and communicate accurate MR data for patients at this institution.
Delta II JPSS-1 Spacecraft Arrival
2017-09-01
Technicians at Vandenberg Air Force Base in California inspect the shipping container for the Joint Polar Satellite System-1, or JPSS-1, as it arrives at the Astrotech Processing Facility. JPSS is the first in a series four next-generation environmental satellites in a collaborative program between the National Oceanic and Atmospheric Administration (NOAA) and NASA. The satellite is scheduled to liftoff Nov. 10, 2017 atop a United Launch Alliance Delta II rocket.
2009-05-05
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, technicians place equipment in the Resupply Stowage Platform, or RSP, to be installed in the multi-purpose logistics module Leonardo. The module is part of the payload for space shuttle Discovery's STS-128 mission. Discovery will carry science and storage racks to the International Space Station . Launch of Discovery is targeted for Aug. 6. Photo credit: NASA/Kim Shiflett
2013-11-06
CAPE CANAVERAL, Fla. – Engineers and technicians move NASA's MAVEN spacecraft, inside payload fairing inside the Payload Hazardous Servicing Facility, or PHSF, into the airlock for mounting to a trailer for transport to Space Launch Complex 41 where it will be hoisted atop a United Launch Alliance Atlas V rocket that will lift it into space and on to Mars. MAVEN is short for Mars Atmosphere and Volatile Evolution. Photo credit: NASA/Kim Shiflett
2013-11-06
CAPE CANAVERAL, Fla. – Engineers and technicians move NASA's MAVEN spacecraft, inside payload fairing inside the Payload Hazardous Servicing Facility, or PHSF, into the airlock for mounting to a trailer for transport to Space Launch Complex 41 where it will be hoisted atop a United Launch Alliance Atlas V rocket that will lift it into space and on to Mars. MAVEN is short for Mars Atmosphere and Volatile Evolution. Photo credit: NASA/Kim Shiflett
2013-11-06
CAPE CANAVERAL, Fla. – Engineers and technicians move NASA's MAVEN spacecraft, inside payload fairing inside the Payload Hazardous Servicing Facility, or PHSF, into the airlock for mounting to a trailer for transport to Space Launch Complex 41 where it will be hoisted atop a United Launch Alliance Atlas V rocket that will lift it into space and on to Mars. MAVEN is short for Mars Atmosphere and Volatile Evolution. Photo credit: NASA/Kim Shiflett
2013-11-06
CAPE CANAVERAL, Fla. – Engineers and technicians move NASA's MAVEN spacecraft, inside payload fairing inside the Payload Hazardous Servicing Facility, or PHSF, into the airlock for mounting to a trailer for transport to Space Launch Complex 41 where it will be hoisted atop a United Launch Alliance Atlas V rocket that will lift it into space and on to Mars. MAVEN is short for Mars Atmosphere and Volatile Evolution. Photo credit: NASA/Kim Shiflett
2004-04-05
KENNEDY SPACE CENTER, FLA. -- United Space Alliance (USA) technicians Mike Williams (left) and R. Justin Hopmann (right) lift the thermal blanket insulation into Discovery’s nose cap, which is under a protective cover and seated above them on a work stand. The work is being done in a low bay area outside the Orbiter Processing Facility. Discovery is the orbiter named as the vehicle for Return to Flight with mission STS-114.
2009-04-01
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, technicians oversee the lifting of the control moment gyro, or CMG, from its container. The CMG is part of the payload on the STS-129 mission to the International Space Station. On the mission, space shuttle Atlantis also will deliver the orbital spares and replacement parts to sustain the life of the station. Photo credit: NASA/Troy Cryder
2007-04-10
In Astrotech's Payload Processing Facility, technicians help secure the Dawn spacecraft onto a moveable stand. Dawn will be moved into clean room C for unbagging and further processing. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C.
2009-08-21
CAPE CANAVERAL, Fla. – In NASA Kennedy Space Center's Orbiter Processing Facility 1, technicians begin a functional test on the orbital docking system on space shuttle Atlantis. The STS-129 mission will deliver to the International Space Station two spare gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. STS-129 is targeted to launch Nov. 12. Photo credit: NASA/Kim Shiflett
2009-08-21
CAPE CANAVERAL, Fla. – In NASA Kennedy Space Center's Orbiter Processing Facility 1, technicians prepare to test the orbital docking system on space shuttle Atlantis. The STS-129 mission will deliver to the International Space Station two spare gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. STS-129 is targeted to launch Nov. 12. Photo credit: NASA/Kim Shiflett
2009-08-21
CAPE CANAVERAL, Fla. – In NASA Kennedy Space Center's Orbiter Processing Facility 1, technicians begin testing the orbital docking system on space shuttle Atlantis. The STS-129 mission will deliver to the International Space Station two spare gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. STS-129 is targeted to launch Nov. 12. Photo credit: NASA/Kim Shiflett
2017-12-08
NASA Kennedy Space Center's Engineering Directorate held a banner signing event in the Prototype Development Laboratory to mark the successful delivery of a liquid oxygen test tank, called Tardis. Engineers and technicians worked together to develop the tank and build it to support cryogenic testing at Johnson Space Center's White Stands Test Facility in Las Cruces, New Mexico. The 12-foot-tall, 3,810-pound aluminum tank will be shipped to White Sands for testing.
2002-01-03
KENNEDY SPACE CENTER, FLA. -- During a tour of KSC, former President Jimmy Carter is shown packages of food that are used on the International Space Station. Astronaut Scott Kelly (far left) relates how the food is prepared and how it tastes. Behind and to the left of Carter is Tip Talone, director of Payload Processing, International Space Station. At the far right is Ron Woods, a technician in the Flight Crew Equipment Facility
1967-11-07
A technician checks the systems of the Saturn V instrument unit in a test facility in Huntsville. This instrument unit was flown aboard Apollo 4 on November 7, 1967, which was the first test flight of the Saturn V. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.
STS-88 crew members and technicians participate in their CEIT in the SSPF
NASA Technical Reports Server (NTRS)
1997-01-01
Mission Specialist Jerry Ross participates in the Crew Equipment Interface Test (CEIT) for STS-88 in KSC's Space Station Processing Facility. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. STS-88, the first International Space Station assembly flight, is targeted for launch in July 1998 aboard Space Shuttle Endeavour.
2011-03-31
CAPE CANAVERAL, Fla. - Technicians carefully remove main engine No. 3 from space shuttle Discovery using a specially designed engine installer, called a Hyster forklift. The work is taking place in Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida. The removal is part of Discovery's transition and retirement processing. Work performed on Discovery is expected to help rocket designers build next-generation spacecraft and prepare the shuttle for future public display. NASA/Jim Grossmann
2011-03-31
CAPE CANAVERAL, Fla. - Technicians carefully remove main engine No. 3 from space shuttle Discovery using a specially designed engine installer, called a Hyster forklift. The work is taking place in Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida. The removal is part of Discovery's transition and retirement processing. Work performed on Discovery is expected to help rocket designers build next-generation spacecraft and prepare the shuttle for future public display. NASA/Jim Grossmann
2011-03-31
CAPE CANAVERAL, Fla. - Technicians carefully remove main engine No. 3 from space shuttle Discovery using a specially designed engine installer, called a Hyster forklift. The work is taking place in Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida. The removal is part of Discovery's transition and retirement processing. Work performed on Discovery is expected to help rocket designers build next-generation spacecraft and prepare the shuttle for future public display. NASA/Jim Grossmann
2011-03-31
CAPE CANAVERAL, Fla. - Technicians carefully remove main engine No. 3 from space shuttle Discovery using a specially designed engine installer, called a Hyster forklift. The work is taking place in Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida. The removal is part of Discovery's transition and retirement processing. Work performed on Discovery is expected to help rocket designers build next-generation spacecraft and prepare the shuttle for future public display. NASA/Jim Grossmann
2009-04-01
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, technicians help guide the control moment gyroscope, or CMG, onto the small adapter plate assembly. The CMG is part of the payload on the STS-129 mission to the International Space Station. On the mission, space shuttle Atlantis also will deliver the orbital spares and replacement parts to sustain the life of the station. Photo credit: NASA/Troy Cryder
2003-01-05
KENNEDY SPACE CENTER, FLA. -- In the Multi-Purpose Processing Facility, a technician cleans NASA's Solar Radiation and Climate Experiment (SORCE) before its mating to the Pegasus XL Expendable Launch Vehicle. Built by Orbital Sciences Space Systems Group, SORCE will study and measure solar irradiance as a source of energy in the Earth's atmosphere. The launch of SORCE is scheduled for Jan. 25 at 3:14 p.m. from Cape Canaveral Air Force Station, Fla.
STS-104 crewmembers in Building 9NW
2001-01-17
JSC2001-00083 (January 2001) --- Several members of the STS-104 crew, assisted by suit technician Jim Cheatham, don training versions of the full-pressure launch and entry suit prior to a training session in one of the trainer/mockups (out of frame) in the Johnson Space Centers Systems Integration Facility. Pictured (from right foreground) are astronauts James F. Reilly, Janet L. Kavandi, Michael L. Gernhardt, and Charles O. Hobaugh.
2012-04-03
CAPE CANAVERAL, Fla. – Inside Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida, Mike Williams, a thermal protection system technician with United Space Alliance, applies adhesive to the right wing of space shuttle Endeavour in preparation for tile bonding. Ongoing transition and retirement activities are preparing the spacecraft for public display at the California Science Center in Los Angeles. Endeavour flew 25 missions during its 19-year career. Photo credit: NASA/Cory Huston
2003-10-30
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, technicians make final adjustments to the orbital maneuvering system (OMS) pod being installed on Atlantis. The OMS pod is one of two that are attached to the upper aft fuselage left and right sides. Fabricated primarily of graphite epoxy composite and aluminum, each pod is 21.8 feet long and 11.37 feet wide at its aft end and 8.41 feet wide at its forward end, with a surface area of approximately 435 square feet. Each pod houses the Reaction Control System propulsion components used for inflight maneuvering and is attached to the aft fuselage with 11 bolts.
Technicians at General Atomics Aeronautical Systems, Inc., (GA-ASI) facility at Adelanto, Calif., ca
NASA Technical Reports Server (NTRS)
2002-01-01
Technicians at General Atomics Aeronautical Systems, Inc., (GA-ASI) facility at Adelanto, Calif., carefully thread control lines through a bulkhead during engine installation on NASA's Altair aircraft. General Atomics Aeronautical Systems, Inc., is developing the Altair version of its Predator B unmanned reconnaissance aircraft under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. NASA plans to use the Altair as a technology demonstrator to validate a variety of command and control technologies for UAVs, as well as demonstrate the capability to perform a variety of Earth science missions. The Altair is designed to carry an 700-lb. payload of scientific instruments and imaging equipment for as long as 32 hours at up to 52,000 feet altitude. Eleven-foot extensions have been added to each wing, giving the Altair an overall wingspan of 86 feet with an aspect ratio of 23. It is powered by a 700-hp. rear-mounted TPE-331-10 turboprop engine, driving a three-blade propeller. Altair is scheduled to begin flight tests in the fourth quarter of 2002, and be acquired by NASA following successful completion of basic airworthiness tests in early 2003 for evaluation of over-the-horizon control, detect, see and avoid and other technologies required to allow UAVs to operate safely with other aircraft in the national airspace.
2003-08-07
KENNEDY SPACE CENTER, FLA. - Working from a stand, technicians fasten the upper portion of the canister to the middle panels around the Space Infrared Telescope Facility (SIRTF). The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.
2011-03-09
VANDENBERG AIR FORCE BASE, Calif. --Before the sun rises over Vandenberg Air Force Base in California, United Launch Alliance technicians prepare to move one of three Delta II solid rocket motors from the solid motor facility to Space Launch Complex-2 West (SLC-2W) atop a tug. ULA technician Eric Chambless is in the tug's driver seat. Scheduled to launch in June, the Delta II rocket will carry NASA's Aquarius satellite into low Earth orbit. Aquarius' mission will be to provide monthly maps of global changes in sea surface salinity. By measuring ocean salinity from space, Aquarius will provide new insights into how the massive natural exchange of freshwater between the ocean, atmosphere and sea ice influences ocean circulation, weather and climate. Also going up with the satellite are optical and thermal cameras, a microwave radiometer and the SAC-D spacecraft, which were developed with the help of institutions in Italy, France, Canada and Argentina. Photo credit: VAFB/30th Space Wing
Protocols for Handling Messages Between Simulation Computers
NASA Technical Reports Server (NTRS)
Balcerowski, John P.; Dunnam, Milton
2006-01-01
Practical Simulator Network (PSimNet) is a set of data-communication protocols designed especially for use in handling messages between computers that are engaging cooperatively in real-time or nearly-real-time training simulations. In a typical application, computers that provide individualized training at widely dispersed locations would communicate, by use of PSimNet, with a central host computer that would provide a common computational- simulation environment and common data. Originally intended for use in supporting interfaces between training computers and computers that simulate the responses of spacecraft scientific payloads, PSimNet could be especially well suited for a variety of other applications -- for example, group automobile-driver training in a classroom. Another potential application might lie in networking of automobile-diagnostic computers at repair facilities to a central computer that would compile the expertise of numerous technicians and engineers and act as an expert consulting technician.
2012-02-01
CAPE CANAVERAL, Fla. – Technicians monitor the progress as Space shuttle Endeavour is backed away from the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida so that it can be towed to Orbiter Processing Facility-2 (OPF-2). Shuttle Endeavour will remain in OPF-2 so that the orbiter maneuvering system (OMS) pods and forward reaction control system can be installed. Technicians also will offload water and Freon gas from lines located in Endeavour’s midbody. The work is part of Endeavour’s transition and retirement processing. The spacecraft is being prepared for public display at the California Science Center in Los Angeles. Endeavour flew 25 missions, spent 299 days in space, orbited Earth 4,671 times and traveled 122, 883, 151 miles over the course of its 19-year career. Endeavour’s STS-134 and final mission was completed after landing on June 1, 2011. Photo credit: Kim Shiflett
2012-06-07
CAPE CANAVERAL, Fla. – Using a black light, technicians closely inspect a solar panel on one of NASA's twin Radiation Belt Storm Probes inside the clean room high bay at the Astrotech payload processing facility near NASA’s Kennedy Space Center in Florida. The technicians are dressed in clean-room attire known as “bunny suits.” Black-light inspection uses UVA fluorescence to detect possible microcontamination, small cracks or fluid leaks. The Radiation Belt Storm Probes, or RBSP, mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth's Van Allen radiation belts and the extremes of space weather after its launch aboard a United Launch Alliance Atlas V rocket. Launch is targeted for Aug. 23. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Jim Grossmann
2012-06-07
CAPE CANAVERAL, Fla. – Working in near-darkness inside the clean room high bay at the Astrotech payload processing facility near NASA’s Kennedy Space Center in Florida, technicians use black lights to inspect a solar panel on one of NASA's twin Radiation Belt Storm Probes. The technicians are dressed in clean-room attire known as “bunny suits.” Black-light inspection uses UVA fluorescence to detect possible microcontamination, small cracks or fluid leaks. The Radiation Belt Storm Probes, or RBSP, mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth's Van Allen radiation belts and the extremes of space weather after its launch aboard a United Launch Alliance Atlas V rocket. Launch is targeted for Aug. 23. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Jim Grossmann
2012-06-07
CAPE CANAVERAL, Fla. – Using a black light, technicians closely inspect a solar panel on one of NASA's twin Radiation Belt Storm Probes inside the clean room high bay at the Astrotech payload processing facility near NASA’s Kennedy Space Center in Florida. The technicians are dressed in clean-room attire known as “bunny suits.” Black-light inspection uses UVA fluorescence to detect possible microcontamination, small cracks or fluid leaks. The Radiation Belt Storm Probes, or RBSP, mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth's Van Allen radiation belts and the extremes of space weather after its launch aboard a United Launch Alliance Atlas V rocket. Launch is targeted for Aug. 23. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Jim Grossmann
2012-06-07
CAPE CANAVERAL, Fla. – Using a black light, technicians closely inspect a solar panel on one of NASA's twin Radiation Belt Storm Probes inside the clean room high bay at the Astrotech payload processing facility near NASA’s Kennedy Space Center in Florida. The technicians are dressed in clean-room attire known as “bunny suits.” Black-light inspection uses UVA fluorescence to detect possible microcontamination, small cracks or fluid leaks. The Radiation Belt Storm Probes, or RBSP, mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth's Van Allen radiation belts and the extremes of space weather after its launch aboard a United Launch Alliance Atlas V rocket. Launch is targeted for Aug. 23. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Jim Grossmann
2012-06-07
CAPE CANAVERAL, Fla. – Working in near-darkness inside the clean room high bay at the Astrotech payload processing facility near NASA’s Kennedy Space Center in Florida, technicians use black lights to inspect a solar panel on one of NASA's twin Radiation Belt Storm Probes. The technicians are dressed in clean-room attire known as “bunny suits.” Black-light inspection uses UVA fluorescence to detect possible microcontamination, small cracks or fluid leaks. The Radiation Belt Storm Probes, or RBSP, mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth's Van Allen radiation belts and the extremes of space weather after its launch aboard a United Launch Alliance Atlas V rocket. Launch is targeted for Aug. 23. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Jim Grossmann
2012-02-16
VANDENBERG AIR FORCE BASE, Calif. -- Technicians watch closely as NASA's NuSTAR spacecraft is Under the watchful eyes of technicians, NASA's NuSTAR spacecraft is lifted inside Orbital Sciences' processing facility at Vandenberg Air Force Base, Calif. The spacecraft will be rotated to horizontal for joining with the Pegasus XL rocket. The Orbital Sciences Pegasus will launch NASA's Nuclear Spectroscopic Telescope Array NuSTAR into space. After the rocket and spacecraft are processed at Vandenberg, they will be flown on Orbital's L-1011 carrier aircraft to the Ronald Reagan Ballistic Missile Defense Test Site at the Pacific Ocean’s Kwajalein Atoll for launch. The high-energy x-ray telescope will conduct a census for black holes, map radioactive material in young supernovae remnants, and study the origins of cosmic rays and the extreme physics around collapsed stars. For more information, visit science.nasa.gov/missions/nustar/. Photo credit: NASA/Randy Beaudoin, VAFB
2012-02-17
VANDENBERG AIR FORCE BASE, Calif. – Inside an environmental enclosure at Vandenberg Air Force Base's processing facility in California, technicians monitor NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR, secured inside a turnover rotation fixture, as it moves toward interface with its Orbital Sciences Pegasus XL rocket. The technicians are dressed in clean room attire, known as bunny suits. The conjoining of the spacecraft with the rocket is a major milestone in prelaunch preparations. After processing of the rocket and spacecraft are complete, they will be flown on Orbital's L-1011 carrier aircraft from Vandenberg to the Ronald Reagan Ballistic Missile Defense Test Site on the Pacific Ocean’s Kwajalein Atoll for launch. The high-energy x-ray telescope will conduct a census of black holes, map radioactive material in young supernovae remnants, and study the origins of cosmic rays and the extreme physics around collapsed stars. For more information, visit http://www.nasa.gov/nustar. Photo credit: NASA/Randy Beaudoin, VAFB
[Quality management and participation into clinical database].
Okubo, Suguru; Miyata, Hiroaki; Tomotaki, Ai; Motomura, Noboru; Murakami, Arata; Ono, Minoru; Iwanaka, Tadashi
2013-07-01
Quality management is necessary for establishing useful clinical database in cooperation with healthcare professionals and facilities. The ways of management are 1) progress management of data entry, 2) liaison with database participants (healthcare professionals), and 3) modification of data collection form. In addition, healthcare facilities are supposed to consider ethical issues and information security for joining clinical databases. Database participants should check ethical review boards and consultation service for patients.
2010-11-24
CAPE CANAVERAL, Fla. -- The finishing touches of the Propellants North Administrative and Maintenance Facility begin to take place at NASA's Kennedy Space Center in Florida. Inside the green facility is window glazing and framing from the iconic firing rooms of Kennedy's Launch Control Center (LCC). The windows are set at the same orientation and angle as they were in the LCC, looking out toward Launch Complex 39. The facility also features sustainable flooring made of polished concrete and laminated bamboo, as well as a high-efficiency roof and walls. This is the facility's two-story administrative building, which will house managers, mechanics and technicians who fuel spacecraft at Kennedy. Next door is a single-story shop that will be used to store cryogenic fuel transfer equipment. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design (LEED) Platinum certification, which is the highest of LEED ratings. The facility, set to be complete in December 2010, was designed for NASA by Jones Edmunds and Associates. H. W. Davis Construction is the construction contractor. Photo credit: NASA/Frankie Martin
GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate
2016-10-27
Technicians with United Launch Alliance (ULA) assist as the solid rocket motor is mated to the ULA Atlas V rocket in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. NOAA's Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.
GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate
2016-10-27
Technicians with United Launch Alliance (ULA) monitor the progress as the solid rocket motor is mated to the ULA Atlas V rocket in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. NOAA's Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.
Delta II JPSS-1 Spacecraft Arrival
2017-09-01
A technician at Vandenberg Air Force Base in California inspects the shipping container for the Joint Polar Satellite System-1, or JPSS-1, as it arrives at the Astrotech Processing Facility. JPSS is the first in a series four next-generation environmental satellites in a collaborative program between the National Oceanic and Atmospheric Administration (NOAA) and NASA. The satellite is scheduled to liftoff Nov. 10, 2017 atop a United Launch Alliance Delta II rocket.
2013-11-06
CAPE CANAVERAL, Fla. – Engineers and technicians get ready to move NASA's MAVEN spacecraft, inside payload fairing inside the Payload Hazardous Servicing Facility, or PHSF, into the airlock for mounting to a trailer for transport to Space Launch Complex 41 where it will be hoisted atop a United Launch Alliance Atlas V rocket that will lift it into space and on to Mars. MAVEN is short for Mars Atmosphere and Volatile Evolution. Photo credit: NASA/Kim Shiflett
2004-04-05
KENNEDY SPACE CENTER, FLA. -- United Space Alliance (USA) technicians Mike Williams (left), Pearl Richardson (center) and R. Justin Hopmann get ready to lift the thermal blanket insulation into Discovery’s nose cap, which is under a protective cover and seated above on a work stand. The work is being done in a low bay area outside the Orbiter Processing Facility. Discovery is the orbiter named as the vehicle for Return to Flight with mission STS-114.
2007-04-11
KENNEDY SPACE CENTER, FLA. -- In Astrotech's Payload Processing Facility, technicians roll the Dawn spacecraft into clean room C for unbagging and further processing. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C. Photo credit: NASA/George Shelton
1983-05-24
S83-32568 (23 May 1983) --- Astronaut Sally K. Ride, STS-7 mission specialist, straps herself into a seat in the Shuttle Mission Simulator (SMS) in Johnson Space Center?s Mission Simulation and Training Facility. Dr. Ride and the other STS-7 crew members continue their simulations in the motion base simulator in preparation for their flight in the space shuttle Challenger. Launch is scheduled for June 18. Troy Stewart, suit technician, assisted Dr. Ride. Photo credit: NASA
Closeup view of a Space Shuttle Main Engine (SSME) installed ...
Close-up view of a Space Shuttle Main Engine (SSME) installed in position number one on the Orbiter Discovery. A ground-support mobile platform is in place below the engine to assist in technicians with the installation of the engine. This Photograph was taken in the Orbiter Processing Facility at the Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
2017-12-08
Workers sign the banner marking the successful delivery of a liquid oxygen test tank, called Tardis, in the Prototype Development Laboratory at NASA's Kennedy Space Center in Florida. Engineers and technicians worked together to develop the tank and build it at the lab to support cryogenic testing at Johnson Space Center's White Sands Test Facility in Las Cruces, New Mexico. The 12-foot-tall, 3,810-pound aluminum tank will be shipped to White Sands for testing.
Delta II JPSS-1 Spacecraft Shipment to VAFB to Ball Aerospace Fa
2017-08-31
Inside the Astrotech Processing Facility at Vandenberg Air Force Base in California, technicians and engineers remove protective wrapping from the Joint Polar Satellite System-1, or JPSS-1. JPSS is the first in a series four next-generation environmental satellites in a collaborative program between the National Oceanic and Atmospheric Administration (NOAA) and NASA. The satellite is scheduled to liftoff Nov. 10, 2017 atop a United Launch Alliance Delta II rocket.
STS-52 Pilot Baker, in LES, dons parachute during JSC WETF bailout exercises
NASA Technical Reports Server (NTRS)
1992-01-01
STS-52 Columbia, Orbiter Vehicle (OV) 102, Pilot Michael A. Baker is assisted with a training version of his Shuttle partial-pressure launch and entry suit (LES). A technician adjusts his parachute harness prior to the emergency egress (bailout) training exercise in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. The WETF's 25-ft deep pool will be used in this simulation of a water landing.
Saturn V Instrument Unit Being Checked At MSFC
NASA Technical Reports Server (NTRS)
1967-01-01
A technician checks the systems of the Saturn V instrument unit in a test facility in Huntsville. This instrument unit was flown aboard Apollo 4 on November 7, 1967, which was the first test flight of the Saturn V. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.
2011-04-01
CAPE CANAVERAL, Fla. - Technicians complete the removal of main engine No. 1 from space shuttle Discovery using a specially designed engine installer, called a Hyster forklift. The work is taking place in Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida. The removal is part of Discovery's transition and retirement processing. Work performed on Discovery is expected to help rocket designers build next-generation spacecraft and prepare the shuttle for future public display. Photo credit: NASA/Jack Pfaller
2011-04-01
CAPE CANAVERAL, Fla. - Technicians complete the removal of main engine No. 1 from space shuttle Discovery using a specially designed engine installer, called a Hyster forklift. The work is taking place in Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida. The removal is part of Discovery's transition and retirement processing. Work performed on Discovery is expected to help rocket designers build next-generation spacecraft and prepare the shuttle for future public display. Photo credit: NASA/Jack Pfaller
2011-04-01
CAPE CANAVERAL, Fla. - Technicians carefully remove main engine No. 1 from space shuttle Discovery using a specially designed engine installer, called a Hyster forklift. The work is taking place in Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida. The removal is part of Discovery's transition and retirement processing. Work performed on Discovery is expected to help rocket designers build next-generation spacecraft and prepare the shuttle for future public display. Photo credit: NASA/Jack Pfaller
2011-04-01
CAPE CANAVERAL, Fla. - Technicians complete the removal of main engine No. 1 from space shuttle Discovery using a specially designed engine installer, called a Hyster forklift. The work is taking place in Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida. The removal is part of Discovery's transition and retirement processing. Work performed on Discovery is expected to help rocket designers build next-generation spacecraft and prepare the shuttle for future public display. Photo credit: NASA/Jack Pfaller
2011-04-01
CAPE CANAVERAL, Fla. - Technicians carefully remove main engine No. 1 from space shuttle Discovery using a specially designed engine installer, called a Hyster forklift. The work is taking place in Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida. The removal is part of Discovery's transition and retirement processing. Work performed on Discovery is expected to help rocket designers build next-generation spacecraft and prepare the shuttle for future public display. Photo credit: NASA/Jack Pfaller
2011-04-01
CAPE CANAVERAL, Fla. - Technicians complete the removal of main engine No. 1 from space shuttle Discovery using a specially designed engine installer, called a Hyster forklift. The work is taking place in Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida. The removal is part of Discovery's transition and retirement processing. Work performed on Discovery is expected to help rocket designers build next-generation spacecraft and prepare the shuttle for future public display. Photo credit: NASA/Jack Pfaller
2011-04-01
CAPE CANAVERAL, Fla. - Technicians complete the removal of main engine No. 1 from space shuttle Discovery using a specially designed engine installer, called a Hyster forklift. The work is taking place in Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida. The removal is part of Discovery's transition and retirement processing. Work performed on Discovery is expected to help rocket designers build next-generation spacecraft and prepare the shuttle for future public display. Photo credit: NASA/Jack Pfaller
2011-04-01
CAPE CANAVERAL, Fla. - Technicians carefully remove main engine No. 1 from space shuttle Discovery using a specially designed engine installer, called a Hyster forklift. The work is taking place in Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida. The removal is part of Discovery's transition and retirement processing. Work performed on Discovery is expected to help rocket designers build next-generation spacecraft and prepare the shuttle for future public display. Photo credit: NASA/Jack Pfaller
2011-04-01
CAPE CANAVERAL, Fla. - Technicians carefully remove main engine No. 1 from space shuttle Discovery using a specially designed engine installer, called a Hyster forklift. The work is taking place in Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida. The removal is part of Discovery's transition and retirement processing. Work performed on Discovery is expected to help rocket designers build next-generation spacecraft and prepare the shuttle for future public display. Photo credit: NASA/Jack Pfaller
2011-03-31
CAPE CANAVERAL, Fla. - Technicians complete the removal of main engine No. 3 from space shuttle Discovery using a specially designed engine installer, called a Hyster forklift. The work is taking place in Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida. The removal is part of Discovery's transition and retirement processing. Work performed on Discovery is expected to help rocket designers build next-generation spacecraft and prepare the shuttle for future public display. NASA/Jim Grossmann
2011-04-01
CAPE CANAVERAL, Fla. - Technicians complete the removal of main engine No. 1 from space shuttle Discovery using a specially designed engine installer, called a Hyster forklift. The work is taking place in Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida. The removal is part of Discovery's transition and retirement processing. Work performed on Discovery is expected to help rocket designers build next-generation spacecraft and prepare the shuttle for future public display. Photo credit: NASA/Jack Pfaller
2011-04-01
CAPE CANAVERAL, Fla. - Technicians carefully remove main engine No. 1 from space shuttle Discovery using a specially designed engine installer, called a Hyster forklift. The work is taking place in Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida. The removal is part of Discovery's transition and retirement processing. Work performed on Discovery is expected to help rocket designers build next-generation spacecraft and prepare the shuttle for future public display. Photo credit: NASA/Jack Pfaller
2011-03-31
CAPE CANAVERAL, Fla. - Technicians complete the removal of main engine No. 3 from space shuttle Discovery using a specially designed engine installer, called a Hyster forklift. The work is taking place in Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida. The removal is part of Discovery's transition and retirement processing. Work performed on Discovery is expected to help rocket designers build next-generation spacecraft and prepare the shuttle for future public display. NASA/Jim Grossmann
2009-04-01
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, technicians help guide the control moment gyroscope, or CMG, toward the small adapter plate assembly below. The CMG is part of the payload on the STS-129 mission to the International Space Station. On the mission, space shuttle Atlantis also will deliver the orbital spares and replacement parts to sustain the life of the station. Photo credit: NASA/Troy Cryder
2012-04-03
CAPE CANAVERAL, Fla. – Inside Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida, Mike Williams, a thermal protection system technician with United Space Alliance, crouches on space shuttle Endeavour's right wing as he prepares the wing surface for tile bonding. Ongoing transition and retirement activities are preparing the spacecraft for public display at the California Science Center in Los Angeles. Endeavour flew 25 missions during its 19-year career. Photo credit: NASA/Cory Huston
2008-10-01
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, STS-127 crew members get a look at the extended antenna in the Inter Orbit Communication System Extended Facility, or ICS-EF, across from them. Standing next to a Japanese Aerospace Exploration Agency, or JAXA, technician at left are Mission Specialists Christopher Cassidy and Dave Wolf and Commander Mark Polansky (pointing). Equipment familiarization is part of a Crew Equipment Interface Test. The antenna and a pointing mechanism will be used to communicate with JAXA’s Data Relay Test Satellite, or DRTS. The ICS-EF will be launched, along with the Extended Facility and Experiment Logistics Module-Exposed Section, to the International Space Station aboard the space shuttle Endeavour on the STS-127 mission targeted for launch on May 15, 2009. Photo credit: NASA/Kim Shiflett
2008-10-01
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, STS-127 crew members get a look at the extended antenna (upper left) in the Inter Orbit Communication System Extended Facility, or ICS-EF. Standing next to a Japanese Aerospace Exploration Agency, or JAXA, technician (at center) are (from left) Mission Specialists Dave Wolf and Christopher Cassidy and Commander Mark Polansky. Equipment familiarization is part of a Crew Equipment Interface Test. The antenna and a pointing mechanism will be used to communicate with JAXA’s Data Relay Test Satellite, or DRTS. The ICS-EF will be launched, along with the Extended Facility and Experiment Logistics Module-Exposed Section, to the International Space Station aboard the space shuttle Endeavour on the STS-127 mission targeted for launch on May 15, 2009. Photo credit: NASA/Kim Shiflett
2009-03-26
CAPE CANAVERAL, Fla. – In the Rotation, Processing and Surge Facility at NASA's Kennedy Space Center in Florida, technicians check the fit of the end cover on the Ares I-X motor segment. It is one of four reusable motor segments and nozzle exit cone shipped by the Ares I first-stage prime contractor Alliant Techsystems Inc. for final processing and integration in the facility. The booster used for the Ares I-X launch is being modified by adding new forward structures and a fifth segment simulator. The motor is the final hardware needed for the rocket's upcoming flight test this summer. The stacking operations are scheduled to begin in the Vehicle Assembly Building in April. Photo credit: NASA/Jim Grossmann
2009-03-26
CAPE CANAVERAL, Fla. – In the Rotation, Processing and Surge Facility at NASA's Kennedy Space Center in Florida, a technician begins propellant grain inspection of the interior of the Ares I-X motor segment. It is one of four reusable motor segments and nozzle exit cone shipped by the Ares I first-stage prime contractor Alliant Techsystems Inc. for final processing and integration in the facility. The booster used for the Ares I-X launch is being modified by adding new forward structures and a fifth segment simulator. The motor is the final hardware needed for the rocket's upcoming flight test this summer. The stacking operations are scheduled to begin in the Vehicle Assembly Building in April. Photo credit: NASA/Jim Grossmann
2009-03-26
CAPE CANAVERAL, Fla. – In the Rotation, Processing and Surge Facility at NASA's Kennedy Space Center in Florida, a technician performs propellant grain inspection of the inside of the Ares I-X motor segment. It is one of four reusable motor segments and nozzle exit cone shipped by the Ares I first-stage prime contractor Alliant Techsystems Inc. for final processing and integration in the facility. The booster used for the Ares I-X launch is being modified by adding new forward structures and a fifth segment simulator. The motor is the final hardware needed for the rocket's upcoming flight test this summer. The stacking operations are scheduled to begin in the Vehicle Assembly Building in April. Photo credit: NASA/Jim Grossmann
1999-03-26
In the Vertical Processing Facility, TRW technicians look at the point of attachment on the Chandra X-ray Observatory, at left, for the solar panel array (behind them). They are getting ready to attach and deploy the solar panel. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93
2008-03-05
KENNEDY SPACE CENTER, FLA. -- General Dynamics technicians in the Astrotech payload processing facility remove the protective cover over NASA's Gamma-Ray Large Area Space Telescope, or GLAST. The space telescope will be moved to a work stand in the facility for a complete checkout of the scientific instruments aboard. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Kim Shiflett
Capabilities of the Materials Contamination Team at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Burns, Howard; Albyn, Keith; Edwards, David; Boothe, Richard; Finchum, Charles; Finckenor, Miria
2003-01-01
The Materials Contamination Team at the Marshall Space Flight Center (MSFC) has been recognized for its contributions supporting the National Aeronautics and Space Administration (NASA) spacecraft development programs. These programs include the Reusable Solid Rocket Motor (RSRM), Chandra X-Ray Observatory, and the International Space Station (ISS). The Environmental Effects Group, with the Materials Contamination Team and the Space Environmental Effects Team has been an integral part of NASA's success by the testing, evaluation, and qualification of materials, hardware, and processes. This paper focuses on the capabilities of the Materials Contamination Team. The Materials Contamination Team's realm of responsibility includes establishing contamination control during all phases of hardware development, including design, manufacturing, assembly, test, transportation, launch site processing, on-orbit exposure, return, and refurbishment. The team continues its mission of reducing the risk of equipment failure due to molecular or particulate contamination. Contamination is a concern in the Space Shuttle with sensitive bond-lines and reactive fluid (liquid oxygen) compatibility as well as for spacecraft with sensitive optics, such as Hubble Space Telescope and Chandra X-ray Observatory. The Materials Contamination Team has a variety of facilities and instrumentation capable of contaminant detection, identification, and monitoring. The team addresses material applications dealing with environments, including production facilities, clean rooms, and on-orbit exposure. The optically stimulated electron emission (OSEE) system, the Ultraviolet (UV) fluorescence (UVF) surface contamination detection, and the Surface Optics Corporation 400 (SOC 400) portable hand-held Fourier Transform Infrared (FTIR) spectrometer are state-of-the-art tools for in-process molecular contamination detection. The team of engineers and technicians also develop contamination calibration standards and evaluate new surface cleanliness inspection technologies. The team utilizes facilities for on-orbit simulation testing of materials for outgassing and molecular film deposition characteristics in the presence of space environmental effects, such as Atomic Oxygen (AO) and UV radiation exposure. The Materials Contamination Team maintains databases for process materials as well as outgassing and optical compatibility test results for specific environments.
2005-12-07
KENNEDY SPACE CENTER, FLA. -- In NASA Kennedy Space Center’s Orbiter Processing Facility Bay 1, technicians check details for the installation of the forward reaction control system on Atlantis (behind them). The control system fits just behind the nose cone and provides the thrust for attitude (rotational) maneuvers (pitch, yaw and roll) and for small velocity changes along the orbiter axis (translation maneuvers). Processing of Atlantis is under way for mission STS-115, the 19th flight to the International Space Station.
2005-12-07
KENNEDY SPACE CENTER, FLA. -- In NASA Kennedy Space Center’s Orbiter Processing Facility Bay 1, a technician inspects a point of installation of the forward reaction control system on Atlantis. The control system fits just behind the nose cone and provides the thrust for attitude (rotational) maneuvers (pitch, yaw and roll) and for small velocity changes along the orbiter axis (translation maneuvers). Processing of Atlantis is under way for mission STS-115, the 19th flight to the International Space Station.
2004-10-05
KENNEDY SPACE CENTER, FLA. - Inside the KSC Engine Shop, Boeing-Rocketdyne technicians attach an overhead crane to the container enclosing the third Space Shuttle Main Engine for Discovery’s Return to Flight mission STS-114 arrives at the KSC Engine Shop aboard a trailer. The engine is returning from NASA’s Stennis Space Center in Mississippi where it underwent a hot fire acceptance test. Typically, the engines are installed on an orbiter in the Orbiter Processing Facility approximately five months before launch.
2007-04-11
KENNEDY SPACE CENTER, FLA. -- In clean room C of Astrotech's Payload Processing Facility, technicians dressed in "bunny suits," or clean-room attire, begin working on the Dawn spacecraft. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C. Photo credit: NASA/George Shelton
2007-05-28
KENNEDY SPACE CENTER, FLA. -- Inside Astrotech's Hazardous Processing Facility, technicians check the Dawn spacecraft as it is lowered onto a scale for weighing. Next, Dawn will be prepared for fueling. Dawn is scheduled to launch June 30 aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Photo credit: NASA/Charisse Nahser
2005-11-10
KENNEDY SPACE CENTER, FLA. - In NASA Kennedy Space Center’s Orbiter Processing Facility Bay 3, technicians install a remote manipulator system, or space shuttle arm, previously installed on the orbiter Atlantis, in Discovery’s payload bay. The arms were switched because the arm that was installed on Atlantis has special instrumentation to gather loads data from the second return-to-flight mission, STS-121. Discovery is the designated orbiter to fly on STS-121. scheduled to launch no earlier than May 2006.
2005-11-10
KENNEDY SPACE CENTER, FLA. - In NASA Kennedy Space Center’s Orbiter Processing Facility Bay 3, technicians install a remote manipulator system, or space shuttle arm, previously installed on the orbiter Atlantis, in Discovery’s payload bay. The arms were switched because the arm that was installed on Atlantis has special instrumentation to gather loads data from the second return-to-flight mission, STS-121. Discovery is the designated orbiter to fly on STS-121. scheduled to launch no earlier than May 2006.
2018-04-10
In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, technicians and engineers removed protective wrapping from the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS). ECOSTRESS is designed to monitor one of the most basic processes in living plants: the loss of water through the tiny pores in leaves. ECOSTRESS will launch to the International Space Station aboard a Dragon spacecraft launched by a Falcon 9 rocket on the SpaceX CRS-15 mission in June 2018.
2017-12-08
A liquid oxygen test tank was completed in the Prototype Development Laboratory at NASA's Kennedy Space Center in Florida. A banner signing event marked the successful delivery of the tank called Tardis. Engineers and technicians worked together to develop the tank and build it at the lab to support cryogenic testing at Johnson Space Center's White Sands Test Facility in Las Cruces, New Mexico. The 12-foot-tall, 3,810-pound aluminum tank will be shipped to White Sands for testing.
2017-12-08
Inside the Prototype Development Laboratory at NASA's Kennedy Space Center in Florida, workers in the lab hold a banner marking the successful delivery of a liquid oxygen test tank called Tardis. Engineers and technicians worked together to develop the tank to build it at the lab to support cryogenic testing at Johnson Space Center's White Sands Test Facility in Las Cruces, New Mexico. The 12-foot-tall, 3,810-pound aluminum tank will be shipped to White Sands for testing.
2017-12-08
NASA Kennedy Space Center's Engineering Director Pat Simpkins signs the banner marking the successful delivery of a liquid oxygen test tank, called Tardis, in the Prototype Development Laboratory at NASA's Kennedy Space Center in Florida. Engineers and technicians worked together to develop the tank and build it to support cryogenic testing at Johnson Space Center's White Stands Test Facility in Las Cruces, New Mexico. The 12-foot-tall, 3,810-pound aluminum tank will be shipped to White Sands for testing.
Chick, John F
2006-01-01
High rates of employee turnover are the source of a considerable loss of time and resources, but managers are not always aware of the reasons that motivate employees to stay in their positions. The author compares prominent theories of employee motivation and then puts them to the test by surveying 82 cagewashers, animal caretakers, animal technicians, and supervisors working in a laboratory animal facility to determine the job characteristics that motivate them.
Delta II JPSS-1 Spacecraft Arrival and Ofload
2017-09-01
The Joint Polar Satellite System-1, or JPSS-1, arrives at the Astrotech Processing Facility at Vandenberg Air Force Base in California. Technicians and engineers remove the the spacecraft from it shipping container. JPSS is the first in a series four next-generation environmental satellites in a collaborative program between the National Oceanic and Atmospheric Administration (NOAA) and NASA. The satellite is scheduled to liftoff later this year atop a United Launch Alliance Delta II rocket.
Cosmic-Ray Energetics and Mass (CREAM) Processing - Bonding
2017-06-20
In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, technicians and engineers inspect components for the Cosmic-Ray Energetics and Mass investigation, or CREAM, instrument. It is designed to measure the charges of cosmic rays to better understand what gives them such incredible energies, and how that effects the composition of the universe. The instrument will be launched to the space station on the SpaceX CRS-12 commercial resupply mission in August 2017.
Cosmic-Ray Energetics and Mass (CREAM) Processing - Bonding
2017-06-20
In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a technician remove a protective cover on the Cosmic-Ray Energetics and Mass investigation, or CREAM, instrument. It is designed to measure the charges of cosmic rays to better understand what gives them such incredible energies, and how that effects the composition of the universe. The instrument will be launched to the space station on the SpaceX CRS-12 commercial resupply mission in August 2017.
Cosmic-Ray Energetics and Mass (CREAM) Unbagging and Inspection
2017-06-22
In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, technicians and engineers inspect the Cosmic-Ray Energetics and Mass investigation, or CREAM, instrument. It is designed to measure the charges of cosmic rays to better understand what gives them such incredible energies, and how that effects the composition of the universe. The instrument will be launched to the space station on the SpaceX CRS-12 commercial resupply mission in August 2017.
Technicians at General Atomics Aeronautical Systems, Inc., (GA-ASI) facility at Adelanto, Calif., ca
NASA Technical Reports Server (NTRS)
2002-01-01
Technicians at General Atomics Aeronautical Systems, Inc., (GA-ASI) facility at Adelanto, Calif., carefully install a turboprop engine to the rear fuselage of NASA's Altair aircraft during final assembly operations. General Atomics Aeronautical Systems, Inc., is developing the Altair version of its Predator B unmanned reconnaissance aircraft under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. NASA plans to use the Altair as a technology demonstrator to validate a variety of command and control technologies for UAVs, as well as demonstrate the capability to perform a variety of Earth science missions. The Altair is designed to carry an 700-lb. payload of scientific instruments and imaging equipment for as long as 32 hours at up to 52,000 feet altitude. Eleven-foot extensions have been added to each wing, giving the Altair an overall wingspan of 86 feet with an aspect ratio of 23. It is powered by a 700-hp. rear-mounted TPE-331-10 turboprop engine, driving a three-blade propeller. Altair is scheduled to begin flight tests in the fourth quarter of 2002, and be acquired by NASA following successful completion of basic airworthiness tests in early 2003 for evaluation of over-the-horizon control, detect, see and avoid and other technologies required to allow UAVs to operate safely with other aircraft in the national airspace.
DOE handbook: Guide to good practices for training and qualification of maintenance personnel
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-03-01
The purpose of this Handbook is to provide contractor training organizations with information that can be used to verify the adequacy of and/or modify existing maintenance training programs, or to develop new training programs. This guide, used in conjunction with facility-specific job analyses, provides a framework for training and qualification programs for maintenance personnel at DOE reactor and nonreactor nuclear facilities. Recommendations for qualification are made in four areas: education, experience, physical attributes, and training. The functional positions of maintenance mechanic, electrician, and instrumentation and control technician are covered by this guide. Sufficient common knowledge and skills were found tomore » include the three disciplines in one guide to good practices. Contents include: qualifications; on-the-job training; trainee evaluation; continuing training; training effectiveness evaluation; and program records. Appendices are included which relate to: administrative training; industrial safety training; fundamentals training; tools and equipment training; facility systems and component knowledge training; facility systems and component skills training; and specialized skills training.« less
Pharmacy technician involvement in community pharmacy medication therapy management.
Lengel, Matthew; Kuhn, Catherine H; Worley, Marcia; Wehr, Allison M; McAuley, James W
To assess the impact of technician involvement on the completion of medication therapy management (MTM) services in a community pharmacy setting and to describe pharmacists' and technicians' perceptions of technician involvement in MTM-related tasks and their satisfaction with the technician's role in MTM. Prospective observational study. In the fall of 2015, pharmacists and selected technicians from 32 grocery store-based community pharmacies were trained to use technicians within MTM services. Completed MTM claims were evaluated at all pharmacies for 3 months before training and 3 months after training. An electronic survey, developed with the use of competencies taught in the training and relevant published literature, was distributed via e-mail to trained employees 3 months after training. The total number of completed MTM claims at the 32 pharmacy sites was higher during the posttraining time period (2687 claims) versus the pretraining period (1735 claims). Of the 182 trained participants, 112 (61.5%) completed the survey. Overall, perceived technician involvement was lower than expected. However, identifying MTM opportunities was the most commonly reported technician MTM task, with 62.5% of technicians and 47.2% of pharmacists reporting technician involvement. Nearly one-half of technicians (42.5%) and pharmacists (44.0%) agreed or strongly agreed they were satisfied with the technician's role in MTM services, and 40.0% of technicians agreed that they were more satisfied with their work in the pharmacy after involvement in MTM. Three months after initial training of technicians in MTM, participation of technicians was lower than expected. However, the technicians involved most often reported identifying MTM opportunities for pharmacists, which may be a focus for future technician trainings. In addition, technician involvement in MTM services may increase satisfaction with many aspects of work for actively involved technicians. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Science& Technology Review September 2003
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMahon, D
2003-09-01
This September 2003 issue of ''Science and Technology Review'' covers the following articles: (1) ''The National Ignition Facility Is Born''; (2) ''The National Ignition Facility Comes to Life'' Over the last 15 years, thousands of Livermore engineers, scientists, and technicians as well as hundreds of industrial partners have worked to bring the National Ignition Facility into being. (3) ''Tracking the Activity of Bacteria Underground'' Using real-time polymerase chain reaction and liquid chromatography/tandem mass spectrometry, researchers at Livermore are gaining knowledge on how bacteria work underground to break down compounds of environmental concern. (4) ''When Every Second Counts--Pathogen Identification in Lessmore » Than a Minute'' Livermore has developed a system that can quickly identify airborne pathogens such as anthrax. (5) ''Portable Radiation Detector Provides Laboratory-Scale Precision in the Field'' A team of Livermore physicists and engineers has developed a handheld, mechanically cooled germanium detector designed to identify radioisotopes.« less
2011-09-06
VANDENBERG AIR FORCE BASE, Calif. – In a clean room inside the Astrotech Payload Processing Facility at Vandenberg Air Force Base in California, a technician performs a torque bolt stress test on NASA’s National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP). Technicians will perform many tests and checkouts on the satellite system to prepare it for launch. NPP represents a critical first step in building the next-generation of Earth-observing satellites. NPP will carry the first of the new sensors developed for this satellite fleet, now known as the Joint Polar Satellite System (JPSS), to be launched in 2016. NPP is the bridge between NASA’s Earth Observing System (EOS) satellites and the forthcoming series of JPSS satellites. The mission will test key technologies and instruments for the JPSS missions. NPP is targeted to launch Oct. 25 from Space Launch Complex-2 aboard a United Launch Alliance Delta II rocket. For more information, visit http://www.nasa.gov/NPP. Photo credit: NASA/30th Communications Squadron, VAFB
2011-09-06
VANDENBERG AIR FORCE BASE, Calif. – In a clean room inside the Astrotech Payload Processing Facility at Vandenberg Air Force Base in California, technicians perform a torque bolt stress test on NASA’s National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP). Technicians will perform many tests and checkouts on the satellite system to prepare it for launch. NPP represents a critical first step in building the next-generation of Earth-observing satellites. NPP will carry the first of the new sensors developed for this satellite fleet, now known as the Joint Polar Satellite System (JPSS), to be launched in 2016. NPP is the bridge between NASA’s Earth Observing System (EOS) satellites and the forthcoming series of JPSS satellites. The mission will test key technologies and instruments for the JPSS missions. NPP is targeted to launch Oct. 25 from Space Launch Complex-2 aboard a United Launch Alliance Delta II rocket. For more information, visit http://www.nasa.gov/NPP. Photo credit: NASA/30th Communications Squadron, VAFB
STS-89 crew and technicians participate in the CEIT
NASA Technical Reports Server (NTRS)
1997-01-01
STS-89 crew members and technicians participate in the Crew Equipment Interface Test (CEIT) in front of the back cap of the SPACEHAB module at the SPACEHAB Payload Processing Facility at Port Canaveral in preparation for the mission, slated to be the first Shuttle launch of 1998. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on- orbit. STS-89 will be the eighth of nine scheduled Mir dockings and will include a double module of SPACEHAB, used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Endeavour and the Russian Space Station Mir. The nine-day flight of STS-89 also is scheduled to include the transfer of the seventh American to live and work aboard the Russian orbiting outpost. Liftoff of Endeavour and its seven- member crew is targeted for Jan. 15, 1998, at 1:03 a.m. EDT from Launch Pad 39A.
FY11 Facility Assessment Study for Aeronautics Test Program
NASA Technical Reports Server (NTRS)
Loboda, John A.; Sydnor, George H.
2013-01-01
This paper presents the approach and results for the Aeronautics Test Program (ATP) FY11 Facility Assessment Project. ATP commissioned assessments in FY07 and FY11 to aid in the understanding of the current condition and reliability of its facilities and their ability to meet current and future (five year horizon) test requirements. The principle output of the assessment was a database of facility unique, prioritized investments projects with budgetary cost estimates. This database was also used to identify trends for the condition of facility systems.
2009-03-26
CAPE CANAVERAL, Fla. – In the Rotation, Processing and Surge Facility at NASA's Kennedy Space Center in Florida, technicians prepare to remove the cover from the end of the Ares I-X motor segment for propellant grain inspection of the interior. It is one of four reusable motor segments and nozzle exit cone shipped by the Ares I first-stage prime contractor Alliant Techsystems Inc. for final processing and integration in the facility. The booster used for the Ares I-X launch is being modified by adding new forward structures and a fifth segment simulator. The motor is the final hardware needed for the rocket's upcoming flight test this summer. The stacking operations are scheduled to begin in the Vehicle Assembly Building in April. Photo credit: NASA/Jim Grossmann
2008-05-03
CAPE CANAVERAL, Fla. -- At the Astrotech payload processing facility in Titusville, Fla., technicians lower the overhead crane onto NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. The spacecraft is being prepared for its move to the Hazardous Processing Facility for fueling. The GLAST is a powerful space observatory that will explore the universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date is still to be determined. Photo credit: NASA/Mike Kerley
2008-05-03
CAPE CANAVERAL, Fla. -- At the Astrotech payload processing facility in Titusville, Fla., technicians stretch protective cover over NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. GLAST is being prepared for its move to the Hazardous Processing Facility for fueling. The GLAST is a powerful space observatory that will explore the universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date is still to be determined. Photo credit: NASA/Mike Kerley
2008-05-03
CAPE CANAVERAL, Fla. -- At the Astrotech payload processing facility in Titusville, Fla., technicians prepare NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft for attachment of an overhead crane. The spacecraft is being prepared for its move to the Hazardous Processing Facility for fueling. The GLAST is a powerful space observatory that will explore the universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date is still to be determined. Photo credit: NASA/Mike Kerley
2008-05-03
CAPE CANAVERAL, Fla. -- At the Astrotech payload processing facility in Titusville, Fla., technicians stretch protective cover over NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. GLAST is being prepared for its move to the Hazardous Processing Facility for fueling. The GLAST is a powerful space observatory that will explore the universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date is still to be determined. Photo credit: NASA/Mike Kerley
2008-05-03
CAPE CANAVERAL, Fla. -- At the Astrotech payload processing facility in Titusville, Fla., technicians begin placing a protective cover over NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. GLAST is being prepared for its move to the Hazardous Processing Facility for fueling. The GLAST is a powerful space observatory that will explore the universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date is still to be determined. Photo credit: NASA/Mike Kerley
2010-01-15
CAPE CANAVERAL, Fla. - Jim Lyon, biological science technician with the Merritt Island National Wildlife Refuge, carries a green sea turtle toward the waterline of the Banana River at NASA's Kennedy Space Center in Florida. A recent cold snap left this turtle and nearly 2,000 others "stunned" and in need of help. Many of the turtles were rescued from the Mosquito Lagoon, with others coming from the Indian River Lagoon and Cocoa Beach. Biologists, environmentalists, wildlife experts and other volunteers joined forces with a massive rescue effort at the Merritt Island National Wildlife Refuge, where the turtles were identified, examined and transported to rehabilitation facilities throughout Florida and South Georgia. The animals stayed at these facilities until local waters warmed up to safe temperatures. Photo credit: NASA/Troy Cryder
Materials International Space Station Experiment (MISSE) Arrival
2017-10-02
The Materials International Space Station Experiment-Flight Facility, or MISSE-FF, hardware arrived at the Space Station Processing Facility low bay at NASA's Kennedy Space Center in Florida. Technicians assist as one of the components is lowered and secured onto another MISSE component. MISSE will be used to test various materials and computing elements on the exterior of the space station. They will be exposed to the harsh environment of low-Earth orbit, including to a vacuum, atomic oxygen, ultraviolet radiation, direct sunlight and extreme heat and cold. The experiment will provide a better understanding of material durability, from coatings to electronic sensors, which could be applied to future spacecraft designs. MISSE will be delivered to the space station on a future commercial resupply mission.
Materials International Space Station Experiment (MISSE) Arrival
2017-10-02
The Materials International Space Station Experiment-Flight Facility, or MISSE-FF, hardware arrived at the Space Station Processing Facility low bay at NASA's Kennedy Space Center in Florida. Technicians assist as MISSE is lifted by crane from its shipping container. MISSE will be used to test various materials and computing elements on the exterior of the space station. They will be exposed to the harsh environment of low-Earth orbit, including to a vacuum, atomic oxygen, ultraviolet radiation, direct sunlight and extreme heat and cold. The experiment will provide a better understanding of material durability, from coatings to electronic sensors, which could be applied to future spacecraft designs. MISSE will be delivered to the space station on a future commercial resupply mission.
Materials International Space Station Experiment (MISSE) Arrival
2017-10-02
The Materials International Space Station Experiment-Flight Facility, or MISSE-FF, hardware arrived at the Space Station Processing Facility low bay at NASA's Kennedy Space Center in Florida. Technicians assist as one of the components is lowered onto another MISSE component. MISSE will be used to test various materials and computing elements on the exterior of the space station. They will be exposed to the harsh environment of low-Earth orbit, including to a vacuum, atomic oxygen, ultraviolet radiation, direct sunlight and extreme heat and cold. The experiment will provide a better understanding of material durability, from coatings to electronic sensors, which could be applied to future spacecraft designs. MISSE will be delivered to the space station on a future commercial resupply mission.
Materials International Space Station Experiment (MISSE) Arrival
2017-10-02
The Materials International Space Station Experiment-Flight Facility, or MISSE-FF, hardware arrived at the Space Station Processing Facility low bay at NASA's Kennedy Space Center in Florida. Technicians assist as a crane is used to lift MISSE out of its shipping container. MISSE will be used to test various materials and computing elements on the exterior of the space station. They will be exposed to the harsh environment of low-Earth orbit, including to a vacuum, atomic oxygen, ultraviolet radiation, direct sunlight and extreme heat and cold. The experiment will provide a better understanding of material durability, from coatings to electronic sensors, which could be applied to future spacecraft designs. MISSE will be delivered to the space station on a future commercial resupply mission.
Materials International Space Station Experiment (MISSE) Arrival
2017-10-02
The Materials International Space Station Experiment-Flight Facility, or MISSE-FF, hardware arrived at the Space Station Processing Facility low bay at NASA's Kennedy Space Center in Florida. Technicians work to attach a crane to MISSE for lifting out of its shipping container. MISSE will be used to test various materials and computing elements on the exterior of the space station. They will be exposed to the harsh environment of low-Earth orbit, including to a vacuum, atomic oxygen, ultraviolet radiation, direct sunlight and extreme heat and cold. The experiment will provide a better understanding of material durability, from coatings to electronic sensors, which could be applied to future spacecraft designs. MISSE will be delivered to the space station on a future commercial resupply mission.
Materials International Space Station Experiment (MISSE) Arrival
2017-10-02
The Materials International Space Station Experiment-Flight Facility, or MISSE-FF, hardware arrived at the Space Station Processing Facility low bay at NASA's Kennedy Space Center in Florida. Technicians attach a crane to MISSE for lifting out of its shipping container. MISSE will be used to test various materials and computing elements on the exterior of the space station. They will be exposed to the harsh environment of low-Earth orbit, including to a vacuum, atomic oxygen, ultraviolet radiation, direct sunlight and extreme heat and cold. The experiment will provide a better understanding of material durability, from coatings to electronic sensors, which could be applied to future spacecraft designs. MISSE will be delivered to the space station on a future commercial resupply mission.
2008-03-05
KENNEDY SPACE CENTER, FLA. -- A General Dynamics technician in the Astrotech payload processing facility releases a corner of the protective cover over NASA's Gamma-Ray Large Area Space Telescope, or GLAST, after its arrival. GLAST will be moved to a work stand in the facility for a complete checkout of the telescope's scientific instruments. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Kim Shiflett
Uneasiness among laboratory technicians.
Arluke, A
1999-01-01
Four aspects of animal experimentation cause uneasiness among many animal laboratory technicians. First, if technicians form strong attachments to lab animals, they feel conflict between their nurturing and the experimental manipulations they perform. Most technicians learn to curtail these attachments. Second, the "sacrifice" of lab animals becomes routinized and stripped of special meaning for many technicians, making killing uncomfortably rote. Third, technicians sometimes encounter outsiders who are critical of animal experimentation and ridicule the technicians for doing this work. Most technicians avoid telling outsiders about their work or take an educational approach to deal with these awkward encounters. Finally, most technicians report some ethical uneasiness about certain types of experiments and their clinical value, as well as about the use of certain animals, and they feel they cannot turn to investigators or fellow technicians to pursue such issues.
1997-12-18
Lockheed Martin Missile Systems technicians prepare NASA’s Lunar Prospector spacecraft for mating to the Trans Lunar Injection Module of the spacecraft at Astrotech, a commercial payload processing facility, in Titusville, Fla. The small robotic spacecraft, to be launched for NASA on an Athena II launch vehicle by Lockheed Martin, is designed to provide the first global maps of the Moon’s surface compositional elements and its gravitational and magnetic fields. The launch of Lunar Prospector is scheduled for Jan. 5, 1998 at 8:31 p.m
STS-30 Magellan spacecraft processing at Kennedy Space Center (KSC) SAEF-2
NASA Technical Reports Server (NTRS)
1989-01-01
Magellan spacecraft is hoisted from the transport trailer of the Payload Environmental Transportation System (PETS) to the floor of the clean room in the Space Assembly and Encapsulation Facility 2 (SAEF-2) at Kennedy Space Center (KSC). Clean-suited technicians guide Magellan into place. The spacecraft, destined for unprecedented studies of Venusian topographic features, will be deployed by the crew of NASA's STS-30 mission in April 1989. View provided by KSC with alternate number KSC-88PC-1084.
GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate
2016-10-27
A United Launch Alliance (ULA) technician inspects the solid rocket motor for the ULA Atlas V rocket on its transporter near the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The solid rocket motor will be lifted and mated to the rocket in preparation for the launch of NOAA's Geostationary Operational Environmental Satellite (GOES-R) this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.
2009-08-18
VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base's Astrotech processing facility in California, a technician fastens NASA's Wide-field Infrared Survey Explorer, or WISE, spacecraft onto the flight conical adapter and test stand. The satellite will survey the entire sky at infrared wavelengths, creating a cosmic clearinghouse of hundreds of millions of objects, which will be catalogued, providing a vast storehouse of knowledge about the solar system, the Milky Way, and the universe. Launch is scheduled no earlier than Dec. 7. Photo credit: NASA/Doug Kolkow
2009-08-18
VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base's Astrotech processing facility in California, technicians help guide NASA's Wide-field Infrared Survey Explorer, or WISE, spacecraft to the flight conical adapter and test stand. The satellite will survey the entire sky at infrared wavelengths, creating a cosmic clearinghouse of hundreds of millions of objects, which will be catalogued, providing a vast storehouse of knowledge about the solar system, the Milky Way, and the universe. Launch is scheduled no earlier than Dec. 7. Photo credit: NASA/Doug Kolkow
2009-08-18
VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base's Astrotech processing facility in California, a technician fastens NASA's Wide-field Infrared Survey Explorer, or WISE, spacecraft onto the flight conical adapter and test stand. The satellite will survey the entire sky at infrared wavelengths, creating a cosmic clearinghouse of hundreds of millions of objects, which will be catalogued, providing a vast storehouse of knowledge about the solar system, the Milky Way, and the universe. Launch is scheduled no earlier than Dec. 7. Photo credit: NASA/Doug Kolkow
2009-08-18
VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base's Astrotech processing facility in California, technicians prepare to mate the flight conical adapter and soft ride to the test payload attach fitting clampband on the spacecraft test stand. The satellite will survey the entire sky at infrared wavelengths, creating a cosmic clearinghouse of hundreds of millions of objects, which will be catalogued, providing a vast storehouse of knowledge about the solar system, the Milky Way, and the universe. Launch is scheduled no earlier than Dec. 7. Photo credit: NASA/Doug Kolkow
2009-08-18
VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base's Astrotech processing facility in California, technicians prepare to mate the flight conical adapter and soft ride to the test payload attach fitting clampband on the spacecraft test stand. The satellite will survey the entire sky at infrared wavelengths, creating a cosmic clearinghouse of hundreds of millions of objects, which will be catalogued, providing a vast storehouse of knowledge about the solar system, the Milky Way, and the universe. Launch is scheduled no earlier than Dec. 7. Photo credit: NASA/Doug Kolkow
2009-07-16
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, technicians keep watch as the control moment gyroscope is lowered toward an EXPRESS Logistics Carrier. The carrier is part of the STS-129 payload on space shuttle Atlantis, which will deliver to the International Space Station two spare gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. STS-129 is targeted to launch Nov. 12 . Photo credit: NASA/Jack Pfaller
2009-07-16
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, technicians keep watch as the control moment gyroscope is moved toward an EXPRESS Logistics Carrier. The carrier is part of the STS-129 payload on space shuttle Atlantis, which will deliver to the International Space Station two spare gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. STS-129 is targeted to launch Nov. 12 . Photo credit: NASA/Jack Pfaller
2006-07-28
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Japan Aerospace Exploration Agency (JAXA) technicians install piping insulation on the Japanese Experiment Module (JEM). The JEM, developed by JAXA for use on the International Space Station, is named Kibo -- which means "hope" in Japanese -- and will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Research conducted in Kibo will focus on space medicine, biology, Earth observations, material production, biotechnology and communications. Photo credit: NASA/Amanda Diller
2006-07-28
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Japan Aerospace Exploration Agency (JAXA) technicians install piping insulation on the Japanese Experiment Module (JEM). The JEM, developed by JAXA for use on the International Space Station, is named Kibo -- which means "hope" in Japanese -- and will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Research conducted in Kibo will focus on space medicine, biology, Earth observations, material production, biotechnology and communications. Photo credit: NASA/Amanda Diller
2006-07-28
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, a Japan Aerospace Exploration Agency (JAXA) technician inspects the wiring on the Japanese Experiment Module (JEM). The JEM, developed by JAXA for use on the International Space Station, is named Kibo -- which means "hope" in Japanese -- and will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Research conducted in Kibo will focus on space medicine, biology, Earth observations, material production, biotechnology and communications. Photo credit: NASA/Amanda Diller
2006-07-28
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Japan Aerospace Exploration Agency (JAXA) technicians inspect the wiring on the Japanese Experiment Module (JEM). The JEM, developed by JAXA for use on the International Space Station, is named Kibo -- which means "hope" in Japanese -- and will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Research conducted in Kibo will focus on space medicine, biology, Earth observations, material production, biotechnology and communications. Photo credit: NASA/Amanda Diller
2010-08-10
CAPE CANAVERAL, Fla. -- In Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida, thermal protection system technicians work on replacing some of space shuttle Endeavour's heat shield tiles. As the final planned mission of the Space Shuttle Program, Endeavour and its crew will deliver the Alpha Magnetic Spectrometer, as well as critical spare components to the station on the STS-134 mission targeted for launch Feb. 26, 2011. For more information visit, http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Frankie Martin
Inspecting the MIRI Cryocooler
2016-06-13
Technicians inspect a component of the cryocooler for the Mid-Infrared Instrument, or MIRI, part of NASA's James Webb Space Telescope. This photo was taken after the cooler had completed testing, and was taken out of the test chamber in preparation for being placed into its shipping container. The cooler was shipped to the Northrop Grumman Aerospace Systems facility in Redondo Beach, California, on May 26, 2016. There, the cooler will be attached to the body of the Webb telescope. http://photojournal.jpl.nasa.gov/catalog/PIA20686
2009-04-02
CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, technicians help with the installation of the Science Instrument Command and Data Handling Unit, or SIC&DH, on the Multi-Use Lightweight Equipment Carrier. The SIC&DH will be installed on the Hubble Space Telescope during space shuttle Atlantis' STS-125 mission. This unit will replace the one that suffered a failure aboard the orbiting telescope on Sept. 27, 2008. Atlantis is targeted for launch on May 12. Photo credit: NASA/Dimitri Gerondidakis
2009-04-02
CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, technicians help with the installation of the Science Instrument Command and Data Handling Unit, or SIC&DH, on the Multi-Use Lightweight Equipment Carrier. The SIC&DH will be installed on the Hubble Space Telescope during space shuttle Atlantis' STS-125 mission. This unit will replace the one that suffered a failure aboard the orbiting telescope on Sept. 27, 2008. Atlantis is targeted for launch on May 12. Photo credit: NASA/Dimitri Gerondidakis
2009-04-02
CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, technicians look over the Science Instrument Command and Data Handling Unit, or SIC&DH, installed on the Multi-Use Lightweight Equipment Carrier. The SIC&DH will be installed on the Hubble Space Telescope during space shuttle Atlantis' STS-125 mission. This unit will replace the one that suffered a failure aboard the orbiting telescope on Sept. 27, 2008. Atlantis is targeted for launch on May 12. Photo credit: NASA/Dimitri Gerondidakis
2009-04-02
CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, technicians check the Multi-Use Lightweight Equipment Carrier where the Science Instrument Command and Data Handling Unit, or SIC&DH, is being installed. The SIC&DH will be installed on the Hubble Space Telescope during space shuttle Atlantis' STS-125 mission. This unit will replace the one that suffered a failure aboard the orbiting telescope on Sept. 27, 2008. Atlantis is targeted for launch on May 12. Photo credit: NASA/Dimitri Gerondidakis
2009-05-17
CAPE CANAVERAL, Fla. – In the Assembly and Refurbishment Facility at NASA's Kennedy Space Center in Florida, technicians examine the assembly of the Ares I-X forward skirt and the forward skirt extension. The forward skirt is the initial piece of first-stage hardware in preparation for the August 2009 test flight of NASA's next-generation spacecraft and launch vehicle system. Built entirely of armored steel, the 14,000-pound segment is seven feet tall and 12-1/4 feet wide. Photo credit: NASA/Tim Jacobs
2009-05-17
CAPE CANAVERAL, Fla. – In the Assembly and Refurbishment Facility at NASA's Kennedy Space Center in Florida, technicians examine the assembly of the Ares I-X forward skirt and the forward skirt extension. The forward skirt is the initial piece of first-stage hardware in preparation for the August 2009 test flight of NASA's next-generation spacecraft and launch vehicle system. Built entirely of armored steel, the 14,000-pound segment is seven feet tall and 12-1/4 feet wide. Photo credit: NASA/Tim Jacobs
2002-11-08
KENNEDY SPACE CENTER, FLA. - At the SPACEHAB facility in Cape Canaveral, STS-114 Pilot James Kelly (left), Commander Eileen Collins (center) and a technician participate in familiarization activities on the module that will fly on the STS-114 mission. STS-114 is a utilization and logistics flight that will carry Multi-Purpose Logistics Module Raffaello and the External Stowage Platform (ESP-2), as well as the Expedition 7 crew, to the International Space Station. Launch of STS-114 is currently targeted for March 1, 2003.
1998-08-14
Technicians carefully lower an Integrated Equipment Assembly (IEA) onto a work stand in the Space Station Processing Facility at KSC . The IEA, a large truss segment of the International Space Station (ISS), is one of four power modules to be used on the International Space Station. The modules contain batteries for the ISS solar panels and power for the life support systems and experiments that will be conducted. This first IEA will fly on the Space Shuttle Endeavour as part of STS-97, scheduled to launch August 5, 1999
2007-05-28
KENNEDY SPACE CENTER, FLA. -- Inside Astrotech's Hazardous Processing Facility, technicians check the progress of the Dawn spacecraft as it is lifted off the transporter. Dawn will be moved to a scale for weighing and then prepared for fueling. Dawn is scheduled to launch June 30 aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Photo credit: NASA/Charisse Nahser
MARS PATHFINDER LANDER REMOVED FROM SHIPPING CONTAINER IN SAEF-2
NASA Technical Reports Server (NTRS)
1996-01-01
In the SAEF-2 spacecraft checkout facility at Kennedy Space Center, engineers and technicians from Jet Propulsion Laboratory remove the Mars Pathfinder lander from its shipping container, still covered in protective wrapping. Pictured from L-R, Linda Robeck, Jerry Gutierrez, Lorraine Garcia, Chuck Foehlinger of JPL. The arrival of the spacecraft at KSC from Pasadena, CA occurred on Aug. 13, 1996. Launch of Mars Pathfinder aboard a McDonnell Douglas Delta II rocket will occur from Pad B at Complex 17 on Dec. 2.
2009-07-23
CAPE CANAVERAL, Fla. – In the Astrotech payload processing facility in Titusville, Fla. , technicians monitor the STSS Demonstrator SV-1 spacecraft as it is lowered to the orbital insertion system. The spacecraft is a midcourse tracking technology demonstrator, part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency in late summer. Photo credit: NASA/Tim Jacobs (Approved for Public Release 09-MDA-4800 [30 July 09] )
2009-07-23
CAPE CANAVERAL, Fla. – In the Astrotech payload processing facility in Titusville, Fla. , technicians monitor the STSS Demonstrator SV-1 spacecraft as it is lowered to the orbital insertion system. The spacecraft is a midcourse tracking technology demonstrator, part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency in late summer. Photo credit: NASA/Tim Jacobs (Approved for Public Release 09-MDA-4800 [30 July 09] )
2014-12-15
CAPE CANAVERAL, Fla. – Engineers and technicians prepare NASA's Project Morpheus prototype lander for free flight test No. 15 at the north end of the Shuttle Landing Facility at Kennedy Space Center in Florida. During the 97-second test, onboard autonomous landing and hazard avoidance technology sensors, or ALHAT, surveyed the hazard field for safe landing sites, then guided the lander forward and downward to a successful landing. For more information on Morpheus, visit: http://www.morpheuslander.jsc.nasa.gov. Photo credit: NASA/Jim Grossman
STS-77 crew examine tires after landing
NASA Technical Reports Server (NTRS)
1996-01-01
KENNEDY SPACE CENTER, FLA. -- STS-77 Mission Specialists Daniel W. Bursch, Andrew S. W. Thomas and Marc Garneau (who represents the Canadian Space Agency) examine the orbiter Endeavour's tires after an end-of-mission landing at 7:09:18 a.m. EDT, May 29, on Runway 33 of KSC's Shuttle Landing Facility. Assisting them at left is Lockheed Martin Space Operations mechanical technician Mark Seawright, who as a member of the Orbiter Recovery Convoy team is involved with post-landing safety assessments and landing gear checkout.
2009-03-21
CAPE CANAVERAL, Fla. – Inside the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, technicians check the EXPRESS Logistics Carrier for the STS-129 mission after its cover was removed. The carrier is part of the payload on space shuttle Atlantis, which will deliver to the International Space Station components including two spare gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. STS-129 is targeted to launch Nov. 12. Photo credit: NASA/Tim Jacobs
2009-03-21
CAPE CANAVERAL, Fla. – Inside the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, technicians remove the cover from around the EXPRESS Logistics Carrier for the STS-129 mission. The carrier is part of the payload on space shuttle Atlantis, which will deliver to the International Space Station components including two spare gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. STS-129 is targeted to launch Nov. 12. Photo credit: NASA/Tim Jacobs
Orion EM-1 Booster Preps - Aft Skirt Preps/Painting
2016-10-28
A technician with Orbital ATK, prime contractor for the Space Launch System (SLS) Booster, preps a section of the right hand aft skirt for primer and paint in a support building at the Hangar AF facility at Cape Canaveral Air Force Station in Florida. The space shuttle-era aft skirt will be used on the right hand booster of NASA's SLS rocket for Exploration Mission 1 (EM-1). NASA is preparing for EM-1, deep space missions, and the Journey to Mars.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. In the Orbiter Processing Facility at NASAs Kennedy Space Center, the nose landing gear on Space Shuttle Atlantis is retracted under the supervision of United Space Alliance technicians Terry Williams (left) and Ron Delaney. Compression measurements are being taken of the newly installed nose landing gear thermal barrier seal with the gear in position in its wheel well and the landing gear doors closed. Atlantis is being processed for launch on the second Return to Flight mission, STS-121, which is scheduled to fly in July.
JPSS-1 Spacecraft Mate to Payload Attach Fittings
2017-10-19
NOAA's Joint Polar Satellite System-1, or JPSS-1, remains wrapped in a protective covering after removal from its shipping container at the Astrotech Processing Facility at Vandenberg Air Force Base in California. Technicians confirm that the spacecraft is secured onto a payload attach fitting. JPSS-1 will liftoff aboard a United Launch Alliance Delta II rocket from Vandenberg's Space Launch Complex-2. JPSS-1 is the first in a series of four next-generation environmental satellites in a collaborative program between NOAA and NASA.
JPSS-1 Spacecraft Mate to Payload Attach Fittings
2017-10-19
NOAA's Joint Polar Satellite System-1, or JPSS-1, remains wrapped in a protective covering after removal from its shipping container at the Astrotech Processing Facility at Vandenberg Air Force Base in California. Technicians prepare the spacecraft for its move to a payload attach fitting. JPSS-1 will liftoff aboard a United Launch Alliance Delta II rocket from Vandenberg's Space Launch Complex-2. JPSS-1 is the first in a series of four next-generation environmental satellites in a collaborative program between NOAA and NASA.
JPSS-1 Spacecraft Mate to Payload Attach Fittings
2017-10-19
NOAA's Joint Polar Satellite System-1, or JPSS-1, remains wrapped in a protective covering after removal from its shipping container at the Astrotech Processing Facility at Vandenberg Air Force Base in California. Technicians help secure the spacecraft onto a payload attach fitting. JPSS-1 will liftoff aboard a United Launch Alliance Delta II rocket from Vandenberg's Space Launch Complex-2. JPSS-1 is the first in a series of four next-generation environmental satellites in a collaborative program between NOAA and NASA.
Insight Fairing Offload and Unbagging
2018-01-30
In the Astrotech facility at Vandenberg Air Force Base in California, technicians remove protective wrapping from the United Launch Alliance (ULA) payload fairing for NASA's upcoming Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft designed to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff atop a ULA Atlas V rocket is scheduled for May 5, 2018.
1997-09-15
United States Microgravity Payload-4 (USMP-4) experiments are prepared to be flown on Space Shuttle mission STS-87 in the Space Station Processing Facility at Kennedy Space Center (KSC). Here, a technician is monitoring the Confined Helium Experiment, or CHeX, that will use microgravity to study one of the basic influences on the behavior and properties of materials by using liquid helium confined between silicon disks. CHeX and several other experiments are scheduled for launch aboard STS-87 on Nov. 19 from KSC
2017-02-27
Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, technicians prepare several Nanoracks for installation on the exterior of the Orbital ATK Cygnus pressurized cargo module. The Orbital ATK CRS-7 commercial resupply services mission to the International Space Station is scheduled to launch atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station no earlier than March 21, 2017. Cygnus will deliver 7,600 pounds of supplies, equipment and scientific research materials to the space station.
2017-02-27
Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, technicians have installed several Nanoracks on the exterior of the Orbital ATK Cygnus pressurized cargo module. The Orbital ATK CRS-7 commercial resupply services mission to the International Space Station is scheduled to launch atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station no earlier than March 21, 2017. Cygnus will deliver 7,600 pounds of supplies, equipment and scientific research materials to the space station.
2017-02-27
Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, technicians prepare to install several Nanoracks on the exterior of the Orbital ATK Cygnus pressurized cargo module. The Orbital ATK CRS-7 commercial resupply services mission to the International Space Station is scheduled to launch atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station no earlier than March 21, 2017. Cygnus will deliver 7,600 pounds of supplies, equipment and scientific research materials to the space station.
20. NBS SUIT LAB. TABLE WITH MISCELLANEOUS SUIT PARTS AND ...
20. NBS SUIT LAB. TABLE WITH MISCELLANEOUS SUIT PARTS AND TERRY WEST, A SPACE SUIT ASSEMBLY TECHNICIAN LOGGING SUIT PART DATA. PARTS ON THE TABLE ARE A HARD UPPER TORSO (HUT) (REAR LEFT), FULL HELMET (FRONT LEFT), TWO HELMETS WITHOUT PROTECTIVE VISORS, A PAIR OF GLOVES, AND A BACKPACK WITHOUT VOLUMETRIC COVER (REAR RIGHT). THE BACKPACK ATTACHES TO THE HUT TO MAKE-UP THE UPPER TORSO COMPONENTS OF THE SUIT. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL
JPSS-1 Spacecraft Mate to Payload Attach Fittings
2017-10-19
NOAA's Joint Polar Satellite System-1, or JPSS-1, remains wrapped in a protective covering after removal from its shipping container at the Astrotech Processing Facility at Vandenberg Air Force Base in California. Technicians assist as a crane lowers the spacecraft toward a payload attach fitting. JPSS-1 will liftoff aboard a United Launch Alliance Delta II rocket from Vandenberg's Space Launch Complex-2. JPSS-1 is the first in a series of four next-generation environmental satellites in a collaborative program between NOAA and NASA.
2009-07-23
CAPE CANAVERAL, Fla. – In the Astrotech payload processing facility in Titusville, Fla. , technicians get ready to remove the overhead crane from the STSS Demonstrator SV-1 spacecraft. The spacecraft is a midcourse tracking technology demonstrator, part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency in late summer. Photo credit: NASA/Tim Jacobs (Approved for Public Release 09-MDA-4800 [30 July 09] )
InSight Atlas V Fairing Arrival, Offload, and Unbagging
2018-01-31
In the Astrotech facility at Vandenberg Air Force Base in California, technicians remove protective wrapping from the United Launch Alliance (ULA) payload fairing for NASA's upcoming Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft designed to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff atop a ULA Atlas V rocket is scheduled for May 5, 2018.
STS-88 crew members and technicians participate in their CEIT in the SSPF
NASA Technical Reports Server (NTRS)
1997-01-01
Mission Specialist Jerry Ross participates in the Crew Equipment Interface Test (CEIT) for STS-88 in KSC's Space Station Processing Facility. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. Here, Ross is inspecting electrical connections that will be used in assembly of the International Space Station (ISS). STS-88, the first ISS assembly flight, is targeted for launch in July 1998 aboard Space Shuttle Endeavour.
STS-88 crew members and technicians participate in their CEIT in the SSPF
NASA Technical Reports Server (NTRS)
1997-01-01
Commander Bob Cabana participates in the Crew Equipment Interface Test (CEIT) for STS-88 in KSC's Space Station Processing Facility. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on- orbit. Here, Cabana inspects one of the six hatches on Node 1 of the International Space Station (ISS). STS-88, the first ISS assembly flight, is targeted for launch in July 1998 aboard Space Shuttle Endeavour.
1998-08-14
Technicians in the Space Station Processing Facility at KSC prepare to lower an Integrated Equipment Assembly (IEA) onto a work stand. The IEA, a large truss segment of the International Space Station (ISS), is one of four power modules to be used on the International Space Station. The modules contain batteries for the ISS solar panels and power for the life support systems and experiments that will be conducted. This first IEA will fly on the Space Shuttle Endeavour as part of STS-97, scheduled to launch August 5, 1999
2003-04-15
KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, the lander petals of the Mars Exploration Rover 2 (MER-2) have been reopened to allow technicians access to one of the spacecraft's circuit boards. A concern arose during prelaunch testing regarding how the spacecraft interprets signals sent from its main computer to peripherals in the cruise stage, lander and small deep space transponder. The MER Mission consists of two identical rovers set to launch in June 2003. The problem will be fixed on both rovers.
2003-04-15
KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, technicians reopen the lander petals of the Mars Exploration Rover 2 (MER-2) to allow access to one of the spacecraft's circuit boards. A concern arose during prelaunch testing regarding how the spacecraft interprets signals sent from its main computer to peripherals in the cruise stage, lander and small deep space transponder. The MER Mission consists of two identical rovers set to launch in June 2003. The problem will be fixed on both rovers.
2003-04-15
KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, technicians reopen the lander petals of the Mars Exploration Rover 2 (MER-2) to allow access to one of the spacecraft's circuit boards. A concern arose during prelaunch testing regarding how the spacecraft interprets signals sent from its main computer to peripherals in the cruise stage, lander and small deep space transponder. The MER Mission consists of two identical rovers set to launch in June 2003. The problem will be fixed on both rovers.
2009-05-17
CAPE CANAVERAL, Fla. – In the Assembly and Refurbishment Facility at NASA's Kennedy Space Center in Florida, technicians closely watch the Ares I-X forward skirt as it is lowered toward the forward skirt extension for mating. The forward skirt is the initial piece of first-stage hardware in preparation for the August 2009 test flight of NASA's next-generation spacecraft and launch vehicle system. Built entirely of armored steel, the 14,000-pound segment is seven feet tall and 12-1/4 feet wide. Photo credit: NASA/Tim Jacobs
2009-05-17
CAPE CANAVERAL, Fla. – In the Assembly and Refurbishment Facility at NASA's Kennedy Space Center in Florida, technicians look closely as the Ares I-X forward skirt is mated to the forward skirt extension.. The forward skirt is the initial piece of first-stage hardware in preparation for the August 2009 test flight of NASA's next-generation spacecraft and launch vehicle system. Built entirely of armored steel, the 14,000-pound segment is seven feet tall and 12-1/4 feet wide. Photo credit: NASA/Tim Jacobs
2017-03-03
Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, technicians perform the late cargo installation in the Orbital ATK Cygnus pressurized cargo module. The Orbital ATK CRS-7 commercial resupply services mission to the International Space Station is scheduled to launch atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station targeted for March 24, 2017. Cygnus will deliver 7,600 pounds of supplies, equipment and scientific research materials to the space station.
Preparation for Bagging OA-7 CYGNUS
2017-02-21
In the Space Station Processing Facility high bay at NASA's Kennedy Space Center in Florida, technicians are preparing Orbital ATK's CYGNUS pressurized cargo module for bagging. The Orbital ATK CRS-7 commercial resupply services mission to the International Space Station is scheduled to launch atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station on March 19, 2017. CYGNUS will deliver thousands of pounds of supplies, equipment and scientific research materials to the space station.
1984-09-01
the individual strain resulting from two organizational stresses *dealing with job complexity: role conflict and role ambiguity. It is under the...research of role conflict that role overload is discussed. Role conflict is the situation where information regarding different aspects of a job are in... conflict . (French and Caplan, 1972) It occurs when the expectations of one or more role senders differ from the worker’s own, when different
2012-04-03
CAPE CANAVERAL, Fla. – Inside Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida, Mike Williams, a thermal protection system technician with United Space Alliance, puts the finishing touches on a layer of adhesive applied to the right wing of space shuttle Endeavour. The work is being done in preparation for tile bonding. Ongoing transition and retirement activities are preparing the spacecraft for public display at the California Science Center in Los Angeles. Endeavour flew 25 missions during its 19-year career. Photo credit: NASA/Cory Huston
Cosmic-Ray Energetics and Mass (CREAM) Processing - Bonding
2017-06-20
In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, technicians and engineers remove a protective cover on the Cosmic-Ray Energetics and Mass investigation, or CREAM, instrument. It is designed to measure the charges of cosmic rays to better understand what gives them such incredible energies, and how that effects the composition of the universe. The instrument will be launched to the space station on the SpaceX CRS-12 commercial resupply mission in August 2017.
Discovery Orbiter Major Modifications
2003-08-27
During power-up of the orbiter Discovery in the Orbiter Processing Facility, a technician moves a circuit reset on the cockpit console. Discovery has been undergoing Orbiter Major Modifications in the past year, ranging from wiring, control panels and black boxes to gaseous and fluid systems tubing and components. These systems were deserviced, disassembled, inspected, modified, reassembled, checked out and reserviced, as were most other systems onboard. The work includes the installation of the Multifunction Electronic Display Subsystem (MEDS) - a state-of-the-art “glass cockpit.”
National Manpower Inventory. Volume 3. Technical Documentation for Software for the Model
1985-09-01
Technician APS-96 Search Radar IMA Technician USM-449 (V) & AAI 5500 Series ATE Int Maintenance Level Tech. CO CP-413/ASA-27A SACE TesI Bench IMA...MATE) Test Console IMA Technician ALQ-91/108 DECM IMA Technician ALQ-99 ECM Jammer/Tmilter & ALM-107 TesI Console IMA Technician ALQ-99 ECM Track...Receivers & ALM-109 TesI Console IMA Technician ECM Systems Intermediate Maintenance Technician ASM-347 (GT-1) SACE Programmer/Mainlenanca IMA
National Transportation Atlas Databases : 1999
DOT National Transportation Integrated Search
1999-01-01
The National Transportation Atlas Databases -- 1999 (NTAD99) is a set of national : geographic databases of transportation facilities. These databases include geospatial : information for transportation modal networks and intermodal terminals, and re...
National Transportation Atlas Databases : 2001
DOT National Transportation Integrated Search
2001-01-01
The National Transportation Atlas Databases-2001 (NTAD-2001) is a set of national geographic databases of transportation facilities. These databases include geospatial information for transportation modal networks and intermodal terminals and related...
National Transportation Atlas Databases : 1996
DOT National Transportation Integrated Search
1996-01-01
The National Transportation Atlas Databases -- 1996 (NTAD96) is a set of national : geographic databases of transportation facilities. These databases include geospatial : information for transportation modal networks and intermodal terminals, and re...
National Transportation Atlas Databases : 2000
DOT National Transportation Integrated Search
2000-01-01
The National Transportation Atlas Databases-2000 (NTAD-2000) is a set of national geographic databases of transportation facilities. These databases include geospatial information for transportation modal networks and intermodal terminals and related...
National Transportation Atlas Databases : 1997
DOT National Transportation Integrated Search
1997-01-01
The National Transportation Atlas Databases -- 1997 (NTAD97) is a set of national : geographic databases of transportation facilities. These databases include geospatial : information for transportation modal networks and intermodal terminals, and re...
Protocol for the E-Area Low Level Waste Facility Disposal Limits Database
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swingle, R
2006-01-31
A database has been developed to contain the disposal limits for the E-Area Low Level Waste Facility (ELLWF). This database originates in the form of an EXCEL{copyright} workbook. The pertinent sheets are translated to PDF format using Adobe ACROBAT{copyright}. The PDF version of the database is accessible from the Solid Waste Division web page on SHRINE. In addition to containing the various disposal unit limits, the database also contains hyperlinks to the original references for all limits. It is anticipated that database will be revised each time there is an addition, deletion or revision of any of the ELLWF radionuclidemore » disposal limits.« less
47 CFR 15.713 - TV bands database.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false TV bands database. 15.713 Section 15.713... TV bands database. (a) Purpose. The TV bands database serves the following functions: (1) To... databases. (b) Information in the TV bands database. (1) Facilities already recorded in Commission databases...
Scofield, Patricia A.; Smith, Linda Lenell; Johnson, David N.
2017-07-01
The U.S. Environmental Protection Agency promulgated national emission standards for emissions of radionuclides other than radon from US Department of Energy facilities in Chapter 40 of the Code of Federal Regulations (CFR) 61, Subpart H. This regulatory standard limits the annual effective dose that any member of the public can receive from Department of Energy facilities to 0.1 mSv. As defined in the preamble of the final rule, all of the facilities on the Oak Ridge Reservation, i.e., the Y–12 National Security Complex, Oak Ridge National Laboratory, East Tennessee Technology Park, and any other U.S. Department of Energy operations onmore » Oak Ridge Reservation, combined, must meet the annual dose limit of 0.1 mSv. At Oak Ridge National Laboratory, there are monitored sources and numerous unmonitored sources. To maintain radiological source and inventory information for these unmonitored sources, e.g., laboratory hoods, equipment exhausts, and room exhausts not currently venting to monitored stacks on the Oak Ridge National Laboratory campus, the Environmental Protection Rad NESHAPs Inventory Web Database was developed. This database is updated annually and is used to compile emissions data for the annual Radionuclide National Emission Standards for Hazardous Air Pollutants (Rad NESHAPs) report required by 40 CFR 61.94. It also provides supporting documentation for facility compliance audits. In addition, a Rad NESHAPs source and dose database was developed to import the source and dose summary data from Clean Air Act Assessment Package—1988 computer model files. As a result, this database provides Oak Ridge Reservation and facility-specific source inventory; doses associated with each source and facility; and total doses for the Oak Ridge Reservation dose.« less
Scofield, Patricia A; Smith, Linda L; Johnson, David N
2017-07-01
The U.S. Environmental Protection Agency promulgated national emission standards for emissions of radionuclides other than radon from US Department of Energy facilities in Chapter 40 of the Code of Federal Regulations (CFR) 61, Subpart H. This regulatory standard limits the annual effective dose that any member of the public can receive from Department of Energy facilities to 0.1 mSv. As defined in the preamble of the final rule, all of the facilities on the Oak Ridge Reservation, i.e., the Y-12 National Security Complex, Oak Ridge National Laboratory, East Tennessee Technology Park, and any other U.S. Department of Energy operations on Oak Ridge Reservation, combined, must meet the annual dose limit of 0.1 mSv. At Oak Ridge National Laboratory, there are monitored sources and numerous unmonitored sources. To maintain radiological source and inventory information for these unmonitored sources, e.g., laboratory hoods, equipment exhausts, and room exhausts not currently venting to monitored stacks on the Oak Ridge National Laboratory campus, the Environmental Protection Rad NESHAPs Inventory Web Database was developed. This database is updated annually and is used to compile emissions data for the annual Radionuclide National Emission Standards for Hazardous Air Pollutants (Rad NESHAPs) report required by 40 CFR 61.94. It also provides supporting documentation for facility compliance audits. In addition, a Rad NESHAPs source and dose database was developed to import the source and dose summary data from Clean Air Act Assessment Package-1988 computer model files. This database provides Oak Ridge Reservation and facility-specific source inventory; doses associated with each source and facility; and total doses for the Oak Ridge Reservation dose.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scofield, Patricia A.; Smith, Linda Lenell; Johnson, David N.
The U.S. Environmental Protection Agency promulgated national emission standards for emissions of radionuclides other than radon from US Department of Energy facilities in Chapter 40 of the Code of Federal Regulations (CFR) 61, Subpart H. This regulatory standard limits the annual effective dose that any member of the public can receive from Department of Energy facilities to 0.1 mSv. As defined in the preamble of the final rule, all of the facilities on the Oak Ridge Reservation, i.e., the Y–12 National Security Complex, Oak Ridge National Laboratory, East Tennessee Technology Park, and any other U.S. Department of Energy operations onmore » Oak Ridge Reservation, combined, must meet the annual dose limit of 0.1 mSv. At Oak Ridge National Laboratory, there are monitored sources and numerous unmonitored sources. To maintain radiological source and inventory information for these unmonitored sources, e.g., laboratory hoods, equipment exhausts, and room exhausts not currently venting to monitored stacks on the Oak Ridge National Laboratory campus, the Environmental Protection Rad NESHAPs Inventory Web Database was developed. This database is updated annually and is used to compile emissions data for the annual Radionuclide National Emission Standards for Hazardous Air Pollutants (Rad NESHAPs) report required by 40 CFR 61.94. It also provides supporting documentation for facility compliance audits. In addition, a Rad NESHAPs source and dose database was developed to import the source and dose summary data from Clean Air Act Assessment Package—1988 computer model files. As a result, this database provides Oak Ridge Reservation and facility-specific source inventory; doses associated with each source and facility; and total doses for the Oak Ridge Reservation dose.« less
EPA Facility Registry Service (FRS): Facility Interests Dataset - Intranet
This web feature service consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are available in the FRS individual feature layers. The layers comprise the FRS major program databases, including:Assessment Cleanup and Redevelopment Exchange System (ACRES) : brownfields sites ; Air Facility System (AFS) : stationary sources of air pollution ; Air Quality System (AQS) : ambient air pollution data from monitoring stations; Bureau of Indian Affairs (BIA) : schools data on Indian land; Base Realignment and Closure (BRAC) facilities; Clean Air Markets Division Business System (CAMDBS) : market-based air pollution control programs; Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS) : hazardous waste sites; Integrated Compliance Information System (ICIS) : integrated enforcement and compliance information; National Compliance Database (NCDB) : Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Toxic Substances Control Act (TSCA); National Pollutant Discharge Elimination System (NPDES) module of ICIS : NPDES surface water permits; Radiation Information Database (RADINFO) : radiation and radioactivity facilities; RACT/BACT/LAER Clearinghouse (RBLC) : best available air pollution technology requirements; Resource Conservation and Recovery Act Information System (RCRAInfo) : tracks generators, transporters, treaters, storers, and disposers of haz