Sample records for facility decommissioning including

  1. Enhancing Efficiency of Safeguards at Facilities that are Shutdown or Closed-Down, including those being Decommissioned

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moran, B.; Stern, W.; Colley, J.

    International Atomic Energy Agency (IAEA) safeguards involves verification activities at a wide range of facilities in a variety of operational phases (e.g., under construction, start-up, operating, shutdown, closed-down, and decommissioned). Safeguards optimization for each different facility type and operational phase is essential for the effectiveness of safeguards implementation. The IAEA’s current guidance regarding safeguards for the different facility types in the various lifecycle phases is provided in its Design Information Examination (DIE) and Verification (DIV) procedure. 1 Greater efficiency in safeguarding facilities that are shut down or closed down, including those being decommissioned, could allow the IAEA to use amore » greater portion of its effort to conduct other verification activities. Consequently, the National Nuclear Security Administration’s Office of International Nuclear Safeguards sponsored this study to evaluate whether there is an opportunity to optimize safeguards approaches for facilities that are shutdown or closed-down. The purpose of this paper is to examine existing safeguards approaches for shutdown and closed-down facilities, including facilities being decommissioned, and to seek to identify whether they may be optimized.« less

  2. Radioactive Waste Management and Nuclear Facility Decommissioning Progress in Iraq - 13216

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Musawi, Fouad; Shamsaldin, Emad S.; Jasim, Hadi

    2013-07-01

    Management of Iraq's radioactive wastes and decommissioning of Iraq's former nuclear facilities are the responsibility of Iraq's Ministry of Science and Technology (MoST). The majority of Iraq's former nuclear facilities are in the Al-Tuwaitha Nuclear Research Center located a few kilometers from the edge of Baghdad. These facilities include bombed and partially destroyed research reactors, a fuel fabrication facility and radioisotope production facilities. Within these facilities are large numbers of silos, approximately 30 process or waste storage tanks and thousands of drums of uncharacterised radioactive waste. There are also former nuclear facilities/sites that are outside of Al-Tuwaitha and these includemore » the former uranium processing and waste storage facility at Jesira, the dump site near Adaya, the former centrifuge facility at Rashdiya and the former enrichment plant at Tarmiya. In 2005, Iraq lacked the infrastructure needed to decommission its nuclear facilities and manage its radioactive wastes. The lack of infrastructure included: (1) the lack of an organization responsible for decommissioning and radioactive waste management, (2) the lack of a storage facility for radioactive wastes, (3) the lack of professionals with experience in decommissioning and modern waste management practices, (4) the lack of laws and regulations governing decommissioning or radioactive waste management, (5) ongoing security concerns, and (6) limited availability of electricity and internet. Since its creation eight years ago, the MoST has worked with the international community and developed an organizational structure, trained staff, and made great progress in managing radioactive wastes and decommissioning Iraq's former nuclear facilities. This progress has been made, despite the very difficult implementing conditions in Iraq. Within MoST, the Radioactive Waste Treatment and Management Directorate (RWTMD) is responsible for waste management and the Iraqi

  3. DECOMMISSIONING OF HOT CELL FACILITIES AT THE BATTELLE COLUMBUS LABORATORIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, Patrick; Henderson, Glenn; Erickson, Peter

    2003-02-27

    Battelle Columbus Laboratories (BCL), located in Columbus, Ohio, must complete decontamination and decommissioning activities for nuclear research buildings and grounds at its West Jefferson Facilities by 2006, as mandated by Congress. This effort includes decommissioning several hot cells located in the Hot Cell Laboratory (Building JN-1). JN-1 was originally constructed in 1955, and a hot cell/high bay addition was built in the mid 1970s. For over 30 years, BCL used these hot cell facilities to conduct research for the nuclear power industry and several government agencies, including the U.S. Navy, U.S. Army, U.S. Air Force, and the U.S. Department ofmore » Energy. As a result of this research, the JN-1 hot cells became highly contaminated with mixed fission and activation products, as well as fuel residues. In 1998, the Battelle Columbus Laboratories Decommissioning Project (BCLDP) began efforts to decommission JN-1 with the goal of remediating the site to levels of residual contamination allowing future use without radiological restrictions. This goal requires that each hot cell be decommissioned to a state where it can be safely demolished and transported to an off-site disposal facility. To achieve this, the BCLDP uses a four-step process for decommissioning each hot cell: (1) Source Term Removal; (2) Initial (i.e., remote) Decontamination; (3) Utility Removal; and (4) Final (i.e., manual) Decontamination/Stabilization. To date, this process has been successfully utilized on 13 hot cells within JN-1, with one hot cell remaining to be decommissioned. This paper will provide a case study of the hot cell decommissioning being conducted by the BCLDP. Discussed will be the methods used to achieve the goals of each of the hot cell decommissioning stages and the lessons learned that could be applied at other sites where hot cells need to be decommissioned.« less

  4. Decontamination and decommissioning of the Mayaguez (Puerto Rico) facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, P.K.; Freemerman, R.L.

    1989-11-01

    On February 6, 1987 the US Department of Energy (DOE) awarded the final phase of the decontamination and decommissioning of the nuclear and reactor facilities at the Center for Energy and Environmental Research (CEER), in Mayaguez, Puerto Rico. Bechtel National, Inc., was made the decontamination and decommissioning (D and D) contractor. The goal of the project was to enable DOE to proceed with release of the CEER facility for use by the University of Puerto Rico, who was the operator. This presentation describes that project and lesson learned during its progress. The CEER facility was established in 1957 as themore » Puerto Rico Nuclear Center, a part of the Atoms for Peace Program. It was a nuclear training and research institution with emphasis on the needs of Latin America. It originally consisted of a 1-megawatt Materials Testing Reactor (MTR), support facilities and research laboratories. After eleven years of operation the MTR was shutdown and defueled. A 2-megawatt TRIGA reactor was installed in 1972 and operated until 1976, when it woo was shutdown. Other radioactive facilities at the center included a 10-watt homogeneous L-77 training reactor, a natural uranium graphite-moderated subcritical assembly, a 200KV particle accelerator, and a 15,000 Ci Co-60 irradiation facility. Support facilities included radiochemistry laboratories, counting rooms and two hot cells. As the emphasis shifted to non-nuclear energy technology a name change resulted in the CEER designation, and plans were started for the decontamination and decommissioning effort.« less

  5. Development of Safety Assessment Code for Decommissioning of Nuclear Facilities

    NASA Astrophysics Data System (ADS)

    Shimada, Taro; Ohshima, Soichiro; Sukegawa, Takenori

    A safety assessment code, DecDose, for decommissioning of nuclear facilities has been developed, based on the experiences of the decommissioning project of Japan Power Demonstration Reactor (JPDR) at Japan Atomic Energy Research Institute (currently JAEA). DecDose evaluates the annual exposure dose of the public and workers according to the progress of decommissioning, and also evaluates the public dose at accidental situations including fire and explosion. As for the public, both the internal and the external doses are calculated by considering inhalation, ingestion, direct radiation from radioactive aerosols and radioactive depositions, and skyshine radiation from waste containers. For external dose for workers, the dose rate from contaminated components and structures to be dismantled is calculated. Internal dose for workers is calculated by considering dismantling conditions, e.g. cutting speed, cutting length of the components and exhaust velocity. Estimation models for dose rate and staying time were verified by comparison with the actual external dose of workers which were acquired during JPDR decommissioning project. DecDose code is expected to contribute the safety assessment for decommissioning of nuclear facilities.

  6. 30 CFR 285.906 - What must my decommissioning application include?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What must my decommissioning application include? 285.906 Section 285.906 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF...

  7. An analysis of decommissioning costs for the AFRRI TRIGA reactor facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forsbacka, Matt

    1990-07-01

    A decommissioning cost analysis for the AFRRI TRIGA Reactor Facility was made. AFRRI is not at this time suggesting that the AFRRI TRIGA Reactor Facility be decommissioned. This report was prepared to be in compliance with paragraph 50.33 of Title 10, Code of Federal Regulations which requires the assurance of availability of future decommissioning funding. The planned method of decommissioning is the immediate decontamination of the AFRRI TRIGA Reactor site to allow for restoration of the site to full public access - this is called DECON. The cost of DECON for the AFRRI TRIGA Reactor Facility in 1990 dollars ismore » estimated to be $3,200,000. The anticipated ancillary costs of facility site demobilization and spent fuel shipment is an additional $600,000. Thus the total cost of terminating reactor operations at AFRRI will be about $3,800,000. The primary basis for this cost estimate is a study of the decommissioning costs of a similar reactor facility that was performed by Battelle Pacific Northwest Laboratory (PNL) as provided in USNRC publication NUREG/CR-1756. The data in this study were adapted to reflect the decommissioning requirements of the AFRRI TRIGA. (author)« less

  8. Northrop TRIGA facility decommissioning plan versus actual results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, F.W.

    1986-01-01

    This paper compares the TRIGA facility decontamination and decommissioning (D and D) plan to the actual results and discusses key areas where operational activities were impacted by the final US Nuclear Regulatory Commission approved D and D plan. A discussion of fuel transport, release criteria, and release survey plans is included.

  9. Analysis of decommissioning costs for the AFRRI TRIGA reactor facility. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forsbacka, M.; Moore, M.

    1989-12-01

    This report provides a cost analysis for decommissioning the Armed Forces Radiobiology Research Institute (AFRRI) TRIGA reactor facility. AFRRI is not suggesting that the AFRRI TRIGA reactor facility be decommissioned. This report was prepared in compliance with paragraph 50.33 of Title 10, Code of Federal Regulations, which requires that funding for the decommissioning of reactor facilities be available when licensed activities cease. The planned method of decommissioning is complete decontamination (DECON) of the AFRRI TRIGA reactor site to allow for restoration of the site to full public access. The cost of DECON in 1990 dollars is estimated to be $3,200,000.more » The anticipated ancillary costs of facility site demobilization and spent fuel shipment will be an additional $600,000. Thus, the total cost of terminating reactor operations at AFRRI will be about $3,800,000. The primary basis for developing this cost estimate was a study of the decommissioning costs of similar reactor facility performed by Battelle Pacific Northwest Laboratory, as provided in U.S. Nuclear Regulatory Commission publication NUREG/CR-1756. The data in this study were adapted to reflect the decommissioning requirements of the AFRRI TRIGA reactor facility.« less

  10. Nuclear facility decommissioning and site remedial actions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knox, N.P.; Webb, J.R.; Ferguson, S.D.

    1990-09-01

    The 394 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eleventh in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3)more » Formerly Utilized Sites Remedial Action Programs, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Grand Junction Remedial Action Program, (7) Uranium Mill Tailings Management, (8) Technical Measurements Center, (9) Remedial Action Program, and (10) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies.« less

  11. Nuclear Rocket Test Facility Decommissioning Including Controlled Explosive Demolition of a Neutron-Activated Shield Wall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael Kruzic

    2007-09-01

    Located in Area 25 of the Nevada Test Site, the Test Cell A Facility was used in the 1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program. The facility was decontaminated and decommissioned (D&D) in 2005 using the Streamlined Approach For Environmental Restoration (SAFER) process, under the Federal Facilities Agreement and Consent Order (FFACO). Utilities and process piping were verified void of contents, hazardous materials were removed, concrete with removable contamination decontaminated, large sections mechanically demolished, and the remaining five-foot, five-inch thick radiologically-activated reinforced concrete shield wall demolished using open-air controlled explosive demolitionmore » (CED). CED of the shield wall was closely monitored and resulted in no radiological exposure or atmospheric release.« less

  12. Decommissioning Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-03-01

    The Decommissioning Handbook is a technical guide for the decommissioning of nuclear facilities. The decommissioning of a nuclear facility involves the removal of the radioactive and, for practical reasons, hazardous materials to enable the facility to be released and not represent a further risk to human health and the environment. This handbook identifies and technologies and techniques that will accomplish these objectives. The emphasis in this handbook is on characterization; waste treatment; decontamination; dismantling, segmenting, demolition; and remote technologies. Other aspects that are discussed in some detail include the regulations governing decommissioning, worker and environmental protection, and packaging and transportationmore » of the waste materials. The handbook describes in general terms the overall decommissioning project, including planning, cost estimating, and operating practices that would ease preparation of the Decommissioning Plan and the decommissioning itself. The reader is referred to other documents for more detailed information. This Decommissioning Handbook has been prepared by Enserch Environmental Corporation for the US Department of Energy and is a complete restructuring of the original handbook developed in 1980 by Nuclear Energy Services. The significant changes between the two documents are the addition of current and the deletion of obsolete technologies and the addition of chapters on project planning and the Decommissioning Plan, regulatory requirements, characterization, remote technology, and packaging and transportation of the waste materials.« less

  13. 30 CFR 285.908 - What must I include in my decommissioning notice?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What must I include in my decommissioning notice? 285.908 Section 285.908 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF...

  14. Northrop Triga facility decommissioning plan versus actual results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, F.W.

    1986-01-01

    This paper compares the Triga facility decontamination and decommissioning plan to the actual results and discusses key areas where operational activities were impacted upon by the final US Nuclear Regulatory Commission (NRC)-approved decontamination and decommissioning plan. Total exposures for fuel transfer were a factor of 4 less than planned. The design of the Triga reactor components allowed the majority of the components to be unconditionally released.

  15. Nuclear facility decommissioning and site remedial actions: a selected bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, P.T.; Knox, N.P.; Fielden, J.M.

    This bibliography contains 693 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. Foreign, as well as domestic, literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Uraniummore » Mill Tailings Remedial Action Program, Grand Junction Remedial Action Program, and Uranium Mill Tailings Management. Chapter sections for chapters 1 and 2 include: Design, Planning, and Regulations; Site Surveys; Decontamination Studies; Dismantlement and Demolition; Land Decontamination and Reclamation; Waste Disposal; and General Studies. The references within each chapter are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for (1) author; (2) corporate affiliation; (3) title; (4) publication description; (5) geographic location; and (6) keywords. An appendix of 202 bibliographic references without abstracts or indexes has been included in this bibliography. This appendix represents literature identified but not abstracted due to time constraints.« less

  16. Nuclear facility decommissioning and site remedial actions: A selected bibliography: Volume 8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, P.T.; Michelson, D.C.; Knox, N.P.

    1987-09-01

    The 553 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eighth in a series of reports. Foreign and domestic literature of all types - technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of energy's remedial action program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Facilities Contaminated with Naturally Occurring Radionuclides, Uranium Mill Tailings Remedial Action Program,more » Uranium Mill Tailings Management, Technical Measurements Center, and General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. The appendix contains a list of frequently used acronyms and abbreviations.« less

  17. Nuclear facility decommissioning and site remedial actions. Volume 6. A selected bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, P.T.; Michelson, D.C.; Knox, N.P.

    1985-09-01

    This bibliography of 683 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the sixth in a series of annual reports prepared for the US Department of Energy's Remedial Action Programs. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's remedial action program. Majormore » chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Facilities Contaminated with Natural Radioactivity; (5) Uranium Mill Tailings Remedial Action Program; (6) Grand Junction Remedial Action Program; (7) Uranium Mill Tailings Management; (8) Technical Measurements Center; and (9) General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 7 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate affiliation or by publication description.« less

  18. Nuclear Rocket Facility Decommissioning Project: Controlled Explosive Demolition of Neutron Activated Shield Wall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael R. Kruzic

    2007-09-16

    Located in Area 25 of the Nevada Test Site (NTS), the Test Cell A (TCA) Facility was used in the early to mid-1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program, to further space travel. Nuclear rocket testing resulted in the activation of materials around the reactors and the release of fission products and fuel particles in the immediate area. Identified as Corrective Action Unit 115, the TCA facility was decontaminated and decommissioned (D&D) from December 2004 to July 2005 using the Streamlined Approach for Environmental Restoration (SAFER) process, under the ''Federal Facilitymore » Agreement and Consent Order''. The SAFER process allows environmental remediation and facility closure activities (i.e., decommissioning) to occur simultaneously provided technical decisions are made by an experienced decision maker within the site conceptual site model, identified in the Data Quality Objective process. Facility closure involved a seven-step decommissioning strategy. Key lessons learned from the project included: (1) Targeted preliminary investigation activities provided a more solid technical approach, reduced surprises and scope creep, and made the working environment safer for the D&D worker. (2) Early identification of risks and uncertainties provided opportunities for risk management and mitigation planning to address challenges and unanticipated conditions. (3) Team reviews provided an excellent mechanism to consider all aspects of the task, integrated safety into activity performance, increase team unity and ''buy-in'' and promoted innovative and time saving ideas. (4) Development of CED protocols ensured safety and control. (5) The same proven D&D strategy is now being employed on the larger ''sister'' facility, Test Cell C.« less

  19. Nuclear Rocket Facility Decommissioning Project: Controlled Explosive Demolition of Neutron-Activated Shield Wall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael R. Kruzic

    2008-06-01

    Located in Area 25 of the Nevada Test Site (NTS), the Test Cell A (TCA) Facility (Figure 1) was used in the early to mid-1960s for testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program, to further space travel. Nuclear rocket testing resulted in the activation of materials around the reactors and the release of fission products and fuel particles. The TCA facility, known as Corrective Action Unit 115, was decontaminated and decommissioned (D&D) from December 2004 to July 2005 using the Streamlined Approach for Environmental Restoration (SAFER) process, under the Federal Facility Agreement and Consentmore » Order. The SAFER process allows environmental remediation and facility closure activities (i.e., decommissioning) to occur simultaneously, provided technical decisions are made by an experienced decision maker within the site conceptual site model. Facility closure involved a seven-step decommissioning strategy. First, preliminary investigation activities were performed, including review of process knowledge documentation, targeted facility radiological and hazardous material surveys, concrete core drilling and analysis, shield wall radiological characterization, and discrete sampling, which proved to be very useful and cost-effective in subsequent decommissioning planning and execution and worker safety. Second, site setup and mobilization of equipment and personnel were completed. Third, early removal of hazardous materials, including asbestos, lead, cadmium, and oil, was performed ensuring worker safety during more invasive demolition activities. Process piping was to be verified void of contents. Electrical systems were de-energized and other systems were rendered free of residual energy. Fourth, areas of high radiological contamination were decontaminated using multiple methods. Contamination levels varied across the facility. Fixed beta/gamma contamination levels ranged up to 2 million disintegrations per minute (dpm)/100

  20. 30 CFR 585.902 - What are the general requirements for decommissioning for facilities authorized under my SAP, COP...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... decommissioning for facilities authorized under my SAP, COP, or GAP? 585.902 Section 585.902 Mineral Resources... authorized under my SAP, COP, or GAP? (a) Except as otherwise authorized by BOEM under § 585.909, within 2... decommissioning the facilities under your SAP, COP, or GAP, you must submit a decommissioning application and...

  1. 30 CFR 585.902 - What are the general requirements for decommissioning for facilities authorized under my SAP, COP...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... decommissioning for facilities authorized under my SAP, COP, or GAP? 585.902 Section 585.902 Mineral Resources... authorized under my SAP, COP, or GAP? (a) Except as otherwise authorized by BOEM under § 585.909, within 2... decommissioning the facilities under your SAP, COP, or GAP, you must submit a decommissioning application and...

  2. Metrology for decommissioning nuclear facilities: Partial outcomes of joint research project within the European Metrology Research Program.

    PubMed

    Suran, Jiri; Kovar, Petr; Smoldasova, Jana; Solc, Jaroslav; Van Ammel, Raf; Garcia Miranda, Maria; Russell, Ben; Arnold, Dirk; Zapata-García, Daniel; Boden, Sven; Rogiers, Bart; Sand, Johan; Peräjärvi, Kari; Holm, Philip; Hay, Bruno; Failleau, Guillaume; Plumeri, Stephane; Laurent Beck, Yves; Grisa, Tomas

    2018-04-01

    Decommissioning of nuclear facilities incurs high costs regarding the accurate characterisation and correct disposal of the decommissioned materials. Therefore, there is a need for the implementation of new and traceable measurement technologies to select the appropriate release or disposal route of radioactive wastes. This paper addresses some of the innovative outcomes of the project "Metrology for Decommissioning Nuclear Facilities" related to mapping of contamination inside nuclear facilities, waste clearance measurement, Raman distributed temperature sensing for long term repository integrity monitoring and validation of radiochemical procedures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Technical Aspects Regarding the Management of Radioactive Waste from Decommissioning of Nuclear Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dragolici, F.; Turcanu, C. N.; Rotarescu, G.

    2003-02-25

    The proper application of the nuclear techniques and technologies in Romania started in 1957, once with the commissioning of the Research Reactor VVR-S from IFIN-HH-Magurele. During the last 45 years, appear thousands of nuclear application units with extremely diverse profiles (research, biology, medicine, education, agriculture, transport, all types of industry) which used different nuclear facilities containing radioactive sources and generating a great variety of radioactive waste during the decommissioning after the operation lifetime is accomplished. A new aspect appears by the planning of VVR-S Research Reactor decommissioning which will be a new source of radioactive waste generated by decontamination, disassemblingmore » and demolition activities. By construction and exploitation of the Radioactive Waste Treatment Plant (STDR)--Magurele and the National Repository for Low and Intermediate Radioactive Waste (DNDR)--Baita, Bihor county, in Romania was solved the management of radioactive wastes arising from operation and decommissioning of small nuclear facilities, being assured the protection of the people and environment. The present paper makes a review of the present technical status of the Romanian waste management facilities, especially raising on treatment capabilities of ''problem'' wastes such as Ra-266, Pu-238, Am-241 Co-60, Co-57, Sr-90, Cs-137 sealed sources from industrial, research and medical applications. Also, contain a preliminary estimation of quantities and types of wastes, which would result during the decommissioning project of the VVR-S Research Reactor from IFIN-HH giving attention to some special category of wastes like aluminum, graphite and equipment, components and structures that became radioactive through neutron activation. After analyzing the technical and scientific potential of STDR and DNDR to handle big amounts of wastes resulting from the decommissioning of VVR-S Research Reactor and small nuclear facilities, the

  4. Nuclear facility decommissioning and site remedial actions: a selected bibliography. Volume 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, P.T.; Knox, N.P.; Chilton, B.D.

    1984-09-01

    This bibliography of 756 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the fifth in a series of annual reports prepared for the US Department of Energy, Division of Remedial Action Projects. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department ofmore » Energy's Remedial Action Program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Uranium Mill Tailings Remedial Action Program; (5) Grand Junction Remedial Action Program; (6) Uranium Mill Tailings Management; and (7) Technical Measurements Center. Chapter sections for chapters 1, 2, 4, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for the categories of author, corporate affiliation, title, publication description, geographic location, and keywords. The Appendix contains a list of frequently used acronyms.« less

  5. Facility Decontamination and Decommissioning Program Surveillance and Maintenance Plan, Revision 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poderis, Reed J.; King, Rebecca A.

    This Surveillance and Maintenance (S&M) Plan describes the activities performed between deactivation and final decommissioning of the following facilities located on the Nevada National Security Site, as documented in the Federal Facility Agreement and Consent Order under the Industrial Sites program as decontamination and decommissioning sites: ? Engine Maintenance, Assembly, and Disassembly (EMAD) Facility: o EMAD Building (Building 25-3900) o Locomotive Storage Shed (Building 25-3901) ? Test Cell C (TCC) Facility: o Equipment Building (Building 25-3220) o Motor Drive Building (Building 25-3230) o Pump Shop (Building 25-3231) o Cryogenic Lab (Building 25-3232) o Ancillary Structures (e.g., dewars, water tower, piping,more » tanks) These facilities have been declared excess and are in various stages of deactivation (low-risk, long-term stewardship disposition state). This S&M Plan establishes and implements a solid, cost-effective, and balanced S&M program consistent with federal, state, and regulatory requirements. A graded approach is used to plan and conduct S&M activities. The goal is to maintain the facilities in a safe condition in a cost-effective manner until their final end state is achieved. This plan accomplishes the following: ? Establishes S&M objectives and framework ? Identifies programmatic guidance for S&M activities to be conducted by National Security Technologies, LLC, for the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) ? Provides present facility condition information and identifies hazards ? Identifies facility-specific S&M activities to be performed and their frequency ? Identifies regulatory drivers, NNSA/NFO policies and procedures, and best management practices that necessitate implementation of S&M activities ? Provides criteria and frequencies for revisions and updates ? Establishes the process for identifying and dispositioning a condition that has not been previously identified

  6. Evaluation of Nuclear Facility Decommissioning Projects program: a reference research reactor. Project summary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumann, B.L.; Miller, R.L.

    1983-10-01

    This document presents, in summary form, generic conceptual information relevant to the decommissioning of a reference research reactor (RRR). All of the data presented were extracted from NUREG/CR-1756 and arranged in a form that will provide a basis for future comparison studies for the Evaluation of Nuclear Facility Decommissioning Projects (ENFDP) program.

  7. 30 CFR 585.902 - What are the general requirements for decommissioning for facilities authorized under my SAP, COP...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... decommissioning for facilities authorized under my SAP, COP, or GAP? 585.902 Section 585.902 Mineral Resources..., Inspections, and Facility Assessments for Activities Conducted Under SAPs, COPs and GAPs Decommissioning... authorized under my SAP, COP, or GAP? (a) Except as otherwise authorized by BOEM under § 585.909, within 2...

  8. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 1, Main text

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goins, L.F.; Webb, J.R.; Cravens, C.D.

    1992-09-01

    This publication contains 1035 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. These citations constitute the thirteenth in a series of reports prepared annually for the US Department of Energy (DOE) Environmental Restoration programs. Citations to foreign and domestic literature of all types. There are 13 major sections of the publication, including: (1) DOE Decontamination and Decommissioning Program; (2) Nuclear Facilities Decommissioning; (3) DOE Formerly Utilized Sites Remedial Action Program; (4) DOE Uranium Mill Tailings Remedial Action Project; (5) Uranium Mill Tailings Management; (6) DOE Environmental Restoration Program; (7) DOE Site-Specific Remedialmore » Actions; (8) Contaminated Site Restoration; (9) Remediation of Contaminated Soil and Groundwater; (10) Environmental Data Measurements, Management, and Evaluation; (11) Remedial Action Assessment and Decision-Making; (12) Technology Development and Evaluation; and (13) Environmental and Waste Management Issues. Bibliographic references are arranged in nine subject categories by geographic location and then alphabetically by first author, corporate affiliation, or publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word.« less

  9. Status of the NRC Decommissioning Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orlando, D. A.; Camper, L.; Buckley, J.

    2003-02-24

    On July 21, 1997, the U.S. Nuclear Regulatory Commission (NRC) published the final rule on Radiological Criteria for License Termination (the License Termination Rule or LTR) as Subpart E to 10 CFR Part 20. NRC regulations require that materials licensees submit Decommissioning Plans to support the decommissioning of its facility if it is required by license condition, or if the procedures and activities necessary to carry out the decommissioning have not been approved by NRC and these procedures could increase the potential health and safety impacts to the workers or the public. NRC regulations also require that reactor licensees submitmore » Post-shutdown Decommissioning Activities Reports and License Termination Plans to support the decommissioning of nuclear power facilities. This paper provides an update on the status of the NRC's decommissioning program that was presented during WM'02. It discusses the staff's current efforts to streamline the decommissioning process, current issues being faced in the decommissioning program, such as partial site release and restricted release of sites, as well as the status of the decommissioning of complex sites and those listed in the Site Decommissioning Management Plan. The paper discusses the status of permanently shut-down commercial power reactors and the transfer of complex decommissioning sites and sites listed on the SDMP to Agreement States. Finally the paper provides an update of the status of various tools and guidance the NRC is developing to assist licensees during decommissioning, including an effort to consolidate and risk-inform decommissioning guidance.« less

  10. Nuclear facility decommissioning and site remedial actions: A selected bibliography, volume 9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, P.T.; Knox, N.P.; Michelson, D.C.

    1988-09-01

    The 604 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the ninth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--has been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's remedial action programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilitiesmore » Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Subsections for sections 1, 2, 5, and 6 include: Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at (615) 576-0568 or FTS 626

  11. Safety Oversight of Decommissioning Activities at DOE Nuclear Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zull, Lawrence M.; Yeniscavich, William

    2008-01-15

    The Defense Nuclear Facilities Safety Board (Board) is an independent federal agency established by Congress in 1988 to provide nuclear safety oversight of activities at U.S. Department of Energy (DOE) defense nuclear facilities. The activities under the Board's jurisdiction include the design, construction, startup, operation, and decommissioning of defense nuclear facilities at DOE sites. This paper reviews the Board's safety oversight of decommissioning activities at DOE sites, identifies the safety problems observed, and discusses Board initiatives to improve the safety of decommissioning activities at DOE sites. The decommissioning of former defense nuclear facilities has reduced the risk of radioactive materialmore » contamination and exposure to the public and site workers. In general, efforts to perform decommissioning work at DOE defense nuclear sites have been successful, and contractors performing decommissioning work have a good safety record. Decommissioning activities have recently been completed at sites identified for closure, including the Rocky Flats Environmental Technology Site, the Fernald Closure Project, and the Miamisburg Closure Project (the Mound site). The Rocky Flats and Fernald sites, which produced plutonium parts and uranium materials for defense needs (respectively), have been turned into wildlife refuges. The Mound site, which performed R and D activities on nuclear materials, has been converted into an industrial and technology park called the Mound Advanced Technology Center. The DOE Office of Legacy Management is responsible for the long term stewardship of these former EM sites. The Board has reviewed many decommissioning activities, and noted that there are valuable lessons learned that can benefit both DOE and the contractor. As part of its ongoing safety oversight responsibilities, the Board and its staff will continue to review the safety of DOE and contractor decommissioning activities at DOE defense nuclear sites.« less

  12. Evaluation of Nuclear Facility Decommissioning Projects program: a reference test reactor. Project summary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boing, L.E.; Miller, R.L.

    1983-10-01

    This document presents, in summary form, generic conceptual information relevant to the decommissioning of a reference test reactor (RTR). All of the data presented were extracted from NUREG/CR-1756 and arranged in a form that will provide a basis for future comparison studies for the Evaluation of Nuclear Facility Decommissioning Projects (ENFDP) program. During the data extraction process no attempt was made to challenge any of the assumptions used in the original studies nor was any attempt made to update assumed methods or processes to state-of-the-art decommissioning techniques. In a few instances obvious errors were corrected after consultation with the studymore » author.« less

  13. 30 CFR 585.908 - What must I include in my decommissioning notice?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false What must I include in my decommissioning notice? 585.908 Section 585.908 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE... determines that your decommissioning activities would: (1) Result in a significant change in the impacts...

  14. Decommissioning of magnox Ltd fuel cooling pond facilities in the UK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertoncini, Carlo

    2013-07-01

    Magnox reactors were the first generation of nuclear power stations built in the UK; ten sites in total, of which, nine had wet fuel routes with cooling ponds. Five ponds are currently in a decommissioning phase; this paper will focus primarily on Hunterston-A (HNA) Site and the central programme of work which governs its management. During its operation, the Cartridge Cooling Pond at HNA was used to receive the spent fuel discharged from the Site's two reactors, it was then stored for cooling purposes prior to dispatch off site. The current decommissioning phase focusses on draining the 6500 m{sup 3}more » pond. Due to the Site's limited caesium removal facilities, a stand-alone effluent treatment plant was constructed to improve abatement and reduce the pond activity from 200 to 0.7 Bq/ml (β). This was necessary due to increased environmental standards introduced since the site had ceased generation ten years previously. Early characterisation and experience from other sites concluded that if the pond were to be drained without any treatment to the walls, doses to the Operators, during subsequent decommissioning works, would routinely be in excess of 1 mSv.hr{sup -1}(γ). An opportunity was realised within the Ponds Programme that if the surface layer of the pond walls were to be removed during drain-down, ambient dose rates would be reduced by a factor of 10; this would allow for more cost-effective decommissioning options in the future. Ultrahigh pressure water jetting was tested and proved to yield a ∼95% total-activity reduction on treated surfaces. Challenges were overcome in providing safe and secure access to Decommissioning Operators to perform this operation by means of floating platforms on the surface of the pond. As strategies to clear facilities to exemption levels are becoming both cost prohibitive and not reasonably practicable, work is now underway in the Programme to determine the optimum condition for entry into long-term quiescent storage

  15. Environmental Assessment for decommissioning the Strategic Petroleum Reserve Weeks Island Facility, Iberia Parish, Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-12-01

    The Strategic Petroleum Reserve (SPR) Weeks Island site is one of five underground salt dome crude oils storage facilities operated by the Department of Energy (DOE). It is located in Iberia Parish, Louisiana. The purpose of the proposed action is to decommission the Weeks Island crude oil storage after the oil inventory has been transferred to other SPR facilities. Water intrusion into the salt dome storage chambers and the development of two sinkholes located near the aboveground facilities has created uncertain geophysical conditions. This Environmental Assessment describes the proposed decommissioning operation, its alternatives, and potential environmental impacts. Based on thismore » analyses, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) and has issued the Finding of No Significant Impact (FONSI).« less

  16. Evaluation of nuclear-facility decommissioning projects. Summary report: Ames Laboratory Research Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Link, B.W.; Miller, R.L.

    1983-07-01

    This document summarizes the available information concerning the decommissioning of the Ames Laboratory Research Reactor (ALRR), a five-megawatt heavy water moderated and cooled research reactor. The data were placed in a computerized information retrieval/manipulation system which permits its future utilization for purposes of comparative analysis. This information is presented both in detail in its computer output form and also as a manually assembled summarization which highlights the more important aspects of the decommissioning program. Some comparative information with reference to generic decommissioning data extracted from NUREG/CR 1756, Technology, Safety and Costs of Decommissioning Nuclear Research and Test Reactors, is included.

  17. 30 CFR 285.902 - What are the general requirements for decommissioning for facilities authorized under my SAP, COP...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... decommissioning for facilities authorized under my SAP, COP, or GAP? 285.902 Section 285.902 Mineral Resources... SAP, COP, or GAP? (a) Except as otherwise authorized by MMS under § 285.909, within 2 years following... under your SAP, COP, or GAP, you must submit a decommissioning application and receive approval from the...

  18. Prioritization methodology for the decommissioning of nuclear facilities: a study case on the Iraq former nuclear complex.

    PubMed

    Jarjies, Adnan; Abbas, Mohammed; Monken Fernandes, Horst; Wong, Melanie; Coates, Roger

    2013-05-01

    There are a number of sites in Iraq which have been used for nuclear activities and which contain potentially significant amounts of radioactive waste. The principal nuclear site being Al-Tuwaitha. Many of these sites suffered substantial physical damage during the Gulf Wars and have been subjected to subsequent looting. All require decommissioning in order to ensure both radiological and non-radiological safety. However, it is not possible to undertake the decommissioning of all sites and facilities at the same time. Therefore, a prioritization methodology has been developed in order to aid the decision-making process. The methodology comprises three principal stages of assessment: i) a quantitative surrogate risk assessment ii) a range of sensitivity analyses and iii) the inclusion of qualitative modifying factors. A group of Tuwaitha facilities presented the highest risk among the evaluated ones, followed by a middle ranking grouping of Tuwaitha facilities and some other sites, and a relatively large group of lower risk facilities and sites. The initial order of priority is changed when modifying factors are taken into account. It has to be considered the Iraq's isolation from the international nuclear community over the last two decades and the lack of experienced personnel. Therefore it is appropriate to initiate decommissioning operations on selected low risk facilities at Tuwaitha in order to build capacity and prepare for work to be carried out in more complex and potentially high hazard facilities. In addition it is appropriate to initiate some prudent precautionary actions relating to some of the higher risk facilities. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. International Research Reactor Decommissioning Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leopando, Leonardo; Warnecke, Ernst

    2008-01-15

    Many research reactors have been or will be shut down and are candidates for decommissioning. Most of the respective countries neither have a decommissioning policy nor the required expertise and funds to effectively implement a decommissioning project. The IAEA established the Research Reactor Decommissioning Demonstration Project (R{sup 2}D{sup 2}P) to help answer this need. It was agreed to involve the Philippine Research Reactor (PRR-1) as model reactor to demonstrate 'hands-on' experience as it is just starting the decommissioning process. Other facilities may be included in the project as they fit into the scope of R{sup 2}D{sup 2}P and complement tomore » the PRR-1 decommissioning activities. The key outcome of the R{sup 2}D{sup 2}P will be the decommissioning of the PRR-1 reactor. On the way to this final goal the preparation of safety related documents (i.e., decommissioning plan, environmental impact assessment, safety analysis report, health and safety plan, cost estimate, etc.) and the licensing process as well as the actual dismantling activities could provide a model to other countries involved in the project. It is expected that the R{sup 2}D{sup 2}P would initiate activities related to planning and funding of decommissioning activities in the participating countries if that has not yet been done.« less

  20. Progress in Decommissioning the Humboldt Bay Power Plant - 13604

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rod, Kerry; Shelanskey, Steven K.; Kristofzski, John

    Decommissioning of the Pacific Gas and Electric (PG and E) Company Humboldt Bay Power Plant (HBPP) Unit 3 nuclear facility has now, after more than three decades of SAFSTOR and initial decommissioning work, transitioned to full-scale decommissioning. Decommissioning activities to date have been well orchestrated and executed in spite of an extremely small work site with space constricted even more by other concurrent on-site major construction projects including the demolition of four fossil units, construction of a new generating station and 60 KV switchyard upgrade. Full-scale decommissioning activities - now transitioning from Plant Systems Removal (PG and E self-perform) tomore » Civil Works Projects (contractor performed) - are proceeding in a safe, timely, and cost effective manner. As a result of the successful decommissioning work to date (approximately fifty percent completed) and the intense planning and preparations for the remaining work, there is a high level of confidence for completion of all HBPP Unit 3 decommissions activities in 2018. Strategic planning and preparations to transition into full-scale decommissioning was carried out in 2008 by a small, highly focused project team. This planning was conducted concurrent with other critical planning requirements such as the loading of spent nuclear fuel into dry storage at the Independent Spent Fuel Storage Installation (ISFSI) finishing December 2008. Over the past four years, 2009 through 2012, the majority of decommissioning work has been installation of site infrastructure and removal of systems and components, known as the Plant System Removal Phase, where work scope was dynamic with significant uncertainty, and it was self-performed by PG and E. As HBPP Decommissioning transitions from the Plant System Removal Phase to the Civil Works Projects Phase, where work scope is well defined, a contracting plan similar to that used for Fossil Decommissioning will be implemented. Award of five major

  1. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 2, Indexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goins, L.F.; Webb, J.R.; Cravens, C.D.

    1992-09-01

    This is part 2 of a bibliography on nuclear facility decommissioning and site remedial action. This report contains indexes on the following: authors, corporate affiliation, title words, publication description, geographic location, subject category, and key word.

  2. 30 CFR 285.902 - What are the general requirements for decommissioning for facilities authorized under my SAP, COP...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Decommissioning... facilities, projects, cables, pipelines, and obstructions; (2) Clear the seafloor of all obstructions created...

  3. Norm - contaminated iodine production facilities decommissioning in Turkmenistan: experience and results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelbutovskiy, Alexander; Cheremisin, Peter; Egorov, Alexander

    2013-07-01

    This report summarizes the data, including the cost parameters of the former iodine production facilities decommissioning project in Turkmenistan. Before the closure, these facilities were producing the iodine from the underground mineral water by the methods of charcoal adsorption. Balkanabat iodine and Khazar chemical plants' sites remediation, transportation and disposal campaigns main results could be seen. The rehabilitated area covers 47.5 thousand square meters. The remediation equipment main characteristics, technical solutions and rehabilitation operations performed are indicated also. The report shows the types of the waste shipping containers, the quantity and nature of the logistics operations. The project waste turnovermore » is about 2 million ton-kilometers. The problems encountered during the remediation of the Khazar chemical plant site are discussed: undetected waste quantities that were discovered during the operational activities required the additional volume of the disposal facility. The additional repository wall superstructure was designed and erected to accommodate this additional waste. There are data on the volume and characteristics of the NORM waste disposed: 60.4 thousand cu.m. of NORM with total activity 1 439 x 10{sup 9} Bq (38.89 Ci) were disposed at all. This report summarizes the project implementation results, from 2009 to 15.02.2012 (the date of the repository closure and its placement under the controlled supervision), including monitoring results within a year after the repository closure. (authors)« less

  4. 30 CFR 285.1018 - Who is responsible for decommissioning an OCS facility subject to an Alternate Use RUE?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Rights of Use and Easement for Energy- and Marine-Related Activities Using Existing OCS Facilities Decommissioning An Alternate Use Rue § 285...

  5. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Vol. 18. Part 2. Indexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-09-01

    This bibliography contains 3638 citations with abstracts of documents relevant to environmental restoration, nuclear facility decontamination and decommissioning (D&D), uranium mill tailings management, and site remedial actions. This report is the eighteenth in a series of bibliographies prepared annually for the U.S. Department of Energy (DOE) Office of Environmental Restoration. Citations to foreign and domestic literature of all types - technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions - have been included in Part 1 of the report. The bibliography contains scientific, technical, financial, and regulatory information that pertains to DOE environmentalmore » restoration programs. The citations are separated by topic into 16 sections, including (1) DOE Environmental Restoration Program; (2) DOE D&D Program; (3) Nuclear Facilities Decommissioning; (4) DOE Formerly Utilized Sites Remedial Action Programs; (5) NORM-Contaminated Site Restoration; (6) DOE Uranium Mill Tailings Remedial Action Project; (7) Uranium Mill Tailings Management; (8) DOE Site-Wide Remedial Actions; (9) DOE Onsite Remedial Action Projects; (10) Contaminated Site Remedial Actions; (11) DOE Underground Storage Tank Remediation; (12) DOE Technology Development, Demonstration, and Evaluations; (13) Soil Remediation; (14) Groundwater Remediation; (15) Environmental Measurements, Analysis, and Decision-Making; and (16) Environmental Management Issues. Within the 16 sections, the citations are sorted by geographic location. If a geographic location is not specified, the citations are sorted according to the document title. In Part 2 of the report, indexes are provided for author, author affiliation, selected title phrase, selected title word, publication description, geographic location, and keyword.« less

  6. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 18. Part 1B: Citations with abstracts, sections 10 through 16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-09-01

    This bibliography contains 3,638 citations with abstracts of documents relevant to environmental restoration, nuclear facility decontamination and decommissioning (D and D), uranium mill tailings management, and site remedial actions. The bibliography contains scientific, technical, financial, and regulatory information that pertains to DOE environmental restoration programs. The citations are separated by topic into 16 sections, including (1) DOE Environmental Restoration Program; (2) DOE D and D Program; (3) Nuclear Facilities Decommissioning; (4) DOE Formerly Utilized sites Remedial Action Program; (5) NORM-Contaminated Site Restoration; (6) DOE Uranium Mill Tailings Remedial Action Project; (7) Uranium Mill Tailings Management; (8) DOE Site-Wide Remedial Actions;more » (9) DOE Onsite Remedial Action Projects; (10) Contaminated Site Remedial Actions; (11) DOE Underground Storage Tank Remediation; (12) DOE Technology Development, Demonstration, and Evaluation; (13) Soil Remediation; (14) Groundwater Remediation; (15) Environmental Measurements, Analysis, and Decision-Making; and (16) Environmental Management Issues.« less

  7. Evaluation of nuclear facility decommissioning projects. Summary report: North Carolina State University Research and Training Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Link, B.W.; Miller, R.L.

    1983-08-01

    This document summarizes information from the decommissioning of the NCSUR-3 (R-3), a 10 KWt university research and training reactor. The decommissioning data were placed in a computerized information retrieval/manipulation system which permits future utilization of this information in pre-decommissioning activities with other university reactors of similar design. The information is presented both in some detail in its computer output form and also as a manually assembled summarization which highlights the more significant aspects of the decommissioning project. Decommissioning data from a generic study, NUREG/CR 1756, Technology, Safety and Costs of Decommissioning Nuclear Research and Test Reactors, and the decommissioning ofmore » the Ames Laboratory Research Reactor (ALRR), a 5 MWt research reactor, is also included for comparison.« less

  8. Ecological and political issues surrounding decommissioning of offshore oil facilities in the Southern California Bight

    USGS Publications Warehouse

    Schroeder, Donna M.; Love, Milton S.

    2004-01-01

    To aid legislators, resource managers, and the general public, this paper summarizes and clarifies some of the issues and options that the federal government and the state of California face in decommissioning offshore oil and gas production platforms, particularly as these relate to platform ecology. Both local marine ecology and political climate play a role in decommissioning offshore oil production platforms. Compared to the relatively supportive political climate in the Gulf of Mexico for “rigs-to-reefs” programs, conflicting social values among stakeholders in Southern California increases the need for understanding ecological impacts of various decommissioning alternatives (which range from total removal to allowing some or all of platform structure to remain in the ocean). Additional scientific needs in the decommissioning process include further assessment of platform habitat quality, estimation of regional impacts of decommissioning alternatives to marine populations, and determination of biological effects of any residual contaminants. The principal management need is a ranking of environmental priorities (e.g. species-of-interest and marine habitats). Because considerable numbers of economically important species reside near oil platforms, National Oceanic and Atmospheric Administration Fisheries should consider the consequences of decommissioning alternatives in their overall management plans. Management strategies could include designating reefed platforms as marine protected areas. The overarching conclusion from both ecological and political perspectives is that decommissioning decisions should be made on a case-by-case basis.

  9. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 2, Indexes. Environmental Restoration Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goins, L.F.; Webb, J.R.; Cravens, C.D.

    1992-09-01

    This is part 2 of a bibliography on nuclear facility decommissioning and site remedial action. This report contains indexes on the following: authors, corporate affiliation, title words, publication description, geographic location, subject category, and key word.

  10. 30 CFR 285.908 - What must I include in my decommissioning notice?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What must I include in my decommissioning notice? 285.908 Section 285.908 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND... the impacts previously identified and evaluated; (2) Require any additional Federal permits; or (3...

  11. The regulatory framework for safe decommissioning of nuclear power plants in Korea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sangmyeon Ahn; Jungjoon Lee; Chanwoo Jeong

    We are having 23 units of nuclear power plants in operation and 5 units of nuclear power plants under construction in Korea as of September 2012. However, we don't have any experience on shutdown permanently and decommissioning of nuclear power plants. There are only two research reactors being decommissioned since 1997. It is realized that improvement of the regulatory framework for decommissioning of nuclear facilities has been emphasized constantly from the point of view of IAEA's safety standards. It is also known that IAEA will prepare the safety requirement on decommissioning of facilities; its title is the Safe Decommissioning ofmore » Facilities, General Safety Requirement Part 6. According to the result of IAEA's Integrated Regulatory Review Service (IRRS) mission to Korea in 2011, it was recommended that the regulatory framework should require decommissioning plans for nuclear installations to be constructed and operated and these plans should be updated periodically. In addition, after the Fukushima nuclear disaster in Japan in March of 2011, preparedness for early decommissioning caused by an unexpected severe accident became important issues and concerns. In this respect, it is acknowledged that the regulatory framework for decommissioning of nuclear facilities in Korea need to be improved. First of all, we focus on identifying the current status and relevant issues of regulatory framework for decommissioning of nuclear power plants compared to the IAEA's safety standards in order to achieve our goal. And then the plan is established for improvement of regulatory framework for decommissioning of nuclear power plants in Korea. It is expected that if the things will go forward as planned, the revised regulatory framework for decommissioning could enhance the safety regime on the decommissioning of nuclear power plants in Korea in light of international standards. (authors)« less

  12. Decommissioning of the TRIGA mark II and III and radioactive waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doo Seong Hwang; Yoon Ji Lee; Gyeong Hwan Chung

    2013-07-01

    KAERI has carried out decommissioning projects for two research reactors (KRR-1 and 2). The decommissioning project of KRR-1 (TRIGA Mark II) and 2 (TRIGA Mark III) was launched in 1997 with a total budget of 23.25 million US dollars. KRR-2 and all auxiliary facilities were already decommissioned, and KRR-1 is being decommissioned now. Much more dismantled waste is generated than in any other operations of nuclear facilities. Thus, the waste needs to be reduced and stabilized through decontamination or treatment before disposal. This paper introduces the current status of the decommissioning projects and describes the volume reduction and conditioning ofmore » decommissioning waste for final disposal. (authors)« less

  13. The Regulatory Challenges of Decommissioning Nuclear Power Plants in Korea - 13101

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jungjoon; Ahn, Sangmyeon; Choi, Kyungwoo

    As of 2012, 23 units of nuclear power plants are in operation, but there is no experience of permanent shutdown and decommissioning of nuclear power plant in Korea. It is realized that, since late 1990's, improvement of the regulatory framework for decommissioning has been emphasized constantly from the point of view of International Atomic Energy Agency (IAEA)'s safety standards. And it is known that now IAEA prepare the safety requirement on decommissioning of facilities, its title is the Safe Decommissioning of Facilities, General Safety Requirement Part 6. According to the result of IAEA's Integrated Regulatory Review Service (IRRS) mission tomore » Korea in 2011, it was recommended that the regulatory framework for decommissioning should require decommissioning plans for nuclear installations to be constructed and operated and these plans should be updated periodically. In addition, after the Fukushima nuclear disaster in Japan in March of 2011, preparedness for early decommissioning caused by an unexpected severe accident became also important issues and concerns. In this respect, it is acknowledged that the regulatory framework for decommissioning of nuclear facilities in Korea need to be improved. First of all, we identify the current status and relevant issues of regulatory framework for decommissioning of nuclear power plants compared to the IAEA's safety standards in order to achieve our goal. And then the plan is to be established for improvement of regulatory framework for decommissioning of nuclear power plants in Korea. After dealing with it, it is expected that the revised regulatory framework for decommissioning could enhance the safety regime on the decommissioning of nuclear power plants in Korea in light of international standards. (authors)« less

  14. 78 FR 11688 - Notice of Issuance of Amendment to Facility License R-77 Incorporating a Decommissioning Plan for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-19

    ... Reactor at the State University of New York at Buffalo AGENCY: Nuclear Regulatory Commission. ACTION... University of New York at Buffalo (UB) decommissioning plan (DP) by amendment to the Facility License R-77... in the NRC Library at http://www.nrc.gov/reading-rm/adams.html . To begin the search, select ``ADAMS...

  15. Decommissioning of Active Ventilation Systems in a Nuclear R and D Facility to Prepare for Building Demolition (Whiteshell Laboratories Decommissioning Project, Canada) - 13073

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilcox, Brian; May, Doug; Howlett, Don

    2013-07-01

    Whiteshell Laboratories (WL) is a nuclear research establishment owned by the Canadian government and operated by Atomic Energy of Canada Limited (AECL) since the early 1960's. WL is currently under a decommissioning license and the mandate is to remediate the nuclear legacy liabilities in a safe and cost effective manner. The WL Project is the first major nuclear decommissioning project in Canada. A major initiative underway is to decommission and demolish the main R and D Laboratory complex. The Building 300 R and D complex was constructed to accommodate laboratories and offices which were mainly used for research and developmentmore » associated with organic-cooled reactors, nuclear fuel waste management, reactor safety, advanced fuel cycles and other applications of nuclear energy. Building 300 is a three storey structure of approximately 16,000 m{sup 2}. In order to proceed with building demolition, the contaminated systems inside the building have to be characterized, removed, and the waste managed. There is a significant focus on volume reduction of radioactive waste for the WL project. The active ventilation system is one of the significant contaminated systems in Building 300 that requires decommissioning and removal. The active ventilation system was designed to manage hazardous fumes and radioactivity from ventilation devices (e.g., fume hoods, snorkels and glove boxes) and to prevent the escape of airborne hazardous material outside of the laboratory boundary in the event of an upset condition. The system includes over 200 ventilation devices and 32 active exhaust fan units and high efficiency particulate air (HEPA) filters. The strategy to remove the ventilation system was to work from the laboratory end back to the fan/filter system. Each ventilation duct was radiologically characterized. Fogging was used to minimize loose contamination. Sections of the duct were removed by various cutting methods and bagged for temporary storage prior to

  16. Regulatory Supervision of Radiological Protection in the Russian Federation as Applied to Facility Decommissioning and Site Remediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sneve, M.K.; Shandala, N.K.

    2007-07-01

    The Russian Federation is carrying out major work to manage the legacy of exploitation of nuclear power and use of radioactive materials. This paper describes work on-going to provide enhanced regulatory supervision of these activities as regards radiological protection. The scope includes worker and public protection in routine operation; emergency preparedness and response; radioactive waste management, including treatment, interim storage and transport as well as final disposal; and long term site restoration. Examples examined include waste from facilities in NW Russia, including remediation of previous shore technical bases (STBs) for submarines, spent fuel and radioactive waste management from ice-breakers, andmore » decommissioning of Radio-Thermal-Generators (RTGs) used in navigational devices. Consideration is given to the identification of regulatory responsibilities among different regulators; development of necessary regulatory instruments; and development of regulatory procedures for safety case reviews and compliance monitoring and international cooperation between different regulators. (authors)« less

  17. 75 FR 4803 - Notice of Availability of the Final Environmental Impact Statement for Decommissioning and/or...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-29

    ...). The Proposed Action includes the decontamination and decommissioning of the waste storage tanks and... site facilities identified in the Final EIS would be removed; contaminated soil, sediment, and...

  18. 30 CFR 285.907 - How will MMS process my decommissioning application?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... application? 285.907 Section 285.907 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE... compare your decommissioning application with the decommissioning general concept in your approved SAP...

  19. Radiochemistry Lab Decommissioning and Dismantlement. AECL, Chalk River Labs, Ontario, Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenny, Stephen

    2008-01-15

    Atomic Energy of Canada (AECL) was originally founded in the mid 1940's to perform research in radiation and nuclear areas under the Canadian Defense Department. In the mid 50's The Canadian government embarked on several research and development programs for the development of the Candu Reactor. AECL was initially built as a temporary site and is now faced with many redundant buildings. Prior to 2004 small amounts of Decommissioning work was in progress. Many reasons for deferring decommissioning activities were used with the predominant ones being: 1. Reduction in radiation doses to workers during the final dismantlement, 2. Development ofmore » a long-term solution for the management of radioactive wastes in Canada, 3. Financial constraints presented by the number of facilities shutdown that would require decommissioning funds and the absence of an approved funding strategy. This has led to the development of a comprehensive decommissioning plan that is all inclusive of AECL's current and legacy liabilities. Canada does not have a long-term disposal site; therefore waste minimization becomes the driving factor behind decontamination for decommissioning before and during dismantlement. This decommissioning job was a great learning experience for decommissioning and the associated contractors who worked on this project. Throughout the life of the project there was a constant focus on waste minimization. This focus was constantly in conflict with regulatory compliance primarily with respect to fire regulations and protecting the facility along with adjacent facilities during the decommissioning activities. Discrepancies in historical documents forced the project to treat every space as a contaminated space until proven differently. Decommissioning and dismantlement within an operating site adds to the complexity of the tasks especially when it is being conducted in the heart of the plant. This project was very successful with no lost time accidents in over one

  20. Final report of the decontamination and decommissioning of the BORAX-V facility turbine building

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arave, A.E.; Rodman, G.R.

    1992-12-01

    The Boiling Water Reactor Experiment (BORAX)-V Facility Turbine Building Decontamination and Decommissioning (D&D) Project is described in this report. The BORAX series of five National Reactor Testing Station (NRTS) reactors pioneered intensive work on boiling water reactor (BWR) experiments conducted between 1953 and 1964. Facility characterization, decision analyses, and D&D plans for the turbine building were prepared from 1979 through 1990. D&D activities of the turbine building systems were initiated in November of 1988 and completed with the demolition and backfill of the concrete foundation in March 1992. Due to the low levels of radioactivity and the absence of loosemore » contamination, the D&D activities were completed with no radiation exposure to the workers. The D&D activities were performed in a manner that no radiological health or safety hazard to the public or to personnel at the Idaho National Engineering Laboratory (INEL) remain.« less

  1. Final report of the decontamination and decommissioning of the BORAX-V facility turbine building

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arave, A.E.; Rodman, G.R.

    1992-12-01

    The Boiling Water Reactor Experiment (BORAX)-V Facility Turbine Building Decontamination and Decommissioning (D D) Project is described in this report. The BORAX series of five National Reactor Testing Station (NRTS) reactors pioneered intensive work on boiling water reactor (BWR) experiments conducted between 1953 and 1964. Facility characterization, decision analyses, and D D plans for the turbine building were prepared from 1979 through 1990. D D activities of the turbine building systems were initiated in November of 1988 and completed with the demolition and backfill of the concrete foundation in March 1992. Due to the low levels of radioactivity and themore » absence of loose contamination, the D D activities were completed with no radiation exposure to the workers. The D D activities were performed in a manner that no radiological health or safety hazard to the public or to personnel at the Idaho National Engineering Laboratory (INEL) remain.« less

  2. Technology, safety, and costs of decommissioning reference nuclear research and test reactors: sensitivity of decommissioning radiation exposure and costs to selected parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konzek, G.J.

    1983-07-01

    Additional analyses of decommissioning at the reference research and test (R and T) reactors and analyses of five recent reactor decommissionings are made that examine some parameters not covered in the initial study report (NUREG/CR-1756). The parameters examined for decommissioning are: (1) the effect on costs and radiation exposure of plant size and/or type; (2) the effects on costs of increasing disposal charges and of unavailability of waste disposal capacity at licensed waste disposal facilities; and (3) the costs of and the available alternatives for the disposal of nuclear R and T reactor fuel assemblies.

  3. 30 CFR 285.913 - What happens if I fail to comply with my approved decommissioning application?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... approved decommissioning application? 285.913 Section 285.913 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Decommissioning Compliance with An Approved Decommissioning Application § 285.913 What...

  4. Current significant challenges in the decommissioning and environmental remediation of radioactive facilities: A perspective from outside the nuclear industry.

    PubMed

    Gil-Cerezo, V; Domínguez-Vilches, E; González-Barrios, A J

    2017-05-01

    This paper presents the results of implementing an extrajudicial environmental mediation procedure in the socioenvironmental conflict associated with routine operation of the El Cabril Disposal Facility for low- and medium- activity radioactive waste (Spain). We analyse the socio-ethical perspective of this facility's operation with regard to its nearby residents, detailing the structure and development of the environmental mediation procedure through the participation of society and interested parties who are or may become involved in such a conflict. The research, action, and participation method was used to apply the environmental mediation procedure. This experience provides lessons that could help improve decision-making processes in nuclear or radioactive facility decommissioning projects or in environmental remediation projects dealing with ageing facilities or with those in which nuclear or radioactive accidents/incidents may have occurred. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Financial Planning as a Tool for Efficient and Timely Decommissioning of Nuclear Research Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cato, Anna; Lindskog, Staffan; Sjoeblom, Rolf

    2008-01-15

    It is generally recognized in the technical and economical literature that reliable cost evaluations with adequate estimates also of the errors and uncertainties involved are necessary in order for rational and appropriate management decisions to be made on any major plant investment. Such estimates are required for the selection of technologies to be applied and for selection to be made between alternative technologies and designs as well as for the overall financing issues including the one of whether to go ahead with the project. Inadequacies in the cost calculations typically lead to suboptimal decisions and ultimately substantial overruns and/or needsmore » for retrofits. Actually, a very strict discipline has to be applied with adaptation of the approach used with regard to the stage of the planning. Deviations from the expected tend to raise the estimated cost much more frequently than they lower it. The same rationale applies to planning and cost calculations for decommissioning of nuclear research facilities. There are, however, many reasons why such estimations may be very treacherous to carry out. This will be dealt with in the following. The knowledge base underlying the present paper has been developed and accumulated as a result of the research that the Swedish Nuclear Power Inspectorate (SKI) has carried out in support of its regulatory oversight over the Swedish system of finance. The findings are, however, equally applicable and appropriate for implementers in their planning, decision, monitoring and evaluation activities. In the nineteen fifties and sixties, Sweden had a comprehensive program for utilization of nuclear power including uranium mining, fuel fabrication, reprocessing and domestically developed heavy water reactors. Examples of facilities are presented in Figures 1-5. Eventually, the development work lead to the present nuclear program with ten modern light water reactors in operation at present. According to Swedish law, those who

  6. 26 CFR 1.468A-0 - Nuclear decommissioning costs; table of contents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 6 2011-04-01 2011-04-01 false Nuclear decommissioning costs; table of contents...-0 Nuclear decommissioning costs; table of contents. This section lists the paragraphs contained in.... (b) Definitions. (c) Special rules applicable to certain experimental nuclear facilities. § 1.468A...

  7. 26 CFR 1.468A-0 - Nuclear decommissioning costs; table of contents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 6 2012-04-01 2012-04-01 false Nuclear decommissioning costs; table of contents...-0 Nuclear decommissioning costs; table of contents. This section lists the paragraphs contained in.... (b) Definitions. (c) Special rules applicable to certain experimental nuclear facilities. § 1.468A...

  8. 26 CFR 1.468A-0 - Nuclear decommissioning costs; table of contents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 6 2014-04-01 2014-04-01 false Nuclear decommissioning costs; table of contents...-0 Nuclear decommissioning costs; table of contents. This section lists the paragraphs contained in.... (b) Definitions. (c) Special rules applicable to certain experimental nuclear facilities. § 1.468A...

  9. 26 CFR 1.468A-0 - Nuclear decommissioning costs; table of contents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 6 2013-04-01 2013-04-01 false Nuclear decommissioning costs; table of contents...-0 Nuclear decommissioning costs; table of contents. This section lists the paragraphs contained in.... (b) Definitions. (c) Special rules applicable to certain experimental nuclear facilities. § 1.468A...

  10. Final report of the decontamination and decommissioning of Building 1 at the Grand Junction Projects Office Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widdop, M.R.

    1996-08-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also is the remedial action contractor. Building 1more » was found to be radiologically contaminated and was demolished in 1996. The soil beneath and adjacent to the building was remediated in accordance with identified standards and can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.« less

  11. Reducing environmental risk associated with laboratory decommissioning and property transfer.

    PubMed

    Dufault, R; Abelquist, E; Crooks, S; Demers, D; DiBerardinis, L; Franklin, T; Horowitz, M; Petullo, C; Sturchio, G

    2000-12-01

    The need for more or less space is a common laboratory problem. Solutions may include renovating existing space, leaving or demolishing old space, or acquiring new space or property for building. All of these options carry potential environmental risk. Such risk can be the result of activities related to the laboratory facility or property (e.g., asbestos, underground storage tanks, lead paint), or the research associated with it (e.g., radioactive, microbiological, and chemical contamination). Regardless of the option chosen to solve the space problem, the potential environmental risk must be mitigated and the laboratory space and/or property must be decommissioned or rendered safe prior to any renovation, demolition, or property transfer activities. Not mitigating the environmental risk through a decommissioning process can incur significant financial liability for any costs associated with future decommissioning cleanup activities. Out of necessity, a functioning system, environmental due diligence auditing, has evolved over time to assess environmental risk and reduce associated financial liability. This system involves a 4-phase approach to identify, document, manage, and clean up areas of environmental concern or liability, including contamination. Environmental due diligence auditing includes a) historical site assessment, b) characterization assessment, c) remedial effort and d) final status survey. General practice standards from the American Society for Testing and Materials are available for conducting the first two phases. However, standards have not yet been developed for conducting the third and final phases of the environmental due diligence auditing process. Individuals involved in laboratory decommissioning work in the biomedical research industry consider this a key weakness.

  12. Reducing environmental risk associated with laboratory decommissioning and property transfer.

    PubMed Central

    Dufault, R; Abelquist, E; Crooks, S; Demers, D; DiBerardinis, L; Franklin, T; Horowitz, M; Petullo, C; Sturchio, G

    2000-01-01

    The need for more or less space is a common laboratory problem. Solutions may include renovating existing space, leaving or demolishing old space, or acquiring new space or property for building. All of these options carry potential environmental risk. Such risk can be the result of activities related to the laboratory facility or property (e.g., asbestos, underground storage tanks, lead paint), or the research associated with it (e.g., radioactive, microbiological, and chemical contamination). Regardless of the option chosen to solve the space problem, the potential environmental risk must be mitigated and the laboratory space and/or property must be decommissioned or rendered safe prior to any renovation, demolition, or property transfer activities. Not mitigating the environmental risk through a decommissioning process can incur significant financial liability for any costs associated with future decommissioning cleanup activities. Out of necessity, a functioning system, environmental due diligence auditing, has evolved over time to assess environmental risk and reduce associated financial liability. This system involves a 4-phase approach to identify, document, manage, and clean up areas of environmental concern or liability, including contamination. Environmental due diligence auditing includes a) historical site assessment, b) characterization assessment, c) remedial effort and d) final status survey. General practice standards from the American Society for Testing and Materials are available for conducting the first two phases. However, standards have not yet been developed for conducting the third and final phases of the environmental due diligence auditing process. Individuals involved in laboratory decommissioning work in the biomedical research industry consider this a key weakness. PMID:11121365

  13. Decommissioning of the Iraq former nuclear complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbas, Mohammed; Helou, Tuama; Ahmead, Bushra

    2007-07-01

    Available in abstract form only. Full text of publication follows: A number of sites in Iraq have some degree of radiological contamination and require decommissioning and remediation in order to ensure radiological safety. Many of these sites in Iraq are located at the nuclear research centre at Al Tuwaitha. The International Atomic Energy Agency (IAEA) Board of Governors has approved a project to assist the Government of Iraq in the evaluation and decommissioning of former facilities that used radioactive materials. The project is divided into three phases: Phase 1: collect and analyze all available data and conduct training of themore » Iraqi staff, Phase 2: develop a decommissioning and remediation plan, and Phase 3: implement field activities relating to decommissioning, remediation and site selection suitable for final disposal of waste. Four working groups have been established to complete the Phase 1 work and significant progress has been made in drafting a new nuclear law which will provide the legal basis for the licensing of the decommissioning of the former nuclear complex. Work is also underway to collect and analysis existing date, to prioritize future activities and to develop a waste management strategy. This will be a long-term and costly project. (authors)« less

  14. Achieving Effective Risk Management Reduction Throughout Decommissioning at the Columbus Closure Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, K.D.

    2006-07-01

    Nuclear facility decontamination, dismantlement, and demolition activities provide a myriad of challenges along the path to reaching a safe, effective, and compliant decommissioning. Among the challenges faced during decommissioning, is the constant management and technical effort to eliminate, mitigate, or minimize the potential of risks of radiation exposures and other hazards to the worker, the surrounding community, and the environment. Management strategies to eliminate, mitigate, or minimize risks include incorporating strong safety and As Low As Reasonably Achievable (ALARA) principles into an integrated work planning process. Technical and operational strategies may include utilizing predictive risk analysis tools to establish contaminationmore » limits for demolition and using remote handling equipment to reduce occupational and radiation exposures to workers. ECC and E2 Closure Services, LLC (Closure Services) have effectively utilized these management and technical tools to eliminate, mitigate, and reduce radiation exposures under contract to the U.S. Department of Energy (DOE) for the decontamination and decommissioning Columbus Closure Project (CCP). In particular, Closure Services achieved significant dose reduction during the dismantling, decontamination, and demolition activities for Building JN-1. Management strategies during the interior dismantlement, decontamination, and demolition of the facility demanded an integrated work planning processes that involved project disciplines. Integrated planning processes identified multiple opportunities to incorporate the use of remote handling equipment during the interior dismantling and demolition activities within areas of high radiation. Technical strategies employed predictive risk analysis tools to set upper bounding contamination limits, allowed for the radiological demolition of the building without exceeding administrative dose limits to the worker, general public, and the environment. Adhering

  15. Applying and adapting the Swedish regulatory system for decommissioning to nuclear power reactors - The regulator's perspective.

    PubMed

    Amft, Martin; Leisvik, Mathias; Carroll, Simon

    2017-03-16

    Half of the original 13 Swedish nuclear power reactors will be shut down by 2020. The decommissioning of these reactors is a challenge for all parties involved, including the licensees, the waste management system, the financing system, and the Swedish Radiation Safety Authority (SSM). This paper presents an overview of the Swedish regulations for decommissioning of nuclear facilities. It describes some of the experiences that SSM has gained from the application of these regulations. The focus of the present paper is on administrative aspects of decommissioning, such as SSM's guidelines, the definition of fundamental concepts in the regulatory framework, and a proposed revision of the licensing process according to the Environmental Act. These improvements will help to streamline the administration of the commercial nuclear power plant decommissioning projects that are anticipated to commence in Sweden in the near future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Lessons Learned from Radioactive Waste Storage and Disposal Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esh, David W.; Bradford, Anna H.

    2008-01-15

    The safety of radioactive waste disposal facilities and the decommissioning of complex sites may be predicated on the performance of engineered and natural barriers. For assessing the safety of a waste disposal facility or a decommissioned site, a performance assessment or similar analysis is often completed. The analysis is typically based on a site conceptual model that is developed from site characterization information, observations, and, in many cases, expert judgment. Because waste disposal facilities are sited, constructed, monitored, and maintained, a fair amount of data has been generated at a variety of sites in a variety of natural systems. Thismore » paper provides select examples of lessons learned from the observations developed from the monitoring of various radioactive waste facilities (storage and disposal), and discusses the implications for modeling of future waste disposal facilities that are yet to be constructed or for the development of dose assessments for the release of decommissioning sites. Monitoring has been and continues to be performed at a variety of different facilities for the disposal of radioactive waste. These include facilities for the disposal of commercial low-level waste (LLW), reprocessing wastes, and uranium mill tailings. Many of the lessons learned and problems encountered provide a unique opportunity to improve future designs of waste disposal facilities, to improve dose modeling for decommissioning sites, and to be proactive in identifying future problems. Typically, an initial conceptual model was developed and the siting and design of the disposal facility was based on the conceptual model. After facility construction and operation, monitoring data was collected and evaluated. In many cases the monitoring data did not comport with the original site conceptual model, leading to additional investigation and changes to the site conceptual model and modifications to the design of the facility. The following cases are

  17. Research reactor decommissioning experience - concrete removal and disposal -

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manning, Mark R.; Gardner, Frederick W.

    1990-07-01

    Removal and disposal of neutron activated concrete from biological shields is the most significant operational task associated with research reactor decommissioning. During the period of 1985 thru 1989 Chem-Nuclear Systems, Inc. was the prime contractor for complete dismantlement and decommissioning of the Northrop TRIGA Mark F, the Virginia Tech Argonaut, and the Michigan State University TRIGA Mark I Reactor Facilities. This paper discusses operational requirements, methods employed, and results of the concrete removal, packaging, transport and disposal operations for these (3) research reactor decommissioning projects. Methods employed for each are compared. Disposal of concrete above and below regulatory release limitsmore » for unrestricted use are discussed. This study concludes that activated reactor biological shield concrete can be safely removed and buried under current regulations.« less

  18. Lessons Learned from the NASA Plum Brook Reactor Facility Decommissioning

    NASA Technical Reports Server (NTRS)

    2010-01-01

    NASA has been conducting decommissioning activities at its PBRF for the last decade. As a result of all this work there have been several lessons learned both good and bad. This paper presents some of the more exportable lessons.

  19. Final report of the decontamination and decommission of Building 31 at the Grand Junction Projects Office Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krabacher, J.E.

    1996-07-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the domestic uranium procurement program funded by the U.S. Atomic Energy Commission. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also was the remedial actionmore » contractor. Radiological contamination was identified in Building 31 and the building was demolished in 1992. The soil area within the footprint of the building has been remediated in accordance with the identified standards and the area can be released for unlimited exposure and unrestricted use. This area was addressed in the summary final report of the remediation of the exterior areas of the GJPO facility. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.« less

  20. Environmental assessment for the construction, operation, and decommissioning of the Waste Segregation Facility at the Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-01-01

    This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) to assess the potential environmental impacts associated with the construction, operation and decontamination and decommissioning (D&D) of the Waste Segregation Facility (WSF) for the sorting, shredding, and compaction of low-level radioactive waste (LLW) at the Savannah River Site (SRS) located near Aiken, South Carolina. The LLW to be processed consists of two waste streams: legacy waste which is currently stored in E-Area Vaults of SRS and new waste generated from continuing operations. The proposed action is to construct, operate, and D&D a facility to process low-activity job-controlmore » and equipment waste for volume reduction. The LLW would be processed to make more efficient use of low-level waste disposal capacity (E-Area Vaults) or to meet the waste acceptance criteria for treatment at the Consolidated Incineration Facility (CIF) at SRS.« less

  1. Final report of the decontamination and decommissioning of Building 6 at the Grand Junction Projects Office Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widdop, M.R.

    1996-07-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the domestic uranium procurement program funded by the U.S. Atomic Energy Commission. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, is also the remedial actionmore » contractor. Radiological contamination was identified in Building 6, and the building was demolished in 1992. The soil area within the footprint of the building has been remediated in accordance with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.« less

  2. Final report of the decontamination and decommissioning of Building 34 at the Grand Junction Projects Office Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widdop, M.R.

    1996-08-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7 acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the Grand Junction Projects Office Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, was also the remedialmore » action contractor. Building 34 was radiologically contaminated and the building was demolished in 1996. The soil area within the footprint of the building was analyzed and found to be not contaminated. The area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual closeout report for each contaminated GJPO building.« less

  3. Final report of the decontamination and decommissioning of Building 39 at the Grand Junction Projects Office Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widdop, M.R.

    1996-07-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, is also the remedial action contractor. The soilmore » beneath Building 39 was radiologically contaminated and the building was demolished in 1992. The soil area within the footprint of the building has been remediated in accordance with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.« less

  4. Final report of the decontamination and decommissioning of Building 44 at the Grand Junction Projects Office Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widdop, M.R.

    1996-07-01

    The U.S. Department of Energy (DOE) Junction Projects Office (GJPO) occupies a 61.7 acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the Grand Junction Projects Office Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, is also the remedial actionmore » contractor. Building 44 was radiologically contaminated and the building was demolished in 1994. The soil area within the footprint of the building was not contaminated; it complies with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.« less

  5. Final report of the decontamination and decommissioning of Building 18 at the Grand Junction Projects Office Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widdop, M.R.

    1996-08-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also is the remedial action contractor. The soilmore » beneath Building 18 was found to be radiologically contaminated; the building was not contaminated. The soil was remediated in accordance with identified standards. Building 18 and the underlying soil can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.« less

  6. Risk-based Prioritization of Facility Decommissioning and Environmental Restoration Projects in the National Nuclear Legacy Liabilities Program at the Chalk River Laboratory - 13564

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Jerel G.; Kruzic, Michael; Castillo, Carlos

    2013-07-01

    Chalk River Laboratory (CRL), located in Ontario Canada, has a large number of remediation projects currently in the Nuclear Legacy Liabilities Program (NLLP), including hundreds of facility decommissioning projects and over one hundred environmental remediation projects, all to be executed over the next 70 years. Atomic Energy of Canada Limited (AECL) utilized WorleyParsons to prioritize the NLLP projects at the CRL through a risk-based prioritization and ranking process, using the WorleyParsons Sequencing Unit Prioritization and Estimating Risk Model (SUPERmodel). The prioritization project made use of the SUPERmodel which has been previously used for other large-scale site prioritization and sequencing ofmore » facilities at nuclear laboratories in the United States. The process included development and vetting of risk parameter matrices as well as confirmation/validation of project risks. Detailed sensitivity studies were also conducted to understand the impacts that risk parameter weighting and scoring had on prioritization. The repeatable prioritization process yielded an objective, risk-based and technically defendable process for prioritization that gained concurrence from all stakeholders, including Natural Resources Canada (NRCan) who is responsible for the oversight of the NLLP. (authors)« less

  7. Final report of the decontamination and decommissioning of the exterior land areas at the Grand Junction Projects Office facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widdop, M.R.

    1995-09-01

    The US Department of Energy (DOE) Grand Junction Projects Office (GJPO) facility occupies approximately 56.4 acres (22.8 hectares) along the Gunnison River near Grand Junction, Colorado. The site was contaminated with uranium ore and mill tailings during uranium-refining activities conducted by the Manhattan Engineer District and during pilot-milling experiments conducted for the US Atomic Energy Commission`s (AEC`s) domestic uranium procurement program. The GJPO facility was the collection and assay point for AEC uranium and vanadium oxide purchases until the early 1970s. The DOE Decontamination and Decommissioning Program sponsored the Grand Junction Projects Office Remedial Action Project (GJPORAP) to remediate themore » facility lands, site improvements, and the underlying aquifer. The site contractor, Rust Geotech, was the Remedial Action Contractor for GJPORAP. The exterior land areas of the facility assessed as contaminated have been remediated in accordance with identified standards and can be released for unrestricted use. Restoration of the aquifer will be accomplished through the natural flushing action of the aquifer during the next 50 to 80 years. The remediation of the DOE-GJPO facility buildings is ongoing and will be described in a separate report.« less

  8. 26 CFR 1.88-1 - Nuclear decommissioning costs.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 2 2011-04-01 2011-04-01 false Nuclear decommissioning costs. 1.88-1 Section 1... (CONTINUED) INCOME TAXES (CONTINUED) Items Specifically Included in Gross Income § 1.88-1 Nuclear decommissioning costs. (a) In general. Section 88 provides that the amount of nuclear decommissioning costs...

  9. 26 CFR 1.88-1 - Nuclear decommissioning costs.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 2 2013-04-01 2013-04-01 false Nuclear decommissioning costs. 1.88-1 Section 1... (CONTINUED) INCOME TAXES (CONTINUED) Items Specifically Included in Gross Income § 1.88-1 Nuclear decommissioning costs. (a) In general. Section 88 provides that the amount of nuclear decommissioning costs...

  10. 26 CFR 1.88-1 - Nuclear decommissioning costs.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 2 2012-04-01 2012-04-01 false Nuclear decommissioning costs. 1.88-1 Section 1... (CONTINUED) INCOME TAXES (CONTINUED) Items Specifically Included in Gross Income § 1.88-1 Nuclear decommissioning costs. (a) In general. Section 88 provides that the amount of nuclear decommissioning costs...

  11. 26 CFR 1.88-1 - Nuclear decommissioning costs.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 2 2010-04-01 2010-04-01 false Nuclear decommissioning costs. 1.88-1 Section 1... (CONTINUED) INCOME TAXES (CONTINUED) Items Specifically Included in Gross Income § 1.88-1 Nuclear decommissioning costs. (a) In general. Section 88 provides that the amount of nuclear decommissioning costs...

  12. 26 CFR 1.88-1 - Nuclear decommissioning costs.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 2 2014-04-01 2014-04-01 false Nuclear decommissioning costs. 1.88-1 Section 1... (CONTINUED) INCOME TAXES (CONTINUED) Items Specifically Included in Gross Income § 1.88-1 Nuclear decommissioning costs. (a) In general. Section 88 provides that the amount of nuclear decommissioning costs...

  13. Decontamination, decommissioning, and vendor advertorial issue, 2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnihotri, Newal

    2005-07-15

    The focus of the July-August issue is on Decontamination, decommissioning, and vendor advertorials. Major interviews, articles and reports in this issue include: Increasing momentum, by Gary Taylor, Entergy Nuclear, Inc.; An acceptable investment, by Tom Chrisopher, Areva, Inc.; Fuel recycling for the U.S. and abroad, by Philippe Knoche, Areva, France; We're bullish on nuclear power, by Dan R. Keuter, Entergy Nuclear, Inc.; Ten key actions for decommissioning, by Lawrence E. Boing, Argonne National Laboratory; Safe, efficient and cost-effective decommissioning, by Dr. Claudio Pescatore and Torsten Eng, OECD Nuclear Energy Agency (NEA), France; and, Plant profile: SONGS decommissioning.

  14. Ecological aspects of decommissioning and decontamination of facilities on the Hanford Reservation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rickard, W.H.; Klepper, E.L.

    1976-06-01

    The Hanford environment and biota are described in relation to decommissioning of obsolescent facilities contaminated with low-levels of radioactive materials. The aridity at Hanford limits both the productivity and diversity of biota. Both productivity and diversity are increased when water is added, as for example on the margins of ponds. Certain plants, especially Salsola kali (Russian thistle or tumbleweed), are avid accumulators of minerals and will accumulate radioactive materials if their roots come into contact with contaminated soils. Data on concentration ratios (pCi per gDW of plant/pCi per gDW soil) are given for several native plants for long-lived radionuclides. Plantsmore » are generally more resistant than animals to ionizing radiation so that impacts of high-level radiation sources would be expected to occur primarily in the animals. Mammals and birds are discussed along with information on where they are to be found on the Reservation and what role they may play in the long-term management of radioactive wastes. Food habits of animals are discussed and plants which are palatable to common herbivores are listed. Food chains leading to man are shown to be very limited, including a soil-plant-mule deer-man path for terrestrial sites and a pond-waterfowl-man pathway for pond sites. Retention basins are discussed as an example of how an ecologically sound decommissioningprogram might be planned. Finally, burial of large volumes of low-level wastes can probably be done if barriers to biological invasion are provided.« less

  15. 77 FR 64361 - Report on Waste Burial Charges: Changes in Decommissioning Waste Disposal Costs at Low-Level...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-19

    ... Decommissioning Waste Disposal Costs at Low-Level Waste Burial Facilities AGENCY: Nuclear Regulatory Commission... 15, ``Report on Waste Burial Charges: Changes in Decommissioning Waste Disposal Costs at Low-Level... for low-level waste. DATES: Submit comments by November 15, 2012. Comments received after this date...

  16. Implementation of 10 CFR 20.1406 Through Life Cycle Planning for Decommissioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Donnell, E.; Ott, W.R.

    2008-01-15

    activity. Factors which may enter into this decision include form (e.g., dry solids, liquids, gases), inventory, and environmental mobility of unintended releases. The bulk of the guidance presented in the guide will consist of specific design considerations drawn from nuclear industry experience and lessons learned from decommissioning. These design suggestions provide examples of measures which can be combined to support a contaminant management philosophy for a new facility. The principles embodied in this philosophy are threefold: (1) prevention of unintended release, (2) early detection if there is unintended release of radioactive contamination, and (3) prompt and aggressive clean-up should there be an unintended release of radioactive contamination. If the guiding principles are followed through the use of 'good' engineering and science, as well as careful attention to operational practices, it should result in meeting the requirements of 10 CFR 20.1406. All this should be considered in the context of the life cycle of the facility from the early planning stages through the final plans for decommissioning and waste disposal. Some of the mechanisms which can be employed for life cycle planning are described further in the Discussion section. In summary: The principles of the guide are threefold: prevention, early detection, and prompt response. If these guiding principles are followed through the use of 'good' engineering and science, as well as careful attention to operational practices, it should result in meeting the requirements of 10 CFR 20 In summary, the thrust of this guide is for an applicant to use technically sound engineering judgment and a practical risk-informed approach to achieve the objectives of 10 CFR 20.1406. This approach should consider the materials and processes involved (e.g., solids, liquids, gases) and focus on: (1) the relative significance of potential contamination; (2) areas most susceptible to leaks; and (3) the appropriate level of

  17. DEACTIVATION AND DECOMMISSIONING ENVIRONMENTAL STRATEGY FOR THE PLUTONIUM FINISHING PLANT COMPLEX, HANFORD NUCLEAR RESERVATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopkins, A.M.; Heineman, R.; Norton, S.

    Maintaining compliance with environmental regulatory requirements is a significant priority in successful completion of the Plutonium Finishing Plant (PFP) Nuclear Material Stabilization (NMS) Project. To ensure regulatory compliance throughout the deactivation and decommissioning of the PFP complex, an environmental regulatory strategy was developed. The overall goal of this strategy is to comply with all applicable environmental laws and regulations and/or compliance agreements during PFP stabilization, deactivation, and eventual dismantlement. Significant environmental drivers for the PFP Nuclear Material Stabilization Project include the Tri-Party Agreement; the Resource Conservation and Recovery Act of 1976 (RCRA); the Comprehensive Environmental Response, Compensation and Liability Actmore » of 1980 (CERCLA); the National Environmental Policy Act of 1969 (NEPA); the National Historic Preservation Act (NHPA); the Clean Air Act (CAA), and the Clean Water Act (CWA). Recent TPA negotiation s with Ecology and EPA have resulted in milestones that support the use of CERCLA as the primary statutory framework for decommissioning PFP. Milestones have been negotiated to support the preparation of Engineering Evaluations/Cost Analyses for decommissioning major PFP buildings. Specifically, CERCLA EE/CA(s) are anticipated for the following scopes of work: Settling Tank 241-Z-361, the 232-Z Incinerator, , the process facilities (eg, 234-5Z, 242, 236) and the process facility support buildings. These CERCLA EE/CA(s) are for the purpose of analyzing the appropriateness of the slab-on-grade endpoint Additionally, agreement was reached on performing an evaluation of actions necessary to address below-grade structures or other structures remaining after completion of the decommissioning of PFP. Remaining CERCLA actions will be integrated with other Central Plateau activities at the Hanford site.« less

  18. Overview of Remote Handling Equipment Used for the NPP A1 Decommissioning - 12141

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kravarik, K.; Medved, J.; Pekar, A.

    The first Czechoslovak NPP A1 was in operation from 1972 to 1977 and it was finally shutdown due to an accident (level 4 according to the INES). The presence of radioactive, toxic or hazardous materials limits personnel access to facilities and therefore it is necessary to use remote handling technologies for some most difficult characterization, retrieval, decontamination and dismantling tasks. The history of remote handling technologies utilization started in nineties when the spent nuclear fuel, including those fuel assemblies damaged during the accident, was prepared for the transport to Russia. Subsequent significant development of remote handling equipment continued during implementationmore » of the NPP A1 decommissioning project - Stage I and ongoing Stage II. Company VUJE, Inc. is the general contractor for both mentioned stages of the decommissioning project. Various remote handling manipulators and robotics arms were developed and used. It includes remotely controlled vehicle manipulator MT-15 used for characterisation tasks in hostile and radioactive environment, special robust manipulator DENAR-41 used for the decontamination of underground storage tanks and multi-purposes robotics arms MT-80 and MT-80A developed for variety of decontamination and dismantling tasks. The heavy water evaporator facility dismantling is the current task performed remotely by robotics arm MT-80. The heavy water evaporator is located inside the main production building in the room No. 220 where loose surface contamination varies from 10 Bq/cm{sup 2} to 1x10{sup 3} Bq/cm{sup 2}, dose rate is up to 1.5 mGy/h and the feeding pipeline contained liquid RAW with high tritium content. Presented manipulators have been designed for broad range of decommissioning tasks. They are used for recognition, sampling, waste retrieval from large underground tanks, decontamination and dismantling of technological equipments. Each of the mentioned fields claims specific requirements on design

  19. Virtual reality based adaptive dose assessment method for arbitrary geometries in nuclear facility decommissioning.

    PubMed

    Liu, Yong-Kuo; Chao, Nan; Xia, Hong; Peng, Min-Jun; Ayodeji, Abiodun

    2018-05-17

    This paper presents an improved and efficient virtual reality-based adaptive dose assessment method (VRBAM) applicable to the cutting and dismantling tasks in nuclear facility decommissioning. The method combines the modeling strength of virtual reality with the flexibility of adaptive technology. The initial geometry is designed with the three-dimensional computer-aided design tools, and a hybrid model composed of cuboids and a point-cloud is generated automatically according to the virtual model of the object. In order to improve the efficiency of dose calculation while retaining accuracy, the hybrid model is converted to a weighted point-cloud model, and the point kernels are generated by adaptively simplifying the weighted point-cloud model according to the detector position, an approach that is suitable for arbitrary geometries. The dose rates are calculated with the Point-Kernel method. To account for radiation scattering effects, buildup factors are calculated with the Geometric-Progression formula in the fitting function. The geometric modeling capability of VRBAM was verified by simulating basic geometries, which included a convex surface, a concave surface, a flat surface and their combination. The simulation results show that the VRBAM is more flexible and superior to other approaches in modeling complex geometries. In this paper, the computation time and dose rate results obtained from the proposed method were also compared with those obtained using the MCNP code and an earlier virtual reality-based method (VRBM) developed by the same authors. © 2018 IOP Publishing Ltd.

  20. 30 CFR 285.529 - Can I use a lease- or grant-specific decommissioning account to meet the financial assurance...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Payments and Financial Assurance Requirements Requirements for Financial Assurance Instruments § 285.529 Can I use a lease- or... decommissioning account to meet the financial assurance requirements related to decommissioning? 285.529 Section...

  1. Summary of events and geotechnical factors leading to decommissioning of the Strategic Petroleum Reserve (SPR) facility at Weeks Island, Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neal, J.T.; Bauer, S.J.; Ehgartner, B.L.

    1996-10-01

    A sinkhole discovered over the edge of the Strategic Petroleum Reserve storage facility at Weeks Island salt dome, Louisiana, led to decommissioning the site during 1995--1998, following extensive diagnostics in 1994. The sinkhole resulted from mine-induced fractures in the salt which took may years to develop, eventually causing fresh water to leak into the storage chamber and dissolve the overlying salt, thus causing overburden collapse into the void. Prior to initiating the oil removal, a freeze wall was constructed at depth around the sinkhole in 1995 to prevent water inflow; a freeze plug will remain in place until the minemore » is backfilled with brine in 1997--8, and stability is reached. Residual oil will be removed; environmental monitoring has been initiated and will continue until the facility is completely plugged and abandoned, and environmental surety is achieved.« less

  2. 30 CFR 285.906 - What must my decommissioning application include?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... include? 285.906 Section 285.906 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE... or marine mammals at the structure site. (i) Mitigation measures you will use to protect...

  3. Engineering Evaluation/Cost Analysis (EE/CA) for Decommissioning of TAN-607 Hot Shop Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. P. Floerke

    Test Area North (TAN) -607, the Technical Support Facility, is located at the north end of the Idaho National Laboratory (INL) Site. U.S. Department of Energy Idaho Operations Office (DOE-ID) is proposing to decommission the northern section of the TAN-607 facility, hereinafter referred to as TAN-607 Hot Shop Area, under a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) non-time-critical removal action (NTCRA). Despite significant efforts by the United States (U.S.) Department of Energy (DOE) to secure new business, no future mission has been identified for the TAN-607 Hot Shop Area. Its disposition has been agreed to by the Idahomore » State Historical Preservation Office documented in the Memorandum of Agreement signed October 2005 and it is therefore considered a surplus facility. A key element in DOE's strategy for surplus facilities is decommissioning to the maximum extent possible to ensure risk and building footprint reduction and thereby eliminating operations and maintenance cost. In addition, the DOE's 2006 Strategic Plan is ''complete cleanup of the contaminated nuclear weapons manufacturing and testing sites across the United States. DOE is responsible for the risk reduction and cleanup of the environmental legacy of the Nation's nuclear weapons program, one of the largest, most diverse, and technically complex environmental programs in the world. The Department will successfully achieve this strategic goal by ensuring the safety of the DOE employees and U.S. citizens, acquiring the best resources to complete the complex tasks, and managing projects throughout the United States in the most efficient and effective manner.'' TAN-607 is designated as a historical Signature Property by DOE Headquarters Advisory Council on Historic Preservation and, as such, public participation is required to determine the final disposition of the facility. The decommissioning action will place the TAN-607 Hot Shop Area in a final

  4. Progress in Decommissioning of Ignalina NPP Unit 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ancius, Darius; Krenevicius, Rimantas; Kutas, Saulius

    2002-07-01

    The aim of the paper is to present the Lithuanian legal framework regarding the nuclear safety in Decommissioning and Waste Management, and the progress in the Decommissioning Programme of the unit 1 of Ignalina Nuclear Power Plant (INPP). INPP is the only nuclear plant in Lithuania. It comprises two RBMK-1500 reactors. After Lithuania has restored its independence, responsibility for Ignalina NPP was transferred to the Republic of Lithuania. To ensure the control of the Nuclear Safety in Lithuania, The State Nuclear Power Safety Inspectorate (VATESI) was created on 18 October 1991, by a resolution of the Lithuanian Government. Significant workmore » has been performed over the last decade, aiming at upgrading the safety level of the Ignalina NPP with reference to the International standards. On 5 October 1999 the Seimas (Parliament) adopted the National Energy Strategy: It has been decided that unit 1 of Ignalina NPP will be closed down before 2005, The conditions and precise final date of the decommissioning of Unit 2 will be stated in the updated National Energy strategy in 2004. On 20-21 June 2000, the International Donors' Conference for the Decommissioning of Ignalina NPP took place in Vilnius. More than 200 Millions Euro were pledged of which 165 M funded directly from the European Union's budget, as financial support to the Decommissioning projects. The Decommissioning Program encompasses legal, organizational, financial and technical means including the social and economical impacts in the region of Ignalina. The Program is financed from International Support Fund, State budget, National Decommissioning Fund of Ignalina NPP and other funds. Decommissioning of Ignalina NPP is subject to VATESI license according to the Law on Nuclear Energy. The Government established the licensing procedure in the so-called 'Procedure for licensing of Nuclear Activities'; and the document 'General Requirements for Decommissioning of the Ignalina NPP' has been issued by

  5. 30 CFR 585.906 - What must my decommissioning application include?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... include? 585.906 Section 585.906 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF... conducted in the vicinity of the structure and recent observations of turtles or marine mammals at the...

  6. 30 CFR 585.906 - What must my decommissioning application include?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... include? 585.906 Section 585.906 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF... conducted in the vicinity of the structure and recent observations of turtles or marine mammals at the...

  7. 30 CFR 585.906 - What must my decommissioning application include?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... include? 585.906 Section 585.906 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF... conducted in the vicinity of the structure and recent observations of turtles or marine mammals at the...

  8. 30 CFR 285.907 - How will MMS process my decommissioning application?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false How will MMS process my decommissioning application? 285.907 Section 285.907 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF...

  9. 30 CFR 285.905 - When must I submit my decommissioning application?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false When must I submit my decommissioning application? 285.905 Section 285.905 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF...

  10. Decommissioning: Nuclear Power's Missing Link. Worldwatch Paper 69.

    ERIC Educational Resources Information Center

    Pollock, Cynthia

    The processes and associated dilemmas of nuclear power plant decommissioning are reviewed in this publication. Decommissioning involves the clearing up and disposal of a retired nuclear plant and its equipment of such a way as to safeguard the public from the dangers of radioactivity. Related problem areas are identified and include: (1) closure…

  11. Decommissioning the Romanian Water-Cooled Water-Moderated Research Reactor: New Environmental Perspective on the Management of Radioactive Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barariu, G.; Giumanca, R.

    2006-07-01

    Pre-feasibility and feasibility studies were performed for decommissioning of the water-cooled water-moderated research reactor (WWER) located in Bucharest - Magurele, Romania. Using these studies as a starting point, the preferred safe management strategy for radioactive wastes produced by reactor decommissioning is outlined. The strategy must account for reactor decommissioning, as well as for the rehabilitation of the existing Radioactive Waste Treatment Plant and for the upgrade of the Radioactive Waste Disposal Facility at Baita-Bihor. Furthermore, the final rehabilitation of the laboratories and ecological reconstruction of the grounds need to be provided for, in accordance with national and international regulations. Inmore » accordance with IAEA recommendations at the time, the pre-feasibility study proposed three stages of decommissioning. However, since then new ideas have surfaced with regard to decommissioning. Thus, taking into account the current IAEA ideology, the feasibility study proposes that decommissioning of the WWER be done in one stage to an unrestricted clearance level of the reactor building in an Immediate Dismantling option. Different options and the corresponding derived preferred option for waste management are discussed taking into account safety measures, but also considering technical, logistical and economic factors. For this purpose, possible types of waste created during each decommissioning stage are reviewed. An approximate inventory of each type of radioactive waste is presented. The proposed waste management strategy is selected in accordance with the recommended international basic safety standards identified in the previous phase of the project. The existing Radioactive Waste Treatment Plant (RWTP) from the Horia Hulubei Institute for Nuclear Physics and Engineering (IFIN-HH), which has been in service with no significant upgrade since 1974, will need refurbishing due to deterioration, as well as upgrading in order to

  12. Accelerating the Whiteshell Laboratories Decommissioning Through the Implementation of a Projectized and Delivery-Focused Organization - 13074

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilcox, Brian; Mellor, Russ; Michaluk, Craig

    2013-07-01

    benefits and positive impacts on schedule and delivery. A revised organizational structure was implemented in two phases, starting 2011 April 1, to align WL staff with the common goal of decommissioning the site through the direction of the WL Decommissioning Project General Manager. On 2011 September 1, the second phase of the reorganization was implemented and WL Decommissioning staff was organized under five Divisions: Programs and Regulatory Compliance, General Site Services, Decommissioning Strategic Planning, Nuclear Facilities and Project Delivery. A new Mission, Vision and Objectives were developed for the project, and several productivity enhancements are being implemented. These include the use of an integrated and fully re-sourced Site Wide Schedule that is updated and reviewed at Plan-of-the-Week meetings, improved work distribution throughout the year, eliminating scheduling 'push' mentality, project scoreboards, work planning implementation, lean practices and various process improvement initiatives. A revised Strategic Plan is under development that reflects the improved project delivery capabilities. As a result of these initiatives, and a culture change towards a projectized approach, the decommissioning schedule will be advanced by approximately 10 years. (authors)« less

  13. Study on Evaluation of Project Management Data for Decommissioning of Uranium Refining and Conversion Plant - 12234

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Usui, Hideo; Izumo, Sari; Tachibana, Mitsuo

    Some of nuclear facilities that would no longer be required have been decommissioned in JAEA (Japan Atomic Energy Agency). A lot of nuclear facilities have to be decommissioned in JAEA in near future. To implement decommissioning of nuclear facilities, it was important to make a rational decommissioning plan. Therefore, project management data evaluation system for dismantling activities (PRODIA code) has been developed, and will be useful for making a detailed decommissioning plan for an object facility. Dismantling of dry conversion facility in the uranium refining and conversion plant (URCP) at Ningyo-toge began in 2008. During dismantling activities, project management datamore » such as manpower and amount of waste generation have been collected. Such collected project management data has been evaluated and used to establish a calculation formula to calculate manpower for dismantling equipment of chemical process and calculate manpower for using a green house (GH) which was a temporary structure for preventing the spread of contaminants during dismantling. In the calculation formula to calculate project management data related to dismantling of equipment, the relation of dismantling manpower to each piece of equipment was evaluated. Furthermore, the relation of dismantling manpower to each chemical process was evaluated. The results showed promise for evaluating dismantling manpower with respect to each chemical process. In the calculation formula to calculate project management data related to use of the GH, relations of GH installation manpower and removal manpower to GH footprint were evaluated. Furthermore, the calculation formula for secondary waste generation was established. In this study, project management data related to dismantling of equipment and use of the GH were evaluated and analyzed. The project management data, manpower for dismantling of equipment, manpower for installation and removal of GH, and secondary waste generation from GH were

  14. Generation of an activation map for decommissioning planning of the Berlin Experimental Reactor-II

    NASA Astrophysics Data System (ADS)

    Lapins, Janis; Guilliard, Nicole; Bernnat, Wolfgang

    2017-09-01

    The BER-II is an experimental facility with 10 MW that was operated since 1974. Its planned operation will end in 2019. To support the decommissioning planning, a map with the overall distribution of relevant radionuclides has to be created according to the state of the art. In this paper, a procedure to create these 3-d maps using a combination of MCNP and deterministic methods is presented. With this approach, an activation analysis is performed for the whole reactor geometry including the most remote parts of the concrete shielding.

  15. 10 CFR 30.35 - Financial assurance and recordkeeping for decommissioning.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... shall include a decommissioning funding plan in any application for license renewal. (3) Each holder of... not to exceed 3 years. The decommissioning funding plan must also contain a certification by the... until the Commission has terminated the license. (3) An external sinking fund in which deposits are made...

  16. 75 FR 80697 - Nuclear Decommissioning Funds

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-23

    ... Nuclear Decommissioning Funds AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Final regulations... decommissioning nuclear power plants. These final regulations affect taxpayers that own an interest in a nuclear... preamble. 1. Definitional Matters A. Definition of Nuclear Decommissioning Costs One commentator on the...

  17. Decontamination, decommissioning, and vendor advertorial issue, 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnihotri, Newal

    2006-07-15

    The focus of the July-August issue is on Decontamination, decommissioning, and vendor advertorials. Major articles/reports in this issue include: NPP Krsko revised decommissioning program, by Vladimir Lokner and Ivica Levanat, APO d.o.o., Croatia, and Nadja Zeleznik and Irena Mele, ARAO, Slovenia; Supporting the renaissance, by Marilyn C. Kray, Exelon Nuclear; Outage world an engineer's delight, by Tom Chrisopher, Areva, NP Inc.; Optimizing refueling outages with R and D, by Ross Marcoot, GE Energy; and, A successful project, by Jim Lash, FirstEnergy.

  18. FROM CONCEPT TO REALITY, IN-SITU DECOMMISSIONING OF THE P AND R REACTORS AT THE SAVANNAH RIVER SITE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musall, J.; Blankenship, J.; Griffin, W.

    2012-01-09

    SRS recently completed an approximately three year effort to decommission two SRS reactors: P-Reactor (Building 105-P) and R-Reactor (Building 105-R). Completed in December 2011, the concurrent decommissionings marked the completion of two relatively complex and difficult facility disposition projects at the SRS. Buildings 105-P and 105-R began operating as production reactors in the early 1950s with the mission of producing weapons material (e.g., tritium and plutonium-239). The 'P' Reactor and was shutdown in 1991 while the 'R' Reactor and was shutdown in 1964. In the intervening period between shutdown and deactivation & decommissioning (D&D), Buildings 105-P and 105-R saw limitedmore » use (e.g., storage of excess heavy water and depleted uranium oxide). For Building 105-P, deactivation was initiated in April 2007 and was essentially complete by June 2010. For Building 105-R, deactivation was initiated in August 2008 and was essentially complete by September 2010. For both buildings, the primary objective of deactivation was to remove/mitigate hazards associated with the remaining hazardous materials, and thus prepare the buildings for in-situ decommissioning. Deactivation removed the following hazardous materials to the extent practical: combustibles/flammables, residual heavy water, acids, friable asbestos (as needed to protect workers performing deactivation and decommissioning), miscellaneous chemicals, lead/brass components, Freon(reg sign), oils, mercury/PCB containing components, mold and some radiologically-contaminated equipment. In addition to the removal of hazardous materials, deactivation included the removal of hazardous energy, exterior metallic components (representing an immediate fall hazard), and historical artifacts along with the evaporation of water from the two Disassembly Basins. Finally, so as to facilitate occupancy during the subsequent in-situ decommissioning, deactivation implemented repairs to the buildings and provided temporary

  19. Using probabilistic criteria in an assessment of the potential radiological consequences of the decommissioning of a nuclear research reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallner, Christian; Rall, Anna-Maria; Thummerer, Severin

    In order to assess the risk of radiological consequences of incidents and accidents in nuclear facilities it is important to contemplate their frequency of occurrence. It has to be shown that incidents and accidents occur sufficiently seldom according to their radiological consequences i. e. the occurrence frequency of radiological doses has to be limited. This is even demanded by the German radiation protection ordinance (StrlSchV), which says that in nuclear facilities other than nuclear power plants (NPP) in operation and for decommissioning, the occurrence frequency of incidents and accidents shall be contemplated in order to prove the design of safetymore » measures and safety installations. Based on the ideas of the ICRP64, we developed a risk based assessment concept for nuclear facilities, which fulfils the requirements of the German regulations concerning dose limits in normal operation and design basis accidents. The general use of the concept is dedicated to nuclear facilities other than nuclear power plants (NPP) in operation and for decommissioning, where the regulation of risk assessment is less sophisticated. The concept specifies occurrence frequency limits for radiation exposure dose ranges, i. e. the occurrence frequency of incidents and accidents has to be limited according to their radiological effects. To apply this concept, scenarios of incidents and accidents are grouped in exposition classes according to their resulting potential effective dose to members of the general public. The occurrence frequencies of the incidents and accidents are summarized in each exposition class whereas the sum must not exceed the frequency limits mentioned above. In the following we introduce the application of this concept in the assessment of the potential radiological consequences of the decommissioning of a nuclear research reactor. We carried out this assessment for the licensing process of the decommissioning on behalf of German authorities. (authors)« less

  20. Estimation and characterization of decontamination and decommissioning solid waste expected from the Plutonium Finishing Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Millar, J.S.; Pottmeyer, J.A.; Stratton, T.J.

    1995-01-01

    Purpose of the study was to estimate the amounts of equipment and other materials that are candidates for removal and subsequent processing in a solid waste facility when the Hanford Plutonium Finishing Plant is decontaminated and decommissioned. (Building structure and soil are not covered.) Results indicate that {approximately}5,500 m{sup 3} of solid waste is expected to result from the decontamination and decommissioning of the Pu Finishing Plant. The breakdown of the volumes and percentages of waste by category is 1% dangerous solid waste, 71% low-level waste, 21% transuranic waste, 7% transuranic mixed waste.

  1. 26 CFR 1.468A-0T - Nuclear decommissioning costs; table of contents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 6 2010-04-01 2010-04-01 false Nuclear decommissioning costs; table of contents... (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Taxable Year for Which Deductions Taken § 1.468A-0T Nuclear...) Definitions. (c) Special rules applicable to certain experimental nuclear facilities. § 1.468A-2TTreatment of...

  2. A dose assessment method for arbitrary geometries with virtual reality in the nuclear facilities decommissioning

    NASA Astrophysics Data System (ADS)

    Chao, Nan; Liu, Yong-kuo; Xia, Hong; Ayodeji, Abiodun; Bai, Lu

    2018-03-01

    During the decommissioning of nuclear facilities, a large number of cutting and demolition activities are performed, which results in a frequent change in the structure and produce many irregular objects. In order to assess dose rates during the cutting and demolition process, a flexible dose assessment method for arbitrary geometries and radiation sources was proposed based on virtual reality technology and Point-Kernel method. The initial geometry is designed with the three-dimensional computer-aided design tools. An approximate model is built automatically in the process of geometric modeling via three procedures namely: space division, rough modeling of the body and fine modeling of the surface, all in combination with collision detection of virtual reality technology. Then point kernels are generated by sampling within the approximate model, and when the material and radiometric attributes are inputted, dose rates can be calculated with the Point-Kernel method. To account for radiation scattering effects, buildup factors are calculated with the Geometric-Progression formula in the fitting function. The effectiveness and accuracy of the proposed method was verified by means of simulations using different geometries and the dose rate results were compared with that derived from CIDEC code, MCNP code and experimental measurements.

  3. Task 21 - Development of Systems Engineering Applications for Decontamination and Decommissioning Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, T.A.

    1998-11-01

    The objectives of this task are to: Develop a model (paper) to estimate the cost and waste generation of cleanup within the Environmental Management (EM) complex; Identify technologies applicable to decontamination and decommissioning (D and D) operations within the EM complex; Develop a database of facility information as linked to project baseline summaries (PBSs). The above objectives are carried out through the following four subtasks: Subtask 1--D and D Model Development, Subtask 2--Technology List; Subtask 3--Facility Database, and Subtask 4--Incorporation into a User Model.

  4. 76 FR 77431 - Decommissioning Planning During Operations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-13

    ... (DG) DG-4014, ``Decommissioning Planning During Operations.'' This guide describes a method that the.... The draft regulatory guide entitled, ``Decommissioning Planning During Operations,'' is temporarily..., 40, 50, 70, and 72 RIN 3150-AI55 [NRC-2011-0286; NRC-2008-0030] Decommissioning Planning During...

  5. 78 FR 663 - Decommissioning Planning During Operations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-04

    ...] Decommissioning Planning During Operations AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide..., ``Decommissioning Planning During Operations.'' The guide describes a method that the NRC staff considers acceptable for use by holders of licenses in complying with the NRC's Decommissioning Planning Rule (DPR) (76 FR...

  6. 77 FR 41107 - Decommissioning Planning During Operations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-12

    ..., 40, 50, 70, and 72 [NRC-2011-0162] Decommissioning Planning During Operations AGENCY: Nuclear... (DG) 4014, ``Decommissioning Planning During Operations.'' This guide describes a method that the NRC staff considers acceptable for use in complying with the NRC's Decommissioning Planning Rule. The NRC...

  7. The Optimized Integration of the Decontamination Plan and the Radwaste Management Plan into Decommissioning Plan to the VVR-S Research Reactor from Romania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barariu, G.

    2008-07-01

    The paper presents the progress of the Decontamination Plan and Radioactive Waste Management Plan which accompanies the Decommissioning Plan for research reactor VVR-S located in Magurele, Ilfov, near Bucharest, Romania. The new variant of the Decommissioning Plan was elaborated taking into account the IAEA recommendation concerning radioactive waste management. A new feasibility study for VVR-S decommissioning was also elaborated. The preferred safe management strategy for radioactive wastes produced by reactor decommissioning is outlined. The strategy must account for reactor decommissioning, as well as rehabilitation of the existing Radioactive Waste Treatment Plant and the upgrade of the Radioactive Waste Disposal Facilitymore » at Baita-Bihor. Furthermore, the final rehabilitation of the laboratories and reusing of cleaned reactor building is envisaged. An inventory of each type of radioactive waste is presented. The proposed waste management strategy is selected in accordance with the IAEA assistance. Environmental concerns are a part of the radioactive waste management strategy. In conclusion: The current version 8 of the Draft Decommissioning Plan which include the Integrated concept of Decontamination and Decommissioning and Radwaste Management, reflects the substantial work that has been incorporated by IFIN-HH in collaboration with SITON, which has resulted in substantial improvement in document The decommissioning strategy must take into account costs for VVR-S Reactor decommissioning, as well as costs for much needed refurbishments to the radioactive waste treatment plant and the Baita-Bihor waste disposal repository. Several improvements to the Baita-Bihor repository and IFIN-HH waste treatment facility were proposed. The quantities and composition of the radioactive waste generated by VVR-S Reactor dismantling were again estimated by streams and the best demonstrated practicable processing solution was proposed. The estimated quantities of

  8. US Department of Energy Grand Junction Projects Office Remedial Action Project, final report of the decontamination and decommissioning of Building 36 at the Grand Junction Projects Office Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widdop, M.R.

    1996-08-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also is the remedial action contractor. Building 36more » was found to be radiologically contaminated and was demolished in 1996. The soil beneath the building was remediated in accordance with identified standards and can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.« less

  9. Decommissioning of the Northrop TRIGA reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cozens, George B.; Woo, Harry; Benveniste, Jack

    1986-07-01

    An overview of the administrative and operational aspects of decommissioning and dismantling the Northrop Mark F TRIGA Reactor, including: planning and preparation, personnel requirements, government interfacing, costs, contractor negotiations, fuel shipments, demolition, disposal of low level waste, final survey and disposition of the concrete biological shielding. (author)

  10. Decommissioning of the 247-F Fuel Manufacturing Facility at the Savannah River Site (SRS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos, Joseph K.; Chostner, Stephen M.

    Building 247-F at SRS was a roughly 110,000 ft{sup 2} two-story facility designed and constructed during the height of the cold war naval buildup to provide additional naval nuclear fuel manufacturing capacity in early 1980's. The manufacturing process employed a wide variety of acids, bases, and other hazardous materials. As the need for naval fuel declined, the facility was shut down and underwent initial deactivation, which was completed in 1990. All process systems were flushed with water and drained using the existing process drain valves. However, since these drains were not always installed at the lowest point in piping andmore » equipment systems, a significant volume of liquid remained after initial deactivation. After initial deactivation, a non-destructive assay of the process area identified approximately 17 ({+-}100%) kg of uranium held up in equipment and piping. The facility was placed in Surveillance and Maintenance mode until 2003, when the decision was made to perform final deactivation, and then decommission the facility. The following lessons were learned as a result of the D and D of building 247-F. Successful D and D of a major radiochemical process building requires significant up-front planning by a team of knowledgeable personnel led by a strong project manager. The level of uncertainty and resultant risk to timely, cost effective project execution was found to be high. Examples of the types of problems encountered which had high potential to adversely impact cost and schedule performance are described below. Low level and sanitary waste acceptance criteria do not allow free liquids in waste containers. These liquids, which are often corrosive, must be safely removed from the equipment before it is loaded to waste containers. Drained liquids must be properly managed, often as hazardous or mixed waste. Tapping and draining of process lines is a dangerous operation, which must be performed carefully. The temptation to become complacent when

  11. 77 FR 58591 - Report on Waste Burial Charges: Changes in Decommissioning Waste Disposal Costs at Low-Level...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-21

    ... NUCLEAR REGULATORY COMMISSION [NRC-2010-0362] Report on Waste Burial Charges: Changes in Decommissioning Waste Disposal Costs at Low-Level Waste Burial Facilities AGENCY: Nuclear Regulatory Commission... Commission) has issued for public comment a document entitled: NUREG-1307 Revision 15, ``Report on Waste...

  12. Alpha Particle Detection Using Alpha-Induced Air Radioluminescence: A Review and Future Prospects for Preliminary Radiological Characterisation for Nuclear Facilities Decommissioning

    PubMed Central

    Crompton, Anita J.; Jenkins, Alex

    2018-01-01

    The United Kingdom (UK) has a significant legacy of nuclear installations to be decommissioned over the next 100 years and a thorough characterisation is required prior to the development of a detailed decommissioning plan. Alpha radiation detection is notoriously time consuming and difficult to carry out due to the short range of alpha particles in air. Long-range detection of alpha particles is therefore highly desirable and this has been attempted through the detection of secondary effects from alpha radiation, most notably the air-radioluminescence caused by ionisation. This paper evaluates alpha induced air radioluminescence detectors developed to date and looks at their potential to develop a stand-off, alpha radiation detector which can be used in the nuclear decommissioning field in daylight conditions to detect alpha contaminated materials. PMID:29597340

  13. 78 FR 64028 - Decommissioning of Nuclear Power Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0035] Decommissioning of Nuclear Power Reactors AGENCY... Commission (NRC) is issuing Revision 1 of regulatory guide (RG) 1.184 ``Decommissioning of Nuclear Power... the NRC's regulations relating to the decommissioning process for nuclear power reactors. The revision...

  14. Application of Robotics in Decommissioning and Decontamination - 12536

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banford, Anthony; Kuo, Jeffrey A.; Bowen, R.A.

    Decommissioning and dismantling of nuclear facilities is a significant challenge worldwide and one which is growing in size as more plants reach the end of their operational lives. The strategy chosen for individual projects varies from the hands-on approach with significant manual intervention using traditional demolition equipment at one extreme to bespoke highly engineered robotic solutions at the other. The degree of manual intervention is limited by the hazards and risks involved, and in some plants are unacceptable. Robotic remote engineering is often viewed as more expensive and less reliable than manual approaches, with significant lead times and capital expenditure.more » However, advances in robotics and automation in other industries offer potential benefits for future decommissioning activities, with the high probability of reducing worker exposure and other safety risks as well as reducing the schedule and costs required to complete these activities. Some nuclear decommissioning tasks and facility environments are so hazardous that they can only be accomplished by exclusive use of robotic and remote intervention. Less hazardous tasks can be accomplished by manual intervention and the use of PPE. However, PPE greatly decreases worker productivity and still exposes the worker to both risk and dose making remote operation preferable to achieve ALARP. Before remote operations can be widely accepted and deployed, there are some economic and technological challenges that must be addressed. These challenges will require long term investment commitments in order for technology to be: - Specifically developed for nuclear applications; - At a sufficient TRL for practical deployment; - Readily available as a COTS. Tremendous opportunities exist to reduce cost and schedule and improve safety in D and D activities through the use of robotic and/or tele-operated systems. - Increasing the level of remote intervention reduces the risk and dose to an operator. Better

  15. Sensor Network Demonstration for In Situ Decommissioning - 13332

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagos, L.; Varona, J.; Awwad, A.

    2013-07-01

    Florida International University's (FIU's) Applied Research Center is currently supporting the Department of Energy's (DOE) Environmental Management Office of D and D and Facility Engineering program. FIU is supporting DOE's initiative to improve safety, reduce technical risks, and limit uncertainty within D and D operations by identifying technologies suitable to meet specific facility D and D requirements, assessing the readiness of those technologies for field deployment, and conducting feasibility studies and large scale demonstrations of promising technologies. During FY11, FIU collaborated with Savannah River National Laboratory in the development of an experimental test site for the demonstration of multiple sensormore » systems for potential use in the in situ decommissioning process. In situ decommissioning is a process in which the above ground portion of a facility is dismantled and removed, and the underground portion is filled with a cementious material such as grout. In such a scenario, the question remains on how to effectively monitor the structural health of the grout (cracking, flexing, and sinking), as well as track possible migration of contaminants within and out of the grouted monolith. The right types of sensors can aid personnel in better understanding the conditions within the entombed structure. Without sensors embedded in and around the monolith, it will be very difficult to estimate structural integrity and contaminant transport. Yet, to fully utilize the appropriate sensors and the provided data, their performance and reliability must be evaluated outside a laboratory setting. To this end, a large scale experimental setup and demonstration was conducted at FIU. In order to evaluate a large suite of sensor systems, FIU personnel designed and purchased a pre-cast concrete open-top cube, which served as a mock-up of an in situ DOE decommissioned facility. The inside of the cube measures 10 ft x 10 ft x 8 ft. In order to ensure that the

  16. US Department of Energy Grand Junction Projects Office Remedial Action Project. Final report of the decontamination and decommissioning of Building 52 at the Grand Junction Projects Office Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krabacher, J.E.

    1996-08-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also was the remedial action contractor. Building 52more » was found to be radiologically contaminated and was demolished in 1994. The soil area within the footprint of the building has been remediated in accordance with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.« less

  17. Mobile laboratories: An innovative and efficient solution for radiological characterization of sites under or after decommissioning.

    PubMed

    Goudeau, V; Daniel, B; Dubot, D

    2017-04-21

    During the operation and the decommissioning of a nuclear site the operator must assure the protection of the workers and the environment. It must furthermore identify and classify the various wastes, while optimizing the associated costs. At all stages of the decommissioning radiological measurements are performed to determine the initial situation, to monitor the demolition and clean-up, and to verify the final situation. Radiochemical analysis is crucial for the radiological evaluation process to optimize the clean-up operations and to the respect limits defined with the authorities. Even though these types of analysis are omnipresent in activities such as the exploitation, the monitoring, and the cleaning up of nuclear plants, some nuclear sites do not have their own radiochemical analysis laboratory. Mobile facilities can overcome this lack when nuclear facilities are dismantled, when contaminated sites are cleaned-up, or in a post-accident situation. The current operations for the characterization of radiological soils of CEA nuclear facilities, lead to a large increase of radiochemical analysis. To manage this high throughput of samples in a timely manner, the CEA has developed a new mobile laboratory for the clean-up of its soils, called SMaRT (Shelter for Monitoring and nucleAR chemisTry). This laboratory is dedicated to the preparation and the radiochemical analysis (alpha, beta, and gamma) of potentially contaminated samples. In this framework, CEA and Eichrom laboratories has signed a partnership agreement to extend the analytical capacities and bring on site optimized and validated methods for different problematic. Gamma-emitting radionuclides can usually be measured in situ as little or no sample preparation is required. Alpha and beta-emitting radionuclides are a different matter. Analytical chemistry laboratory facilities are required. Mobile and transportable laboratories equipped with the necessary tools can provide all that is needed. The main

  18. Decommissioning of German Nuclear Research Facilities under the Governance of the Federal Ministry of Education and Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weigl, M.

    2008-07-01

    Since the announcement of the first nuclear program in 1956, nuclear R and D in Germany has been supported by the Federal Government under four nuclear programs and later on under more general energy R and D programs. The original goal was to help German industry to achieve safe, low-cost generation of energy and self-sufficiency in the various branches of nuclear technology, including the fast breeder reactor and the fuel cycle. Several national research centers were established to host or operate experimental and demonstration plants. These are mainly located at the sites of the national research centers at Juelich andmore » Karlsruhe. In the meantime, all these facilities were shut down and most of them are now in a state of decommissioning and dismantling (D and D). Meanwhile, Germany is one of the leading countries in the world in the field of D and D. Two big demonstration plants, the Niederaichbach Nuclear Power Plant (KKN) a heavy-water cooled pressure tube reactor with carbon-dioxide cooling and the Karlstein Superheated Steam Reactor (HDR) a boiling light water reactor with a thermal power of 100 MW, are totally dismantled and 'green field' is reached. For two other projects the return to 'green field' sites will be reached by the end of this decade. These are the dismantling of the Multi-Purpose Research Reactor (MZFR) and the Compact Sodium Cooled Reactor (KNK) both located at the Forschungszentrum Karlsruhe. Within these projects a lot of new solutions und innovative techniques were tested, which were developed at German universities and in small and medium sized companies mostly funded by the Federal Ministry of Education and Research (BMBF). For example, high performance underwater cutting technologies like plasma arc cutting and contact arc metal cutting. (authors)« less

  19. Comparative Evaluation of Cutting Methods of Activated Concrete from Nuclear Power Plant Decommissioning - 13548

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, HakSoo; Chung, SungHwan; Maeng, SungJun

    2013-07-01

    The amount of radioactive wastes from decommissioning of a nuclear power plant varies greatly depending on factors such as type and size of the plant, operation history, decommissioning options, and waste treatment and volume reduction methods. There are many methods to decrease the amount of decommissioning radioactive wastes including minimization of waste generation, waste reclassification through decontamination and cutting methods to remove the contaminated areas. According to OECD/NEA, it is known that the radioactive waste treatment and disposal cost accounts for about 40 percentage of the total decommissioning cost. In Korea, it is needed to reduce amount of decommissioning radioactivemore » waste due to high disposal cost, about $7,000 (as of 2010) per a 200 liter drum for the low- and intermediate-level radioactive waste (LILW). In this paper, cutting methods to minimize the radioactive waste of activated concrete were investigated and associated decommissioning cost impact was assessed. The cutting methods considered are cylindrical and volume reductive cuttings. The study showed that the volume reductive cutting is more cost-effective than the cylindrical cutting. Therefore, the volume reductive cutting method can be effectively applied to the activated bio-shield concrete. (authors)« less

  20. 77 FR 8751 - Guidance for Decommissioning Planning During Operations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-15

    ..., 40, 50, 70, and 72 [NRC-2011-0286] Guidance for Decommissioning Planning During Operations AGENCY... Guide, DG-4014, ``Decommissioning Planning During Operations'' in the Federal Register with a public... Guide DG-4014, ``Decommissioning Planning During Operations.'' This DG refers to NUREG-1757 Volume 3...

  1. 13. Historic drawing of rocket engine test facility layout, including ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Historic drawing of rocket engine test facility layout, including Buildings 202, 205, 206, and 206A, February 3, 1984. NASA GRC drawing number CF-101539. On file at NASA Glenn Research Center. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  2. 30 CFR 585.701 - What must I include in my Facility Design Report?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... design or installation, e.g., oceanographic and soil reports including the results of the surveys... 30 Mineral Resources 2 2014-07-01 2014-07-01 false What must I include in my Facility Design... Facility Design, Fabrication, and Installation Reports § 585.701 What must I include in my Facility Design...

  3. 30 CFR 585.701 - What must I include in my Facility Design Report?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... design or installation, e.g., oceanographic and soil reports including the results of the surveys... 30 Mineral Resources 2 2013-07-01 2013-07-01 false What must I include in my Facility Design... Facility Design, Fabrication, and Installation Reports § 585.701 What must I include in my Facility Design...

  4. 30 CFR 585.701 - What must I include in my Facility Design Report?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... design or installation, e.g., oceanographic and soil reports including the results of the surveys... 30 Mineral Resources 2 2012-07-01 2012-07-01 false What must I include in my Facility Design... Facility Design, Fabrication, and Installation Reports § 585.701 What must I include in my Facility Design...

  5. 30 CFR 585.907 - How will BOEM process my decommissioning application?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., COPs and GAPs Decommissioning Applications § 585.907 How will BOEM process my decommissioning... your decommissioning application with the decommissioning general concept in your approved SAP, COP, or... revise your SAP, COP, or GAP, and BOEM will begin the appropriate NEPA analysis and other regulatory...

  6. 26 CFR 1.468A-4 - Treatment of nuclear decommissioning fund.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 6 2013-04-01 2013-04-01 false Treatment of nuclear decommissioning fund. 1...-4 Treatment of nuclear decommissioning fund. (a) In general. A nuclear decommissioning fund is... by the assets of the nuclear decommissioning fund. (b) Modified gross income. For purposes of this...

  7. 26 CFR 1.468A-4 - Treatment of nuclear decommissioning fund.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 6 2011-04-01 2011-04-01 false Treatment of nuclear decommissioning fund. 1...-4 Treatment of nuclear decommissioning fund. (a) In general. A nuclear decommissioning fund is... by the assets of the nuclear decommissioning fund. (b) Modified gross income. For purposes of this...

  8. 26 CFR 1.468A-4 - Treatment of nuclear decommissioning fund.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 6 2014-04-01 2014-04-01 false Treatment of nuclear decommissioning fund. 1...-4 Treatment of nuclear decommissioning fund. (a) In general. A nuclear decommissioning fund is... by the assets of the nuclear decommissioning fund. (b) Modified gross income. For purposes of this...

  9. 26 CFR 1.468A-4 - Treatment of nuclear decommissioning fund.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 6 2012-04-01 2012-04-01 false Treatment of nuclear decommissioning fund. 1...-4 Treatment of nuclear decommissioning fund. (a) In general. A nuclear decommissioning fund is... by the assets of the nuclear decommissioning fund. (b) Modified gross income. For purposes of this...

  10. Decommissioning of the Dragon High Temperature Reactor (HTR) Located at the Former United Kingdom Atomic Energy Authority (UKAEA) Research Site at Winfrith - 13180

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Anthony A.

    2013-07-01

    The Dragon Reactor was constructed at the United Kingdom Atomic Energy Research Establishment at Winfrith in Dorset through the late 1950's and into the early 1960's. It was a High Temperature Gas Cooled Reactor (HTR) with helium gas coolant and graphite moderation. It operated as a fuel testing and demonstration reactor at up to 20 MW (Thermal) from 1964 until 1975, when international funding for this project was terminated. The fuel was removed from the core in 1976 and the reactor was put into Safestore. To meet the UK's Nuclear Decommissioning Authority (NDA) objective to 'drive hazard reduction' [1] itmore » is necessary to decommission and remediate all the Research Sites Restoration Ltd (RSRL) facilities. This includes the Dragon Reactor where the activated core, pressure vessel and control rods and the contaminated primary circuit (including a {sup 90}Sr source) still remain. It is essential to remove these hazards at the appropriate time and return the area occupied by the reactor to a safe condition. (author)« less

  11. When a plant shuts down: The psychology of decommissioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulz, J.; Crawford, A.C.

    Within the next decade, 10 to 25 nuclear plants in the United States may be taken off line. Many will have reached the end of their 40-year life cycles, but others will be retired because the cost of operating them has begun to outweigh their economic benefit. Such was the case at Fort St. Vrain, the first decommissioning of a US commercial plant under new Nuclear Regulatory Commission (NRC) regulations. Two major problems associated with decommissioning plants have been obvious: (1) the technical challenges and costs of decommissioning, and (2) the cost of maintaining and finally decommissioning a plant aftermore » a safe storage (SAFSTOR) period of approximately 60 years. What has received little attention is the challenge that affects not only the people who make a plant work, but the quality of the solutions to these problems: how to maintain effective organizational performance during the process of downsizing and decommissioning and/or SAFSTOR. The quality of technical solutions for closing a plant, as well as how successfully the decommissioning process is held within or below budget, will depend largely on how effectively the nuclear organization functions as a social unit. Technical and people issues are bound together. The difficulty is how to operate a plant effectively when plant personnel have no sense of long-term security. As the nuclear power industry matures and the pace for closing operating plants accelerates, the time has come to prepare for the widespread decommissioning of plants. The industry would be well served by conducting a selective, industry-wide evaluation of plants to assess its overall readiness for the decommissioning process. A decommissioning is not likely to be trouble free, but with a healthy appreciation for the human side of the process, it will undoubtedly go more smoothly than if approached as a matter of dismantling a machine.« less

  12. Final cleanup of buildings within in legacy French research facilities: strategy, tools and lessons learned

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Goaller, C.; Doutreluingne, C.; Berton, M.A.

    2007-07-01

    This paper describes the methodology followed by the French Atomic Energy Commission (CEA) to decommission the buildings of former research facilities for demolition or possible reuse. It is a well known fact that the French nuclear safety authority has decided not to define any general release level for the decommissioning of nuclear facilities, thus effectively prohibiting radiological measurement-driven decommissioning. The decommissioning procedure therefore requires an intensive in-depth examination of each nuclear plant. This requires a good knowledge of the past history of the plant, and should be initiated as early as possible. The paper first describes the regulatory framework recentlymore » unveiled by the French Safety Authority, then, reviews its application to ongoing decommissioning projects. The cornerstone of the strategy is the definition of waste zoning in the buildings to segregate areas producing conventional waste from those generating nuclear waste. After dismantling, suitable measurements are carried out to confirm the conventional state of the remaining walls. This requires low-level measurement methods providing a suitable detection limit within an acceptable measuring time. Although this generally involves particle counting and in-situ low level gamma spectrometry, the paper focuses on y spectrometry. Finally, the lessons learned from ongoing projects are discussed. (authors)« less

  13. REGULATORY STRATEGIES TO MINIMIZE GENERATION OF REGULATED WASTES FROM CLEANUP, CONTINUED USE OR DECOMMISSIONING OF NUCLEAR FACILITIES CONTAMINATED WITH POLYCHLORINATED BIPHENYLS (PCBS) - 11198

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowry, N.

    Disposal costs for liquid PCB radioactive waste are among the highest of any category of regulated waste. The high cost is driven by the fact that disposal options are extremely limited. Toxic Substances Control Act (TSCA) regulations require most liquids with PCBs at concentration of {ge} 50 parts-per-million to be disposed by incineration or equivalent destructive treatment. Disposal fees can be as high as $200 per gallon. This figure does not include packaging and the cost to transport the waste to the disposal facility, or the waste generator's labor costs for managing the waste prior to shipment. Minimizing the generationmore » of liquid radioactive PCB waste is therefore a significant waste management challenge. PCB spill cleanups often generate large volumes of waste. That is because the removal of PCBs typically requires the liberal use of industrial solvents followed by a thorough rinsing process. In a nuclear facility, the cleanup process may be complicated by the presence of radiation and other occupational hazards. Building design and construction features, e.g., the presence of open grating or trenches, may also complicate cleanup. In addition to the technical challenges associated with spill cleanup, selection of the appropriate regulatory requirements and approach may be challenging. The TSCA regulations include three different sections relating to the cleanup of PCB contamination or spills. EPA has also promulgated a separate guidance policy for fresh PCB spills that is published as Subpart G of 40 CFR 761 although it is not an actual regulation. Applicability is based on the circumstances of each contamination event or situation. Other laws or regulations may also apply. Identification of the allowable regulatory options is important. Effective communication with stakeholders, particularly regulators, is just as important. Depending on the regulatory path that is taken, cleanup may necessitate the generation of large quantities of regulated waste

  14. 77 FR 37074 - License Amendment Request From the Alan J. Blotcky Reactor Facility

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-20

    ... the Alan J. Blotcky Reactor Facility AGENCY: Nuclear Regulatory Commission. ACTION: Notice of... section of this document. FOR FURTHER INFORMATION CONTACT: Theodore Smith, Project Manager, Reactor... provided the first time that a document is referenced. The Alan J. Blotcky Reactor Facility Decommissioning...

  15. Revised analyses of decommissioning for the reference pressurized Water Reactor Power Station. Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure, Volume 1, Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konzek, G.J.; Smith, R.I.; Bierschbach, M.C.

    1995-11-01

    With the issuance of the final Decommissioning Rule (July 27, 1988), owners and operators of licensed nuclear power plants are required to prepare, and submit to the US Nuclear Regulatory Commission (NRC) for review, decommissioning plans and cost estimates. The NRC staff is in need of bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to provide some of the needed bases documentation. This report contains the results of a review andmore » reevaluation of the {prime}978 PNL decommissioning study of the Trojan nuclear power plant (NUREG/CR-0130), including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the nuclear power plant for the DECON, SAFSTOR, and ENTOMB decommissioning alternatives. These alternatives now include an initial 5--7 year period during which time the spent fuel is stored in the spent fuel pool, prior to beginning major disassembly or extended safe storage of the plant. Included for information (but not presently part of the license termination cost) is an estimate of the cost to demolish the decontaminated and clean structures on the site and to restore the site to a ``green field`` condition. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low-level waste (i.e., Greater-Than-Class C), and reflects 1993 costs for labor, materials, transport, and disposal activities.« less

  16. Carbon-14 Bioassay for Decommissioning of Hanford Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbaugh, Eugene H.; Watson, David J.

    2012-05-01

    The old production reactors at the US Department of Energy Hanford Site used large graphite piles as the moderator. As part of long-term decommissioning plans, the potential need for 14C radiobioassay of workers was identified. Technical issues associated with 14C bioassay and worker monitoring were investigated, including anticipated graphite characterization, potential intake scenarios, and the bioassay capabilities that may be required to support the decommissioning of the graphite piles. A combination of urine and feces sampling would likely be required for the absorption type S 14C anticipated to be encountered. However the concentrations in the graphite piles appear to bemore » sufficiently low that dosimetrically significant intakes of 14C are not credible, thus rendering moot the need for such bioassay.« less

  17. Carbon-14 bioassay for decommissioning of Hanford reactors.

    PubMed

    Carbaugh, Eugene H; Watson, David J

    2012-05-01

    The production reactors at the U.S. Department of Energy Hanford Site used large graphite piles as the moderator. As part of long-term decommissioning plans, the potential need for ¹⁴C radiobioassay of workers was identified. Technical issues associated with ¹⁴C bioassay and worker monitoring were investigated, including anticipated graphite characterization, potential intake scenarios, and the bioassay capabilities that may be required to support the decommissioning of the graphite piles. A combination of urine and feces sampling would likely be required for the absorption type S ¹⁴C anticipated to be encountered. However, the concentrations in the graphite piles appear to be sufficiently low that dosimetrically significant intakes of ¹⁴C are not credible, thus rendering moot the need for such bioassay.

  18. Reactor Decommissioning - Balancing Remote and Manual Activities - 12159

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, Matt

    2012-07-01

    Nuclear reactors come in a wide variety of styles, size, and ages. However, during decommissioned one issue they all share is the balancing of remotely and manually activities. For the majority of tasks there is a desire to use manual methods because remote working can be slower, more expensive, and less reliable. However, because of the unique hazards of nuclear reactors some level of remote activity will be necessary to provide adequate safety to workers and properly managed and designed it does not need to be difficult nor expensive. The balance of remote versus manual work can also affect themore » amount and types of waste that is generated. S.A.Technology (SAT) has worked on a number of reactor decommissioning projects over the last two decades and has a range of experience with projects using remote methods to those relying primarily on manual activities. This has created a set of lessons learned and best practices on how to balance the need for remote handling and manual operations. Finding a balance between remote and manual operations on reactor decommissioning can be difficult but by following certain broad guidelines it is possible to have a very successfully decommissioning. It is important to have an integrated team that includes remote handling experts and that this team plans the work using characterization efforts that are efficient and realistic. The equipment need to be simple, robust and flexible and supported by an on-site team committed to adapting to day-to-day challenges. Also, the waste strategy needs to incorporate the challenges of remote activities in its planning. (authors)« less

  19. 10 CFR 70.25 - Financial assurance and recordkeeping for decommissioning.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... this section shall submit a decommissioning funding plan as described in paragraph (e) of this section... quantities set forth in appendix B to part 30. A decommissioning funding plan must also be submitted when a... quantities specified in paragraph (d) of this section shall either— (1) Submit a decommissioning funding plan...

  20. 10 CFR 70.25 - Financial assurance and recordkeeping for decommissioning.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... this section shall submit a decommissioning funding plan as described in paragraph (e) of this section... quantities set forth in appendix B to part 30. A decommissioning funding plan must also be submitted when a... quantities specified in paragraph (d) of this section shall either— (1) Submit a decommissioning funding plan...

  1. 10 CFR 30.35 - Financial assurance and recordkeeping for decommissioning.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... set forth in appendix B to part 30 shall submit a decommissioning funding plan as described in paragraph (e) of this section. The decommissioning funding plan must also be submitted when a combination of... funding plan as described in paragraph (e) of this section. The decommissioning funding plan must be...

  2. 10 CFR 30.35 - Financial assurance and recordkeeping for decommissioning.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... set forth in appendix B to part 30 shall submit a decommissioning funding plan as described in paragraph (e) of this section. The decommissioning funding plan must also be submitted when a combination of... funding plan as described in paragraph (e) of this section. The decommissioning funding plan must be...

  3. 10 CFR 30.35 - Financial assurance and recordkeeping for decommissioning.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... set forth in appendix B to part 30 shall submit a decommissioning funding plan as described in paragraph (e) of this section. The decommissioning funding plan must also be submitted when a combination of... funding plan as described in paragraph (e) of this section. The decommissioning funding plan must be...

  4. 10 CFR 70.25 - Financial assurance and recordkeeping for decommissioning.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... this section shall submit a decommissioning funding plan as described in paragraph (e) of this section... quantities set forth in appendix B to part 30. A decommissioning funding plan must also be submitted when a... quantities specified in paragraph (d) of this section shall either— (1) Submit a decommissioning funding plan...

  5. 10 CFR 70.25 - Financial assurance and recordkeeping for decommissioning.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... this section shall submit a decommissioning funding plan as described in paragraph (e) of this section... quantities set forth in appendix B to part 30. A decommissioning funding plan must also be submitted when a... quantities specified in paragraph (d) of this section shall either— (1) Submit a decommissioning funding plan...

  6. Shippingport station decommissioning project ALARA Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crimi, F.P.

    1995-03-01

    Properly planned and implemented ALARA programs help to maintain nuclear worker radiation exposures {open_quotes}As Low As Reasonably Achievable.{close_quotes}. This paper describes the ALARA program developed and implemented for the decontamination and decommissioning (D&D) of the Shippingport Atomic Power Station. The elements required for a successful ALARA program are discussed along with examples of good ALARA practices. The Shippingport Atomic Power Station (SAPS) was the first commercial nuclear power plant to be built in the United States. It was located 35 miles northwest of Pittsburgh, PA on the south bank of the Ohio river. The reactor plant achieved initial criticality inmore » December 1959. During its 25-year life, it produced 7.5 billion kilowatts of electricity. The SAPS was shut down in October 1982 and was the first large-scale U.S. nuclear power plant to be totally decommissioned and the site released for unrestricted use. The Decommission Project was estimated to take 1,007 man-rem of radiation exposure and $.98.3 million to complete. Physical decommissioning commenced in September 1985 and was completed in September 1989. The actual man-rem of exposure was 155. The project was completed 6 months ahead of schedule at a cost of $91.3 million.« less

  7. Revised analyses of decommissioning for the reference pressurized Water Reactor Power Station. Volume 2, Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure: Appendices, Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konzek, G.J.; Smith, R.I.; Bierschbach, M.C.

    1995-11-01

    With the issuance of the final Decommissioning Rule (July 27, 1998), owners and operators of licensed nuclear power plants are required to prepare, and submit to the US Nuclear Regulatory Commission (NRC) for review, decommissioning plans and cost estimates. The NRC staff is in need of bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to provide some of the needed bases documentation. This report contains the results of a review andmore » reevaluation of the 1978 PNL decommissioning study of the Trojan nuclear power plant (NUREG/CR-0130), including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the nuclear power plant for the DECON, SAFSTOR, and ENTOMB decommissioning alternatives. These alternatives now include an initial 5--7 year period during which time the spent fuel is stored in the spent fuel pool, prior to beginning major disassembly or extended safe storage of the plant. Included for information (but not presently part of the license termination cost) is an estimate of the cost to demolish the decontaminated and clean structures on the site and to restore the site to a ``green field`` condition. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low-level waste (i.e., Greater-Than-Class C), and reflects 1993 costs for labor, materials, transport, and disposal activities.« less

  8. Modelling of nuclear power plant decommissioning financing.

    PubMed

    Bemš, J; Knápek, J; Králík, T; Hejhal, M; Kubančák, J; Vašíček, J

    2015-06-01

    Costs related to the decommissioning of nuclear power plants create a significant financial burden for nuclear power plant operators. This article discusses the various methodologies employed by selected European countries for financing of the liabilities related to the nuclear power plant decommissioning. The article also presents methodology of allocation of future decommissioning costs to the running costs of nuclear power plant in the form of fee imposed on each megawatt hour generated. The application of the methodology is presented in the form of a case study on a new nuclear power plant with installed capacity 1000 MW. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Challenges with Final Status Surveys at a Large Decommissioning Site - 13417

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Downey, Heath; Collopy, Peter; Shephard, Eugene

    2013-07-01

    As part of decommissioning a former nuclear fuel manufacturing site, one of the crucial final steps is to conduct Final Status Surveys (FSS) in order to demonstrate compliance with the release criteria. At this decommissioning site, the area for FSS was about 100 hectares (248 acres) and included varying terrain, wooded areas, ponds, excavations, buildings and a brook. The challenges in performing the FSS included determining location, identifying FSS units, logging gamma walkover survey data, determining sample locations, managing water in excavations, and diverting water in the brook. The approaches taken to overcome these challenges will be presented in themore » paper. The paper will present and discuss lessons learned that will aid others in the FSS process. (authors)« less

  10. Decommissioning the Fuel Process Building, a Shift in Paradigm for Terminating Safeguards on Process Holdup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivan R. Thomas

    INMM Abstract 51st Annual Meeting Decommissioning the Fuel Process Building, a Shift in Paradigm for Terminating Safeguards on Process Holdup The Fuel Process Building at the Idaho Nuclear Technology and Engineering Center (INTEC) is being decommissioned after nearly four decades of recovering high enriched uranium from various government owned spent nuclear fuels. The separations process began with fuel dissolution in one of multiple head-ends, followed by three cycles of uranium solvent extraction, and ending with denitration of uranyl nitrate product. The entire process was very complex, and the associated equipment formed an extensive maze of vessels, pumps, piping, and instrumentationmore » within several layers of operating corridors and process cells. Despite formal flushing and cleanout procedures, an accurate accounting for the residual uranium held up in process equipment over extended years of operation, presented a daunting safeguards challenge. Upon cessation of domestic reprocessing, the holdup remained inaccessible and was exempt from measurement during ensuing physical inventories. In decommissioning the Fuel Process Building, the Idaho Cleanup Project, which operates the INTEC, deviated from the established requirements that all nuclear material holdup be measured and credited to the accountability books and that all nuclear materials, except attractiveness level E residual holdup, be transferred to another facility. Instead, the decommissioning involved grouting the process equipment in place, rather than measuring and removing the contained holdup for subsequent transfer. The grouting made the potentially attractiveness level C and D holdup even more inaccessible, thereby effectually converting the holdup to attractiveness level E and allowing for termination of safeguards controls. Prior to grouting the facility, the residual holdup was estimated by limited sampling and destructive analysis of solutions in process lines and by acceptable

  11. Optimal policies for aggregate recycling from decommissioned forest roads.

    PubMed

    Thompson, Matthew; Sessions, John

    2008-08-01

    To mitigate the adverse environmental impact of forest roads, especially degradation of endangered salmonid habitat, many public and private land managers in the western United States are actively decommissioning roads where practical and affordable. Road decommissioning is associated with reduced long-term environmental impact. When decommissioning a road, it may be possible to recover some aggregate (crushed rock) from the road surface. Aggregate is used on many low volume forest roads to reduce wheel stresses transferred to the subgrade, reduce erosion, reduce maintenance costs, and improve driver comfort. Previous studies have demonstrated the potential for aggregate to be recovered and used elsewhere on the road network, at a reduced cost compared to purchasing aggregate from a quarry. This article investigates the potential for aggregate recycling to provide an economic incentive to decommission additional roads by reducing transport distance and aggregate procurement costs for other actively used roads. Decommissioning additional roads may, in turn, result in improved aquatic habitat. We present real-world examples of aggregate recycling and discuss the advantages of doing so. Further, we present mixed integer formulations to determine optimal levels of aggregate recycling under economic and environmental objectives. Tested on an example road network, incorporation of aggregate recycling demonstrates substantial cost-savings relative to a baseline scenario without recycling, increasing the likelihood of road decommissioning and reduced habitat degradation. We find that aggregate recycling can result in up to 24% in cost savings (economic objective) and up to 890% in additional length of roads decommissioned (environmental objective).

  12. 30 CFR 285.910 - What must I do when I remove my facility?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What must I do when I remove my facility? 285.910 Section 285.910 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Decommissioning...

  13. 26 CFR 1.468A-1 - Nuclear decommissioning costs; general rules.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 6 2012-04-01 2012-04-01 false Nuclear decommissioning costs; general rules. 1...-1 Nuclear decommissioning costs; general rules. (a) Introduction. Section 468A provides an elective method for taking into account nuclear decommissioning costs for Federal income tax purposes. In general...

  14. 26 CFR 1.468A-1 - Nuclear decommissioning costs; general rules.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 6 2013-04-01 2013-04-01 false Nuclear decommissioning costs; general rules. 1...-1 Nuclear decommissioning costs; general rules. (a) Introduction. Section 468A provides an elective method for taking into account nuclear decommissioning costs for Federal income tax purposes. In general...

  15. 26 CFR 1.468A-1 - Nuclear decommissioning costs; general rules.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 6 2014-04-01 2014-04-01 false Nuclear decommissioning costs; general rules. 1...-1 Nuclear decommissioning costs; general rules. (a) Introduction. Section 468A provides an elective method for taking into account nuclear decommissioning costs for Federal income tax purposes. In general...

  16. 26 CFR 1.468A-1 - Nuclear decommissioning costs; general rules.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 6 2011-04-01 2011-04-01 false Nuclear decommissioning costs; general rules. 1...-1 Nuclear decommissioning costs; general rules. (a) Introduction. Section 468A provides an elective method for taking into account nuclear decommissioning costs for Federal income tax purposes. In general...

  17. Environmental Problems Associated With Decommissioning The Chernobyl Nuclear Power Plant Cooling Pond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farfan, E. B.; Jannik, G. T.; Marra, J. C.

    2009-11-09

    Decommissioning of nuclear power plants and other nuclear fuel cycle facilities has been an imperative issue lately. There exist significant experience and generally accepted recommendations on remediation of lands with residual radioactive contamination; however, there are hardly any such recommendations on remediation of cooling ponds that, in most cases, are fairly large water reservoirs. The literature only describes remediation of minor reservoirs containing radioactive silt (a complete closure followed by preservation) or small water reservoirs resulting in reestablishing natural water flows. Problems associated with remediation of river reservoirs resulting in flooding of vast agricultural areas also have been described. Inmore » addition, the severity of environmental and economic problems related to the remedial activities is shown to exceed any potential benefits of these activities. One of the large, highly contaminated water reservoirs that require either remediation or closure is Karachay Lake near the MAYAK Production Association in the Chelyabinsk Region of Russia where liquid radioactive waste had been deep well injected for a long period of time. Backfilling of Karachay Lake is currently in progress. It should be noted that secondary environmental problems associated with its closure are considered to be of less importance since sustaining Karachay Lake would have presented a much higher radiological risk. Another well-known highly contaminated water reservoir is the Chernobyl Nuclear Power Plant (ChNPP) Cooling Pond, decommissioning of which is planned for the near future. This study summarizes the environmental problems associated with the ChNPP Cooling Pond decommissioning.« less

  18. ENVIRONMENTAL PROBLEMS ASSOCIATED WITH DECOMMISSIONING THE CHERNOBYL NUCLEAR POWER PLANT COOLING POND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farfan, E.

    2009-09-30

    Decommissioning of nuclear power plants and other nuclear fuel cycle facilities has been an imperative issue lately. There exist significant experience and generally accepted recommendations on remediation of lands with residual radioactive contamination; however, there are hardly any such recommendations on remediation of cooling ponds that, in most cases, are fairly large water reservoirs. The literature only describes remediation of minor reservoirs containing radioactive silt (a complete closure followed by preservation) or small water reservoirs resulting in reestablishing natural water flows. Problems associated with remediation of river reservoirs resulting in flooding of vast agricultural areas also have been described. Inmore » addition, the severity of environmental and economic problems related to the remedial activities is shown to exceed any potential benefits of these activities. One of the large, highly contaminated water reservoirs that require either remediation or closure is Karachay Lake near the MAYAK Production Association in the Chelyabinsk Region of Russia where liquid radioactive waste had been deep well injected for a long period of time. Backfilling of Karachay Lake is currently in progress. It should be noted that secondary environmental problems associated with its closure are considered to be of less importance since sustaining Karachay Lake would have presented a much higher radiological risk. Another well-known highly contaminated water reservoir is the Chernobyl Nuclear Power Plant (ChNPP) Cooling Pond, decommissioning of which is planned for the near future. This study summarizes the environmental problems associated with the ChNPP Cooling Pond decommissioning.« less

  19. 26 CFR 1.468A-4T - Treatment of nuclear decommissioning fund (temporary).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 6 2010-04-01 2010-04-01 false Treatment of nuclear decommissioning fund...-4T Treatment of nuclear decommissioning fund (temporary). (a) In general. A nuclear decommissioning... income earned by the assets of the nuclear decommissioning fund. (b) Modified gross income. For purposes...

  20. A Multidisciplinary Approach to Decommissioning Offshore Wells Using Stakeholder Engagement, Risk Identification, and the United Nations Sustainable Development Goals

    NASA Astrophysics Data System (ADS)

    Battalora, L.; Prasad, M.

    2017-12-01

    Context/PurposeThe typical oil and gas project lifecycle includes acquisition, exploration, drilling, production, and decommissioning phases. The oil and gas industry (Industry) has become proactive in identifying and mitigating health, safety, security, environment, and social responsibility risks during these phases as well as designing for sustainable development. With many fields reaching the end stages of the lifecycle, Industry is faced with the challenge of identifying and evaluating risks in the decommissioning phase. The level of challenge is increased when planning for the decommissioning of offshore wells. This paper describes tools that can be applied in the multidisciplinary design of the decommissioning program including use of the United Nations Sustainable Development Goals (SDGs). MethodsStakeholder engagement is key to a successful project. Typical stakeholders in an oil and gas project include the community, regulatory agencies, federal, state, and local governments, private investors, academia, and non-governmental organizations. Before engagement begins, stakeholders must be identified as well as their level of influence in the project. Relationships between stakeholders are "mapped" providing a better understanding of priorities and areas of concentration. Project risks are identified and ranked according to likelihood and impact. Mitigations are matched to risks. Sustainable development is implemented through acknowledgement of societal, economic, and environmental impacts in engineering design. InterpretationRecently, the United Nations Development Programme (UNDP), the International Finance Corporation (IFC) and IPIECA, the global oil and gas industry association for environmental and social issues, partnered to develop the publication, Mapping the oil and gas industry to the Sustainable Development Goals: An Atlas. SDGs have been linked to Industry operations and can serve as a guide for the offshore decommissioning phase Conclusion

  1. 77 FR 14047 - Guidance for Decommissioning Planning During Operations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-08

    ...)-4014, ``Decommissioning Planning During Operations.'' This action is necessary to correct the NRC's... NUCLEAR REGULATORY COMMISSION [NRC-2011-0286] Guidance for Decommissioning Planning During Operations AGENCY: Nuclear Regulatory Commission. ACTION: Draft regulatory guide; correction. SUMMARY: The U...

  2. PROCESS KNOWLEDGE DATA GATHERING AND REPORTING IN SUPPORT OF DECOMMISSIONING Health Physics Society Annual Meeting West Palm Beach, Florida June 27, 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David A. King

    2011-06-27

    Summary of recent ORAU decommissioning activities at the Oak Ridge National Laboratory (ORNL) and the East Tennessee Technology Park (ETTP). Project objective was to generate approved Waste Lot Profiles for legacy facilities scheduled for demolition and shipment to the Environmental Management Waste Management Facility (EMWMF) or appropriate alternate facility. The form and content of process knowledge (PK) reports were developed with input from the EMWMF Waste Acceptance Criteria (WAC) Attainment Team and regulators. PK may be defined as the knowledge of the design and the history of operations that occurs during the life cycle of a facility (paraphrased from SRNLmore » guidance) - similar to the MARSSIM historical site assessment. Some types of PK data used to decommission ORNL and ETTP facilities include: (1) Design drawings; (2) Historical documents [e.g., History of the Oak Ridge National Laboratory by Thomas (1963) and A Brief History of the Chemical Technical Division (ORNL/M-2733)]; (3) Historical photographs; (4) Radiological survey reports; (5) Facility-specific databases - (a) Spill history, (b) Waste Information Tracking System (WITS), and (c) Hazardous Materials Management Information System (HMMIS); (6) Facility walkdown summary reports; and (7) Living memory data. Facility walkdowns are critical for worker safety planning and to assure on-the-ground-conditions match historical descriptions. For Oak Ridge operations, investigators also document the nature and number of items requiring special handling or disposition planning, such as the following: (1) Items containing polychlorinated biphenyls, asbestos, lead, or refrigerants; (2) Items with physical WAC restriction (e.g., large items, pipes, and concrete); and (3) Too 'hot' for EMWMF. Special emphasis was made to interview facility managers, scientists, technicians, or anyone with direct knowledge of process-related activities. Interviews often led to more contact names and reports but also

  3. TES Instrument Decommissioning

    Atmospheric Science Data Center

    2018-03-20

    TES Instrument Decommissioning Tuesday, March 20, 2018 ... PST during a scheduled real time satellite contact the TES IOT along with the Aura FOT commanded the TES instrument to its ... generated from an algorithm update to the base Ground Data System software and will be made available to the scientific community in the ...

  4. 30 CFR 285.701 - What must I include in my Facility Design Report?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What must I include in my Facility Design Report? 285.701 Section 285.701 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR... Design, Fabrication, and Installation Reports § 285.701 What must I include in my Facility Design Report...

  5. Testing and Performance Validation of a Sensitive Gamma Ray Camera Designed for Radiation Detection and Decommissioning Measurements in Nuclear Facilities-13044

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mason, John A.; Looman, Marc R.; Poundall, Adam J.

    2013-07-01

    This paper describes the measurements, testing and performance validation of a sensitive gamma ray camera designed for radiation detection and quantification in the environment and decommissioning and hold-up measurements in nuclear facilities. The instrument, which is known as RadSearch, combines a sensitive and highly collimated LaBr{sub 3} scintillation detector with an optical (video) camera with controllable zoom and focus and a laser range finder in one detector head. The LaBr{sub 3} detector has a typical energy resolution of between 2.5% and 3% at the 662 keV energy of Cs-137 compared to that of NaI detectors with a resolution of typicallymore » 7% to 8% at the same energy. At this energy the tungsten shielding of the detector provides a shielding ratio of greater than 900:1 in the forward direction and 100:1 on the sides and from the rear. The detector head is mounted on a pan/tile mechanism with a range of motion of ±180 degrees (pan) and ±90 degrees (tilt) equivalent to 4 π steradians. The detector head with pan/tilt is normally mounted on a tripod or wheeled cart. It can also be mounted on vehicles or a mobile robot for access to high dose-rate areas and areas with high levels of contamination. Ethernet connects RadSearch to a ruggedized notebook computer from which it is operated and controlled. Power can be supplied either as 24-volts DC from a battery or as 50 volts DC supplied by a small mains (110 or 230 VAC) power supply unit that is co-located with the controlling notebook computer. In this latter case both power and Ethernet are supplied through a single cable that can be up to 80 metres in length. If a local battery supplies power, the unit can be controlled through wireless Ethernet. Both manual operation and automatic scanning of surfaces and objects is available through the software interface on the notebook computer. For each scan element making up a part of an overall scanned area, the unit measures a gamma ray spectrum. Multiple

  6. 76 FR 3540 - Proposed Generic Communications Reporting for Decommissioning Funding Status Reports

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ...-2010-0366] Proposed Generic Communications Reporting for Decommissioning Funding Status Reports AGENCY... and present to the NRC in the Decommissioning Funding Status reports to ensure that the NRC staff... Regulatory Issue Summary 2010-XXX, ``10 CFR 50-75, Reporting for Decommissioning Funding Status Reports'' is...

  7. 50 CFR 15.41 - Criteria for including facilities as qualifying for imports. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS WILD BIRD CONSERVATION ACT Qualifying Facilities Breeding Exotic Birds in Captivity § 15.41 Criteria for including facilities as qualifying for imports. [Reserved] ...

  8. 50 CFR 15.41 - Criteria for including facilities as qualifying for imports. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS WILD BIRD CONSERVATION ACT Qualifying Facilities Breeding Exotic Birds in Captivity § 15.41 Criteria for including facilities as qualifying for imports. [Reserved] ...

  9. Decommissioning the physics laboratory, building 777-10A, at the Savannah River Site (SRS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musall, John C.; Cope, Jeff L.

    2008-01-15

    SRS recently completed a four year mission to decommission {approx}250 excess facilities. As part of that effort, SRS decommissioned a 48,000 ft{sup 2} laboratory that housed four low-power test reactors, formerly used by SRS to determine reactor physics. This paper describes and reviews the decommissioning, with a focus on component segmentation and handling (i.e. hazardous material removal, demolition, and waste handling). The paper is intended to be a resource for engineers, planners, and project managers, who face similar decommissioning challenges. Building 777-10A, located at the south end of SRS's A/M-Area, was built in 1953 and had a gross area of {approx}48,000 ft{sup 2}. Building 777-10A had two main areas: a west wing, which housed four experimental reactors and associated equipment; and an east wing, which housed laboratories, and shops, offices. The reactors were located in two separate areas: one area housed the Process Development Pile (PDP) reactor and the Lattice Test Reactor (LTR), while the second area housed the Standard Pile (SP) and the Sub-critical Experiment (SE) reactors. The west wing had five levels: three below and three above grade (floor elevations of -37', -28', -15', 0', +13'/+16' and +27' (roof elevation of +62')), while the east wing had two levels: one below and one above grade (floor elevations of -15' and 0' (roof elevation of +16')). Below-grade exterior walls were constructed of reinforced concrete, {approx}1' thick. In general, above-grade exterior walls were steel frames covered by insulation and corrugated, asbestos-cement board. The two interior walls around the PDP/LTR were reinforced concrete {approx}5' thick and {approx}30' high, while the SP/SE reactors resided in a reinforced, concrete cell with 3.5'-6' thick walls/roof. All other interior walls were constructed of metal studs covered with either asbestos-cement or gypsum board. In general, the floors were constructed of reinforced concrete on cast-in-place concrete

  10. 2016 Annual Inspection and Radiological Survey Results for the Piqua, Ohio, Decommissioned Reactor Site, July 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimmerman, Brian; Miller, Michele

    This report presents the findings of the annual inspection and radiological survey of the Piqua, Ohio, Decommissioned Reactor Site (site). The decommissioned nuclear power demonstration facility was inspected and surveyed on April 15, 2016. The site, located on the east bank of the Great Miami River in Piqua, Ohio, was in fair physical condition. There is no requirement for a follow-up inspection, partly because City of Piqua (City) personnel participated in a March 2016 meeting to address reoccurring safety concerns. Radiological survey results from 104 locations revealed no removable contamination. One direct beta activity reading in a floor drain onmore » the 56-foot level (1674 disintegrations per minute [dpm]/100 square centimeters [cm2]) exceeded the minimum detectable activity (MDA). Beta activity has been detected in the past at this floor drain. The reading was well below the action level of 5000 dpm/100 cm2.« less

  11. Reactor Design and Decommissioning - An Overview of International Activities in Post Fukushima Era1 - 12396

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devgun, Jas S.; Laraia, Michele; Pescatore, Claudio

    Accidents at the Fukushima Dai-ichi reactors as a result of the devastating earthquake and tsunami of March 11, 2011 have not only dampened the nuclear renaissance but have also initiated a re-examination of the design and safety features for the existing and planned nuclear reactors. Even though failures of some of the key site features at Fukushima can be attributed to events that in the past would have been considered as beyond the design basis, the industry as well as the regulatory authorities are analyzing what features, especially passive features, should be designed into the new reactor designs to minimizemore » the potential for catastrophic failures. It is also recognized that since the design of the Fukushima BWR reactors which were commissioned in 1971, many advanced safety features are now a part of the newer reactor designs. As the recovery efforts at the Fukushima site are still underway, decisions with respect to the dismantlement and decommissioning of the damaged reactors and structures have not yet been finalized. As it was with Three Mile Island, it could take several decades for dismantlement, decommissioning and clean up, and the project poses especially tough challenges. Near-term assessments have been issued by several organizations, including the IAEA, the USNRC and others. Results of such investigations will lead to additional improvements in system and site design measures including strengthening of the anti-tsunami defenses, more defense-in-depth features in reactor design, and better response planning and preparation involving reactor sites. The question also arises what would the effect be on the decommissioning scene worldwide, and what would the effect be on the new reactors when they are eventually retired and dismantled. This paper provides an overview of the US and international activities related to recovery and decommissioning including the decommissioning features in the reactor design process and examines these from a new

  12. Asset Decommissioning Risk Metrics for Floating Structures in the Gulf of Mexico.

    PubMed

    Kaiser, Mark J

    2015-08-01

    Public companies in the United States are required to report standardized values of their proved reserves and asset retirement obligations on an annual basis. When compared, these two measures provide an aggregate indicator of corporate decommissioning risk but, because of their consolidated nature, cannot readily be decomposed at a more granular level. The purpose of this article is to introduce a decommissioning risk metric defined in terms of the ratio of the expected value of an asset's reserves to its expected cost of decommissioning. Asset decommissioning risk (ADR) is more difficult to compute than a consolidated corporate risk measure, but can be used to quantify the decommissioning risk of structures and to perform regional comparisons, and also provides market signals of future decommissioning activity. We formalize two risk metrics for decommissioning and apply the ADR metric to the deepwater Gulf of Mexico (GOM) floater inventory. Deepwater oil and gas structures are expensive to construct, and at the end of their useful life, will be expensive to decommission. The value of proved reserves for the 42 floating structures in the GOM circa January 2013 is estimated to range between $37 and $80 billion for future oil prices between 60 and 120 $/bbl, which is about 10 to 20 times greater than the estimated $4.3 billion to decommission the inventory. Eni's Allegheny and MC Offshore's Jolliet tension leg platforms have ADR metrics less than one and are approaching the end of their useful life. Application of the proposed metrics in the regulatory review of supplemental bonding requirements in the U.S. Outer Continental Shelf is suggested to complement the current suite of financial metrics employed. © 2015 Society for Risk Analysis.

  13. 77 FR 8902 - Draft Regulatory Guide: Issuance, Availability Decommissioning of Nuclear Power Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-15

    ... Decommissioning of Nuclear Power Reactors AGENCY: Nuclear Regulatory Commission. ACTION: Draft regulatory guide... draft regulatory guide (DG) DG-1271 ``Decommissioning of Nuclear Power Reactors.'' This guide describes... Regulatory Guide 1.184, ``Decommissioning of Nuclear Power Reactors,'' dated July 2000. This proposed...

  14. Environmental problems associated with decommissioning the Chernobyl Nuclear Power Plant Cooling Pond.

    PubMed

    Oskolkov, B Ya; Bondarkov, M D; Gaschak, S P; Maksymenko, A M; Maksymenko, V M; Martynenko, V I; Farfán, E B; Jannik, G T; Marra, J C

    2010-11-01

    Decommissioning of nuclear power plants and other nuclear fuel cycle facilities associated with residual radioactive contamination of their territories is an imperative issue. Significant problems may result from decommissioning of cooling ponds with residual radioactive contamination. The Chernobyl Nuclear Power Plant (ChNPP) Cooling Pond is one of the largest self-contained water reservoirs in the Chernobyl region and Ukrainian and Belorussian Polesye region. The 1986 ChNPP Reactor Unit Number Four significantly contaminated the ChNPP Cooling Pond. The total radionuclide inventory in the ChNPP Cooling Pond bottom deposits are as follows: ¹³⁷Cs: 16.28 ± 2.59 TBq; ⁹⁰Sr: 2.4 ± 0.48 TBq; and ²³⁹+²⁴⁰Pu: 0.00518 ± 0.00148 TBq. The ChNPP Cooling Pond is inhabited by over 500 algae species and subspecies, over 200 invertebrate species, and 36 fish species. The total mass of the living organisms in the ChNPP Cooling Pond is estimated to range from about 60,000 to 100,000 tons. The territory adjacent to the ChNPP Cooling Pond attracts many birds and mammals (178 bird species and 47 mammal species were recorded in the Chernobyl Exclusion Zone). This article describes several options for the ChNPP Cooling Pond decommissioning and environmental problems associated with its decommissioning. The article also provides assessments of the existing and potential exposure doses for the shoreline biota. For the 2008 conditions, the estimated total dose rate values were 11.4 40 μGy h⁻¹ for amphibians, 6.3 μGy h⁻¹ for birds, 15.1 μGy h⁻¹ for mammals, and 10.3 μGy h⁻¹ for reptiles, with the recommended maximum dose rate being equal to 40 μGy h⁻¹. However, drying the ChNPP Cooling Pond may increase the exposure doses to 94.5 μGy h⁻¹ for amphibians, 95.2 μGy h⁻¹ for birds, 284.0 μGy h⁻¹ for mammals, and 847.0 μGy h⁻¹ for reptiles. All of these anticipated dose rates exceed the recommended values.

  15. Decontamination, decommissioning, and vendor advertorial issue, 2007

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnihotri, Newal

    The focus of the July-August issue is on Decontamination, decommissioning, and vendor advertorials. Major articles/reports in this issue include: An interesting year ahead of us, by Tom Christopher, AREVA NP Inc.; U.S.-India Civil Nuclear Cooperation; Decontamination and recycling of retired components, by Sean P. Brushart, Electric Power Research Institute; and, ANO is 33 and going strong, by Tyler Lamberts, Entergy Nuclear Operations, Inc. The industry innovation article is: Continuous improvement process, by ReNae Kowalewski, Arkansas Nuclear One.

  16. 30 CFR 285.909 - When may MMS authorize facilities to remain in place following termination of a lease or grant?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Decommissioning Facility... basis considering the following: (1) Potential impacts to the marine environment; (2) Competing uses of...

  17. Decommissioning strategy for liquid low-level radioactive waste surface storage water reservoir.

    PubMed

    Utkin, S S; Linge, I I

    2016-11-22

    The Techa Cascade of water reservoirs (TCR) is one of the most environmentally challenging facilities resulted from FSUE "PA "Mayak" operations. Its reservoirs hold over 360 mln m 3 of liquid radioactive waste with a total activity of some 5 × 10 15 Bq. A set of actions implemented under a special State program involving the development of a strategic plan aimed at complete elimination of TCR challenges (Strategic Master-Plan for the Techa Cascade of water reservoirs) resulted in considerable reduction of potential hazards associated with this facility. The paper summarizes the key elements of this master-plan: defining TCR final state, feasibility study of the main strategies aimed at its attainment, evaluation of relevant long-term decommissioning strategy, development of computational tools enabling the long-term forecast of TCR behavior depending on various engineering solutions and different weather conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. 31. SECTIONS AND DETAILS OF ARVFS FACILITY, INCLUDING RADIATION HAZARD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. SECTIONS AND DETAILS OF ARVFS FACILITY, INCLUDING RADIATION HAZARD SIGN, WOOD RETAINING WALL, TANK COVER, AND DRAIN BOX. F.C. TORKELSON DRAWING NUMBER 842-ARVFS-701-3. INEL INDEX CODE NUMBER: 075 0701 851 151972. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID

  19. An ARM Mobile Facility Designed for Marine Deployments

    NASA Astrophysics Data System (ADS)

    Wiscombe, W. J.

    2007-05-01

    The U.S. Dept. of Energy's ARM (Atmospheric Radiation Measurements) Program is designing a Mobile Facility exclusively for marine deployments. This marine facility is patterned after ARM's land Mobile Facility, which had its inaugural deployment at Point Reyes, California, in 2005, followed by deployments to Niger in 2006 and Germany in 2007 (ongoing), and a planned deployment to China in 2008. These facilities are primarily intended for the study of clouds, radiation, aerosols, and surface processes with a goal to include these processes accurately in climate models. They are preferably embedded within larger field campaigns which provide context. They carry extensive instrumentation (in several large containers) including: cloud radar, lidar, microwave radiometers, infrared spectrometers, broadband and narrowband radiometers, sonde-launching facilities, extensive surface aerosol measurements, sky imagers, and surface latent and sensible heat flux devices. ARM's Mobile Facilities are designed for 6-10 month deployments in order to capture climatically-relevant datasets. They are available to any scientist, U.S. or international, who wishes to submit a proposal during the annual Spring call. The marine facility will be adapted to, and ruggedized for, the harsh marine environment and will add a scanning two-frequency radar, a boundary-layer wind profiler, a shortwave spectrometer, and aerosol instrumentation adapted to typical marine aerosols like sea salt. Plans also include the use of roving small UAVs, automated small boats, and undersea autonomous vehicles in order to address the point-to-area-average problem which is so crucial for informing climate models. Initial deployments are planned for small islands in climatically- interesting cloud regimes, followed by deployments on oceanic platforms (like decommissioned oil rigs and the quasi-permanent platform of this session's title) and eventually on large ships like car carriers plying routine routes.

  20. 10 CFR 40.36 - Financial assurance and recordkeeping for decommissioning.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... funding plan as described in paragraph (d) of this section. (b) Each applicant for a specific license... 100 mCi in a readily dispersible form shall either— (1) Submit a decommissioning funding plan as... this section shall submit a decommissioning funding plan as described in paragraph (d) of this section...

  1. 10 CFR 40.36 - Financial assurance and recordkeeping for decommissioning.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... funding plan as described in paragraph (d) of this section. (b) Each applicant for a specific license... 100 mCi in a readily dispersible form shall either— (1) Submit a decommissioning funding plan as... this section shall submit a decommissioning funding plan as described in paragraph (d) of this section...

  2. 10 CFR 40.36 - Financial assurance and recordkeeping for decommissioning.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... funding plan as described in paragraph (d) of this section. (b) Each applicant for a specific license... 100 mCi in a readily dispersible form shall either— (1) Submit a decommissioning funding plan as... this section shall submit a decommissioning funding plan as described in paragraph (d) of this section...

  3. 10 CFR 40.36 - Financial assurance and recordkeeping for decommissioning.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... readily dispersible form shall submit a decommissioning funding plan as described in paragraph (d) of this...— (1) Submit a decommissioning funding plan as described in paragraph (d) of this section; or (2... funding plan as described in paragraph (d) of this section or a certification of financial assurance for...

  4. Solid Waste from the Operation and Decommissioning of Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Marilyn Ann; D'Arcy, Daniel; Lapsa, Melissa Voss

    This baseline report examines the solid waste generated by the U.S. electric power industry, including both waste streams resulting from electricity generation and wastes resulting from the decommissioning of power plants. Coal and nuclear plants produce large volumes of waste during electricity generation, and this report describes the policies and procedures for handling these materials. Natural gas and oil-fired power plants face similar waste challenges. Renewables considered in this baseline report include hydropower, wind and solar.

  5. Decommissioning of offshore oil and gas facilities: a comparative assessment of different scenarios.

    PubMed

    Ekins, Paul; Vanner, Robin; Firebrace, James

    2006-06-01

    A material and energy flow analysis, with corresponding financial flows, was carried out for different decommissioning scenarios for the different elements of an offshore oil and gas structure. A comparative assessment was made of the non-financial (especially environmental) outcomes of the different scenarios, with the reference scenario being to leave all structures in situ, while other scenarios envisaged leaving them on the seabed or removing them to shore for recycling and disposal. The costs of each scenario, when compared with the reference scenario, give an implicit valuation of the non-financial outcomes (e.g. environmental improvements), should that scenario be adopted by society. The paper concludes that it is not clear that the removal of the topsides and jackets of large steel structures to shore, as currently required by regulations, is environmentally justified; that concrete structures should certainly be left in place; and that leaving footings, cuttings and pipelines in place, with subsequent monitoring, would also be justified unless very large values were placed by society on a clear seabed and trawling access.

  6. Waste management strategy for cost effective and environmentally friendly NPP decommissioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Per Lidar; Arne Larsson; Niklas Bergh

    2013-07-01

    Decommissioning of nuclear power plants generates large volumes of radioactive or potentially radioactive waste. The proper management of the dismantling waste plays an important role for the time needed for the dismantling phase and thus is critical to the decommissioning cost. An efficient and thorough process for inventorying, characterization and categorization of the waste provides a sound basis for the planning process. As part of comprehensive decommissioning studies for Nordic NPPs, Westinghouse has developed the decommissioning inventories that have been used for estimations of the duration of specific work packages and the corresponding costs. As part of creating the designmore » basis for a national repository for decommissioning waste, the total production of different categories of waste packages has also been predicted. Studsvik has developed a risk based concept for categorization and handling of the generated waste using six different categories with a span from extremely small risk for radiological contamination to high level waste. The two companies have recently joined their skills in the area of decommissioning on selected market in a consortium named ndcon to further strengthen the proposed process. Depending on the risk for radiological contamination or the radiological properties and other properties of importance for waste management, treatment routes are proposed with well-defined and proven methods for on-site or off-site treatment, activity determination and conditioning. The system is based on a graded approach philosophy aiming for high confidence and sustainability, aiming for re-use and recycling where found applicable. The objective is to establish a process where all dismantled material has a pre-determined treatment route. These routes should through measurements, categorization, treatment, conditioning, intermediate storage and final disposal be designed to provide a steady, un-disturbed flow of material to avoid interruptions

  7. Technology, safety and costs of decommissioning reference independent spent fuel storage installations. [Contains glossary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ludwick, J D; Moore, E B

    1984-01-01

    Safety and cost information is developed for the conceptual decommissioning of five different types of reference independent spent fuel storage installations (ISFSIs), each of which is being given consideration for interim storage of spent nuclear fuel in the United States. These include one water basin-type ISFSI (wet) and four dry ISFSIs (drywell, silo, vault, and cask). The reference ISFSIs include all component parts necessary for the receipt, handling and storage of spent fuel in a safe and efficient manner. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, and potential radiation doses tomore » the public. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment followed by long-term surveillance).« less

  8. CESAR5.3: Isotopic depletion for Research and Testing Reactor decommissioning

    NASA Astrophysics Data System (ADS)

    Ritter, Guillaume; Eschbach, Romain; Girieud, Richard; Soulard, Maxime

    2018-05-01

    , CESAR includes a portable Graphical User Interface which can be broadly deployed in R&D or industrial facilities. Aging facilities currently face decommissioning and dismantling issues. This way to the end of the nuclear fuel cycle requires a careful assessment of source terms in the fuel, core structures and all parts of a facility that must be disposed of with "industrial nuclear" constraints. In that perspective, several CESAR cross section libraries were constructed for early CEA Research and Testing Reactors (RTR's). The aim of this paper is to describe how CESAR operates and how it can be used to help these facilities care for waste disposal, nuclear materials transport or basic safety cases. The test case will be based on the PHEBUS Facility located at CEA - Cadarache.

  9. Greenhouse gas emissions modeling : a tool for federal facility decommissioning

    DOT National Transportation Integrated Search

    2010-10-21

    The Federal Aviation Administration (FAA) facility inventory is constantly changing as newer systems supplant older infrastructure in response to technological advances. Transformational change embodied by the FAAs Next Generation Air Transportati...

  10. Completion of the decommissioning of a former active handling building at UKAEA Winfrith

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, N.; Parkinson, S.J.; Cornell, R.M.

    2007-07-01

    Since July 2000, NUKEM Limited has been carrying out the full decommissioning of a former Active Handling Building A59 at Winfrith in Dorset under contract from the nuclear site licence holder, UKAEA. Work has generally centred upon clearance and decontamination of the two heavily shielded suites of caves originally used to carry out remote examination of irradiated nuclear fuel elements although a number of other supporting facilities are also involved. This work has proceeded successfully to completion following extensive decontamination of the caves and associated facilities and has been followed by the recent demolition of the main containment building structure.more » This has permitted a start to be made on the demolition of the two heavily shielded suites of caves which is to be followed by removal of the building slab and restoration of the site. This paper reviews some of the significant tasks undertaken during the past year in preparation for the building and cave line demolition operations. It also reviews the building structure removal and recent progress made with the demolition of the two heavily reinforced concrete cave lines. The procedure used for monitoring the concrete debris from the cave lines has had to be revised during these operations and the reasons for this and a temporary delay in the cave line demolition will be discussed in the context of the remaining sections of the programme. This decommissioning programme has been achieved throughout by the employment of a non-adversarial team working approach between client and contractor. This has been instrumental in developing cost-effective and safe solutions to a range of problems during the programme, demonstrating the worth of adopting this co-operative approach for mutual benefit. (authors)« less

  11. 30 CFR 585.907 - How will BOEM process my decommissioning application?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... decommissioning application with the decommissioning general concept in your approved SAP, COP, or GAP to..., COP, or GAP, and BOEM will begin the appropriate NEPA analysis and other regulatory reviews as... change in the impacts previously identified and evaluated in your SAP, COP, or GAP; (2) Require any...

  12. 30 CFR 585.907 - How will BOEM process my decommissioning application?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... decommissioning application with the decommissioning general concept in your approved SAP, COP, or GAP to..., COP, or GAP, and BOEM will begin the appropriate NEPA analysis and other regulatory reviews as... change in the impacts previously identified and evaluated in your SAP, COP, or GAP; (2) Require any...

  13. Radioactive waste from decommissioning of fast reactors (through the example of BN-800)

    NASA Astrophysics Data System (ADS)

    Rybin, A. A.; Momot, O. A.

    2017-01-01

    Estimation of volume of radioactive waste from operating and decommissioning of fast reactors is introduced. Preliminary estimation has shown that the volume of RW from decommissioning of BN-800 is amounted to 63,000 cu. m. Comparison of the amount of liquid radioactive waste derived from operation of different reactor types is performed. Approximate costs of all wastes disposal for complete decommissioning of BN-800 reactor are estimated amounting up to approx. 145 million.

  14. TN International and ITS operational feedback regarding the decommissioning of obsolete casks dedicated to the transport and/or storage of nuclear raw materials, fuel and used fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blachet, L.; Bimet, F.; Rennesson, N.

    2008-07-01

    Within the AREVA group, TN International is a major actor regarding the design of casks and transportation for the nuclear cycle. In the early 2005, TN International has started the project of decommissioning some of its own equipment and was hence the first company ever in the AREVA Group to implement this new approach. In order to do so, TN International has based this project by taking into account the AREVA Sustainable Development Charter, the French regulatory framework, the ANDRA (Agence Nationale pour la Gestion des Dechets Radioactifs - National Agency for the radioactive waste management) requirements and has deployedmore » a step by step methodology such as radiological characterization following a logical route. The aim was to define a standardized process with optimized solutions regarding the diversity of the cask's fleet. As a general matter, decommissioning of nuclear casks is a brand new field as the nuclear field is more familiar with the dismantling of nuclear facilities and/or nuclear power plant. Nevertheless existing workshops, maintenance facilities, measurements equipments and techniques have been exploited and adapted by TN International in order to turn an ambitious project into a permanent and cost-effective activity. The decommissioning of the nuclear casks implemented by TN International regarding its own needs and the French regulatory framework is formalized by several processes and is materialized for instance by the final disposal of casks as they are or in ISO container packed with cut-off casks and big bags filled with crushed internal cask equipments, etc. The first part of this paper aims to describe the history of the project that started with a specific environmental analysis which took into account the values of AREVA as regards the Sustainable Development principles that were at the time and are still a topic of current concern in the world. The second part will deal with the definition, the design and the implementation of

  15. How an integrated change programme has accelerated the reduction in high hazard nuclear facilities at Sellafield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackintosh, Angela

    For over five decades the Sellafield Site has been central to the UK's nuclear programme. Now operated by Sellafield Ltd, under the management of Parent Body Organisation Nuclear Management Partners (NMP), a consortium of URS Washington Division, AMEC and AREVA is focussed on the decommissioning of historical facilities. When Decommissioning commenced in the late 1980's the site focus at that time was on commercial reprocessing and waste management. Now through the implementation of a company change programme, emphasis has shifted towards accelerated risk and hazard reduction of degraded legacy plants with nuclear inventory whilst ensuring value for money for themore » customer, the Nuclear Decommissioning Authority. This paper will describe the management success by the Site owners in delivering a successful change programme. The paper will explain how the site has transitioned to the INPO Standard Nuclear Performance Model (SNPM) and how through the use of a change maturity matrix has contributed to the accelerated reduction in high risk high hazard nuclear facilities. The paper will explain in detail how the Decommissioning Programme Office has facilitated and coordinated the Governance and assured delivery of the change plan and how successful application of visual management has aided the communication of its progress. Finally, the paper will discuss how the Delivery Schedules have proved critical for presenting the change plan to Key Stakeholders, Government Owners and Powerful Regulators. Overall, this paper provides an insight into how a massive change programme is being managed within one of the world's highest regulated industries. (authors)« less

  16. Imp and Syp RNA-binding proteins govern decommissioning of Drosophila neural stem cells

    PubMed Central

    Yang, Ching-Po; Samuels, Tamsin J.; Huang, Yaling; Yang, Lu; Ish-Horowicz, David; Davis, Ilan

    2017-01-01

    The termination of the proliferation of Drosophila neural stem cells, also known as neuroblasts (NBs), requires a ‘decommissioning’ phase that is controlled in a lineage-specific manner. Most NBs, with the exception of those of the mushroom body (MB), are decommissioned by the ecdysone receptor and mediator complex, causing them to shrink during metamorphosis, followed by nuclear accumulation of Prospero and cell cycle exit. Here, we demonstrate that the levels of Imp and Syp RNA-binding proteins regulate NB decommissioning. Descending Imp and ascending Syp expression have been shown to regulate neuronal temporal fate. We show that Imp levels decline slower in the MB than in other central brain NBs. MB NBs continue to express Imp into pupation, and the presence of Imp prevents decommissioning partly by inhibiting the mediator complex. Late-larval induction of transgenic Imp prevents many non-MB NBs from decommissioning in early pupae. Moreover, the presence of abundant Syp in aged NBs permits Prospero accumulation that, in turn, promotes cell cycle exit. Together, our results reveal that progeny temporal fate and progenitor decommissioning are co-regulated in protracted neuronal lineages. PMID:28851709

  17. Education in nuclear decommissioning in the north of Scotland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Catlow, F.; Reeves, G.M.

    2007-07-01

    This paper describes the work covered and experience gained in the first two years of operation of DERC, a Centre for Decommissioning and Environmental Remediation in the Highlands of Scotland. The Centre is a unique development which was set up to teach nuclear decommissioning as a separate discipline, address the problem of a declining skills base in the field of nuclear technologies and to take advantage of the unique and exceptional innovative, technical and research opportunities offered through the decommissioning of Britain's fast reactor site at Dounreay. The Centre is an offshoot from North Highland College which is a membermore » of UHI, the University in embryo of the Highlands and Islands. The Centre currently supports ten PhD students completing various diverse projects mainly in the field of nuclear environmental remediation. In addition there area number of full and part time MSc students who participate in NTEC (Nuclear Technology Education Consortium) a consortium of British Universities set up specifically to engender interest and skills in nuclear technology at postgraduate level. At undergraduate level, courses are offered in Nuclear Decommissioning and related subjects as part of Electrical and Mechanical degree courses. In addition to our relationship with the United Kingdom Atomic Energy Authority (UKAEA) the Dounreay site licensee, we have links with Rolls-Royce and the Ministry of Defence who also share the Dounreay site and with other stakeholders such as, the UK regulator (HSE/NII), the Scottish Environmental Protection Agency (SEPA), local and international contractors and we liaise with the newly formed Nuclear Decommissioning Authority (NDA), who provide some sponsorship and support. We possess our own equipment and laboratories for taking and analysing soil samples and for conducting environmental surveys. Recently we commissioned an aerial survey of contamination in the locality from natural sources, other background levels such as

  18. Evaluation of short-rotation woody crops to stabilize a decommissioned swine lagoon

    Treesearch

    K.C. Dipesh; Rodney E. Will; Thomas C. Hennessey; Chad J. Penn

    2012-01-01

    Fast growing tree stands represent an environmentally friendly, less expensive method for stabilization of decommissioned animal production lagoons than traditional lagoon closure. We tested the feasibility of using short-rotation woody crops (SRWCs) in central Oklahoma to close a decommissioned swine lagoon by evaluating the growth performance and nutrient uptake of...

  19. Decision Support for Road Decommissioning and Restoration by Using Genetic Algorithms and Dynamic Programming

    Treesearch

    Elizabeth A. Eschenbach; Rebecca Teasley; Carlos Diaz; Mary Ann Madej

    2007-01-01

    Sediment contributions from unpaved forest roads have contributed to the degradation of anadromous fisheries streams in the Pacific Northwest.Efforts to reduce this degradation have included road decommissioning and road upgrading. These expensive activities have usually been implemented on a site specific basis without considering the sediment...

  20. HLRW management during MR reactor decommissioning in NRC 'Kurchatov Institute'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chesnokov, Alexander; Ivanov, Oleg; Kolyadin, Vyacheslav

    2013-07-01

    A program of decommissioning of MR research reactor in the Kurchatov institute started in 2008. The decommissioning work presumed a preliminary stage, which included: removal of spent fuel from near reactor storage; removal of spent fuel assemble of metal liquid loop channel from a core; identification, sorting and disposal of radioactive objects from gateway of the reactor; identification, sorting and disposal of radioactive objects from cells of HLRW storage of the Kurchatov institute for radwaste creating form the decommissioning of MR. All these works were performed by a remote controlled means with use of a remote identification methods of highmore » radioactive objects. A distribution of activity along high radiated objects was measured by a collimated radiometer installed on the robot Brokk-90, a gamma image of the object was registered by gamma-visor. Spectrum of gamma radiation was measured by a gamma locator and semiconductor detector system. For identification of a presence of uranium isotopes in the HLRW a technique, based on the registration of characteristic radiation of U, was developed. For fragmentation of high radiated objects was used a cold cutting technique and dust suppression system was applied for reduction of volume activity of aerosols in air. The management of HLRW was performed by remote controlled robots Brokk-180 and Brokk-330. They executed sorting, cutting and parking of high radiated part of contaminated equipment. The use of these techniques allowed to reduce individual and collective doses of personal performed the decommissioning. The average individual dose of the personnel was 1,9 mSv/year in 2011, and the collective dose is estimated by 0,0605 man x Sv/year. Use of the remote control machines enables reducing the number of working personal (20 men) and doses. X-ray spectrometric methods enable determination of a presence of the U in high radiated objects and special cans and separation of them for further spent fuel

  1. 30 CFR 285.913 - What happens if I fail to comply with my approved decommissioning application?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What happens if I fail to comply with my... Decommissioning Application § 285.913 What happens if I fail to comply with my approved decommissioning application? If you fail to comply with your approved decommissioning plan or application: (a) The MMS may...

  2. Progress on the decommissioning of Zion nuclear generating station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moloney, B. P.; Hess, J.

    2013-07-01

    The decommissioning of the twin 1040 MWe PWRs at Zion, near Chicago USA is a ground breaking programme. The original owner, Exelon Nuclear Corporation, transferred the full responsibility for reactor dismantling and site license termination to a subsidiary of EnergySolutions. The target end state of the Zion site for return to Exelon will be a green field with the exception of the dry fuel storage pad. In return, ZionSolutions has access to the full value of the decommissioning trust fund. There are two potential attractions of this model: lower overall cost and significant schedule acceleration. The Zion programme which commencedmore » in September 2010 is designed to return the cleared site with an Independent Spent Fuel Storage Installation (ISFSI) pad in 2020, 12 years earlier than planned by Exelon. The overall cost, at $500 M per full size power reactor is significantly below the long run trend of $750 M+ per PWR. Implementation of the accelerated programme has been underway for nearly three years and is making good progress. The programme is characterised by numerous projects proceeding in parallel. The critical path is defined by the inspection and removal of fuel from the pond and transfer into dry fuel storage casks on the ISFSI pad and completion of RPV segmentation. Fuel loading is expected to commence in mid- 2013 with completion in late 2014. In parallel, ZionSolutions is proceeding with the segmentation of the Reactor Vessel (RV) and internals in both Units. Removal of large components from Unit 1 is underway. Numerous other projects are underway or have been completed to date. They include access openings into both containments, installation of heavy lift crane capacity, rail upgrades to support waste removal from the site, radiological characterization of facilities and equipment and numerous related tasks. As at February 2013, the programme is just ahead of schedule and within the latest budget. The paper will provide a fuller update. The first

  3. 30 CFR 285.701 - What must I include in my Facility Design Report?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... design of any facilities, including cables and pipelines, that are outlined in your approved SAP, COP, or... accordance with accepted engineering practices and the approved SAP, GAP, or COP as appropriate. The...

  4. Residual strength and stiffness of lumber from decommissioned chromated copper arsenate-treated southern pine utility poles

    Treesearch

    Cheng Piao; Leslie Groom

    2010-01-01

    The reusability of decommissioned treated wood is primarily dependent on the residual strength of the wood after service. Determining the residual strength can provide useful information for structural design and reuse of the decommissioned treated wood. This study evaluated the residual strength of decommissioned chromated copper arsenate–treated utility pole wood....

  5. Potential for recycling of slightly radioactive metals arising from decommissioning within nuclear sector in Slovakia.

    PubMed

    Hrncir, Tomas; Strazovec, Roman; Zachar, Matej

    2017-09-07

    The decommissioning of nuclear installations represents a complex process resulting in the generation of large amounts of waste materials containing various concentrations of radionuclides. Selection of an appropriate strategy of management of the mentioned materials strongly influences the effectiveness of decommissioning process keeping in mind safety, financial and other relevant aspects. In line with international incentives for optimization of radioactive material management, concepts of recycling and reuse of materials are widely discussed and applications of these concepts are analysed. Recycling of some portion of these materials within nuclear sector (e.g. scrap metals or concrete rubble) seems to be highly desirable from economical point of view and may lead to conserve some disposal capacity. However, detailed safety assessment along with cost/benefit calculations and feasibility study should be developed in order to prove the safety, practicality and cost effectiveness of possible recycling scenarios. Paper discussed the potential for recycling of slightly radioactive metals arising from decommissioning of NPPs within nuclear sector in Slovakia. Various available recycling scenarios are introduced and method for overall assessment of various recycling scenarios is outlined including the preliminary assessment of safety and financial aspects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Web-based training related to NRC staff review of dose modeling aspects of license termination and decommissioning plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LePoire, D.; Arnish, J.; Cheng, J.J.

    NRC licensees at decommissioning nuclear facilities submit License Termination Plans (LTP) or Decommissioning Plans (DP) to NRC for review and approval. To facilitate a uniform and consistent review of these plans, the NRC developed training for its staff. A live classroom course was first developed in 2005, which targeted specific aspects of the LTP and DP review process related to dose-based compliance demonstrations or modeling. A web-based training (WBT) course is being developed in 2006 to replace the classroom-based course. The advantage of the WBT is that it will allow for staff training or refreshers at any time, while themore » advantage of a classroom-based course is that it provides a forum for lively discussion and the sharing of experience of classroom participants. The training course consists of the core and advanced modules tailored to specific NRC job functions. Topics for individual modules include identifying the characteristics of simple and complex sites, identifying when outside expertise or consultation is needed, demonstrating how to conduct acceptance and technical reviews of dose modeling, and providing details regarding the level of justification needed for realistic scenarios for both dose modeling and derivation of DCGLs. Various methods of applying probabilistic uncertainty analysis to demonstrate compliance with dose-based requirements are presented. These approaches include 1) modeling the pathways of radiological exposure and estimating doses to receptors from a combination of contaminated media and radionuclides, and 2) using probabilistic analysis to determine an appropriate set of input parameters to develop derived concentration guideline limits or DCGLs (DCGLs are media- and nuclide-specific concentration limits that will meet dose-based, license termination rule criteria found in 10 CFR Part 20, Subpart E). Calculation of operational (field) DCGL's from media- and nuclide-specific DCGLs and use of operational DCGLs in

  7. Decontamination, decommissioning, and vendor advertorial issue, 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnihotri, Newal

    The focus of the July-August issue is on Decontamination, decommissioning, and vendor advertorials. Articles and reports in this issue include: D and D technical paper summaries; The role of nuclear power in turbulent times, by Tom Chrisopher, AREVA, NP, Inc.; Enthusiastic about new technologies, by Jack Fuller, GE Hitachi Nuclear Energy; It's important to be good citizens, by Steve Rus, Black and Veatch Corporation; Creating Jobs in the U.S., by Guy E. Chardon, ALSTOM Power; and, and, An enviroment and a community champion, by Tyler Lamberts, Entergy Nuclear Operations, Inc. The Industry Innovations article is titled Best of the bestmore » TIP achievement 2008, by Edward Conaway, STP Nuclear Operating Company.« less

  8. 33 CFR 125.15 - Access to waterfront facilities, and port and harbor areas, including vessels and harbor craft...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., and port and harbor areas, including vessels and harbor craft therein. 125.15 Section 125.15....15 Access to waterfront facilities, and port and harbor areas, including vessels and harbor craft....09 to those waterfront facilities, and port and harbor areas, including vessels and harbor craft...

  9. 78 FR 49553 - Three Mile Island, Unit 2; Post Shutdown Decommissioning Activities Report

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-14

    ...On June 28, 2013, the GPU Nuclear Inc. (GPUN) submitted its Post Shutdown Decommissioning Activity Report (PSDAR) for Three Mile Island, Unit 2 (TMI-2). The PSDAR provides an overview of GPUN's proposed decommissioning activities, schedule, and costs for TMI-2. The NRC is requesting public comments on the PSDAR.

  10. 43 CFR 404.9 - What types of infrastructure and facilities may be included in an eligible rural water supply...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... related facilities required for the rural water supply project; (f) Equipment and management tools for... facilities may be included in an eligible rural water supply project? 404.9 Section 404.9 Public Lands... RURAL WATER SUPPLY PROGRAM Overview § 404.9 What types of infrastructure and facilities may be included...

  11. Waste Management Strategy for Dismantling Waste to Reduce Costs for Power Plant Decommissioning - 13543

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsson, Arne; Lidar, Per; Bergh, Niklas

    2013-07-01

    Decommissioning of nuclear power plants generates large volumes of radioactive or potentially radioactive waste. The proper management of the dismantling waste plays an important role for the time needed for the dismantling phase and thus is critical to the decommissioning cost. An efficient and thorough process for inventorying, characterization and categorization of the waste provides a sound basis for the planning process. As part of comprehensive decommissioning studies for Nordic NPPs, Westinghouse has developed the decommissioning inventories that have been used for estimations of the duration of specific work packages and the corresponding costs. As part of creating the designmore » basis for a national repository for decommissioning waste, the total production of different categories of waste packages has also been predicted. Studsvik has developed a risk based concept for categorization and handling of the generated waste using six different categories with a span from extremely small risk for radiological contamination to high level waste. The two companies have recently joined their skills in the area of decommissioning on selected market in a consortium named 'ndcon' to further strengthen the proposed process. Depending on the risk for radiological contamination or the radiological properties and other properties of importance for waste management, treatment routes are proposed with well-defined and proven methods for on-site or off-site treatment, activity determination and conditioning. The system is based on a graded approach philosophy aiming for high confidence and sustainability, aiming for re-use and recycling where found applicable. The objective is to establish a process where all dismantled material has a pre-determined treatment route. These routes should through measurements, categorization, treatment, conditioning, intermediate storage and final disposal be designed to provide a steady, un-disturbed flow of material to avoid interruptions

  12. Development of a conditioning system for the dual-purpose transport and storage cask for spent nuclear fuel from decommissioned Russian submarines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyer, R.S.; Barnes, E.; Snipes, R.L.

    2007-07-01

    to 'Mayak' for reprocessing. The U.S. Environmental Protection Agency (EPA), in cooperation with the U.S. DOD Office of Cooperative Threat Reduction (CTR), and the DOE's ORNL, along with the Norwegian Defense Research Establishment, worked closely with the Ministry of Defense and the Ministry of Atomic Energy of the Russian Federation (RF) to develop an improved integrated management system for interim storage of military SNF in Russia. The initial Project activities included: (1) development of a prototype dual-purpose, metal-concrete 40-ton cask for both the transport and interim storage of RF SNF, and (2) development of the first transshipment/interim storage facility for these casks in Murmansk. The U.S. has continued support to the project by assisting the RF with the development of the first mobile system that provides internal conditioning for the TUK-108/1 casks to allow them to be stored for longer than the current licensing period of two years. Development of the prototype TUK-108/1 cask was completed in December 2000 under the Arctic Military Environmental Cooperation (AMEC) Program. This was the first metal-concrete cask developed, licensed, and produced in the RF for both the transportation and storage of SNF from decommissioned submarines. These casks are currently being serially produced in NW Russia and 108 casks have been produced to date. Russia is using these casks for the transport and interim storage of military SNF from decommissioned nuclear submarines at naval installations in the Arctic and Far East in conformance with the Strategic Arms Reduction Treaty (START II). The design, construction, and commissioning of the first transshipment/interim storage facility in the RF was completed and ready for full operation in September 2003. Because of the RF government reorganization and changing regulations for spent fuel storage facilities, the storage facility at Murmansk was not fully licensed for operation until December 2005. The RF has reported

  13. Diverse Studies in the Reactivated NASA/Ames Radiation Facility: From Shock Layer Spectroscopy to Thermal Protection System Impact

    NASA Technical Reports Server (NTRS)

    Miller, Robert J.; Hartman, G. Joseph (Technical Monitor)

    1994-01-01

    NASA/Ames' Hypervelocity Free-Flight Radiation Facility has been reactivated after having been decommissioned for some 15 years, first tests beginning in early 1994. This paper discusses two widely different studies from the first series, one involving spectroscopic analysis of model shock-layer radiation, and the other the production of representative impact damage in space shuttle thermal protection tiles for testing in the Ames arc-jet facilities. These studies emphasize the interorganizational and interdisciplinary value of the facility in the newly-developing structure of NASA.

  14. Activation calculation for the dismantling and decommissioning of a light water reactor using MCNP™ with ADVANTG and ORIGEN-S

    NASA Astrophysics Data System (ADS)

    Schlömer, Luc; Phlippen, Peter-W.; Lukas, Bernard

    2017-09-01

    The decommissioning of a light water reactor (LWR), which is licensed under § 7 of the German Atomic Energy Act, following the post-operational phase requires a comprehensive licensing procedure including in particular radiation protection aspects and possible impacts to the environment. Decommissioning includes essential changes in requirements for the systems and components and will mainly lead to the direct dismantling. In this context, neutron induced activation calculations for the structural components have to be carried out to predict activities in structures and to estimate future costs for conditioning and packaging. To avoid an overestimation of the radioactive inventory and to calculate the expenses for decommissioning as accurate as possible, modern state-of-the-art Monte-Carlo-Techniques (MCNP™) are applied and coupled with present-day activation and decay codes (ORIGEN-S). In this context ADVANTG is used as weight window generator for MCNP™ i. e. as variance reduction tool to speed up the calculation in deep penetration problems. In this paper the calculation procedure is described and the obtained results are presented with a validation along with measured activities and photon dose rates measured in the post-operational phase. The validation shows that the applied calculation procedure is suitable for the determination of the radioactive inventory of a nuclear power plant. Even the measured gamma dose rates in the post-operational phase at different positions in the reactor building agree within a factor of 2 to 3 with the calculation results. The obtained results are accurate and suitable to support effectively the decommissioning planning process.

  15. Safe, Cost Effective Management of Inactive Facilities at the Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Austin, W. E.; Yannitell, D. M.; Freeman, D. W.

    The Savannah River Site is part of the U.S. Department of Energy complex. It was constructed during the early 1950s to produce basic materials (such as plutonium-239 and tritium) used in the production of nuclear weapons. The 310-square-mile site is located in South Carolina, about 12 miles south of Aiken, South Carolina, and about 15 miles southeast of Augusta, Georgia. Savannah River Site (SRS) has approximately 200 facilities identified as inactive. These facilities range in size and complexity from large nuclear reactors to small storage buildings. These facilities are located throughout the site including three reactor areas, the heavy watermore » plant area, the manufacturing area, and other research and support areas. Unlike DOE Closure Sites such as Hanford and Rocky Flats, SRS is a Project Completion Site with continuing missions. As facilities complete their defined mission, they are shutdown and transferred from operations to the facility disposition program. At the SRS, Facilities Decontamination and Decommissioning (FDD) personnel manage the disposition phase of a inactive facility's life cycle in a manner that minimizes life cycle cost without compromising (1) the health or safety of workers and the public or (2) the quality of the environment. The disposition phase begins upon completion of operations shutdown and extends through establishing the final end-state. FDD has developed innovative programs to manage their responsibilities within a constrained budget.« less

  16. Assessment of Space Nuclear Thermal Propulsion Facility and Capability Needs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James Werner

    The development of a Nuclear Thermal Propulsion (NTP) system rests heavily upon being able to fabricate and demonstrate the performance of a high temperature nuclear fuel as well as demonstrating an integrated system prior to launch. A number of studies have been performed in the past which identified the facilities needed and the capabilities available to meet the needs and requirements identified at that time. Since that time, many facilities and capabilities within the Department of Energy have been removed or decommissioned. This paper provides a brief overview of the anticipated facility needs and identifies some promising concepts to bemore » considered which could support the development of a nuclear thermal propulsion system. Detailed trade studies will need to be performed to support the decision making process.« less

  17. 78 FR 38739 - Standard Format and Content for Post-Shutdown Decommissioning Activities Report

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-27

    ...The U.S. Nuclear Regulatory Commission (NRC) is issuing Revision 1 of Regulatory Guide (RG) 1.185, ``Standard Format and Content for Post-shutdown Decommissioning Activities Report.'' This guide describes a method that the NRC staff considers acceptable for use in complying with the Commission's requirements regarding the submission of a post-shutdown decommissioning activities report (PSDAR).

  18. 77 FR 75198 - Standard Format and Content for Post-Shutdown Decommissioning Activities Report

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-19

    ...The U.S. Nuclear Regulatory Commission (NRC) is issuing for public comment draft regulatory guide (DG), DG-1272, ``Standard Format and Content for Post-shutdown Decommissioning Activities Report.'' This guide describes a method that the NRC staff considers acceptable for use in complying with the Commission's requirements regarding the submission of a post-shutdown decommissioning activities report (PSDAR).

  19. Decontamination and decommissioning plan for processing contaminated NaK at the INEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaRue, D.M.; Dolenc, M.R.

    1986-09-01

    This decontamination and decommissioning (D D) plan describes the work elements and project management plan for processing four containers of contaminated sodium/potassium (NaK) and returning the Army Reentry Vehicle Facility Site (ARVFS) to a reusable condition. The document reflects the management plan for this project before finalizing the conceptual design and preliminary prototype tests of the reaction kinetics. As a result, the safety, environmental, and accident analyses are addressed as preliminary assessments before completion at a later date. ARVFS contains an earth-covered bunker, a cylindrical test pit and metal shed, and a cable trench connecting the two items. The bunkermore » currently stores the four containers of NaK from the meltdown of the EBR-1 Mark II core. The D D project addressed in this plan involves processing the contaminated NaK and returning the ARVFS to potential reuse after cleanup.« less

  20. Decontamination and decommissioning plan for processing contaminated NaK at the INEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaRue, D.M.; Dolenc, M.R.

    1986-09-01

    This decontamination and decommissioning (D&D) plan describes the work elements and project management plan for processing four containers of contaminated sodium/potassium (NaK) and returning the Army Reentry Vehicle Facility Site (ARVFS) to a reusable condition. The document reflects the management plan for this project before finalizing the conceptual design and preliminary prototype tests of the reaction kinetics. As a result, the safety, environmental, and accident analyses are addressed as preliminary assessments before completion at a later date. ARVFS contains an earth-covered bunker, a cylindrical test pit and metal shed, and a cable trench connecting the two items. The bunker currentlymore » stores the four containers of NaK from the meltdown of the EBR-1 Mark II core. The D&D project addressed in this plan involves processing the contaminated NaK and returning the ARVFS to potential reuse after cleanup.« less

  1. The conceptual solutions concerning decommissioning and dismantling of Russian civil nuclear powered ships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulikov, Konstantin N.; Nizamutdinov, Rinat A.; Abramov, Andrey N.

    From 1959 up to 1991 nine civil nuclear powered ships were built in Russia: eight ice-breakers and one lash lighter carrier (cargo ship). At the present time three of them were taking out of service: ice-breaker 'Lenin' is decommissioned as a museum and is set for storage in the port of Murmansk, nuclear ice-breakers 'Arktika' and 'Sibir' are berthing. The ice-breakers carrying rad-wastes appear to be a possible source of radiation contamination of Murmansk region and Kola Bay because the ship long-term storage afloat has the negative effect on hull's structures. As the result of this under the auspices ofmore » the Federal Targeted Program 'Nuclear and Radiation Safety of Russia for 2008 and the period until 2015' the conception and projects of decommissioning of nuclear-powered ships are developed by the State corporation Rosatom with the involvement of companies of United Shipbuilding Corporation. In developing the principal provisions of conception of decommissioning and dismantling of icebreakers the technical and economic assessment of dismantling options in ship-repairing enterprises of North-West of Russia was performed. The paper contains description of options, research procedure, analysis of options of decommissioning and dismantling of nuclear ice-breakers, taking into account the principle of optimization of potential radioactive effect to personnel, human population and environment. The report's conclusions contain the recommendations for selection of option for development of nuclear icebreaker decommissioning and dismantling projects. (authors)« less

  2. 76 FR 3837 - Nuclear Decommissioning Funds; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-21

    ... DEPARTMENT OF THE TREASURY Internal Revenue Service 26 CFR Part 1 [TD 9512] RIN 1545-BF08 Nuclear... trusts maintained for decommissioning nuclear power plants. DATES: This correction is effective on...: Sec. 1.468A-6 Disposition of an interest in a nuclear power plant. * * * * * (e) * * * (3...

  3. Action Memorandum for Decommissioning of TAN-607 Hot Shop Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. A. Pinzel

    The Department of Energy is documenting the selection of an alternative for the TAN-607 Hot Shop Area using a Comprehensive Environmental Response, Compensation, and Liability Act non-time-critical removal action (NTCRA). The scope of the removal action is limited to TAN-607 Hot Shop Area. An engineering evaluation/cost analysis (EE/CA) has assisted the Department of Energy Idaho Operations Office in identifuomg the most effective method for performing the decommissioning of this structure whose mission has ended. TAN-607 Hot Shop Area is located at Test Area North Technical Support Facility within the Idaho National Laboratory Site. The selected alternative consists of demolishing themore » TAN-607 aboveground structures and components, removing belowground noninert components (e.g. wood products), and removing the radiologically contaminated debris that does not meet remedial action objectives (RAOs), as defined in the Record of Decision Amendment for the V-Tanks and Explanation of Significant Differences for the PM-2A Tanks at Test Area North, Operable Unit 1-10.« less

  4. GrayQb TM Single-Faced Version 2 (SF2) Hanford Plutonium Reclamation Facility (PRF) deployment report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plummer, J. R.; Immel, D. M.; Serrato, M. G.

    2015-11-18

    The Savannah River National Laboratory (SRNL) in partnership with CH2M Plateau Remediation Company (CHPRC) deployed the GrayQb TM SF2 radiation imaging device at the Hanford Plutonium Reclamation Facility (PRF) to assist in the radiological characterization of the canyon. The deployment goal was to locate radiological contamination hot spots in the PRF canyon, where pencil tanks were removed and decontamination/debris removal operations are on-going, to support the CHPRC facility decontamination and decommissioning (D&D) effort. The PRF canyon D&D effort supports completion of the CHPRC Plutonium Finishing Plant Decommissioning Project. The GrayQb TM SF2 (Single Faced Version 2) is a non-destructive examinationmore » device developed by SRNL to generate radiation contour maps showing source locations and relative radiological levels present in the area under examination. The Hanford PRF GrayQbTM Deployment was sponsored by CH2M Plateau Remediation Company (CHPRC) through the DOE Richland Operations Office, Inter-Entity Work Order (IEWO), DOE-RL IEWO- M0SR900210.« less

  5. 43 CFR 404.9 - What types of infrastructure and facilities may be included in an eligible rural water supply...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... facilities may be included in an eligible rural water supply project? 404.9 Section 404.9 Public Lands... RURAL WATER SUPPLY PROGRAM Overview § 404.9 What types of infrastructure and facilities may be included in an eligible rural water supply project? A rural water supply project may include, but is not...

  6. Plant security during decommissioning; challenges and lessons learned from German phase out decision

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renner, Andrea; Esch, Markus

    2013-07-01

    Purpose of this paper is to point out the security challenges that may occur during the decommissioning, based on the issues and lessons learned from the German phase out decision. Though national regulations may be different in other countries the basic problems and issues will be the same. Therefore presented solutions will be applicable in other countries as well. The radioactive material remaining at the NPP during decommissioning has the most influence on how the security measures have to be designed. The radioactive material defines the risk potential of the plant and this determines the needed security level. The followingmore » aspects have been challenging in Germany: - Scenarios varying from those, used for plants in operation, due to changed operating conditions - Spent fuel will stay in the spent fuel pool for a quite long period before it can be removed from the plant. Risk potential of the plant stays high and requires a high level of security measures - Security measures according to the existing operating license have to stay in place as they are, unless the first license for decommissioning is given respective the spent fuel is removed from the plant site. This even led to the question if improvements of security measures, planned and announced with focus on a plant remaining in operation for another couple of years, need to be done although they will not be required after removing the spent fuel from the plant. A further important aspect for the security design is the fact that a plant under decommissioning has completely different and strongly varying operating procedures, compared to the stable ones of an operating plant. This leads to different needs concerning workspace, infrastructure on plant site, access to buildings etc. An optimized and highly flexible security concept is needed to ensure an adequate level of security as well as an efficient decommissioning. A deep analysis of the vital plant functions, depending on the different

  7. CCA retention and its effects on the bonding performance of decommissioned treated wood: a preliminary study

    Treesearch

    Cheng Piao; Todd F. Shupe; Mark Gibson; Chung Y. Hse

    2009-01-01

    Chromated copper arsenate (CCA) continues to be widely used as a wood preservative for industrial uses in the U.S. Disposal of treated wood is a potential long-term environmental liability. Current practices for disposing of decommissioned preservative-treated wood include landfilling and incineration, which are increasingly impractical due to environmental...

  8. Release and disposal of materials during decommissioning of Siemens MOX fuel fabrication plant at Hanau, Germany

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koenig, Werner; Baumann, Roland

    2007-07-01

    In September 2006, decommissioning and dismantling of the Siemens MOX Fuel Fabrication Plant in Hanau were completed. The process equipment and the fabrication buildings were completely decommissioned and dismantled. The other buildings were emptied in whole or in part, although they were not demolished. Overall, the decommissioning process produced approximately 8500 Mg of radioactive waste (including inactive matrix material); clearance measurements were also performed for approximately 5400 Mg of material covering a wide range of types. All the equipment in which nuclear fuels had been handled was disposed of as radioactive waste. The radioactive waste was conditioned on the basismore » of the requirements specified for the projected German final disposal site 'Schachtanlage Konrad'. During the pre-conditioning, familiar processes such as incineration, compacting and melting were used. It has been shown that on account of consistently applied activity containment (barrier concept) during operation and dismantling, there has been no significant unexpected contamination of the plant. Therefore almost all the materials that were not a priori destined for radioactive waste were released without restriction on the basis of the applicable legal regulations (chap. 29 of the Radiation Protection Ordinance), along with the buildings and the plant site. (authors)« less

  9. How Does Decommissioning Forest Roads Effect Hydrologic and Geomorphic Risk?

    NASA Astrophysics Data System (ADS)

    Black, T.; Luce, C.; Cissel, R. M.; Nelson, N.; Staab, B.

    2010-12-01

    The US Forest Service is investigating road decommissioning projects to understand how treatments change hydrologic and geomorphic risks. Road treatment effect was measured using a before after control impact design (BACI), using the Geomorphic Road Analysis and Inventory Package (http://www.fs.fed.us/GRAIP). This suite of inventory and analysis tools evaluates: road-stream hydrologic connectivity, fine sediment production and delivery, shallow landslide risk, gully initiation risk, and risks associated with stream crossing failures. The Skokomish River study site is steep and wet and received a high intensity treatment including the removal of stream crossing pipes and fills, all ditch relief pipes and a full hillslope recontouring. Road to stream hydrologic connectivity was reduced by 70%. The treatments reduced fine sediment delivery by 21.8 tons or 81%. The removal of the stream crossing culverts and large associated road fills eliminated the risk of pipe plugging related failures and the eventual erosion of over 4,000 m3 of fill. The slope stability risk was assessed using a modified version of SINMAP (Pack et al, 2005). Risk below drain point locations on the original road was reduced as water was redistributed across the hillslope to waterbars and diffuse drainage. It is unclear; however, if landslide risk was reduced across the entire treated road length because treatments slightly increased risk in some areas where new concentrated drainage features were added above steep slopes. Similarly, values of a gully index ESI (Istanbulluoglu et al, 2003), were reduced at many of the original drainage points, however some new drainage was added. ESI values still exceed a predicted conservative initiation thresholds at some sites, therefore it is uncertain if gully risk will be changed. Mann Creek occupies a moderately steep mid-elevation site in Southern Idaho. The high intensity treatments removed all constructed road drainage features including stream crossing

  10. Renewables-to-reefs? - Decommissioning options for the offshore wind power industry.

    PubMed

    Smyth, Katie; Christie, Nikki; Burdon, Daryl; Atkins, Jonathan P; Barnes, Richard; Elliott, Michael

    2015-01-15

    The offshore wind power industry is relatively new but increasing globally, hence it is important that the whole life-cycle is managed. The construction-operation-decommissioning cycle is likely to take 20-30 years and whilst decommissioning may not be undertaken for many years, its management needs to be addressed in both current and future marine management regimes. This can be defined within a Drivers-Activities-Pressures-State Changes-Impacts (on human Welfare)-Responses framework. This paper considers the main decommissioning options - partial or complete removal of all components. A SWOT analysis shows environmental and economic benefits in partial as opposed to complete removal, especially if habitat created on the structures has conservation or commercial value. Benefits (and repercussions) are defined in terms of losses and gains of ecosystem services and societal benefits. The legal precedents and repercussions of both options are considered in terms of the 10-tenets of sustainable marine management. Finally a 'renewables-to-reefs' programme is proposed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. 25 CFR 170.807 - What must BIA include when it develops an IRR Transportation Facilities Maintenance Management...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Transportation Facilities Maintenance Management System? 170.807 Section 170.807 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN RESERVATION ROADS PROGRAM BIA Road Maintenance § 170.807 What must BIA include when it develops an IRR Transportation Facilities Maintenance Management System...

  12. 43 CFR 404.9 - What types of infrastructure and facilities may be included in an eligible rural water supply...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... water conservation, groundwater recovery, and water reuse and recycling; (g) Associated features to... facilities may be included in an eligible rural water supply project? 404.9 Section 404.9 Public Lands... RURAL WATER SUPPLY PROGRAM Overview § 404.9 What types of infrastructure and facilities may be included...

  13. The application of decommissioned GEO satellites to CAPS

    NASA Astrophysics Data System (ADS)

    Fu, S. Y.; Wang, Z. R.; Shi, H. L.; Ma, L. H.

    2018-06-01

    To ensure the reliable service of geostationary earth orbiting (GEO) communication satellites during the period of in-orbit, the hardware design life of each system usually has some redundancies in contrast to the limited fuel used to keep the satellite position and attitude. After the brief analysis of the life of the satellite subsystems, the feasibility of turning the decommissioned GEO communication satellites into slightly inclined geosynchronous orbiting (SIGSO) satellites is proved. In addition, the role and the actual usage of SIGSO satellites in Chinese Area Positioning System (CAPS) are analysed and discussed, including the effect on the improvement of Position Dilution of Precision (PDOP) of the navigation constellation and the application to satellite communication system, thus the potential value of satellite material and devices is exploited.

  14. Occupational dose reduction at Department of Energy contractor facilities: Bibliography of selected readings in radiation protection and ALARA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dionne, B.J.; Sullivan, S.G.; Baum, J.W.

    1993-12-01

    This bibliography contains abstracts relating to various aspects of ALARA program implementation and dose reduction activities, with a focus on DOE facilities. Abstracts included in this bibliography were selected from proceedings of technical meetings, journals, research reports, searches of the DOE Energy, Science and Technology Database (in general, the citation and abstract information is presented as obtained from this database), and reprints of published articles provided by the authors. Facility types and activities covered in the scope of this report include: radioactive waste, uranium enrichment, fuel fabrication, spent fuel storage and reprocessing, facility decommissioning, hot laboratories, tritium production, research, testmore » and production reactors, weapons fabrication and testing, fusion, uranium and plutonium processing, radiography, and aocelerators. Information on improved shielding design, decontamination, containments, robotics, source prevention and control, job planning, improved operational and design techniques, as well as on other topics, has been included. In addition, DOE/EH reports not included in previous volumes of the bibliography are in this volume (abstracts 611 to 684). This volume (Volume 5 of the series) contains 217 abstracts. An author index and a subject index are provided to facilitate use. Both indices contain the abstract numbers from previous volumes, as well as the current volume. Information that the reader feels might be included in the next volume of this bibliography should be submitted to the BNL ALARA Center.« less

  15. 18 CFR 2.24 - Project decommissioning at relicensing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Project decommissioning at relicensing. 2.24 Section 2.24 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES GENERAL POLICY AND INTERPRETATIONS Statements of General...

  16. 18 CFR 2.24 - Project decommissioning at relicensing.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Project decommissioning at relicensing. 2.24 Section 2.24 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES GENERAL POLICY AND INTERPRETATIONS Statements of General...

  17. 18 CFR 2.24 - Project decommissioning at relicensing.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Project decommissioning at relicensing. 2.24 Section 2.24 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES GENERAL POLICY AND INTERPRETATIONS Statements of General...

  18. 18 CFR 2.24 - Project decommissioning at relicensing.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Project decommissioning at relicensing. 2.24 Section 2.24 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES GENERAL POLICY AND INTERPRETATIONS Statements of General...

  19. 78 FR 78338 - Japan-U.S. Decommissioning and Remediation Fukushima Recovery Forum Tokyo, Japan February 18-19...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-26

    ... nuclear energy research and development, the decommissioning of the Fukushima Dai-ichi Nuclear Power Station, environmental management, emergency management, nuclear security, and safety and regulatory issues. The Decommissioning and Environmental Management Working Group (DEMWG) under the Bilateral...

  20. Decommissioning ALARA programs Cintichem decommissioning experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adler, J.J.; LaGuardia, T.S.

    1995-03-01

    The Cintichem facility, originally the Union Carbide Nuclear Company (UCNC) Research Center, consisted primarily of a 5MW pool type reactor linked via a four-foot-wide by twelve-foot-deep water-filled canal to a bank of five adjacent hot cells. Shortly after going into operations in the early 1960s, the facility`s operations expanded to provide various reactor-based products and services to a multitude of research, production, medical, and education groups. From 1968 through 1972, the facility developed a process of separating isotopes from mixed fission products generated by irradiating enriched Uranium target capsules. By the late 1970s, 20 to 30 capsules were being processedmore » weekly, with about 200,000 curies being produced per week. Several isotopes such as Mo{sup 99}, I{sup 131}, and Xe{sup 133} were being extracted for medical use.« less

  1. Three-dimensional numerical simulations of methane gas migration from decommissioned hydrocarbon production wells into shallow aquifers

    NASA Astrophysics Data System (ADS)

    Roy, N.; Molson, J.; Lemieux, J.-M.; Van Stempvoort, D.; Nowamooz, A.

    2016-07-01

    Three-dimensional numerical simulations are used to provide insight into the behavior of methane as it migrates from a leaky decommissioned hydrocarbon well into a shallow aquifer. The conceptual model includes gas-phase migration from a leaky well, dissolution into groundwater, advective-dispersive transport and biodegradation of the dissolved methane plume. Gas-phase migration is simulated using the DuMux multiphase simulator, while transport and fate of the dissolved phase is simulated using the BIONAPL/3D reactive transport model. Methane behavior is simulated for two conceptual models: first in a shallow confined aquifer containing a decommissioned leaky well based on a monitored field site near Lindbergh, Alberta, Canada, and secondly on a representative unconfined aquifer based loosely on the Borden, Ontario, field site. The simulations show that the Lindbergh site confined aquifer data are generally consistent with a 2 year methane leak of 2-20 m3/d, assuming anaerobic (sulfate-reducing) methane oxidation and with maximum oxidation rates of 1 × 10-5 to 1 × 10-3 kg/m3/d. Under the highest oxidation rate, dissolved methane decreased from solubility (110 mg/L) to the threshold concentration of 10 mg/L within 5 years. In the unconfined case with the same leakage rate, including both aerobic and anaerobic methane oxidation, the methane plume was less extensive compared to the confined aquifer scenarios. Unconfined aquifers may therefore be less vulnerable to impacts from methane leaks along decommissioned wells. At other potential leakage sites, site-specific data on the natural background geochemistry would be necessary to make reliable predictions on the fate of methane in groundwater.

  2. 21 CFR 200.10 - Contract facilities (including consulting laboratories) utilized as extramural facilities by...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (IND) Application, any information obtained during the inspection of an extramural facility having a... Administration does not consider results of validation studies of analytical and assay methods and control...

  3. Safety Assessment for the Kozloduy National Disposal Facility in Bulgaria - 13507

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biurrun, E.; Haverkamp, B.; Lazaro, A.

    2013-07-01

    Due to the early decommissioning of four Water-Water Energy Reactors (WWER) 440-V230 reactors at the Nuclear Power Plant (NPP) near the city of Kozloduy in Bulgaria, large amounts of low and intermediate radioactive waste will arise much earlier than initially scheduled. In or-der to manage the radioactive waste from the early decommissioning, Bulgaria has intensified its efforts to provide a near surface disposal facility at Radiana with the required capacity. To this end, a project was launched and assigned in international competition to a German-Spanish consortium to provide the complete technical planning including the preparation of the Intermediate Safety Assessmentmore » Report. Preliminary results of operational and long-term safety show compliance with the Bulgarian regulatory requirements. The long-term calculations carried out for the Radiana site are also a good example of how analysis of safety assessment results can be used for iterative improvements of the assessment by pointing out uncertainties and areas of future investigations to reduce such uncertainties in regard to the potential radiological impact. The computer model used to estimate the long-term evolution of the future repository at Radiana predicted a maximum total annual dose for members of the critical group, which is carried to approximately 80 % by C-14 for a specific ingestion pathway. Based on this result and the outcome of the sensitivity analysis, existing uncertainties were evaluated and areas for reasonable future investigations to reduce these uncertainties were identified. (authors)« less

  4. 30 CFR 585.913 - What happens if I fail to comply with my approved decommissioning application?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false What happens if I fail to comply with my approved decommissioning application? 585.913 Section 585.913 Mineral Resources BUREAU OF OCEAN ENERGY... § 585.913 What happens if I fail to comply with my approved decommissioning application? If you fail to...

  5. 30 CFR 585.913 - What happens if I fail to comply with my approved decommissioning application?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false What happens if I fail to comply with my approved decommissioning application? 585.913 Section 585.913 Mineral Resources BUREAU OF OCEAN ENERGY... § 585.913 What happens if I fail to comply with my approved decommissioning application? If you fail to...

  6. 30 CFR 585.913 - What happens if I fail to comply with my approved decommissioning application?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false What happens if I fail to comply with my... Application § 585.913 What happens if I fail to comply with my approved decommissioning application? If you fail to comply with your approved decommissioning plan or application: (a) BOEM may call for the...

  7. 43 CFR 404.10 - Are there certain types of infrastructure and facilities that may not be included in a rural...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... and facilities that may not be included in a rural water supply project? 404.10 Section 404.10 Public... RECLAMATION RURAL WATER SUPPLY PROGRAM Overview § 404.10 Are there certain types of infrastructure and facilities that may not be included in a rural water supply project? Yes. A rural water supply project may...

  8. Experience of the nuclear reactors (environmental impact assessment for decommissioning) regulations 1999, as amended, in Great Britain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Sarah; Mattress, Elaine; Nettleton, Jo

    2007-07-01

    Available in abstract form only. Full text of publication follows: In Great Britain, the Nuclear Reactors (Environmental Impact Assessment for Decommissioning) Regulations 1999 as amended 2006 (EIADR) requires assessment of the potential environmental impacts of projects to decommission nuclear power stations and reactors. The Health and Safety Executive (HSE) is the competent authority for EIADR. The EIADR implement European Council Directive 85/337/EEC (the EIA Directive) as amended by Council Directive 97/11/EC and Council Directive 2003/35/EC the (Public Participation Directive). The purpose of the EIADR is to assess environmental effects of nuclear reactor decommissioning projects, involve the public through consultation, andmore » make the decision-making process open and transparent. Under the regulations, any licensee wishing to begin to decommission or dismantle a nuclear power station, or other civil nuclear reactor, must apply to HSE for consent to carry out the decommissioning project, undertake an environmental impact assessment and prepare an environmental statement that summarises the environmental effects of the project. HSE will consult on the environmental statement. So far under the EIADR there have been six consents granted for decommissioning projects for Magnox Power Stations. These stations have been required as a condition of consent to submit an Environmental Management Plan on an annual basis. This allows the project to be continually reviewed and assessed to ensure that the licensee can provide detail as agreed during the review of the environmental statement and that any changes to mitigation measures are detailed. This paper summarises the EIADR process, giving particular emphasis to public participation and the decision making process, and discusses HSE's experience of EIADR with reference to specific environmental issues raised by stakeholders and current developments. (authors)« less

  9. French Atomic Energy Commission Decommissioning Programme and Feedback Experience - 12230

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guiberteau, Ph.; Nokhamzon, J.G.

    Since the French Atomic and Alternatives Energy Commission (CEA) was founded in 1945 to carry out research programmes on use of nuclear, and its application France has set up and run various types of installations: research or prototypes reactors, process study or examination laboratories, pilot installations, accelerators, nuclear power plants and processing facilities. Some of these are currently being dismantled or must be dismantled soon so that the DEN, the Nuclear Energy Division, can construct new equipment and thus have available a range of R and D facilities in line with the issues of the nuclear industry of the future.more » Since the 1960's and 1970's in all its centres, the CEA has acquired experience and know-how through dismantling various nuclear facilities. The dismantling techniques are nowadays operational, even if sometimes certain specific developments are necessary to reduce the cost of operations. Thanks to availability of techniques and guarantees of dismantling programme financing now from two dedicated funds, close to euro 15,000 M for the next thirty years, for current or projected dismantling operations, the CEA's Nuclear Energy Division has been able to develop, when necessary, its immediate dismantling strategy. Currently, nearly thirty facilities are being dismantled by the CEA's Nuclear Energy Division operational units with industrial partners. Thus the next decade will see completion of the dismantling and radioactive clean-up of the Grenoble site and of the facilities on the Fontenay-aux-Roses site. By 2016, the dismantling of the UP1 plant at Marcoule, the largest dismantling work in France, will be well advanced, with all the process equipment dismantled. After an overview of the French regulatory framework, the paper will describe the DD and R (Decontamination Decommissioning and Remediation) strategy, programme and feedback experience inside the CEA's Nuclear Energy Division. A special feature of dismantling operations at the

  10. 15 CFR 946.5 - Change in operations-commissioning and decommissioning.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... NATIONAL WEATHER SERVICE MODERNIZATION OF THE NATIONAL WEATHER SERVICE § 946.5 Change in operations—commissioning and decommissioning. (a) Before commissioning any new NEXRAD or ASOS weather observation system...; technical coordination with weather service users has been completed; and the system satisfactorily supports...

  11. 15 CFR 946.5 - Change in operations-commissioning and decommissioning.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... NATIONAL WEATHER SERVICE MODERNIZATION OF THE NATIONAL WEATHER SERVICE § 946.5 Change in operations—commissioning and decommissioning. (a) Before commissioning any new NEXRAD or ASOS weather observation system...; technical coordination with weather service users has been completed; and the system satisfactorily supports...

  12. 15 CFR 946.5 - Change in operations-commissioning and decommissioning.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... NATIONAL WEATHER SERVICE MODERNIZATION OF THE NATIONAL WEATHER SERVICE § 946.5 Change in operations—commissioning and decommissioning. (a) Before commissioning any new NEXRAD or ASOS weather observation system...; technical coordination with weather service users has been completed; and the system satisfactorily supports...

  13. 15 CFR 946.5 - Change in operations-commissioning and decommissioning.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... NATIONAL WEATHER SERVICE MODERNIZATION OF THE NATIONAL WEATHER SERVICE § 946.5 Change in operations—commissioning and decommissioning. (a) Before commissioning any new NEXRAD or ASOS weather observation system...; technical coordination with weather service users has been completed; and the system satisfactorily supports...

  14. 15 CFR 946.5 - Change in operations-commissioning and decommissioning.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... NATIONAL WEATHER SERVICE MODERNIZATION OF THE NATIONAL WEATHER SERVICE § 946.5 Change in operations—commissioning and decommissioning. (a) Before commissioning any new NEXRAD or ASOS weather observation system...; technical coordination with weather service users has been completed; and the system satisfactorily supports...

  15. Techniques for Updating Pedestrian Network Data Including Facilities and Obstructions Information for Transportation of Vulnerable People

    PubMed Central

    Park, Seula; Bang, Yoonsik; Yu, Kiyun

    2015-01-01

    Demand for a Pedestrian Navigation Service (PNS) is on the rise. To provide a PNS for the transportation of vulnerable people, more detailed information of pedestrian facilities and obstructions should be included in Pedestrian Network Data (PND) used for PNS. Such data can be constructed efficiently by collecting GPS trajectories and integrating them with the existing PND. However, these two kinds of data have geometric differences and topological inconsistencies that need to be addressed. In this paper, we provide a methodology for integrating pedestrian facilities and obstructions information with an existing PND. At first we extracted the significant points from user-collected GPS trajectory by identifying the geometric difference index and attributes of each point. Then the extracted points were used to make an initial solution of the matching between the trajectory and the PND. Two geometrical algorithms were proposed and applied to reduce two kinds of errors in the matching: on dual lines and on intersections. Using the final solution for the matching, we reconstructed the node/link structure of PND including the facilities and obstructions information. Finally, performance was assessed with a test site and 79.2% of the collected data were correctly integrated with the PND. PMID:26404307

  16. 10 CFR Appendix A to Part 30 - Criteria Relating to Use of Financial Tests and Parent Company Guarantees for Providing...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... based on obtaining a parent company guarantee that funds will be available for decommissioning costs and... decommissioning cost estimates for the total of all facilities or parts thereof (or prescribed amount if a... decommissioning cost estimates for the total of all facilities or parts thereof (or prescribed amount if a...

  17. Estimates of low-level waste volumes and classifications at 2-Unit 1100 MWe reference plants for decommissioning scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hauf, M.J.; Vance, J.N.; James, D.

    1991-01-01

    A number of nuclear utilities and industry organizations in the United States have evaluated the requirements for reactor decommissioning. These broad scope studies have addressed the major issues of technology, methodology, safety and costs of decommissioning and have produced substantial volumes of data to describe, in detail, the issues and impacts which result. The objective of this paper to provide CECo a reasonable basis for discussion low-level waste burial volumes for the most likely decommissioning options and to show how various decontamination and VR technologies can be applied to provide additional reduction of the volumes required to be buried atmore » low-level waste burial grounds.« less

  18. Revegetation Plan for Areas of the Fitzner-Eberhardt Arid Lands Ecology Reserve Affected by Decommissioning of Buildings and Infrastructure and Debris Clean-up Actions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Downs, Janelle L.; Durham, Robin E.; Larson, Kyle B.

    The U.S. Department of Energy (DOE), Richland Operations Office is working to remove a number of facilities on the Fitzner Eberhardt Arid Lands Ecology Reserve (ALE), which is part of the Hanford Reach National Monument. Decommissioning and removal of buildings and debris on ALE will leave bare soils and excavated areas that need to be revegetated to prevent erosion and weed invasion. Four main areas within ALE are affected by these activities (DOE 2009;DOE/EA-1660F): 1) facilities along the ridgeline of Rattlesnake Mountain, 2) the former Nike missile base and ALE HQ laboratory buildings, 3) the aquatic research laboratory at Rattlesnakemore » Springs area, and 4) a number of small sites across ALE where various types of debris remain from previous uses. This revegetation plan addresses the revegetation and restoration of those land areas disturbed by decommissioning and removal of buildings, facilities and associated infrastructure or debris removal. The primary objective of the revegetation efforts on ALE is to establish native vegetation at each of the sites that will enhance and accelerate the recovery of the native plant community that naturally persists at that location. Revegetation is intended to meet the direction specified by the Environmental Assessment (DOE 2009; DOE/EA-1660F) and by Stipulation C.7 of the Memorandum of Agreement (MOA) for the Rattlesnake Mountain Combined Community Communication Facility and InfrastructureCleanup on the Fitzner/Eberhardt Arid Lands Ecology Reserve, Hanford Site, Richland Washington(DOE 2009; Appendix B). Pacific Northwest National Laboratory (PNNL) under contract with CH2M Hill Plateau Remediation Company (CPRC) and in consultation with the tribes and DOE-RL developed a site-specific strategy for each of the revegetation units identified within this document. The strategy and implementation approach for each revegetation unit identifies an appropriate native species mix and outlines the necessary site preparation

  19. 10 CFR 72.30 - Financial assurance and recordkeeping for decommissioning.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Financial assurance and recordkeeping for decommissioning. 72.30 Section 72.30 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN...

  20. Development of a reliable estimation procedure of radioactivity inventory in a BWR plant due to neutron irradiation for decommissioning

    NASA Astrophysics Data System (ADS)

    Tanaka, Ken-ichi; Ueno, Jun

    2017-09-01

    Reliable information of radioactivity inventory resulted from the radiological characterization is important in order to plan decommissioning planning and is also crucial in order to promote decommissioning in effectiveness and in safe. The information is referred to by planning of decommissioning strategy and by an application to regulator. Reliable information of radioactivity inventory can be used to optimize the decommissioning processes. In order to perform the radiological characterization reliably, we improved a procedure of an evaluation of neutron-activated materials for a Boiling Water Reactor (BWR). Neutron-activated materials are calculated with calculation codes and their validity should be verified with measurements. The evaluation of neutron-activated materials can be divided into two processes. One is a distribution calculation of neutron-flux. Another is an activation calculation of materials. The distribution calculation of neutron-flux is performed with neutron transport calculation codes with appropriate cross section library to simulate neutron transport phenomena well. Using the distribution of neutron-flux, we perform distribution calculations of radioactivity concentration. We also estimate a time dependent distribution of radioactivity classification and a radioactive-waste classification. The information obtained from the evaluation is utilized by other tasks in the preparatory tasks to make the decommissioning plan and the activity safe and rational.

  1. Occupational dose reduction at Department of Energy contractor facilities: Bibliography of selected readings in radiation protection and ALARA; Volume 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dionne, B.J.; Sullivan, S.G.; Baum, J.W.

    1994-01-01

    Promoting the exchange of information related to implementation of the As Low as Reasonably Achievable (ALARA) philosophy is a continuing objective for the Department of Energy (DOE). This report was prepared by the Brookhaven National Laboratory (BNL) ALARA Center for the DOE Office of Health. It contains the fifth in a series of bibliographies on dose reduction at DOE facilities. The BNL ALARA Center was originally established in 1983 under the sponsorship of the Nuclear Regulatory Commission to monitor dose-reduction research and ALARA activities at nuclear power plants. This effort was expanded in 1988 by the DOE`s Office of Environment,more » Safety and Health, to include DOE nuclear facilities. This bibliography contains abstracts relating to various aspects of ALARA program implementation and dose-reduction activities, with a specific focus on DOE facilities. Abstracts included in this bibliography were selected from proceedings of technical meetings, journals, research reports, searches of the DOE Energy, Science and Technology Database (in general, the citation and abstract information is presented as obtained from this database), and reprints of published articles provided by the authors. Facility types and activities covered in the scope of this report include: radioactive waste, uranium enrichment, fuel fabrication, spent fuel storage and reprocessing, facility decommissioning, hot laboratories, tritium production, research, test and production reactors, weapons fabrication and testing, fusion, uranium and plutonium processing, radiography, and accelerators. Information on improved shielding design, decontamination, containments, robotics, source prevention and control, job planning, improved operational and design techniques, as well as on other topics, has been included. In addition, DOE/EH reports not included in previous volumes of the bibliography are in this volume (abstracts 611 to 684). This volume (Volume 5 of the series) contains 217

  2. Environmental Problems Associated with Decommissioning of Chernobyl Power Plant Cooling Pond

    NASA Astrophysics Data System (ADS)

    Foley, T. Q.; Oskolkov, B. Y.; Bondarkov, M. D.; Gashchak, S. P.; Maksymenko, A. M.; Maksymenko, V. M.; Martynenko, V. I.; Jannik, G. T.; Farfan, E. B.; Marra, J. C.

    2009-12-01

    Decommissioning of nuclear power plants and other nuclear fuel cycle facilities associated with residual radioactive contamination is a fairly pressing issue. Significant problems may result from decommissioning of cooling ponds. The Chernobyl Nuclear Power Plant (ChNPP) Cooling Pond is one of the largest self-contained bodies of water in the Chernobyl Region and Ukrainian Polesye with a water surface area of 22.9 km2. The major hydrological feature of the ChNPP Cooling Pond is that its water level is 6-7 m higher than the water level in the Pripyat River and water losses due to seepage and evaporation are replenished by pumping water from the Pripyat River. In 1986, the accident at the ChNPP #4 Reactor Unit significantly contaminated the ChNPP Cooling Pond. According to the 2001 data, the total radionuclide inventory in the ChNPP Cooling Pond bottom deposits was as follows: 16.28 ± 2.59 TBq for 137Cs; 2.4 ± 0.48 TBq for 90Sr, and 0.00518 ± 0.00148 TBq for 239+240Pu. Since ChNPP is being decommissioned, the ChNPP Cooling Pond of such a large size will no longer be needed and cost effective to maintain. However, shutdown of the water feed to the Pond would expose the contaminated bottom deposits and change the hydrological features of the area, destabilizing the radiological and environmental situation in the entire region in 2007 - 2008, in order to assess potential consequences of draining the ChNPP Cooling Pond, the authors conducted preliminary radio-ecological studies of its shoreline ecosystems. The radioactive contamination of the ChNPP Cooling Pond shoreline is fairly variable and ranges from 75 to 7,500 kBq/m2. Three areas with different contamination levels were selected to sample soils, vegetation, small mammals, birds, amphibians, and reptilians in order to measure their 137Cs and 90Sr content. Using the ERICA software, their dose exposures were estimated. For the 2008 conditions, the estimated dose rates were found to be as follows: amphibians - 11

  3. 10 CFR 40.36 - Financial assurance and recordkeeping for decommissioning.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Financial assurance and recordkeeping for decommissioning. 40.36 Section 40.36 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF SOURCE MATERIAL... licenses authorizing the receipt, possession, and use of source material for uranium or thorium milling, or...

  4. 10 CFR 50.75 - Reporting and recordkeeping for decommissioning planning.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Reporting and recordkeeping for decommissioning planning. 50.75 Section 50.75 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND..., Office of Nuclear Material Safety and Safeguards, as applicable, at least 30 working days before the date...

  5. 30 CFR 250.1750 - When may I decommission a pipeline in place?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Decommissioning Activities... (obstruction) to navigation and commercial fishing operations, unduly interfere with other uses of the OCS, or...

  6. Decontamination & decommissioning focus area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-08-01

    In January 1994, the US Department of Energy Office of Environmental Management (DOE EM) formally introduced its new approach to managing DOE`s environmental research and technology development activities. The goal of the new approach is to conduct research and development in critical areas of interest to DOE, utilizing the best talent in the Department and in the national science community. To facilitate this solutions-oriented approach, the Office of Science and Technology (EM-50, formerly the Office of Technology Development) formed five Focus AReas to stimulate the required basic research, development, and demonstration efforts to seek new, innovative cleanup methods. In Februarymore » 1995, EM-50 selected the DOE Morgantown Energy Technology Center (METC) to lead implementation of one of these Focus Areas: the Decontamination and Decommissioning (D & D) Focus Area.« less

  7. Data Sharing Report Characterization of Isotope Row Facilities Oak Ridge National Laboratory Oak Ridge TN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, Phyllis C.

    The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (EM-OR) requested that Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, provide technical and independent waste management planning support using funds provided by the American Recovery and Reinvestment Act (ARRA). Specifically, DOE EM-OR requested ORAU to plan and implement a survey approach, focused on characterizing the Isotope Row Facilities located at the Oak Ridge National Laboratory (ORNL) for future determination of an appropriate disposition pathway for building debris and systems, should the buildings be demolished. The characterization effort wasmore » designed to identify and quantify radiological and chemical contamination associated with building structures and process systems. The Isotope Row Facilities discussed in this report include Bldgs. 3030, 3031, 3032, 3033, 3033A, 3034, 3036, 3093, and 3118, and are located in the northeast quadrant of the main ORNL campus area, between Hillside and Central Avenues. Construction of the isotope production facilities was initiated in the late 1940s, with the exception of Bldgs. 3033A and 3118, which were enclosed in the early 1960s. The Isotope Row facilities were intended for the purpose of light industrial use for the processing, assemblage, and storage of radionuclides used for a variety of applications (ORNL 1952 and ORAU 2013). The Isotope Row Facilities provided laboratory and support services as part of the Isotopes Production and Distribution Program until 1989 when DOE mandated their shutdown (ORNL 1990). These facilities performed diverse research and developmental experiments in support of isotopes production. As a result of the many years of operations, various projects, and final cessation of operations, production was followed by inclusion into the surveillance and maintenance (S&M) project for eventual decontamination and decommissioning (D

  8. 30 CFR 250.1751 - How do I decommission a pipeline in place?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... to be decommissioned; and (4) Length (feet) of segment remaining. (b) Pig the pipeline, unless the Regional Supervisor determines that pigging is not practical; (c) Flush the pipeline; (d) Fill the pipeline...

  9. 30 CFR 250.1751 - How do I decommission a pipeline in place?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... to be decommissioned; and (4) Length (feet) of segment remaining. (b) Pig the pipeline, unless the Regional Supervisor determines that pigging is not practical; (c) Flush the pipeline; (d) Fill the pipeline...

  10. 30 CFR 250.1751 - How do I decommission a pipeline in place?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to be decommissioned; and (4) Length (feet) of segment remaining. (b) Pig the pipeline, unless the Regional Supervisor determines that pigging is not practical; (c) Flush the pipeline; (d) Fill the pipeline...

  11. 30 CFR 250.1751 - How do I decommission a pipeline in place?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... to be decommissioned; and (4) Length (feet) of segment remaining. (b) Pig the pipeline, unless the Regional Supervisor determines that pigging is not practical; (c) Flush the pipeline; (d) Fill the pipeline...

  12. Data Validation Package, June 2016 Groundwater Sampling at the Hallam, Nebraska, Decommissioned Reactor Site, August 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Surovchak, Scott; Miller, Michele

    The 2008 Long-Term Surveillance Plan [LTSP] for the Decommissioned Hallam Nuclear Power Facility, Hallam, Nebraska (http://www.lm.doe.gov/Hallam/Documents.aspx) requires groundwater monitoring once every 2 years. Seventeen monitoring wells at the Hallam site were sampled during this event as specified in the plan. Planned monitoring locations are shown in Attachment 1, Sampling and Analysis Work Order. Water levels were measured at all sampled wells and at two additional wells (6A and 6B) prior to the start of sampling. Additionally, water levels of each sampled well were measured at the beginning of sampling. See Attachment 2, Trip Report, for additional details. Sampling and analysismore » were conducted as specified in Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated, http://energy.gov/lm/downloads/sampling-and-analysis-plan-us-department- energy-office-legacy-management-sites). Gross alpha and gross beta are the only parameters that were detected at statistically significant concentrations. Time/concentration graphs of the gross alpha and gross beta data are included in Attachment 3, Data Presentation. The gross alpha and gross beta activity concentrations observed are consistent with values previously observed and are attributed to naturally occurring radionuclides (e.g., uranium and uranium decay chain products) in the groundwater.« less

  13. 10 CFR 72.30 - Financial assurance and recordkeeping for decommissioning.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... CLASS C WASTE License Application, Form, and Contents § 72.30 Financial assurance and recordkeeping for... review and approval a decommissioning funding plan that must contain: (1) Information on how reasonable... previous cost estimate. (d) If, in surveys made under 10 CFR 20.1501(a), residual radioactivity in soils or...

  14. 10 CFR 72.30 - Financial assurance and recordkeeping for decommissioning.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... CLASS C WASTE License Application, Form, and Contents § 72.30 Financial assurance and recordkeeping for... review and approval a decommissioning funding plan that must contain: (1) Information on how reasonable... previous cost estimate. (d) If, in surveys made under 10 CFR 20.1501(a), residual radioactivity in soils or...

  15. 30 CFR 285.640 - What is a General Activities Plan (GAP)?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Plans and Information... conceptual decommissioning plans for all planned facilities, including testing of technology devices and... easements for the assessment and development of your limited lease or grant. (b) You must receive MMS...

  16. 10 CFR 50.75 - Reporting and recordkeeping for decommissioning planning.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... up to a 2 percent annual real rate of return from the time of future funds' collection through the... annual real rate of return from the time of future funds' collection through the decommissioning period... investment manager for the funds or from giving day-to-day management direction of the funds' investments or...

  17. Cost-assessment Analysis of Local Vehicle Scrapping Facility

    NASA Astrophysics Data System (ADS)

    Grabowski, Lukasz; Gliniak, Maciej; Polek, Daria; Gruca, Maria

    2017-12-01

    The purpose of the paper was to analyse the costs of recycling vehicles at local vehicle scrapping facility. The article contains regulations concerning vehicle decommissioning, describes the types of recovery, vehicles recycling networks, analyses the structure of a disassembly station, as well as the financial and institutional system in charge of dealing with the recycling of vehicles in Poland. The authors present the number of scrapped vehicles at local recycling company and the level of achieved recovery and recycling. The research presented in the article shows financial situation of the vehicle scrapping industry. In addition, it has been observed that the number of subsidies are directly proportional to the number of scrapped vehicles, and achieved levels of recycling and recovery depends on the percentage of incomplete vehicles.

  18. Radiation dose optimization in the decommissioning plan for Loviisa NPP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holmberg, R.; Eurajoki, T.

    1995-03-01

    Finnish rules for nuclear power require a detailed decommissioning plan to be made and kept up to date already during plant operation. The main reasons for this {open_quotes}premature{close_quotes} plan, is, firstly, the need to demonstrate the feasibility of decommissioning, and, secondly, to make realistic cost estimates in order to fund money for this future operation. The decomissioning for Lovissa Nuclear Power Plant (NPP) (2{times}445 MW, PWR) was issued in 1987. It must be updated about every five years. One important aspect of the plant is an estimate of radiation doses to the decomissioning workers. The doses were recently re-estimated becausemore » of a need to decrease the total collective dose estimate in the original plan, 23 manSv. In the update, the dose was reduced by one-third. Part of the reduction was due to changes in the protection and procedures, in which ALARA considerations were taken into account, and partly because of re-estimation of the doses.« less

  19. Guide of good practices for occupational radiological protection in plutonium facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-06-01

    This Technical Standard (TS) does not contain any new requirements. Its purpose is to provide guides to good practice, update existing reference material, and discuss practical lessons learned relevant to the safe handling of plutonium. the technical rationale is given to allow US Department of Energy (DOE) health physicists to adapt the recommendations to similar situations throughout the DOE complex. Generally, DOE contractor health physicists will be responsible to implement radiation protection activities at DOE facilities and DOE health physicists will be responsible for oversight of those activities. This guidance is meant to be useful for both efforts. This TSmore » replaces PNL-6534, Health Physics Manual of Good Practices for Plutonium Facilities, by providing more complete and current information and by emphasizing the situations that are typical of DOE`s current plutonium operations; safe storage, decontamination, and decommissioning (environmental restoration); and weapons disassembly.« less

  20. A Strategy for Skills to meet the demands of Nuclear Decommissioning and Clean-up in the UK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brownridge, M.; Ensor, B.

    The NDA remit as set out within the Energy Act includes - 'to ensure the availability of skills required to deliver the overall decommissioning and nuclear clean-up mission'. The NDA approach to meeting their statutory obligation is by: - finding the best ways of re-training, re-skilling or re-deploying people in a way that encourages a more flexible workforce; - identifying and communicating the skills and workforce requirements to deliver the mission; and - developing the infrastructure and capability initiatives in line with long term needs, for example, a National Skills Academy for Nuclear, Nuclear Institute, National Graduate Scheme, and -more » developing locally specific provision. Firstly, NDA has set the requirement for nuclear sites to write down within the Life Time Plans (LTP), at a high level, their Site Skills Strategies; furthermore, a National Skills Working Group has been established to develop tactical cross sector solutions to support the NDA's Skills Strategy. In support of the short, medium and long term needs to meet demands of the NDA sites and the nuclear decommissioning sector, as well as being aware of the broader nuclear sector, investments have been made in infrastructure and skills programmes such as: - A National Skills Academy for Nuclear - including UK wide representation of the whole nuclear sector; - A Nuclear Institute in partnership with the University of Manchester focussing on world class research and skills in Radiation Sciences and Decommissioning Engineering; - Post Graduate sponsorship for decommissioning related projects; - A National Graduate Scheme partnership with nuclear related employers; - Vocational qualifications and Apprenticeship Schemes - Engaging 14-19 year old students to encourage the take up of Science related subjects; and - A sector wide 'Skills Passport'. In conclusion: The skills challenge has many dimensions but requires addressing due to the clear link to improved business performance and the

  1. 76 FR 65541 - Assuring the Availability of Funds for Decommissioning Nuclear Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-21

    ... NUCLEAR REGULATORY COMMISSION [NRC-2009-0263] Assuring the Availability of Funds for Decommissioning Nuclear Reactors AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide; issuance. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC or Commission) is issuing a revision to Regulatory...

  2. B Plant Complex preclosure work plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ADLER, J.G.

    1999-02-02

    This preclosure work plan describes the condition of the dangerous waste treatment storage, and/or disposal (TSD) unit after completion of the B Plant Complex decommissioning Transition Phase preclosure activities. This description includes waste characteristics, waste types, locations, and associated hazards. The goal to be met by the Transition Phase preclosure activities is to place the TSD unit into a safe and environmentally secure condition for the long-term Surveillance and Maintenance (S&M) Phase of the facility decommissioning process. This preclosure work plan has been prepared in accordance with Section 8.0 of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement)more » (Ecology et al. 1996). The preclosure work plan is one of three critical Transition Phase documents, the other two being: B Plant End Points Document (WHC-SD-WM-TPP-054) and B Plant S&M plan. These documents are prepared by the U.S. Department of Energy, Richland Operations Office (DOE-RL) and its contractors with the involvement of Washington State Department of Ecology (Ecology). The tanks and vessels addressed by this preclosure work plan are limited to those tanks end vessels included on the B Plant Complex Part A, Form 3, Permit Application (DOE/RL-88-21). The criteria for determining which tanks or vessels are in the Part A, Form 3, are discussed in the following. The closure plan for the TSD unit will not be prepared until the Disposition Phase of the facility decommissioning process is initiated, which follows the long-term S&M Phase. Final closure will occur during the Disposition Phase of the facility decommissioning process. The Waste Encapsulation Storage Facility (WESF) is excluded from the scope of this preclosure work plan.« less

  3. Annual report to Congress: Department of Energy activities relating to the Defense Nuclear Facilities Safety Board, calendar year 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-02-01

    This is the ninth Annual Report to the Congress describing Department of Energy (Department) activities in response to formal recommendations and other interactions with the Defense Nuclear Facilities Safety Board (Board). The Board, an independent executive-branch agency established in 1988, provides advice and recommendations to the Secretary of energy regarding public health and safety issues at the Department`s defense nuclear facilities. The Board also reviews and evaluates the content and implementation of health and safety standards, as well as other requirements, relating to the design, construction, operation, and decommissioning of the Department`s defense nuclear facilities. The locations of the majormore » Department facilities are provided. During 1998, Departmental activities resulted in the proposed closure of one Board recommendation. In addition, the Department has completed all implementation plan milestones associated with four other Board recommendations. Two new Board recommendations were received and accepted by the Department in 1998, and two new implementation plans are being developed to address these recommendations. The Department has also made significant progress with a number of broad-based initiatives to improve safety. These include expanded implementation of integrated safety management at field sites, a renewed effort to increase the technical capabilities of the federal workforce, and a revised plan for stabilizing excess nuclear materials to achieve significant risk reduction.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rockhold, Mark L.; White, Mark D.; Freeman, Eugene J.

    This letter report documents initial numerical analyses conducted by PNNL to provide support for a feasibility study on decommissioning of the canyon buildings at Hanford. The 221-U facility is the first of the major canyon buildings to be decommissioned. The specific objective of this modeling effort was to provide estimates of potential rates of migration of residual contaminants out of the 221-U facility during the first 40 years after decommissioning. If minimal contaminant migration is predicted to occur from the facility during this time period, then the structure may be deemed to provide a level of groundwater protection that ismore » essentially equivalent to the liner and leachate collection systems that are required at conventional landfills. The STOMP code was used to simulate transport of selected radionuclides out of a canyon building, representative of the 221-U facility after decommissioning, for a period of 40 years. Simulation results indicate that none of the selected radionuclides that were modeled migrated beyond the concrete structure of the facility during the 40-year period of interest. Jacques (2001) identified other potential contaminants in the 221-U facility that were not modeled, however, including kerosene, phenol, and various metals. Modeling of these contaminants was beyond the scope of this preliminary effort due to increased complexity. Simulation results indicate that contaminant release from the canyon buildings will be diffusion controlled at early times. Advection is expected to become much more important at later times, after contaminants have diffused out of the facility and into the surrounding soil environment. After contaminants have diffused out of the facility, surface infiltration covers will become very important for mitigating further transport of contaminants in the underlying vadose zone and groundwater.« less

  5. 30 CFR 250.1703 - What are the general requirements for decommissioning?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What are the general requirements for decommissioning? 250.1703 Section 250.1703 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND..., marine, or coastal environment. [67 FR 35406, May 17, 2002, as amended at 74 FR 19807, Apr. 29, 2009] ...

  6. Societal constraints related to environmental remediation and decommissioning programmes.

    PubMed

    Perko, Tanja; Monken-Fernandes, Horst; Martell, Meritxell; Zeleznik, Nadja; O'Sullivan, Patrick

    2017-06-20

    The decisions related to decommissioning or environmental remediation projects (D/ER) cannot be isolated from the socio-political and cultural environment. Experiences of the IAEA Member States point out the importance of giving due attention to the societal aspects in project planning and implementation. The purpose of this paper is threefold: i) to systematically review societal constraints that some organisations in different IAEA Member States encounter when implementing D/ER programmes, ii) to identify different approaches to overcome these constraints and iii) to collect examples of existing practices related to the integration of societal aspects in D/ER programmes worldwide. The research was conducted in the context of the IAEA project Constraints to Decommissioning and Environmental Remediation (CIDER). The research results show that societal constraints arise mostly as a result of the different perceptions, attitudes, opinions and concerns of stakeholders towards the risks and benefits of D/ER programmes and due to the lack of stakeholder involvement in planning. There are different approaches to address these constraints, however all approaches have common points: early involvement, respect for different views, mutual understanding and learning. These results are relevant for all on-going and planned D/ER programmes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Annual report to Congress: Department of Energy activities relating to the Defense Nuclear Facilities Safety Board, Calendar Year 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2000-02-01

    This is the tenth Annual Report to the Congress describing Department of Energy activities in response to formal recommendations and other interactions with the Defense Nuclear Facilities Safety Board (Board). The Board, an independent executive-branch agency established in 1988, provides advice and recommendations to the Secretary of Energy regarding public health and safety issues at the Department's defense nuclear facilities. The Board also reviews and evaluates the content and implementation of health and safety standards, as well as other requirements, relating to the design, construction, operation, and decommissioning of the Department's defense nuclear facilities. During 1999, Departmental activities resulted inmore » the closure of nine Board recommendations. In addition, the Department has completed all implementation plan milestones associated with three Board recommendations. One new Board recommendation was received and accepted by the Department in 1999, and a new implementation plan is being developed to address this recommendation. The Department has also made significant progress with a number of broad-based initiatives to improve safety. These include expanded implementation of integrated safety management at field sites, opening of a repository for long-term storage of transuranic wastes, and continued progress on stabilizing excess nuclear materials to achieve significant risk reduction.« less

  8. Decommissioning of the High Flux Beam Reactor at Brookhaven National Laboratory.

    PubMed

    Hu, Jih-Perng; Reciniello, Richard N; Holden, Norman E

    2012-08-01

    The High Flux Beam Reactor (HFBR) at the Brookhaven National Laboratory was a heavy-water cooled and moderated reactor that achieved criticality on 31 October 1965. It operated at a power level of 40 mega-watts. An equipment upgrade in 1982 allowed operations at 60 mega-watts. After a 1989 reactor shutdown to reanalyze safety impact of a hypothetical loss of coolant accident, the reactor was restarted in 1991 at 30 mega-watts. The HFBR was shut down in December 1996 for routine maintenance and refueling. At that time, a leak of tritiated water was identified by routine sampling of ground water from wells located adjacent to the reactor's spent fuel pool. The reactor remained shut down for almost 3 y for safety and environmental reviews. In November 1999, the United States Department of Energy decided to permanently shut down the HFBR. The decontamination and decommissioning of the HFBR complex, consisting of multiple structures and systems to operate and maintain the reactor, were complete in 2009 after removing and shipping off all the control rod blades. The emptied and cleaned HFBR dome, which still contains the irradiated reactor vessel is presently under 24/7 surveillance for safety. Details of the HFBR's cleanup performed during 1999-2009, to allow the BNL facilities to be re-accessed by the public, will be described in the paper.

  9. An analytical approach to γ-ray self-shielding effects for radioactive bodies encountered nuclear decommissioning scenarios.

    PubMed

    Gamage, K A A; Joyce, M J

    2011-10-01

    A novel analytical approach is described that accounts for self-shielding of γ radiation in decommissioning scenarios. The approach is developed with plutonium-239, cobalt-60 and caesium-137 as examples; stainless steel and concrete have been chosen as the media for cobalt-60 and caesium-137, respectively. The analytical methods have been compared MCNPX 2.6.0 simulations. A simple, linear correction factor relates the analytical results and the simulated estimates. This has the potential to greatly simplify the estimation of self-shielding effects in decommissioning activities. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Evaluation of Dam Decommissioning in an Ice-Affected River: Case Study

    DTIC Science & Technology

    2007-09-01

    Abdul-Mohsen 2005 and Kuby et al. 2005). Conyngham et al. (2006) provide an overview of the ecological and engi- neering aspects of dam decommissioning...2007) CRREL Ice Jam Database (http://www.crrel.usace.army.mil/ierd/ijdb/), accessed March 2007. Kuby , M.J., W.F. Fagan, C.S. ReVelle, W.L. Graf (2005

  11. 78 FR 45268 - Notice of Availability of the San Diego Gas & Electric Ocotillo Sol Solar Project Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-26

    ... decommission the Ocotillo Sol Solar Project, a solar photovoltaic (PV) power plant facility, on approximately... Applicant's Proposed Project to construct, operate, maintain, and decommission a 100-acre solar PV facility...] Notice of Availability of the San Diego Gas & Electric Ocotillo Sol Solar Project Final Environmental...

  12. 10 CFR Appendix D to Subpart D of... - Classes of Actions That Normally Require EISs

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... average megawatts or more over a 12 month period. This applies to power marketing operations and to siting... Systems D2. Siting/construction/operation/decommissioning of nuclear fuel reprocessing facilities D3. Siting/construction/operation/decommissioning of uranium enrichment facilities D4. Siting/construction...

  13. TOXIC CHEMICAL RELEASE INVENTORY (TRI) OF FACILITIES IN 1987 TO 1993 BY STATESAND TERRITORIES INCLUDING AMERICAN SAMOA, PUERTO RICO, AND THE VIRGIN ISLANDS

    EPA Science Inventory

    TRI contains data on annual estimated releases of over 300 toxic chemicals to air, water, and land by the manufacturing industry. Industrial facilities provide the information, which includes: the location of the facility where chemicals are manufactured, processed, or otherwise...

  14. The Integration of the 241-Z Building Decontamination and Decommissioning Under Cercla with RCRA Closure at the Plutonium Finishing Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattlin, E.; Charboneau, S.; Johnston, G.

    2007-07-01

    The 241-Z treatment and storage tanks, a hazardous waste Treatment, Storage and Disposal (TSD) unit permitted pursuant to the Resource Conservation and Recovery Act of 1976 (RCRA) and Washington State Hazardous Waste Management Act, RCW 70.105, , have been deactivated and are being actively decommissioned under the provisions of the Hanford Federal Facility Agreement and Consent Order (HFFACO), RCRA and Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) 42 U.S.C. 9601 et seq. The 241-Z TSD unit managed non-listed radioactive contaminated waste water, containing trace RCRA characteristic constituents. The 241-Z TSD unit consists of below grade tanks (D-4,more » D-5, D-7, D-8, and an overflow tank) located in a concrete containment vault, sample glovebox GB-2-241-ZA, and associated ancillary piping and equipment. The tank system is located beneath the 241-Z building. The 241-Z building is not a portion of the TSD unit. The sample glovebox is housed in the above-grade building. Waste managed at the TSD unit was received via underground piping from Plutonium Finishing Plant (PFP) sources. Tank D-6, located in the D-6 vault cell, is a past-practice tank that was taken out of service in 1972 and has never operated as a portion of the RCRA TSD unit. CERCLA actions will address Tank D-6, its containment vault cell, and soil beneath the cell that was potentially contaminated during past-practice operations and any other potential past-practice contamination identified during 241-Z closure, while outside the scope of the Hanford Facility Dangerous Waste Closure Plan, 241-Z Treatment and Storage Tanks. Under the RCRA closure plan, the 241-Z TSD unit is anticipated to undergo clean closure to the performance standards of the State of Washington with respect to dangerous waste contamination from RCRA operations. The TSD unit will be clean closed if physical closure activities identified in the plan achieve clean closure standards for all

  15. Sharing lessons learned and best practices in deactivation and decommissioning techniques among U.S. Department of Energy contractors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lackey, Michael B.; Waisley, Sandra L.; Dusek, Lansing G.

    2007-07-01

    Approximately $153.2 billion of work currently remains in the United States Department of Energy's (DOE's) Office of Environmental Management (EM) life cycle budget for United States projects. Contractors who manage facilities for the DOE have been challenged to identify transformational changes to reduce the life cycle costs and develop a knowledge management system that identifies, disseminates, and tracks the implementation of lessons learned and best practices. At the request of the DOE's EM Office of Engineering and Technology, the Energy Facility Contractors Group (EFCOG) responded to the challenge with formation of the Deactivation and Decommissioning (D and D) and Facilitymore » Engineering (DD/FE) Working Group. Since October 2006, members have already made significant progress in realizing their goals: adding new D and D best practices to the existing EFCOG Best Practices database; participating in lessons learned forums; and contributing to a DOE initiative on identifying technology needs. The group is also participating in a DOE project management initiative to develop implementation guidelines, as well as a DOE radiation protection initiative to institute a more predictable and standardized approach to approving authorized limits and independently verifying cleanup completion at EM sites. Finally, a D and D hotline to provide real-time solutions to D and D challenges is also being launched. (authors)« less

  16. Long-lived radionuclides in residues from operation and decommissioning of nuclear power plants

    NASA Astrophysics Data System (ADS)

    López-Gutiérrez, J. M.; Gómez-Guzmán, J. M.; Chamizo, E.; Peruchena, J. I.; García-León, M.

    2013-01-01

    Radioactive residues, in order to be classified as Low-Level Waste (LLW), need to fulfil certain conditions; the limitation of the maximum activity from long-lived radionuclides is one of these requirements. In order to verify compliance to this limitation, the abundance of these radionuclides in the residue must be determined. However, performing this determination through radiometric methods constitutes a laborious task. In this work, 129I concentrations, 239+240Pu activities, and 240Pu/239Pu ratios are determined in low-level radioactive residues, including resins and dry sludge, from nuclear power plants in Spain. The use of Accelerator Mass Spectrometry (AMS) enables high sensitivities to be achieved, and hence these magnitudes can be re determined with good precision. Results present a high dispersion between the 129I and 239+240Pu activities found in various aliquots of the same sample, which suggests the existence of a mixture of resins with a variety of histories in the same container. As a conclusion, it is shown that activities and isotopic ratios can provide information on the processes that occur in power plants throughout the history of the residues. Furthermore, wipes from the monitoring of surface contamination of the José Cabrera decommissioning process have been analyzed for 129I determination. The wide range of measured activities indicates an effective dispersal of 129I throughout the various locations within a nuclear power plant. Not only could these measurements be employed in the contamination monitoring of the decommissioning process, but also in the modelling of the presence of other iodine isotopes.

  17. Decommissioning and PIE of the MEGAPIE spallation target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latge, C.; Henry, J.; Wohlmuther, M.

    2013-07-01

    A key experiment in the Accelerated Driven Systems roadmap, the MEGAwatt PIlot Experiment (MEGAPIE) (1 MW) was initiated in 1999 in order to design and build a liquid lead-bismuth spallation target, then to operate it into the Swiss spallation neutron facility SINQ at Paul Scherrer Institute. The target has been designed, manufactured, and tested during integral tests, before irradiation carried out end of 2006. During irradiation, neutron and thermo hydraulic measurements were performed allowing deep interpretation of the experiment and validation of the models used during design phase. The decommissioning, Post Irradiation Examinations and waste management phases were defined properly.more » The phases dedicated to cutting, sampling, cleaning, waste management, samples preparation and shipping to various laboratories were performed by PSI teams: all these phases constitute a huge work, which allows now to perform post-irradiation examination (PIE) of structural material, irradiated in relevant conditions. Preliminary results are presented in the paper, they concern chemical characterization. The following radio-nuclides have been identified by γ-spectrometry: {sup 60}Co, {sup 101}Rh, {sup 102}Rh, {sup 108m}Ag, {sup 110m}Ag, {sup 133}Ba, {sup 172}Hf/Lu, {sup 173}Lu, {sup 194}Hg/Au, {sup 195}Au, {sup 207}Bi. For some of these nuclides the activities can be easily evaluated from γ-spectrometry results ({sup 207}Bi, {sup 194}Hg/Au), while other nuclides can only be determined after chemical separations ({sup 108m}Ag, {sup 110m}Ag, {sup 195}Au, {sup 129}I, {sup 36}Cl and α-emitting {sup 208-210}Po). The concentration of {sup 129}I is lower than expected. The chemical analysis already performed on spallation and corrosion products in the lead-bismuth eutectic (LBE) are very relevant for further applications of LBE as a spallation media and more generally as a coolant.« less

  18. End State Condition Report for Materials and Fuels Complex Facilities MFC-799, 799A, and 770C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gary Mecham

    2010-10-01

    The Materials and Fuels Complex (MFC) facilities MFC-799, “Sodium Processing Facility” (a single building consisting of two areas: the Sodium Process Area and the Carbonate Process Area); MFC-799A, “Caustic Storage Area;” and MFC-770C, “Nuclear Calibration Laboratory,” have been declared excess to future Department of Energy (DOE) Office of Nuclear Energy(NE) mission requirements. Transfer of these facilities from NE to the DOE Office of Environmental Management (EM), and an associated schedule for doing so, have been agreed upon by the two offices. This report documents the completion of pre-transfer stabilization actions, as identified in DOE Guide 430.1-5, “Transition Implementation Guide,” formore » buildings MFC-799/799A and 770C, and indicates that these facilities are ready for transfer from NE to EM. The facilities are in a known, safe condition and information is provided to support efficient decommissioning and demolition (D&D) planning while minimizing the possibility of encountering unforeseen circumstances during the D&D activities.« less

  19. 30 CFR 250.255 - What decommissioning information must accompany the DPP or DOCD?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What decommissioning information must accompany the DPP or DOCD? 250.255 Section 250.255 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF... Information Contents of Development and Production Plans (dpp) and Development Operations Coordination...

  20. Final report on Weeks Island Monitoring Phase : 1999 through 2004.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehgartner, Brian L.; Munson, Darrell Eugene

    2005-05-01

    This Final Report on the Monitoring Phase of the former Weeks Island Strategic Petroleum Reserve crude oil storage facility details the results of five years of monitoring of various surface accessible quantities at the decommissioned facility. The Weeks Island mine was authorized by the State of Louisiana as a Strategic Petroleum Reserve oil storage facility from 1979 until decommissioning of the facility in 1999. Discovery of a sinkhole over the facility in 1992 with freshwater inflow to the facility threatened the integrity of the oil storage and led to the decision to remove the oil, fill the chambers with brine,more » and decommission the facility. Thereafter, a monitoring phase, by agreement between the Department of Energy and the State, addressed facility stability and environmental concerns. Monitoring of the surface ground water and the brine of the underground chambers from the East Fill Hole produced no evidence of hydrocarbon contamination, which suggests that any unrecovered oil remaining in the underground chambers has been contained. Ever diminishing progression of the initial major sinkhole, and a subsequent minor sinkhole, with time was verification of the response of sinkholes to filling of the facility with brine. Brine filling of the facility ostensively eliminates any further growth or new formation from freshwater inflow. Continued monitoring of sinkhole response, together with continued surface surveillance for environmental problems, confirmed the intended results of brine pressurization. Surface subsidence measurements over the mine continued throughout the monitoring phase. And finally, the outward flow of brine was monitored as a measure of the creep closure of the mine chambers. Results of each of these monitoring activities are presented, with their correlation toward assuring the stability and environmental security of the decommissioned facility. The results suggest that the decommissioning was successful and no contamination of

  1. THE INTEGRATION OF A PROPOSED ZONE CLOSURE APPROACH FOR THE PLUTONIUM FINISHING PLANT (PFP) DECOMMISSIONING & THE PFP ZONE HANFORD SITE WASHINGTON

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HOPKINS, A.M.

    2005-02-23

    The Plutonium Finishing Plant (PFP) and associated processing facilities are located in the 200 area of the Hanford Site in Eastern Washington. This area is part of what is now called the Central Plateau. In order to achieve closure of the contaminated facilities and waste sites at Hanford on the Central Plateau (CP), a geographic re-districting of the area into zones has been proposed in the recently published Plan for Central Plateau Closure. One of the 22 zones proposed in the Central Plateau encompasses the PFP and ancillary facilities. Approximately eighty six buildings are included in the PFP Zone. Thismore » paper addresses the approach for the closure of the PFP Zone within the Central Plateau. The PFP complex of buildings forms the bulk of the structures in the PFP Zone. For closure of the above-grade portion of structures within the PFP complex, the approach is to remove them to a state called ''slab-on-grade'' per the criteria contained in PFP End Point Criteria document and as documented in action memoranda. For below-grade portions of the structures (such as below-grade rooms, pipe trenches and underground ducts), the approach is to remove as much residual contamination as practicable and to fill the void spaces with clean fill material such as sand, grout, or controlled density fill. This approach will be modified as planning for the waste sites progresses to ensure that the actions of the PFP decommissioning projects do not negatively impact future planned actions under the CERCLA. Cribs, settling tanks, septic tanks and other miscellaneous below-grade void spaces will either be cleaned to the extent practicable and filled or will be covered with an environmental barrier as determined by further studies and CERCLA decision documents. Currently, between two and five environmental barriers are proposed to be placed over waste sites and remaining building slabs in the PFP Zone.« less

  2. 100 Area D4 Project Building Completion Report - July 2007 to December 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. T. Stankovich

    2009-04-15

    This report documents the decontamination, decommissioning, and demolition of the 105-NB, 163-N, 183-N, 183-NA, 183-NB, 183-NC, 184-N, 184-NA, 184-NB, 184-NC, 184-ND, 184-NE, 184-NF, 1312-N, 1330-N, 1705-N, 1705-NA, 1706-N, 1712-N, 1714-N, 1714-NA, 1714-NB, 1802-N, MO-050, MO-055, MO-358, MO-390, MO-900, MO-911, and MO-950 facilities in the 100 Area of the Hanford Site. The D4 activities for these facilities include utility disconnection, planning, characterization, engineering, removal of hazardous and radiological contaminated materials, equipment removal, decommissioning, deactivation, decontamination, demolition of the structure, and removal of the remaining slabs.

  3. Study on the financing mechanism and management for decommissioning of nuclear installations in Malaysia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saleh, Lydia Ilaiza, E-mail: lydiailaiza@gmail.com; Ryong, Kim Tae

    The whole cycle of the decommissioning process development of repository requires the relevant bodies to have a financial system to ensure that it has sufficient funds for its whole life cycle (over periods of many decades). Therefore, the financing mechanism and management system shall respect the following status: the national position, institutional and legislative environment, technical capabilities, the waste origin, ownership, characteristics and inventories. The main objective of the studies is to focus on the cost considerations, alternative funding managements and mechanisms, technical and non-technical factors that may affect the repository life-cycle costs. As a conclusion, the outcomes of thismore » paper is to make a good recommendation and could be applied to the national planners, regulatory body, engineers, or the managers, to form a financial management plan for the decommissioning of the Nuclear Installation.« less

  4. 30 CFR 250.255 - What decommissioning information must accompany the DPP or DOCD?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What decommissioning information must accompany the DPP or DOCD? 250.255 Section 250.255 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT... OUTER CONTINENTAL SHELF Plans and Information Contents of Development and Production Plans (dpp) and...

  5. The Langley thermal protection system test facility: A description including design operating boundaries

    NASA Technical Reports Server (NTRS)

    Klich, G. F.

    1976-01-01

    A description of the Langley thermal protection system test facility is presented. This facility was designed to provide realistic environments and times for testing thermal protection systems proposed for use on high speed vehicles such as the space shuttle. Products from the combustion of methane-air-oxygen mixtures, having a maximum total enthalpy of 10.3 MJ/kg, are used as a test medium. Test panels with maximum dimensions of 61 cm x 91.4 cm are mounted in the side wall of the test region. Static pressures in the test region can range from .005 to .1 atm and calculated equilibrium temperatures of test panels range from 700 K to 1700 K. Test times can be as long as 1800 sec. Some experimental data obtained while using combustion products of methane-air mixtures are compared with theory, and calibration of the facility is being continued to verify calculated values of parameters which are within the design operating boundaries.

  6. Calder Hall Cooling Tower Demolition: Landmark Milestone for Decommissioning at Sellafield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williamson, E.J.

    2008-07-01

    September 2007 saw a very visible change to the Sellafield site following the culmination of a major decommissioning project; the demolition of the four Calder Hall cooling towers. A key part of the UK's nuclear industrial heritage, Calder Hall, the world's first commercial nuclear power station, was opened by Her Majesty Queen Elizabeth II in October 1953 and continued to generate electricity until its closure in 2003. Following the decision to decommission the Calder Hall site, explosive demolition was identified as the safest and most cost effective route for the removal of the towers. The technique, involving the placement ofmore » explosive in 60% of the circumference of both shell and legs, is a tried and tested method which had already been used successfully in more than 200 cooling towers in the UK in the last 30 years. The location and composition of the four 88 metre high towers also created additional challenges. Situated only 40 metres away from the UK's only nuclear Fuel Handling Plant, as well as other sensitive structures on the Sellafield site, the project had to address the impact of a number of key areas, including dust, ground vibration and air over pressure, to ensure that the demolition could be carried out safely and without significant impact on other operational areas on the site. At the same time, the towers had to be prepared for demolition in a way that minimised the amounts of radioactive or hazardous waste materials arising. This paper follows the four year journey from the initial decision to demolish the towers right through to the demolition itself as well as the clean up of the site post demolition. It will also consider the massive programme of work necessary not only to carry out the physical work safely but also to gain regulatory confidence and stakeholder support to carry out the project successfully. In summary: The demolition of the four Calder Hall cooling towers was a highly visible symbol of the changes that are

  7. A guideline for interpersonal capabilities enhancement to support sustainable facility management practice

    NASA Astrophysics Data System (ADS)

    Sarpin, Norliana; Kasim, Narimah; Zainal, Rozlin; Noh, Hamidun Mohd

    2018-04-01

    Facility management is the key phase in the development cycle of an assets and spans over a considerable length of time. Therefore, facility managers are in a commanding position to maximise the potential of sustainability through the development phases from construction, operation, maintenance and upgrade leading to decommission and deconstruction. Sustainability endeavours in facility management practices will contribute to reducing energy consumption, waste and running costs. Furthermore, it can also help in improving organisational productivity, financial return and community standing of the organisation. Facility manager should be empowered with the necessary knowledge and capabilities at the forefront facing sustainability challenge. However, literature studies show a gap between the level of awareness, specific knowledge and the necessary skills required to pursue sustainability in the facility management professional. People capability is considered as the key enabler in managing the sustainability agenda as well as being central to the improvement of competency and innovation in an organisation. This paper aims to develop a guidelines for interpersonal capabilities to support sustainability in facility management practice. Starting with a total of 7 critical interpersonal capabilities factors identified from previous questionnaire survey, the authors conducted an interview with 3 experts in facility management to assess the perceived importance of these factors. The findings reveal a set of guidelines for the enhancement of interpersonal capabilities among facility managers by providing what can be done to acquire these factors and how it can support the application of sustainability in their practice. The findings of this paper are expected to form the basis of a mechanism framework developed to equip facility managers with the right knowledge, to continue education and training and to develop new mind-sets to enhance the implementation of sustainability

  8. Considerations in evaluating potential socioeconomic impacts of offshore platform decommissioning in California.

    PubMed

    Kruse, Sarah A; Bernstein, Brock; Scholz, Astrid J

    2015-10-01

    The 27 oil and gas platforms offshore southern California will eventually reach the end of their useful lifetimes (estimated between 2015 and 2030) and will be decommissioned. Current state and federal laws and regulations allow for alternative uses in lieu of the complete removal required in existing leases. Any decommissioning pathway will create a complex mix of costs, benefits, opportunities, and constraints for multiple user groups. To assist the California Natural Resources Agency in understanding these issues, we evaluated the potential socioeconomic impacts of the 2 most likely options: complete removal and partial removal of the structure to 85 feet below the waterline with the remaining structure left in place as an artificial reef-generally defined as a manmade structure with some properties that mimic a natural reef. We estimated impacts on commercial fishing, commercial shipping, recreational fishing, nonconsumptive boating, and nonconsumptive SCUBA diving. Available data supported quantitative estimates for some impacts, semiquantitative estimates for others, and only qualitative approximations of the direction of impact for still others. Even qualitative estimates of the direction of impacts and of user groups' likely preferred options have been useful to the public and decision makers and provided valuable input to the project's integrative decision model. Uncertainty surrounds even qualitative estimates of the likely direction of impact where interactions between multiple impacts could occur or where user groups include subsets that would experience the same option differently. In addition, we were unable to quantify effects on ecosystem value and on the larger regional ecosystem, because of data gaps on the population sizes and dynamics of key species and the uncertainty surrounding the contribution of platforms to available hard substrate and related natural populations offshore southern California. © 2015 SETAC.

  9. Assessing and Forecasting Facilities in Higher Education Including the Top Facilities Issues. APPA Thought Leaders Series, 2010

    ERIC Educational Resources Information Center

    Lunday, Elizabeth

    2010-01-01

    The APPA (Association of Higher Education Facilities Officers) Thought Leaders Series turned five years old this year--a significant event in a momentous time for higher education. Participants in the 2010 symposium looked back at both the achievements and the missteps of higher education over the last half-decade, a period that posed many…

  10. 26 CFR 1.468A-1T - Nuclear decommissioning costs; general rules (temporary).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... an elective method for taking into account nuclear decommissioning costs for Federal income tax... accrual method of accounting that do not elect the application of section 468A are not allowed a deduction... nuclear power plant means any nuclear power reactor that is used predominantly in the trade or business of...

  11. Radionuclide metrology research for nuclear site decommissioning

    NASA Astrophysics Data System (ADS)

    Judge, S. M.; Regan, P. H.

    2017-11-01

    The safe and cost-effective decommissioning of legacy nuclear sites relies on accurate measurement of the radioactivity content of the waste materials, so that the waste can be assigned to the most appropriate disposal route. Such measurements are a new challenge for the science of radionuclide metrology which was established largely to support routine measurements on operating nuclear sites and other applications such as nuclear medicine. In this paper, we provide a brief summary of the international measurement system that is established to enable nuclear site operators to demonstrate that measurements are accurate, independent and fit for purpose, and highlight some of the projects that are underway to adapt the measurement system to meet the changing demands from the industry.

  12. Progress on Cleaning Up the Only Commercial Nuclear Fuel Reprocessing Facility to Operate in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, T. J.; MacVean, S. A.; Szlis, K. A.

    2002-02-26

    This paper describes the progress on cleanup of the West Valley Demonstration Project (WVDP), an environmental management project located south of Buffalo, NY. The WVDP was the site of the only commercial nuclear fuel reprocessing facility to have operated in the United States (1966 to 1972). Former fuel reprocessing operations generated approximately 600,000 gallons of liquid high-level radioactive waste stored in underground tanks. The U.S. Congress passed the WVDP Act in 1980 (WVDP Act) to authorize cleanup of the 220-acre facility. The facility is unique in that it sits on the 3,345-acre Western New York Nuclear Service Center (WNYNSC), whichmore » is owned by New York State through the New York State Energy Research and Development Authority (NYSERDA). The U.S. Department of Energy (DOE) has overall responsibility for the cleanup that is authorized by the WVDP Act, paying 90 percent of the WVDP costs; NYSERDA pays 10 percent. West Valley Nuclear Services Company (WVNSCO) is the management contractor at the WVDP. This paper will provide a description of the many accomplishments at the WVDP, including the pretreatment and near completion of vitrification of all the site's liquid high-level radioactive waste, a demonstration of technologies to characterize the remaining material in the high-level waste tanks, the commencement of decontamination and decommissioning (D&D) activities to place the site in a safe configuration for long-term site management options, and achievement of several technological firsts. It will also include a discussion of the complexities involved in completing the WVDP due to the various agency interests that require integration for future cleanup decisions.« less

  13. Hazardous Materials Verification and Limited Characterization Report on Sodium and Caustic Residuals in Materials and Fuel Complex Facilities MFC-799/799A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gary Mecham

    2010-08-01

    This report is a companion to the Facilities Condition and Hazard Assessment for Materials and Fuel Complex Sodium Processing Facilities MFC-799/799A and Nuclear Calibration Laboratory MFC-770C (referred to as the Facilities Condition and Hazards Assessment). This report specifically responds to the requirement of Section 9.2, Item 6, of the Facilities Condition and Hazards Assessment to provide an updated assessment and verification of the residual hazardous materials remaining in the Sodium Processing Facilities processing system. The hazardous materials of concern are sodium and sodium hydroxide (caustic). The information supplied in this report supports the end-point objectives identified in the Transition Planmore » for Multiple Facilities at the Materials and Fuels Complex, Advanced Test Reactor, Central Facilities Area, and Power Burst Facility, as well as the deactivation and decommissioning critical decision milestone 1, as specified in U.S. Department of Energy Guide 413.3-8, “Environmental Management Cleanup Projects.” Using a tailored approach and based on information obtained through a combination of process knowledge, emergency management hazardous assessment documentation, and visual inspection, this report provides sufficient detail regarding the quantity of hazardous materials for the purposes of facility transfer; it also provides that further characterization/verification of these materials is unnecessary.« less

  14. Erosion at decommissioned road-stream crossings: case studies from three northern California watersheds

    Treesearch

    Sam A. Flanagan; David Fuller; Leonard Job; Sam Morrison

    2012-01-01

    Post-treatment erosion was observed for 41 decommissioned road stream crossings in three northern California watersheds. Sites were purposefully selected in order to characterize the nature and range of post-treatment erosional responses. Sites with the highest visible erosion were selected in order to better understand the dominant process and incorporate any...

  15. Hydrazine Blending and Storage Facility, Wastewater Treatment and Decommissioning Assessment. Technical Plan, Version 3.2

    DTIC Science & Technology

    1988-04-01

    o CHEMICAL TREATMENT - CHLORINE (VARIOUS FORMS) AND CHLORINE/ULTRAVIOLET LIGHT (UV) - OZONE AND OZONE/UV - PERMANGANATE - HYDROGEN PEROXIDE AND...and placed in drums, rail cars or trucks (Hazard 3 Abatement Plan, 1982). The existing hydrazine blending facility area is a limited access site which...Area 40’-0" x 26’-0" Volume 44,000 gallons Function Receive wastewater and stormwater runoff m Construction Material Concrete 7. Building 759 Size 40’-0

  16. 30 CFR 250.1726 - When must I submit an initial platform removal application and what must it include?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false When must I submit an initial platform removal application and what must it include? 250.1726 Section 250.1726 Mineral Resources BUREAU OF OCEAN ENERGY... disposal plans; (d) Plans to protect marine life and the environment during decommissioning operations...

  17. 78 FR 19540 - Dominion Energy Kewaunee, Inc., Kewaunee Power Station Post-Shutdown Decommissioning Activities...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-01

    ... (KPS) Post-Shutdown Decommissioning Activities Report (PSDAR), Revision 0, on Wednesday, April 24, 2013... Management System (ADAMS) Accession No. ML13058A065. In a prior communication on November 2, 2012 (ADAMS... at KPS pending completion of a grid stability review by the Midwest Independent Transmission System...

  18. 75 FR 8147 - Notice of Consideration of Amendment Request for Decommissioning of Analytical Bio-Chemistry...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 030-05154; NRC-2010-0056] Notice of Consideration of Amendment Request for Decommissioning of Analytical Bio-Chemistry Laboratories, Inc. Sanitary Lagoon... license amendment to Byproduct Material License No. 24- 13365-01 issued to Analytical Bio-Chemistry...

  19. ALARA and decommissioning: The Fort St. Vrain experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borst, T.; Niehoff, M.; Zachary, M.

    1995-03-01

    The Fort St. Vrain Nuclear Generating Station, the first and only commercial High Temperature Gas Cooled Reactor to operate in the United States, completed initial fuel loading in late 1973 and initial startup in early 1974. Due to a series of non-nuclear technical problems, Fort St. Vrain never operated consistently, attaining a lifetime capacity factor of slightly less than 15%. In August of 1989, the decision was made to permanently shut down the plant due to control rod drive and steam generator ring header failures. Public Service Company of Colorado elected to proceed with early dismantlement (DECON) as opposed tomore » SAFSTOR on the bases of perceived societal benefits, rad waste, and exposure considerations, regulatory uncertainties associated with SAFSTOR, and cost. The decommissioning of Fort St. Vrain began in August of 1992, and is scheduled to be completed in early 1996. Decommissioning is being conducted by a team consisting of Westinghouse, MK-Ferguson, and Scientific Ecology Group. Public Service Company of Colorado as the licensee provides contract management and oversight of contractor functions. An aggressive program to maintain project radiation exposures As Low As Reasonably Achievable (ALARA) has been established, with the following program elements: temporary and permanent shielding contamination control; mockup training; engineering controls; worker awareness; integrated work package reviews communication; special instrumentation; video camera usage; robotics application; and project committees. To date, worker exposures have been less than project estimates. from the start of the project through Februrary of 1994, total exposure has been 98.666 person-rem, compared to the project estimate of 433 person-rem and goal of 347 person-rem. The presentation will discuss the site characterization efforts, the radiological performance indicator program, and the final site release survey plans.« less

  20. The safety improvement of Romanian radioactive waste facilities as an example for human and environmental protection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barariu, Gheorghe

    2013-07-01

    According to IAEA classification, Romania with two nuclear research centres, with 2 Nuclear Power Units in operation at Cernavoda Town and with 2 new Units envisaged to be in operation soon, can be considered as a country with an average nuclear activity. In Romania there was an extensive interest in management of radioactive wastes generated by the use of nuclear technology in industry and research. Using the most advanced technologies in the mentioned time periods, Romania successfully accomplished to solve all management issues related to radioactive wastes being addressed all safety concerns. Every step of nuclear activity development was accompaniedmore » by the suitable waste management facilities. So that, in order to improve the existing treatment and disposal capacities for institutional waste, the existing Radioactive Waste Treatment Facility (STDR) and the National Repository Radioactive Wastes (DNDR) at Baita, Bihor, will be improved to actual requirements on the occasion of VVR-S Research Reactor decommissioning. This activity is in development into the frame of a National funded project related to disposal galleries filling improvement and repository closure for DNDR Baita, Bihor. All improvements will be approved by Environmental Protection Authority and Regulatory Body, being a guaranty of human and environmental protection. Also, in accordance with national specific and international policies and taking into account decommissioning activities related to the present operating NPPs, all necessary measures were considered in order to avoid unnecessary generation of radioactive wastes, to minimize, as much as possible, waste production and accumulation and the necessity to develop optimum solutions for a new repository with the assurance of improved nuclear safety. (authors)« less

  1. 43 CFR 404.9 - What types of infrastructure and facilities may be included in an eligible rural water supply...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false What types of infrastructure and facilities may be included in an eligible rural water supply project? 404.9 Section 404.9 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR RECLAMATION RURAL WATER SUPPLY PROGRAM Overview § 404.9...

  2. 43 CFR 404.9 - What types of infrastructure and facilities may be included in an eligible rural water supply...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true What types of infrastructure and facilities may be included in an eligible rural water supply project? 404.9 Section 404.9 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR RECLAMATION RURAL WATER SUPPLY PROGRAM Overview § 404.9 Wha...

  3. 30 CFR 585.620 - What is a Construction and Operations Plan (COP)?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...)? 585.620 Section 585.620 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF... conceptual decommissioning plans under your commercial lease, including your project easement. BOEM will...

  4. 30 CFR 585.620 - What is a Construction and Operations Plan (COP)?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...)? 585.620 Section 585.620 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF... conceptual decommissioning plans under your commercial lease, including your project easement. BOEM will...

  5. 30 CFR 585.620 - What is a Construction and Operations Plan (COP)?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...)? 585.620 Section 585.620 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF... conceptual decommissioning plans under your commercial lease, including your project easement. BOEM will...

  6. Exploring environmental and economic trade-offs associated with aggregate recycling from decommissioned forest roads

    Treesearch

    Matthew P. Thompson; John Sessions

    2010-01-01

    Forest road decommissioning is a pro-active mechanism for preventing future habitat degradation and for increasing the likelihood of endangered salmonid survival in the western U.S. High implementation costs however preclude many desirable projects from being undertaken, especially on federally owned land. Previous research and real-world applications have demonstrated...

  7. Long-term storage facility for reactor compartments in Sayda Bay - German support for utilization of nuclear submarines in Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolff, Dietmar; Voelzke, Holger; Weber, Wolfgang

    2007-07-01

    The German-Russian project that is part of the G8 initiative on Global Partnership Against the Spread of Weapons and Materials of Mass Destruction focuses on the speedy construction of a land-based interim storage facility for nuclear submarine reactor compartments at Sayda Bay near Murmansk. This project includes the required infrastructure facilities for long-term storage of about 150 reactor compartments for a period of about 70 years. The interim storage facility is a precondition for effective activities of decommissioning and dismantlement of almost all nuclear-powered submarines of the Russian Northern Fleet. The project also includes the establishment of a computer-assisted wastemore » monitoring system. In addition, the project involves clearing Sayda Bay of other shipwrecks of the Russian navy. On the German side the project is carried out by the Energiewerke Nord GmbH (EWN) on behalf of the Federal Ministry of Economics and Labour (BMWi). On the Russian side the Kurchatov Institute holds the project management of the long-term interim storage facility in Sayda Bay, whilst the Nerpa Shipyard, which is about 25 km away from the storage facility, is dismantling the submarines and preparing the reactor compartments for long-term interim storage. The technical monitoring of the German part of this project, being implemented by BMWi, is the responsibility of the Federal Institute for Materials Research and Testing (BAM). This paper gives an overview of the German-Russian project and a brief description of solutions for nuclear submarine disposal in other countries. At Nerpa shipyard, being refurbished with logistic and technical support from Germany, the reactor compartments are sealed by welding, provided with biological shielding, subjected to surface treatment and conservation measures. Using floating docks, a tugboat tows the reactor compartments from Nerpa shipyard to the interim storage facility at Sayda Bay where they will be left on the on

  8. Sandia National Laboratories support of the Iraq Nuclear Facility Dismantlement and Disposal Program.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochran, John Russell; Danneels, Jeffrey John

    2009-03-01

    Because of past military operations, lack of upkeep and looting there are now enormous radioactive waste problems in Iraq. These waste problems include destroyed nuclear facilities, uncharacterized radioactive wastes, liquid radioactive waste in underground tanks, wastes related to the production of yellow cake, sealed radioactive sources, activated metals and contaminated metals that must be constantly guarded. Iraq currently lacks the trained personnel, regulatory and physical infrastructure to safely and securely manage these facilities and wastes. In 2005 the International Atomic Energy Agency (IAEA) agreed to organize an international cooperative program to assist Iraq with these issues. Soon after, the Iraqmore » Nuclear Facility Dismantlement and Disposal Program (the NDs Program) was initiated by the U.S. Department of State (DOS) to support the IAEA and assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials. The Iraq NDs Program is providing support for the IAEA plus training, consultation and limited equipment to the GOI. The GOI owns the problems and will be responsible for implementation of the Iraq NDs Program. Sandia National Laboratories (Sandia) is a part of the DOS's team implementing the Iraq NDs Program. This report documents Sandia's support of the Iraq NDs Program, which has developed into three principal work streams: (1) training and technical consultation; (2) introducing Iraqis to modern decommissioning and waste management practices; and (3) supporting the IAEA, as they assist the GOI. Examples of each of these work streams include: (1) presentation of a three-day training workshop on 'Practical Concepts for Safe Disposal of Low-Level Radioactive Waste in Arid Settings;' (2) leading GOI representatives on a tour of two operating low level radioactive waste disposal facilities in the U.S.; and (3) supporting the IAEA's Technical Meeting with the GOI from April 21-25, 2008. As noted in

  9. 76 FR 23339 - Notice of Issuance of License Amendment Regarding Decommission Plan Approval; University of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-26

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-113; NRC-2009-0549] Notice of Issuance of License Amendment Regarding Decommission Plan Approval; University of Arizona Research Reactor The U.S. Nuclear... located within the University of Arizona Nuclear Reactor Laboratory (NRL) on the 325-acre campus of the...

  10. 30 CFR 585.1018 - Who is responsible for decommissioning an OCS facility subject to an Alternate Use RUE?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Rights of Use and Easement for Energy- and Marine-Related...

  11. 30 CFR 585.1018 - Who is responsible for decommissioning an OCS facility subject to an Alternate Use RUE?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Rights of Use and Easement for Energy- and Marine-Related...

  12. 30 CFR 285.1018 - Who is responsible for decommissioning an OCS facility subject to an Alternate Use RUE?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Rights of Use and Easement for Energy- and Marine-Related Activities Using...

  13. 30 CFR 585.1018 - Who is responsible for decommissioning an OCS facility subject to an Alternate Use RUE?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Rights of Use and Easement for Energy- and Marine-Related...

  14. 43 CFR 404.10 - Are there certain types of infrastructure and facilities that may not be included in a rural...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Are there certain types of infrastructure and facilities that may not be included in a rural water supply project? 404.10 Section 404.10 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR RECLAMATION RURAL WATER SUPPLY PROGRAM...

  15. 43 CFR 404.10 - Are there certain types of infrastructure and facilities that may not be included in a rural...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Are there certain types of infrastructure and facilities that may not be included in a rural water supply project? 404.10 Section 404.10 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR RECLAMATION RURAL WATER SUPPLY PROGRAM...

  16. NASA Wallops Flight Facility Air-Sea Interaction Research Facility

    NASA Technical Reports Server (NTRS)

    Long, Steven R.

    1992-01-01

    This publication serves as an introduction to the Air-Sea Interaction Research Facility at NASA/GSFC/Wallops Flight Facility. The purpose of this publication is to provide background information on the research facility itself, including capabilities, available instrumentation, the types of experiments already done, ongoing experiments, and future plans.

  17. Thirty-year solid waste generation forecast for facilities at SRS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-07-01

    The information supplied by this 30-year solid waste forecast has been compiled as a source document to the Waste Management Environmental Impact Statement (WMEIS). The WMEIS will help to select a sitewide strategic approach to managing present and future Savannah River Site (SRS) waste generated from ongoing operations, environmental restoration (ER) activities, transition from nuclear production to other missions, and decontamination and decommissioning (D&D) programs. The EIS will support project-level decisions on the operation of specific treatment, storage, and disposal facilities within the near term (10 years or less). In addition, the EIS will provide a baseline for analysis ofmore » future waste management activities and a basis for the evaluation of the specific waste management alternatives. This 30-year solid waste forecast will be used as the initial basis for the EIS decision-making process. The Site generates and manages many types and categories of waste. With a few exceptions, waste types are divided into two broad groups-high-level waste and solid waste. High-level waste consists primarily of liquid radioactive waste, which is addressed in a separate forecast and is not discussed further in this document. The waste types discussed in this solid waste forecast are sanitary waste, hazardous waste, low-level mixed waste, low-level radioactive waste, and transuranic waste. As activities at SRS change from primarily production to primarily decontamination and decommissioning and environmental restoration, the volume of each waste s being managed will change significantly. This report acknowledges the changes in Site Missions when developing the 30-year solid waste forecast.« less

  18. Commercial Decommissioning at DOE's Rocky Flats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freiboth, C.; Sandlin, N.; Schubert, A.

    2002-02-25

    Due in large part to the number of nuclear facilities that make up the DOE complex, DOE-EM work has historically been paperwork intensive and driven by extensive regulations. Requirements for non-nuclear facilities are often grouped with those of nuclear facilities, driving up costs. Kaiser-Hill was interested in applying a commercial model to demolition of these facilities and wanted to apply necessary and sufficient standards to the work activities, but avoid applying unnecessary requirements. Faced with demolishing hundreds of uncontaminated or non-radiologically contaminated facilities, Kaiser-Hill has developed a subcontracting strategy to drastically reduce the cost of demolishing these facilities at Rockymore » Flats. Aiming to tailor the demolition approach of such facilities to more closely follow commercial practices, Kaiser-Hill recently released a Request for Proposals (RFP) for the demolition of the site's former central administration facility. The RFP significantly reduced requirements for compliance with specific DOE directives. Instead, the RFP required subcontractors to comply with health and safety requirements commonly found in the demolition of similar facilities in a commercial setting. This resulted in a number of bids from companies who have normally not bid on DOE work previously and at a reduced cost over previous approaches. This paper will discuss the details of this subcontracting strategy.« less

  19. 30 CFR 285.911 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false [Reserved] 285.911 Section 285.911 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR... Decommissioning Facility Removal § 285.911 [Reserved] Decommissioning Report ...

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, P. T.; Webb, J. R.; Knox, N. P.

    The 664 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the twelfth in a series of reports prepared annually for the US Department of Energy Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy Remedial Action Programs. Major sections are (1) Decontamination and Decommissioning Program, (2) Nuclear Facilities Decommissioning, (3)more » Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects, analyzes, and disseminates information on environmental restoration and remedial actions. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at FTS 624-7764 or (615) 574-7764.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goins, L.F.; Webb, J.R.; Cravens, C.D.

    This publication contains 1035 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. These citations constitute the thirteenth in a series of reports prepared annually for the US Department of Energy (DOE) Environmental Restoration programs. Citations to foreign and domestic literature of all types. There are 13 major sections of the publication, including: (1) DOE Decontamination and Decommissioning Program; (2) Nuclear Facilities Decommissioning; (3) DOE Formerly Utilized Sites Remedial Action Program; (4) DOE Uranium Mill Tailings Remedial Action Project; (5) Uranium Mill Tailings Management; (6) DOE Environmental Restoration Program; (7) DOE Site-Specific Remedialmore » Actions; (8) Contaminated Site Restoration; (9) Remediation of Contaminated Soil and Groundwater; (10) Environmental Data Measurements, Management, and Evaluation; (11) Remedial Action Assessment and Decision-Making; (12) Technology Development and Evaluation; and (13) Environmental and Waste Management Issues. Bibliographic references are arranged in nine subject categories by geographic location and then alphabetically by first author, corporate affiliation, or publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word.« less

  2. Decommissioning of eight surplus production reactors at the Hanford Site, Richland, Washington. Addendum (Final Environmental Impact Statement)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-12-01

    The first section of this volume summarizes the content of the draft environmental impact statement (DEIS) and this Addendum, which together constitute the final environmental impact statement (FEIS) prepared on the decommissioning of eight surplus plutonium production reactors at Hanford. The FEIS consists of two volumes. The first volume is the DEIS as written. The second volume (this Addendum) consists of a summary; Chapter 9, which contains comments on the DEIS and provides DOE`s responses to the comments; Appendix F, which provides additional health effects information; Appendix K, which contains costs of decommissioning in 1990 dollars; Appendix L, which containsmore » additional graphite leaching data; Appendix M, which contains a discussion of accident scenarios; Appendix N, which contains errata; and Appendix 0, which contains reproductions of the letters, transcripts, and exhibits that constitute the record for the public comment period.« less

  3. Health Facilities

    MedlinePlus

    Health facilities are places that provide health care. They include hospitals, clinics, outpatient care centers, and specialized care centers, ... psychiatric care centers. When you choose a health facility, you might want to consider How close it ...

  4. 30 CFR 250.1006 - How must I decommission and take out of service a DOI pipeline?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... a DOI pipeline? 250.1006 Section 250.1006 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT... out of service a DOI pipeline? (a) The requirements for decommissioning pipelines are listed in § 250.1750 through § 250.1754. (b) The table in this section lists the requirements if you take a DOI...

  5. Long-term care survey reveals challenges. Facilities grapple with five broad issues, including changes in leadership and AIDS.

    PubMed

    Westhoff, L J; Schaefer, J C

    1993-05-01

    The Catholic Health Association's 1992 survey of Catholic long-term care (LTC) facilities identified five broad issues LTC facilities face in the 1990s: leadership, system affiliation, community programs, resident issues, and care of persons with AIDS. The transition to lay leadership presents new challenges to the relationship between LTC facilities and their sponsors. Despite the dominance of religious sponsors, an increasing number of laypersons are serving as healthcare administrators both in long-term and acute care. Thirty percent of respondents reported being affiliated with a multi-institutional system. This percentage has changed little in the past few years, although the number of facilities that are system members continues to increase at the fastest rate of any type of LTC facility. Only 27 percent of survey respondents said they provide educational or informational programs for persons in their communities. Thirty-nine percent of system-affiliated LTC facilities reported offering such programs. One encouraging finding shows that 80 percent of facilities have written policies for living wills, 64 percent for designated proxy, and 86 percent for durable power of attorney for healthcare. LTC providers are struggling to determine their role in caring for persons with HIV and AIDS. Only 3.6 percent of respondents care for residents with AIDS. A major problem LTC administrators face is a fear of potential infection of staff or residents.

  6. Gas-Grain Simulation Facility (GGSF). Volume 1: Stage 1 facility definition studies

    NASA Technical Reports Server (NTRS)

    Gat, Nahum

    1993-01-01

    The Gas-Grain Simulation Facility (GGSF) is a facility-type payload to be included in the Space Station Freedom (SSF). The GGSF is a multidisciplinary facility that will accommodate several classes of experiments, including exobiology, planetary science, atmospheric science, and astrophysics. The physical mechanisms envisioned to be investigated include crystal growth, aggregation, nucleation, coagulation, condensation, collisions, fractal growth, cycles of freezing and evaporation, scavenging, longevity of bacteria, and more. TRW performed a Phase A study that included analyses of the science and technical (S&T) requirements, the development of facility functional requirements, and a conceptual design of the facility. The work that was performed under Stage 1 of the Phase A study and the results to date are summarized. In this stage, facility definition studies were conducted in sufficient detail to establish the technical feasibility of the candidate strawman experiments. The studies identified technical difficulties, identified required facility subsystems, surveyed existing technology studies and established preliminary facility weight, volume, power consumption, data systems, interface definition, and crew time requirements. The results of this study served as the basis for Stage 2 of the Phase A study in which a conceptual design and a reference design were performed. The results also served as a basis for a related study for a Gas-Grain Simulation Experiment Module (GGSEM), which is an apparatus intended to perform a subset of the GGSF experiments on board a low-Earth-orbiting platform.

  7. Web-based training course for evaluating radiological dose assessment in NRC's license termination process.

    PubMed

    Lepoire, D; Richmond, P; Cheng, J-J; Kamboj, S; Arnish, J; Chen, S Y; Barr, C; McKenney, C

    2008-08-01

    As part of the requirement for terminating the licenses of nuclear power plants or other nuclear facilities, license termination plans or decommissioning plans are submitted by the licensee to the U.S. Nuclear Regulatory Commission (NRC) for review and approval. Decommissioning plans generally refer to the decommissioning of nonreactor facilities, while license termination plans specifically refer to the decommissioning of nuclear reactor facilities. To provide a uniform and consistent review of dose modeling aspects of these plans and to address NRC-wide knowledge management issues, the NRC, in 2006, commissioned Argonne National Laboratory to develop a Web-based training course on reviewing radiological dose assessments for license termination. The course, which had first been developed in 2005 to target specific aspects of the review processes for license termination plans and decommissioning plans, evolved from a live classroom course into a Web-based training course in 2006. The objective of the Web-based training course is to train NRC staff members (who have various relevant job functions and are located at headquarters, regional offices, and site locations) to conduct an effective review of dose modeling in accordance with the latest NRC guidance, including NUREG-1757, Volumes 1 and 2. The exact size of the staff population who will receive the training has not yet been accurately determined but will depend on various factors such as the decommissioning activities at the NRC. This Web-based training course is designed to give NRC staff members modern, flexible access to training. To this end, the course is divided into 16 modules: 9 core modules that deal with basic topics, and 7 advanced modules that deal with complex issues or job-specific topics. The core and advanced modules are tailored to various NRC staff members with different job functions. The Web-based system uses the commercially available software Articulate, which incorporates audio, video

  8. Indoor Athletic Facilities.

    ERIC Educational Resources Information Center

    Fleming, E. Scott

    2000-01-01

    Examines the concept of shared-use facilities to help financially support and meet the demand for athletic facilities. Shared-use considerations are explored including cost sharing of ongoing operations, aesthetics, locker rooms, support facilities, parking and site access, and building access and security. (GR)

  9. 30 CFR 250.1006 - How must I decommission and take out of service a DOI pipeline?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... a DOI pipeline? 250.1006 Section 250.1006 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT... and Pipeline Rights-of-Way § 250.1006 How must I decommission and take out of service a DOI pipeline...) The table in this section lists the requirements if you take a DOI pipeline out of service: If you...

  10. Determination of gross alpha and gross beta in soil around repository facility at Bukit Kledang, Perak, Malaysia

    NASA Astrophysics Data System (ADS)

    Adziz, Mohd Izwan Abdul; Siong, Khoo Kok

    2018-04-01

    Recently, the Long Term Storage Facility (LTSF) in Bukit Kledang, Perak, Malaysia, has been upgraded to repository facility upon the completion of decontamination and decommissioning (D&D) process. Thorium waste and contaminated material that may contain some minor amounts of thorium hydroxide were disposed in this facility. This study is conducted to determine the concentrations of gross alpha and gross beta radioactivities in soil samples collected around the repository facility. A total of 12 soil samples were collected consisting 10 samples from around the facility and 2 samples from selected residential area near the facility. In addition, the respective dose rates were measured 5 cm and 1 m above the ground by using survey meter with Geiger Muller (GM) detector and Sodium Iodide (NaI) detector. Soil samples were collected using hand auger and then were taken back to the laboratory for further analysis. Samples were cleaned, dried, pulverized and sieved prior to analysis. Gross alpha and gross beta activity measurements were carried out using gas flow proportional counter, Canberra Series 5 XLB - Automatic Low Background Alpha and Beta Counting System. The obtained results show that, the gross alpha and gross beta activity concentration ranged from 1.55 to 5.34 Bq/g with a mean value of 3.47 ± 0.09 Bq/g and 1.64 to 5.78 Bq/g with a mean value of 3.49 ± 0.09 Bq/g, respectively. These results can be used as an additional data to represent terrestrial radioactivity baseline data for Malaysia environment. This estimation will also serve as baseline for detection of any future related activities of contamination especially around the repository facility area.

  11. Method for assessment of stormwater treatment facilities - Synthetic road runoff addition including micro-pollutants and tracer.

    PubMed

    Cederkvist, Karin; Jensen, Marina B; Holm, Peter E

    2017-08-01

    Stormwater treatment facilities (STFs) are becoming increasingly widespread but knowledge on their performance is limited. This is due to difficulties in obtaining representative samples during storm events and documenting removal of the broad range of contaminants found in stormwater runoff. This paper presents a method to evaluate STFs by addition of synthetic runoff with representative concentrations of contaminant species, including the use of tracer for correction of removal rates for losses not caused by the STF. A list of organic and inorganic contaminant species, including trace elements representative of runoff from roads is suggested, as well as relevant concentration ranges. The method was used for adding contaminants to three different STFs including a curbstone extension with filter soil, a dual porosity filter, and six different permeable pavements. Evaluation of the method showed that it is possible to add a well-defined mixture of contaminants despite different field conditions by having a flexibly system, mixing different stock-solutions on site, and use bromide tracer for correction of outlet concentrations. Bromide recovery ranged from only 12% in one of the permeable pavements to 97% in the dual porosity filter, stressing the importance of including a conservative tracer for correction of contaminant retention values. The method is considered useful in future treatment performance testing of STFs. The observed performance of the STFs is presented in coming papers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. 10 CFR 40.42 - Expiration and termination of licenses and decommissioning of sites and separate buildings or...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Expiration and termination of licenses and decommissioning of sites and separate buildings or outdoor areas. 40.42 Section 40.42 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF SOURCE MATERIAL Licenses § 40.42 Expiration and termination of licenses and...

  13. 10 CFR 70.38 - Expiration and termination of licenses and decommissioning of sites and separate buildings or...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... increase potential health and safety impacts to workers or to the public, such as in any of the following... provided by Commission Order. (c) Each specific license continues in effect, beyond the expiration date if... licensee shall maintain in effect all decommissioning financial assurances established by the licensee...

  14. 10 CFR 40.42 - Expiration and termination of licenses and decommissioning of sites and separate buildings or...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Expiration and termination of licenses and decommissioning of sites and separate buildings or outdoor areas. 40.42 Section 40.42 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF SOURCE MATERIAL Licenses § 40.42 Expiration and termination of licenses and...

  15. 10 CFR 40.42 - Expiration and termination of licenses and decommissioning of sites and separate buildings or...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Expiration and termination of licenses and decommissioning of sites and separate buildings or outdoor areas. 40.42 Section 40.42 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF SOURCE MATERIAL Licenses § 40.42 Expiration and termination of licenses and...

  16. 10 CFR 40.42 - Expiration and termination of licenses and decommissioning of sites and separate buildings or...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Expiration and termination of licenses and decommissioning of sites and separate buildings or outdoor areas. 40.42 Section 40.42 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF SOURCE MATERIAL Licenses § 40.42 Expiration and termination of licenses and...

  17. 10 CFR 40.42 - Expiration and termination of licenses and decommissioning of sites and separate buildings or...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Expiration and termination of licenses and decommissioning of sites and separate buildings or outdoor areas. 40.42 Section 40.42 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF SOURCE MATERIAL Licenses § 40.42 Expiration and termination of licenses and...

  18. 10 CFR 72.54 - Expiration and termination of licenses and decommissioning of sites and separate buildings or...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... conduct of decommissioning operations and presents no undue risk from radiation to the public health and... final radiation survey; and (5) An updated detailed cost estimate for the chosen alternative for... accordance with the regulations in this chapter, and will not be inimical to the common defense and security...

  19. 10 CFR 30.36 - Expiration and termination of licenses and decommissioning of sites and separate buildings or...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Expiration and termination of licenses and decommissioning of sites and separate buildings or outdoor areas. 30.36 Section 30.36 Energy NUCLEAR REGULATORY... section if the Commission determines that the alternative schedule is necessary to the effective conduct...

  20. 77 FR 23275 - Notice of Availability of the Draft enXco Desert Harvest Solar Farm Project Environmental Impact...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-18

    ...-way (ROW) authorization to construct, operate, maintain, and decommission a solar photovoltaic (PV... grant to construct, operate, and decommission a solar PV facility on public lands in compliance with... CACA49491] Notice of Availability of the Draft enXco Desert Harvest Solar Farm Project Environmental Impact...

  1. 75 FR 36505 - Notice of Public Webinar To Discuss the Applicability of 10 CFR 73.55 Requirements to Part 50...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-28

    ... (March 27, 2009; 74 FR 13925) and the other stakeholders. The purpose of this Webinar is to discuss the applicability of those security requirements to licensees with facilities in decommissioning or decommissioned... Security and Incident Response, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001; e-mail...

  2. FEDERAL FACILITIES IN EPA REGION 6

    EPA Science Inventory

    Locations of federal facilities in EPA Region 6. Facilities from the Corps of Engineers, Veterans Administration, Army, Navy, Air National Guard, etc. are included. This is not a complete set of facilities. The facilities included are only those with value added locations used in...

  3. 76 FR 29240 - Environmental Impacts Statements; Notice of Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-20

    ...-283-7681. EIS No. 20110150, Final EIS, DOE, ID, ADOPTION--Areva Eagle Rock Enrichment Facility... Uranium Enrichment Facility, Construction, Operation, and Decommission, License Issuance, Piketon, OH...

  4. 78 FR 17224 - Environmental Impact Statement; Proposed South Puget Sound Prairie Habitat Conservation Plan...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-20

    ... operation of solid waste facilities; permitting and monitoring of wells, septic systems, and decommissioning of home oil tanks; maintenance and monitoring of water resources and associated facilities...

  5. Final Status Survey for the Largest Decommissioning Project on Earth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubiel, R.W.; Miller, J.; Quayle, D.

    2006-07-01

    To assist the United States Department of Energy's (US DOE's) re-industrialization efforts at its gaseous diffusion site in Oak Ridge, Tennessee, known as the East Tennessee Technology Park (ETTP), the US DOE awarded a 6-year Decontamination and Decommissioning (D and D) contract to BNG America (formerly BNFL Inc.) in 1997. The ETTP 3-Building D and D Project included the removal and disposition of the materials and equipment from the K-33, K-31, and K-29 Gaseous Diffusion Plant buildings. The three buildings comprise more than 4.8 million square feet (446,000 square meters) of floor surface area and more than 350 million poundsmore » (148 million kilograms) of hazardous and radioactively contaminated material, making it the largest nuclear D and D project in progress anywhere in the world. The logistical hurdles involved in a project of this scope and magnitude required an extensive amount of Engineering and Health Physics professionals. In order to accomplish the Final Status Survey (FSS) for a project of this scope, the speed and efficiency of automated survey equipment was essential. Surveys of floors, structural steel and ceilings up to 60 feet (18 meters) were required. The FSS had to be expanded to include additional remediation and surveys due to characterization surveys and assumptions regarding the nature and extent of contamination provided by the US DOE. Survey design and technical bases had to consider highly variable constituents; including uranium from depleted to low enrichment, variable levels of Technetium-99 and transuranic nuclides, which were introduced into the cascade during the 1960's when recycled uranium (RU) from Savannah River was re-enriched at the facility. The RU was transported to unexpected locations from leaks in the cascade by complex building ventilation patterns. The primary survey tool used for the post remediation and FSS was the Surface Contamination Monitor (SCM) and the associated Survey Information Management System

  6. Site environmental report for Calendar Year 1994 on radiological and nonradiological parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-06-30

    Battelle Memorial Institute`s nuclear research facilities are currently being maintained in a surveillance and maintenance (S&M) mode with continual decontamination and decommissioning (D&D) activities being conducted under Department of Energy (DOE) Contract W-7405-ENG-92. These activities are referred to under the Contract as the Battelle Columbus Laboratories Decommissioning Project (BCLDP). Operations referenced in this report are performed in support of S&M and D&D activities. Battelle`s King Avenue facility is not considered in this report to the extent that the West Jefferson facility is. The source term at the King Avenue site is a small fraction of the source term at themore » West Jefferson site. Off site levels of radionuclides that could be attributed to the west Jefferson and King Avenue nuclear operations wereindistinguishable from background levels at specific locations where air, water, and direct radiation measurements were performed. Environmental monitoring continued to demonstrate compliance by Battelle with federal, state and local regulations. Routine, nonradiological activities performed include monitoring liquid effluents and monitoring the ground water system for the West Jefferson North site. Samples of various environmental media including air, water, grass, fish, field and garden crops, sediment and soil were collected from the region surrounding the two sites and analyzed.« less

  7. 77 FR 14360 - Environmental Impacts Statements; Notice of Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    ... Global Laser Enrichment LLC Facility, Issuance of License to Construct, Operate, and Decommission a Laser-Based Uranium Enrichment Facility, Wilmington, NC, Review Period Ends: 04/09/2012, Contact: Jennifer A...

  8. Prevalence of Staphylococcus, including Methicillin-Resistant Staphylococcus aureus, in a Physical Therapy Education Facility.

    PubMed

    Dhagat, Priya V; Gibbs, Karen A; Rohde, Rodney E

    2015-01-01

    The purpose of this study was to assess the prevalence of Staphylococcus species, including methicillin-resistant Staphylococcus aureus (MRSA), in a physical therapy (PT) education facility. The PT laboratory classrooms were routinely used by graduate PT students and faculty, undergraduate anatomy students, and licensed practitioners for continuing education purposes. A total of 88 swab samples were collected from plinths and other equipment and plated onto mannitol salt agar (MSA). Suspected S. aureus colonies were confirmed by Staphyloslide latex testing. S. aureus isolates were plated to HardyCHROM agar to identify MRSA. VITEK antibiotic susceptibility testing confirmed MRSA isolates. Forty-seven samples showed growth (47/88, 53%), and 7 tested positive for S. aureus (7/47, 15%). Of those 7, one demonstrated oxacillin resistance and was confirmed as MRSA (1/7, 2%). Remaining samples grew other species of Staphylococcus and gram-negative bacilli. Given high classroom utilization, staphylococci environmental prevalence would be expected. However, the presence of MRSA was unexpected. Results demonstrate the potential for easily transmissible and potentially harmful organisms to be present in multi-use classrooms utilized by health professions students where frequent skin-to-skin contact occurs. Strict, routine cleaning of plinths and other equipment is imperative in reducing exposure risk.

  9. A Multidisciplinary Paradigm and Approach to Protecting Human Health and the Environment, Society, and Stakeholders at Nuclear Facilities - 12244

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burger, Joanna; Environmental and Occupational Health Sciences Institute, Piscataway, NJ; Gochfeld, Michael

    2012-07-01

    As the Department of Energy (DOE) continues to remediate its lands, and to consider moving toward long-term stewardship and the development of energy parks on its industrial, remediated land, it is essential to adequately characterize the environment around such facilities to protect society, human health, and the environment. While DOE sites re considering several different land-use scenarios, all of them require adequate protection of the environment. Even if DOE lands are developed for energy parks that are mainly for industrializes sections of DOE lands that will not be remediated to residential standards, there is still the need to consider themore » protection of human health and the environment. We present an approach to characterization and establishment of teams that will gather the information, and integrate that information for a full range of stakeholders from technical personnel, to public policy makers, and that public. Such information is needed to establish baselines, site new energy facilities in energy parks, protect existing nuclear facilities and nuclear wastes, improve the basis for emergency planning, devise suitable monitoring schemes to ensure continued protection, provide data to track local and regional response changes, and for mitigation, remediation and decommissioning planning. We suggest that there are five categories of information or data needs, including 1) geophysical, sources, fate and transport, 2) biological systems, 3) human health, 4) stakeholder and environmental justice, and 5) societal, economic, and political. These informational needs are more expansive than the traditional site characterization, but encompass a suite of physical, biological, and societal needs to protect all aspects of human health and the environment, not just physical health. We suggest a Site Committee be established that oversees technical teams for each of the major informational categories, with appropriate representation among teams and with a

  10. Decommissioning and Dismantling of the Floating Maintenance Base 'Lepse' - 13316

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, D.; Mizen, K.

    The Lepse was built in Russia in 1934 and commissioned as a dry cargo ship. In 1961 she was re-equipped for use as a nuclear service ship (NSS), specifically a floating maintenance base (FMB), to support the operation of the civilian nuclear fleet (ice-breakers) of the USSR. In 1988 Lepse was taken out of service and in 1990 she was re-classified as a 'berth connected ship', located at a berth near the port of Murmansk under the ownership of Federal State Unitary Enterprise (FSUE) Atomflot. Lepse has special storage facilities for spent nuclear fuel assemblies (SFA) that have been usedmore » to store several hundred SFAs for nearly 40 years. High and intermediate-level liquid radioactive waste (LRW) is also present in the spent nuclear fuel assembly storage channels, in special tanks and also in the SFA cooling circuit. Many of the SFAs stored in Lepse are classified as damaged and cannot be removed using standard procedures. The removal of the SFA and LRW from the Lepse storage facilities is a hazardous task and requires specially designed tools, equipment and an infrastructure in which these can be deployed safely. Lepse is a significant environmental hazard in the North West of Russia. Storing spent nuclear fuel and high-level liquid radioactive waste on board Lepse in the current conditions is not acceptable with respect to Russian Federation health, safety and environmental standards and with international best practice. The approved concept design for the removal of the SFA and LRW and dismantling of Lepse requires that the ship be transported to Nerpa shipyard where specialist infrastructure will be constructed and equipment installed. One of the main complexities of the Project lies within the number of interested stakeholders involved in the Project. The Lepse project has been high focus on the international stage for many years with previous international efforts failing to make significant progress towards the objective of decommissioning Lepse. The

  11. Facilities Engineering in NASA

    NASA Technical Reports Server (NTRS)

    Pagluiso, M. A.

    1970-01-01

    An overview of NASA facilities is given outlining some of the more interesting and unique aspects of engineering and facilities associated with the space program. Outlined are some of the policies under which the Office of Facilities conducts its business. Included are environmental quality control measures.

  12. INCINERATION RESEARCH FACILITY

    EPA Science Inventory

    The Cincinnati-based Risk Reduction Engineering Laboratory, ORD, U.S. EPA operates the Incineration Research Facility *IRF) in Jefferson, Arkansas. This facility's pilot-scale experimental incineration systems include a Rotary Kiln System and a Liquid Injection System. Each syste...

  13. Decontamination and decommissioning of the BORAX-V leach pond. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, D.L.

    1985-01-01

    This report describes the decontamination and decommissioning (D and D) of the BORAX-V leach pond located at the Idaho National Engineering Laboratory (INEL). The leach pond became radioactively contaminated from the periodic discharge of low-level liquid waste during operation of the Boiling Water Reactor Experiments (BORAX) from 1954 to 1964. This report describes work performed to accomplish the D and D objectives of stabilizing the leach pond and preventing the spread of contamination. D and D of the BORAX-V leach pond consisted to backfilling the pond with clean soil, grading and seeding the area, and erecting a permanent marker tomore » identify very low-level subsurface contamination.« less

  14. Hg soil pollution around a decommissioned and unrestored Chlor-alkali plant: Jodar, Jaén province, SE Spain. Incidence in other environmental compartments.

    NASA Astrophysics Data System (ADS)

    López-Berdonces, Miguel Angel; María Esbrí, José; Lorenzo, Saturnino; Higueras, Pablo

    2014-05-01

    level for aquatic life. Atmospheric mercury levels registered on the study area were much lower than most restrictive levels for chronic exposure. The area of influence of the facility (in terms of mercury content in air) was restricted to distances between 100 and 200 meters, depending on meteorological conditions. Main conclusions of this research work are the following: i) The Jódar decommissioned chlor-alkali plant is still a mercury source 20 years after its cease of activities without any reclamation measures; ii) The activity of the plant has produced an important dissemination of mercury in the surrounding environment; and iii) The corresponding pollution levels, in particular in soils, may suppose a risk to the main crops of the area (olive trees).

  15. Special Analysis: 2016-001 Analysis of the Potential Under-Reporting of Am-241 Inventory for Nitrate Salt Waste at Area G

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, Shaoping; Stauffer, Philip H.; Birdsell, Kay Hanson

    The Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Operational waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research. Environmental restoration (ER), and decontamination and decommissioning (D&D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility.

  16. 75 FR 34219 - Revision of Fee Schedules; Fee Recovery for FY 2010

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-16

    ....8 $6.3 $7.5 Spent Fuel Storage/Reactor Decommissioning..... -- -- 2.7 0.2 0.2 Test and Research... 2009 fee is also shown for comparative purposes. Table V--Rebaselined Annual Fees FY2009 Annual FY 2010... Decommissioning Test and Research Reactors (Non-power 87,600 81,700 Reactors) High Enriched Uranium Fuel Facility...

  17. Solving the competitive facility location problem considering the reactions of competitor with a hybrid algorithm including Tabu Search and exact method

    NASA Astrophysics Data System (ADS)

    Bagherinejad, Jafar; Niknam, Azar

    2018-03-01

    In this paper, a leader-follower competitive facility location problem considering the reactions of the competitors is studied. A model for locating new facilities and determining levels of quality for the facilities of the leader firm is proposed. Moreover, changes in the location and quality of existing facilities in a competitive market where a competitor offers the same goods or services are taken into account. The competitor could react by opening new facilities, closing existing ones, and adjusting the quality levels of its existing facilities. The market share, captured by each facility, depends on its distance to customer and its quality that is calculated based on the probabilistic Huff's model. Each firm aims to maximize its profit subject to constraints on quality levels and budget of setting up new facilities. This problem is formulated as a bi-level mixed integer non-linear model. The model is solved using a combination of Tabu Search with an exact method. The performance of the proposed algorithm is compared with an upper bound that is achieved by applying Karush-Kuhn-Tucker conditions. Computational results show that our algorithm finds near the upper bound solutions in a reasonable time.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, L.T.; Hickey, M.

    This paper summarizes the progress to date by CH2M HILL and the UKAEA in development of a parametric modelling capability for estimating the costs of large nuclear decommissioning projects in the United Kingdom (UK) and Europe. The ability to successfully apply parametric cost estimating techniques will be a key factor to commercial success in the UK and European multi-billion dollar waste management, decommissioning and environmental restoration markets. The most useful parametric models will be those that incorporate individual components representing major elements of work: reactor decommissioning, fuel cycle facility decommissioning, waste management facility decommissioning and environmental restoration. Models must bemore » sufficiently robust to estimate indirect costs and overheads, permit pricing analysis and adjustment, and accommodate the intricacies of international monetary exchange, currency fluctuations and contingency. The development of a parametric cost estimating capability is also a key component in building a forward estimating strategy. The forward estimating strategy will enable the preparation of accurate and cost-effective out-year estimates, even when work scope is poorly defined or as yet indeterminate. Preparation of cost estimates for work outside the organizations current sites, for which detailed measurement is not possible and historical cost data does not exist, will also be facilitated. (authors)« less

  19. Redeployment as an alternative to decommissioning. Conversion of a US Department of Energy facility to fish rearing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, B.N.; Herborn, D.I.

    1994-03-01

    The Hanford Site and the Tri-Cities community have before them an unprecedented opportunity to create an economic renaissance based on the unparalleled environmental cleanup mission. The nation and the world await the emergence of the post-Cold War economy and conversion of the national defense complex into new national economic thrusts. The legacy of the Hanford Site national defense mission must not end up simply with the Site being cleaned up and land being restored to near-original conditions. There also needs to be a future economic legacy of a dynamic Tri-Cities community resulting from the cumulative current activities that will havemore » a positive impact for years to come. In anticipation of the eventual completion of the Hanford Site cleanup mission, the US Department of Energy (DOE) has established the Office of Economic Transition to identify and implement policies and actions that will support the cleanup mission of the Site and the long-term economic development of the Tri-Cities area. In the future, it is envisioned that one phase of a vibrant regional economy with a diversified economic job base will be the capability to compete in national and international environmental services markets. Recently, it was realized that the K Area water treatments facilities might be suitable for the rearing of fish. A `marketing` effort was undertaken to match the facility with potential users. At this time, four fish-rearing projects have either been conducted or are in various stages of progress or implementation. These will be described to explain the participants, the purposes, and the scope of each project.« less

  20. Facilities for US Radioastronomy.

    ERIC Educational Resources Information Center

    Thaddeus, Patrick

    1982-01-01

    Discusses major developments in radioastronomy since 1945. Topics include proposed facilities, very-long-baseline interferometric array, millimeter-wave telescope, submillimeter-wave telescope, and funding for radioastronomy facilities and projects. (JN)

  1. Dismantling of Highly Contaminated Process Installations of the German Reprocessing Facility (WAK) - Status of New Remote Handling Technology - 13287

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dux, Joachim; Friedrich, Daniel; Lutz, Werner

    2013-07-01

    Decommissioning and dismantling of the former German Pilot Reprocessing Plant Karlsruhe (WAK) including the Vitrification Facility (VEK) is being executed in different Project steps related to the reprocessing, HLLW storage and vitrification complexes /1/. While inside the reprocessing building the total inventory of process equipment has already been dismantled and disposed of, the HLLW storage and vitrification complex has been placed out of operation since vitrification and tank rinsing procedures where finalized in year 2010. This paper describes the progress made in dismantling of the shielded boxes of the highly contaminated laboratory as a precondition to get access to themore » hot cells of the HLLW storage. The major challenges of the dismantling of this laboratory were the high dose rates up to 700 mSv/h and the locking technology for the removal of the hot cell installations. In parallel extensive prototype testing of different carrier systems and power manipulators to be applied to dismantle the HLLW-tanks and other hot cell equipment is ongoing. First experiences with the new manipulator carrier system and a new master slave manipulator with force reflection will be reported. (authors)« less

  2. Alternatives evaluation and decommissioning study on shielded transfer tanks at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeVore, J.R.; Hinton, R.R.

    1994-08-01

    The shielded transfer tanks (STTs) are five obsolete cylindrical shipping casks which were used to transport high specific activity radioactive solutions by rail during the 1960s and early 1970s. The STTs are currently stored at the Oak Ridge National Laboratory under a shed roof. This report is an evaluation to determine the preferred alternative for the final disposition of the five STTs. The decommissioning alternatives assessed include: (1) the no action alternative to leave the STTs in their present location with continued surveillance and maintenance; (2) solidification of contents within the tanks and holding the STTs in long term retrievablemore » storage; (3) sale of one or more of the used STTs to private industry for use at their treatment facility with the remaining STTs processed as in Alternative 4; and (4) removal of tank contents for de-watering/retrievable storage, limited decontamination to meet acceptance criteria, smelting the STTs to recycle the metal through the DOE contaminated scrap metal program, and returning the shielding lead to the ORNL lead recovery program because the smelting contractor cannot reprocess the lead. To completely evaluate the alternatives for the disposition of the STTs, the contents of the tanks must be characterized. Shielding and handling requirements, risk considerations, and waste acceptance criteria all require that the radioactive inventory and free liquids residual in the STTs be known. Because characterization of the STT contents in the field was not input into a computer model to predict the probable inventory and amount of free liquid. The four alternatives considered were subjected to a numerical scoring procedure. Alternative 4, smelting the STTs to recycle the metal after removal/de-watering of the tank contents, had the highest score and is, therefore, recommended as the preferred alternative. However, if a buyer for one or more STT could be found, it is recommended that Alternative 3 be reconsidered.« less

  3. Evaluation of Maximum Radionuclide Groundwater Concentrations for Basement Fill Model. Zion Station Restoration Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, T.

    2016-05-20

    ZionSolutions is in the process of decommissioning the Zion Nuclear Power Station (ZNPS). After decommissioning is completed, the site will contain two reactor Containment Buildings, the Fuel Handling Building and Transfer Canals, Auxiliary Building, Turbine Building, Crib House/Forebay, and a Waste Water Treatment Facility that have been demolished to a depth of 3 feet below grade. Additional below ground structures remaining will include the Main Steam Tunnels and large diameter intake and discharge pipes. These additional structures are not included in the modeling described in this report, but the inventory remaining (expected to be very low) will be included withmore » one of the structures that are modeled as designated in the Zion Station Restoration Project (ZSRP) License Termination Plan (LTP). The remaining underground structures will be backfilled with clean material. The final selection of fill material has not been made.« less

  4. An overview of ALARA considerations during Yankee Atomic`s Component Removal Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granados, B.; Babineau, G.; Colby, B.

    1995-03-01

    In Februrary 1992, Yankee Atomic Electric Company (YAEC) permanently shutdown Yankee Nuclear Power Station in Rowe, Massachusetts, after thirty-two years of efficient operation. Yankee`s plan decommissioning is to defer dismantlement until a low level radioactive waste (LLRW) disposal facility is available. The plant will be maintained in a safe storage condition until a firm contract for the disposal of LLRW generated during decommissioning can be secured. Limited access to a LLRW disposal facility may occur during the safe storage period. Yankee intends to use these opportunities to remove components and structures. A Component Removal Project (CRP) was initiated in 1993more » to take advantage of one of these opportunities. A Componenet Removal Project (CRP) was initiated in 1993 to take advantage of one of these opportunities. The CRP includes removal of four steam generators, the pressurizer, and segmentation of reactor vessel internals and preparation of LLRW for shipment and disposal at Chem-Nuclear`s Barnwell, South Carolina facility. The CRP is projected to be completed by June 1994 at an estimated total worker exposure of less than 160 person-rem.« less

  5. Effects of road decommissioning on carbon stocks, losses, and emissions in north coastal California

    USGS Publications Warehouse

    Madej, Mary Ann; Seney, Joseph; van Mantgem, Philip

    2013-01-01

    During the last 3 decades, many road removal projects have been implemented on public and private lands in the United States to reduce erosion and other impacts from abandoned or unmaintained forest roads. Although effective in decreasing sediment production from roads, such activities have a carbon (C) cost as well as representing a carbon savings for an ecosystem. We assessed the carbon budget implications of 30 years of road decommissioning in Redwood National Park in north coastal California. Road restoration techniques, which evolved during the program, were associated with various carbon costs and savings. Treatment of 425 km of logging roads from 1979 to 2009 saved 72,000 megagrams (Mg) C through on-site soil erosion prevention, revegetation, and soil development on formerly compacted roads. Carbon sequestration will increase in time as forests and soils develop more fully on the restored sites. The carbon cost for this road decommissioning work, based on heavy equipment and vehicle fuel emissions, short-term soil loss, and clearing of vegetation, was 23,000 Mg C, resulting in a net carbon savings of 49,000 Mg C to date. Nevertheless, the degree to which soil loss is a carbon sink or source in steep mountainous watersheds needs to be further examined. The ratio of carbon costs to savings will differ by ecosystem and road removal methodology, but the procedure outlined here to assess carbon budgets on restoration sites should be transferable to other systems.

  6. Site Environmental Report for Calendar Year 2005. DOE Operations at The Boeing Company, Santa Susana Field Laboratory, Area IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2006-09-30

    This annual report describes the environmental monitoring programs related to the Department of Energy’s (DOE) activities at the Santa Susana Field Laboratory (SSFL) facility located in Ventura County, California during 2005. Part of the SSFL facility, known as Area IV, had been used for DOE’s activities since the 1950s. A broad range of energy related research and development (R&D) projects, including nuclear technologies projects, was conducted at the site. All the nuclear R&D operations in Area IV ceased in 1988. Current efforts are directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and closure of facilities used formore » liquid metal research.« less

  7. Decommissioning of German Research Reactors Under the Governance of the Federal Ministry of Education and Research - 12154

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weigl, M.

    2012-07-01

    Since 1956, nuclear research and development (R and D) in Germany has been supported by the Federal Government. The goal was to help German industry to become competitive in all fields of nuclear technology. National research centers were established and demonstration plants were built. In the meantime, all these facilities were shut down and are now in a state of decommissioning and dismantling (D and D). Meanwhile, Germany is one of the leading countries in the world in the field of D and D. Two big demonstration plants, the Niederaichbach Nuclear Power Plant (KKN) a heavy-water cooled pressure tube reactormore » with carbon-dioxide cooling and the Karlstein Superheated Steam Reactor (HDR) a boiling light water reactor with a thermal power of 100 MW, are totally dismantled and 'green field' is reached. Another big project was finished in 2008. The Forschungs-Reaktor Juelich 1 (FRJ1), a research reactor with a thermal power of 10 MW was completely dismantled and in September 2008 an oak tree was planted on a green field at the site, where the FRJ1 was standing before. This is another example for German success in the field of D and D. Within these projects a lot of new solutions and innovative techniques were tested, which were developed at German universities and in small and medium sized companies mostly funded by the Federal Ministry of Education and Research (BMBF). Some examples are underwater-cutting technologies like plasma arc cutting and contact arc metal cutting. This clearly shows that research on the field of D and D is important for the future. Moreover, these research activities are important to save the know-how in nuclear engineering in Germany and will enable enterprises to compete on the increasing market of D and D services. The author assumes that an efficient decommissioning of nuclear installations will help stabilize the credibility of nuclear energy. Some critics of nuclear energy are insisting that a return to 'green field sites' is not

  8. Mars mission science operations facilities design

    NASA Technical Reports Server (NTRS)

    Norris, Jeffrey S.; Wales, Roxana; Powell, Mark W.; Backes, Paul G.; Steinke, Robert C.

    2002-01-01

    A variety of designs for Mars rover and lander science operations centers are discussed in this paper, beginning with a brief description of the Pathfinder science operations facility and its strengths and limitations. Particular attention is then paid to lessons learned in the design and use of operations facilities for a series of mission-like field tests of the FIDO prototype Mars rover. These lessons are then applied to a proposed science operations facilities design for the 2003 Mars Exploration Rover (MER) mission. Issues discussed include equipment selection, facilities layout, collaborative interfaces, scalability, and dual-purpose environments. The paper concludes with a discussion of advanced concepts for future mission operations centers, including collaborative immersive interfaces and distributed operations. This paper's intended audience includes operations facility and situation room designers and the users of these environments.

  9. 75 FR 9451 - Notice of Receipt and Availability of Environmental Report Supplement 2 for the Proposed GE...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-02

    ... Availability of Environmental Report Supplement 2 for the Proposed GE-Hitachi Global Laser Enrichment Laser- Based Uranium Enrichment Facility On January 13, 2009, GE-Hitachi Global Laser Enrichment, LLC (GLE) was..., operation, and decommissioning of a laser-based uranium enrichment facility. The proposed facility would be...

  10. Final state of the Strategic Petroleum Reserve (SPR) Weeks Island Mine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MOLECKE,MARTIN A.

    2000-02-01

    This report documents the decommissioning and abandonment activities at the Weeks Island Strategic Petroleum Reserve (SPR) site, Iberia Parish, Louisiana, that were concluded in 1999. These activities required about six years of intense operational, engineering, geotechnical, and management support efforts, following initiation of site abandonment plans in 1994. The Weeks Island SPR mine stored about 72.5 million bbl of crude oil following oil fill in 1980--1982, until November 1995, when the DOE initiated oil drawdown procedures, with brine refill and oil skimming, and numerous plugging and sealing activities. About 98% of the crude oil was recovered and transferred to othermore » SPR facilities in Louisiana and Texas; a small amount was also sold. This document summarizes recent pre- and post-closure: conditions of surface features at the site, including the sinkholes, the freeze wall, surface subsidence measurements and predictions; conditions within the SPR mine, including oil recovery, brine filling, and the Markel Wet Drift; risk assessment evaluations relevant to the decommissioning and long-term potential environmental impacts; continuing environmental monitoring activities at the site; and, an overview on the background and history of the Weeks Island SPR facility.« less

  11. FAST FLUX TEST FACILITY CONCEPTUAL FACILTY DESIGN DESCRIPTION FOR THE INERT GAS CELL EXAMINATION FACILITY NO. 71

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1968-12-12

    The purpose of this Conceptual Facility Design Description (CFDD) is to provide a technical description of the Inert Gas Cell Examination Facility such that agreement with RDT on a Conceptual Design can be reached . The CFDD also serves to establish a common understanding of the facility concept among all responsible FFTF Project parties including the Architect Engineer and Reactor Designer. Included are functions and design requirements, a physical description of the facility, safety considerations, principles of operation, and maintenance principles.

  12. Patient Care Staffing Levels and Facility Characteristics in U.S. Hemodialysis Facilities

    PubMed Central

    Yoder, Laura A. G.; Xin, Wenjun; Norris, Keith C.; Yan, Guofen

    2013-01-01

    Background Higher numbers of registered nurses per patient have been associated with improved patient outcomes in acute care facilities. Variation and associations of patient-care staffing levels and hemodialysis facility characteristics have not been previously examined. Study Design Cross-sectional study using Poisson regression to examine associations betwee patient-care staffing levels and hemodialysis facility characteristics. Setting & Participants 4,800 U.S. hemodialysis facilities in the 2009 CMS ESRD Annual Facility Survey (CMS-2744), USRDS. Predictors Facility characteristics, including profit status, freestanding status, chain affiliatio and geographic region, adjusted for facility size, capacity, functional type, and urbanicity. Outcomes Patient care staffing levels, including ratios of Registered Nurses (RN), Licensed Practical Nurses (LPN), Patient Care Technicians (PCT), composite staff (RN+LPN+PCT), Social Workers, and Dietitians to in-center hemodialysis patients. Results After adjusting for background facility characteristics, the ratios of RNs and LPNs to patients were 35% (p<0.001) and 42% (p<0.001) lower, but the PCT-to-patient ratio was 16% (p<0.001) higher in for-profit facilities than those in nonprofit facilities (Rate ratio, 0.65, 95%CI, 0.63–0.68; 0.58, 0.51–0.65; 1.16, 1.12–1.19; respectively). Regionally, compared to the Northeast, the adjusted RN-to-patient ratio was 14% (p< 0.001) lower in the Midwest, 25% (p< 0.001) lower in the South, and 18% (p< 0.001) lower in the West. Even after additional adjustments, the large for-profit chains had significantly lower RN and LPN ratios than the largest nonprofit chain, but a significantly higher PCT-to-patient ratio. The overall composite staffing levels were also lower in for-profit and chain-affiliated facilities. The patterns hold when the hospital-based units were excluded. Limitations Nursing hours were not available. Conclusions The significant variation in patient-care staffing

  13. 7 CFR 51.57 - Facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Facilities. 51.57 Section 51.57 Agriculture... Requirements for Plants Operating Under Continuous Inspection on A Contract Basis § 51.57 Facilities. Each packing plant shall be equipped with adequate sanitary facilities and accommodations, including but not...

  14. The Importance of Building and Enhancing Worldwide Industry Cooperation in the Areas of Radiological Protection, Waste Management and Decommissioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saint-Pierre, S.

    2006-07-01

    The slow or stagnant rate of nuclear power generation development in many developed countries over the last two decades has resulted in a significant shortage in the population of mid-career nuclear industry professionals. This shortage is even more pronounced in some specific areas of expertise such as radiological protection, waste management and decommissioning. This situation has occurred at a time when the renaissance of nuclear power and the globalization of the nuclear industry are steadily gaining momentum and when the industry's involvement in international and national debates in these three fields of expertise (and the industry's impact on these debates)more » is of vital importance. This paper presents the World Nuclear Association (WNA) approach to building and enhancing worldwide industry cooperation in radiological protection, waste management and decommissioning, which is manifested through the activities of the two WNA working groups on radiological protection (RPWG) and on waste management and decommissioning (WM and DWG). This paper also briefly describes the WNA's participatory role, as of summer 2005, in the International Atomic Energy Agency (IAEA) standard development committees on radiation safety (RASSC), waste safety (WASSC) and nuclear safety (NUSSC). This participation provides the worldwide nuclear industry with an opportunity to be part of IAEA's discussions on shaping changes to the control regime of IAEA safety standards. The review (and the prospect of a revision) of IAEA safety standards, which began in October 2005, makes this WNA participation and the industry ' s involvement at the national level timely and important. All of this excellent industry cooperation and team effort is done through 'collegial' exchanges between key industry experts, which help tackle important issues more effectively. The WNA is continuously looking to enhance its worldwide industry representation in these fields of expertise through the RPWG and WM

  15. A comparison of three erosion control mulches on decommissioned forest road corridors in the northern Rocky Mountains, United States

    Treesearch

    R. B. Foltz

    2012-01-01

    This study tested the erosion mitigation effectiveness of agricultural straw and two wood-based mulches for four years on decommissioned forest roads. Plots were installed on the loosely consolidated, bare soil to measure sediment production, mulch cover, and plant regrowth. The experimental design was a repeated measures, randomized block on two soil types common in...

  16. 44 CFR 331.5 - Production facilities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Production facilities. 331.5... AND FACILITIES IN LABOR SURPLUS AREAS § 331.5 Production facilities. All Federal departments and... production facilities, including expansion, to the extent that such selection is consistent with existing law...

  17. Get In and Get Out: Assessing Stream Sediment Loading from Short Duration Forest Harvest Operations and Rapid Haul Road Decommissioning.

    NASA Astrophysics Data System (ADS)

    Corrigan, A.; Silins, U.; Stone, M.

    2016-12-01

    Best management practices (BMPs) and associated erosion control measures for mitigating sediment impacts from forestry roads and road-stream crossings are well documented. While rapid road decommissioning after forestry operations may serve to limit broader impacts on sediment production in high value headwater streams, few studies have evaluated the combined effects of accelerated harvest operations and rapid retirement of logging roads and road-stream crossings on stream sediment. The objectives of this study were to evaluate the initial impacts of these strategies on fine sediment loading and fate during a short duration harvesting operation in 3 headwater sub-catchments in the southwestern Rocky Mountains of Alberta, Canada. A multi-pronged sampling approach (ISCOs, event focused grab sampling, continuous wash load sampling, and stream bed sediment intrusion measurements) was used to measure sediment loading and deposition in streambeds upstream and downstream of road-stream bridge crossings during harvest operations (2015) and after road and bridge crossing retirement (2016). Sediment production from forestry roads was generally much lower than has been reported from other studies in similar settings. Average total suspended solids (TSS) downstream of the bridge crossings were actually lower (-3.28 g/L; -0.704 g/L) than upstream of two bridge crossings while in-stream sediment sources contributed to elevated sediment downstream of a third road-stream crossing. Minimal in stream sediment impacts from forest harvest and road-stream crossings was likely a reflection of combined factors including a) employment of erosion control BMPs to roads and bridge crossings, b) rapid decommissioning of roads and crossings to limit exposure of linear land disturbance features, and c) drier El Niño climatic conditions during the study.

  18. EPA Facility Registry Service (FRS): Facility Interests Dataset

    EPA Pesticide Factsheets

    This web feature service consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are available in the FRS individual feature layers. The layers comprise the FRS major program databases, including:Assessment Cleanup and Redevelopment Exchange System (ACRES) : brownfields sites ; Air Facility System (AFS) : stationary sources of air pollution ; Air Quality System (AQS) : ambient air pollution data from monitoring stations; Bureau of Indian Affairs (BIA) : schools data on Indian land; Base Realignment and Closure (BRAC) facilities; Clean Air Markets Division Business System (CAMDBS) : market-based air pollution control programs; Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS) : hazardous waste sites; Integrated Compliance Information System (ICIS) : integrated enforcement and compliance information; National Compliance Database (NCDB) : Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Toxic Substances Control Act (TSCA); National Pollutant Discharge Elimination System (NPDES) module of ICIS : NPDES surface water permits; Radiation Information Database (RADINFO) : radiation and radioactivity facilities; RACT/BACT/LAER Clearinghouse (RBLC) : best available air pollution technology requirements; Resource Conservation and Recovery Act Information System (RCRAInfo) : tracks generators, transporters, treaters, storers, and disposers of haz

  19. Developing the Rehabilitation Facility Personnel Manual.

    ERIC Educational Resources Information Center

    Gilbertson, Alan D.

    This guide is intended to provide rehabilitation facilities with assistance in developing or improving their facility personnel manual, along with examples of what some rehabilitation facilities are including within their personnel manuals. The introduction to the guide discusses how a facility can begin the formulation of its personnel manual.…

  20. EPA Facility Registry Service (FRS): Facility Interests Dataset Download

    EPA Pesticide Factsheets

    This downloadable data package consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are available in the FRS individual feature layers. The layers comprise the FRS major program databases, including:Assessment Cleanup and Redevelopment Exchange System (ACRES) : brownfields sites ; Air Facility System (AFS) : stationary sources of air pollution ; Air Quality System (AQS) : ambient air pollution data from monitoring stations; Bureau of Indian Affairs (BIA) : schools data on Indian land; Base Realignment and Closure (BRAC) facilities; Clean Air Markets Division Business System (CAMDBS) : market-based air pollution control programs; Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS) : hazardous waste sites; Integrated Compliance Information System (ICIS) : integrated enforcement and compliance information; National Compliance Database (NCDB) : Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Toxic Substances Control Act (TSCA); National Pollutant Discharge Elimination System (NPDES) module of ICIS : NPDES surface water permits; Radiation Information Database (RADINFO) : radiation and radioactivity facilities; RACT/BACT/LAER Clearinghouse (RBLC) : best available air pollution technology requirements; Resource Conservation and Recovery Act Information System (RCRAInfo) : tracks generators, transporters, treaters, storers, and disposers

  1. Considerations, measurements and logistics associated with low-energy cyclotron decommissioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunderland, J. J.; Erdahl, C. E.; Bender, B. R.

    2012-12-19

    The University of Iowa's 20-year-old 17 MeV Scanditronix cyclotron underwent decommissioning in the summer of 2011. To satisfy local, state and federal regulations defining removal, transportation and long-term safe and environmentally secure disposal of the 22 ton activated cyclotron, a series of nuclear spectroscopic measurements were performed to characterize the nature and extent of proton and neutron activation of the 22-ton cyclotron, its associated targets, and the concrete wall that was demolished to remove the old cyclotron. Neutron activation of the concrete wall was minimal and below exempt concentrations resulting in standard landfill disposal. The cyclotron assessment revealed the expectedmore » array of short and medium-lived radionuclides. Subsequent calculations suggest that meaningful levels residual activity will have decayed virtually to background after 15 years, with the total residual activity of the entire cyclotron dropping below 37 MBq (1 mCi).« less

  2. Radiological Risk Assessments for Occupational Exposure at Fuel Fabrication Facility in AlTuwaitha Site Baghdad – Iraq by using RESRAD Computer Code

    NASA Astrophysics Data System (ADS)

    Ibrahim, Ziadoon H.; Ibrahim, S. A.; Mohammed, M. K.; Shaban, A. H.

    2018-05-01

    The purpose of this study is to evaluate the radiological risks for workers for one year of their activities at Fuel Fabrication Facility (FFF) so as to make the necessary protection to prevent or minimize risks resulted from these activities this site now is under the Iraqi decommissioning program (40). Soil samples surface and subsurface were collected from different positions of this facility and analyzed by gamma rays spectroscopy technique High Purity Germanium detector (HPGe) was used. It was found out admixture of radioactive isotopes (232Th 40K 238U 235U137Cs) according to the laboratory results the highest values were (975758) for 238U (21203) for 235U (218) for 232Th (4046) for 40K and (129) for 137Cs in (Bqkg1) unit. The annual total radiation dose and risks were estimated by using RESRAD (onsite) 70 computer code. The highest total radiation dose was (5617μSv/year) in area that represented by soil sample (S7) and the radiological risks morbidity and mortality (118E02 8661E03) respectively in the same area

  3. Nuclear Waste Management under Approaching Disaster: A Comparison of Decommissioning Strategies for the German Repository Asse II.

    PubMed

    Ilg, Patrick; Gabbert, Silke; Weikard, Hans-Peter

    2017-07-01

    This article compares different strategies for handling low- and medium-level nuclear waste buried in a retired potassium mine in Germany (Asse II) that faces significant risk of uncontrollable brine intrusion and, hence, long-term groundwater contamination. We survey the policy process that has resulted in the identification of three possible so-called decommissioning options: complete backfilling, relocation of the waste to deeper levels in the mine, and retrieval. The selection of a decommissioning strategy must compare expected investment costs with expected social damage costs (economic, environmental, and health damage costs) caused by flooding and subsequent groundwater contamination. We apply a cost minimization approach that accounts for the uncertainty regarding the stability of the rock formation and the risk of an uncontrollable brine intrusion. Since economic and health impacts stretch out into the far future, we examine the impact of different discounting methods and rates. Due to parameter uncertainty, we conduct a sensitivity analysis concerning key assumptions. We find that retrieval, the currently preferred option by policymakers, has the lowest expected social damage costs for low discount rates. However, this advantage is overcompensated by higher expected investment costs. Considering all costs, backfilling is the best option for all discounting scenarios considered. © 2016 Society for Risk Analysis.

  4. 76 FR 65753 - Environmental Assessment and Finding of No Significant Impact Related to Exemption of Material...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-24

    ... facility located near Grand View, Idaho. This facility is regulated by the Idaho Department of..., the NRC held a public meeting in the community of Grand View, Idaho, to inform the public and to... disposal facility near Grand View, Idaho. The LLW will be generated as part of decommissioning activities...

  5. An inventory of aeronautical ground research facilities. Volume 4: Engineering flight simulation facilities

    NASA Technical Reports Server (NTRS)

    Pirrello, C. J.; Hardin, R. D.; Capelluro, L. P.; Harrison, W. D.

    1971-01-01

    The general purpose capabilities of government and industry in the area of real time engineering flight simulation are discussed. The information covers computer equipment, visual systems, crew stations, and motion systems, along with brief statements of facility capabilities. Facility construction and typical operational costs are included where available. The facilities provide for economical and safe solutions to vehicle design, performance, control, and flying qualities problems of manned and unmanned flight systems.

  6. Florida Educational Facilities, 1999.

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee. Office of Educational Facilities.

    This publication describes Florida school and community college facilities completed in 1999, including photographs and floor plans. The facilities profiled are: Buchholz High School (Alachua County); Gator Run Elementary School (Broward); Corkscrew Elementary School (Collier); The 500 Role Models Academy of Excellence (Miami-Dade); Caribbean…

  7. Florida Educational Facilities, 2000.

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee. Office of Educational Facilities.

    This publication describes Florida school and community college facilities completed in 2000, including photographs and floor plans. The facilities profiled are:J. R. Arnold High School (Bay County); Falcon Cove Middle School (Broward); Floranada Elementary School (Broward); Lyons Creek Middle School (Broward); Parkside Elementary School…

  8. Facilities maintenance handbook

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This handbook is a guide for facilities maintenance managers. Its objective is to set minimum facilities maintenance standards. It also provides recommendations on how to meet the standards to ensure that NASA maintains its facilities in a manner that protects and preserves its investment in the facilities in a cost-effective manner while safely and efficiently performing its mission. This handbook implements NMI 8831.1, which states NASA facilities maintenance policy and assigns organizational responsibilities for the management of facilities maintenance activities on all properties under NASA jurisdiction. It is a reference for facilities maintenance managers, not a step-by-step procedural manual. Because of the differences in NASA Field Installation organizations, this handbook does not assume or recommend a typical facilities maintenance organization. Instead, it uses a systems approach to describe the functions that should be included in any facilities maintenance management system, regardless of its organizational structure. For documents referenced in the handbook, the most recent version of the documents is applicable. This handbook is divided into three parts: Part 1 specifies common definitions and facilities maintenance requirements and amplifies the policy requirements contained in NMI 8831. 1; Part 2 provides guidance on how to meet the requirements of Part 1, containing recommendations only; Part 3 contains general facilities maintenance information. One objective of this handbook is to fix commonality of facilities maintenance definitions among the Centers. This will permit the application of uniform measures of facilities conditions, of the relationship between current replacement value and maintenance resources required, and of the backlog of deferred facilities maintenance. The utilization of facilities maintenance system functions will allow the Centers to quantitatively define maintenance objectives in common terms, prepare work plans, and

  9. Remediation of subsurface and groundwater contamination with uranium from fuel fabrication facilities at Hanau (Germany)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nitzsche, Olaf; Thierfeldt, Stefan; Hummel, Lothar

    2013-07-01

    This paper presents aspects of site decommissioning and clearance of a former fuel fabrication facility (development and production of fuel assemblies for research reactors and HTR) at Hanau (Germany). The main pathways for environmental contamination were deposition on soil surface and topsoil and pollution of deep soil and the aquifer by waste water channel leakage. Soil excavation could be done by classical excavator techniques. An effective removal of material from the saturated zone was possible by using advanced drilling techniques. A large amount of demolished building structure and excavated soil had to be classified. Therefore the use of conveyor detectormore » was necessary. Nearly 100000 Mg of material (excavated soil and demolished building material) were disposed of at an underground mine. A remaining volume of 700 m{sup 3} was classified as radioactive waste. Site clearance started in 2006. Groundwater remediation and monitoring is still ongoing, but has already provided excellent results by reducing the remaining Uranium considerably. (authors)« less

  10. Safety Management for Water Play Facilities.

    ERIC Educational Resources Information Center

    Thompson, Claude

    1986-01-01

    Modern aquatic facilities, which include wave pools, water slides, and shallow water activity play pools, have a greater potential for injuries and lawsuits than conventional swimming pools. This article outlines comprehensive safety management for such facilities, including potential accident identification and injury control planning. (MT)

  11. National Cryo-Electron Microscopy Facility

    Cancer.gov

    Information about the National Cryo-EM Facility at NCI, created to provide researchers access to the latest cryo-EM technology for high resolution imaging. Includes timeline for installation and how to access the facility.

  12. EPA Facility Registry Service (FRS): Facility Interests Dataset - Intranet

    EPA Pesticide Factsheets

    This web feature service consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are available in the FRS individual feature layers. The layers comprise the FRS major program databases, including:Assessment Cleanup and Redevelopment Exchange System (ACRES) : brownfields sites ; Air Facility System (AFS) : stationary sources of air pollution ; Air Quality System (AQS) : ambient air pollution data from monitoring stations; Bureau of Indian Affairs (BIA) : schools data on Indian land; Base Realignment and Closure (BRAC) facilities; Clean Air Markets Division Business System (CAMDBS) : market-based air pollution control programs; Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS) : hazardous waste sites; Integrated Compliance Information System (ICIS) : integrated enforcement and compliance information; National Compliance Database (NCDB) : Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Toxic Substances Control Act (TSCA); National Pollutant Discharge Elimination System (NPDES) module of ICIS : NPDES surface water permits; Radiation Information Database (RADINFO) : radiation and radioactivity facilities; RACT/BACT/LAER Clearinghouse (RBLC) : best available air pollution technology requirements; Resource Conservation and Recovery Act Information System (RCRAInfo) : tracks generators, transporters, treaters, storers, and disposers of haz

  13. Mineral facilities of Europe

    USGS Publications Warehouse

    Almanzar, Francisco; Baker, Michael S.; Elias, Nurudeen; Guzman, Eric

    2010-01-01

    This map displays over 1,700 records of mineral facilities within the countries of Europe and western Eurasia. Each record represents one commodity and one facility type at a single geographic location. Facility types include mines, oil and gas fields, and plants, such as refineries, smelters, and mills. Common commodities of interest include aluminum, cement, coal, copper, gold, iron and steel, lead, nickel, petroleum, salt, silver, and zinc. Records include attributes, such as commodity, country, location, company name, facility type and capacity (if applicable), and latitude and longitude geographical coordinates (in both degrees-minutes-seconds and decimal degrees). The data shown on this map and in table 1 were compiled from multiple sources, including (1) the most recently available data from the U.S. Geological Survey (USGS) Minerals Yearbook (Europe and Central Eurasia volume), (2) mineral statistics and information from the USGS Minerals Information Web site (http://minerals.usgs.gov/minerals/pubs/country/europe.html), and (3) data collected by the USGS minerals information country specialists from sources, such as statistical publications of individual countries, annual reports and press releases of operating companies, and trade journals. Data reflect the most recently published table of industry structure for each country at the time of this publication. Additional information is available from the country specialists listed in table 2.

  14. 24 CFR 1710.114 - Recreational facilities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...'s annual cost or assessments (1) Facility. Identify each recreational facility. Identify closely... chart state “none”. (6) Buyer's annual cost or assessments. State the lot buyer's annual cost or assessments for using the facility. These costs should include any applicable property owners' association...

  15. 24 CFR 1710.114 - Recreational facilities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...'s annual cost or assessments (1) Facility. Identify each recreational facility. Identify closely... chart state “none”. (6) Buyer's annual cost or assessments. State the lot buyer's annual cost or assessments for using the facility. These costs should include any applicable property owners' association...

  16. 24 CFR 1710.114 - Recreational facilities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...'s annual cost or assessments (1) Facility. Identify each recreational facility. Identify closely... chart state “none”. (6) Buyer's annual cost or assessments. State the lot buyer's annual cost or assessments for using the facility. These costs should include any applicable property owners' association...

  17. 24 CFR 1710.114 - Recreational facilities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...'s annual cost or assessments (1) Facility. Identify each recreational facility. Identify closely... chart state “none”. (6) Buyer's annual cost or assessments. State the lot buyer's annual cost or assessments for using the facility. These costs should include any applicable property owners' association...

  18. 24 CFR 1710.114 - Recreational facilities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...'s annual cost or assessments (1) Facility. Identify each recreational facility. Identify closely... chart state “none”. (6) Buyer's annual cost or assessments. State the lot buyer's annual cost or assessments for using the facility. These costs should include any applicable property owners' association...

  19. 49 CFR 27.71 - Airport facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Airport facilities. 27.71 Section 27.71... Administration Programs: Airports, Railroads, and Highways § 27.71 Airport facilities. (a) This section applies... financial assistance at a commercial service airport, including parking and ground transportation facilities...

  20. 49 CFR 27.71 - Airport facilities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 1 2012-10-01 2012-10-01 false Airport facilities. 27.71 Section 27.71... Administration Programs: Airports, Railroads, and Highways § 27.71 Airport facilities. (a) This section applies... financial assistance at a commercial service airport, including parking and ground transportation facilities...

  1. 49 CFR 27.71 - Airport facilities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 1 2013-10-01 2013-10-01 false Airport facilities. 27.71 Section 27.71... Administration Programs: Airports, Railroads, and Highways § 27.71 Airport facilities. (a) This section applies... financial assistance at a commercial service airport, including parking and ground transportation facilities...

  2. Final EIS for the Proposed Homeporting of Additional Surface Ships at Naval Station, Mayport, FL. Volume 1. Final Environmental Impact Statement

    DTIC Science & Technology

    2008-11-21

    to air squadrons. 4. USS John F. Kennedy was decommissioned in 2007. Source: Adapted from DoN 2006a Final EIS for the Proposed Homeporting of...Tugs Slot Small Craft 650 35 YD/YC/LCM Source: Adapted from Naval Facilities Engineering Service Center 2002 MCM = Mine Countermeasures DDG...It would include nonradiologically controlled spaces for administrative and other support functions. The design would be a site- adapted replication of

  3. EPA Facility Registry Service (FRS): Facility Interests Dataset - Intranet Download

    EPA Pesticide Factsheets

    This downloadable data package consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are available in the FRS individual feature layers. The layers comprise the FRS major program databases, including:Assessment Cleanup and Redevelopment Exchange System (ACRES) : brownfields sites ; Air Facility System (AFS) : stationary sources of air pollution ; Air Quality System (AQS) : ambient air pollution data from monitoring stations; Bureau of Indian Affairs (BIA) : schools data on Indian land; Base Realignment and Closure (BRAC) facilities; Clean Air Markets Division Business System (CAMDBS) : market-based air pollution control programs; Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS) : hazardous waste sites; Integrated Compliance Information System (ICIS) : integrated enforcement and compliance information; National Compliance Database (NCDB) : Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Toxic Substances Control Act (TSCA); National Pollutant Discharge Elimination System (NPDES) module of ICIS : NPDES surface water permits; Radiation Information Database (RADINFO) : radiation and radioactivity facilities; RACT/BACT/LAER Clearinghouse (RBLC) : best available air pollution technology requirements; Resource Conservation and Recovery Act Information System (RCRAInfo) : tracks generators, transporters, treaters, storers, and disposers

  4. Assessment, evaluation, and testing of technologies for environmental restoration, decontamination, and decommissioning and high level waste management. Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uzochukwu, G.A.

    1997-12-31

    Nuclear and commercial non-nuclear technologies that have the potential of meeting the environmental restoration, decontamination and decommissioning, and high-level waste management objectives are being assessed and evaluated. A detailed comparison of innovative technologies available will be performed to determine the safest and most economical technology for meeting these objectives. Information derived from this effort will be matched with the multi-objectives of the environmental restoration, decontamination and decommissioning, and high-level waste management effort to ensure that the best, most economical, and the safest technologies are used in decision making at USDOE-SRS. Technology-related variables will be developed and the resulting data formattedmore » and computerized for multimedia systems. The multimedia system will be made available to technology developers and evaluators to ensure that the best, most economical, and the safest technologies are used in decision making at USDOE-SRS. Technology-related variables will be developed and the resulting data formatted and computerized for multimedia systems. The multimedia system will be made available to technology developers and evaluators to ensure that the safest and most economical technologies are developed for use at SRS and other DOE sites.« less

  5. Radioactive Wastes.

    PubMed

    Choudri, B S; Charabi, Yassine; Baawain, Mahad; Ahmed, Mushtaque

    2017-10-01

    Papers reviewed herein present a general overview of radioactive waste related activities around the world in 2016. The current reveiw include studies related to safety assessments, decommission and decontamination of nuclear facilities, fusion facilities, transportation. Further, the review highlights on management solutions for the final disposal of low and high level radioactive wastes (LLW and HLW), interim storage and final disposal options for spent fuel (SF), and tritiated wastes, with a focus on environmental impacts due to the mobility of radionuclides in ecosystem, water and soil alongwith other progress made in the management of radioactive wastes.

  6. New Ideas on Facilities Management.

    ERIC Educational Resources Information Center

    Grimm, James C.

    1986-01-01

    Examines trends in facilities management relating to products and people. Reviews new trends in products, including processes, techniques, and programs that are being expounded by business and industry. Discusses the "people factors" involved in facilities management. (ABB)

  7. Experimental Fuels Facility Re-categorization Based on Facility Segmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiss, Troy P.; Andrus, Jason

    The Experimental Fuels Facility (EFF) (MFC-794) at the Materials and Fuels Complex (MFC) located on the Idaho National Laboratory (INL) Site was originally constructed to provide controlled-access, indoor storage for radiological contaminated equipment. Use of the facility was expanded to provide a controlled environment for repairing contaminated equipment and characterizing, repackaging, and treating waste. The EFF facility is also used for research and development services, including fuel fabrication. EFF was originally categorized as a LTHC-3 radiological facility based on facility operations and facility radiological inventories. Newly planned program activities identified the need to receive quantities of fissionable materials in excessmore » of the single parameter subcritical limit in ANSI/ANS-8.1, “Nuclear Criticality Safety in Operations with Fissionable Materials Outside Reactors” (identified as “criticality list” quantities in DOE-STD-1027-92, “Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports,” Attachment 1, Table A.1). Since the proposed inventory of fissionable materials inside EFF may be greater than the single parameter sub-critical limit of 700 g of U-235 equivalent, the initial re-categorization is Hazard Category (HC) 2 based upon a potential criticality hazard. This paper details the facility hazard categorization performed for the EFF. The categorization was necessary to determine (a) the need for further safety analysis in accordance with LWP-10802, “INL Facility Categorization,” and (b) compliance with 10 Code of Federal Regulations (CFR) 830, Subpart B, “Safety Basis Requirements.” Based on the segmentation argument presented in this paper, the final hazard categorization for the facility is LTHC-3. Department of Energy Idaho (DOE-ID) approval of the final hazard categorization determined by this hazard assessment document (HAD) was required

  8. Of Ashes and Atoms

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This feature length DVD documentary, reviews the history of the Plum Brook Nuclear Reactor from the initial settlers of the area, through its use as a munitions facility during the second World War to the development of the nuclear facility and its use as one of the first nuclear test reactors built in the United States, and the only one built by NASA. It concludes with the beginning of the decommissioning of the facility. There is a brief review of the reactor design, and its workings. Through discussions with the NASA engineers and operators of the facility, the film reviews the work done to advance the knowledge of the effects of radiation, the properties of radiated materials, and the work to advance the state of the art in nuclear propulsion. The film shows footage of public tours, and shows actual footage of the facility in operation, and after its shutdown in 1973. The DVD was narrated by Kate Mulgrew, who leads the viewer through the history of the facility to its eventual ongoing decommissioning, and return to the state of pastoral uses.

  9. Data Management Facility Operations Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keck, Nicole N

    2014-06-30

    The Data Management Facility (DMF) is the data center that houses several critical Atmospheric Radiation Measurement (ARM) Climate Research Facility services, including first-level data processing for the ARM Mobile Facilities (AMFs), Eastern North Atlantic (ENA), North Slope of Alaska (NSA), Southern Great Plains (SGP), and Tropical Western Pacific (TWP) sites, as well as Value-Added Product (VAP) processing, development systems, and other network services.

  10. Daddy, What's a Nuclear Reactor?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reisenweaver, Dennis W.

    2008-01-15

    No matter what we think of the nuclear industry, it is part of mankind's heritage. The decommissioning process is slowly making facilities associated with this industry disappear and not enough is being done to preserve the information for future generations. This paper provides some food for thought and provides a possible way forward. Industrial archaeology is an ever expanding branch of archaeology that is dedicated to preserving, interpreting and documenting our industrial past and heritage. Normally it begins with analyzing an old building or ruins and trying to determine what was done, how it was done and what changes mightmore » have occurred during its operation. We have a unique opportunity to document all of these issues and provide them before the nuclear facility disappears. Entombment is an acceptable decommissioning strategy; however we would have to change our concept of entombment. It is proposed that a number of nuclear facilities be entombed or preserved for future generations to appreciate. This would include a number of different types of facilities such as different types of nuclear power and research reactors, a reprocessing plant, part of an enrichment plant and a fuel manufacturing plant. One of the main issues that would require resolution would be that of maintaining information of the location of the buried facility and the information about its operation and structure, and passing this information on to future generations. This can be done, but a system would have to be established prior to burial of the facility so that no information would be lost. In general, our current set of requirements and laws may need to be re-examined and modified to take into account these new situations. As an alternative, and to compliment the above proposal, it is recommended that a study and documentation of the nuclear industry be considered as part of twentieth century industrial archaeology. This study should not only include the power and fuel cycle

  11. 30 CFR 285.911 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false [Reserved] 285.911 Section 285.911 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Decommissioning Facility Removal § 285.911...

  12. Making the Optimal Decision in Selecting Protective Clothing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, J. Mark

    2008-01-15

    Protective Clothing plays a major role in the decommissioning and operation of nuclear facilities. Literally thousands of dress-outs occur over the life of a decommissioning project and during outages at operational plants. In order to make the optimal decision on which type of protective clothing is best suited for the decommissioning or maintenance and repair work on radioactive systems, a number of interrelating factors must be considered. This article discusses these factors as well as surveys of plants regarding their level of usage of single use protective clothing and should help individuals making decisions about protective clothing as it appliesmore » to their application. Individuals considering using SUPC should not jump to conclusions. The survey conducted clearly indicates that plants have different drivers. An evaluation should be performed to understand the facility's true drivers for selecting clothing. It is recommended that an interdisciplinary team be formed including representatives from budgets and cost, safety, radwaste, health physics, and key user groups to perform the analysis. The right questions need to be asked and answered by the company providing the clothing to formulate a proper perspective and conclusion. The conclusions and recommendations need to be shared with senior management so that the drivers, expected results, and associated costs are understood and endorsed. In the end, the individual making the recommendation should ask himself/herself: 'Is my decision emotional, or logical and economical?' 'Have I reached the optimal decision for my plant?'.« less

  13. Phased Demolition of an Occupied Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brede, Lawrence M.; Lauterbach, Merl J.; Witt, Brandon W.

    2008-01-15

    The U.S. government constructed the K-1401 facility in the late 1940's as a support building for various projects supporting the uranium gaseous diffusion process. In 2004 the U.S. Department of Energy authorized Bechtel Jacobs Company, LLC (BJC) to decontaminate and demolish the facility. The K-1401 facility was used for a variety of industrial purposes supporting the gaseous diffusion process. Many different substances were used to support these processes over the years and as a result different parts of the facility were contaminated with fluorine, chlorine trifluoride, uranium and technetium radiological contamination, asbestos, and mercury. The total facility area is 46,015more » m{sup 2} (495,000 sf) including a 6,800 m{sup 2} basement (73,200 sf). In addition to the contamination areas in the facility, a large portion was leased to businesses for re-industrialization when the D and D activities began. The work scope associated with the facility included purging and steam cleaning the former fluorine and chlorine trifluoride systems, decontaminating loose radiologically contaminated and mercury spill areas, dismantling former radiological lines contaminated with uranium oxide compounds and technetium, abating all asbestos containing material, and demolishing the facility. These various situations contributed to the challenge of successfully conducting D and D tasks on the facility. In order to efficiently utilize the work force, demolition equipment, and waste hauling trucks the normal approach of decontaminating the facility of the hazardous materials, and then conducting demolition in series required a project schedule of five years, which is not cost effective. The entire project was planned with continuous demolition as the goal end state. As a result, the first activities, Phase 1, required to prepare sections for demolition, including steam cleaning fluorine and chlorine trifluoride process lines in basement and facility asbestos abatement, were

  14. Sanford Underground Research Facility - The United State's Deep Underground Research Facility

    NASA Astrophysics Data System (ADS)

    Vardiman, D.

    2012-12-01

    The 2.5 km deep Sanford Underground Research Facility (SURF) is managed by the South Dakota Science and Technology Authority (SDSTA) at the former Homestake Mine site in Lead, South Dakota. The US Department of Energy currently supports the development of the facility using a phased approach for underground deployment of experiments as they obtain an advanced design stage. The geology of the Sanford Laboratory site has been studied during the 125 years of operations at the Homestake Mine and more recently as part of the preliminary geotechnical site investigations for the NSF's Deep Underground Science and Engineering Laboratory project. The overall geology at DUSEL is a well-defined stratigraphic sequence of schist and phyllites. The three major Proterozoic units encountered in the underground consist of interbedded schist, metasediments, and amphibolite schist which are crosscut by Tertiary rhyolite dikes. Preliminary geotechnical site investigations included drift mapping, borehole drilling, borehole televiewing, in-situ stress analysis, laboratory analysis of core, mapping and laser scanning of new excavations, modeling and analysis of all geotechnical information. The investigation was focused upon the determination if the proposed site rock mass could support the world's largest (66 meter diameter) deep underground excavation. While the DUSEL project has subsequently been significantly modified, these data are still available to provide a baseline of the ground conditions which may be judiciously extrapolated throughout the entire Proterozoic rock assemblage for future excavations. Recommendations for facility instrumentation and monitoring were included in the preliminary design of the DUSEL project design and include; single and multiple point extensometers, tape extensometers and convergence measurements (pins), load cells and pressure cells, smart cables, inclinometers/Tiltmeters, Piezometers, thermistors, seismographs and accelerometers, scanners (laser

  15. GRC Ground Support Facilities

    NASA Technical Reports Server (NTRS)

    SaintOnge, Thomas H.

    2010-01-01

    The ISS Program is conducting an "ISS Research Academy' at JSC the first week of August 2010. This Academy will be a tutorial for new Users of the International Space Station, focused primarily on the new ISS National Laboratory and its members including Non-Profit Organizations, other government agencies and commercial users. Presentations on the on-orbit research facilities accommodations and capabilities will be made, as well as ground based hardware development, integration and test facilities and capabilities. This presentation describes the GRC Hardware development, test and laboratory facilities.

  16. Wildlife conservation and solar energy development in the Desert Southwest, United States

    USGS Publications Warehouse

    Lovich, Jeffrey E.; Ennen, Josua R.

    2011-01-01

    Large areas of public land are currently being permitted or evaluated for utility-scale solar energy development (USSED) in the southwestern United States, including areas with high biodiversity and protected species. However, peer-reviewed studies of the effects of USSED on wildlife are lacking. The potential effects of the construction and the eventual decommissioning of solar energy facilities include the direct mortality of wildlife; environmental impacts of fugitive dust and dust suppressants; destruction and modification of habitat, including the impacts of roads; and off-site impacts related to construction material acquisition, processing, and transportation. The potential effects of the operation and maintenance of the facilities include habitat fragmentation and barriers to gene flow, increased noise, electromagnetic field generation, microclimate alteration, pollution, water consumption, and fire. Facility design effects, the efficacy of site-selection criteria, and the cumulative effects of USSED on regional wildlife populations are unknown. Currently available peer-reviewed data are insufficient to allow a rigorous assessment of the impact of USSED on wildlife.

  17. Environmental practices for biomedical research facilities.

    PubMed Central

    Medlin, E L; Grupenhoff, J T

    2000-01-01

    As a result of the Leadership Conference on Biomedical Research and the Environment, the Facilities Committee focused its work on the development of best environmental practices at biomedical research facilities at the university and independent research facility level as well as consideration of potential involvement of for-profit companies and government agencies. The designation "facilities" includes all related buildings and grounds, "green auditing" of buildings and programs, purchasing of furnishings and sources, energy efficiency, and engineering services (lighting, heating, air conditioning), among other activities. The committee made a number of recommendations, including development of a national council for environmental stewardship in biomedical research, development of a system of green auditing of such research facilities, and creation of programs for sustainable building and use. In addition, the committee recommended extension of education and training programs for environmental stewardship, in cooperation with facilities managers, for all research administrators and researchers. These programs would focus especially on graduate fellows and other students, as well as on science labs at levels K--12. PMID:11121360

  18. 77 FR 28618 - Notice of Availability of the San Diego Gas & Electric Ocotillo Sol Solar Project Draft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-15

    ... project, a solar photovoltaic (PV) power plant facility, on approximately 115 acres of BLM-administered... Proposed Project to construct, operate, maintain, and decommission a 100-acre solar PV facility on BLM...] Notice of Availability of the San Diego Gas & Electric Ocotillo Sol Solar Project Draft Environmental...

  19. Antenna Test Facility (ATF): User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Lin, Greg

    2011-01-01

    Test process, milestones and inputs are unknowns to first-time users of the ATF. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  20. 30 CFR 75.1712-3 - Minimum requirements of surface bathing facilities, change rooms, and sanitary toilet facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-1 shall include the following: (1) Bathing facilities. (i) Showers shall be provided with both hot... supply of toilet paper shall be provided with each toilet. (v) Adequate handwashing facilities or hand...

  1. 30 CFR 75.1712-3 - Minimum requirements of surface bathing facilities, change rooms, and sanitary toilet facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-1 shall include the following: (1) Bathing facilities. (i) Showers shall be provided with both hot... supply of toilet paper shall be provided with each toilet. (v) Adequate handwashing facilities or hand...

  2. 30 CFR 75.1712-3 - Minimum requirements of surface bathing facilities, change rooms, and sanitary toilet facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-1 shall include the following: (1) Bathing facilities. (i) Showers shall be provided with both hot... supply of toilet paper shall be provided with each toilet. (v) Adequate handwashing facilities or hand...

  3. 30 CFR 75.1712-3 - Minimum requirements of surface bathing facilities, change rooms, and sanitary toilet facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-1 shall include the following: (1) Bathing facilities. (i) Showers shall be provided with both hot... supply of toilet paper shall be provided with each toilet. (v) Adequate handwashing facilities or hand...

  4. 30 CFR 75.1712-3 - Minimum requirements of surface bathing facilities, change rooms, and sanitary toilet facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-1 shall include the following: (1) Bathing facilities. (i) Showers shall be provided with both hot... supply of toilet paper shall be provided with each toilet. (v) Adequate handwashing facilities or hand...

  5. Flexible Educational Facilities. An Annotated Reference List.

    ERIC Educational Resources Information Center

    Wakefield, Howard E.

    These references on flexible educational facilities are abstracted by the ERIC Clearinghouse on Educational Facilities. College material includes an experimental learning center, a college health center, a fine arts center, and university library design. References on schools include secondary school design, flexible high school design, standard…

  6. Teaching Paleontology with an Acid-Leaching Facility.

    ERIC Educational Resources Information Center

    Talent, John A.; And Others

    1987-01-01

    Described is an acid-leaching facility at Macquarie University in Australia for teaching paleontology. The facility is used for teaching both undergraduate and graduate students and for research by staff and graduate students. Drawings of the facility are included and courses are described. (Author/RH)

  7. 42 CFR 410.100 - Included services.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 2 2011-10-01 2011-10-01 false Included services. 410.100 Section 410.100 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES MEDICARE PROGRAM SUPPLEMENTARY MEDICAL INSURANCE (SMI) BENEFITS Comprehensive Outpatient Rehabilitation Facility (CORF) Services...

  8. Interim Analysis of School Facility Funding in the American Recovery and Reinvestment Act of 2009 Including Expenditures through January 5, 2010

    ERIC Educational Resources Information Center

    21st Century School Fund, 2010

    2010-01-01

    The 21st Century School Fund, through its Building Educational Success Together (BEST) collaborative, is tracking the effect of federal stimulus funding on the condition of PK-12 public school facilities and whether or not the distribution of ARRA funding related to public school facilities is helping reduce the disparity of capital expenditures…

  9. Accreditation of ambulatory facilities.

    PubMed

    Urman, Richard D; Philip, Beverly K

    2014-06-01

    With the continued growth of ambulatory surgical centers (ASC), the regulation of facilities has evolved to include new standards and requirements on both state and federal levels. Accreditation allows for the assessment of clinical practice, improves accountability, and better ensures quality of care. In some states, ASC may choose to voluntarily apply for accreditation from a recognized organization, but in others it is mandated. Accreditation provides external validation of safe practices, benchmarking performance against other accredited facilities, and demonstrates to patients and payers the facility's commitment to continuous quality improvement. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. 76 FR 53693 - Notice of Intent To Prepare a Joint Environmental Impact Statement and Environmental Impact...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-29

    ... Project (MSEP), a 750-megawatt (MW) photovoltaic (PV) solar electricity generation project. By this notice..., operate, maintain, and decommission an up to 750-MW PV solar facility and necessary ancillary facilities... Impact Report for the Proposed McCoy Solar Energy Project and Possible Land Use Plan Amendment, Riverside...

  11. Development of irradiation capabilities to address the challenges of the nuclear industry

    NASA Astrophysics Data System (ADS)

    Leay, L.; Bower, W.; Horne, G.; Wady, P.; Baidak, A.; Pottinger, M.; Nancekievill, M.; Smith, A. D.; Watson, S.; Green, P. R.; Lennox, B.; LaVerne, J. A.; Pimblott, S. M.

    2015-01-01

    With the announcement of the U.K. new nuclear build and the requirement to decommission old facilities, researchers require bespoke facilities to undertake experiments to inform decision making. This paper describes development of The University of Manchester's Dalton Cumbrian Facility, a custom built research environment which incorporates a 5 MV tandem ion accelerator as well as a self-shielded 60Co irradiator. The ion accelerator allows the investigation into the radiolytic consequences of various charged particles, including protons, alpha particles and a variety of heavier (metal and nonmetal) ions, while the 60Co irradiator allows the effects of gamma radiation to be studied. Some examples of work carried out at the facility are presented to demonstrate how this equipment can improve our mechanistic understanding of various aspects of the deleterious effects of radiation in the nuclear industry. These examples include applications in waste storage and reprocessing as well as geological storage and novel surveying techniques. The outlook for future research is also discussed.

  12. 7 CFR 58.127 - Facilities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... both hot and cold water of safe and sanitary quality, with adequate facilities for its proper.... Convenient hand-washing facilities shall be provided, including hot and cold running water, soap or other... regularly and the containers cleaned before reuse. Accumulation of dry waste paper and cardboard shall be...

  13. 7 CFR 58.127 - Facilities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... both hot and cold water of safe and sanitary quality, with adequate facilities for its proper.... Convenient hand-washing facilities shall be provided, including hot and cold running water, soap or other... regularly and the containers cleaned before reuse. Accumulation of dry waste paper and cardboard shall be...

  14. 7 CFR 58.127 - Facilities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... both hot and cold water of safe and sanitary quality, with adequate facilities for its proper.... Convenient hand-washing facilities shall be provided, including hot and cold running water, soap or other... regularly and the containers cleaned before reuse. Accumulation of dry waste paper and cardboard shall be...

  15. 7 CFR 58.127 - Facilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... both hot and cold water of safe and sanitary quality, with adequate facilities for its proper.... Convenient hand-washing facilities shall be provided, including hot and cold running water, soap or other... regularly and the containers cleaned before reuse. Accumulation of dry waste paper and cardboard shall be...

  16. Y-12 Plant decontamination and decommissioning technology logic diagram for Building 9201-4. Volume 2: Technology logic diagram

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-09-01

    The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 (TLD) was developed to provide a decision-support tool that relates decontamination and decommissioning (D and D) problems at Bldg. 9201-4 to potential technologies that can remediate these problems. This TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to D and D and waste management (WM) activities. It is essential that follow-on engineering studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologiesmore » identified in the TLD and by finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk. The TLD consists of three fundamentally separate volumes: Vol. 1 (Technology Evaluation), Vol. 2 (Technology Logic Diagram), and Vol. 3 (Technology Evaluation Data Sheets). Volume 2 contains the logic linkages among environmental management goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 2 has been divided into five sections: Characterization, Decontamination, Dismantlement, Robotics/Automation, and Waste Management. Each section contains logical breakdowns of the Y-12 D and D problems by subject area and identifies technologies that can be reasonably applied to each D and D challenge.« less

  17. The National Ignition Facility (NIF) as a User Facility

    NASA Astrophysics Data System (ADS)

    Keane, Christopher; NIF Team

    2013-10-01

    The National Ignition Facility (NIF) has made significant progress towards operation as a user facility. Through June 2013, NIF conducted over 1200 experiments in support of ICF, HED science, and development of facility capabilities. The NIF laser has met or achieved all specifications and a wide variety of diagnostic and target fabrication capabilities are in place. A NIF User Group and associated Executive Board have been formed. Two User Group meetings have been conducted since formation of the User Group. NIF experiments in fundamental science have provided important new results. NIF ramp compression experiments have been conducted using diamond and iron, with EOS results obtained at pressures up to approximately 50 Mbar and 8 Mbar, respectively. Initial experiments in supernova hydrodynamics, the fundamental physics of the Rayleigh-Taylor instability, and equation of state in the Gbar pressure regime have also been conducted. This presentation will discuss the fundamental science program at NIF, including the proposal solicitation and scientific review processes and other aspects of user facility operation. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  18. Nonterrestrial utilization of materials: Automated space manufacturing facility

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Four areas related to the nonterrestrial use of materials are included: (1) material resources needed for feedstock in an orbital manufacturing facility, (2) required initial components of a nonterrestrial manufacturing facility, (3) growth and productive capability of such a facility, and (4) automation and robotics requirements of the facility.

  19. Legionnaires' Disease: a Problem for Health Care Facilities

    MedlinePlus

    ... Clips Legionnaires’ Disease A problem for health care facilities Language: English (US) Español (Spanish) Recommend on Facebook ... drinking. Many people being treated at health care facilities, including long-term care facilities and hospitals, have ...

  20. Wireless remote monitoring of critical facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Hanchung; Anderson, John T.; Liu, Yung Y.

    A method, apparatus, and system are provided for monitoring environment parameters of critical facilities. A Remote Area Modular Monitoring (RAMM) apparatus is provided for monitoring environment parameters of critical facilities. The RAMM apparatus includes a battery power supply and a central processor. The RAMM apparatus includes a plurality of sensors monitoring the associated environment parameters and at least one communication module for transmitting one or more monitored environment parameters. The RAMM apparatus is powered by the battery power supply, controlled by the central processor operating a wireless sensor network (WSN) platform when the facility condition is disrupted. The RAMM apparatusmore » includes a housing prepositioned at a strategic location, for example, where a dangerous build-up of contamination and radiation may preclude subsequent manned entrance and surveillance.« less

  1. Oil Pollution Act (OPA) and Federal Facilities

    EPA Pesticide Factsheets

    The Oil Pollution Prevention regulation sets forth requirements for prevention of, preparedness for, and response to oil discharges at specific non-transportation-related facilities, including federal facilities.

  2. Apollo experience report: Real-time auxiliary computing facility development

    NASA Technical Reports Server (NTRS)

    Allday, C. E.

    1972-01-01

    The Apollo real time auxiliary computing function and facility were an extension of the facility used during the Gemini Program. The facility was expanded to include support of all areas of flight control, and computer programs were developed for mission and mission-simulation support. The scope of the function was expanded to include prime mission support functions in addition to engineering evaluations, and the facility became a mandatory mission support facility. The facility functioned as a full scale mission support activity until after the first manned lunar landing mission. After the Apollo 11 mission, the function and facility gradually reverted to a nonmandatory, offline, on-call operation because the real time program flexibility was increased and verified sufficiently to eliminate the need for redundant computations. The evaluation of the facility and function and recommendations for future programs are discussed in this report.

  3. EPA Facility Registry Service (FRS): CAMDBS

    EPA Pesticide Factsheets

    This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of facilities that link to the Clean Air Markets Division Business System (CAMDBS). Administered by the EPA Clean Air Markets Division, within the Office of Air and Radiation, CAMDBS supports the implementation of market-based air pollution control programs, including the Acid Rain Program and regional programs designed to reduce the transport of ozone. FRS identifies and geospatially locates facilities, sites or places subject to environmental regulations or of environmental interest. Using vigorous verification and data management procedures, FRS integrates facility data from EPA's national program systems, other federal agencies, and State and tribal master facility records and provides EPA with a centrally managed, single source of comprehensive and authoritative information on facilities. This data set contains the subset of FRS integrated facilities that link to CAMDBS facilities once the CAMDBS data has been integrated into the FRS database. Additional information on FRS is available at the EPA website https://www.epa.gov/enviro/facility-registry-service-frs.

  4. 32 CFR 775.6 - Planning considerations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., installation, and operation of utility (e.g., water, sewer, electrical) and communication systems (e.g., data... systems, and/or facilities; (37) Decisions to close facilities, decommission equipment, and/or temporarily... environment. The agency decision in the case of an EIS is reflected in a ROD. (b) Where a proposed major...

  5. 32 CFR 775.6 - Planning considerations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., installation, and operation of utility (e.g., water, sewer, electrical) and communication systems (e.g., data... systems, and/or facilities; (37) Decisions to close facilities, decommission equipment, and/or temporarily... environment. The agency decision in the case of an EIS is reflected in a ROD. (b) Where a proposed major...

  6. Cryogenic Fluid Management Facility

    NASA Technical Reports Server (NTRS)

    Eberhardt, R. N.; Bailey, W. J.

    1985-01-01

    The Cryogenic Fluid Management Facility is a reusable test bed which is designed to be carried within the Shuttle cargo bay to investigate the systems and technologies associated with the efficient management of cryogens in space. Cryogenic fluid management consists of the systems and technologies for: (1) liquid storage and supply, including capillary acquisition/expulsion systems which provide single-phase liquid to the user system, (2) both passive and active thermal control systems, and (3) fluid transfer/resupply systems, including transfer lines and receiver tanks. The facility contains a storage and supply tank, a transfer line and a receiver tank, configured to provide low-g verification of fluid and thermal models of cryogenic storage and transfer processes. The facility will provide design data and criteria for future subcritical cryogenic storage and transfer system applications, such as Space Station life support, attitude control, power and fuel depot supply, resupply tankers, external tank (ET) propellant scavenging, and ground-based and space-based orbit transfer vehicles (OTV).

  7. Cryogenic Fluid Management Facility

    NASA Technical Reports Server (NTRS)

    Eberhardt, R. N.; Bailey, W. J.; Symons, E. P.; Kroeger, E. W.

    1984-01-01

    The Cryogenic Fluid Management Facility (CFMF) is a reusable test bed which is designed to be carried into space in the Shuttle cargo bay to investigate systems and technologies required to efficiently and effectively manage cryogens in space. The facility hardware is configured to provide low-g verification of fluid and thermal models of cryogenic storage, transfer concepts and processes. Significant design data and criteria for future subcritical cryogenic storage and transfer systems will be obtained. Future applications include space-based and ground-based orbit transfer vehicles (OTV), space station life support, attitude control, power and fuel depot supply, resupply tankers, external tank (ET) propellant scavenging, space-based weapon systems and space-based orbit maneuvering vehicles (OMV). This paper describes the facility and discusses the cryogenic fluid management technology to be investigated. A brief discussion of the integration issues involved in loading and transporting liquid hydrogen within the Shuttle cargo bay is also included.

  8. Regulation and policy: International trends and issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffin, W S

    As offshore oil and gas resources become exhausted, the associated production platforms and facilities will be decommissioned. The world-wide oil and gas industry is strictly regulated by global, regional and national guidelines which have been developed by governments to find the most responsible framework to perform the decommissioning. In the summer of 1995, the Brent Spar incident brought uncertainty to decommissioning world-wide. In June of 1995, a moratorium prohibiting sea disposal within the North East Atlantic was imposed by the Oslo Commission, and an unsuccessful attempt was made in December of 1995 to impose a world-wide moratorium on sea disposalmore » at the London Convention.« less

  9. Facilities Audit Workbook: A Self-Evaluation for Higher Education.

    ERIC Educational Resources Information Center

    Kaiser, Harvey H.

    The purpose and scope of a facilities audit and steps in conducting an audit are outlined, and facility ratings forms that can be used in the process are included. The audit is presented as a part of the comprehensive facilities management approach, and the users and different audit uses are also addressed. The audit design phase includes deciding…

  10. Making the optimal decision in selecting protective clothing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, J. Mark

    2007-07-01

    Protective Clothing plays a major role in the decommissioning and operation of nuclear facilities. Literally thousands of employee dress-outs occur over the life of a decommissioning project and during outages at operational plants. In order to make the optimal decision on which type of protective clothing is best suited for the decommissioning or maintenance and repair work on radioactive systems, a number of interrelating factors must be considered, including - Protection; - Personnel Contamination; - Cost; - Radwaste; - Comfort; - Convenience; - Logistics/Rad Material Considerations; - Reject Rate of Laundered Clothing; - Durability; - Security; - Personnel Safety includingmore » Heat Stress; - Disposition of Gloves and Booties. In addition, over the last several years there has been a trend of nuclear power plants either running trials or switching to Single Use Protective Clothing (SUPC) from traditional protective clothing. In some cases, after trial usage of SUPC, plants have chosen not to switch. In other cases after switching to SUPC for a period of time, some plants have chosen to switch back to laundering. Based on these observations, this paper reviews the 'real' drivers, issues, and interrelating factors regarding the selection and use of protective clothing throughout the nuclear industry. (authors)« less

  11. Physical Education Facilities for the Handicapped.

    ERIC Educational Resources Information Center

    Isaacs, Larry; Frederick, Stephen D.

    1980-01-01

    Physical education facilities at Wright State University in Dayton, Ohio have been adapted for the recreational needs of handicapped students. Changes include a special exercise room, accessible locker and shower facilities, a pool area, and a wheelchair repair shop. (CJ)

  12. The Impact of Special Focus Facility Nursing Homes on Market Quality

    ERIC Educational Resources Information Center

    Castle, Nicholas G.; Sonon, Kristen; Antonova, Jenya

    2010-01-01

    Purpose: Special Focus Facilities (SFFs) are nursing facilities designated by the Centers for Medicare & Medicaid Services to be of chronic poor quality. Relatively few nursing facilities are included in this initiative. The purpose of this research was to examine whether nursing facilities included in the 2007 SFF initiative subsequently…

  13. Life Sciences Centrifuge Facility assessment

    NASA Technical Reports Server (NTRS)

    Benson, Robert H.

    1994-01-01

    This report provides an assessment of the status of the Centrifuge Facility being developed by ARC for flight on the International Space Station Alpha. The assessment includes technical status, schedules, budgets, project management, performance of facility relative to science requirements, and identifies risks and issues that need to be considered in future development activities.

  14. EPA Facility Registry Service (FRS): TRI

    EPA Pesticide Factsheets

    This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of facilities that link to the Toxic Release Inventory (TRI) System. TRI is a publicly available EPA database reported annually by certain covered industry groups, as well as federal facilities. It contains information about more than 650 toxic chemicals that are being used, manufactured, treated, transported, or released into the environment, and includes information about waste management and pollution prevention activities. FRS identifies and geospatially locates facilities, sites or places subject to environmental regulations or of environmental interest. Using vigorous verification and data management procedures, FRS integrates facility data from EPA's national program systems, other federal agencies, and State and tribal master facility records and provides EPA with a centrally managed, single source of comprehensive and authoritative information on facilities. This data set contains the subset of FRS integrated facilities that link to TRI facilities once the TRI data has been integrated into the FRS database. Additional information on FRS is available at the EPA website https://www.epa.gov/enviro/facility-registry-service-frs.

  15. Radiant Heat Test Facility (RHTF): User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    DelPapa, Steven

    2011-01-01

    Test process, milestones and inputs are unknowns to first-time users of the RHTF. The User Test Planning Guide aids in establishing expectations for both NASA and non- NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  16. Urban Watershed Research Facility at Edison Environmental Center

    EPA Science Inventory

    The Urban Watershed Research Facility (UWRF) is an isolated, 20-acre open space within EPA’s 200 acre Edison facility established to develop and evaluate the performance of stormwater management practices under controlled conditions. The facility includes greenhouses that allow ...

  17. The Fluids and Combustion Facility

    NASA Technical Reports Server (NTRS)

    Kundu, Sampa

    2004-01-01

    Microgravity is an environment with very weak gravitational effects. The Fluids and Combustion Facility (FCF) on the International Space Station (ISS) will support the study of fluid physics and combustion science in a long-duration microgravity environment. The Fluid Combustion Facility's design will permit both independent and remote control operations from the Telescience Support Center. The crew of the International Space Station will continue to insert and remove the experiment module, store and reload removable data storage and media data tapes, and reconfigure diagnostics on either side of the optics benches. Upon completion of the Fluids Combustion Facility, about ten experiments will be conducted within a ten-year period. Several different areas of fluid physics will be studied in the Fluids Combustion Facility. These areas include complex fluids, interfacial phenomena, dynamics and instabilities, and multiphase flows and phase change. Recently, emphasis has been placed in areas that relate directly to NASA missions including life support, power, propulsion, and thermal control systems. By 2006 or 2007, a Fluids Integrated Rack (FIR) and a Combustion Integrated Rack (CIR) will be installed inside the International Space Station. The Fluids Integrated Rack will contain all the hardware and software necessary to perform experiments in fluid physics. A wide range of experiments that meet the requirements of the international space station, including research from other specialties, will be considered. Experiments will be contained in subsystems such as the international standard payload rack, the active rack isolation system, the optics bench, environmental subsystem, electrical power control unit, the gas interface subsystem, and the command and data management subsystem. In conclusion, the Fluids and Combustion Facility will allow researchers to study fluid physics and combustion science in a long-duration microgravity environment. Additional information is

  18. Skylab materials processing facility experiment developer's report

    NASA Technical Reports Server (NTRS)

    Parks, P. G.

    1975-01-01

    The development of the Skylab M512 Materials Processing Facility is traced from the design of a portable, self-contained electron beam welding system for terrestrial applications to the highly complex experiment system ultimately developed for three Skylab missions. The M512 experiment facility was designed to support six in-space experiments intended to explore the advantages of manufacturing materials in the near-zero-gravity environment of Earth orbit. Detailed descriptions of the M512 facility and related experiment hardware are provided, with discussions of hardware verification and man-machine interfaces included. An analysis of the operation of the facility and experiments during the three Skylab missions is presented, including discussions of the hardware performance, anomalies, and data returned to earth.

  19. [Business administration of PET facilities: a cost analysis of three facilities utilizing delivery FDG].

    PubMed

    Mitsutake, Naohiro; Oku, Shinya; Fujii, Ryo; Furui, Yuji; Yasunaga, Hideo

    2008-05-01

    PET (positron emission tomography) has been proved to be a powerful imaging tool in clinical oncology. The number of PET facilities in Japan has remarkably increased over the last decade. Furthermore, the approval of delivery FDG in 2005 resulted in a tremendous expansion of the PET institutions without a cyclotron facility. The aim of this study was to conduct a cost analysis of PET institutions that utilized delivery FDG. Three PET facilities using delivery FDG were investigated about the costs for PET service. Fixed costs included depreciation costs for construction and medical equipments such as positron camera. Variable costs consisted of costs for medical materials including delivery FDG. The break-even point was analyzed in each of three institutions. In the three hospitals (A, B and C), the annual number of PET scan was 1,591, 1,637 and 914, while cost per scan was accounted as yen 110,262, yen 111,091, and yen 134,192, respectively. The break-even point was calculated to be 2,583, 2,679 and 2,081, respectively. PET facilities utilizing delivery FDG seemed to have difficulty in business administration. Such a situation suggests the possibility that the current supply of PET facilities might exceed actual demand for the service. The efficiency of resource allocation should be taken into consideration in the future health service researches on PET.

  20. 75 FR 34792 - Westinghouse Electric Company, LLC; License Amendment Request, Opportunity To Provide Comments...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ... transfer decommissioning waste to U.S. Ecology Idaho, Inc., a Resource Conservation and Recovery Act (RCRA) Subtitle C disposal facility located near Grand View, Idaho. The U.S. Ecology Idaho facility is regulated... CFR 30.11 and 70.17, WEC's application also requests that U.S. Ecology be granted exemptions from the...