Sample records for facility device experience

  1. Analysis of adverse events with Essure hysteroscopic sterilization reported to the Manufacturer and User Facility Device Experience database.

    PubMed

    Al-Safi, Zain A; Shavell, Valerie I; Hobson, Deslyn T G; Berman, Jay M; Diamond, Michael P

    2013-01-01

    The Manufacturer and User Facility Device Experience database may be useful for clinicians using a Food and Drug Administration-approved medical device to identify the occurrence of adverse events and complications. We sought to analyze and investigate reports associated with the Essure hysteroscopic sterilization system (Conceptus Inc., Mountain View, CA) using this database. Retrospective review of the Manufacturer and User Facility Device Experience database for events related to Essure hysteroscopic sterilization from November 2002 to February 2012 (Canadian Task Force Classification III). Online retrospective review. Online reports of patients who underwent Essure tubal sterilization. Essure tubal sterilization. Four hundred fifty-seven adverse events were reported in the study period. Pain was the most frequently reported event (217 events [47.5%]) followed by delivery catheter malfunction (121 events [26.4%]). Poststerilization pregnancy was reported in 61 events (13.3%), of which 29 were ectopic pregnancies. Other reported events included perforation (90 events [19.7%]), abnormal bleeding (44 events [9.6%]), and microinsert malposition (33 events [7.2%]). The evaluation and management of these events resulted in an additional surgical procedure in 270 cases (59.1%), of which 44 were hysterectomies. Sixty-one unintended poststerilization pregnancies were reported in the study period, of which 29 (47.5%) were ectopic gestations. Thus, ectopic pregnancy must be considered if a woman becomes pregnant after Essure hysteroscopic sterilization. Additionally, 44 women underwent hysterectomy after an adverse event reported to be associated with the use of the device. Copyright © 2013 AAGL. Published by Elsevier Inc. All rights reserved.

  2. The service telemetry and control device for space experiment “GRIS”

    NASA Astrophysics Data System (ADS)

    Glyanenko, A. S.

    2016-02-01

    Problems of scientific devices control (for example, fine control of measuring paths), collecting auxiliary (service information about working capacity, conditions of experiment carrying out, etc.) and preliminary data processing are actual for any space device. Modern devices for space research it is impossible to imagine without devices that didn't use digital data processing methods and specialized or standard interfaces and computing facilities. For realization of these functions in “GRIS” experiment onboard ISS for purposes minimization of dimensions, power consumption, the concept “system-on-chip” was chosen and realized. In the programmable logical integrated scheme by Microsemi from ProASIC3 family with maximum capacity up to 3M system gates, the computing kernel and all necessary peripherals are created. In this paper we discuss structure, possibilities and resources the service telemetry and control device for “GRIS” space experiment.

  3. The Wake Shield Facility: A space experiment platform

    NASA Technical Reports Server (NTRS)

    Allen, Joseph P.

    1991-01-01

    Information is given in viewgraph form on Wakeshield, a space experiment platform. The Wake Shield Facility (WSF) flight program objectives, product applications, commercial development approach, and cooperative experiments are listed. The program objectives are to produce new industry-driven electronic, magnetic, and superconducting thin-film materials and devices both in terrestrial laboratories and in space; utilize the ultra-vacuum of space for thin film epitaxial growth and materials processing; and develop commercial space hardware for research and development and enhanced access to space.

  4. Complications of Electromechanical Morcellation Reported in the Manufacturer and User Facility Device Experience (MAUDE) Database.

    PubMed

    Naumann, R Wendel; Brown, Jubilee

    2015-01-01

    To evaluate adverse events associated with electromechanical morcellation as reported to the Manufacturer and User Facility Device Experience (MAUDE) database. Retrospective analysis of an established database (Canadian Task Force classification III). A search of the MAUDE database for terms associated with commercially available electromechanical morcellation devices was undertaken for events leading to injury or death between 2004 and 2014. Data, including the types of injury, need for conversion to open surgery, type of open surgery, and clinical outcomes, were extracted from the records. Over a 10-year period, 9 events associated with death and 215 events associated with patient injury or significant delay of the surgical procedure were recorded. These involved 137 device failures, 51 organ injuries, and the morcellation of 27 previously undiagnosed malignancies. Of the 9 deaths, 1 was associated with organ injury, and the other 8 were associated with morcellation of cancer. Of the 27 undiagnosed cancers, 5 were reported by the manufacturer, 8 were reported by the patient or family, 9 were reported by medical or news reports, 2 were reported by medical professionals, and 3 were due to litigation. Morcellation of an undiagnosed malignancy was first reported to the database in December 2013. The MAUDE database appears to detect perioperative events, such as device failures and organ injury at the time of surgery, but appears to be poor at detecting late events after surgery, such as the potential spread of cancer. Outcome registries are likely a more efficient means of tracking potential long-term adverse events associated with surgical devices. Copyright © 2015 AAGL. Published by Elsevier Inc. All rights reserved.

  5. Experiment facilities for life science experiments in space.

    PubMed

    Uchida, Satoko

    2004-11-01

    To perform experiments in microgravity environment, there should be many difficulties compared with the experiments on ground. JAXA (Japan Aerospace Exploration Agency) has developed various experiment facilities to perform life science experiments in space, such as Cell Culture Kit, Thermo Electric Incubator, Free Flow Electrophoresis Unit, Aquatic Animal Experiment Unit, and so on. The first experiment facilities were flown on Spacelab-J mission in 1992, and they were improved and modified for the 2nd International Microgravity Laboratory (IML-2) mission in 1994. Based on these experiences, some of them were further improved and flown on another missions. These facilities are continuously being improved for the International Space Station use, where high level functions and automatic operations will be required.

  6. Status and Plans for the FLARE (Facility for Laboratory Reconnection Experiments) Project

    NASA Astrophysics Data System (ADS)

    Ji, H.; Bhattacharjee, A.; Prager, S.; Daughton, W.; Bale, S.; Carter, T.; Crocker, N.; Drake, J.; Egedal, J.; Sarff, J.; Wallace, J.; Chen, Y.; Cutler, R.; Fox, W.; Heitzenroeder, P.; Kalish, M.; Jara-Almonte, J.; Myers, C.; Ren, Y.; Yamada, M.; Yoo, J.

    2015-11-01

    The FLARE device (flare.pppl.gov) is a new intermediate-scale plasma experiment under construction at Princeton to study magnetic reconnection in regimes directly relevant to space, solar, astrophysical, and fusion plasmas. The existing small-scale experiments have been focusing on the single X-line reconnection process either with small effective sizes or at low Lundquist numbers, but both of which are typically very large in natural and fusion plasmas. The design of the FLARE device is motivated to provide experimental access to the new regimes involving multiple X-lines, as guided by a reconnection ``phase diagram'' [Ji & Daughton, PoP (2011)]. Most of major components of the FLARE device have been designed and are under construction. The device will be assembled and installed in 2016, followed by commissioning and operation in 2017. The planned research on FLARE as a user facility will be discussed. Supported by NSF.

  7. Worldwide Experience with Erosion of the Magnetic Sphincter Augmentation Device.

    PubMed

    Alicuben, Evan T; Bell, Reginald C W; Jobe, Blair A; Buckley, F P; Daniel Smith, C; Graybeal, Casey J; Lipham, John C

    2018-04-17

    The magnetic sphincter augmentation device continues to become a more common antireflux surgical option with low complication rates. Erosion into the esophagus is an important complication to recognize and is reported to occur at very low incidences (0.1-0.15%). Characterization of this complication remains limited. We aim to describe the worldwide experience with erosion of the magnetic sphincter augmentation device including presentation, techniques for removal, and possible risk factors. We reviewed data obtained from the device manufacturer Torax Medical, Inc., as well as the Manufacturer and User Facility Device Experience (MAUDE) database. The study period was from February 2007 through July 2017 and included all devices placed worldwide. In total, 9453 devices were placed and there were 29 reported cases of erosions. The median time to presentation of an erosion was 26 months with most occurring between 1 and 4 years after placement. The risk of erosion was 0.3% at 4 years after device implantation. Most patients experienced new-onset dysphagia prompting evaluation. Devices were successfully removed in all patients most commonly via an endoscopic removal of the eroded portion followed by a delayed laparoscopic removal of the remaining beads. At a median follow-up of 58 days post-removal, there were no complications and 24 patients have returned to baseline. Four patients reported ongoing mild dysphagia. Erosion of the LINX device is an important but rare complication to recognize that has been safely managed via minimally invasive approaches without long-term consequences.

  8. Compact anti-radon facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fajt, L.; Kouba, P.; Mamedov, F.

    Suppression of radon background is one of main tasks in ultra-low background experiments. The most promising technique for suppression of radon is its adsorption on charcoal. Within the frame of the NEMO-3 experiment, radon trapping facility (RTF) was installed in Modane underground laboratory in 2004. Based on long-term experience with this facility a new compact transportable anti-radon facility was constructed in cooperation among IEAP CTU, SÚRO and ATEKO company. The device provides 20m{sup 3}/h of purified air (air radon activity at the output ∼10mBq/m{sup 3}). The basic features and preliminary results of anti-radon device testing are presented.

  9. 24 CFR 3280.106 - Exit facilities; egress windows and devices.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Exit facilities; egress windows and... § 3280.106 Exit facilities; egress windows and devices. (a) Every room designed expressly for sleeping purposes, unless it has an exit door (see § 3280.105), shall have at least one outside window or approved...

  10. Skylab materials processing facility experiment developer's report

    NASA Technical Reports Server (NTRS)

    Parks, P. G.

    1975-01-01

    The development of the Skylab M512 Materials Processing Facility is traced from the design of a portable, self-contained electron beam welding system for terrestrial applications to the highly complex experiment system ultimately developed for three Skylab missions. The M512 experiment facility was designed to support six in-space experiments intended to explore the advantages of manufacturing materials in the near-zero-gravity environment of Earth orbit. Detailed descriptions of the M512 facility and related experiment hardware are provided, with discussions of hardware verification and man-machine interfaces included. An analysis of the operation of the facility and experiments during the three Skylab missions is presented, including discussions of the hardware performance, anomalies, and data returned to earth.

  11. On-orbit technology experiment facility definition

    NASA Technical Reports Server (NTRS)

    Russell, Richard A.; Buchan, Robert W.; Gates, Richard M.

    1988-01-01

    A study was conducted to identify on-orbit integrated facility needs to support in-space technology experiments on the Space Station and associated free flyers. In particular, the first task was to examine the proposed technology development missions (TDMX's) from the model mission set and other proposed experimental facilities, both individually and by theme, to determine how and if the experiments might be combined, what equipment might be shared, what equipment might be used as generic equipment for continued experimentation, and what experiments will conflict with the conduct of other experiments or Space Station operations. Then using these results, to determine on-orbit facility needs to optimize the implementation of technology payloads. Finally, to develop one or more scenarios, design concepts, and outfitting requirements for implementation of onboard technology experiments.

  12. Advanced Measurement Devices for the Microgravity Electromagnetic Levitation Facility EML

    NASA Technical Reports Server (NTRS)

    Brillo, Jurgen; Fritze, Holger; Lohofer, Georg; Schulz, Michal; Stenzel, Christian

    2012-01-01

    This paper reports on two advanced measurement devices for the microgravity electromagnetic levitation facility (EML), which is currently under construction for the use onboard the "International Space Station (ISS)": the "Sample Coupling Electronics (SCE)" and the "Oxygen Sensing and Control Unit (OSC)". The SCE measures by a contactless, inductive method the electrical resistivity and the diameter of a spherical levitated metallic droplet by evaluating the voltage and electrical current applied to the levitation coil. The necessity of the OSC comes from the insight that properties like surface tension or, eventually, viscosity cannot seriously be determined by the oscillating drop method in the EML facility without knowing the conditions of the surrounding atmosphere. In the following both measurement devices are explained and laboratory test results are presented.

  13. The insertion device magnetic measurement facility: Prototype and operational procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkel, L.; Dejus, R.; Maines, J.

    1993-03-01

    This report is a description of the current status of the magnetic measurement facility and is a basic instructional manual for the operation of the facility and its components. Please refer to the appendices for more detailed information about specific components and procedures. The purpose of the magnetic measurement facility is to take accurate measurements of the magnetic field in the gay of the IDs in order to determine the effect of the ID on the stored particle beam and the emitted radiation. The facility will also play an important role when evaluating new ideas, novel devices, and inhouse prototypesmore » as part of the ongoing research and development program at the APS. The measurements will be performed with both moving search coils and moving Hall probes. The IDs will be evaluated by computer modeling of the emitted radiation for any given (measured) magnetic field map. The quality of the magnetic field will be described in terms of integrated multipoles for the effect on Storage Ring performance and in terms of the derived trajectories for the emitted radiation. Before being installed on the Storage Ring, every device will be measured and characterized to assure that it is compatible with Storage Ring requirements and radiation specifications. The accuracy that the APS needs to achieve for magnetic measurements will be based on these specifications.« less

  14. Hysteroscopic morcellation: review of the manufacturer and user facility device experience (MAUDE) database.

    PubMed

    Haber, Karina; Hawkins, Eleanor; Levie, Mark; Chudnoff, Scott

    2015-01-01

    To investigate the number and type of adverse events associated with hysteroscopic morcellation of intrauterine disease. Systematic review of Manufacturer and User Device Experience (MAUDE) database from 2005 to June 2014 (Canadian Task Force classification III). Women undergoing hysteroscopic surgery for removal of intrauterine polyps or myomas with use of a reciprocating morcellator. The MAUDE database was searched for the key words "Hysteroscope," "Hysteroscopic reciprocating morcellator," "Interlace," "MyoSure," "Smith & Nephew," and "TRUCLEAR," to identify reported incidences of device malfunction, injury, or death. A total of 119 adverse events were analyzed. Reports were reviewed individually and categorized by date of occurrence, type of morcellation device, type of complication, and a brief description. Each company was contacted to provide an estimate of the number of procedures performed or units sold to date. From 2005 to June 2014, 119 adverse events were reported to the MAUDE database. On the basis of severity, adverse events were categorized as major or minor complications. Major events included intubation/admission to an intensive care unit (n = 14), bowel damage (n = 12), hysterectomy (n = 6), and death (n = 2). Minor events included uterine perforation requiring no other treatment (n = 29), device failure (n = 25), uncomplicated fluid overload (n = 19), postoperative bleeding controlled using noninvasive measures (n = 6), and pelvic infection (n = 4). These events were then categorized according to manufacturer. The number of adverse events reported to the MAUDE database was divided by the total units sold as a surrogate for the estimated number of procedures performed. Understanding the limitation of the numbers used as a numerator and denominator, we concluded that adverse events complicated hysteroscopic morcellation in <0.1% cases. The suction-based, mechanical energy, rotating tubular cutting system was developed to overcome adverse events

  15. 41 CFR 102-74.190 - Are portable heaters, fans and other such devices allowed in Government-controlled facilities?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., fans and other such devices allowed in Government-controlled facilities? 102-74.190 Section 102-74.190... § 102-74.190 Are portable heaters, fans and other such devices allowed in Government-controlled facilities? Federal agencies are prohibited from operating portable heaters, fans, and other such devices in...

  16. Study of Multiple Scale Physics of Magnetic Reconnection on the FLARE (Facility for Laboratory Reconnection Experiments)

    NASA Astrophysics Data System (ADS)

    Ji, H.; Bhattacharjee, A.; Prager, S.; Daughton, W. S.; Bale, S. D.; Carter, T. A.; Crocker, N.; Drake, J. F.; Egedal, J.; Sarff, J.; Wallace, J.; Chen, Y.; Cutler, R.; Fox, W. R., II; Heitzenroeder, P.; Kalish, M.; Jara-Almonte, J.; Myers, C. E.; Ren, Y.; Yamada, M.; Yoo, J.

    2015-12-01

    The FLARE device (flare.pppl.gov) is a new intermediate-scale plasma experiment under construction at Princeton to study magnetic reconnection in regimes directly relevant to space, solar and astrophysical plasmas. The existing small-scale experiments have been focusing on the single X-line reconnection process either with small effective sizes or at low Lundquist numbers, but both of which are typically very large in natural plasmas. The configuration of the FLARE device is designed to provide experimental access to the new regimes involving multiple X-lines, as guided by a reconnection "phase diagram" [Ji & Daughton, PoP (2011)]. Most of major components of the FLARE device have been designed and are under construction. The device will be assembled and installed in 2016, followed by commissioning and operation in 2017. The planned research on FLARE as a user facility will be discussed on topics including the multiple scale nature of magnetic reconnection from global fluid scales to ion and electron kinetic scales. Results from scoping simulations based on particle and fluid codes and possible comparative research with space measurements will be presented.

  17. Study of Plasma Energization during Magnetic Reconnection in the FLARE (Facility for Laboratory Reconnection Experiments)

    NASA Astrophysics Data System (ADS)

    Ji, H.; Bhattacharjee, A.; Prager, S.; Daughton, W.; Bale, S.; Carter, T.; Crocker, N.; Drake, J.; Egedal, J.; Sarff, J.; Wallace, J.; Chen, Y.; Cutler, R.; Fox, W.; Heitzenroeder, P.; Kalish, M.; Jara-Almonte, J.; Myers, C.; Ren, Y.; Yamada, M.; Yoo, J.

    2015-11-01

    Various regimes or ``phases'' are identified in a magnetic reconnection ``phase diagram'' which classifies different coupling mechanisms from the global system scales to the local dissipation scales. The FLARE device (http://flare.pppl.gov) is a new intermediate-scale plasma experiment under construction at Princeton to provide access to all of these phases directly relevant to space, solar, astrophysical, and fusion plasmas. Study of plasma energization during magnetic reconnection is one of major topics for the FLARE facility, which is planned to be a user facility. The motivating major physics questions regarding plasma energization and the planned collaborative research on these topics will be presented and discussed. Supported by NSF.

  18. Underwater Sound Levels at a Wave Energy Device Testing Facility in Falmouth Bay, UK.

    PubMed

    Garrett, Joanne K; Witt, Matthew J; Johanning, Lars

    2016-01-01

    Passive acoustic monitoring devices were deployed at FaBTest in Falmouth Bay, UK, a marine renewable energy device testing facility during trials of a wave energy device. The area supports considerable commercial shipping and recreational boating along with diverse marine fauna. Noise monitoring occurred during (1) a baseline period, (2) installation activity, (3) the device in situ with inactive power status, and (4) the device in situ with active power status. This paper discusses the preliminary findings of the sound recording at FabTest during these different activity periods of a wave energy device trial.

  19. A facility birth can be the time to start family planning: postpartum intrauterine device experiences from six countries.

    PubMed

    Pfitzer, Anne; Mackenzie, Devon; Blanchard, Holly; Hyjazi, Yolande; Kumar, Somesh; Lisanework Kassa, Serawit; Marinduque, Bernabe; Mateo, Marie Grace; Mukarugwiro, Beata; Ngabo, Fidele; Zaeem, Shabana; Zafar, Zonobia; Smith, Jeffrey Michael

    2015-06-01

    Initiation of family planning at the time of birth is opportune, since few women in low-resource settings who give birth in a facility return for further care. Postpartum family planning (PPFP) and postpartum intrauterine device (PPIUD) services were integrated into maternal care in six low- and middle-income countries, applying an insertion technique developed in Paraguay. Facilities with high delivery volume were selected to integrate PPFP/PPIUD services into routine care. Effective PPFP/PPIUD integration requires training and mentoring those providers assisting women at the time of birth. Ongoing monitoring generated data for advocacy. The percentages of PPIUD acceptors ranged from 2.3% of women counseled in Pakistan to 5.8% in the Philippines. Rates of complications among women returning for follow-up were low. Expulsion rates were 3.7% in Pakistan, 3.6% in Ethiopia, and 1.7% in Guinea and the Philippines. Infection rates did not exceed 1.3%, and three countries recorded no cases. Offering PPFP/PPIUD at birth improves access to contraception. Copyright © 2015. Published by Elsevier Ireland Ltd.

  20. Novel and facile viscometer using a paper-based microfluidic device

    NASA Astrophysics Data System (ADS)

    Kang, Hyunwoong; Jang, Ilhoon; Song, Simon

    2017-11-01

    In clinical applications, it is important to rapidly estimate the blood viscosity of a patient with a high accuracy and a small sample consumption. Unfortunately, ordinary mechanical viscometers require long analysis time, large volume of sample and skilled person. To address this issue, silicon-based viscometers have been developed, but they are still far from prevail usage in clinical environments due to complexity in process and analysis. Recently, a paper-based microfluidic device is emerged as a new platform for a facile point-of-care diagnostic device due to low cost, disposability and ease of use. Thus, we propose a novel and facile method of measuring a viscosity with a paper-based microfluidic devices and a smartphone. This viscometer utilizes mixing characteristics of two fluid flows in a T-shape channel: one for reference and the other for test fluid. The mixing strongly depends on viscosity difference between the two fluids. Also, the fluids are dyed for colorimetric analysis with a smartphone. We found that the accuracy of viscometer is about 3 percent when it was tested for various glycerin aqueous solutions. More detailed information will be discussed in the presentation. This work was supported by the National Research Foundation of Korea(NRF) Grant funded by the Korea government(MSIP) (No. 2016R1A2B3009541).

  1. Gas-grain simulation experiment module conceptual design and gas-grain simulation facility breadboard development

    NASA Technical Reports Server (NTRS)

    Zamel, James M.; Petach, Michael; Gat, Nahum; Kropp, Jack; Luong, Christina; Wolff, Michael

    1993-01-01

    This report delineates the Option portion of the Phase A Gas-Grain Simulation Facility study. The conceptual design of a Gas-Grain Simulation Experiment Module (GGSEM) for Space Shuttle Middeck is discussed. In addition, a laboratory breadboard was developed during this study to develop a key function for the GGSEM and the GGSF, specifically, a solid particle cloud generating device. The breadboard design and test results are discussed and recommendations for further studies are included. The GGSEM is intended to fly on board a low earth orbit (LEO), manned platform. It will be used to perform a subset of the experiments planned for the GGSF for Space Station Freedom, as it can partially accommodate a number of the science experiments. The outcome of the experiments performed will provide an increased understanding of the operational requirements for the GGSF. The GGSEM will also act as a platform to accomplish technology development and proof-of-principle experiments for GGSF hardware, and to verify concepts and designs of hardware for GGSF. The GGSEM will allow assembled subsystems to be tested to verify facility level operation. The technology development that can be accommodated by the GGSEM includes: GGSF sample generation techniques, GGSF on-line diagnostics techniques, sample collection techniques, performance of various types of sensors for environmental monitoring, and some off-line diagnostics. Advantages and disadvantages of several LEO platforms available for GGSEM applications are identified and discussed. Several of the anticipated GGSF experiments require the deagglomeration and dispensing of dry solid particles into an experiment chamber. During the GGSF Phase A study, various techniques and devices available for the solid particle aerosol generator were reviewed. As a result of this review, solid particle deagglomeration and dispensing were identified as key undeveloped technologies in the GGSF design. A laboratory breadboard version of a solid

  2. Gas-grain simulation experiment module conceptual design and gas-grain simulation facility breadboard development

    NASA Astrophysics Data System (ADS)

    Zamel, James M.; Petach, Michael; Gat, Nahum; Kropp, Jack; Luong, Christina; Wolff, Michael

    1993-12-01

    This report delineates the Option portion of the Phase A Gas-Grain Simulation Facility study. The conceptual design of a Gas-Grain Simulation Experiment Module (GGSEM) for Space Shuttle Middeck is discussed. In addition, a laboratory breadboard was developed during this study to develop a key function for the GGSEM and the GGSF, specifically, a solid particle cloud generating device. The breadboard design and test results are discussed and recommendations for further studies are included. The GGSEM is intended to fly on board a low earth orbit (LEO), manned platform. It will be used to perform a subset of the experiments planned for the GGSF for Space Station Freedom, as it can partially accommodate a number of the science experiments. The outcome of the experiments performed will provide an increased understanding of the operational requirements for the GGSF. The GGSEM will also act as a platform to accomplish technology development and proof-of-principle experiments for GGSF hardware, and to verify concepts and designs of hardware for GGSF. The GGSEM will allow assembled subsystems to be tested to verify facility level operation. The technology development that can be accommodated by the GGSEM includes: GGSF sample generation techniques, GGSF on-line diagnostics techniques, sample collection techniques, performance of various types of sensors for environmental monitoring, and some off-line diagnostics. Advantages and disadvantages of several LEO platforms available for GGSEM applications are identified and discussed. Several of the anticipated GGSF experiments require the de-agglomeration and dispensing of dry solid particles into an experiment chamber. During the GGSF Phase A study, various techniques and devices available for the solid particle aerosol generator were reviewed. As a result of this review, solid particle de-agglomeration and dispensing were identified as key undeveloped technologies in the GGSF design. A laboratory breadboard version of a solid

  3. 16 CFR Figures 1 and 2 to Part 1204 - Suggested Instrumentation for Current Monitoring Device and High Voltage Facility

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Suggested Instrumentation for Current Monitoring Device and High Voltage Facility 1 Figures 1 and 2 to Part 1204 Commercial Practices CONSUMER... Instrumentation for Current Monitoring Device and High Voltage Facility EC03OC91.008 ...

  4. 16 CFR Figures 1 and 2 to Part 1204 - Suggested Instrumentation for Current Monitoring Device and High Voltage Facility

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Suggested Instrumentation for Current Monitoring Device and High Voltage Facility 1 Figures 1 and 2 to Part 1204 Commercial Practices CONSUMER... Instrumentation for Current Monitoring Device and High Voltage Facility EC03OC91.008 ...

  5. 16 CFR Figures 1 and 2 to Part 1204 - Suggested Instrumentation for Current Monitoring Device and High Voltage Facility

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Suggested Instrumentation for Current Monitoring Device and High Voltage Facility 1 Figures 1 and 2 to Part 1204 Commercial Practices CONSUMER... Instrumentation for Current Monitoring Device and High Voltage Facility EC03OC91.008 ...

  6. 16 CFR Figures 1 and 2 to Part 1204 - Suggested Instrumentation for Current Monitoring Device and High Voltage Facility

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Monitoring Device and High Voltage Facility 1 Figures 1 and 2 to Part 1204 Commercial Practices CONSUMER... CITIZENS BAND BASE STATION ANTENNAS Pt. 1204, Figs. 1, 2 Figures 1 and 2 to Part 1204—Suggested Instrumentation for Current Monitoring Device and High Voltage Facility EC03OC91.008 ...

  7. 16 CFR Figures 1 and 2 to Part 1204 - Suggested Instrumentation for Current Monitoring Device and High Voltage Facility

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Monitoring Device and High Voltage Facility 1 Figures 1 and 2 to Part 1204 Commercial Practices CONSUMER... CITIZENS BAND BASE STATION ANTENNAS Pt. 1204, Figs. 1, 2 Figures 1 and 2 to Part 1204—Suggested Instrumentation for Current Monitoring Device and High Voltage Facility EC03OC91.008 ...

  8. Material Processing Facility - Skylab Experiment M512

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This chart details Skylab's Materials Processing Facility experiment (M512). This facility, located in the Multiple Docking Adapter, was developed for Skylab and accommodated 14 different experiments that were carried out during the three marned missions. The abilities to melt and mix without the contaminating effects of containers, to suppress thermal convection and buoyancy in fluids, and to take advantage of electrostatic and magnetic forces and otherwise masked by gravitation opened the way to new knowledge of material properties and processes. This beginning would ultimately lead to the production of valuable new materials for use on Earth.

  9. Shuttle Laser Technology Experiment Facility (LTEF)-to-airplane lasercom experiment: Airplane considerations

    NASA Technical Reports Server (NTRS)

    Kalil, Ford

    1990-01-01

    NASA is considering the use of various airplanes for a Shuttle Laser Technology Experiment Facility (LTEF)-to-Airplane laser communications experiment. As supporting documentation, pertinent technical details are included about the potential use of airplanes located at Ames Research Center and Wallops Flight Facility. The effects and application of orbital mechanics considerations are also presented, including slant range, azimuth, elevation, and time. The pros and cons of an airplane equipped with a side port with a bubble window versus a top port with a dome are discussed.

  10. LOH- RadGene experiment at Cell Biology Experiment Facility (CBEF)

    NASA Image and Video Library

    2009-02-20

    ISS018-E-034074 (20 Feb. 2009) --- Astronaut Sandra Magnus, Expedition 18 flight engineer, works with the LOH- RadGene experiment near the Cell Biology Experiment Facility (CBEF) in the Kibo laboratory of the International Space Station. This experiment investigates alterations in immature immune cells that have been exposed to cosmic radiation. The samples were placed in culture bags and launched to the ISS on the STS-126 mission. After the experiment, frozen samples will be returned to the ground on the STS-119 mission.

  11. LOH- RadGene experiment at Cell Biology Experiment Facility (CBEF)

    NASA Image and Video Library

    2009-02-20

    ISS018-E-034555 (20 Feb. 2009) --- Astronaut Sandra Magnus, Expedition 18 flight engineer, takes a moment for a photo while working with the LOH- RadGene experiment at the Cell Biology Experiment Facility (CBEF) in the Kibo laboratory of the International Space Station. This experiment investigates genetic alterations in immature immune cells that have been exposed to cosmic radiation. The samples were placed in culture bags and launched to the ISS on the STS-126 mission. After the experiment, frozen samples will be returned to the ground on the STS-119 mission.

  12. LOH- RadGene experiment at Cell Biology Experiment Facility (CBEF)

    NASA Image and Video Library

    2009-02-20

    ISS018-E-034090 (20 Feb. 2009) --- Astronaut Sandra Magnus, Expedition 18 flight engineer, uses a communication system near the Cell Biology Experiment Facility (CBEF) in the Kibo laboratory of the International Space Station.

  13. Status of the FLARE (Facility for Laboratory Reconnection Experiments) Construction Project and Plans as a User Facility

    NASA Astrophysics Data System (ADS)

    Ji, H.; Bhattacharjee, A.; Prager, S.; Daughton, W.; Chen, Y.; Cutler, R.; Fox, W.; Hoffmann, F.; Kalish, M.; Jara-Almonte, J.; Myers, C.; Ren, Y.; Yamada, M.; Yoo, J.; Bale, S. D.; Carter, T.; Dorfman, S.; Drake, J.; Egedal, J.; Sarff, J.; Wallace, J.

    2016-10-01

    The FLARE device (flare.pppl.gov) is a new intermediate-scale plasma experiment under construction at Princeton for the studies of magnetic reconnection in the multiple X-line regimes directly relevant to space, solar, astrophysical, and fusion plasmas, as guided by a reconnection phase diagram [Ji & Daughton, (2011)]. Most of major components either have been already fabricated or are near their completion, including the two most crucial magnets called flux cores. The hardware assembly and installation begin in this summer, followed by commissioning in 2017. Initial comprehensive set of research diagnostics will be constructed and installed also in 2017. The main diagnostics is an extensive set of magnetic probe arrays, covering multiple scales from local electron scales, to intermediate ion scales, and global MHD scales. The planned procedures and example topics as a user facility will be discussed.

  14. Open-source products for a lighting experiment device.

    PubMed

    Gildea, Kevin M; Milburn, Nelda

    2014-12-01

    The capabilities of open-source software and microcontrollers were used to construct a device for controlled lighting experiments. The device was designed to ascertain whether individuals with certain color vision deficiencies were able to discriminate between the red and white lights in fielded systems on the basis of luminous intensity. The device provided the ability to control the timing and duration of light-emitting diode (LED) and incandescent light stimulus presentations, to present the experimental sequence and verbal instructions automatically, to adjust LED and incandescent luminous intensity, and to display LED and incandescent lights with various spectral emissions. The lighting device could easily be adapted for experiments involving flashing or timed presentations of colored lights, or the components could be expanded to study areas such as threshold light perception and visual alerting systems.

  15. Long Duration Exposure Facility (LDEF). Mission 1 Experiments

    NASA Technical Reports Server (NTRS)

    Clark, L. G. (Editor); Kinard, W. H. (Editor); Carter, D. L., Jr. (Editor); Jones, J. L., Jr. (Editor)

    1984-01-01

    Spaceborne experiments using the space shuttle payload known as the Long Duration Exposure Facility are described. Experiments in the fields of materials, coatings, thermal systems, power and propulsion, electronic, and optics are discussed.

  16. FPEF (Fluid Physics Experiment Facility) for the planned MS (Marangoni Surface) experiment

    NASA Image and Video Library

    2009-07-01

    ISS020-E-016214 (1 July 2009) --- Canadian Space Agency astronaut Robert Thirsk, Expedition 20 flight engineer, prepares the Fluid Physics Experiment Facility (FPEF) for the planned Marangoni Surface experiment in the Kibo laboratory of the International Space Station.

  17. The ISS Fluids and Combustion Facility: Experiment Accommodations Summary

    NASA Technical Reports Server (NTRS)

    Corban, Robert R.; Simons, Stephen N. (Technical Monitor)

    2001-01-01

    The International Space Station's (ISS's) Fluids and Combustion Facility (FCF) is in the process of final design and development activities to accommodate a wide range of experiments in the fields of combustion science and fluid physics. The FCF is being designed to provide potential experiments with well defined interfaces that can meet the experimenters requirements, provide the flexibility for on-orbit reconfiguration, and provide the maximum capability within the ISS resources and constraints. As a multi-disciplined facility, the FCF supports various experiments and scientific objectives, which will be developed in the future and are not completely defined at this time. Since developing experiments to be performed within FCF is a continuous process throughout the FCF's operational lifetime, each individual experiment must determine the best configuration of utilizing facility capabilities and resources with augmentation of specific experiment hardware. Configurations of potential experiments in the FCF has been on-going to better define the FCF interfaces and provide assurances that the FCF design will meet its design requirements. This paper provides a summary of ISS resources and FCF capabilities, which are available for potential ISS FCF users. Also, to better understand the utilization of the FCF a description of a various experiment layouts and associated operations in the FCF are provided.

  18. NASDA aquatic animal experiment facilities for Space Shuttle and ISS.

    PubMed

    Uchida, Satoko; Masukawa, Mitsuyo; Kamigaichi, Shigeki

    2002-01-01

    National Space Development Agency of Japan (NASDA) has developed aquatic animal experiment facilities for NASA Space Shuttle use. Vestibular Function Experiment Unit (VFEU) was firstly designed and developed for physiological research using carp in Spacelab-J (SL-J, STS-47) mission. It was modified as Aquatic Animal Experiment Unit (AAEU) to accommodate small aquatic animals, such as medaka and newt, for second International Microgravity Laboratory (IML-2, STS-65) mission. Then, VFEU was improved to accommodate marine fish and to perform neurobiological experiment for Neurolab (STS-90) and STS-95 missions. We have also developed and used water purification system which was adapted to each facility. Based on these experiences of Space Shuttle missions, we are studying to develop advanced aquatic animal experiment facility for both Space Shuttle and International Space Station (ISS). c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  19. A High-Speed Continuous Recording High Flow Gas Sampler for Measuring Methane Emissions from Pneumatic Devices at Oil and Natural Gas Production Facilities

    NASA Astrophysics Data System (ADS)

    Ferrara, T.; Howard, T. M.

    2016-12-01

    Studies attempting to reconcile facility level emission estimates of sources at oil and gas facilities with basin wide methane flux measurements have had limited success. Pneumatic devices are commonly used at oil and gas production facilities for process control or liquid pumping. These devices are powered by pressurized natural gas from the well, so they are known methane sources at these sites. Pneumatic devices are estimated to contribute 14% to 25% of the total greenhouse gas emissions (GHG) from production facilities. Measurements of pneumatic devices have shown that malfunctioning or poorly maintained control systems may be emitting significantly more methane than currently estimated. Emission inventories for these facilities use emission factors from EPA that are based on pneumatic device measurements made in the early 1990's. Recent studies of methane emissions from production facilities have attempted to measure emissions from pneumatic devices by several different methods. These methods have had limitations including alteration of the system being measured, the inability to distinguish between leaks and venting during normal operation, or insufficient response time to account of the time based emission events. We have developed a high speed recording high flow sampler that is capable of measuring the transient emissions from pneumatic devices. This sampler is based on the well-established high flow measurement technique used in oil and gas for quantifying component leak rates. In this paper we present the results of extensive laboratory controlled release testing. Additionally, test data from several field studies where this sampler has been used to measure pneumatic device emissions will be presented.

  20. Space Station Furnace Facility. Experiment/Facility Requirements Document (E/FRD), volume 2, appendix 5

    NASA Technical Reports Server (NTRS)

    Kephart, Nancy

    1992-01-01

    The function of the Space Station Furnace Facility (SSFF) is to support materials research into the crystal growth and solidification processes of electronic and photonic materials, metals and alloys, and glasses and ceramics. To support this broad base of research requirements, the SSFF will employ a variety of furnace modules operated, regulated, and supported by a core of common subsystems. Furnace modules may be reconfigured or specifically developed to provide unique solidifcation conditions for each set of experiments. The SSFF modular approach permits the addition of new or scaled-up furnace modules to support the evolution of the facility as new science requirements are identified. The SSFF Core is of modular design to permit augmentation for enhanced capabilities. The fully integrated configuration of the SSFF will consist of three racks with the capability of supporting up to two furnace modules per rack. The initial configuration of the SSFF will consist of two of the three racks and one furnace module. This Experiment/Facility Requirements Document (E/FRD) describes the integrated facility requirements for the Space Station Freedom (SSF) Integrated Configuration-1 (IC1) mission. The IC1 SSFF will consist of two racks: the Core Rack, with the centralized subsystem equipment, and the Experiment Rack-1, with Furnace Module-1 and the distributed subsystem equipment to support the furnace.

  1. Organic Crystal Growth Facility (OCGF) and Radiation Monitoring Container Device (RMCD) Groups in

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The primary payload for Space Shuttle Mission STS-42, launched January 22, 1992, was the International Microgravity Laboratory-1 (IML-1), a pressurized manned Spacelab module. The goal of IML-1 was to explore in depth the complex effects of weightlessness of living organisms and materials processing. Around-the-clock research was performed on the human nervous system's adaptation to low gravity and effects of microgravity on other life forms such as shrimp eggs, lentil seedlings, fruit fly eggs, and bacteria. Materials processing experiments were also conducted, including crystal growth from a variety of substances such as enzymes, mercury iodide, and a virus. The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Featured are activities of the Organic Crystal Growth Facility (OCGF) and Radiation Monitoring Container Device (RMCD) groups in the SL POCC during the IML-1 mission.

  2. Description of the Spacecraft Control Laboratory Experiment (SCOLE) facility

    NASA Technical Reports Server (NTRS)

    Williams, Jeffrey P.; Rallo, Rosemary A.

    1987-01-01

    A laboratory facility for the study of control laws for large flexible spacecraft is described. The facility fulfills the requirements of the Spacecraft Control Laboratory Experiment (SCOLE) design challenge for a laboratory experiment, which will allow slew maneuvers and pointing operations. The structural apparatus is described in detail sufficient for modelling purposes. The sensor and actuator types and characteristics are described so that identification and control algorithms may be designed. The control implementation computer and real-time subroutines are also described.

  3. Description of the Spacecraft Control Laboratory Experiment (SCOLE) facility

    NASA Technical Reports Server (NTRS)

    Williams, Jeffrey P.; Rallo, Rosemary A.

    1987-01-01

    A laboratory facility for the study of control laws for large flexible spacecraft is described. The facility fulfills the requirements of the Spacecraft Control Laboratory Experiment (SCOLE) design challenge for laboratory experiments, which will allow slew maneuvers and pointing operations. The structural apparatus is described in detail sufficient for modelling purposes. The sensor and actuator types and characteristics are described so that identification and control algorithms may be designed. The control implementation computer and real-time subroutines are also described.

  4. 14 CFR 135.97 - Aircraft and facilities for recent flight experience.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Aircraft and facilities for recent flight experience. 135.97 Section 135.97 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Flight Operations § 135.97 Aircraft and facilities for recent flight experience. Each certificate holder...

  5. 14 CFR 135.97 - Aircraft and facilities for recent flight experience.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Aircraft and facilities for recent flight experience. 135.97 Section 135.97 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Flight Operations § 135.97 Aircraft and facilities for recent flight experience. Each certificate holder...

  6. 14 CFR 135.97 - Aircraft and facilities for recent flight experience.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Aircraft and facilities for recent flight experience. 135.97 Section 135.97 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Flight Operations § 135.97 Aircraft and facilities for recent flight experience. Each certificate holder...

  7. 14 CFR 135.97 - Aircraft and facilities for recent flight experience.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Aircraft and facilities for recent flight experience. 135.97 Section 135.97 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Flight Operations § 135.97 Aircraft and facilities for recent flight experience. Each certificate holder...

  8. 14 CFR 135.97 - Aircraft and facilities for recent flight experience.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Aircraft and facilities for recent flight experience. 135.97 Section 135.97 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Flight Operations § 135.97 Aircraft and facilities for recent flight experience. Each certificate holder...

  9. Latest experiences and future plans on NSLS-II insertion devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanabe, T.; Hidaka, Y.; Kitegi, C.

    National Synchrotron Light Source-II (NSLS-II) is the latest storage ring of 3 GeV energy at the Brookhaven National Laboratory (BNL). The horizontal emittance of the electron beam with the currently installed six damping wigglers is 0.9 nm.rad, which could be further reduced to 0.5 nm.rad with more insertion devices (IDs). With only one RF cavity the beam current is restricted to 200 mA. Five hundred mA operation is envisaged for next year with an addition of the second cavity. Six (plus two branches) beamlines have been commissioned in the initial phase of the project. In July 2015, three NIH fundedmore » beamlines called “Advanced Beamlines for Biological Investigations with X-rays” (ABBIX) will be added for operation. This paper describes the experiences of ID development, installation, and commissioning for the NSLS-II project as well as our future plans to improve the performance of the facility in terms of source development.« less

  10. NASDA life science experiment facilities for ISS

    NASA Astrophysics Data System (ADS)

    Tanigaki, F.; Masuda, D.; Yano, S.; Fujimoto, N.; Kamigaichi, S.

    National Space Development Agency of Japan (NASDA) has been developing various experiment facilities to conduct space biology researches in KIBO (JEM). The Cell Biology Experiment Facility (CBEF) and the Clean Bench (CB) are installed into JEM Life Science Rack. The Biological Experiment Units (BEU) are operated in the CBEF and the CB for many kinds of experiments on cells, tissues, plants, microorganisms, or small animals. It is possible for all researchers to use these facilities under the system of the International Announcement of Opportunity. The CBEF is a CO2 incubator to provide a controlled environment (temperature, humidity, and CO2 concentration), in which a rotating table is equipped to make variable gravity (0-2g) for reference experiments. The containers called "Canisters" can be used to install the BEU in the CBEF. The CBEF supplies power, command, sensor, and video interfaces for the BEU through the utility connectors of Canisters. The BEU is a multiuser system consisting of chambers and control segments. It is operated by pre-set programs and by commands from the ground. NASDA is currently developing three types of the BEU: the Plant Experiment Unit (PEU) for plant life cycle observations and the Cell Experiment Unit (CEU1&2) for cell culture experiments. The PEU has an automated watering system with a water sensor, an LED matrix as a light source, and a CCD camera to observe the plant growth. The CEUs have culture chambers and an automated cultural medium exchange system. Engineering models of the PEU and CEU1 have been accomplished. The preliminary design of CEU2 is in progress. The design of the BEU will be modified to meet science requirements of each experiment. The CB provides a closed aseptic work-space (Operation Chamber) with gloves for experiment operations. Samples and the BEU can be manually handled in the CB. The CB has an air lock (Disinfection Chamber) to prevent contamination, and HEPA filters to make class-100-equivalent clean air

  11. Experiment/facility requirements document for the Space Station Furnace Facility. Section 1: Integrated configuration

    NASA Astrophysics Data System (ADS)

    1992-05-01

    The function of the Space Station Furnace Facility (SSFF) is to support materials research into the crystal growth and solidification processes of electronic and photonic materials, metals and alloys, and glasses and ceramics. To support this broad base of research requirements, the SSFF will employ a variety of furnace modules which will be operated, regulated, and supported by a core of common subsystems. Furnace modules may be reconfigured or specifically developed to provide unique solidification conditions for each set of experiments. The SSFF modular approach permits the addition of new or scaled-up furnace modules to support the evolution of the facility as new science requirements are identified. The SSFF Core is of modular design to permit augmentation for enhanced capabilities. The fully integrated configuration of the SSFF will consist of three racks with the capability of supporting up to two furnace modules per rack. The initial configuration of the SSFF will consist of two of the three racks and one furnace module. This Experiment/Facility Requirements Document (E/FRD) describes the integrated facility requirements for the Space Station Freedom (SSF) Integrated Configuration-1 (IC1) mission. The IC1 SSFF will consist of two racks: the Core Rack, with the centralized subsystem equipment; and the Experiment Rack-1, with Furnace Module-1 and the distributed subsystem equipment to support the furnace. The SSFF support functions are provided by the following Core subsystems: power conditioning and distribution subsystem (SSFF PCDS); data management subsystem (SSFF DMS); thermal control Subsystem (SSFF TCS); gas distribution subsystem (SSFF GDS); and mechanical structures subsystem (SSFF MSS).

  12. Experiment/facility requirements document for the Space Station Furnace Facility. Section 1: Integrated configuration

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The function of the Space Station Furnace Facility (SSFF) is to support materials research into the crystal growth and solidification processes of electronic and photonic materials, metals and alloys, and glasses and ceramics. To support this broad base of research requirements, the SSFF will employ a variety of furnace modules which will be operated, regulated, and supported by a core of common subsystems. Furnace modules may be reconfigured or specifically developed to provide unique solidification conditions for each set of experiments. The SSFF modular approach permits the addition of new or scaled-up furnace modules to support the evolution of the facility as new science requirements are identified. The SSFF Core is of modular design to permit augmentation for enhanced capabilities. The fully integrated configuration of the SSFF will consist of three racks with the capability of supporting up to two furnace modules per rack. The initial configuration of the SSFF will consist of two of the three racks and one furnace module. This Experiment/Facility Requirements Document (E/FRD) describes the integrated facility requirements for the Space Station Freedom (SSF) Integrated Configuration-1 (IC1) mission. The IC1 SSFF will consist of two racks: the Core Rack, with the centralized subsystem equipment; and the Experiment Rack-1, with Furnace Module-1 and the distributed subsystem equipment to support the furnace. The SSFF support functions are provided by the following Core subsystems: power conditioning and distribution subsystem (SSFF PCDS); data management subsystem (SSFF DMS); thermal control Subsystem (SSFF TCS); gas distribution subsystem (SSFF GDS); and mechanical structures subsystem (SSFF MSS).

  13. Inventory Control. Easily Made Electronic Device for Conductivity Experiments.

    ERIC Educational Resources Information Center

    Gadek, Frank J.

    1987-01-01

    Describes how to construct an electronic device to be used in conductivity experiments using a 35 millimeter film canister, nine volt battery replacement snaps, a 200-300 ohm resistor, and a light-emitting diode. Provides a diagram and photographs of the device. (TW)

  14. Experiments on the transportation of a magnetized plasma stream in the GOL-3 facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Postupaev, V. V., E-mail: V.V.Postupaev@inp.nsk.su; Batkin, V. I.; Burdakov, A. V.

    2016-04-15

    The program of the deep upgrade of the GOL-3 multiple-mirror trap is presented. The upgrade is aimed at creating a new GOL-NB open trap located at the GOL-3 site and intended to directly demonstrate the efficiency of using multiple-mirror magnetic cells to improve longitudinal plasma confinement in a gasdynamic open trap. The GOL-NB device will consist of a new central trap, adjoint cells with a multiple-mirror magnetic field, and end tanks (magnetic flux expanders). Plasma in the central trap will be heated by neutral beam injection with a power of up to 1.5 MW and duration of 1 ms. Atmore » present, physical experiments directed at developing plasma technologies that are novel for this facility are being carried out using the 6-m-long autonomous part of the GOL-3 solenoid. The aim of this work was to develop a method for filling the central trap with a low-temperature start plasma. Transportation of a plasma stream from an arc source over a distance of 3 m in a uniform magnetic field with an induction of 0.5–4.5 T is demonstrated. In these experiments, the axial plasma density was (1–4) × 10{sup 20} m{sup –3} and the mirror ratio varied from 5 to 60. In general, the experiments confirmed the correctness of the adopted decisions for the start plasma source of the GOL-NB device.« less

  15. Posttest examination of Sodium Loop Safety Facility experiments. [LMFBR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holland, J.W.

    In-reactor, safety experiments performed in the Sodium Loop Safety Facility (SLSF) rely on comprehensive posttest examinations (PTE) to characterize the postirradiation condition of the cladding, fuel, and other test-subassembly components. PTE information and on-line instrumentation data, are analyzed to identify the sequence of events and the severity of the accident for each experiment. Following in-reactor experimentation, the SLSF loop and test assembly are transported to the Hot Fuel Examination Facility (HFEF) for initial disassembly. Goals of the HFEF-phase of the PTE are to retrieve the fuel bundle by dismantling the loop and withdrawing the test assembly, to assess the macro-conditionmore » of the fuel bundle by nondestructive examination techniques, and to prepare the fuel bundle for shipment to the Alpha-Gamma Hot Cell Facility (AGHCF) at Argonne National Laboratory.« less

  16. Maintenance Free Fluidic Transfer and Mixing Devices for Highly Radioactive Applications - Design, Development, Deployment and Operational Experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, C.; Richardson, J. E.; Fallows, P.

    2006-07-01

    Power Fluidics is the generic name for a range of maintenance-free fluid transfer and mixing devices, capable of handling a wide range of highly radioactive fluids, jointly developed by British Nuclear Group, its US-based subsidiary BNG America, and AEA Technology. Power Fluidic devices include Reverse Flow Diverters (RFDs), Vacuum Operated Slug Lifts (VOSLs), and Air Lifts, all of which have an excellent proven record for pumping radioactive liquids and sludges. Variants of the RFD, termed Pulse Jet Mixers (PJMs) are used to agitate and mix tank contents, where maintenance-free equipment is desirable, and where a high degree of homogenization ismore » necessary. The equipment is designed around the common principle of using compressed air to provide the motive force to transfer liquids and sludges. These devices have no moving parts in contact with the radioactive medium and therefore require no maintenance in radioactive areas of processing plants. Once commissioned, Power Fluidic equipment has been demonstrated to operate for the life of the facility. Over 800 fluidic devices continue to operate safely and reliably in British Nuclear Group's nuclear facilities at the Sellafield site in the United Kingdom, and some of these have done so for almost 40 years. More than 400 devices are being supplied by AEA Technology and BNG America for the Waste Treatment Plant (WTP) at the Hanford Site in southeastern Washington State, USA. This paper discusses: - Principles of operation of fluidic pumps and mixers. - Selection criteria and design of fluidic pumps and mixers. - Operational experience of fluidic pumps and mixers in the United Kingdom. - Applications of fluidic pumps and mixers at the U.S. Department of Energy nuclear sites. (authors)« less

  17. A survey of experiments and experimental facilities for active control of flexible structures

    NASA Technical Reports Server (NTRS)

    Sparks, Dean W., Jr.; Horner, Garnett C.; Juang, Jer-Nan; Klose, Gerhard

    1989-01-01

    A brief survey of large space structure control related experiments and facilities was presented. This survey covered experiments performed before and up to 1982, and those of the present period (1982-...). Finally, the future planned experiments and facilities in support of the control-structure interaction (CSI) program were reported. It was stated that new, improved ground test facilities are needed to verify the new CSI design techniques that will allow future space structures to perform planned NASA missions.

  18. [Ethic review on clinical experiments of medical devices in medical institutions].

    PubMed

    Shuai, Wanjun; Chao, Yong; Wang, Ning; Xu, Shining

    2011-07-01

    Clinical experiments are always used to evaluate the safety and validity of medical devices. The experiments have two types of clinical trying and testing. Ethic review must be done by the ethics committee of the medical department with the qualification of clinical research, and the approval must be made before the experiments. In order to ensure the safety and validity of clinical experiments of medical devices in medical institutions, the contents, process and approval criterions of the ethic review were analyzed and discussed.

  19. 76 FR 40945 - Rensselaer Polytechnic Institute Critical Experiments Facility; Notice of Issuance of Renewed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-12

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-225; NRC-2008-0277] Rensselaer Polytechnic Institute Critical Experiments Facility; Notice of Issuance of Renewed Facility Operating License No. CX-22 The U.S... of the Rensselaer Polytechnic Institute Critical Experiments Facility (RCF), located in Schenectady...

  20. Integration and use of Microgravity Research Facility: Lessons learned by the crystals by vapor transport experiment and Space Experiments Facility programs

    NASA Technical Reports Server (NTRS)

    Heizer, Barbara L.

    1992-01-01

    The Crystals by Vapor Transport Experiment (CVTE) and Space Experiments Facility (SEF) are materials processing facilities designed and built for use on the Space Shuttle mid deck. The CVTE was built as a commercial facility owned by the Boeing Company. The SEF was built under contract to the UAH Center for Commercial Development of Space (CCDS). Both facilities include up to three furnaces capable of reaching 850 C minimum, stand-alone electronics and software, and independent cooling control. In addition, the CVTE includes a dedicated stowage locker for cameras, a laptop computer, and other ancillary equipment. Both systems are designed to fly in a Middeck Accommodations Rack (MAR), though the SEF is currently being integrated into a Spacehab rack. The CVTE hardware includes two transparent furnaces capable of achieving temperatures in the 850 to 870 C range. The transparent feature allows scientists/astronauts to directly observe and affect crystal growth both on the ground and in space. Cameras mounted to the rack provide photodocumentation of the crystal growth. The basic design of the furnace allows for modification to accommodate techniques other than vapor crystal growth. Early in the CVTE program, the decision was made to assign a principal scientist to develop the experiment plan, affect the hardware/software design, run the ground and flight research effort, and interface with the scientific community. The principal scientist is responsible to the program manager and is a critical member of the engineering development team. As a result of this decision, the hardware/experiment requirements were established in such a way as to balance the engineering and science demands on the equipment. Program schedules for hardware development, experiment definition and material selection, flight operations development and crew training, both ground support and astronauts, were all planned and carried out with the understanding that the success of the program science

  1. Boiling Experiment Facility for Heat Transfer Studies in Microgravity

    NASA Technical Reports Server (NTRS)

    Delombard, Richard; McQuillen, John; Chao, David

    2008-01-01

    Pool boiling in microgravity is an area of both scientific and practical interest. By conducting tests in microgravity, it is possible to assess the effect of buoyancy on the overall boiling process and assess the relative magnitude of effects with regards to other "forces" and phenomena such as Marangoni forces, liquid momentum forces, and microlayer evaporation. The Boiling eXperiment Facility is now being built for the Microgravity Science Glovebox that will use normal perfluorohexane as a test fluid to extend the range of test conditions to include longer test durations and less liquid subcooling. Two experiments, the Microheater Array Boiling Experiment and the Nucleate Pool Boiling eXperiment will use the Boiling eXperiment Facility. The objectives of these studies are to determine the differences in local boiling heat transfer mechanisms in microgravity and normal gravity from nucleate boiling, through critical heat flux and into the transition boiling regime and to examine the bubble nucleation, growth, departure and coalescence processes. Custom-designed heaters will be utilized to achieve these objectives.

  2. A ``Cyber Wind Facility'' for HPC Wind Turbine Field Experiments

    NASA Astrophysics Data System (ADS)

    Brasseur, James; Paterson, Eric; Schmitz, Sven; Campbell, Robert; Vijayakumar, Ganesh; Lavely, Adam; Jayaraman, Balaji; Nandi, Tarak; Jha, Pankaj; Dunbar, Alex; Motta-Mena, Javier; Craven, Brent; Haupt, Sue

    2013-03-01

    The Penn State ``Cyber Wind Facility'' (CWF) is a high-fidelity multi-scale high performance computing (HPC) environment in which ``cyber field experiments'' are designed and ``cyber data'' collected from wind turbines operating within the atmospheric boundary layer (ABL) environment. Conceptually the ``facility'' is akin to a high-tech wind tunnel with controlled physical environment, but unlike a wind tunnel it replicates commercial-scale wind turbines operating in the field and forced by true atmospheric turbulence with controlled stability state. The CWF is created from state-of-the-art high-accuracy technology geometry and grid design and numerical methods, and with high-resolution simulation strategies that blend unsteady RANS near the surface with high fidelity large-eddy simulation (LES) in separated boundary layer, blade and rotor wake regions, embedded within high-resolution LES of the ABL. CWF experiments complement physical field facility experiments that can capture wider ranges of meteorological events, but with minimal control over the environment and with very small numbers of sensors at low spatial resolution. I shall report on the first CWF experiments aimed at dynamical interactions between ABL turbulence and space-time wind turbine loadings. Supported by DOE and NSF.

  3. Rolling out of kangaroo mother care in secondary level facilities in Bihar-Some experiences.

    PubMed

    Neogi, Sutapa B; Chauhan, Monika; Sharma, Jyoti; Negandhi, Preeti; Sethy, Ghanshyam

    2016-01-01

    Preterm birth is one of the leading causes of under-five child deaths worldwide and in India. Kangaroo mother care (KMC) is a powerful and easy-to-use method to promote health and well-being and reduce morbidity and mortality in preterm/low birth weight (LBW) babies. As the part of the roll-out of India Newborn Action Plan interventions, we implemented KMC in select facilities with an objective to assess the responsiveness of public health system to roll out KMC. KMC intervention was implemented in two select high priority districts, Gaya and Purnea in Bihar over the duration of 8 months from August 2015 to March 2016. The implementation of intervention was phased out into; situation analysis, implementation of intervention, and interim assessment. KMC model, as envisaged keeping in mind the building blocks of health system, was established in 6 identified health-care facilities. A pretested simple checklist was used to assess the awareness, knowledge, skills, and practice of KMC during baseline situational analysis and interim assessment phases for comparison. The intervention clearly seemed to improve the awareness among auxiliary nurse midwives/nurses about KMC. Improvements were also observed in the availability of infrastructure required for KMC and support logistics like facility for manual expression of breast milk, cups/suitable devices such as paladi cups for feeding small babies and digital weighing scale. Although the recording of information regarding LBW babies and KMC practice improved, still there is scope for much improvement. There is a commitment at the national level to promote KMC in every facility. The present experience shows the possibility of rolling out KMC in secondary level facilities with support from government functionaries.

  4. FEANICS: A Multi-User Facility For Conducting Solid Fuel Combustion Experiments On ISS

    NASA Technical Reports Server (NTRS)

    Frate, David T.; Tofil, Todd A.

    2001-01-01

    The Destiny Module on the International Space Station (ISS) will soon be home for the Fluids and Combustion Facility's (FCF) Combustion Integrated Rack (CIR), which is being developed at the NASA Glenn Research Center in Cleveland, Ohio. The CIR will be the platform for future microgravity combustion experiments. A multi-user mini-facility called FEANICS (Flow Enclosure Accommodating Novel Investigations in Combustion of Solids) will also be built at NASA Glenn. This mini-facility will be the primary means for conducting solid fuel combustion experiments in the CIR on ISS. The main focus of many of these solid combustion experiments will be to conduct basic and applied scientific investigations in fire-safety to support NASA's Bioastronautics Initiative. The FEANICS project team will work in conjunction with the CIR project team to develop upgradeable and reusable hardware to meet the science requirements of current and future investigators. Currently, there are six experiments that are candidates to use the FEANICS mini-facility. This paper will describe the capabilities of this mini-facility and the type of solid combustion testing and diagnostics that can be performed.

  5. The first experiments on the national ignition facility

    NASA Astrophysics Data System (ADS)

    Landen, O. L.; Glenzer, S.; Froula, D.; Dewald, E.; Suter, L. J.; Schneider, M.; Hinkel, D.; Fernandez, J.; Kline, J.; Goldman, S.; Braun, D.; Celliers, P.; Moon, S.; Robey, H.; Lanier, N.; Glendinning, G.; Blue, B.; Wilde, B.; Jones, O.; Schein, J.; Divol, L.; Kalantar, D.; Campbell, K.; Holder, J.; McDonald, J.; Niemann, C.; MacKinnon, A.; Collins, R.; Bradley, D.; Eggert, J.; Hicks, D.; Gregori, G.; Kirkwood, R.; Niemann, C.; Young, B.; Foster, J.; Hansen, F.; Perry, T.; Munro, D.; Baldis, H.; Grim, G.; Heeter, R.; Hegelich, B.; Montgomery, D.; Rochau, G.; Olson, R.; Turner, R.; Workman, J.; Berger, R.; Cohen, B.; Kruer, W.; Langdon, B.; Langer, S.; Meezan, N.; Rose, H.; Still, B.; Williams, E.; Dodd, E.; Edwards, J.; Monteil, M.-C.; Stevenson, M.; Thomas, B.; Coker, R.; Magelssen, G.; Rosen, P.; Stry, P.; Woods, D.; Weber, S.; Alvarez, S.; Armstrong, G.; Bahr, R.; Bourgade, J.-L.; Bower, D.; Celeste, J.; Chrisp, M.; Compton, S.; Cox, J.; Constantin, C.; Costa, R.; Duncan, J.; Ellis, A.; Emig, J.; Gautier, C.; Greenwood, A.; Griffith, R.; Holdner, F.; Holtmeier, G.; Hargrove, D.; James, T.; Kamperschroer, J.; Kimbrough, J.; Landon, M.; Lee, D.; Malone, R.; May, M.; Montelongo, S.; Moody, J.; Ng, E.; Nikitin, A.; Pellinen, D.; Piston, K.; Poole, M.; Rekow, V.; Rhodes, M.; Shepherd, R.; Shiromizu, S.; Voloshin, D.; Warrick, A.; Watts, P.; Weber, F.; Young, P.; Arnold, P.; Atherton, L.; Bardsley, G.; Bonanno, R.; Borger, T.; Bowers, M.; Bryant, R.; Buckman, S.; Burkhart, S.; Cooper, F.; Dixit, S.; Erbert, G.; Eder, D.; Ehrlich, B.; Felker, B.; Fornes, J.; Frieders, G.; Gardner, S.; Gates, C.; Gonzalez, M.; Grace, S.; Hall, T.; Haynam, C.; Heestand, G.; Henesian, M.; Hermann, M.; Hermes, G.; Huber, S.; Jancaitis, K.; Johnson, S.; Kauffman, B.; Kelleher, T.; Kohut, T.; Koniges, A. E.; Labiak, T.; Latray, D.; Lee, A.; Lund, D.; Mahavandi, S.; Manes, K. R.; Marshall, C.; McBride, J.; McCarville, T.; McGrew, L.; Menapace, J.; Mertens, E.; Munro, D.; Murray, J.; Neumann, J.; Newton, M.; Opsahl, P.; Padilla, E.; Parham, T.; Parrish, G.; Petty, C.; Polk, M.; Powell, C.; Reinbachs, I.; Rinnert, R.; Riordan, B.; Ross, G.; Robert, V.; Tobin, M.; Sailors, S.; Saunders, R.; Schmitt, M.; Shaw, M.; Singh, M.; Spaeth, M.; Stephens, A.; Tietbohl, G.; Tuck, J.; van Wonterghem, B.; Vidal, R.; Wegner, P.; Whitman, P.; Williams, K.; Winward, K.; Work, K.; Wallace, R.; Nobile, A.; Bono, M.; Day, B.; Elliott, J.; Hatch, D.; Louis, H.; Manzenares, R.; O'Brien, D.; Papin, P.; Pierce, T.; Rivera, G.; Ruppe, J.; Sandoval, D.; Schmidt, D.; Valdez, L.; Zapata, K.; MacGowan, B.; Eckart, M.; Hsing, W.; Springer, P.; Hammel, B.; Moses, E.; Miller, G.

    2006-06-01

    A first set of shock propagation, laser-plasma interaction, hohlraum energetics and hydrodynamic experiments have been performed using the first 4 beams of the National Ignition Facility (NIF), in support of indirect drive Inertial Confinement Fusion (ICF) and High Energy Density Physics.

  6. Gradient Heating Facility. Experiment cartridges. Description and general specifications

    NASA Technical Reports Server (NTRS)

    Breton, J.

    1982-01-01

    Specifications that define experiment cartridges that are compatible with the furnace of the gradient heating facility on board the Spacelab are presented. They establish a standard cartridge design independent of the type of experiment to be conducted. By using them, experimenters can design, construct, and test the hot section of the cartridge, known as the high temperature nacelle.

  7. Microscope-Based Fluid Physics Experiments in the Fluids and Combustion Facility on ISS

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Motil, Susan M.; Snead, John H.; Malarik, Diane C.

    2000-01-01

    At the NASA Glenn Research Center, the Microgravity Science Program is planning to conduct a large number of experiments on the International Space Station in both the Fluid Physics and Combustion Science disciplines, and is developing flight experiment hardware for use within the International Space Station's Fluids and Combustion Facility. Four fluids physics experiments that require an optical microscope will be sequentially conducted within a subrack payload to the Fluids Integrated Rack of the Fluids and Combustion Facility called the Light Microscopy Module, which will provide the containment, changeout, and diagnostic capabilities to perform the experiments. The Light Microscopy Module is planned as a fully remotely controllable on-orbit microscope facility, allowing flexible scheduling and control of experiments within International Space Station resources. This paper will focus on the four microscope-based experiments, specifically, their objectives and the sample cell and instrument hardware to accommodate their requirements.

  8. Calibration Device Designed for proof ring used in SCC Experiment

    NASA Astrophysics Data System (ADS)

    Hu, X. Y.; Kang, Z. Y.; Yu, Y. L.

    2017-11-01

    In this paper, a calibration device for proof ring used in SCC (Stress Corrosion Cracking) experiment was designed. A compact size loading device was developed to replace traditional force standard machine or a long screw nut. The deformation of the proof ring was measured by a CCD (Charge-Coupled Device) during the calibration instead of digital caliper or a dial gauge. The calibration device was verified at laboratory that the precision of force loading is ±0.1% and the precision of deformation measurement is ±0.002mm.

  9. The first target experiments on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Landen, O. L.; Glenzer, S. H.; Froula, D. H.; Dewald, E. L.; Suter, L. J.; Schneider, M. B.; Hinkel, D. E.; Fernandez, J. C.; Kline, J. L.; Goldman, S. R.; Braun, D. G.; Celliers, P. M.; Moon, S. J.; Robey, H. S.; Lanier, N. E.; Glendinning, S. G.; Blue, B. E.; Wilde, B. H.; Jones, O. S.; Schein, J.; Divol, L.; Kalantar, D. H.; Campbell, K. M.; Holder, J. P.; McDonald, J. W.; Niemann, C.; MacKinnon, A. J.; Collins, G. W.; Bradley, D. K.; Eggert, J. H.; Hicks, D. G.; Gregori, G.; Kirkwood, R. K.; Young, B. K.; Foster, J. M.; Hansen, J. F.; Perry, T. S.; Munro, D. H.; Baldis, H. A.; Grim, G. P.; Heeter, R. F.; Hegelich, M. B.; Montgomery, D. S.; Rochau, G. A.; Olson, R. E.; Turner, R. E.; Workman, J. B.; Berger, R. L.; Cohen, B. I.; Kruer, W. L.; Langdon, A. B.; Langer, S. H.; Meezan, N. B.; Rose, H. A.; Still, C. H.; Williams, E. A.; Dodd, E. S.; Edwards, M. J.; Monteil, M.-C.; Stevenson, R. M.; Thomas, B. R.; Coker, R. F.; Magelssen, G. R.; Rosen, P. A.; Stry, P. E.; Woods, D.; Weber, S. V.; Young, P. E.; Alvarez, S.; Armstrong, G.; Bahr, R.; Bourgade, J.-L.; Bower, D.; Celeste, J.; Chrisp, M.; Compton, S.; Cox, J.; Constantin, C.; Costa, R.; Duncan, J.; Ellis, A.; Emig, J.; Gautier, C.; Greenwood, A.; Griffith, R.; Holdner, F.; Holtmeier, G.; Hargrove, D.; James, T.; Kamperschroer, J.; Kimbrough, J.; Landon, M.; Lee, F. D.; Malone, R.; May, M.; Montelongo, S.; Moody, J.; Ng, E.; Nikitin, A.; Pellinen, D.; Piston, K.; Poole, M.; Rekow, V.; Rhodes, M.; Shepherd, R.; Shiromizu, S.; Voloshin, D.; Warrick, A.; Watts, P.; Weber, F.; Young, P.; Arnold, P.; Atherton, L.; Bardsley, G.; Bonanno, R.; Borger, T.; Bowers, M.; Bryant, R.; Buckman, S.; Burkhart, S.; Cooper, F.; Dixit, S. N.; Erbert, G.; Eder, D. C.; Ehrlich, R. E.; Felker, B.; Fornes, J.; Frieders, G.; Gardner, S.; Gates, C.; Gonzalez, M.; Grace, S.; Hall, T.; Haynam, C. A.; Heestand, G.; Henesian, M. A.; Hermann, M.; Hermes, G.; Huber, S.; Jancaitis, K.; Johnson, S.; Kauffman, B.; Kelleher, T.; Kohut, T.; Koniges, A. E.; Labiak, T.; Latray, D.; Lee, A.; Lund, D.; Mahavandi, S.; Manes, K. R.; Marshall, C.; McBride, J.; McCarville, T.; McGrew, L.; Menapace, J.; Mertens, E.; Murray, J.; Neumann, J.; Newton, M.; Opsahl, P.; Padilla, E.; Parham, T.; Parrish, G.; Petty, C.; Polk, M.; Powell, C.; Reinbachs, I.; Rinnert, R.; Riordan, B.; Ross, G.; Robert, V.; Tobin, M.; Sailors, S.; Saunders, R.; Schmitt, M.; Shaw, M.; Singh, M.; Spaeth, M.; Stephens, A.; Tietbohl, G.; Tuck, J.; van Wonterghem, B. M.; Vidal, R.; Wegner, P. J.; Whitman, P.; Williams, K.; Winward, K.; Work, K.; Wallace, R.; Nobile, A.; Bono, M.; Day, B.; Elliott, J.; Hatch, D.; Louis, H.; Manzenares, R.; O'Brien, D.; Papin, P.; Pierce, T.; Rivera, G.; Ruppe, J.; Sandoval, D.; Schmidt, D.; Valdez, L.; Zapata, K.; MacGowan, B. J.; Eckart, M. J.; Hsing, W. W.; Springer, P. T.; Hammel, B. A.; Moses, E. I.; Miller, G. H.

    2007-08-01

    A first set of shock timing, laser-plasma interaction, hohlraum energetics and hydrodynamic experiments have been performed using the first 4 beams of the National Ignition Facility (NIF), in support of indirect drive Inertial Confinement Fusion (ICF) and High Energy Density Physics (HEDP). In parallel, a robust set of optical and X-ray spectrometers, interferometer, calorimeters and imagers have been activated. The experiments have been undertaken with laser powers and energies of up to 8 TW and 17 kJ in flattop and shaped 1 9 ns pulses focused with various beam smoothing options. The experiments have demonstrated excellent agreement between measured and predicted laser-target coupling in foils and hohlraums, even when extended to a longer pulse regime unattainable at previous laser facilities, validated the predicted effects of beam smoothing on intense laser beam propagation in long scale-length plasmas and begun to test 3D codes by extending the study of laser driven hydrodynamic jets to 3D geometries.

  10. A survey of experiments and experimental facilities for control of flexible structures

    NASA Technical Reports Server (NTRS)

    Sparks, Dean W., Jr.; Juang, Jer-Nan; Klose, Gerhard J.

    1989-01-01

    This paper presents a survey of U.S. ground experiments and facilities dedicated to the study of active control of flexible structures. The facilities will be briefly described in terms of capability, configuration, size and instrumentation. Topics on the experiments include vibration suppression, slewing and system identification. Future research directions, particularly of the NASA Langley Research Center's Controls/Structures Interaction (CSI) ground test program, will be discussed.

  11. What makes or mars the facility-based childbirth experience: thematic analysis of women's childbirth experiences in western Kenya.

    PubMed

    Afulani, Patience A; Kirumbi, Leah; Lyndon, Audrey

    2017-12-29

    Sub-Saharan Africa accounts for approximately 66% of global maternal deaths. Poor person-centered maternity care, which emphasizes the quality of patient experience, contributes both directly and indirectly to these poor outcomes. Yet, few studies in low resource settings have examined what is important to women during childbirth from their perspective. The aim of this study is to examine women's facility-based childbirth experiences in a rural county in Kenya, to identify aspects of care that contribute to a positive or negative birth experience. Data are from eight focus group discussions conducted in a rural county in western Kenya in October and November 2016, with 58 mothers aged 15 to 49 years who gave birth in the preceding nine weeks. We recorded and transcribed the discussions and used a thematic approach for data analysis. The findings suggest four factors influence women's perceptions of quality of care: responsiveness, supportive care, dignified care, and effective communication. Women had a positive experience when they were received well at the health facility, treated with kindness and respect, and given sufficient information about their care. The reverse led to a negative experience. These experiences were influenced by the behavior of both clinical and support staff and the facility environment. This study extends the literature on person-centered maternity care in low resource settings. To improve person-centered maternity care, interventions need to address the responsiveness of health facilities, ensure women receive supportive and dignified care, and promote effective patient-provider communication.

  12. Plasma MRI Experiments at UW-Madison

    NASA Astrophysics Data System (ADS)

    Flanagan, K.; Clark, M.; Desangles, V.; Siller, R.; Wallace, J.; Weisberg, D.; Forest, C. B.

    2015-11-01

    Experiments for driving Keplerian-like flow profiles on both the Plasma Couette Experiment Upgrade (PCX-U) and the Wisconsin Plasma Astrophysics Laboratory (WiPAL) user facility are described. Instead of driving flow at the boundaries, as is typical in many liquid metal Couette experiments, a global drive is implemented. A large radial current is drawn across a small axial field generating torque across the whole profile. This global electrically driven flow is capable of producing profiles similar to Keplerian flow. PCX-U has been purposely constructed for MRI experiments, while similar experiments on the WiPAL device show the versatility of the user facility and provide a larger plasma volume. Numerical calculations show the predicted parameter spaces for exciting the MRI in these plasmas and the equilibrium flow profiles expected. In both devices, relevant MRI parameters appear to be within reach of typical operating characteristics.

  13. Rugby and elliptical-shaped hohlraums experiments on the OMEGA laser facility

    NASA Astrophysics Data System (ADS)

    Tassin, Veronique; Monteil, Marie-Christine; Depierreux, Sylvie; Masson-Laborde, Paul-Edouard; Philippe, Franck; Seytor, Patricia; Fremerye, Pascale; Villette, Bruno

    2017-10-01

    We are pursuing on the OMEGA laser facility indirect drive implosions experiments in gas-filled rugby-shaped hohlraums in preparation for implosion plateforms on LMJ. The question of the precise wall shape of rugby hohlraum has been addressed as part of future megajoule-scale ignition designs. Calculations show that elliptical-shaped holhraum is more efficient than spherical-shaped hohlraum. There is less wall hydrodynamics and less absorption for the inner cone, provided a better control of time-dependent symmetry swings. In this context, we have conducted a series of experiments on the OMEGA laser facility. The goal of these experiments was therefore to characterize energetics with a complete set of laser-plasma interaction measurements and capsule implosion in gas-filled elliptical-shaped hohlraum with comparison with spherical-shaped hohlraum. Experiments results are discussed and compared to FCI2 radiation hydrodynamics simulations.

  14. Critical experiments at Sandia National Laboratories : technical meeting on low-power critical facilities and small reactors.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harms, Gary A.; Ford, John T.; Barber, Allison Delo

    2010-11-01

    Sandia National Laboratories (SNL) has conducted radiation effects testing for the Department of Energy (DOE) and other contractors supporting the DOE since the 1960's. Over this period, the research reactor facilities at Sandia have had a primary mission to provide appropriate nuclear radiation environments for radiation testing and qualification of electronic components and other devices. The current generation of reactors includes the Annular Core Research Reactor (ACRR), a water-moderated pool-type reactor, fueled by elements constructed from UO2-BeO ceramic fuel pellets, and the Sandia Pulse Reactor III (SPR-III), a bare metal fast burst reactor utilizing a uranium-molybdenum alloy fuel. The SPR-IIImore » is currently defueled. The SPR Facility (SPRF) has hosted a series of critical experiments. A purpose-built critical experiment was first operated at the SPRF in the late 1980's. This experiment, called the Space Nuclear Thermal Propulsion Critical Experiment (CX), was designed to explore the reactor physics of a nuclear thermal rocket motor. This experiment was fueled with highly-enriched uranium carbide fuel in annular water-moderated fuel elements. The experiment program was completed and the fuel for the experiment was moved off-site. A second critical experiment, the Burnup Credit Critical Experiment (BUCCX) was operated at Sandia in 2002. The critical assembly for this experiment was based on the assembly used in the CX modified to accommodate low-enriched pin-type fuel in water moderator. This experiment was designed as a platform in which the reactivity effects of specific fission product poisons could be measured. Experiments were carried out on rhodium, an important fission product poison. The fuel and assembly hardware for the BUCCX remains at Sandia and is available for future experimentation. The critical experiment currently in operation at the SPRF is the Seven Percent Critical Experiment (7uPCX). This experiment is designed to provide

  15. Using Mobile Devices for Motor-Learning Laboratory Exercises

    ERIC Educational Resources Information Center

    Hill, Kory

    2014-01-01

    When teaching motor-learning concepts, laboratory experiments can be valuable tools for promoting learning. In certain circumstances, traditional laboratory exercises are often impractical due to facilities, time, or cost. Inexpensive or free applications (apps) that run on mobile devices can serve as useful alternatives. This article details…

  16. Discriminative facility and its role in the perceived quality of interactional experiences.

    PubMed

    Cheng, C; Chiu, C Y; Hong, Y Y; Cheung, J S

    2001-10-01

    Discriminative facility refers to an individual's sensitivity to subtle cues about the psychological meaning of a situation. This research aimed at examining (a) the conceptual distinctiveness of discriminative facility, (b) the situation-appropriate aspect of this construct, and (c) the relationship between discriminative facility and interpersonal experiences. Discriminative facility was assessed by a new measure of situation-appropriate behaviors across a variety of novel stressful situations. Results from study 1 showed that discriminative facility had weak positive relationships with cognitive complexity and nonsignificant relationships with self-monitoring and social desirability, indicating that discriminative facility is a unique construct. Results from Study 2 revealed that higher levels of discriminative facility were associated with higher levels of perceived social support and a greater number of pleasant interpersonal events experienced, thus providing support for the theoretical proposition that discriminative facility is an aspect of social intelligence.

  17. 33 CFR 154.525 - Monitoring devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Monitoring devices. 154.525... Monitoring devices. The COTP may require the facility to install monitoring devices if the installation of monitoring devices at the facility would significantly limit the size of a discharge of oil or hazardous...

  18. Low-gravity impact experiments: Progress toward a facility definition

    NASA Technical Reports Server (NTRS)

    Cintala, M. J.

    1986-01-01

    Innumerable efforts were made to understand the cratering process and its ramifications in terms of planetary observations, during which the role of gravity has often come into question. Well known facilities and experiments both were devoted in many cases to unraveling the contribution of gravitational acceleration to cratering mechanisms. Included among these are the explosion experiments in low gravity aircraft, the drop platform experiments, and the high gravity centrifuge experiments. Considerable insight into the effects of gravity was gained. Most investigations were confined to terrestrial laboratories. It is in this light that the Space Station is being examined as a vehicle with the potential to support otherwise impractical impact experiments. The results of studies performed by members of the planetary cratering community are summarized.

  19. Display device-adapted video quality-of-experience assessment

    NASA Astrophysics Data System (ADS)

    Rehman, Abdul; Zeng, Kai; Wang, Zhou

    2015-03-01

    Today's viewers consume video content from a variety of connected devices, including smart phones, tablets, notebooks, TVs, and PCs. This imposes significant challenges for managing video traffic efficiently to ensure an acceptable quality-of-experience (QoE) for the end users as the perceptual quality of video content strongly depends on the properties of the display device and the viewing conditions. State-of-the-art full-reference objective video quality assessment algorithms do not take into account the combined impact of display device properties, viewing conditions, and video resolution while performing video quality assessment. We performed a subjective study in order to understand the impact of aforementioned factors on perceptual video QoE. We also propose a full reference video QoE measure, named SSIMplus, that provides real-time prediction of the perceptual quality of a video based on human visual system behaviors, video content characteristics (such as spatial and temporal complexity, and video resolution), display device properties (such as screen size, resolution, and brightness), and viewing conditions (such as viewing distance and angle). Experimental results have shown that the proposed algorithm outperforms state-of-the-art video quality measures in terms of accuracy and speed.

  20. Classroom-sized geophysical experiments: magnetic surveying using modern smartphone devices

    NASA Astrophysics Data System (ADS)

    Tronicke, Jens; Trauth, Martin H.

    2018-05-01

    Modern mobile devices (i.e. smartphones and tablet computers) are widespread, everyday tools, which are equipped with a variety of sensors including three-axis magnetometers. Here, we investigate the feasibility and the potential of using such mobile devices to mimic geophysical experiments in the classroom in a table-top setup. We focus on magnetic surveying and present a basic setup of a table-top experiment for collecting three-component magnetic data across well-defined source bodies and structures. Our results demonstrate that the quality of the recorded data is sufficient to address a number of important basic concepts in the magnetic method. The shown examples cover the analysis of magnetic data recorded across different kinds of dipole sources, thus illustrating the complexity of magnetic anomalies. In addition, we analyze the horizontal resolution capabilities using a pair of dipole sources placed at different horizontal distances to each other. Furthermore, we demonstrate that magnetic data recorded with a mobile device can even be used to introduce filtering, transformation, and inversion approaches as they are typically used when processing magnetic data sets recorded for real-world field applications. Thus, we conclude that such table-top experiments represent an easy-to-implement experimental procedure (as student exercise or classroom demonstration) and can provide first hands-on experience in the basic principles of magnetic surveying including the fundamentals of data acquisition, analysis and processing, as well as data evaluation and interpretation.

  1. FLARE (Facility for Laboratory Reconnection Experiments): A Major Next-Step for Laboratory Studies of Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Ji, H.; Bhattacharjee, A.; Prager, S.; Daughton, W. S.; Bale, S. D.; Carter, T. A.; Crocker, N.; Drake, J. F.; Egedal, J.; Sarff, J.; Wallace, J.; Belova, E.; Ellis, R.; Fox, W. R., II; Heitzenroeder, P.; Kalish, M.; Jara-Almonte, J.; Myers, C. E.; Que, W.; Ren, Y.; Titus, P.; Yamada, M.; Yoo, J.

    2014-12-01

    A new intermediate-scale plasma experiment, called the Facility for Laboratory Reconnection Experiments or FLARE, is under construction at Princeton as a joint project by five universities and two national labs to study magnetic reconnection in regimes directly relevant to space, solar and astrophysical plasmas. The currently existing small-scale experiments have been focusing on the single X-line reconnection process in plasmas either with small effective sizes or at low Lundquist numbers, both of which are typically very large in natural plasmas. These new regimes involve multiple X-lines as guided by a reconnection "phase diagram", in which different coupling mechanisms from the global system scale to the local dissipation scale are classified into different reconnection phases [H. Ji & W. Daughton, Phys. Plasmas 18, 111207 (2011)]. The design of the FLARE device is based on the existing Magnetic Reconnection Experiment (MRX) at Princeton (http://mrx.pppl.gov) and is to provide experimental access to the new phases involving multiple X-lines at large effective sizes and high Lundquist numbers, directly relevant to space and solar plasmas. The motivating major physics questions, the construction status, and the planned collaborative research especially with space and solar research communities will be discussed.

  2. FLARE (Facility for Laboratory Reconnection Experiments): A Major Next-Step for Laboratory Studies of Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Ji, Hantao; Bhattacharjee, A.; Prager, S.; Daughton, W.; Bale, Stuart D.; Carter, T.; Crocker, N.; Drake, J.; Egedal, J.; Sarff, J.; Fox, W.; Jara-Almonte, J.; Myers, C.; Ren, Y.; Yamada, M.; Yoo, J.

    2015-04-01

    A new intermediate-scale plasma experiment, called the Facility for Laboratory Reconnection Experiments or FLARE (flare.pppl.gov), is under construction at Princeton as a joint project by five universities and two national labs to study magnetic reconnection in regimes directly relevant to heliophysical and astrophysical plasmas. The currently existing small-scale experiments have been focusing on the single X-line reconnection process in plasmas either with small effective sizes or at low Lundquist numbers, both of which are typically very large in natural plasmas. These new regimes involve multiple X-lines as guided by a reconnection "phase diagram", in which different coupling mechanisms from the global system scale to the local dissipation scale are classified into different reconnection phases [H. Ji & W. Daughton, Phys. Plasmas 18, 111207 (2011)]. The design of the FLARE device is based on the existing Magnetic Reconnection Experiment (MRX) (mrx.pppl.gov) and is to provide experimental access to the new phases involving multiple X-lines at large effective sizes and high Lundquist numbers, directly relevant to magnetospheric, solar wind, and solar coronal plasmas. After a brief summary of recent laboratory results on the topic of magnetic reconnection, the motivating major physics questions, the construction status, and the planned collaborative research especially with heliophysics communities will be discussed.

  3. Preservice Teachers' Experiences Facilitating Writing Instruction in a Juvenile Detention Facility

    ERIC Educational Resources Information Center

    Pytash, Kristine E.

    2017-01-01

    A myriad of personal and contextual factors are important in understanding how preservice teachers learn to teach and why they adopt or reject certain teaching practices. Activity theory was used a framework in understand preservice teachers' experiences teaching writing during a field experience at a juvenile detention facility. The purposes of…

  4. The Long Duration Exposure Facility (LDEF). Mission 1 Experiments.

    ERIC Educational Resources Information Center

    Clark, Lenwood G., Ed.; And Others

    The Long Duration Exposure Facility (LDEF) has been designed to take advantage of the two-way transportation capability of the space shuttle by providing a large number of economical opportunities for science and technology experiments that require modest electrical power and data processing while in space and which benefit from postflight…

  5. Biasing experiments on the Advanced Toroidal Facility

    NASA Astrophysics Data System (ADS)

    Uckan, T.; Isler, R. C.; Jernigan, T. C.; Lyon, J. F.; Mioduszewski, P. K.; Murakami, M.; Rasmussen, D. A.; Wilgen, J. B.; Aceto, S. C.; Zielinski, J. J.

    1992-09-01

    Biasing experiments have been carried out in 1 T plasmas with approximately 200 kW of electron cyclotron heating (ECH) in the current-fire Advanced Toroidal Facility (ATF) torsatron. Two rail limiters, one at the top and one at the bottom of the device, located at the last closed flux surface (LCFS), are, biased at positive and negative potentials with respect to the vacuum vessel. When the limiters are positively biased at up to 300 V and the plasma density is controlled with a significantly reduced gas feed, the H(sub alpha) radiation from both the limiter and the wall drops, indicating reduced particle recycling as a result of improved particle confinement. For bias voltages around +100 V, there is almost no change of plasma stored energy W(sub p), but W(sub p) then drops with the higher biasing voltages. Positive biasing has caused the core plasma density profile to become peaked and the electric field to become more negative inside the LCFS. At the same time, edge plasma fluctuations are reduced significantly and their power spectrum becomes less broad. The propagation direction of these electrostatic fluctuations reverses to the ion diamagnetic direction, and their wavelengths become longer. The resulting fluctuation-induced particle flux is also reduced. Power deposition on the limiters is lower as a result of reduced edge plasma density and temperature. Negative biasing yields somewhat less improvement in the particle confinement while having almost no apparent effect on W(sub p) or on the core and the edge plasma density and temperature profiles. Simultaneous measurements of the plasma potential profile indicate almost no significant change. Biasing has almost no effect on the intrinsic impurity levels in the plasma.

  6. European Microgravity Facilities for ZEOLITE Experiments on the International Space Station

    NASA Astrophysics Data System (ADS)

    Pletser, V.; Minster, O.; Kremer, S.; Kirschhock, C.; Martens, J.; Jacobs, P.

    2002-01-01

    Synthetic zeolites are complex porous silicates. Zeolites are applied as catalysts, adsorbents and sensors. Whereas the traditional applications are situated in the petrochemical area, zeolite catalysis and related zeolite-based technologies have a growing impact on the economics and sustainability of products and processes in a growing number of industrial sectors, including environmental protection and nanotechnology. A Sounding Rocket microgravity experiment led to significant insight in the physical aggregation patterns of zeolitic nanoscopic particles and the occurrence of self-organisation phenomena when undisturbed by convection. The opportunity of performing longer microgravity duration experiments on zeolite structures was recently offered in the frame of a Taxi-Flight to the ISS in November 2002 organized by Belgium and ESA. Two facilities are currently under development for this flight. One of them will use the Microgravity Science Glovebox (MSG) in the US Lab. Destiny to achieve thermal induced self-organization of different types of Zeosil nanoslabs by heating and cooling. The other facility will be flown on the ISS Russian segment and will allow to form Zeogrids at ambient temperature. On the other hand, the European Space Agency (ESA) is studying the possibility of developing a dedicated insert for zeolite experiments to be used with the optical and diagnostic platform of the Protein Crystallisation Diagnostic Facility (PCDF), that will fly integrated in the European Drawer Rack on the Columbus Laboratory starting in 2004. This paper will present the approach followed by ESA to prepare and support zeolite investigations in microgravity and will present the design concept of these three facilities.

  7. Extension of drop experiments with the MIKROBA balloon drop facility

    NASA Astrophysics Data System (ADS)

    Sommer, K.; Kretzschmar, K.; Dorn, C.

    1992-12-01

    The German balloon drop facility MIKROBA extends the worldwide available drop experiment opportunities to the presently highest usable experimentation time span of 55 s at microgravity conditions better than 0.001 g. The microgravity period is started with the typical quasi-deal step function from 1 to 0 g. MIKROBA allows flexible experiment design, short access time, and easy hands-on payload integration. The transport to the operational height is realized by soft energies and technologies compatible with the earth's environment. Balloon campaigns are not restricted to a certain test range, i.e., several suitable sites are available all over the world. MIKROBA combines negligible mechanical loads at the mission start, typical of all drop facilities, with extremely low drop deceleration loads (less than g), due to the implemented three-stage parachute and airbag recovery subsystem.

  8. First Iron Opacity Experiments on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Perry, Theodore; Dodd, Evan; Cardenas, Tana; Devolder, Barbara; Flippo, Kirk; Johns, Heather; Kline, John; Sherrill, Manolo; Urbatsch, Todd; Heeter, Robert; Ahmed, Maryum; Emig, James; Iglesias, Carlos; Liedahl, Duane; London, Richard; Martin, Madison; Schneider, Marilyn; Thompson, Nathaniel; Wilson, Brian; Opachich, Yekaterina; King, James; Huffman, Eric; Knight, Russel; Bailey, James; Rochau, Gregory

    2017-10-01

    Iron opacity experiments on the Sandia National Laboratories Z machine have shown up to factors of two discrepancies between theory and experiment. To help resolve these discrepancies an experimental platform for doing comparable opacity experiments is being developed on the National Ignition Facility (NIF). Initial iron data has been taken at a temperature of 150 eV and an electron density of 6x1021/cm3, but higher temperatures and densities will be required to address the discrepancies that have been observed in the Z experiments. The plans to go to higher temperatures and densities and how to deal with current issues with instrumental backgrounds will be discussed. Performed under the auspices of USDOE LANL Contract DE-AC52-06NA25396.

  9. Information on the Advanced Plant Experiment (APEX) Test Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Curtis Lee

    The purpose of this report provides information related to the design of the Oregon State University Advanced Plant Experiment (APEX) test facility. Information provided in this report have been pulled from the following information sources: Reference 1: R. Nourgaliev and et.al, "Summary Report on NGSAC (Next-Generation Safety Analysis Code) Development and Testing," Idaho National Laboratory, 2011. Note that this is report has not been released as an external report. Reference 2: O. Stevens, Characterization of the Advanced Plant Experiment (APEX) Passive Residual Heat Removal System Heat Exchanger, Master Thesis, June 1996. Reference 3: J. Reyes, Jr., Q. Wu, and J.more » King, Jr., Scaling Assessment for the Design of the OSU APEX-1000 Test Facility, OSU-APEX-03001 (Rev. 0), May 2003. Reference 4: J. Reyes et al, Final Report of the NRC AP600 Research Conducted at Oregon State University, NUREG/CR-6641, July 1999. Reference 5: K. Welter et al, APEX-1000 Confirmatory Testing to Support AP1000 Design Certification (non-proprietary), NUREG-1826, August 2005.« less

  10. Accelerator-Based Biological Irradiation Facility Simulating Neutron Exposure from an Improvised Nuclear Device.

    PubMed

    Xu, Yanping; Randers-Pehrson, Gerhard; Turner, Helen C; Marino, Stephen A; Geard, Charles R; Brenner, David J; Garty, Guy

    2015-10-01

    We describe here an accelerator-based neutron irradiation facility, intended to expose blood or small animals to neutron fields mimicking those from an improvised nuclear device at relevant distances from the epicenter. Neutrons are generated by a mixed proton/deuteron beam on a thick beryllium target, generating a broad spectrum of neutron energies that match those estimated for the Hiroshima bomb at 1.5 km from ground zero. This spectrum, dominated by neutron energies between 0.2 and 9 MeV, is significantly different from the standard reactor fission spectrum, as the initial bomb spectrum changes when the neutrons are transported through air. The neutron and gamma dose rates were measured using a custom tissue-equivalent gas ionization chamber and a compensated Geiger-Mueller dosimeter, respectively. Neutron spectra were evaluated by unfolding measurements using a proton-recoil proportional counter and a liquid scintillator detector. As an illustration of the potential use of this facility we present micronucleus yields in single divided, cytokinesis-blocked human peripheral lymphocytes up to 1.5 Gy demonstrating 3- to 5-fold enhancement over equivalent X-ray doses. This facility is currently in routine use, irradiating both mice and human blood samples for evaluation of neutron-specific biodosimetry assays. Future studies will focus on dose reconstruction in realistic mixed neutron/photon fields.

  11. Accelerator-Based Biological Irradiation Facility Simulating Neutron Exposure from an Improvised Nuclear Device

    PubMed Central

    Xu, Yanping; Randers-Pehrson, Gerhard; Turner, Helen C.; Marino, Stephen A.; Geard, Charles R.; Brenner, David J.; Garty, Guy

    2015-01-01

    We describe here an accelerator-based neutron irradiation facility, intended to expose blood or small animals to neutron fields mimicking those from an improvised nuclear device at relevant distances from the epicenter. Neutrons are generated by a mixed proton/deuteron beam on a thick beryllium target, generating a broad spectrum of neutron energies that match those estimated for the Hiroshima bomb at 1.5 km from ground zero. This spectrum, dominated by neutron energies between 0.2 and 9 MeV, is significantly different from the standard reactor fission spectrum, as the initial bomb spectrum changes when the neutrons are transported through air. The neutron and gamma dose rates were measured using a custom tissue-equivalent gas ionization chamber and a compensated Geiger-Mueller dosimeter, respectively. Neutron spectra were evaluated by unfolding measurements using a proton-recoil proportional counter and a liquid scintillator detector. As an illustration of the potential use of this facility we present micronucleus yields in single divided, cytokinesis-blocked human peripheral lymphocytes up to 1.5 Gy demonstrating 3- to 5-fold enhancement over equivalent X-ray doses. This facility is currently in routine use, irradiating both mice and human blood samples for evaluation of neutron-specific biodosimetry assays. Future studies will focus on dose reconstruction in realistic mixed neutron/photon fields. PMID:26414507

  12. Experiment Needs and Facilities Study Appendix A Transient Reactor Test Facility (TREAT) Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The TREAT Upgrade effort is designed to provide significant new capabilities to satisfy experiment requirements associated with key LMFBR Safety Issues. The upgrade consists of reactor-core modifications to supply the physics performance needed for the new experiments, an Advanced TREAT loop with size and thermal-hydraulics capabilities needed for the experiments, associated interface equipment for loop operations and handling, and facility modifications necessary to accommodate operations with the Loop. The costs and schedules of the tasks to be accomplished under the TREAT Upgrade project are summarized. Cost, including contingency, is about 10 million dollars (1976 dollars). A schedule for execution ofmore » 36 months has been established to provide the new capabilities in order to provide timely support of the LMFBR national effort. A key requirement for the facility modifications is that the reactor availability will not be interrupted for more than 12 weeks during the upgrade. The Advanced TREAT loop is the prototype for the STF small-bundle package loop. Modified TREAT fuel elements contain segments of graphite-matrix fuel with graded uranium loadings similar to those of STF. In addition, the TREAT upgrade provides for use of STF-like stainless steel-UO{sub 2} TREAT fuel for tests of fully enriched fuel bundles. This report will introduce the Upgrade study by presenting a brief description of the scope, performance capability, safety considerations, cost schedule, and development requirements. This work is followed by a "Design Description". Because greatly upgraded loop performance is central to the upgrade, a description is given of Advanced TREAT loop requirements prior to description of the loop concept. Performance requirements of the upgraded reactor system are given. An extensive discussion of the reactor physics calculations performed for the Upgrade concept study is provided. Adequate physics performance is essential for performance of experiments

  13. Test Facilities and Experience on Space Nuclear System Developments at the Kurchatov Institute

    NASA Astrophysics Data System (ADS)

    Ponomarev-Stepnoi, Nikolai N.; Garin, Vladimir P.; Glushkov, Evgeny S.; Kompaniets, George V.; Kukharkin, Nikolai E.; Madeev, Vicktor G.; Papin, Vladimir K.; Polyakov, Dmitry N.; Stepennov, Boris S.; Tchuniyaev, Yevgeny I.; Tikhonov, Lev Ya.; Uksusov, Yevgeny I.

    2004-02-01

    The complexity of space fission systems and rigidity of requirement on minimization of weight and dimension characteristics along with the wish to decrease expenditures on their development demand implementation of experimental works which results shall be used in designing, safety substantiation, and licensing procedures. Experimental facilities are intended to solve the following tasks: obtainment of benchmark data for computer code validations, substantiation of design solutions when computational efforts are too expensive, quality control in a production process, and ``iron'' substantiation of criticality safety design solutions for licensing and public relations. The NARCISS and ISKRA critical facilities and unique ORM facility on shielding investigations at the operating OR nuclear research reactor were created in the Kurchatov Institute to solve the mentioned tasks. The range of activities performed at these facilities within the implementation of the previous Russian nuclear power system programs is briefly described in the paper. This experience shall be analyzed in terms of methodological approach to development of future space nuclear systems (this analysis is beyond this paper). Because of the availability of these facilities for experiments, the brief description of their critical assemblies and characteristics is given in this paper.

  14. Simulation of a small cold-leg-break experiment at the PMK-2 test facility using the RELAP5 and ATHLET codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ezsoel, G.; Guba, A.; Perneczky, L.

    Results of a small-break loss-of-coolant accident experiment, conducted on the PMK-2 integral-type test facility are presented. The experiment simulated a 1% break in the cold leg of a VVER-440-type reactor. The main phenomena of the experiment are discussed, and in the case of selected events, a more detailed interpretation with the help of measured void fraction, obtained by a special measurement device, is given. Two thermohydraulic computer codes, RELAP5 and ATHLET, are used for posttest calculations. The aim of these calculations is to investigate the code capability for modeling natural circulation phenomena in VVER-440-type reactors. Therefore, the results of themore » experiment and both calculations are compared. Both codes predict most of the transient events well, with the exception that RELAP5 fails to predict the dryout period in the core. In the experiment, the hot- and cold-leg loop-seal clearing is accompanied by natural circulation instabilities, which can be explained by means of the ATHLET calculation.« less

  15. Hohlraum modeling for opacity experiments on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Dodd, E. S.; DeVolder, B. G.; Martin, M. E.; Krasheninnikova, N. S.; Tregillis, I. L.; Perry, T. S.; Heeter, R. F.; Opachich, Y. P.; Moore, A. S.; Kline, J. L.; Johns, H. M.; Liedahl, D. A.; Cardenas, T.; Olson, R. E.; Wilde, B. H.; Urbatsch, T. J.

    2018-06-01

    This paper discusses the modeling of experiments that measure iron opacity in local thermodynamic equilibrium (LTE) using laser-driven hohlraums at the National Ignition Facility (NIF). A previous set of experiments fielded at Sandia's Z facility [Bailey et al., Nature 517, 56 (2015)] have shown up to factors of two discrepancies between the theory and experiment, casting doubt on the validity of the opacity models. The purpose of the new experiments is to make corroborating measurements at the same densities and temperatures, with the initial measurements made at a temperature of 160 eV and an electron density of 0.7 × 1022 cm-3. The X-ray hot spots of a laser-driven hohlraum are not in LTE, and the iron must be shielded from a direct line-of-sight to obtain the data [Perry et al., Phys. Rev. B 54, 5617 (1996)]. This shielding is provided either with the internal structure (e.g., baffles) or external wall shapes that divide the hohlraum into a laser-heated portion and an LTE portion. In contrast, most inertial confinement fusion hohlraums are simple cylinders lacking complex gold walls, and the design codes are not typically applied to targets like those for the opacity experiments. We will discuss the initial basis for the modeling using LASNEX, and the subsequent modeling of five different hohlraum geometries that have been fielded on the NIF to date. This includes a comparison of calculated and measured radiation temperatures.

  16. The Medina Embolic Device: Karolinska experience.

    PubMed

    Bhogal, P; Brouwer, P A; Yeo, L; Svensson, M; Söderman, M

    2018-02-01

    Background The aim of this study was to report our single centre experience with the Medina Embolic Device (MED). Methods We performed a retrospective analysis of prospectively collected data to identify all patients treated with the MED. A total of 14 aneurysms (non-consecutive), in 13 patients, were treated including one ruptured and one partially thrombosed aneurysm. Fundus diameter was ≥5 mm in all cases. We evaluated the angiographic appearances, the clinical status, complications, and the need for adjunctive devices or repeat treatments. Results Aneurysm location was cavernous internal carotid artery (ICA; n = 1), supraclinoid ICA ( n = 1), terminal ICA ( n = 2), anterior communicating artery (AComA; n = 4), A2-3 ( n = 1), M1-2 junction ( n = 1), posterior communicating artery (PComA; n = 1), superior cerebellar artery (SCA; n = 1), and basilar tip ( n = 2). The average aneurysm fundus size was 8.6 mm (range 7-10 mm) and average neck size 3.75 mm (range 1.9-6.9 mm). Immediate angiographic results were modified Raymond-Roy occlusion classification (mRRC) I n = 2, mRRC II n = 1, mRRC IIIa n = 2, mRRC IIIb n = 2, the remaining 7 aneurysms showed complete opacification. At follow-up angiography (mean 5 months) mRRC I n = 5, mRRC II n = 5, mRRC IIIa n = 3, and persistent filling was seen in 1 aneurysm. Overall, four patients had repeat treatment and one is pending further treatment. Of the aneurysms treated with more than one MED, 75% showed complete occlusion at 6-month follow up whereas only one aneurysm treated with a single device showed complete occlusion. Overall, three patients had temporary complications and there were no deaths. Conclusions The MED is an intra-saccular flow-diverting device with satisfactory angiographic results and an acceptable safety profile. Use of a single MED cannot be recommended and further longer term studies are needed prior to widespread clinical use.

  17. Gas-Grain Simulation Facility: Fundamental studies of particle formation and interactions. Volume 2: Abstracts, candidate experiments and feasibility study

    NASA Technical Reports Server (NTRS)

    Fogleman, Guy (Editor); Huntington, Judith L. (Editor); Schwartz, Deborah E. (Editor); Fonda, Mark L. (Editor)

    1989-01-01

    An overview of the Gas-Grain Simulation Facility (GGSF) project and its current status is provided. The proceedings of the Gas-Grain Simulation Facility Experiments Workshop are recorded. The goal of the workshop was to define experiments for the GGSF--a small particle microgravity research facility. The workshop addressed the opportunity for performing, in Earth orbit, a wide variety of experiments that involve single small particles (grains) or clouds of particles. Twenty experiments from the fields of exobiology, planetary science, astrophysics, atmospheric science, biology, physics, and chemistry were described at the workshop and are outlined in Volume 2. Each experiment description included specific scientific objectives, an outline of the experimental procedure, and the anticipated GGSF performance requirements. Since these experiments represent the types of studies that will ultimately be proposed for the facility, they will be used to define the general science requirements of the GGSF. Also included in the second volume is a physics feasibility study and abstracts of example Gas-Grain Simulation Facility experiments and related experiments in progress.

  18. Ground-facilities at the DLR Institute of Aerospace Medicine for preparation of flight experiments

    NASA Astrophysics Data System (ADS)

    Hemmersbach, Ruth; Hendrik Anken, Ralf; Hauslage, Jens; von der Wiesche, Melanie; Baerwalde, Sven; Schuber, Marianne

    In order to investigate the influence of altered gravity on biological systems and to identify gravisensitive processes, various experimental platforms have been developed, which are useful to simulate weightlessness or are able to produce hypergravity. At the Institute of Aerospace Medicine, DLR Cologne, a broad spectrum of applications is offered to scientists: clinostats with one rotation axis and variable rotation speeds for cultivation of small objects (including aquatic organisms) in simulated weightlessness conditions, for online microscopic observations and for online kinetic measurements. Own research concentrates on comparative studies with other kinds of methods to simulate weightlessness, also available at the institute: Rotating Wall Vessel (RWV) for aquatic studies, Random Positioning Machine (RPM; manufactured by Dutch Space, Leiden, The Netherlands). Correspondingly, various centrifuge devices are available to study different test objects under hypergravity conditions -such as NIZEMI, a slow rotating centrifuge microscope, and MUSIC, a multi-sample centrifuge. Mainly for experiments with human test subjects (artificial gravity), but also for biological systems or for testing various kinds of (flight-) hardware, the SAHC, a short arm human centrifuge -loaned by ESA -was installed in Cologne and completes our experimental scenario. Furthermore, due to our specific tasks such as providing laboratories during the German Parabolic Flight Experiments starting from Cologne and being the Facility Responsible Center for BIOLAB, a science rack in the Columbus module aboard the ISS, scientists have the possibility for an optimal preparation of their flight experiments.

  19. Differences in Experiences With Care Between Homeless and Nonhomeless Patients in Veterans Affairs Facilities With Tailored and Nontailored Primary Care Teams.

    PubMed

    Jones, Audrey L; Hausmann, Leslie R M; Kertesz, Stefan; Suo, Ying; Cashy, John P; Mor, Maria K; Schaefer, James H; Gundlapalli, Adi V; Gordon, Adam J

    2018-05-12

    Homeless patients describe poor experiences with primary care. In 2012, the Veterans Health Administration (VHA) implemented homeless-tailored primary care teams (Homeless Patient Aligned Care Team, HPACTs) that could improve the primary care experience for homeless patients. To assess differences in primary care experiences between homeless and nonhomeless Veterans receiving care in VHA facilities that had HPACTs available (HPACT facilities) and in VHA facilities lacking HPACTs (non-HPACT facilities). We used multivariable multinomial regressions to estimate homeless versus nonhomeless patient differences in primary care experiences (categorized as negative/moderate/positive) reported on a national VHA survey. We compared the homeless versus nonhomeless risk differences (RDs) in reporting negative or positive experiences in 25 HPACT facilities versus 485 non-HPACT facilities. Survey respondents from non-HPACT facilities (homeless: n=10,148; nonhomeless: n=309,779) and HPACT facilities (homeless: n=2022; nonhomeless: n=20,941). Negative and positive experiences with access, communication, office staff, provider rating, comprehensiveness, coordination, shared decision-making, and self-management support. In non-HPACT facilities, homeless patients reported more negative and fewer positive experiences than nonhomeless patients. However, these patterns of homeless versus nonhomeless differences were reversed in HPACT facilities for the domains of communication (positive experience RDs in non-HPACT versus HPACT facilities=-2.0 and 2.0, respectively); comprehensiveness (negative RDs=2.1 and -2.3), shared decision-making (negative RDs=1.2 and -1.8), and self-management support (negative RDs=0.1 and -4.5; positive RDs=0.5 and 8.0). VHA facilities with HPACT programs appear to offer a better primary care experience for homeless versus nonhomeless Veterans, reversing the pattern of relatively poor primary care experiences often associated with homelessness.

  20. Materials Science Experiments Under Microgravity - A Review of History, Facilities, and Future Opportunities

    NASA Technical Reports Server (NTRS)

    Stenzel, Ch.

    2012-01-01

    Materials science experiments have been a key issue already since the early days of research under microgravity conditions. A microgravity environment facilitates processing of metallic and semiconductor melts without buoyancy driven convection and sedimentation. Hence, crystal growth of semiconductors, solidification of metallic alloys, and the measurement of thermo-physical parameters are the major applications in the field of materials science making use of these dedicated conditions in space. In the last three decades a large number of successful experiments have been performed, mainly in international collaborations. In parallel, the development of high-performance research facilities and the technological upgrade of diagnostic and stimuli elements have also contributed to providing optimum conditions to perform such experiments. A review of the history of materials science experiments in space focussing on the development of research facilities is given. Furthermore, current opportunities to perform such experiments onboard ISS are described and potential future options are outlined.

  1. Onboard experiment data support facility, task 1 report. [space shuttles

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The conceptual design and specifications are developed for an onboard experiment data support facility (OEDSF) to provide end to end processing of data from various payloads on board space shuttles. Classical data processing requirements are defined and modeled. Onboard processing requirements are analyzed. Specifications are included for an onboard processor.

  2. Controllable Electrochromic Polyamide Film and Device Produced by Facile Ultrasonic Spray-coating.

    PubMed

    Liu, Huan-Shen; Chang, Wei-Chieh; Chou, Chin-Yen; Pan, Bo-Cheng; Chou, Yi-Shan; Liou, Guey-Sheng; Liu, Cheng-Liang

    2017-09-20

    Thermally stable TPA-OMe polyamide films with high transmittance modulation in response to applied potential are formed by facile ultrasonic spray-coating. Four processing conditions (Film A, Film B, Film C and Film D) through tuning both solution concentrations and deposition temperatures can be utilized for the formation of wet and dry deposited films with two film thickness intervals. The electrochromic results show that the dry deposited rough films at higher deposition temperature generally reveal a faster electrochromic response, lower charge requirements (Q) and less conspicuous color changes (smaller optical density change (ΔOD) and lightness change (ΔL*)) during the oxidation process as compared to the wet deposited smooth films at lower deposition temperature. Moreover, thicker electrochromic films from increased solution concentration exhibit more obvious changes between coloration and bleaching transition. All these four polyamide films display colorless-to-turquoise electrochromic switching with good redox stability. The large scale patterned electrochromic film and its application for assembled device (10 × 10 cm 2 in size) are also produced and reversibly operated for color changes. These represent a major solution-processing technique produced by ultrasonic spray-coating method towards scalable and cost-effective production, allowing more freedoms to facilitate the designed electrochromic devices as required.

  3. The Boiling eXperiment Facility (BXF) for the Microgravity Science Glovebox (MSG)

    NASA Technical Reports Server (NTRS)

    McQuillen, John; Chao, David; Vergilii, Frank

    2006-01-01

    Boiling is an effective means of cooling by removing heat from surfaces through vaporization of a working fluid. It is also affected by both the magnitude and direction of gravity. By conducting pool boiling tests in microgravity, the effect of buoyancy n the overall boiling process and the relative magnitude of other phenomena can be assessed. The Boiling eXperiment Facility (BXF) is being built for the Microgravity Science Glovebox. This facility will conduct two pool boiling studies. The first study the Microheater Array Boiling Experiment (MABE) uses two 96 element microheater arrays, 2.7 mm and 7.0 mm in size, to measure localized hear fluxes while operating at a constant temperature. The other experiment, the Nucleate Pool Boiling eXperiment (NPBX) uses a 85 mm diameter heater wafer that has been "seeded" with five individually-controlled nucleation sites to study bubble nucleation, growth, coalescence and departure. The BXF uses normal-perfluorohexane as the test fluid and will operate between pressures of 60 to 244 Pa. and temperatures of 35 to 60 C. Both sets of experimental heaters are highly instrumented. Pressure and bulk fluid temperature measurements will be made with standard rate video. A high speed video system will be used to visualize the boiling process through the bottom of the MABE heater arrays. The BXF is currently scheduled to fly on Utilization Flight-13A.1 to the ISS with facility integration into the MSG and operation during Increment 15

  4. Five years experience with a new intraoral maxillary distraction device (RID).

    PubMed

    Picard, Arnaud; Diner, Patrick A; Galliani, Eva; Tomat, Catherine; Vazquez, Ma rie Paule; Carls, Friedrich P

    2011-10-01

    Maxillary distraction osteogenesis is well established for the treatment of severe retromaxilla. We report our experience since 2004 of the treatment of 19 patients using a new intraoral maxillary distraction device. Maxillary advancement was successful in all patients with mean advancement of 9.6mm (range 4-17) measured at a point in lateral cephalograms. The new device limited surgical exposure and the amount of materials implanted, and improved control in every phase of the distraction. It was psychologically accepted by patients and was more comfortable than existing devices. Copyright © 2010 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  5. Glovebox in orbit - ESA/NASA Glovebox: A versatile USML-1 experiment facility

    NASA Technical Reports Server (NTRS)

    Sutherland, Ian A.; Wolff, Heinz; Helmke, Hartmut; Riesselmann, Werner; Nagy, Mike; Voeten, Eduard; Chassay, Roger

    1993-01-01

    The general purpose experiment facility flown aboard Space Shuttle USML-1 and known as the Glovebox is briefly discussed. Glovebox enabled scientists to perform materials science, fluids, and combustion experiments safely without contaminating the closed environment of Spacelab and endangering the crew. The evolution of Glovebox, its special features, and its hardware are described. The Glovebox experiments are summarized along with postmission and crew debriefing. Future uses of Glovebox are discussed.

  6. Numerical simulation of experiments in the Giant Planet Facility

    NASA Technical Reports Server (NTRS)

    Green, M. J.; Davy, W. C.

    1979-01-01

    Utilizing a series of existing computer codes, ablation experiments in the Giant Planet Facility are numerically simulated. Of primary importance is the simulation of the low Mach number shock layer that envelops the test model. The RASLE shock-layer code, used in the Jupiter entry probe heat-shield design, is adapted to the experimental conditions. RASLE predictions for radiative and convective heat fluxes are in good agreement with calorimeter measurements. In simulating carbonaceous ablation experiments, the RASLE code is coupled directly with the CMA material response code. For the graphite models, predicted and measured recessions agree very well. Predicted recession for the carbon phenolic models is 50% higher than that measured. This is the first time codes used for the Jupiter probe design have been compared with experiments.

  7. Smart-device environmental control systems: experiences of people with cervical spinal cord injuries.

    PubMed

    Hooper, Bethany; Verdonck, Michele; Amsters, Delena; Myburg, Michelle; Allan, Emily

    2017-09-06

    Environmental control systems (ECS) are devices that enable people with severe physical limitations to independently control household appliances. Recent advancements in the area of environmental control technology have led to the development of ECS that can be controlled through mainstream smart-devices. There is limited research on ECS within Australia and no known research addressing smart-device ECS. The current study sought to explore users' experiences with smart-device ECS within Australia. The study followed a single embedded case study method. Participants (n = 5) were existing ECS users with a cervical spinal cord injury. Data were collected through semi-structured interviews with participants, reflexive journals and field notes. An inductive approach was used to analyze the data thematically. The experience of using a smart-device ECS presented both opportunities and costs to users. The opportunities included: independent control, choice, peace of mind, connection, effective resource use, and control over smart-phone functions and applications. The associated costs included: financial, time, frustration, and technical limitations. While findings are similar to previous research into traditional ECS this study indicates that smart-device ECS also offered a new opportunity for users to access mainstream smart-device functions and applications. Future research should investigate methods and resources that practitioners could utilize to better support new users of smart-device ECS. Implications for Rehabilitation As with traditional environmental control systems, users of smart environmental control systems report increased independence, choice and control. Smart-device environmental control systems provide users with access to mainstream smart-device functions and applications, which facilitate connection to family and the outside world. The costs to the user of smart-device environmental control systems include monetary and time investment, dealing

  8. CATANA protontherapy facility: The state of art of clinical and dosimetric experience

    NASA Astrophysics Data System (ADS)

    Cuttone, G.; Cirrone, G. A. P.; Di Franco, G.; La Monaca, V.; Lo Nigro, S.; Ott, J.; Pittera, S.; Privitera, G.; Raffaele, L.; Reibaldi, A.; Romano, F.; Sabini, M. G.; Salamone, V.; Sanfilippo, M.; Spatola, C.; Valastro, L. M.

    2011-07-01

    After nine years of activity, about 220 patients have been treated at the CATANA Eye Protontherapy facility. A 62MeV proton beam produced by a Superconducting Cyclotron is dedicated to radiotherapy of eye lesions, as uveal melanomas. Research and development work has been done to test different dosimetry devices to be used for reference and relative dosimetry, in order to achieve dose delivering accuracy. The follow-up results demonstrated the efficacy of proton beams and encouraged us in our activity in the fight against cancer.

  9. Ion traps for precision experiments at rare-isotope-beam facilities

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, Anna

    2016-09-01

    Ion traps first entered experimental nuclear physics when the ISOLTRAP team demonstrated Penning trap mass spectrometry of radionuclides. From then on, the demand for ion traps has grown at radioactive-ion-beam (RIB) facilities since beams can be tailored for the desired experiment. Ion traps have been deployed for beam preparation, from bunching (thereby allowing time coincidences) to beam purification. Isomerically pure beams needed for nuclear-structure investigations can be prepared for trap-assisted or in-trap decay spectroscopy. The latter permits studies of highly charged ions for stellar evolution, which would be impossible with traditional experimental nuclear-physics methods. Moreover, the textbook-like conditions and advanced ion manipulation - even of a single ion - permit high-precision experiments. Consequently, the most accurate and precise mass measurements are now performed in Penning traps. After a brief introduction to ion trapping, I will focus on examples which showcase the versatility and utility of the technique at RIB facilities. I will demonstrate how this atomic-physics technique has been integrated into nuclear science, accelerator physics, and chemistry. DOE.

  10. Mothers' Perspectives and Experiences of Speech Generating Devices

    ERIC Educational Resources Information Center

    Lee, Yeunjoo; Vega, Luis A.

    2017-01-01

    Families play a critical role in the lives of students who use a speech generating device (SGD). This study address (a) mothers' experiences of having a child who uses a SGD, (b) their perception of the effectiveness of a SGD(s), (c) their perceived impacts of SGDs on their family dynamics, and (d) their perception of decision making process. Data…

  11. Experience-Sampling Methodology with a Mobile Device in Fibromyalgia

    PubMed Central

    Diana, Castilla; Cristina, Botella; Azucena, García-Palacios; Luis, Farfallini; Ignacio, Miralles

    2012-01-01

    This work describes the usability studies conducted in the development of an experience-sampling methodology (ESM) system running in a mobile device. The goal of the system is to improve the accuracy and ecology in gathering daily self-report data in individuals suffering a chronic pain condition, fibromyalgia. The usability studies showed that the developed software to conduct ESM with mobile devices (smartphones, cell phones) can be successfully used by individuals with fibromyalgia of different ages and with low level of expertise in the use of information and communication technologies. 100% of users completed the tasks successfully, although some have completely illiterate. Also there seems to be a clear difference in the way of interaction obtained in the two studies carried out. PMID:23304132

  12. First experiment on LMJ facility: pointing and synchronisation qualification

    NASA Astrophysics Data System (ADS)

    Henry, Olivier; Raffestin, Didier; Bretheau, Dominique; Luttmann, Michel; Graillot, Herve; Ferri, Michel; Seguineau, Frederic; Bar, Emmanuel; Patissou, Loic; Canal, Philippe; Sautarel, Franöise; Tranquille-Marques, Yves

    2017-10-01

    The LMJ (Laser mega Joule) facility at the CESTA site (Aquitaine, France) is a tool designed to deliver up to 1.2 MJ at 351 nm for plasma experiments. The experiment system will include 11 diagnostics: UV and X energy balances, imagers (Streak and stripe camera, CCD), spectrometers, and a Visar/pyrometer. The facility must be able to deliver, within the hour following the shot, all the results of the plasma diagnostics, alignment images and laser diagnostic measurements. These results have to be guaranteed in terms of conformity to the request and quality of measurement. The end of 2016 was devoted to the qualification of system pointing on target and synchronization within and between beams. The shots made with two chains (divided in 4 quads - 8 laser beams) have achieved 50 µm of misalignment accuracy (chain and quad channel) and a synchronization accuracy in the order of 50 ps . The performances achieved for plasma diagnostic (in the order of less 100 µm of alignment and timing accuracy less than 150 ps) comply with expectations. At the same time the first automatic sequences were tested. They allowed a shot on target every 6h:30 and in some case twice a day by reducing preparation actions, leading to a sequence of 4h:00.

  13. Preservice Teachers' Experiences on Accessing Course Materials Using Mobile Devices

    ERIC Educational Resources Information Center

    Unal, Zafer; Unal, Aslihan

    2014-01-01

    This study investigates and reports the first time experiences of mobile device users accessing the course materials on both the web and mobile version of course management system (Web Moodle & Mobile Moodle) during an online course offered at the University of South Florida, St. Petersburg College of Education.

  14. 33 CFR 154.525 - Monitoring devices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... monitoring devices at the facility would significantly limit the size of a discharge of oil or hazardous... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Monitoring devices. 154.525...) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Equipment Requirements § 154.525...

  15. 33 CFR 154.525 - Monitoring devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... monitoring devices at the facility would significantly limit the size of a discharge of oil or hazardous... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Monitoring devices. 154.525...) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Equipment Requirements § 154.525...

  16. 33 CFR 154.525 - Monitoring devices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... monitoring devices at the facility would significantly limit the size of a discharge of oil or hazardous... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Monitoring devices. 154.525...) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Equipment Requirements § 154.525...

  17. 33 CFR 154.525 - Monitoring devices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... monitoring devices at the facility would significantly limit the size of a discharge of oil or hazardous... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Monitoring devices. 154.525...) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Equipment Requirements § 154.525...

  18. Data management integration for biomedical core facilities

    NASA Astrophysics Data System (ADS)

    Zhang, Guo-Qiang; Szymanski, Jacek; Wilson, David

    2007-03-01

    We present the design, development, and pilot-deployment experiences of MIMI, a web-based, Multi-modality Multi-Resource Information Integration environment for biomedical core facilities. This is an easily customizable, web-based software tool that integrates scientific and administrative support for a biomedical core facility involving a common set of entities: researchers; projects; equipments and devices; support staff; services; samples and materials; experimental workflow; large and complex data. With this software, one can: register users; manage projects; schedule resources; bill services; perform site-wide search; archive, back-up, and share data. With its customizable, expandable, and scalable characteristics, MIMI not only provides a cost-effective solution to the overarching data management problem of biomedical core facilities unavailable in the market place, but also lays a foundation for data federation to facilitate and support discovery-driven research.

  19. Improving car passengers' comfort and experience by supporting the use of handheld devices.

    PubMed

    van Veen, S A T; Hiemstra-van Mastrigt, S; Kamp, I; Vink, P

    2014-01-01

    There is a demand for interiors to support other activities in a car than controlling the vehicle. Currently, this is the case for the car passengers and--in the future--autonomous driving cars will also facilitate drivers to perform other activities. One of these activities is working with handheld devices. Previous research shows that people experience problems when using handheld devices in a moving vehicle and the use of handheld devices generally causes unwanted neck flexion [Young et al. 2012; Sin and Zu 2011; Gold et al.2011]. In this study, armrests are designed to support the arms when using handheld devices in a driving car in order to decrease neck flexion. Neck flexion was measured by attaching markers on the C7 and tragus. Discomfort was indicated on a body map on a scale 1-10. User experience was evaluated in a semi-structured interview. Neck flexion is significantly decreased by the support of the armrests and approaches a neutral position. Furthermore, overall comfort and comfort in the neck region specifically are significantly increased. Subjects appreciate the body posture facilitated by the armrests and 9 out of 10 prefer using handheld devices with the armrests compared to using handheld devices without the armrests. More efforts are needed to develop the mock-up into an established product, but the angles and dimensions presented in this study could serve as guidelines.

  20. Initial experience of coiling cerebral aneurysms using the new Comaneci device

    PubMed Central

    Lawson, Aimee Louise Deborah; Chandran, Arun; Puthuran, Mani; Goddard, Tony; Nahser, Hans; Patankar, Tufail

    2015-01-01

    We present our initial patient experience with an innovative temporary bridging device, the Comaneci (Rapid Medical, Israel), to assist in the coiling of cerebral aneurysms. The Comaneci device confers the same benefits as balloon remodeling but without the risks of parent artery occlusion. This alleviates time pressure on the clinician, and could reduce the risk of parent artery thrombosis. Three patients were treated with the Comaneci device. Two patients had acute ruptured posterior communicating aneurysms and one patient was treated electively for a carotico-ophthalmic aneurysm. Excellent occlusion of all three aneurysms was obtained. One patient developed a distal middle cerebral artery clot, that was treated with intravenous aspirin, with minor neurological consequences. These early results show that the Comaneci device can be used to achieve good cerebral aneurysm occlusion. Vessel patency is maintained throughout the procedure with potential advantages over conventional balloon assisted coiling. PMID:26123460

  1. Experience with a UNIX based batch computing facility for H1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerhards, R.; Kruener-Marquis, U.; Szkutnik, Z.

    1994-12-31

    A UNIX based batch computing facility for the H1 experiment at DESY is described. The ultimate goal is to replace the DESY IBM mainframe by a multiprocessor SGI Challenge series computer, using the UNIX operating system, for most of the computing tasks in H1.

  2. Eliciting preferences for medical devices in South Korea: A discrete choice experiment.

    PubMed

    Lee, Hye-Jae; Bae, Eun-Young

    2017-03-01

    This study aims to identify the attributes that contribute to the value of medical devices and quantify the relative importance of them using a discrete choice experiment. Based on a literature review and expert consultation, seven attributes and their levels were identified-severity of disease (2), availability of substitutes (2), improvement in procedure (3), improvement in clinical outcomes (2), increase in survival (2), improvement in quality of life (3), and cost (4). Among 576 hypothetical profiles, optimal choice sets with 20 choices were developed and experts experienced in health technology assessment and reimbursement decision making in South Korea were surveyed. A total of 102 respondents participated in the survey. The results of the random-effect probit model showed that among the seven attributes, six, except for improvement in procedure, had a significant impact on respondents' choices on medical devices. Respondents were willing to pay the highest amount for devices that provided substantial improvements in quality of life, followed by increased survival, improved clinical outcome, treatment without substitutes, and technology for treating severe diseases. The findings of this experiment will inform decision-makers of the relative importance of the criteria and help them in reimbursement decision making of medical devices. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Safety of a condom uterine balloon tamponade (ESM-UBT) device for uncontrolled primary postpartum hemorrhage among facilities in Kenya and Sierra Leone.

    PubMed

    Ramanathan, Aparna; Eckardt, Melody J; Nelson, Brett D; Guha, Moytrayee; Oguttu, Monica; Altawil, Zaid; Burke, Thomas

    2018-05-15

    Postpartum hemorrhage is the leading cause of maternal mortality in low- and middle-income countries. While evidence on uterine balloon tamponade efficacy for severe hemorrhage is encouraging, little is known about safety of this intervention. The objective of this study was to evaluate the safety of an ultra-low-cost uterine balloon tamponade package (named ESM-UBT) for facility-based management of uncontrolled postpartum hemorrhage (PPH) in Kenya and Sierra Leone. Data were collected on complications/adverse events in all women who had an ESM-UBT device placed among 92 facilities in Sierra Leone and Kenya, between September 2012 and December 2015, as part of a multi-country study. Three expert maternal health investigator physicians analyzed each complication/adverse event and developed consensus on whether there was a potential causal relationship associated with use of the ESM-UBT device. Adverse events/complications specifically investigated included death, hysterectomy, uterine rupture, perineal or cervical injury, serious or minor infection, and latex allergy/anaphylaxis. Of the 201 women treated with an ESM-UBT device in Kenya and Sierra Leone, 189 (94.0%) survived. Six-week or longer follow-up was recorded in 156 of the 189 (82.5%). A causal relationship between use of an ESM-UBT device and one death, three perineal injuries and one case of mild endometritis could not be completely excluded. Three experts found a potential association between these injuries and an ESM-UBT device highly unlikely. The ESM-UBT device appears safe for use in women with uncontrolled PPH. Trial registration was not completed as data was collected as a quality assurance measure for the ESM-UBT kit.

  4. Vat rates on medical devices: foreign experience and Ukrainian practice.

    PubMed

    Pashkov, Vitalii; Hutorova, Nataliia; Harkusha, Andrii

    2017-01-01

    In Ukraine differentiated VAT rates is a matter of debate. Today the Cabinet approved a list of medical products that has been changed three times resulting in changed VAT rates for specific products. European Union provides another method of regulation of VAT rates on medical devices. The abovementioned demonstrates the relevance of this study. Comparative analysis of Ukrainian and European Union legislation based on dialectical, comparative, analytic, synthetic and comprehensive research methods were used in this article. In Ukraine general rate of VAT for all business activities is 20 %. But for medical devices, Tax Code of Ukraine provides special rules. VAT rate of 7% for transactions supplies into Ukraine and imported into the customs territory of Ukraine of medical products on the list approved by the Cabinet. The list generated by the medical product name and nomenclature code that does not correspond to European experience and Council Directive 2006/112/EC. In our opinion, reduced VAT rates should to be established for all medical devices that are in a stream of commerce, have all necessary documents, that proved their quality and safety and fall under definition of medical devices.

  5. Conceptual design of Dipole Research Experiment (DREX)

    NASA Astrophysics Data System (ADS)

    Xiao, Qingmei; Wang, Zhibin; Wang, Xiaogang; Xiao, Chijie; Yang, Xiaoyi; Zheng, Jinxing

    2017-03-01

    A new terrella-like device for laboratory simulation of inner magnetosphere plasmas, Dipole Research Experiment, is scheduled to be built at the Harbin Institute of Technology (HIT), China, as a major state scientific research facility for space physics studies. It is designed to provide a ground experimental platform to reproduce the inner magnetosphere to simulate the processes of trapping, acceleration, and transport of energetic charged particles restrained in a dipole magnetic field configuration. The scaling relation of hydromagnetism between the laboratory plasma of the device and the geomagnetosphere plasma is applied to resemble geospace processes in the Dipole Research Experiment plasma. Multiple plasma sources, different kinds of coils with specific functions, and advanced diagnostics are designed to be equipped in the facility for multi-functions. The motivation, design criteria for the Dipole Research Experiment experiments and the means applied to generate the plasma of desired parameters in the laboratory are also described. Supported by National Natural Science Foundation of China (Nos. 11505040, 11261140326 and 11405038), China Postdoctoral Science Foundation (Nos. 2016M591518, 2015M570283) and Project Supported by Natural Scientific Research Innovation Foundation in Harbin Institute of Technology (No. 2017008).

  6. New synchrotron powder diffraction facility for long-duration experiments

    PubMed Central

    Murray, Claire A.; Potter, Jonathan; Day, Sarah J.; Baker, Annabelle R.; Thompson, Stephen P.; Kelly, Jon; Morris, Christopher G.; Tang, Chiu C.

    2017-01-01

    A new synchrotron X-ray powder diffraction instrument has been built and commissioned for long-duration experiments on beamline I11 at Diamond Light Source. The concept is unique, with design features to house multiple experiments running in parallel, in particular with specific stages for sample environments to study slow kinetic systems or processes. The instrument benefits from a high-brightness X-ray beam and a large area detector. Diffraction data from the commissioning work have shown that the objectives and criteria are met. Supported by two case studies, the results from months of measurements have demonstrated the viability of this large-scale instrument, which is the world’s first dedicated facility for long-term studies (weeks to years) using synchrotron radiation. PMID:28190992

  7. NASA Wallops Flight Facility Air-Sea Interaction Research Facility

    NASA Technical Reports Server (NTRS)

    Long, Steven R.

    1992-01-01

    This publication serves as an introduction to the Air-Sea Interaction Research Facility at NASA/GSFC/Wallops Flight Facility. The purpose of this publication is to provide background information on the research facility itself, including capabilities, available instrumentation, the types of experiments already done, ongoing experiments, and future plans.

  8. The LAM space active optics facility

    NASA Astrophysics Data System (ADS)

    Engel, C.; Ferrari, M.; Hugot, E.; Escolle, C.; Bonnefois, A.; Bernot, M.; Bret-Dibat, T.; Carlavan, M.; Falzon, F.; Fusco, T.; Laubier, D.; Liotard, A.; Michau, V.; Mugnier, L.

    2017-11-01

    The next generation of large lightweight space telescopes will require the use of active optics systems to enhance the performance and increase the spatial resolution. Since almost 10 years now, LAM, CNES, THALES and ONERA conjugate their experience and efforts for the development of space active optics through the validation of key technological building blocks: correcting devices, metrology components and control strategies. This article presents the work done so far on active correcting mirrors and wave front sensing, as well as all the facilities implemented. The last part of this paper focuses on the merging of the MADRAS and RASCASSE test-set up. This unique combination will provide to the active optics community an automated, flexible and versatile facility able to feed and characterise space active optics components.

  9. The upgraded Large Plasma Device, a machine for studying frontier basic plasma physics.

    PubMed

    Gekelman, W; Pribyl, P; Lucky, Z; Drandell, M; Leneman, D; Maggs, J; Vincena, S; Van Compernolle, B; Tripathi, S K P; Morales, G; Carter, T A; Wang, Y; DeHaas, T

    2016-02-01

    In 1991 a manuscript describing an instrument for studying magnetized plasmas was published in this journal. The Large Plasma Device (LAPD) was upgraded in 2001 and has become a national user facility for the study of basic plasma physics. The upgrade as well as diagnostics introduced since then has significantly changed the capabilities of the device. All references to the machine still quote the original RSI paper, which at this time is not appropriate. In this work, the properties of the updated LAPD are presented. The strategy of the machine construction, the available diagnostics, the parameters available for experiments, as well as illustrations of several experiments are presented here.

  10. BAGHEERA: A new experimental facility at CEA / Valduc for actinides studies under high dynamic loading

    NASA Astrophysics Data System (ADS)

    Roy, G.; Llorca, F.; Lanier, G.; Lamalle, S.; Beaulieu, J.; Antoine, P.; Martinuzzi, P.

    2006-08-01

    This paper is a technical presentation about a new experimental facility recently developed at CEA/Valduc, BAGHEERA, a French acronym for “Hopkinson And High Speed Experiments Glove Box”. This facility is used since mid-2003 to characterize the physical and mechanical behaviour of actinides under high dynamic loadings. For this purpose, four basic experimental devices are confined inside a single glove box: a 50 mm bore diameter single stage light gas gun, two compression and torsion split Hopkinson bars (SHPB and TSHB respectively) and a Taylor test device (TTD). Design and technical data on the experimental equipment are addressed, with a particular emphasis on the gas gun specific features due to actinide applications.

  11. Status and Planned Experiments of the Hiradmat Pulsed Beam Material Test Facility at CERN SPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charitonidis, Nikolaos; Efthymiopoulos, Ilias; Fabich, Adrian

    2015-06-01

    HiRadMat (High Irradiation to Materials) is a facility at CERN designed to provide high-intensity pulsed beams to an irradiation area where material samples as well as accelerator component assemblies (e.g. vacuum windows, shock tests on high power targets, collimators) can be tested. The beam parameters (SPS 440 GeV protons with a pulse energy of up to 3.4 MJ, or alternatively lead/argon ions at the proton equivalent energy) can be tuned to match the needs of each experiment. It is a test area designed to perform single pulse experiments to evaluate the effect of high-intensity pulsed beams on materials in amore » dedicated environment, excluding long-time irradiation studies. The facility is designed for a maximum number of 1016 protons per year, in order to limit the activation of the irradiated samples to acceptable levels for human intervention. This paper will demonstrate the possibilities for research using this facility and go through examples of upcoming experiments scheduled in the beam period 2015/2016.« less

  12. Status of power generation experiments in the NASA Lewis closed cycle MHD facility

    NASA Technical Reports Server (NTRS)

    Sovie, R. J.; Nichols, L. D.

    1971-01-01

    The design and operation of the closed cycle MHD facility is discussed and results obtained in recent experiments are presented. The main components of the facility are a compressor, recuperative heat exchanger, heater, nozzle, MHD channel with 28 pairs of thoriated tungsten electrodes, cesium condenser, and an argon cooler. The facility has been operated at temperatures up to 2100 K with a cesium-seeded argon working fluid. At low magnetic field strengths, the open circuit voltage, Hall voltage and short circuit current obtained are 90, 69, and 47 percent of the theoretical equilibrium values, respectively. Comparison of this data with a wall and boundary layer leakage theory indicates that the generator has shorting paths in the Hall direction.

  13. Study of energetic particle dynamics in Harbin Dipole eXperiment (HDX) on Space Plasma Environment Research Facility (SPERF)

    NASA Astrophysics Data System (ADS)

    Zhibin, W.; Xiao, Q.; Wang, X.; Xiao, C.; Zheng, J.; E, P.; Ji, H.; Ding, W.; Lu, Q.; Ren, Y.; Mao, A.

    2015-12-01

    Zhibin Wang1, Qingmei Xiao1, Xiaogang Wang1, Chijie Xiao2, Jinxing Zheng3, Peng E1, Hantao Ji1,5, Weixing Ding4, Quaming Lu6, Y. Ren1,5, Aohua Mao11 Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, China 150001 2 State Key Lab of Nuclear Physics & Technology, and School of Physics, Peking University, Beijing, China 100871 3ASIPP, Hefei, China, 230031 4University of California at Los Angeles, Los Angeles, CA, 90095 5Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 6University of Science and Technology of China, Hefei, China, 230026 A new terrella device for laboratory studies of space physics relevant to the inner magnetospheric plasmas, Harbin Dipole eXperiment (HDX), is scheduled to be built at Harbin Institute of Technology (HIT), China. HDX is one of two essential parts of Space Plasma Environment Research Facility (SPERF), which is a major national research facility for space physics studies. HDX is designed to provide a laboratory experimental platform to reproduce the earth's magnetospheric structure for investigations on the mechanism of acceleration/loss and wave-particle interaction of energetic particles in radiation belt, and on the influence of magnetic storms on the inner magnetosphere. It can be operated together with Harbin Reconnection eXperiment (HRX), which is another part of SPERF, to study the fundamental processes during interactions between solar wind and Earth's magnetosphere. In this presentation, the scientific goals and experimental plans for HDX, together with the means applied to generate the plasma with desired parameters, including multiple plasma sources and different kinds of coils with specific functions, as well as advanced diagnostics designed to be equipped to the facility for multi-functions, are reviewed. Three typical scenarios of HDX with operations of various coils and plasma sources to study specific physical processes in space plasmas will also be

  14. Experiment Definition Using the Space Laboratory, Long Duration Exposure Facility, and Space Transportation System Shuttle

    NASA Technical Reports Server (NTRS)

    Sheppard, Albert P.; Wood, Joan M.

    1976-01-01

    Candidate experiments designed for the space shuttle transportation system and the long duration exposure facility are summarized. The data format covers: experiment title, Experimenter, technical abstract, benefits/justification, technical discussion of experiment approach and objectives, related work and experience, experiment facts space properties used, environmental constraints, shielding requirements, if any, physical description, and sketch of major elements. Information was also included on experiment hardware, research required to develop experiment, special requirements, cost estimate, safety considerations, and interactions with spacecraft and other experiments.

  15. The Development of a Quality Management Framework for Evaluating Medical Device Reprocessing Practice in Healthcare Facilities.

    PubMed

    Lorv, Bailey; Horodyski, Robin; Welton, Cynthia; Vail, John; Simonetto, Luca; Jokanovic, Danilo; Sharma, Richa; Mahoney, Angela Rea; Savoy-Bird, Shay; Bains, Shalu

    2017-01-01

    There is increasing awareness of the importance of medical device reprocessing (MDR) for the provision of safe patient care. Although industry service standards are available to guide MDR practices, there remains a lack of published key performance indicators (KPIs) and targets that are necessary to evaluate MDR quality for feedback and improvement. This article outlines the development of an initial framework that builds on established guidelines and includes service standards, KPIs and targets for evaluating MDR operations. This framework can support healthcare facilities in strengthening existing practices and enables a platform for collaboration towards better MDR performance management.

  16. An experiment with content distribution methods in touchscreen mobile devices.

    PubMed

    Garcia-Lopez, Eva; Garcia-Cabot, Antonio; de-Marcos, Luis

    2015-09-01

    This paper compares the usability of three different content distribution methods (scrolling, paging and internal links) in touchscreen mobile devices as means to display web documents. Usability is operationalized in terms of effectiveness, efficiency and user satisfaction. These dimensions are then measured in an experiment (N = 23) in which users are required to find words in regular-length web documents. Results suggest that scrolling is statistically better in terms of efficiency and user satisfaction. It is also found to be more effective but results were not significant. Our findings are also compared with existing literature to propose the following guideline: "try to use vertical scrolling in web pages for mobile devices instead of paging or internal links, except when the content is too large, then paging is recommended". With an ever increasing number of touchscreen web-enabled mobile devices, this new guideline can be relevant for content developers targeting the mobile web as well as institutions trying to improve the usability of their content for mobile platforms. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  17. A neural network device for on-line particle identification in cosmic ray experiments

    NASA Astrophysics Data System (ADS)

    Scrimaglio, R.; Finetti, N.; D'Altorio, L.; Rantucci, E.; Raso, M.; Segreto, E.; Tassoni, A.; Cardarilli, G. C.

    2004-05-01

    On-line particle identification is one of the main goals of many experiments in space both for rare event studies and for optimizing measurements along the orbital trajectory. Neural networks can be a useful tool for signal processing and real time data analysis in such experiments. In this document we report on the performances of a programmable neural device which was developed in VLSI analog/digital technology. Neurons and synapses were accomplished by making use of Operational Transconductance Amplifier (OTA) structures. In this paper we report on the results of measurements performed in order to verify the agreement of the characteristic curves of each elementary cell with simulations and on the device performances obtained by implementing simple neural structures on the VLSI chip. A feed-forward neural network (Multi-Layer Perceptron, MLP) was implemented on the VLSI chip and trained to identify particles by processing the signals of two-dimensional position-sensitive Si detectors. The radiation monitoring device consisted of three double-sided silicon strip detectors. From the analysis of a set of simulated data it was found that the MLP implemented on the neural device gave results comparable with those obtained with the standard method of analysis confirming that the implemented neural network could be employed for real time particle identification.

  18. FLARE: A New User Facility for Studies of Multiple-Scale Physics of Magnetic Reconnection and Related Phenomena Through in-situ Measurements

    NASA Astrophysics Data System (ADS)

    Ji, Hantao; Bhattacharjee, A.; Goodman, A.; Prager, S.; Daughton, W.; Cutler, R.; Fox, W.; Hoffmann, F.; Kalish, M.; Kozub, T.; Jara-Almonte, J.; Myers, C.; Ren, Y.; Sloboda, P.; Yamada, M.; Yoo, J.; Bale, S. D.; Carter, T.; Dorfman, S.; Drake, J.; Egedal, J.; Sarff, J.; Wallace, J.

    2017-10-01

    The FLARE device (Facility for Laboratory Reconnection Experiments; flare.pppl.gov) is a new laboratory experiment under construction at Princeton for the studies of magnetic reconnection in the multiple X-line regimes directly relevant to space, solar, astrophysical, and fusion plasmas, as guided by a reconnection phase diagram. The whole device have been assembled with first plasmas expected in the fall of 2017. The main diagnostics is an extensive set of magnetic probe arrays, currently under construction, to cover multiple scales from local electron scales ( 2 mm), to intermediate ion scales ( 10 cm), and global MHD scales ( 1 m), simultaneously providing in-situ measurements over all these relevant scales. The planned procedures and example topics as a user facility will be discussed.

  19. Vibration properties of a rotating piezoelectric energy harvesting device that experiences gyroscopic effects

    NASA Astrophysics Data System (ADS)

    Lu, Haohui; Chai, Tan; Cooley, Christopher G.

    2018-03-01

    This study investigates the vibration of a rotating piezoelectric device that consists of a proof mass that is supported by elastic structures with piezoelectric layers. Vibration of the proof mass causes deformation in the piezoelectric structures and voltages to power the electrical loads. The coupled electromechanical equations of motion are derived using Newtonian mechanics and Kirchhoff's circuit laws. The free vibration behavior is investigated for devices with identical (tuned) and nonidentical (mistuned) piezoelectric support structures and electrical loads. These devices have complex-valued, speed-dependent eigenvalues and eigenvectors as a result of gyroscopic effects caused by their constant rotation. The characteristics of the complex-valued eigensolutions are related to physical behavior of the device's vibration. The free vibration behaviors differ significantly for tuned and mistuned devices. Due to gyroscopic effects, the proof mass in the tuned device vibrates in either forward or backward decaying circular orbits in single-mode free response. This is proven analytically for all tuned devices, regardless of the device's specific parameters or operating speed. For mistuned devices, the proof mass has decaying elliptical forward and backward orbits. The eigenvalues are shown to be sensitive to changes in the electrical load resistances. Closed-form solutions for the eigenvalues are derived for open and close circuits. At high rotation speeds these devices experience critical speeds and instability.

  20. Polar-Drive Experiments at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Hohenberger, M.

    2014-10-01

    To support direct-drive inertial confinement fusion (ICF) experiments at the National Ignition Facility (NIF) in its indirect-drive beam configuration, the polar-drive (PD) concept has been proposed. It requires direct-drive-specific beam smoothing, phase plates, and repointing the NIF beams toward the equator to ensure symmetric target irradiation. First experiments testing the performance of ignition-relevant PD implosions at the NIF have been performed. The goal of these early experiments was to develop a stable, warm implosion platform to investigate laser deposition and laser-plasma instabilities at ignition-relevant plasma conditions, and to develop and validate ignition-relevant models of laser deposition and heat conduction. These experiments utilize the NIF in its current configuration, including beam geometry, phase plates, and beam smoothing. Warm, 2.2-mm-diam plastic shells were imploded with total drive energies ranging from ~ 350 to 750 kJ with peak powers of 60 to 180 TW and peak on-target intensities from 4 ×1014 to 1 . 2 ×1015 W/cm2. Results from these initial experiments are presented, including the level of hot-electron preheat, and implosion symmetry and shell trajectory inferred via self-emission imaging and backlighting. Experiments are simulated with the 2-D hydrodynamics code DRACO including a full 3-D ray trace to model oblique beams, and a model for cross-beam energy transfer (CBET). These simulations indicate that CBET affects the shell symmetry and leads to a loss of energy imparted onto the shell, consistent with the experimental data. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  1. Model experiments to evaluate vortex dissipation devices proposed for installation on or near aircraft runways

    NASA Technical Reports Server (NTRS)

    Kohl, R. E.

    1973-01-01

    The effectiveness of various vortex dissipation devices proposed for installation on or near aircraft runways is evaluated on basis of results of experiments conducted with a 0.03-scale model of a Boeing 747 transport aircraft in conjunction with a simulated runway. The test variables included type of vortex dissipation device, mode of operation of the powered devices, and altitude, lift coefficient and speed of the generating aircraft. A total of fifteen devices was investigated. The evaluation is based on time sequence photographs taken in the vertical and horizontal planes during each run.

  2. Older individuals' experiences during the assistive technology device service delivery process.

    PubMed

    Gramstad, Astrid; Storli, Sissel Lisa; Hamran, Torunn

    2014-07-01

    Providing assistive technology devices to older individuals living in their ordinary homes is an important intervention to increase and sustain independence and to enable ageing at home. However, little is known about older individuals' experiences and needs in the assistive technology device (ATD) service delivery process. The purpose of this study was to investigate older individuals' experiences during the service delivery process of ATDs. Nine older individuals were interviewed three times each throughout the ATD service delivery process. The interviews were analysed within a hermeneutical phenomenological perspective. The results show that the service delivery process could be interpreted as an enigmatic journey and described using four themes: "hope and optimistic expectations", "managing after delivery or needing additional help", "having available help versus being abandoned", and "taking charge or putting up". The results emphasize the need for occupational therapists to maintain an individualized approach towards older clients throughout the service delivery process. The experiences of older individuals were diverse and related to expectations that were not necessarily articulated to the occupational therapist. The situation when the ATD is delivered to the client was highlighted by the clients as an important event with the potential to facilitate a successful service delivery process.

  3. First Materials Science Research Facility Rack Capabilities and Design Features

    NASA Technical Reports Server (NTRS)

    Cobb, S.; Higgins, D.; Kitchens, L.; Curreri, Peter (Technical Monitor)

    2002-01-01

    The first Materials Science Research Rack (MSRR-1) is the primary facility for U.S. sponsored materials science research on the International Space Station. MSRR-1 is contained in an International Standard Payload Rack (ISPR) equipped with the Active Rack Isolation System (ARIS) for the best possible microgravity environment. MSRR-1 will accommodate dual Experiment Modules and provide simultaneous on-orbit processing operations capability. The first Experiment Module for the MSRR-1, the Materials Science Laboratory (MSL), is an international cooperative activity between NASA's Marshall Space Flight Center (MSFC) and the European Space Agency's (ESA) European Space Research and Technology Center (ESTEC). The MSL Experiment Module will accommodate several on-orbit exchangeable experiment-specific Module Inserts which provide distinct thermal processing capabilities. Module Inserts currently planned for the MSL are a Quench Module Insert, Low Gradient Furnace, and a Solidification with Quench Furnace. The second Experiment Module for the MSRR-1 configuration is a commercial device supplied by MSFC's Space Products Development (SPD) Group. Transparent furnace assemblies include capabilities for vapor transport processes and annealing of glass fiber preforms. This Experiment Module is replaceable on-orbit. This paper will describe facility capabilities, schedule to flight and research opportunities.

  4. A wireless remote high-power laser device for optogenetic experiments

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Gong, Q.; Li, Y. Y.; Li, A. Z.; Zhang, Y. G.; Cao, C. F.; Xu, H. X.; Cui, J.; Gao, J. J.

    2015-04-01

    Optogenetics affords the ability to stimulate genetically targeted neurons in a relatively innocuous manner. Reliable and targetable tools have enabled versatile new classes of investigation in the study of neural systems. However, current hardware systems are generally limited to acute measurements or require external tethering of the system to the light source. Here we provide a low-cost, high-power, remotely controlled blue laser diode (LD) stimulator for the application of optogenetics in neuroscience, focusing on wearable and intelligent devices, which can be carried by monkeys, rats and any other animals under study. Compared with the conventional light emitting diode (LED) device, this LD stimulator has higher efficiency, output power, and stability. Our system is fully wirelessly controlled and suitable for experiments with a large number of animals.

  5. Proton therapy detector studies under the experience gained at the CATANA facility

    NASA Astrophysics Data System (ADS)

    Cuttone, G.; Cirrone, G. A. P.; Di Rosa, F.; Lojacono, P. A.; Lo Nigro, S.; Marino, C.; Mongelli, V.; Patti, I. V.; Pittera, S.; Raffaele, L.; Russo, G.; Sabini, M. G.; Salamone, V.; Valastro, L. M.

    2007-10-01

    Proton therapy represents the most promising radiotherapy technique for external tumor treatments. At Laboratori Nazionali del Sud of the Istituto Nazionale di Fisica Nucleare (INFN-LNS), Catania (I), a proton therapy facility is active since March 2002 and 140 patients, mainly affected by choroidal and iris melanoma, have been successfully treated. Proton beams are characterized by higher dose gradients and linear energy transfer with respect to the conventional photon and electron beams, commonly used in medical centers for radiotherapy.In this paper, we report the experience gained in the characterization of different dosimetric systems, studied and/or developed during the last ten years in our proton therapy facility.

  6. [Regulatory Program for Medical Devices in Cuba: experiences and current challenges].

    PubMed

    Pereira, Dulce María Martínez; Rodríguez, Yadira Álvarez; Valdés, Yamila Cedeño; Ribas, Silvia Delgado

    2016-05-01

    Regulatory control of medical devices in Cuba is conducted through a system based on the Regulatory Program for Medical Devices as a way to ensure the safety, efficacy, and effectiveness of these technologies, which are in use by the National Health System. This program was launched in 1992, when the Regulations for State Evaluation and Registration of Medical Devices were approved. Its successive stages and the merging of regulatory activities for drugs and medical equipment have meant progress toward stronger, more transparent strategies and greater control of industry and the National Health System. Throughout its course the Cuban program has met with challenges and difficulties that it has addressed by drawing on its own experiences. During the new period, the greatest challenges revolve around ensuring that regulatory systems incorporate scientific evaluation, risk levels, maximum rigor through the use of technical standards, and the implementation of international recommendations, together with the application of the ISO 13485 certification scheme, enhanced market monitoring, and classification of medical devices in accordance with their relevance to the country's national health policies. From the regional standpoint, the greatest challenge lies in working toward regulatory convergence. The Collaborating Centre for the Regulation of Health Technologies will support the proposed regulatory strategy and established regional priorities, in particular in connection with the implementation of actions involving medical devices.

  7. Facile preparation and characterization of ZnCdS nanocrystals for interfacial applications in photovoltaic devices.

    PubMed

    Duan, Chenghao; Luo, Weining; Jiu, Tonggang; Li, Jiangsheng; Wang, Yao; Lu, Fushen

    2018-02-15

    Recently, ZnCdS nanocrystals (NCs) have attracted intense attention because of their specific optical properties and electrical characteristics. In this paper, a green and facile solution method is reported for the preparation of ZnCdS nanocrystals using dimethylsulfoxide as small molecular ligands. The ZnCdS nanocrystals are used as an interface modification material in the photovoltaic devices. It is found that the modification of ZnCdS on TiO 2 surface not only suppresses the recombination loss of carriers but also reduces the series resistance of TiO 2 /active layer. Consequently, both of the short circuit current (J sc ) and the fill factor (FF) of the solar cells were significantly improved. Power conversion efficiency (PCE) of 7.75% based on TiO 2 /ZnCdS was achieved in contrast to 6.65% of the reference devices based on pure TiO 2 film in organic solar cells. Furthermore, the PCE of perovskite solar cells based on TiO 2 /ZnCdS was observed with 8.3% enhancement compared to that of pure TiO 2 -based ones. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. High-density carbon capsule experiments on the national ignition facility

    DOE PAGES

    Ross, J. S.; Ho, D.; Milovich, J.; ...

    2015-02-25

    Indirect-drive implosions with a high-density carbon (HDC) capsule were conducted on the National Ignition Facility (NIF) to test HDC properties as an ablator material for inertial confinement fusion. In this study, a series of five experiments were completed with 76-μm-thick HDC capsules using a four-shock laser pulse optimized for HDC. The pulse delivered a total energy of 1.3 MJ with a peak power of 360 TW. The experiment demonstrated good laser to target coupling (~90 %) and excellent nuclear performance. Lastly, a deuterium and tritium gas-filled HDC capsule implosion produced a neutron yield of 1.6×10 15 ± 3×10 13, amore » yield over simulated in one dimension of 70%.« less

  9. Women’s experience with postpartum intrauterine contraceptive device use in India

    PubMed Central

    2014-01-01

    Background Postpartum intrauterine contraceptive devices (PPIUCD) are increasingly included in many national postpartum family planning (PPFP) programs, but satisfaction of women who have adopted PPIUCD and complication rates need further characterization. Our specific aims were to describe women who accepted PPIUCD, their experience and satisfaction with their choice, and complication of expulsion or infection. Methods We studied 2,733 married women, aged 15–49 years, who received PPIUCD in sixteen health facilities, located in eight states and the national capital territory of India, at the time of IUCD insertion and six weeks later. The satisfaction of women who received IUCD during the postpartum period and problems and complications following insertion were assessed using standardized questionnaires. Results Mean (SD) age of women accepting PPIUCD was 24 (4) years. Over half of women had parity of one, and nearly one-quarter had no formal schooling. Nearly all women (99.6%) reported that they were satisfied with IUCD at the time of insertion and 92% reported satisfaction at the six-week follow-up visit. The rate of expulsion of IUCD was 3.6% by six weeks of follow-up. There were large variations in rates of problems and complications that were largely attributable to the individual hospitals implementing the study. Conclusions Women who receive PPIUCD show a high level of satisfaction with this choice of contraception, and the rates of expulsion were low enough such that the benefits of contraceptive protection outweigh the potential inconvenience of needing to return for care for that subset of women. PMID:24755312

  10. Distributed control using linear momentum exchange devices

    NASA Technical Reports Server (NTRS)

    Sharkey, J. P.; Waites, Henry; Doane, G. B., III

    1987-01-01

    MSFC has successfully employed the use of the Vibrational Control of Space Structures (VCOSS) Linear Momentum Exchange Devices (LMEDs), which was an outgrowth of the Air Force Wright Aeronautical Laboratory (AFWAL) program, in a distributed control experiment. The control experiment was conducted in MSFC's Ground Facility for Large Space Structures Control Verification (GF/LSSCV). The GF/LSSCV's test article was well suited for this experiment in that the LMED could be judiciously placed on the ASTROMAST. The LMED placements were such that vibrational mode information could be extracted from the accelerometers on the LMED. The LMED accelerometer information was processed by the control algorithms so that the LMED masses could be accelerated to produce forces which would dampen the vibrational modes of interest. Experimental results are presented showing the LMED's capabilities.

  11. Conceptual design of initial opacity experiments on the national ignition facility

    NASA Astrophysics Data System (ADS)

    Heeter, R. F.; Bailey, J. E.; Craxton, R. S.; Devolder, B. G.; Dodd, E. S.; Garcia, E. M.; Huffman, E. J.; Iglesias, C. A.; King, J. A.; Kline, J. L.; Liedahl, D. A.; McKenty, P. W.; Opachich, Y. P.; Rochau, G. A.; Ross, P. W.; Schneider, M. B.; Sherrill, M. E.; Wilson, B. G.; Zhang, R.; Perry, T. S.

    2017-02-01

    Accurate models of X-ray absorption and re-emission in partly stripped ions are necessary to calculate the structure of stars, the performance of hohlraums for inertial confinement fusion and many other systems in high-energy-density plasma physics. Despite theoretical progress, a persistent discrepancy exists with recent experiments at the Sandia Z facility studying iron in conditions characteristic of the solar radiative-convective transition region. The increased iron opacity measured at Z could help resolve a longstanding issue with the standard solar model, but requires a radical departure for opacity theory. To replicate the Z measurements, an opacity experiment has been designed for the National Facility (NIF). The design uses established techniques scaled to NIF. A laser-heated hohlraum will produce X-ray-heated uniform iron plasmas in local thermodynamic equilibrium (LTE) at temperatures eV and electron densities 21~\\text{cm}-3$ . The iron will be probed using continuum X-rays emitted in a ps, diameter source from a 2 mm diameter polystyrene (CH) capsule implosion. In this design, of the NIF beams deliver 500 kJ to the mm diameter hohlraum, and the remaining directly drive the CH capsule with 200 kJ. Calculations indicate this capsule backlighter should outshine the iron sample, delivering a point-projection transmission opacity measurement to a time-integrated X-ray spectrometer viewing down the hohlraum axis. Preliminary experiments to develop the backlighter and hohlraum are underway, informing simulated measurements to guide the final design.

  12. Dynamical phase separation using a microfluidic device: experiments and modeling

    NASA Astrophysics Data System (ADS)

    Aymard, Benjamin; Vaes, Urbain; Radhakrishnan, Anand; Pradas, Marc; Gavriilidis, Asterios; Kalliadasis, Serafim; Complex Multiscale Systems Team

    2017-11-01

    We study the dynamical phase separation of a binary fluid by a microfluidic device both from the experimental and from the modeling points of view. The experimental device consists of a main channel (600 μm wide) leading into an array of 276 trapezoidal capillaries of 5 μm width arranged on both sides and separating the lateral channels from the main channel. Due to geometrical effects as well as wetting properties of the substrate, and under well chosen pressure boundary conditions, a multiphase flow introduced into the main channel gets separated at the capillaries. Understanding this dynamics via modeling and numerical simulation is a crucial step in designing future efficient micro-separators. We propose a diffuse-interface model, based on the classical Cahn-Hilliard-Navier-Stokes system, with a new nonlinear mobility and new wetting boundary conditions. We also propose a novel numerical method using a finite-element approach, together with an adaptive mesh refinement strategy. The complex geometry is captured using the same computer-aided design files as the ones adopted in the fabrication of the actual device. Numerical simulations reveal a very good qualitative agreement between model and experiments, demonstrating also a clear separation of phases.

  13. Anti-malware software and medical devices.

    PubMed

    2010-10-01

    Just as much as healthcare information systems, medical devices need protection against cybersecurity threats. Anti-malware software can help safeguard the devices in your facility-but it has limitations and even risks. Find out what steps you can take to manage anti-malware applications in your devices.

  14. Global meteorological data facility for real-time field experiments support and guidance

    NASA Technical Reports Server (NTRS)

    Shipham, Mark C.; Shipley, Scott T.; Trepte, Charles R.

    1988-01-01

    A Global Meteorological Data Facility (GMDF) has been constructed to provide economical real-time meteorological support to atmospheric field experiments. After collection and analysis of meteorological data sets at a central station, tailored meteorological products are transmitted to experiment field sites using conventional ground link or satellite communication techniques. The GMDF supported the Global Tropospheric Experiment Amazon Boundary Layer Experiment (GTE-ABLE II) based in Manaus, Brazil, during July and August 1985; an arctic airborne lidar survey mission for the Polar Stratospheric Clouds (PSC) experiment during January 1986; and the Genesis of Atlantic Lows Experiment (GALE) during January, February and March 1986. GMDF structure is similar to the UNIDATA concept, including meteorological data from the Zephyr Weather Transmission Service, a mode AAA GOES downlink, and dedicated processors for image manipulation, transmission and display. The GMDF improved field experiment operations in general, with the greatest benefits arising from the ability to communicate with field personnel in real time.

  15. HITRAP: A Facility for Experiments with Trapped Highly Charged Ions

    NASA Astrophysics Data System (ADS)

    Quint, W.; Dilling, J.; Djekic, S.; Häffner, H.; Hermanspahn, N.; Kluge, H.-J.; Marx, G.; Moore, R.; Rodriguez, D.; Schönfelder, J.; Sikler, G.; Valenzuela, T.; Verdú, J.; Weber, C.; Werth, G.

    2001-01-01

    HITRAP is a planned ion trap facility for capturing and cooling of highly charged ions produced at GSI in the heavy-ion complex of the UNILAC-SIS accelerators and the ESR storage ring. In this facility heavy highly charged ions up to uranium will be available as bare nuclei, hydrogen-like ions or few-electron systems at low temperatures. The trap for receiving and studying these ions is designed for operation at extremely high vacuum by cooling to cryogenic temperatures. The stored highly charged ions can be investigated in the trap itself or can be extracted from the trap at energies up to about 10 keV/q. The proposed physics experiments are collision studies with highly charged ions at well-defined low energies (eV/u), high-accuracy measurements to determine the g-factor of the electron bound in a hydrogen-like heavy ion and the atomic binding energies of few-electron systems, laser spectroscopy of HFS transitions and X-ray spectroscopy.

  16. Using a qualitative approach for understanding hospital-affiliated integrated clinical and fitness facilities: characteristics and members' experiences.

    PubMed

    Yang, Jingzhen; Kingsbury, Diana; Nichols, Matthew; Grimm, Kristin; Ding, Kele; Hallam, Jeffrey

    2015-06-19

    With health care shifting away from the traditional sick care model, many hospitals are integrating fitness facilities and programs into their clinical services in order to support health promotion and disease prevention at the community level. Through a series of focus groups, the present study assessed characteristics of hospital-affiliated integrated facilities located in Northeast Ohio, United States and members' experiences with respect to these facilities. Adult members were invited to participate in a focus group using a recruitment flyer. A total of 6 focus groups were conducted in 2013, each lasting one hour, ranging from 5 to 12 participants per group. The responses and discussions were recorded and transcribed verbatim, then analyzed independently by research team members. Major themes were identified after consensus was reached. The participants' average age was 57, with 56.8% currently under a doctor's care. Four major themes associated with integrated facilities and members' experiences emerged across the six focus groups: 1) facility/program, 2) social atmosphere, 3) provider, and 4) member. Within each theme, several sub-themes were also identified. A key feature of integrated facilities is the availability of clinical and fitness services "under one roof". Many participants remarked that they initially attended physical therapy, becoming members of the fitness facility afterwards, or vice versa. The participants had favorable views of and experiences with the superior physical environment and atmosphere, personal attention, tailored programs, and knowledgeable, friendly, and attentive staff. In particular, participants favored the emphasis on preventive care and the promotion of holistic health and wellness. These results support the integration of wellness promotion and programming with traditional medical care and call for the further evaluation of such a model with regard to participants' health outcomes.

  17. Design and Assembly of the Magnetized Dusty Plasma Experiment (MDPX)

    NASA Astrophysics Data System (ADS)

    Fisher, Ross; Artis, Darrick; Lynch, Brian; Wood, Keith; Shaw, Joseph; Gilmore, Kevin; Robinson, Daniel; Polka, Christian; Konopka, Uwe; Thomas, Edward; Merlino, Robert; Rosenberg, Marlene

    2013-10-01

    Over the last two years, the Magnetized Dusty Plasma Experiment (MDPX) has been under construction at Auburn University. This new research device, whose assembly will be completed in late Summer, 2013, uses a four-coil, superconducting, high magnetic field system (|B | >= 4 Tesla) to investigate the confinement, charging, transport, and instabilities in a dusty plasma. A new feature of the MDPX device is the ability to operate the magnetic coils independently to allow a variety of magnetic configurations from highly uniform to quadrapole-like. Envisioned as a multi-user facility, the MDPX device features a cylindrical vacuum vessel whose primary experimental region is an octagonal chamber that has a 35.5 cm inner diameter and is 19 cm tall. There is substantial diagnostics and optical access through eight, 10.2 cm × 12.7 cm side ports. The chamber can also be equipped with two 15.2 cm diameter, 76 cm long extensions to allow long plasma column experiments, particularly long wavelength dust wave studies. This presentation will discuss the final design, assembly, and installation of the MDPX device and will describe its supporting laboratory facility. This work is supported by a National Science Foundation - Major Research Instrumentation (NSF-MRI) award, PHY-1126067.

  18. A noninvasive continence management system: development and evaluation of a novel toileting device for women.

    PubMed

    Macaulay, Margaret; van den Heuvel, Eleanor; Jowitt, Felicity; Clarke-O'Neill, Sinead; Kardas, Przemyslaw; Blijham, Nienke; Leander, Hakan; Xu, Yu; Fader, Mandy; Cottenden, Alan

    2007-01-01

    This paper describes a project to develop and clinically evaluate a novel toileting device for women called the Non-Invasive Continence Management System (NICMS). The NICMS device is designed to provide an alternative toileting facility that overcomes problems some women experience when using conventional female urinals. A single product evaluation was completed; participants used the same device with 1 or 2 interface variants. Eighty women from 6 countries who were either mobile or wheelchair dependent evaluated the product over a 15-month period. The device was found to be useful in some circumstances for women and their caregivers. Significant further development is required for it to work reliably and to provide an acceptable device in terms of reliability, size, weight, noise, and aesthetics.

  19. Observing the Sun with micro-interferometric devices: a didactic experiment

    NASA Astrophysics Data System (ADS)

    Defrère, D.; Absil, O.; Hanot, C.; Riaud, P.; Magette, A.; Marion, L.; Wertz, O.; Finet, F.; Steenackers, M.; Habraken, S.; Surdej, A.; Surdej, J.

    2014-04-01

    Measuring the angular diameter of celestial bodies has long been the main purpose of stellar interferometry and was its historical motivation. Nowadays, stellar interferometry is widely used for various other scientific purposes that require very high angular resolution measurements. In terms of angular spatial scales probed, observing distant stars located 10 to 100~pc away with a large hectometric interferometer is equivalent to observing our Sun with a micrometric baseline. Based on this idea, we have manufactured a set of micro-interferometric devices and tested them on the sky. The micro-interferometers consist of a chrome layer deposited on a glass plate that has been drilled by laser lithography to produce micron-sized holes with configurations corresponding to proposed interferometer projects such as CARLINA, ELSA, KEOPS, and OVLA. In this paper, we describe these interferometric devices and present interferometric observations of the Sun made in the framework of Astrophysics lectures being taught at the Liège University. By means of a simple photographic camera placed behind a micro-interferometric device, we observed the Sun and derived its angular size. This experiment provides a very didactic way to easily obtain fringe patterns similar to those that will be obtained with future large imaging arrays. A program written in C also allows to reproduce the various point spread functions and fringe patterns observed with the micro-interferometric devices for different types of sources, including the Sun.

  20. The role of visual deprivation and experience on the performance of sensory substitution devices.

    PubMed

    Stronks, H Christiaan; Nau, Amy C; Ibbotson, Michael R; Barnes, Nick

    2015-10-22

    It is commonly accepted that the blind can partially compensate for their loss of vision by developing enhanced abilities with their remaining senses. This visual compensation may be related to the fact that blind people rely on their other senses in everyday life. Many studies have indeed shown that experience plays an important role in visual compensation. Numerous neuroimaging studies have shown that the visual cortices of the blind are recruited by other functional brain areas and can become responsive to tactile or auditory input instead. These cross-modal plastic changes are more pronounced in the early blind compared to late blind individuals. The functional consequences of cross-modal plasticity on visual compensation in the blind are debated, as are the influences of various etiologies of vision loss (i.e., blindness acquired early or late in life). Distinguishing between the influences of experience and visual deprivation on compensation is especially relevant for rehabilitation of the blind with sensory substitution devices. The BrainPort artificial vision device and The vOICe are assistive devices for the blind that redirect visual information to another intact sensory system. Establishing how experience and different etiologies of vision loss affect the performance of these devices may help to improve existing rehabilitation strategies, formulate effective selection criteria and develop prognostic measures. In this review we will discuss studies that investigated the influence of training and visual deprivation on the performance of various sensory substitution approaches. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Direct Reactions at the Facility for Experiments on Nuclear Reactions in Stars (FENRIS)

    NASA Astrophysics Data System (ADS)

    Longland, Richard; Kelley, John; Marshall, Caleb; Portillo, Federico; Setoodehnia, Kiana

    2017-09-01

    Nuclear cross sections are a key ingredient in stellar models designed to understand how stars evolve. Determining these cross sections, therefore, is critical for obtaining reliable predictions from stellar models. While many charged-particle reaction cross sections can be measured in the laboratory, the Coulomb barrier means that they cannot always be measured at the low energies relevant to astrophysics. In other cases, radioactive targets make the measurements unfeasible. Radioactive ion beam experiments in inverse kinematics are one solution, but low beam intensities mean that cross sections plague these attempts further. Direct measurements, particularly particle transfer experiments, are one tool in our inventory that provides us with the necessary information to infer reaction cross sections at stellar energies. I will present an overview of one facility: the Facility for Experiments on Nuclear Reactions in Stars (FENRIS), which is dedicated to performing particle transfer measurements for astrophysical cross sections. Over the past few years, FENRIS has been fully upgraded and characterized. I will show highlights of our upgrade activities and current capabilities. I will also highlight our recent experimental results and discuss current upgrade efforts.

  2. Experiments, conceptual design, preliminary cost estimates and schedules for an underground research facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korbin, G.; Wollenberg, H.; Wilson, C.

    Plans for an underground research facility are presented, incorporating techniques to assess the hydrological and thermomechanical response of a rock mass to the introduction and long-term isolation of radioactive waste, and to assess the effects of excavation on the hydrologic integrity of a repository and its subsequent backfill, plugging, and sealing. The project is designed to utilize existing mine or civil works for access to experimental areas and is estimated to last 8 years at a total cost for contruction and operation of $39.0 million (1981 dollars). Performing the same experiments in an existing underground research facility would reduce themore » duration to 7-1/2 years and cost $27.7 million as a lower-bound estimate. These preliminary plans and estimates should be revised after specific sites are identified which would accommodate the facility.« less

  3. Advances in shock timing experiments on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Robey, H. F.; Celliers, P. M.; Moody, J. D.; Sater, J.; Parham, T.; Kozioziemski, B.; Dylla-Spears, R.; Ross, J. S.; LePape, S.; Ralph, J. E.; Hohenberger, M.; Dewald, E. L.; Berzak Hopkins, L.; Kroll, J. J.; Yoxall, B. E.; Hamza, A. V.; Boehly, T. R.; Nikroo, A.; Landen, O. L.; Edwards, M. J.

    2016-03-01

    Recent advances in shock timing experiments and analysis techniques now enable shock measurements to be performed in cryogenic deuterium-tritium (DT) ice layered capsule implosions on the National Ignition Facility (NIF). Previous measurements of shock timing in inertial confinement fusion (ICF) implosions were performed in surrogate targets, where the solid DT ice shell and central DT gas were replaced with a continuous liquid deuterium (D2) fill. These previous experiments pose two surrogacy issues: a material surrogacy due to the difference of species (D2 vs. DT) and densities of the materials used and a geometric surrogacy due to presence of an additional interface (ice/gas) previously absent in the liquid-filled targets. This report presents experimental data and a new analysis method for validating the assumptions underlying this surrogate technique.

  4. 33 CFR 159.201 - Recognition of facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Recognition of facilities. 159.201 Section 159.201 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Recognition of Facilities § 159.201 Recognition of facilities...

  5. Step-response of a torsional device with multiple discontinuous non-linearities: Formulation of a vibratory experiment

    NASA Astrophysics Data System (ADS)

    Krak, Michael D.; Dreyer, Jason T.; Singh, Rajendra

    2016-03-01

    A vehicle clutch damper is intentionally designed to contain multiple discontinuous non-linearities, such as multi-staged springs, clearances, pre-loads, and multi-staged friction elements. The main purpose of this practical torsional device is to transmit a wide range of torque while isolating torsional vibration between an engine and transmission. Improved understanding of the dynamic behavior of the device could be facilitated by laboratory measurement, and thus a refined vibratory experiment is proposed. The experiment is conceptually described as a single degree of freedom non-linear torsional system that is excited by an external step torque. The single torsional inertia (consisting of a shaft and torsion arm) is coupled to ground through parallel production clutch dampers, which are characterized by quasi-static measurements provided by the manufacturer. Other experimental objectives address physical dimensions, system actuation, flexural modes, instrumentation, and signal processing issues. Typical measurements show that the step response of the device is characterized by three distinct non-linear regimes (double-sided impact, single-sided impact, and no-impact). Each regime is directly related to the non-linear features of the device and can be described by peak angular acceleration values. Predictions of a simplified single degree of freedom non-linear model verify that the experiment performs well and as designed. Accordingly, the benchmark measurements could be utilized to validate non-linear models and simulation codes, as well as characterize dynamic parameters of the device including its dissipative properties.

  6. International Outdoor Experiments and Models for Outdoor Radiological Dispersal Devices

    DOE PAGES

    Blumenthal, Daniel J.; Musolino, Stephen V.

    2016-05-01

    With the advent of nuclear reactors and the technology to produce radioactive materials in large quantities, concern arose about the use of radioactivity as a poison in warfare, and hence, consideration was given to defensive measures (Smyth 1945). Approximately forty years later, the interest in the environmental- and health effects caused by a deliberate dispersal was renewed, but this time, from the perspective of a malevolent act of radiological terrorism in an urban area. For many years there has been international collaboration in scientific research to understand the range of effects that might result from a device that could bemore » constructed by a sub-national group. In this paper, scientists from government laboratories in Australia, Canada, the United Kingdom, and the United States collectively have conducted a myriad of experiments to understand and detail the phenomenology of an explosive radiological dispersal device.« less

  7. Rotating-unbalanced-mass Devices for Scanning Balloon-borne Experiments, Free-flying Spacecraft, and Space Shuttle/space Station Experiments

    NASA Technical Reports Server (NTRS)

    Polites, Michael E.

    1990-01-01

    A new method is presented for scanning balloon-borne experiments, free-flying spacecraft, and gimballed experiments mounted to the space shuttle or the space station. It uses rotating-unbalanced-mass (RUM) devices for generating circular, line, or raster scan patterns and an auxiliary control system for target acquisition, keeping the scan centered on the target, and producing complementary motion for raster scanning. It is ideal for applications where the only possible way to accomplish the required scan is to physically scan the entire experiment or spacecraft as in x ray and gamma ray experiments. In such cases, this new method should have advantages over prior methods in terms of either power, weight, cost, performance, stability, or a combination of these.

  8. Phase-Reference-Free Experiment of Measurement-Device-Independent Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Song, Xiao-Tian; Yin, Zhen-Qiang; Wang, Shuang; Chen, Wei; Zhang, Chun-Mei; Guo, Guang-Can; Han, Zheng-Fu

    2015-10-01

    Measurement-device-independent quantum key distribution (MDI QKD) is a substantial step toward practical information-theoretic security for key sharing between remote legitimate users (Alice and Bob). As with other standard device-dependent quantum key distribution protocols, such as BB84, MDI QKD assumes that the reference frames have been shared between Alice and Bob. In practice, a nontrivial alignment procedure is often necessary, which requires system resources and may significantly reduce the secure key generation rate. Here, we propose a phase-coding reference-frame-independent MDI QKD scheme that requires no phase alignment between the interferometers of two distant legitimate parties. As a demonstration, a proof-of-principle experiment using Faraday-Michelson interferometers is presented. The experimental system worked at 1 MHz, and an average secure key rate of 8.309 bps was obtained at a fiber length of 20 km between Alice and Bob. The system can maintain a positive key generation rate without phase compensation under normal conditions. The results exhibit the feasibility of our system for use in mature MDI QKD devices and its value for network scenarios.

  9. Onboard experiment data support facility. Task 2 report: Definition of onboard processing requirements

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The onboard experiment data support facility (OEDSF) will provide data processing support to various experiment payloads on board the space shuttle. The OEDSF study will define the conceptual design and generate specifications for an OEDSF which will meet the following objectives: (1) provide a cost-effective approach to end-to-end processing requirements, (2) service multiple disciplines (3) satisfy user needs, (4) reduce the amount and improve the quality of data collected, stored and processed, and (5) embody growth capacity.

  10. Research on ion implantation in MEMS device fabrication by theory, simulation and experiments

    NASA Astrophysics Data System (ADS)

    Bai, Minyu; Zhao, Yulong; Jiao, Binbin; Zhu, Lingjian; Zhang, Guodong; Wang, Lei

    2018-06-01

    Ion implantation is widely utilized in microelectromechanical systems (MEMS), applied for embedded lead, resistors, conductivity modifications and so forth. In order to achieve an expected device, the principle of ion implantation must be carefully examined. The elementary theory of ion implantation including implantation mechanism, projectile range and implantation-caused damage in the target were studied, which can be regarded as the guidance of ion implantation in MEMS device design and fabrication. Critical factors including implantations dose, energy and annealing conditions are examined by simulations and experiments. The implantation dose mainly determines the dopant concentration in the target substrate. The implantation energy is the key factor of the depth of the dopant elements. The annealing time mainly affects the repair degree of lattice damage and thus the activated elements’ ratio. These factors all together contribute to ions’ behavior in the substrates and characters of the devices. The results can be referred to in the MEMS design, especially piezoresistive devices.

  11. Case outsourcing medical device reprocessing.

    PubMed

    Haley, Deborah

    2004-04-01

    IN THE INTEREST OF SAVING MONEY, many hospitals are considering extending the life of some single-use medical devices by using medical device reprocessing programs. FACILITIES OFTEN LACK the resources required to meet the US Food and Drug Administration's tough quality assurance standards. BY OUTSOURCING, hospitals can reap the benefits of medical device reprocessing without assuming additional staffing and compliance burdens. OUTSOURCING enables hospitals to implement a medical device reprocessing program quickly, with no capital investment and minimal effort.

  12. Skylab Medical Experiments Altitude Test /SMEAT/ facility design and operation.

    NASA Technical Reports Server (NTRS)

    Hinners, A. H., Jr.; Correale, J. V.

    1973-01-01

    This paper presents the design approaches and test facility operation methods used to successfully accomplish a 56-day test for Skylab to permit evaluation of selected Skylab medical experiments in a ground test simulation of the Skylab environment with an astronaut crew. The systems designed for this test include the two-gas environmental control system, the fire suppression and detection system, equipment transfer lock, ground support equipment, safety systems, potable water system, waste management system, lighting and power system, television monitoring, communications and recreation systems, and food freezer.

  13. Calibration of the SphinX experiment at the XACT facility in Palermo

    NASA Astrophysics Data System (ADS)

    Collura, A.; Barbera, M.; Varisco, S.; Calderone, G.; Reale, F.; Gburek, S.; Kowalinski, M.; Sylwester, J.; Siarkowski, M.; Bakala, J.; Podgorski, P.; Trzebinski, W.; Plocieniak, S.; Kordylewski, Z.

    2008-07-01

    Three of the four detectors of the SphinX experiment to be flown on the Russian mission Coronas-Photon have been measured at the XACT Facility of the Palermo Observatory at several wavelengths in the soft X-ray band. We describe the instrumental set-up and report some measurements. The analysis work to obtain the final calibration is still in progress.

  14. Laser shock compression experiments on precompressed water in ``SG-II'' laser facility

    NASA Astrophysics Data System (ADS)

    Shu, Hua; Huang, Xiuguang; Ye, Junjian; Fu, Sizu

    2017-06-01

    Laser shock compression experiments on precompressed samples offer the possibility to obtain new hugoniot data over a significantly broader range of density-temperature phase than was previously achievable. This technique was developed in ``SG-II'' laser facility. Hugoniot data were obtained for water in 300 GPa pressure range by laser-driven shock compression of samples statically precompressed in diamond-anvil cells.

  15. Aerosol-Assisted Solid Debris Collection for the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, S L; Shaughnessy, D A; Moody, K J

    2010-05-21

    The National Ignition Facility (NIF) has been completed and has made its first shots on-target. While upcoming experiments will be focused on achieving ignition, a variety of subsequent experiments are planned for the facility, including measurement of cross sections, astrophysical measurements, and investigation of hydrodynamic instability in the target capsule. In order to successfully execute several of these planned experiments, the ability to collect solid debris following a NIF capsule shot will be required. The ability to collect and analyze solid debris generated in a shot at the National Ignition Facility (NIF) will greatly expand the number of nuclear reactionsmore » studied for diagnostic purposes. Currently, reactions are limited to only those producing noble gases for cryogenic collection and counting with the Radchem Apparatus for Gas Sampling (RAGS). The radchem solid collection diagnostic has already been identified by NIF to be valuable for the determination and understanding of mix generated in the target capsule's ablation. LLNL is currently developing this solid debris collection capability at NIF, and is in the stage of testing credible designs. Some of these designs explore the use of x-ray generated aerosols to assist in collection of solid debris. However, the variety of harsh experimental conditions this solid collection device will encounter in NIF are challenging to replicate. Experiments performed by Gary Grim et al. at Sandia National Laboratory's RHEPP1 facility have shown that ablation causes a cloud of material removed from an exposed surface to move normal to and away from the surface. This ablation is certain to be a concern in the NIF target chamber from the prompt x-rays, gamma rays, etc. generated in the shot. The cloud of ablated material could interfere with the collection of the desired reaction debris by slowing down the debris so that the kinetic energy is too low to allow implantation, or by stopping the debris from

  16. 46 CFR 131.940 - Marine sanitation device.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Marine sanitation device. 131.940 Section 131.940... Miscellaneous § 131.940 Marine sanitation device. Each vessel with installed toilet facilities must have a marine sanitation device in compliance with 33 CFR part 159. ...

  17. 46 CFR 131.940 - Marine sanitation device.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Marine sanitation device. 131.940 Section 131.940... Miscellaneous § 131.940 Marine sanitation device. Each vessel with installed toilet facilities must have a marine sanitation device in compliance with 33 CFR part 159. ...

  18. 46 CFR 131.940 - Marine sanitation device.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Marine sanitation device. 131.940 Section 131.940... Miscellaneous § 131.940 Marine sanitation device. Each vessel with installed toilet facilities must have a marine sanitation device in compliance with 33 CFR part 159. ...

  19. 46 CFR 131.940 - Marine sanitation device.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Marine sanitation device. 131.940 Section 131.940... Miscellaneous § 131.940 Marine sanitation device. Each vessel with installed toilet facilities must have a marine sanitation device in compliance with 33 CFR part 159. ...

  20. 46 CFR 131.940 - Marine sanitation device.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Marine sanitation device. 131.940 Section 131.940... Miscellaneous § 131.940 Marine sanitation device. Each vessel with installed toilet facilities must have a marine sanitation device in compliance with 33 CFR part 159. ...

  1. A new gun facility dedicated to performing shock physics and terminal ballistics experiments

    NASA Astrophysics Data System (ADS)

    Zakraysek, Alan J.; Sutherland, Gerrit T.; Sandusky, Harold D.; Strange, David

    2000-04-01

    A new building has been constructed to house various powder and single-stage and two-stage gas guns at the Naval Surface Warfare Center, Indian Head Division. Guns previously located at the Naval Research Laboratory and the former White Oak Site of the Naval Surface Warfare Center have been relocated here. Most of the guns are mounted on moveable pedestals to allow them to be shot into various chambers. The facility includes a concrete blast chamber, a target chamber/catch tank for flyer plate experiments, and a target chamber outfitted for terminal ballistics measurements. This paper will discuss the capabilities of this new facility.

  2. Microgravity Combustion Science and Fluid Physics Experiments and Facilities for the ISS

    NASA Technical Reports Server (NTRS)

    Lauver, Richard W.; Kohl, Fred J.; Weiland, Karen J.; Zurawski, Robert L.; Hill, Myron E.; Corban, Robert R.

    2001-01-01

    At the NASA Glenn Research Center, the Microgravity Science Program supports both ground-based and flight experiment research in the disciplines of Combustion Science and Fluid Physics. Combustion Science research includes the areas of gas jet diffusion flames, laminar flames, burning of droplets and misting fuels, solids and materials flammability, fire and fire suppressants, turbulent combustion, reaction kinetics, materials synthesis, and other combustion systems. The Fluid Physics discipline includes the areas of complex fluids (colloids, gels, foams, magneto-rheological fluids, non-Newtonian fluids, suspensions, granular materials), dynamics and instabilities (bubble and drop dynamics, magneto/electrohydrodynamics, electrochemical transport, geophysical flows), interfacial phenomena (wetting, capillarity, contact line hydrodynamics), and multiphase flows and phase changes (boiling and condensation, heat transfer, flow instabilities). A specialized International Space Station (ISS) facility that provides sophisticated research capabilities for these disciplines is the Fluids and Combustion Facility (FCF). The FCF consists of the Combustion Integrated Rack (CIR), the Fluids Integrated Rack (FIR) and the Shared Accommodations Rack and is designed to accomplish a large number of science investigations over the life of the ISS. The modular, multiuser facility is designed to optimize the science return within the available resources of on-orbit power, uplink/downlink capacity, crew time, upmass/downmass, volume, etc. A suite of diagnostics capabilities, with emphasis on optical techniques, will be provided to complement the capabilities of the subsystem multiuser or principal investigator-specific experiment modules. The paper will discuss the systems concept, technical capabilities, functionality, and the initial science investigations in each discipline.

  3. [Better medical devices regulations for better health care: enlightenment for medical devices regulatory reform in China, from experiences of the E.U. and the U.S.A].

    PubMed

    Sun, Qin; Yan, Liang

    2006-01-01

    The expansion of applications of medical devices has attracted the increased attention of government regulatory bodies around the world to the safety and effectiveness of these products. Most developed countries, such as the United States and European Union, have developed well-established regulatory systems for medical devices, which have also consistently been amended to accommodate the changing requirements of safety and the trend of globalization.The current "Regulations for the Supervision and Administration of Medical Device (China)", established in 2000, has brought about great improvements for the safety and effectiveness of products, safeguarding public health. But there are still, at present, a lot of counterfeit and poor quality devices and device-related adverse events for lack of powerful post -market and in-use regulatory controls for products. It is therefore very urgent for the Chinese government to reform its medical device administration and management. This research paper analyses and compares the different requirements and executions of medical devices regulations in the EU, the US and China, to draw some experiences of the EU and US regimes that are very useful to China's regulatory reform. It is suggested that when developing a new scheme of medical devices regulatory reform in China, two prominent aspects have to be considered by policy makers and regulators. Firstly, the global trend of medical devices regulations has to be taken into account. Secondly, the experiences learned from the EU and US systems should be applied to the Chinese regulatory reform in combination with the concrete practice of China.

  4. First radioactive beams at ACCULINNA-2 facility and first proposed experiment

    NASA Astrophysics Data System (ADS)

    Bezbakh, A. A.; Beekman, W.; Chudoba, V.; Fomichev, A. S.; Golovkov, M. S.; Gorshkov, A. V.; Grigorenko, L. V.; Kaminski, G.; Krupko, S. A.; Mentel, M.; Nikolskii, E. Yu.; Parfenova, Yu. L.; Plucinski, P.; Sidorchuk, S. I.; Slepnev, R. S.; Sharov, P. G.; Ter-Akopian, G. M.; Zalewski, B.

    2018-04-01

    New fragment separator ACCULINNA-2 was installed at the primary beam line of the U-400M cyclotron in 2016. Recently, first radioactive ion beams were obtained. The design parameters of new facility were experimentally confirmed. Intensity, purity and transverse profile of several secondary beams at the final focal plane were studied. The intensities obtained for the secondary beams of 14B, 12Be, 9;11Li, 6;8He in the fragmentation reaction 15N (49.7 AMeV) + Be (2 mm) are in average 15 times higher in comparison to the ones produced at its forerunner ACCULINNA separator. The ACCULINNA-2 separator will become a backbone facility at the FLNR for the research in the field of light exotic nuclei in the vicinity of the nuclear drip lines. The planned first experiment, aimed for the observation of the 7H nucleus at ACCULINNA-2, is outlined.

  5. Simulation of Physical Experiments in Immersive Virtual Environments

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Wasfy, Tamer M.

    2001-01-01

    An object-oriented event-driven immersive Virtual environment is described for the creation of virtual labs (VLs) for simulating physical experiments. Discussion focuses on a number of aspects of the VLs, including interface devices, software objects, and various applications. The VLs interface with output devices, including immersive stereoscopic screed(s) and stereo speakers; and a variety of input devices, including body tracking (head and hands), haptic gloves, wand, joystick, mouse, microphone, and keyboard. The VL incorporates the following types of primitive software objects: interface objects, support objects, geometric entities, and finite elements. Each object encapsulates a set of properties, methods, and events that define its behavior, appearance, and functions. A container object allows grouping of several objects. Applications of the VLs include viewing the results of the physical experiment, viewing a computer simulation of the physical experiment, simulation of the experiments procedure, computational steering, and remote control of the physical experiment. In addition, the VL can be used as a risk-free (safe) environment for training. The implementation of virtual structures testing machines, virtual wind tunnels, and a virtual acoustic testing facility is described.

  6. Polar-direct-drive experiments on the National Ignition Facility

    DOE PAGES

    Hohenberger, M.; Radha, P. B.; Myatt, J. F.; ...

    2015-05-11

    To support direct-drive inertial confinement fusion experiments at the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)] in its indirect-drive beam configuration, the polar-direct-drive (PDD) concept [S. Skupsky et al., Phys. Plasmas 11, 2763 (2004)] has been proposed. Ignition in PDD geometry requires direct-drive–specific beam smoothing, phase plates, and repointing the NIF beams toward the equator to ensure symmetric target irradiation. First experiments to study the energetics and preheat in PDD implosions at the NIF have been performed. These experiments utilize the NIF in its current configuration, including beammore » geometry, phase plates, and beam smoothing. Room-temperature, 2.2-mm-diam plastic shells filled with D₂ gas were imploded with total drive energies ranging from ~500 to 750 kJ with peak powers of 120 to 180 TW and peak on-target irradiances at the initial target radius from 8 10¹⁴ to 1.2 10¹⁵W/cm². Results from these initial experiments are presented, including measurements of shell trajectory, implosion symmetry, and the level of hot-electron preheat in plastic and Si ablators. Experiments are simulated with the 2-D hydrodynamics code DRACO including a full 3-D ray-trace to model oblique beams, and models for nonlocal electron transport and cross-beam energy transport (CBET). These simulations indicate that CBET affects the shell symmetry and leads to a loss of energy imparted onto the shell, consistent with the experimental data.« less

  7. [Port device central venous access in children with chronic renal disease--personal experience].

    PubMed

    Szczepańska, Maria; Szprynger, Krystyna; Stoksik, Piotr; Morawiec-Knysak, Aurelia; Adamczyk, Piotr; Ziora, Katarzyna; Oswiecimska, Joanna

    2006-01-01

    The application of central venous lines in children has been widely accepted in the case of pediatric cancer treatment. This is of particular importance when the treatment must be continued during the long period of time. The indication to long-term application of central venous lines became significantly frequent within last years. They are necessary in the treatment of chronic pediatric patients, in whom the central venous line allows continuous access for medication, parenteral rehydration, nutrition and frequent blood sampling. In the current study authors present their experience in subcutaneous port devices application in children with kidney disease. The case history data obtained from 8 children were retrospectively analysed. In these children subcutaneous port devices were applied for mean 26.7 months (totally 9 port devices). The mean age at the time of implantation was 2.2 years, and the mean body weight--10.6 kg. Peripheral venous access in all children was bad. In one child during the time of implantation the hematoma of coli and chest was present. Infectious complications connected with implanted port device were not detected. Thrombotic complications were present in 6 children with chronic renal failure--in 5 the lumen of port device has been successfully recanalysed, in 3 cases even several times. In 1 child the thrombus on the tip of central venous line was detected. In 2 children the removal of port device was necessary because of breakage of venous line and in the second case because of port device thrombosis. Two children died with functioning port device. The cause of death was not connected with implanted port device. The application of subcutaneous port devices definitely improved the comfort of treatment but was significantly associated with thrombotic complications. Infectious complications were not detected as compared to hematological group of patients.

  8. Apollo experience report: Real-time auxiliary computing facility development

    NASA Technical Reports Server (NTRS)

    Allday, C. E.

    1972-01-01

    The Apollo real time auxiliary computing function and facility were an extension of the facility used during the Gemini Program. The facility was expanded to include support of all areas of flight control, and computer programs were developed for mission and mission-simulation support. The scope of the function was expanded to include prime mission support functions in addition to engineering evaluations, and the facility became a mandatory mission support facility. The facility functioned as a full scale mission support activity until after the first manned lunar landing mission. After the Apollo 11 mission, the function and facility gradually reverted to a nonmandatory, offline, on-call operation because the real time program flexibility was increased and verified sufficiently to eliminate the need for redundant computations. The evaluation of the facility and function and recommendations for future programs are discussed in this report.

  9. Conceptual design of initial opacity experiments on the national ignition facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heeter, R.  F.; Bailey, J.  E.; Craxton, R.  S.

    Accurate models of X-ray absorption and re-emission in partly stripped ions are necessary to calculate the structure of stars, the performance of hohlraums for inertial confinement fusion and many other systems in high-energy-density plasma physics. Despite theoretical progress, a persistent discrepancy exists with recent experiments at the Sandia Z facility studying iron in conditions characteristic of the solar radiative–convective transition region. The increased iron opacity measured at Z could help resolve a longstanding issue with the standard solar model, but requires a radical departure for opacity theory. To replicate the Z measurements, an opacity experiment has been designed for the National Facility (NIF). The design uses established techniques scaled to NIF. A laser-heated hohlraum will produce X-ray-heated uniform iron plasmas in local thermodynamic equilibrium (LTE) at temperaturesmore » $${\\geqslant}150$$ eV and electron densities$${\\geqslant}7\\times 10^{21}~\\text{cm}^{-3}$$. The iron will be probed using continuum X-rays emitted in a$${\\sim}200$$ ps,$${\\sim}200~\\unicode[STIX]{x03BC}\\text{m}$$diameter source from a 2 mm diameter polystyrene (CH) capsule implosion. In this design,$2/3$$of the NIF beams deliver 500 kJ to the$${\\sim}6$$ mm diameter hohlraum, and the remaining$$1/3$directly drive the CH capsule with 200 kJ. Calculations indicate this capsule backlighter should outshine the iron sample, delivering a point-projection transmission opacity measurement to a time-integrated X-ray spectrometer viewing down the hohlraum axis. Preliminary experiments to develop the backlighter and hohlraum are underway, informing simulated measurements to guide the final design.« less

  10. 46 CFR 184.704 - Marine sanitation devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Marine sanitation devices. 184.704 Section 184.704... TONS) VESSEL CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Miscellaneous § 184.704 Marine sanitation devices. A vessel with installed toilet facilities must have a marine sanitation device that complies with...

  11. 46 CFR 184.704 - Marine sanitation devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Marine sanitation devices. 184.704 Section 184.704... TONS) VESSEL CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Miscellaneous § 184.704 Marine sanitation devices. A vessel with installed toilet facilities must have a marine sanitation device that complies with...

  12. 46 CFR 184.704 - Marine sanitation devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Marine sanitation devices. 184.704 Section 184.704... TONS) VESSEL CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Miscellaneous § 184.704 Marine sanitation devices. A vessel with installed toilet facilities must have a marine sanitation device that complies with...

  13. 46 CFR 184.704 - Marine sanitation devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Marine sanitation devices. 184.704 Section 184.704... TONS) VESSEL CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Miscellaneous § 184.704 Marine sanitation devices. A vessel with installed toilet facilities must have a marine sanitation device that complies with...

  14. 46 CFR 184.704 - Marine sanitation devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Marine sanitation devices. 184.704 Section 184.704... TONS) VESSEL CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Miscellaneous § 184.704 Marine sanitation devices. A vessel with installed toilet facilities must have a marine sanitation device that complies with...

  15. The Role of Space Experiments in the Radiation Qualification of Electronic and Photonic Devices and Systems

    NASA Technical Reports Server (NTRS)

    Buchner, S.; LaBel, K.; Barth, J.; Campbell, A.

    2005-01-01

    Space experiments are occasionally launched to study the effects of radiation on electronic and photonic devices. This begs the following questions: Are space experiments necessary? Do the costs justify the benefits? How does one judge success of space experiment? What have we learned from past space experiments? How does one design a space experiment? This viewgraph presentation provides information on the usefulness of space and ground tests for simulating radiation damage to spacecraft components.

  16. Initial Asian experience in hysteroscopic sterilisation using the Essure permanent birth control device.

    PubMed

    Chern, Bernard; Siow, Anthony

    2005-09-01

    To present our initial experience in the use of the Essure permanent birth control device in a predominately Asian population. A retrospective study. Minimally Invasive Surgery Unit, KK Women's and Children's Hospital, Singapore. Eighty women seeking permanent birth control. From 22 June 2001, women who sought sterilisation were counselled with regards to the various options of permanent birth control. Informed consent for hysteroscopic sterilisation was obtained only after the woman met the criteria for Essure permanent birth control. The sterilisation procedure was carried out without the need for general anaesthesia in a day surgery centre using the Essure permanent birth control device. The surgical details and post procedure follow up were analysed. Feasibility and safety of the Essure permanent birth control device in Asians and its non-placement rate. No serious adverse events or complications were encountered in using the Essure device. No pregnancies have been reported in our series to date. A significant reduction in the Essure device non-placement rate (20.0%vs 4.0%, P= 0.021) and mean operation time (27.3 vs 19.6 minutes, P= 0.006) were seen when patients were pre-medicated with spasmolytic agent and analgesia. The Essure permanent birth control device is safe and suitable for Asians. Its non-placement rate may be improved with pre-medication of spasmolytic agent and analgesia.

  17. Epidural conduction device fractures and complications of retained fragments.

    PubMed

    Fischer, Robert

    2008-02-01

    During the past 3 years, the US Food and Drug Administration (FDA) has received a growing number of adverse event reports on the breakage or fracturing and retention of anesthetic conduction device tips with associated complications. Serious injuries and other problems such as spinal stenosis, nerve root compression, and subcutaneous effusion can result. Several case reports demonstrate how the problems occur; some illustrate the severity of the problem. All cases are from adverse event reports in the FDA Center for Devices and Radiological Health (CDRH) Manufacturer and User Facility Device Experience database. Frequently, in the interest of not causing patient harm, a device fragment might not be removed as long as the patient is not neurologically compromised or at risk for infection or there is little potential for migration of the fragmented piece. On many occasions, the fragments remain in patients without their knowledge. The FDA wants to raise awareness of the problem and its potential impact in creating complications, encourage the practice of informing patients of the fragmented device, and promote reporting of such incidents to CDRH via the MedWatch reporting system. Based on a search of the current literature, recommendations for prevention are suggested.

  18. Experiments and appropriate facilities for plant physiology research in space

    NASA Astrophysics Data System (ADS)

    Lork, W.

    Light is a very essential parameter in a plant's life. Changing the quality and/or quantity of illumination will not only determine the further development (photomorphogenesis), but also effect spontaneous responses like curvatures (phototropism). But there are several still unknown links in the signal transduction chain from the perception of the light signals to the terminal response. It is known from ground-based experiments, that part of this signal transduction path is congruous with that of gravitational signals. Biosample is a technology development programme, which enables sophisticated experiments with whole plants in a microgravity environment. It allows complex sequences of gravitational- and light-stimuli with simultaneous recording of the plant's response (e.g. curvature of the stem) by video. This facility in union with new genetic mutants, which are less- or insensitive to light, gravity or both, are convenient tools for progress in plant physiology research.

  19. 46 CFR 121.704 - Marine sanitation devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Marine sanitation devices. 121.704 Section 121.704... MISCELLANEOUS SYSTEMS AND EQUIPMENT Miscellaneous § 121.704 Marine sanitation devices. A vessel with installed toilet facilities must have a marine sanitation device that complies with 33 CFR part 159. [CGD 85-080...

  20. 46 CFR 121.704 - Marine sanitation devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Marine sanitation devices. 121.704 Section 121.704... MISCELLANEOUS SYSTEMS AND EQUIPMENT Miscellaneous § 121.704 Marine sanitation devices. A vessel with installed toilet facilities must have a marine sanitation device that complies with 33 CFR part 159. [CGD 85-080...

  1. 46 CFR 121.704 - Marine sanitation devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Marine sanitation devices. 121.704 Section 121.704... MISCELLANEOUS SYSTEMS AND EQUIPMENT Miscellaneous § 121.704 Marine sanitation devices. A vessel with installed toilet facilities must have a marine sanitation device that complies with 33 CFR part 159. [CGD 85-080...

  2. 46 CFR 121.704 - Marine sanitation devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Marine sanitation devices. 121.704 Section 121.704... MISCELLANEOUS SYSTEMS AND EQUIPMENT Miscellaneous § 121.704 Marine sanitation devices. A vessel with installed toilet facilities must have a marine sanitation device that complies with 33 CFR part 159. [CGD 85-080...

  3. 46 CFR 121.704 - Marine sanitation devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Marine sanitation devices. 121.704 Section 121.704... MISCELLANEOUS SYSTEMS AND EQUIPMENT Miscellaneous § 121.704 Marine sanitation devices. A vessel with installed toilet facilities must have a marine sanitation device that complies with 33 CFR part 159. [CGD 85-080...

  4. The National Ignition Facility (NIF) as a User Facility

    NASA Astrophysics Data System (ADS)

    Keane, Christopher; NIF Team

    2013-10-01

    The National Ignition Facility (NIF) has made significant progress towards operation as a user facility. Through June 2013, NIF conducted over 1200 experiments in support of ICF, HED science, and development of facility capabilities. The NIF laser has met or achieved all specifications and a wide variety of diagnostic and target fabrication capabilities are in place. A NIF User Group and associated Executive Board have been formed. Two User Group meetings have been conducted since formation of the User Group. NIF experiments in fundamental science have provided important new results. NIF ramp compression experiments have been conducted using diamond and iron, with EOS results obtained at pressures up to approximately 50 Mbar and 8 Mbar, respectively. Initial experiments in supernova hydrodynamics, the fundamental physics of the Rayleigh-Taylor instability, and equation of state in the Gbar pressure regime have also been conducted. This presentation will discuss the fundamental science program at NIF, including the proposal solicitation and scientific review processes and other aspects of user facility operation. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  5. A new Subcutaneously Anchored Device for Securing External Cerebrospinal Fluid Catheters: our Preliminary Experience.

    PubMed

    Frassanito, Paolo; Massimi, Luca; Tamburrini, Gianpiero; Pittiruti, Mauro; Doglietto, Francesco; Nucci, Carlotta Ginevra; Caldarelli, Massimo

    2016-09-01

    Accidental dislocation or removal is a well-known complication of external cerebrospinal fluid (CSF) drainage in daily clinical practice. At present, no data about the incidence of such complications are available in the scientific literature. SecurAcath (Interrad Medical, Plymouth, Minnesota, USA) is a subcutaneously anchored device recently adopted for securement of central venous catheters, known to be highly effective (and cost-effective) in reducing the risk of catheter dislodgement and/or accidental removal. We report our preliminary experience with the use of SecurAcath to secure CSF drainage, either ventricular or spinal, to the skin. SecurAcath was used in 29 consecutive patients (age range: 3 weeks-16 years, median age 6.3 years). In particular, the device was used for 25 ventricular catheters (a patient received 2 catheters in the same procedure for bilateral brain abscess) and 5 spinal drainages. Period in place ranged from 1-4 weeks (median 22 days). No complication related to the use of the device was observed, in particular there was no case of dislocation or accidental removal of the catheter. The removal procedure was extremely easy. The device has proven its utility also in 3 cases requiring an adjustment of the length of the catheter. In our experience, SecurAcath is a safe and effective device to secure CSF external catheters to the skin, with several relevant advantages: its placement and maintenance are easy; it may stay in place for the entire duration of the catheter; it allows a more complete antisepsis of the exit site, thus reducing local skin complications; it eliminates the risk of suture-related needlestick injuries. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Laboratory Facilities and Measurement Techniques for Beamed-Energy-Propulsion Experiments in Brazil

    NASA Astrophysics Data System (ADS)

    de Oliveira, Antonio Carlos; Chanes Júnior, José Brosler; Cordeiro Marcos, Thiago Victor; Pinto, David Romanelli; Santos Vilela, Renan Guilherme; Barros Galvão, Victor Alves; Mantovani, Arthur Freire; da Costa, Felipe Jean; dos Santos Assenção, José Adeildo; dos Santos, Alberto Monteiro; de Paula Toro, Paulo Gilberto; Sala Minucci, Marco Antonio; da Silveira Rêgo, Israel; Salvador, Israel Irone; Myrabo, Leik N.

    2011-11-01

    Laser propulsion is an innovative concept of accessing the space easier and cheaper where the propulsive energy is beamed to the aerospace vehicle in flight from ground—or even satellite-based high-power laser sources. In order to be realistic about laser propulsion, the Institute for Advanced Studies of the Brazilian Air Force in cooperation with the United States Air Force and the Rensselaer Polytechnic Institute are seriously investigating its basic physics mechanisms and engineering aspects at the Henry T. Hamamatsu Laboratory of Hypersonic and Aerothermodynamics in São José dos Campos, Brazil. This paper describes in details the existing facilities and measuring systems such as high-power laser devices, pulsed-hypersonic wind tunnels and high-speed flow visualization system currently utilized in the laboratory for experimentation on laser propulsion.

  7. The National Ignition Facility: Transition to a User Facility

    NASA Astrophysics Data System (ADS)

    Moses, E. I.; Atherton, J.; Lagin, L.; Larson, D.; Keane, C.; MacGowan, B.; Patterson, R.; Spaeth, M.; Van Wonterghem, B.; Wegner, P.; Kauffman, R.

    2016-03-01

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) has been operational since March 2009 and has been transitioning to a user facility supporting ignition science, high energy density science (HEDS), national security applications, and fundamental science. The facility has achieved its design goal of 1.8 MJ and 500 TW of 3ω light on target, and has performed target experiments with 1.9 MJ at peak powers of 410 TW. The facility is on track to perform over 200 target shots this year in support of all of its user communities. The facility has nearly 60 diagnostic systems operational and has shown flexibility in laser pulse shape and performance to meet the requirements of its multiple users. Progress continues on its goal of demonstrating thermonuclear burn in the laboratory. It has performed over 40 indirect-drive experiments with cryogenic-layered capsules. New platforms are being developed for HEDS and fundamental science. Equation-of-state and material strength experiments have been done on a number of materials with pressures of over 50 MBars obtained in diamond, conditions never previously encountered in the laboratory and similar to those found in planetary interiors. Experiments are also in progress investigating radiation transport, hydrodynamic instabilities, and direct drive implosions. NIF continues to develop as an experimental facility. Advanced Radiographic Capability (ARC) is now being installed on NIF for producing high-energy radiographs of the imploded cores of ignition targets and for short pulse laser-plasma interaction experiments. One NIF beam is planned for conversion to two picosecond beams in 2014. Other new diagnostics such as x-ray Thomson scattering, low energy neutron spectrometer, and multi-layer reflecting x-ray optics are also planned. Incremental improvements in laser performance such as improved optics damage performance, beam balance, and back reflection control are being pursued.

  8. Gas-Grain Simulation Facility (GGSF). Volume 1: Stage 1 facility definition studies

    NASA Technical Reports Server (NTRS)

    Gat, Nahum

    1993-01-01

    The Gas-Grain Simulation Facility (GGSF) is a facility-type payload to be included in the Space Station Freedom (SSF). The GGSF is a multidisciplinary facility that will accommodate several classes of experiments, including exobiology, planetary science, atmospheric science, and astrophysics. The physical mechanisms envisioned to be investigated include crystal growth, aggregation, nucleation, coagulation, condensation, collisions, fractal growth, cycles of freezing and evaporation, scavenging, longevity of bacteria, and more. TRW performed a Phase A study that included analyses of the science and technical (S&T) requirements, the development of facility functional requirements, and a conceptual design of the facility. The work that was performed under Stage 1 of the Phase A study and the results to date are summarized. In this stage, facility definition studies were conducted in sufficient detail to establish the technical feasibility of the candidate strawman experiments. The studies identified technical difficulties, identified required facility subsystems, surveyed existing technology studies and established preliminary facility weight, volume, power consumption, data systems, interface definition, and crew time requirements. The results of this study served as the basis for Stage 2 of the Phase A study in which a conceptual design and a reference design were performed. The results also served as a basis for a related study for a Gas-Grain Simulation Experiment Module (GGSEM), which is an apparatus intended to perform a subset of the GGSF experiments on board a low-Earth-orbiting platform.

  9. Reliable Facility Location Problem with Facility Protection

    PubMed Central

    Tang, Luohao; Zhu, Cheng; Lin, Zaili; Shi, Jianmai; Zhang, Weiming

    2016-01-01

    This paper studies a reliable facility location problem with facility protection that aims to hedge against random facility disruptions by both strategically protecting some facilities and using backup facilities for the demands. An Integer Programming model is proposed for this problem, in which the failure probabilities of facilities are site-specific. A solution approach combining Lagrangian Relaxation and local search is proposed and is demonstrated to be both effective and efficient based on computational experiments on random numerical examples with 49, 88, 150 and 263 nodes in the network. A real case study for a 100-city network in Hunan province, China, is presented, based on which the properties of the model are discussed and some managerial insights are analyzed. PMID:27583542

  10. Summary of 2016 Light Microscopy Module (LMM) Physical Science Experiments on ISS. Update of LMM Science Experiments and Facility Capabilities

    NASA Technical Reports Server (NTRS)

    Sicker, Ronald J.; Meyer, William V.; Foster, William M.; Fletcher, William A.; Williams, Stuart J.; Lee, Chang-Soo

    2016-01-01

    This presentation will feature a series of short, entertaining, and informative videos that describe the current status and science support for the Light Microscopy Module (LMM) facility on the International Space Station. These interviews will focus on current experiments and provide an overview of future capabilities. The recently completed experiments include nano-particle haloing, 3-D self-assembly with Janus particles and a model system for nano-particle drug delivery. The videos will share perspectives from the scientists, engineers, and managers working with the NASA Light Microscopy program.

  11. Biotechnology Facility: An ISS Microgravity Research Facility

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Tsao, Yow-Min

    2000-01-01

    The International Space Station (ISS) will support several facilities dedicated to scientific research. One such facility, the Biotechnology Facility (BTF), is sponsored by the Microgravity Sciences and Applications Division (MSAD) and developed at NASA's Johnson Space Center. The BTF is scheduled for delivery to the ISS via Space Shuttle in April 2005. The purpose of the BTF is to provide: (1) the support structure and integration capabilities for the individual modules in which biotechnology experiments will be performed, (2) the capability for human-tended, repetitive, long-duration biotechnology experiments, and (3) opportunities to perform repetitive experiments in a short period by allowing continuous access to microgravity. The MSAD has identified cell culture and tissue engineering, protein crystal growth, and fundamentals of biotechnology as areas that contain promising opportunities for significant advancements through low-gravity experiments. The focus of this coordinated ground- and space-based research program is the use of the low-gravity environment of space to conduct fundamental investigations leading to major advances in the understanding of basic and applied biotechnology. Results from planned investigations can be used in applications ranging from rational drug design and testing, cancer diagnosis and treatments and tissue engineering leading to replacement tissues.

  12. A fault injection experiment using the AIRLAB Diagnostic Emulation Facility

    NASA Technical Reports Server (NTRS)

    Baker, Robert; Mangum, Scott; Scheper, Charlotte

    1988-01-01

    The preparation for, conduct of, and results of a simulation based fault injection experiment conducted using the AIRLAB Diagnostic Emulation facilities is described. An objective of this experiment was to determine the effectiveness of the diagnostic self-test sequences used to uncover latent faults in a logic network providing the key fault tolerance features for a flight control computer. Another objective was to develop methods, tools, and techniques for conducting the experiment. More than 1600 faults were injected into a logic gate level model of the Data Communicator/Interstage (C/I). For each fault injected, diagnostic self-test sequences consisting of over 300 test vectors were supplied to the C/I model as inputs. For each test vector within a test sequence, the outputs from the C/I model were compared to the outputs of a fault free C/I. If the outputs differed, the fault was considered detectable for the given test vector. These results were then analyzed to determine the effectiveness of some test sequences. The results established coverage of selt-test diagnostics, identified areas in the C/I logic where the tests did not locate faults, and suggest fault latency reduction opportunities.

  13. First experiment on LMJ facility: pointing and synchronisation qualification, sequences qualification

    NASA Astrophysics Data System (ADS)

    Henry, Olivier; Bretheau, Dominique; Luttmann, Michel; Graillot, Herve; Ferri, Michel; Seguineau, Frederic; Bar, Emmanuel; Patissou, Loic; Canal, Phillipe; Sautarel, Françoise; Tranquille Marques, Yves; Raffestin, Didier

    2016-10-01

    The LMJ (Laser mega Joule) facility at the CESTA site (Aquitaine, France) is a tool designed to deliver up to 1.2 MJ at 351 nm for plasma experiments. The experiment system will include 11 diagnostics: UV and X energy balances, imagers (Streak and stripe camera, CCD), spectrometers, and a Visar/pyrometer. The facility must be able to deliver, within the hour following the shot, all the results of the plasma diagnostics, alignment images and laser diagnostic measurements. These results have to be guaranteed in terms of conformity to the request and quality of measurement. The end of 2014 was devoted to the qualification of system pointing on target and synchronization within and between beams. The shots made with one chain (divided in 2 quads - 8 laser beams) have achieved 50 µm of misalignment accuracy (chain and quad channel) and a synchronization accuracy in the order of 50 ps. The performances achieved for plasma diagnostic (in the order of less 100 µm of alignment and timing accuracy less than 150 ps) comply with expectations. At the same time the first automatic sequences were tested. They allowed a shot on target every 6h:30 and in some case twice a day by reducing preparation actions, leading to a sequence of 4h:00. These shooting sequences are managed by an operating team of 7 people helped by 3 people for security aspects.

  14. The Medina Embolic Device: early clinical experience from a single center

    PubMed Central

    Aguilar Perez, Marta; Bhogal, Pervinder; Martinez Moreno, Rosa; Bäzner, Hansjörg; Ganslandt, Oliver; Henkes, Hans

    2017-01-01

    Objective To report our initial experience with the Medina Embolic Device (MED) in unruptured intracranial aneurysms either as sole treatment or in conjunction with additional devices. Methods 15 consecutive patients (6 women, 9 men) with unruptured aneurysms were treated between September 2015 and April 2016. The aneurysm fundus measured at least 5 mm. We evaluated the angiographic appearances of treated aneurysms at the end of the procedure and at follow-up, the clinical status, complications, and requirement for adjunctive devices. Results The MED was successfully deployed in all but one case and adjunctive devices were required in 10 cases. Aneurysm locations were middle cerebral artery bifurcation (n=3), internal carotid artery (ICA) bifurcation (n=1), supraclinoid ICA (n=5), posterior communicating artery (n=1), anterior communicating artery (n=2), cavernous ICA (n=2), distal basilar sidewall (n=1), basilar tip (n=1). Three patients had complications although none could be attributed to the MED. Immediate angiographic results were modified Raymond-Roy classification (mRRC) I=1, mRRC II=5, mRRC IIIa=3, mRRC IIIb=5, and one patient showed contrast stasis within the fundus of the aneurysm. Follow-up angiography was available in 11 patients, with four showing complete aneurysm exclusion, six with stable remnants and one patient with an enlarging neck remnant. Conclusions The MED represents a major step forward in the treatment of intracranial aneurysms. It can result in rapid exclusion of an aneurysm from the circulation and has a good safety profile. We believe that the true value of the MED will be in combining its use with adjunctive devices such as endoluminal flow diverters that will result in rapid aneurysmal exclusion. PMID:27484746

  15. Development of a slicing device for Apollo-Soyuz Test Project (ASTP) electrophoresis technology experiment MA-011

    NASA Technical Reports Server (NTRS)

    Nerren, B. H.

    1977-01-01

    The electrophoresis of six columns was accomplished on the Apollo-Soyuz test Project. After separation, these columns were frozen in orbit and were returned for ground-based analyses. One major goal of the MA-011 experiment was the assessment of the separation achieved in orbit by slicing these frozen columns. The slicing of the frozen columns required a new device. The development of that device is described.

  16. Life science experiments performed in space in the ISS/Kibo facility and future research plans

    PubMed Central

    Ohnishi, Takeo

    2016-01-01

    Over the past several years, current techniques in molecular biology have been used to perform experiments in space, focusing on the nature and effects of space radiation. In the Japanese ‘Kibo’ facility in the International Space Station (ISS), the Japan Aerospace Exploration Agency (JAXA) has performed five life science experiments since 2009, and two additional experiments are currently in progress. The first life science experiment in space was the ‘Rad Gene’ project, which utilized two human cultured lymphoblastoid cell lines containing a mutated p53 gene (mp53) and a parental wild-type p53 gene (wtp53) respectively. Four parameters were examined: (i) detecting space radiation–induced DSBs by observing γH2AX foci; (ii) observing p53-dependent gene expression during space flight; (iii) observing p53-dependent gene expression after space flight; and (iv) observing the adaptive response in the two cell lines containing the mutated and wild type p53 genes after exposure to space radiation. These observations were completed and have been reported, and this paper is a review of these experiments. In addition, recent new information from space-based experiments involving radiation biology is presented here. These experiments involve human cultured cells, silkworm eggs, mouse embryonic stem cells and mouse eggs in various experiments designed by other principal investigators in the ISS/Kibo. The progress of Japanese science groups involved in these space experiments together with JAXA are also discussed here. The Japanese Society for Biological Sciences in Space (JSBSS), the Utilization Committee of Space Environment Science (UCSES) and the Science Council of Japan (ACJ) have supported these new projects and new experimental facilities in ISS/Kibo. Currently, these organizations are proposing new experiments for the ISS through 2024. PMID:27130692

  17. Life science experiments performed in space in the ISS/Kibo facility and future research plans.

    PubMed

    Ohnishi, Takeo

    2016-08-01

    Over the past several years, current techniques in molecular biology have been used to perform experiments in space, focusing on the nature and effects of space radiation. In the Japanese 'Kibo' facility in the International Space Station (ISS), the Japan Aerospace Exploration Agency (JAXA) has performed five life science experiments since 2009, and two additional experiments are currently in progress. The first life science experiment in space was the 'Rad Gene' project, which utilized two human cultured lymphoblastoid cell lines containing a mutated P53 : gene (m P53 : ) and a parental wild-type P53 : gene (wt P53 : ) respectively. Four parameters were examined: (i) detecting space radiation-induced DSBs by observing γH2AX foci; (ii) observing P53 : -dependent gene expression during space flight; (iii) observing P53 : -dependent gene expression after space flight; and (iv) observing the adaptive response in the two cell lines containing the mutated and wild type P53 : genes after exposure to space radiation. These observations were completed and have been reported, and this paper is a review of these experiments. In addition, recent new information from space-based experiments involving radiation biology is presented here. These experiments involve human cultured cells, silkworm eggs, mouse embryonic stem cells and mouse eggs in various experiments designed by other principal investigators in the ISS/Kibo. The progress of Japanese science groups involved in these space experiments together with JAXA are also discussed here. The Japanese Society for Biological Sciences in Space (JSBSS), the Utilization Committee of Space Environment Science (UCSES) and the Science Council of Japan (ACJ) have supported these new projects and new experimental facilities in ISS/Kibo. Currently, these organizations are proposing new experiments for the ISS through 2024. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and

  18. Benchmark experiments at ASTRA facility on definition of space distribution of {sup 235}U fission reaction rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bobrov, A. A.; Boyarinov, V. F.; Glushkov, A. E.

    2012-07-01

    Results of critical experiments performed at five ASTRA facility configurations modeling the high-temperature helium-cooled graphite-moderated reactors are presented. Results of experiments on definition of space distribution of {sup 235}U fission reaction rate performed at four from these five configurations are presented more detail. Analysis of available information showed that all experiments on criticality at these five configurations are acceptable for use them as critical benchmark experiments. All experiments on definition of space distribution of {sup 235}U fission reaction rate are acceptable for use them as physical benchmark experiments. (authors)

  19. A balancing act: a phenomenological exploration of medical students' experiences of using mobile devices in the clinical setting

    PubMed Central

    Rashid-Doubell, F; Mohamed, S; Elmusharaf, K; O'Neill, C S

    2016-01-01

    Objective The aims of this study were to describe the experiences of senior students using mobile devices in a clinical setting while learning and interacting with clinical teachers, patients and each other, and to identify challenges that facilitated or impeded the use of such devices in the hospital. Design Interpretative phenomenology was chosen to guide our enquiry. Semi-structured interviews were conducted to examine the experiences of five senior medical students using mobile devices in the clinical setting. Setting and participants Senior medical students at an international medical school in the Middle East. Results Three main themes emerged from the data analysis: learning; professional identity and transitioning from student to doctor. The findings showed that using mobile devices in the clinical area as a learning tool was not a formalised process. Rather, it was opportunistic learning at the bedside and on occasion a source of distraction from clinical teaching. Students needed to negotiate relationships between themselves, the clinical teacher and patients in order to ensure that they maintained an acceptable professional image. Participants experienced and negotiated the change from student to doctor making them mindful of using their devices at the bedside. Conclusions Mobile devices are part of daily life for a medical student and there is a need to adapt medical education in the clinical setting, to allow the students to use their devices in a sensitive manner. PMID:27142860

  20. Soil and crop management experiments in the Laboratory Biosphere: an analogue system for the Mars on Earth(R) facility.

    PubMed

    Silverstone, S; Nelson, M; Alling, A; Allen, J P

    2005-01-01

    During the years 2002 and 2003, three closed system experiments were carried out in the "Laboratory Biosphere" facility located in Santa Fe, New Mexico. The program involved experimentation of "Hoyt" Soy Beans, (experiment #1) USU Apogee Wheat (experiment #2) and TU-82-155 sweet potato (experiment #3) using a 5.37 m2 soil planting bed which was 30 cm deep. The soil texture, 40% clay, 31% sand and 28% silt (a clay loam), was collected from an organic farm in New Mexico to avoid chemical residues. Soil management practices involved minimal tillage, mulching, returning crop residues to the soil after each experiment and increasing soil biota by introducing worms, soil bacteria and mycorrhizae fungi. High soil pH of the original soil appeared to be a factor affecting the first two experiments. Hence, between experiments #2 and #3, the top 15 cm of the soil was amended using a mix of peat moss, green sand, humates and pumice to improve soil texture, lower soil pH and increase nutrient availability. This resulted in lowering the initial pH of 8.0-6.7 at the start of experiment #3. At the end of the experiment, the pH was 7.6. Soil nitrogen and phosphorus has been adequate, but some chlorosis was evident in the first two experiments. Aphid infestation was the only crop pest problem during the three experiments and was handled using an introduction of Hyppodamia convergens. Experimentation showed there were environmental differences even in this 1200 cubic foot ecological system facility, such as temperature and humidity gradients because of ventilation and airflow patterns which resulted in consequent variations in plant growth and yield. Additional humidifiers were added to counteract low humidity and helped optimize conditions for the sweet potato experiment. The experience and information gained from these experiments are being applied to the future design of the Mars On Earth(R) facility (Silverstone et al., Development and research program for a soil

  1. Soil and crop management experiments in the Laboratory Biosphere: An analogue system for the Mars on Earth ® facility

    NASA Astrophysics Data System (ADS)

    Silverstone, S.; Nelson, M.; Alling, A.; Allen, J. P.

    During the years 2002 and 2003, three closed system experiments were carried out in the "Laboratory Biosphere" facility located in Santa Fe, New Mexico. The program involved experimentation of "Hoyt" Soy Beans, (experiment #1) USU Apogee Wheat (experiment #2) and TU-82-155 sweet potato (experiment #3) using a 5.37 m 2 soil planting bed which was 30 cm deep. The soil texture, 40% clay, 31% sand and 28% silt (a clay loam), was collected from an organic farm in New Mexico to avoid chemical residues. Soil management practices involved minimal tillage, mulching, returning crop residues to the soil after each experiment and increasing soil biota by introducing worms, soil bacteria and mycorrhizae fungi. High soil pH of the original soil appeared to be a factor affecting the first two experiments. Hence, between experiments #2 and #3, the top 15 cm of the soil was amended using a mix of peat moss, green sand, humates and pumice to improve soil texture, lower soil pH and increase nutrient availability. This resulted in lowering the initial pH of 8.0-6.7 at the start of experiment #3. At the end of the experiment, the pH was 7.6. Soil nitrogen and phosphorus has been adequate, but some chlorosis was evident in the first two experiments. Aphid infestation was the only crop pest problem during the three experiments and was handled using an introduction of Hyppodamia convergens. Experimentation showed there were environmental differences even in this 1200 cubic foot ecological system facility, such as temperature and humidity gradients because of ventilation and airflow patterns which resulted in consequent variations in plant growth and yield. Additional humidifiers were added to counteract low humidity and helped optimize conditions for the sweet potato experiment. The experience and information gained from these experiments are being applied to the future design of the Mars On Earth ® facility (Silverstone et al., Development and research program for a soil

  2. Does identity shape leadership and management practice? Experiences of PHC facility managers in Cape Town, South Africa

    PubMed Central

    Daire, Judith; Gilson, Lucy

    2014-01-01

    In South Africa, as elsewhere, Primary Health Care (PHC) facilities are managed by professional nurses. Little is known about the dimensions and challenges of their job, or what influences their managerial practice. Drawing on leadership and organizational theory, this study explored what the job of being a PHC manager entails, and what factors influence their managerial practice. We specifically considered whether the appointment of professional nurses as facility managers leads to an identity transition, from nurse to manager. The overall intention was to generate ideas about how to support leadership development among PHC facility managers. Adopting case study methodology, the primary researcher facilitated in-depth discussions (about their personal history and managerial experiences) with eight participating facility managers from one geographical area. Other data were collected through in-depth interviews with key informants, document review and researcher field notes/journaling. Analysis involved data triangulation, respondent and peer review and cross-case analysis. The experiences show that the PHC facility manager’s job is dominated by a range of tasks and procedures focused on clinical service management, but is expected to encompass action to address the population and public health needs of the surrounding community. Managing with and through others, and in a complex system, requiring self-management, are critical aspects of the job. A range of personal, professional and contextual factors influence managerial practice, including professional identity. The current largely facility-focused management practice reflects the strong nursing identity of managers and broader organizational influences. However, three of the eight managers appear to self-identify an emerging leadership identity and demonstrate related managerial practices. Nonetheless, there is currently limited support for an identity transition towards leadership in this context. Better

  3. CERN IRRADIATION FACILITIES.

    PubMed

    Pozzi, Fabio; Garcia Alia, Ruben; Brugger, Markus; Carbonez, Pierre; Danzeca, Salvatore; Gkotse, Blerina; Richard Jaekel, Martin; Ravotti, Federico; Silari, Marco; Tali, Maris

    2017-09-28

    CERN provides unique irradiation facilities for applications in dosimetry, metrology, intercomparison of radiation protection devices, benchmark of Monte Carlo codes and radiation damage studies to electronics. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Two U.S. Experiments to Fly Aboard European Spacelab Facility in 1996

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Space provides researchers a way to study the behavior of fluids when the forces of gravity are removed. The studies described here involve international cooperative research projects to study various aspects of fluid behavior in a microgravity environment. These projects utilize the Bubble Droplet Particle Unit (BDPU), which was built by the European Space Agency's (ESA) Technology Center in Noordwijk, The Netherlands. This Spacelab-based multiuser facility flew for the first time in July 1994 on the second International Microgravity Laboratory (IML-2). It is scheduled for reflight on the Life and Microgravity Sciences (LMS) mission in June 1996. This experiment hardware was designed primarily to conduct fluid physics experiments with transparent fluids. LMS will fly both European and U.S. investigations including experiments defined by Professor R.S. Subramanian of Clarkson University in Potsdam, New York, and Professor S.A. Saville of Princeton University, Princeton, New Jersey.

  5. 33 CFR 143.15 - Lights and warning devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Lights and warning devices. 143... (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES DESIGN AND EQUIPMENT General § 143.15 Lights and warning devices. (a) OCS facilities must meet the lights and warning devices requirements under part 67 of this...

  6. 33 CFR 143.15 - Lights and warning devices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Lights and warning devices. 143... (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES DESIGN AND EQUIPMENT General § 143.15 Lights and warning devices. (a) OCS facilities must meet the lights and warning devices requirements under part 67 of this...

  7. 33 CFR 143.15 - Lights and warning devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Lights and warning devices. 143... (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES DESIGN AND EQUIPMENT General § 143.15 Lights and warning devices. (a) OCS facilities must meet the lights and warning devices requirements under part 67 of this...

  8. 33 CFR 143.15 - Lights and warning devices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Lights and warning devices. 143... (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES DESIGN AND EQUIPMENT General § 143.15 Lights and warning devices. (a) OCS facilities must meet the lights and warning devices requirements under part 67 of this...

  9. 33 CFR 143.15 - Lights and warning devices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Lights and warning devices. 143... (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES DESIGN AND EQUIPMENT General § 143.15 Lights and warning devices. (a) OCS facilities must meet the lights and warning devices requirements under part 67 of this...

  10. Facilities, breed and experience affect ease of sheep handling: the livestock transporter's perspective.

    PubMed

    Burnard, C L; Pitchford, W S; Hocking Edwards, J E; Hazel, S J

    2015-08-01

    An understanding of the perceived importance of a variety of factors affecting the ease of handling of sheep and the interactions between these factors is valuable in improving profitability and welfare of the livestock. Many factors may contribute to animal behaviour during handling, and traditionally these factors have been assessed in isolation under experimental conditions. A human social component to this phenomenon also exists. The aim of this study was to gain a deeper understanding of the importance of a variety of factors affecting ease of handling, and the interactions between these from the perspective of the livestock transporter. Qualitative interviews were used to investigate the factors affecting sheep behaviour during handling. Interview transcripts underwent thematic analysis. Livestock transporters discussed the effects of attitudes and behaviours towards sheep, helpers, facilities, distractions, environment, dogs and a variety of sheep factors including breed, preparation, experience and sex on sheep behaviour during handling. Transporters demonstrated care and empathy and stated that patience and experience were key factors determining how a person might deal with difficult sheep. Livestock transporters strongly believed facilities (ramps and yards) had the greatest impact, followed by sheep experience (naivety of the sheep to handling and transport) and breed. Transporters also discussed the effects of distractions, time of day, weather, dogs, other people, sheep preparation, body condition and sheep sex on ease of handling. The concept of individual sheep temperament was indirectly expressed.

  11. Establishing a cGMP pancreatic islet processing facility: the first experience in Iran.

    PubMed

    Larijani, Bagher; Arjmand, Babak; Amoli, Mahsa M; Ao, Ziliang; Jafarian, Ali; Mahdavi-Mazdah, Mitra; Ghanaati, Hossein; Baradar-Jalili, Reza; Sharghi, Sasan; Norouzi-Javidan, Abbas; Aghayan, Hamid Reza

    2012-12-01

    It has been predicted that one of the greatest increase in prevalence of diabetes will happen in the Middle East bear in the next decades. The aim of standard therapeutic strategies for diabetes is better control of complications. In contrast, some new strategies like cell and gene therapy have aimed to cure the disease. In recent years, significant progress has occurred in beta-cell replacement therapies with a progressive improvement of short-term and long term outcomes. In year 2005, considering the impact of the disease in Iran and the promising results of the Edmonton protocol, the funding for establishing a current Good Manufacturing Practice (cGMP) islet processing facility by Endocrinology and Metabolism Research Center was approved by Tehran University of Medical Sciences. Several islet isolations were performed following establishment of cGMP facility and recruitment of all required equipments for process validation and experimental purpose. Finally the first successful clinical islet isolation and transplantation was performed in September 2010. In spite of a high cost of the procedure it is considered beneficial and may prevent long term complications and the costs associated with secondary cares. In this article we will briefly describe our experience in setting up a cGMP islet processing facility which can provide valuable information for regional countries interested to establish similar facilities.

  12. Conceptual Design of Tail-Research EXperiment (T-REX) on Space Plasma Environment Research Facility

    NASA Astrophysics Data System (ADS)

    Xiao, Qingmei; Wang, Xiaogang; E, Peng; Shen, Chao; Wang, Zhibin; Mao, Aohua; Xiao, Chijie; Ding, Weixing; Ji, Hantao; Ren, Yang

    2016-10-01

    Space Environment Simulation Research Infrastructure (SESRI), a scientific project for a major national facility of fundamental researches, has recently been launched at Harbin Institute of Technology (HIT). The Space Plasma Environment Research Facility (SPERF) for simulation of space plasma environment is one of the components of SESRI. It is designed to investigate fundamental issues in space plasma environment, such as energetic particles transportation and the interaction with waves in magnetosphere, magnetic reconnection at magnetopause and magnetotail, etc. Tail-Research Experiment (T-REX) is part of the SPERF for laboratory studies of space physics relevant to tail reconnection and dipolarization process. T-REX is designed to carry out two kinds of experiments: the tail plasmamoid for magnetic reconnection and magnetohydrodynamic waves excited by high speed plasma jet. In this presentation, the scientific goals and experimental plans for T-REX together with the means applied to generate the plasma with desired parameters are reviewed. Two typical scenarios of T-REX with operations of plasma sources and various magnetic configurations to study specific physical processes in space plasmas will also be presented.

  13. HPG operating experience at CEM-UT

    NASA Astrophysics Data System (ADS)

    Gully, J. H.; Aanstoos, T. A.; Nalty, K.; Walls, W. A.

    1986-11-01

    Design and functional features are presented for three homopolar generators (HPG) used in experiments during the last decade at the Center for Electromechanics at the University of Texas. The first, a disk-type, 10 MJ HPG, was built in 1973 as a prototype power source for fusion experiments. A second, compact HPG was built in 1980 for opening switch experiments as part of railgun research. The third device is an iron-core, full-scale, high speed bearing and brush test facility for supplying an energy density of 60 MJ/cu m. Engineering data obtained during studies of armature reactions actively cooled brushes morganite-copper graphite rim brushes, and peak currents, are summarized.

  14. Wearable ultrasonic guiding device with white cane for the visually impaired: A preliminary verisimilitude experiment.

    PubMed

    Cheng, Po-Hsun

    2016-01-01

    Several assistive technologies are available to help visually impaired individuals avoid obstructions while walking. Unfortunately, white canes and medical walkers are unable to detect obstacles on the road or react to encumbrances located above the waist. In this study, I adopted the cyber-physical system approach in the development of a cap-connected device to compensate for gaps in detection associated with conventional aids for the visually impaired. I developed a verisimilar, experimental route involving the participation of seven individuals with visual impairment, including straight sections, left turns, right turns, curves, and suspended objects. My aim was to facilitate the collection of information required for the practical use of the device. My findings demonstrate the feasibility of the proposed guiding device in alerting walkers to the presence of some kinds of obstacles from the small number of subjects. That is, it shows promise for future work and research with the proposed device. My findings provide a valuable reference for the further improvement of these devices as well as the establishment of experiments involving the visually impaired.

  15. Success Providing Postpartum Intrauterine Devices in Private-Sector Health Care Facilities in Nigeria: Factors Associated With Uptake.

    PubMed

    Eluwa, George Ie; Atamewalen, Ronke; Odogwu, Kingsley; Ahonsi, Babatunde

    2016-06-20

    Use of modern contraceptive methods in Nigeria remained at 10% between 2008 and 2013 despite substantive investments in family planning services. Many women in their first postpartum year, in particular, have an unmet need for family planning. We evaluated use of postpartum intrauterine device (IUD) insertion and determined factors associated with its uptake in Nigeria. Data were collected between May 2014 and February 2015 from 11 private health care facilities in 6 southern Nigerian states. Women attending antenatal care in participating facilities were counseled on all available contraceptive methods including the postpartum IUD. Data were abstracted from participating facility records and evaluated using a cross-sectional analysis. Categorical variables were calculated as proportions while continuous variables were calculated as medians with the associated interquartile range (IQR). Multivariate logistic regression analysis was used to identify factors associated with uptake of the postpartum IUD while controlling for potential confounding factors, including age, educational attainment, marital status, parity, number of living children, and previous use of contraception. During the study period, 728 women delivered in the 11 facilities. The median age was 28 years, and most women were educated (73% had completed at least the secondary level). The majority (96%) of the women reported they were married, and the median number of living children was 3 (IQR, 2-4). Uptake of the postpartum IUD was 41% (n = 300), with 8% (n = 25) of the acceptors experiencing expulsion of the IUD within 6 weeks post-insertion. After controlling for potential confounding factors, several characteristics were associated with greater likelihood of choosing the postpartum IUD, including lower education, having a higher number of living children, and being single. Women who had used contraceptives previously were less likely to choose the postpartum IUD than women who had not

  16. Success Providing Postpartum Intrauterine Devices in Private-Sector Health Care Facilities in Nigeria: Factors Associated With Uptake

    PubMed Central

    Eluwa, George IE; Atamewalen, Ronke; Odogwu, Kingsley; Ahonsi, Babatunde

    2016-01-01

    ABSTRACT Background: Use of modern contraceptive methods in Nigeria remained at 10% between 2008 and 2013 despite substantive investments in family planning services. Many women in their first postpartum year, in particular, have an unmet need for family planning. We evaluated use of postpartum intrauterine device (IUD) insertion and determined factors associated with its uptake in Nigeria. Methods: Data were collected between May 2014 and February 2015 from 11 private health care facilities in 6 southern Nigerian states. Women attending antenatal care in participating facilities were counseled on all available contraceptive methods including the postpartum IUD. Data were abstracted from participating facility records and evaluated using a cross-sectional analysis. Categorical variables were calculated as proportions while continuous variables were calculated as medians with the associated interquartile range (IQR). Multivariate logistic regression analysis was used to identify factors associated with uptake of the postpartum IUD while controlling for potential confounding factors, including age, educational attainment, marital status, parity, number of living children, and previous use of contraception. Results: During the study period, 728 women delivered in the 11 facilities. The median age was 28 years, and most women were educated (73% had completed at least the secondary level). The majority (96%) of the women reported they were married, and the median number of living children was 3 (IQR, 2–4). Uptake of the postpartum IUD was 41% (n = 300), with 8% (n = 25) of the acceptors experiencing expulsion of the IUD within 6 weeks post-insertion. After controlling for potential confounding factors, several characteristics were associated with greater likelihood of choosing the postpartum IUD, including lower education, having a higher number of living children, and being single. Women who had used contraceptives previously were less likely to choose the

  17. Report on Beryllium Strength Experiments Conducted at the TA-55 40 mm Impact Test Facility, Fiscal Year 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, William Wyatt; Hollowell, Benjamin Charles; Martinez, Todd P.

    A series of experiments is currently in progress at eth 40 mm Impact Test Facility (ITF), located at TA-55, to understand the strength behavior of Beryllium metal at elevated temperature and pressure. In FY 2017, three experiments were conducted as a part of this project.

  18. The Underground Laboratory in South Korea : facilities and experiments

    NASA Astrophysics Data System (ADS)

    Kim, Yeongduk

    2017-01-01

    We have developed underground physics programs for last 15 years in South Korea. The scientific and technical motivation for this initiative was the lack of local facility of a large accelerator in Korea. Thanks to the large underground electric power generator in Yangyang area, we could construct a deep underground laboratory (Yangyang Laboratory, Y2L) and has performed some pioneering experiments for dark matter search and double beta decay experiments. Since year of 2013, a new research center in the Institute for Basic Science (IBS), Center for Underground Physics (CUP), is approved by the government and Y2L laboratory is managed by CUP. Due to the limited space in Y2L, we are proposing to construct a new deep underground laboratory where we can host larger scale experiments of next generation. The site is in an active iron mine, and will be made in 1100 meter underground with a space of about 2000 m2 by the end of 2019. I will describe the status and future plan for this underground laboratory. CUP has two main experimental programs. (1) Identification of dark matter : The annual modulation signal of DAMA/LIBRA experiment has been contradictory to many other experiments such as XENON100, LUX, and Super CDMS. Yale University and CUP (COSINE-100) experimentalists agreed to do an experiment together at the Y2L and recently commissioned a 100kg scale low background NaI(Tl) crystal experiment. In future, we will develop NaI(Tl) crystals with lower internal backgrounds and try to run identical detectors at both north and south hemisphere. Low mass WIMP search is also planned with a development of low temperature sensors coupled with highly scintillating crystals. (2) Neutrinoless double beta decay search : The mass of the lightest neutrino and the Majorana nature of the neutrinos are not determined yet. Neutrinoless double beta decay experiment can answer both of the questions directly, and ultra-low backgrounds and excellent energy resolution are critical to

  19. A Device to Demonstrate the Principles of Photometry and Three Experiments for Its Use.

    ERIC Educational Resources Information Center

    Delumyea, R. Del

    1987-01-01

    Describes how to construct a simple photometer. Outlines experiments in which this device can be used to demonstrate basic electronic principles, the use of Beer's Law to determine the concentration of an analyte in solution, and the effect of molar absorptivity on the sensitivity of photometric procedures. (TW)

  20. Tritium Plasma Experiment Upgrade and Improvement of Surface Diagnostic Capabilities at STAR Facility for Enhancing Tritium and Nuclear PMI Sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimada, M.; Taylor, C. N.; Pawelko, R. J.

    2016-04-01

    The Tritium Plasma Experiment (TPE) is a unique high-flux linear plasma device that can handle beryllium, tritium, and neutron-irradiated plasma facing materials, and is the only existing device dedicated to directly study tritium retention and permeation in neutron-irradiated materials with tritium [M. Shimada et.al., Rev. Sci. Instru. 82 (2011) 083503 and and M. Shimada, et.al., Nucl. Fusion 55 (2015) 013008]. The plasma-material-interaction (PMI) determines a boundary condition for diffusing tritium into bulk PFCs, and the tritium PMI is crucial for enhancing fundamental sciences that dictate tritium fuel cycles and safety and are high importance to an FNSF and DEMO. Recentlymore » the TPE has undergone major upgrades in its electrical and control systems. New DC power supplies and a new control center enable remote plasma operations from outside of the contamination area for tritium, minimizing the possible exposure risk with tritium and beryllium. We discuss the electrical upgrade, enhanced operational safety, improved plasma performance, and development of optical spectrometer system. This upgrade not only improves operational safety of the worker, but also enhances plasma performance to better simulate extreme plasma-material conditions expected in ITER, Fusion Nuclear Science Facility (FNSF), and Demonstration reactor (DEMO). This work was prepared for the U.S. Department of Energy, Office of Fusion Energy Sciences, under the DOE Idaho Field Office contract number DE-AC07-05ID14517.« less

  1. Transitioning from caregiver to visitor in a long-term care facility: the experience of caregivers of people with dementia.

    PubMed

    Crawford, K; Digby, R; Bloomer, M; Tan, H; Williams, A

    2015-01-01

    Transitioning from the primary caregiver to the visitor in a long-term care facility may be challenging for the caregiver; they are required to surrender their caring duties to the medical and nursing staff. The aim of this study was to explore the experiences of caregivers during their transition from day-to-day caregiver of a person with dementia to a visitor in a long-term care facility. This study utilised a qualitative descriptive design. Twenty caregivers of people with dementia were recruited from the one Aged Rehabilitation and Geriatric Evaluation and Management facility, located in Victoria, Australia. Semi-structured interviews were used to explore the caregiver's experiences. Interviews were analysed using thematic analysis. The interview data revealed that the participants were undergoing similar experiences. The findings revealed that it was difficult for the caregiver to transition to their new role of visitor; negative reactions of grief, loss of motivation and loneliness were also coupled with positive feelings of relief and the reassurance that their relative or friend would be well cared for and safe within the long-term care facility. The findings offer insight into the experiences felt by caregivers when their relative or friend with dementia is admitted to hospital. Implications of this study include the need to improve the transition process for the caregiver by allowing them to be involved in the decision-making process, keeping them informed of care decisions, and importantly, providing emotional support to help the caregiver positively adapt to this transition.

  2. Health facilities safety in natural disasters: experiences and challenges from South East Europe.

    PubMed

    Radovic, Vesela; Vitale, Ksenija; Tchounwou, Paul B

    2012-05-01

    The United Nations named 2010 as a year of natural disasters, and launched a worldwide campaign to improve the safety of schools and hospitals from natural disasters. In the region of South East Europe, Croatia and Serbia have suffered the greatest impacts of natural disasters on their communities and health facilities. In this paper the disaster management approaches of the two countries are compared, with a special emphasis on the existing technological and legislative systems for safety and protection of health facilities and people. Strategic measures that should be taken in future to provide better safety for health facilities and populations, based on the best practices and positive experiences in other countries are recommended. Due to the expected consequences of global climate change in the region and the increased different environmental risks both countries need to refine their disaster preparedness strategies. Also, in the South East Europe, the effects of a natural disaster are amplified in the health sector due to its critical medical infrastructure. Therefore, the principles of environmental security should be implemented in public health policies in the described region, along with principles of disaster management through regional collaborations.

  3. Practices of Unregulated Tanning Facilities in Missouri: Implications for Statewide Legislation

    PubMed Central

    Biesbroeck, Lauren K.; Lickerman, Stephanie H.; Cornelius, Lynn A.; Jeffe, Donna B.

    2013-01-01

    BACKGROUND: The incidence of skin cancer has increased in the United States, concomitant with increased UV radiation (UVR) exposure among young adults. We examined whether tanning facilities in Missouri, a state without indoor-tanning regulations, acted in accordance with the Food and Drug Administration’s recommendations and consistently imparted information to potential clients about the known risks of UVR. METHODS: We conducted a statewide telephone survey of randomly selected tanning facilities in Missouri. Each tanning facility was surveyed twice, in the morning (7 am–3 pm) and evening (3–10 pm), on different days, to determine intrasalon consistency of information provided to potential clients at different times. RESULTS: On average, 65% of 243 tanning-facility operators would allow children as young as 10 or 12 years old to use indoor-tanning devices, 80% claimed that indoor tanning would prevent future sunburns, and 43% claimed that there were no risks associated with indoor tanning. Intrasalon inconsistencies involved allowable age of use, and UVR exposure type and duration. Morning tanning-facility employees were more likely to allow consumers to start with maximum exposure times and UV-A–emitting devices (P < .001), whereas evening employees were more likely to allow 10- or 12-year-old children to use indoor-tanning devices (P = .008). CONCLUSIONS: Despite increasing evidence that UVR exposure in indoor-tanning devices is associated with skin cancer, ocular damage, and premature photoaging, tanning facilities in Missouri often misinformed consumers regarding these risks and lack of health benefits and inconsistently provided information about the Food and Drug Administration’s guidelines for tanning devices. PMID:23439910

  4. Need low-cost networking? Consider DeviceNet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moss, W.H.

    1996-11-01

    The drive to reduce production costs and optimize system performance in manufacturing facilities causes many end users to invest in network solutions. Because of distinct differences between the way tasks are performed and the way data are handled for various applications, it is clear than more than one network will be needed in most facilities. What is not clear is which network is most appropriate for a given application. The information layer is the link between automation and information environments via management information systems (MISs) and manufacturing execution systems (MESs) and manufacturing execution systems (MESs). Here the market has chosenmore » a de facto standard in Ethernet, primarily transmission control protocol/internet protocol (TCP/IP) and secondarily manufacturing messaging system (MMS). There is no single standard at the device layer. However, the DeviceNet communication standard has made strides to reach this goal. This protocol eliminates expensive hardwiring and provides improved communication between devices and important device-level diagnostics not easily accessible or available through hardwired I/O interfaces. DeviceNet is a low-cost communications link connecting industrial devices to a network. Many original equipment manufacturers and end users have chosen the DeviceNet platform for several reasons, but most frequently because of four key features: interchangeability; low cost; advanced diagnostics; insert devices under power.« less

  5. Very old Swedish women's experiences of mobility devices in everyday occupation: a longitudinal case study.

    PubMed

    Löfqvist, Charlotte; Nygren, Carita; Brandt, Ase; Iwarsson, Susanne

    2009-09-01

    The use of mobility devices, such as walking sticks and rollators, increases during the ageing process. Our aim was to explore how very old single-living Swedish women experience the use of mobility devices over time, in relation to everyday occupation. A multiple case study strategy involving quantitative and qualitative data was used. The findings indicate that the use of mobility devices, rollators in particular, starts off as support for walking but over time becomes more involved in occupational performance, resulting in complex transactions between personal, environmental, and task components. Personal factors such as ability to adjust and adapt to different situations seem to be crucial for optimal mobility device use. Strategies and adaptive behavior were developed over the years while striving for maintained independence and participation. The use of mobility devices was described as something one has to accept, but also a constant reminder of your limitations, or as a possibility to remain active and to manage everyday occupation. The findings stress the need to adopt a comprehensive view when trying to facilitate everyday occupations in very old age. Physical, social, psychological aspects, combinations among assistive devices, and home modification all need to be reflected on and monitored over time.

  6. X-ray transport and radiation response assessment (XTRRA) experiments at the National Ignition Facility.

    PubMed

    Fournier, K B; Brown, C G; Yeoman, M F; Fisher, J H; Seiler, S W; Hinshelwood, D; Compton, S; Holdener, F R; Kemp, G E; Newlander, C D; Gilliam, R P; Froula, N; Lilly, M; Davis, J F; Lerch, Maj A; Blue, B E

    2016-11-01

    Our team has developed an experimental platform to evaluate the x-ray-generated stress and impulse in materials. Experimental activities include x-ray source development, design of the sample mounting hardware and sensors interfaced to the National Ignition Facility's diagnostics insertion system, and system integration into the facility. This paper focuses on the X-ray Transport and Radiation Response Assessment (XTRRA) test cassettes built for these experiments. The test cassette is designed to position six samples at three predetermined distances from the source, each known to within ±1% accuracy. Built-in calorimeters give in situ measurements of the x-ray environment along the sample lines of sight. The measured accuracy of sample responses as well as planned modifications to the XTRRA cassette is discussed.

  7. Does identity shape leadership and management practice? Experiences of PHC facility managers in Cape Town, South Africa.

    PubMed

    Daire, Judith; Gilson, Lucy

    2014-09-01

    In South Africa, as elsewhere, Primary Health Care (PHC) facilities are managed by professional nurses. Little is known about the dimensions and challenges of their job, or what influences their managerial practice. Drawing on leadership and organizational theory, this study explored what the job of being a PHC manager entails, and what factors influence their managerial practice. We specifically considered whether the appointment of professional nurses as facility managers leads to an identity transition, from nurse to manager. The overall intention was to generate ideas about how to support leadership development among PHC facility managers. Adopting case study methodology, the primary researcher facilitated in-depth discussions (about their personal history and managerial experiences) with eight participating facility managers from one geographical area. Other data were collected through in-depth interviews with key informants, document review and researcher field notes/journaling. Analysis involved data triangulation, respondent and peer review and cross-case analysis. The experiences show that the PHC facility manager's job is dominated by a range of tasks and procedures focused on clinical service management, but is expected to encompass action to address the population and public health needs of the surrounding community. Managing with and through others, and in a complex system, requiring self-management, are critical aspects of the job. A range of personal, professional and contextual factors influence managerial practice, including professional identity. The current largely facility-focused management practice reflects the strong nursing identity of managers and broader organizational influences. However, three of the eight managers appear to self-identify an emerging leadership identity and demonstrate related managerial practices. Nonetheless, there is currently limited support for an identity transition towards leadership in this context. Better

  8. Wafer-scale fabrication of glass-FEP-glass microfluidic devices for lipid bilayer experiments.

    PubMed

    Bomer, Johan G; Prokofyev, Alexander V; van den Berg, Albert; Le Gac, Séverine

    2014-12-07

    We report a wafer-scale fabrication process for the production of glass-FEP-glass microdevices using UV-curable adhesive (NOA81) as gluing material, which is applied using a novel "spin & roll" approach. Devices are characterized for the uniformity of the gluing layer, presence of glue in the microchannels, and alignment precision. Experiments on lipid bilayers with electrophysiological recordings using a model pore-forming polypeptide are demonstrated.

  9. Design of control software for the closed ecology experiment facilities (CEEF)

    NASA Astrophysics Data System (ADS)

    Miyajima, H.; Abe, K.; Hirosaki, T.; Ishikawa, Y.

    A habitation experiment using a closed ecology experiment facilities CEEF was started in fiscal 2005 three experiments in which two humans stayed for one week were conducted Their stays will be extended gradually until fiscal 2009 when an experiment will be launched with two humans staying for four months The CEEF has an ambitious target of acquiring the technology of an advanced life support system and the system is being developed based on the technology of conventional plant systems Especially in respect to supervision and control of the system the system still has little automation This system has many manual operation parts whose starts and stops are determined by human judgment There are even several parts requiring off-line measurements that include analyses performed by hand At present a CEEF behavioral prediction system CPS is being developed as the first stage for controlling such a system In this CPS an operator creates an operational schedule after due consideration However creation of the operational schedule of the complex CEEF is not easy and it is above the operator s capability to fully cope with alterations of the operational schedule that occur during a long-term habitation experiment Therefore we are going to develop an automatic creation function of the operational schedule that will be incorporated into the CPS by the beginning of the habitation experiment in fiscal 2009 This function will enable automation of most of the operational schedule that human operators currently set up In this paper we examine

  10. Improving INPE'S balloon ground facilities for operation of the protoMIRAX experiment

    NASA Astrophysics Data System (ADS)

    Mattiello-Francisco, F.; Rinke, E.; Fernandes, J. O.; Cardoso, L.; Cardoso, P.; Braga, J.

    2014-10-01

    The system requirements for reusing the scientific balloon ground facilities available at INPE were a challenge to the ground system engineers involved in the protoMIRAX X-ray astronomy experiment. A significant effort on software updating was required for the balloon ground station. Considering that protoMIRAX is a pathfinder for the MIRAX satellite mission, a ground infrastructure compatible with INPE's satellite operation approach would be useful and highly recommended to control and monitor the experiment during the balloon flights. This approach will make use of the SATellite Control System (SATCS), a software-based architecture developed at INPE for satellite commanding and monitoring. SATCS complies with particular operational requirements of different satellites by using several customized object-oriented software elements and frameworks. We present the ground solution designed for protoMIRAX operation, the Control and Reception System (CRS). A new server computer, properly configured with Ethernet, has extended the existing ground station facilities with switch, converters and new software (OPS/SERVER) in order to support the available uplink and downlink channels being mapped to TCP/IP gateways required by SATCS. Currently, the CRS development is customizing the SATCS for the kernel functions of protoMIRAX command and telemetry processing. Design-patterns, component-based libraries and metadata are widely used in the SATCS in order to extend the frameworks to address the Packet Utilization Standard (PUS) for ground-balloon communication, in compliance with the services provided by the data handling computer onboard the protoMIRAX balloon.

  11. Development and use of a master health facility list: Haiti's experience during the 2010 earthquake response.

    PubMed

    Rose-Wood, Alyson; Heard, Nathan; Thermidor, Roody; Chan, Jessica; Joseph, Fanor; Lerebours, Gerald; Zugaldia, Antonio; Konkel, Kimberly; Edwards, Michael; Lang, Bill; Torres, Carmen-Rosa

    2014-08-01

    Master health facility lists (MHFLs) are gaining attention as a standards-based means to uniquely identify health facilities and to link facility-level data. The ability to reliably communicate information about specific health facilities can support an array of health system functions, such as routine reporting and emergency response operations. MHFLs support the alignment of donor-supported health information systems with county-owned systems. Recent World Health Organization draft guidance promotes the utility of MHFLs and outlines a process for list development and governance. Although the potential benefits of MHFLs are numerous and may seem obvious, there are few documented cases of MHFL construction and use. The international response to the 2010 Haiti earthquake provides an example of how governments, nongovernmental organizations, and others can collaborate within a framework of standards to build a more complete and accurate list of health facilities. Prior to the earthquake, the Haitian Ministry of Health (Ministère de la Santé Publique et de la Population [MSPP]) maintained a list of public-sector health facilities but lacked information on privately managed facilities. Following the earthquake, the MSPP worked with a multinational group to expand the completeness and accuracy of the list of health facilities, including information on post-quake operational status. This list later proved useful in the response to the cholera epidemic and is now incorporated into the MSPP's routine health information system. Haiti's experience demonstrates the utility of MHFL formation and use in crisis as well as in the routine function of the health information system.

  12. Development and use of a master health facility list: Haiti's experience during the 2010 earthquake response

    PubMed Central

    Rose-Wood, Alyson; Heard, Nathan; Thermidor, Roody; Chan, Jessica; Joseph, Fanor; Lerebours, Gerald; Zugaldia, Antonio; Konkel, Kimberly; Edwards, Michael; Lang, Bill; Torres, Carmen-Rosa

    2014-01-01

    ABSTRACT Master health facility lists (MHFLs) are gaining attention as a standards-based means to uniquely identify health facilities and to link facility-level data. The ability to reliably communicate information about specific health facilities can support an array of health system functions, such as routine reporting and emergency response operations. MHFLs support the alignment of donor-supported health information systems with county-owned systems. Recent World Health Organization draft guidance promotes the utility of MHFLs and outlines a process for list development and governance. Although the potential benefits of MHFLs are numerous and may seem obvious, there are few documented cases of MHFL construction and use. The international response to the 2010 Haiti earthquake provides an example of how governments, nongovernmental organizations, and others can collaborate within a framework of standards to build a more complete and accurate list of health facilities. Prior to the earthquake, the Haitian Ministry of Health (Ministère de la Santé Publique et de la Population [MSPP]) maintained a list of public-sector health facilities but lacked information on privately managed facilities. Following the earthquake, the MSPP worked with a multinational group to expand the completeness and accuracy of the list of health facilities, including information on post-quake operational status. This list later proved useful in the response to the cholera epidemic and is now incorporated into the MSPP's routine health information system. Haiti's experience demonstrates the utility of MHFL formation and use in crisis as well as in the routine function of the health information system. PMID:25276595

  13. A balancing act: a phenomenological exploration of medical students' experiences of using mobile devices in the clinical setting.

    PubMed

    Rashid-Doubell, F; Mohamed, S; Elmusharaf, K; O'Neill, C S

    2016-05-03

    The aims of this study were to describe the experiences of senior students using mobile devices in a clinical setting while learning and interacting with clinical teachers, patients and each other, and to identify challenges that facilitated or impeded the use of such devices in the hospital. Interpretative phenomenology was chosen to guide our enquiry. Semi-structured interviews were conducted to examine the experiences of five senior medical students using mobile devices in the clinical setting. Senior medical students at an international medical school in the Middle East. Three main themes emerged from the data analysis: learning; professional identity and transitioning from student to doctor. The findings showed that using mobile devices in the clinical area as a learning tool was not a formalised process. Rather, it was opportunistic learning at the bedside and on occasion a source of distraction from clinical teaching. Students needed to negotiate relationships between themselves, the clinical teacher and patients in order to ensure that they maintained an acceptable professional image. Participants experienced and negotiated the change from student to doctor making them mindful of using their devices at the bedside. Mobile devices are part of daily life for a medical student and there is a need to adapt medical education in the clinical setting, to allow the students to use their devices in a sensitive manner. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  14. The ambiguity of standing in standing devices: a qualitative interview study concerning children and parents experiences of the use of standing devices.

    PubMed

    Nordström, Birgitta; Näslund, Annika; Ekenberg, Lilly; Zingmark, Karin

    2014-10-01

    The aim of this study was to describe children's and parents' experiences of the significance of standing in a standing device. Individual interviews were performed with six children/teenagers (aged 7-19 years) and 14 parents. The interviews were transcribed and analyzed using a qualitative content analysis. The analysis resulted in the major theme, the duality of uprightness and the related themes: (1) the instrumental dimension of standing; (2) the social dimension of standing; and (3) the ambivalent dimension of standing. Each of the themes comprised several subthemes. There is an inherent duality related to the use of a standing device. Standing in a standing device was seen as a treatment of body structures and functions, as well as a possible source of pain. Standing was considered to influence freedom in activities and participation both positively and negatively. The parents experienced that standing influenced other peoples' views of their child, while the children experienced standing as a way to extend the body and as something that gave them benefits in some activities. Physiotherapists working with children should take into account both the social and physical dimensions of using a standing device and consider both the child's and the parents' views.

  15. A facility for long-term Mars simulation experiments: the Mars Environmental Simulation Chamber (MESCH).

    PubMed

    Jensen, Lars Liengaard; Merrison, Jonathan; Hansen, Aviaja Anna; Mikkelsen, Karina Aarup; Kristoffersen, Tommy; Nørnberg, Per; Lomstein, Bente Aagaard; Finster, Kai

    2008-06-01

    We describe the design, construction, and pilot operation of a Mars simulation facility comprised of a cryogenic environmental chamber, an atmospheric gas analyzer, and a xenon/mercury discharge source for UV generation. The Mars Environmental Simulation Chamber (MESCH) consists of a double-walled cylindrical chamber. The double wall provides a cooling mantle through which liquid N(2) can be circulated. A load-lock system that consists of a small pressure-exchange chamber, which can be evacuated, allows for the exchange of samples without changing the chamber environment. Fitted within the MESCH is a carousel, which holds up to 10 steel sample tubes. Rotation of the carousel is controlled by an external motor. Each sample in the carousel can be placed at any desired position. Environmental data, such as temperature, pressure, and UV exposure time, are computer logged and used in automated feedback mechanisms, enabling a wide variety of experiments that include time series. Tests of the simulation facility have successfully demonstrated its ability to produce temperature cycles and maintain low temperature (down to -140 degrees C), low atmospheric pressure (5-10 mbar), and a gas composition like that of Mars during long-term experiments.

  16. A Facility for Long-Term Mars Simulation Experiments: The Mars Environmental Simulation Chamber (MESCH)

    NASA Astrophysics Data System (ADS)

    Jensen, Lars Liengaard; Merrison, Jonathan; Hansen, Aviaja Anna; Mikkelsen, Karina Aarup; Kristoffersen, Tommy; Nørnberg, Per; Lomstein, Bente Aagaard; Finster, Kai

    2008-06-01

    We describe the design, construction, and pilot operation of a Mars simulation facility comprised of a cryogenic environmental chamber, an atmospheric gas analyzer, and a xenon/mercury discharge source for UV generation. The Mars Environmental Simulation Chamber (MESCH) consists of a double-walled cylindrical chamber. The double wall provides a cooling mantle through which liquid N2 can be circulated. A load-lock system that consists of a small pressure-exchange chamber, which can be evacuated, allows for the exchange of samples without changing the chamber environment. Fitted within the MESCH is a carousel, which holds up to 10 steel sample tubes. Rotation of the carousel is controlled by an external motor. Each sample in the carousel can be placed at any desired position. Environmental data, such as temperature, pressure, and UV exposure time, are computer logged and used in automated feedback mechanisms, enabling a wide variety of experiments that include time series. Tests of the simulation facility have successfully demonstrated its ability to produce temperature cycles and maintain low temperature (down to -140°C), low atmospheric pressure (5 10 mbar), and a gas composition like that of Mars during long-term experiments.

  17. Low Gravity Freefall Facilities

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Composite of Marshall Space Flight Center's Low-Gravity Free Fall Facilities.These facilities include a 100-meter drop tower and a 100-meter drop tube. The drop tower simulates in-flight microgravity conditions for up to 4.2 seconds for containerless processing experiments, immiscible fluids and materials research, pre-flight hardware design test and flight experiment simulation. The drop tube simulates in-flight microgravity conditions for up to 4.6 seconds and is used extensively for ground-based microgravity convection research in which extremely small samples are studied. The facility can provide deep undercooling for containerless processing experiments that require materials to remain in a liquid phase when cooled below the normal solidification temperature.

  18. Seeds in space experiment. [long duration exposure facility

    NASA Technical Reports Server (NTRS)

    Alston, Jim A.

    1992-01-01

    Two million seeds of 120 different varieties representing 106 species, 97 genera, and 55 plant families were flown aboard the Long Duration Exposure Facility (LDEF). The seeds were housed in one sealed canister and in two small vented canisters. After being returned to earth, the seeds were germinated and the germination rates and development of the resulting plants were compared to the performance of the control seeds that stayed in the Park Seed's seed storage facility. There was a better survival rate in the sealed canister in space than at the storage facility at Park Seed. At least some of the seeds in each of the vented canisters survived the exposure to vacuum for almost six years. The number of observed apparent mutations was very low.

  19. Women's preferences for obstetric care in rural Ethiopia: a population-based discrete choice experiment in a region with low rates of facility delivery.

    PubMed

    Kruk, M E; Paczkowski, M M; Tegegn, A; Tessema, F; Hadley, C; Asefa, M; Galea, S

    2010-11-01

    Delivery attended by skilled professionals is essential to reducing maternal mortality. Although the facility delivery rate in Ethiopia's rural areas is extremely low, little is known about which health system characteristics most influence women's preferences for delivery services. In this study, women's preferences for attributes of health facilities for delivery in rural Ethiopia were investigated. A population-based discrete choice experiment (DCE) was fielded in Gilgel Gibe, in southwest Ethiopia, among women with a delivery in the past 5 years. Women were asked to select a hypothetical health facility for future delivery from two facilities on a picture card. A hierarchical Bayesian procedure was used to estimate utilities associated with facility attributes: distance, type of provider, provider attitude, drugs and medical equipment, transport and cost. 1006 women completed 8045 DCE choice tasks. Among them, 93.8% had delivered their last child at home. The attributes with the greatest influence on the overall utility of a health facility for delivery were availability of drugs and equipment (mean β=3.9, p<0.01), seeing a doctor versus a health extension worker (mean β=2.1, p<0.01) and a receptive provider attitude (mean β=1.4, p<0.01). Women in rural southwest Ethiopia who have limited personal experience with facility delivery nonetheless value health facility attributes that indicate high technical quality: availability of drugs and equipment and physician providers. Well-designed policy experiments that measure the contribution of quality improvements to facility delivery rates in Ethiopia and other countries with low health service utilisation and high maternal mortality may inform national efforts to reduce maternal mortality.

  20. Application of a temporal reasoning framework tool in analysis of medical device adverse events.

    PubMed

    Clark, Kimberly K; Sharma, Deepak K; Chute, Christopher G; Tao, Cui

    2011-01-01

    The Clinical Narrative Temporal Relation Ontology (CNTRO)1 project offers a semantic-web based reasoning framework, which represents temporal events and relationships within clinical narrative texts, and infer new knowledge over them. In this paper, the CNTRO reasoning framework is applied to temporal analysis of medical device adverse event files. One specific adverse event was used as a test case: late stent thrombosis. Adverse event narratives were obtained from the Food and Drug Administration's (FDA) Manufacturing and User Facility Device Experience (MAUDE) database2. 15 adverse event files in which late stent thrombosis was confirmed were randomly selected across multiple drug eluting stent devices. From these files, 81 events and 72 temporal relations were annotated. 73 temporal questions were generated, of which 65 were correctly answered by the CNTRO system. This results in an overall accuracy of 89%. This system should be pursued further to continue assessing its potential benefits in temporal analysis of medical device adverse events.

  1. SEU Test Facility

    Science.gov Websites

    to the effects of ionizing radiation. This is of particular concern for space applications due to the develop a powerful and user-friendly test facility for investigating space-radiation effects on micro -electronic devices[1]. The main type of effects studied are the so called Single Event Upsets (SEUs) where

  2. Flight dynamics facility operational orbit determination support for the ocean topography experiment

    NASA Technical Reports Server (NTRS)

    Bolvin, D. T.; Schanzle, A. F.; Samii, M. V.; Doll, C. E.

    1991-01-01

    The Ocean Topography Experiment (TOPEX/POSEIDON) mission is designed to determine the topography of the Earth's sea surface across a 3 yr period, beginning with launch in June 1992. The Goddard Space Flight Center Dynamics Facility has the capability to operationally receive and process Tracking and Data Relay Satellite System (TDRSS) tracking data. Because these data will be used to support orbit determination (OD) aspects of the TOPEX mission, the Dynamics Facility was designated to perform TOPEX operational OD. The scientific data require stringent OD accuracy in navigating the TOPEX spacecraft. The OD accuracy requirements fall into two categories: (1) on orbit free flight; and (2) maneuver. The maneuver OD accuracy requirements are of two types; premaneuver planning and postmaneuver evaluation. Analysis using the Orbit Determination Error Analysis System (ODEAS) covariance software has shown that, during the first postlaunch mission phase of the TOPEX mission, some postmaneuver evaluation OD accuracy requirements cannot be met. ODEAS results also show that the most difficult requirements to meet are those that determine the change in the components of velocity for postmaneuver evaluation.

  3. Capsule modeling of high foot implosion experiments on the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, D. S.; Kritcher, A. L.; Milovich, J. L.

    This study summarizes the results of detailed, capsule-only simulations of a set of high foot implosion experiments conducted on the National Ignition Facility (NIF). These experiments span a range of ablator thicknesses, laser powers, and laser energies, and modeling these experiments as a set is important to assess whether the simulation model can reproduce the trends seen experimentally as the implosion parameters were varied. Two-dimensional (2D) simulations have been run including a number of effects—both nominal and off-nominal—such as hohlraum radiation asymmetries, surface roughness, the capsule support tent, and hot electron pre-heat. Selected three-dimensional simulations have also been run tomore » assess the validity of the 2D axisymmetric approximation. As a composite, these simulations represent the current state of understanding of NIF high foot implosion performance using the best and most detailed computational model available. While the most detailed simulations show approximate agreement with the experimental data, it is evident that the model remains incomplete and further refinements are needed. Nevertheless, avenues for improved performance are clearly indicated.« less

  4. Capsule modeling of high foot implosion experiments on the National Ignition Facility

    DOE PAGES

    Clark, D. S.; Kritcher, A. L.; Milovich, J. L.; ...

    2017-03-21

    This study summarizes the results of detailed, capsule-only simulations of a set of high foot implosion experiments conducted on the National Ignition Facility (NIF). These experiments span a range of ablator thicknesses, laser powers, and laser energies, and modeling these experiments as a set is important to assess whether the simulation model can reproduce the trends seen experimentally as the implosion parameters were varied. Two-dimensional (2D) simulations have been run including a number of effects—both nominal and off-nominal—such as hohlraum radiation asymmetries, surface roughness, the capsule support tent, and hot electron pre-heat. Selected three-dimensional simulations have also been run tomore » assess the validity of the 2D axisymmetric approximation. As a composite, these simulations represent the current state of understanding of NIF high foot implosion performance using the best and most detailed computational model available. While the most detailed simulations show approximate agreement with the experimental data, it is evident that the model remains incomplete and further refinements are needed. Nevertheless, avenues for improved performance are clearly indicated.« less

  5. Results of a laboratory experiment that tests rotating unbalanced-mass devices for scanning gimbaled payloads and free-flying spacecraft

    NASA Technical Reports Server (NTRS)

    Alhorn, D. C.; Polites, M. E.

    1994-01-01

    Rotating unbalanced-mass (RUM) devices are a new way to scan space-based, balloon-borne, and ground-based gimbaled payloads, like x-ray and gamma-ray telescopes. They can also be used to scan free-flying spacecraft. Circular scans, linear scans, and raster scans can be generated. A pair of RUM devices generates the basic scan motion and an auxiliary control system using torque motors, control moment gyros, or reaction wheels keeps the scan centered on the target and produces some complementary motion for raster scanning. Previous analyses and simulation results show that this approach offers significant power savings compared to scanning only with the auxiliary control system, especially with large payloads and high scan frequencies. However, these claims have never been proven until now. This paper describes a laboratory experiment which tests the concept of scanning a gimbaled payload with RUM devices. A description of the experiment is given and test results that prove the concept are presented. The test results are compared with those from a computer simulation model of the experiment and the differences are discussed.

  6. Design and Fabrication of the ISTAR Direct-Connect Combustor Experiment at the NASA Hypersonic Tunnel Facility

    NASA Technical Reports Server (NTRS)

    Lee, Jin-Ho; Krivanek, Thomas M.

    2005-01-01

    The Integrated Systems Test of an Airbreathing Rocket (ISTAR) project was a flight demonstration project initiated to advance the state of the art in Rocket Based Combined Cycle (RBCC) propulsion development. The primary objective of the ISTAR project was to develop a reusable air breathing vehicle and enabling technologies. This concept incorporated a RBCC propulsion system to enable the vehicle to be air dropped at Mach 0.7 and accelerated up to Mach 7 flight culminating in a demonstration of hydrocarbon scramjet operation. A series of component experiments was planned to reduce the level of risk and to advance the technology base. This paper summarizes the status of a full scale direct connect combustor experiment with heated endothermic hydrocarbon fuels. This is the first use of the NASA GRC Hypersonic Tunnel facility to support a direct-connect test. The technical and mechanical challenges involved with adapting this facility, previously used only in the free-jet configuration, for use in direct connect mode will be also described.

  7. Prepping the Parachute Deployment Device

    NASA Image and Video Library

    2014-05-16

    An engineer works on the Parachute Deployment Device of the Low-Density Supersonic Decelerator test vehicle in this image taken at the Missile Assembly Building at the U.S. Navy Pacific Missile Range Facility in Kauai, Hawaii.

  8. Safety systems in gamma irradiation facilities.

    PubMed

    Drndarevic, V

    1997-08-01

    A new electronic device has been developed to guard against individuals gaining entry through the product entry and exit ports into our irradiation facility for industrial sterilization. This device uses the output from electronic sensors and pressure mats to assure that only the transport cabins may pass through these ports. Any intention of personnel trespassing is detected, the process is stopped by the safety system, and the source is placed in safe position. Owing to a simple construction, the new device enables reliable operation, is inexpensive, easy to implement, and improves the existing safety systems.

  9. ESR Experiments on a Single Donor Electron in Isotopically Enriched Silicon

    NASA Astrophysics Data System (ADS)

    Tracy, Lisa; Luhman, Dwight; Carr, Stephen; Borchardt, John; Bishop, Nathaniel; Ten Eyck, Gregory; Pluym, Tammy; Wendt, Joel; Witzel, Wayne; Blume-Kohout, Robin; Nielsen, Erik; Lilly, Michael; Carroll, Malcolm

    In this talk we will discuss electron spin resonance experiments in single donor silicon qubit devices fabricated at Sandia National Labs. A self-aligned device structure consisting of a polysilicon gate SET located adjacent to the donor is used for donor electron spin readout. Using a cryogenic HEMT amplifier next to the silicon device, we demonstrate spin readout at 100 kHz bandwidth and Rabi oscillations with 0.96 visibility. Electron spin resonance measurements on these devices show a linewidth of 30 kHz and coherence times T2* = 10 us and T2 = 0.3 ms. We also discuss estimates of the fidelity of our donor electron spin qubit measurements using gate set tomography. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000. ESR Experiments on a Single Donor Electron in Isotopically Enriched Silicon.

  10. High-Z plasma facing components in fusion devices: boundary conditions and operational experiences

    NASA Astrophysics Data System (ADS)

    Neu, R.

    2006-04-01

    In present day fusion devices optimization of the performance and experimental freedom motivates the use of low-Z plasma facing materials (PFMs). However, in a future fusion reactor, for economic reasons, a sufficient lifetime of the first wall components is essential. Additionally, tritium retention has to be small to meet safety requirements. Tungsten appears to be the most realistic material choice for reactor plasma facing components (PFCs) because it exhibits the lowest erosion. But besides this there are a lot of criteria which have to be fulfilled simultaneously in a reactor. Results from present day devices and from laboratory experiments confirm the advantages of high-Z PFMs but also point to operational restrictions, when using them as PFCs. These are associated with the central impurity concentration, which is determined by the sputtering yield, the penetration of the impurities and their transport within the confined plasma. The restrictions could exclude successful operation of a reactor, but concomitantly there exist remedies to ameliorate their impact. Obviously some price has to be paid in terms of reduced performance but lacking of materials or concepts which could substitute high-Z PFCs, emphasis has to be put on the development and optimization of reactor-relevant scenarios which incorporate the experiences and measures.

  11. Closed Loop Experiment Manager (CLEM)-An Open and Inexpensive Solution for Multichannel Electrophysiological Recordings and Closed Loop Experiments.

    PubMed

    Hazan, Hananel; Ziv, Noam E

    2017-01-01

    There is growing need for multichannel electrophysiological systems that record from and interact with neuronal systems in near real-time. Such systems are needed, for example, for closed loop, multichannel electrophysiological/optogenetic experimentation in vivo and in a variety of other neuronal preparations, or for developing and testing neuro-prosthetic devices, to name a few. Furthermore, there is a need for such systems to be inexpensive, reliable, user friendly, easy to set-up, open and expandable, and possess long life cycles in face of rapidly changing computing environments. Finally, they should provide powerful, yet reasonably easy to implement facilities for developing closed-loop protocols for interacting with neuronal systems. Here, we survey commercial and open source systems that address these needs to varying degrees. We then present our own solution, which we refer to as Closed Loop Experiments Manager (CLEM). CLEM is an open source, soft real-time, Microsoft Windows desktop application that is based on a single generic personal computer (PC) and an inexpensive, general-purpose data acquisition board. CLEM provides a fully functional, user-friendly graphical interface, possesses facilities for recording, presenting and logging electrophysiological data from up to 64 analog channels, and facilities for controlling external devices, such as stimulators, through digital and analog interfaces. Importantly, it includes facilities for running closed-loop protocols written in any programming language that can generate dynamic link libraries (DLLs). We describe the application, its architecture and facilities. We then demonstrate, using networks of cortical neurons growing on multielectrode arrays (MEA) that despite its reliance on generic hardware, its performance is appropriate for flexible, closed-loop experimentation at the neuronal network level.

  12. Design and Testing of a Breadboard Electrical Power Control Unit for the Fluid Combustion Facility Experiment

    NASA Technical Reports Server (NTRS)

    Kimnach, Greg L.; Lebron, Ramon C.

    1999-01-01

    The Fluid Combustion Facility (FCF) Project and the Power Technology Division at the NASA Glenn Research Center (GRC) at Lewis Field in Cleveland, OH along with the Sundstrand Corporation in Rockford, IL are jointly developing an Electrical Power Converter Unit (EPCU) for the Fluid Combustion Facility to be flown on the International Space Station (ISS). The FCF facility experiment contains three racks: A core rack, a combustion rack, and a fluids rack. The EPCU will be used as the power interface to the ISS 120V(sub dc) power distribution system by each FCF experiment rack which requires 28V(sub dc). The EPCU is a modular design which contains three 120V(sub dc)-to-28V(sub dc) full-bridge, power converters rated at 1 kW(sub e) each bus transferring input relays and solid-state, current-limiting input switches, 48 current-limiting, solid-state, output switches; and control and telemetry hardware. The EPCU has all controls required to autonomously share load demand between the power feeds and--if absolutely necessary--shed loads. The EPCU, which maximizes the usage of allocated ISS power and minimizes loss of power to loads, can be paralleled with other EPCUs. This paper overviews the electrical design and operating characteristics of the EPCU and presents test data from the breadboard design.

  13. ATTO SECOND ELECTRON BEAMS GENERATION AND CHARACTERIZATION EXPERIMENT AT THE ACCELERATOR TEST FACILITY.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ZOLOTOREV, M.; ZHOLENTS, A.; WANG, X.J.

    2002-02-01

    We are proposing an Atto-second electron beam generation and diagnostics experiment at the Brookhaven Accelerator Test facility (ATF) using 1 {micro}m Inverse Free Electron Laser (IFEL). The proposed experiment will be carried out by an BNL/LBNL collaboration, and it will be installed at the ATF beam line II. The proposed experiment will employ a one-meter long undulator with 1.8 cm period (VISA undulator). The electron beam energy will be 63 MeV with emittance less than 2 mm-mrad and energy spread less than 0.05%. The ATF photocathode injector driving laser will be used for energy modulation by Inverse Free Electron Lasermore » (IFEL). With 10 MW laser peak power, about 2% total energy modulation is expected. The energy modulated electron beam will be further bunched through either a drift space or a three magnet chicane into atto-second electron bunches. The attosecond electron beam bunches will be analyzed using the coherent transition radiation (CTR).« less

  14. Unfulfilled expectations to services offered at primary health care facilities: experiences of caretakers of underfive children in rural Tanzania.

    PubMed

    Kahabuka, Catherine; Moland, Karen Marie; Kvåle, Gunnar; Hinderaker, Sven Gudmund

    2012-06-14

    There is growing evidence that patients frequently bypass primary health care (PHC) facilities in favour of higher level hospitals regardless of substantial additional time and costs. Among the reasons given for bypassing are poor services (including lack of drugs and diagnostic facilities) and lack of trust in health workers. The World Health Report 2008 "PHC now more than ever" pointed to the importance of organizing health services around people's needs and expectations as one of the four main issues of PHC reforms. There is limited documentation of user's expectations to services offered at PHC facilities. The current study is a community extension of a hospital-based survey that showed a high bypassing frequency of PHC facilities among caretakers seeking care for their underfive children at two district hospitals. We aimed to explore caretakers' perceptions and expectations to services offered at PHC facilities in their area with reference to their experiences seeking care at such facilities. We conducted four community-based focus group discussions (FGD's) with 47 caretakers of underfive children in Muheza district of Tanga region, Tanzania in October 2009. Lack of clinical examinations and laboratory tests, combined with shortage of drugs and health workers, were common experiences. Across all the focus group discussions, unpleasant health workers' behaviors, lack of urgency and unnecessary delays were major complaints. In some places, unauthorized fees reduced access to services. The study revealed significant disappointments among caretakers with regard to the quality of services offered at PHC facilities in their areas, with implications for their utilization and proper functioning of the referral system. Practices regarding partial drugs administrations, skipping of injections, unofficial payments and consultations by unskilled health care providers need urgent action. There is also a need for proper accountability mechanisms to govern appropriate

  15. First experiment on LMJ facility: pointing and synchronisation qualification, sequences qualification

    NASA Astrophysics Data System (ADS)

    Henry, Olivier; Raffestin, Didier; Bretheau, Dominique; Luttmann, Michel; Graillot, Herve; Ferri, Michel; Seguineau, Frederic; Bar, Emmanuel; Patissou, Loic; Canal, Philippe; Sautarel, Françoise; Tranquille-Marques, Yves

    2015-11-01

    The LMJ (Laser mega Joule) facility at the CESTA site (Aquitaine, France) is a tool designed to deliver up to 1.2 MJ at 351 nm. The experiment system will include plasma diagnostics: UV and X energy balances, imagers (Streak and stripe camera, CCD), spectrometers, and a Visar/pyrometer. The facility must be able to deliver, within the hour following the shot, all the results of the plasma diagnostics, alignment images and laser diagnostic measurements. Part of the end of 2014 was devoted to the qualification of system pointing on target and synchronization within and between beams. The shots made with one chain (divided in 2 quads - 8 laser beams) have achieved 50 μm of misalignment accuracy and a synchronization accuracy in the order of 50 ps. The performances achieved for plasma diagnostic (in the order of less 100 μm of alignment and timing accuracy less than 150 ps) comply with expectations. At the same time the first automatic sequences were tested. They allowed a shot on target every 6h:30 and in some case twice a day by reducing preparation actions, leading to a sequence of 4h:00. These shooting sequences are managed by an operating team of 7 people helped by 3 people for security aspects.

  16. Long Duration Exposure Facility (LDEF) attitude measurements of the Interplanetary Dust Experiment

    NASA Technical Reports Server (NTRS)

    Kassel, Philip C., Jr.; Motley, William R., III; Singer, S. Fred; Mulholland, J. Derral; Oliver, John P.; Weinberg, Jerry L.; Cooke, William J.; Wortman, Jim J.

    1993-01-01

    Analysis of the data from the Long Duration Exposure Facility (LDEF) Interplanetary Dust Experiment (IDE) sun sensors has allowed a confirmation of the attitude of LDEF during its first year in orbit. Eight observations of the yaw angle at specific times were made and are tabulated in this paper. These values range from 4.3 to 12.4 deg with maximum uncertainty of plus or minus 2.0 deg and an average of 7.9 deg. No specific measurements of pitch or roll were made but the data indicates that LDEF had an average pitch down attitude of less than 0.7 deg.

  17. Strengthening health facilities for maternal and newborn care: experiences from rural eastern Uganda

    PubMed Central

    Namazzi, Gertrude; Waiswa, Peter; Nakakeeto, Margaret; Nakibuuka, Victoria K.; Namutamba, Sarah; Najjemba, Maria; Namusaabi, Ruth; Tagoola, Abner; Nakate, Grace; Ajeani, Judith; Peterson, Stefan; Byaruhanga, Romano N.

    2015-01-01

    Background In Uganda maternal and neonatal mortality remains high due to a number of factors, including poor quality of care at health facilities. Objective This paper describes the experience of building capacity for maternal and newborn care at a district hospital and lower-level health facilities in eastern Uganda within the existing system parameters and a robust community outreach programme. Design This health system strengthening study, part of the Uganda Newborn Study (UNEST), aimed to increase frontline health worker capacity through district-led training, support supervision, and mentoring at one district hospital and 19 lower-level facilities. A once-off supply of essential medicines and equipment was provided to address immediate critical gaps. Health workers were empowered to requisition subsequent supplies through use of district resources. Minimal infrastructure adjustments were provided. Quantitative data collection was done within routine process monitoring and qualitative data were collected during support supervision visits. We use the World Health Organization Health System Building Blocks to describe the process of district-led health facility strengthening. Results Seventy two per cent of eligible health workers were trained. The mean post-training knowledge score was 68% compared to 32% in the pre-training test, and 80% 1 year later. Health worker skills and competencies in care of high-risk babies improved following support supervision and mentoring. Health facility deliveries increased from 3,151 to 4,115 (a 30% increase) in 2 years. Of 547 preterm babies admitted to the newly introduced kangaroo mother care (KMC) unit, 85% were discharged alive to continue KMC at home. There was a non-significant declining trend for in-hospital neonatal deaths across the 2-year study period. While equipment levels remained high after initial improvement efforts, maintaining supply of even the most basic medications was a challenge, with less than 40% of

  18. Cryogenic fluid management experiment

    NASA Technical Reports Server (NTRS)

    Eberhardt, R. N.; Bailey, W. J.; Fester, D. A.

    1981-01-01

    The cryogenic fluid management experiment (CFME), designed to characterize subcritical liquid hydrogen storage and expulsion in the low-q space environment, is discussed. The experiment utilizes a fine mesh screen fluid management device to accomplish gas-free liquid expulsion and a thermodynamic vent system to intercept heat leak and control tank pressure. The experiment design evolved from a single flight prototype to provision for a multimission (up to 7) capability. A detailed design of the CFME, a dynamic test article, and dedicated ground support equipment were generated. All materials and parts were identified, and components were selected and specifications prepared. Long lead titanium pressurant spheres and the flight tape recorder and ground reproduce unit were procured. Experiment integration with the shuttle orbiter, Spacelab, and KSC ground operations was coordinated with the appropriate NASA centers, and experiment interfaces were defined. Phase 1 ground and flight safety reviews were conducted. Costs were estimated for fabrication and assembly of the CFME, which will become the storage and supply tank for a cryogenic fluid management facility to investigate fluid management in space.

  19. University of Maryland MRSEC - Facilities: SEM/STM/AFM

    Science.gov Websites

    MRSEC Templates Opportunities Search Home » Facilities » SEM/STM/AFM Shared Experimental Facilities conducting and non conducting samples. The sample stage permits electronic device imaging under operational Specifications: Image Modes - STM, STS, MFM, EFM, SKPM, contact- and non-contact AFM Three Sample Contacts 0.1 nm

  20. Closed Loop Experiment Manager (CLEM)—An Open and Inexpensive Solution for Multichannel Electrophysiological Recordings and Closed Loop Experiments

    PubMed Central

    Hazan, Hananel; Ziv, Noam E.

    2017-01-01

    There is growing need for multichannel electrophysiological systems that record from and interact with neuronal systems in near real-time. Such systems are needed, for example, for closed loop, multichannel electrophysiological/optogenetic experimentation in vivo and in a variety of other neuronal preparations, or for developing and testing neuro-prosthetic devices, to name a few. Furthermore, there is a need for such systems to be inexpensive, reliable, user friendly, easy to set-up, open and expandable, and possess long life cycles in face of rapidly changing computing environments. Finally, they should provide powerful, yet reasonably easy to implement facilities for developing closed-loop protocols for interacting with neuronal systems. Here, we survey commercial and open source systems that address these needs to varying degrees. We then present our own solution, which we refer to as Closed Loop Experiments Manager (CLEM). CLEM is an open source, soft real-time, Microsoft Windows desktop application that is based on a single generic personal computer (PC) and an inexpensive, general-purpose data acquisition board. CLEM provides a fully functional, user-friendly graphical interface, possesses facilities for recording, presenting and logging electrophysiological data from up to 64 analog channels, and facilities for controlling external devices, such as stimulators, through digital and analog interfaces. Importantly, it includes facilities for running closed-loop protocols written in any programming language that can generate dynamic link libraries (DLLs). We describe the application, its architecture and facilities. We then demonstrate, using networks of cortical neurons growing on multielectrode arrays (MEA) that despite its reliance on generic hardware, its performance is appropriate for flexible, closed-loop experimentation at the neuronal network level. PMID:29093659

  1. Development of the Plant Growth Facility for Use in the Shuttle Middeck and Test Units for Ground-Based Experiments

    NASA Technical Reports Server (NTRS)

    Chapman, David K.; Wells, H. William

    1996-01-01

    The plant growth facility (PGF), currently under development as a Space Shuttle middeck facility for the support of research on higher plants in microgravity, is presented. The PGF provides controlled fluorescent lighting and the active control of temperature, relative humidity and CO2 concentration. These parameters are designed to be centrally controlled by a dedicated microprocessor. The status of the experiment can be displayed for onboard analysis, and will be automatically archived for post-flight analysis. The facility is designed to operate for 15 days and will provide air filtration to remove ethylene and trace organics with replaceable potassium permanganate filters. Similar ground units will be available for pre-flight experimentation.

  2. Novel Characterization of Capsule X-Ray Drive at the National Ignition Facility [Using ViewFactor Experiments to Measure Hohlraum X-Radiation Drive from the Capsule Point-of-View in Ignition Experiments on the National Ignition Facility

    DOE PAGES

    MacLaren, S. A.; Schneider, M. B.; Widmann, K.; ...

    2014-03-13

    Here, indirect drive experiments at the National Ignition Facility are designed to achieve fusion by imploding a fuel capsule with x rays from a laser-driven hohlraum. Previous experiments have been unable to determine whether a deficit in measured ablator implosion velocity relative to simulations is due to inadequate models of the hohlraum or ablator physics. ViewFactor experiments allow for the first time a direct measure of the x-ray drive from the capsule point of view. The experiments show a 15%–25% deficit relative to simulations and thus explain nearly all of the disagreement with the velocity data. In addition, the datamore » from this open geometry provide much greater constraints on a predictive model of laser-driven hohlraum performance than the nominal ignition target.« less

  3. Sanford Underground Research Facility - The United State's Deep Underground Research Facility

    NASA Astrophysics Data System (ADS)

    Vardiman, D.

    2012-12-01

    The 2.5 km deep Sanford Underground Research Facility (SURF) is managed by the South Dakota Science and Technology Authority (SDSTA) at the former Homestake Mine site in Lead, South Dakota. The US Department of Energy currently supports the development of the facility using a phased approach for underground deployment of experiments as they obtain an advanced design stage. The geology of the Sanford Laboratory site has been studied during the 125 years of operations at the Homestake Mine and more recently as part of the preliminary geotechnical site investigations for the NSF's Deep Underground Science and Engineering Laboratory project. The overall geology at DUSEL is a well-defined stratigraphic sequence of schist and phyllites. The three major Proterozoic units encountered in the underground consist of interbedded schist, metasediments, and amphibolite schist which are crosscut by Tertiary rhyolite dikes. Preliminary geotechnical site investigations included drift mapping, borehole drilling, borehole televiewing, in-situ stress analysis, laboratory analysis of core, mapping and laser scanning of new excavations, modeling and analysis of all geotechnical information. The investigation was focused upon the determination if the proposed site rock mass could support the world's largest (66 meter diameter) deep underground excavation. While the DUSEL project has subsequently been significantly modified, these data are still available to provide a baseline of the ground conditions which may be judiciously extrapolated throughout the entire Proterozoic rock assemblage for future excavations. Recommendations for facility instrumentation and monitoring were included in the preliminary design of the DUSEL project design and include; single and multiple point extensometers, tape extensometers and convergence measurements (pins), load cells and pressure cells, smart cables, inclinometers/Tiltmeters, Piezometers, thermistors, seismographs and accelerometers, scanners (laser

  4. FLARE: a New User Facility for Studies of Magnetic Reconnection Through Simultaneous, in-situ Measurements on MHD Scales, Ion Scales and Electron Scales

    NASA Astrophysics Data System (ADS)

    Ji, H.; Bhattacharjee, A.; Goodman, A.; Prager, S.; Daughton, W. S.; Cutler, R.; Fox, W.; Hoffmann, F.; Kalish, M.; Kozub, T.; Jara-Almonte, J.; Myers, C. E.; Ren, Y.; Sloboda, P.; Yamada, M.; Yoo, J.; Bale, S. D.; Carter, T.; Dorfman, S. E.; Drake, J. F.; Egedal, J.; Sarff, J.; Wallace, J.

    2017-12-01

    The FLARE device (Facility for Laboratory Reconnection Experiments; flare.pppl.gov) is a new laboratory experiment under construction at Princeton for the studies of magnetic reconnection in the multiple X-line regimes directly relevant to space, solar, astrophysical, and fusion plasmas, as guided by a reconnection phase diagram [Ji & Daughton, (2011)]. The whole device has been successfully assembled with rough leak check completed. The first plasmas are expected in the fall to winter. The main diagnostic is an extensive set of magnetic probe arrays to cover multiple scales from local electron scales ( ˜2 mm), to intermediate ion scales ( ˜10 cm), and global MHD scales ( ˜1 m), simultaneously providing in-situ measurements over all these relevant scales. By using these laboratory data, not only the detailed spatial profiles around each reconnecting X-line are available for direct comparisons with spacecraft data, but also the global conditions and consequences of magnetic reconnection, which are often difficult to quantify in space, can be controlled or studied systematically. The planned procedures and example topics as a user facility will be discussed in detail.

  5. LDEF transverse flat plate heat pipe experiment /S1005/. [Long Duration Exposure Facility

    NASA Technical Reports Server (NTRS)

    Robinson, G. A., Jr.

    1979-01-01

    The paper describes the Transverse Flat Plate Heat Pipe Experiment. A transverse flat plate heat pipe is a thermal control device that serves the dual function of temperature control and mounting base for electronic equipment. In its ultimate application, the pipe would be a lightweight structure member that could be configured in a platform or enclosure and provide temperature control for large space structures, flight experiments, equipment, etc. The objective of the LDEF flight experiment is to evaluate the zero-g performance of a number of transverse flat plate heat pipe modules. Performance will include: (1) the pipes transport capability, (2) temperature drop, and (3) ability to maintain temperature over varying duty cycles and environments. Performance degradation, if any, will be monitored over the length of the LDEF mission. This information is necessary if heat pipes are to be considered for system designs where they offer benefits not available with other thermal control techniques, such as minimum weight penalty, long-life heat pipe/structural members.

  6. A tandem mirror hybrid plume plasma propulsion facility

    NASA Technical Reports Server (NTRS)

    Chang-Diaz, F. R.; Yang, T. F.; Krueger, W. A.; Peng, S.; Urbahn, J.; Yao, X.; Griffin, D.

    1988-01-01

    A concept in electrodeless plasma propulsion, which is also capable of delivering a variable Isp, is presented. The concept involves a three-stage system of plasma injection, heating, and subsequent ejection through a magnetic nozzle. The nozzle produces the hybrid plume by the coaxial injection of hypersonic neutral gas. The gas layer, thus formed, protects the material walls from the hot plasma and, through increased collisions, helps detach it from the diverging magnetic field. The physics of this concept is evaluated numerically through full spatial and temporal simulations; these explore the operating characteristics of such a device over a wide region of parameter space. An experimental facility to study the plasma dynamics in the hybrid plume was built. The device consists of a tandem mirror operating in an asymmetric mode. A later upgrade of this system will incorporate a cold plasma injector at one end of the machine. Initial experiments involve the full characterization of the operating envelope, as well as extensive measurements of plasma properties at the exhaust. The results of the numerical simulations are described.

  7. The RaDIATE High-Energy Proton Materials Irradiation Experiment at the Brookhaven Linac Isotope Producer Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ammigan, Kavin; et al.

    The RaDIATE collaboration (Radiation Damage In Accelerator Target Environments) was founded in 2012 to bring together the high-energy accelerator target and nuclear materials communities to address the challenging issue of radiation damage effects in beam-intercepting materials. Success of current and future high intensity accelerator target facilities requires a fundamental understanding of these effects including measurement of materials property data. Toward this goal, the RaDIATE collaboration organized and carried out a materials irradiation run at the Brookhaven Linac Isotope Producer facility (BLIP). The experiment utilized a 181 MeV proton beam to irradiate several capsules, each containing many candidate material samples formore » various accelerator components. Materials included various grades/alloys of beryllium, graphite, silicon, iridium, titanium, TZM, CuCrZr, and aluminum. Attainable peak damage from an 8-week irradiation run ranges from 0.03 DPA (Be) to 7 DPA (Ir). Helium production is expected to range from 5 appm/DPA (Ir) to 3,000 appm/DPA (Be). The motivation, experimental parameters, as well as the post-irradiation examination plans of this experiment are described.« less

  8. The Neutrons for Science Facility at SPIRAL-2.

    PubMed

    Ledoux, X; Aïche, M; Avrigeanu, M; Avrigeanu, V; Balanzat, E; Ban-d'Etat, B; Ban, G; Bauge, E; Bélier, G; Bém, P; Borcea, C; Caillaud, T; Chatillon, A; Czajkowski, S; Dessagne, P; Doré, D; Fischer, U; Frégeau, M O; Grinyer, J; Guillous, S; Gunsing, F; Gustavsson, C; Henning, G; Jacquot, B; Jansson, K; Jurado, B; Kerveno, M; Klix, A; Landoas, O; Lecolley, F R; Lecouey, J L; Majerle, M; Marie, N; Materna, T; Mrázek, J; Novák, J; Oberstedt, S; Oberstedt, A; Panebianco, S; Perrot, L; Plompen, A J M; Pomp, S; Prokofiev, A V; Ramillon, J M; Farget, F; Ridikas, D; Rossé, B; Serot, O; Simakov, S P; Šimecková, E; Stanoiu, M; Štefánik, M; Sublet, J C; Taïeb, J; Tarrío, D; Tassan-Got, L; Thfoin, I; Varignon, C

    2017-11-21

    The neutrons for science (NFS) facility is a component of SPIRAL-2, the new superconducting linear accelerator built at GANIL in Caen (France). The proton and deuteron beams delivered by the accelerator will allow producing intense neutron fields in the 100 keV-40 MeV energy range. Continuous and quasi-mono-kinetic energy spectra, respectively, will be available at NFS, produced by the interaction of a deuteron beam on a thick Be converter and by the 7Li(p,n) reaction on thin converter. The pulsed neutron beam, with a flux up to two orders of magnitude higher than those of other existing time-of-flight facilities, will open new opportunities of experiments in fundamental research as well as in nuclear data measurements. In addition to the neutron beam, irradiation stations for neutron-, proton- and deuteron-induced reactions will be available for cross-sections measurements and for the irradiation of electronic devices or biological cells. NFS, whose first experiment is foreseen in 2018, will be a very powerful tool for physics, fundamental research as well as applications like the transmutation of nuclear waste, design of future fission and fusion reactors, nuclear medicine or test and development of new detectors. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Radar multipath study for rain-on-radome experiments at the Aircraft Landing Dynamics Facility

    NASA Technical Reports Server (NTRS)

    Mackenzie, Anne I.; Staton, Leo D.

    1990-01-01

    An analytical study to determine the feasibility of a rain-on-radome experiment at the Aircraft Landing Dynamics Facility (ALDF) at the Langley Research Center is described. The experiment would measure the effects of heavy rain on the transmission of X-band weather radar signals, looking in particular for sources of anomalous attenuation. Feasibility is determined with regard to multipath signals arising from the major structural components of the ALDF. A computer program simulates the transmit and receive antennas, direct-path and multipath signals, and expected attenuation by rain. In the simulation, antenna height, signal polarization, and rainfall rate are variable parameters. The study shows that the rain-on-radome experiment is feasible with regard to multipath signals. The total received signal, taking into account multipath effects, could be measured by commercially available equipment. The study also shows that horizontally polarized signals would produce better experimental results than vertically polarized signals.

  10. Use of an ultrasonic osteotome device in spine surgery: experience from the first 128 patients.

    PubMed

    Hu, Xiaobang; Ohnmeiss, Donna D; Lieberman, Isador H

    2013-12-01

    The ultrasonic BoneScalpel is a tissue-specific device that allows the surgeon to make precise osteotomies while protecting collateral or adjacent soft tissue structures. The device is comprised of a blunt ultrasonic blade that oscillates at over 22,500 cycles/s with an imperceptible microscopic amplitude. The recurring impacts pulverize the noncompliant crystalline structure resulting in a precise cut. The more compliant adjacent soft tissue is not affected by the ultrasonic oscillation. The purpose of this study is to report the experience and safety of using this ultrasonic osteotome device in a variety of spine surgeries. Data were retrospectively collected from medical charts and surgical reports for each surgery in which the ultrasonic scalpel was used to perform any type of osteotomy (facetectomy, laminotomy, laminectomy, en bloc resection, Smith Petersen osteotomy, pedicle subtraction osteotomy, etc.). The majority of patients had spinal stenosis, degenerative or adolescent scoliosis, pseudoarthrosis, adjacent segment degeneration, and spondylolisthesis et al. Intra-operative complications were also recorded. A total of 128 consecutive patients (73 female, 55 male) beginning with our first case experience were included in this study. The mean age of the patients was 58 years (range 12-85 years). Eighty patients (62.5 %) had previous spine surgery and/or spinal deformity. The ultrasonic scalpel was used at all levels of the spine and the average levels operated on each patient were 5. The mean operation time (skin to skin) was 4.3 h and the mean blood loss was 425.4 ml. In all cases, the ultrasonic scalpel was used to create the needed osteotomies to facilitate the surgical procedure without any percussion on the spinal column or injury to the underlying nerves. There was a noticeable absence of bleeding from the cut end of the bone consistent with the ultrasonic application. There were 11 instances of dural injuries (8.6 %) and two of which were directly

  11. CVD facility electrical system captor/dapper study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SINGH, G.

    1999-10-28

    Project W-441, CVD Facility Electrical System CAPTOWDAPPER Study validates Meier's hand calculations. This study includes Load flow, short circuit, voltage drop, protective device coordination, and transient motor starting (TMS) analyses.

  12. Facility for Heavy Ion Collision Experiment at RAON

    NASA Astrophysics Data System (ADS)

    Kim, Young Jin; Kim, Do Gyun; Kim, Gi Dong; Kim, Yong Hak; Kim, Young-Jin; Kim, Yong Kyun; Kwon, Young Kwan; Yun, Chong Cheol; Hong, Byungsik; Sei Lee, Kyung; Kim, Eun Joo; Ahn, Jung Keun; Lee, Hyo Sang

    2014-03-01

    The Rare Isotope Science Project (RISP) was established in December 2011 in order to carry out the technical design and the establishment of the accelerator complex (RAON) for the rare isotope science in Korea. The rare isotope accelerator at RAON will provide both stable and rare isotope heavy-ion beams the energy range from a few MeV/nucleon to a few hundreds of MeV/nucleon for researches in fields of basic and applied science. Large Acceptance Multipurpose Spectrometer (LAMPS) at RAON is a heavy-ion collision experimental facility for studying nuclear symmetry energy by using rare isotope beams. Two different experimental setups of LAMPS are designed for covering entire energy range at RAON. One is for low energy (< 18.5 MeV/nucleon) heavy-ion collision experiment for day-1 experiments. This experimental setup consists of an array of ΔE-E Si-CsI detectors, a gamma array to cover backward polar angle, and a forward neutron wall. The other is for completing an event reconstruction by detecting all the particles produced in high energy heavy-ion collisions within a large acceptance angle to measure particle spectrum, yield, ratio and collective flow of pions, protons, neutrons, and intermediate fragments at the same time. The experimental setup consists of a superconducting spectrometer, a dipole spectrometer, and a forward neutron wall. A Time Projection Chamber (TPC) will be placed inside of superconducting solenoid magnet of 0.6 T for charged particle tracking. The dipole spectrometer will be located forward of the superconducting spectrometer and it will be composed of a combination of quadrupole, dipole magnets, focal plane detector, tracking stations, and Time-of-Flight (ToF) detector at the end. The neutron wall will be made of 10 layers of plastic scintillators for neutron tracking. In this presentation, the detail physics and design of LAMPS at RAON will be discussed.

  13. Status of the Center for Advanced Microstructures and Devices (CAMD)—2010

    NASA Astrophysics Data System (ADS)

    Roy, Amitava; Morikawa, Eizi; Bellamy, Henry; Kumar, Challa; Goettert, Jost; Suller, Victor; Morris, Kevin; Kurtz, Richard; Scott, John

    2011-09-01

    The J. Bennett Johnston, Sr., Center for Advanced Microstructures and Devices (CAMD) is a 1.3 GeV synchrotron-radiation facility owned and operated by the State of Louisiana. Fifteen beamlines provide radiation for CAMD users and cover the spectral range from the far IR to X-rays of ca. 40 keV. Eleven of them receive radiation from bending magnets and four from a 7 T wavelength shifter. A wide range of basic and applied scientific experiments as well as microfabrication are performed at these beamlines. The nanomaterial synthesis and characterization laboratory at CAMD continues to add new instruments such as SQUID magnetometer (Quantum Deign MPMS XL5) and high precision microfluidic-based nanomaterials synthesis equipment complementing already available facilities. We have recently received NSF MRI funding for a multipole 7.5 T wiggler that will become operational in 2012. Generous equipment donations from the University of California at Riverside (Professor Jory Yarmoff) and the University of Bonn (ELSA facility) will provide users with two additional VUV beamlines in the near future.

  14. Telemetry and Telestimulation via Implanted Devices Necessary in Long-Term Experiments Using Conscious Untethered Animals for the Development of New Medical Treatments

    NASA Astrophysics Data System (ADS)

    Sugimachi, Masaru; Kawada, Toru; Uemura, Kazunori

    Effective countermeasures against explosive increase in healthcare expenditures are urgently needed. A paradigm shift in healthcare is called for, and academics and governments worldwide are working hard on the application of information and communication technologies (ICT) as a feasible and effective measure for reducing medical cost. The more prevalent the disease and the easier disease outcome can be improved, the more efficient is medical ICT in reducing healthcare cost. Hypertension and diabetes mellitus are such examples. Chronic heart failure is another disease in which patients may benefit from ICT-based medical practice. It is conceivable that daily monitoring of hemodynamics together with appropriate treatments may obviate the expensive hospitalization. ICT potentially permit continuous monitoring with wearable or implantable medical devices. ICT may also help accelerate the development of new therapeutic devices. Traditionally effectiveness of treatments is sequentially examined by sacrificing a number of animals at a given time point. These inefficient and inaccurate methods can be replaced by applying ICT to the devices used in chronic animal experiments. These devices allow researchers to obtain biosignals and images from live animals without killing them. They include implantable telemetric devices, implantable telestimulation devices, and imaging devices. Implanted rather than wired monitoring and stimulation devices permit experiments to be conducted under even more physiological conditions, i.e., untethered, free-moving states. Wireless communication and ICT are indispensible technologies for the development of such telemetric and telestimulation devices.

  15. Service providers' experiences of disrespectful and abusive behavior towards women during facility based childbirth in Addis Ababa, Ethiopia.

    PubMed

    Asefa, Anteneh; Bekele, Delayehu; Morgan, Alison; Kermode, Michelle

    2018-01-05

    Disrespect and abuse (D&A) of women during childbirth by the attending staff in health facilities has been widely reported in many countries. Although D&A in labor rooms is recognized as a deterrent to maternal health service utilization, approaches to defining, classifying, and measuring D&A are still at an early stage of development. This study aims to enhance understanding of service providers' experiences of D&A during facility based childbirth in health facilities in Addis Ababa. A facility based cross-sectional study was conducted in August 2013 in one hospital and three health centers. A total of 57 health professionals who had assisted with childbirth during the study period completed a self-administered questionnaire. Service providers' personal observations of mistreatment during childbirth and their perceptions of respectful maternity care (RMC) were assessed. Data were entered into and analyzed using SPSS version 16 software. The majority (83.7%) of participants were aged <30 years (mean = 27.25 ± 5.45). Almost half (43.9%) were midwives, and 77.2% had less than five years experience as a health professional. Work load was reported to be very high by 31.6% of participants, and 28% rated their working environment as poor or very poor. Almost half (50.3%) of participants reported that service providers do not generally obtain women's consent prior to procedures. One-quarter (25.9%) reported having ever witnessed physical abuse (physical force, slapping, or hitting) in their health facility. They also reported observing privacy violations (34.5%), and women being detained against their will (18%). Violations of women's rights were self-reported by 14.5% of participants. More than half (57.1%) felt that they had been disrespected and abused in their work place. The majority of participants (79.6%) believed that lack of respectful care discourages pregnant women from coming to health facilities for delivery. The study findings indicate that most

  16. Research and test facilities for development of technologies and experiments with commercial applications

    NASA Technical Reports Server (NTRS)

    1989-01-01

    One of NASA'S agency-wide goals is the commercial development of space. To further this goal NASA is implementing a policy whereby U.S. firms are encouraged to utilize NASA facilities to develop and test concepts having commercial potential. Goddard, in keeping with this policy, will make the facilities and capabilities described in this document available to private entities at a reduced cost and on a noninterference basis with internal NASA programs. Some of these facilities include: (1) the Vibration Test Facility; (2) the Battery Test Facility; (3) the Large Area Pulsed Solar Simulator Facility; (4) the High Voltage Testing Facility; (5) the Magnetic Field Component Test Facility; (6) the Spacecraft Magnetic Test Facility; (7) the High Capacity Centrifuge Facility; (8) the Acoustic Test Facility; (9) the Electromagnetic Interference Test Facility; (10) the Space Simulation Test Facility; (11) the Static/Dynamic Balance Facility; (12) the High Speed Centrifuge Facility; (13) the Optical Thin Film Deposition Facility; (14) the Gold Plating Facility; (15) the Paint Formulation and Application Laboratory; (16) the Propulsion Research Laboratory; (17) the Wallops Range Facility; (18) the Optical Instrument Assembly and Test Facility; (19) the Massively Parallel Processor Facility; (20) the X-Ray Diffraction and Scanning Auger Microscopy/Spectroscopy Laboratory; (21) the Parts Analysis Laboratory; (22) the Radiation Test Facility; (23) the Ainsworth Vacuum Balance Facility; (24) the Metallography Laboratory; (25) the Scanning Electron Microscope Laboratory; (26) the Organic Analysis Laboratory; (27) the Outgassing Test Facility; and (28) the Fatigue, Fracture Mechanics and Mechanical Testing Laboratory.

  17. The MISSE-9 Polymers and Composites Experiment Being Flown on the MISSE-Flight Facility

    NASA Technical Reports Server (NTRS)

    De Groh, Kim K.; Banks, Bruce A.

    2017-01-01

    Materials on the exterior of spacecraft in low Earth orbit (LEO) are subject to extremely harsh environmental conditions, including various forms of radiation (cosmic rays, ultraviolet, x-ray, and charged particle radiation), micrometeoroids and orbital debris, temperature extremes, thermal cycling, and atomic oxygen (AO). These environmental exposures can result in erosion, embrittlement and optical property degradation of susceptible materials, threatening spacecraft performance and durability. To increase our understanding of space environmental effects such as AO erosion and radiation induced embrittlement of spacecraft materials, NASA Glenn has developed a series of experiments flown as part of the Materials International Space Station Experiment (MISSE) missions on the exterior of the International Space Station (ISS). These experiments have provided critical LEO space environment durability data such as AO erosion yield values for many materials and mechanical properties changes after long term space exposure. In continuing these studies, a new Glenn experiment has been proposed, and accepted, for flight on the new MISSE-Flight Facility (MISSE-FF). This experiment is called the Polymers and Composites Experiment and it will be flown as part of the MISSE-9 mission, the inaugural mission of MISSE-FF. Figure 1 provides an artist rendition of MISSE-FF ISS external platform. The MISSE-FF is manifested for launch on SpaceX-13.

  18. The implementation of tissue banking experiences for setting up a cGMP cell manufacturing facility.

    PubMed

    Arjmand, Babak; Emami-Razavi, Seyed Hassan; Larijani, Bagher; Norouzi-Javidan, Abbas; Aghayan, Hamid Reza

    2012-12-01

    Cell manufacturing for clinical applications is a unique form of biologics manufacturing that relies on maintenance of stringent work practices designed to ensure product consistency and prevent contamination by microorganisms or by another patient's cells. More extensive, prolonged laboratory processes involve greater risk of complications and possibly adverse events for the recipient, and so the need for control is correspondingly greater. To minimize the associate risks of cell manufacturing adhering to international quality standards is critical. Current good tissue practice (cGTP) and current good manufacturing practice (cGMP) are examples of general standards that draw a baseline for cell manufacturing facilities. In recent years, stem cell researches have found great public interest in Iran and different cell therapy projects have been started in country. In this review we described the role of our tissue banking experiences in establishing a new cGMP cell manufacturing facility. The authors concluded that, tissue banks and tissue banking experts can broaden their roles from preparing tissue grafts to manufacturing cell and tissue engineered products for translational researches and phase I clinical trials. Also they can collaborate with cell processing laboratories to develop SOPs, implement quality management system, and design cGMP facilities.

  19. A negative ion source test facility

    NASA Astrophysics Data System (ADS)

    Melanson, S.; Dehnel, M.; Potkins, D.; Theroux, J.; Hollinger, C.; Martin, J.; Philpott, C.; Stewart, T.; Jackle, P.; Williams, P.; Brown, S.; Jones, T.; Coad, B.; Withington, S.

    2016-02-01

    Progress is being made in the development of an Ion Source Test Facility (ISTF) by D-Pace Inc. in collaboration with Buckley Systems Ltd. in Auckland, NZ. The first phase of the ISTF is to be commissioned in October 2015 with the second phase being commissioned in March 2016. The facility will primarily be used for the development and the commercialization of ion sources. It will also be used to characterize and further develop various D-Pace Inc. beam diagnostic devices.

  20. Double emulsions from a capillary array injection microfluidic device.

    PubMed

    Shang, Luoran; Cheng, Yao; Wang, Jie; Ding, Haibo; Rong, Fei; Zhao, Yuanjin; Gu, Zhongze

    2014-09-21

    A facile microfluidic device was developed by inserting an annular capillary array into a collection channel for single-step emulsification of double emulsions. By inserting multiple inner-phase solutions into the capillary array, multicomponent double emulsions or microcapsules with inner droplets of different content could also be obtained from the device.

  1. The Dangers of Dental Devices as reported in the FDA MAUDE Database

    PubMed Central

    Hebballi, Nutan B; Ramoni, Rachel; Kalenderian, Elsbeth; Delattre, Veronique F.; Stewart, Denice C.L.; Kent, Karla; White, Joel M; Vaderhobli, Ram; Walji, Muhammad F

    2014-01-01

    Objectives To determine the frequency and type of adverse events (AEs) associated with dental devices reported to Food and Drug Administration (FDA) Manufacturer and User Facility Device Experience (MAUDE) database. Methods We downloaded and thoroughly reviewed the dental device-related AEs reported to MAUDE from January 01, 1996 – December 31, 2011. Results MAUDE received a total of 1,978,056 reports between January 01, 1996 and December 31, 2011. Among these reports, 28,046 (1.4 percent) AEs reports were associated with dental devices. Within the dental AE reports that had event type information, 17,261 reported injuries, 7,777 reported device malfunctions, and 66 reported deaths. Among the 66 entries classified as death reports, 52 actually reported a death in the description; the remaining were either misclassified or lacked sufficient information in the report to determine whether a death had occurred. 53.5 percent of the dental device associated AEs pertained to endosseous implants. Conclusion There is a plethora of devices used in dental care, and to achieve Element 1 of AHRQ’s Patient Safety Initiative, we must be able to monitor the safety of dental devices. While MAUDE is essentially the single source of this valuable information, our investigations led us to conclude that it currently has major limitations that prevent it from being the broad-based patient safety sentinel the profession requires. Practical Implications As potential contributors to MAUDE, dental care teams play a key role in improving the profession’s access to information about the safety of dental devices. PMID:25637208

  2. The lived experiences of resilience in Iranian adolescents living in residential care facilities: A hermeneutic phenomenological study.

    PubMed

    Nourian, Manijeh; Shahbolaghi, Farahnaz Mohammadi; Tabrizi, Kian Nourozi; Rassouli, Maryam; Biglarrian, Akbar

    2016-01-01

    Resilience is one of the main factors affecting human health, and perceiving its meaning for high-risk adolescents is of particular importance in initiating preventive measures and providing resilience care. This qualitative study was conducted to explain the meaning of resilience in the lived experiences of Iranian adolescents living in governmental residential care facilities. This study was conducted using the hermeneutic phenomenological method. Semi-structured interviews were conducted with eight adolescents aged 13-17 living in governmental residential care facilities of Tehran province affiliated to the Welfare Organization of Iran who articulated their experiences of resilience. Sampling lasted from May 2014 to July 2015 and continued until new themes were no longer emerging. The researchers analyzed the verbatim transcripts using Van Manen's six-step method of phenomenology. The themes obtained in this study included "going through life's hardships," "aspiring for achievement," "self-protection," "self-reliance," and "spirituality." Our study indicates that the meaning of resilience coexists with self-reliance in adolescents' lived experiences. Adolescents look forward to a better future. They always trust God in the face of difficulties and experience resilience by keeping themselves physically and mentally away from difficulties. Adverse and bitter experiences of the past positively affected their positive view on life and its difficulties and also their resilience. The five themes that emerged from the findings describe the results in detail. The findings of this study enable nurses, health administrators, and healthcare providers working with adolescents to help this vulnerable group cope better with their stressful life conditions and improve their health through increasing their capacity for resilience.

  3. Test Plan for the Wake Steering Experiment at the Scaled Wind Farm Technology (SWiFT) Facility.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naughton, Brian Thomas

    This document is a test plan describing the objectives, configuration, procedures, reporting, roles, and responsibilities for conducting the joint Sandia National Laboratories and National Renewable Energy Laboratory Wake Steering Experiment at the Sandia Scaled Wind Farm Technology (SWiFT) facility near Lubbock, Texas in 2016 and 2017 . The purpose of this document is to ensure the test objectives and procedures are sufficiently detailed such that al l involved personnel are able to contribute to the technical success of the test. This document is not intended to address safety explicitly which is addressed in a separate document listed in the referencesmore » titled Sandia SWiFT Facility Site Operations Manual . Both documents should be reviewed by all test personnel.« less

  4. Ultimate turbulence experiment: simultaneous measurements of Cn2 near the ground using six devices and eight methods

    NASA Astrophysics Data System (ADS)

    Yatcheva, Lydia; Barros, Rui; Segel, Max; Sprung, Detlev; Sucher, Erik; Eisele, Christian; Gladysz, Szymon

    2015-10-01

    We have performed a series of experiments in order to simultaneously validate several devices and methods for measurement of the path-averaged refractive index structure constant ( 𝐶𝑛 2). The experiments were carried out along a horizontal urban path near the ground. Measuring turbulence in this layer is particularly important because of the prospect of using adaptive optics for free-space optical communications in an urban environment. On one hand, several commercial sensors were used: SLS20, a laser scintillometer from Scintec AG, BLS900, a largeaperture scintillometer, also from Scintec, and a 3D sonic anemometer from Thies GmbH. On the other hand, we measured turbulence strength with new approaches and devices developed in-house. Firstly, an LED array combined with a high-speed camera allowed for measurement of 𝐶𝑛 2 from raw- and differential image motion, and secondly a two-part system comprising a laser source, a Shack-Hartmann sensor and a PSF camera recoded turbulent modulation transfer functions, Zernike variances and angle-of-arrival structure functions, yielding three independent estimates of 𝐶𝑛 2. We compare the measured values yielded simultaneously by commercial and in-house developed devices and show very good agreement between 𝐶𝑛 2 values for all the methods. Limitations of each experimental method are also discussed.

  5. Accessing care summaries at point-of-care:Implementation of mobile devices for personal carers in aged care.

    PubMed

    Brimelow, Rachel E; Gibney, Annie; Meakin, Suzanne; Wollin, Judy A

    2017-04-01

    Continued development of mobile technology now allows access to information at the point-of-care. This study was conducted to evaluate the use of one such tool on a mobile device, from the carer perspective. Caregivers across 12 aged-care facilities were supplied mobile devices to access a Picture Care Plan (PCP), a specific tool designed around the role of the personal carer. An anonymous questionnaire was subsequently completed by 85 carers with questions relating to participants' experience. Perceived helpfulness of the PCP at the point-of-care was high (87%). A significant number of participants believed the use of the PCP increased resident safety and quality of care (76%). Practical components related to the carrying of the device, network speed and the requirement to maintain communication with senior members of staff to ascertain updates were also expressed by participants. Findings suggest that staff are receptive to adoption of mobile devices to access care directives at the point-of-care and that the technology is useful.

  6. A new sliding joint to accommodate recoil of a free-piston-driven expansion tube facility

    NASA Astrophysics Data System (ADS)

    Gildfind, D. E.; Morgan, R. G.

    2016-11-01

    This paper describes a new device to decouple free-piston driver recoil and its associated mechanical vibration from the acceleration tube and test section of The University of Queensland's X3 expansion tube. A sliding joint is introduced to the acceleration tube which axially decouples the facility at this station. When the facility is fired, the upstream section of the facility, which includes the free-piston driver, can recoil upstream freely. The downstream acceleration tube remains stationary. This arrangement provides two important benefits. Firstly, it eliminates nozzle movement relative to the test section before and during the experiment. This has benefits in terms of experimental setup and alignment. Secondly, it prevents transmission of mechanical disturbances from the free-piston driver to the acceleration tube, thereby eliminating mechanically-induced transducer noise in the sensitive pressure transducers installed in this low-pressure tube. This paper details the new design, and presents experimental confirmation of its performance.

  7. 46 CFR 160.151-45 - Equipment required for servicing facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...); (d) Hot presses (if applicable); (e) Safety-type glue pots or equivalents; (f) Abrasive devices; (g..., or other pressure-measurement device or pressure gauge of equivalent accuracy and sensitivity; (j... liferafts, unless the facility services only non-davit-launched liferafts; (q) A supply of parts for all...

  8. Applicability of the two-angle differential method to response measurement of neutron-sensitive devices at the RCNP high-energy neutron facility

    NASA Astrophysics Data System (ADS)

    Masuda, Akihiko; Matsumoto, Tetsuro; Iwamoto, Yosuke; Hagiwara, Masayuki; Satoh, Daiki; Sato, Tatsuhiko; Iwase, Hiroshi; Yashima, Hiroshi; Nakane, Yoshihiro; Nishiyama, Jun; Shima, Tatsushi; Tamii, Atsushi; Hatanaka, Kichiji; Harano, Hideki; Nakamura, Takashi

    2017-03-01

    Quasi-monoenergetic high-energy neutron fields induced by 7Li(p,n) reactions are used for the response evaluation of neutron-sensitive devices. The quasi-monoenergetic high-energy field consists of high-energy monoenergetic peak neutrons and unwanted continuum neutrons down to the low-energy region. A two-angle differential method has been developed to compensate for the effect of the continuum neutrons in the response measurements. In this study, the two-angle differential method was demonstrated for Bonner sphere detectors, which are typical examples of moderator-based neutron-sensitive detectors, to investigate the method's applicability and its dependence on detector characteristics. Experiments were performed under 96-387 MeV quasi-monoenergetic high-energy neutron fields at the Research Center for Nuclear Physics (RCNP), Osaka University. The measurement results for large high-density polyethylene (HDPE) sphere detectors agreed well with Monte Carlo calculations, which verified the adequacy of the two-angle differential method. By contrast, discrepancies were observed in the results for small HDPE sphere detectors and metal-induced sphere detectors. The former indicated that detectors that are particularly sensitive to low-energy neutrons may be affected by penetrating neutrons owing to the geometrical features of the RCNP facility. The latter discrepancy could be consistently explained by a problem in the evaluated cross-section data for the metals used in the calculation. Through those discussions, the adequacy of the two-angle differential method was experimentally verified, and practical suggestions were made pertaining to this method.

  9. Progress toward a cosmic dust collection facility on space station

    NASA Technical Reports Server (NTRS)

    Mackinnon, Ian D. R. (Editor); Carey, William C. (Editor)

    1987-01-01

    Scientific and programmatic progress toward the development of a cosmic dust collection facility (CDCF) for the proposed space station is documented. Topics addressed include: trajectory sensor concepts; trajectory accuracy and orbital evolution; CDCF pointing direction; development of capture devices; analytical techniques; programmatic progress; flight opportunities; and facility development.

  10. 40 CFR 60.560 - Applicability and designation of affected facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (including expandable polystyrene) manufacturing processes, the affected facilities are each group of...) shall be used to determine the control of emissions from the facility. Table 2—Maximum Uncontrolled... rate of a vent stream to the atmosphere that would occur in the absence of any add-on control devices...

  11. 40 CFR 60.560 - Applicability and designation of affected facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (including expandable polystyrene) manufacturing processes, the affected facilities are each group of...) shall be used to determine the control of emissions from the facility. Table 2—Maximum Uncontrolled... rate of a vent stream to the atmosphere that would occur in the absence of any add-on control devices...

  12. Plasma lens experiments at the Final Focus Test Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barletta, B.; Chattopadhyay, S.; Chen, P.

    1993-04-01

    We intend to carry out a series of plasma lens experiments at the Final Focus Test Beam facility at SLAC. These experiments will be the first to study the focusing of particle beams by plasma focusing devices in the parameter regime of interest for high energy colliders, and is expected to lead to plasma lens designs capable of unprecedented spot sizes. Plasma focusing of positron beams will be attempted for the first time. We will study the effects of lens aberrations due to various lens imperfections. Several approaches will be applied to create the plasma required including laser ionization andmore » beam ionization of a working gas. At an increased bunch population of 2.5 {times} 10{sup 10}, tunneling ionization of a gas target by an electron beam -- an effect which has never been observed before -- should be significant. The compactness of our device should prove to be of interest for applications at the SLC and the next generation linear colliders.« less

  13. FDA publishes checklist of Y2K high-risk devices.

    PubMed

    1999-09-01

    Key points. The federal Food and Drug Administration (FDA) has developed a list of types of medical devices that have the potential for the most serious consequences for patients should they fail because of Y2K-related problems. This list of computer-controlled potentially high-risk devices can provide a guide to health care facilities regarding the types of devices that should receive priority in their assessment and remediation of medical devices. The list may change as the FDA receives comments on the types of devices included in the list.

  14. Adherence to blood pressure measurement guidelines in long-term care facilities: A cross sectional study.

    PubMed

    Ozone, Sachiko; Sato, Mikiya; Takayashiki, Ayumi; Sakamoto, Naoto; Yoshimoto, Hisashi; Maeno, Tetsuhiro

    2018-05-01

    To assess the extent to which long-term care facilities in Japan adhere to blood pressure (BP) measurement guidelines. Cross-sectional, observational survey. Japan (nationwide). Geriatric health service facilities that responded to a questionnaire among 701 facilities that provide short-time daycare rehabilitation services in Japan. A written questionnaire that asked about types of measurement devices, number of measurements used to obtain an average BP, resting time prior to measurement, and measurement methods when patients' arms were covered with thin (eg, a light shirt) or thick sleeves (eg, a sweater) was administered. Proportion of geriatric health service facilities adherent to BP measurement guidelines. The response rate was 63.2% (443/701). Appropriate upper-arm BP measurement devices were used at 302 facilities (68.2%). The number of measurements was appropriate at 7 facilities (1.6%). Pre-measurement resting time was appropriate (≥5 minutes) at 205 facilities (46.3%). Of the 302 facilities that used appropriate BP measurement devices, 4 (1.3%) measured BP on a bare arm if it was covered with a thin sleeve, while 266 (88.1%) measured BP over a thin sleeve. When arms were covered with thick sleeves, BP was measured on a bare arm at 127 facilities (42.1%) and over a sleeve at 78 facilities (25.8%). BP measurement guidelines were not necessarily followed by long-term care service facilities in Japan. Modification of guidelines regarding removing thick sweaters and assessing BP on a visit-to-visit basis might be needed.

  15. Laboratory simulations of astrophysical jets: results from experiments at the PF-3, PF-1000U, and KPF-4 facilities

    NASA Astrophysics Data System (ADS)

    Krauz, V. I.; Myalton, V. V.; Vinogradov, V. P.; Velikhov, E. P.; Ananyev, S. S.; Dan'ko, S. A.; Kalinin, Yu G.; Kharrasov, A. M.; Vinogradova, Yu V.; Mitrofanov, K. N.; Paduch, M.; Miklaszewski, R.; Zielinska, E.; Skladnik-Sadowska, E.; Sadowski, M. J.; Kwiatkowski, R.; Tomaszewski, K.; Vojtenko, D. A.

    2017-10-01

    Results are presented from laboratory simulations of plasma jets emitted by young stellar objects carried out at the plasma focus facilities. The experiments were performed at three facilities: the PF-3, PF-1000U and KPF-4. The operation modes were realized enabling the formation of narrow plasma jets which can propagate over long distances. The main parameters of plasma jets and background plasma were determined. In order to control the ratio of a jet density to that of background plasma, some special operation modes with pulsed injection of the working gas were used.

  16. Zero Gravity Research Facility User's Guide

    NASA Technical Reports Server (NTRS)

    Thompson, Dennis M.

    1999-01-01

    The Zero Gravity Research Facility (ZGF) is operated by the Space Experiments Division of the NASA John H. Glenn Research Center (GRC) for investigators sponsored by the Microgravity Science and Applications Division of NASA Headquarters. This unique facility has been utilized by scientists and engineers for reduced gravity experimentation since 1966. The ZGF has provided fundamental scientific information, has been used as an important test facility in the space flight hardware design, development, and test process, and has also been a valuable source of data in the flight experiment definition process. The purpose of this document is to provide information and guidance to prospective researchers regarding the design, buildup, and testing of microgravity experiments.

  17. Shock timing experiments on the National Ignition Facility: Initial results and comparison with simulation

    NASA Astrophysics Data System (ADS)

    Robey, H. F.; Boehly, T. R.; Celliers, P. M.; Eggert, J. H.; Hicks, D.; Smith, R. F.; Collins, R.; Bowers, M. W.; Krauter, K. G.; Datte, P. S.; Munro, D. H.; Milovich, J. L.; Jones, O. S.; Michel, P. A.; Thomas, C. A.; Olson, R. E.; Pollaine, S.; Town, R. P. J.; Haan, S.; Callahan, D.; Clark, D.; Edwards, J.; Kline, J. L.; Dixit, S.; Schneider, M. B.; Dewald, E. L.; Widmann, K.; Moody, J. D.; Döppner, T.; Radousky, H. B.; Throop, A.; Kalantar, D.; DiNicola, P.; Nikroo, A.; Kroll, J. J.; Hamza, A. V.; Horner, J. B.; Bhandarkar, S. D.; Dzenitis, E.; Alger, E.; Giraldez, E.; Castro, C.; Moreno, K.; Haynam, C.; LaFortune, K. N.; Widmayer, C.; Shaw, M.; Jancaitis, K.; Parham, T.; Holunga, D. M.; Walters, C. F.; Haid, B.; Mapoles, E. R.; Sater, J.; Gibson, C. R.; Malsbury, T.; Fair, J.; Trummer, D.; Coffee, K. R.; Burr, B.; Berzins, L. V.; Choate, C.; Brereton, S. J.; Azevedo, S.; Chandrasekaran, H.; Eder, D. C.; Masters, N. D.; Fisher, A. C.; Sterne, P. A.; Young, B. K.; Landen, O. L.; Van Wonterghem, B. M.; MacGowan, B. J.; Atherton, J.; Lindl, J. D.; Meyerhofer, D. D.; Moses, E.

    2012-04-01

    Capsule implosions on the National Ignition Facility (NIF) [Lindl et al., Phys. Plasmas 11, 339 (2004)] are underway with the goal of compressing deuterium-tritium (DT) fuel to a sufficiently high areal density (ρR) to sustain a self-propagating burn wave required for fusion power gain greater than unity. These implosions are driven with a carefully tailored sequence of four shock waves that must be timed to very high precision in order to keep the DT fuel on a low adiabat. Initial experiments to measure the strength and relative timing of these shocks have been conducted on NIF in a specially designed surrogate target platform known as the keyhole target. This target geometry and the associated diagnostics are described in detail. The initial data are presented and compared with numerical simulations. As the primary goal of these experiments is to assess and minimize the adiabat in related DT implosions, a methodology is described for quantifying the adiabat from the shock velocity measurements. Results are contrasted between early experiments that exhibited very poor shock timing and subsequent experiments where a modified target geometry demonstrated significant improvement.

  18. Australian national networked tele-test facility for integrated systems

    NASA Astrophysics Data System (ADS)

    Eshraghian, Kamran; Lachowicz, Stefan W.; Eshraghian, Sholeh

    2001-11-01

    The Australian Commonwealth government recently announced a grant of 4.75 million as part of a 13.5 million program to establish a world class networked IC tele-test facility in Australia. The facility will be based on a state-of-the-art semiconductor tester located at Edith Cowan University in Perth that will operate as a virtual centre spanning Australia. Satellite nodes will be located at the University of Western Australia, Griffith University, Macquarie University, Victoria University and the University of Adelaide. The facility will provide vital equipment to take Australia to the frontier of critically important and expanding fields in microelectronics research and development. The tele-test network will provide state of the art environment for the electronics and microelectronics research and the industry community around Australia to test and prototype Very Large Scale Integrated (VLSI) circuits and other System On a Chip (SOC) devices, prior to moving to the manufacturing stage. Such testing is absolutely essential to ensure that the device performs to specification. This paper presents the current context in which the testing facility is being established, the methodologies behind the integration of design and test strategies and the target shape of the tele-testing Facility.

  19. Microgravity experiment study on the vane type surface tension tank

    NASA Astrophysics Data System (ADS)

    Kang, Qi; Duan, Li; Rui, Wei

    Having advantages of low cost, convenience and high level of microgravity, the drop tower has become a significant microgravity experiment facility. National Microgravity Laboratory/CAS(NMLC) drop tower has 3.5s effective microgravity time, meanwhile the level of microgravity can reach 10 (-5) g. And the impact acceleration is less than 15g in the recovery period. The microgravity experiments have been conducted on the scaling model of vane type surface tension tank in NMLC’s drop tower. The efficiency of Propellant Management Devices (PMDs) was studied, which focus on the effects of Propellant Management Devices (PMDs), numbers of PMDs, contact angle, and liquid viscosity on the flow rate. The experimental results shown that the numbers of PMDs have little or no effect on the flow rate while the liquid is sufficient. The experiments about the influence of different charging ratio have been carried out while tank is placed positively and reversely, and we find the charging ratio has less effect on the capillary flow rate when the charging ratio is greater than 2%.

  20. Boiling eXperiment Facility (BXF) Fluid Toxicity Technical Interchange Meeting (TIM) with the Payload Safety Review Panel (PSRP)

    NASA Technical Reports Server (NTRS)

    Sheredy, William A.

    2012-01-01

    A Technical Interchange meeting was held between the payload developers for the Boiling eXperiment Facility (BXF) and the NASA Safety Review Panel concerning operational anomaly that resulted in overheating one of the fluid heaters, shorted a 24VDC power supply and generated Perfluoroisobutylene (PFiB) from Perfluorohexane.

  1. Universal Test Facility

    NASA Technical Reports Server (NTRS)

    Laughery, Mike

    1994-01-01

    A universal test facility (UTF) for Space Station Freedom is developed. In this context, universal means that the experimental rack design must be: automated, highly marketable, and able to perform diverse microgravity experiments according to NASA space station requirements. In order to fulfill these broad objectives, the facility's customers, and their respective requirements, are first defined. From these definitions, specific design goals and the scope of the first phase of this project are determined. An examination is first made into what types of research are most likely to make the UTF marketable. Based on our findings, the experiments for which the UTF would most likely be used included: protein crystal growth, hydroponics food growth, gas combustion, gallium arsenide crystal growth, microorganism development, and cell encapsulation. Therefore, the UTF is designed to fulfill all of the major requirements for the experiments listed above. The versatility of the design is achieved by taking advantage of the many overlapping requirements presented by these experiments.

  2. Universal Test Facility

    NASA Astrophysics Data System (ADS)

    Laughery, Mike

    A universal test facility (UTF) for Space Station Freedom is developed. In this context, universal means that the experimental rack design must be: automated, highly marketable, and able to perform diverse microgravity experiments according to NASA space station requirements. In order to fulfill these broad objectives, the facility's customers, and their respective requirements, are first defined. From these definitions, specific design goals and the scope of the first phase of this project are determined. An examination is first made into what types of research are most likely to make the UTF marketable. Based on our findings, the experiments for which the UTF would most likely be used included: protein crystal growth, hydroponics food growth, gas combustion, gallium arsenide crystal growth, microorganism development, and cell encapsulation. Therefore, the UTF is designed to fulfill all of the major requirements for the experiments listed above. The versatility of the design is achieved by taking advantage of the many overlapping requirements presented by these experiments.

  3. Hope and connection: the experience of family caregivers of persons with dementia living in a long term care facility

    PubMed Central

    2013-01-01

    Background Hope is a psychosocial resource that is essential for the psychological, spiritual, and physical well-being of family members caring for persons with dementia. A significant positive relationship has been found between hope and well-being in family caregivers of persons with dementia living in the community. However, the hope experience of family caregivers of persons living with dementia in long-term care (LTC) facilities has not been explored. The purpose of this study was to explore the hope experience of family caregivers of persons with dementia living in a LTC facility. Methods Twenty-three open-ended face to face interviews were conducted with 13 family caregivers of residents with dementia in a LTC facility. Family was broadly defined to include relatives and friends. Seven of these participants also reflected on their hope in diaries over a two week period. Interview transcripts and journal texts were analyzed using Thorne’s interpretive description approach. Results The over-arching theme was “hope and connection”. Participants lost hope and felt despair when they perceived they were unable to connect with their family member in the LTC facility. They regained their hope when a connection could be made. Several sub-themes were identified including: accepting where we are, living life in the moment, believing in something, standing together, and balancing dual worlds. Conclusions Hope was important and essential for family caregivers of persons with dementia residing in a LTC facility. The overarching theme of “hope and connection” underscores the importance of maintaining relationships and connection between family members and the person in LTC. Given the paucity of hope research conducted within this population, the study findings provide a foundation for future research. PMID:24138640

  4. The QUASAR facility

    NASA Astrophysics Data System (ADS)

    Gates, David

    2013-10-01

    The QUAsi-Axisymmetric Research (QUASAR) stellarator is a new facility which can solve two critical problems for fusion, disruptions and steady-state, and which provides new insights into the role of magnetic symmetry in plasma confinement. If constructed it will be the only quasi-axisymmetric stellarator in the world. The innovative principle of quasi-axisymmetry (QA) will be used in QUASAR to study how ``tokamak-like'' systems can be made: 1) Disruption-free, 2) Steady-state with low recirculating power, while preserving or improving upon features of axisymmetric tokamaks, such as 1) Stable at high pressure simultaneous with 2) High confinement (similar to tokamaks), and 3) Scalable to a compact reactor Stellarator research is critical to fusion research in order to establish the physics basis for a magnetic confinement device that can operate efficiently in steady-state, without disruptions at reactor-relevant parameters. The two large stellarator experiments - LHD in Japan and W7-X under construction in Germany are pioneering facilities capable of developing 3D physics understanding at large scale and for very long pulses. The QUASAR design is unique in being QA and optimized for confinement, stability, and moderate aspect ratio (4.5). It projects to a reactor with a major radius of ~8 m similar to advanced tokamak concepts. It is striking that (a) the EU DEMO is a pulsed (~2.5 hour) tokamak with major R ~ 9 m and (b) the ITER physics scenarios do not presume steady-state behavior. Accordingly, QUASAR fills a critical gap in the world stellarator program. This work supported by DoE Contract No. DEAC02-76CH03073.

  5. Facilities as teaching tools: A transformative participatory professional development experience

    NASA Astrophysics Data System (ADS)

    Wilson, Eric A.

    Resource consumption continues to increase as the population grows. In order to secure a sustainable future, society must educate the next generation to become "sustainability natives." Schools play a pivotal role in educating a sustainability-literate society. However, a disconnect exists between the hidden curriculum of the built environment and the enacted curriculum. This study employs a transformative participatory professional development model to instruct teachers on how to use their school grounds as teaching tools for the purpose of helping students make explicit choices in energy consumption, materials use, and sustainable living. Incorporating a phenomenological perspective, this study considers the lived experience of two sustainability coordinators. Grounded theory provides an interpretational context for the participants' interactions with each other and the professional development process. Through a year long professional development experience - commencing with an intense, participatory two-day workshop -the participants discussed challenges they faced with integrating facilities into school curriculum and institutionalizing a culture of sustainability. Two major needs were identified in this study. For successful sustainability initiatives, a hybrid model that melds top-down and bottom-up approaches offers the requisite mix of administrative support, ground level buy-in, and excitement vis-a-vis sustainability. Second, related to this hybrid approach, K-12 sustainability coordinators ideally need administrative capabilities with access to decision making, while remaining connected to students in a meaningful way, either directly in the classroom, as a mentor, or through work with student groups and projects.

  6. Elastic extension of a local analysis facility on external clouds for the LHC experiments

    NASA Astrophysics Data System (ADS)

    Ciaschini, V.; Codispoti, G.; Rinaldi, L.; Aiftimiei, D. C.; Bonacorsi, D.; Calligola, P.; Dal Pra, S.; De Girolamo, D.; Di Maria, R.; Grandi, C.; Michelotto, D.; Panella, M.; Taneja, S.; Semeria, F.

    2017-10-01

    The computing infrastructures serving the LHC experiments have been designed to cope at most with the average amount of data recorded. The usage peaks, as already observed in Run-I, may however originate large backlogs, thus delaying the completion of the data reconstruction and ultimately the data availability for physics analysis. In order to cope with the production peaks, the LHC experiments are exploring the opportunity to access Cloud resources provided by external partners or commercial providers. In this work we present the proof of concept of the elastic extension of a local analysis facility, specifically the Bologna Tier-3 Grid site, for the LHC experiments hosted at the site, on an external OpenStack infrastructure. We focus on the Cloud Bursting of the Grid site using DynFarm, a newly designed tool that allows the dynamic registration of new worker nodes to LSF. In this approach, the dynamically added worker nodes instantiated on an OpenStack infrastructure are transparently accessed by the LHC Grid tools and at the same time they serve as an extension of the farm for the local usage.

  7. Research on Experiment of Islanding Protection Device of Grid-connected Photovoltaic System Based on RTDS

    NASA Astrophysics Data System (ADS)

    Zhou, Ning; Yang, Jia; Cheng, Zheng; Chen, Bo; Su, Yong Chun; Shu, Zhan; Zou, Jin

    2017-06-01

    Solar photovoltaic power generation is the power generation using solar cell module converting sunlight into DC electric energy. In the paper an equivalent model of solar photovoltaic power generation system is built in RTDS. The main circuit structure of the two-stage PV grid-connected system consists of the DC-DC, DC-AC circuit. The MPPT (Maximum Power Point Tracking) control of the PV array is controlled by adjusting the duty ratio of the DC-DC circuit. The proposed control strategy of constant voltage/constant reactive power (V/Q) control is successfully implemented grid-connected control of the inverter when grid-connected operation. The closed-loop experiment of islanding protection device of photovoltaic power plant on RTDS, verifies the correctness of the simulation model, and the experimental verification can be applied to this type of device.

  8. The Portuguese gamma irradiation facility

    NASA Astrophysics Data System (ADS)

    Mendes, C. M.; Almeida, J. C.; Botelho, M. L.; Cavaco, M. C.; Almeida-Vara, E.; Andrade, M. E.

    A Gamma Radiation Facility was built up in the National Laboratory of Industrial Technology and Engineering (LNETI), Lisbon, Portugal. This plant (UTR GAMA-Pi) is a Cobalt-60 dry storage continuous facility with a nominal capacity of 1.5X10 16 Bq. The initial activity is 1.1X10 16 Bq and the troughput capacity 10 3 ton/year for product with a bulk density of 0.2 g/cm 3 treated with a minimum absorbed dose of 25 kGy. Complementary control devices were installed: ventilation system, closed water refrigeration circuit, internal TV system, detection and extinction fire system and emergency power group. It must be emphasized that the best attention was given to the conception and efficiency of the interlock safety systems. This facility will be utilized mainly for radiosterilization of medical articles and decontamination of wine cork stoppers.

  9. Proposed BISOL Facility - a Conceptual Design

    NASA Astrophysics Data System (ADS)

    Ye, Yanlin

    2018-05-01

    In China, a new large-scale nuclear-science research facility, namely the "Beijing Isotope-Separation-On-Line neutron-rich beam facility (BISOL)", has been proposed and reviewed by the governmental committees. This facility aims at both basic science and application goals, and is based on a double-driver concept. On the basic science side, the radioactive ion beams produced from the ISOL device, driven by a research reactor or by an intense deuteron-beam ac- celerator, will be used to study the new physics and technologies at the limit of the nuclear stability in the medium mass region. On the other side regarding to the applications, the facility will be devoted to the material research asso- ciated with the nuclear energy system, by using typically the intense neutron beams produced from the deuteron-accelerator driver. The initial design will be outlined in this report.

  10. [Initial experience of proton beam therapy at the new facility of the University of Tsukuba].

    PubMed

    Kagei, Kenji; Tokuuye, Koichi; Sugahara, Shinji; Hata, Masaharu; Igaki, Hiroshi; Hashimoto, Takayuki; Ohara, Kiyoshi; Akine, Yasuyuki

    2004-05-01

    To present the initial experience with proton beam therapy at the new Proton Medical Research Center (PMRC) of the University of Tsukuba. The new facility has a synchrotron with maximum energy of 250MeV and two rotational gantries. We treated 105 patients with 120 lesions with proton beams in the first year, beginning in September 2001. The most common lesion treated was primary liver cancer (40 lesions) followed by lung cancer, head and neck cancers, and prostate cancer. Concurrent X-ray radiotherapy was given for 38 of the 120 lesions. The median follow-up period was 11 months (range, 1-19 months). Of the 105 patients, 97% had Grade 0-2 RTOG/EORTC acute morbidities, while the remaining 3% had Grade 3. Tumor response after irradiation was CR for 35% of the lesions, PR for 25%, SD for 22%, PD for 9%, and not evaluated for 9%. The proton beam therapy conducted at the new facility of the University of Tsukuba was safe and effective.

  11. Plasma Experiments on an Internal Coil Device with an High Temperature Superconductor

    NASA Astrophysics Data System (ADS)

    Yuichi, Ogawa; Junji, Morikawa; Kotaro, Ohkuni; Dan, Hori; Shigeo, Yamakosi; Nagato, Yanagi; Toshiyuki, Mito; Masataka, Iwakuma; Toshio, Uede

    2003-10-01

    An internal coil device would be expected for exploring high beta plasmas based on plasma relaxation process. Prof. A. Hasegawa proposed an advanced fusion reactor with a dipole configuration, and Mahajan and Yoshida developed a new high beta state based on two-fluid relaxation theory. To study these high beta plasmas, we have constructed an internal coil device with a high temperature superconductor. The major radius of the internal coil is 15 cm, and the coil current is 50 kA. Three different types of Ag-sheathed Bi-2223 tapes are employed; i.e., a high critical current tape with a low silver ratio for the main HTS coil, a 0.3wt3atprovided by a GM refrigerator and supplied to the coil through a check valve, and the coil current is directly excited with the external power supply through removable electrodes. It took about 11 hours to cool the coil down to 21 K from the room temperature, and the nominal cable current of 118 A (overall coil current: 50 kA) has been achieved. A decay time constant of the persistent current is a few tens of hours. Plasma experiments in a dipole configuration have been initiated.

  12. [Harm related to medical device use - legal and organisational risks].

    PubMed

    Hölscher, U M

    2014-12-01

    The effectiveness of the risk management systems established by medical device manufacturers and health-care facilities is clearly mitigated by European and national legal provisions. Laws, regulations and authorities prevent the systematic exchange of much safety-relevant information. The obligation to report adverse events is suspended for many relevant risks associated with medical device use. Reporting into the vigilance system is of little avail for users. Reporting even may endanger the information provider. The federal fragmentation of the German vigilance system poses a risk for patients. Risk management in health-care facilities without risk policy is dangerously incomplete. © Georg Thieme Verlag KG Stuttgart · New York.

  13. 78 FR 19711 - Center for Devices and Radiological Health: Experiential Learning Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-02

    ... Program (ELP). The ELP provides a formal training mechanism for regulatory review staff to visit research... medical device establishments, including, research, manufacturing, academia, and health care facilities.... Clinical use of orthopedic bone void Observation of surgical filler devices. procedures (posterolateral...

  14. The Fluids and Combustion Facility

    NASA Technical Reports Server (NTRS)

    Kundu, Sampa

    2004-01-01

    Microgravity is an environment with very weak gravitational effects. The Fluids and Combustion Facility (FCF) on the International Space Station (ISS) will support the study of fluid physics and combustion science in a long-duration microgravity environment. The Fluid Combustion Facility's design will permit both independent and remote control operations from the Telescience Support Center. The crew of the International Space Station will continue to insert and remove the experiment module, store and reload removable data storage and media data tapes, and reconfigure diagnostics on either side of the optics benches. Upon completion of the Fluids Combustion Facility, about ten experiments will be conducted within a ten-year period. Several different areas of fluid physics will be studied in the Fluids Combustion Facility. These areas include complex fluids, interfacial phenomena, dynamics and instabilities, and multiphase flows and phase change. Recently, emphasis has been placed in areas that relate directly to NASA missions including life support, power, propulsion, and thermal control systems. By 2006 or 2007, a Fluids Integrated Rack (FIR) and a Combustion Integrated Rack (CIR) will be installed inside the International Space Station. The Fluids Integrated Rack will contain all the hardware and software necessary to perform experiments in fluid physics. A wide range of experiments that meet the requirements of the international space station, including research from other specialties, will be considered. Experiments will be contained in subsystems such as the international standard payload rack, the active rack isolation system, the optics bench, environmental subsystem, electrical power control unit, the gas interface subsystem, and the command and data management subsystem. In conclusion, the Fluids and Combustion Facility will allow researchers to study fluid physics and combustion science in a long-duration microgravity environment. Additional information is

  15. The lived experiences of resilience in Iranian adolescents living in residential care facilities: A hermeneutic phenomenological study

    PubMed Central

    Nourian, Manijeh; Nourozi Tabrizi, Kian; Rassouli, Maryam; Biglarrian, Akbar

    2016-01-01

    Background Resilience is one of the main factors affecting human health, and perceiving its meaning for high-risk adolescents is of particular importance in initiating preventive measures and providing resilience care. Objectives This qualitative study was conducted to explain the meaning of resilience in the lived experiences of Iranian adolescents living in governmental residential care facilities. Materials and methods This study was conducted using the hermeneutic phenomenological method. Semi-structured interviews were conducted with eight adolescents aged 13–17 living in governmental residential care facilities of Tehran province affiliated to the Welfare Organization of Iran who articulated their experiences of resilience. Sampling lasted from May 2014 to July 2015 and continued until new themes were no longer emerging. The researchers analyzed the verbatim transcripts using Van Manen's six-step method of phenomenology. Results The themes obtained in this study included “going through life's hardships,” “aspiring for achievement,” “self-protection,” “self-reliance,” and “spirituality.” Conclusion Our study indicates that the meaning of resilience coexists with self-reliance in adolescents’ lived experiences. Adolescents look forward to a better future. They always trust God in the face of difficulties and experience resilience by keeping themselves physically and mentally away from difficulties. Adverse and bitter experiences of the past positively affected their positive view on life and its difficulties and also their resilience. The five themes that emerged from the findings describe the results in detail. The findings of this study enable nurses, health administrators, and healthcare providers working with adolescents to help this vulnerable group cope better with their stressful life conditions and improve their health through increasing their capacity for resilience. PMID:26942909

  16. Microgravity Simulation Facility (MSF)

    NASA Technical Reports Server (NTRS)

    Richards, Stephanie E. (Compiler); Levine, Howard G.; Zhang, Ye

    2016-01-01

    The Microgravity Simulator Facility (MSF) at Kennedy Space Center (KSC) was established to support visiting scientists for short duration studies utilizing a variety of microgravity simulator devices that negate the directional influence of the "g" vector (providing simulated conditions of micro or partial gravity). KSC gravity simulators can be accommodated within controlled environment chambers allowing investigators to customize and monitor environmental conditions such as temperature, humidity, CO2, and light exposure.

  17. Thermic sealing in femoral catheterisation: First experience with the Secure Device.

    PubMed

    Sacherer, Michael; Kolesnik, Ewald; von Lewinski, Friederike; Verheyen, Nicolas; Brandner, Karin; Wallner, Markus; Eaton, Deborah M; Luha, Olev; Zweiker, Robert; von Lewinski, Dirk

    2018-04-03

    Devices currently used to achieve hemostasis of the femoral artery following percutaneous cardiac catheterization are associated with vascular complications and remnants of artificial materials are retained at the puncture site. The SECURE arterial closure device induces hemostasis by utilizing thermal energy, which causes collagen shrinking and swelling. In comparison to established devices, it has the advantage of leaving no foreign material in the body following closing. This study was designed to evaluate the efficacy and safety of the SECURE device to close the puncture site following percutaneous cardiac catheterization. The SECURE device was evaluated in a prospective non-randomized single-centre trial with patients undergoing 6 F invasive cardiac procedures. A total of 67 patients were enrolled and the device was utilized in 63 patients. 50 diagnostic and 13 interventional cases were evaluated. Femoral artery puncture closure was performed immediately after completion of the procedure. Time to hemostasis (TTH), time to ambulation (TTA) and data regarding short-term and 30-day clinical follow-up were recorded. Mean TTH was 4:30 ± 2:15 min in the overall observational group. A subpopulation of patients receiving anticoagulants had a TTH of 4:53 ± 1:43 min. There were two access site complications (hematoma > 5 cm). No major adverse events were identified during hospitalization or at the 30 day follow-up. The new SECURE device demonstrates that it is feasible in diagnostic and interventional cardiac catheterization. With respect to safety, the SECURE device was non-inferior to other closure devices as tested in the ISAR closure trial.

  18. DOE LeRC photovoltaic systems test facility

    NASA Technical Reports Server (NTRS)

    Cull, R. C.; Forestieri, A. F.

    1978-01-01

    The facility was designed and built and is being operated as a national facility to serve the needs of the entire DOE National Photovoltaic Program. The object of the facility is to provide a place where photovoltaic systems may be assembled and electrically configured, without specific physical configuration, for operation and testing to evaluate their performance and characteristics. The facility as a breadboard system allows investigation of operational characteristics and checkout of components, subsystems and systems before they are mounted in field experiments or demonstrations. The facility as currently configured consist of 10 kW of solar arrays built from modules, two inverter test stations, a battery storage system, interface with local load and the utility grid, and instrumentation and control necessary to make a flexible operating facility. Expansion to 30 kW is planned for 1978. Test results and operating experience are summaried to show the variety of work that can be done with this facility.

  19. Acoustic facilities for human factors research at NASA Langley Research Center: Description and operational capabilities

    NASA Astrophysics Data System (ADS)

    Hubbard, H. H.; Powell, C. A.

    1981-06-01

    A number of facilities were developed which provide a unique test capability for psychoacoustics and related human factors research. The design philosophy, physical layouts, dimensions, construction features, operating capabilities, and example applications for these facilities are described. In the exterior effects room, human subjects are exposed to the types of noises that are experienced outdoors, and in the interior effects room, subjects are exposed to the types of noises and noise-induced vibrations that are experience indoors. Subjects are also exposed to noises in an echo-free environment in the anechoic listening room. An aircraft noise synthesis system, which simulates aircraft flyover noise at an observer position on the ground, is used in conjunction with these three rooms. The passenger ride quality apparatus, a device for studying passenger response to noise and vibration in aircraft, or in other vehicles, is described.

  20. Acoustic facilities for human factors research at NASA Langley Research Center: Description and operational capabilities

    NASA Technical Reports Server (NTRS)

    Hubbard, H. H.; Powell, C. A.

    1981-01-01

    A number of facilities were developed which provide a unique test capability for psychoacoustics and related human factors research. The design philosophy, physical layouts, dimensions, construction features, operating capabilities, and example applications for these facilities are described. In the exterior effects room, human subjects are exposed to the types of noises that are experienced outdoors, and in the interior effects room, subjects are exposed to the types of noises and noise-induced vibrations that are experience indoors. Subjects are also exposed to noises in an echo-free environment in the anechoic listening room. An aircraft noise synthesis system, which simulates aircraft flyover noise at an observer position on the ground, is used in conjunction with these three rooms. The passenger ride quality apparatus, a device for studying passenger response to noise and vibration in aircraft, or in other vehicles, is described.

  1. Particle Capture Devices and Methods of Use Thereof

    NASA Technical Reports Server (NTRS)

    Voldman, Joel (Inventor); Skelley, Alison M. (Inventor); Kirak, Oktay (Inventor); Jaenisch, Rudolf (Inventor)

    2015-01-01

    The present invention provides a device and methods of use thereof in microscale particle capturing and particle pairing. This invention provides particle patterning device, which mechanically traps individual particles within first chambers of capture units, transfer the particles to second chambers of opposing capture units, and traps a second type of particle in the same second chamber. The device and methods allow for high yield assaying of trapped cells, high yield fusion of trapped, paired cells, for controlled binding of particles to cells and for specific chemical reactions between particle interfaces and particle contents. The device and method provide means of identification of the particle population and a facile route to particle collection.

  2. A device-oriented optimizer for solving ground state problems on an approximate quantum computer, Part II: Experiments for interacting spin and molecular systems

    NASA Astrophysics Data System (ADS)

    Kandala, Abhinav; Mezzacapo, Antonio; Temme, Kristan; Bravyi, Sergey; Takita, Maika; Chavez-Garcia, Jose; Córcoles, Antonio; Smolin, John; Chow, Jerry; Gambetta, Jay

    Hybrid quantum-classical algorithms can be used to find variational solutions to generic quantum problems. Here, we present an experimental implementation of a device-oriented optimizer that uses superconducting quantum hardware. The experiment relies on feedback between the quantum device and classical optimization software which is robust to measurement noise. Our device-oriented approach uses naturally available interactions for the preparation of trial states. We demonstrate the application of this technique for solving interacting spin and molecular structure problems.

  3. Fostering good governance at peripheral public health facilities: an experience from Nepal.

    PubMed

    Gurung, G; Tuladhar, S

    2013-01-01

    The Nepalese primary healthcare system at sub-district level consists of three different levels of health facility to serve the mostly rural population. The Ministry of Health and Population decentralised health services by handing over 1433 health facilities in 28 districts to Health Facility Operation and Management Committees (HFOMCs), which were formed following a public meeting, and consist of 9 to 13 members, representing the health facility in-charge, elected members of the village development committee, dalit (disadvantaged caste) and women members. The purpose was to make this local committee responsible for managing all affairs of the health facility. However, the handing over of the health facilities to HFOMCs was not matched by an equivalent increase in the managerial capacity of the members, which potentially makes this initiative ineffective. The Health Facility Management Strengthening Program was implemented in 13 districts to foster good governance in the health facilities by increasing the capacity of HFOMCs. This effort focuses on capacity building of HFOMCs as a continuous process rather than a one-off event. Training, follow-up and promotional activities were conducted. This article focuses on how good governance at the peripheral public health facilities in Nepal can be fostered through the active engagement and capacity building of HFOMCs. This article used baseline and monitoring data collected during technical support visits to HFOMCs and their members between July 2008 and October 2011. The results show that the Health Facility Management Strengthening Program was quite successful in strengthening local health governance in the health facilities. The level of community engagement in governance improved, that is, the number of effective HFOMC meetings increased, the inclusion of dalit/women members in the decision-making process expanded, resource mobilization was facilitated, and community accountability, as measured by health facility

  4. [Experiences and recommendations of the German Federal Institute for Drugs and Medical Devices (BfArM) concerning clinical investigation of medical devices and the evaluation of serious adverse events (SAE)].

    PubMed

    Renisch, B; Lauer, W

    2014-12-01

    An integral part of the conformity assessment process for medical devices is a clinical evaluation based on clinical data. Particularly in the case of implantable devices and products of risk class III clinical trials must be performed. Since March 2010 applications for the authorization of clinical trials as well as for the waiver of the authorization requirement must be submitted centrally in Germany to the appropriate federal authority, the Federal Institute for Drugs and Medical Devices (BfArM) or the Paul Ehrlich Institute (PEI). In addition to authorization, approval by the responsible ethics committee is also required under law in order to begin clinical testing of medical devices in Germany. In this paper, the legal framework for the clinical testing of medical devices as well as those involved and possible procedures including evaluation criteria for the initial application of a trial and subsequent amendments are presented in detail. In addition, the reporting requirements for serious adverse events (SAEs) are explained and possible consequences of the evaluation are presented. Finally, a summary of application and registration numbers for all areas of extensive experience of the BfArM as well as requests and guidance for applicants are presented.

  5. Making of the NSTX Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. Neumeyer; M. Ono; S.M. Kaye

    1999-11-01

    The NSTX (National Spherical Torus Experiment) facility located at Princeton Plasma Physics Laboratory is the newest national fusion science experimental facility for the restructured US Fusion Energy Science Program. The NSTX project was approved in FY 97 as the first proof-of-principle national fusion facility dedicated to the spherical torus research. On Feb. 15, 1999, the first plasma was achieved 10 weeks ahead of schedule. The project was completed on budget and with an outstanding safety record. This paper gives an overview of the NSTX facility construction and the initial plasma operations.

  6. RADIATION FACILITY FOR NUCLEAR REACTORS

    DOEpatents

    Currier, E.L. Jr.; Nicklas, J.H.

    1961-12-12

    A radiation facility is designed for irradiating samples in close proximity to the core of a nuclear reactor. The facility comprises essentially a tubular member extending through the biological shield of the reactor and containing a manipulatable rod having the sample carrier at its inner end, the carrier being longitudinally movable from a position in close proximity to the reactor core to a position between the inner and outer faces of the shield. Shield plugs are provided within the tubular member to prevent direct radiation from the core emanating therethrough. In this device, samples may be inserted or removed during normal operation of the reactor without exposing personnel to direct radiation from the reactor core. A storage chamber is also provided within the radiation facility to contain an irradiated sample during the period of time required to reduce the radioactivity enough to permit removal of the sample for external handling. (AEC)

  7. STAR - Research Experiences at National Laboratory Facilities for Pre-Service and Early Career Teachers

    NASA Astrophysics Data System (ADS)

    Keller, J. M.; Rebar, B.; Buxner, S.

    2012-12-01

    The STEM Teacher and Researcher (STAR) Program provides pre-service and beginning teachers the opportunity to develop identity as both teachers and researchers early in their careers. Founded and implemented by the Center for Excellence in Science and Mathematics Education (CESaME) at California Polytechnic State University on behalf of the California State University (CSU) system, STAR provides cutting edge research experiences and career development for students affiliated with the CSU system. Over the past three summers, STAR has also partnered with the NSF Robert Noyce Teacher Scholarship Program to include Noyce Scholars from across the country. Key experiences are one to three summers of paid research experience at federal research facilities associated with the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), National Oceanic and Atmospheric Association (NOAA), and the National Optical Astronomy Observatory (NOAO). Anchoring beginning teachers in the research community enhances participant understanding of what it means to be both researchers and effective teachers. Since its inception in 2007, the STAR Program has partnered with 15 national lab facilities to provide 290 research experiences to 230 participants. Several of the 68 STAR Fellows participating in the program during Summer 2012 have submitted abstracts to the Fall AGU Meeting. Through continued partnership with the Noyce Scholar Program and contributions from outside funding sources, the CSU is committed to sustaining the STAR Program in its efforts to significantly impact teacher preparation. Evaluation results from the program continue to indicate program effectiveness in recruiting high quality science and math majors into the teaching profession and impacting their attitudes and beliefs towards the nature of science and teaching through inquiry. Additionally, surveys and interviews are being conducted of participants who are now teaching in the classroom as

  8. Results from colliding magnetized plasma jet experiments executed at the Trident laser facility

    NASA Astrophysics Data System (ADS)

    Manuel, M. J.-E.; Rasmus, A. M.; Kurnaz, C. C.; Klein, S. R.; Davis, J. S.; Drake, R. P.; Montgomery, D. S.; Hsu, S. C.; Adams, C. S.; Pollock, B. B.

    2015-11-01

    The interaction of high-velocity plasma flows in a background magnetic field has applications in pulsed-power and fusion schemes, as well as astrophysical environments, such as accretion systems and stellar mass ejections into the magnetosphere. Experiments recently executed at the Trident Laser Facility at the Los Alamos National Laboratory investigated the effects of an expanding aluminum plasma flow into a uniform 4.5-Tesla magnetic field created using a solenoid designed and manufactured at the University of Michigan. Opposing-target experiments demonstrate interesting collisional behavior between the two magnetized flows. Preliminary interferometry and Faraday rotation measurements will be presented and discussed. This work is funded by the U.S Department of Energy, through the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-NA0001840. Support for this work was provided by NASA through Einstein Postdoctoral Fellowship grant number PF3-140111 awarded by the Chandra X-ray Center, which is operated by the Astrophysical Observatory for NASA under contract NAS8-03060.

  9. Project Themis Supercritical Cold Flow Facility, Experiment Design and Modeling for the Study of Fluid Mixing

    DTIC Science & Technology

    2012-06-01

    AFRL facility was well suited for the Themis cold flow experiment. A test cell was selected that contained an insulated cryogenic oxygen tank that...could be used for the LN2 supply. Adjacent to the test cell is a cryogenic storage bunker that contained a helium supply tank with existing high...venturi to the fuel bunker tank was very low (less than 25 psi) while the helium pressure drop from the cryogenic storage bunker was almost 2000 psi

  10. A User's Guide for the Spacecraft Fire Safety Facility

    NASA Technical Reports Server (NTRS)

    Goldmeer, Jeffrey S.

    2000-01-01

    The Spacecraft Fire Safety Facility (SFSF) is a test facility that can be flown on NASA's reduced gravity aircraft to perform various types of combustion experiments under a variety of experimental conditions. To date, this facility has flown numerous times on the aircraft and has been used to perform experiments ranging from an examination of the effects transient depressurization on combustion, to ignition and flame spread. A list of pubfications/presentations based on experiments performed in the SFSF is included in the reference section. This facility consists of five main subsystems: combustion chamber, sample holders, gas flow system, imaging system, and the data acquisition/control system. Each of these subsystems will be reviewed in more detail. These subsystems provide the experiment operator with the ability to monitor and/or control numerous experimental parameters.

  11. Active cleaning technique device

    NASA Technical Reports Server (NTRS)

    Shannon, R. L.; Gillette, R. B.

    1973-01-01

    The objective of this program was to develop a laboratory demonstration model of an active cleaning technique (ACT) device. The principle of this device is based primarily on the technique for removing contaminants from optical surfaces. This active cleaning technique involves exposing contaminated surfaces to a plasma containing atomic oxygen or combinations of other reactive gases. The ACT device laboratory demonstration model incorporates, in addition to plasma cleaning, the means to operate the device as an ion source for sputtering experiments. The overall ACT device includes a plasma generation tube, an ion accelerator, a gas supply system, a RF power supply and a high voltage dc power supply.

  12. FDA MAUDE data on complications with lasers, light sources, and energy-based devices.

    PubMed

    Tremaine, Anne Marie; Avram, Mathew M

    2015-02-01

    It is essential for physicians to be fully informed regarding adverse events and malfunctions associated with medical devices that occur in routine practice. There is limited information on this important issue in the medical literature, and it is mostly based on initial studies and case reports. More advanced knowledge regarding device adverse events is necessary to guide physicians towards providing safe treatments. The FDA requires that manufacturers and device users submit medical device reports (MDRs) for suspected injuries from device use or malfunction. The database of MDRs, entitled Manufacturer and User Facility Device Experience (MAUDE) enables the FDA to monitor device performance and identify potential safety issues. We employed the following search strategy to identify reported adverse events. We searched the MAUDE electronic database on the FDA website in December 2013: http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfmaude/search.cfm We collected all reported cases between 1991 and December 2013. The search terms utilized included a comprehensive list of device manufacturers, specific product names, and the wavelengths/technology of the devices used in the field of dermatology. Our search yielded 1257 MDRs. Forty-five MDRs were excluded due to insufficient data. The data is broken down into the adverse events observed, such as, but not limited to: blistering, burns, scarring, dyschromia, fat loss, and nerve palsy. The MDRs describe the adverse event and attempt to determine if it was related to device malfunction versus operator error. Radiofrequency devices, diode lasers, and intense pulsed light devices were the most commonly reported devices related to injuries. 1257 MDRs, from a myriad of devices used in dermatology, have been reported to the FDA as of December 2013. Despite the underreporting of adverse events, the MAUDE database is an untapped resource of post-market surveillance of medical devices. The database can offer additional

  13. The shock/shear platform for planar radiation-hydrodynamics experiments on the National Ignition Facility

    DOE PAGES

    Doss, F. W.; Kline, J. L.; Flippo, K. A.; ...

    2015-04-17

    An indirectly-driven shock tube experiment fielded on the National Ignition Facility (NIF) was used to create a high-energy-density hydrodynamics platform at unprecedented scale. Scaling up a shear-induced mixing experiment previously fielded at OMEGA, the NIF shear platform drives 130 μm/ns shocks into a CH foam-filled shock tube (~ 60 mg/cc) with interior dimensions of 1.5 mm diameter and 5 mm length. The pulse-shaping capabilities of the NIF are used to extend the drive for >10 ns, and the large interior tube volumes are used to isolate physics-altering edge effects from the region of interest. The scaling of the experiment tomore » the NIF allows for considerable improvement in maximum driving time of hydrodynamics, in fidelity of physics under examination, and in diagnostic clarity. Details of the experimental platform and post-shot simulations used in the analysis of the platform-qualifying data are presented. Hydrodynamic scaling is used to compare shear data from OMEGA with that from NIF, suggesting a possible change in the dimensionality of the instability at late times from one platform to the other.« less

  14. Biotechnology System Facility: Risk Mitigation on Mir

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R., III; Galloway, Steve R.

    2003-01-01

    NASA is working with its international partners to develop space vehicles and facilities that will give researchers the opportunity to conduct scientific investigations in space. As part of this activity, NASA's Biotechnology Cell Science Program (BCSP) at the Johnson Space Center (JSC) is developing a world-class biotechnology laboratory facility for the International Space Station (ISS). This report describes the BCSP, including the role of the BTS. We identify the purpose and objectives of the BTS and a detailed description of BTS facility design and operational concept, BTS facility and experiment-specific hardware, and scientific investigations conducted in the facility. We identify the objectives, methods, and results of risk mitigation investigations of the effects of microgravity and cosmic radiation on the BTS data acquisition and control system. These results may apply to many other space experiments that use commercial, terrestrial-based data acquisition technology. Another focal point is a description of the end-to-end process of integrating and operating biotechnology experiments on a variety of space vehicles. The identification of lessons learned that can be applied to future biotechnology experiments is an overall theme of the report. We include a brief summary of the science results, but this is not the focus of the report. The report provides some discussion on the successful 130-day tissue engineering experiment performed in BTS on Mir and describes a seminal gene array investigation that identified a set of unique genes that are activated in space.

  15. Big Explosives Experimental Facility - BEEF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The Big Explosives Experimental Facility or BEEF is a ten acre fenced high explosive testing facility that provides data to support stockpile stewardship and other national security programs. At BEEF conventional high explosives experiments are safely conducted providing sophisticated diagnostics such as high speed optics and x-ray radiography.

  16. Big Explosives Experimental Facility - BEEF

    ScienceCinema

    None

    2018-01-16

    The Big Explosives Experimental Facility or BEEF is a ten acre fenced high explosive testing facility that provides data to support stockpile stewardship and other national security programs. At BEEF conventional high explosives experiments are safely conducted providing sophisticated diagnostics such as high speed optics and x-ray radiography.

  17. The Sanford Underground Research Facility at Homestake (SURF)

    DOE PAGES

    Lesko, K. T.

    2015-03-24

    The former Homestake gold mine in Lead, South Dakota is being transformed into a dedicated laboratory to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e) and currently hosts three projects: the LUX dark matter experiment, the Majorana Demonstrator neutrinoless double-beta decay experiment and the Berkeley and CUBED low-background counters. Plans for possible future experiments at SURF are well underway and include long baseline neutrino oscillation experiments, future dark mattermore » experiments as well as nuclear astrophysics accelerators. Facility upgrades to accommodate some of these future projects have already started. SURF is a dedicated facility with significant expansion capability. These plans include a Generation-2 Dark Matter experiment and the US flagship neutrino experiment, LBNE.« less

  18. First Results from the LUX Dark Matter Experiment at the Sanford Underground Research Facility

    NASA Astrophysics Data System (ADS)

    Akerib, D. S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Bedikian, S.; Bernard, E.; Bernstein, A.; Bolozdynya, A.; Bradley, A.; Byram, D.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Chapman, J. J.; Chiller, A. A.; Chiller, C.; Clark, K.; Coffey, T.; Currie, A.; Curioni, A.; Dazeley, S.; de Viveiros, L.; Dobi, A.; Dobson, J.; Dragowsky, E. M.; Druszkiewicz, E.; Edwards, B.; Faham, C. H.; Fiorucci, S.; Flores, C.; Gaitskell, R. J.; Gehman, V. M.; Ghag, C.; Gibson, K. R.; Gilchriese, M. G. D.; Hall, C.; Hanhardt, M.; Hertel, S. A.; Horn, M.; Huang, D. Q.; Ihm, M.; Jacobsen, R. G.; Kastens, L.; Kazkaz, K.; Knoche, R.; Kyre, S.; Lander, R.; Larsen, N. A.; Lee, C.; Leonard, D. S.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Lyashenko, A.; Malling, D. C.; Mannino, R.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J.; Morii, M.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H.; Neves, F.; Nikkel, J. A.; Ott, R. A.; Pangilinan, M.; Parker, P. D.; Pease, E. K.; Pech, K.; Phelps, P.; Reichhart, L.; Shutt, T.; Silva, C.; Skulski, W.; Sofka, C. J.; Solovov, V. N.; Sorensen, P.; Stiegler, T.; O'Sullivan, K.; Sumner, T. J.; Svoboda, R.; Sweany, M.; Szydagis, M.; Taylor, D.; Tennyson, B.; Tiedt, D. R.; Tripathi, M.; Uvarov, S.; Verbus, J. R.; Walsh, N.; Webb, R.; White, J. T.; White, D.; Witherell, M. S.; Wlasenko, M.; Wolfs, F. L. H.; Woods, M.; Zhang, C.; LUX Collaboration

    2014-03-01

    The Large Underground Xenon (LUX) experiment is a dual-phase xenon time-projection chamber operating at the Sanford Underground Research Facility (Lead, South Dakota). The LUX cryostat was filled for the first time in the underground laboratory in February 2013. We report results of the first WIMP search data set, taken during the period from April to August 2013, presenting the analysis of 85.3 live days of data with a fiducial volume of 118 kg. A profile-likelihood analysis technique shows our data to be consistent with the background-only hypothesis, allowing 90% confidence limits to be set on spin-independent WIMP-nucleon elastic scattering with a minimum upper limit on the cross section of 7.6×10-46 cm2 at a WIMP mass of 33 GeV/c2. We find that the LUX data are in disagreement with low-mass WIMP signal interpretations of the results from several recent direct detection experiments.

  19. First results from the LUX dark matter experiment at the Sanford underground research facility.

    PubMed

    Akerib, D S; Araújo, H M; Bai, X; Bailey, A J; Balajthy, J; Bedikian, S; Bernard, E; Bernstein, A; Bolozdynya, A; Bradley, A; Byram, D; Cahn, S B; Carmona-Benitez, M C; Chan, C; Chapman, J J; Chiller, A A; Chiller, C; Clark, K; Coffey, T; Currie, A; Curioni, A; Dazeley, S; de Viveiros, L; Dobi, A; Dobson, J; Dragowsky, E M; Druszkiewicz, E; Edwards, B; Faham, C H; Fiorucci, S; Flores, C; Gaitskell, R J; Gehman, V M; Ghag, C; Gibson, K R; Gilchriese, M G D; Hall, C; Hanhardt, M; Hertel, S A; Horn, M; Huang, D Q; Ihm, M; Jacobsen, R G; Kastens, L; Kazkaz, K; Knoche, R; Kyre, S; Lander, R; Larsen, N A; Lee, C; Leonard, D S; Lesko, K T; Lindote, A; Lopes, M I; Lyashenko, A; Malling, D C; Mannino, R; McKinsey, D N; Mei, D-M; Mock, J; Moongweluwan, M; Morad, J; Morii, M; Murphy, A St J; Nehrkorn, C; Nelson, H; Neves, F; Nikkel, J A; Ott, R A; Pangilinan, M; Parker, P D; Pease, E K; Pech, K; Phelps, P; Reichhart, L; Shutt, T; Silva, C; Skulski, W; Sofka, C J; Solovov, V N; Sorensen, P; Stiegler, T; O'Sullivan, K; Sumner, T J; Svoboda, R; Sweany, M; Szydagis, M; Taylor, D; Tennyson, B; Tiedt, D R; Tripathi, M; Uvarov, S; Verbus, J R; Walsh, N; Webb, R; White, J T; White, D; Witherell, M S; Wlasenko, M; Wolfs, F L H; Woods, M; Zhang, C

    2014-03-07

    The Large Underground Xenon (LUX) experiment is a dual-phase xenon time-projection chamber operating at the Sanford Underground Research Facility (Lead, South Dakota). The LUX cryostat was filled for the first time in the underground laboratory in February 2013. We report results of the first WIMP search data set, taken during the period from April to August 2013, presenting the analysis of 85.3 live days of data with a fiducial volume of 118 kg. A profile-likelihood analysis technique shows our data to be consistent with the background-only hypothesis, allowing 90% confidence limits to be set on spin-independent WIMP-nucleon elastic scattering with a minimum upper limit on the cross section of 7.6 × 10(-46) cm(2) at a WIMP mass of 33 GeV/c(2). We find that the LUX data are in disagreement with low-mass WIMP signal interpretations of the results from several recent direct detection experiments.

  20. Three- and two-dimensional simulations of counter-propagating shear experiments at high energy densities at the National Ignition Facility

    DOE PAGES

    Wang, Ping; Zhou, Ye; MacLaren, Stephan A.; ...

    2015-11-06

    Three- and two-dimensional numerical studies have been carried out to simulate recent counter-propagating shear flow experiments on the National Ignition Facility. A multi-physics three-dimensional, time-dependent radiation hydrodynamics simulation code is used. Using a Reynolds Averaging Navier-Stokes model, we show that the evolution of the mixing layer width obtained from the simulations agrees well with that measured from the experiments. A sensitivity study is conducted to illustrate a 3D geometrical effect that could confuse the measurement at late times, if the energy drives from the two ends of the shock tube are asymmetric. Implications for future experiments are discussed.

  1. A new after-loading intrauterine packing device: ten years experience.

    PubMed

    Sklaroff, D M; Baker, A S; Tasbas, M

    1985-12-01

    A new variation of the uterine packing device for the treatment of endometrial carcinoma is described. It combines the advantages of the Holter technique with the after-loading method described by Simon. This device has been in use for more than 10 years and has been found most satisfactory.

  2. Shielding and Radiation Protection in Ion Beam Therapy Facilities

    NASA Astrophysics Data System (ADS)

    Wroe, Andrew J.; Rightnar, Steven

    Radiation protection is a key aspect of any radiotherapy (RT) department and is made even more complex in ion beam therapy (IBT) by the large facility size, secondary particle spectra and intricate installation of these centers. In IBT, large and complex radiation producing devices are used and made available to the public for treatment. It is thus the responsibility of the facility to put in place measures to protect not only the patient but also the general public, occupationally and nonoccupationally exposed personnel working within the facility, and electronics installed within the department to ensure maximum safety while delivering maximum up-time.

  3. Experimental results from magnetized-jet experiments executed at the Jupiter Laser Facility

    NASA Astrophysics Data System (ADS)

    Manuel, M. J.-E.; Kuranz, C. C.; Rasmus, A. M.; Klein, S. R.; MacDonald, M. J.; Trantham, M. R.; Fein, J. R.; Belancourt, P. X.; Young, R. P.; Keiter, P. A.; Drake, R. P.; Pollock, B. B.; Park, J.; Hazi, A. U.; Williams, G. J.; Chen, H.

    2015-12-01

    Recent experiments at the Jupiter Laser Facility investigated magnetization effects on collimated plasma jets. Laser-irradiated plastic-cone-targets produced collimated, millimeter-scale plasma flows as indicated by optical interferometry. Proton radiography of these jets showed no indication of strong, self-generated magnetic fields, suggesting a dominantly hydrodynamic collimating mechanism. Targets were placed in a custom-designed solenoid capable of generating field strengths up to 5 T. Proton radiographs of the well-characterized B-field, without a plasma jet, suggested an external source of trapped electrons that affects proton trajectories. The background magnetic field was aligned with the jet propagation direction, as is the case in many astrophysical systems. Optical interferometry showed that magnetization of the plasma results in disruption of the collimated flow and instead produces a hollow cavity. This result is a topic of ongoing investigation.

  4. Long Duration Exposure Facility (LDEF) low-temperature heat pipe experiment package power system results

    NASA Technical Reports Server (NTRS)

    Tiller, Smith E.; Sullivan, David

    1992-01-01

    An overview of a self-contained Direct Energy Transfer Power System which was developed to provide power to the Long Duration Exposure Facility (LDEF) Low-Temperature Heat Pipe Experiment Package is presented. The power system operated successfully for the entire mission. Data recorded by the onboard recorder shows that the system operated within design specifications. Other than unanticipated overcharging of the battery, the power system operated as expected for nearly 32,000 low earth orbit cycles, and was still operational when tested after the LDEF recovery. Some physical damage was sustained by the solar array panels due to micrometeoroid hits, but there were not electrical failures.

  5. Microgravity science and applications: Apparatus and facilities

    NASA Technical Reports Server (NTRS)

    1989-01-01

    NASA support apparatus and facilities for microgravity research are summarized in fact sheets. The facilities are ground-based simulation environments for short-term experiments, and the shuttle orbiter environment for long duration experiments. The 17 items of the microgravitational experimental apparatus are described. Electronic materials, alloys, biotechnology, fluid dynamics and transport phenomena, glasses and ceramics, and combustion science are among the topics covered.

  6. Performance Evaluation of the International Space Station Flow Boiling and Condensation Experiment (FBCE) Test Facility

    NASA Technical Reports Server (NTRS)

    Hasan, Mohammad; Balasubramaniam, R.; Nahra, Henry; Mackey, Jeff; Hall, Nancy; Frankenfield, Bruce; Harpster, George; May, Rochelle; Mudawar, Issam; Kharangate, Chirag R.; hide

    2016-01-01

    A ground-based experimental facility to perform flow boiling and condensation experiments is built in support of the development of the long duration Flow Boiling and Condensation Experiment (FBCE) destined for operation on board of the International Space Station (ISS) Fluid Integrated Rack (FIR). We performed tests with the condensation test module oriented horizontally and vertically. Using FC-72 as the test fluid and water as the cooling fluid, we evaluated the operational characteristics of the condensation module and generated ground based data encompassing the range of parameters of interest to the condensation experiment to be performed on the ISS. During this testing, we also evaluated the pressure drop profile across different components of the fluid subsystem, heater performance, on-orbit degassing subsystem, and the heat loss from different components. In this presentation, we discuss representative results of performance testing of the FBCE flow loop. These results will be used in the refinement of the flight system design and build-up of the FBCE which is scheduled for flight in 2019.

  7. Seventeen years' experience of late open surgical conversion after failed endovascular abdominal aortic aneurysm repair with 13 variant devices.

    PubMed

    Wu, Ziheng; Xu, Liang; Qu, Lefeng; Raithel, Dieter

    2015-02-01

    To investigate the causes and results of late open surgical conversion (LOSC) after failed abdominal aortic aneurysm repair (EVAR) and to summarize our 17 years' experience with 13 various endografts. Retrospective data from August 1994 to January 2011 were analyzed at our center. The various devices' implant time, the types of devices, the rates and causes of LOSC, and the procedures and results of LOSC were analyzed and evaluated. A total of 1729 endovascular aneurysm repairs were performed in our single center (Nuremberg South Hospital) with 13 various devices within 17 years. The median follow-up period was 51 months (range 9-119 months). Among them, 77 patients with infrarenal abdominal aortic aneurysms received LOSC. The LOSC rate was 4.5 % (77 of 1729). The LOSC rates were significantly different before and after January 2002 (p < 0.001). The reasons of LOSC were mainly large type I endoleaks (n = 51) that were hard to repair by endovascular techniques. For the LOSC procedure, 71 cases were elective and 6 were emergent. The perioperative mortality was 5.2 % (4 of 77): 1 was elective (due to septic shock) and 3 were urgent (due to hemorrhagic shock). Large type I endoleaks were the main reasons for LOSC. The improvement of devices and operators' experience may decrease the LOSC rate. Urgent LOSC resulted in a high mortality rate, while selective LOSC was relatively safe with significantly lower mortality rate. Early intervention, full preparation, and timely LOSC are important for patients who require LOSC.

  8. Exploring health facilities' experiences in implementing the free health-care policy (FHCP) in Nepal: how did organizational factors influence the implementation of the user-fee abolition policy?

    PubMed

    Sato, Midori; Gilson, Lucy

    2015-12-01

    This article presents an Asian experience of abolishing health-care user fees: Nepal's universal free health-care policy, implemented in 2008. Based on doctoral fieldwork between August 2008 and April 2009, the paper analyses primary-care facilities' and central and district health systems' experiences with the policy. It makes a unique contribution to existing evidence because it explicitly applies organizational theory within a carefully designed, rigorous, multiple case-study analysis to deepen our understanding of the organizational and 'people' factors in the successful removal of user fees. The cases were two pairs of primary-care facilities in one district, paired for comparison of the facilities' experiences with the policy in relation to its effects on health care utilization. Data collection methods included document reviews; key informant interviews at district and central levels; in-depth, semi-structured interviews and group interviews at case facilities. (Data on indicators of utilization and quality changes over time were also collected and will be published separately). Using key elements of Nadler and Tushman's 'Organizational Congruence' model, a degree-of-fit analysis tested the study's initial propositions and yielded generalizations for contexts in and outside Nepal. The study found that Nepal's key implementation challenges were similar to Africa's: insufficient or delayed inputs of drugs and compensation; insufficient workforce and the resulting reduced quality of services that hampered facilities' relationships with their clients and health providers' attitudes. However, the Nepalese case facilities with (1) good intra- and inter-facility relationships, (2) adequate staffing, (3) well-oriented providers and (4) previously trained, better-informed and skilled health management committees experienced higher utilization and better-quality indicators over time. Through its detailed analysis of Nepal's experience in removing user fees, the study

  9. On-line interactive virtual experiments on nanoscience

    NASA Astrophysics Data System (ADS)

    Kadar, Manuella; Ileana, Ioan; Hutanu, Constantin

    2009-01-01

    This paper is an overview on the next generation web which allows students to experience virtual experiments on nano science, physics devices, processes and processing equipment. Virtual reality is used to support a real university lab in which a student can experiment real lab sessions. The web material is presented in an intuitive and highly visual 3D form that is accessible to a diverse group of students. Such type of laboratory provides opportunities for professional and practical education for a wide range of users. The expensive equipment and apparatuses that build the experimental stage in a particular standard laboratory is used to create virtual educational research laboratories. Students learn how to prepare the apparatuses and facilities for the experiment. The online experiments metadata schema is the format for describing online experiments, much like the schema behind a library catalogue used to describe the books in a library. As an online experiment is a special kind of learning object, one specifies its schema as an extension to an established metadata schema for learning objects. The content of the courses, metainformation as well as readings and user data are saved on the server in a database as XML objects.

  10. Plant Habitat Facility in the JPM

    NASA Image and Video Library

    2017-11-21

    iss053e234714 (Nov. 21, 2017) --- Advanced Plant Habitat (APH) Facility in the Japanese Experiment Module (JEM) Pressurized Module (JPM). The Plant Habitat is a fully automated facility that provides a large, enclosed, environmentally-controlled chamber for plant bioscience research.

  11. Twenty barrel in situ pipe gun type solid hydrogen pellet injector for the Large Helical Device.

    PubMed

    Sakamoto, Ryuichi; Motojima, Gen; Hayashi, Hiromi; Inoue, Tomoyuki; Ito, Yasuhiko; Ogawa, Hideki; Takami, Shigeyuki; Yokota, Mitsuhiro; Yamada, Hiroshi

    2013-08-01

    A 20 barrel solid hydrogen pellet injector, which is able to inject 20 cylindrical pellets with a diameter and length of between 3.0 and 3.8 mm at the velocity of 1200 m/s, has been developed for the purpose of direct core fueling in LHD (Large Helical Device). The in situ pipe gun concept with the use of compact cryo-coolers enables stable operation as a fundamental facility in plasma experiments. The combination of the two types of pellet injection timing control modes, i.e., pre-programing mode and real-time control mode, allows the build-up and sustainment of high density plasma around the density limit. The pellet injector has demonstrated stable operation characteristics during the past three years of LHD experiments.

  12. Definition and design of an experiment to test raster scanning with rotating unbalanced-mass devices on gimbaled payloads

    NASA Technical Reports Server (NTRS)

    Lightsey, W. D.; Alhorn, D. C.; Polites, M. E.

    1992-01-01

    An experiment designed to test the feasibility of using rotating unbalanced-mass (RUM) devices for line and raster scanning gimbaled payloads, while expending very little power is described. The experiment is configured for ground-based testing, but the scan concept is applicable to ground-based, balloon-borne, and space-based payloads, as well as free-flying spacecraft. The servos used in scanning are defined; the electronic hardware is specified; and a computer simulation model of the system is described. Simulation results are presented that predict system performance and verify the servo designs.

  13. Drafting Recommendations for a Shared Statewide High-Density Storage Facility: Experiences with the State University Libraries of Florida Proposal

    ERIC Educational Resources Information Center

    Walker, Ben

    2008-01-01

    In August 2007, an $11.2 million proposal for a shared statewide high-density storage facility was submitted to the Board of Governors, the governing body of the State University System in Florida. The project was subsequently approved at a slightly lower level and funding was delayed until 2010/2011. The experiences of coordinating data…

  14. Design, Development and Operational Experience of Demonstration Facility for Cs-137 Source Pencil Production at Trombay - 13283

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patil, S.B.; Srivastava, P.; Mishra, S.K.

    2013-07-01

    Radioactive waste management is a vital aspect of any nuclear program. The commercial feasibility of the nuclear program largely depends on the efficiency of the waste management techniques. One of such techniques is the separation of high yield radio-nuclides from the waste and making it suitable for medical and industrial applications. This will give societal benefit in addition to revenue generation. Co-60, the isotope presently being used for medical applications, needs frequent replacement because of its short half life. Cs-137, the major constituent of the nuclear waste, is a suitable substitute for Co-60 as a radioactive source because of itsmore » longer half life (28 years). Indian nuclear waste management program has given special emphasis on utilization of Cs-137 for such applications. In view of this a demonstration facility has been designed for vitrification of Cs-137 in borosilicate glass, cast in stainless steel pencils, to be used as source pencils of 300 Ci strength for blood irradiation. An induction heated metallic melter of suitable capacity has been custom designed for the application and employed for the Cs-137 pencil fabrication facility. This article describes various systems, design features, experiments and resulting modifications, observations and remote handling features necessary for the actual operation of such facility. The layout of the facility has been planned in such a way that the same can be adopted in a hot cell for commercial production of source pencils. (authors)« less

  15. 31. DETAIL OF OVERHEAD TENSIONER DEVICE LOCATED ABOVE SOUTHERN DOOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. DETAIL OF OVERHEAD TENSIONER DEVICE LOCATED ABOVE SOUTHERN DOOR OF BUILDING 1. - Chollas Heights Naval Radio Transmitting Facility, Transmitter Building, 6410 Zero Road, San Diego, San Diego County, CA

  16. Some new astronomical facilities in China

    NASA Astrophysics Data System (ADS)

    Wang, Shouguan

    1989-10-01

    For the 1990's, plans for some astronomical facilities and related research are being carried out in China. This report describes in some detail plans for radio astronomical facilities, a 150/220 cm Schmidt telescope, and experiments on a porcelain mirror material.

  17. Aerodynamic and engineering design of a 1.5 s high quality microgravity drop tower facility

    NASA Astrophysics Data System (ADS)

    Belser, Valentin; Breuninger, Jakob; Reilly, Matthew; Laufer, René; Dropmann, Michael; Herdrich, Georg; Hyde, Truell; Röser, Hans-Peter; Fasoulas, Stefanos

    2016-12-01

    Microgravity experiments are essential for research in space science, biology, fluid mechanics, combustion, and material sciences. One way to conduct microgravity experiments on Earth is by using drop tower facilities. These facilities combine a high quality of microgravity, adequate payload masses and have the advantage of virtually unlimited repeatability under same experimental conditions, at a low cost. In a collaboration between the Institute of Space Systems (IRS) at the University of Stuttgart and Baylor University (BU) in Waco, Texas, a new drop tower is currently under development at the Center for Astrophysics, Space Physics and Engineering Research (CASPER). The design parameters of the drop tower ask for at least 1.5 s in free fall duration while providing a quality of at least 10-5 g. Previously, this quality has only been achieved in vacuum drop tower facilities where the capsule experiences virtually zero aerodynamic drag during its free fall. Since this design comes at high costs, a different drop tower design concept, which does not require an evacuated drop shaft, was chosen. It features a dual-capsule system in which the experiment capsule is shielded from aerodynamic forces by surrounding it with a drag shield during the drop. As no other dual-capsule drop tower has been able to achieve a quality as good as or better than 10-5 g previous work optimized the design with an aerodynamic perspective by using computational fluid dynamics (CFD) simulations to determine the ideal shape and size of the outer capsule and to specify the aerodynamically crucial dimensions for the overall system. Experiments later demonstrated that the required quality of microgravity can be met with the proposed design. The main focus of this paper is the mechanical realization of the capsule as well as the development and layout of the surrounding components, such as the release mechanism, the deceleration device and the drop shaft. Because the drop tower facility is a

  18. Public preferences for establishing nephrology facilities in Greenland: estimating willingness-to-pay using a discrete choice experiment.

    PubMed

    Kjær, Trine; Bech, Mickael; Kronborg, Christian; Mørkbak, Morten Raun

    2013-10-01

    At present there are no nephrology facilities in Greenland. Greenlandic patients with renal failure needing dialysis thus have to travel to Denmark to obtain treatment. For patients in haemodialysis this necessitates a permanent residence in Denmark. Our study was aimed at examining Greenlanders' preferences for establishing nephrology facilities in Greenland at Queen Ingrid's Hospital in Nuuk, and to estimate the associated change in welfare. Preferences were elicited using a discrete choice experiment (DCE). A random sample of 500 individuals of the general population was sent a postal questionnaire in which they were asked to consider the trade-offs of establishing nephrology facilities in Greenland as opposed to the current situation. This involved trading off the benefits of having such facilities in their home country against the costs of the intervention. Besides including a payment attribute described in terms of incremental tax payment, the DCE included two interventions attributes related to (1) the organisation of labour, and (2) the physical settings of the patients. Respondents succeeded in answering the DCE despite cultural and linguistic disparity. We found that all the included attributes had a significant effect on respondents' choices, and that respondents' answers to the DCE were in keeping with their values as stated in the questionnaire. DCE data was analyzed using a random parameter logit model reparametrized in willingness-to-pay space. The results showed that establishing facilities in Greenland were preferred to the current treatment in Denmark. The welfare estimate from the DCE, at DKK 18.74 million, exceeds the estimated annual costs of establishing treatment facilities for patients with chronic renal failure. Given the estimated confidence interval this result seems robust. Establishing facilities in Greenland therefore would appear to be welfare-improving, deriving positive net benefits. Despite the relatively narrow policy focus, we

  19. 45 CFR 2104.150 - Program accessibility: Existing facilities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... FINE ARTS ENFORCEMENT OF NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES CONDUCTED BY THE COMMISSION OF FINE ARTS § 2104.150 Program accessibility: Existing facilities. (a) General... of achieving program accessibility include— (i) Using audio-visual materials and devices to depict...

  20. 45 CFR 2104.150 - Program accessibility: Existing facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... FINE ARTS ENFORCEMENT OF NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES CONDUCTED BY THE COMMISSION OF FINE ARTS § 2104.150 Program accessibility: Existing facilities. (a) General... of achieving program accessibility include— (i) Using audio-visual materials and devices to depict...

  1. 45 CFR 2104.150 - Program accessibility: Existing facilities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... FINE ARTS ENFORCEMENT OF NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES CONDUCTED BY THE COMMISSION OF FINE ARTS § 2104.150 Program accessibility: Existing facilities. (a) General... of achieving program accessibility include— (i) Using audio-visual materials and devices to depict...

  2. 45 CFR 2104.150 - Program accessibility: Existing facilities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... FINE ARTS ENFORCEMENT OF NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES CONDUCTED BY THE COMMISSION OF FINE ARTS § 2104.150 Program accessibility: Existing facilities. (a) General... of achieving program accessibility include— (i) Using audio-visual materials and devices to depict...

  3. 45 CFR 2104.150 - Program accessibility: Existing facilities.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... FINE ARTS ENFORCEMENT OF NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES CONDUCTED BY THE COMMISSION OF FINE ARTS § 2104.150 Program accessibility: Existing facilities. (a) General... of achieving program accessibility include— (i) Using audio-visual materials and devices to depict...

  4. KENNEDY SPACE CENTER, FLA. - Dr. Paul Hintze (left) explains to Center Director Jim Kennedy a project he is working at the KSC Beach Corrosion Test Site. Hitze is doing post-graduate work for the National Research Council. The test facility site was established in the 1960s and has provided more than 30 years of historical information on the long-term performance of many materials in use at KSC and other locations around the world. Located 100 feet from the Atlantic Ocean approximately 1 mile south of the Space Shuttle launch sites, the test facility includes an atmospheric exposure site, a flowing seawater exposure site, and an on-site electrochemistry laboratory and monitoring station. The beach laboratory is used to conduct real-time corrosion experiments and provides for the remote monitoring of surrounding weather conditions. The newly added flowing seawater immersion facility provides for the immersion testing of materials and devices under controlled conditions.

    NASA Image and Video Library

    2003-08-21

    KENNEDY SPACE CENTER, FLA. - Dr. Paul Hintze (left) explains to Center Director Jim Kennedy a project he is working at the KSC Beach Corrosion Test Site. Hitze is doing post-graduate work for the National Research Council. The test facility site was established in the 1960s and has provided more than 30 years of historical information on the long-term performance of many materials in use at KSC and other locations around the world. Located 100 feet from the Atlantic Ocean approximately 1 mile south of the Space Shuttle launch sites, the test facility includes an atmospheric exposure site, a flowing seawater exposure site, and an on-site electrochemistry laboratory and monitoring station. The beach laboratory is used to conduct real-time corrosion experiments and provides for the remote monitoring of surrounding weather conditions. The newly added flowing seawater immersion facility provides for the immersion testing of materials and devices under controlled conditions.

  5. Solidification under zero gravity: A Long Duration Exposure Facility (LDEF) experiment for an early space shuttle mission. [project planning

    NASA Technical Reports Server (NTRS)

    Bailey, J. A.

    1976-01-01

    Project planning for two series of simple experiments on the effect of zero gravity on the melting and freezing of metals and nonmetals is described. The experiments will be performed in the Long Duration Exposure Facility, and their purpose will be to study: (1) the general morphology of metals and nonmetals during solidification, (2) the location of ullage space (liquid-vapor interfaces), and (3) the magnitude of surface tension driven convection during solidification of metals and nonmetals. The preliminary design of the experiments is presented. Details of the investigative approach, experimental procedure, experimental hardware, data reduction and analysis, and anticipated results are given. In addition a work plan and cost analysis are provided.

  6. Job preferences among clinical officers in public sector facilities in rural Kenya: a discrete choice experiment.

    PubMed

    Takemura, Toshio; Kielmann, Karina; Blaauw, Duane

    2016-01-08

    Clinical officers (COs), a mid-level cadre of health worker, are the backbone of healthcare provision in rural Kenya. However, the vacancy rate for COs in rural primary healthcare facilities is high. Little is known about factors motivating COs' preferences for rural postings. A discrete choice experiment (DCE) questionnaire was used with 57 COs at public health facilities in nine districts of Nyanza Province, Kenya. The questionnaire was developed on the basis of formative qualitative interviews with COs (n = 5) and examined how five selected job attributes influenced COs' preferences for working in rural areas. Conditional logit models were employed to examine the relative importance of different job attributes. Analysis of the qualitative data revealed five important job attributes influencing COs' preferences: quality of the facility, educational opportunities, housing, monthly salary and promotion. Analysis of the DCE indicated that a 1-year guaranteed study leave after 3 years of service would have the greatest impact on retention, followed by good quality health facility infrastructure and equipment and a 30% salary increase. Sub-group analysis shows that younger COs demonstrated a significantly stronger preference for study leave than older COs. Female COs placed significantly higher value on promotion than male COs. Although both financial incentives and non-financial incentives were effective in motivating COs to stay in post, the study leave intervention was shown to have the strongest impact on COs' retention in our study. Further research is required to examine appropriate interventions at each career stage that might boost COs' professional identity and status but without leading to larger deficits in the availability of generalist COs.

  7. 10. INTERIOR VIEW SHOWING MOUNTINGS FROM TUNING DEVICE. VIEW SHOWS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. INTERIOR VIEW SHOWING MOUNTINGS FROM TUNING DEVICE. VIEW SHOWS COPPER SHEETING ON WALLS. - Chollas Heights Naval Radio Transmitting Facility, Helix House, 6410 Zero Road, San Diego, San Diego County, CA

  8. Adverse Events Involving Radiation Oncology Medical Devices: Comprehensive Analysis of US Food and Drug Administration Data, 1991 to 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connor, Michael J.; Department of Radiation Oncology, University of California Irvine School of Medicine, Irvine, California; Marshall, Deborah C.

    Purpose: Radiation oncology relies on rapidly evolving technology and highly complex processes. The US Food and Drug Administration collects reports of adverse events related to medical devices. We sought to characterize all events involving radiation oncology devices (RODs) from the US Food and Drug Administration's postmarket surveillance Manufacturer and User Facility Device Experience (MAUDE) database, comparing these with non–radiation oncology devices. Methods and Materials: MAUDE data on RODs from 1991 to 2015 were sorted into 4 product categories (external beam, brachytherapy, planning systems, and simulation systems) and 5 device problem categories (software, mechanical, electrical, user error, and dose delivery impact).more » Outcomes included whether the device was evaluated by the manufacturer, adverse event type, remedial action, problem code, device age, and time since 510(k) approval. Descriptive statistics were performed with linear regression of time-series data. Results for RODs were compared with those for other devices by the Pearson χ{sup 2} test for categorical data and 2-sample Kolmogorov-Smirnov test for distributions. Results: There were 4234 ROD and 4,985,698 other device adverse event reports. Adverse event reports increased over time, and events involving RODs peaked in 2011. Most ROD reports involved external beam therapy (50.8%), followed by brachytherapy (24.9%) and treatment planning systems (21.6%). The top problem types were software (30.4%), mechanical (20.9%), and user error (20.4%). RODs differed significantly from other devices in each outcome (P<.001). RODs were more likely to be evaluated by the manufacturer after an event (46.9% vs 33.0%) but less likely to be recalled (10.5% vs 37.9%) (P<.001). Device age and time since 510(k) approval were shorter among RODs (P<.001). Conclusions: Compared with other devices, RODs may experience adverse events sooner after manufacture and market approval. Close postmarket surveillance

  9. The F-15B Propulsion Flight Test Fixture: A New Flight Facility For Propulsion Research

    NASA Technical Reports Server (NTRS)

    Corda, Stephen; Vachon, M. Jake; Palumbo, Nathan; Diebler, Corey; Tseng, Ting; Ginn, Anthony; Richwine, David

    2001-01-01

    The design and development of the F-15B Propulsion Flight Test Fixture (PFTF), a new facility for propulsion flight research, is described. Mounted underneath an F-15B fuselage, the PFTF provides volume for experiment systems and attachment points for propulsion devices. A unique feature of the PFTF is the incorporation of a six-degree-of-freedom force balance. Three-axis forces and moments can be measured in flight for experiments mounted to the force balance. The NASA F-15B airplane is described, including its performance and capabilities as a research test bed aircraft. The detailed description of the PFTF includes the geometry, internal layout and volume, force-balance operation, available instrumentation, and allowable experiment size and weight. The aerodynamic, stability and control, and structural designs of the PFTF are discussed, including results from aerodynamic computational fluid dynamic calculations and structural analyses. Details of current and future propulsion flight experiments are discussed. Information about the integration of propulsion flight experiments is provided for the potential PFTF user.

  10. The HelCat basic plasma science device

    NASA Astrophysics Data System (ADS)

    Gilmore, M.; Lynn, A. G.; Desjardins, T. R.; Zhang, Y.; Watts, C.; Hsu, S. C.; Betts, S.; Kelly, R.; Schamiloglu, E.

    2015-01-01

    The Helicon-Cathode(HelCat) device is a medium-size linear experiment suitable for a wide range of basic plasma science experiments in areas such as electrostatic turbulence and transport, magnetic relaxation, and high power microwave (HPM)-plasma interactions. The HelCat device is based on dual plasma sources located at opposite ends of the 4 m long vacuum chamber - an RF helicon source at one end and a thermionic cathode at the other. Thirteen coils provide an axial magnetic field B >= 0.220 T that can be configured individually to give various magnetic configurations (e.g. solenoid, mirror, cusp). Additional plasma sources, such as a compact coaxial plasma gun, are also utilized in some experiments, and can be located either along the chamber for perpendicular (to the background magnetic field) plasma injection, or at one of the ends for parallel injection. Using the multiple plasma sources, a wide range of plasma parameters can be obtained. Here, the HelCat device is described in detail and some examples of results from previous and ongoing experiments are given. Additionally, examples of planned experiments and device modifications are also discussed.

  11. Experimental results from magnetized-jet experiments executed at the Jupiter Laser Facility

    DOE PAGES

    Manuel, M. J. -E.; Kuranz, C. C.; Rasmus, A. M.; ...

    2014-08-20

    Recent experiments at the Jupiter Laser Facility investigated magnetization effects on collimated plasma jets. Laser-irradiated plastic-cone-targets produced collimated, millimeter-scale plasma flows as indicated by optical interferometry. Proton radiography of these jets showed no indication of strong, self-generated magnetic fields, suggesting a dominantly hydrodynamic collimating mechanism. Targets were placed in a custom-designed solenoid capable of generating field strengths up to 5 T. Proton radiographs of the well-characterized B-field, without a plasma jet, suggested an external source of trapped electrons that affects proton trajectories. The background magnetic field was aligned with the jet propagation direction, as is the case in many astrophysicalmore » systems. Optical interferometry showed that magnetization of the plasma results in disruption of the collimated flow and instead produces a hollow cavity. Furthermore, this result is a topic of ongoing investigation.« less

  12. Experimental results from magnetized-jet experiments executed at the Jupiter Laser Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manuel, M. J. -E.; Kuranz, C. C.; Rasmus, A. M.

    Recent experiments at the Jupiter Laser Facility investigated magnetization effects on collimated plasma jets. Laser-irradiated plastic-cone-targets produced collimated, millimeter-scale plasma flows as indicated by optical interferometry. Proton radiography of these jets showed no indication of strong, self-generated magnetic fields, suggesting a dominantly hydrodynamic collimating mechanism. Targets were placed in a custom-designed solenoid capable of generating field strengths up to 5 T. Proton radiographs of the well-characterized B-field, without a plasma jet, suggested an external source of trapped electrons that affects proton trajectories. The background magnetic field was aligned with the jet propagation direction, as is the case in many astrophysicalmore » systems. Optical interferometry showed that magnetization of the plasma results in disruption of the collimated flow and instead produces a hollow cavity. Furthermore, this result is a topic of ongoing investigation.« less

  13. Test devices for aeronautical research and technology

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The objectives of the DFVLR in six areas are described: (1) transportation and communication systems; (2) aircraft, space technology, (4) remote sensing, (5) energy and propulsion technology; and (6) research and development. A detailed description of testing devices and other facilities required to carry out the research program is given.

  14. Experimental Measurements at the MASURCA Facility

    NASA Astrophysics Data System (ADS)

    Assal, W.; Bosq, J. C.; Mellier, F.

    2012-12-01

    Dedicated to the neutronics studies of fast and semi-fast reactor lattices, MASURCA (meaning “mock-up facility for fast breeder reactor studies at CADARACHE”) is an airflow cooled fast reactor operating at a maximum power of 5 kW playing an important role in the CEA research activities. At this facility, a lot of neutron integral experimental programs were undertaken. The purpose of this poster is to show a panorama of the facility from this experimental measurement point of view. A hint at the forthcoming refurbishment will be included. These programs include various experimental measurements (reactivity, distributions of fluxes, reaction rates), performed essentially with fission chambers, in accordance with different methods (noise methods, radial or axial traverses, rod drops) and involving several devices systems (monitors, fission chambers, amplifiers, power supplies, data acquisition systems ...). For this purpose are implemented electronics modules to shape the signals sent from the detectors in various mode (fluctuation, pulse, current). All the electric and electronic devices needed for these measurements and the relating wiring will be fully explained through comprehensive layouts. Data acquired during counting performed at the time of startup phase or rod drops are analyzed by the mean of a Neutronic Measurement Treatment (TMN in French) programmed on the basis of the MATLAB software. This toolbox gives the opportunity of data files management, reactivity valuation from neutronics measurements and transient or divergence simulation at zero power. Particular TMN using at MASURCA will be presented.

  15. Initial experience with the Cardiva Boomerang vascular closure device in diagnostic catheterization.

    PubMed

    Doyle, Brendan J; Godfrey, Michael J; Lennon, Ryan J; Ryan, James L; Bresnahan, John F; Rihal, Charanjit S; Ting, Henry H

    2007-02-01

    The authors studied the safety and efficacy of the Cardiva Boomerang vascular closure device in patients undergoing diagnostic cardiac catheterization. Conventional vascular closure devices (sutures, collagen plugs, or metal clips) have been associated with catastrophic complications including arterial occlusion and foreign body infections; furthermore, they cannot be utilized in patients with peripheral vascular disease or vascular access site in a vessel other than the common femoral artery. The Cardiva Boomerang device facilitates vascular hemostasis without leaving any foreign body behind at the access site, can be used in peripheral vascular disease, and can be used in vessels other than the common femoral artery A total of 96 patients undergoing transfemoral diagnostic cardiac catheterization were included in this study, including 25 (26%) patients with contraindications to conventional closure devices. Femoral angiography was performed prior to deployment of the Cardiva Boomerang closure device. Patients were ambulated at 1 hr after hemostasis was achieved. The device was successfully deployed and hemostasis achieved with the device alone in 95 (99%) patients. The device failed to deploy in 1 (1%) patient and required conversion to standard manual compression. Minor complications were observed in 5 (5%) patients. No patients experienced major complications including femoral hematoma > 4 cm, red blood cell transfusion, retroperitoneal bleed, arteriovenous fistula, pseudoaneurysm, infection, arterial occlusion, or vascular surgery. The Cardiva Boomerang device is safe and effective in patients undergoing diagnostic cardiac catheterization using the transfemoral approach, facilitating early ambulation with low rates of vascular complications. (c) 2006 Wiley-Liss, Inc.

  16. Sensors and devices containing ultra-small nanowire arrays

    DOEpatents

    Xiao, Zhili

    2014-09-23

    A network of nanowires may be used for a sensor. The nanowires are metallic, each nanowire has a thickness of at most 20 nm, and each nanowire has a width of at most 20 nm. The sensor may include nanowires comprising Pd, and the sensor may sense a change in hydrogen concentration from 0 to 100%. A device may include the hydrogen sensor, such as a vehicle, a fuel cell, a hydrogen storage tank, a facility for manufacturing steel, or a facility for refining petroleum products.

  17. Sensors and devices containing ultra-small nanowire arrays

    DOEpatents

    Xiao, Zhili

    2017-04-11

    A network of nanowires may be used for a sensor. The nanowires are metallic, each nanowire has a thickness of at most 20 nm, and each nanowire has a width of at most 20 nm. The sensor may include nanowires comprising Pd, and the sensor may sense a change in hydrogen concentration from 0 to 100%. A device may include the hydrogen sensor, such as a vehicle, a fuel cell, a hydrogen storage tank, a facility for manufacturing steel, or a facility for refining petroleum products.

  18. Dynamic test results for the CASES ground experiment

    NASA Technical Reports Server (NTRS)

    Bukley, Angelia P.; Patterson, Alan F.; Jones, Victoria L.

    1993-01-01

    The Controls, Astrophysics, and Structures Experiment in Space (CASES) Ground Test Facility (GTF) has been developed at Marshall Space Flight Center (MSFC) to provide a facility for the investigation of Controls/Structures Interaction (CSI) phenomena, to support ground testing of a potential shuttle-based CASES flight experiment, and to perform limited boom deployment and retraction dynamics studies. The primary objectives of the ground experiment are to investigate CSI on a test article representative of a Large Space Structure (LSS); provide a platform for Guest Investigators (GI's) to conduct CSI studies; to test and evaluate LSS control methodologies, system identification (ID) techniques, failure mode analysis; and to compare ground test predictions and flight results. The proposed CASES flight experiment consists of a 32 meter deployable/retractable boom at the end of which is an occulting plate. The control objective of the experiment is to maintain alignment of the tip plate (occulter) with a detector located at the base of the boom in the orbiter bay. The tip plate is pointed towards a star, the sun, or the galactic center to collect high-energy X-rays emitted by these sources. The tip plate, boom, and detector comprise a Fourier telescope. The occulting holes in the tip plate are approximately one millimeter in diameter making the alignment requirements quite stringent. Control authority is provided by bidirectional linear thrusters located at the boom tip and Angular Momentum Exchange Devices (AMED's) located at mid-boom and at the tip. The experiment embodies a number of CSI control problems including vibration suppression, pointing a long flexible structure, and disturbance rejection. The CASES GTF is representative of the proposed flight experiment with identical control objectives.

  19. Experiences of acute pain in children who present to a healthcare facility for treatment: a systematic review of qualitative evidence.

    PubMed

    Pope, Nicole; Tallon, Mary; McConigley, Ruth; Leslie, Gavin; Wilson, Sally

    2017-06-01

    Pain is a universal and complex phenomenon that is personal, subjective and specific. Despite growing knowledge in pediatric pain, management of children's pain remains sub-optimal and is linked to negative behavioral and physiological consequences later in life. As there is no synthesis of these studies, it was timely to undertake a systematic review. To identify, evaluate and synthesize the existing qualitative evidence on children's experiences of acute pain, including pain management, within a healthcare facility. Children aged four to 18 years (inclusive) attending a healthcare facility who experienced acute pain associated with any injury, medical condition or treatment. Children's experiences and perceptions of their acute pain, pain management and expectations of others in managing their pain. Studies on children's experiences of pain in the postoperative context were excluded as a systematic review exploring this phenomenon had previously been published. Studies reporting on children's experiences of chronic pain were also excluded. Any healthcare facility including general practitioners' surgeries, hospitals, emergency departments and outpatient clinics. Qualitative studies including phenomenology, grounded theory, ethnography, action research and feminist research designs. Using a three-step search strategy, databases were searched in December 2015 to identify both published and unpublished articles from 2000 to 2015. Studies published in languages other than English were excluded. All studies that met the inclusion criteria were assessed by at least two independent reviewers for methodological quality using a standardized critical appraisal tool from the Joanna Briggs Institute Qualitative Assessment and Review Instrument (JBI-QARI). Data were extracted from the papers included in the review using standardized data extraction tool from JBI-QARI. Findings were pooled using JBI-QARI. Findings were rated according to their level of credibility and

  20. Development of a Multi-GeV spectrometer for laser-plasma experiment at FLAME

    NASA Astrophysics Data System (ADS)

    Valente, P.; Anelli, F.; Bacci, A.; Batani, D.; Bellaveglia, M.; Benocci, R.; Benedetti, C.; Cacciotti, L.; Cecchetti, C. A.; Clozza, A.; Cultrera, L.; Di Pirro, G.; Drenska, N.; Faccini, R.; Ferrario, M.; Filippetto, D.; Fioravanti, S.; Gallo, A.; Gamucci, A.; Gatti, G.; Ghigo, A.; Giulietti, A.; Giulietti, D.; Gizzi, L. A.; Koester, P.; Labate, L.; Levato, T.; Lollo, V.; Londrillo, P.; Martellotti, S.; Pace, E.; Pathak, N.; Rossi, A.; Tani, F.; Serafini, L.; Turchetti, G.; Vaccarezza, C.

    2011-10-01

    The advance in laser-plasma acceleration techniques pushes the regime of the resulting accelerated particles to higher energies and intensities. In particular, the upcoming experiments with the 250 TW laser at the FLAME facility of the INFN Laboratori Nazionali di Frascati, will enter the GeV regime with more than 100 pC of electrons. At the current status of understanding of the acceleration mechanism, relatively large angular and energy spreads are expected. There is therefore the need for developing a device capable to measure the energy of electrons over three orders of magnitude (few MeV to few GeV), with still unknown angular divergences. Within the PlasmonX experiment at FLAME, a spectrometer is being constructed to perform these measurements. It is made of an electro-magnet and a screen made of scintillating fibers for the measurement of the trajectories of the particles. The large range of operation, the huge number of particles and the need to focus the divergence, present challenges in the design and construction of such a device. We present the design considerations for this spectrometer that lead to the use of scintillating fibers, multichannel photo-multipliers and a multiplexing electronics, a combination which is innovative in the field. We also present the experimental results obtained with a high intensity electron beam performed on a prototype at the LNF beam test facility.

  1. 40 CFR 60.5417 - What are the continuous control device monitoring requirements for my storage vessel or...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... monitoring requirements for my storage vessel or centrifugal compressor affected facility? 60.5417 Section 60... requirements for my storage vessel or centrifugal compressor affected facility? You must meet the applicable... standards for your storage vessel or centrifugal compressor affected facility. (a) For each control device...

  2. Enhanced, rapid occlusion of carotid and vertebral arteries using the AMPLATZER Vascular Plug II device: the Duke Cerebrovascular Center experience in 8 patients with 22 AMPLATZER Vascular Plug II devices.

    PubMed

    Mihlon, Frank; Agrawal, Abishek; Nimjee, Shahid M; Ferrell, Andrew; Zomorodi, Ali R; Smith, Tony P; Britz, Gavin W

    2015-01-01

    Therapeutic embolization of the common carotid artery (CCA), internal carotid artery (ICA), and vertebral artery (VA) is necessary in the treatment of a subset of chronic arteriovenous fistulas (AVFs), hemorrhages, highly vascularized neoplasms before resection, and giant aneurysms. There are currently no reports of the use of the AMPLATZER Vascular Plug II (AVP II) device to occlude the CCA, ICA, or VA. The objective of this article is to present the Duke Cerebrovascular Center experience using the AVP II device in neurointerventional applications. This case series is a retrospective review of all of the cases at Duke University Hospital in which an AVP II device was used in the CCA, ICA, or VA up to September 2012. The AVP II device was often used in conjunction with embolization coils or as multiple AVP II devices deployed in tandem. During 2010-2012, 8 cases meeting criteria were performed. These included 2 chronic VA to internal jugular AVFs, 1 hemorrhagic CCA to internal jugular AVF secondary to invasive head and neck squamous cell carcinoma, 1 ICA hemorrhage secondary to invasive head and neck squamous cell carcinoma, 1 ICA hemorrhage secondary to trauma, 1 ruptured ICA aneurysm, 1 giant petrous ICA aneurysm, and 1 case of cervical vertebral sarcoma requiring preoperative VA embolization. Successful occlusion of the target vessel was achieved in all 8 cases. There was 1 major complication that consisted of a watershed distribution cerebral infarct; however, this was related to emergent occlusion of the ICA in the setting of intracranial hemorrhage and was not a problem intrinsic to the AVP II device. The AVP II device is relatively large, self-expanding vascular occlusion device that safely allows enhanced, rapid take-down of the CCA, ICA, and VA with low risk of distal migration. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Provider experiences with negative-pressure wound therapy systems.

    PubMed

    Kaufman-Rivi, Diana; Hazlett, Antoinette C; Hardy, Mary Anne; Smith, Jacquelyn M; Seid, Heather B

    2013-07-01

    MedWatch, the Food and Drug Administration's (FDA's) nationwide adverse event reporting system, serves to monitor device performance after a medical device is approved or cleared for market. Through the MedWatch adverse event reporting system, the FDA receives Medical Device Reports of deaths and serious injuries with negative-pressure wound therapy (NPWT) systems, many of which are used in homes and in extended-care facilities. In response to reported events, this study was conducted to obtain additional information about device issues that healthcare professionals face in these settings, as well as challenges that caregivers might encounter using this technology at home. The study was exploratory and descriptive in nature. The FDA surveyed wound care specialists and professional home healthcare providers to learn about users' experiences with NPWT. In the first phase of the study, a semistructured questionnaire was developed for telephone interviews and self-administration. In the second phase, a web-based survey was adapted from the semistructured instrument. Respondent concerns primarily centered on issues not directly related to the NPWT devices: NPWT prescription, provider education in addition to patient training and appropriate wound management practices, notably ongoing wound assessment, and patient monitoring. Overall, respondents thought that there was a definite benefit to NPWT, regardless of the care setting, and that it was a safe therapy when prescribed and administered appropriately.

  4. 3D-FBK Pixel Sensors: Recent Beam Tests Results with Irradiated Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Micelli, A.; /INFN, Trieste /Udine U.; Helle, K.

    2012-04-30

    The Pixel Detector is the innermost part of the ATLAS experiment tracking device at the Large Hadron Collider, and plays a key role in the reconstruction of the primary vertices from the collisions and secondary vertices produced by short-lived particles. To cope with the high level of radiation produced during the collider operation, it is planned to add to the present three layers of silicon pixel sensors which constitute the Pixel Detector, an additional layer (Insertable B-Layer, or IBL) of sensors. 3D silicon sensors are one of the technologies which are under study for the IBL. 3D silicon technology ismore » an innovative combination of very-large-scale integration and Micro-Electro-Mechanical-Systems where electrodes are fabricated inside the silicon bulk instead of being implanted on the wafer surfaces. 3D sensors, with electrodes fully or partially penetrating the silicon substrate, are currently fabricated at different processing facilities in Europe and USA. This paper reports on the 2010 June beam test results for irradiated 3D devices produced at FBK (Trento, Italy). The performance of these devices, all bump-bonded with the ATLAS pixel FE-I3 read-out chip, is compared to that observed before irradiation in a previous beam test.« less

  5. Exobiological implications of dust aggregation in planetary atmospheres: An experiment for the gas-grain simulation facility

    NASA Technical Reports Server (NTRS)

    Huntington, J. L.; Schwartz, D. E.; Marshall, J. R.

    1991-01-01

    The Gas-Grain Simulation Facility (GGSF) will provide a microgravity environment where undesirable environmental effects are reduced, and thus, experiments involving interactions between small particles and grains can be more suitably performed. Slated for flight aboard the Shuttle in 1992, the ESA glovebox will serve as a scientific and technological testbed for GGSF exobiology experiments as well as generating some basic scientific data. Initial glovebox experiments will test a method of generating a stable, mono-dispersed cloud of fine particles using a vibrating sprinkler system. In the absence of gravity and atmospheric turbulence, it will be possible to determine the influence of interparticle forces in controlling the rate and mode of aggregation. The experimental chamber can be purged of suspended matter to enable multiple repetitions of the experiments. Of particular interest will be the number of particles per unit volume of the chamber, because it is suspected that aggregation will occur extremely rapidly if the number exceeds a critical value. All aggregation events will be recorded on high-resolution video film. Changes in the experimental procedure as a result of surprise events will be accompanied by real-time interaction with the mission specialist during the Shuttle flight.

  6. Design of carbon therapy facility based on 10 years experience at HIMAC

    NASA Astrophysics Data System (ADS)

    Noda, K.; Furukawa, T.; Iwata, Y.; Kanai, T.; Kanazawa, M.; Kanematsu, N.; Kitagawa, A.; Komori, M.; Minohara, S.; Murakami, T.; Muramatsu, M.; Sato, S.; Sato, Y.; Shibuya, S.; Torikoshi, M.; Yamada, S.

    2006-06-01

    Since 1994, the clinical trial for cancer therapy with HIMAC has successfully progressed, and more than 2100 cancer patients have been treated with a carbon beam. Based on the development of the accelerator and irradiation technologies for 10 years, we have designed a new carbon-therapy facility for widespread use in Japan, and key technologies for the new facility have been developed. We describe the conceptual design of the new facility and the status of development for the key technologies.

  7. Top-emitting white organic light-emitting devices with down-conversion phosphors: theory and experiment.

    PubMed

    Ji, Wenyu; Zhang, Letian; Gao, Ruixue; Zhang, Liming; Xie, Wenfa; Zhang, Hanzhuang; Li, Bin

    2008-09-29

    White top-emitting organic light-emitting devices (TEOLEDs) with down-conversion phosphors are investigated from theory and experiment. The theoretical simulation was described by combining the microcavity model with the down-conversion model. A White TEOLED by the combination of a blue TEOLED with organic down-conversion phosphor 3-(4-(diphenylamino)phenyl)-1-pheny1prop-2-en-1-one was fabricated to validate the simulated results. It is shown that this approach permits the generation of white light in TEOLEDs. The efficiency of the white TEOLED is twice over the corresponding blue TEOLED. The feasible methods to improve the performance of such white TEOLEDs are discussed.

  8. A Low Cost Mechatronics Device for STEM Education

    NASA Astrophysics Data System (ADS)

    Himes, Larry Eugene, Jr.

    All of the low-cost STEM education devices currently available are limited in function which limits learning. The motivation was to design and develop a device that will intrigue post-secondary students to learn STEM education concepts in a hands-on manner. The device needed to be open source so as to lower the cost to make it available to more students. And, making it feature rich was important for use with multiple projects the students may encounter or build themselves as they grow. The device has provided visual and physical feedback to students making the device more intriguing to use. Using the open-source C compiler reduced cost for students to use the device and taught them how to use an industry standard programming language. Students enjoyed the WAV file rendering for sound effects and LED lighting effects from the device. Most interviewees were intrigued by the device for use in their training facilities and classrooms. There are a couple of multi-axis controllers available but none with position feedback. Ethernet or Bluetooth interfacing was mentioned as a future feature and it was encouraged by nearly all who were interviewed.

  9. Evaluation results of xTCA equipment for HEP experiments at CERN

    NASA Astrophysics Data System (ADS)

    Di Cosmo, M.; Bobillier, V.; Haas, S.; Joos, M.; Mico, S.; Vasey, F.; Vichoudis, P.

    2013-12-01

    The MicroTCA and AdvancedTCA industry standards are candidate modular electronic platforms for the upgrade of the current generation of high energy physics experiments. The PH-ESE group at CERN launched in 2011 the xTCA evaluation project with the aim of performing technical evaluations and eventually providing support for commercially available components. Different devices from different vendors have been acquired, evaluated and interoperability tests have been performed. This paper presents the test procedures and facilities that have been developed and focuses on the evaluation results including electrical, thermal and interoperability aspects.

  10. Perceptions and experiences of the mistreatment of women during childbirth in health facilities in Guinea: a qualitative study with women and service providers.

    PubMed

    Balde, Mamadou Diouldé; Diallo, Boubacar Alpha; Bangoura, Abou; Sall, Oumar; Soumah, Anne Marie; Vogel, Joshua P; Bohren, Meghan A

    2017-01-11

    Every woman is entitled to respectful care during childbirth; so it is concerning to hear of informal reports of mistreatment during childbirth in Guinea. This study sought to explore the perceptions and experiences of mistreatment during childbirth, from the perspectives of women and service providers, and the analysis presents findings according to a typology of mistreatment during childbirth. This study used qualitative methods (in-depth interviews (IDIs) and focus group discussions (FGDs)) and was conducted with four groups of participants: women of reproductive age, midwives, doctors, and administrators. The study took place in two sites in Guinea, an urban area (Mamou) and peri-urban (Pita). Data collection was conducted in two health facilities for providers and administrators, and in the health facility catchment area for women. Data were collected in local languages (Pular and Malinké), then transcribed and analyzed in French. We used a thematic analysis approach and coded transcripts manually. A total of 64 IDIs and eight FGDs were conducted and are included in this analysis, including 40 IDIs and eight FGDs with women of reproductive age, 5 IDIs with doctors, 13 IDIs with midwives, and 6 IDIs with administrators. Participants described their own personal experiences, experiences of women in their communities and perceptions regarding mistreatment during childbirth. Results were organized according to a typology of mistreatment during childbirth, and included instances of physical abuse, verbal abuse, abandonment and neglect. Women described being slapped by providers, yelled at for noncompliance with provider requests, giving birth on the floor and without skilled attendance in the health facility. Poor physical conditions of health facilities and health workforce constraints contributed to experiences of mistreatment. These results are important because they demonstrate that the mistreatment of women during childbirth exists in Guinea and occurs in

  11. Hierarchical VOOH hollow spheres for symmetrical and asymmetrical supercapacitor devices.

    PubMed

    Jing, Xuyang; Wang, Cong; Feng, Wenjing; Xing, Na; Jiang, Hanmei; Lu, Xiangyu; Zhang, Yifu; Meng, Changgong

    2018-01-01

    Hierarchical VOOH hollow spheres with low crystallinity composed of nanoparticles were prepared by a facile and template-free method, which involved a precipitation of precursor microspheres in aqueous solution at room temperature and subsequent hydrothermal reaction. Quasi-solid-state symmetric and asymmetric supercapacitor (SSC and ASC) devices were fabricated using hierarchical VOOH hollow spheres as the electrodes, and the electrochemical properties of the VOOH//VOOH SSC device and the VOOH//AC ASC device were studied by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS). Results demonstrated that the electrochemical performance of the VOOH//AC ASC device was better than that of the VOOH//VOOH SSC device. After 3000 cycles, the specific capacitance of the VOOH//AC ASC device retains 83% of the initial capacitance, while the VOOH//VOOH SSC device retains only 7.7%. Findings in this work proved that hierarchical VOOH hollow spheres could be a promising candidate as an ideal electrode material for supercapacitor devices.

  12. Hierarchical VOOH hollow spheres for symmetrical and asymmetrical supercapacitor devices

    NASA Astrophysics Data System (ADS)

    Jing, Xuyang; Wang, Cong; Feng, Wenjing; Xing, Na; Jiang, Hanmei; Lu, Xiangyu; Zhang, Yifu; Meng, Changgong

    2018-01-01

    Hierarchical VOOH hollow spheres with low crystallinity composed of nanoparticles were prepared by a facile and template-free method, which involved a precipitation of precursor microspheres in aqueous solution at room temperature and subsequent hydrothermal reaction. Quasi-solid-state symmetric and asymmetric supercapacitor (SSC and ASC) devices were fabricated using hierarchical VOOH hollow spheres as the electrodes, and the electrochemical properties of the VOOH//VOOH SSC device and the VOOH//AC ASC device were studied by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS). Results demonstrated that the electrochemical performance of the VOOH//AC ASC device was better than that of the VOOH//VOOH SSC device. After 3000 cycles, the specific capacitance of the VOOH//AC ASC device retains 83% of the initial capacitance, while the VOOH//VOOH SSC device retains only 7.7%. Findings in this work proved that hierarchical VOOH hollow spheres could be a promising candidate as an ideal electrode material for supercapacitor devices.

  13. Evolution of Gas Cell Targets for Magnetized Liner Inertial Fusion Experiments at the Sandia National Laboratories PECOS Test Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paguio, R. R.; Smith, G. E.; Taylor, J. L.

    Z-Beamlet (ZBL) experiments conducted at the PECOS test facility at Sandia National Laboratories (SNL) investigated the nonlinear processes in laser plasma interaction (or laserplasma instabilities LPI) that complicate the deposition of laser energy by enhanced absorption, backscatter, filamentation and beam-spray that can occur in large-scale laser-heated gas cell targets. These targets and experiments were designed to provide better insight into the physics of the laser preheat stage of the Magnetized Liner Inertial Fusion (MagLIF) scheme being tested on the SNL Z-machine. The experiments aim to understand the tradeoffs between laser spot size, laser pulse shape, laser entrance hole (LEH) windowmore » thickness, and fuel density for laser preheat. Gas cell target design evolution and fabrication adaptations to accommodate the evolving experiment and scientific requirements are also described in this paper.« less

  14. Evolution of Gas Cell Targets for Magnetized Liner Inertial Fusion Experiments at the Sandia National Laboratories PECOS Test Facility

    DOE PAGES

    Paguio, R. R.; Smith, G. E.; Taylor, J. L.; ...

    2017-12-04

    Z-Beamlet (ZBL) experiments conducted at the PECOS test facility at Sandia National Laboratories (SNL) investigated the nonlinear processes in laser plasma interaction (or laserplasma instabilities LPI) that complicate the deposition of laser energy by enhanced absorption, backscatter, filamentation and beam-spray that can occur in large-scale laser-heated gas cell targets. These targets and experiments were designed to provide better insight into the physics of the laser preheat stage of the Magnetized Liner Inertial Fusion (MagLIF) scheme being tested on the SNL Z-machine. The experiments aim to understand the tradeoffs between laser spot size, laser pulse shape, laser entrance hole (LEH) windowmore » thickness, and fuel density for laser preheat. Gas cell target design evolution and fabrication adaptations to accommodate the evolving experiment and scientific requirements are also described in this paper.« less

  15. Biomedical survey of ATC facilities, 2. Experience and age.

    DOT National Transportation Integrated Search

    1965-03-01

    From six enroute and six terminal air traffic control facilities selected on the basis of differences between shift rotation schedules and high IFR traffic volume, 300 journeymen and assistant controllers were selected as volunteer subjects to comple...

  16. Compressed Natural Gas Vehicle Maintenance Facility Modification Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, K.; Melendez, M.; Gonzales, J.

    To ensure the safety of personnel and facilities, vehicle maintenance facilities are required by law and by guidelines of the National Fire Protection Association (NFPA) and the International Fire Code (IFC) to exhibit certain design features. They are also required to be fitted with certain fire protection equipment and devices because of the potential for fire or explosion in the event of fuel leakage or spills. All fuels have an explosion or fire potential if specific conditions are present. This handbook covers the primary elements that must be considered when developing a CNG vehicle maintenance facility design that will protectmore » against the ignition of natural gas releases. It also discusses specific protocols and training needed to ensure safety.« less

  17. On the generation of magnetized collisionless shocks in the large plasma device

    NASA Astrophysics Data System (ADS)

    Schaeffer, D. B.; Winske, D.; Larson, D. J.; Cowee, M. M.; Constantin, C. G.; Bondarenko, A. S.; Clark, S. E.; Niemann, C.

    2017-04-01

    Collisionless shocks are common phenomena in space and astrophysical systems, and in many cases, the shocks can be modeled as the result of the expansion of a magnetic piston though a magnetized ambient plasma. Only recently, however, have laser facilities and diagnostic capabilities evolved sufficiently to allow the detailed study in the laboratory of the microphysics of piston-driven shocks. We review experiments on collisionless shocks driven by a laser-produced magnetic piston undertaken with the Phoenix laser laboratory and the Large Plasma Device at the University of California, Los Angeles. The experiments span a large parameter space in laser energy, background magnetic field, and ambient plasma properties that allow us to probe the physics of piston-ambient energy coupling, the launching of magnetosonic solitons, and the formation of subcritical shocks. The results indicate that piston-driven magnetized collisionless shocks in the laboratory can be characterized with a small set of dimensionless formation parameters that place the formation process in an organized and predictive framework.

  18. Detailed results of ASTP experiment MA-011. [biological processing facility in space

    NASA Technical Reports Server (NTRS)

    Seaman, G. V. F.; Allen, R. E.; Barlow, G. H.; Bier, M.

    1976-01-01

    This experiment was developed in order to conduct engineering and operational tests of electrokinetic equipment in a micro-gravity environment. The experimental hardware in general functioned as planned and electrophoretic separations were obtained in space. The results indicated the development of satisfactory sample collection, return, and preservation techniques. The application of a near-zero zeta potential interior wall coating to the experimental columns, confirmation of biocompatibility of all appropriate hardware components, and use of a sterile operating environment provided a significant step forward in the development of a biological processing facility in space. A separation of a test of aldehyde-fixed rabbit, human, and horse red blood cells was obtained. Human kidney cells were separated into several components and viable cells returned to earth. The isotachophoretic separation of red cells was also demonstrated. Problems associated with the hardware led to a lack of success in the attempt to separate subpopulations of human lymphocytes.

  19. Numerical design of a magnetized turbulence experiment at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Feister, Scott; Tzeferacos, Petros; Meinecke, Jena; Bott, Archie; Caprioli, Damiano; Laune, Jt; Bell, Tony; Casner, Alexis; Koenig, Michel; Li, Chikang; Miniati, Francesco; Petrasso, Richard; Remington, Bruce; Reville, Brian; Ross, J. Steven; Ryu, Dongsu; Ryutov, Dmitri; Sio, Hong; Turnbull, David; Zylstra, Alex; Schekochihin, Alexander; Froula, Dustin; Park, Hye-Sook; Lamb, Don; Gregori, Gianluca

    2017-10-01

    The origin and amplification of magnetic fields remains an active astrophysical research topic. We discuss design (using three-dimensional FLASH simulations) of a magnetized turbulence experiment at the National Ignition Facility (NIF). NIF lasers drive together two counter-propagating plasma flows to form a hot, turbulent plasma at the center. In the simulations, plasma temperatures are high enough to reach super-critical values of magnetic Reynolds number (Rm). Biermann battery seed magnetic fields (generated during laser-target interaction) are advected into the turbulent region and amplified by fluctuation dynamo in the above-unity Prandtl number regime. Plasma diagnostics are modeled with FLASH for planning and direct comparison with NIF experimental data. This work was supported in part at the University of Chicago by the DOE NNSA, the DOE Office of Science, and the NSF. The numerical simulations were conducted at ALCF's Mira under the auspices of the DOE Office of Science ALCC program.

  20. Japanese Experiment Module arrival

    NASA Image and Video Library

    2007-03-29

    The Experiment Logistics Module Pressurized Section for the Japanese Experiment Module arrives at the Space Station Processing Facility. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.

  1. Japanese Experiment Module arrival

    NASA Image and Video Library

    2007-03-29

    Inside the Space Station Processing Facility, the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module is revealed after the top of the crate is removed. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.

  2. Japanese Experiment Module arrival

    NASA Image and Video Library

    2007-03-29

    The Experiment Logistics Module Pressurized Section for the Japanese Experiment Module arrives at the Space Station Processing Facility for uncrating. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.

  3. Experiences of Fast Queue health care users in primary health care facilities in eThekwini district, South Africa.

    PubMed

    Sokhela, Dudu G; Makhanya, Nonhlanhla J; Sibiya, Nokuthula M; Nokes, Kathleen M

    2013-07-05

    Comprehensive Primary Health Care (PHC), based on the principles of accessibility, availability, affordability, equity and acceptability, was introduced in South Africa to address inequalities in health service provision. Whilst the Fast Queue was instrumental in the promotion of access to health care, a major goal of the PHC approach, facilities were not prepared for the sudden influx of clients. Increased access resulted in long waiting times and queues contributing to dissatisfaction with the service which could lead to missed appointments and non-compliance with established treatment plans. Firstly to describe the experiences of clients using the Fast Queue strategy to access routine healthcare services and secondly, to determine how the clients' experiences led to satisfaction or dissatisfaction with the Fast Queue service. A descriptive qualitative survey using content analysis explored the experiences of the Fast Queue users in a PHC setting. Setting was first identified based on greatest number using the Fast Queue and geographic diversity and then a convenience sample of health care users of the Fast Queue were sampled individually along with one focus group of users who accessed the Queue monthly for medication refills. The same interview guide questions were used for both individual interviews and the one focus group discussion. Five clinics with the highest number of attendees during a three month period and a total of 83 health care users of the Fast Queue were interviewed. The average participant was female, 31 years old, single and unemployed. Two themes with sub-themes emerged: health care user flow and communication, which highlights both satisfaction and dissatisfaction with the fast queue and queue marshals, could assist in directing users to the respective queues, reduce waiting time and keep users satisfied with the use of sign posts where there is a lack of human resources. Effective health communication strategies contribute to positive

  4. Construction bidding cost of KSC's space shuttle facilities

    NASA Technical Reports Server (NTRS)

    Brown, Joseph Andrew

    1977-01-01

    The bidding cost of the major Space Transportation System facilities constructed under the responsibility of the John F. Kennedy Space Center (KSC) is described and listed. These facilities and Ground Support Equipment (GSE) are necessary for the receiving, assembly, testing, and checkout of the Space Shuttle for launch and landing missions at KSC. The Shuttle launch configuration consists of the Orbiter, the External Tank, and the Solid Rocket Boosters (SRB). The reusable Orbiter and SRB's is the major factor in the program that will result in lowering space travel costs. The new facilities are the Landing Facility; Orbiter Processing Facility; Orbiter Approach and Landing Test Facility (Dryden Test Center, California); Orbiter Mating Devices; Sound Suppression Water System; and Emergency Power System for LC-39. Also, a major factor was to use as much Apollo facilities and hardware as possible to reduce the facilities cost. The alterations to existing Apollo facilities are the VAB modifications; Mobile Launcher Platforms; Launch Complex 39 Pads A and B (which includes a new concept - the Rotary Service Structure), which was featured in ENR, 3 Feb. 1977, 'Hinged Space Truss will Support Shuttle Cargo Room'; Launch Control Center mods; External Tank and SRB Processing and Storage; Fluid Test Complex mods; O&C Spacelab mods; Shuttle mods for Parachute Facility; SRB Recovery and Disassembly Facility at Hangar 'AF'; and an interesting GSE item - the SRB Dewatering Nozzle Plug Sets (Remote Controlled Submarine System) used to inspect and acquire for reuse of SRB's.

  5. Performance of High-Convergence, Layered DT Implosions on Power-Scaling Experiments at National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smalyuk, V. A.; Atherton, L. J.; Benedetti, L. R.

    The radiation-driven, low-adiabat, cryogenic DT layered plastic capsule implosions were carried out on the National Ignition Facility (NIF) to study the sensitivity of performance to peak power and drive duration. An implosion with extended drive and at reduced peak power of 350 TW achieved the highest compression with fuel areal density of ~1.3±0.1 g/cm 2, representing a significant step from previously measured ~1.0 g/cm 2 toward a goal of 1.5 g/cm 2. Moreover, for future experiments will focus on understanding and mitigating hydrodynamic instabilities and mix, and improving symmetry required to reach the threshold for thermonuclear ignition on NIF.

  6. Performance of High-Convergence, Layered DT Implosions on Power-Scaling Experiments at National Ignition Facility

    DOE PAGES

    Smalyuk, V. A.; Atherton, L. J.; Benedetti, L. R.; ...

    2013-10-19

    The radiation-driven, low-adiabat, cryogenic DT layered plastic capsule implosions were carried out on the National Ignition Facility (NIF) to study the sensitivity of performance to peak power and drive duration. An implosion with extended drive and at reduced peak power of 350 TW achieved the highest compression with fuel areal density of ~1.3±0.1 g/cm 2, representing a significant step from previously measured ~1.0 g/cm 2 toward a goal of 1.5 g/cm 2. Moreover, for future experiments will focus on understanding and mitigating hydrodynamic instabilities and mix, and improving symmetry required to reach the threshold for thermonuclear ignition on NIF.

  7. FLARE: A New User Facility for Laboratory Studies of Multiple-Scale Physics of Magnetic Reconnection and Related Phenomena in Heliophysics and Astrophysics

    NASA Astrophysics Data System (ADS)

    Ji, H.; Bhattacharjee, A.; Goodman, A.; Prager, S.; Daughton, W.; Cutler, R.; Fox, W.; Hoffmann, F.; Kalish, M.; Kozub, T.; Jara-Almonte, J.; Myers, C.; Ren, Y.; Sloboda, P.; Yamada, M.; Yoo, J.; Bale, S. D.; Carter, T.; Dorfman, S.; Drake, J.; Egedal, J.; Sarff, J.; Wallace, J.

    2017-10-01

    The FLARE device (Facility for Laboratory Reconnection Experiments; flare.pppl.gov) is a new laboratory experiment under construction at Princeton with first plasmas expected in the fall of 2017, based on the design of Magnetic Reconnection Experiment (MRX; mrx.pppl.gov) with much extended parameter ranges. Its main objective is to provide an experimental platform for the studies of magnetic reconnection and related phenomena in the multiple X-line regimes directly relevant to space, solar, astrophysical and fusion plasmas. The main diagnostics is an extensive set of magnetic probe arrays, simultaneously covering multiple scales from local electron scales ( 2 mm), to intermediate ion scales ( 10 cm), and global MHD scales ( 1 m). Specific example space physics topics which can be studied on FLARE will be discussed.

  8. Single-centre experience with next-generation devices for transapical aortic valve implantation.

    PubMed

    Seiffert, Moritz; Conradi, Lenard; Kloth, Benjamin; Koschyk, Dietmar; Schirmer, Johannes; Schnabel, Renate B; Blankenberg, Stefan; Reichenspurner, Hermann; Diemert, Patrick; Treede, Hendrik

    2015-01-01

    Transcatheter aortic valve implantation (TAVI) has become an established procedure in patients with aortic stenosis and high surgical risk. Experience with first-generation transcatheter heart valves (THVs) is broad but limitations, e.g. paravalvular regurgitation, have been demonstrated. Much hope rests on the recently Conformité Européenne mark approved next-generation devices to improve results in these patients. However, apart from the initial approval studies, clinical data with these new devices are still scarce. We aimed to assess short-term outcomes of 200 consecutive patients who underwent transapical TAVI with next-generation THV at our institution. Transapical TAVI was performed in 200 consecutive patients 80.5±6.7 years old (38.5% female) at high surgical risk (log EuroSCORE 20.2±16.5%). Devices implanted were the Engager (Medtronic, Inc., Minneapolis, MN, USA; n=50), JenaValve (JenaValve Technology, Munich, Germany; n=88) and Symetis Acurate (Symetis SA, Ecublens, Switzerland; n=62) THV that were selected by the heart team on an individual basis. Data at baseline, during the procedure and follow-up were analysed according to standardized Valve Academic Research Consortium end points. Median follow-up was 219 days. Implantation was successful in 96.5% of cases. Valve function improved significantly with an increase in effective orifice area from 0.8±0.4 to 1.8±0.3 cm2 and a reduction in mean transvalvalvular gradients from 34.0±17.0 to 11.2±5.4 mmHg. Paravalvular regurgitation was none or trace in 70.3% of patients, Grade 1 in 26.1%, and Grade 2 in 3.5%. No patients developed aortic regurgitation>Grade 2. Major access site complications occurred in 6.5%, major stroke in 1.5% and stage-3 kidney injury in 2.5% of patients. A permanent pacemaker was implanted in 20.5% of patients overall and in 8.0% for a complete heart block. At 30-day follow-up 72.8% of patients were in New York Heart Association class I or II (10.5% at baseline). Overall

  9. It is always on your mind: experiences and perceptions of falling of older people and their carers and the potential of a mobile falls detection device.

    PubMed

    Williams, Veronika; Victor, Christina R; McCrindle, Rachel

    2013-01-01

    Background. Falls and fear of falling present a major risk to older people as both can affect their quality of life and independence. Mobile assistive technologies (AT) fall detection devices may maximise the potential for older people to live independently for as long as possible within their own homes by facilitating early detection of falls. Aims. To explore the experiences and perceptions of older people and their carers as to the potential of a mobile falls detection AT device. Methods. Nine focus groups with 47 participants including both older people with a range of health conditions and their carers. Interviews were audio recorded, transcribed verbatim, and thematically analysed. Results. Four key themes were identified relating to participants' experiences and perceptions of falling and the potential impact of a mobile falls detector: cause of falling, falling as everyday vulnerability, the environmental context of falling, and regaining confidence and independence by having a mobile falls detector. Conclusion. The perceived benefits of a mobile falls detector may differ between older people and their carers. The experience of falling has to be taken into account when designing mobile assistive technology devices as these may influence perceptions of such devices and how older people utilise them.

  10. Acoustic interactions between an altitude test facility and jet engine plumes: Theory and experiments

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Jones, R. R., III; Tam, C. K.; Massey, K. C.; Fleming, A. J.

    1992-01-01

    The overall objective of the described effort was to develop an understanding of the physical mechanisms involved in the flow/acoustic interactions experienced in full-scale altitude engine test facilities. This is done by conducting subscale experiments and through development of a theoretical model. Model cold jet experiments with an axisymmetric convergent nozzle are performed in a test setup that stimulates a supersonic jet exhausting into a cylindrical diffuser. The measured data consist of detailed flow visualization data and acoustic spectra for a free and a ducted plume. It is shown that duct resonance is most likely responsible by theoretical calculations. Theoretical calculations also indicate that the higher discrete tones observed in the measurements are related to the screech phenomena. Limited experiments on the sensitivity of a free 2-D, C-D nozzle to externally imposed sound are also presented. It is shown that a 2-D, C-D nozzle with a cutback is less excitable than a 2-D C-D nozzle with no cutback. At a pressure ratio of 1.5 unsteady separation from the diverging walls of the nozzle is noticed. This separation switches from one wall to the opposite wall thus providing an unsteady deflection of the plume. It is shown that this phenomenon is related to the venting provided by the cutback section.

  11. KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., measures photosynthesis on Bibb lettuce being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

    NASA Image and Video Library

    2004-01-05

    KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., measures photosynthesis on Bibb lettuce being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  12. KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., checks the roots of green onions being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

    NASA Image and Video Library

    2004-01-05

    KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., checks the roots of green onions being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  13. KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., checks the growth of radishes being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

    NASA Image and Video Library

    2004-01-05

    KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., checks the growth of radishes being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  14. Facile fabrication of nanofluidic diode membranes using anodic aluminium oxide

    NASA Astrophysics Data System (ADS)

    Wu, Songmei; Wildhaber, Fabien; Vazquez-Mena, Oscar; Bertsch, Arnaud; Brugger, Juergen; Renaud, Philippe

    2012-08-01

    Active control of ion transport plays important roles in chemical and biological analytical processes. Nanofluidic systems hold the promise for such control through electrostatic interaction between ions and channel surfaces. Most existing experiments rely on planar geometry where the nanochannels are generally very long and shallow with large aspect ratios. Based on this configuration the concepts of nanofluidic gating and rectification have been successfully demonstrated. However, device minimization and throughput scaling remain significant challenges. We report here an innovative and facile realization of hetero-structured Al2O3/SiO2 (Si) nanopore array membranes by using pattern transfer of self-organized nanopore structures of anodic aluminum oxide (AAO). Thanks to the opposite surface charge states of Al2O3 (positive) and SiO2 (negative), the membrane exhibits clear rectification of ion current in electrolyte solutions with very low aspect ratios compared to previous approaches. Our hetero-structured nanopore arrays provide a valuable platform for high throughput applications such as molecular separation, chemical processors and energy conversion.Active control of ion transport plays important roles in chemical and biological analytical processes. Nanofluidic systems hold the promise for such control through electrostatic interaction between ions and channel surfaces. Most existing experiments rely on planar geometry where the nanochannels are generally very long and shallow with large aspect ratios. Based on this configuration the concepts of nanofluidic gating and rectification have been successfully demonstrated. However, device minimization and throughput scaling remain significant challenges. We report here an innovative and facile realization of hetero-structured Al2O3/SiO2 (Si) nanopore array membranes by using pattern transfer of self-organized nanopore structures of anodic aluminum oxide (AAO). Thanks to the opposite surface charge states of Al2O3

  15. Ejecta Experiments at the Pegasus Pulsed Power Facility

    DTIC Science & Technology

    1997-06-01

    Laboratory (LANL ). The facility provides both radial and axial access for making measurements. There exist optical, laser , and X-Ray paths for performing...and axial access for making measurements. There exist optical, laser , and X-Ray paths for performing measurements on the target assembly located near...surface variations, microjets can be formed thus contributing to the amount of ejecta. In addition to material properties which contribute to ejecta

  16. Vibration isolation in a free-piston driven expansion tube facility

    NASA Astrophysics Data System (ADS)

    Gildfind, D. E.; Jacobs, P. A.; Morgan, R. G.

    2013-09-01

    The stress waves produced by rapid piston deceleration are a fundamental feature of free-piston driven expansion tubes, and wave propagation has to be considered in the design process. For lower enthalpy test conditions, these waves can traverse the tube ahead of critical flow processes, severely interfering with static pressure measurements of the passing flow. This paper details a new device which decouples the driven tube from the free-piston driver, and thus prevents transmission of stress waves. Following successful incorporation of the concept in the smaller X2 facility, it has now been applied to the larger X3 facility, and results for both facilities are presented.

  17. Single-centre experience with the Thoratec paracorporeal ventricular assist device for patients with primary cardiac failure.

    PubMed

    Kirsch, Matthias; Vermes, Emmanuelle; Damy, Thibaud; Nakashima, Kuniki; Sénéchal, Mélanie; Boval, Bernadette; Drouet, Ludovic; Loisance, Daniel

    2009-01-01

    Temporary mechanical circulatory support may be indicated in some patients with cardiac failure refractory to conventional therapy, as a bridge to myocardial recovery or transplantation. To evaluate outcomes in cardiogenic shock patients managed by the primary use of a paracorporeal ventricular assist device (p-VAD). We did a retrospective analysis of demographics, clinical characteristics and survival of patients assisted with a Thoratec p-VAD. p-VADs were used in 84 patients with cardiogenic shock secondary to acute myocardial infarction (35%), idiopathic (31%) or ischaemic (12%) cardiomyopathy, myocarditis or other causes (23%). Before implantation, 23% had cardiac arrest, 38% were on a ventilator and 31% were on an intra-aortic balloon pump. Cardiac index was 1.6+/-0.5 L/min/m(2) and total bilirubin levels were 39+/-59 micromol/L. During support, 29 patients (35%) died in the intensive care unit and seven (10%) died after leaving. Forty-seven patients (56%) were weaned or transplanted, with one still under support. Despite significantly more advanced preoperative end-organ dysfunction, survival rates were similar in patients with biventricular devices (74%) and those undergoing isolated left ventricular support (24%) (63% versus 45%, respectively; p=0.2). Actuarial survival estimates after transplantation were 78.7+/-6.3%, 73.4+/-6.9% and 62.6+/-8.3% at 1, 3 and 5 years, respectively. Our experience validates the use of p-VAD as a primary device to support patients with cardiogenic shock. In contrast to short-term devices, p-VADs provide immediate ventricular unloading and pulsatile perfusion in a single procedure. Biventricular support should be used liberally in patients with end-organ dysfunction.

  18. An overview of the GOLD experiment between the ETS-6 satellite and the table mountain facility

    NASA Technical Reports Server (NTRS)

    Wilson, K. E.

    1996-01-01

    The Ground/Orbiter Lasercomm Demonstration (GOLD) is a demonstration of optical communications between the Japanese Engineering Test Satellite (ETS-VI) and an optical ground transmitting and receiving station at the Table Mountain Facility in Wrightwood, California. Laser transmissions to the satellite are performed for approximately 4 hours every third night when the satellite is at apogee above Table Mountain. The experiment requires the coordination of resources at the Communications Research Laboratory (CRL), JPL, the National Aeronautics and Space Development Agency (NASDA) Tsukuba tracking station, and NASA's Deep Space Network at Goldstone, California, to generate and transmit real-time commands and receive telemetry from the ETS-VI. Transmissions to the ETS-VI began in November 1995 and are scheduled to last into the middle of January 1996, when the satellite is expected to be eclipsed by the Earth's shadow for a major part of its orbit. The eclipse is expected to last for about 2 months, and during this period there will be limited electrical power available on board the satellite. NASDA plans to restrict experiments with the ETS-VI during this period, and no laser transmissions are planned. Posteclipse experiments are currently being negotiated. GOLD is a joint NASA-CRL experiment that is being conducted by JPL in coordination with CRL and NASDA.

  19. An Overview of the GOLD Experiment Between the ETS-6 Satellite and the Table Mountain Facility

    NASA Technical Reports Server (NTRS)

    Wilson, K. E.

    1996-01-01

    The Ground/Orbiter Lasercomm Demonstration is a demonstration of optical communications between the Japanese Engineering Test Satellite (ETS-VI) and an optical ground transmitting and receiving station at the Table Mountain Facility in Wrightwood, California. Laser transmissions to the satellite are performed for approximately 4 hours every third night when the satellite is at apogee above Table Mountain. The experiment requires the coordination of resources at the Communications Research Laboratory (CRL), JPL, the National Aeronautics and Space Development Agency (NASDA) Tsukuba tracking station, and NASA's Deep Space Network at Goldstone, California, to generate and transmit real-time commands and receive telemetry from the ETS-VI. Transmissions to the ETS-VI began in November 1995 and are scheduled to last into the middle of January 1996, when the satellite is expected to be eclipsed by the Earth's shadow for a major part of its orbit. The eclipse is expected to last for about 2 months, and during this period there will be limited electrical power available on board the satellite. NASDA plans to restrict experiments with the ETS-VI during this period, and no laser transmissions are planned. Posteclipse experiments are currently being negotiated. GOLD is a joint NASA-CRL experiment that is being conducted by JPL in coordination with CRL and NASDA.

  20. Spacelab Data Processing Facility

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The Spacelab Data Processing Facility (SDPF) processes, monitors, and accounts for the payload data from Spacelab and other Shuttle missions and forwards relevant data to various user facilities worldwide. The SLDPF is divided into the Spacelab Input Processing System (SIPS) and the Spacelab Output Processing System (SOPS). The SIPS division demultiplexes, synchronizes, time tags, quality checks, accounts for the data, and formats the data onto tapes. The SOPS division further edits, blocks, formats, and records the data on tape for shipment to users. User experiments must conform to the Spacelab's onboard High Rate Multiplexer (HRM) format for maximum process ability. Audio, analog, instrumentation, high density, experiment data, input/output data, quality control and accounting, and experimental channel tapes along with a variety of spacelab ancillary tapes are provided to the user by SLDPF.

  1. A new attempt using LabVIEW into a computational experiment of plasma focus device

    NASA Astrophysics Data System (ADS)

    Kim, Myungkyu

    2017-03-01

    The simulation program of plasma focus device based on S. Lee's model has been first developed since 30 years ago and it is widely used to date. Originally the program made by GWbasic language, and then modified by visual basic which was included in the Microsoft Excel. Using Excel well-known to researchers is a key advantage of this program. But it has disadvantages in displaying data in same graph, in slow calculation speed, and in displaying data and calculation of smaller time step. To overcome all these points, the LabVIEW that made by national instrument and based on graphical environment is used for simulation. Furthermore it is correlated with data acquisition of experiment, once experiment being the data is directly transferred to the simulation program and then analyzes and predicts for the next shot. The mass swept factor (fm) and current factor (fc) can be easily find out using this program. This paper describes the detail function and usage of the program and compares the results with the existing one.

  2. Demonstration of non-intrusive traffic data collection devices in Alaska.

    DOT National Transportation Integrated Search

    2010-05-01

    The purpose of this document is to present findings from the Demonstration of Non-Intrusive Traffic Data Collection Devices in Alaska. This project was initiated by the : Alaska Department of Transportation and Public Facilities (DOT&PF) to evaluate ...

  3. Scientific charge-coupled devices

    NASA Technical Reports Server (NTRS)

    Janesick, James R.; Elliott, Tom; Collins, Stewart; Blouke, Morley M.; Freeman, Jack

    1987-01-01

    The charge-coupled device dominates an ever-increasing variety of scientific imaging and spectroscopy applications. Recent experience indicates, however, that the full potential of CCD performance lies well beyond that realized in devices currently available.Test data suggest that major improvements are feasible in spectral response, charge collection, charge transfer, and readout noise. These properties, their measurement in existing CCDs, and their potential for future improvement are discussed in this paper.

  4. LETTER: Biased limiter experiments on the Advanced Toroidal Facility (ATF) torsatron

    NASA Astrophysics Data System (ADS)

    Uckan, T.; Isler, R. C.; Jernigan, T. C.; Lyon, J. F.; Mioduszewski, P. K.; Murakami, M.; Rasmussen, D. A.; Wilgen, J. B.; Aceto, S. C.; Zielinski, J. J.

    1994-02-01

    The Advanced Toroidal Facility (ATF) torsatron incorporates two rail limiters that can be positioned by external controls. The influence on the plasma parameters of biasing these limiters both positively and negatively with respect to the walls has been investigated. Experiments have been carried out in the electron cyclotron heated plasmas at 200 kW with a typical density of 5 × 1012 cm-3 and a central electron temperature of ~900 eV. Negative biasing produces only small changes in the plasma parameters, but positive biasing increases the particle confinement by about a factor of 5, although the plasma stored energy does fall at the higher voltages. In addition, positive biasing produces the following effects compared with floating limiter discharges: the core density profiles become peaked rather than hollow, the electric field at the edge becomes more negative (pointing radially inward), the magnitudes of the edge fluctuations and the fluctuation induced transport are reduced, the fluctuation wavelengths become longer and their propagation direction reverses from the electron to the ion diamagnetic direction. Neither polarity of biasing appears to affect the impurity content or transport

  5. Value-based purchasing of medical devices.

    PubMed

    Obremskey, William T; Dail, Teresa; Jahangir, A Alex

    2012-04-01

    Health care in the United States is known for its continued innovation and production of new devices and techniques. While the intention of these devices is to improve the delivery and outcome of patient care, they do not always achieve this goal. As new technologies enter the market, hospitals and physicians must determine which of these new devices to incorporate into practice, and it is important these devices bring value to patient care. We provide a model of a physician-engaged process to decrease cost and increase review of physician preference items. We describe the challenges, implementation, and outcomes of cost reduction and product stabilization of a value-based process for purchasing medical devices at a major academic medical center. We implemented a physician-driven committee that standardized and utilized evidence-based, clinically sound, and financially responsible methods for introducing or consolidating new supplies, devices, and technology for patient care. This committee worked with institutional finance and administrative leaders to accomplish its goals. Utilizing this physician-driven committee, we provided access to new products, standardized some products, decreased costs of physician preference items 11% to 26% across service lines, and achieved savings of greater than $8 million per year. The implementation of a facility-based technology assessment committee that critically evaluates new technology can decrease hospital costs on implants and standardize some product lines.

  6. Capabilities and constraints of NASA's ground-based reduced gravity facilities

    NASA Technical Reports Server (NTRS)

    Lekan, Jack; Neumann, Eric S.; Sotos, Raymond G.

    1993-01-01

    The ground-based reduced gravity facilities of NASA have been utilized to support numerous investigations addressing various processes and phenomina in several disciplines for the past 30 years. These facilities, which include drop towers, drop tubes, aircraft, and sounding rockets are able to provide a low gravity environment (gravitational levels that range from 10(exp -2)g to 10(exp -6)g) by creating a free fall or semi-free fall condition where the force of gravity on an experiment is offset by its linear acceleration during the 'fall' (drop or parabola). The low gravity condition obtained on the ground is the same as that of an orbiting spacecraft which is in a state of perpetual free fall. The gravitational levels and associated duration times associated with the full spectrum of reduced gravity facilities including spaced-based facilities are summarized. Even though ground-based facilities offer a relatively short experiment time, this available test time has been found to be sufficient to advance the scientific understanding of many phenomena and to provide meaningful hardware tests during the flight experiment development process. Also, since experiments can be quickly repeated in these facilities, multistep phenomena that have longer characteristic times associated with them can sometimes be examined in a step-by-step process. There is a large body of literature which has reported the study results achieved through using reduced-gravity data obtained from the facilities.

  7. Recent Upgrades at the Safety and Tritium Applied Research Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cadwallader, Lee Charles; Merrill, Brad Johnson; Stewart, Dean Andrew

    This paper gives a brief overview of the Safety and Tritium Applied Research (STAR) facility operated by the Fusion Safety Program (FSP) at the Idaho National Laboratory (INL). FSP researchers use the STAR facility to carry out experiments in tritium permeation and retention in various fusion materials, including wall armor tile materials. FSP researchers also perform other experimentation as well to support safety assessment in fusion development. This lab, in its present two-building configuration, has been in operation for over ten years. The main experiments at STAR are briefly described. This paper discusses recent work to enhance personnel safety atmore » the facility. The STAR facility is a Department of Energy less than hazard category 3 facility; the personnel safety approach calls for ventilation and tritium monitoring for radiation protection. The tritium areas of STAR have about 4 to 12 air changes per hour, with air flow being once through and then routed to the facility vent stack. Additional radiation monitoring has been installed to read the laboratory room air where experiments with tritium are conducted. These ion chambers and bubblers are used to verify that no significant tritium concentrations are present in the experiment rooms. Standby electrical power has been added to the facility exhaust blower so that proper ventilation will now operate during commercial power outages as well as the real-time tritium air monitors.« less

  8. Refurbishment and Automation of Thermal Vacuum Facilities at NASA/GSFC

    NASA Technical Reports Server (NTRS)

    Dunn, Jamie; Gomez, Carlos; Donohue, John; Johnson, Chris; Palmer, John; Sushon, Janet

    1999-01-01

    The thermal vacuum facilities located at the Goddard Space Flight Center (GSFC) have supported both manned and unmanned space flight since the 1960s. Of the eleven facilities, currently ten of the systems are scheduled for refurbishment or replacement as part of a five-year implementation. Expected return on investment includes the reduction in test schedules, improvements in safety of facility operations, and reduction in the personnel support required for a test. Additionally, GSFC will become a global resource renowned for expertise in thermal engineering, mechanical engineering, and for the automation of thermal vacuum facilities and tests. Automation of the thermal vacuum facilities includes the utilization of Programmable Logic Controllers (PLCs), the use of Supervisory Control and Data Acquisition (SCADA) systems, and the development of a centralized Test Data Management System. These components allow the computer control and automation of mechanical components such as valves and pumps. The project of refurbishment and automation began in 1996 and has resulted in complete computer control of one facility (Facility 281), and the integration of electronically controlled devices and PLCs in multiple others.

  9. Refurbishment and Automation of Thermal Vacuum Facilities at NASA/GSFC

    NASA Technical Reports Server (NTRS)

    Dunn, Jamie; Gomez, Carlos; Donohue, John; Johnson, Chris; Palmer, John; Sushon, Janet

    1998-01-01

    The thermal vacuum facilities located at the Goddard Space Flight Center (GSFC) have supported both manned and unmanned space flight since the 1960s. Of the eleven facilities, currently ten of the systems are scheduled for refurbishment or replacement as part of a five-year implementation. Expected return on investment includes the reduction in test schedules, improvements in safety of facility operations, and reduction in the personnel support required for a test. Additionally, GSFC will become a global resource renowned for expertise in thermal engineering, mechanical engineering, and for the automation of thermal vacuum facilities and tests. Automation of the thermal vacuum facilities includes the utilization of Programmable Logic Controllers (PLCs), the use of Supervisory Control and Data Acquisition (SCADA) systems, and the development of a centralized Test Data Management System. These components allow the computer control and automation of mechanical components such as valves and pumps. The project of refurbishment and automation began in 1996 and has resulted in complete computer control of one facility (Facility 281), and the integration of electronically controlled devices and PLCs in multiple others.

  10. Japanese Experiment Module arrival

    NASA Image and Video Library

    2007-03-29

    Inside the Space Station Processing Facility, workers monitor progress as a huge crane is used to remove the top of the crate carrying the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.

  11. Identification of User Facility Related Publications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patton, Robert M; Stahl, Christopher G; Wells, Jack C

    2012-01-01

    Scientific user facilities provide physical resources and technical support that enable scientists to conduct experiments or simulations pertinent to their respective research. One metric for evaluating the scientific value or impact of a facility is the number of publications by users as a direct result of using that facility. Unfortunately, for a variety of reasons, capturing accurate values for this metric proves time consuming and error-prone. This work describes a new approach that leverages automated browser technology combined with text analytics to reduce the time and error involved in identifying publications related to user facilities. With this approach, scientific usermore » facilities gain more accurate measures of their impact as well as insight into policy revisions for user access.« less

  12. Simulation of Containment Atmosphere Mixing and Stratification Experiment in the ThAI Facility with a CFD Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babic, Miroslav; Kljenak, Ivo; Mavko, Borut

    2006-07-01

    The CFD code CFX4.4 was used to simulate an experiment in the ThAI facility, which was designed for investigation of thermal-hydraulic processes during a severe accident inside a Light Water Reactor containment. In the considered experiment, air was initially present in the vessel, and helium and steam were injected during different phases of the experiment at various mass flow rates and at different locations. The main purpose of the proposed work was to assess the capabilities of the CFD code to reproduce the atmosphere structure with a three-dimensional model, coupled with condensation models proposed by the authors. A three-dimensional modelmore » of the ThAI vessel for the CFX4.4 code was developed. The flow in the simulation domain was modeled as single-phase. Steam condensation on vessel walls was modeled as a sink of mass and energy using a correlation that was originally developed for an integral approach. A simple model of bulk phase change was also included. Calculated time-dependent variables together with temperature and volume fraction distributions at the end of different experiment phases are compared to experimental results. (authors)« less

  13. Animal research facility for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Bonting, Sjoerd L.

    1992-01-01

    An integrated animal research facility is planned by NASA for Space Station Freedom which will permit long-term, man-tended experiments on the effects of space conditions on vertebrates. The key element in this facility is a standard type animal habitat which supports and maintains the animals under full bioisolation during transport and during the experiment. A holding unit accommodates the habitats with animals to be maintained at zero gravity; and a centrifuge, those to be maintained at artificial gravity for control purposes or for gravity threshold studies. A glovebox permits handling of the animals for experimental purposes and for transfer to a clean habitat. These facilities are described, and the aspects of environmental control, monitoring, and bioisolation are discussed.

  14. The Fundamental Neutron Physics Facilities at NIST.

    PubMed

    Nico, J S; Arif, M; Dewey, M S; Gentile, T R; Gilliam, D M; Huffman, P R; Jacobson, D L; Thompson, A K

    2005-01-01

    The program in fundamental neutron physics at the National Institute of Standards and Technology (NIST) began nearly two decades ago. The Neutron Interactions and Dosimetry Group currently maintains four neutron beam lines dedicated to studies of fundamental neutron interactions. The neutrons are provided by the NIST Center for Neutron Research, a national user facility for studies that include condensed matter physics, materials science, nuclear chemistry, and biological science. The beam lines for fundamental physics experiments include a high-intensity polychromatic beam, a 0.496 nm monochromatic beam, a 0.89 nm monochromatic beam, and a neutron interferometer and optics facility. This paper discusses some of the parameters of the beam lines along with brief presentations of some of the experiments performed at the facilities.

  15. The Fundamental Neutron Physics Facilities at NIST

    PubMed Central

    Nico, J. S.; Arif, M.; Dewey, M. S.; Gentile, T. R.; Gilliam, D. M.; Huffman, P. R.; Jacobson, D. L.; Thompson, A. K.

    2005-01-01

    The program in fundamental neutron physics at the National Institute of Standards and Technology (NIST) began nearly two decades ago. The Neutron Interactions and Dosimetry Group currently maintains four neutron beam lines dedicated to studies of fundamental neutron interactions. The neutrons are provided by the NIST Center for Neutron Research, a national user facility for studies that include condensed matter physics, materials science, nuclear chemistry, and biological science. The beam lines for fundamental physics experiments include a high-intensity polychromatic beam, a 0.496 nm monochromatic beam, a 0.89 nm monochromatic beam, and a neutron interferometer and optics facility. This paper discusses some of the parameters of the beam lines along with brief presentations of some of the experiments performed at the facilities. PMID:27308110

  16. Advanced Resistive Exercise Device

    NASA Technical Reports Server (NTRS)

    Raboin, Jasen; Niebuhr, Jason; Cruz, Santana; Lamoreaux, chris

    2007-01-01

    The advanced resistive exercise device (ARED), now at the prototype stage of development, is a versatile machine that can be used to perform different customized exercises for which, heretofore, it has been necessary to use different machines. Conceived as a means of helping astronauts and others to maintain muscle and bone strength and endurance in low-gravity environments, the ARED could also prove advantageous in terrestrial settings (e.g., health clubs and military training facilities) in which many users are exercising simultaneously and there is heavy demand for use of exercise machines.

  17. Electromagnetic pulse-induced current measurement device

    NASA Astrophysics Data System (ADS)

    Gandhi, Om P.; Chen, Jin Y.

    1991-08-01

    To develop safety guidelines for exposure to high fields associated with an electromagnetic pulse (EMP), it is necessary to devise techniques that would measure the peak current induced in the human body. The main focus of this project was to design, fabricate, and test a portable, self-contained stand-on device that would measure and hold the peak current and the integrated change Q. The design specifications of the EMP-Induced Current Measurement Device are as follows: rise time of the current pulse, 5 ns; peak current, 20-600 A; charge Q, 0-20 microcoulombs. The device uses a stand-on parallel-plate bilayer sensor and fast high-frequency circuit that are well-shielded against spurious responses to high incident fields. Since the polarity of the incident peak electric field of the EMP may be either positive or negative, the induced peak current can also be positive or negative. Therefore, the device is designed to respond to either of these polarities and measure and hold both the peak current and the integrated charge which are simultaneously displayed on two separate 3-1/2 digit displays. The prototype device has been preliminarily tested with the EMP's generated at the Air Force Weapons Laboratory (ALECS facility) at Kirtland AFB, New Mexico.

  18. 21 CFR 803.33 - If I am a user facility, what must I include when I submit an annual report?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES MEDICAL DEVICE REPORTING User Facility... medical device reports, or the number assigned by us for reporting purposes in accordance with § 803.3; (2...) Date of the annual report and report numbers identifying the range of medical device reports that you...

  19. 21 CFR 803.33 - If I am a user facility, what must I include when I submit an annual report?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES MEDICAL DEVICE REPORTING User Facility... medical device reports, or the number assigned by us for reporting purposes in accordance with § 803.3; (2...) Date of the annual report and report numbers identifying the range of medical device reports that you...

  20. CONFERENCE REPORT: Summary of the 16th IAEA Technical Meeting on 'Research using Small Fusion Devices'

    NASA Astrophysics Data System (ADS)

    Gribkov, V.; Van Oost, G.; Malaquias, A.; Herrera, J.

    2006-10-01

    Common research topics that are being studied in small, medium and large devices such as H-mode like or improved confinement, turbulence and transport are reported. These included modelling and diagnostic developments for edge and core, to characterize plasma density, temperature, electric potential, plasma flows, turbulence scale, etc. Innovative diagnostic methods were designed and implemented which could be used to develop experiments in small devices (in some cases not possible in large devices due to higher power deposition) to allow a better understanding of plasma edge and core properties. Reports are given addressing research in linear devices that can be used to study particular plasma physics topics relevant for other magnetic confinement devices such as the radial transport and the modelling of self-organized plasma jets involved in spheromak-like plasma formation. Some aspects of the work presented are of interest to the astrophysics community since they are believed to shed light on the basis of the physics of stellar jets. On the dense magnetized plasmas (DMP) topic, the present status of research, operation of new devices, plasma dynamics modelling and diagnostic developments is reported. The main devices presented belong to the class of Z-pinches, mostly plasma foci, and several papers were presented under this topic. The physics of DMP is important both for the main-stream fusion investigations as well as for providing the basis for elaboration of new concepts. New high-current technology introduced in the DMP devices design and construction make these devices nowadays more reliably fitted to various applications and give the possibility to widen the energy range used by them in both directions—to the multi-MJ level facilities and down to miniature plasma focus devices with energy of just a few J.

  1. Evaluation of Facility Management by Multivariate Statistics - Factor Analysis

    NASA Astrophysics Data System (ADS)

    Singovszki, Miloš; Vranayová, Zuzana

    2013-06-01

    Facility management is evolving, there is no exact than other sciences, although its development is fast forward. The knowledge and practical skills in facility management is not replaced, on the contrary, they complement each other. The existing low utilization of science in the field of facility management is mainly caused by the management of support activities are many variables and prevailing immediate reaction to the extraordinary situation arising from motives of those who have substantial experience and years of proven experience. Facility management is looking for a system that uses organized knowledge and will form the basis, which grows from a wide range of disciplines. Significant influence on its formation as a scientific discipline is the "structure, which follows strategy". The paper deals evaluate technology building as part of an facility management by multivariate statistic - factor analysis.

  2. Regulating food service in North Carolina's long-term care facilities.

    PubMed

    DePorter, Cindy H

    2005-01-01

    Other commentaries in this issue of the North Carolina Medical Journal describe innovative food and dining practices in some of our state's long-term care facilities. Federal and state regulations do not prohibit these innovations, and DFS supports the concept of "enhancements" of the dining experience in these facilities. The Division of Facilities Services, therefore, encourages facilities to assess and operationalize various dining methods, allowing residents to select their foods, dining times, dining partners, and other preferences. The regulations allow facilities to utilize innovative dining approaches, such as buffet lines, or family-style serving options, which allow residents to order at the table as they would in a restaurant. The regulations do not dictate whether facilities should serve food to residents on trays, in buffet lines, or in a family style. While there are many regulations, they leave room for innovative new ideas as long as these ideas do not compromise resident health or safety.. Food consumption and the dining experience are an integral part of the resident's life in a nursing facility. It is important that resident preferences are being honored, and the dining experience is as pleasant and home-like as possible. The facility's responsibility is to provide adequate nutrition and hydration that assures the resident is at his/her highest level of functioning emotionally, functionally, and physically. Meeting the unique needs of each resident in a facility can be a daunting task, but one of immense importance to the quality long-term care.

  3. X-ray transport and radiation response assessment (XTRRA) experiments at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fournier, K. B., E-mail: fournier2@llnl.gov; Brown, C. G.; Yeoman, M. F.

    2016-11-15

    Our team has developed an experimental platform to evaluate the x-ray-generated stress and impulse in materials. Experimental activities include x-ray source development, design of the sample mounting hardware and sensors interfaced to the National Ignition Facility’s diagnostics insertion system, and system integration into the facility. This paper focuses on the X-ray Transport and Radiation Response Assessment (XTRRA) test cassettes built for these experiments. The test cassette is designed to position six samples at three predetermined distances from the source, each known to within ±1% accuracy. Built-in calorimeters give in situ measurements of the x-ray environment along the sample lines ofmore » sight. The measured accuracy of sample responses as well as planned modifications to the XTRRA cassette is discussed.« less

  4. X-ray transport and radiation response assessment (XTRRA) experiments at the National Ignition Facility

    DOE PAGES

    Fournier, K. B.; Brown, Jr., C. G.; Yeoman, M. F.; ...

    2016-08-10

    Our team has developed an experimental platform to evaluate the x-ray-generated stress and impulse in materials. Experimental activities include x-ray source development, design of the sample mounting hardware and sensors interfaced to the NIF’s diagnostics insertion system, and system integration into the facility. This paper focuses on the X-ray Transport and Radiation Response Assessment (XTRRA) test cassettes built for these experiments. The test cassette is designed to position six samples at three predetermined distances from the source, each known to within ±1% accuracy. Built in calorimeters give in situ measurements of the x-ray environment along the sample lines of sight.more » We discuss the measured accuracy of sample responses, as well as planned modifications to the XTRRA cassette.« less

  5. Body Implanted Medical Device Communications

    NASA Astrophysics Data System (ADS)

    Yazdandoost, Kamya Yekeh; Kohno, Ryuji

    The medical care day by day and more and more is associated with and reliant upon concepts and advances of electronics and electromagnetics. Numerous medical devices are implanted in the body for medical use. Tissue implanted devices are of great interest for wireless medical applications due to the promising of different clinical usage to promote a patient independence. It can be used in hospitals, health care facilities and home to transmit patient measurement data, such as pulse and respiration rates to a nearby receiver, permitting greater patient mobility and increased comfort. As this service permits remote monitoring of several patients simultaneously it could also potentially decrease health care costs. Advancement in radio frequency communications and miniaturization of bioelectronics are supporting medical implant applications. A central component of wireless implanted device is an antenna and there are several issues to consider when designing an in-body antenna, including power consumption, size, frequency, biocompatibility and the unique RF transmission challenges posed by the human body. The radiation characteristics of such devices are important in terms of both safety and performance. The implanted antenna and human body as a medium for wireless communication are discussed over Medical Implant Communications Service (MICS) band in the frequency range of 402-405MHz.

  6. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE): Conceptual Design Report. Volume 1: The LBNF and DUNE Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acciarri, R.

    2016-01-22

    This document presents the Conceptual Design Report (CDR) put forward by an international neutrino community to pursue the Deep Underground Neutrino Experiment at the Long-Baseline Neutrino Facility (LBNF/DUNE), a groundbreaking science experiment for long-baseline neutrino oscillation studies and for neutrino astrophysics and nucleon decay searches. The DUNE far detector will be a very large modular liquid argon time-projection chamber (LArTPC) located deep underground, coupled to the LBNF multi-megawatt wide-band neutrino beam. DUNE will also have a high-resolution and high-precision near detector.

  7. Laser-Plasma Interaction Experiments at Direct-Drive Ignition-Relevant Plasma Conditions at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Solodov, A. A.; Rosenberg, M. J.; Myatt, J. F.; Shaw, J. G.; Seka, W.; Epstein, R.; Short, R. W.; Follett, R. K.; Regan, S. P.; Froula, D. H.; Radha, P. B.; Michel, P.; Chapman, T.; Hohenberger, M.

    2017-10-01

    Laser-plasma interaction (LPI) instabilities, such as stimulated Raman scattering (SRS) and two-plasmon decay, can be detrimental for direct-drive inertial confinement fusion because of target preheat by the high-energy electrons they generate. The radiation-hydrodynamic code DRACO was used to design planar-target experiments at the National Ignition Facility that generated plasma and interaction conditions relevant to ignition direct-drive designs (IL 1015W/cm2 , Te > 3 keV, density gradient scale lengths of Ln 600 μm). Laser-energy conversion efficiency to hot electrons of 0.5% to 2.5% with temperature of 45 to 60 keV was inferred from the experiment when the laser intensity at the quarter-critical surface increased from 6 to 15 ×1014W/cm2 . LPI was dominated by SRS, as indicated by the measured scattered-light spectra. Simulations of SRS using the LPI code LPSE have been performed and compared with predictions of theoretical models. Implications for ignition-scale direct-drive experiments will be discussed. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  8. Aerosol can puncture device operational test plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leist, K.J.

    1994-05-03

    Puncturing of aerosol cans is performed in the Waste Receiving and Processing Facility Module 1 (WRAP 1) process as a requirement of the waste disposal acceptance criteria for both transuranic (TRU) waste and low-level waste (LLW). These cans have contained such things as paints, lubricating oils, paint removers, insecticides, and cleaning supplies which were used in radioactive facilities. Due to Westinghouse Hanford Company (WHC) Fire Protection concerns of the baseline system`s fire/explosion proof characteristics, a study was undertaken to compare the baseline system`s design to commercially available puncturing devices. While the study found no areas which might indicate a riskmore » of fire or explosion, WHC Fire Protection determined that the puncturing system must have a demonstrated record of safe operation. This could be obtained either by testing the baseline design by an independent laboratory, or by substituting a commercially available device. As a result of these efforts, the commercially available Aerosolv can puncturing device was chosen to replace the baseline design. Two concerns were raised with the system. Premature blinding of the coalescing/carbon filter, due to its proximity to the puncture and draining operation; and overpressurization of the collection bottle due to its small volume and by blinding of the filter assembly. As a result of these concerns, testing was deemed necessary. The objective of this report is to outline test procedures for the Aerosolv.« less

  9. FLARE: a New User Facility to Study Multiple-Scale Physics of Magnetic Reconnection Through in-situ Measurements

    NASA Astrophysics Data System (ADS)

    Ji, H.; Bhattacharjee, A.; Prager, S.; Daughton, W. S.; Chen, Y.; Cutler, R.; Fox, W.; Hoffmann, F.; Kalish, M.; Jara-Almonte, J.; Myers, C. E.; Ren, Y.; Yamada, M.; Yoo, J.; Bale, S. D.; Carter, T.; Dorfman, S. E.; Drake, J. F.; Egedal, J.; Sarff, J.; Wallace, J.

    2016-12-01

    The FLARE device (Facility for Laboratory Reconnection Experiments; http://flare.pppl.gov) is a new intermediate-scale plasma experiment under construction at Princeton for the studies of magnetic reconnection in the multiple X-line regimes directly relevant to space, solar, astrophysical, and fusion plasmas, as guided by a reconnection phase diagram [Ji & Daughton, Physics of Plasmas 18, 111207 (2011)]. Most of major components either have been already fabricated or are near their completion, including the two most crucial magnets called flux cores. The hardware assembly and installation begin in this summer, followed by commissioning in 2017. Initial comprehensive set of research diagnostics will be constructed and installed also in 2017. The main diagnostics is an extensive set of magnetic probe arrays, covering multiple scales from local electron scales ( ˜ 2 mm) , to intermediate ion scales ( ˜10 cm), and global MHD scales ( ˜ 1 m). The main advantage for the magnetospheric community to use this facility is the ability to simultaneously provide in-situ measurements over all of these relevant scales. By using these laboratory data, not only the detailed spatial profiles around each reconnecting X-line are available for direct comparisons with spacecraft data, but also the global conditions and consequences of magnetic reconnection, which are often difficult to quantify in space, can be controlled or studied systematically. The planned procedures and example topics as a user facility will be discussed in details.

  10. Compact programmable photonic variable delay devices

    NASA Technical Reports Server (NTRS)

    Yao, X. Steve (Inventor)

    1999-01-01

    Optical variable delay devices for providing variable true time delay to multiple optical beams simultaneously. A ladder-structured variable delay device comprises multiple basic building blocks stacked on top of each other resembling a ladder. Each basic building block has two polarization beamsplitters and a polarization rotator array arranged to form a trihedron; Controlling an array element of the polarization rotator array causes a beam passing through the array element either going up to a basic building block above it or reflect back towards a block below it. The beams going higher on the ladder experience longer optical path delay. An index-switched optical variable delay device comprises of many birefringent crystal segments connected with one another, with a polarization rotator array sandwiched between any two adjacent crystal segments. An array element in the polarization rotator array controls the polarization state of a beam passing through the element, causing the beam experience different refractive indices or path delays in the following crystal segment. By independently control each element in each polarization rotator array, variable optical path delays of each beam can be achieved. Finally, an index-switched variable delay device and a ladder-structured variable device are cascaded to form a new device which combines the advantages of the two individual devices. This programmable optic device has the properties of high packing density, low loss, easy fabrication, and virtually infinite bandwidth. The device is inherently two dimensional and has a packing density exceeding 25 lines/cm.sup.2. The delay resolution of the device is on the order of a femtosecond (one micron in space) and the total delay exceeds 10 nanosecond. In addition, the delay is reversible so that the same delay device can be used for both antenna transmitting and receiving.

  11. Aeropropulsion facilities configuration control: Procedures manual

    NASA Technical Reports Server (NTRS)

    Lavelle, James J.

    1990-01-01

    Lewis Research Center senior management directed that the aeropropulsion facilities be put under configuration control. A Configuration Management (CM) program was established by the Facilities Management Branch of the Aeropropulsion Facilities and Experiments Division. Under the CM program, a support service contractor was engaged to staff and implement the program. The Aeronautics Directorate has over 30 facilities at Lewis of various sizes and complexities. Under the program, a Facility Baseline List (FBL) was established for each facility, listing which systems and their documents were to be placed under configuration control. A Change Control System (CCS) was established requiring that any proposed changes to FBL systems or their documents were to be processed as per the CCS. Limited access control of the FBL master drawings was implemented and an audit system established to ensure all facility changes are properly processed. This procedures manual sets forth the policy and responsibilities to ensure all key documents constituting a facilities configuration are kept current, modified as needed, and verified to reflect any proposed change. This is the essence of the CM program.

  12. Facile solution-processed aqueous MoOx for feasible application in organic light-emitting diode

    NASA Astrophysics Data System (ADS)

    Zheng, Qinghong; Qu, Disui; Zhang, Yan; Li, Wanshu; Xiong, Jian; Cai, Ping; Xue, Xiaogang; Liu, Liming; Wang, Honghang; Zhang, Xiaowen

    2018-05-01

    Solution-processed techniques attract increasing attentions in organic electronics for their low-cost and scalable manufacturing. We demonstrate the favorite hole injection material of solution-processed aqueous MoOx (s-MoOx) with facile fabrication process and cast successful application to constructing efficient organic light-emitting diodes (OLEDs). Atomic force microscopy and X-ray photoelectron spectroscopy analysis show that s-MoOx behaves superior film morphology and non-stoichiometry with slight oxygen deficiency. With tris(8-hydroxy-quinolinato)aluminium as emitting layer, s-MoOx based OLED shows maximum luminous efficiency of 7.9 cd/A and power efficiency of 5.9 lm/W, which have been enhanced by 43.6% and 73.5%, respectively, in comparison with the counterpart using conventional vacuum thermal evaporation MoOx. Current-voltage, impedance-voltage, phase-voltage and capacitance-voltage characteristics of hole-only devices indicate that s-MoOx with two processes of "spin-coating/annealing" shows mostly enhanced hole injection capacity and thus promoting device performance. Our experiments provide an alternative approach for constructing efficient OLED with solution process.

  13. Assessment of radiological protection systems among diagnostic radiology facilities in North East India.

    PubMed

    Singh, Thokchom Dewan; Jayaraman, T; Arunkumar Sharma, B

    2017-03-01

    This study aims to assess the adequacy level of radiological protection systems available in the diagnostic radiology facilities located in three capital cities of North East (NE) India. It further attempts to understand, using a multi-disciplinary approach, how the safety codes/standards in diagnostic radiology framed by the Atomic Energy Regulatory Board (AERB) and the International Atomic Energy Agency (IAEA) to achieve adequate radiological protection in facilities, have been perceived, conceptualized, and applied accordingly in these facilities. About 30 diagnostic radiology facilities were randomly selected from three capitals of states in NE India; namely Imphal (Manipur), Shillong (Meghalaya) and Guwahati (Assam). A semi-structured questionnaire developed based on a multi-disciplinary approach was used for this study. It was observed that radiological practices undertaken in these facilities were not exactly in line with safety codes/standards in diagnostic radiology of the AERB and the IAEA. About 50% of the facilities had registered/licensed x-ray equipment with the AERB. More than 80% of the workers did not use radiation protective devices, although these devices were available in the facilities. About 85% of facilities had no institutional risk management system. About 70% of the facilities did not carry out periodic quality assurance testing of their x-ray equipment or surveys of radiation leakage around the x-ray room, and did not display radiation safety indicators in the x-ray rooms. Workers in these facilities exhibited low risk perception about the risks associated with these practices. The majority of diagnostic radiology facilities in NE India did not comply with the radiological safety codes/standards framed by the AERB and IAEA. The study found inadequate levels of radiological protection systems in the majority of facilities. This study suggests a need to establish firm measures that comply with the radiological safety codes/standards of the

  14. BIOPACK: the ground controlled late access biological research facility.

    PubMed

    van Loon, Jack J W A

    2004-03-01

    Future Space Shuttle flights shall be characterized by activities necessary to further build the International Space Station, ISS. During these missions limited resources are available to conduct biological experiments in space. The Shuttles' Middeck is a very suitable place to conduct science during the ISS assembly missions or dedicated science missions. The BIOPACK, which flew its first mission during the STS-107, provides a versatile Middeck Locker based research tool for gravitational biology studies. The core facility occupies the space of only two Middeck Lockers. Experiment temperatures are controlled for bacteria, plant, invertebrate and mammalian cultures. Gravity levels and profiles can be set ranging from 0 to 2.0 x g on three independent centrifuges. This provides the experimenter with a 1.0 x g on-board reference and intermediate hypogravity and hypergravity data points to investigate e.g. threshold levels in biological responses. Temperature sensitive items can be stored in the facilities' -10 degrees C and +4 degrees C stowage areas. During STS-107 the facility also included a small glovebox (GBX) and passive temperature controlled units (PTCU). The GBX provides the experimenter with two extra levels of containment for safe sample handling. This biological research facility is a late access (L-10 hrs) laboratory, which, when reaching orbit, could automatically be starting up reducing important experiment lag-time and valuable crew time. The system is completely telecommanded when needed. During flight system parameters like temperatures, centrifuge speeds, experiment commanding or sensor readouts can be monitored and changed when needed. Although ISS provides a wide range of research facilities there is still need for an STS-based late access facility such as the BIOPACK providing experimenters with a very versatile research cabinet for biological experiments under microgravity and in-flight control conditions.

  15. Control and Information Systems for the National Ignition Facility

    DOE PAGES

    Brunton, Gordon; Casey, Allan; Christensen, Marvin; ...

    2017-03-23

    Orchestration of every National Ignition Facility (NIF) shot cycle is managed by the Integrated Computer Control System (ICCS), which uses a scalable software architecture running code on more than 1950 front-end processors, embedded controllers, and supervisory servers. The ICCS operates laser and industrial control hardware containing 66 000 control and monitor points to ensure that all of NIF’s laser beams arrive at the target within 30 ps of each other and are aligned to a pointing accuracy of less than 50 μm root-mean-square, while ensuring that a host of diagnostic instruments record data in a few billionths of a second.more » NIF’s automated control subsystems are built from a common object-oriented software framework that distributes the software across the computer network and achieves interoperation between different software languages and target architectures. A large suite of business and scientific software tools supports experimental planning, experimental setup, facility configuration, and post-shot analysis. Standard business services using open-source software, commercial workflow tools, and database and messaging technologies have been developed. An information technology infrastructure consisting of servers, network devices, and storage provides the foundation for these systems. Thus, this work is an overview of the control and information systems used to support a wide variety of experiments during the National Ignition Campaign.« less

  16. Control and Information Systems for the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunton, Gordon; Casey, Allan; Christensen, Marvin

    Orchestration of every National Ignition Facility (NIF) shot cycle is managed by the Integrated Computer Control System (ICCS), which uses a scalable software architecture running code on more than 1950 front-end processors, embedded controllers, and supervisory servers. The ICCS operates laser and industrial control hardware containing 66 000 control and monitor points to ensure that all of NIF’s laser beams arrive at the target within 30 ps of each other and are aligned to a pointing accuracy of less than 50 μm root-mean-square, while ensuring that a host of diagnostic instruments record data in a few billionths of a second.more » NIF’s automated control subsystems are built from a common object-oriented software framework that distributes the software across the computer network and achieves interoperation between different software languages and target architectures. A large suite of business and scientific software tools supports experimental planning, experimental setup, facility configuration, and post-shot analysis. Standard business services using open-source software, commercial workflow tools, and database and messaging technologies have been developed. An information technology infrastructure consisting of servers, network devices, and storage provides the foundation for these systems. Thus, this work is an overview of the control and information systems used to support a wide variety of experiments during the National Ignition Campaign.« less

  17. Three- and Two- Dimensional Simulations of Re-shock Experiments at High Energy Densities at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Raman, Kumar; MacLaren, Stephan; Huntington, Channing; Nagel, Sabrina

    2016-10-01

    We present simulations of recent high-energy-density (HED) re-shock experiments on the National Ignition Facility (NIF). The experiments study the Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instability growth that occurs after successive shocks transit a sinusoidally-perturbed interface between materials of different densities. The shock tube is driven at one or both ends using indirect-drive laser cavities or hohlraums. X-ray area-backlit imaging is used to visualize the growth at different times. Our simulations are done with the three-dimensional, radiation hydrodynamics code ARES, developed at LLNL. We show the instabilitygrowth rate, inferred from the experimental radiographs, agrees well with our 2D and 3D simulations. We also discuss some 3D geometrical effects, suggested by our simulations, which could deteriorate the images at late times, unless properly accounted for in the experiment design. Work supported by U.S. Department of Energy under Contract DE- AC52-06NA27279. LLNL-ABS-680789.

  18. Ground Software Maintenance Facility (GSMF) system manual

    NASA Technical Reports Server (NTRS)

    Derrig, D.; Griffith, G.

    1986-01-01

    The Ground Software Maintenance Facility (GSMF) is designed to support development and maintenance of spacelab ground support software. THE GSMF consists of a Perkin Elmer 3250 (Host computer) and a MITRA 125s (ATE computer), with appropriate interface devices and software to simulate the Electrical Ground Support Equipment (EGSE). This document is presented in three sections: (1) GSMF Overview; (2) Software Structure; and (3) Fault Isolation Capability. The overview contains information on hardware and software organization along with their corresponding block diagrams. The Software Structure section describes the modes of software structure including source files, link information, and database files. The Fault Isolation section describes the capabilities of the Ground Computer Interface Device, Perkin Elmer host, and MITRA ATE.

  19. Opinion and Special Articles: Amateur fundus photography with various new devices: Our experience as neurology residents.

    PubMed

    Zafar, Saman; Cardenas, Ylec Mariana; Leishangthem, Lakshmi; Yaddanapudi, Sridhara

    2018-05-08

    Times are changing in the way we secure and share patient fundus photographs to enhance our diagnostic skills in neurology. At the recent American Academy of Neurology meeting, the use of a fundus camera and smartphones to secure good-quality fundus photographs of patients presenting with headache to the emergency department (ED) was presented. We were enthusiastic to replicate the success of the Fundus Photography vs Ophthalmoscopy Trial Outcomes in the Emergency Department (FOTO-ED) study in our neurology department, but encountered problems in terms of cost, setup, feasibility, and portability of the device. As neurology residents, we came up with 3 easier options. We present these 3 options as our personal experience, and hope to reignite enthusiasm among neurology trainees to find their own means of performing ophthalmoscopy routinely in the hospital, as it appears that the Internet market is now thriving with many other devices to make this examination easier and more rewarding. Of the options explored above, the Handheld Fundus Camera was a clear favorite among the residents, and we have placed one in our call room for routine use. It travels to the clinic, floor, intensive care unit, and ED when needed. It has enhanced the way we approach the fundus examination and been a fun skill to acquire. We look forward to further advances that will make it possible to carry such a device in a physician's pocket. © 2018 American Academy of Neurology.

  20. Beyond the hearing aid: Assistive listening devices

    NASA Astrophysics Data System (ADS)

    Holmes, Alice E.

    2003-04-01

    Persons with hearing loss can obtain great benefit from hearing aids but there are many situations that traditional amplification devices will not provide enough help to ensure optimal communication. Assistive listening and signaling devices are designed to improve the communication of the hearing impaired in instances where traditional hearing aids are not sufficient. These devices are designed to help with problems created by listening in noise or against a competing message, improve distance listening, facilitate group conversation (help with problems created by rapidly changing speakers), and allow independence from friends and family. With the passage of the Americans with Disabilities Act in 1990, assistive listening devices (ALDs) are becoming more accessible to the public with hearing loss. Employers and public facilities must provide auxiliary aids and services when necessary to ensure effective communication for persons who are deaf or hard of hearing. However many professionals and persons with hearing loss are unaware of the various types and availability of ALDs. An overview of ALDs along with a discussion of their advantages and disadvantages will be given.

  1. Premission and postmission simulation studies of the foot-controlled maneuvering unit for Skylab experiment T-020. [astronaut maneuvering equipment - space environment simulation

    NASA Technical Reports Server (NTRS)

    Hewes, D. E.; Glover, K. E.

    1975-01-01

    A Skylab experiment was conducted to study the maneuvering capabilities of astronauts using a relatively simple self-locomotive device, referred to as the foot-controlled maneuvering unit, and to evaluate the effectiveness of ground-based facilities simulating the operation of this device in weightless conditions of space. Some of the special considerations given in the definition and development of the experiment as related to the two ground-based simulators are reviewed. These simulators were used to train the test subjects and to obtain baseline data which could be used for comparison with the in-flight tests that were performed inside the Skylab orbital workshop. The results of both premission and postmission tests are discussed, and subjective comparisons of the in-flight and ground-based test conditions are presented.

  2. Feasibility of BNCT radiobiological experiments at the HYTHOR facility

    NASA Astrophysics Data System (ADS)

    Esposito, J.; Ceballos, C.; Soncin, M.; Fabris, C.; Friso, E.; Moro, D.; Colautti, P.; Jori, G.; Rosi, G.; Nava, E.

    2008-06-01

    HYTHOR (HYbrid Thermal spectrum sHifter tapirO Reactor) is a new thermal-neutron irradiation facility, which was installed and became operative in mid 2005 at the TAPIRO (TAratura PIla Rapida potenza 0) fast reactor, in the Casaccia research centre (near Rome) of ENEA (Ente per le Nuove tecnologie Energia ed Ambiente). The facility has been designed for in vivo radiobiological studies. In HYTHOR irradiation cavity, 1-6 mice can be simultaneously irradiated to study skin melanoma treatments with the BNCT (boron neutron capture therapy). The therapeutic effects of HYTHOR radiation field on mouse melanoma has been studied as a preliminary investigation before studying the tumour local control due to boron neutron capture effect after boronated molecule injection. The method to properly irradiate small animals has been precisely defined. Results show that HYTHOR radiation field is by itself effective in reducing the tumour-growth rate. This finding has to be taken into account in studying the effectiveness of new 10B carriers. A method to properly measure the reduction of the tumour-growth rate is reported and discussed.

  3. The MODE family of facility class experiments

    NASA Technical Reports Server (NTRS)

    Miller, David W.

    1992-01-01

    The objective of the Middeck 0-gravity Dynamics Experiment (MODE) is to characterize fundamental 0-g slosh behavior and obtain quantitative data on slosh force and spacecraft response for correlation of the analytical model. The topics are presented in viewgraph form and include the following: space results; STA objectives, requirements, and approach; comparison of ground to orbital data for the baseline configuration; conclusions of orbital testing; flight experiment resources; Middeck Active Control Experiment (MACE); MACE 1-G and 0-G models; and future efforts.

  4. Compact and tunable focusing device for plasma wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Pompili, R.; Anania, M. P.; Chiadroni, E.; Cianchi, A.; Ferrario, M.; Lollo, V.; Notargiacomo, A.; Picardi, L.; Ronsivalle, C.; Rosenzweig, J. B.; Shpakov, V.; Vannozzi, A.

    2018-03-01

    Plasma wakefield acceleration, either driven by ultra-short laser pulses or electron bunches, represents one of the most promising techniques able to overcome the limits of conventional RF technology and allows the development of compact accelerators. In the particle beam-driven scenario, ultra-short bunches with tiny spot sizes are required to enhance the accelerating gradient and preserve the emittance and energy spread of the accelerated bunch. To achieve such tight transverse beam sizes, a focusing system with short focal length is mandatory. Here we discuss the development of a compact and tunable system consisting of three small-bore permanent-magnet quadrupoles with 520 T/m field gradient. The device has been designed in view of the plasma acceleration experiments planned at the SPARC_LAB test-facility. Being the field gradient fixed, the focusing is adjusted by tuning the relative position of the three magnets with nanometer resolution. Details about its magnetic design, beam-dynamics simulations, and preliminary results are examined in the paper.

  5. High power plasma heating experiments on the Proto-MPEX facility

    NASA Astrophysics Data System (ADS)

    Bigelow, T. S.; Beers, C. J.; Biewer, T. M.; Caneses, J. F.; Caughman, J. B. O.; Diem, S. J.; Goulding, R. H.; Green, D. L.; Kafle, N.; Rapp, J.; Showers, M. A.

    2017-10-01

    Work is underway to maximize the power delivered to the plasma that is available from heating sources installed on the Prototype Materials Plasma Exposure eXperiment (Proto-MPEX) at ORNL. Proto-MPEX is a linear device that has a >100 kW, 13.56 MHz helicon plasma generator available and is intended for material sample exposure to plasmas. Additional plasma heating systems include a 10 kW 18 GHz electron cyclotron heating (ECH) system, a 25 kW 8 MHz ion cyclotron heating ICH system, and a 200 kW 28 GHz electron Bernstein wave (EBW) and ECH system. Most of the heating systems have relatively good power transmission efficiency, however, the 28 GHz EBW system has a lower efficiency owing to stringent requirements on the microwave launch characteristics for EBW coupling combined with the lower output mode purity of the early-model gyrotron in use and its compact mode converter system. A goal for the Proto-MPEX is to have a combined heating power of 200 kW injected into the plasma. Infrared emission diagnostics of the target plate combined with Thomson Scattering, Langmuir probe, and energy analyzer measurements near the target are utilized to characterize the plasmas and coupling efficiency of the heating systems. ORNL is managed by UT-Battelle, LLC, for the U.S. DOE under contract DE-AC-05-00OR22725.

  6. Progress in detailed modelling of low foot and high foot implosion experiments on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Clark, D. S.; Weber, C. R.; Eder, D. C.; Haan, S. W.; Hammel, B. A.; Hinkel, D. E.; Jones, O. S.; Kritcher, A. L.; Marinak, M. M.; Milovich, J. L.; Patel, P. K.; Robey, H. F.; Salmonson, J. D.; Sepke, S. M.

    2016-05-01

    Several dozen high convergence inertial confinement fusion ignition experiments have now been completed on the National Ignition Facility (NIF). These include both “low foot” experiments from the National Ignition Campaign (NIC) and more recent “high foot” experiments. At the time of the NIC, there were large discrepancies between simulated implosion performance and experimental data. In particular, simulations over predicted neutron yields by up to an order of magnitude, and some experiments showed clear evidence of mixing of ablator material deep into the hot spot that could not be explained at the time. While the agreement between data and simulation improved for high foot implosion experiments, discrepancies nevertheless remain. This paper describes the state of detailed modelling of both low foot and high foot implosions using 1-D, 2-D, and 3-D radiation hydrodynamics simulations with HYDRA. The simulations include a range of effects, in particular, the impact of the plastic membrane used to support the capsule in the hohlraum, as well as low-mode radiation asymmetries tuned to match radiography measurements. The same simulation methodology is applied to low foot NIC implosion experiments and high foot implosions, and shows a qualitatively similar level of agreement for both types of implosions. While comparison with the experimental data remains imperfect, a reasonable level of agreement is emerging and shows a growing understanding of the high-convergence implosions being performed on NIF.

  7. Alq3 nanorods: promising building blocks for optical devices.

    PubMed

    Chen, Wei; Peng, Qing; Li, Yadong

    2008-07-17

    Monodisperse Alq3 nanorods with hexagonal-prism-like morphology are produced via a facile, emulsion based synthesis route. The photoluminescence of individual nanorods differs from the bulk material. These nanorods are promising building blocks for novel optical devices. Copyright © 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A health maintenance facility for space station freedom

    NASA Technical Reports Server (NTRS)

    Billica, R. D.; Doarn, C. R.

    1991-01-01

    We describe a health care facility to be built and used on an orbiting space station in low Earth orbit. This facility, called the health maintenance facility, is based on and modeled after isolated terrestrial medical facilities. It will provide a phased approach to health care for the crews of Space Station Freedom. This paper presents the capabilities of the health maintenance facility. As Freedom is constructed over the next decade there will be an increase in activities, both construction and scientific. The health maintenance facility will evolve with this process until it is a mature, complete, stand-alone health care facility that establishes a foundation to support interplanetary travel. As our experience in space continues to grow so will the commitment to providing health care.

  9. What device would be best for early infant male circumcision in east and southern Africa? Provider experiences and opinions with three different devices in Kenya.

    PubMed

    Bailey, Robert C; Nyaboke, Irene; Otieno, Fredrick O

    2017-01-01

    Voluntary medical male circumcision (VMMC) reduces risk of HIV acquisition in heterosexual men by approximately 60%. As some countries approach targets for proportions of adolescents and adults circumcised, some are considering early infant male circumcision (EIMC) as a means to achieve sustainability of VMMC for long term reduction of HIV incidence. Evaluations of specialized devices for EIMC are important to provide programs with information required to make informed decisions about how to design safe, effective EIMC programs. We provide assessments by 11 providers with experience in Kenya employing all three of the devices most likely to be considered by various EIMC programs in east and Southern Africa. There was no one device that was seen to be clearly superior to the others. Each had its own advantages and disadvantages. Provider preferences were situation-specific. Most preferred the Mogen Clamp if they themselves were performing the procedure. However, most were concerned that not everyone will have the skills necessary for optimal safety. If someone else were circumcising their son, most would opt for the AccuCirc because of the risk of severing the glans when using the Mogen. A minority preferred the PrePex, but only if the baby received local anesthesia, not EMLA cream (a eutectic mixture of lidocaine 2.5% and prilocaine 2.5%), as presently prescribed by the manufacturer. In the context of a national EIMC program, all participants agreed that AccuCirc would be the device they would recommend due to protection of the glans from laceration and to the provision of a pre-assembled sterile kit that overcomes the need for additional supplies or autoclaving. All agreed that scaling up EIMC, integrating it with existing maternal child health services, will face significant challenges, not least of which is persuading already over-burdened providers to take on additional workload. These results will be useful to programmers considering introduction of EIMC

  10. Simulations of beam-matter interaction experiments at the CERN HiRadMat facility and prospects of high-energy-density physics research.

    PubMed

    Tahir, N A; Burkart, F; Shutov, A; Schmidt, R; Wollmann, D; Piriz, A R

    2014-12-01

    In a recent publication [Schmidt et al., Phys. Plasmas 21, 080701 (2014)], we reported results on beam-target interaction experiments that have been carried out at the CERN HiRadMat (High Radiation to Materials) facility using extended solid copper cylindrical targets that were irradiated with a 440-GeV proton beam delivered by the Super Proton Synchrotron (SPS). On the one hand, these experiments confirmed the existence of hydrodynamic tunneling of the protons that leads to substantial increase in the range of the protons and the corresponding hadron shower in the target, a phenomenon predicted by our previous theoretical investigations [Tahir et al., Phys. Rev. ST Accel. Beams 25, 051003 (2012)]. On the other hand, these experiments demonstrated that the beam heated part of the target is severely damaged and is converted into different phases of high energy density (HED) matter, as suggested by our previous theoretical studies [Tahir et al., Phys. Rev. E 79, 046410 (2009)]. The latter confirms that the HiRadMat facility can be used to study HED physics. In the present paper, we give details of the numerical simulations carried out to understand the experimental measurements. These include the evolution of the physical parameters, for example, density, temperature, pressure, and the internal energy in the target, during and after the irradiation. This information is important in order to determine the region of the HED phase diagram that can be accessed in such experiments. These simulations have been done using the energy deposition code fluka and a two-dimensional hydrodynamic code, big2, iteratively.

  11. First Octahedral Spherical Hohlraum Energetics Experiment at the SGIII Laser Facility

    NASA Astrophysics Data System (ADS)

    Huo, Wen Yi; Li, Zhichao; Chen, Yao-Hua; Xie, Xufei; Ren, Guoli; Cao, Hui; Li, Shu; Lan, Ke; Liu, Jie; Li, Yongsheng; Li, Sanwei; Guo, Liang; Liu, Yonggang; Yang, Dong; Jiang, Xiaohua; Hou, Lifei; Du, Huabing; Peng, Xiaoshi; Xu, Tao; Li, Chaoguang; Zhan, Xiayu; Wang, Zhebin; Deng, Keli; Wang, Qiangqiang; Deng, Bo; Wang, Feng; Yang, Jiamin; Liu, Shenye; Jiang, Shaoen; Yuan, Guanghui; Zhang, Haijun; Jiang, Baibin; Zhang, Wei; Gu, Qianqian; He, Zhibing; Du, Kai; Deng, Xuewei; Zhou, Wei; Wang, Liquan; Huang, Xiaoxia; Wang, Yuancheng; Hu, Dongxia; Zheng, Kuixing; Zhu, Qihua; Ding, Yongkun

    2018-04-01

    The first octahedral spherical hohlraum energetics experiment is accomplished at the SGIII laser facility. For the first time, the 32 laser beams are injected into the octahedral spherical hohlraum through six laser entrance holes. Two techniques are used to diagnose the radiation field of the octahedral spherical hohlraum in order to obtain comprehensive experimental data. The radiation flux streaming out of laser entrance holes is measured by six flat-response x-ray detectors (FXRDs) and four M -band x-ray detectors, which are placed at different locations of the SGIII target chamber. The radiation temperature is derived from the measured flux of FXRD by using the blackbody assumption. The peak radiation temperature inside hohlraum is determined by the shock wave technique. The experimental results show that the octahedral spherical hohlraum radiation temperature is in the range of 170-182 eV with drive laser energies of 71 kJ to 84 kJ. The radiation temperature inside the hohlraum determined by the shock wave technique is about 175 eV at 71 kJ. For the flat-top laser pulse of 3 ns, the conversion efficiency of gas-filled octahedral spherical hohlraum from laser into soft x rays is about 80% according to the two-dimensional numerical simulation.

  12. Regulatory experience in applying a radiological environmental protection framework for existing and planned nuclear facilities.

    PubMed

    Mihok, S; Thompson, P

    2012-01-01

    Frameworks and methods for the radiological protection of non-human biota have been evolving rapidly at the International Commission on Radiological Protection and through various European initiatives. The International Atomic Energy Agency has incorporated a requirement for environmental protection in the latest revision of its Basic Safety Standards. In Canada, the Canadian Nuclear Safety Commission has been legally obligated to prevent unreasonable risk to the environment since 2000. Licensees have therefore been meeting generic legal requirements to demonstrate adequate control of releases of radioactive substances for the protection of both people and biota for many years. In the USA, in addition to the generic requirements of the Environmental Protection Agency and the Nuclear Regulatory Commission, Department of Energy facilities have also had to comply with specific dose limits after a standard assessment methodology was finalised in 2002. Canadian regulators developed a similar framework for biota dose assessment through a regulatory assessment under the Canadian Environmental Protection Act in the late 1990s. Since then, this framework has been applied extensively to satisfy legal requirements under the Canadian Environmental Assessment Act and the Nuclear Safety and Control Act. After approximately a decade of experience in applying these methods, it is clear that simple methods are fit for purpose, and can be used for making regulatory decisions for existing and planned nuclear facilities. Copyright © 2012. Published by Elsevier Ltd.

  13. A fast field-cycling device for high-resolution NMR: Design and application to spin relaxation and hyperpolarization experiments

    NASA Astrophysics Data System (ADS)

    Kiryutin, Alexey S.; Pravdivtsev, Andrey N.; Ivanov, Konstantin L.; Grishin, Yuri A.; Vieth, Hans-Martin; Yurkovskaya, Alexandra V.

    2016-02-01

    A device for performing fast magnetic field-cycling NMR experiments is described. A key feature of this setup is that it combines fast switching of the external magnetic field and high-resolution NMR detection. The field-cycling method is based on precise mechanical positioning of the NMR probe with the mounted sample in the inhomogeneous fringe field of the spectrometer magnet. The device enables field variation over several decades (from 100 μT up to 7 T) within less than 0.3 s; progress in NMR probe design provides NMR linewidths of about 10-3 ppm. The experimental method is very versatile and enables site-specific studies of spin relaxation (NMRD, LLSs) and spin hyperpolarization (DNP, CIDNP, and SABRE) at variable magnetic field and at variable temperature. Experimental examples of such studies are demonstrated; advantages of the experimental method are described and existing challenges in the field are outlined.

  14. Materials, Processes, and Facile Manufacturing for Bioresorbable Electronics: A Review.

    PubMed

    Yu, Xiaowei; Shou, Wan; Mahajan, Bikram K; Huang, Xian; Pan, Heng

    2018-05-07

    Bioresorbable electronics refer to a new class of advanced electronics that can completely dissolve or disintegrate with environmentally and biologically benign byproducts in water and biofluids. They have provided a solution to the growing electronic waste problem with applications in temporary usage of electronics such as implantable devices and environmental sensors. Bioresorbable materials such as biodegradable polymers, dissolvable conductors, semiconductors, and dielectrics are extensively studied, enabling massive progress of bioresorbable electronic devices. Processing and patterning of these materials are predominantly relying on vacuum-based fabrication methods so far. However, for the purpose of commercialization, nonvacuum, low-cost, and facile manufacturing/printing approaches are the need of the hour. Bioresorbable electronic materials are generally more chemically reactive than conventional electronic materials, which require particular attention in developing the low-cost manufacturing processes in ambient environment. This review focuses on material reactivity, ink availability, printability, and process compatibility for facile manufacturing of bioresorbable electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. First Indian single center experience with pipeline embolization device for complex intracranial aneurysms.

    PubMed

    Cherian, Mathew P; Yadav, Manish Kumar; Mehta, Pankaj; Vijayan, K; Arulselvan, V; Jayabalan, Suresh

    2014-01-01

    Flow diversion is a novel method of therapy wherein an endoluminal sleeve, the flow diverter stent is placed across the neck of complex aneurysms to curatively reconstruct abnormal vasculature. We present the first Indian single center experience with the pipeline embolization device (PED) and 6 months follow-up results of 5 patients. Five complex or recurrent intracranial aneurysms in five patients were treated with PED. The patients were followed-up with magnetic resonance angiography (MRA) after 4 weeks and conventional angiography after 6 months. Feasibility, complications, clinical outcome, early 1-month MRA and 6 months conventional angiographic follow-up results were analyzed. Of the five aneurysms treated, four were in the anterior circulation and one in the posterior circulation. All five patients were treated with a single PED in each, and additionally coils were used in one patient. At 1-month MRA follow-up, complete occlusion was seen in 2 (40%) of the five cases. Post 6 months conventional angiography showed complete occlusion of the aneurysm sac in all five cases (100%). Side branch ostia were covered in three patients, all of which were patent (100%). There was no incidence of major neurological morbidity or mortality. One patient (20%) who had basilar top aneurysm experienced minor neurological disability after 5 days which partially improved. Pipeline embolization device for complex and recurrent aneurysms is technically feasible, safe, offers low complication rate, and definitive vascular reconstruction. PED can be used without fear of occlusion of covered eloquent side branches and perforators.

  16. Status and Perspectives of Neutron Imaging Facilities

    NASA Astrophysics Data System (ADS)

    Lehmann, E.; Trtik, P.; Ridikas, D.

    The methodology and the application range of neutron imaging techniques have been significantly improved at numerous facilities worldwide in the last decades. This progress has been achieved by new detector systems, the setup of dedicated, optimized and flexible beam lines and the much better understanding of the complete imaging process thanks to complementary simulations. Furthermore, new applications and research topics were found and implemented. However, since the quality and the number of neutron imaging facilities depend much on the access to suitable beam ports, there is still an enormous potential to implement state-of-the-art neutron imaging techniques at many more facilities. On the one hand, there are prominent and powerful sources which do not intend/accept the implementation of neutron imaging techniques due to the priorities set for neutron scattering and irradiation techniques exclusively. On the other hand, there are modern and useful devices which remain under-utilized and have either not the capacity or not the know-how to develop attractive user programs and/or industrial partnerships. In this overview of the international status of neutron imaging facilities, we will specify details about the current situation.

  17. Shock wave facilities at Pulter Laboratory of SRI international

    NASA Astrophysics Data System (ADS)

    Murri, W. J.

    1982-04-01

    Shock wave research in the Poulter Laboratory covers two broad areas: dynamic material response and dynamic structural response. Workers in both areas use common facilities. The Laboratory has several guns and the facilities to perform various types of high explosive loading experiments. The use of these facilities and experimental techniques is illustrated with examples from research projects.

  18. On the generation of magnetized collisionless shocks in the large plasma device

    DOE PAGES

    Schaeffer, D. B.; Winske, D.; Larson, D. J.; ...

    2017-03-22

    Collisionless shocks are common phenomena in space and astrophysical systems, and in many cases, the shocks can be modeled as the result of the expansion of a magnetic piston though a magnetized ambient plasma. Only recently, however, have laser facilities and diagnostic capabilities evolved sufficiently to allow the detailed study in the laboratory of the microphysics of piston-driven shocks. We review experiments on collisionless shocks driven by a laser-produced magnetic piston undertaken with the Phoenix laser laboratory and the Large Plasma Device at the University of California, Los Angeles. The experiments span a large parameter space in laser energy, backgroundmore » magnetic field, and ambient plasma properties that allow us to probe the physics of piston-ambient energy coupling, the launching of magnetosonic solitons, and the formation of subcritical shocks. Here, the results indicate that piston-driven magnetized collisionless shocks in the laboratory can be characterized with a small set of dimensionless formation parameters that place the formation process in an organized and predictive framework.« less

  19. Remote gaming on resource-constrained devices

    NASA Astrophysics Data System (ADS)

    Reza, Waazim; Kalva, Hari; Kaufman, Richard

    2010-08-01

    Games have become important applications on mobile devices. A mobile gaming approach known as remote gaming is being developed to support games on low cost mobile devices. In the remote gaming approach, the responsibility of rendering a game and advancing the game play is put on remote servers instead of the resource constrained mobile devices. The games rendered on the servers are encoded as video and streamed to mobile devices. Mobile devices gather user input and stream the commands back to the servers to advance game play. With this solution, mobile devices with video playback and network connectivity can become game consoles. In this paper we present the design and development of such a system and evaluate the performance and design considerations to maximize the end user gaming experience.

  20. The Multistage Compressor Facility

    NASA Technical Reports Server (NTRS)

    Flegel, Ashlie

    2004-01-01

    Research and developments of new aerospace technologies is one of Glenn Research Center's specialties. One facility that deals with the research of aerospace technologies is the High-speed Multistage Compressor Facility. This facility will be testing the performance and efficiency of an Ultra Efficient Engine Technology (UEET) two-stage compressor. There is a lot of preparation involved with testing something of this caliber. Before the test article can be installed into the test rig, the facility must be fully operational and ready to run. Meaning all the necessary instrumentation must be calibrated and installed in the facility. The test rig should also be in safe operating condition, and the proper safety permits obtained. In preparation for the test, the Multistage Compressor Facility went through a few changes. For instance the facility will now be utilizing slip rings, the gearbox went through some maintenance, new lubrications systems replaced the old ones, and special instrumentation needs to be fine tuned to achieve the maximum amount of accurate data. Slips rings help gather information off of a rotating device - in this case from a shaft - onto stationary contacts. The contacts (or brushes) need to be cooled to reduce the amount of frictional heat produced between the slip ring and brushes. The coolant being run through the slip ring is AK-225, a material hazardous to the ozone. To abide by the safety regulations the coolant must be run through a closed chiller system. A new chiller system was purchased but the reservoir that holds the coolant was ventilated which doesn t make the system truly closed and sealed. My task was to design and have a new reservoir built for the chiller system that complies with the safety guidelines. The gearbox had some safety issues also. Located in the back of the gearbox an inching drive was set up. When the inching drive is in use the gears and chain are bare and someone can easily get caught up in it. So to prevent