Sample records for facility drywell array

  1. Thermal and flow analysis of the Fluor Daniel, Inc., Nuclear Material Storage Facility renovation design (initial 30% effort of Title 1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinke, R.G.; Mueller, C.; Knight, T.D.

    1998-03-01

    The computational fluid dynamics code CFX4.2 was used to evaluate steady-state thermal-hydraulic conditions in the Fluor Daniel, Inc., Nuclear Material Storage Facility renovation design (initial 30% of Title 1). Thirteen facility cases were evaluated with varying temperature dependence, drywell-array heat-source magnitude and distribution, location of the inlet tower, and no-flow curtains in the drywell-array vault. Four cases of a detailed model of the inlet-tower top fixture were evaluated to show the effect of the canopy-cruciform fixture design on the air pressure and flow distributions.

  2. Evaluating drywells for stormwater management and enhanced aquifer recharge

    USDA-ARS?s Scientific Manuscript database

    Drywells are increasingly used for stormwater management and enhanced aquifer recharge, but only limited research has quantitatively determined drywell performance. Numerical and field experiments were therefore conducted to improve our understanding and ability to characterize drywell behavior. I...

  3. Evaluating drywells for stormwater management and enhanced aquifer recharge

    EPA Science Inventory

    Drywells are increasingly used for stormwater management and enhanced aquifer recharge, but only limited research has quantitatively determined drywells' performance. Numerical and field scale experiments were conducted to characterize the drywell behavior. HYDRUS (2D/3D) was mod...

  4. Evaluating drywells for stormwater management and enhanced aquifer recharge

    NASA Astrophysics Data System (ADS)

    Sasidharan, Salini; Bradford, Scott A.; Šimůnek, Jiří; DeJong, Bill; Kraemer, Stephen R.

    2018-06-01

    Drywells are increasingly used for stormwater management and enhanced aquifer recharge, but only limited research has quantitatively determined the performance of drywells. Numerical and field scale experiments were, therefore, conducted to improve our understanding and ability to characterize the drywell behavior. In particular, HYDRUS (2D/3D) was modified to simulate transient head boundary conditions for the complex geometry of the Maxwell Type IV drywell; i.e., a sediment chamber, an overflow pipe, and the variable geometry and storage of the drywell system with depth. Falling-head infiltration experiments were conducted on drywells located at the National Training Center in Fort Irwin, California (CA) and a commercial complex in Torrance, CA to determine in situ soil hydraulic properties (the saturated hydraulic conductivity, Ks, and the retention curve shape parameter, α) for an equivalent uniform soil profile by inverse parameter optimization. A good agreement between the observed and simulated water heights in wells was obtained for both sites as indicated by the coefficient of determination 0.95-0.99-%, unique parameter fits, and small standard errors. Fort Irwin and Torrance drywells had very distinctive soil hydraulic characteristics. The fitted value of Ks=1.01 × 10-3 m min-1 at the Torrance drywell was consistent with the sandy soil texture at this site and the default value for sand in the HYDRUS soil catalog. The drywell with this Ks= 1.01 × 10-3 m min-1 could easily infiltrate predicted surface runoff from a design rain event (∼51.3 m3) within 5760 min (4 d). In contrast, the fitted value of Ks=2.25 × 10-6 m min-1 at Fort Irwin was very low compared to the Torrance drywell and more than an order of magnitude smaller than the default value reported in the HYDRUS soil catalog for sandy clay loam at this site, likely due to clogging. These experiments and simulations provide useful information to characterize effective soil hydraulic properties in situ, and to improve the design of drywells for enhanced recharge.

  5. Evaluating drywells for stormwater management and enhanced aquifer recharge

    USDA-ARS?s Scientific Manuscript database

    Drywells are increasingly used for stormwater management and enhanced aquifer recharge, but only limited research has quantitatively determined the performance of drywells. Numerical and field scale experiments were, therefore, conducted to improve our understanding and ability to characterize the d...

  6. 77 FR 6144 - Biweekly Notice; Applications and Amendments to Facility Operating Licenses Involving No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-07

    ... controverted. In addition, the requestor/petitioner shall provide a brief explanation of the bases for the... Specification (TS) 3.3.6.1, ``Primary Containment and Drywell Isolation Instrumentation,'' to revise the... allowable value for the main steam tunnel ambient temperature isolation instrumentation for the main steam...

  7. Referenced-site environmental document for a Monitored Retrievable Storage facility: backup waste management option for handling 1800 MTU per year

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silviera, D.J.; Aaberg, R.L.; Cushing, C.E.

    This environmental document includes a discussion of the purpose of a monitored retrievable storage facility, a description of two facility design concepts (sealed storage cask and field drywell), a description of three reference sites (arid, warm-wet, and cold-wet), and a discussion and comparison of the impacts associated with each of the six site/concept combinations. This analysis is based on a 15,000-MTU storage capacity and a throughput rate of up to 1800 MTU per year.

  8. Emergency cooling system and method

    DOEpatents

    Oosterkamp, W.J.; Cheung, Y.K.

    1994-01-04

    An improved emergency cooling system and method are disclosed that may be adapted for incorporation into or use with a nuclear BWR wherein a reactor pressure vessel (RPV) containing a nuclear core and a heat transfer fluid for circulation in a heat transfer relationship with the core is housed within an annular sealed drywell and is fluid communicable therewith for passage thereto in an emergency situation the heat transfer fluid in a gaseous phase and any noncondensibles present in the RPV, an annular sealed wetwell houses the drywell, and a pressure suppression pool of liquid is disposed in the wetwell and is connected to the drywell by submerged vents. The improved emergency cooling system and method has a containment condenser for receiving condensible heat transfer fluid in a gaseous phase and noncondensibles for condensing at least a portion of the heat transfer fluid. The containment condenser has an inlet in fluid communication with the drywell for receiving heat transfer fluid and noncondensibles, a first outlet in fluid communication with the RPV for the return to the RPV of the condensed portion of the heat transfer fluid and a second outlet in fluid communication with the drywell for passage of the noncondensed balance of the heat transfer fluid and the noncondensibles. The noncondensed balance of the heat transfer fluid and the noncondensibles passed to the drywell from the containment condenser are mixed with the heat transfer fluid and the noncondensibles from the RPV for passage into the containment condenser. A water pool is provided in heat transfer relationship with the containment condenser and is thermally communicable in an emergency situation with an environment outside of the drywell and the wetwell for conducting heat transferred from the containment condenser away from the wetwell and the drywell. 5 figs.

  9. Passive containment cooling system

    DOEpatents

    Billig, P.F.; Cooke, F.E.; Fitch, J.R.

    1994-01-25

    A passive containment cooling system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and a gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel and is vented to the drywell. An isolation pool is disposed above the GDCS pool and includes an isolation condenser therein. The condenser has an inlet line disposed in flow communication with the drywell for receiving the non-condensable gas along with any steam released therein following a loss-of-coolant accident (LOCA). The condenser also has an outlet line disposed in flow communication with the drywell for returning to the drywell both liquid condensate produced upon cooling of the steam and the non-condensable gas for reducing pressure within the containment vessel following the LOCA. 1 figure.

  10. Passive containment cooling system

    DOEpatents

    Billig, Paul F.; Cooke, Franklin E.; Fitch, James R.

    1994-01-01

    A passive containment cooling system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and a gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel and is vented to the drywell. An isolation pool is disposed above the GDCS pool and includes an isolation condenser therein. The condenser has an inlet line disposed in flow communication with the drywell for receiving the non-condensable gas along with any steam released therein following a loss-of-coolant accident (LOCA). The condenser also has an outlet line disposed in flow communication with the drywell for returning to the drywell both liquid condensate produced upon cooling of the steam and the non-condensable gas for reducing pressure within the containment vessel following the LOCA.

  11. External Cooling of the BWR Mark I and II Drywell Head as a Potential Accident Mitigation Measure – Scoping Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robb, Kevin R.

    This report documents a scoping assessment of a potential accident mitigation action applicable to the US fleet of boiling water reactors with Mark I and II containments. The mitigation action is to externally flood the primary containment vessel drywell head using portable pumps or other means. A scoping assessment of the potential benefits of this mitigation action was conducted focusing on the ability to (1) passively remove heat from containment, (2) prevent or delay leakage through the drywell head seal (due to high temperatures and/or pressure), and (3) scrub radionuclide releases if the drywell head seal leaks.

  12. Passive containment cooling system with drywell pressure regulation for boiling water reactor

    DOEpatents

    Hill, Paul R.

    1994-01-01

    A boiling water reactor having a regulating valve for placing the wetwell in flow communication with an intake duct of the passive containment cooling system. This subsystem can be adjusted to maintain the drywell pressure at (or slightly below or above) wetwell pressure after the initial reactor blowdown transient is over. This addition to the PCCS design has the benefit of eliminating or minimizing steam leakage from the drywell to the wetwell in the longer-term post-LOCA time period and also minimizes the temperature difference between drywell and wetwell. This in turn reduces the rate of long-term pressure buildup of the containment, thereby extending the time to reach the design pressure limit.

  13. Passive containment cooling system with drywell pressure regulation for boiling water reactor

    DOEpatents

    Hill, P.R.

    1994-12-27

    A boiling water reactor is described having a regulating valve for placing the wetwell in flow communication with an intake duct of the passive containment cooling system. This subsystem can be adjusted to maintain the drywell pressure at (or slightly below or above) wetwell pressure after the initial reactor blowdown transient is over. This addition to the PCCS design has the benefit of eliminating or minimizing steam leakage from the drywell to the wetwell in the longer-term post-LOCA time period and also minimizes the temperature difference between drywell and wetwell. This in turn reduces the rate of long-term pressure buildup of the containment, thereby extending the time to reach the design pressure limit. 4 figures.

  14. Assessment of Drywells as Effective Tools for Stormwater Management and Aquifer Recharge: Results of a Two-Year Field and Numerical Modeling Study

    NASA Astrophysics Data System (ADS)

    Edwards, E.; Washburn, B.; Harter, T.; Fogg, G. E.; Nelson, C.; Lock, B.; Li, X.

    2016-12-01

    Drywells are gravity-fed, excavated pits with perforated casings used to facilitate stormwater infiltration and groundwater recharge in areas with low permeability soils or cover. Stormwater runoff that would otherwise be routed to streams or drains in urban areas can be used as a source of aquifer recharge, potentially mitigating the effects of drought and harm to natural water bodies. However, the potential for groundwater contamination caused by urban runoff bypassing surface soil and near surface sediment attenuation processes has prevented more widespread use of drywells as a recharge mechanism. A field study was conducted in Elk Grove, CA, to determine the effects of drywell-induced stormwater infiltration on the local hydrogeologic system. Two drywells 13.5 meters in depth were constructed for the project: one in a preexisting drainage basin fed by residential lots, and one at an industrial site. Both sites were outfitted with vegetated pretreatments, and upgradient and downgradient groundwater monitoring wells. Site stormwater and groundwater were sampled between November, 2014, and May, 2016, and analyzed for contaminants. Results of water quality sampling have been statistically analyzed for trends and used to determine the contaminants of interest and the concentrations of these contaminants in influent stormwater. The fate and transport of these contaminants have been simulated using a 1D variably saturated flow and transport model and site specific parameters to predict long-term effects of stormwater infiltration on the surrounding hydrogeologic system. The potential for remobilization of geogenic heavy metals from changes in subsurface hydrochemistry caused by drywell infiltration have also been assessed. The results of the field study and numerical modeling assessment indicate that the study's drywells do not pose a long-term threat to groundwater quality and may be an effective source of aquifer recharge and tool for urban stormwater management.

  15. Organic Carbon as Inhibitor to SVOC and Metal Migration in Stormwater Drywells Discharging to the Subsurface-SLIDES

    EPA Science Inventory

    The Safe Drinking Water Act (SDWA) authorizes the Underground Injection Control (UIC) program to protect underground drinking water (USDW) sources from contamination caused by underground injection wells, including regulation of stormwater drainage drywells for parking lot and ro...

  16. Estimation of ground-water recharge from precipitation, runoff into drywells, and on-site waste-disposal systems in the Portland Basin, Oregon and Washington

    USGS Publications Warehouse

    Snyder, D.T.; Morgan, D.S.; McGrath, T.S.

    1994-01-01

    The average recharge rate in the Portland Basin, in northwestern Oregon and southwestern Washington, is estimated to be about 22.0 inches per year. Of that amount, precipitation accounts for about 20.8 inches per year, runoff into drywells 0.9 inches per year, and on-site waste disposal about 0.4 inches per year. Recharge is highest, about 49 inches per year, in the Cascade Range. Recharge is lowest, near zero, along and between the Columbia and Willamette Rivers. Recharge is higher locally in discrete areas owing to recharge from runoff into drywells and on-site, waste-disposal systems in urbanized parts of the study area. In these urbanized areas, recharge ranges from 0 to 49 inches per year.

  17. Pressure suppression system

    DOEpatents

    Gluntz, D.M.

    1994-10-04

    A pressure suppression system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and an enclosed gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel. The GDCS pool includes a plenum for receiving through an inlet the non-condensable gas carried with steam from the drywell following a loss-of-coolant accident (LOCA). A condenser is disposed in the GDCS plenum for condensing the steam channeled therein and to trap the non-condensable gas therein. A method of operation includes draining the GDCS pool following the LOCA and channeling steam released into the drywell following the LOCA into the GDCS plenum for cooling along with the non-condensable gas carried therewith for trapping the gas therein. 3 figs.

  18. Pressure suppression system

    DOEpatents

    Gluntz, Douglas M.

    1994-01-01

    A pressure suppression system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and an enclosed gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel. The GDCS pool includes a plenum for receiving through an inlet the non-condensable gas carried with steam from the drywell following a loss-of-coolant accident (LOCA). A condenser is disposed in the GDCS plenum for condensing the steam channeled therein and to trap the non-condensable gas therein. A method of operation includes draining the GDCS pool following the LOCA and channeling steam released into the drywell following the LOCA into the GDCS plenum for cooling along with the non-condensable gas carried therewith for trapping the gas therein.

  19. Pressure suppression containment system

    DOEpatents

    Gluntz, Douglas M.; Townsend, Harold E.

    1994-03-15

    A pressure suppression containment system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and a gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel. The wetwell pool includes a plenum for receiving the non-condensable gas carried with steam from the drywell following a loss-of coolant-accident (LOCA). The wetwell plenum is vented to a plenum above the GDCS pool following the LOCA for suppressing pressure rise within the containment vessel. A method of operation includes channeling steam released into the drywell following the LOCA into the wetwell pool for cooling along with the non-condensable gas carried therewith. The GDCS pool is then drained by gravity, and the wetwell plenum is vented into the GDCS plenum for channeling the non-condensable gas thereto.

  20. Pressure suppression containment system

    DOEpatents

    Gluntz, D.M.; Townsend, H.E.

    1994-03-15

    A pressure suppression containment system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and a gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel. The wetwell pool includes a plenum for receiving the non-condensable gas carried with steam from the drywell following a loss-of-coolant-accident (LOCA). The wetwell plenum is vented to a plenum above the GDCS pool following the LOCA for suppressing pressure rise within the containment vessel. A method of operation includes channeling steam released into the drywell following the LOCA into the wetwell pool for cooling along with the non-condensable gas carried therewith. The GDCS pool is then drained by gravity, and the wetwell plenum is vented into the GDCS plenum for channeling the non-condensable gas thereto. 6 figures.

  1. Evaluation of a Method for Remote Detection of Fuel Relocation Outside the Original Core Volumes of Fukushima Reactor Units 1-3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douglas W. Akers; Edwin A. Harvego

    2012-08-01

    This paper presents the results of a study to evaluate the feasibility of remotely detecting and quantifying fuel relocation from the core to the lower head, and to regions outside the reactor vessel primary containment of the Fukushima 1-3 reactors. The goals of this study were to determine measurement conditions and requirements, and to perform initial radiation transport sensitivity analyses for several potential measurement locations inside the reactor building. The radiation transport sensitivity analyses were performed based on reactor design information for boiling water reactors (BWRs) similar to the Fukushima reactors, ORIGEN2 analyses of 3-cycle BWR fuel inventories, and datamore » on previously molten fuel characteristics from TMI- 2. A 100 kg mass of previously molten fuel material located on the lower head of the reactor vessel was chosen as a fuel interrogation sensitivity target. Two measurement locations were chosen for the transport analyses, one inside the drywell and one outside the concrete biological shield surrounding the drywell. Results of these initial radiation transport analyses indicate that the 100 kg of previously molten fuel material may be detectable at the measurement location inside the drywell, but that it is highly unlikely that any amount of fuel material inside the RPV will be detectable from a location outside the concrete biological shield surrounding the drywell. Three additional fuel relocation scenarios were also analyzed to assess detection sensitivity for varying amount of relocated material in the lower head of the reactor vessel, in the control rods perpendicular to the detector system, and on the lower head of the drywell. Results of these analyses along with an assessment of background radiation effects and a discussion of measurement issues, such as the detector/collimator design, are included in the paper.« less

  2. Apparatus for draining lower drywell pool water into suppresion pool in boiling water reactor

    DOEpatents

    Gluntz, Douglas M.

    1996-01-01

    An apparatus which mitigates temperature stratification in the suppression pool water caused by hot water drained into the suppression pool from the lower drywell pool. The outlet of a spillover hole formed in the inner bounding wall of the suppression pool is connected to and in flow communication with one end of piping. The inlet end of the piping is above the water level in the suppression pool. The piping is routed down the vertical downcomer duct and through a hole formed in the thin wall separating the downcomer duct from the suppression pool water. The piping discharge end preferably has an elevation at or near the bottom of the suppression pool and has a location in the horizontal plane which is removed from the point where the piping first emerges on the suppression pool side of the inner bounding wall of the suppression pool. This enables water at the surface of the lower drywell pool to flow into and be discharged at the bottom of the suppression pool.

  3. Nuclear reactor building

    DOEpatents

    Gou, P.F.; Townsend, H.E.; Barbanti, G.

    1994-04-05

    A reactor building for enclosing a nuclear reactor includes a containment vessel having a wetwell disposed therein. The wetwell includes inner and outer walls, a floor, and a roof defining a wetwell pool and a suppression chamber disposed there above. The wetwell and containment vessel define a drywell surrounding the reactor. A plurality of vents are disposed in the wetwell pool in flow communication with the drywell for channeling into the wetwell pool steam released in the drywell from the reactor during a LOCA for example, for condensing the steam. A shell is disposed inside the wetwell and extends into the wetwell pool to define a dry gap devoid of wetwell water and disposed in flow communication with the suppression chamber. In a preferred embodiment, the wetwell roof is in the form of a slab disposed on spaced apart support beams which define there between an auxiliary chamber. The dry gap, and additionally the auxiliary chamber, provide increased volume to the suppression chamber for improving pressure margin. 4 figures.

  4. Nuclear reactor building

    DOEpatents

    Gou, Perng-Fei; Townsend, Harold E.; Barbanti, Giancarlo

    1994-01-01

    A reactor building for enclosing a nuclear reactor includes a containment vessel having a wetwell disposed therein. The wetwell includes inner and outer walls, a floor, and a roof defining a wetwell pool and a suppression chamber disposed thereabove. The wetwell and containment vessel define a drywell surrounding the reactor. A plurality of vents are disposed in the wetwell pool in flow communication with the drywell for channeling into the wetwell pool steam released in the drywell from the reactor during a LOCA for example, for condensing the steam. A shell is disposed inside the wetwell and extends into the wetwell pool to define a dry gap devoid of wetwell water and disposed in flow communication with the suppression chamber. In a preferred embodiment, the wetwell roof is in the form of a slab disposed on spaced apart support beams which define therebetween an auxiliary chamber. The dry gap, and additionally the auxiliary chamber, provide increased volume to the suppression chamber for improving pressure margin.

  5. PANDA asymmetric-configuration passive decay heat removal test results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, O.; Dreier, J.; Aubert, C.

    1997-12-01

    PANDA is a large-scale, low-pressure test facility for investigating passive decay heat removal systems for the next generation of LWRs. In the first series of experiments, PANDA was used to examine the long-term LOCA response of the Passive Containment Cooling System (PCCS) for the General Electric (GE) Simplified Boiling Water Reactor (SBWR). The test objectives include concept demonstration and extension of the database available for qualification of containment codes. Also included is the study of the effects of nonuniform distributions of steam and noncondensable gases in the Dry-well (DW) and in the Suppression Chamber (SC). 3 refs., 9 figs.

  6. Fission product transport analysis in a loss of decay heat removal accident at Browns Ferry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wichner, R.P.; Weber, C.F.; Hodge, S.A.

    1984-01-01

    This paper summarizes an analysis of the movement of noble gases, iodine, and cesium fission products within the Mark-I containment BWR reactor system represented by Browns Ferry Unit 1 during a postulated accident sequence initiated by a loss of decay heat removal (DHR) capability following a scram. The event analysis showed that this accident could be brought under control by various means, but the sequence with no operator action ultimately leads to containment (drywell) failure followed by loss of water from the reactor vessel, core degradation due to overheating, and reactor vessel failure with attendant movement of core debris ontomore » the drywell floor.« less

  7. What You Can Do to Soak Up the Rain

    EPA Pesticide Factsheets

    Take steps around your home and community to reduce stormwater runoff. Use rain barrels, disconnect/redirect downspouts, plant trees and rain gardens, use drywells and permeable pavers, and plant green roofs. Take action to soak up the rain.

  8. Organic Carbon as Inhibitor to SVOC and Metal Migration

    EPA Science Inventory

    The Safe Drinking Water Act (SDWA) authorizes the Underground Injection Control (UIC) program to protect underground drinking water (USDW) sources from contamination caused by underground injection wells, including regulation of stormwater drainage drywells for parking lot and ro...

  9. 78 FR 8195 - Biweekly Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-05

    ... of the bases for the contention and a concise statement of the alleged facts or expert opinion which..., ``Allowable Value for Primary Containment and Drywell Isolation Instrumentation,'' Function 3.c, ``Reactor Core Isolation Cooling (RCIC) Steam Supply Line Pressure--Low.'' This TS allowable value will be...

  10. Best-estimate coupled RELAP/CONTAIN analysis of inadvertent BWR ADS valve opening transient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feltus, M.A.; Muftuoglu, A.K.

    1993-01-01

    Noncondensible gases may become dissolved in boiling water reactor (BWR) water-level instrumentation during normal operations. Any dissolved noncondensible gases inside these water columns may come out of solution during rapid depressurization events and displace water from the reference leg piping, resulting in a false high level. Significant errors in water-level indication are not expected to occur until the reactor pressure vessel (RPV) pressure has dropped below [approximately]450 psig. These water level errors may cause a delay or failure in emergency core cooling system (ECCS) actuation. The RPV water level is monitored using the pressure of a water column having amore » varying height (reactor water level) that is compared to the pressure of a water column maintained at a constant height (reference level). The reference legs have small-diameter pipes with varying lengths that provide a constant head of water and are located outside the drywell. The amount of noncondensible gases dissolved in each reference leg is very dependent on the amount of leakage from the reference leg and its geometry and interaction of the reactor coolant system with the containment, i.e., torus or suppression pool, and reactor building. If a rapid depressurization causes an erroneously high water level, preventing automatic ECCS actuation, it becomes important to determine if there would be other adequate indications for operator response. In the postulated inadvertent opening of all seven automatic depressurization system (ADS) valves, the ECCS signal on high drywell pressure would be circumvented because the ADS valves discharge directly into the suppression pool. A best-estimate analysis of such an inadvertent opening of all ADS valves would have to consider the thermal-hydraulic coupling between the pool, drywell, reactor building, and RPV.« less

  11. Noble gas, iodine, and cesium transport in a postulated loss of decay heat removal accident at Browns Ferry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wichner, R.P.; Hodge, S.A.; Weber, C.F.

    1984-08-01

    This report presents an analysis of the movement of noble gas, iodine, and cesium fission products within the Mark-I containment BWR reactor system represented by Browns Ferry Unit 1 during a postulated accident sequence initiated by a loss of decay heat removal capability following a scram. The event analysis showed that this accident could be brought under control by various means, but the sequence with no operator action ultimately leads to containment (drywell) failure followed by loss of water from the reactor vessel, core degradation due to overheating, and reactor vessel failure with attendant movement of core debris onto themore » drywell floor. The analysis of fission product transport presented in this report is based on the no-operator-action sequence and provides an estimate of fission product inventories, as a function of time, within 14 control volumes outside the core, with the atmosphere considered as the final control volume in the transport sequence. As in the case of accident sequences previously studied, we find small barrier for noble gas ejection to air, these gases being effectively purged from the drywell and reactor building by steam and concrete degradation gases. However, significant decay of krypton isotopes occurs during the long delay times involved in this sequence. In contrast, large degrees of holdup for iodine and cesium are projected due to the chemical reactivity of these elements. Only about 2 x 10/sup -4/% of the initial iodine and cesium activity are predicted to be released to the atmosphere. Principal barriers for release are deposition on reactor vessel and containment walls. A significant amount of iodine is captured in the water pool formed in the reactor building basement after actuation of the fire protection system.« less

  12. Status Report on Ex-Vessel Coolability and Water Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, M. T.; Robb, K. R.

    Specific to BWR plants, current accident management guidance calls for flooding the drywell to a level of approximately 1.2 m (4 feet) above the drywell floor once vessel breach has been determined. While this action can help to submerge ex-vessel core debris, it can also result in flooding the wetwell and thereby rendering the wetwell vent path unavailable. An alternate strategy is being developed in the industry guidance for responding to the severe accident capable vent Order, EA-13-109. The alternate strategy being proposed would throttle the flooding rate to achieve a stable wetwell water level while preserving the wetwell ventmore » path. The overall objective of this work is to upgrade existing analytical tools (i.e. MELTSPREAD and CORQUENCH - which have been used as part of the DOE-sponsored Fukushima accident analyses) in order to provide flexible, analytically capable, and validated models to support the development of water throttling strategies for BWRs that are aimed at keeping ex-vessel core debris covered with water while preserving the wetwell vent path.« less

  13. Modified electrical survey for effective leakage detection at concrete hydraulic facilities

    NASA Astrophysics Data System (ADS)

    Lee, Bomi; Oh, Seokhoon

    2018-02-01

    Three original electrode arrays for the effective leakage detection of concrete hydraulic facilities through electrical resistivity surveys are proposed: 'cross-potential', 'direct-potential' and modified tomography-like arrays. The main differences with respect to the commonly used arrays are that the current line-sources are separated from potential pole lines and floated upon the water. The potential pole lines are located directly next to the facility in order to obtain intuitive data and useful interpretations of the internal conditions of the hydraulic facility. This modified configuration of the array clearly displays the horizontal variation of the electrical field around the damaged zones of the concrete hydraulic facility, and any anomalous regions that might be found between potential poles placed across the facilities. In order to facilitate the interpretation of these modified electrical surveys, a new and creative way of presenting the measurements is also proposed and an inversion approach is provided for the modified tomography-like array. A numerical modeling and two field tests were performed to verify these new arrays and interpretation methods. The cross and direct potential array implied an ability to detect small variations of the potential field near the measurement poles. The proposed array showed the overall potential distribution across the hydraulic facility which may be used to assist in the search of trouble zones within the structure, in combination with the traditional electrical resistivity array.

  14. Laboratory 15 kV high voltage solar array facility

    NASA Technical Reports Server (NTRS)

    Kolecki, J. C.; Gooder, S. T.

    1976-01-01

    The laboratory high voltage solar array facility is a photoelectric power generating system. Consisting of nine modules with over 23,000 solar cells, the facility is capable of delivering more than a kilowatt of power. The physical and electrical characteristics of the facility are described.

  15. Pipe penetration inspection and repair equipment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eckert, G.; Gebrath, D.; Schlusen, H.J.

    Kraftwerk Union (KWU) has developed an in-pipe inspection and repair equipment package for use on pipe welds inside drywell penetrations since these welds are susceptible to integranular stress corrosion cracking (IGSCC) attack. The following paper does not give a detailed description of inspection and repair techniques (e.g., nondestructive examination (NDE), milling, or welding) but is aimed at providing information on recent developments at KWU with regard to in-pipe inspection and repair equipment.

  16. Interim reliability evaluation program, Browns Ferry 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mays, S.E.; Poloski, J.P.; Sullivan, W.H.

    1981-01-01

    Probabilistic risk analysis techniques, i.e., event tree and fault tree analysis, were utilized to provide a risk assessment of the Browns Ferry Nuclear Plant Unit 1. Browns Ferry 1 is a General Electric boiling water reactor of the BWR 4 product line with a Mark 1 (drywell and torus) containment. Within the guidelines of the IREP Procedure and Schedule Guide, dominant accident sequences that contribute to public health and safety risks were identified and grouped according to release categories.

  17. Installation Restoration Program. Phase II. Problem Confirmation and Quantification Study, Griffiss Air Force Base, Rome, New York.

    DTIC Science & Technology

    1982-12-01

    Base 6-26 17 Confirmation Stage Soil PCB Data, Building 112, Griffiss Air Force Base 6-27 18 Analysis of Roof and Oil Samples Building 112, Griffiss...Chlordane Application 46 52 (14) Drywell, Building 219 46 36 (14) PCB Spill at Floyd 46 47 17 Hazardous Waste Storage Area, Lot 69 38 47 18 Waste Oil ...specific anions, oil and grease, pH, and specific conductance. * Prepare a field investigations report delineating the nature and magnitude of

  18. Photoelectric array detectors for use at XUV wavelengths. [for Spacelab solar-physics facilities

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1981-01-01

    The characteristics of photoelectric detector systems for use at visible-light, ultraviolet, and X-ray wavelengths are briefly reviewed in the context of the needs of the Spacelab solar-physics facilities. Photoelectric array detectors for use at XUV wavelengths between 90 and 1500 A are described, and their use in the ESA Grazing-Incidence Solar Telescope (GRIST) facility is discussed.

  19. Implementation of an Antenna Array Signal Processing Breadboard for the Deep Space Network

    NASA Technical Reports Server (NTRS)

    Navarro, Robert

    2006-01-01

    The Deep Space Network Large Array will replace/augment 34 and 70 meter antenna assets. The array will mainly be used to support NASA's deep space telemetry, radio science, and navigation requirements. The array project will deploy three complexes in the western U.S., Australia, and European longitude each with 400 12m downlink antennas and a DSN central facility at JPL. THis facility will remotely conduct all real-time monitor and control for the network. Signal processing objectives include: provide a means to evaluate the performance of the Breadboard Array's antenna subsystem; design and build prototype hardware; demonstrate and evaluate proposed signal processing techniques; and gain experience with various technologies that may be used in the Large Array. Results are summarized..

  20. CLOSURE REPORT FOR CORRECTIVE ACTION UNIT165: AREA 25 AND 26 DRY WELL AND WASH DOWN AREAS, NEVADA TEST SITE, NEVADA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BECHTEL NEVADA

    This Closure Report (CR) documents the closure activities for Corrective Action Unit (CAU) 165, Area 25 and 26 Dry Well and Washdown Areas, according to the Federal Facility Agreement and Consent Order (FFACO) of 1996. CAU 165 consists of 8 Corrective Action Sites (CASs) located in Areas 25 and 26 of the Nevada Test Site (NTS). The NTS is located approximately 105 kilometers (65 miles) northwest of Las Vegas, nevada. Site closure activities were performed according to the Nevada Division of Environmental Protection (NDEP)-approved Corrective Action Plan (CAP) for CAU 165. CAU 165 consists of the following CASs: (1) CASmore » 25-07-06, Train Decontamination Area; (2) CAS 25-07-07, Vehicle Washdown; (3) CAS 25-20-01, Lab Drain Dry Well; (4) CAS 25-47-01, Reservoir and French Drain; (5) CAS 25-51-02, Drywell; (6) CAS 25-59-01, Septic System; (7) CAS 26-07-01, Vehicle Washdown Station; and (8) CAS 26-59-01, Septic System. CAU 165, Area 25 and 26 Dry Well and Washdown Areas, consists of eight CASs located in Areas 25 and 26 of the NTS. The approved closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls.« less

  1. Investigation of Containment Flooding Strategy for Mark-III Nuclear Power Plant with MAAP4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su Weinian; Wang, S.-J.; Chiang, S.-C

    2005-06-15

    Containment flooding is an important strategy for severe accident management of a conventional boiling water reactor (BWR) system. The purpose of this work is to investigate the containment flooding strategy of the Mark-III system after a reactor pressure vessel (RPV) breach. The Kuosheng Power Plant is a typical BWR-6 nuclear power plant (NPP) with Mark-III containment. The Severe Accident Management Guideline (SAMG) of the Kuosheng NPP has been developed based on the BWR Owners Group (BWROG) Emergency Procedure and Severe Accident Guidelines, Rev. 2. Therefore, the Kuosheng NPP is selected as the plant for study, and the MAAP4 code ismore » chosen as the tool for analysis. A postulated specific station blackout sequence for the Kuosheng NPP is cited as a reference case for this analysis. Because of the design features of Mark-III containment, the debris in the reactor cavity may not be submerged after an RPV breach when one follows the containment flooding strategy as suggested in the BWROG generic guideline, and the containment integrity could be challenged eventually. A more specific containment flooding strategy with drywell venting after an RPV breach is investigated, and a more stable plant condition is achieved with this strategy. Accordingly, the containment flooding strategy after an RPV breach will be modified for the Kuosheng SAMG, and these results are applicable to typical Mark-III plants with drywell vent path.« less

  2. Observation of fast expansion velocity with insulating tungsten wires on ∼80 kA facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, M.; Li, Y.; State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi'an 710024

    2016-07-15

    This paper presents experimental results on the effects of insulating coatings on tungsten planar wire array Z-pinches on an 80 kA, 100 ns current facility. Expansion velocity is obviously increased from ∼0.25 km/s to ∼3.5 km/s by using the insulating coatings. It can be inferred that the wire cores are in gaseous state with this fast expansion velocity. An optical framing camera and laser probing images show that the standard wire arrays have typical ablation process which is similar to their behaviors on mega-ampere facilities. The ablation process and precursor plasma are suppressed for dielectric tungsten wires. The wire array implosion might be improvedmore » if these phenomena can be reproduced on Mega-ampere facilities.« less

  3. The drift chamber array at the external target facility in HIRFL-CSR

    NASA Astrophysics Data System (ADS)

    Sun, Y. Z.; Sun, Z. Y.; Wang, S. T.; Duan, L. M.; Sun, Y.; Yan, D.; Tang, S. W.; Yang, H. R.; Lu, C. G.; Ma, P.; Yu, Y. H.; Zhang, X. H.; Yue, K.; Fang, F.; Su, H.

    2018-06-01

    A drift chamber array at the External Target Facility in HIRFL-CSR has been constructed for three-dimensional particle tracking in high-energy radioactive ion beam experiments. The design, readout, track reconstruction program and calibration procedures for the detector are described. The drift chamber array was tested in a 311 AMeV 40Ar beam experiment. The detector performance based on the measurements of the beam test is presented. A spatial resolution of 230 μm is achieved.

  4. Consolidated fuel reprocessing program

    NASA Astrophysics Data System (ADS)

    1985-04-01

    A survey of electrochemical methods applications in fuel reprocessing was completed. A dummy fuel assembly shroud was cut using the remotely operated laser disassembly equipment. Operations and engineering efforts have continued to correct equipment operating, software, and procedural problems experienced during the previous uranium compaigns. Fuel cycle options were examined for the liquid metal reactor fuel cycle. In high temperature gas cooled reactor spent fuel studies, preconceptual designs were completed for the concrete storage cask and open field drywell storage concept. These and other tasks operating under the consolidated fuel reprocessing program are examined.

  5. Systems and methods for processing irradiation targets through a nuclear reactor

    DOEpatents

    Dayal, Yogeshwar; Saito, Earl F.; Berger, John F.; Brittingham, Martin W.; Morales, Stephen K.; Hare, Jeffrey M.

    2016-05-03

    Apparatuses and methods produce radioisotopes in instrumentation tubes of operating commercial nuclear reactors. Irradiation targets may be inserted and removed from instrumentation tubes during operation and converted to radioisotopes otherwise unavailable during operation of commercial nuclear reactors. Example apparatuses may continuously insert, remove, and store irradiation targets to be converted to useable radioisotopes or other desired materials at several different origin and termination points accessible outside an access barrier such as a containment building, drywell wall, or other access restriction preventing access to instrumentation tubes during operation of the nuclear plant.

  6. The CHARA optical array

    NASA Astrophysics Data System (ADS)

    McAlister, Harold A.

    1992-11-01

    The Center for High Angular Resolution Astronomy (CHARA) was established in the College of Arts and Sciences at Georgia State University in 1984 with the goals of designing, constructing, and then operating a facility for very high spatial resolution astronomy. The interest in such a facility grew out of the participants' decade of activity in speckle interferometry. Although speckle interferometry continues to provide important astrophysical measurements of a variety of objects, many pressing problems require resolution far beyond that which can be expected from single aperture telescopes. In early 1986, CHARA received a grant from the National Science Foundation which has permitted a detailed exploration of the feasibility of constructing a facility which will provide a hundred-fold increase in angular resolution over what is possible by speckle interferometry at the largest existing telescopes. The design concept for the CHARA Array was developed initially with the contractural collaboration of United Technologies Optical Systems, Inc., in West Palm Beach, Florida, an arrangement that expired in August 1987. In late November 1987, the Georgia Tech Research Institute joined with CHARA to continue and complete the design concept study. Very high-resolution imaging at optical wavelengths is clearly coming of age in astronomy. The CHARA Array and other related projects will be important and necessary milestones along the way toward the development of a major national facility for high-resolution imaging--a true optical counterpart to the Very Large Array. Ground-based arrays and their scientific output will lead to high resolution facilities in space and, ultimately, on the Moon.

  7. Testing of focal plane arrays at the AEDC

    NASA Astrophysics Data System (ADS)

    Nicholson, Randy A.; Mead, Kimberly D.; Smith, Robert W.

    1992-07-01

    A facility was developed at the Arnold Engineering Development Center (AEDC) to provide complete radiometric characterization of focal plane arrays (FPAs). The highly versatile facility provides the capability to test single detectors, detector arrays, and hybrid FPAs. The primary component of the AEDC test facility is the Focal Plane Characterization Chamber (FPCC). The FPCC provides a cryogenic, low-background environment for the test focal plane. Focal plane testing in the FPCC includes flood source testing, during which the array is uniformly irradiated with IR radiation, and spot source testing, during which the target radiation is focused onto a single pixel or group of pixels. During flood source testing, performance parameters such as power consumption, responsivity, noise equivalent input, dynamic range, radiometric stability, recovery time, and array uniformity can be assessed. Crosstalk is evaluated during spot source testing. Spectral response testing is performed in a spectral response test station using a three-grating monochromator. Because the chamber can accommodate several types of testing in a single test installation, a high throughput rate and good economy of operation are possible.

  8. Facilities for US Radioastronomy.

    ERIC Educational Resources Information Center

    Thaddeus, Patrick

    1982-01-01

    Discusses major developments in radioastronomy since 1945. Topics include proposed facilities, very-long-baseline interferometric array, millimeter-wave telescope, submillimeter-wave telescope, and funding for radioastronomy facilities and projects. (JN)

  9. Assessment study of infrared detector arrays for low-background astronomical research

    NASA Technical Reports Server (NTRS)

    Ando, K. J.

    1978-01-01

    The current state-of-the-art of infrared detector arrays employing charge coupled devices (CCD) or charge injection devices (CID) readout are assessed. The applicability, limitations and potentials of such arrays under the low-background astronomical observing conditions of interest for SIRFT (Shuttle Infrared Telescope Facility) are determined. The following are reviewed: (1) monolithic extrinsic arrays; (2) monolithic intrinsic arrays; (3) charge injection devices; and (4) hybrid arrays.

  10. Distribution of leakage currents in the cylindrical and conical sections of the magnetically insulated transmission line of the Angara-5-1 facility in experiments with wire arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grabovski, E. V.; Gribov, A. N.; Samokhin, A. A.

    2016-08-15

    Current leakages in the magnetically insulated transmission lines (MITL) impose restrictions on the transmission of electromagnetic pulses to the load in high-power electrophysical facilities. The multimodule Angara-5-1 facility with an output electric power of up to 6 TW is considered. In this work, the experimental and calculated profiles of leakage currents in two sections of the line are compared when the eight-module facility is loaded by a wire array. The azimuthal distribution of the current in the cylindrical section of the MITL is also considered.

  11. Fabrication of heterogeneous nanomaterial array by programmable heating and chemical supply within microfluidic platform towards multiplexed gas sensing application

    PubMed Central

    Yang, Daejong; Kang, Kyungnam; Kim, Donghwan; Li, Zhiyong; Park, Inkyu

    2015-01-01

    A facile top-down/bottom-up hybrid nanofabrication process based on programmable temperature control and parallel chemical supply within microfluidic platform has been developed for the all liquid-phase synthesis of heterogeneous nanomaterial arrays. The synthesized materials and locations can be controlled by local heating with integrated microheaters and guided liquid chemical flow within microfluidic platform. As proofs-of-concept, we have demonstrated the synthesis of two types of nanomaterial arrays: (i) parallel array of TiO2 nanotubes, CuO nanospikes and ZnO nanowires, and (ii) parallel array of ZnO nanowire/CuO nanospike hybrid nanostructures, CuO nanospikes and ZnO nanowires. The laminar flow with negligible ionic diffusion between different precursor solutions as well as localized heating was verified by numerical calculation and experimental result of nanomaterial array synthesis. The devices made of heterogeneous nanomaterial array were utilized as a multiplexed sensor for toxic gases such as NO2 and CO. This method would be very useful for the facile fabrication of functional nanodevices based on highly integrated arrays of heterogeneous nanomaterials. PMID:25634814

  12. Facility Instrumentation for SOFIA: Technical Specifications and Scientific Goals

    NASA Astrophysics Data System (ADS)

    Stacey, G. J.

    2000-05-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is NASA's next generation airborne observatory consisting of a 2.5 m telescope in a modified Boeing 747 SP. First light is expected in late 2002. Three "Facility Class" instruments were among the first generation of instruments selected to fly on SOFIA. These instruments, currently under development are (1) a 5 to 38 um imaging photometer based on twin As:Si and Sb:Sb BIB arrays (FORCAST), (2) a 40 to 300 um photometer based on three arrays of bolometers, and (3) a 17 to 210 um eschelle grating spectrometer based on an Sb:Sb BIB array and a Ge:Sb and stressed Ge:Ga array of photoconductors. I will discuss both the technical aspects of these facility instruments, and some of the exciting new science that is possible with these ground breaking instruments on an airborne 2.5 meter telescope. Science topics include circumstellar debris disks, star formation, the Galactic Center, and distant galaxies.

  13. CONTEMPT/LT-028 Browns Ferry studies of an anticipated transient without scram

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holcomb, E.E.

    1983-01-01

    The Browns Ferry Nuclear Plant containment response during the first 30 min of an anticipated transient without scram (ATWS) is the subject of this paper. Three cases, each initiated by a main steam isolation valve closure, are presented: the ATWS is mitigated by operator actions in the spirit of the General Electric Emergency Procedure Guidelines; the ATWS is managed by the plant automatic control systems; and the ATWS proceeds as in first case except that the drywell coolers are unavailable. Success of the standby liquid control system is assumed in the last two transients.

  14. Facile synthesis of hierarchical Co3O4@MnO2 core-shell arrays on Ni foam for asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Huang, Ming; Zhang, Yuxin; Li, Fei; Zhang, Lili; Wen, Zhiyu; Liu, Qing

    2014-04-01

    Hierarchical Co3O4@MnO2 core-shell arrays on Ni foam have been fabricated by a facile hydrothermal approach and further investigated as the electrode for high-performance supercapacitors. Owing to the high conductivity of the well-defined mesoporous Co3O4 nanowire arrays in combination with the large surface area provided by the ultrathin MnO2 nanosheets, the unique designed Co3O4@MnO2 core-shell arrays on Ni foam have exhibited a high specific capacitance (560 F g-1 at a current density of 0.2 A g-1), good rate capability, and excellent cycling stability (95% capacitance retention after 5000 cycles). An asymmetric supercapacitor with Co3O4@MnO2 core-shell nanostructure as the positive electrode and activated microwave exfoliated graphite oxide activated graphene (MEGO) as the negative electrode yielded an energy density of 17.7 Wh kg-1 and a maximum power density of 158 kW kg-1. The rational design of the unique core-shell array architectures demonstrated in this work provides a new and facile approach to fabricate high-performance electrode for supercapacitors.

  15. Hydrophilicity Reinforced Adhesion of Anodic Alumina Oxide Template Films to Conducting Substrates for Facile Fabrication of Highly Ordered Nanorod Arrays.

    PubMed

    Wang, Chuanju; Wang, Guiqiang; Yang, Rui; Sun, Xiangyu; Ma, Hui; Sun, Shuqing

    2017-01-17

    Arrays of ordered nanorods are of special interest in many fields. However, it remains challenging to obtain such arrays on conducting substrates in a facile manner. In this article, we report the fabrication of highly ordered and vertically standing nanorod arrays of both metals and semiconductors on Au films and indium tin oxide glass substrates without an additional layering. In this approach, following the simple hydrophilic treatment of an anodic aluminum oxide (AAO) membrane and conducting substrates, the AAO membrane was transferred onto the modified substrates with excellent adhesion. Subsequently, nanorod arrays of various materials were electrodeposited on the conducting substrates directly. This method avoids any expensive and tedious lithographic and ion milling process, which provides a simple yet robust route to the fabrication of arrays of 1D materials with high aspect ratio on conducting substrates, which shall pave the way for many practical applications in a range of fields.

  16. Preconditioned wire array Z-pinches driven by a double pulse current generator

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Lu, Yihan; Sun, Fengju; Li, Xingwen; Jiang, Xiaofeng; Wang, Zhiguo; Zhang, Daoyuan; Qiu, Aici; Lebedev, Sergey

    2018-07-01

    Suppression of the core-corona structure and wire ablation in wire array Z-pinches is investigated using a novel double pulse current generator ‘Qin-1’ facility. The ‘Qin-1’ facility allows coupling a ∼10 kA 20 ns prepulse generator with a ∼0.8 MA 160 ns main current generator. The tailored prepulse current preheats wires to a gaseous state and the time interval between the prepulse and the main current pulse allows formation of a more uniform mass distribution for the implosion. The implosion of a gasified two aluminum-wire array showed no ablation phase and allowed all array mass to participate in the implosion. The initial perturbations formed from the inhomogeneous ablation were suppressed, however, the magneto Rayleigh–Taylor (MRT) instability during the implosion was still significant and further researches on the generation and development of the MRT instabilities of this gasified wire array are needed.

  17. DSN Array Simulator

    NASA Technical Reports Server (NTRS)

    Tikidjian, Raffi; Mackey, Ryan

    2008-01-01

    The DSN Array Simulator (wherein 'DSN' signifies NASA's Deep Space Network) is an updated version of software previously denoted the DSN Receive Array Technology Assessment Simulation. This software (see figure) is used for computational modeling of a proposed DSN facility comprising user-defined arrays of antennas and transmitting and receiving equipment for microwave communication with spacecraft on interplanetary missions. The simulation includes variations in spacecraft tracked and communication demand changes for up to several decades of future operation. Such modeling is performed to estimate facility performance, evaluate requirements that govern facility design, and evaluate proposed improvements in hardware and/or software. The updated version of this software affords enhanced capability for characterizing facility performance against user-defined mission sets. The software includes a Monte Carlo simulation component that enables rapid generation of key mission-set metrics (e.g., numbers of links, data rates, and date volumes), and statistical distributions thereof as functions of time. The updated version also offers expanded capability for mixed-asset network modeling--for example, for running scenarios that involve user-definable mixtures of antennas having different diameters (in contradistinction to a fixed number of antennas having the same fixed diameter). The improved version also affords greater simulation fidelity, sufficient for validation by comparison with actual DSN operations and analytically predictable performance metrics.

  18. Rapid depressurization event analysis in BWR/6 using RELAP5 and contain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueftueoglu, A.K.; Feltus, M.A.

    1995-09-01

    Noncondensable gases may become dissolved in Boiling Water Reactor (BWR) water level instrumentation during normal operations. Any dissolved noncondensable gases inside these water columns may come out of solution during rapid depressurization events, and displace water from the reference leg piping resulting in a false high level. These water level errors may cause a delay or failure in actuation, or premature shutdown of the Emergency Core Cooling System. (ECCS). If a rapid depressurization causes an erroneously high water level, preventing automatic ECCS actuation, it becomes important to determine if there would be other adequate indications for operator response and othermore » signals for automatic actuation such as high drywell pressure. It is also important to determine the effect of the level signal on ECCS operation after it is being actuated. The objective of this study is to determine the detailed coupled containment/NSSS response during this rapid depressurization events in BWR/6. The selected scenarios involve: (a) inadvertent opening of all ADS valves, (b) design basis (DB) large break loss of coolant accident (LOCA), and (c) main steam line break (MSLB). The transient behaviors are evaluated in terms of: (a) vessel pressure and collapsed water level response, (b) specific transient boundary conditions, (e.g., scram, MSIV closure timing, feedwater flow, and break blowdown rates), (c) ECCS initiation timing, (d) impact of operator actions, (e) whether indications besides low-low water level were available. The results of the analysis had shown that there would be signals to actuate ECCS other than low reactor level, such as high drywell pressure, low vessel pressure, high suppression pool temperature, and that the plant operators would have significant indications to actuate ECCS.« less

  19. The infrared spectrograph during the SIRTF pre-definition phase

    NASA Technical Reports Server (NTRS)

    Houck, James R.

    1988-01-01

    A test facility was set up to evaluate back-illuminated impurity band detectors constructed for an infrared spectrograph to be used on the Space Infrared Telescope Facility (SIRTF). Equipment built to perform the tests on these arrays is described. Initial tests have been geared toward determining dark current and read noise for the array. Four prior progress reports are incorporated into this report. They describe the first efforts in the detector development and testing effort; testing details and a new spectrograph concept; a discussion of resolution issues raised by the new design; management activities; a review of computer software and testing facility hardware; and a review of the preamplifier constructed as well as a revised schematic of the detector evaluation facility.

  20. KSC-2012-6409

    NASA Image and Video Library

    2012-10-29

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, workers continue construction of the Antenna Test Bed Array for the Ka-Band Objects Observation and Monitoring, or Ka-BOOM, system. The construction site is near the former Vertical Processing Facility, which has been demolished. Workers are placing the pile foundations for the 40-foot-diameter dish antenna arrays and their associated utilities, and preparing the site for the operations command center facility. Photo credit: NASA/Ben Smegelski

  1. KSC-2012-6406

    NASA Image and Video Library

    2012-10-29

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, workers continue construction of the Antenna Test Bed Array for the Ka-Band Objects Observation and Monitoring, or Ka-BOOM, system. The construction site is near the former Vertical Processing Facility, which has been demolished. Workers are placing the pile foundations for the 40-foot-diameter dish antenna arrays and their associated utilities, and preparing the site for the operations command center facility. Photo credit: NASA/Ben Smegelski

  2. Overview of an Indoor Sonic Boom Simulator at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Klos, Jacob

    2012-01-01

    A facility has been constructed at NASA Langley Research Center to simulate the soundscape inside residential houses that are exposed to environmental noise from aircraft. This controllable indoor listening environment, the Interior Effects Room, enables systematic study of parameters that affect psychoacoustic response. The single-room facility, built using typical residential construction methods and materials, is surrounded on adjacent sides by two arrays of loudspeakers in close proximity to the exterior walls. The arrays, containing 52 subwoofers and 52 mid-range speakers, have a usable bandwidth of 3 Hz to 5 kHz and sufficient output to allow study of sonic boom noise. In addition to these exterior arrays, satellite speakers placed inside the room are used to augment the transmitted sound with rattle and other audible contact ]induced noise that can result from low frequency excitation of a residential house. The layout of the facility, operational characteristics, acoustic characteristics and equalization approaches are summarized.

  3. High energy X-ray pinhole imaging at the Z facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McPherson, L. Armon; Ampleford, David J.; Coverdale, Christine A.

    A new high photon energy (hv > 15 keV) time-integrated pinhole camera (TIPC) has become available at the Z facility for diagnostic applications. This camera employs five pinholes in a linear array for recording five images at once onto an image plate detector. Each pinhole may be independently filtered to yield five different spectral responses. The pinhole array is fabricated from a 1-cm thick tungsten block and is available with either straight pinholes or conical pinholes. Each pinhole within the array block is 250 μm in diameter. The five pinholes are splayed with respect to each other such that theymore » point to the same location in space, and hence present the same view of the target load at the Z facility. The fielding distance is 66 cm and the nominal image magnification is 0.374. Initial experimental results are shown to illustrate the performance of the camera.« less

  4. High energy X-ray pinhole imaging at the Z facility

    DOE PAGES

    McPherson, L. Armon; Ampleford, David J.; Coverdale, Christine A.; ...

    2016-06-06

    A new high photon energy (hv > 15 keV) time-integrated pinhole camera (TIPC) has become available at the Z facility for diagnostic applications. This camera employs five pinholes in a linear array for recording five images at once onto an image plate detector. Each pinhole may be independently filtered to yield five different spectral responses. The pinhole array is fabricated from a 1-cm thick tungsten block and is available with either straight pinholes or conical pinholes. Each pinhole within the array block is 250 μm in diameter. The five pinholes are splayed with respect to each other such that theymore » point to the same location in space, and hence present the same view of the target load at the Z facility. The fielding distance is 66 cm and the nominal image magnification is 0.374. Initial experimental results are shown to illustrate the performance of the camera.« less

  5. Establishment and assessment of code scaling capability

    NASA Astrophysics Data System (ADS)

    Lim, Jaehyok

    In this thesis, a method for using RELAP5/MOD3.3 (Patch03) code models is described to establish and assess the code scaling capability and to corroborate the scaling methodology that has been used in the design of the Purdue University Multi-Dimensional Integral Test Assembly for ESBWR applications (PUMA-E) facility. It was sponsored by the United States Nuclear Regulatory Commission (USNRC) under the program "PUMA ESBWR Tests". PUMA-E facility was built for the USNRC to obtain data on the performance of the passive safety systems of the General Electric (GE) Nuclear Energy Economic Simplified Boiling Water Reactor (ESBWR). Similarities between the prototype plant and the scaled-down test facility were investigated for a Gravity-Driven Cooling System (GDCS) Drain Line Break (GDLB). This thesis presents the results of the GDLB test, i.e., the GDLB test with one Isolation Condenser System (ICS) unit disabled. The test is a hypothetical multi-failure small break loss of coolant (SB LOCA) accident scenario in the ESBWR. The test results indicated that the blow-down phase, Automatic Depressurization System (ADS) actuation, and GDCS injection processes occurred as expected. The GDCS as an emergency core cooling system provided adequate supply of water to keep the Reactor Pressure Vessel (RPV) coolant level well above the Top of Active Fuel (TAF) during the entire GDLB transient. The long-term cooling phase, which is governed by the Passive Containment Cooling System (PCCS) condensation, kept the reactor containment system that is composed of Drywell (DW) and Wetwell (WW) below the design pressure of 414 kPa (60 psia). In addition, the ICS continued participating in heat removal during the long-term cooling phase. A general Code Scaling, Applicability, and Uncertainty (CSAU) evaluation approach was discussed in detail relative to safety analyses of Light Water Reactor (LWR). The major components of the CSAU methodology that were highlighted particularly focused on the scaling issues of experiments and models and their applicability to the nuclear power plant transient and accidents. The major thermal-hydraulic phenomena to be analyzed were identified and the predictive models adopted in RELAP5/MOD3.3 (Patch03) code were briefly reviewed.

  6. Panorama, section 2 of 3, note the Operations Building (Facility ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Panorama, section 2 of 3, note the Operations Building (Facility 294) in the center of facility, view facing west - U.S. Naval Base, Pearl Harbor, Naval Radio Station, AF/FRD-10 Circularly Disposed Antenna Array, Wahiawa, Honolulu County, HI

  7. Double emulsions from a capillary array injection microfluidic device.

    PubMed

    Shang, Luoran; Cheng, Yao; Wang, Jie; Ding, Haibo; Rong, Fei; Zhao, Yuanjin; Gu, Zhongze

    2014-09-21

    A facile microfluidic device was developed by inserting an annular capillary array into a collection channel for single-step emulsification of double emulsions. By inserting multiple inner-phase solutions into the capillary array, multicomponent double emulsions or microcapsules with inner droplets of different content could also be obtained from the device.

  8. KSC-2012-6403

    NASA Image and Video Library

    2012-09-20

    CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, groundbreaking will begin for the construction of the Antenna Test Bed Array for the Ka-Band Objects Observation and Monitoring, or Ka-BOOM, system. The construction site is near the former Vertical Processing Facility, which has been demolished. Workers will begin construction on the pile foundations for the 40-foot-diameter dish antenna arrays and their associated utilities, and prepare the site for the operations command center facility. Photo credit: NASA/Charisse Nahser

  9. KSC-2012-6411

    NASA Image and Video Library

    2012-10-29

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, concrete has been poured at the site of the Antenna Test Bed Array for the Ka-Band Objects Observation and Monitoring, Ka-BOOM system. The construction site is near the former Vertical Processing Facility, which has been demolished. Workers are placing the pile foundations for the 40-foot-diameter dish antenna arrays and their associated utilities, and preparing the site for the operations command center facility. Photo credit: NASA/Ben Smegelski

  10. KSC-2012-6408

    NASA Image and Video Library

    2012-10-29

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, a worker continues construction of the Antenna Test Bed Array for the Ka-Band Objects Observation and Monitoring, or Ka-BOOM, system. The construction site is near the former Vertical Processing Facility, which has been demolished. Workers are placing the pile foundations for the 40-foot-diameter dish antenna arrays and their associated utilities, and preparing the site for the operations command center facility. Photo credit: NASA/Ben Smegelski

  11. Synthesis of porous NiO/CeO2 hybrid nanoflake arrays as a platform for electrochemical biosensing

    NASA Astrophysics Data System (ADS)

    Cui, Jiewu; Luo, Jinbao; Peng, Bangguo; Zhang, Xinyi; Zhang, Yong; Wang, Yan; Qin, Yongqiang; Zheng, Hongmei; Shu, Xia; Wu, Yucheng

    2015-12-01

    Porous NiO/CeO2 hybrid nanoflake arrays fabricated by a facile hydrothermal method were employed as substrates for electrochemical biosensors. The resulting NiO/CeO2 hybrid nanoflake arrays with a large specific surface area and good biocompatibility presented an excellent platform for electrochemical biosensing.Porous NiO/CeO2 hybrid nanoflake arrays fabricated by a facile hydrothermal method were employed as substrates for electrochemical biosensors. The resulting NiO/CeO2 hybrid nanoflake arrays with a large specific surface area and good biocompatibility presented an excellent platform for electrochemical biosensing. Electronic supplementary information (ESI) available: Optical photographs of the as-prepared samples, SEM, TEM, EDS, XRD and BET data of the samples are presented, I-t curves of glucose biosensors based on NiO and NiO/CeO2 NFAs, EIS results of different electrodes. See DOI: 10.1039/c5nr05924k

  12. Hydrogen from renewable energy - Photovoltaic/water electrolysis as an exemplary approach

    NASA Technical Reports Server (NTRS)

    Sprafka, R. J.; Tison, R. R.; Escher, W. J. D.

    1984-01-01

    A feasibility study has been conducted for a NASA Kennedy Space Center liquid hydrogen/liquid oxygen production facility using solar cell arrays as the power source for electrolysis. The 100 MW output of the facility would be split into 67.6 and 32 MW portions for electrolysis and liquefaction, respectively. The solar cell array would cover 1.65 sq miles, and would be made up of 249 modular 400-kW arrays. Hydrogen and oxygen are generated at either dispersed or centralized water electrolyzers. The yearly hydrogen output is projected to be 5.76 million lbs, with 8 times that much oxygen; these fuel volumes can support approximately 18 Space Shuttle launches/year.

  13. Observation of >400-eV precursor plasmas from low-wire-number copper arrays at the 1-MA zebra facility.

    PubMed

    Coverdale, C A; Safronova, A S; Kantsyrev, V L; Ouart, N D; Esaulov, A A; Deeney, C; Williamson, K M; Osborne, G C; Shrestha, I; Ampleford, D J; Jones, B

    2009-04-17

    Experiments with cylindrical copper wire arrays at the 1-MA Zebra facility show that high temperatures exist in the precursor plasmas formed when ablated wire array material accretes on the axis prior to the stagnation of a z pinch. In these experiments, the precursor radiated approximately 20% of the >1000 eV x-ray output, and time-resolved spectra show substantial emission from Cu L-shell lines. Modeling of the spectra shows an increase in temperature as the precursor forms, up to approximately 450 eV, after which the temperature decreases to approximately 220-320 eV until the main implosion.

  14. A Facile Method for Loading CeO2 Nanoparticles on Anodic TiO2 Nanotube Arrays.

    PubMed

    Liao, Yulong; Yuan, Botao; Zhang, Dainan; Wang, Xiaoyi; Li, Yuanxun; Wen, Qiye; Zhang, Huaiwu; Zhong, Zhiyong

    2018-04-03

    In this paper, a facile method was proposed to load CeO 2 nanoparticles (NPs) on anodic TiO 2 nanotube (NT) arrays, which leads to a formation of CeO 2 /TiO 2 heterojunctions. Highly ordered anatase phase TiO 2 NT arrays were fabricated by using anodic oxidation method, then these individual TiO 2 NTs were used as tiny "nano-containers" to load a small amount of Ce(NO 3 ) 3 solutions. The loaded anodic TiO 2 NTs were baked and heated to a high temperature of 450 °C, under which the Ce(NO 3 ) 3 would be thermally decomposed inside those nano-containers. After the thermal decomposition of Ce(NO 3 ) 3 , cubic crystal CeO 2 NPs were obtained and successfully loaded into the anodic TiO 2 NT arrays. The prepared CeO 2 /TiO 2 heterojunction structures were characterized by a variety of analytical technologies, including XRD, SEM, and Raman spectra. This study provides a facile approach to prepare CeO 2 /TiO 2 films, which could be very useful for environmental and energy-related areas.

  15. A colorimetric sensor array for identification of toxic gases below permissible exposure limits†

    PubMed Central

    Feng, Liang; Musto, Christopher J.; Kemling, Jonathan W.; Lim, Sung H.; Suslick, Kenneth S.

    2010-01-01

    A colorimetric sensor array has been developed for the rapid and sensitive detection of 20 toxic industrial chemicals (TICs) at their PELs (permissible exposure limits). The color changes in an array of chemically responsive nanoporous pigments provide facile identification of the TICs with an error rate below 0.7%. PMID:20221484

  16. KSC-2012-6407

    NASA Image and Video Library

    2012-10-29

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, workers pour concrete at the base of the site of the Antenna Test Bed Array for the Ka-Band Objects Observation and Monitoring, or Ka-BOOM system. The construction site is near the former Vertical Processing Facility, which has been demolished. Workers are placing the pile foundations for the 40-foot-diameter dish antenna arrays and their associated utilities, and preparing the site for the operations command center facility. Photo credit: NASA/Ben Smegelski

  17. KSC-2012-6410

    NASA Image and Video Library

    2012-10-29

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, workers pour and spread concrete at the base of the site of the Antenna Test Bed Array for the Ka-Band Objects Observation and Monitoring, Ka-BOOM system. The construction site is near the former Vertical Processing Facility, which has been demolished. Workers are placing the pile foundations for the 40-foot-diameter dish antenna arrays and their associated utilities, and preparing the site for the operations command center facility. Photo credit: NASA/Ben Smegelski

  18. Big Data Challenges for Large Radio Arrays

    NASA Technical Reports Server (NTRS)

    Jones, Dayton L.; Wagstaff, Kiri; Thompson, David; D'Addario, Larry; Navarro, Robert; Mattmann, Chris; Majid, Walid; Lazio, Joseph; Preston, Robert; Rebbapragada, Umaa

    2012-01-01

    Future large radio astronomy arrays, particularly the Square Kilometre Array (SKA), will be able to generate data at rates far higher than can be analyzed or stored affordably with current practices. This is, by definition, a "big data" problem, and requires an end-to-end solution if future radio arrays are to reach their full scientific potential. Similar data processing, transport, storage, and management challenges face next-generation facilities in many other fields.

  19. Facile synthesis of ultrathin manganese dioxide nanosheets arrays on nickel foam as advanced binder-free supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Huang, Ming; Zhao, Xiao Li; Li, Fei; Zhang, Li Li; Zhang, Yu Xin

    2015-03-01

    Ultrathin MnO2 nanosheets arrays on Ni foam have been fabricated by a facile hydrothermal approach and further investigated as the binder-free electrode for high-performance supercapacitors. This unique well-designed binder-free electrode exhibits a high specific capacitance (595.2 F g-1 at a current density of 0.5 A g-1), good rate capability (64.1% retention), and excellent cycling stability (89% capacitance retention after 3000 cycles). Moreover, an asymmetric supercapacitor is constructed using the as-prepared MnO2 nanosheets arrays as the positive electrode and activated microwave exfoliated graphite oxide (MEGO) as the negative electrode. The optimized asymmetric supercapacitor displays excellent electrochemical performance with an energy density of 25.8 Wh kg-1 and a maximum power density of 223.2 kW kg-1. These impressive performances suggest that the MnO2 nanosheet array is a promising electrode material for supercapacitors.

  20. Study of soft X-ray emission during wire array implosion under plasma focus conditions at the PF-3 facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dan’ko, S. A.; Mitrofanov, K. N., E-mail: mitrofan@triniti.ru; Krauz, V. I.

    2015-11-15

    Results of measurements of soft X-ray emission with photon energies of <1 keV under conditions of a plasma focus (PF) experiment are presented. The experiments were carried out at the world’s largest PF device—the PF-3 Filippov-type facility (I ⩽ 3 MA, T/4 ≈ 15–20 µs, W{sub 0} ⩽ 3 MJ). X-ray emission from both a discharge in pure neon and with a tungsten wire array placed on the axis of the discharge chamber was detected. The wire array imploded under the action of the electric current intercepted from the plasma current sheath of the PF discharge in neon. The measuredmore » soft X-ray powers from a conventional PF discharge in gas and a PF discharge in the presence of a wire array were compared for the first time.« less

  1. High energy X-ray pinhole imaging at the Z facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McPherson, L. Armon; Ampleford, David J., E-mail: damplef@sandia.gov; Coverdale, Christine A.

    A new high photon energy (hν > 15 keV) time-integrated pinhole camera (TIPC) has been developed as a diagnostic instrument at the Z facility. This camera employs five pinholes in a linear array for recording five images at once onto an image plate detector. Each pinhole may be independently filtered to yield five different spectral responses. The pinhole array is fabricated from a 1-cm thick tungsten block and is available with either straight pinholes or conical pinholes. Each pinhole within the array block is 250 μm in diameter. The five pinholes are splayed with respect to each other such thatmore » they point to the same location in space, and hence present the same view of the radiation source at the Z facility. The fielding distance from the radiation source is 66 cm and the nominal image magnification is 0.374. Initial experimental results from TIPC are shown to illustrate the performance of the camera.« less

  2. MicroArray Facility: a laboratory information management system with extended support for Nylon based technologies.

    PubMed

    Honoré, Paul; Granjeaud, Samuel; Tagett, Rebecca; Deraco, Stéphane; Beaudoing, Emmanuel; Rougemont, Jacques; Debono, Stéphane; Hingamp, Pascal

    2006-09-20

    High throughput gene expression profiling (GEP) is becoming a routine technique in life science laboratories. With experimental designs that repeatedly span thousands of genes and hundreds of samples, relying on a dedicated database infrastructure is no longer an option.GEP technology is a fast moving target, with new approaches constantly broadening the field diversity. This technology heterogeneity, compounded by the informatics complexity of GEP databases, means that software developments have so far focused on mainstream techniques, leaving less typical yet established techniques such as Nylon microarrays at best partially supported. MAF (MicroArray Facility) is the laboratory database system we have developed for managing the design, production and hybridization of spotted microarrays. Although it can support the widely used glass microarrays and oligo-chips, MAF was designed with the specific idiosyncrasies of Nylon based microarrays in mind. Notably single channel radioactive probes, microarray stripping and reuse, vector control hybridizations and spike-in controls are all natively supported by the software suite. MicroArray Facility is MIAME supportive and dynamically provides feedback on missing annotations to help users estimate effective MIAME compliance. Genomic data such as clone identifiers and gene symbols are also directly annotated by MAF software using standard public resources. The MAGE-ML data format is implemented for full data export. Journalized database operations (audit tracking), data anonymization, material traceability and user/project level confidentiality policies are also managed by MAF. MicroArray Facility is a complete data management system for microarray producers and end-users. Particular care has been devoted to adequately model Nylon based microarrays. The MAF system, developed and implemented in both private and academic environments, has proved a robust solution for shared facilities and industry service providers alike.

  3. MicroArray Facility: a laboratory information management system with extended support for Nylon based technologies

    PubMed Central

    Honoré, Paul; Granjeaud, Samuel; Tagett, Rebecca; Deraco, Stéphane; Beaudoing, Emmanuel; Rougemont, Jacques; Debono, Stéphane; Hingamp, Pascal

    2006-01-01

    Background High throughput gene expression profiling (GEP) is becoming a routine technique in life science laboratories. With experimental designs that repeatedly span thousands of genes and hundreds of samples, relying on a dedicated database infrastructure is no longer an option. GEP technology is a fast moving target, with new approaches constantly broadening the field diversity. This technology heterogeneity, compounded by the informatics complexity of GEP databases, means that software developments have so far focused on mainstream techniques, leaving less typical yet established techniques such as Nylon microarrays at best partially supported. Results MAF (MicroArray Facility) is the laboratory database system we have developed for managing the design, production and hybridization of spotted microarrays. Although it can support the widely used glass microarrays and oligo-chips, MAF was designed with the specific idiosyncrasies of Nylon based microarrays in mind. Notably single channel radioactive probes, microarray stripping and reuse, vector control hybridizations and spike-in controls are all natively supported by the software suite. MicroArray Facility is MIAME supportive and dynamically provides feedback on missing annotations to help users estimate effective MIAME compliance. Genomic data such as clone identifiers and gene symbols are also directly annotated by MAF software using standard public resources. The MAGE-ML data format is implemented for full data export. Journalized database operations (audit tracking), data anonymization, material traceability and user/project level confidentiality policies are also managed by MAF. Conclusion MicroArray Facility is a complete data management system for microarray producers and end-users. Particular care has been devoted to adequately model Nylon based microarrays. The MAF system, developed and implemented in both private and academic environments, has proved a robust solution for shared facilities and industry service providers alike. PMID:16987406

  4. Fabrication of Aligned Polyaniline Nanofiber Array via a Facile Wet Chemical Process.

    PubMed

    Sun, Qunhui; Bi, Wu; Fuller, Thomas F; Ding, Yong; Deng, Yulin

    2009-06-17

    In this work, we demonstrate for the first time a template free approach to synthesize aligned polyaniline nanofiber (PN) array on a passivated gold (Au) substrate via a facile wet chemical process. The Au surface was first modified using 4-aminothiophenol (4-ATP) to afford the surface functionality, followed subsequently by an oxidation polymerization of aniline (AN) monomer in an aqueous medium using ammonium persulfate as the oxidant and tartaric acid as the doping agent. The results show that a vertically aligned PANI nanofiber array with individual fiber diameters of ca. 100 nm, heights of ca. 600 nm and a packing density of ca. 40 pieces·µm(-2) , was synthesized. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Proceedings of the Second Infrared Detector Technology Workshop

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R. (Compiler)

    1986-01-01

    The workshop focused on infrared detector, detector array, and cryogenic electronic technologies relevant to low-background space astronomy. Papers are organized into the following categories: discrete infrared detectors and readout electronics; advanced bolometers; intrinsic integrated infrared arrays; and extrinsic integrated infrared arrays. Status reports on the Space Infrared Telescope Facility (SIRTF) and Infrared Space Observatory (ISO) programs are also included.

  6. Facile green in situ synthesis of Mg/CuO core/shell nanoenergetic arrays with a superior heat-release property and long-term storage stability.

    PubMed

    Zhou, Xiang; Xu, Daguo; Zhang, Qiaobao; Lu, Jian; Zhang, Kaili

    2013-08-14

    We report a facile green method for the in situ synthesis of Mg/CuO core/shell nanoenergetic arrays on silicon, with Mg nanorods as the core and CuO as the shell. Mg nanorods are first prepared by glancing angle deposition. CuO is then deposited around the Mg nanorods by reactive magnetron sputtering to realize the core/shell structure. Various characterization techniques are used to investigate the prepared Mg/CuO core/shell nanoenergetic arrays, including scanning electron microscopy, transmission electron microscopy, X-ray energy dispersive spectroscopy, X-ray diffraction, and thermal analysis. Uniform mixing and intimate contact between the Mg nanorods and CuO are confirmed from both visual inspection of the morphological images and analyses of the heat-release curves. The nanoenergetic arrays exhibit a low-onset reaction temperature (∼300 °C) and high heat of reaction (∼3400 J/g). Most importantly, the nanoenergetic arrays possess long-term storage stability resulting from the stable CuO shell. This study provides a potential general strategy for the synthesis of various Mg nanorod-based stable nanoenergetic arrays.

  7. EarthScope's Transportable Array: Advancing Eastward

    NASA Astrophysics Data System (ADS)

    Busby, R. W.; Vernon, F.; Newman, R. L.; Astiz, L.

    2006-12-01

    EarthScope's Transportable Array has installed more than 200 high-quality broadband seismic stations over the last 3 years in the western US. These stations have a nominal spacing of 70 km and are part of an eventual 400 station array that migrates from west to east at a rate of 18 stations per month. The full 400 stations will be operating by September 2007. Stations have a residence time of about 2 years before being relocated to the next site. Throughout the continental US, 1623 sites are expected to be occupied. Standardized procedures and protocols have been developed to streamline all aspects of Transportable Array operations, from siting to site construction and installation to equipment purchasing and data archiving. Earned Value Management tools keep facility installation and operation on budget and schedule. A diverse, yet efficient, infrastructure installs and maintains the Transportable Array. Sensors, dataloggers, and other equipment are received and tested by the IRIS PASSCAL Instrument Center and shipped to regional storage facilities. To engage future geoscientists in the project, students are trained to conduct field and analytical reconnaissance to identify suitable seismic station sites. Contract personnel are used for site verification; vault construction; and installation of sensors, power, and communications systems. IRIS staff manages permitting, landowner communications, and station operations and maintenance. Seismic signal quality and metadata are quality-checked at the Array Network Facility at the University of California-San Diego and simultaneously archived at the IRIS Data Management Center in Seattle. Station equipment has been specifically designed for low power, remote, unattended operation and uses diverse two-way IP communications for real-time transmission. Digital cellular services, VSAT satellite, and commercial DSL, cable or wireless transport services are employed. Automatic monitoring of status, signal quality and earthquake event detection as well as operational alarms for low voltage and water intrusion are performed by a robust data acquisition package. This software is coupled with a host of network management tools and display managers operated by the Array Network Facility to allow managers, field personnel, and network operations staff to visualize array performance in real-time and to access historical information for diagnostics. Current data recording proficiency is 99.1%, with real-time telemetry averaging about 91%. EarthScope, IRIS and the USGS are working with regional seismic network operators, both existing and newly formed, to transition some of the Transportable Array stations into regional network assets. Each region has unique circumstances and interested parties are invited to exchange ideas on how this might be accomplished in their area. Contact busby@iris.edu for more information.

  8. Development of a Microphone Phased Array Capability for the Langley 14- by 22-Foot Subsonic Tunnel

    NASA Technical Reports Server (NTRS)

    Humphreys, William M.; Brooks, Thomas F.; Bahr, Christopher J.; Spalt, Taylor B.; Bartram, Scott M.; Culliton, William G.; Becker, Lawrence E.

    2014-01-01

    A new aeroacoustic measurement capability has been developed for use in open-jet testing in the NASA Langley 14- by 22-Foot Subsonic Tunnel (14x22 tunnel). A suite of instruments has been developed to characterize noise source strengths, locations, and directivity for both semi-span and full-span test articles in the facility. The primary instrument of the suite is a fully traversable microphone phased array for identification of noise source locations and strengths on models. The array can be mounted in the ceiling or on either side of the facility test section to accommodate various test article configurations. Complementing the phased array is an ensemble of streamwise traversing microphones that can be placed around the test section at defined locations to conduct noise source directivity studies along both flyover and sideline axes. A customized data acquisition system has been developed for the instrumentation suite that allows for command and control of all aspects of the array and microphone hardware, and is coupled with a comprehensive data reduction system to generate information in near real time. This information includes such items as time histories and spectral data for individual microphones and groups of microphones, contour presentations of noise source locations and strengths, and hemispherical directivity data. The data acquisition system integrates with the 14x22 tunnel data system to allow real time capture of facility parameters during acquisition of microphone data. The design of the phased array system has been vetted via a theoretical performance analysis based on conventional monopole beamforming and DAMAS deconvolution. The performance analysis provides the ability to compute figures of merit for the array as well as characterize factors such as beamwidths, sidelobe levels, and source discrimination for the types of noise sources anticipated in the 14x22 tunnel. The full paper will summarize in detail the design of the instrumentation suite, the construction of the hardware system, and the results of the performance analysis. Although the instrumentation suite is designed to characterize noise for a variety of test articles in the 14x22 tunnel, this paper will concentrate on description of the instruments for two specific test campaigns in the facility, namely a full-span NASA Hybrid Wing Body (HWB) model entry and a semi-span Gulfstream aircraft model entry, tested in the facility in the winter of 2012 and spring of 2013, respectively.

  9. Preliminary Concept of Operations for the Deep Space Array-Based Network

    NASA Astrophysics Data System (ADS)

    Bagri, D. S.; Statman, J. I.

    2004-05-01

    The Deep Space Array-Based Network (DSAN) will be an array-based system, part of a greater than 1000 times increase in the downlink/telemetry capability of the Deep Space Network. The key function of the DSAN is provision of cost-effective, robust telemetry, tracking, and command services to the space missions of NASA and its international partners. This article presents an expanded approach to the use of an array-based system. Instead of using the array as an element in the existing Deep Space Network (DSN), relying to a large extent on the DSN infrastructure, we explore a broader departure from the current DSN, using fewer elements of the existing DSN, and establishing a more modern concept of operations. For example, the DSAN will have a single 24 x 7 monitor and control (M&C) facility, while the DSN has four 24 x 7 M&C facilities. The article gives the architecture of the DSAN and its operations philosophy. It also briefly describes the customer's view of operations, operations management, logistics, anomaly analysis, and reporting.

  10. Incorporation of a PbSe Array Based Spectrograph into EPICS using LabView at the JLab FEL Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. Hardy; S.V. Benson; Michelle D. Shinn

    2005-08-21

    A real-time spectrograph with a 1Hz update rate was designed and installed at the JLab FEL facility using a Cal Sensors PbSe array and a Roper Scientific SpectraPro 300 monochrometer. This paper describes the implementation of EPICS channel access on a remote PC running LabView with modification of vendor supplied LabView VI's to allow display of FEL light spectra in real-time on a remote workstation. This allows PC based diagnostics to be used in EPICS.

  11. Design philosophy of the Jet Propulsion Laboratory infrared detector test facility

    NASA Technical Reports Server (NTRS)

    Burns, R.; Blessinger, M. A.

    1983-01-01

    To support the development of advanced infrared remote sensing instrumentation using line and area arrays, a test facility has been developed to characterize the detectors. The necessary performance characteristics of the facility were defined by considering current and projected requirements for detector testing. The completed facility provides the desired level of detector testing capability as well as providing ease of human interaction.

  12. 47 CFR 15.615 - General administrative requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-2190.5 kHz. Within the exclusion zone for the Very Large Array radio astronomy observatory, Access BPL... facilities located at the coordinates specified for radio astronomy facilities in 47 CFR 2.106, Note U.S. 311...

  13. 47 CFR 15.615 - General administrative requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-2190.5 kHz. Within the exclusion zone for the Very Large Array radio astronomy observatory, Access BPL... facilities located at the coordinates specified for radio astronomy facilities in 47 CFR 2.106, Note U.S. 311...

  14. 47 CFR 15.615 - General administrative requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-2190.5 kHz. Within the exclusion zone for the Very Large Array radio astronomy observatory, Access BPL... facilities located at the coordinates specified for radio astronomy facilities in 47 CFR 2.106, Note U.S. 311...

  15. 47 CFR 15.615 - General administrative requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-2190.5 kHz. Within the exclusion zone for the Very Large Array radio astronomy observatory, Access BPL... facilities located at the coordinates specified for radio astronomy facilities in 47 CFR 2.106, Note U.S. 311...

  16. 47 CFR 15.615 - General administrative requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-2190.5 kHz. Within the exclusion zone for the Very Large Array radio astronomy observatory, Access BPL... facilities located at the coordinates specified for radio astronomy facilities in 47 CFR 2.106, Note U.S. 311...

  17. NASA Plum Brook's B-2 Test Facility: Thermal Vacuum and Propellant Test Facility

    NASA Technical Reports Server (NTRS)

    Kudlac, Maureen T.; Weaver, Harold F.; Cmar, Mark D.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) Plum Brook Station (PBS) Spacecraft Propulsion Research Facility, commonly referred to as B-2, is NASA's third largest thermal vacuum facility. It is the largest designed to store and transfer large quantities of liquid hydrogen and liquid oxygen, and is perfectly suited to support developmental testing of upper stage chemical propulsion systems as well as fully integrated stages. The facility is also capable of providing thermal-vacuum simulation services to support testing of large lightweight structures, Cryogenic Fluid Management (CFM) systems, electric propulsion test programs, and other In-Space propulsion programs. A recently completed integrated system test demonstrated the refurbished thermal vacuum capabilities of the facility. The test used the modernized data acquisition and control system to monitor the facility. The heat sink provided a uniform temperature environment of approximately 77 K. The modernized infrared lamp array produced a nominal heat flux of 1.4 kW/sq m. With the lamp array and heat sink operating simultaneously, the thermal systems produced a heat flux pattern simulating radiation to space on one surface and solar exposure on the other surface.

  18. Experimental study of surface insulated-standard hybrid tungsten planar wire array Z-pinches at "QiangGuang-I" facility

    NASA Astrophysics Data System (ADS)

    Sheng, Liang; Peng, Bodong; Li, Yang; Yuan, Yuan; Li, Mo; Zhang, Mei; Zhao, Chen; Zhao, Jizhen; Wang, Liangping

    2016-01-01

    The experimental results of the insulated-standard hybrid wire array Z pinches carried out on "QiangGuang-I" facility at Northwest Institute of Nuclear Technology were presented and discussed. The surface insulating can impose a significant influence on the dynamics and radiation characteristics of the hybrid wire array Z pinches, especially on the early stage (t/timp < 0.6). The expansion of insulated wires at the ablation stage is suppressed, while the streams stripped from the insulated wires move faster than that from the standard wires. The foot radiation of X-ray is enhanced by increment of the number of insulated wires, 19.6 GW, 33.6 GW, and 68.6 GW for shots 14037S, 14028H, and 14039I, respectively. The surface insulation also introduces nonhomogeneity along the single wire—the streams move much faster near the electrodes. The colliding boundary of the hybrid wire array Z pinches is bias to the insulated side approximately 0.6 mm.

  19. The AuScope geodetic VLBI array

    NASA Astrophysics Data System (ADS)

    Lovell, J. E. J.; McCallum, J. N.; Reid, P. B.; McCulloch, P. M.; Baynes, B. E.; Dickey, J. M.; Shabala, S. S.; Watson, C. S.; Titov, O.; Ruddick, R.; Twilley, R.; Reynolds, C.; Tingay, S. J.; Shield, P.; Adada, R.; Ellingsen, S. P.; Morgan, J. S.; Bignall, H. E.

    2013-06-01

    The AuScope geodetic Very Long Baseline Interferometry array consists of three new 12-m radio telescopes and a correlation facility in Australia. The telescopes at Hobart (Tasmania), Katherine (Northern Territory) and Yarragadee (Western Australia) are co-located with other space geodetic techniques including Global Navigation Satellite Systems (GNSS) and gravity infrastructure, and in the case of Yarragadee, satellite laser ranging (SLR) and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) facilities. The correlation facility is based in Perth (Western Australia). This new facility will make significant contributions to improving the densification of the International Celestial Reference Frame in the Southern Hemisphere, and subsequently enhance the International Terrestrial Reference Frame through the ability to detect and mitigate systematic error. This, combined with the simultaneous densification of the GNSS network across Australia, will enable the improved measurement of intraplate deformation across the Australian tectonic plate. In this paper, we present a description of this new infrastructure and present some initial results, including telescope performance measurements and positions of the telescopes in the International Terrestrial Reference Frame. We show that this array is already capable of achieving centimetre precision over typical long-baselines and that network and reference source systematic effects must be further improved to reach the ambitious goals of VLBI2010.

  20. 46. CAPE COD AIR STATION PAVE PAWS FACILITY BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. CAPE COD AIR STATION PAVE PAWS FACILITY - BUILDING ELEVATION VIEW WITH ALL METAL SIDING INSTALLED AND WITH EMITTER/ANTENNA ARRAY SYSTEM NEARING OCMPLETION ON "B" FACE (RIGHT). VIEW ALSO SHOWS TRAVELING "CLEANING" SYSTEM ON "B" FACE - NOW REMOVED. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  1. A GIS analysis of the relationship between sinkholes, dry-well complaints and groundwater pumping for frost-freeze protection of winter strawberry production in Florida.

    PubMed

    Aurit, Mark D; Peterson, Robert O; Blanford, Justine I

    2013-01-01

    Florida is riddled with sinkholes due to its karst topography. Sometimes these sinkholes can cause extensive damage to infrastructure and homes. It has been suggested that agricultural practices, such as sprinkler irrigation methods used to protect crops, can increase the development of sinkholes, particularly when temperatures drop below freezing, causing groundwater levels to drop quickly during groundwater pumping. In the strawberry growing region, Dover/Plant City, Florida, the effects have caused water shortages resulting in dry-wells and ground subsidence through the development of sinkholes that can be costly to maintain and repair. In this study, we look at how frost-freeze events have affected West Central Florida over the past 25 years with detailed comparisons made between two cold-years (with severe frost-freeze events) and a warm year (no frost-freeze events). We analyzed the spatial and temporal correlation between strawberry farming freeze protection practices and the development of sinkholes/dry well complaints, and assessed the economic impact of such events from a water management perspective by evaluating the cost of repairing and drilling new wells and how these compared with using alternative crop-protection methods. We found that the spatial distribution of sinkholes was non-random during both frost-freeze events. A strong correlation between sinkhole occurrence and water extraction and minimum temperatures was found. Furthermore as temperatures fall below 41°F and water levels decrease by more than 20 ft, the number of sinkholes increase greatly (N >10). At this time alternative protection methods such as freeze-cloth are cost prohibitive in comparison to repairing dry wells. In conclusion, the findings from this study are applicable in other agricultural areas and can be used to develop comprehensive water management plans in areas where the abstraction of large quantities of water occur.

  2. IRIS Arrays: Observing Wavefields at Multiple Scales and Frequencies

    NASA Astrophysics Data System (ADS)

    Sumy, D. F.; Woodward, R.; Frassetto, A.

    2014-12-01

    The Incorporated Research Institutions for Seismology (IRIS) provides instruments for creating and operating seismic arrays at a wide range of scales. As an example, for over thirty years the IRIS PASSCAL program has provided instruments to individual Principal Investigators to deploy arrays of all shapes and sizes on every continent. These arrays have ranged from just a few sensors to hundreds or even thousands of sensors, covering areas with dimensions of meters to thousands of kilometers. IRIS also operates arrays directly, such as the USArray Transportable Array (TA) as part of the EarthScope program. Since 2004, the TA has rolled across North America, at any given time spanning a swath of approximately 800 km by 2,500 km, and thus far sampling 2% of the Earth's surface. This achievement includes all of the lower-48 U.S., southernmost Canada, and now parts of Alaska. IRIS has also facilitated specialized arrays in polar environments and on the seafloor. In all cases, the data from these arrays are freely available to the scientific community. As the community of scientists who use IRIS facilities and data look to the future they have identified a clear need for new array capabilities. In particular, as part of its Wavefields Initiative, IRIS is exploring new technologies that can enable large, dense array deployments to record unaliased wavefields at a wide range of frequencies. Large-scale arrays might utilize multiple sensor technologies to best achieve observing objectives and optimize equipment and logistical costs. Improvements in packaging and power systems can provide equipment with reduced size, weight, and power that will reduce logistical constraints for large experiments, and can make a critical difference for deployments in harsh environments or other situations where rapid deployment is required. We will review the range of existing IRIS array capabilities with an overview of previous and current deployments and examples of data and results. We will review existing IRIS projects that explore new array capabilities and highlight future directions for IRIS instrumentation facilities.

  3. The UCD/FLWO extensive air shower array at Mt. Hopkins Arizona

    NASA Astrophysics Data System (ADS)

    Gillanders, G. H.; Fegan, D. J.; McKeown, P. K.; Weekes, T. C.

    The design and operation of an extensive air shower (EAS) array being installed around the 10-m optical Cerenkov reflector at F.L. Whipple Observatory on Mt. Hopkins for high-energy gamma-ray astronomy are described. The advantages of an EAS array colocated with a Cerenkov facility at a mountain location are reviewed; the arrangement of the 13 1-sq m scintillation detectors in the array is indicated; the signal-processing and data-acquisition procedures are explained; and preliminary calibration data indicating an effective energy threshold of 60 TeV are presented.

  4. Facile fabrication of highly ordered poly(vinylidene fluoride-trifluoroethylene) nanodot arrays for organic ferroelectric memory

    NASA Astrophysics Data System (ADS)

    Fang, Huajing; Yan, Qingfeng; Geng, Chong; Chan, Ngai Yui; Au, Kit; Yao, Jianjun; Ng, Sheung Mei; Leung, Chi Wah; Li, Qiang; Guo, Dong; Wa Chan, Helen Lai; Dai, Jiyan

    2016-01-01

    Nano-patterned ferroelectric materials have attracted significant attention as the presence of two or more thermodynamically equivalent switchable polarization states can be employed in many applications such as non-volatile memory. In this work, a simple and effective approach for fabrication of highly ordered poly(vinylidene fluoride-trifluoroethylene) P(VDF-TrFE) nanodot arrays is demonstrated. By using a soft polydimethylsiloxane mold, we successfully transferred the 2D array pattern from the initial monolayer of colloidal polystyrene nanospheres to the imprinted P(VDF-TrFE) films via nanoimprinting. The existence of a preferred orientation of the copolymer chain after nanoimprinting was confirmed by Fourier transform infrared spectra. Local polarization switching behavior was measured by piezoresponse force microscopy, and each nanodot showed well-formed hysteresis curve and butterfly loop with a coercive field of ˜62.5 MV/m. To illustrate the potential application of these ordered P(VDF-TrFE) nanodot arrays, the writing and reading process as non-volatile memory was demonstrated at a relatively low voltage. As such, our results offer a facile and promising route to produce arrays of ferroelectric polymer nanodots with improved piezoelectric functionality.

  5. The Atacama Large Millimeter/Submillimeter Array (ALMA) - A Successful Three-Way International Partnership Without a Majority Stakeholder

    NASA Astrophysics Data System (ADS)

    Vanden Bout, Paul A.

    2013-04-01

    The Atacama Millimeter/Submillimeter Array (ALMA) is the largest ground-based astronomical facility built to date. It's size and challenging site required an international effort. This talk presents the partnership structure, management challenges, current status, and examples of early scientific successes.

  6. The Detection and Photometric Redshift Determination of Distant Galaxies using SIRTF's Infrared Array Camera

    NASA Technical Reports Server (NTRS)

    Simpson, C.; Eisenhardt, P.

    1998-01-01

    We investigate the ability of the Space Infrared Telescope Facility's Infrared Array Camera to detect distant (z3) galaxies and measure their photometric redshifts. Our analysis shows that changing the original long wavelength filter specifications provides significant improvements in performance in this and other areas.

  7. Block Copolymers as Templates for Arrays of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Bronikowski, Michael; Hunt, Brian

    2003-01-01

    A method of manufacturing regular arrays of precisely sized, shaped, positioned, and oriented carbon nanotubes has been proposed. Arrays of carbon nanotubes could prove useful in such diverse applications as communications (especially for filtering of signals), biotechnology (for sequencing of DNA and separation of chemicals), and micro- and nanoelectronics (as field emitters and as signal transducers and processors). The method is expected to be suitable for implementation in standard semiconductor-device fabrication facilities.

  8. Performance of a 12-coil superconducting bumpy torus magnet facility

    NASA Technical Reports Server (NTRS)

    Roth, J. R.; Holmes, A. D.; Keller, T. A.; Krawczonek, W. M.

    1972-01-01

    The bumpy torus facility consists of 12 superconducting coils, each 19 cm i.d. and capable of 3.0 teslas on their axes. The coils are equally spaced around a toroidal array with a major diameter of 1.52 m, and are mounted with the major axis of the torus vertical in a single vacuum tank 2.6 m in diameter. Final shakedown tests of the facility mapped out its magnetic, cryogenic, vacuum, mechanical, and electrical performance. The facility is now ready for use as a plasma physics research facility. A maximum magnetic field on the magnetic axis of 3.23 teslas was held for a period of more than sixty minutes without a coil normalcy. The design field was 3.00 teslas. The steady-state liquid helium boil-off rate was 87 liters per hour of liquid helium without the coils charged. The coil array was stable when subjected to an impulsive loading, even with the magnets fully charged. When the coils were charged to a maximum magnetic field of 3.35 teslas, the system was driven normal without damage.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kastenberg, W.E.; Apostolakis, G.; Dhir, V.K.

    Severe accident management can be defined as the use of existing and/or altemative resources, systems and actors to prevent or mitigate a core-melt accident. For each accident sequence and each combination of severe accident management strategies, there may be several options available to the operator, and each involves phenomenological and operational considerations regarding uncertainty. Operational uncertainties include operator, system and instrumentation behavior during an accident. A framework based on decision trees and influence diagrams has been developed which incorporates such criteria as feasibility, effectiveness, and adverse effects, for evaluating potential severe accident management strategies. The framework is also capable ofmore » propagating both data and model uncertainty. It is applied to several potential strategies including PWR cavity flooding, BWR drywell flooding, PWR depressurization and PWR feed and bleed.« less

  10. Reactor core isolation cooling system

    DOEpatents

    Cooke, F.E.

    1992-12-08

    A reactor core isolation cooling system includes a reactor pressure vessel containing a reactor core, a drywell vessel, a containment vessel, and an isolation pool containing an isolation condenser. A turbine is operatively joined to the pressure vessel outlet steamline and powers a pump operatively joined to the pressure vessel feedwater line. In operation, steam from the pressure vessel powers the turbine which in turn powers the pump to pump makeup water from a pool to the feedwater line into the pressure vessel for maintaining water level over the reactor core. Steam discharged from the turbine is channeled to the isolation condenser and is condensed therein. The resulting heat is discharged into the isolation pool and vented to the atmosphere outside the containment vessel for removing heat therefrom. 1 figure.

  11. Reactor core isolation cooling system

    DOEpatents

    Cooke, Franklin E.

    1992-01-01

    A reactor core isolation cooling system includes a reactor pressure vessel containing a reactor core, a drywell vessel, a containment vessel, and an isolation pool containing an isolation condenser. A turbine is operatively joined to the pressure vessel outlet steamline and powers a pump operatively joined to the pressure vessel feedwater line. In operation, steam from the pressure vessel powers the turbine which in turn powers the pump to pump makeup water from a pool to the feedwater line into the pressure vessel for maintaining water level over the reactor core. Steam discharged from the turbine is channeled to the isolation condenser and is condensed therein. The resulting heat is discharged into the isolation pool and vented to the atmosphere outside the containment vessel for removing heat therefrom.

  12. Combustion Of Interacting Droplet Arrays In Microgravity

    NASA Technical Reports Server (NTRS)

    Dietrich, D. L.; Struk, P. M.; Ikegami, M.; Xu, G.

    2003-01-01

    Theory and experiments involving single droplet combustion date back to 1953, with the first microgravity work appearing in 1956. The problem of a spherical droplet burning in an infinite, quiescent microgravity environment is a classical problem in combustion research with the classical solution appearing in nearly every textbook on combustion. The microgravity environment offered by ground-based facilities such as drop towers and space-based facilities is ideal for studying the problem experimentally. A recent review by Choi and Dryer shows significant advances in droplet combustion have been made by studying the problem experimentally in microgravity and comparing the results to one dimensional theoretical and numerical treatments of the problem. Studying small numbers of interacting droplets in a well-controlled geometry represents a logical step in extending single droplet investigations to more practical spray configurations. Studies of droplet interactions date back to Rex and co-workers, and were recently summarized by Annamalai and Ryan. All previous studies determined the change in the burning rate constant, k, or the flame characteristics as a result of interactions. There exists almost no information on how droplet interactions a effect extinction limits, and if the extinction limits change if the array is in the diffusive or the radiative extinction regime. Thus, this study examined experimentally the effect that droplet interactions have on the extinction process by investigating the simplest array configuration, a binary droplet array. The studies were both in normal gravity, reduced pressure ambients and microgravity facilities. The microgravity facilities were the 2.2 and 5.2 second drop towers at the NASA Glenn Research Center and the 10 second drop tower at the Japan Microgravity Center. The experimental apparatus and the data analysis techniques are discussed in detail elsewhere.

  13. FeP@C Nanotube Arrays Grown on Carbon Fabric as a Low Potential and Freestanding Anode for High-Performance Li-Ion Batteries.

    PubMed

    Xu, Xijun; Liu, Jun; Liu, Zhengbo; Wang, Zhuosen; Hu, Renzong; Liu, Jiangwen; Ouyang, Liuzhang; Zhu, Min

    2018-06-26

    An anode of self-supported FeP@C nanotube arrays on carbon fabric (CF) is successfully fabricated via a facile template-based deposition and phosphorization route: first, well-aligned FeOOH nanotube arrays are simply obtained via a solution deposition and in situ etching route with hydrothermally crystallized (Co,Ni)(CO 3 ) 0.5 OH nanowire arrays as the template; subsequently, these uniform FeOOH nanotube arrays are transformed into robust carbon-coated Fe 3 O 4 (Fe 3 O 4 @C) nanotube arrays via glucose adsorption and annealing treatments; and finally FeP@C nanotube arrays on CF are achieved through the facile phosphorization of the oxide-based arrays. As an anode for lithium-ion batteries (LIBs), these FeP@C nanotube arrays exhibit superior rate capability (reversible capacities of 945, 871, 815, 762, 717, and 657 mA h g -1 at 0.1, 0.2, 0.4, 0.8, 1.3, and 2.2 A g -1 , respectively, corresponding to area specific capacities of 1.73, 1.59, 1.49, 1.39, 1.31, 1.20 mA h cm -2 at 0.18, 0.37, 0.732, 1.46, 2.38, and 4.03 mA cm -2 , respectively) and a stable long-cycling performance (a high specific capacity of 718 mA h g -1 after 670 cycles at 0.5 A g -1 , corresponding to an area capacity of 1.31 mA h cm -2 at 0.92 mA cm -2 ). © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Radiation characteristics and implosion dynamics of Z-pinch dynamic hohlraums performed on PTS facility

    NASA Astrophysics Data System (ADS)

    Huang, Xian Bin; Ren, Xiao Dong; Dan, Jia Kun; Wang, Kun Lun; Xu, Qiang; Zhou, Shao Tong; Zhang, Si Qun; Cai, Hong Chun; Li, Jing; Wei, Bing; Ji, Ce; Feng, Shu Ping; Wang, Meng; Xie, Wei Ping; Deng, Jian Jun

    2017-09-01

    The preliminary experimental results of Z-pinch dynamic hohlraums conducted on the Primary Test Stand (PTS) facility are presented herein. Six different types of dynamic hohlraums were used in order to study the influence of load parameters on radiation characteristics and implosion dynamics, including dynamic hohlraums driven by single and nested arrays with different array parameters and different foams. The PTS facility can deliver a current of 6-8 MA in the peak current and 60-70 ns in the 10%-90% rising time to dynamic hohlraum loads. A set of diagnostics monitor the implosion dynamics of plasmas, the evolution of shock waves in the foam and the axial/radial X-ray radiation, giving the key parameters characterizing the features of dynamic hohlraums, such as the trajectory and related velocity of shock waves, radiation temperature, and so on. The experimental results presented here put our future study on Z-pinch dynamic hohlraums on the PTS facility on a firm basis.

  15. Physical Model Study of the Fully Developed Wind Turbine Array Boundary Layer in the UNH Flow Physics Facility

    NASA Astrophysics Data System (ADS)

    Turner, John; Wosnik, Martin

    2015-11-01

    Results from an experimental study of an array of up to 100 model wind turbines with 0.25 m diameter are reported. The study was conducted in the UNH Flow Physics Facility (FPF), which has test section dimensions of 6.0 m wide, 2.7 m high and 72.0 m long. For a given configuration (spacing, initial conditions, etc.), the model wind farm reaches a ``fully developed'' condition, in which turbulence statistics remain the same from one row to the next within and above the wind turbine array. Of interest is the transport of kinetic energy within the wind turbine array boundary layer (WTABL). Model wind farms of up to 20 rows are possible in the FPF at the wind turbine scale used. The present studies in the FPF are able to achieve the fully developed WTABL condition, which can provide valuable insight to the optimization of wind farm energy production. The FPF can achieve a boundary layer height on the order of 1 m at the beginning of the wind turbine array. The wind turbine array was constructed of porous disks, which where drag (thrust) matched to wind turbines at typical operating conditions and therefore act as momentum sinks similar to wind turbines. The flow in the WTABL was measured with constant temperature anemometry using an X-wire.

  16. Onboard Experiment Data Support Facility

    NASA Technical Reports Server (NTRS)

    1976-01-01

    An onboard array structure has been devised for end to end processing of data from multiple spaceborne sensors. The array constitutes sets of programmable pipeline processors whose elements perform each assigned function in 0.25 microseconds. This space shuttle computer system can handle data rates from a few bits to over 100 megabits per second.

  17. Experimental study of surface insulated-standard hybrid tungsten planar wire array Z-pinches at “QiangGuang-I” facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Liang; Peng, Bodong; Yuan, Yuan

    The experimental results of the insulated-standard hybrid wire array Z pinches carried out on “QiangGuang-I” facility at Northwest Institute of Nuclear Technology were presented and discussed. The surface insulating can impose a significant influence on the dynamics and radiation characteristics of the hybrid wire array Z pinches, especially on the early stage (t/t{sub imp} < 0.6). The expansion of insulated wires at the ablation stage is suppressed, while the streams stripped from the insulated wires move faster than that from the standard wires. The foot radiation of X-ray is enhanced by increment of the number of insulated wires, 19.6 GW, 33.6 GW, and 68.6 GWmore » for shots 14037S, 14028H, and 14039I, respectively. The surface insulation also introduces nonhomogeneity along the single wire—the streams move much faster near the electrodes. The colliding boundary of the hybrid wire array Z pinches is bias to the insulated side approximately 0.6 mm.« less

  18. Technical and Regulatory Guidance for In Situ Chemical Oxidation of Contaminated Soil and Groundwater

    DTIC Science & Technology

    2001-06-01

    B12 6. Former Wood Treatment Facility, Sonoma County , CA . . . . . . . . . . . . . . . . . . . . . B12 7. San Francisco Bay Sites, CA...aromatic hydrocarbons (PAHs) to below regulatory limits. Site: Former Wood Treatment Facility, Sonoma County , CA Technology: Ozone Summary: An array...manufacturing facility, located in Sonoma County , California (Clayton, 2000b). Primary contaminants are pentachlorophenol (PCP) and creosote (i.e., polycyclic

  19. Optical performance of prototype horn-coupled TES bolometer arrays for SAFARI

    NASA Astrophysics Data System (ADS)

    Audley, Michael D.; de Lange, Gert; Gao, Jian-Rong; Khosropanah, Pourya; Hijmering, Richard; Ridder, Marcel L.

    2016-07-01

    The SAFARI Detector Test Facility is an ultra-low background optical testbed for characterizing ultra-sensitive prototype horn-coupled TES bolmeters for SAFARI, the grating spectrometer on board the proposed SPICA satellite. The testbed contains internal cold and hot black-body illuminators and a light-pipe for illumination with an external source. We have added reimaging optics to facilitate array optical measurements. The system is now being used for optical testing of prototype detector arrays read out with frequency-domain multiplexing. We present our latest optical measurements of prototype arrays and discuss these in terms of the instrument performance.

  20. USGS aerial resolution targets.

    USGS Publications Warehouse

    Salamonowicz, P.H.

    1982-01-01

    It is necessary to measure the achievable resolution of any airborne sensor that is to be used for metric purposes. Laboratory calibration facilities may be inadequate or inappropriate for determining the resolution of non-photographic sensors such as optical-mechanical scanners, television imaging tubes, and linear arrays. However, large target arrays imaged in the field can be used in testing such systems. The USGS has constructed an array of resolution targets in order to permit field testing of a variety of airborne sensing systems. The target array permits any interested organization with an airborne sensing system to accurately determine the operational resolution of its system. -from Author

  1. ERDA/Lewis research center photovoltaic systems test facility

    NASA Technical Reports Server (NTRS)

    Forestieri, A. F.; Johnson, J. A.; Knapp, W. D.; Rigo, H.; Stover, J.; Suhay, R.

    1977-01-01

    A national photovoltaic power systems test facility (of initial 10-kW peak power rating) is described. It consists of a solar array to generate electrical power, test-hardware for several alternate methods of power conversion, electrical energy storage systems, and an instrumentation and data acquisition system.

  2. KSC-00pp1213

    NASA Image and Video Library

    2000-08-30

    An overhead crane in the Space Station Processing Facility lifts a solar array as workers stand by to help guide it. The solar array will be installed onto the Integrated Equipment Assembly (IEA). A component of the International Space Station, the solar array is the second one being installed on the IEA. The arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  3. Generating and controlling homogeneous air turbulence using random jet arrays

    NASA Astrophysics Data System (ADS)

    Carter, Douglas; Petersen, Alec; Amili, Omid; Coletti, Filippo

    2016-12-01

    The use of random jet arrays, already employed in water tank facilities to generate zero-mean-flow homogeneous turbulence, is extended to air as a working fluid. A novel facility is introduced that uses two facing arrays of individually controlled jets (256 in total) to force steady homogeneous turbulence with negligible mean flow, shear, and strain. Quasi-synthetic jet pumps are created by expanding pressurized air through small straight nozzles and are actuated by fast-response low-voltage solenoid valves. Velocity fields, two-point correlations, energy spectra, and second-order structure functions are obtained from 2D PIV and are used to characterize the turbulence from the integral-to-the Kolmogorov scales. Several metrics are defined to quantify how well zero-mean-flow homogeneous turbulence is approximated for a wide range of forcing and geometric parameters. With increasing jet firing time duration, both the velocity fluctuations and the integral length scales are augmented and therefore the Reynolds number is increased. We reach a Taylor-microscale Reynolds number of 470, a large-scale Reynolds number of 74,000, and an integral-to-Kolmogorov length scale ratio of 680. The volume of the present homogeneous turbulence, the largest reported to date in a zero-mean-flow facility, is much larger than the integral length scale, allowing for the natural development of the energy cascade. The turbulence is found to be anisotropic irrespective of the distance between the jet arrays. Fine grids placed in front of the jets are effective at modulating the turbulence, reducing both velocity fluctuations and integral scales. Varying the jet-to-jet spacing within each array has no effect on the integral length scale, suggesting that this is dictated by the length scale of the jets.

  4. Proceedings of the Flat-Plate Solar Array Project Research Forum on the Design of Flat-Plate Photovoltaic Arrays for Central Stations

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The Flat Plate Solar Array Project, focuses on advancing technologies relevant to the design and construction of megawatt level central station systems. Photovoltaic modules and arrays for flat plate central station or other large scale electric power production facilities require the establishment of a technical base that resolves design issues and results in practical and cost effective configurations. Design, qualification and maintenance issues related to central station arrays derived from the engineering and operating experiences of early applications and parallel laboratory reserch activities are investigated. Technical issues are examined from the viewpoint of the utility engineer, architect/engineer and laboratory researcher. Topics on optimum source circuit designs, module insulation design for high system voltages, array safety, structural interface design, measurements, and array operation and maintenance are discussed.

  5. KSC-00pp1217

    NASA Image and Video Library

    2000-08-30

    In the Space Station Processing Facility, workers help guide a solar array into position for installation on the Integrated Equipment Assembly. Solar Array Wing-3 is already in place. Components of the International Space Station, the arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  6. KSC-00pp1215

    NASA Image and Video Library

    2000-08-30

    In the Space Station Processing Facility, the overhead crane carrying a solar array arrives at the Integrated Equipment Assembly (IEA) on which it will be installed. Solar Array Wing-3 is already in place. Components of the International Space Station, the arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  7. KSC-00pp1218

    NASA Image and Video Library

    2000-08-30

    Workers in the Space Station Processing Facility give close attention to the placement of a solar array on the Integrated Equipment Assembly. Solar Array Wing-3 is already in place. Components of the International Space Station, the arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  8. Continuous fabrication of nanostructure arrays for flexible surface enhanced Raman scattering substrate

    PubMed Central

    Zhang, Chengpeng; Yi, Peiyun; Peng, Linfa; Lai, Xinmin; Chen, Jie; Huang, Meizhen; Ni, Jun

    2017-01-01

    Surface-enhanced Raman spectroscopy (SERS) has been a powerful tool for applications including single molecule detection, analytical chemistry, electrochemistry, medical diagnostics and bio-sensing. Especially, flexible SERS substrates are highly desirable for daily-life applications, such as real-time and in situ Raman detection of chemical and biological targets, which can be used onto irregular surfaces. However, it is still a major challenge to fabricate the flexible SERS substrate on large-area substrates using a facile and cost-effective technique. The roll-to-roll ultraviolet nanoimprint lithography (R2R UV-NIL) technique provides a solution for the continuous fabrication of flexible SERS substrate due to its high-speed, large-area, high-resolution and high-throughput. In this paper, we presented a facile and cost-effective method to fabricate flexible SERS substrate including the fabrication of polymer nanostructure arrays and the metallization of the polymer nanostructure arrays. The polymer nanostructure arrays were obtained by using R2R UV-NIL technique and anodic aluminum oxide (AAO) mold. The functional SERS substrates were then obtained with Au sputtering on the surface of the polymer nanostructure arrays. The obtained SERS substrates exhibit excellent SERS and flexibility performance. This research can provide a beneficial direction for the continuous production of the flexible SERS substrates. PMID:28051175

  9. The new Adelaide medium frequency Doppler radar

    NASA Astrophysics Data System (ADS)

    Reid, I. M.; Vandepeer, B. G. W.; Dillon, S.; Fuller, B.

    1993-08-01

    The Buckland Park Aerial Array (35 deg S, 138 deg E) is situated about 40 km north of Adelaide on a flat coastal plain. It was designed by Basil Briggs and Graham Elford, and constructed between 1965 and 1968. The first results were published in the late 1960's. Some aspects of the history of the array are described in Briggs (1993). A new MF Doppler Radar utilizing the array has been developed. This paper describes some of the technical details of this new facility.

  10. 17. CAPE COD AIR STATION PAVE PAWS FACILITY AERIAL VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. CAPE COD AIR STATION PAVE PAWS FACILITY AERIAL VIEW WITH PROJECT NEARING COMPLETION. VIEW SHOWS "A" FACE (LEFT) AND "B" FACE OF RADAR ARRAY SYSTEM. NOTE THAT NORTH IS GENERALLY TO RIGHT OF VIEW. - Cape Cod Air Station, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  11. Feasibility study of an optically coherent telescope array in space

    NASA Technical Reports Server (NTRS)

    Traub, W. A.

    1983-01-01

    Numerical methods of image construction which can be used to produce very high angular resolution images at optical wavelengths of astronomical objects from an orbiting array of telescopes are discussed and a concept is presented for a phase-coherent optical telescope array which may be deployed by space shuttle in the 1990's. The system would start as a four-element linear array with a 12 m baseline. The initial module is a minimum redundant array with a photon-counting collecting area three times larger than space telescope and a one dimensional resolution of better than 0.01 arc seconds in the visible range. Later additions to the array would build up facility capability. The advantages of a VLBI observatory in space are considered as well as apertures for the telescopes.

  12. KSC-00pp1194

    NASA Image and Video Library

    2000-08-18

    In the Space Station Processing Facility, Solar Array Wing-3, an element of the International Space Station, is lifted from a work stand to move it to the Integrated Electronic Assembly for testing. The solar array is scheduled to be launched on STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  13. KSC-00pp1199

    NASA Image and Video Library

    2000-08-18

    In the Space Station Processing Facility, Solar Array Wing-3, a component of the International Space Station, is installed in the Integrated Electronic Assembly where it will be tested. The solar array is scheduled to be launched on STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  14. KSC-00pp1193

    NASA Image and Video Library

    2000-08-18

    Workers in the Space Station Processing Facility get ready to move Solar Array Wing-3, a component of the International Space Station, for installation onto the Integrated Electronic Assembly. The solar array is scheduled to be launched on STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  15. KSC-00pp1198

    NASA Image and Video Library

    2000-08-18

    In the Space Station Processing Facility, Solar Array Wing-3, a component of the International Space Station, is installed in the Integrated Electronic Assembly where it will be tested. The solar array is scheduled to be launched on STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  16. KSC-00pp1195

    NASA Image and Video Library

    2000-08-18

    In the Space Station Processing Facility, Solar Array Wing-3 (at top), a component of the International Space Station, hovers above the Integrated Electronic Assembly where it will be installed for testing. The solar array is scheduled to be launched on STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  17. The ERDA/LeRC photovoltaic systems test facility

    NASA Technical Reports Server (NTRS)

    Forestieri, A. F.

    1977-01-01

    A test facility was designed, and built to provide a place where photovoltaic systems may be assembled and electrically configured, to evaluate system performance and characteristics. The facility consists of a solar cell array of an initial 10-kW peak power rating, test hardware for several alternate methods of power conditioning, a variety of loads, an electrical energy storage system, and an instrumentation and data acquisition system.

  18. Comparison of experimental results of a Quad-CZT array detector, a NaI(Tl), a LaBr3(Ce), and a HPGe for safeguards applications

    NASA Astrophysics Data System (ADS)

    Kwak, S.-W.; Choi, J.; Park, S. S.; Ahn, S. H.; Park, J. S.; Chung, H.

    2017-11-01

    A compound semiconductor detector, CdTe (or CdZnTe), has been used in various areas including nuclear safeguards applications. To address its critical drawback, low detection efficiency, which leads to a long measurement time, a Quad-CZT array-based gamma-ray spectrometer in our previous study has been developed by combining four individual CZT detectors. We have re-designed the developed Quad-CZT array system to make it more simple and compact for a hand-held gamma-ray detector. The objective of this paper aims to compare the improved Quad-CZT array system with the traditional gamma-ray spectrometers (NaI(Tl), LaBr3(Ce), HPGe); these detectors currently have been the most commonly used for verification of nuclear materials. Nuclear materials in different physical forms in a nuclear facility of Korea were measured by the Quad-CZT array system and the existing gamma-ray detectors. For measurements of UO2 pellets and powders, and fresh fuel rods, the Quad-CZT array system turned out to be superior to the NaI(Tl) and LaBr3(Ce). For measurements of UF6 cylinders with a thick wall, the Quad-CZT array system and HPGe gave similar accuracy under the same measurement time. From the results of the field tests conducted, we can conclude that the improved Quad-CZT array system would be used as an alternative to HPGes and scintillation detectors for the purpose of increasing effectivenss and efficiency of safeguards applications. This is the first paper employing a multi-element CZT array detector for measurement of nuclear materials—particularly uranium in a UF6 cylinder—in a real nuclear facility. The present work also suggests that the multi-CZT array system described in this study would be one promising method to address a serious weakness of CZT-based radiation detection.

  19. RHrFPGA Radiation-Hardened Re-programmable Field-Programmable Gate Array

    NASA Technical Reports Server (NTRS)

    Sanders, A. B.; LaBel, K. A.; McCabe, J. F.; Gardner, G. A.; Lintz, J.; Ross, C.; Golke, K.; Burns, B.; Carts, M. A.; Kim, H. S.

    2004-01-01

    Viewgraphs on the development of the Radiation-Hardened Re-programmable Field-Programmable Gate Array (RHrFPGA) are presented. The topics include: 1) Radiation Test Suite; 2) Testing Interface; 3) Test Configuration; 4) Facilities; 5) Test Programs; 6) Test Procedure; and 7) Test Results. A summary of heavy ion and proton testing is also included.

  20. KSC-00pp1210

    NASA Image and Video Library

    2000-08-30

    Workers in the Space Station Processing Facility help guide an overhead crane toward a workstand containing a solar array in order to move it for installation onto the Integrated Equipment Assembly (IEA). A component of the International Space Station, the solar array is the second one being installed on the IEA. The arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  1. KSC-00pp1216

    NASA Image and Video Library

    2000-08-30

    In the Space Station Processing Facility, the overhead crane carrying a solar array maneuvers its cargo into position on the Integrated Equipment Assembly on which it will be installed. Solar Array Wing-3 is already in place. Components of the International Space Station, the arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  2. The Boiling eXperiment Facility (BXF) for the Microgravity Science Glovebox (MSG)

    NASA Technical Reports Server (NTRS)

    McQuillen, John; Chao, David; Vergilii, Frank

    2006-01-01

    Boiling is an effective means of cooling by removing heat from surfaces through vaporization of a working fluid. It is also affected by both the magnitude and direction of gravity. By conducting pool boiling tests in microgravity, the effect of buoyancy n the overall boiling process and the relative magnitude of other phenomena can be assessed. The Boiling eXperiment Facility (BXF) is being built for the Microgravity Science Glovebox. This facility will conduct two pool boiling studies. The first study the Microheater Array Boiling Experiment (MABE) uses two 96 element microheater arrays, 2.7 mm and 7.0 mm in size, to measure localized hear fluxes while operating at a constant temperature. The other experiment, the Nucleate Pool Boiling eXperiment (NPBX) uses a 85 mm diameter heater wafer that has been "seeded" with five individually-controlled nucleation sites to study bubble nucleation, growth, coalescence and departure. The BXF uses normal-perfluorohexane as the test fluid and will operate between pressures of 60 to 244 Pa. and temperatures of 35 to 60 C. Both sets of experimental heaters are highly instrumented. Pressure and bulk fluid temperature measurements will be made with standard rate video. A high speed video system will be used to visualize the boiling process through the bottom of the MABE heater arrays. The BXF is currently scheduled to fly on Utilization Flight-13A.1 to the ISS with facility integration into the MSG and operation during Increment 15

  3. Miniature Exoplanet Radial Velocity Array (MINERVA) I. Design, Commissioning, and First Science Results

    NASA Astrophysics Data System (ADS)

    Swift, Jonathan J.; Bottom, Michael; Johnson, John A.; Wright, Jason T.; McCrady, Nate; Wittenmyer, Robert A.; Plavchan, Peter; Riddle, Reed; Muirhead, Philip S.; Herzig, Erich; Myles, Justin; Blake, Cullen H.; Eastman, Jason; Beatty, Thomas G.; Barnes, Stuart I.; Gibson, Steven R.; Lin, Brian; Zhao, Ming; Gardner, Paul; Falco, Emilio; Criswell, Stephen; Nava, Chantanelle; Robinson, Connor; Sliski, David H.; Hedrick, Richard; Ivarsen, Kevin; Hjelstrom, Annie; de Vera, Jon; Szentgyorgyi, Andrew

    2015-04-01

    The Miniature Exoplanet Radial Velocity Array (MINERVA) is a U.S.-based observational facility dedicated to the discovery and characterization of exoplanets around a nearby sample of bright stars. MINERVA employs a robotic array of four 0.7-m telescopes outfitted for both high-resolution spectroscopy and photometry, and is designed for completely autonomous operation. The primary science program is a dedicated radial velocity survey and the secondary science objective is to obtain high-precision transit light curves. The modular design of the facility and the flexibility of our hardware allows for both science programs to be pursued simultaneously, while the robotic control software provides a robust and efficient means to carry out nightly observations. We describe the design of MINERVA, including major hardware components, software, and science goals. The telescopes and photometry cameras are characterized at our test facility on the Caltech campus in Pasadena, California, and their on-sky performance is validated. The design and simulated performance of the spectrograph is briefly discussed as we await its completion. New observations from our test facility demonstrate sub-mmag photometric precision of one of our radial velocity survey targets, and we present new transit observations and fits of WASP-52b-a known hot-Jupiter with an inflated radius and misaligned orbit. The process of relocating the MINERVA hardware to its final destination at the Fred Lawrence Whipple Observatory in southern Arizona has begun, and science operations are expected to commence in 2015.

  4. Celebrating 10 Years of Delivering EarthScope USArray Transportable Array Data from the Array Network Facility (ANF)

    NASA Astrophysics Data System (ADS)

    Eakins, J. A.; Vernon, F.; Astiz, L.; Davis, G. A.; Reyes, J. C.; Martynov, V. G.; Tytell, J.; Cox, T. A.; Meyer, J.

    2013-12-01

    Since 2004, the Array Network Facility (ANF) has been responsible for generation and delivery of the metadata as well as collection and initial quality control and the transmission of the seismic, and more recently infrasound and meteorological data, for the Earthscope USArray Transportable Array. As of August 2013, we have managed data from over 1600 stations. Personnel at the ANF provide immediate eyes on the data to improve quality control as well as interact with the individual stations via calibrations, mass recentering, baler data retrieval and event analysis. Web-based tools have been developed, and rewritten over the years, to serve the needs of both station engineers and the public. Many lessons on the needs for scalability have been learned. Analysts continue to review all seismic events recorded on 7 or more TA stations making associations against externally available bulletins and/or generating ANF authored locations which are available at both the ANF and IRIS-DMC. The US Array pressure data have several unique characteristics that are allowing us to conduct a rigorous analysis of the spatio-temporal variations in the pressure field on time scales of less than an hour across the eastern United States. With the installation of the infrasound and atmospheric pressure sensors, starting in 2010, observations of gust fronts, near misses of tornados at individual stations, and of the mesoscale gravity waves showing the value and utility of the US Array pressure data will be presented.

  5. A Planar Two-Dimensional Superconducting Bolometer Array for the Green Bank Telescope

    NASA Technical Reports Server (NTRS)

    Benford, Dominic; Staguhn, Johannes G.; Chervenak, James A.; Chen, Tina C.; Moseley, S. Harvey; Wollack, Edward J.; Devlin, Mark J.; Dicker, Simon R.; Supanich, Mark

    2004-01-01

    In order to provide high sensitivity rapid imaging at 3.3mm (90GHz) for the Green Bank Telescope - the world's largest steerable aperture - a camera is being built by the University of Pennsylvania, NASA/GSFC, and NRAO. The heart of this camera is an 8x8 close-packed, Nyquist-sampled detector array. We have designed and are fabricating a functional superconducting bolometer array system using a monolithic planar architecture. Read out by SQUID multiplexers, the superconducting transition edge sensors will provide fast, linear, sensitive response for high performance imaging. This will provide the first ever superconducting bolometer array on a facility instrument.

  6. Thermal Vacuum Integrated System Test at B-2

    NASA Technical Reports Server (NTRS)

    Kudlac, Maureen T.; Weaver, Harold F.; Cmar, Mark D.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) Plum Brook Station (PBS) Space Propulsion Research Facility, commonly referred to as B-2, is NASA s third largest thermal vacuum facility. It is the largest designed to store and transfer large quantities of liquid hydrogen and liquid oxygen, and is perfectly suited to support developmental testing of chemical propulsion systems as well as fully integrated stages. The facility is also capable of providing thermal-vacuum simulation services to support testing of large lightweight structures, Cryogenic Fluid Management (CFM) systems, electric propulsion test programs, and other In-Space propulsion programs. A recently completed integrated system test demonstrated the refurbished thermal vacuum capabilities of the facility. The test used the modernized data acquisition and control system to monitor the facility during pump down of the vacuum chamber, operation of the liquid nitrogen heat sink (or cold wall) and the infrared lamp array. A vacuum level of 1.3x10(exp -4)Pa (1x10(exp -6)torr) was achieved. The heat sink provided a uniform temperature environment of approximately 77 K (140deg R) along the entire inner surface of the vacuum chamber. The recently rebuilt and modernized infrared lamp array produced a nominal heat flux of 1.4 kW/sq m at a chamber diameter of 6.7 m (22 ft) and along 11 m (36 ft) of the chamber s cylindrical vertical interior. With the lamp array and heat sink operating simultaneously, the thermal systems produced a heat flux pattern simulating radiation to space on one surface and solar exposure on the other surface. The data acquired matched pretest predictions and demonstrated system functionality.

  7. Artist Concept of Atlantis' new home

    NASA Image and Video Library

    2012-01-18

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, workers are constructing 40-foot-diameter dish antenna arrays for the Ka-Band Objects Observation and Monitoring, or Ka-BOOM system. The antennas will be part of the operations command center facility. The construction site is near the former Vertical Processing Facility, which has been demolished. The Ka-BOOM project is one of the final steps in developing the techniques to build a high power, high resolution radar system capable of becoming a Near Earth Object Early Warning System. While also capable of space communication and radio science experiments, developing radar applications is the primary focus of the arrays. Photo credit: NASA/ Ben Smegelsky

  8. Roadway into Facility 314 showing the roadway cut through the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Roadway into Facility 314 showing the roadway cut through the slope formed by leveling the area for the CDAA, note the concrete curb on the right side of the roadway, view facing west - U.S. Naval Base, Pearl Harbor, Naval Radio Station, AF/FRD-10 Circularly Disposed Antenna Array, Wahiawa, Honolulu County, HI

  9. The Sanford Science Education Center: Addressing Key Design Challenges in Sharing Complex Science with Diverse Audiences

    ERIC Educational Resources Information Center

    Inverness Research, 2016

    2016-01-01

    In facilities throughout the United States and abroad, communities of scientists share infrastructure, instrumentation, and equipment to conduct scientific research. In these large facilities--laboratories, accelerators, telescope arrays, and research vessels--scientists are researching key questions that have the potential to make a significant…

  10. Solar panels make really good cents.

    PubMed

    Hancock, Bobby

    2009-02-01

    Bobby Hancock, senior director of facility management for the Bloorview Kids Rehab facility in Toronto, describes how features such as a 37 kW penthouse roof solar array, thermal glazed windows, rainwater harvesting, and air handling units with variable speed drives and heat recovery wheels, contribute to the "green" credentials of Canada's largest children's rehabilitation centre.

  11. Level area surrounding Facility 314 showing the planted ring that ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Level area surrounding Facility 314 showing the planted ring that contains the radial ground wires, note the ring beneath the antenna circles is cleared of vegetation and covered with gravel, view facing southwest - U.S. Naval Base, Pearl Harbor, Naval Radio Station, AF/FRD-10 Circularly Disposed Antenna Array, Wahiawa, Honolulu County, HI

  12. Internationalization of the Space Station

    NASA Technical Reports Server (NTRS)

    Lottmann, R. V.

    1985-01-01

    Attention is given to the NASA Space Station system elements whose production is under consideration by potential foreign partners. The ESA's Columbus Program declaration encompasses studies of pressurized modules, unmanned payload carriers, and ground support facilities. Canada has expressed interest in construction and servicing facilities, solar arrays, and remote sensing facilities. Japanese studies concern a multipurpose experimental module concept. Each of these foreign investments would expand Space Station capabilities and lay the groundwork for long term partnerships.

  13. Validating Innovative Renewable Energy Technologies: ESTCP Demonstrations at Two DoD Facilities

    DTIC Science & Technology

    2011-11-01

    4. TITLE AND SUBTITLE Validating Innovative Renewable Energy Technologies: ESTCP Demonstrations at Two DoD Facilities 5a. CONTRACT NUMBER 5b...goals of 25% of energy consumed required to be from renewable energy by 2025, the DoD has set aggressive, yet achievable targets. With its array of land...holdings facilities, and environments, the potential for renewable energy generation on DoD lands is great. Reaching these goals will require

  14. Large-scale testing of in-vessel debris cooling through external flooding of the reactor pressure vessel in the CYBL facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, T.Y.; Bentz, J.H.; Bergeron, K.D.

    1994-04-01

    The possibility of achieving in-vessel core retention by flooding the reactor cavity, or the ``flooded cavity``, is an accident management concept currently under consideration for advanced light water reactors (ALWR), as well as for existing light water reactors (LWR). The CYBL (CYlindrical BoiLing) facility is a facility specifically designed to perform large-scale confirmatory testing of the flooded cavity concept. CYBL has a tank-within-a-tank design; the inner 3.7 m diameter tank simulates the reactor vessel, and the outer tank simulates the reactor cavity. The energy deposition on the bottom head is simulated with an array of radiant heaters. The array canmore » deliver a tailored heat flux distribution corresponding to that resulting from core melt convection. The present paper provides a detailed description of the capabilities of the facility, as well as results of recent experiments with heat flux in the range of interest to those required for in-vessel retention in typical ALWRs. The paper concludes with a discussion of other experiments for the flooded cavity applications.« less

  15. KSC-00pp1196

    NASA Image and Video Library

    2000-08-18

    Workers in the Space Station Processing Facility watch closely as Solar Array Wing-3, a component of the International Space Station, is lowered toward the Integrated Electronic Assembly where it will be installed for testing. The solar array is scheduled to be launched on STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  16. KSC-00pp1209

    NASA Image and Video Library

    2000-08-30

    Workers in the Space Station Processing Facility prepare an overhead crane they will use to move a solar array, a component of the International Space Station, for installation onto the Integrated Equipment Assembly. The solar array is the second one being installed. They are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  17. KSC-00pp1197

    NASA Image and Video Library

    2000-08-18

    Workers in the Space Station Processing Facility watch closely as Solar Array Wing-3, a component of the International Space Station, is moved toward the Integrated Electronic Assembly where it will be installed for testing. The solar array is scheduled to be launched on STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  18. Integrated infrared detector arrays for low-background astronomy

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R.

    1979-01-01

    Existing integrated infrared detector array technology is being evaluated under low-background conditions to determine its applicability in orbiting astronomical applications where extended integration times and photometric accuracy are of interest. Preliminary performance results of a 1 x 20 elements InSb CCD array under simulated astronomical conditions are presented. Using the findings of these tests, improved linear- and area-array technology will be developed for use in NASA programs such as the Shuttle Infrared Telescope Facility. For wavelengths less than 30 microns, extrinsic silicon and intrinsic arrays with CCD readout will be evaluated and improved as required, while multiplexed arrays of Ge:Ga for wavelengths in the range 30 to 120 microns will be developed as fundamental understanding of this material improves. Future efforts will include development of improved drive and readout circuitry, and consideration of alternate multiplexing schemes.

  19. The orderly nano array of truncated octahedra Cu2O nanocrystals with the enhancement of visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Wei, Xiaofeng; Pan, Jiaqi; Mei, Jie; Zheng, Yingying; Cui, Can; Li, Chaorong

    2018-07-01

    The orderly nano array is able to improve the light utilization efficiency and has been thought to be a promising way for advancing photocatalysis. The orderly nano array of truncated octahedra Cu2O nanocrystals have been successfully fabricated by the facile solution-based one-step reduction and self-assembly method. The results of XRD, SEM and TEM indicate that the Cu2O nano array is successfully assembled on the Si substrate. The photocatalytic activity of the Cu2O orderly nano array is investigated under visible light irradiation, and it is demonstrated to be significantly enhanced after the Cu2O is self-assembled orderly. Furthermore, the surface orderly structure of the nano array is considered as the main reason for the enhancement.

  20. Identification of novel IP receptor agonists using historical ligand biased chemical arrays.

    PubMed

    McKeown, Stephen C; Charlton, Steven J; Cox, Brian; Fitch, Helen; Howson, Christopher D; Leblanc, Catherine; Meyer, Arndt; Rosethorne, Elizabeth M; Stanley, Emily

    2014-05-15

    By considering published structural information we have designed high throughput biaryl lipophilic acid arrays leveraging facile chemistry to expedite their synthesis. We rapidly identified multiple hits which were of suitable IP agonist potency. These relatively simple and strategically undecorated molecules present an ideal opportunity for optimization towards our target candidate profile. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Current status of the expanded GRAPES collaboration experiment at Ooty in India

    NASA Astrophysics Data System (ADS)

    Gupta, S.K.; Anita, H.M.; Iyer, A.; Jagadeesan, P.; Jain, A.; Karthikeyan, S.; Manoharan, P.K.; Mohanty, P.K.; Nayak, P.K.; Rao, B.S.; Ravindran, K.C.; Tanaka, H.; Tonwar, S.C.; Ogio, S.; Okuda, T.; Oshima, A.; Shimizu, N.; Yoshikoshi, T.; Badruddin; Hasan, R.; Ahmad, Shakeel; Mishra, A.P.; Shrivastava, P.K.; Koul, R.; Shah, G.N.; Mir, T.A.; Mufti, S.; Raha, S.; Ghosh, S.; Joarder, P.; Saha, S.; Boruah, K.; Datta, P.; Boruah, P.K.; Baruah, A.G.; Baishya, R.; Saikia, J.; Banerjee, D.; Subramanian, P.; Bhadra, A.; Kumar, S.; Agarwal, R.; Dubey, S.K.; Bhattacharjee, P.

    GRAPES-3 experiment employs a high-density array of scintillators and a large area tracking muon telescope. The GRAPES collaboration is being expanded with addition of several major facilities. These include a Cerenkov telescope and low frequency dipole array for the measurement of shower energy. Addition of several modules of muon telescopes to cover a larger area, expansion of the scintillator array with greater separation between detectors. Installation of a neutron monitor is also planned. The current status of the experiment would be summarized.

  2. Manufacturing PDMS micro lens array using spin coating under a multiphase system

    NASA Astrophysics Data System (ADS)

    Sun, Rongrong; Yang, Hanry; Rock, D. Mitchell; Danaei, Roozbeh; Panat, Rahul; Kessler, Michael R.; Li, Lei

    2017-05-01

    The development of micro lens arrays has garnered much interest due to increased demand of miniaturized systems. Traditional methods for manufacturing micro lens arrays have several shortcomings. For example, they require expensive facilities and long lead time, and traditional lens materials (i.e. glass) are typically heavy, costly and difficult to manufacture. In this paper, we explore a method for manufacturing a polydimethylsiloxane (PDMS) micro lens array using a simple spin coating technique. The micro lens array, formed under an interfacial tension dominated system, and the influence of material properties and process parameters on the fabricated lens shape are examined. The lenses fabricated using this method show comparable optical properties—including surface finish and image quality—with a reduced cost and manufacturing lead time.

  3. Ga:Ge array development

    NASA Technical Reports Server (NTRS)

    Young, Erick T.; Rieke, G. H.; Low, Frank J.; Haller, E. E.; Beeman, J. W.

    1989-01-01

    Work at the University of Arizona and at Lawrence Berkeley Laboratory on the development of a far infrared array camera for the Multiband Imaging Photometer on the Space Infrared Telescope Facility (SIRTF) is discussed. The camera design uses stacked linear arrays of Ge:Ga photoconductors to make a full two-dimensional array. Initial results from a 1 x 16 array using a thermally isolated J-FET readout are presented. Dark currents below 300 electrons s(exp -1) and readout noises of 60 electrons were attained. Operation of these types of detectors in an ionizing radiation environment are discussed. Results of radiation testing using both low energy gamma rays and protons are given. Work on advanced C-MOS cascode readouts that promise lower temperature operation and higher levels of performance than the current J-FET based devices is described.

  4. Design and operation of grid-interactive thin-film silicon PV systems

    NASA Astrophysics Data System (ADS)

    Marion, Bill; Atmaram, Gobind; Lashway, Clin; Strachan, John W.

    Results are described from the operation of 11 thin-film amorphous silicon photovoltaic systems at three test facilities: the Florida Solar Energy Center, the New Mexico Solar Energy Institute, and Sandia National Laboratories. Commercially available modules from four US manufacturers are used in these systems, with array sizes from 133 to 750 W peak. Measured array efficiencies are from 3.1 to 4.8 percent. Except for one manufacturer, array peak power is in agreement with the calculated design ratings. For certain grid-connected systems, nonoptimal operation exists because the array peak power voltage is below the lower voltage limit of the power conditioning system. Reliability problems are found in two manufacturers' modules when shorts to ground and terminal corrosion occur. Array leakage current data are presented.

  5. 54. Photocopy of Structural drawing, dated August 6, 1976 by ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    54. Photocopy of Structural drawing, dated August 6, 1976 by Raytheon Company. Original drawing property of United States Air Force, 21" Space Command. S-14 - PAVE PAWS TECHNICAL FACILITY - OTIS AFB - ARRAY DETAILS. DRAWING NO. AW35-46-06 - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  6. The Need for Caregiver Education and Training in the Assisted Living Industry

    ERIC Educational Resources Information Center

    Falk-Huzar, Erica

    2017-01-01

    Assisted living is dedicated to serving individuals with a wide array of disabilities. Training and education are vital for staff and residents in assisted-living facilities because resident care depends on staff knowledge to provide for their safety and welfare. However, little research has been conducted on assisted-living facilities, let alone…

  7. Proceedings of the Third Infrared Detector Technology Workshop

    NASA Technical Reports Server (NTRS)

    Mccreight, Craig R. (Compiler)

    1989-01-01

    This volume consists of 37 papers which summarize results presented at the Third Infrared Detector Technology Workshop, held February 7-9, 1989, at Ames Research Center. The workshop focused on infrared (IR) detector, detector array, and cryogenic electronic technologies relevant to low-background space astronomy. Papers on discrete IR detectors, cryogenic readouts, extrinsic and intrinsic IR arrays, and recent results from ground-based observations with integrated arrays were given. Recent developments in the second-generation Hubble Space Telescope (HST) infrared spectrometer and in detectors and arrays for the European Space Agency's Infrared Space Observatory (ISO) are also included, as are status reports on the Space Infrared Telescope Facility (SIRTF) and the Stratospheric Observatory for Infrared Astronomy (SOFIA) projects.

  8. Betavoltaic effect in titanium dioxide nanotube arrays under build-in potential difference

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Chen, Ranbin; San, Haisheng; Liu, Guohua; Wang, Kaiying

    2015-05-01

    We report the fabrication of sandwich-type metal/TiO2 nanotube (TNT) array/metal structures as well as their betavoltaic effects under build-in voltage through contact potential difference. The sandwiched structure is integrated by immobilized TNT arrays on Ti foil with radioisotope 63Ni planar source on Ni substrate (Ni-63Ni/TNT array/Ti). Under irradiation of the 63Ni source with activity of 8 mCi, the structure (TNT diameter ∼ 130 nm, length ∼ 11 μm) presents optimum energy conversion efficiency of 7.30% with open-circuit voltage of 1.54 V and short-circuit current of 12.43 nA. The TNT arrays exhibit a highly potential for developing betavoltaic batteries due to its wide band gap and nanotube array configuration. The TNT-betavoltaic concept offers a facile solution for micro/nano electronics with high efficiency and long life-time instead of conventional planar junction-type batteries.

  9. PEP solar array definition study

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The power extension package (PEP) is a solar array system that will be used on the space transportation system to augment the power of the Orbiter vehicle and to extend the time the vehicle may stay in orbit. The baseline configuration of the PEP is reviewed. The programmatic aspects of the design covering the development plan, the manufacturing facility plan and the estimated costs and risks are presented.

  10. The Inauguration of the Atacama Large Millimeter/submillimeter Array

    NASA Astrophysics Data System (ADS)

    Testi, L.; Walsh, J.

    2013-06-01

    On 13 March 2013 the official inauguration of the Atacama Large Millimeter/submillimeter Array (ALMA) took place at the Operations Support Facility in northern Chile. A report of the event and the preceding press conference is presented and the texts of the speeches by the President of Chile, Sebastián Piñera, and the Director General of ESO, Tim de Zeeuw, are included.

  11. ArrayBridge: Interweaving declarative array processing with high-performance computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xing, Haoyuan; Floratos, Sofoklis; Blanas, Spyros

    Scientists are increasingly turning to datacenter-scale computers to produce and analyze massive arrays. Despite decades of database research that extols the virtues of declarative query processing, scientists still write, debug and parallelize imperative HPC kernels even for the most mundane queries. This impedance mismatch has been partly attributed to the cumbersome data loading process; in response, the database community has proposed in situ mechanisms to access data in scientific file formats. Scientists, however, desire more than a passive access method that reads arrays from files. This paper describes ArrayBridge, a bi-directional array view mechanism for scientific file formats, that aimsmore » to make declarative array manipulations interoperable with imperative file-centric analyses. Our prototype implementation of ArrayBridge uses HDF5 as the underlying array storage library and seamlessly integrates into the SciDB open-source array database system. In addition to fast querying over external array objects, ArrayBridge produces arrays in the HDF5 file format just as easily as it can read from it. ArrayBridge also supports time travel queries from imperative kernels through the unmodified HDF5 API, and automatically deduplicates between array versions for space efficiency. Our extensive performance evaluation in NERSC, a large-scale scientific computing facility, shows that ArrayBridge exhibits statistically indistinguishable performance and I/O scalability to the native SciDB storage engine.« less

  12. High Rate User Ka-Band Phased Array Antenna Test Results

    NASA Technical Reports Server (NTRS)

    Caroglanian, Armen; Perko, Kenneth; Seufert, Steve; Dod, Tom; Warshowsky, Jay; Day, John H. (Technical Monitor)

    2001-01-01

    The High Rate User Phased Array Antenna (HRUPAA) is a Ka-Band planar phased array designed by the Harris Corporation for the NASA Goddard Space Flight Center. The HRUPAA permits a satellite to downlink data either to a ground station or through the Tracking and Data Relay Satellite System (TDRSS). The HRUPAA is scanned electronically by ground station / user satellite command over a 120 degree cone angle. The phased array has the advantage of not imparting attitude disturbances to the user spacecraft. The 288-element transmit-only array has distributed RF amplifiers integrated behind each of the printed patch antenna elements. The array has 33 dBW EIRP and is left-hand circularly polarized. An engineering model of a partially populated array has been developed and delivered to NASA Goddard Space Flight Center. This report deals with the testing of the engineering model at the Goddard Antenna Range near-field and compact range facilities. The antenna specifications are described first, followed by the test plan and test results.

  13. Solar Simulation for the CREST Preflight Thermal-Vacuum Test at B-2

    NASA Technical Reports Server (NTRS)

    Ziemke, Robert A.

    2012-01-01

    In June 2011, the multi-university sponsored Cosmic Ray Electron Synchrotron Telescope (CREST) has undergone thermal-vacuum qualification testing at the NASA Glenn Research Center (GRC), Plum Brook Station, Sandusky, Ohio. The testing was performed in the B-2 Space Propulsion Facility vacuum chamber. The CREST was later flown over the Antarctic region as the payload of a stratospheric balloon. Solar simulation was provided by a system of planar infrared lamp arrays specifically designed for CREST. The lamp arrays, in conjunction with a liquid-nitrogen-cooled cold wall, achieved the required thermal conditions for the qualification tests. The following slides accompanied the presentation of the report entitled Solar Simulation for the CREST Preflight Thermal-Vacuum Test at B-2, at the 27th Aerospace Testing Seminar, October 2012. The presentation described the test article, the test facility capability, the solar simulation requirements, the highlights of the engineering approach, and the results achieved. The presentation was intended to generate interest in the report and in the B-2 test facility.

  14. Extraterrestrial processing and manufacturing of large space systems. Volume 3: Executive summary

    NASA Technical Reports Server (NTRS)

    Miller, R. H.; Smith, D. B. S.

    1979-01-01

    Facilities and equipment are defined for refining processes to commercial grade of lunar material that is delivered to a 'space manufacturing facility' in beneficiated, primary processed quality. The manufacturing facilities and the equipment for producing elements of large space systems from these materials and providing programmatic assessments of the concepts are also defined. In-space production processes of solar cells (by vapor deposition) and arrays, structures and joints, conduits, waveguides, RF equipment radiators, wire cables, converters, and others are described.

  15. Operation of the 25kW NASA Lewis Research Center Solar Regenerative Fuel Cell Tested Facility

    NASA Technical Reports Server (NTRS)

    Moore, S. H.; Voecks, G. E.

    1997-01-01

    Assembly of the NASA Lewis Research Center(LeRC)Solar Regenerative Fuel Cell (RFC) Testbed Facility has been completed and system testing has proceeded. This facility includes the integration of two 25kW photovoltaic solar cell arrays, a 25kW proton exchange membrane (PEM) electrolysis unit, four 5kW PEM fuel cells, high pressure hydrogen and oxygen storage vessels, high purity water storage containers, and computer monitoring, control and data acquisition.

  16. Technology, safety and costs of decommissioning reference independent spent fuel storage installations. [Contains glossary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ludwick, J D; Moore, E B

    1984-01-01

    Safety and cost information is developed for the conceptual decommissioning of five different types of reference independent spent fuel storage installations (ISFSIs), each of which is being given consideration for interim storage of spent nuclear fuel in the United States. These include one water basin-type ISFSI (wet) and four dry ISFSIs (drywell, silo, vault, and cask). The reference ISFSIs include all component parts necessary for the receipt, handling and storage of spent fuel in a safe and efficient manner. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, and potential radiation doses tomore » the public. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment followed by long-term surveillance).« less

  17. Loss of control air at Browns Ferry Unit One: accident sequence analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrington, R.M.; Hodge, S.A.

    1986-04-01

    This study describes the predicted response of the Browns Ferry Nuclear Plant to a postulated complete failure of plant control air. The failure of plant control air cascades to include the loss of drywell control air at Units 1 and 2. Nevertheless, this is a benign accident unless compounded by simultaneous failures in the turbine-driven high pressure injection systems. Accident sequence calculations are presented for Loss of Control Air sequences with assumed failure upon demand of the Reactor Core Isolation Cooling (RCIC) and the High Pressure Coolant Injection (HPCI) at Unit 1. Sequences with and without operator action are considered.more » Results show that the operators can prevent core uncovery if they take action to utilize the Control Rod Drive Hydraulic System as a backup high pressure injection system.« less

  18. Studies of neutron-rich nuclei far from stability at TRISTAN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gill, R.L.

    The ISOL facility, TRISTAN, is a user facility located at Brookhaven National Laboratory's High Flux Beam Reactor. Short-lived, neutron-rich nuclei, far from stability, are produced by thermal neutron fission of /sup 235/U. An extensive array of experimental end stations are available for nuclear structure studies. These studies are augmented by a variety of long-lived ion sources suitable for use at a reactor facility. Some recent results at TRISTAN are presented as examples of using an ISOL facility to study series of nuclei, whereby an effective means of conducting nuclear structure investigations is available.

  19. Splitting a droplet for femtoliter liquid patterns and single cell isolation.

    PubMed

    Li, Huizeng; Yang, Qiang; Li, Guannan; Li, Mingzhu; Wang, Shutao; Song, Yanlin

    2015-05-06

    Well-defined microdroplet generation has attracted great interest, which is important for the high-resolution patterning and matrix distribution for chemical reactions and biological assays. By sliding a droplet on a patterned superhydrophilic/superhydrophobic substrate, tiny microdroplet arrays low to femtoliter were achieved with uniform volume and composition. Using this method, cells were successfully isolated, resulting in a single cell array. The droplet-splitting method is facile, sample-effective, and low-cost, which will be of great potential for the development of microdroplet arrays for biological analysis as well as patterning system and devices.

  20. Infrared technology for satellite power conversion. [antenna arrays and bolometers

    NASA Technical Reports Server (NTRS)

    Campbell, D. P.; Gouker, M. A.; Gallagher, J. J.

    1984-01-01

    Successful fabrication of bismuth bolometers led to the observation of antenna action rom array elements. Fabrication of the best antennas arrays was made more facile with finding that increased argon flow during the dc sputtering produced more uniform bismuth films and bonding to antennas must be done with the substrate temperaure below 100 C. Higher temperatures damaged the bolometers. During the testing of the antennas, it was found that the use of a quasi-optical system provided a uniform radiation field. Groups of antennas were bonded in series and in parallel with the parallel configuration showing the greater response.

  1. Antenna design and implementation for the future space Ultra-Long wavelength radio telescope

    NASA Astrophysics Data System (ADS)

    Chen, Linjie; Aminaei, Amin; Gurvits, Leonid I.; Wolt, Marc Klein; Pourshaghaghi, Hamid Reza; Yan, Yihua; Falcke, Heino

    2018-04-01

    In radio astronomy, the Ultra-Long Wavelengths (ULW) regime of longer than 10 m (frequencies below 30 MHz), remains the last virtually unexplored window of the celestial electromagnetic spectrum. The strength of the science case for extending radio astronomy into the ULW window is growing. However, the opaqueness of the Earth's ionosphere makes ULW observations by ground-based facilities practically impossible. Furthermore, the ULW spectrum is full of anthropogenic radio frequency interference (RFI). The only radical solution for both problems is in placing an ULW astronomy facility in space. We present a concept of a key element of a space-borne ULW array facility, an antenna that addresses radio astronomical specifications. A tripole-type antenna and amplifier are analysed as a solution for ULW implementation. A receiver system with a low power dissipation is discussed as well. The active antenna is optimized to operate at the noise level defined by the celestial emission in the frequency band 1 - 30 MHz. Field experiments with a prototype tripole antenna enabled estimates of the system noise temperature. They indicated that the proposed concept meets the requirements of a space-borne ULW array facility.

  2. Numerical aerodynamic simulation facility preliminary study, volume 2 and appendices

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Data to support results obtained in technology assessment studies are presented. Objectives, starting points, and future study tasks are outlined. Key design issues discussed in appendices include: data allocation, transposition network design, fault tolerance and trustworthiness, logic design, processing element of existing components, number of processors, the host system, alternate data base memory designs, number representation, fast div 521 instruction, architectures, and lockstep array versus synchronizable array machine comparison.

  3. Development of a Facility for Combustion Stability Experiments at Supercritical Pressure

    DTIC Science & Technology

    2013-12-01

    by the exhaust orifice. This technique adds freedom for designing a large array experimental conditions, because chamber pressure is controlled...analytical examination reveals a broad array of frequencies. The analytical relationship between chamber length L, acoustic frequency fF, and the speed...the pressure amplitude is directly controlled by altering the voltage input to the sirens, similar to a traditional loudspeaker . Last, both a PN and

  4. Application of MEMS Microphone Array Technology to Airframe Noise Measurements

    NASA Technical Reports Server (NTRS)

    Humphreys, William M., Jr.; Shams, Qamar A.; Graves, Sharon S.; Sealey, Bradley S.; Bartram, Scott M.; Comeaux, Toby

    2005-01-01

    Current generation microphone directional array instrumentation is capable of extracting accurate noise source location and directivity data on a variety of aircraft components, resulting in significant gains in test productivity. However, with this gain in productivity has come the desire to install larger and more complex arrays in a variety of ground test facilities, creating new challenges for the designers of array systems. To overcome these challenges, a research study was initiated to identify and develop hardware and fabrication technologies which could be used to construct an array system exhibiting acceptable measurement performance but at much lower cost and with much simpler installation requirements. This paper describes an effort to fabricate a 128-sensor array using commercially available Micro-Electro-Mechanical System (MEMS) microphones. The MEMS array was used to acquire noise data for an isolated 26%-scale high-fidelity Boeing 777 landing gear in the Virginia Polytechnic Institute and State University Stability Tunnel across a range of Mach numbers. The overall performance of the array was excellent, and major noise sources were successfully identified from the measurements.

  5. Thermal/Dynamic Characterization Test of the Solar Array Panel for Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Jenkins, Kathleen; Hershfeld, Donald J.

    1999-01-01

    The Hubble Space Telescope has experienced a problem maintaining pointing accuracy during emergence of the spacecraft from the Earth's shadow. The problem has been attributed to the rapid thermal gradient that develops when the heat from the Sun strikes the cold solar arrays. The thermal gradient causes the solar arrays to deflect or bend and this motion is sufficient to disturb the pointing control system. In order to alleviate this problem, a new design for the solar arrays has been fabricated. These new solar arrays will replace the current solar arrays during a future Hubble servicing mission. The new solar arrays have been designed so that the effective net motion of the center of mass of each panel is essentially zero. Although the solar array thermal deflection problem has been studied extensively over a period of years, a full scale test of the actual flight panels was required in order to establish confidence in the analyses. This test was conducted in the JPL Solar Simulation Facility in April, 1999. This presentation will discuss the objectives and methods of the test and present some typical test data.

  6. Space solar array reliability: A study and recommendations

    NASA Astrophysics Data System (ADS)

    Brandhorst, Henry W., Jr.; Rodiek, Julie A.

    2008-12-01

    Providing reliable power over the anticipated mission life is critical to all satellites; therefore solar arrays are one of the most vital links to satellite mission success. Furthermore, solar arrays are exposed to the harshest environment of virtually any satellite component. In the past 10 years 117 satellite solar array anomalies have been recorded with 12 resulting in total satellite failure. Through an in-depth analysis of satellite anomalies listed in the Airclaim's Ascend SpaceTrak database, it is clear that solar array reliability is a serious, industry-wide issue. Solar array reliability directly affects the cost of future satellites through increased insurance premiums and a lack of confidence by investors. Recommendations for improving reliability through careful ground testing, standardization of testing procedures such as the emerging AIAA standards, and data sharing across the industry will be discussed. The benefits of creating a certified module and array testing facility that would certify in-space reliability will also be briefly examined. Solar array reliability is an issue that must be addressed to both reduce costs and ensure continued viability of the commercial and government assets on orbit.

  7. 1100789

    NASA Image and Video Library

    2011-06-13

    BALL AEROSPACE ENGINEER DAVE CHANEY, (L), AND MARSHALL ENGINEER HARLAN HAIGHT, (R), GUIDE ARRAY OF SIX GOLD-PLATED JAMES WEBB SPACE TELESCOPE MIRRORS AFTER FINAL ACCEPTANCE TESTING AT MARSHALL'S X-RAY AND CRYOGENIC FACILITY

  8. 1100788

    NASA Image and Video Library

    2011-06-13

    BALL AEROSPACE ENGINEER DAVE CHANEY, (L), AND MARSHALL ENGINEER HARLAN HAIGHT, (R), GUIDE ARRAY OF SIX GOLD-PLATED JAMES WEBB SPACE TELESCOPE MIRRORS AFTER FINAL ACCEPTANCE TESTING AT MARSHALL'S X-RAY AND CRYOGENIC FACILITY

  9. 1100792

    NASA Image and Video Library

    2011-06-13

    BALL AEROSPACE ENGINEER DAVE CHANEY, (L), AND MARSHALL ENGINEER HARLAN HAIGHT, (R), GUIDE ARRAY OF SIX GOLD-PLATED JAMES WEBB SPACE TELESCOPE MIRRORS AFTER FINAL ACCEPTANCE TESTING AT MARSHALL'S X-RAY AND CRYOGENIC FACILITY

  10. 1100790

    NASA Image and Video Library

    2011-06-13

    BALL AEROSPACE ENGINEER DAVE CHANEY, (L), AND MARSHALL ENGINEER HARLAN HAIGHT, (R), GUIDE ARRAY OF SIX GOLD-PLATED JAMES WEBB SPACE TELESCOPE MIRRORS AFTER FINAL ACCEPTANCE TESTING AT MARSHALL'S X-RAY AND CRYOGENIC FACILITY

  11. 1100793

    NASA Image and Video Library

    2011-06-13

    BALL AEROSPACE ENGINEER DAVE CHANEY, (L), AND MARSHALL ENGINEER HARLAN HAIGHT, (R), GUIDE ARRAY OF SIX GOLD-PLATED JAMES WEBB SPACE TELESCOPE MIRRORS AFTER FINAL ACCEPTANCE TESTING AT MARSHALL'S X-RAY AND CRYOGENIC FACILITY

  12. 1100787

    NASA Image and Video Library

    2011-06-13

    BALL AEROSPACE ENGINEER DAVE CHANEY, (L), AND MARSHALL ENGINEER HARLAN HAIGHT, (R), GUIDE ARRAY OF SIX GOLD-PLATED JAMES WEBB SPACE TELESCOPE MIRRORS AFTER FINAL ACCEPTANCE TESTING AT MARSHALL'S X-RAY AND CRYOGENIC FACILITY

  13. 1100791

    NASA Image and Video Library

    2011-06-13

    BALL AEROSPACE ENGINEER DAVE CHANEY, (L), AND MARSHALL ENGINEER HARLAN HAIGHT, (R), GUIDE ARRAY OF SIX GOLD-PLATED JAMES WEBB SPACE TELESCOPE MIRRORS AFTER FINAL ACCEPTANCE TESTING AT MARSHALL'S X-RAY AND CRYOGENIC FACILITY

  14. 1100794

    NASA Image and Video Library

    2011-06-13

    BALL AEROSPACE ENGINEER DAVE CHANEY, (L), AND MARSHALL ENGINEER HARLAN HAIGHT, (R), GUIDE ARRAY OF SIX GOLD-PLATED JAMES WEBB SPACE TELESCOPE MIRRORS AFTER FINAL ACCEPTANCE TESTING AT MARSHALL'S X-RAY AND CRYOGENIC FACILITY

  15. Design and Use of Microphone Directional Arrays for Aeroacoustic Measurements

    NASA Technical Reports Server (NTRS)

    Humphreys, William M., Jr.; Brooks, Thomas F.; Hunter, William W., Jr.; Meadows, Kristine R.

    1998-01-01

    An overview of the development of two microphone directional arrays for aeroacoustic testing is presented. These arrays were specifically developed to measure airframe noise in the NASA Langley Quiet Flow Facility. A large aperture directional array using 35 flush-mounted microphones was constructed to obtain high resolution noise localization maps around airframe models. This array possesses a maximum diagonal aperture size of 34 inches. A unique logarithmic spiral layout design was chosen for the targeted frequency range of 2-30 kHz. Complementing the large array is a small aperture directional array, constructed to obtain spectra and directivity information from regions on the model. This array, possessing 33 microphones with a maximum diagonal aperture size of 7.76 inches, is easily moved about the model in elevation and azimuth. Custom microphone shading algorithms have been developed to provide a frequency- and position-invariant sensing area from 10-40 kHz with an overall targeted frequency range for the array of 5-60 kHz. Both arrays are employed in acoustic measurements of a 6 percent of full scale airframe model consisting of a main element NACA 632-215 wing section with a 30 percent chord half-span flap. Representative data obtained from these measurements is presented, along with details of the array calibration and data post-processing procedures.

  16. Demonstration Of Fast, Single-Shot Photocathode QE Mapping Method Using Mla Pattern Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wisniewski, E. E.; Conde, M.; Doran, D. S.

    Quantum efficiency (QE) is the chief figure of merit in the characterization of photocathodes. Semiconductor photocathodes, especially when used in high rep-rate photoinjectors, are known to show QE degradation over time and must be replaced. The totalQE is the basic diagnosticwhich is used widely and is easy to obtain. However, a QE map indicating variations of QE across the cathode surface has greater utility. It can quickly diagnose problems of QE inhomogeneity. Most QE mapping techniques require hours to complete and are thus disruptive to a user facility schedule. A fast, single-shot method has been proposed using a micro-lens arraymore » (MLA) generated QE map. In this paper we report the implementation of the method at Argonne Wakefield Accelerator facility. A micro-lens array (MLA) is used to project an array of beamlets onto the photocathode. The resulting photoelectron beam in the form of an array of electron beamlets is imaged at a YAG screen. Four synchronized measurements are made and the results used to produce a QE map of the photocathode.« less

  17. Plasmonic nanorod arrays of a two-segment dimer and a coaxial cable with 1 nm gap for large field confinement and enhancement

    NASA Astrophysics Data System (ADS)

    Cheng, Zi-Qiang; Nan, Fan; Yang, Da-Jie; Zhong, Yu-Ting; Ma, Liang; Hao, Zhong-Hua; Zhou, Li; Wang, Qu-Quan

    2015-01-01

    Seeking plasmonic nanostructures with large field confinement and enhancement is significant for photonic and electronic nanodevices with high sensitivity, reproducibility, and tunability. Here, we report the synthesis of plasmonic arrays composed of two-segment dimer nanorods and coaxial cable nanorods with ~1 nm gap insulated by a self-assembled Raman molecule monolayer. The gap-induced plasmon coupling generates an intense field in the gap region of the dimer junction and the cable interlayer. As a result, the longitudinal plasmon resonance of nanorod arrays with high tunability is obviously enhanced. Most interestingly, the field enhancement of dimer nanorod arrays can be tuned by the length ratio L1/L2 of the two segments, and the maximal enhancement appears at L1/L2 = 1. In that case, the two-photon luminescence (TPL) of dimer nanorod arrays and the Raman intensity in the dimer junction is enhanced by 27 and 30 times, respectively, under resonant excitation. In the same way, the Raman intensity in the gap region is enhanced 16 times for the coaxial cable nanorod arrays. The plasmonic nanorod arrays synthesized by the facile method, having tunable plasmon properties and large field enhancement, indicate an attractive pathway to the photonic nanodevices.Seeking plasmonic nanostructures with large field confinement and enhancement is significant for photonic and electronic nanodevices with high sensitivity, reproducibility, and tunability. Here, we report the synthesis of plasmonic arrays composed of two-segment dimer nanorods and coaxial cable nanorods with ~1 nm gap insulated by a self-assembled Raman molecule monolayer. The gap-induced plasmon coupling generates an intense field in the gap region of the dimer junction and the cable interlayer. As a result, the longitudinal plasmon resonance of nanorod arrays with high tunability is obviously enhanced. Most interestingly, the field enhancement of dimer nanorod arrays can be tuned by the length ratio L1/L2 of the two segments, and the maximal enhancement appears at L1/L2 = 1. In that case, the two-photon luminescence (TPL) of dimer nanorod arrays and the Raman intensity in the dimer junction is enhanced by 27 and 30 times, respectively, under resonant excitation. In the same way, the Raman intensity in the gap region is enhanced 16 times for the coaxial cable nanorod arrays. The plasmonic nanorod arrays synthesized by the facile method, having tunable plasmon properties and large field enhancement, indicate an attractive pathway to the photonic nanodevices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05544f

  18. Information Technology Division’s Technical Paper Abstracts

    DTIC Science & Technology

    1994-07-05

    antenna systems. 86 Title: An Electromagnetic Interference Study of Potential Transmitter Sites for the HF Active Auroral Research Program ( HAARP ...examined a number of potential sites for the location of the proposed High Frequency Active Auroral Research Program ( HAARP ) transmitter facility. The...proposed HAARP facility will consist of a large planar array of antennas excited by phased high power transmitters operating in the lower portion of the

  19. Solar panels offer array of hope.

    PubMed

    Baillie, Jonathan

    2009-01-01

    The installation of what is believed to be the largest array of solar thermal panels currently in use at a UK NHS hospital has taken place at an ideal time for the facility in question, Harlow's Princess Alexandra Hospital, with the hospital's gas bill alone having risen by 153% over the past nine months thanks to soaring energy prices, and the estates department keen to mitigate the effects in any way possible. Jonathan Baillie reports.

  20. Chemical growth of ZnO nanorod arrays on textured nanoparticle nanoribbons and its second-harmonic generation performance

    NASA Astrophysics Data System (ADS)

    Gui, Zhou; Wang, Xian; Liu, Jian; Yan, Shanshan; Ding, Yanyan; Wang, Zhengzhou; Hu, Yuan

    2006-07-01

    On the basis of the highly oriented ZnO nanoparticle nanoribbons as the growth seed layer (GSL) and solution growth technique, we have synthesized vertical ZnO nanorod arrays with high density over a large area and multi-teeth brush nanostructure, respectively, according to the density degree of the arrangement of nanoparticle nanoribbons GSL on the glass substrate. This controllable and convenient technique opens the possibility of creating nanostructured film for industrial fabrication and may represent a facile way to get similar structures of other compounds by using highly oriented GSL to promote the vertical arrays growth. The growth mechanism of the formation of the ordered nanorod arrays is also discussed. The second-order nonlinear optical coefficient d31 of the vertical ZnO nanorod arrays measured by the Maker fringes technique is 11.3 times as large as that of d36 KH 2PO 4 (KDP).

  1. Tunable laser interference lithography preparation of plasmonic nanoparticle arrays tailored for SERS.

    PubMed

    Gisbert Quilis, Nestor; Lequeux, Médéric; Venugopalan, Priyamvada; Khan, Imran; Knoll, Wolfgang; Boujday, Souhir; Lamy de la Chapelle, Marc; Dostalek, Jakub

    2018-05-23

    The facile preparation of arrays of plasmonic nanoparticles over a square centimeter surface area is reported. The developed method relies on tailored laser interference lithography (LIL) that is combined with dry etching and it offers means for the rapid fabrication of periodic arrays of metallic nanostructures with well controlled morphology. Adjusting the parameters of the LIL process allows for the preparation of arrays of nanoparticles with a diameter below hundred nanometers independently of their lattice spacing. Gold nanoparticle arrays were precisely engineered to support localized surface plasmon resonance (LSPR) with different damping at desired wavelengths in the visible and near infrared part of the spectrum. The applicability of these substrates for surface enhanced Raman scattering is demonstrated where cost-effective, uniform and reproducible substrates are of paramount importance. The role of deviations in the spectral position and the width of the LSPR band affected by slight variations of plasmonic nanostructures is discussed.

  2. Boeing's High Voltage Solar Tile Test Results

    NASA Astrophysics Data System (ADS)

    Reed, Brian J.; Harden, David E.; Ferguson, Dale C.; Snyder, David B.

    2002-10-01

    Real concerns of spacecraft charging and experience with solar array augmented electrostatic discharge arcs on spacecraft have minimized the use of high voltages on large solar arrays despite numerous vehicle system mass and efficiency advantages. Boeing's solar tile (patent pending) allows high voltage to be generated at the array without the mass and efficiency losses of electronic conversion. Direct drive electric propulsion and higher power payloads (lower spacecraft weight) will benefit from this design. As future power demand grows, spacecraft designers must use higher voltage to minimize transmission loss and power cable mass for very large area arrays. This paper will describe the design and discuss the successful test of Boeing's 500-Volt Solar Tile in NASA Glenn's Tenney chamber in the Space Plasma Interaction Facility. The work was sponsored by NASA's Space Solar Power Exploratory Research and Technology (SERT) Program and will result in updated high voltage solar array design guidelines being published.

  3. Enhanced electrochemical performance of orientated VO2(B) raft-like nanobelt arrays through direct lithiation for lithium ion batteries.

    PubMed

    Liu, Liang; Liu, Qiang; Zhao, Wen; Li, Guochun; Wang, Limei; Shi, Weidong; Chen, Long

    2017-02-10

    Lithiation modification of VO 2 (B) has been carried out by a facile hydrothermal process, and the compact and locally ordered VO 2 (B) raft-like nanobelt arrays have been prepared. The synthesis route provides a new approach to elaborate a VO 2 (B) nanostructure under a mild environment condition. It is found that the growth mechanism of VO 2 (B) raft-like nanobelt arrays is different from the traditional nucleation-growth process. A novel chemical lithiating-exfoliating-splitting model is proposed. Compared with the bulk counterpart, the lithiated VO 2 (B) raft-like nanobelt arrays as cathodes exhibit a higher discharge capacity and an enhanced high-rate performance owing to their increased structural anisotropy and decreased polarization. This work indicates that VO 2 (B) raft-like nanobelt arrays have great potential applications as cathode materials for lithium ion batteries.

  4. Enhanced electrochemical performance of orientated VO2(B) raft-like nanobelt arrays through direct lithiation for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Liu, Liang; Liu, Qiang; Zhao, Wen; Li, Guochun; Wang, Limei; Shi, Weidong; Chen, Long

    2017-02-01

    Lithiation modification of VO2(B) has been carried out by a facile hydrothermal process, and the compact and locally ordered VO2(B) raft-like nanobelt arrays have been prepared. The synthesis route provides a new approach to elaborate a VO2(B) nanostructure under a mild environment condition. It is found that the growth mechanism of VO2(B) raft-like nanobelt arrays is different from the traditional nucleation-growth process. A novel chemical lithiating-exfoliating-splitting model is proposed. Compared with the bulk counterpart, the lithiated VO2(B) raft-like nanobelt arrays as cathodes exhibit a higher discharge capacity and an enhanced high-rate performance owing to their increased structural anisotropy and decreased polarization. This work indicates that VO2(B) raft-like nanobelt arrays have great potential applications as cathode materials for lithium ion batteries.

  5. Boeing's High Voltage Solar Tile Test Results

    NASA Technical Reports Server (NTRS)

    Reed, Brian J.; Harden, David E.; Ferguson, Dale C.; Snyder, David B.

    2002-01-01

    Real concerns of spacecraft charging and experience with solar array augmented electrostatic discharge arcs on spacecraft have minimized the use of high voltages on large solar arrays despite numerous vehicle system mass and efficiency advantages. Boeing's solar tile (patent pending) allows high voltage to be generated at the array without the mass and efficiency losses of electronic conversion. Direct drive electric propulsion and higher power payloads (lower spacecraft weight) will benefit from this design. As future power demand grows, spacecraft designers must use higher voltage to minimize transmission loss and power cable mass for very large area arrays. This paper will describe the design and discuss the successful test of Boeing's 500-Volt Solar Tile in NASA Glenn's Tenney chamber in the Space Plasma Interaction Facility. The work was sponsored by NASA's Space Solar Power Exploratory Research and Technology (SERT) Program and will result in updated high voltage solar array design guidelines being published.

  6. Modification and benchmarking of SKYSHINE-III for use with ISFSI cask arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hertel, N.E.; Napolitano, D.G.

    1997-12-01

    Dry cask storage arrays are becoming more and more common at nuclear power plants in the United States. Title 10 of the Code of Federal Regulations, Part 72, limits doses at the controlled area boundary of these independent spent-fuel storage installations (ISFSI) to 0.25 mSv (25 mrem)/yr. The minimum controlled area boundaries of such a facility are determined by cask array dose calculations, which include direct radiation and radiation scattered by the atmosphere, also known as skyshine. NAC International (NAC) uses SKYSHINE-III to calculate the gamma-ray and neutron dose rates as a function of distance from ISFSI arrays. In thismore » paper, we present modifications to the SKYSHINE-III that more explicitly model cask arrays. In addition, we have benchmarked the radiation transport methods used in SKYSHINE-III against {sup 60}Co gamma-ray experiments and MCNP neutron calculations.« less

  7. Progress of the Swedish-Australian research collaboration on uncooled smart IR sensors

    NASA Astrophysics Data System (ADS)

    Liddiard, Kevin C.; Ringh, Ulf; Jansson, Christer; Reinhold, Olaf

    1998-10-01

    Progress is reported on the development of uncooled microbolometer IR focal plane detector arrays (IRFPDA) under a research collaboration between the Swedish Defence Research Establishment (FOA), and the Defence Science and Technology Organization (DSTO), Australia. The paper describes current focal plane detector arrays designed by Electro-optic Sensor Design (EOSD) for readout circuits developed by FOA. The readouts are fabricated in 0.8 micrometer CMOS, and have a novel signal conditioning and 16 bit parallel ADC design. The arrays are post-processed at DSTO on wafers supplied by FOA. During the past year array processing has been carried out at a new microengineering facility at DSTO, Salisbury, South Australia. A number of small format 16 X 16 arrays have been delivered to FOA for evaluation, and imaging has been demonstrated with these arrays. A 320 X 240 readout with 320 parallel 16 bit ADCs has been developed and IRFPDAs for this readout have been fabricated and are currently being evaluated.

  8. Using Network Theory to Understand Seismic Noise in Dense Arrays

    NASA Astrophysics Data System (ADS)

    Riahi, N.; Gerstoft, P.

    2015-12-01

    Dense seismic arrays offer an opportunity to study anthropogenic seismic noise sources with unprecedented detail. Man-made sources typically have high frequency, low intensity, and propagate as surface waves. As a result attenuation restricts their measurable footprint to a small subset of sensors. Medium heterogeneities can further introduce wave front perturbations that limit processing based on travel time. We demonstrate a non-parametric technique that can reliably identify very local events within the array as a function of frequency and time without using travel-times. The approach estimates the non-zero support of the array covariance matrix and then uses network analysis tools to identify clusters of sensors that are sensing a common source. We verify the method on simulated data and then apply it to the Long Beach (CA) geophone array. The method exposes a helicopter traversing the array, oil production facilities with different characteristics, and the fact that noise sources near roads tend to be around 10-20 Hz.

  9. A3 Subscale Diffuser Test Article Design

    NASA Technical Reports Server (NTRS)

    Saunders, G. P.

    2009-01-01

    This paper gives a detailed description of the design of the A3 Subscale Diffuser Test (SDT) Article Design. The subscale diffuser is a geometrically accurate scale model of the A3 altitude rocket facility. It was designed and built to support the SDT risk mitigation project located at the E3 facility at Stennis Space Center, MS (SSC) supporting the design and construction of the A3 facility at SSC. The subscale test article is outfitted with a large array of instrumentation to support the design verification of the A3 facility. The mechanical design of the subscale diffuser and test instrumentation are described here

  10. DOE LeRC photovoltaic systems test facility

    NASA Technical Reports Server (NTRS)

    Cull, R. C.; Forestieri, A. F.

    1978-01-01

    The facility was designed and built and is being operated as a national facility to serve the needs of the entire DOE National Photovoltaic Program. The object of the facility is to provide a place where photovoltaic systems may be assembled and electrically configured, without specific physical configuration, for operation and testing to evaluate their performance and characteristics. The facility as a breadboard system allows investigation of operational characteristics and checkout of components, subsystems and systems before they are mounted in field experiments or demonstrations. The facility as currently configured consist of 10 kW of solar arrays built from modules, two inverter test stations, a battery storage system, interface with local load and the utility grid, and instrumentation and control necessary to make a flexible operating facility. Expansion to 30 kW is planned for 1978. Test results and operating experience are summaried to show the variety of work that can be done with this facility.

  11. Investigation of ablation of thin foil aluminum ribbon array at 1.5 MA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Fan, E-mail: yefan1931@126.com; Li, Zhenghong; Chen, Faxin

    We present experimental studies of initiation and ablation of a thin foil aluminum ribbon array at the 1.5 MA current level. In contrast to the previous work, we employ ribbon arrays with different ribbon gap parameters to investigate how this affects plasma initiation and foil ablation. Gated narrowband ultraviolet imaging indicated that the current was disorderly distributed at early period of discharge. But later on, it became axially stable and azimuthally symmetrical even for load with a gap as small as 0.1 mm. Using magnetic field probes installed inside and outside the array, we also observed that precursor current at positionsmore » with a distance of less than 2.7 mm to the central axis for 4-mm-radius arrays decreased when ribbon gap became small. Results of 0.2 mm gap ribbon array showed an evidence that ribbons can be merged. These observations imply that thin foil ribbon arrays may have potential applications in z-pinch experiments on large scale pulsed power facilities.« less

  12. Square and Rectangular Arrays from Directed Assembly of Sphere-forming Diblock Copolymers in Thin Films

    NASA Astrophysics Data System (ADS)

    Ji, Shengxiang; Nagpal, Umang; Liao, Wen; de Pablo, Juan; Nealey, Paul

    2010-03-01

    Patterns of square and rectangular arrays with nanoscale dimensions are scientifically and technologically important. Fabrication of square array patterns in thin films has been demonstrated by directed assembly of cylinder-forming diblock copolymers on chemically patterned substrates, supramolecular assembly of diblock copolymers, and self-assembly of triblock terpolymers. However, a macroscopic area of square array patterns with long-range order has not been achieved, and the fabrication of rectangular arrays has not been reported so far. Here we report a facile approach for fabricating patterns of square and rectangular arrays by directing the assembly of sphere-forming diblock copolymers on chemically patterned substrates. On stripe patterns, a square arrangement of half spheres, corresponding to the (100) plane of the body-centred cubic (BCC) lattice, formed on film surfaces. When the underlying pattern periods mismatched with the copolymer period, the square pattern could be stretched (up to ˜60%) or compressed (˜15%) to form rectangular arrays. Monte Carlo simulations have been further used to verify the experimental results and the 3-dimensional arrangements of spheres.

  13. Study of Plasma Flow Modes in Imploding Nested Arrays

    NASA Astrophysics Data System (ADS)

    Mitrofanov, K. N.; Aleksandrov, V. V.; Gritsuk, A. N.; Branitsky, A. V.; Frolov, I. N.; Grabovski, E. V.; Sasorov, P. V.; Ol'khovskaya, O. G.; Zaitsev, V. I.

    2018-02-01

    Results from experimental studies of implosion of nested wire and fiber arrays at currents of up to 4 MA at the Angara-5-1 facility are presented. Depending on the ratio between the radii of the inner and outer arrays, different modes of the plasma flow in the space between the inner and outer arrays were implemented: the sub-Alfvénic ( V r < V A ) and super-Alfvénic ( V r > V A ) modes and a mode with the formation of the transition shock wave (SW) region between the cascades. By varying the material of the outer array (tungsten wires or kapron fibers), it is shown that the plasma flow mode between the inner and outer arrays depends on the ratio between the plasma production rates ṁ in / ṁ out in the inner and outer arrays. The obtained experimental results are compared with the results of one-dimensional MHD simulation of the plasma flow between the arrays. Stable implosion of the inner array plasma was observed in experiments with combined nested arrays consisting of a fiber outer array and a tungsten inner array. The growth rates of magnetic Rayleigh-Taylor (MRT) instability in the inner array plasma at different numbers of fibers in the outer array and different ratios between the radii of the inner and outer arrays are compared. Suppression of MRT instability during the implosion of the inner array plasma results in the formation of a stable compact Z-pinch and generation of a soft X-ray pulse. A possible scenario of interaction between the plasmas of the inner and outer arrays is offered. The stability of the inner array plasma in the stage of final compression depends on the character of interaction of plasma jets from the outer array with the magnetic field of the inner array.

  14. Si-H induced synthesis of Si/Cu2O nanowire arrays for photoelectrochemical water splitting

    NASA Astrophysics Data System (ADS)

    Zhang, Shaoyang; She, Guangwei; Li, Shengyang; Mu, Lixuan; Shi, Wensheng

    2018-01-01

    We report a facile and low-cost method to synthesize Si/Cu2O heterojunction nanowire arrays, without SiOx, at the Si/Cu2O interface. The reductive Si-H bonds on the surface of Si nanowires plays a key role in situ by reducing Cu(II) ions to Cu2O nanocubes and avoiding the SiOx interface layer. Different pH values would vary the electrochemical potential of reactions and as a result, different products would be formed. Utilized as a photoanode for water splitting, Si/Cu2O nanowire arrays exhibit good photoelectrochemical performance.

  15. Electro-pumped whispering gallery mode ZnO microlaser array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, G. Y.; State Key Laboratory of Bioelectronics, School of Electronic Science and Engineering, Southeast University, Nanjing 210096; Li, J. T.

    2015-01-12

    By employing vapor-phase transport method, ZnO microrods are fabricated and directly assembled on p-GaN substrate to form a heterostructural microlaser array, which avoids of the relatively complicated etching process comparing previous work. Under applied forward bias, whispering gallery mode ZnO ultraviolet lasing is obtained from the as-fabricated heterostructural microlaser array. The device's electroluminescence originates from three distinct electron-hole recombination processes in the heterojunction interface, and whispering gallery mode ultraviolet lasing is obtained when the applied voltage is beyond the lasing threshold. This work may present a significant step towards future fabrication of a facile technique for micro/nanolasers.

  16. 3D MHD Simulations of Radial Wire Array Z-pinches

    NASA Astrophysics Data System (ADS)

    Niasse, N.; Chittenden, J. P.; Bland, S. N.; Suzuki-Vidal, F. A.; Hall, G. N.; Lebedev, S. V.; Calamy, H.; Zucchini, F.; Lassalle, F.; Bedoch, J. P.

    2009-01-01

    Recent experiments carried out on the MAGPIE (1 MA, 250 ns), OEDIPE (730 kA, 1.5 μs) and SPHINX (4 MA, 700 ns)[1] facilities have shown the relatively high level of scalability of the Radial Wire Array Z-pinches. These configurations where the wires stretch radially outwards from a central cathode offer numerous advantages over standard cylindrical arrays. In particular, imploding in a very stable and compact way, they seem suitable for coupling to small scale hohlraums. Making use of the 3D resistive magneto-hydrodynamic code GORGON[2] developed at Imperial College, the dynamic of the radial wire arrays is investigated. Influence of the cathode hotspots and wires angle on the x-ray emissions is also discussed. Comparison with experiments is offered to validate the numerical studies.

  17. Micrometeorite Impact Test of Flex Solar Array Coupon

    NASA Technical Reports Server (NTRS)

    Wright, K. H.; Schneider, T. A.; Vaughn, J. A.; Hoang, B.; Wong, F.; Gardiner, G.

    2016-01-01

    Spacecraft with solar arrays operate throughout the near earth environment and are planned for outer planet missions. An often overlooked test condition for solar arrays that is applicable to these missions is micrometeoroid impacts and possibly electrostatic discharge (ESD) events resulting from these impacts. NASA Marshall Space Flight Center (MSFC) is partnering with Space Systems/Loral, LLC (SSL) to examine the results of simulated micrometeoroid impacts on the electrical performance of an advanced, lightweight flexible solar array design. The test is performed at MSFC's Micro Light Gas Gun Facility with SSL-provided coupons. Multiple impacts were induced at various locations on a powered test coupon under different string voltage (0V-150V) and string current (1.1A - 1.65A) conditions. The setup, checkout, and results from the impact testing are discussed.

  18. Anomalous light trapping enhancement in a two-dimensional gold nanobowl array with an amorphous silicon coating.

    PubMed

    Yang, Liu; Kou, Pengfei; He, Nan; Dai, Hao; He, Sailing

    2017-06-26

    A facile polymethyl methacrylate-assisted turnover-transfer approach is developed to fabricate uniform hexagonal gold nanobowl arrays. The bare array shows inferior light trapping ability compared to its inverted counterpart (a gold nanospherical shell array). Surprisingly, after being coated with a 60-nm thick amorphous silicon film, an anomalous light trapping enhancement is observed with a significantly enhanced average absorption (82%), while for the inverted nanostructure, the light trapping becomes greatly weakened with an average absorption of only 66%. Systematic experimental and theoretical results show that the main reason for the opposite light trapping behaviors lies in the top amorphous silicon coating, which plays an important role in mediating the excitation of surface plasmon polaritons and the electric field distributions in both nanostructures.

  19. Inside NuSTAR Nose Cone

    NASA Image and Video Library

    2012-03-02

    A spacecraft technician is performing closeout work inside the fairing that will be installed around NASA Nuclear Spectroscopic Telescope Array NuSTAR spacecraft in a processing facility at Vandenberg Air Force Base in California.

  20. Performance of a 12-coil superconducting 'bumpy torus' magnet facility.

    NASA Technical Reports Server (NTRS)

    Roth, J. R.; Holmes, A. D.; Keller, T. A.; Krawczonek, W. M.

    1972-01-01

    The NASA-Lewis 'bumpy torus' facility consists of 12 superconducting coils, each 19 cm ID and capable of 3.0 tesla on their axes. The coils are equally spaced around a toroidal array with a major diameter of 1.52 m, and are mounted with the major axis of the torus vertical in a single vacuum tank 2.6 m in diameter. Final shakedown tests of the facility mapped out its magnetic, cryogenic, vacuum, mechanical, and electrical performance. The facility is now ready for use as a plasma physics research facility. A maximum magnetic field on the magnetic axis of 3.23 teslas has been held for a period of more than sixty minutes without a coil normalcy.

  1. The Design of Optical Sensor for the Pinhole/Occulter Facility

    NASA Technical Reports Server (NTRS)

    Greene, Michael E.

    1990-01-01

    Three optical sight sensor systems were designed, built and tested. Two optical lines of sight sensor system are capable of measuring the absolute pointing angle to the sun. The system is for use with the Pinhole/Occulter Facility (P/OF), a solar hard x ray experiment to be flown from Space Shuttle or Space Station. The sensor consists of a pinhole camera with two pairs of perpendicularly mounted linear photodiode arrays to detect the intensity distribution of the solar image produced by the pinhole, track and hold circuitry for data reduction, an analog to digital converter, and a microcomputer. The deflection of the image center is calculated from these data using an approximation for the solar image. A second system consists of a pinhole camera with a pair of perpendicularly mounted linear photodiode arrays, amplification circuitry, threshold detection circuitry, and a microcomputer board. The deflection of the image is calculated by knowing the position of each pixel of the photodiode array and merely counting the pixel numbers until threshold is surpassed. A third optical sensor system is capable of measuring the internal vibration of the P/OF between the mask and base. The system consists of a white light source, a mirror and a pair of perpendicularly mounted linear photodiode arrays to detect the intensity distribution of the solar image produced by the mirror, amplification circuitry, threshold detection circuitry, and a microcomputer board. The deflection of the image and hence the vibration of the structure is calculated by knowing the position of each pixel of the photodiode array and merely counting the pixel numbers until threshold is surpassed.

  2. Preliminary Estimates of Frequency-Direction Spectra Derived from the Samson Pressure Gage Array, November 1990 to May 1991

    DTIC Science & Technology

    1991-09-01

    1990 TO MAY 1991 by Charles E. Long Coastal Engineering Research Center DEPARTMENT OF THE ARMY Waterways Experiment Station, Corps of Engineers 3909...Public Release; Distribution Unlimited Prepared for DEPARTMENT OF THE ARMY US Army Corps of Engineers Washington, DC 20314-1000 Under Civil Works...Institution of Oc anography at the Coastal Engineering Research Center (CERC) Field Research Facility (FRF) near Duck, NC, a two-dimensional array of 24

  3. Heritage Park Facilities PV Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hobaica, Mark

    Project Objective: To procure a photovoltaic array (PV) system which will generate approximately 256kW of power to be used for the operations of the Aquatic Complex and the adjacent Senior Facility at the Heritage Park. This project complies with the EERE’s work and objectives by promoting the development and deployment of an energy system that will provide current and future generations with clean, efficient, affordable, and reliable energy.

  4. VLA Imaging of Protoplanetary Environments

    NASA Technical Reports Server (NTRS)

    Wilner, David J.

    2004-01-01

    We summarize the major accomplishments of our program to use high angular resolution observations at millimeter wavelengths to probe the structure of protoplanetary disks in nearby regions of star formation. The primary facilities used in this work were the Very Large Array (VLA) of the National Radio Astronomy Observatories (NRAO) located in New Mexico, and the recently upgraded Australia Telescope Compact Array (ATCA), located in Australia (to access sources in the far southern sky). We used these facilities to image thermal emission from dust particles in disks at long millimeter wavelengths, where the emission is optically thin and probes the full disk volume, including the inner regions of planet formation that remain opaque at shorter wavelengths. The best resolution obtained with the VLA is comparable to the size scales of the orbits of giant planets in our Solar System (< 10 AU).

  5. Performance of the Broadband Golay 3x6 Array Associated with the 2016 IRIS Community Wavefields Experiment

    NASA Astrophysics Data System (ADS)

    Bolarinwa, O. J.; Langston, C. A.; Sweet, J. R.; Anderson, K. R.; Woodward, R.

    2017-12-01

    A 6 km aperture regional array in the Golay 3x6 configuration was fielded as part of the IRIS Community Wavefields Experiment near Enid, Oklahoma from June 26 through November 12, 2016. The array consisted of 18 broadband CMG-3T seismometers deployed using a PASSCAL insulated vault design and RT130 data recorders. The Golay geometry is unusual in that it features 6 tripartite arrays in an open arrangement. Spacing and orientation of each tripartite array is such that the array uniformly samples the wavefield in space as determined from the co-array diagram even though the interior of the array configuration contains no seismic stations. The short wavelength performance of this array requires a high degree of phase correlation across its entire aperture, a characteristic that has been difficult to achieve for other regional array designs because of velocity heterogeneity in the earth. Located within an area of high regional seismicity, the IRIS experiment offered an opportunity to examine the slowness-frequency performance of a real-world Golay 3x6 array that was subject to constraints on land usage during deployment. Individual tripartite arrays fit well within a land survey quarter section but it proved difficult to match the ideal spacing between each subarray because of permitting problems. Nevertheless, these unavoidable geometry perturbations caused only minor changes to the theoretical array response. More surprisingly, observations of high frequency regional P and S phases show very high correlation over the array aperture that gives rise to precise array responses that are close to theoretical. Both the array geometry and relatively homogeneous structure under the array produces an exceptional facility that can be used for high-resolution studies of regional seismic waves.

  6. Final Steps in Mating NuSTAR to its Rocket

    NASA Image and Video Library

    2012-02-23

    Inside an environmental enclosure at Vandenberg Air Force Base processing facility in California, technicians complete the final steps in mating NASA Nuclear Spectroscopic Telescope Array NuSTAR and its Orbital Sciences Pegasus XL rocket.

  7. Copper vertical micro dendrite fin arrays and their superior boiling heat transfer capability

    NASA Astrophysics Data System (ADS)

    Wang, Ya-Qiao; Lyu, Shu-Shen; Luo, Jia-Li; Luo, Zhi-Yong; Fu, Yuan-Xiang; Heng, Yi; Zhang, Jian-Hui; Mo, Dong-Chuan

    2017-11-01

    Micro pin fin arrays have been widely used in electronic cooling, micro reactors, catalyst support, and wettability modification and so on, and a facile way to produce better micro pin fin arrays is demanded. Herein, a simple electrochemical method has been developed to fabricate copper vertical micro dendrite fin arrays (Cu-VMDFA) with controllable shapes, number density and height. High copper sulphate concentration is one key point to make the dendrite stand vertically. Besides, the applied current should rise at an appropriate rate to ensure the copper dendrite can grow vertically on its own. The Cu-VMDFA can significantly enhance the heat transfer coefficient by approximately twice compared to the plain copper surface. The Cu-VMDFA may be widely used in boiling heat transfer areas such as nuclear power plants, electronic cooling, heat exchangers, and so on.

  8. Big data challenges for large radio arrays

    NASA Astrophysics Data System (ADS)

    Jones, D. L.; Wagstaff, K.; Thompson, D. R.; D'Addario, L.; Navarro, R.; Mattmann, C.; Majid, W.; Lazio, J.; Preston, J.; Rebbapragada, U.

    2012-03-01

    Future large radio astronomy arrays, particularly the Square Kilometre Array (SKA), will be able to generate data at rates far higher than can be analyzed or stored affordably with current practices. This is, by definition, a "big data" problem, and requires an end-to-end solution if future radio arrays are to reach their full scientific potential. Similar data processing, transport, storage, and management challenges face next-generation facilities in many other fields. The Jet Propulsion Laboratory is developing technologies to address big data issues, with an emphasis in three areas: 1) Lower-power digital processing architectures to make highvolume data generation operationally affordable, 2) Date-adaptive machine learning algorithms for real-time analysis (or "data triage") of large data volumes, and 3) Scalable data archive systems that allow efficient data mining and remote user code to run locally where the data are stored.

  9. Controllable synthesis of hierarchical MgMoO4 nanosheet-arrays and nano-flowers assembled with mesoporous ultrathin nanosheets

    NASA Astrophysics Data System (ADS)

    Zhang, Lifeng; He, Wenjie; Shen, Kechao; Liu, Yi; Guo, Shouwu

    2018-04-01

    Self-standing hierarchical mesoporous MgMoO4 nanosheet-arrays and nano-flowers have been built via the self-assembly of ultrathin mesoporous nanosheets. The arrays and flower nanostructures can be facilely controlled by tuning the surfactant dosage. The formation mechanism of such special nanostructures has also been proposed. The flower structure has larger surface area than the arrays, owing to the more mesoporous nature of the former. Additionally, the as-prepared MgMoO4 nanomaterials not doped by any other ion have important optical properties, that enable the generation of strong red light with excitation wavelengths of 369 and 534 nm and emission of bright green light under irradiation by blue light (423 and 451 nm), demonstrating their potential applications in blue phototherapy and fluorescence labeling.

  10. Process-morphology scaling relations quantify self-organization in capillary densified nanofiber arrays.

    PubMed

    Kaiser, Ashley L; Stein, Itai Y; Cui, Kehang; Wardle, Brian L

    2018-02-07

    Capillary-mediated densification is an inexpensive and versatile approach to tune the application-specific properties and packing morphology of bulk nanofiber (NF) arrays, such as aligned carbon nanotubes. While NF length governs elasto-capillary self-assembly, the geometry of cellular patterns formed by capillary densified NFs cannot be precisely predicted by existing theories. This originates from the recently quantified orders of magnitude lower than expected NF array effective axial elastic modulus (E), and here we show via parametric experimentation and modeling that E determines the width, area, and wall thickness of the resulting cellular pattern. Both experiments and models show that further tuning of the cellular pattern is possible by altering the NF-substrate adhesion strength, which could enable the broad use of this facile approach to predictably pattern NF arrays for high value applications.

  11. Growth of Fe2O3/SnO2 nanobelt arrays on iron foil for efficient photocatalytic degradation of methylene blue

    NASA Astrophysics Data System (ADS)

    Lei, Rui; Ni, Hongwei; Chen, Rongsheng; Zhang, Bowei; Zhan, Weiting; Li, Yang

    2017-04-01

    Tin(IV) oxide has been intensively employed in optoelectronic devices due to its excellent electrical and optical properties. But the high recombination rates of the photogenerated electron-hole pairs of SnO2 nanomaterials often results in low photocatalytic efficiency. Herein, we proposed a facile route to prepare a novel Fe2O3/SnO2 heterojunction structure. The nanobelt arrays grown on iron foil naturally form a Schottky-type contact and provide a direct pathway for the photogenerated excitons. Hence, the Fe2O3/SnO2 nanobelt arrays exhibit much improved photocatalytic performance with the degradation rate constant on the Fe2O3/SnO2 film of approximately 12 times to that of α-Fe2O3 nanobelt arrays.

  12. Simple and fast method for fabrication of endoscopic implantable sensor arrays.

    PubMed

    Tahirbegi, I Bogachan; Alvira, Margarita; Mir, Mònica; Samitier, Josep

    2014-06-26

    Here we have developed a simple method for the fabrication of disposable implantable all-solid-state ion-selective electrodes (ISE) in an array format without using complex fabrication equipment or clean room facilities. The electrodes were designed in a needle shape instead of planar electrodes for a full contact with the tissue. The needle-shape platform comprises 12 metallic pins which were functionalized with conductive inks and ISE membranes. The modified microelectrodes were characterized with cyclic voltammetry, scanning electron microscope (SEM), and optical interferometry. The surface area and roughness factor of each microelectrode were determined and reproducible values were obtained for all the microelectrodes on the array. In this work, the microelectrodes were modified with membranes for the detection of pH and nitrate ions to prove the reliability of the fabricated sensor array platform adapted to an endoscope.

  13. Optimization of a Fast Neutron Scintillator for Real-Time Pulse Shape Discrimination in the Transient Reactor Test Facility (TREAT) Hodoscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, James T.; Thompson, Scott J.; Watson, Scott M.

    We present a multi-channel, fast neutron/gamma ray detector array system that utilizes ZnS(Ag) scintillator detectors. The system employs field programmable gate arrays (FPGAs) to do real-time all digital neutron/gamma ray discrimination with pulse height and time histograms to allow count rates in excess of 1,000,000 pulses per second per channel. The system detector number is scalable in blocks of 16 channels.

  14. The development and test of multi-anode microchannel array detector systems. 2: Soft X-ray detectors

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1983-01-01

    The techniques and procedures for producing very-large-format pulse-counting array detector systems for use in forthcoming high-energy astrophysics facilities were defined, and the structures and performance characteristics of high-sensitivity photocathodes for use at soft X-ray wavelengths between 100 and 1 A were determined. The progress made to date in each of these areas are described and the tasks that will be undertaken when the program is continued are summarized.

  15. Overview of engineering activities at the SMA

    NASA Astrophysics Data System (ADS)

    Christensen, R. D.; Kubo, D. Y.; Rao, Ramprasad

    2008-07-01

    The Submillmeter Array (SMA) consists of 8 6-meter telescopes on the summit of Mauna Kea. The array has been designed to operate from the summit of Mauna Kea and from 3 remote facilities: Hilo, Hawaii, Cambridge, Massachusetts and Taipei, Taiwan. The SMA provides high-resolution scientific observations in most of the major atmospheric windows from 180 to 700 GHz. Each telescope can house up to 8 receivers in a single cryostat and can operate with one or two receiver bands simultaneously. The array being a fully operational observatory, the demand for science time is extremely high. As a result specific time frames have been set-aside during both the day and night for engineering activities. This ensures that the proper amount of time can be spent on maintaining existing equipment or upgrading the system to provide high quality scientific output during nighttime observations. This paper describes the methods employed at the SMA to optimize engineering development of the telescopes and systems such that the time available for scientific observations is not compromised. It will also examine some of the tools used to monitor the SMA during engineering and science observations both at the site and remote facilities.

  16. Low Earth orbital atomic oxygen micrometeoroid, and debris interactions with photovoltaic arrays

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.; Degroh, Kim K.

    1991-01-01

    Polyimide Kapton solar array blankets can be protected from atomic oxygen in low earth orbit if SiO sub x thin film coatings are applied to their surfaces. The useful lifetime of a blanket protected in this manner strongly depends on the number and size of defects in the protective coatings. Atomic oxygen degradation is dominated by undercutting at defects in protective coatings caused by substrate roughness and processing rather than micrometeoroid or debris impacts. Recent findings from the Long Duration Exposure Facility (LDEF) and ground based studies show that interactions between atomic oxygen and silicones may cause grazing and contamination problems which may lead to solar array degradation.

  17. 3D highly oriented nanoparticulate and microparticulate array ofmetal oxide materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vayssieres, Lionel; Guo, Jinghua; Nordgren, Joseph

    2006-09-15

    Advanced nano and micro particulate thin films of 3d transition and post-transition metal oxides consisting of nanorods and microrods with parallel and perpendicular orientation with respect to the substrate normal, have been successfully grown onto various substrates by heteronucleation, without template and/or surfactant, from the aqueous condensation of solution of metal salts or metal complexes (aqueous chemical growth). Three-dimensional arrays of iron oxide nanorods and zinc oxide nanorods with parallel and perpendicular orientation are presented as well as the oxygen K-edge polarization dependent x-ray absorption spectroscopy (XAS) study of anisotropic perpendicularly oriented microrod array of ZnO performed at synchrotron radiationmore » source facility.« less

  18. Experimental results for a prototype 3-D acoustic imaging system using an ultra-sparse planar array

    NASA Astrophysics Data System (ADS)

    Impagliazzo, John M.; Chiang, Alice M.; Broadstone, Steven R.

    2002-11-01

    A handheld high resolution sonar has been under development to provide Navy Divers with a 3-D acoustic imaging system for mine reconnaissance. An ultra-sparse planar array, consisting of 121 1 mm x1 mm, 2 MHz elements, was fabricated to provide 3-D acoustic images. The array was 10 cm x10 cm. A full array at this frequency with elements at half-wavelength spacing would consist of 16384 elements. The first phase of testing of the planar array was completed in September 2001 with the characterization of the array in the NUWC Acoustic Test Facility (ATF). The center frequency was 2 MHz with a 667 kHz bandwidth. A system-level technology demonstration will be conducted in July 2002 with a real-time beamformer and near real-time 3-D imaging software. The demonstration phase consists of imaging simple targets at a range of 3 m in the ATF. Experimental results obtained will be reported on. [Work supported by the Defense Applied Research Project Agency, Advance Technology Office, Dr. Theo Kooij, Program Manager.

  19. Morphology-controlled cactus-like branched anatase TiO2 arrays with high light-harvesting efficiency for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Wu, Wu-Qiang; Rao, Hua-Shang; Feng, Hao-Lin; Guo, Xin-Dong; Su, Cheng-Yong; Kuang, Dai-Bin

    2014-08-01

    The present work establishes a facile process for one-step hydrothermal growth of vertically aligned anatase cactus-like branched TiO2 (CBT) arrays on a transparent conducting oxide (TCO) substrate. Various CBT morphologies are obtained by adjusting the potassium titanium oxide oxalate (PTO) reactant concentration (from 0.05 M to 0.15 M) and this yields a morphologically-controllable branched TiO2 arrays geometry. The CBT arrays consist of a vertically oriented nanowire (NW) or nanosheet (NS) stem and a host of short nanorod (NR) branches. The hierarchical CBT arrays demonstrate their excellent candidatures as photoanodes, which are capable of exhibiting high light-harvesting efficiency in dye-sensitized solar cells (DSSCs). Consequently, DSSCs based on 7 μm long optimized CBT arrays (0.05 M PTO), which are assembled with high density and high aspect-ratio NR branches, exhibit an impressive power conversion efficiency of 6.43% under AM 1.5G one sun illumination. The high performance can be attributed to the prominent light-harvesting efficiency, resulting from larger surface area and superior light-scattering capability.

  20. Design Study of DESCANT - DEuterated SCintillator Array for Neutron Tagging

    NASA Astrophysics Data System (ADS)

    Wong, James; Garrett, P. E.

    2007-10-01

    The fusion-evaporation reaction has been a useful tool for studying nuclei. A program of such reactions is being planned to take place at the TRIUMF facility in Vancouver, Canada using the TIGRESS array of gamma-ray detectors. A particular advantage of using these reactions is that they probe nuclei at moderate-to-high angular momenta. It would be of great interest to extend the study of high-spin states to neutron-rich systems. Following the formation of the fused compound system, the highly-excited state may lose energy by ``evaporating'' particles. Neutron evaporation is the predominant decay mode from neutron-rich compound systems so neutron detectors will be required. The probability of neutrons multiple scattering is quite high so a detector array must be able to differentiate between multiple neutrons evaporating from the reaction and a single neutron scattering multiple times. To address this issue we investigate the use of a novel neutron detector array -- one based on an array of deuterated liquid scintillators as neutron detectors. Results from early feasibility tests will be presented, along with the status of our GEANT4 simulations of the array performance.

  1. Fabrication of highly ordered 2D metallic arrays with disc-in-hole binary nanostructures via a newly developed nanosphere lithography

    NASA Astrophysics Data System (ADS)

    Yang, Xi; Guo, Wei; Wang, Xixi; Liao, Mingdun; Gao, Pingqi; Ye, Jichun

    2017-11-01

    2D metallic arrays with binary nanostructures derived from a nanosphere lithography (NSL) method have been rarely reported. Here, we demonstrate a novel NSL strategy to fabricate highly ordered 2D gold arrays with disc-in-hole binary (DIHB) nanostructures in large scale by employing a sacrificing layer combined with a three-step lift-off process. The structural parameters of the resultant DIHB arrays, such as periodicity, hole diameter, disc diameter and thicknesses can be facilely controlled by tuning the nanospheres size, etching condition, deposition angle and duration, respectively. Due to the intimate interactions between two subcomponents, the DIHB arrays exhibit both an extraordinary high surface-enhanced Raman scattering enhancement factor up to 5 × 108 and a low sheet resistance down to 1.7 Ω/sq. Moreover, the DIHB array can also be used as a metal catalyzed chemical etching catalytic pattern to create vertically-aligned Si nano-tube arrays for anti-reflectance application. This strategy provides a universal route for synthesizing other diverse binary nanostructures with controlled morphology, and thus expands the applications of the NSL to prepare ordered nanostructures with multi-function.

  2. Fabrication of a 3D micro/nano dual-scale carbon array and its demonstration as the microelectrodes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Jiang, Shulan; Shi, Tielin; Gao, Yang; Long, Hu; Xi, Shuang; Tang, Zirong

    2014-04-01

    An easily accessible method is proposed for the fabrication of a 3D micro/nano dual-scale carbon array with a large surface area. The process mainly consists of three critical steps. Firstly, a hemispherical photoresist micro-array was obtained by the cost-effective nanoimprint lithography process. Then the micro-array was transformed into hierarchical structures with longitudinal nanowires on the microstructure surface by oxygen plasma etching. Finally, the micro/nano dual-scale carbon array was fabricated by carbonizing these hierarchical photoresist structures. It has also been demonstrated that the micro/nano dual-scale carbon array can be used as the microelectrodes for supercapacitors by the electrodeposition of a manganese dioxide (MnO2) film onto the hierarchical carbon structures with greatly enhanced electrochemical performance. The specific gravimetric capacitance of the deposited micro/nano dual-scale microelectrodes is estimated to be 337 F g-1 at the scan rate of 5 mV s-1. This proposed approach of fabricating a micro/nano dual-scale carbon array provides a facile way in large-scale microstructures’ manufacturing for a wide variety of applications, including sensors and on-chip energy storage devices.

  3. Initial Assessment of Acoustic Source Visibility with a 24-Element Microphone Array in the Arnold Engineering Development Center 80- by 120-Foot Wind Tunnel at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Horne, William C.

    2011-01-01

    Measurements of background noise were recently obtained with a 24-element phased microphone array in the test section of the Arnold Engineering Development Center 80- by120-Foot Wind Tunnel at speeds of 50 to 100 knots (27.5 to 51.4 m/s). The array was mounted in an aerodynamic fairing positioned with array center 1.2m from the floor and 16 m from the tunnel centerline, The array plate was mounted flush with the fairing surface as well as recessed in. (1.27 cm) behind a porous Kevlar screen. Wind-off speaker measurements were also acquired every 15 on a 10 m semicircular arc to assess directional resolution of the array with various processing algorithms, and to estimate minimum detectable source strengths for future wind tunnel aeroacoustic studies. The dominant background noise of the facility is from the six drive fans downstream of the test section and first set of turning vanes. Directional array response and processing methods such as background-noise cross-spectral-matrix subtraction suggest that sources 10-15 dB weaker than the background can be detected.

  4. Uniting of NuSTAR Spacecraft and Rocket

    NASA Image and Video Library

    2012-02-23

    Inside an environmental enclosure at Vandenberg Air Force Base processing facility in California, solar panels line the sides of NASA Nuclear Spectroscopic Telescope Array NuSTAR, which was just joined to the Orbital Sciences Pegasus XL rocket.

  5. The future of Canada's radio astronomy

    NASA Astrophysics Data System (ADS)

    Gaensler, Bryan M.

    2017-11-01

    Through involvement in CHIME, ALMA, the Jansky VLA and the Murchison Widefield Array, Canada is well placed in current radio astronomy facilities and the future looks even brighter, with strategic interest in the SKA and the Next Generation VLA.

  6. Environmental effects on an optical-UV-IR synthesis array

    NASA Technical Reports Server (NTRS)

    Johnson, Stewart W.; Taylor, G. Jeffrey; Wetzel, John P.

    1992-01-01

    The Moon offers a stable platform with excellent seeing conditions for the Lunar Optical-UV-IR Synthesis Array (LOUISA). Some troublesome aspects of the lunar environment will need to be overcome to realize the full potential of the Moon as an observatory site. Mitigation of negative effects of vacuum, thermal radiation, dust, and micrometeorite impact is feasible with careful engineering and operational planning. Shields against impact, dust, and solar radiation need to be developed. Means of restoring degraded surfaces are probably essential for optical and thermal control surfaces deployed in long-lifetime lunar facilities. Precursor missions should be planned to validate and enhance the understanding of the lunar environment (e.g., dust behavior without and with human presence and to determine environmental effects on surfaces and components. Precursor missions should generate data useful in establishing keepout zones around observatory facilities while rocket launches and landings, mining, and vehicular traffic could be detrimental to observatory operation.

  7. Facile Synthesis of Highly Aligned Multiwalled Carbon Nanotubes from Polymer Precursors

    DOE PAGES

    Han, Catherine Y.; Xiao, Zhi-Li; Wang, H. Hau; ...

    2009-01-01

    We report a facile one-step approach which involves no flammable gas, no catalyst, and no in situ polymerization for the preparation of well-aligned carbon nanotube array. A polymer precursor is placed on top of an anodized aluminum oxide (AAO) membrane containing regular nanopore arrays, and slow heating under Ar flow allows the molten polymer to wet the template through adhesive force. The polymer spread into the nanopores of the template to form polymer nanotubes. Upon carbonization the resulting multi-walled carbon nanotubes duplicate the nanopores morphology precisely. The process is demonstrated for 230, 50, and 20 nm pore membranes. The synthesized carbonmore » nanotubes are characterized with scanning/transmission electron microscopies, Raman spectroscopy, and resistive measurements. Convenient functionalization of the nanotubes with this method is demonstrated through premixing CoPt nanoparticles in the polymer precursors.« less

  8. Electron temperature diagnostics of aluminium plasma in a z-pinch experiment at the “QiangGuang-1" facility

    NASA Astrophysics Data System (ADS)

    Li, Mo; Wu, Jian; Wang, Liang-Ping; Wu, Gang; Han, Juan-Juan; Guo, Ning; Qiu, Meng-Tong

    2012-12-01

    Two curved crystal spectrometers are set up on the “QiangGuang-1" generator to measure the z-pinch plasma spectra emitted from planar aluminum wire array loads. Kodak Biomax-MS film and an IRD AXUVHS5# array are employed to record time-integrated and time-resolved free-bound radiation, respectively. The photon energy recorded by each detector is ascertained by using the L-shell lines of molybdenum plasma. Based on the exponential relation between the continuum power and photon energies, the aluminum plasma electron temperatures are measured. For the time-integrated diagnosis, several “bright spots" indicate electron temperatures between (450 eV ~ 520 eV) ± 35%. And for the time-resolved ones, the result shows that the electron temperature reaches about 800 eV ± 30% at peak power. The system satisfies the demand of z-pinch plasma electron temperature diagnosis on a ~ 1 MA facility.

  9. Facile fabrication of Cu(II)-porphyrin MOF thin films from tetrakis(4-carboxyphenyl)porphyrin and Cu(OH)2 nanoneedle array

    NASA Astrophysics Data System (ADS)

    La, Duong Duc; Thi, Hoai Phuong Nguyen; Kim, Yong Shin; Rananaware, Anushri; Bhosale, Sheshanath V.

    2017-12-01

    Herein, we report a facile synthetic protocol to grow thin films of Cu(II) tetrakis(4-carboxyphenyl)porphyrin (CuTCPP) metal-organic frameworks (MOF) from a tetrakis(4-carboxyphenyl)porphyrin (H2TCPP) solution and the copper hydroxide (Cu(OH)2) nanoneedle array formed on a Cu substrate at room temperature. The formations of Cu-centered TCPP ligands and crystalline platelet-like Cu MOFs were successfully probed by SEM, XRD, FTIR, UV-vis and XPS. The formation process from Cu(OH)2 was monitored by using SEM images obtained at different reaction times during the first 24 h, thus suggesting the reaction pathway of Cu(OH)2 dissolution followed by the reprecipitation of CuTCPP MOFs at a near surface. In addition, the CuTCPP MOFs exhibited a high specific surface area of 408 m2/g.

  10. Large gamma-ray detector arrays and electromagnetic separators

    NASA Astrophysics Data System (ADS)

    Lee, I.-Yang

    2013-12-01

    The use of large gamma-ray detector arrays with electromagnetic separators is a powerful combination. Various types of gamma-ray detectors have been used; some provide high detector efficiency such as scintillation detector array, others use Ge detectors for good energy resolution, and recently developed Ge energy tracking arrays gives both high peak-to-background ratio and position resolution. Similarly, different types of separators were used to optimize the performance under different experimental requirements and conditions. For example, gas-filled separators were used in heavy element studies for their large efficiency and beam rejection factor. Vacuum separators with good isotope resolution were used in transfer and fragmentation reactions for the study of nuclei far from stability. This paper presents results from recent experiments using gamma-ray detector arrays in combination with electromagnetic separators, and discusses the physics opportunities provided by these instruments. In particular, we review the performance of the instruments currently in use, and discuss the requirements of instruments for future radioactive beam accelerator facilities.

  11. Inkjet-assisted layer-by-layer printing of quantum dot/enzyme microarrays for highly sensitive detection of organophosphorous pesticides.

    PubMed

    Luan, Enxiao; Zheng, Zhaozhu; Li, Xinyu; Gu, Hongxi; Liu, Shaoqin

    2016-04-15

    We present a facile fabrication of layer-by-layer (LbL) microarrays of quantum dots (QDs) and acetylcholinesterase enzyme (AChE). The resulting arrays had several unique properties, such as low cost, high integration and excellent flexibility and time-saving. The presence of organophosphorous pesticides (OPs) can inhibit the AChE activity and thus changes the fluorescent intensity of QDs/AChE microscopic dot arrays. Therefore, the QDs/AChE microscopic dot arrays were used for the sensitive visual detection of OPs. Linear calibration for parathion and paraoxon was obtained in the range of 5-100 μg L(-1) under the optimized conditions with the limit of detection (LOD) of 10 μg L(-1). The arrays have been successfully used for detection of OPs in fruits and water real samples. The new array was validated by comparison with conventional high performance liquid chromatography-mass spectrometry (HPLC-MS). Copyright © 2016 Elsevier B.V. All rights reserved.

  12. KSC00pp1721

    NASA Image and Video Library

    2000-10-27

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, STS-97 Mission Specialist Carlos Noriega checks out the mission payload, the P6 integrated truss segment, while Mission Specialist Joe Tanner looks on. Mission STS-97 is the sixth construction flight to the International Space Station. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the International Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. The mission includes two spacewalks by Noriega and Tanner to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  13. KSC00pp1720

    NASA Image and Video Library

    2000-10-27

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, STS-97 Mission Specialists Carlos Noriega (far left) and Joe Tanner (right) check out the mission payload, the P6 integrated truss segment. Mission STS-97 is the sixth construction flight to the International Space Station. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the International Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. The mission includes two spacewalks by Noriega and Tanner to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  14. KSC-00pp1721

    NASA Image and Video Library

    2000-10-27

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, STS-97 Mission Specialist Carlos Noriega checks out the mission payload, the P6 integrated truss segment, while Mission Specialist Joe Tanner looks on. Mission STS-97 is the sixth construction flight to the International Space Station. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the International Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. The mission includes two spacewalks by Noriega and Tanner to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  15. KSC-00pp1723

    NASA Image and Video Library

    2000-10-27

    In the Space Station Processing Facility, STS-97 Mission Specialists Carlos Noriega (left) and Joe Tanner check out the mission payload, the P6 integrated truss segment. Mission STS-97 is the sixth construction flight to the International Space Station. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the International Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. The mission includes two spacewalks by Noriega and Tanner to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  16. KSC-00pp1720

    NASA Image and Video Library

    2000-10-27

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, STS-97 Mission Specialists Carlos Noriega (far left) and Joe Tanner (right) check out the mission payload, the P6 integrated truss segment. Mission STS-97 is the sixth construction flight to the International Space Station. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the International Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. The mission includes two spacewalks by Noriega and Tanner to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  17. KSC-00pp1722

    NASA Image and Video Library

    2000-10-27

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, STS-97 Mission Specialists Carlos Noriega (left) and Joe Tanner check out the mission payload, the P6 integrated truss segment. Mission STS-97 is the sixth construction flight to the International Space Station. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the International Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. The mission includes two spacewalks by Noriega and Tanner to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  18. KSC00pp1722

    NASA Image and Video Library

    2000-10-27

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, STS-97 Mission Specialists Carlos Noriega (left) and Joe Tanner check out the mission payload, the P6 integrated truss segment. Mission STS-97 is the sixth construction flight to the International Space Station. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the International Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. The mission includes two spacewalks by Noriega and Tanner to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  19. Conceptual design of a hybrid Ge:Ga detector array

    NASA Technical Reports Server (NTRS)

    Parry, C. M.

    1984-01-01

    For potential applications in space infrared astronomy missions such as the Space Infrared Telescope Facility and the Large Deployable Reflector, integrated arrays of long-wavelength detectors are desired. The results of a feasibility study which developed a design for applying integrated array techniques to a long-wavelength (gallium-doped germanium) material to achieve spectral coverage between 30 and 200 microns are presented. An approach which builds up a two-dimensional array by stacking linear detector modules is presented. The spectral response of the Ge:Ga detectors is extended to 200 microns by application of uniaxial stress to the stack of modules. The detectors are assembled with 1 mm spacing between the elements. Multiplexed readout of each module is accomplished with integration sampling of a metal-oxide-semiconductor (MOS) switch chip. Aspects of the overall design, including the anticipated level of particle effects on the array in the space environment, a transparent electrode design for 200 microns response, estimates of optical crosstalk, and mechanical stress design calculations are included.

  20. Test results for electron beam charging of flexible insulators and composites. [solar array substrates, honeycomb panels, and thin dielectric films

    NASA Technical Reports Server (NTRS)

    Staskus, J. V.; Berkopec, F. D.

    1979-01-01

    Flexible solar-array substrates, graphite-fiber/epoxy - aluminum honeycomb panels, and thin dielectric films were exposed to monoenergetic electron beams ranging in energy from 2 to 20 keV in the Lewis Research Center's geomagnetic-substorm-environment simulation facility to determine surface potentials, dc currents, and surface discharges. The four solar-array substrate samples consisted of Kapton sheet reinforced with fabrics of woven glass or carbon fibers. They represented different construction techniques that might be used to reduce the charge accumulation on the array back surface. Five honeycomb-panel samples were tested, two of which were representative of Voyager antenna materials and had either conductive or nonconductive painted surfaces. A third sample was of Navstar solar-array substrate material. The other two samples were of materials proposed for use on Intelsat V. All the honeycomb-panel samples had graphite-fiber/epoxy composite face sheets. The thin dielectric films were 2.54-micrometer-thick Mylar and 7.62-micrometer-thick Kapton.

  1. Impact of LDEF photovoltaic experiment findings upon spacecraft solar array design and development requirements

    NASA Technical Reports Server (NTRS)

    Young, Leighton E.

    1993-01-01

    Photovoltaic cells (solar cells) and other solar array materials were flown in a variety of locations on the Long Duration Exposure Facility (LDEF). With respect to the predicted leading edge, solar array experiments were located at 0 degrees (row 9), 30 degrees (row 8) and 180 degrees (row 3). Postflight estimates of location of the experiments with respect to the velocity vector add 8.1 degrees to these values. Experiments were also located on the Earth end of the LDEF longitudinal axis. Types and magnitudes of detrimental effects differ between the locations with some commonality. Postflight evaluation of the solar array experiments reveal that some components/materials are very resistant to the environment to which they were exposed while others need protection, modification, or replacement. Interaction of materials with atomic oxygen (AO), as an area of major importance, was dramatically demonstrated by LDEF results. Information gained from the LDEF flight allows array developers to set new requirements for on-going and future technology and flight component development.

  2. Nine-analyte detection using an array-based biosensor

    NASA Technical Reports Server (NTRS)

    Taitt, Chris Rowe; Anderson, George P.; Lingerfelt, Brian M.; Feldstein, s. Mark. J.; Ligler, Frances S.

    2002-01-01

    A fluorescence-based multianalyte immunosensor has been developed for simultaneous analysis of multiple samples. While the standard 6 x 6 format of the array sensor has been used to analyze six samples for six different analytes, this same format has the potential to allow a single sample to be tested for 36 different agents. The method described herein demonstrates proof of principle that the number of analytes detectable using a single array can be increased simply by using complementary mixtures of capture and tracer antibodies. Mixtures were optimized to allow detection of closely related analytes without significant cross-reactivity. Following this facile modification of patterning and assay procedures, the following nine targets could be detected in a single 3 x 3 array: Staphylococcal enterotoxin B, ricin, cholera toxin, Bacillus anthracis Sterne, Bacillus globigii, Francisella tularensis LVS, Yersiniapestis F1 antigen, MS2 coliphage, and Salmonella typhimurium. This work maximizes the efficiency and utility of the described array technology, increasing only reagent usage and cost; production and fabrication costs are not affected.

  3. Optical Path Difference Fluctations at the CHARA Interferometric Array

    NASA Astrophysics Data System (ADS)

    Merand, A.; ten Brummelaar, T. A.; McAlister, H. A.; Ridgway, S. T.; Sturmann, J.; Sturmann, L.; Turner, N. H.; Bagnuolo, W. G.; Hrynevych, M.; Shure, M. A.

    2001-05-01

    Commissioning observations at the CHARA Array have been carried out with the two south telescopes, with a telescope separation of 34 meters. Due to the size of the array (>340 meters across) and the optical delay geometry, the beams travel horizontal distances of approximately 200 meters, with a number of reflections in the telescope coude area and the optical delay and beam combination areas. Stellar and laboratory observations have been analyzed to determine the variations of the optical path, as revealed by shifts in the interference pattern. The power spectra of the OPD variations are diagnostic of the atmospheric turbulence characteristics, and of any internal vibrations in the laboratory. Results of the OPD analysis will be compared to similar studies at other interferometric facilities. The CHARA Array, a six-telescope O/IR interferometric array operated by Georgia State University on Mt. Wilson, Calfornia, was funded by the National Science Foundation, the W.M. Keck Foundation, the David and Lucile Packard Foundation, and Georgia State University.

  4. EXILL—a high-efficiency, high-resolution setup for γ-spectroscopy at an intense cold neutron beam facility

    NASA Astrophysics Data System (ADS)

    Jentschel, M.; Blanc, A.; de France, G.; Köster, U.; Leoni, S.; Mutti, P.; Simpson, G.; Soldner, T.; Ur, C.; Urban, W.; Ahmed, S.; Astier, A.; Augey, L.; Back, T.; Baczyk, P.; Bajoga, A.; Balabanski, D.; Belgya, T.; Benzoni, G.; Bernards, C.; Biswas, D. C.; Bocchi, G.; Bottoni, S.; Britton, R.; Bruyneel, B.; Burnett, J.; Cakirli, R. B.; Carroll, R.; Catford, W.; Cederwall, B.; Celikovic, I.; Cieplicka-Oryńczak, N.; Clement, E.; Cooper, N.; Crespi, F.; Csatlos, M.; Curien, D.; Czerwiński, M.; Danu, L. S.; Davies, A.; Didierjean, F.; Drouet, F.; Duchêne, G.; Ducoin, C.; Eberhardt, K.; Erturk, S.; Fraile, L. M.; Gottardo, A.; Grente, L.; Grocutt, L.; Guerrero, C.; Guinet, D.; Hartig, A.-L.; Henrich, C.; Ignatov, A.; Ilieva, S.; Ivanova, D.; John, B. V.; John, R.; Jolie, J.; Kisyov, S.; Krticka, M.; Konstantinopoulos, T.; Korgul, A.; Krasznahorkay, A.; Kröll, T.; Kurpeta, J.; Kuti, I.; Lalkovski, S.; Larijani, C.; Leguillon, R.; Lica, R.; Litaize, O.; Lozeva, R.; Magron, C.; Mancuso, C.; Ruiz Martinez, E.; Massarczyk, R.; Mazzocchi, C.; Melon, B.; Mengoni, D.; Michelagnoli, C.; Million, B.; Mokry, C.; Mukhopadhyay, S.; Mulholland, K.; Nannini, A.; Napoli, D. R.; Olaizola, B.; Orlandi, R.; Patel, Z.; Paziy, V.; Petrache, C.; Pfeiffer, M.; Pietralla, N.; Podolyak, Z.; Ramdhane, M.; Redon, N.; Regan, P.; Regis, J. M.; Regnier, D.; Oliver, R. J.; Rudigier, M.; Runke, J.; Rzaca-Urban, T.; Saed-Samii, N.; Salsac, M. D.; Scheck, M.; Schwengner, R.; Sengele, L.; Singh, P.; Smith, J.; Stezowski, O.; Szpak, B.; Thomas, T.; Thürauf, M.; Timar, J.; Tom, A.; Tomandl, I.; Tornyi, T.; Townsley, C.; Tuerler, A.; Valenta, S.; Vancraeyenest, A.; Vandone, V.; Vanhoy, J.; Vedia, V.; Warr, N.; Werner, V.; Wilmsen, D.; Wilson, E.; Zerrouki, T.; Zielinska, M.

    2017-11-01

    In the EXILL campaign a highly efficient array of high purity germanium (HPGe) detectors was operated at the cold neutron beam facility PF1B of the Institut Laue-Langevin (ILL) to carry out nuclear structure studies, via measurements of γ-rays following neutron-induced capture and fission reactions. The setup consisted of a collimation system producing a pencil beam with a thermal capture equivalent flux of about 108 n s-1cm-2 at the target position and negligible neutron halo. The target was surrounded by an array of eight to ten anti-Compton shielded EXOGAM Clover detectors, four to six anti-Compton shielded large coaxial GASP detectors and two standard Clover detectors. For a part of the campaign the array was combined with 16 LaBr3:(Ce) detectors from the FATIMA collaboration. The detectors were arranged in an array of rhombicuboctahedron geometry, providing the possibility to carry out very precise angular correlation and directional-polarization correlation measurements. The triggerless acquisition system allowed a signal collection rate of up to 6 × 105 Hz. The data allowed to set multi-fold coincidences to obtain decay schemes and in combination with the FATIMA array of LaBr3:(Ce) detectors to analyze half-lives of excited levels in the pico- to microsecond range. Precise energy and efficiency calibrations of EXILL were performed using standard calibration sources of 133Ba, 60Co and 152Eu as well as data from the reactions 27Al(n,γ)28Al and 35Cl(n,γ)36Cl in the energy range from 30 keV up to 10 MeV.

  5. Comparison of Different Measurement Technologies for the In-Flight Assessment of Radiated Acoustic Intensity

    NASA Technical Reports Server (NTRS)

    Klos, Jacob; Palumbo, Daniel L.; Buehrle, Ralph D.; Williams, Earl G.; Valdivia, Nicolas; Herdic, Peter C.; Sklanka, Bernard

    2005-01-01

    A series of tests was planned and conducted in the Interior Noise Test Facility at Boeing Field, on the NASA Aries 757 flight research aircraft, and in the Structural Acoustic Loads and Transmission Facility at NASA Langley Research Center. These tests were designed to answer several questions concerning the use of array methods in flight. One focus of the tests was determining whether and to what extent array methods could be used to identify the effects of an acoustical treatment applied to a limited portion of an aircraft fuselage. Another focus of the tests was to verify that the arrays could be used to localize and quantify a known source purposely placed in front of the arrays. Thus the issues related to backside sources and flanking paths present in the complicated sound field were addressed during these tests. These issues were addressed through the use of reference transducers, both accelerometers mounted to the fuselage and microphones in the cabin, that were used to correlate the pressure holograms. measured by the microphone arrays using either SVD methods or partial coherence methods. This correlation analysis accepts only energy that is coherent with the sources sensed by the reference transducers, allowing a noise control engineer to only identify and study those vibratory sources of interest. The remainder of this paper will present a detailed description of the test setups that were used in this test sequence and typical results of the NAH/IBEM analysis used to reconstruct the sound fields. Also, a comparison of data obtained in the laboratory environments and during flights of the 757 aircraft will be made.

  6. A Unique test for Hubble's new Solar Arrays

    NASA Astrophysics Data System (ADS)

    2000-10-01

    In mid-October, a team from the European Space Agency (ESA) and NASA will perform a difficult, never-before-done test on one of the Hubble Space Telescope's new solar array panels. Two of these panels, or arrays, will be installed by astronauts in November 2001, when the Space Shuttle Columbia visits Hubble on a routine service mission. The test will ensure that the new arrays are solid and vibration free before they are installed on orbit. The test will be conducted at ESA's European Space Research and Technology Center (ESTEC) in Noordwijk, The Netherlands. Because of the array's size, the facility's special features, and ESA's longstanding experience with Hubble's solar arrays, ESTEC is the only place in the world the test can be performed. This test is the latest chapter in a longstanding partnership between ESA and NASA on the Hubble Space Telescope. The Large Space Simulator at ESTEC, ESA's world-class test facility, features a huge vacuum chamber containing a bank of extremely bright lights that simulate the Sun's intensity - including sunrise and sunset. By exposing the solar wing to the light and temperature extremes of Hubble's orbit, engineers can verify how the new set of arrays will act in space. Hubble orbits the Earth once every 90 minutes. During each orbit, the telescope experiences 45 minutes of searing sunlight and 45 minutes of frigid darkness. This test will detect any tiny vibrations, or jitters, caused by these dramatic, repeated changes. Even a small amount of jitter can affect Hubble's sensitive instruments and interfere with observations. Hubble's first set of solar arrays experienced mild jitter and was replaced in 1993 with a much more stable pair. Since that time, advances in solar cell technology have led to the development of even more efficient arrays. In 2001, NASA will take advantage of these improvements, by fitting Hubble with a third-generation set of arrays. Though smaller, this new set generates more power than the previous pairs. The arrays use high efficiency solar cells and an advanced structural system to support the solar panels. Unlike the earlier sets, which roll up like window shades, the new arrays are rigid. ESA provided Hubble's first two sets of solar arrays, and built and tested the motors and electronics of the new set provided by NASA Goddard Space Flight Center. Now, this NASA/ESA test has benefits that extend beyond Hubble to the world-wide aerospace community. It will greatly expand basic knowledge of the jitter phenomenon. Engineers across the globe can apply these findings to other spacecraft that are subjected to regular, dramatic changes in sunlight and temperature. Note to editors The Hubble Project The Hubble Space Telescope is a project of international co-operation between the National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA). The partnership agreement between ESA and NASA was signed on 7 October 1977. ESA has provided two pairs of solar panels and one of Hubble's scientific instruments (the Faint Object Camera), as well as a number of other components and supports NASA during routine Servicing Missions to the telescope. In addition, 15 European scientists are working at the Space Telescope Science Institute in Baltimore (STScI), which is responsible for the scientific operation of the Hubble Observatory and is managed by the Association of Universities for Research in Astronomy (AURA) for NASA. In return, European astronomers have guaranteed access to 15% of Hubble's observing time. The Space Telescope European Coordinating Facility (ST-ECF) hosted at the European Southern Observatory (ESO) in Garching bei München, Germany, supports European Hubble users. ESA and ESO jointly operate the ST-ECF.

  7. Fiber-optic hydrophone array for acoustic surveillance in the littoral

    NASA Astrophysics Data System (ADS)

    Hill, David; Nash, Phillip

    2005-05-01

    We describe a fibre-optic hydrophone array system architecture that can be tailored to meet the underwater acoustic surveillance requirements of the military, counter terrorist and customs authorities in protecting ports and harbours, offshore production facilities or coastal approaches. Physically the fibre-optic hydrophone array is in the form of a lightweight cable, enabling rapid deployment from a small vessel. Based upon an optical architecture of time and wavelength multiplexed interferometric hydrophones, the array is comprised of a series of hydrophone sub-arrays. Using multiple sub-arrays, extended perimeters many tens of kilometres in length can be monitored. Interrogated via a long (~50km) optical fibre data link, the acoustic date is processed using the latest open architecture sonar processing platform, ensuring that acoustic targets below, on and above the surface are detected, tracked and classified. Results obtained from an at sea trial of a 96-channel hydrophone array are given, showing the passive detection and tracking of a diver, small surface craft and big ocean going ships beyond the horizon. Furthermore, we describe how the OptaMarine fibre-optic hydrophone array fits into an integrated multi-layered approach to port and harbour security consisting of active sonar for diver detection and hull imaging, as well as thermal imaging and CCTV for surface monitoring. Finally, we briefly describe a complimentary land perimeter intruder detection system consisting of an array of fibre optic accelerometers.

  8. EzArray: A web-based highly automated Affymetrix expression array data management and analysis system

    PubMed Central

    Zhu, Yuerong; Zhu, Yuelin; Xu, Wei

    2008-01-01

    Background Though microarray experiments are very popular in life science research, managing and analyzing microarray data are still challenging tasks for many biologists. Most microarray programs require users to have sophisticated knowledge of mathematics, statistics and computer skills for usage. With accumulating microarray data deposited in public databases, easy-to-use programs to re-analyze previously published microarray data are in high demand. Results EzArray is a web-based Affymetrix expression array data management and analysis system for researchers who need to organize microarray data efficiently and get data analyzed instantly. EzArray organizes microarray data into projects that can be analyzed online with predefined or custom procedures. EzArray performs data preprocessing and detection of differentially expressed genes with statistical methods. All analysis procedures are optimized and highly automated so that even novice users with limited pre-knowledge of microarray data analysis can complete initial analysis quickly. Since all input files, analysis parameters, and executed scripts can be downloaded, EzArray provides maximum reproducibility for each analysis. In addition, EzArray integrates with Gene Expression Omnibus (GEO) and allows instantaneous re-analysis of published array data. Conclusion EzArray is a novel Affymetrix expression array data analysis and sharing system. EzArray provides easy-to-use tools for re-analyzing published microarray data and will help both novice and experienced users perform initial analysis of their microarray data from the location of data storage. We believe EzArray will be a useful system for facilities with microarray services and laboratories with multiple members involved in microarray data analysis. EzArray is freely available from . PMID:18218103

  9. Bioinspired polyethylene terephthalate nanocone arrays with underwater superoleophobicity and anti-bioadhesion properties

    NASA Astrophysics Data System (ADS)

    Liu, Wendong; Liu, Xueyao; Fangteng, Jiaozi; Wang, Shuli; Fang, Liping; Shen, Huaizhong; Xiang, Siyuan; Sun, Hongchen; Yang, Bai

    2014-10-01

    This paper presents a facile method to fabricate bioinspired polyethylene terephthalate (PET) nanocone arrays via colloidal lithography. The aspect ratio (AR) of the nanocones can be finely modulated ranging from 1 to 6 by regulating the etching time. The samples with the AR value of 6 can present underwater superoleophobicity with the underwater oil contact angle (OCA) of 171.8°. The as-prepared PET nanocone arrays perform anti-bioadhesion behavior, which inhibits the formation of the actin cytoskeleton when it used as the substrate for cell culture. Moreover, the oil wettability is temperature controlled after modifying the PET nanocone arrays with PNIPAAm film, and the oil wettability of the functionalized nanocone arrays can be transformed from the superoleophobic state with OCA about 151° to the oleophilic state with OCA about 25° reversibly. Due to the high-throughput, parallel fabrication and cost-efficiency of this method, it will be favourable for researchers to introduce oleophobic properties to various substrate and device surfaces. Due to the superoleophobicity and simple functionalizing properties, the PET nanocone arrays are very promising surfaces for anti-adhesion, self-cleaning and have potential applications in material, medical, and biological fields.This paper presents a facile method to fabricate bioinspired polyethylene terephthalate (PET) nanocone arrays via colloidal lithography. The aspect ratio (AR) of the nanocones can be finely modulated ranging from 1 to 6 by regulating the etching time. The samples with the AR value of 6 can present underwater superoleophobicity with the underwater oil contact angle (OCA) of 171.8°. The as-prepared PET nanocone arrays perform anti-bioadhesion behavior, which inhibits the formation of the actin cytoskeleton when it used as the substrate for cell culture. Moreover, the oil wettability is temperature controlled after modifying the PET nanocone arrays with PNIPAAm film, and the oil wettability of the functionalized nanocone arrays can be transformed from the superoleophobic state with OCA about 151° to the oleophilic state with OCA about 25° reversibly. Due to the high-throughput, parallel fabrication and cost-efficiency of this method, it will be favourable for researchers to introduce oleophobic properties to various substrate and device surfaces. Due to the superoleophobicity and simple functionalizing properties, the PET nanocone arrays are very promising surfaces for anti-adhesion, self-cleaning and have potential applications in material, medical, and biological fields. Electronic supplementary information (ESI) available: The optical microscopy image of the self-assembled 2D PS microspheres over a large area, the diameter of the PS microsphere is 580 nm; The top-view SEM image of the PET nanocone arrays over a large area, the AR of the nanocone is 6; The SEM image of the PET nanocone arrays obtained after 30 min etching; The optical image of the water droplet on the PET nanocone arrays with an AR of 6; The schematic illustration of the nanocone arrays modification with PNIPAAm; High resolution XPS spectra of the PNIPAAm modified PET nanocone arrays. See DOI: 10.1039/c4nr04471a

  10. NuSTAR Inches Toward its Rocket

    NASA Image and Video Library

    2012-02-23

    At Vandenberg Air Force Base processing facility in California, the separation ring on the aft end of NASA Nuclear Spectroscopic Telescope Array NuSTAR, at right, inches its way toward the third stage of an Orbital Sciences Pegasus XL rocket.

  11. Overview of laser systems for the Orion facility at the AWE.

    PubMed

    Hopps, Nicholas; Danson, Colin; Duffield, Stuart; Egan, David; Elsmere, Stephen; Girling, Mark; Harvey, Ewan; Hillier, David; Norman, Michael; Parker, Stefan; Treadwell, Paul; Winter, David; Bett, Thomas

    2013-05-20

    The commissioning of the Orion laser facility at the Atomic Weapons Establishment (AWE) in the UK has recently been completed. The facility is a twelve beam Nd:glass-based system for studying high energy density physics. It consists of ten frequency-tripled beam-lines operating with nanosecond pulses, synchronized with two beam-lines with subpicosecond pulses, each capable of delivering 500 J to target. One of the short pulse beams has the option of frequency doubling, at reduced aperture, to yield up to 100 J at 527 nm in a subpicosecond pulse with high temporal contrast. An extensive array of target diagnostics is provided. This article describes the laser design and commissioning and presents key performance data of the facility's laser systems.

  12. The Impact of Solar Arrays on Arid Soil Hydrology: Some Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Berli, M.; Koonce, J.; Shillito, R.; Dijkema, J.; Ghezzehei, T. A.; Yu, Z.

    2016-12-01

    Hot deserts are prime locations for solar energy generation but also recognized as particularly fragile environments. Minimizing the impact of facility-scale solar installations on desert environments is therefore of increasing concern. This study focuses on the impact of photovoltaic solar arrays on the water balance of arid soil underneath the array. The goal was to explore whether concentrated rainwater infiltration along the solar panel drip lines would lead to deeper infiltration and an increase in soil water storage in the long term. A two-dimensional HYDRUS model was developed to simulate rainwater infiltration into the soil within a photovoltaic solar array. Results indicate that rainwater infiltrates deeper below the drip lines compared to the areas between solar panels but only for coarse textured soil. Finer-textured soils redistribute soil moisture horizontally and the concentrating effect of solar panels on rainwater infiltration appears to be small.

  13. Flexible and stackable terahertz metamaterials via silver-nanoparticle inkjet printing

    NASA Astrophysics Data System (ADS)

    Kashiwagi, K.; Xie, L.; Li, X.; Kageyama, T.; Miura, M.; Miyashita, H.; Kono, J.; Lee, S.-S.

    2018-04-01

    There is presently much interest in tunable, flexible, or reconfigurable metamaterial structures that work in the terahertz frequency range. They can be useful for a range of applications, including spectroscopy, sensing, imaging, and communications. Various methods based on microelectromechanical systems have been used for fabricating terahertz metamaterials, but they typically require high-cost facilities and involve a number of time-consuming and intricate processes. Here, we demonstrate a simple, robust, and cost-effective method for fabricating flexible and stackable multiresonant terahertz metamaterials, using silver nanoparticle inkjet printing. Using this method, we designed and fabricated two arrays of split-ring resonators (SRRs) having different resonant frequencies on separate sheets of paper and then combined the two arrays by stacking. Through terahertz time-domain spectroscopy, we observed resonances at the frequencies expected for the individual SRR arrays as well as at a new frequency due to coupling between the two SRR arrays.

  14. Hierarchical mesoporous nickel cobaltite nanoneedle/carbon cloth arrays as superior flexible electrodes for supercapacitors

    PubMed Central

    2014-01-01

    Hierarchical mesoporous NiCo2O4 nanoneedle arrays on carbon cloth have been fabricated by a simple hydrothermal approach combined with a post-annealing treatment. Such unique array nanoarchitectures exhibit remarkable electrochemical performance with high capacitance and desirable cycle life at high rates. When evaluated as an electrode material for supercapacitors, the NiCo2O4 nanoneedle arrays supported on carbon cloth was able to deliver high specific capacitance of 660 F g-1 at current densities of 2 A g-1 in 2 M KOH aqueous solution. In addition, the composite electrode shows excellent mechanical behavior and long-term cyclic stability (91.8% capacitance retention after 3,000 cycles). The fabrication method presented here is facile, cost-effective, and scalable, which may open a new pathway for real device applications. PMID:24661431

  15. Characterization of X3 Silicon Detectors for the ELISSA Array at ELI-NP

    NASA Astrophysics Data System (ADS)

    Chesnevskaya, S.; Balabanski, D. L.; Choudhury, D.; Cognata, M. La; Constantin, P.; Filipescu, D. M.; Ghita, D. G.; Guardo, G. L.; Lattuada, D.; Matei, C.; Rotaru, A.; Spitaleri, C.; State, A.; Xu, Y.

    2018-01-01

    Position-sensitive silicon strip detectors represent one of the best solutions for the detection of charged particles as they provide good energy and position resolution over a large range of energies. A silicon array coupled with the gamma beams at the ELI-NP facility would allow measuring photodissociation reactions of interest for Big Bang Nucleosynthesis and on heavy nuclei intervening in the p-process. Forty X3 detectors for our ELISSA (ELI-NP Silicon Strip Detectors Array) project have been recently purchased and tested. We investigated several specifications, such as leakage currents, depletion voltage, and detector stability under vacuum. The energy and position resolution, and ballistic deficit were measured and analyzed. This paper presents the main results of our extensive testing. The measured energy resolution for the X3 detectors is better than results published for similar arrays (ANASEN or ORRUBA).

  16. KSC-00pp1682

    NASA Image and Video Library

    2000-11-10

    In the Space Station Processing Facility, an overhead crane lifts the P6 integrated truss segment from a workstand to place it in the payload transport canister for transfer to Launch Pad 39B. There it will be placed in Endeavour’s payload bay for launch on mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the International Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch is scheduled Nov. 30 at 10:06 p.m. EST

  17. KSC-00pp1683

    NASA Image and Video Library

    2000-11-10

    In the Space Station Processing Facility, an overhead crane moves the P6 integrated truss segment to a payload transport canister for transfer to Launch Pad 39B. There it will be placed in Endeavour’s payload bay for launch on mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the International Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch is scheduled Nov. 30 at 10:06 p.m. EST

  18. Spatiotemporal and spectral characteristics of X-ray radiation emitted by the Z-pinch during the current implosion of quasispherical multiwire arrays

    NASA Astrophysics Data System (ADS)

    Gritsuk, A. N.

    2017-12-01

    For the first time, a quasi-spherical current implosion has been experimentally realized on a multimegaampere facility with the peak current of up to 4 MA and a soft X-ray source has been created with high radiation power density on its surface of up to 3 TW/cm2. An increase in the energy density at the centre of the source of soft X-ray radiation (SXR) was experimentally observed upon compression of quasi-spherical arrays with the linear-mass profiling. In this case, the average power density on the surface of the SXR source is three times higher than for implosions of cylindrical arrays of the same mass and close values of the discharge current. Obtained experimental data are compared with the results of modelling the current implosion of multi-wire arrays performed with the help of a three-dimensional radiation-magneto-hydrodynamic code.

  19. Multidirectional flexible force sensors based on confined, self-adjusting carbon nanotube arrays

    NASA Astrophysics Data System (ADS)

    Lee, J.-I.; Pyo, Soonjae; Kim, Min-Ook; Kim, Jongbaeg

    2018-02-01

    We demonstrate a highly sensitive force sensor based on self-adjusting carbon nanotube (CNT) arrays. Aligned CNT arrays are directly synthesized on silicon microstructures by a space-confined growth technique which enables a facile self-adjusting contact. To afford flexibility and softness, the patterned microstructures with the integrated CNTs are embedded in polydimethylsiloxane structures. The sensing mechanism is based on variations in the contact resistance between the facing CNT arrays under the applied force. By finite element analysis, proper dimensions and positions for each component are determined. Further, high sensitivities up to 15.05%/mN of the proposed sensors were confirmed experimentally. Multidirectional sensing capability could also be achieved by designing multiple sets of sensing elements in a single sensor. The sensors show long-term operational stability, owing to the unique properties of the constituent CNTs, such as outstanding mechanical durability and elasticity.

  20. Simple and Fast Method for Fabrication of Endoscopic Implantable Sensor Arrays

    PubMed Central

    Tahirbegi, I. Bogachan; Alvira, Margarita; Mir, Mònica; Samitier, Josep

    2014-01-01

    Here we have developed a simple method for the fabrication of disposable implantable all-solid-state ion-selective electrodes (ISE) in an array format without using complex fabrication equipment or clean room facilities. The electrodes were designed in a needle shape instead of planar electrodes for a full contact with the tissue. The needle-shape platform comprises 12 metallic pins which were functionalized with conductive inks and ISE membranes. The modified microelectrodes were characterized with cyclic voltammetry, scanning electron microscope (SEM), and optical interferometry. The surface area and roughness factor of each microelectrode were determined and reproducible values were obtained for all the microelectrodes on the array. In this work, the microelectrodes were modified with membranes for the detection of pH and nitrate ions to prove the reliability of the fabricated sensor array platform adapted to an endoscope. PMID:24971473

  1. High-Resolution Spin-on-Patterning of Perovskite Thin Films for a Multiplexed Image Sensor Array.

    PubMed

    Lee, Woongchan; Lee, Jongha; Yun, Huiwon; Kim, Joonsoo; Park, Jinhong; Choi, Changsoon; Kim, Dong Chan; Seo, Hyunseon; Lee, Hakyong; Yu, Ji Woong; Lee, Won Bo; Kim, Dae-Hyeong

    2017-10-01

    Inorganic-organic hybrid perovskite thin films have attracted significant attention as an alternative to silicon in photon-absorbing devices mainly because of their superb optoelectronic properties. However, high-definition patterning of perovskite thin films, which is important for fabrication of the image sensor array, is hardly accomplished owing to their extreme instability in general photolithographic solvents. Here, a novel patterning process for perovskite thin films is described: the high-resolution spin-on-patterning (SoP) process. This fast and facile process is compatible with a variety of spin-coated perovskite materials and perovskite deposition techniques. The SoP process is successfully applied to develop a high-performance, ultrathin, and deformable perovskite-on-silicon multiplexed image sensor array, paving the road toward next-generation image sensor arrays. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Application of Plenoptic PIV for 3D Velocity Measurements Over Roughness Elements in a Refractive Index Matched Facility

    NASA Astrophysics Data System (ADS)

    Thurow, Brian; Johnson, Kyle; Kim, Taehoon; Blois, Gianluca; Best, Jim; Christensen, Ken

    2014-11-01

    The application of Plenoptic PIV in a Refractive Index Matched (RIM) facility housed at Illinois is presented. Plenoptic PIV is an emerging 3D diagnostic that exploits the light-field imaging capabilities of a plenoptic camera. Plenoptic cameras utilize a microlens array to measure the position and angle of light rays captured by the camera. 3D/3C velocity fields are determined through application of the MART algorithm for volume reconstruction and a conventional 3D cross-correlation PIV algorithm. The RIM facility is a recirculating tunnel with a 62.5% aqueous solution of sodium iodide used as the working fluid. Its resulting index of 1.49 is equal to that of acrylic. Plenoptic PIV was used to measure the 3D velocity field of a turbulent boundary layer flow over a smooth wall, a single wall-mounted hemisphere and a full array of hemispheres (i.e. a rough wall) with a k/ δ ~ 4.6. Preliminary time averaged and instantaneous 3D velocity fields will be presented. This material is based upon work supported by the National Science Foundation under Grant No. 1235726.

  3. Low Cost Solar Array Project. Feasibility of the silane process for producing semiconductor-grade silicon. Final report, October 1975-March 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-06-01

    The commercial production of low-cost semiconductor-grade silicon is an essential requirement of the JPL/DOE (Department of Energy) Low-Cost Solar Array (LSA) Project. A 1000-metric-ton-per-year commercial facility using the Union Carbide Silane Process will produce molten silicon for an estimated price of $7.56/kg (1975 dollars, private financing), meeting the DOE goal of less than $10/kg. Conclusions and technology status are reported for both contract phases, which had the following objectives: (1) establish the feasibility of Union Carbide's Silane Process for commercial application, and (2) develop an integrated process design for an Experimental Process System Development Unit (EPSDU) and a commercial facility,more » and estimate the corresponding commercial plant economic performance. To assemble the facility design, the following work was performed: (a) collection of Union Carbide's applicable background technology; (b) design, assembly, and operation of a small integrated silane-producing Process Development Unit (PDU); (c) analysis, testing, and comparison of two high-temperature methods for converting pure silane to silicon metal; and (d) determination of chemical reaction equilibria and kinetics, and vapor-liquid equilibria for chlorosilanes.« less

  4. Solar Simulation for the CREST Preflight Thermal-Vacuum Test at B-2

    NASA Technical Reports Server (NTRS)

    Ziemke, Robert A.

    2013-01-01

    In June 2011, the multi-university sponsored Cosmic Ray Electron Synchrotron Telescope (CREST) has undergone thermal-vacuum qualification testing at the NASA Glenn Research Center (GRC), Plum Brook Station, Sandusky, Ohio. The testing was performed in the B- 2 Space Propulsion Facility vacuum chamber. The CREST was later flown over the Antarctic region as the payload of a stratospheric balloon. Solar simulation was provided by a system of planar infrared lamp arrays specifically designed for CREST. The lamp arrays, in conjunction with a liquid-nitrogen-cooled cryoshroud, achieved the required thermal conditions for the qualification tests. This report focuses on the design and analysis of the planar arrays based on first principles. Computational spreadsheets are included in the report.

  5. Synthesis and photoluminescence properties of ZnS nanobowl arrays via colloidal monolayer template

    PubMed Central

    2014-01-01

    Two-dimensional Zinc sulfide (ZnS) nanobowl arrays were synthesized via self-assembled monolayer polystyrene sphere template floating on precursor solution surface. A facile approach was proposed to investigate the morphology evolution of nanobowl arrays by post-annealing procedure. Photoluminescence (PL) measurement of as-grown nanoarrays shows that the spectrum mainly includes two parts: a purple emission peak at 382 nm and a broad blue emission band centering at 410 nm with a shoulder around 459 nm, and a blue emission band at 440 nm was obtained after the annealing procedure. ZnS nanoarrays with special morphologies and PL emission are benefits to their promising application in novel photoluminescence nanodevice. PMID:25246857

  6. Conceptual design of the AGATA 1 π array at GANIL

    NASA Astrophysics Data System (ADS)

    Clément, E.; Michelagnoli, C.; de France, G.; Li, H. J.; Lemasson, A.; Barthe Dejean, C.; Beuzard, M.; Bougault, P.; Cacitti, J.; Foucher, J.-L.; Fremont, G.; Gangnant, P.; Goupil, J.; Houarner, C.; Jean, M.; Lefevre, A.; Legeard, L.; Legruel, F.; Maugeais, C.; Ménager, L.; Ménard, N.; Munoz, H.; Ozille, M.; Raine, B.; Ropert, J. A.; Saillant, F.; Spitaels, C.; Tripon, M.; Vallerand, Ph.; Voltolini, G.; Korten, W.; Salsac, M.-D.; Theisen, Ch.; Zielińska, M.; Joannem, T.; Karolak, M.; Kebbiri, M.; Lotode, A.; Touzery, R.; Walter, Ch.; Korichi, A.; Ljungvall, J.; Lopez-Martens, A.; Ralet, D.; Dosme, N.; Grave, X.; Karkour, N.; Lafay, X.; Legay, E.; Kojouharov, I.; Domingo-Pardo, C.; Gadea, A.; Pérez-Vidal, R. M.; Civera, J. V.; Birkenbach, B.; Eberth, J.; Hess, H.; Lewandowski, L.; Reiter, P.; Nannini, A.; De Angelis, G.; Jaworski, G.; John, P.; Napoli, D. R.; Valiente-Dobón, J. J.; Barrientos, D.; Bortolato, D.; Benzoni, G.; Bracco, A.; Brambilla, S.; Camera, F.; Crespi, F. C. L.; Leoni, S.; Million, B.; Pullia, A.; Wieland, O.; Bazzacco, D.; Lenzi, S. M.; Lunardi, S.; Menegazzo, R.; Mengoni, D.; Recchia, F.; Bellato, M.; Isocrate, R.; Egea Canet, F. J.; Didierjean, F.; Duchêne, G.; Baumann, R.; Brucker, M.; Dangelser, E.; Filliger, M.; Friedmann, H.; Gaudiot, G.; Grapton, J.-N.; Kocher, H.; Mathieu, C.; Sigward, M.-H.; Thomas, D.; Veeramootoo, S.; Dudouet, J.; Stézowski, O.; Aufranc, C.; Aubert, Y.; Labiche, M.; Simpson, J.; Burrows, I.; Coleman-Smith, P. J.; Grant, A.; Lazarus, I. H.; Morrall, P. S.; Pucknell, V. F. E.; Boston, A.; Judson, D. S.; Lalović, N.; Nyberg, J.; Collado, J.; González, V.; Kuti, I.; Nyakó, B. M.; Maj, A.; Rudigier, M.

    2017-05-01

    The Advanced GAmma Tracking Array (AGATA) has been installed at the GANIL facility, Caen-France. This set-up exploits the stable and radioactive heavy-ions beams delivered by the cyclotron accelerator complex of GANIL. Additionally, it benefits from a large palette of ancillary detectors and spectrometers to address in-beam γ-ray spectroscopy of exotic nuclei. The set-up has been designed to couple AGATA with a magnetic spectrometer, charged-particle and neutron detectors, scintillators for the detection of high-energy γ rays and other devices such as a plunger to measure nuclear lifetimes. In this paper, the design and the mechanical characteristics of the set-up are described. Based on simulations, expected performances of the AGATA 1 π array are presented.

  7. Lifetime measurements in A˜100 nuclei using LaBr3(Ce) arrays.

    NASA Astrophysics Data System (ADS)

    Bruce, A. M.

    2018-05-01

    The region of the nuclear chart around neutron-rich A˜100 nuclei is one where prolate and oblate nuclear shapes are predicted to be in close competition. An indirect measurement of the shape of the nucleus can be obtained from measuring level lifetimes which relate, via transition rates, to β2 deformation. In order to make measurements of level lifetimes in the sub nanosecond range an array of 36 LaBr3(Ce) detectors has been constructed for use at the FAIR facility in Darmstadt, Germany. This presentation will give an overview of the array and examples of its use in commissioning experiments at the RIKEN Nishina Center in Japan and the Argonne National Laboratory in the USA.

  8. Sweetwater, Texas Large N Experiment

    NASA Astrophysics Data System (ADS)

    Sumy, D. F.; Woodward, R.; Barklage, M.; Hollis, D.; Spriggs, N.; Gridley, J. M.; Parker, T.

    2015-12-01

    From 7 March to 30 April 2014, NodalSeismic, Nanometrics, and IRIS PASSCAL conducted a collaborative, spatially-dense seismic survey with several thousand nodal short-period geophones complemented by a backbone array of broadband sensors near Sweetwater, Texas. This pilot project demonstrates the efficacy of industry and academic partnerships, and leveraged a larger, commercial 3D survey to collect passive source seismic recordings to image the subsurface. This innovative deployment of a large-N mixed-mode array allows industry to explore array geometries and investigate the value of broadband recordings, while affording academics a dense wavefield imaging capability and an operational model for high volume instrument deployment. The broadband array consists of 25 continuously-recording stations from IRIS PASSCAL and Nanometrics, with an array design that maximized recording of horizontal-traveling seismic energy for surface wave analysis over the primary target area with sufficient offset for imaging objectives at depth. In addition, 2639 FairfieldNodal Zland nodes from NodalSeismic were deployed in three sub-arrays: the outlier, backbone, and active source arrays. The backbone array consisted of 292 nodes that covered the entire survey area, while the outlier array consisted of 25 continuously-recording nodes distributed at a ~3 km distance away from the survey perimeter. Both the backbone and outlier array provide valuable constraints for the passive source portion of the analysis. This project serves as a learning platform to develop best practices in the support of large-N arrays with joint industry and academic expertise. Here we investigate lessons learned from a facility perspective, and present examples of data from the various sensors and array geometries. We will explore first-order results from local and teleseismic earthquakes, and show visualizations of the data across the array. Data are archived at the IRIS DMC under stations codes XB and 1B.

  9. Taking advantage of modern turbines

    NASA Astrophysics Data System (ADS)

    Thresher, Robert

    2018-06-01

    Wind facilities have generally deployed turbines of the same power and height in regular uniform arrays. Now, the modern generation of turbines, with customer-selectable tower heights and larger rotors, can significantly increase wind energy's economic potential using less land to generate cheaper electricity.

  10. OSIRIS-REx Solar Array Illumination Test

    NASA Image and Video Library

    2016-08-05

    Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, illumination testing is underway on the power-producing solar arrays for the agency’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. Targeted for liftoff Sept. 8, 2016, OSIRIS-Rex will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.

  11. OSIRIS-REx Solar Array Illumination Test

    NASA Image and Video Library

    2016-08-05

    Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, illumination testing is underway on the power -producing solar arrays for the agency’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. Targeted for liftoff Sept. 8, 2016, OSIRIS-Rex will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.

  12. Small ICBM area narrowing report. Volume 3: Hard silo in patterned array basing mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The purpose of this report is to identify those areas that could potentially support deployment of the Small Intercontinental Ballistic Missile (ICBM) utilizing basing modes presently considered viable: the Hard Mobile Launcher in Random Movement, the Hard Mobile Launcher at Minuteman Facilities, or the Hard Silo in Patterned Array. Specifically, this report describes the process and the rationale supporting the application of Exclusionary and Evaluative Criteria and lists those locations that were eliminated through the application of these criteria. The remaining locations will be the subject of further investigations.

  13. KSC-00pp1758

    NASA Image and Video Library

    2000-11-27

    After arriving at the Shuttle Landing Facility, the STS-97 crew gather to address the media. At the microphone is Pilot Michael Bloomfield. Behind him can be seen Mission Specialists Joseph Tanner and Carlos Noriega. Mission STS-97 is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  14. KSC-08pd2048

    NASA Image and Video Library

    2008-07-21

    CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center, workers prepare to install the final solar array wing for the International Space Station onto the S6 truss element. Scheduled to launch on the STS-119 mission, space shuttle Discovery will carry the S6 truss segment to complete the 361-foot-long backbone of the International Space Station. The truss includes the fourth pair of solar array wings and electronics that convert sunlight to power for the orbiting laboratory. Launch is targeted for Feb. 12, 2009. Photo credit: NASA/Troy Cryder

  15. Photovoltaic system test facility electromagnetic interference measurements

    NASA Technical Reports Server (NTRS)

    Johnson, J. A.; Herke, F. P., Jr.; Knapp, W. D.

    1977-01-01

    Field strength measurements on a single row of panels indicates that the operational mode of the array as configured presents no radiated EMI problems. Only one relatively significant frequency band near 200 kHz showed any degree of intensity (9 muV/m including a background level of 5 muV/m). The level was measured very near the array (at 20 ft distance) while Federal Communications Commission (FCC) regulations limit spurious emissions to 15 muV/m at 1,000 ft. No field strength readings could be obtained even at 35 ft distant.

  16. KSC-2009-6236

    NASA Image and Video Library

    2009-11-09

    CAPE CANAVERAL, Fla. – At the Astrotech Space Operations facility in Titusville, Fla., the Solar Dynamics Observatory, or SDO, with its solar arrays deployed, is ready to receive signal commands to test the release mechanism sequence for the arrays. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. Liftoff on an Atlas V rocket is scheduled for Feb. 3, 2010. Photo credit: NASA/Jack Pfaller

  17. The Precision Expandable Radar Calibration Sphere (PERCS) With Applications for Laser Imaging and Ranging

    DTIC Science & Technology

    2008-09-01

    HF facilities such as HAARP in Alaska, EISCAT in Norway, and Arecibo in Puerto Rico; (3) the chain of high latitude SuperDARN radars used for auroral...DF arrays, ground HF transmitters such as the Navy relocatable over the horizon radar (ROTHR) and the Air Force/Navy HAARP system would be employed...United States and Australia; (2) high power HF facilities such as HAARP in Alaska, EISCAT in Norway, and Arecibo in Puerto Rico; (3) the chain of high

  18. Sensors and devices containing ultra-small nanowire arrays

    DOEpatents

    Xiao, Zhili

    2014-09-23

    A network of nanowires may be used for a sensor. The nanowires are metallic, each nanowire has a thickness of at most 20 nm, and each nanowire has a width of at most 20 nm. The sensor may include nanowires comprising Pd, and the sensor may sense a change in hydrogen concentration from 0 to 100%. A device may include the hydrogen sensor, such as a vehicle, a fuel cell, a hydrogen storage tank, a facility for manufacturing steel, or a facility for refining petroleum products.

  19. Sensors and devices containing ultra-small nanowire arrays

    DOEpatents

    Xiao, Zhili

    2017-04-11

    A network of nanowires may be used for a sensor. The nanowires are metallic, each nanowire has a thickness of at most 20 nm, and each nanowire has a width of at most 20 nm. The sensor may include nanowires comprising Pd, and the sensor may sense a change in hydrogen concentration from 0 to 100%. A device may include the hydrogen sensor, such as a vehicle, a fuel cell, a hydrogen storage tank, a facility for manufacturing steel, or a facility for refining petroleum products.

  20. Optical and Infrared Spectroscopy of Nova Ophiuchi 2018 No.2

    NASA Astrophysics Data System (ADS)

    Rudy, R. J.; Mauerhan, J. C.; Russell, R. W.; Subasavage, J. P.; Wiktorowicz, S. J.; Kim, D. L.; Sitko, M. L.

    2018-05-01

    Over a two week period coming approximately two months after outburst, Nova Ophiuchi 2018, No.2 (CBET 4492) was observed spectroscopically using instruments from three different facilities: 2018 May 6, using the Spex instrument at the Infrared Telescope Facility (0.7-2.5 microns); 2018 May 14, using the Broadband Array Spectrograph System on the 3.6 meter Advanced Electro-Optical Systems telescope (3-13 microns); 2018 May 19, with the VNIRIS spectrograph on the Aerospace Corporation's one meter telescope (0.47-2.5 microns).

  1. A facile fluorescent sensor based on silicon nanowires for dithionite

    NASA Astrophysics Data System (ADS)

    Cao, Xingxing; Mu, Lixuan; Chen, Min; She, Guangwei

    2018-05-01

    A facile and novel fluorescent sensor for dithionite has been constructed by simultaneously immobilizing dansyl group (fluorescence molecule) and dabsyl group (quencher and recognizing group) on the silicon nanowires (SiNWs) and SiNW arrays surface. This sensor for dithionite exhibited high selectivity and a good relationship of linearity between fluorescence intensities and dithionite concentrations from 0.1 to 1 mM. This approach is straightforward and does not require complicated synthesis, which can be extended to develop other sensors with similar rationale.

  2. Next-generation laser retroreflectors for GNSS, solar system exploration, geodesy, gravitational physics and earth observation

    NASA Astrophysics Data System (ADS)

    Dell'Agnello, S.; Boni, A.; Cantone, C.; Ciocci, E.; Martini, M.; Patrizi, G.; Tibuzzi, M.; Delle Monache, G.; Vittori, R.; Bianco, G.; Currie, D.; Intaglietta, N.; Salvatori, L.; Lops, C.; Contessa, S.; Porcelli, L.; Mondaini, C.; Tuscano, P.; Maiello, M.

    2017-11-01

    The SCF_Lab (Satellite/lunar/gnss laser ranging and altimetry Characterization Facility Laboratory) of INFNLNF is designed to cover virtually LRAs (Laser Retroreflector Arrays) of CCRs (Cube Corner Retroreflectors) for missions in the whole solar system, with a modular organization of its instrumentation, two redundant SCF (SCF_Lab Characterization Facilities), and an evolutionary measurement approach, including customization and potentially upgrade on-demand. See http://www.lnf.infn.it/esperimenti/etrusco/ for a general description.

  3. Plasmonic nanorod arrays of a two-segment dimer and a coaxial cable with 1 nm gap for large field confinement and enhancement.

    PubMed

    Cheng, Zi-Qiang; Nan, Fan; Yang, Da-Jie; Zhong, Yu-Ting; Ma, Liang; Hao, Zhong-Hua; Zhou, Li; Wang, Qu-Quan

    2015-01-28

    Seeking plasmonic nanostructures with large field confinement and enhancement is significant for photonic and electronic nanodevices with high sensitivity, reproducibility, and tunability. Here, we report the synthesis of plasmonic arrays composed of two-segment dimer nanorods and coaxial cable nanorods with ∼1 nm gap insulated by a self-assembled Raman molecule monolayer. The gap-induced plasmon coupling generates an intense field in the gap region of the dimer junction and the cable interlayer. As a result, the longitudinal plasmon resonance of nanorod arrays with high tunability is obviously enhanced. Most interestingly, the field enhancement of dimer nanorod arrays can be tuned by the length ratio L1/L2 of the two segments, and the maximal enhancement appears at L1/L2 = 1. In that case, the two-photon luminescence (TPL) of dimer nanorod arrays and the Raman intensity in the dimer junction is enhanced by 27 and 30 times, respectively, under resonant excitation. In the same way, the Raman intensity in the gap region is enhanced 16 times for the coaxial cable nanorod arrays. The plasmonic nanorod arrays synthesized by the facile method, having tunable plasmon properties and large field enhancement, indicate an attractive pathway to the photonic nanodevices.

  4. Hypervelocity Impact Testing of Space Station Freedom Solar Cells

    NASA Technical Reports Server (NTRS)

    Christie, Robert J.; Best, Steve R.; Myhre, Craig A.

    1994-01-01

    Solar array coupons designed for the Space Station Freedom electrical power system were subjected to hypervelocity impacts using the HYPER facility in the Space Power Institute at Auburn University and the Meteoroid/Orbital Debris Simulation Facility in the Materials and Processes Laboratory at the NASA Marshall Space Flight Center. At Auburn, the solar cells and array blanket materials received several hundred impacts from particles in the micron to 100 micron range with velocities typically ranging from 4.5 to 10.5 km/s. This fluence of particles greatly exceeds what the actual components will experience in low earth orbit. These impacts damaged less than one percent of total area of the solar cells and most of the damage was limited to the cover glass. There was no measurable loss of electrical performance. Impacts on the array blanket materials produced even less damage and the blanket materials proved to be an effective shield for the back surface of the solar cells. Using the light gas gun at MSFC, one cell of a four cell coupon was impacted by a 1/4 inch spherical aluminum projectile with a velocity of about 7 km/s. The impact created a neat hole about 3/8 inch in diameter. The cell and coupon were still functional after impact.

  5. High-Throughput Generation of Durable Droplet Arrays for Single-Cell Encapsulation, Culture, and Monitoring.

    PubMed

    Wu, Han; Chen, Xinlian; Gao, Xinghua; Zhang, Mengying; Wu, Jinbo; Wen, Weijia

    2018-04-03

    High-throughput measurements can be achieved using droplet-based assays. In this study, we exploited the principles of wetting behavior and capillarity to guide liquids sliding along a solid surface with hybrid wettability. Oil-covered droplet arrays with uniformly sized and regularly shaped picoliter droplets were successfully generated on hydrophilic-in-hydrophobic patterned substrates. More than ten thousand 31-pL droplets were generated in 5 s without any sophisticated instruments. Covering the droplet arrays with oil during generation not only isolated the droplets from each other but also effectively prevented droplet evaporation. The oil-covered droplet arrays could be stored for more than 2 days with less than 35% volume loss. Single microspheres, microbial cells, or mammalian cells were successfully captured in the droplets. We demonstrate that Escherichia coli could be encapsulated at a certain number (1-4) and cultured for 3 days in droplets. Cell population and morphology were dynamically tracked within individual droplets. Our droplet array generation method enables high-throughput processing and is facile, efficient, and low-cost; in addition, the prepared droplet arrays have enormous potential for applications in chemical and biological assays.

  6. Study of the formation, stability, and X-ray emission of the Z-pinch formed during implosion of fiber arrays at the Angara-5-1 facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aleksandrov, V. V.; Volkov, G. S.; Grabovski, E. V.

    Results from experimental studies on the implosion of arrays made of kapron fibers coated with different metals (Al, In, Sn, and Bi) are presented. It is shown that the power, total energy, and spectrum of radiation emitted by the imploding array depend on the number of metallized fibers and the mass of the metal layer deposited on them but are independent of the metal characteristics (density, atomic number, etc.). Analysis of frame X-ray images shows that the Z-pinches formed in the implosion of metallized kapron fiber arrays are more stable than those formed in wire arrays and that MHD perturbationsmore » in them develop at a slower growth rate. Due to the lower rate of plasma production from kapron fibers, the plasma formed at the periphery of the array forms a layer that plays the role of a hohlraum wall partially trapping soft X-ray emission of the Z-pinch formed in the implosion of the material of the deposited metal layer. The closure of the anode aperture doubles the energy of radiation emitted in the radial direction.« less

  7. Taking advantage of modern turbines

    DOE PAGES

    Thresher, Robert

    2018-05-14

    Here, wind facilities have generally deployed turbines of the same power and height in regular uniform arrays. Now, the modern generation of turbines, with customer-selectable tower heights and larger rotors, can significantly increase wind energy's economic potential using less land to generate cheaper electricity.

  8. | Earthscope

    Science.gov Websites

    Array Funded Projects Geochronology Synthesis Workshops Scientific Publications Science Nuggets ES Synthesis Workshop 06-12 | 06-14 IRIS Workshop: Foundations, Frontiers, and Future Facilities for Seismology 06-15 | Call for Science Nuggets this spring! 07-26 | 07-28 Midcontinent Rift Synthesis Workshop See

  9. Taking advantage of modern turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thresher, Robert

    Here, wind facilities have generally deployed turbines of the same power and height in regular uniform arrays. Now, the modern generation of turbines, with customer-selectable tower heights and larger rotors, can significantly increase wind energy's economic potential using less land to generate cheaper electricity.

  10. 5. SITE BUILDING 002 SCANNER BUILDING AT "A" ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. SITE BUILDING 002 - SCANNER BUILDING - AT "A" FACE (ON SOUTH SIDE) LOOKING DIRECTLY UP RADAR SYSTEM EMITTER/ANTENNA ARRAY FACE WITH 90MM STANDARD LENS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  11. Operator Interface for the ALMA Observing System

    NASA Astrophysics Data System (ADS)

    Grosbøl, P.; Schilling, M.

    2009-09-01

    The Atacama Large Millimeter/submillimeter Array (ALMA) is a major new ground-based radio-astronomical facility being constructed in Chile in an international collaboration between Europe, Japan and North America in cooperation with the Republic of Chile. The facility will include 54 12m and 12 7m antennas at the Altiplano de Chajnantor and be operated from the Operations Support Facilities (OSF) near San Pedro. This paper describes design and baseline implementation of the Graphical User Interface (GUI) used by operators to monitor and control the observing facility. It is written in Java and provides a simple plug-in interface which allows different subsystems to add their own panels to the GUI. The design is based on a client/server concept and supports multiple operators to share or monitor operations.

  12. Healthcare waste management: current practices in selected healthcare facilities, Botswana.

    PubMed

    Mbongwe, Bontle; Mmereki, Baagi T; Magashula, Andrew

    2008-01-01

    Healthcare waste management continues to present an array of challenges for developing countries, and Botswana is no exception. The possible impact of healthcare waste on public health and the environment has received a lot of attention such that Waste Management dedicated a special issue to the management of healthcare waste (Healthcare Wastes Management, 2005. Waste Management 25(6) 567-665). As the demand for more healthcare facilities increases, there is also an increase on waste generation from these facilities. This situation requires an organised system of healthcare waste management to curb public health risks as well as occupational hazards among healthcare workers as a result of poor waste management. This paper reviews current waste management practices at the healthcare facility level and proposes possible options for improvement in Botswana.

  13. Fabrication of hierarchical CoP nanosheet@microwire arrays via space-confined phosphidation toward high-efficiency water oxidation electrocatalysis under alkaline conditions.

    PubMed

    Ji, Xuqiang; Zhang, Rong; Shi, Xifeng; Asiri, Abdullah M; Zheng, Baozhan; Sun, Xuping

    2018-05-03

    In spite of recent advances in the synthesis of transition metal phosphide nanostructures, the simple fabrication of hierarchical arrays with more accessible active sites still remains a great challenge. In this Communication, we report a space-confined phosphidation strategy toward developing hierarchical CoP nanosheet@microwire arrays on nickel foam (CoP NS@MW/NF) using a Co(H2PO4)2·2H3PO4 microwire array as the precursor. The thermally stable nature of the anion in the precursor is key to hierarchical nanostructure formation. When used as a 3D electrode for water oxidation electrocatalysis, such CoP NS@MW/NF needs an overpotential as low as 296 mV to drive a geometrical catalytic current density of 100 mA cm-2 in 1.0 M KOH, outperforming all reported Co phosphide catalysts in alkaline media. This catalyst also shows superior long-term electrochemical durability, maintaining its activity for at least 65 h. This study offers us a general method for facile preparation of hierarchical arrays for applications.

  14. Heterogeneous NiCo2O4@polypyrrole core/sheath nanowire arrays on Ni foam for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Hu, Jing; Li, Minchan; Lv, Fucong; Yang, Mingyang; Tao, Pengpeng; Tang, Yougen; Liu, Hongtao; Lu, Zhouguang

    2015-10-01

    A novel heterogeneous NiCo2O4@PPy core/sheath nanowire arrays are directly grown on Ni foam involving three facile steps, hydrothermal synthesis and calcination of NiCo2O4 nanowire arrays and subsequent in-situ oxidative polymerization of polypyrrole (PPy). When investigated as binder- and conductive additive-free electrodes for supercapacitors (SCs) in 6 M KOH, the NiCo2O4@PPy core/sheath nanowire arrays exhibit high areal capacitance of 3.49 F cm-2 at a discharge current density of 5 mA cm-2, which is almost 1.5 times as much as the pristine NiCo2O4 (2.30 F cm-2). More importantly, it can remain 3.31 F cm-2 (94.8% retention) after 5000 cycles. The as-obtained electrode also displays excellent rate capability, whose areal capacitance can still remain 2.79 F cm-2 while the discharge current density is increased to 50 mA cm-2. The remarkable electrochemical performance is mainly attributed to the unique heterogeneous core/sheath nanowire-array architectures.

  15. Latest results of the Tunka Radio Extension

    NASA Astrophysics Data System (ADS)

    Kostunin, D.; Bezyazeekov, P. A.; Budnev, N. M.; Fedorov, O.; Gress, O. A.; Haungs, A.; Hiller, R.; Huege, T.; Kazarina, Y.; Kleifges, M.; Korosteleva, E. E.; Krömer, O.; Kungel, V.; Kuzmichev, L. A.; Lubsandorzhiev, N.; Marshalkina, T.; Mirgazov, R. R.; Monkhoev, R.; Osipova, E. A.; Pakhorukov, A.; Pankov, L.; Prosin, V. V.; Rubtsov, G. I.; Schröder, F. G.; Wischnewski, R.; Zagorodnikov, A.

    2017-06-01

    The Tunka Radio Extension (Tunka-Rex) is an antenna array consisting of 63 antennas at the location of the TAIGA facility (Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy) in Eastern Siberia, nearby Lake Baikal. Tunka-Rex is triggered by the air-Cherenkov array Tunka-133 during clear and moonless winter nights and by the scintillator array Tunka-Grande during the remaining time. Tunka-Rex measures the radio emission from the same air-showers as Tunka-133 and Tunka-Grande, but with a higher threshold of about 100 PeV. During the first stages of its operation, Tunka-Rex has proven, that sparse radio arrays can measure air-showers with an energy resolution of better than 15% and the depth of the shower maximum with a resolution of better than 40 g/cm2. To improve and interpret our measurements as well as to study systematic uncertainties due to interaction models, we perform radio simulations with CORSIKA and CoREAS. In this overview we present the setup of Tunka-Rex, discuss the achieved results and the prospects of mass-composition studies with radio arrays.

  16. A simple and transparent well-aligned ZnO nanowire array ultraviolet photodetector with high responsivity

    NASA Astrophysics Data System (ADS)

    Yin, Lei; Ding, Hesheng; Yuan, Zhaolin; Huang, Wendeng; Shuai, Chunjiang; Xiong, Zhaoxin; Deng, Jianping; Lv, Tengbo

    2018-06-01

    Well-aligned zinc oxide (ZnO) nanowire arrays were grown on an interdigital patterned fluorine tin oxide (FTO)-coated glass substrate by a facile chemical bath deposition at low temperature. Morphology, crystalline structure, and optical properties of the ZnO nanowire arrays were analyzed in detail. The results revealed that the ZnO nanowires had wurtzite structure, typically ∼40-60 nm in diameter, and ∼700-800 nm in length, a great number of highly uniform and dense nanowires grew vertically on the substrate to form the well-aligned ZnO nanowire arrays, which had very high optical transmission (>86%) in the visible light region. In addition, the performance of ZnO nanowire arrays ultraviolet (UV) photodetector was systematically examined. The photosensitivity (S), responsivity (R), response and decay time of the photodetector were 703 at +0.2 V, 113 A/W at +5 V, 23 s and 73 s respectively. Also, the photoresponse mechanism of the UV photodetector was illuminated in terms of the oxygen adsorption-photodesorption process.

  17. Template-free synthesis of vanadium oxides nanobelt arrays as high-rate cathode materials for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Qin, Mulan; Liang, Qiang; Pan, Anqiang; Liang, Shuquan; Zhang, Qing; Tang, Yan; Tan, Xiaoping

    2014-12-01

    A facile hydrothermal route has been developed to fabricate the metastable VO2 (B) ultra-thin nanobelt arrays, which can be converted into V2O5 porous nanobelt arrays after calcinating VO2 (B) in air at 400 °C for 1 h. The influence of hydrothermal time to the crystallinity and morphology of the VO2 phase has been studied. A possible mechanism for the formation of VO2 nanobelt arrays has been proposed in this paper. As a cathode material for lithium ion batteries, the V2O5 nanobelt arrays show excellent rate capability and cycling stability. An initial discharge capacity of 142 mA h g-1 can be delivered at a current density of 50 mA g-1 with almost no capacity fading after 100 cycles. Even at a current density of 1000 mA g-1, they still exhibit the capacity of 130 mA h g-1 and superior capacity retention capability. The excellent electrochemical properties are attributed to the ultra-thin thickness and the porous structures of the nanobelts.

  18. Velocity Data in a Fully Developed Wind Turbine Array Boundary Layer

    NASA Astrophysics Data System (ADS)

    Turner, John; Wosnik, Martin

    2016-11-01

    Results are reported from an experimental study of an array of porous disks simulating offshore wind turbines. The disks mimic power extraction of similarly scaled wind turbines via drag matching, and the array consists of 19x5 disks of 0.25 m diameter. The study was conducted in the UNH Flow Physics Facility (FPF), which has test section dimensions of 6.0 m wide, 2.7 m high and 72.0 m long. The FPF can achieve a boundary layer height on the order of 1 m at the entrance of the wind turbine array which puts the model turbines in the bottom third of the boundary layer, which is typical of field application. Careful consideration was given to an expanded uncertainty analysis, to determine possible measurements in this type of flow. For a given configuration (spacing, initial conditions, etc.), the velocity levels out and the wind farm approaches fully developed behavior, even within the maintained growth of the simulated atmospheric boundary layer. Benchmark pitot tube data was acquired in vertical profiles progressing streamwise behind the centered column at every row in the array.

  19. Developing a gate-array capability at a research and development laboratory

    NASA Astrophysics Data System (ADS)

    Balch, J. W.; Current, K. W.; Magnuson, W. G., Jr.; Pocha, M. D.

    1983-03-01

    Experiences in developing a gate array capability for low volume applications in a research and development (R and D) laboratory are described. By purchasing unfinished wafers and doing the customization steps in-house. Turnaround time was shortened to as little as one week and the direct costs reduced to as low as $5K per design. Designs generally require fast turnaround (a few weeks to a few months) and very low volumes (1 to 25). Design costs must be kept at a minimum. After reviewing available commercial gate array design and fabrication services, it was determined that objectives would best be met by using existing internal integrated circuit fabrication facilities, the COMPUTERVISION interactive graphics layout system, and extensive computational capabilities. The reasons and the approach taken for; selection for a particular gate array wafer, adapting a particular logic simulation program, and how layout aids were enhanced are discussed. Testing of the customized chips is described. The content, schedule, and results of the internal gate array course recently completed are discussed. Finally, problem areas and near term plans are presented.

  20. Historical Evaluation of Groundwater Responses to Underground Injection Controls in an Urban Watershed

    NASA Astrophysics Data System (ADS)

    Harrison, M.; Haggerty, R.; Santelmann, M. V.

    2017-12-01

    Underground injection controls (UICs) are drywells designed to recharge stormwater to alleviate flooding events. The development of UICs affect the dynamics of the urban hydrologic setting in which more than half of precipitation can be recharged directly into UICs systems. This study seeks to better understand how the development of UICs affect groundwater levels and streamflows. The Portland, OR metropolitan area consist of well over 10,000 of UICs to mitigate flooding during storm events. This study evaluates historical precipitation, streamflow, and groundwater levels from over 20 monitoring wells within a watershed in the city Portland, OR along with well log data of UICs. UICs within the study area are approximately 30 feet in depth and have noted to contribute to about 12% of recharge. This study evaluates the dynamics of groundwater levels in relation towards the development of UICs. The results of obtained from this analysis is applied to model seasonal groundwater, precipitation, and streamflow relationships within a neighborhood subcatchment.

  1. Summary of findings from the evaluation of a pilot medically supervised safer injecting facility

    PubMed Central

    Wood, Evan; Tyndall, Mark W.; Montaner, Julio S.; Kerr, Thomas

    2006-01-01

    In many cities, infectious disease and overdose epidemics are occurring among illicit injection drug users (IDUs). To reduce these concerns, Vancouver opened a supervised safer injecting facility in September 2003. Within the facility, people inject pre-obtained illicit drugs under the supervision of medical staff. The program was granted a legal exemption by the Canadian government on the condition that a 3-year scientific evaluation of its impacts be conducted. In this review, we summarize the findings from evaluations in those 3 years, including characteristics of IDUs at the facility, public injection drug use and publicly discarded syringes, HIV risk behaviour, use of addiction treatment services and other community resources, and drug-related crime rates. Vancouver's safer injecting facility has been associated with an array of community and public health benefits without evidence of adverse impacts. These findings should be useful to other cities considering supervised injecting facilities and to governments considering regulating their use. PMID:17116909

  2. NRL Fact Book

    DTIC Science & Technology

    1968-03-15

    Phased array techniques Studies of the ionosphere by means of radar and satellite transmissions Radar measurements of satellites and ballistic missiles...Funding Fiscal Year 1968: $6,100,000 3-13 Radio Division Dr. L. B. Wetzel NA VIGA IOA S YS TE RADIO RESEARCH FACILITY eCOMMUNICATION *RADIO TECHNIQUES

  3. 6. SITE BUILDING 002 SCANNER BUILDING AT "A" ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. SITE BUILDING 002 - SCANNER BUILDING - AT "A" FACE (ON SOUTH SIDE) LOOKING DIRECTLY UP RADAR SYSTEM EMITTER/ANTENNA ARRAY FACE WITH 65MM WIDE ANGLE LENS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  4. Low-cost Solar Array Project. Feasibility of the Silane Process for Producing Semiconductor-grade Silicon

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The feasibility of Union Carbide's silane process for commercial application was established. An integrated process design for an experimental process system development unit and a commercial facility were developed. The corresponding commercial plant economic performance was then estimated.

  5. Comparison of polystyrene scintillator fiber array and monolithic polystyrene for neutron imaging and radiography.

    PubMed

    Simpson, R; Cutler, T E; Danly, C R; Espy, M A; Goglio, J H; Hunter, J F; Madden, A C; Mayo, D R; Merrill, F E; Nelson, R O; Swift, A L; Wilde, C H; Zocco, T G

    2016-11-01

    The neutron imaging diagnostic at the National Ignition Facility has been operating since 2011 generating neutron images of deuterium-tritium (DT) implosions at peak compression. The current design features a scintillating fiber array, which allows for high imaging resolution to discern small-scale structure within the implosion. In recent years, it has become clear that additional neutron imaging systems need to be constructed in order to provide 3D reconstructions of the DT source and these additional views need to be on a shorter line of sight. As a result, there has been increased effort to identify new image collection techniques that improve upon imaging resolution for these next generation neutron imaging systems, such as monolithic deuterated scintillators. This work details measurements performed at the Weapons Neutron Research Facility at Los Alamos National Laboratory that compares the radiographic abilities of the fiber scintillator with a monolithic scintillator, which may be featured in a future short line of sight neutron imaging systems.

  6. Comparison of polystyrene scintillator fiber array and monolithic polystyrene for neutron imaging and radiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, R., E-mail: raspberry@lanl.gov; Cutler, T. E.; Danly, C. R.

    The neutron imaging diagnostic at the National Ignition Facility has been operating since 2011 generating neutron images of deuterium-tritium (DT) implosions at peak compression. The current design features a scintillating fiber array, which allows for high imaging resolution to discern small-scale structure within the implosion. In recent years, it has become clear that additional neutron imaging systems need to be constructed in order to provide 3D reconstructions of the DT source and these additional views need to be on a shorter line of sight. As a result, there has been increased effort to identify new image collection techniques that improvemore » upon imaging resolution for these next generation neutron imaging systems, such as monolithic deuterated scintillators. This work details measurements performed at the Weapons Neutron Research Facility at Los Alamos National Laboratory that compares the radiographic abilities of the fiber scintillator with a monolithic scintillator, which may be featured in a future short line of sight neutron imaging systems.« less

  7. Comparison of polystyrene scintillator fiber array and monolithic polystyrene for neutron imaging and radiography

    NASA Astrophysics Data System (ADS)

    Simpson, R.; Cutler, T. E.; Danly, C. R.; Espy, M. A.; Goglio, J. H.; Hunter, J. F.; Madden, A. C.; Mayo, D. R.; Merrill, F. E.; Nelson, R. O.; Swift, A. L.; Wilde, C. H.; Zocco, T. G.

    2016-11-01

    The neutron imaging diagnostic at the National Ignition Facility has been operating since 2011 generating neutron images of deuterium-tritium (DT) implosions at peak compression. The current design features a scintillating fiber array, which allows for high imaging resolution to discern small-scale structure within the implosion. In recent years, it has become clear that additional neutron imaging systems need to be constructed in order to provide 3D reconstructions of the DT source and these additional views need to be on a shorter line of sight. As a result, there has been increased effort to identify new image collection techniques that improve upon imaging resolution for these next generation neutron imaging systems, such as monolithic deuterated scintillators. This work details measurements performed at the Weapons Neutron Research Facility at Los Alamos National Laboratory that compares the radiographic abilities of the fiber scintillator with a monolithic scintillator, which may be featured in a future short line of sight neutron imaging systems.

  8. Facile fabrication of nanofluidic diode membranes using anodic aluminium oxide.

    PubMed

    Wu, Songmei; Wildhaber, Fabien; Vazquez-Mena, Oscar; Bertsch, Arnaud; Brugger, Juergen; Renaud, Philippe

    2012-09-21

    Active control of ion transport plays important roles in chemical and biological analytical processes. Nanofluidic systems hold the promise for such control through electrostatic interaction between ions and channel surfaces. Most existing experiments rely on planar geometry where the nanochannels are generally very long and shallow with large aspect ratios. Based on this configuration the concepts of nanofluidic gating and rectification have been successfully demonstrated. However, device minimization and throughput scaling remain significant challenges. We report here an innovative and facile realization of hetero-structured Al(2)O(3)/SiO(2) (Si) nanopore array membranes by using pattern transfer of self-organized nanopore structures of anodic aluminum oxide (AAO). Thanks to the opposite surface charge states of Al(2)O(3) (positive) and SiO(2) (negative), the membrane exhibits clear rectification of ion current in electrolyte solutions with very low aspect ratios compared to previous approaches. Our hetero-structured nanopore arrays provide a valuable platform for high throughput applications such as molecular separation, chemical processors and energy conversion.

  9. KSC-2012-6405

    NASA Image and Video Library

    2012-09-20

    CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, a groundbreaking was held to mark the start of construction on the Antenna Test Bed Array for the Ka-Band Objects Observation and Monitoring, or Ka-BOOM system. Using ceremonial shovels to mark the site, from left are Michael Le, lead design engineer and construction manager Sue Vingris, Cape Design Engineer Co. project manager Kannan Rengarajan, chief executive officer of Cape Design Engineer Co. Lutfi Mized, president of Cape Design Engineer Co. David Roelandt, construction site superintendent with Cape Design Engineer Co. Marc Seibert, NASA project manager Michael Miller, NASA project manager Peter Aragona, KSC’s Electromagnetic Lab manager Stacy Hopper, KSCs master planning supervisor Dr. Bary Geldzabler, NASA chief scientist and KSC’s Chief Technologist Karen Thompson. The construction site is near the former Vertical Processing Facility, which has been demolished. Workers will begin construction on the pile foundations for the 40-foot-diameter dish antenna arrays and their associated utilities, and prepare the site for the operations command center facility. Photo credit: NASA/Charisse Nahser

  10. KSC-2012-6404

    NASA Image and Video Library

    2012-09-20

    CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, a groundbreaking was held to mark the start of construction on the Antenna Test Bed Array for the Ka-Band Objects Observation and Monitoring, or Ka-BOOM system. Holding ceremonial shovels, from left are Michael Le, lead design engineer and construction manager Sue Vingris, Cape Design Engineer Co. project manager Kannan Rengarajan, chief executive officer of Cape Design Engineer Co. Lutfi Mized, president of Cape Design Engineer Co. David Roelandt, construction site superintendent with Cape Design Engineer Co. Marc Seibert, NASA project manager Michael Miller, NASA project manager Peter Aragona, KSC’s Electromagnetic Lab manager Stacy Hopper, KSCs master planning supervisor Dr. Bary Geldzabler, NASA chief scientist and KSC’s Chief Technologist Karen Thompson. The construction site is near the former Vertical Processing Facility, which has been demolished. Workers will begin construction on the pile foundations for the 40-foot-diameter dish antenna arrays and their associated utilities, and prepare the site for the operations command center facility. Photo credit: NASA/Charisse Nahser

  11. Measurement of 173Lu(n,γ) Cross Sections at DANCE

    NASA Astrophysics Data System (ADS)

    Roig, O.; Theroine, C.; Ebran, A.; Méot, V.; Bond, E. M.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; Nortier, F. M.; O'Donnell, J. M.; Rundberg, R. S.; Taylor, W. A.; Ullmann, J. L.; Vieira, D. J.

    2014-05-01

    A highly gamma-radioactive target, 3.7 GBq, of 173Lu isotope was placed inside the DANCE array (Detector for Advanced Neutron Capture Experiments) at Los Alamos to study the radiative neutron capture on an unstable isotope. The 173Lu element was produced by naturalHf(p,xn) reactions following by beta-decays at the Isotope Production Facility (IPF). Measurements of radiative neutron capture cross section on 173Lu were achieved at the Los Alamos Neutron Science Center (LANSCE) spallation neutron source facility over the neutron energy range from thermal up to 1 keV. A special configuration was necessary to perform the experiment using the DANCE [1] array due to the high gamma activity of the target. We will report on the target production, the experiment and the results obtained for the radiative neutron capture on 173Lu. The radiative capture cross section was obtained for the first time on this unstable nucleus. Some resonances have been characterized. A comparison with a recent data evaluation is presented.

  12. Thirty Years Supporting Portable Arrays: The IRIS Passcal Instrument Center

    NASA Astrophysics Data System (ADS)

    Beaudoin, B. C.; Anderson, K. R.; Bilek, S. L.; Woodward, R.

    2014-12-01

    Thirty years have passed since establishment of the IRIS Program for the Array Seismic Studies of the Continental Lithosphere (PASSCAL). PASSCAL was part of a coordinated plan proposed to the National Science Foundation (NSF) defining the instrumentation, data collection and management structure to support a wide range of research in seismology. The PASSCAL program has surpassed the early goal of 6000 data acquisition channels with a current inventory of instrumentation capable of imaging from the near surface to the inner core. Here we present the evolution of the PASSCAL program from instrument depot to full service community resource. PASSCAL has supported close to 1100 PI driven seismic experiments since its inception. Instruments from PASSCAL have covered the globe and have contributed over 7400 SEED stations and 242 assembled data sets to the IRIS Data Management Center in Seattle. Since the combination in 1998 of the Stanford and Lamont instrument centers into the single PASSCAL Instrument Center (PIC) at New Mexico Tech, the facility has grown in scope by adding the EarthScope Array Operations Facility in 2005, the incorporation of the EarthScope Flexible Array, and a Polar support group in 2006. The polar support group enhances portable seismic experiments in extremely harsh polar environments and also extends to special projects such as the Greenland Ice Sheet Monitoring Network (GLISN) and the recent development effort for Geophysical Earth Observatory for Ice Covered Environments (GEOICE). Through these support efforts the PIC has established itself as a resource for field practices, engineered solutions for autonomous seismic stations, and a pioneer in successful seismic recording in polar environments. We are on the cusp of a new generation of instrumentation driven in part by the academic community's desire to record unaliased wavefields in multiple frequency bands and industry's interest in utilizing lower frequency data. As part of the recently funded IRIS proposal to NSF for support of Seismological Facilities for the Advancement of Geoscience and EarthScope (SAGE), IRIS is developing plans for this new instrumentation that will ensure that the PASSCAL program continues to provide state-of-the-art observing capabilities into the coming decades.

  13. Europe Agrees on Common Strategy to Initiate Study of LSA/MMA

    NASA Astrophysics Data System (ADS)

    1998-09-01

    Council Specifies ESO's Role in Planning In an extraordinary meeting at the ESO Headquarters, the ESO Council today endorsed ESO's involvement in the planning of a major new astronomical facility in the southern hemisphere. Some years from now, the Large Southern Array/Millimetre Array (LSA/MMA) may become the world's prime sub-mm/mm radio observatory [1] at a pristine site at 5000 m altitude in the Chilean Andes, not very far from the VLT Paranal Observatory. Background One of the highest-priority items in astronomy today is a large millimetre-wavelength array. This would be a millimetre counterpart to the ESO VLT and the NASA/ESA Hubble Space Telescope (HST), with similar scientific objectives and comparable high angular resolution and sensitivity. An antenna array with about 10,000 m 2 area would provide very high sensitivity and angular resolution, compatible with that of the VLT and HST. Such a large collecting area implies an array with many antennas and baselines, which give the added advantage of fast, high-quality images. The site must be high, dry, large, and flat - a high plateau in the Atacama desert is ideal, and has the great advantage of being in the southern hemisphere, important for compatibility with the VLT. Thus, discussions in Europe have focussed on a "Large Southern Array" (LSA) . The scientific case for such a telescope is overwhelming. It would be able to study the origins of galaxies and stars: the epoch of first galaxy formation and the evolution of galaxies at later stages, including the dust-obscured star-forming galaxies that the HST and VLT cannot see, and all phases of star formation hidden away in dusty molecular clouds. But the LSA will go far beyond these main science drivers - it will have a major impact on virtually all areas of astronomy, and make millimetre astronomy accessible to all astronomers. It may well have as big a user community as the VLT itself. European involvement in millimetre astronomy Europe already has a strong involvement in millimetre astronomy: the 5 x 15-m IRAM array on Plateau de Bure (France), the 30-m IRAM antenna (Spain), the 20-m at Onsala (Sweden), the 15-m Swedish-ESO Submillimetre Telescope (SEST, La Silla), the 15-m JCMT (Mauna Kea, Hawaii), the 10-m HHT (Arizona), and others. Over 60 research institutes around Europe use these facilities. Many of them have developed technical expertise and leadership in this area together with European industry, so it is natural that a European collaboration should be looking to the future. The idea of a large European southern millimetre array has been discussed since 1991. In 1995, an LSA Project collaboration was established between ESO, the Institut de Radio Astronomie Millimetrique (IRAM), the Onsala Space Observatory, and the Netherlands Foundation for Research in Astronomy (NFRA). This consortium of observatories agreed to pool resources to study critical technical areas and conduct site surveys in Chile. Details are available in a Messenger article (March 98). Possibilities of intercontinental collaboration An important step was taken in June 1997. A similar project is under study in the United States of America (the "Millimeter Array", MMA ). An agreement was entered into between ESO and the U.S. National Radio Astronomy Observatory (NRAO) to explore the possibility of merging the two projects into one. Until then the emphasis in Europe had been on the large collecting area provided by 16-m antennas operating at purely millimetre wavelengths, while in the U.S. the concept was a smaller array of 8-m antennas with good submillimetre performance. However, as there is also considerable interest in Europe in submillimetre observations, and in the U.S. in a larger collecting area, a compromise seemed feasible. Several joint working groups formed under the ESO-NRAO agreement were set up to explore the possibility of a collaborative project. It was concluded that a homogeneous array of 64 x 12-m antennas, providing submillimetre performance with a total collecting area of 7,000 m 2 , could be built at the high (5000 m) Chajnantor site , an hour from the array control center at the town of San Pedro de Atacama. It is this collaborative facility that is presently referred to as the Large Southern Array/Millimetre Array (LSA/MMA) . The decision by the ESO Council The ESO Council today passed a resolution that emphasizes the great potential of this proposed astronomical facility for scientific discoveries. It will operate in a relatively unexplored waveband region and with imaging and spectral resolution vastly better than anything now available. The ESO Council requests the ESO Executive to develop a proposal for ESO's role in the design and development phase of the new facility to be submitted to Council in its December 1998 meeting. This phase (Phase I) will cover the technical, financial, human resources, scheduling and organizational aspects for the development, construction, commissioning and operation of the LSA/MMA. The ESO Council supports the intention to create a European Coordinating Committee with participation of ESO that will discuss related policy and technical matters. A European Negotiating Team will then be established that will discuss with the U.S. and other interested nations the conditions of the union of the LSA and MMA as a single common enterprise. Note: [1] The corresponding wavelength interval is about 0.3 to 10 mm. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org ). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  14. KSC-00pp1681

    NASA Image and Video Library

    2000-11-10

    In the Space Station Processing Facility, workers attach an overhead crane to lift the P6 integrated truss segment from a workstand and move it to the payload transport canister for transfer to Launch Pad 39B. There it will be placed in Endeavour’s payload bay for launch on mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the International Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch is scheduled for Nov. 30 at 10:06 p.m. EST

  15. KSC-00pp1691

    NASA Image and Video Library

    2000-11-10

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, the P6 integrated truss segment is placed in the payload transport canister while workers watch its progress. After being secured in the canister, the truss will be transported to Launch Pad 39B and the payload changeout room. Then it will be moved into Space Shuttle Endeavour’s payload bay for mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. The STS-97 launch is scheduled Nov. 30 at 10:06 p.m. EST

  16. KSC-00pp1685

    NASA Image and Video Library

    2000-11-10

    As it travels across the Space Station Processing Facility, the P6 integrated truss segment passes over the two Italian-built Multi-Purpose Logistics Modules, Leonardo (right) and Raffaello (behind Leonardo). The P6 is being moved to a payload transport canister for transfer to Launch Pad 39B. There it will be placed in Endeavour’s payload bay for launch on mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch is scheduled Nov. 30 at 10:06 p.m. EST

  17. KSC00pp1691

    NASA Image and Video Library

    2000-11-10

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, the P6 integrated truss segment is placed in the payload transport canister while workers watch its progress. After being secured in the canister, the truss will be transported to Launch Pad 39B and the payload changeout room. Then it will be moved into Space Shuttle Endeavour’s payload bay for mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. The STS-97 launch is scheduled Nov. 30 at 10:06 p.m. EST

  18. KSC-00pp1684

    NASA Image and Video Library

    2000-11-10

    In the Space Station Processing Facility, the P6 integrated truss segment travels across the building to a payload transport canister for transfer to Launch Pad 39B. There it will be placed in Endeavour’s payload bay for launch on mission STS-97. At left is the airlock module, another component of the International Space Station. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch is scheduled Nov. 30 at 10:06 p.m. EST

  19. KSC-00pp1686

    NASA Image and Video Library

    2000-11-10

    Carried by an overhead crane, the P6 integrated truss segment travels the length of the Space Station Processing Facility toward a payload transport canister that will transfer it to Launch Pad 39B. At the pad, the Space Station element will be placed in Endeavour’s payload bay for launch on mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. The STS-97 launch is scheduled Nov. 30 at 10:06 p.m. EST

  20. KSC-00pp1687

    NASA Image and Video Library

    2000-11-10

    The P6 integrated truss segment hangs suspended from an overhead crane that is moving it the length of the Space Station Processing Facility toward a payload transport canister for transfer to Launch Pad 39B. At the pad, the Space Station element will be placed in Endeavour’s payload bay for launch on mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. The STS-97 launch is scheduled Nov. 30 at 10:06 p.m. EST

  1. Exploring hierarchical FeS2/C composite nanotubes arrays as advanced cathode for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Pan, G. X.; Cao, F.; Xia, X. H.; Zhang, Y. J.

    2016-11-01

    Rational construction of advanced FeS2 cathode is one of research hotspots, and of great importance for developing high-performance lithium ion batteries (LIBs). Herein we report a facile hydrolysis-sulfurization method for fabrication of FeS2/C nanotubes arrays with the help of sacrificial Co2(OH)2CO3 nanowires template and glucose carbonization. Self-supported FeS2/C nanotubes consist of interconnected nanoburrs of 5-20 nm, and show hierarchical porous structure. The FeS2/C nanotubes arrays are demonstrated with enhanced cycling life and noticeable high-rate capability with capacities ranging from 735 mAh g-1 at 0.25 C to 482 mAh g-1 at 1.5 C, superior to those FeS2 counterparts in the literature. The composite nanotubes arrays architecture plays positive roles in the electrochemical enhancement due to combined advantages of large electrode-electrolyte contact area, good strain accommodation, improved electrical conductivity, and enhanced structural stability.

  2. Renewable Lignosulfonate-Assisted Synthesis of Hierarchical Nanoflake-Array-Flower ZnO Nanomaterials in Mixed Solvents and Their Photocatalytic Performance

    NASA Astrophysics Data System (ADS)

    Li, Yue; Zuo, Hong-Fen; Guo, Yuan-Ru; Miao, Ting-Ting; Pan, Qing-Jiang

    2016-05-01

    With the assistance of sodium lignosulfonate, hierarchical nanoflake-array-flower nanostructure of ZnO has been fabricated by a facile precipitation method in mixed solvents. The sodium lignosulfonate amount used in our synthetic route is able to fine-tune ZnO morphology and an abundance of pores have been observed in the nanoflake-array-flower ZnO, which result in specific surface area reaching as high as 82.9 m2 · g-1. The synthesized ZnO exhibits superior photocatalytic activity even under low-power UV illumination (6 W). It is conjectured that both nanoflake-array structure and plenty of pores embedded in ZnO flakes may provide scaffold microenvironments to enhance photocatalytic activity. Additionally, this catalyst can be used repeatedly without a significant loss in photocatalytic activity. The low-cost, simple synthetic approach as well as high photocatalytic and recycling efficiency of our ZnO nanomaterials allows for application to treat wastewater containing organic pollutants in an effective way.

  3. Space infrared telescope facility wide field and diffraction limited array camera (IRAC)

    NASA Technical Reports Server (NTRS)

    Fazio, G. G.

    1986-01-01

    IRAC focal plane detector technology was developed and studies of alternate focal plane configurations were supported. While any of the alternate focal planes under consideration would have a major impact on the Infrared Array Camera, it was possible to proceed with detector development and optical analysis research based on the proposed design since, to a large degree, the studies undertaken are generic to any SIRTF imaging instrument. Development of the proposed instrument was also important in a situation in which none of the alternate configurations has received the approval of the Science Working Group.

  4. Tests of the module array of the ECAL0 electromagnetic calorimeter for the COMPASS experiment with the electron beam at ELSA

    NASA Astrophysics Data System (ADS)

    Anfimov, N.; Anosov, V.; Barth, J.; Chalyshev, V.; Chirikov-Zorin, I.; Dziewiecki, M.; Elsner, D.; Frolov, V.; Frommberger, F.; Guskov, A.; Hillert, W.; Klein, F.; Krumshteyn, Z.; Kurjata, R.; Marzec, J.; Nagaytsev, A.; Olchevski, A.; Orlov, I.; Rezinko, T.; Rybnikov, A.; Rychter, A.; Selyunin, A.; Zaremba, K.; Ziembicki, M.

    2015-07-01

    The array of 3 × 3 modules of the electromagnetic calorimeter ECAL0 of the COMPASS experiment at CERN has been tested with an electron beam of the ELSA (Germany) facility. The dependence of the response and the energy resolution of the calorimeter from the angle of incidence of the electron beam has been studied. A good agreement between the experimental data and the results of Monte Carlo simulation has been obtained. It will significantly expand the use of simulation to optimize event reconstruction algorithms.

  5. KSC-2009-4760

    NASA Image and Video Library

    2009-08-17

    VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base's Astrotech processing facility in California, NASA's Wide-field Infrared Survey Explorer, or WISE, spacecraft is situated on a work stand. At left on the spacecraft is the fixed panel solar array. In front, the square is the HGA Slotted Array (Ku-Band). The satellite will survey the entire sky at infrared wavelengths, creating a cosmic clearinghouse of hundreds of millions of objects, which will be catalogued, providing a vast storehouse of knowledge about the solar system, the Milky Way, and the universe. Launch is scheduled no earlier than Dec. 10. Photo credit: NASA/Moore, VAFB

  6. KSC-08pd2049

    NASA Image and Video Library

    2008-07-21

    CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center, workers prepare to move the final solar array wing for the International Space Station for installation on the S6 truss element. Scheduled to launch on the STS-119 mission, space shuttle Discovery will carry the S6 truss segment to complete the 361-foot-long backbone of the International Space Station. The truss includes the fourth pair of solar array wings and electronics that convert sunlight to power for the orbiting laboratory. Launch is targeted for Feb. 12, 2009. Photo credit: NASA/Troy Cryder

  7. Advanced Millimeter-Wave Imaging Enhances Security Screening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheen, David M.; Bernacki, Bruce E.; McMakin, Douglas L.

    2012-01-12

    Millimeter-wave imaging is rapidly gaining acceptance for passenger screening at airports and other secured facilities. This paper details a number of techniques developed over the last several years including novel image reconstruction and display techniques, polarimetric imaging techniques, array switching schemes, as well as high frequency high bandwidth techniques. Implementation of some of these methods will increase the cost and complexity of the mm-wave security portal imaging systems. RF photonic methods may provide new solutions to the design and development of the sequentially switched linear mm-wave arrays that are the key element in the mm-wave portal imaging systems.

  8. Advanced Millimeter-Wave Security Portal Imaging Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheen, David M.; Bernacki, Bruce E.; McMakin, Douglas L.

    2012-04-01

    Millimeter-wave imaging is rapidly gaining acceptance for passenger screening at airports and other secured facilities. This paper details a number of techniques developed over the last several years including novel image reconstruction and display techniques, polarimetric imaging techniques, array switching schemes, as well as high frequency high bandwidth techniques. Implementation of some of these methods will increase the cost and complexity of the mm-wave security portal imaging systems. RF photonic methods may provide new solutions to the design and development of the sequentially switched linear mm-wave arrays that are the key element in the mm-wave portal imaging systems.

  9. Testing of Streckeisen STS-5A and Nanometrics Trillium 120PH Sensors for the Alaska Transportable Array

    NASA Astrophysics Data System (ADS)

    Abbasi Baghbadorani, A.; Aderhold, K.; Bloomquist, D.; Frassetto, A.; Miller, P. E.; Busby, R. W.

    2017-12-01

    Starting in 2014, the IRIS Transportable Array facility began to install and operate seismic stations in Alaska and western Canada. By the end of the project, the full deployment of the array will cover a grid of 280 stations spaced about 85 km apart covering all of mainland Alaska and parts of the Yukon, British Columbia, and the Northwest Territories. Approximately 200 stations will be operated directly by IRIS through at least 2019. A key aspect of the Alaska TA is the need for stations to operate autonomously, on account of the high cost of installation and potential subsequent visits to remote field-sites to repair equipment. The TA is using newly developed broadband seismometers Streckeisen STS-5A and Nanometrics Trillium-120PH, designed for installation in shallow posthole emplacements. These new instruments were extensively vetted beforehand, but they are still relatively new to the TA inventory. Here we will assess their performance under deployment conditions and after repeated commercial shipping and travel to the field. Our objective is to provide a thorough accounting of the identified failures of the existing inventory of posthole instruments. We will assess the practices and results of instrument testing by the PASSCAL Instrument Center/Array Operations Facility (PIC/AOF), Alaska Operations Center (AOC), and broadband seismic sensor manufacturers (Streckeisen, Nanometrics) in order to document potential factors in and stages during the process for instrument failures. This will help to quantify the overall reliability of the TA seismic sensors and quality of TA practices and data collection, and identify potential considerations in future TA operations. Our results show that the overall rate of failure of all posthole instruments is <4% out of 260. This is lower than the rates seen for vault sensor failures in the operation of the Lower 48 Transportable Array. For telemetered stations such as these installed in the TA Alaska array, we also show that noise analyses can capture a failed emplaced sensor and reveal improved station performance after sensor replacement, and that these are key elements in assessing whether or not a sensor should be replaced in the field.

  10. Direct-write assembly of microperiodic planar and spanning ITO microelectrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Bok Y; Lorang, David J; Duoss, Eric B.

    2010-01-01

    Printed Sn-doped In{sub 2}O{sub 3} (ITO) microelectrodes are fabricated by direct-write assembly of sol–gel inks with varying concentration. This maskless, non-lithographic approach provides a facile route to patterning transparent conductive features in planar arrays and spanning architectures.

  11. Comparison of Comparative Genomic Hybridization Technologies across Microarray Platforms

    EPA Science Inventory

    In the 2007 Association of Biomolecular Resource Facilities (ABRF) Microarray Research Group (MARG) project, we analyzed HL-60 DNA with five platforms: Agilent, Affymetrix 500K, Affymetrix U133 Plus 2.0, Illumina, and RPCI 19K BAC arrays. Copy number variation (CNV) was analyzed ...

  12. Langley Aerospace Research Summer Scholars (LARSS) Scholars Pres

    NASA Image and Video Library

    2013-08-07

    250 students participated in the Langley Aerospace Research Summer Scholars (LARSS) Presentations focused on 3D modeling of STARBUKS calibration components in the National Transonic Facility, hypersonic aerodynamic inflatable decelerator, and optimization of a microphone-based array for flight testing. Reid Center LaRC Hampton, VA

  13. [Nondestructive Evaluation (NDE) Capabilities

    NASA Technical Reports Server (NTRS)

    Born, Martin

    2010-01-01

    These poster boards display the United Space Alliance's (USA) systems and equipment used for Nondestructive Evaluation. These include: (1) the Robotic Inspection Facility, (2) CAT-Scan and Laminography, (3) Laser Surface Profilometry, (4) Remote Eddy Current, (5) Ultrasonic Phased Array, (7) Infrared Flash Thermography, and (8) Backscatter X-Ray (BSX)

  14. Delivering the EarthScope Transportable Array as a Community Asset

    NASA Astrophysics Data System (ADS)

    Busby, R. W.; Woodward, R.; Simpson, D. W.; Hafner, K.

    2009-12-01

    The Transportable Array element of EarthScope/USArray is a culmination of years of coordination and planning for a large science initiative via the NSF MREFC program. US researchers and the IRIS Consortium conceived of the science objectives for a continental scale array and, together with the geodetic (PBO) and fault drilling (SAFOD) communities and NSF, successfully merged these scientific objectives with a compelling scientific and technical proposal, accompanied with the budget and schedule to accomplish it. The Transportable Array is now an efficient and exacting execution of an immense technical challenge that, by many measures, is yielding exciting science return, both expected and unanticipated. The technical facility is first-rate in its implementation, yet responsive to science objectives and discovery, actively engaging the community in discussion and new direction. The project is carried out by a core of dedicated and professional staff , guided and advised through considerable feedback from science users who have unprecedented access to high-quality data. This, in a sense, lets seismologists focus on research, rather than be administrators, drivers, shippers, battery mules, electronic technicians and radio hams. Now that USArray is operational, it is interesting to reflect on whether the TA, as a professionally executed project, could succeed as well if it were an independent endeavor, managed and operated outside of the resources developed and available through IRIS and its core programs. We detail how the support the USArray facility provides improves data accessibility and enhances interdisciplinary science. We suggest that the resources and community leadership provided by the IRIS Consortium, and the commitment to the principle of free and open data access, have been basic underpinnings for the success of the TA. This involvement of community-based, scientific leadership in the development of large facilities should be considered in planning future large Earth science or even basic science endeavors. The Global Seismographic Network provides another example where, with strong scientific leadership, the technical objectives have returned far more than expected results from all manner of application of new techniques to high quality data. Again, the key ingredient may be that the project oversight is driven by scientists with free and open access to data and broad and evolving expectations as to how the facility might be applied towards research objectives. Major projects must clearly follow defined plans and budgets; but, while it is important to have managers to motivate schedules and control costs, the energy, vigor and effort to optimize new measures and discover new applications derive from the insights and enthusiasm of the science community.

  15. Effect of facility variation on the acoustic characteristics of three single stream nozzles

    NASA Technical Reports Server (NTRS)

    Gutierrez, O. A.

    1980-01-01

    The characteristics of the jet noise produced by three single stream nozzles were investigated statistically at the NASA-Lewis Research Center outdoor jet acoustic facility. The nozzles consisted of a 7.6 cm diameter convergent conical, a 10.2 cm diameter convergent conical and an 8-lobe daisy nozzle with 7.6 cm equivalent diameter flow area. The same nozzles were tested previously at cold flow conditions in other facilities such as the Royal Aircraft Establishment (RAE) 7.3 m acoustic wind tunnel. The acoustic experiments at NASA covered pressure ratios from 1.4 to 2.5 at total temperatures of 811 K and ambient. The data obtained with four different microphone arrays are compared. The results are also compared with data taken at the RAE facility and with a NASA prediction procedure.

  16. Dynamics of conical wire array Z-pinch implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ampleford, D. J.; Lebedev, S. V.; Bland, S. N.

    2007-10-15

    A modification of the wire array Z pinch, the conical wire array, has applications to the understanding of wire array implosions and potentially to pulse shaping relevant to inertial confinement fusion. Results are presented from imploding conical wire array experiments performed on university scale 1 MA generators--the MAGPIE generator (1 MA, 240 ns) at Imperial College London [I. H. Mitchell et al., Rev. Sci Instrum. 67, 1533 (1996)] and the Nevada Terawatt Facility's Zebra generator (1 MA, 100 ns) at the University of Nevada, Reno [B. Bauer et al., in Dense Z-Pinches, edited by N. Pereira, J. Davis, and P.more » Pulsifer (AIP, New York, 1997), Vol. 409, p. 153]. This paper will discuss the implosion dynamics of conical wire arrays. Data indicate that mass ablation from the wires in this complex system can be reproduced with a rocket model with fixed ablation velocity. Modulations in the ablated plasma are present, the wavelength of which is invariant to a threefold variation in magnetic field strength. The axial variation in the array leads to a zippered precursor column formation. An initial implosion of a magnetic bubble near the cathode is followed by the implosion zippering upwards. Spectroscopic data demonstrating a variation of plasma parameters (e.g., electron temperature) along the Z-pinch axis is discussed, and experimental data are compared to magnetohydrodynamic simulations.« less

  17. Measurement of Phased Array Point Spread Functions for Use with Beamforming

    NASA Technical Reports Server (NTRS)

    Bahr, Chris; Zawodny, Nikolas S.; Bertolucci, Brandon; Woolwine, Kyle; Liu, Fei; Li, Juan; Sheplak, Mark; Cattafesta, Louis

    2011-01-01

    Microphone arrays can be used to localize and estimate the strengths of acoustic sources present in a region of interest. However, the array measurement of a region, or beam map, is not an accurate representation of the acoustic field in that region. The true acoustic field is convolved with the array s sampling response, or point spread function (PSF). Many techniques exist to remove the PSF's effect on the beam map via deconvolution. Currently these methods use a theoretical estimate of the array point spread function and perhaps account for installation offsets via determination of the microphone locations. This methodology fails to account for any reflections or scattering in the measurement setup and still requires both microphone magnitude and phase calibration, as well as a separate shear layer correction in an open-jet facility. The research presented seeks to investigate direct measurement of the array's PSF using a non-intrusive acoustic point source generated by a pulsed laser system. Experimental PSFs of the array are computed for different conditions to evaluate features such as shift-invariance, shear layers and model presence. Results show that experimental measurements trend with theory with regard to source offset. The source shows expected behavior due to shear layer refraction when observed in a flow, and application of a measured PSF to NACA 0012 aeroacoustic trailing-edge noise data shows a promising alternative to a classic shear layer correction method.

  18. KSC-99pp0355

    NASA Image and Video Library

    1999-03-26

    In the Vertical Processing Facility, TRW technicians check the point of attachment of the solar panel array at right. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93

  19. Pilot production & commercialization of LAPPD ™

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minot, Michael J.; Bennis, Daniel C.; Bond, Justin L.

    We present a progress update on plans to establish pilot production and commercialization of Large Area (400 cm2) Picosecond Photodetector (LAPPD™). Steps being taken to commercialize this MCP and LAPPD™ technology and begin tile pilot production are presented including (1) the manufacture of 203 mm×203 mm borosilicate glass capillary arrays (GCAs), (2) optimization of MCP performance and creation of an ALD coating facility to manufacture MCPs and (3) design, construction and commissioning of UHV tile integration and sealing facility to produce LAPPDs. Taken together these plans provide a “pathway toward commercialization”.

  20. Ordered alternating binary polymer nanodroplet array by sequential spin dewetting.

    PubMed

    Bhandaru, Nandini; Das, Anuja; Salunke, Namrata; Mukherjee, Rabibrata

    2014-12-10

    We report a facile technique for fabricating an ordered array of nearly equal-sized mesoscale polymer droplets of two constituent polymers (polystyrene, PS and poly(methyl methacrylate), PMMA) arranged in an alternating manner on a topographically patterned substrate. The self-organized array of binary polymers is realized by sequential spin dewetting. First, a dilute solution of PMMA is spin-dewetted on a patterned substrate, resulting in an array of isolated PMMA droplets arranged along the substrate grooves due to self-organization during spin coating itself. The sample is then silanized with octadecyltrichlorosilane (OTS), and subsequently, a dilute solution of PS is spin-coated on to it, which also undergoes spin dewetting. The spin-dewetted PS drops having a size nearly equal to the pre-existing PMMA droplets position themselves between two adjacent PMMA drops under appropriate conditions, forming an alternating binary polymer droplet array. The alternating array formation takes place for a narrow range of solution concentration for both the polymers and depends on the geometry of the substrate. The size of the droplets depends on the extent of confinement, and droplets as small as 100 nm can be obtained by this method, on a suitable template. The findings open up the possibility of creating novel surfaces having ordered multimaterial domains with a potential multifunctional capability.

  1. Scalable Direct Writing of Lanthanide-Doped KMnF3 Perovskite Nanowires into Aligned Arrays with Polarized Up-Conversion Emission.

    PubMed

    Shi, Shuo; Sun, Ling-Dong; Xue, Ying-Xian; Dong, Hao; Wu, Ke; Guo, Shi-Chen; Wu, Bo-Tao; Yan, Chun-Hua

    2018-05-09

    The use of one-dimensional nano- and microstructured semiconductor and lanthanide materials is attractive for polarized-light-emission studies. Up-conversion emission from single-nanorod or anisotropic nanoparticles with a degree of polarization has also been discussed. However, microscale arrays of nanoparticles, especially well-aligned one-dimensional nanostructures as well as their up-conversion polarization characterization, have not been investigated yet. Herein, we present a novel and facile paradigm for preparing highly aligned arrays of lanthanide-doped KMnF 3 (KMnF 3 :Ln) perovskite nanowires, which are good candidates for polarized up-conversion emission studies. These perovskite nanowires, with a width of 10 nm and length of a few micrometers, are formed through the oriented attachment of KMnF 3 :Ln nanocubes along the [001] direction. By the employment of KMnF 3 :Ln nanowire gel as nanoink, a direct-writing method is developed to obtain diverse types of aligned patterns from the nanoscale to the wafer scale. Up-conversion emissions from the highly aligned nanowire arrays are polarized along the array direction with a polarization degree up to 60%. Taking advantage of microscopic nanowire arrays, these polarized up-conversion emissions should offer potential applications in light or information transportation.

  2. Retrieval of Mir Solar Array

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon K.; deGroh, Kim K.

    1999-01-01

    A Russian solar array panel removed in November 1997 from the non-articulating photovoltaic array on the Mir core module was returned to Earth on STS-89 in January 1998. The panel had been exposed to low Earth orbit (LEO) for 10 years prior to retrieval. The retrieval provided a unique opportunity to study the effects of the LEO environment on a functional solar array. To take advantage of this opportunity, a team composed of members from RSC-Energia (Russia), the Boeing Company, and the following NASA Centers--Johnson Space Center, Kennedy Space Center, Langley Research Center, Marshall Space Flight Center, and Lewis Research Center--was put together to analyze the array. After post-retrieval inspections at the Spacehab Facility at Kennedy in Florida, the array was shipped to Lewis in Cleveland for electrical performance tests, closeup photodocumentation, and removal of selected solar cells and blanket material. With approval from RSC-Energia, five cell pairs and their accompanying blanket and mesh material, and samples of painted handrail materials were selected for removal on the basis of their ability to provide degradation information. Sites were selected that provided different sizes and shapes of micrometeoroid impacts and different levels of surface contamination. These materials were then distributed among the team for round robin testing.

  3. Light-trapping surface coating with concave arrays for efficiency enhancement in amorphous silicon thin-film solar cells

    NASA Astrophysics Data System (ADS)

    Liu, Daiming; Wang, Qingkang

    2018-08-01

    Light trapping is particularly important because of the desire to produce low-cost solar cells with the thinnest possible photoactive layers. Herein, along the research line of "optimization →fabrication →characterization →application", concave arrays were incorporated into amorphous silicon thin-film solar cell for lifting its photoelectric conversion efficiency. In advance, based on rigorous coupled wave analysis method, optics simulations were performed to obtain the optimal period of 10 μm for concave arrays. Microfabrication processes were used to etch concave arrays on glass, and nanoimprint was devoted to transfer the pattern onto polymer coatings with a high fidelity. Spectral characterizations prove that the concave-arrays coating enjoys excellent the light-trapping behaviors, by reducing the reflectance to 7.4% from 8.6% of bare glass and simultaneously allowing a high haze ratio of ∼ 70% in 350-800 nm. Compared with bare cell, the concave-arrays coating based amorphous silicon thin-film solar cell possesses the improving photovoltaic performances. Relative enhancements are 3.46% and 3.57% in short circuit current and photoelectric conversion efficiency, respectively. By the way, this light-trapping coating is facile, low-cost and large-scale, and can be straightforward introduced in other ready-made solar devices.

  4. Anisotropic Janus Si nanopillar arrays as a microfluidic one-way valve for gas-liquid separation

    NASA Astrophysics Data System (ADS)

    Wang, Tieqiang; Chen, Hongxu; Liu, Kun; Li, Yang; Xue, Peihong; Yu, Ye; Wang, Shuli; Zhang, Junhu; Kumacheva, Eugenia; Yang, Bai

    2014-03-01

    In this paper, we demonstrate a facile strategy for the fabrication of a one-way valve for microfluidic (MF) systems. The micro-valve was fabricated by embedding arrays of Janus Si elliptical pillars (Si-EPAs) with anisotropic wettability into a MF channel fabricated in poly(dimethylsiloxane) (PDMS). Two sides of the Janus pillar are functionalized with molecules with distinct surface energies. The ability of the Janus pillar array to act as a valve was proved by investigating the flow behaviour of water in a T-shaped microchannel at different flow rates and pressures. In addition, the one-way valve was used to achieve gas-liquid separation. We believe that the Janus Si-EPAs modified by specific surface functionalization provide a new strategy to control the flow and motion of fluids in MF channels.In this paper, we demonstrate a facile strategy for the fabrication of a one-way valve for microfluidic (MF) systems. The micro-valve was fabricated by embedding arrays of Janus Si elliptical pillars (Si-EPAs) with anisotropic wettability into a MF channel fabricated in poly(dimethylsiloxane) (PDMS). Two sides of the Janus pillar are functionalized with molecules with distinct surface energies. The ability of the Janus pillar array to act as a valve was proved by investigating the flow behaviour of water in a T-shaped microchannel at different flow rates and pressures. In addition, the one-way valve was used to achieve gas-liquid separation. We believe that the Janus Si-EPAs modified by specific surface functionalization provide a new strategy to control the flow and motion of fluids in MF channels. Electronic supplementary information (ESI) available: The XPS spectrum of the as-prepared Janus arrays after the MHA modification; the SEM images of the PFS-MHA Janus Si pillar arrays fabricated through oblique evaporation of gold along the short axis of the elliptical pillars; images of the cross-shaped MF channel and Rhodamine aqueous solution injecting in a cross-shaped MF channel taken at different times; the plot data of DPFS/DMHA against the flow rate of the aqueous solution; the plot data of failure pressure against the bottom size of the channel; optical microscopy images of the Janus pillar array with less density of pillars; optical microscopy images of the T junction with higher magnification; the video of Rhodamine solution running in the T-shaped microchannel integrated with the Janus Si-EPAs; the video of the entire gas-liquid separation process. See DOI: 10.1039/c3nr05865d

  5. Facile fabrication of super-hydrophobic nano-needle arrays via breath figures method.

    PubMed

    Kim, Jiseok; Lew, Brian; Kim, Woo Soo

    2011-12-06

    Super-hydrophobic surfaces which have been fabricated by various methods such as photolithography, chemical treatment, self-assembly, and imprinting have gained enormous attention in recent years. Especially 2D arrays of nano-needles have been shown to have super-hydrophobicity due to their sharp surface roughness. These arrays can be easily generated by removing the top portion of the honeycomb films prepared by the breath figures method. The hydrophilic block of an amphiphilic polymer helps in the fabrication of the nano-needle arrays through the production of well-ordered honeycomb films and good adhesion of the film to a substrate. Anisotropic patterns with water wettability difference can be useful for patterning cells and other materials using their selective growth on the hydrophilic part of the pattern. However, there has not been a simple way to generate patterns with highly different wettability. Mechanical stamping of the nano-needle array with a polyurethane stamp might be the simplest way to fabricate patterns with wettability difference. In this study, super-hydrophobic nano-needle arrays were simply fabricated by removing the top portion of the honeycomb films. The maximum water contact angle obtained with the nano-needle array was 150°. By controlling the pore size and the density of the honeycomb films, the height, width, and density of nano-needle arrays were determined. Anisotropic patterns with different wettability were fabricated by simply pressing the nano-needle array at ambient temperature with polyurethane stamps which were flexible but tough. Mechanical stamping of nano-needle arrays with micron patterns produced hierarchical super-hydrophobic structures.PACS: 05.70.Np, 68.55.am, 68.55.jm.

  6. One to Large N Gradiometry

    NASA Astrophysics Data System (ADS)

    Langston, C. A.

    2017-12-01

    The seismic wave gradient tensor can be derived from a variety of field observations including measurements of the wavefield by a dense seismic array, strain meters, and rotation meters. Coupled with models of wave propagation, wave gradients along with the original wavefield can give estimates of wave attributes that can be used to infer wave propagation directions, apparent velocities, spatial amplitude behavior, and wave type. Compact geodetic arrays with apertures of 0.1 wavelength or less can be deployed to provide wavefield information at a localized spot similar to larger phased arrays with apertures of many wavelengths. Large N, spatially distributed arrays can provide detailed information over an area to detect structure changes. Key to accurate computation of spatial gradients from arrays of seismic instruments is knowledge of relative instrument responses, particularly component sensitivities and gains, along with relative sensor orientations. Array calibration has been successfully performed for the 14-element Pinyon Flat, California, broadband array using long-period teleseisms to achieve relative precisions as small as 0.2% in amplitude and 0.35o in orientation. Calibration has allowed successful comparison of horizontal seismic strains from local and regional seismic events with the Plate Boundary Observatory (PBO) borehole strainmeter located at the facility. Strains from the borehole strainmeter in conjunction with ground velocity from a co-located seismometer are used as a "point" array in estimating wave attributes for the P-SV components of the wavefield. An effort is underway to verify the calibration of PBO strainmeters in southern California and their co-located borehole seismic sensors to create an array of point arrays for use in studies of regional wave propagation and seismic sources.

  7. Facile fabrication of super-hydrophobic nano-needle arrays via breath figures method

    PubMed Central

    2011-01-01

    Super-hydrophobic surfaces which have been fabricated by various methods such as photolithography, chemical treatment, self-assembly, and imprinting have gained enormous attention in recent years. Especially 2D arrays of nano-needles have been shown to have super-hydrophobicity due to their sharp surface roughness. These arrays can be easily generated by removing the top portion of the honeycomb films prepared by the breath figures method. The hydrophilic block of an amphiphilic polymer helps in the fabrication of the nano-needle arrays through the production of well-ordered honeycomb films and good adhesion of the film to a substrate. Anisotropic patterns with water wettability difference can be useful for patterning cells and other materials using their selective growth on the hydrophilic part of the pattern. However, there has not been a simple way to generate patterns with highly different wettability. Mechanical stamping of the nano-needle array with a polyurethane stamp might be the simplest way to fabricate patterns with wettability difference. In this study, super-hydrophobic nano-needle arrays were simply fabricated by removing the top portion of the honeycomb films. The maximum water contact angle obtained with the nano-needle array was 150°. By controlling the pore size and the density of the honeycomb films, the height, width, and density of nano-needle arrays were determined. Anisotropic patterns with different wettability were fabricated by simply pressing the nano-needle array at ambient temperature with polyurethane stamps which were flexible but tough. Mechanical stamping of nano-needle arrays with micron patterns produced hierarchical super-hydrophobic structures. PACS: 05.70.Np, 68.55.am, 68.55.jm PMID:22145673

  8. A facile one-step electrochemical strategy of doping iron, nitrogen, and fluorine into titania nanotube arrays with enhanced visible light photoactivity.

    PubMed

    Hua, Zulin; Dai, Zhangyan; Bai, Xue; Ye, Zhengfang; Gu, Haixin; Huang, Xin

    2015-08-15

    Highly ordered iron, nitrogen, and fluorine tri-doped TiO2 (Fe, (N, F)-TiO2) nanotube arrays were successfully synthesized by a facile one-step electrochemical method in an NH4F electrolyte containing Fe ions. The morphology, structure, composition, and photoelectrochemical property of the as-prepared nanotube arrays were characterized by various methods. The photoactivities of the samples were evaluated by the degradation of phenol in an aqueous solution under visible light. Tri-doped TiO2 showed higher photoactivities than undoped TiO2 under visible light. The optimum Fe(3+) doping amount at 0.005M exhibited the highest photoactivity and exceeded that of undoped TiO2 by a factor of 20 times under visible light. The formation of N 2p level near the valence band (VB) contributed to visible light absorption. Doping fluorine and appropriate Fe(3+) ions reduced the photogenerated electrons-holes recombination rate and enhanced visible light photoactivity. The X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) results indicated the presence of synergistic effects in Fe, N, and F tri-doped TiO2, which enhanced visible light photoactivity. The Fe, (N, F)-TiO2 photocatalyst exhibited high stability. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Transverse-To-Longitudinal Photocathode Distribution Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halavanau, A.; Qiang, G.; Ha, G.

    In this paper, we present a tunable picosecond-scale bunch train generation technique combining a microlens array (MLA) transverse laser shaper and a transverse-to-longitudinal emittance exchange (EEX) beamline. The modulated beamlet array is formed at the photocathode with the MLA setup. The resulting patterned electron beam is accelerated to 50 MeV and transported to the entrance of the EEX setup. A quadrupole channel is used to adjust the transverse spacing of the beamlet array upstream of the EEX, thereby enabling the generation of a bunch train with tunable separation downstream of the EEX beamline. Additionally, the MLA is mounted on amore » rotation stage which provides ad- ditional flexibility to produce high-frequency beam density modulation downstream of the EEX. Experimental results obtained at the Argonne Wakefield Accelerator (AWA) facil- ity are presented and compared with numerical simulations.« less

  10. a High-Precision Branching-Ratio Measurement for the Superallowed β+ Emitter 74Rb

    NASA Astrophysics Data System (ADS)

    Dunlop, R.; Chagnon-Lessard, S.; Finlay, P.; Garrett, P. E.; Hadinia, B.; Leach, K. G.; Svensson, C. E.; Wong, J.; Ball, G.; Garnsworthy, A. B.; Glister, J.; Hackman, G.; Tardiff, E. R.; Triambak, S.; Williams, S. J.; Leslie, J. R.; Andreoiu, C.; Chester, A.; Cross, D.; Starosta, K.; Yates, S. W.; Zganjar, E. F.

    2013-03-01

    Precision measurements of superallowed Fermi beta decay allow for tests of the Cabibbo-Kobayashi-Maskawa matrix (CKM) unitarity, the conserved vector current hypothesis, and the magnitude of isospin-symmetry-breaking effects in nuclei. A high-precision measurement of the branching ratio for the β+ decay of 74Rb has been performed at the Isotope Separator and ACcelerator (ISAC) facility at TRIUMF. The 8π spectrometer, an array of 20 close-packed HPGe detectors, was used to detect gamma rays emitted following the decay of 74Rb. PACES, an array of 5 Si(Li) detectors, was used to detect emitted conversion electrons, while SCEPTAR, an array of plastic scintillators, was used to detect emitted beta particles. A total of 51γ rays have been identified following the decay of 21 excited states in the daughter nucleus 74Kr.

  11. Adaptive array technique for differential-phase reflectometry in QUEST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Idei, H., E-mail: idei@triam.kyushu-u.ac.jp; Hanada, K.; Zushi, H.

    2014-11-15

    A Phased Array Antenna (PAA) was considered as launching and receiving antennae in reflectometry to attain good directivity in its applied microwave range. A well-focused beam was obtained in a launching antenna application, and differential-phase evolution was properly measured by using a metal reflector plate in the proof-of-principle experiment at low power test facilities. Differential-phase evolution was also evaluated by using the PAA in the Q-shu University Experiment with Steady State Spherical Tokamak (QUEST). A beam-forming technique was applied in receiving phased-array antenna measurements. In the QUEST device that should be considered as a large oversized cavity, standing wave effectmore » was significantly observed with perturbed phase evolution. A new approach using derivative of measured field on propagating wavenumber was proposed to eliminate the standing wave effect.« less

  12. Anisotropic Janus Si nanopillar arrays as a microfluidic one-way valve for gas-liquid separation.

    PubMed

    Wang, Tieqiang; Chen, Hongxu; Liu, Kun; Li, Yang; Xue, Peihong; Yu, Ye; Wang, Shuli; Zhang, Junhu; Kumacheva, Eugenia; Yang, Bai

    2014-04-07

    In this paper, we demonstrate a facile strategy for the fabrication of a one-way valve for microfluidic (MF) systems. The micro-valve was fabricated by embedding arrays of Janus Si elliptical pillars (Si-EPAs) with anisotropic wettability into a MF channel fabricated in poly(dimethylsiloxane) (PDMS). Two sides of the Janus pillar are functionalized with molecules with distinct surface energies. The ability of the Janus pillar array to act as a valve was proved by investigating the flow behaviour of water in a T-shaped microchannel at different flow rates and pressures. In addition, the one-way valve was used to achieve gas-liquid separation. We believe that the Janus Si-EPAs modified by specific surface functionalization provide a new strategy to control the flow and motion of fluids in MF channels.

  13. Simulation of a Start-Up Manufacturing Facility for Nanopore Arrays

    ERIC Educational Resources Information Center

    Field, Dennis W.

    2009-01-01

    Simulation is a powerful tool in developing and troubleshooting manufacturing processes, particularly when considering process flows for manufacturing systems that do not yet exist. Simulation can bridge the gap in terms of setting up full-scale manufacturing for nanotechnology products if limited production experience is an issue. An effective…

  14. Magnetic field-directed hybrid anisotropic nanocomposites.

    PubMed

    Gong, Maogang; Zhang, Jingming; Ren, Shenqiang

    2018-08-24

    A facile bottom-up approach is developed to grow magnetic metallic Cu/FeCo (core/shell) nanowires, where their distribution and orientation can be controlled by magnetic field. The nanocomposites consisting of a ferroelectric polymer matrix and magnetic nanowire arrays exhibit the orientation-controlled anisotropy and interfacial magnetoelectric coupling effect.

  15. Biotechnology Process Engineering Center at MIT - Overview

    Science.gov Websites

    laboratories. Biotechnology-related research in the labs of over 15 faculty members in the Biological 60,000 square feet for biotechnology-related engineering research. This centralization and consolidation wider array of equipment and facilities available in other MIT labs and Centers. Some examples include

  16. Thermal performance evaluation of the Northrop model NSC-01-0732 concentrating solar collector array at outdoor conditions. [Marshall Space Flight Center solar house test facility

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The thermal efficiency of the concentrating, tracking solar collector was tested after ten months of operation at the Marshall Space Flight Center solar house. The test procedures and results are presented.

  17. VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, a balloon gently lifts the solar array panel to be installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-04

    VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, a balloon gently lifts the solar array panel to be installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  18. VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, the Gravity Probe B spacecraft is seen with all four solar array panels installed. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-04

    VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, the Gravity Probe B spacecraft is seen with all four solar array panels installed. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  19. VANDENBERG AFB, CALIF. - A worker in the NASA spacecraft processing facility on North Vandenberg Air Force Base adjust the supports on a solar array panel to be lifted and installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-03

    VANDENBERG AFB, CALIF. - A worker in the NASA spacecraft processing facility on North Vandenberg Air Force Base adjust the supports on a solar array panel to be lifted and installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  20. VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, the Gravity Probe B spacecraft is seen with two solar array panels installed. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-04

    VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, the Gravity Probe B spacecraft is seen with two solar array panels installed. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  1. VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, a worker checks the installation of a solar array panel onto the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-04

    VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, a worker checks the installation of a solar array panel onto the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  2. A Comparative Study of a 1/4-Scale Gulfstream G550 Aircraft Nose Gear Model

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Neuhart, Dan H.; Zawodny, Nikolas S.; Liu, Fei; Yardibi, Tarik; Cattafesta, Louis; Van de Ven, Thomas

    2009-01-01

    A series of fluid dynamic and aeroacoustic wind tunnel experiments are performed at the University of Florida Aeroacoustic Flow Facility and the NASA-Langley Basic Aerodynamic Research Tunnel Facility on a high-fidelity -scale model of Gulfstream G550 aircraft nose gear. The primary objectives of this study are to obtain a comprehensive aeroacoustic dataset for a nose landing gear and to provide a clearer understanding of landing gear contributions to overall airframe noise of commercial aircraft during landing configurations. Data measurement and analysis consist of mean and fluctuating model surface pressure, noise source localization maps using a large-aperture microphone directional array, and the determination of far field noise level spectra using a linear array of free field microphones. A total of 24 test runs are performed, consisting of four model assembly configurations, each of which is subjected to three test section speeds, in two different test section orientations. The different model assembly configurations vary in complexity from a fully-dressed to a partially-dressed geometry. The two model orientations provide flyover and sideline views from the perspective of a phased acoustic array for noise source localization via beamforming. Results show that the torque arm section of the model exhibits the highest rms pressures for all model configurations, which is also evidenced in the sideline view noise source maps for the partially-dressed model geometries. Analysis of acoustic spectra data from the linear array microphones shows a slight decrease in sound pressure levels at mid to high frequencies for the partially-dressed cavity open model configuration. In addition, far field sound pressure level spectra scale approximately with the 6th power of velocity and do not exhibit traditional Strouhal number scaling behavior.

  3. A metal-organic framework derived hierarchical nickel-cobalt sulfide nanosheet array on Ni foam with enhanced electrochemical performance for supercapacitors.

    PubMed

    Tao, Kai; Han, Xue; Ma, Qingxiang; Han, Lei

    2018-03-06

    Metal-organic frameworks (MOFs) have emerged as a new platform for the construction of various functional materials for energy related applications. Here, a facile MOF templating method is developed to fabricate a hierarchical nickel-cobalt sulfide nanosheet array on conductive Ni foam (Ni-Co-S/NF) as a binder-free electrode for supercapacitors. A uniform 2D Co-MOF nanowall array is first grown in situ on Ni foam in aqueous solution at room temperature, and then the Co-MOF nanowalls are converted into hierarchical Ni-Co-S nanoarchitectures via an etching and ion-exchange reaction with Ni(NO 3 ) 2 , and a subsequent solvothermal sulfurization. Taking advantage of the compositional and structural merits of the hierarchical Ni-Co-S nanosheet array and conductive Ni foam, such as fast electron transportation, short ion diffusion path, abundant active sites and rich redox reactions, the obtained Ni-Co-S/NF electrode exhibits excellent electrochemical capacitive performance (1406.9 F g -1 at 0.5 A g -1 , 53.9% retention at 10 A g -1 and 88.6% retention over 1000 cycles), which is superior to control CoS/NF. An asymmetric supercapacitor (ASC) assembled by using the as-fabricated Ni-Co-S/NF as the positive electrode and activated carbon (AC) as the negative electrode delivers a high energy density of 24.8 W h kg -1 at a high power density of 849.5 W kg -1 . Even when the power density is as high as 8.5 kW kg -1 , the ASC still exhibits a high energy density of 12.5 W h kg -1 . This facile synthetic strategy can also be extended to fabricate other hierarchical integrated electrodes for high-efficiency electrochemical energy conversion and storage devices.

  4. VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base prepare for the installation of solar array panel 3 on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-03

    VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base prepare for the installation of solar array panel 3 on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  5. VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base work on a solar array panel to be installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-03

    VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base work on a solar array panel to be installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  6. VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, workers prepare to attach the top of a solar array panel onto the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-04

    VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, workers prepare to attach the top of a solar array panel onto the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  7. VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base attach a solar array panel on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-03

    VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base attach a solar array panel on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  8. VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base attach supports to a solar array panel to be lifted and installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-03

    VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base attach supports to a solar array panel to be lifted and installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  9. Facile hyphenation of gas chromatography and a microcantilever array sensor for enhanced selectivity.

    PubMed

    Chapman, Peter J; Vogt, Frank; Dutta, Pampa; Datskos, Panos G; Devault, Gerald L; Sepaniak, Michael J

    2007-01-01

    The very simple coupling of a standard, packed-column gas chromatograph with a microcantilever array (MCA) is demonstrated for enhanced selectivity and potential analyte identification in the analysis of volatile organic compounds (VOCs). The cantilevers in MCAs are differentially coated on one side with responsive phases (RPs) and produce bending responses of the cantilevers due to analyte-induced surface stresses. Generally, individual components are difficult to elucidate when introduced to MCA systems as mixtures, although pattern recognition techniques are helpful in identifying single components, binary mixtures, or composite responses of distinct mixtures (e.g., fragrances). In the present work, simple test VOC mixtures composed of acetone, ethanol, and trichloroethylene (TCE) in pentane and methanol and acetonitrile in pentane are first separated using a standard gas chromatograph and then introduced into a MCA flow cell. Significant amounts of response diversity to the analytes in the mixtures are demonstrated across the RP-coated cantilevers of the array. Principal component analysis is used to demonstrate that only three components of a four-component VOC mixture could be identified without mixture separation. Calibration studies are performed, demonstrating a good linear response over 2 orders of magnitude for each component in the primary study mixture. Studies of operational parameters including column temperature, column flow rate, and array cell temperature are conducted. Reproducibility studies of VOC peak areas and peak heights are also carried out showing RSDs of less than 4 and 3%, respectively, for intra-assay studies. Of practical significance is the facile manner by which the hyphenation of a mature separation technique and the burgeoning sensing approach is accomplished, and the potential to use pattern recognition techniques with MCAs as a new type of detector for chromatography with analyte-identifying capabilities.

  10. National Array of Neutron Detectors (NAND): A versatile tool for nuclear reaction studies

    NASA Astrophysics Data System (ADS)

    Golda, K. S.; Jhingan, A.; Sugathan, P.; Singh, Hardev; Singh, R. P.; Behera, B. R.; Mandal, S.; Kothari, A.; Gupta, Arti; Zacharias, J.; Archunan, M.; Barua, P.; Venkataramanan, S.; Bhowmik, R. K.; Govil, I. M.; Datta, S. K.; Chatterjee, M. B.

    2014-11-01

    The first phase of the National Array of Neutron Detectors (NAND) consisting of 26 neutron detectors has been commissioned at the Inter University Accelerator Centre (IUAC), New Delhi. The motivation behind setting up of such a detector system is the need for more accurate and efficient study of reaction mechanisms in the projectile energy range of 5-8 MeV/n using heavy ion beams from a 15 UD Pelletron and an upgraded LINAC booster facility at IUAC. The above detector array can be used for inclusive as well as exclusive measurements of reaction products of which at least one product is a neutron. While inclusive measurements can be made using only the neutron detectors along with the time of flight technique and a pulsed beam, exclusive measurements can be performed by detecting neutrons in coincidence with charged particles and/or fission fragments detected with ancillary detectors. The array can also be used for neutron tagged gamma-ray spectroscopy in (HI, xn) reactions by detecting gamma-rays in coincidence with the neutrons in a compact geometrical configuration. The various features and the performance of the different aspects of the array are described in the present paper.

  11. Construction of NiO/MnO2/CeO2 hybrid nanoflake arrays as platform for electrochemical energy storage

    NASA Astrophysics Data System (ADS)

    Cui, Lihua; Cui, Jiewu; Zheng, Hongmei; Wang, Yan; Qin, Yongqiang; Shu, Xia; Liu, Jiaqin; Zhang, Yong; Wu, Yucheng

    2017-09-01

    Rational design and fabrication of novel electrode materials are of great importance for developing supercapacitors with remarkable capacitance and enhanced cycling stability. In this paper, we present a simple one-pot hydrothermal deposition followed by calcinations process for the in situ construction of homogeneous NiO/MnO2/CeO2 (NMC) nanoflake arrays on Ni foam substrate, which could be directly adopted as the binder-free electrode materials for high performance supercapacitors. The field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDX) are carried out to investigate the morphology, microstructure and composition of NMC nanoflake arrays. As-prepared hierarchical NMC nanoflake arrays exhibit the specific capacitance of 1027.8 F g-1 at a current density of 3.1 A g-1 and excellent cycling stability of 97.8% after 5000 charge/discharge cycles. This facile, cost-effective and controllable fabrication route and the robust supercapacitive activity suggest that the ordered NMC nanoflake arrays could be promising candidate electrode materials for high performance electrochemical energy storage devices.

  12. Cross-linked hierarchical arrays of Ni2P nanoflakes prepared via directional phosphorization and their applications for advanced alkaline batteries

    NASA Astrophysics Data System (ADS)

    Mai, Yong-jin; Xia, Xinhui; Jie, Xiao-hua

    2017-11-01

    In this work, we report a facile directional phosphorization method for construction of hierarchical cross-linked Ni2P arrays, which show a multileveled porous architecture. The basic building blocks are numerous nanoflakes with thicknesses of 15-20 nm, which are self-assembled with each other forming the primary porous mushroom-like structure with 1-3 μm. Impressively, the 3D porous channels run through the whole Ni2P arrays. The secondary nanoflakes consist of interconnected nanoparticles of 10-30 nm and lots of nanopores of 10-50 nm. The electrochemical performance of the as-prepared Ni2P arrays is investigated as cathode of alkaline batteries and demonstrated with higher capacities (127 mAhh g-1 at 2.5 A g-1) and better high-rate cycling stability (123 mAhh g-1 2.5 A g-1 after 9000 cycles) than the preformed Ni(OH)2 arrays counterparts (80 mAhh g-1 2.5 A g-1 and 66 mAhh g-1 after 9000 cycles). The enhanced performance is mainly due to the improved surface area & porosity as well as reinforced electrical conductivity.

  13. ZnO/Er2O3 core-shell nanorod arrays: Synthesis, properties and growth mechanism

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Wang, Yongqian; Jiang, Tingting; Li, Yinchang; Yang, Xiande

    2015-01-01

    In this study, we demonstrated large-scale ZnO/Er2O3 core-shell nanorod arrays, which were successfully synthesized by a facile and simple electrodeposition method. The effect of varying the amount of Er2O3 in the range from 0.2 g to 1.0 g on morphology of ZnO nanorod arrays has been thoroughly investigated. The results indicate that the growth pattern of all the ZnO/Er2O3 shell-core nanorod arrays were along c-axis and perpendicular to the substrate as before, even more vertical. Photoluminescence measurement was carried out and the PL peaks at 382 nm, 438 nm and 462 nm were observed, which are considered to be due to free excitons and donor-bound excitons, respectively. The ZnO/Er2O3 core-shell nanorods exhibited improved optical property, which can be attributed to the enhanced donor density by the covered Er2O3. Finally, a possible growth mechanism of the ZnO nanostructures is discussed. The electrochemical deposition of ZnO/Er2O3 core-shell nanorod arrays including two stages, namely nucleation and growth process.

  14. Ultraviolet-assisted direct patterning and low-temperature formation of flexible ZrO2 resistive switching arrays on PET/ITO substrates

    NASA Astrophysics Data System (ADS)

    Li, Lingwei; Chen, Yuanqing; Yin, Xiaoru; Song, Yang; Li, Na; Niu, Jinfen; Wu, Huimin; Qu, Wenwen

    2017-12-01

    We demonstrate a low-cost and facile photochemical solution method to prepare the ZrO2 resistive switching arrays as memristive units on flexible PET/ITO substrates. ZrO2 solution sensitive to UV light of 337 nm was synthesized using zirconium n-butyl alcohol as the precursor, and benzoylacetone as the complexing agent. After the dip-coated ZrO2 gel films were irradiated through a mask under the UV lamp (with wavelength of 325-365 nm) at room temperature and rinsed in ethanol, the ZrO2 gel arrays were obtained on PET/ITO substrates. Subsequently, the ZrO2 gel arrays were irradiated by deep UV light of 254 and 185 nm at 150 °C, resulting in the amorphous ZrO2 memristive micro-arrays. The ZrO2 units on flexible PET/ITO substrates exhibited excellent memristive properties. A high ratio of 104 of on-state and off-state resistance was obtained. The resistive switching behavior of the flexible device remained stable after being bent for 103 times. The device showed stable flexibility up to a minimum bending diameter of 1.25 cm.

  15. Evaluating technology service options.

    PubMed

    Blumberg, D F

    1997-05-01

    Four service and support options are available to healthcare organizations for maintaining their growth arsenals of medical and information technology. These options include maintaining and servicing all equipment using a facility-based biomedical engineering and MIS service department; using a combination of facility-based service and subcontracted service; expanding facility-based biomedical and MIS service departments to provide service to other healthcare organizations to achieve economies of scale; and outsourcing all maintenance, repair, and technical support services. Independent service companies and original equipment manufacturers (OEMs) are offering healthcare organizations a wider array of service and support capabilities than ever before. However, some health systems have successfully developed their own independent service organizations to take care of their own--and other healthcare organizations'--service and support needs.

  16. Division x: Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Taylor, Russ; Chapman, Jessica; Rendong, Nan; Carilli, Christopher; Giovannini, Gabriele; Hills, Richard; Hirabayashi, Hisashi; Jonas, Justin; Lazio, Joseph; Morganti, Raffaella; Rubio, Monica; Shastri, Prajval

    2012-04-01

    This triennium has seen a phenomenal investment in development of observational radio astronomy facilities in all parts of the globe at a scale that significantly impacts the international community. This includes both major enhancements such as the transition from the VLA to the EVLA in North America, and the development of new facilities such as LOFAR, ALMA, FAST, and Square Kilometre Array precursor telescopes in Australia and South Africa. These developments are driven by advances in radio-frequency, digital and information technologies that tremendously enhance the capabilities in radio astronomy. These new developments foreshadow major scientific advances driven by radio observations in the next triennium. We highlight these facility developments in section 3 of this report. A selection of science highlight from this triennium are summarized in section 2.

  17. Hypervelocity impact facility for simulating materials exposure to impact by space debris

    NASA Technical Reports Server (NTRS)

    Rose, M. F.; Best, S.; Chaloupka, T.; Stephens, B.; Crawford, G.

    1993-01-01

    As a result of man's venturing into space, the local debris contributed by his presence exceeds, at some orbital altitudes, that of the natural component. Man's contribution ranges from fuel residue to large derelect satellites that weigh many kilograms. Current debris models are able to predict the growth of the problem and suggest that spacecraft must employ armor or bumper shields for some orbital altitudes now, and that, the problem will become worse as a function of time. The practical upper limit to the velocity distribution is on the order of 40 km/s and is associated with the natural environment. The maximum velocity of the man-made component is in the 14-16 km/s range. The Long Duration Exposure Facility (LDEF) has verified that the 'high probability of impact' particles are in the microgram to milligram range. These particles can have significant effects on coatings, insulators, and thin metallic layers. The surface of thick materials becomes pitted and the local debris component is enhanced by ejecta from the debris spectrum in a controlled environment. The facility capability is discussed in terms of drive geometry, energetics, velocity distribution, diagnostics, and projectile/debris loading. The facility is currently being used to study impact phenomena on Space Station Freedom's solar array structure, other solar array materials, potential structural materials for use in the station, electrical breakdown in the space environment, and as a means of clarifying or duplicating the impact phenomena on the LDEF surfaces. The results of these experiments are described in terms of the mass/velocity distribution incident on selected samples, crater dynamics, and sample geometry.

  18. Air-flow distortion and turbulence statistics near an animal facility

    NASA Astrophysics Data System (ADS)

    Prueger, J. H.; Eichinger, W. E.; Hipps, L. E.; Hatfield, J. L.; Cooper, D. I.

    The emission and dispersion of particulates and gases from concentrated animal feeding operations (CAFO) at local to regional scales is a current issue in science and society. The transport of particulates, odors and toxic chemical species from the source into the local and eventually regional atmosphere is largely determined by turbulence. Any models that attempt to simulate the dispersion of particles must either specify or assume various statistical properties of the turbulence field. Statistical properties of turbulence are well documented for idealized boundary layers above uniform surfaces. However, an animal production facility is a complex surface with structures that act as bluff bodies that distort the turbulence intensity near the buildings. As a result, the initial release and subsequent dispersion of effluents in the region near a facility will be affected by the complex nature of the surface. Previous Lidar studies of plume dispersion over the facility used in this study indicated that plumes move in complex yet organized patterns that would not be explained by the properties of turbulence generally assumed in models. The objective of this study was to characterize the near-surface turbulence statistics in the flow field around an array of animal confinement buildings. Eddy covariance towers were erected in the upwind, within the building array and downwind regions of the flow field. Substantial changes in turbulence intensity statistics and turbulence-kinetic energy (TKE) were observed as the mean wind flow encountered the building structures. Spectra analysis demonstrated unique distribution of the spectral energy in the vertical profile above the buildings.

  19. KSC-00padig100

    NASA Image and Video Library

    2000-11-27

    After their arrival at the Shuttle Landing Facility, the STS-97 crew gather to address the media. At the microphone is Mission Specialist Carlos Noriega. Behind him stand Commander Brent Jett, Pilot Michael Bloomfield and Mission Specialists Joseph Tanner and Marc Garneau, who is with the Canadian Space Agency. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  20. KSC00pp1753

    NASA Image and Video Library

    2000-11-27

    At the Shuttle Landing Facility, Center Director Roy Bridges (left) greets STS-97 Commander Brent Jett on his arrival at KSC for the mission launch. At right is Mission Specialist Carlos Noriega. Jett and Noriega traveled from Johnson Space Center, Houston, Texas, in the T-38 jet aircraft behind them. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  1. KSC-00pp1753

    NASA Image and Video Library

    2000-11-27

    At the Shuttle Landing Facility, Center Director Roy Bridges (left) greets STS-97 Commander Brent Jett on his arrival at KSC for the mission launch. At right is Mission Specialist Carlos Noriega. Jett and Noriega traveled from Johnson Space Center, Houston, Texas, in the T-38 jet aircraft behind them. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  2. KSC-00pp1759

    NASA Image and Video Library

    2000-11-27

    After arriving at the Shuttle Landing Facility, the STS-97 crew gather to address the media. At the microphone is Mission Specialist Marc Garneau, who is with the Canadian Space Agency. Behind him can be seen Mission Specialists Joseph Tanner (left) and Carlos Noriega. Mission STS-97 is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  3. KSC-00padig102

    NASA Image and Video Library

    2000-11-27

    After their arrival at the Shuttle Landing Facility, the STS-97 crew gather to address the media. At the microphone is Mission Specialist Marc Garneau, who is with the Canadian Space Agency. Behind him stand Commander Brent Jett, Pilot Michael Bloomfield and Mission Specialists Joseph Tanner and Carlos Noriega. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  4. KSC-00padig101

    NASA Image and Video Library

    2000-11-27

    After their arrival at the Shuttle Landing Facility, the STS-97 crew gather to address the media. At the microphone is Mission Specialist Joseph Tanner. Behind him stand Commander Brent Jett, Pilot Michael Bloomfield and Mission Specialists Marc Garneau, who is with the Canadian Space Agency, and Carlos Noriega. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  5. KSC-00padig099

    NASA Image and Video Library

    2000-11-27

    After their arrival at the Shuttle Landing Facility, the STS-97 crew gather to address the media. At the microphone is Pilot Michael Bloomfield. Behind him stand Commander Brent Jett and Mission Specialists Joseph Tanner, Carolos Noriega and Marc Garneau, who is with the Canadian Space Agency. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  6. ROSA Transfer (for SpaceX CRS-11)

    NASA Image and Video Library

    2017-04-12

    Inside the Space Station Processing Facility high bay at NASA's Kennedy Space Center in Florida, the Roll-Out Solar Array, or ROSA, is being prepared for transfer out of the high bay. ROSA will be delivered to the International Space Station aboard the SpaceX Dragon cargo carrier on the company’s 11th commercial resupply services mission to the space station. ROSA is a new type of solar panel that rolls open in space and is more compact than current rigid panel designs. The ROSA investigation will test deployment and retraction, shape changes when the Earth blocks the sun, and other physical challenges to determine the array's strength and durability.

  7. MARS GLOBAL SURVEYOR LIGHTING TEST

    NASA Technical Reports Server (NTRS)

    1996-01-01

    In KSC's Payload Hazardous Servicing Facility (PHSF), Jet Propulsion Laboratory (JPL) workers are conducting a solar illumination test of the solar panels on the Mars Global Surveyor. The Surveyor is outfitted with two solar arrays, each featuring two panels, that provide electrical power for operating the spacecraft's electronic equipment and scientific instruments, as well as charging two nickel hydrogen batteries that provide power when the spacecraft is in the dark. For launch, the solar arrays will be folded against the side of the spacecraft. The Mars Global Surveyor is being prepared for launch aboard a Delta II expendable launch vehicle during a launch window opening Nov. 6.

  8. Generation of Homogeneous and Patterned Electron Beams using a Microlens Array Laser-Shaping Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halavanau, Aliaksei; Edstrom, Dean; Gai, Wei

    2016-06-01

    In photocathodes the achievable electron-beam parameters are controlled by the laser used to trigger the photoemission process. Non-ideal laser distribution hampers the final beam quality. Laser inhomogeneities, for instance, can be "amplified" by space-charge force and result in fragmented electron beams. To overcome this limitation laser shaping methods are routinely employed. In the present paper we demonstrate the use of simple microlens arrays to dramatically improve the transverse uniformity. We also show that this arrangement can be used to produce transversely-patterned electron beams. Our experiments are carried out at the Argonne Wakefield Accelerator facility.

  9. DNA-Mediated Patterning of Single Quantum Dot Nanoarrays: A Reusable Platform for Single-Molecule Control

    NASA Astrophysics Data System (ADS)

    Huang, Da; Freeley, Mark; Palma, Matteo

    2017-03-01

    We present a facile strategy of general applicability for the assembly of individual nanoscale moieties in array configurations with single-molecule control. Combining the programming ability of DNA as a scaffolding material with a one-step lithographic process, we demonstrate the patterning of single quantum dots (QDs) at predefined locations on silicon and transparent glass surfaces: as proof of concept, clusters of either one, two, or three QDs were assembled in highly uniform arrays with a 60 nm interdot spacing within each cluster. Notably, the platform developed is reusable after a simple cleaning process and can be designed to exhibit different geometrical arrangements.

  10. Fabrication of implantable microelectrode arrays by laser cutting of silicone rubber and platinum foil.

    PubMed

    Schuettler, M; Stiess, S; King, B V; Suaning, G J

    2005-03-01

    A new method for fabrication of microelectrode arrays comprised of traditional implant materials is presented. The main construction principle is the use of spun-on medical grade silicone rubber as insulating substrate material and platinum foil as conductor (tracks, pads and electrodes). The silicone rubber and the platinum foil are patterned by laser cutting using an Nd:YAG laser and a microcontroller-driven, stepper-motor operated x-y table. The method does not require expensive clean room facilities and offers an extremely short design-to-prototype time of below 1 day. First prototypes demonstrate a minimal achievable feature size of about 30 microm.

  11. KSC-97PC1127

    NASA Image and Video Library

    1997-07-24

    Applied Physics Laboratory engineers and technicians from Johns Hopkins University test for true perpendicular solar array deployment of the Advanced Composition Explorer (ACE) in KSC’s Spacecraft Assembly and Encapsulation Facility-II (SAEF-II). The white magnetometer boom seen across the solar array panel will deploy the panel once in space. Scheduled for launch on a Delta II rocket from Cape Canaveral Air Station on Aug. 25, ACE will study low-energy particles of solar origin and high-energy galactic particles. The ACE observatory will be placed into an orbit almost a million miles (1.5 million kilometers) away from the Earth, about 1/100 the distance from the Earth to the Sun

  12. KSC-97PC1128

    NASA Image and Video Library

    1997-07-24

    An Applied Physics Laboratory engineer from Johns Hopkins University tests for true perpendicular solar array deployment of the Advanced Composition Explorer (ACE) in KSC’s Spacecraft Assembly and Encapsulation Facility-II (SAEF-II). The white magnetometer boom seen across the solar array panel will deploy the panel once in space. Scheduled for launch on a Delta II rocket from Cape Canaveral Air Station on Aug. 25, ACE will study low-energy particles of solar origin and high-energy galactic particles. The ACE observatory will be placed into an orbit almost a million miles (1.5 million kilometers) away from the Earth, about 1/100 the distance from the Earth to the Sun

  13. 300 mm arrays and 30 nm Features: Frontiers in Sorting Biological Objects

    NASA Astrophysics Data System (ADS)

    Austin, Robert; Comella, Brandon; D'Silva, Joseph; Sturm, James

    2014-03-01

    One of the great challenges in prediction of metastasis is determining when the metastatic process actually begins. It is presumed that this process occurs due to passage of biological objects in the blood from tumor to remote sites. We will discuss our attempts to find both very large objects (circulating tumor cell clumps) and very small (exosomes) using a combination of extremely large scale photolithography on 300 mm wafers and deep-UV lithography to produce sub-100 nm arrays to sort exosomes. These technologies push the envelope of present day academic facilities . Supported by the National Science Foundation and the National Cancer Institute.

  14. Experimental Simulation of the Interaction of Biased Solar Arrays with the Space Plasma

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1981-01-01

    The phenomenon of unexpectedly large leakage currents collected by small exposed areas of high voltage solar arrays operating in a plasma environment was investigated. Polyimide (Kapton) was the insulating material used in all tests. Both positive bias (electron collection) and negative bias (ion collection) tests were performed. A mode change in the electron collection mechanism was associated with a glow discharge process and was found to be related to the neutral background density. Results indicate that the glow discharge collection mode does not occur in a space environment where the background density is considerably lower than that of the vacuum facility used.

  15. Transfer Reactions on Neutron-rich Nuclei at REX-ISOLDE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroell, Th.; Physik-Department E12, Technische Universitaet Muenchen, Garching; Bildstein, V.

    2009-08-26

    We report on one- and two-neutron transfer reactions to study the single-particle properties of nuclei at the border of the ''island of inversion.'' The (d, p)- and (t, p)-reactions in inverse kinematics on the neutron-rich isotope {sup 30}Mg, delivered as radioactive beam by the REX-ISOLDE facility, have been investigated. The outgoing protons have been detected and identified by a newly built array of Si detectors. The {gamma}-decay of excited states has been detected in coincidence by the MINIBALL array. First results for {sup 31}Mg and from the search for the second, spherical, 0{sup +} state in {sup 32}Mg are presented.

  16. Scalar localization of the electrode array after cochlear implantation: clinical experience using 64-slice multidetector computed tomography.

    PubMed

    Lane, John I; Witte, Robert J; Driscoll, Colin L W; Shallop, Jon K; Beatty, Charles W; Primak, Andrew N

    2007-08-01

    To use the improved resolution available with 64-slice multidetector computed tomography (MDCT) in vivo to localize the cochlear implant electrode array within the basal turn. Sixty-four-slice MDCT examinations of the temporal bones were retrospectively reviewed in 17 patients. Twenty-three implants were evaluated. Tertiary referral facility. All patients with previous cochlear implantation evaluated at our center between January 2004 and March 2006 were offered a computed tomographic examination as part of the study. In addition, preoperative computed tomographic examinations in patients being evaluated for a second bilateral device were included. Sixty-four-slice MDCT examination of the temporal bones. Localization of the electrode array within the basal turn from multiplanar reconstructions of the cochlea. Twenty-three implants were imaged in 17 patients. We were able to localize the electrode array within the scala tympani within the basal turn in 10 implants. In 3 implants, the electrode array was localized to the scala vestibuli. Migration of the electrode array from scala tympani to scala vestibuli was observed in three implants. Of the 7 implants in which localization of the electrode array was indeterminate, all had disease entities that obscured the definition of the normal cochlear anatomy. Sixty-four-slice MDCT with multiplanar reconstructions of the postoperative cochlea after cochlear implantation allows for accurate localization of the electrode array within the basal turn where normal cochlear anatomy is not obscured by the underlying disease process. Correlating the position of the electrode in the basal turn with surgical technique and implant design could be helpful in improving outcomes.

  17. Tricobalt tetroxide nanoplate arrays on flexible conductive fabric substrate: Facile synthesis and application for electrochemical supercapacitors

    NASA Astrophysics Data System (ADS)

    Nagaraju, Goli; Ko, Yeong Hwan; Yu, Jae Su

    2015-06-01

    Tricobalt tetroxide (Co3O4) nanoplate arrays (NPAs) were synthesized on flexible conductive fabric substrate (FCFs) by a facile two-electrode system based electrochemical deposition method, followed by a simple heat treatment process. Initially, cobalt hydroxide (Co(OH)2) NPAs were electrochemically deposited on FCFs by applying an external voltage of -1.5 V for 30 min. Then, the Co3O4 NPAs on FCFs was obtained by thermal treatment of as-deposited Co(OH)2 NPAs on FCFs at 200 °C for 2 h. From the analysis of morphological and crystal properties, the Co3O4 NPAs were well integrated and uniformly covered over the entire surface of substrate with good crystallinity in the cubic phase. Additionally, the fabricated sample was directly used as a binder-free electrode to examine the feasibility for electrochemical supercapacitors using cyclic voltammetry and galvanic charge-discharge measurements in 1 M KOH electrolyte solution. The Co3O4 NPAs coated FCFs electrode exhibited a maximum specific capacitance of 145.6 F/g at a current density of 1 A/g and an excellent rate capability after 1000 cycles at a current density of 3 A/g. This facile fabrication method for integrating the Co3O4 nanostructures on FCFs could be a promising approach for advanced flexible electronic and energy-storage device applications.

  18. Generation of cylindrically convergent shockwaves in water on the MACH facility

    NASA Astrophysics Data System (ADS)

    Bland, Simon; Krasik, Ya. E.; Yanuka, D.; Gardner, R.; MacDonald, J.; Virozub, A.; Efimov, S.; Gleizer, S.; Chaturvedi, N.

    2017-06-01

    We report on the first experiments utilizing MACH facility at Imperial College London to explode copper wire arrays in water, generating extremely symmetric, cylindrical convergent shockwaves. The experiments were carried out with 10mm diameter arrays consisting of 60 × 130 μm wires, and currents >500 kA were achieved despite the high inductance load. Laser backlit framing images and streak photography of the implosion showed a highly uniform, stable shockwave that travelled towards the axis at velocities up to 7.5 kms-1. For the first time, imaging of the shock front has been carried at radii < 0.5 mm, and there is strong evidence that even at radii < 0.1 mm the shock front remains stable, resulting in a convergence ratio of 50:1. 2D hydrodynamic simulations that match the experimentally obtained implosion trajectory suggest pressures of >1 Mbar are produced within 10 μm of the axis, with water densities 3 gcm-3 and temperatures of many 1000 s of Kelvin. The results represent a significant step in the application of the technique to drive different material samples, and calculations of scaling the technique to larger pulsed power facilities are presented. This work was supported by the Institute of Shock Physics, funded by AWE Aldermaston, and the NNSA under DOE Cooperative Agreement Nos. DE-F03-02NA00057 and DE-SC-0001063.

  19. Orange County Government Solar Demonstration and Research Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Renee; Cunniff, Lori

    Orange County Florida completed the construction of a 20 kilowatt Solar Demonstration and Research Facility in March 2015. The system was constructed at the Orange County/University of Florida Cooperative Extension Center whose electric service address is 6021 South Conway Road, Orlando, Florida 32802. The Solar Demonstration and Research Facility is comprised of 72 polycrystalline photovoltaic modules and 3 inverters which convert direct current from the solar panels to alternating current electricity. Each module produces 270 watts of direct current power, for a total canopy production of just under 20,000 watts. The solar modules were installed with a fixed tilt ofmore » 5 degrees and face south, toward the equator to maximize the amount of sunlight captures. Each year, the electricity generated by the solar array will help eliminate 20 metric tons of carbon dioxide emissions as well as provide covered parking for staff and visitors vehicles. The solar array is expected to generate 27,000 kilowatt hours of electricity annually equating to an estimated $266 savings in the monthly electric bill, or $3,180 annually for the Orange County/University of Florida Cooperative Extension Center. In addition to reducing the electric bill for the Extension Center, Orange County’s solar array also takes advantage of a rebate incentive offered by the local utility, Orlando Utility Commission, which provided a meter that measures the amount of power produced by the solar array. The local utility company’s Solar Photovoltaic Production Incentive will pay Orange County $0.05 per kilowatt hour for the power that is produced by the solar array. This incentive is provided in addition to Net Metering benefits, which is an effort to promote the use of clean, renewable energy on the electric grid. The Photovoltaic Solar Demonstration and Research Facility also serves an educational tool to the public; the solar array is tied directly into a data logger that provides real time power generation accessible for public viewing on an interactive kiosk located in the Orange County/University of Florida Cooperative Extension Center’s lobby where visitors can review “real time” power generation, cost savings and environmental benefits of the system. Site commissioning with the software program was delayed due to Internal Security Software issues within Orange County that needed to be resolved, therefore the “real time” capture of the production data for the solar array using the software program commenced on May 1, 2015. In addition an educational flyer was developed and is available in the Orange County Education Center’s main lobby. The project completed under this grant award assisted Orange County in demonstrating leadership by installing the application of a renewable energy technology combined with energy efficiency measures; resulting in reduced energy costs for the Orange County University of Florida Cooperative Extension Center, and helping Orange County citizens and visitors move towards the goals of greater energy independence and climate protection. The addition of the new Solar Demonstration and Research Facility has advanced the Orange County/University of Florida Cooperative Extension Center’s mission of extending, educating and providing research-based information to residents and visitors of Orange County by demonstrating the application of renewable energy technology combined with energy efficiency measures; resulting in reduced energy costs, and helping Orange County move towards the goal of greater energy independence and climate protection. In 2014, the Orange County Cooperative Extension Center hosted nearly 10,800 visitors to their on-site Exploration Gardens plus 12,686 walk-in visitors to their office plant clinic and other services. The Education Center held 2,217 educational events that were attended by 46,434 adults and youth, but about half of those events occurred off-site. Based on the visitation numbers in 2014 the Orange County Cooperative Extension Center Education is a vital partner to Orange County’s continued outreach and education efforts concerning renewable energy technologies and greenhouse gas emission reduction well in the current 2015 year and future years of operation of the solar array to the future visitors of the Center which help stimulate market demand that will continue to advance the commercialization and the widespread application and use of renewable energy technologies in Orange County and the state of Florida. The project period performance date for this grant was November 1, 2009 through March 1, 2015. The Final Project costs to complete the project as reported in the FINAL SF 425 were $195,512.50 (50% recipient cost share was satisfied as required by grant terms and conditions).« less

  20. 75 FR 19990 - Notice of Availability of the Draft Environmental Impact Statement for the NextLight Renewable...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-16

    ... to construct a solar photovoltaic (PV) plant facility approximately two miles southeast of Primm... action alternatives would use solar PV technology, although the specific types of arrays and trackers... Statement for the NextLight Renewable Power, LLC, Silver State Solar Project, Primm, NV AGENCY: Bureau of...

  1. Lean, Mean and Green: An Affordable Net Zero School

    ERIC Educational Resources Information Center

    Stanfield, Kenneth

    2010-01-01

    From its conception, Richardsville Elementary was designed to be an affordable net zero facility. The design team explored numerous energy saving strategies to dramatically reduce energy consumption. By reducing energy use to 19.31 kBtus annually, the net zero goal could be realized through the implementation of a solar array capable of producing…

  2. Preparing School Leaders for a Changing World: Lessons from Exemplary Leadership Development Programs. School Leadership Study. Executive Summary

    ERIC Educational Resources Information Center

    Darling-Hammond, Linda; LaPointe, Michelle; Meyerson, Debra; Orr, Margaret Terry

    2007-01-01

    Contemporary school administrators play a daunting array of roles. They must be educational visionaries and change agents, instructional leaders, curriculum and assessment experts, budget analysts, facility managers, special program administrators, and community builders. New expectations for schools--that they successfully teach a broad range of…

  3. Spectroscopy of neutron-rich nuclei at REX-ISOLDE with MINIBALL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroell, Th.

    2007-08-15

    We report on 'safe' Coulomb excitation of neutron-rich nuclei. The radioactive nuclei have been produced by ISOLDE at CERN and postaccelerated by the REX-ISOLDE facility. The {gamma} rays emitted by the decay of excited states have been detected by the MINIBALL array. Recent results are presented and compared to theoretical models.

  4. A fast and complete GEANT4 and ROOT Object-Oriented Toolkit: GROOT

    NASA Astrophysics Data System (ADS)

    Lattuada, D.; Balabanski, D. L.; Chesnevskaya, S.; Costa, M.; Crucillà, V.; Guardo, G. L.; La Cognata, M.; Matei, C.; Pizzone, R. G.; Romano, S.; Spitaleri, C.; Tumino, A.; Xu, Y.

    2018-01-01

    Present and future gamma-beam facilities represent a great opportunity to validate and evaluate the cross-sections of many photonuclear reactions at near-threshold energies. Monte Carlo (MC) simulations are very important to evaluate the reaction rates and to maximize the detection efficiency but, unfortunately, they can be very cputime-consuming and in some cases very hard to reproduce, especially when exploring near-threshold cross-section. We developed a software that makes use of the validated tracking GEANT4 libraries and the n-body event generator of ROOT in order to provide a fast, realiable and complete MC tool to be used for nuclear physics experiments. This tool is indeed intended to be used for photonuclear reactions at γ-beam facilities with ELISSA (ELI Silicon Strip Array), a new detector array under development at the Extreme Light Infrastructure - Nuclear Physics (ELI-NP). We discuss the results of MC simulations performed to evaluate the effects of the electromagnetic induced background, of the straggling due to the target thickness and of the resolution of the silicon detectors.

  5. The low-energy program of the MAJORANA DEMONSTRATOR

    NASA Astrophysics Data System (ADS)

    Massarczyk, Ralph; MAJORANA Collaboration

    2017-01-01

    The MAJORANA Collaboration constructed an ultra-low background, modular high-purity Ge detector array to search for neutrinoless double-beta decay in 76Ge. Located at the 4850-ft level of the Sanford Underground Research Facility, the DEMONSTRATOR detector assembly has the goal to show that it is possible to achieve background rates necessary for future ton-scale experiments. The ultra-clean assembly in combination with low-noise p-type point contact detectors allows measurements with thresholds in the keV range. The talk will give an overview of the low-energy physics and recent achievements made since the completed DEMONSTRATOR array started data taking in mid 2016. Recent results from campaign will be presented, including new limits on bosonic dark matter interaction rates. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics Program of the National Science Foundation, and the Sanford Underground Research Facility. We acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program.

  6. KENNEDY SPACE CENTER, FLA. - STS-115 Mission Specialist Heidemarie Stefanyshyn-Piper talks to workers in the Space Station Processing Facility. She and other crew members are at KSC for hardware familiarization. The mission will deliver the second port truss segment, the P3/P4 Truss, to attach to the first port truss segment, the P1 Truss, as well as deploy solar array sets 2A and 4A.. The crew is scheduled to activate and check out the Solar Alpha Rotary Joint (SARJ) and deploy the P4 Truss radiator.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - STS-115 Mission Specialist Heidemarie Stefanyshyn-Piper talks to workers in the Space Station Processing Facility. She and other crew members are at KSC for hardware familiarization. The mission will deliver the second port truss segment, the P3/P4 Truss, to attach to the first port truss segment, the P1 Truss, as well as deploy solar array sets 2A and 4A.. The crew is scheduled to activate and check out the Solar Alpha Rotary Joint (SARJ) and deploy the P4 Truss radiator.

  7. Development of an integrated set of research facilities for the support of research flight test

    NASA Technical Reports Server (NTRS)

    Moore, Archie L.; Harney, Constance D.

    1988-01-01

    The Ames-Dryden Flight Research Facility (DFRF) serves as the site for high-risk flight research on many one-of-a-kind test vehicles like the X-29A advanced technology demonstrator, F-16 advanced fighter technology integration (AFTI), AFTI F-111 mission adaptive wing, and F-18 high-alpha research vehicle (HARV). Ames-Dryden is on a section of the historic Muroc Range. The facility is oriented toward the testing of high-performance aircraft, as shown by its part in the development of the X-series aircraft. Given the cost of research flight tests and the complexity of today's systems-driven aircraft, an integrated set of ground support experimental facilities is a necessity. In support of the research flight test of highly advanced test beds, the DFRF is developing a network of facilities to expedite the acquisition and distribution of flight research data to the researcher. The network consists of an array of experimental ground-based facilities and systems as nodes and the necessary telecommunications paths to pass research data and information between these facilities. This paper presents the status of the current network, an overview of current developments, and a prospectus on future major enhancements.

  8. Telescope Array Control System Based on Wireless Touch Screen Platform

    NASA Astrophysics Data System (ADS)

    Fu, Xia-nan; Huang, Lei; Wei, Jian-yan

    2017-10-01

    Ground-based Wide Angle Cameras (GMAC) are the ground-based observational facility for the SVOM (Space Variable Object Monitor) astronomical satellite of Sino-French cooperation, and Mini-GWAC is the pathfinder and supplement of GWAC. In the context of the Mini-GWAC telescope array, this paper introduces the design and implementation of a kind of telescope array control system based on the wireless touch screen platform. We describe the development and implementation of the system in detail in terms of control system principle, system hardware structure, software design, experiment, and test etc. The system uses a touch-control PC which is based on the Windows CE system as the upper computer, while the wireless transceiver module and PLC (Programmable Logic Controller) are taken as the system kernel. It has the advantages of low cost, reliable data transmission, and simple operation. And the control system has been applied to the Mini-GWAC successfully.

  9. X-ray optics for the LAMAR facility, an overview. [Large Area Modular Array of Reflectors

    NASA Technical Reports Server (NTRS)

    Gorenstein, P.

    1979-01-01

    The paper surveys the Large Area Modular Array of Reflectors (LAMAR), the concept of which is based on meeting two major requirements in X-ray astronomy, large collecting area and moderately good or better angular resolution for avoiding source confusion and imaging source fields. It is shown that the LAMAR provides the same sensitivity and signal to noise in imaging as a single large telescope having the same area and angular resolution but is a great deal less costly to develop, construct, and integrate into a space mission. Attention is also given to the LAMAR modular nature which will allow for an evolutionary development from a modest size array on Spacelab to a Shuttle launched free flyer. Finally, consideration is given to manufacturing methods which show promise of making LAMAR meet the criteria of good angular resolution, relatively low cost, and capability for fast volume production.

  10. Science requirements for Heavy Nuclei Collection (HNC) experiment on NASA Long Duration Exposure Facility (LDEF) Mission 2

    NASA Technical Reports Server (NTRS)

    Price, P. Buford

    1991-01-01

    The Heavy Nuclei Collection (HNC) is a passive array of stacks of a special glass, 14 sheets thick, that record tracks of ultraheavy cosmic rays for later readout by automated systems on Earth. The primary goal is to determine the relative abundances of both the odd- and even-Z cosmic rays with Z equal to or greater than 50 with statistics a factor at least 60 greater than obtained in HEAO-3 and to obtain charge resolution at least as good as 0.25 charge unit. The secondary goal is to search for hypothetical particles such as superheavy elements. The HNC detector array will have a cumulative collection power equivalent to flying 32 sq m of detectors in space for 4 years. The array will be flown as a free-flight spacecraft and/or attached to Space Station Freedom.

  11. Parallel RNA extraction using magnetic beads and a droplet array.

    PubMed

    Shi, Xu; Chen, Chun-Hong; Gao, Weimin; Chao, Shih-Hui; Meldrum, Deirdre R

    2015-02-21

    Nucleic acid extraction is a necessary step for most genomic/transcriptomic analyses, but it often requires complicated mechanisms to be integrated into a lab-on-a-chip device. Here, we present a simple, effective configuration for rapidly obtaining purified RNA from low concentration cell medium. This Total RNA Extraction Droplet Array (TREDA) utilizes an array of surface-adhering droplets to facilitate the transportation of magnetic purification beads seamlessly through individual buffer solutions without solid structures. The fabrication of TREDA chips is rapid and does not require a microfabrication facility or expertise. The process takes less than 5 minutes. When purifying mRNA from bulk marine diatom samples, its repeatability and extraction efficiency are comparable to conventional tube-based operations. We demonstrate that TREDA can extract the total mRNA of about 10 marine diatom cells, indicating that the sensitivity of TREDA approaches single-digit cell numbers.

  12. Parallel RNA extraction using magnetic beads and a droplet array

    PubMed Central

    Shi, Xu; Chen, Chun-Hong; Gao, Weimin; Meldrum, Deirdre R.

    2015-01-01

    Nucleic acid extraction is a necessary step for most genomic/transcriptomic analyses, but it often requires complicated mechanisms to be integrated into a lab-on-a-chip device. Here, we present a simple, effective configuration for rapidly obtaining purified RNA from low concentration cell medium. This Total RNA Extraction Droplet Array (TREDA) utilizes an array of surface-adhering droplets to facilitate the transportation of magnetic purification beads seamlessly through individual buffer solutions without solid structures. The fabrication of TREDA chips is rapid and does not require a microfabrication facility or expertise. The process takes less than 5 minutes. When purifying mRNA from bulk marine diatom samples, its repeatability and extraction efficiency are comparable to conventional tube-based operations. We demonstrate that TREDA can extract the total mRNA of about 10 marine diatom cells, indicating that the sensitivity of TREDA approaches single-digit cell numbers. PMID:25519439

  13. Native Vegetation Performance under a Solar PV Array at the National Wind Technology Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beatty, Brenda; Macknick, Jordan; McCall, James

    Construction activities at most large-scale ground installations of photovoltaic (PV) arrays are preceded by land clearing and re-grading to uniform slope and smooth surface conditions to facilitate convenient construction access and facility operations. The impact to original vegetation is usually total eradication followed by installation of a gravel cover kept clear of vegetation by use of herbicides. The degree to which that total loss can be mitigated by some form of revegetation is a subject in its infancy, and most vegetation studies at PV development sites only address weed control and the impact of tall plants on the efficiency ofmore » the solar collectors from shading.This study seeks to address this void, advancing the state of knowledge of how constructed PV arrays affect ground-level environments, and to what degree plant cover, having acceptable characteristics within engineering constraints, can be re-established.« less

  14. Dynamic characteristics of azimuthally correlated structures of axial instability of wire-array Z pinches

    NASA Astrophysics Data System (ADS)

    Dan, Jia Kun; Huang, Xian Bin; Ren, Xiao Dong; Chen, Guang Hua; Xu, Qiang; Wang, Kun Lun; Ouyang, Kai; Wei, Bing

    2017-04-01

    Particular attention was placed on observations of dynamic properties of the azimuthally correlated structures of axial instability of wire-array Z pinches, which were conducted at 10-MA (for short circuit load) pulsed power generator-the Primary Test Stand facility. Not well fabricated loads, which were expected to preset bubble or spike in plasma, were used to degrade the implosion symmetry in order to magnify the phenomenon of instability. The side-view sequence of evolution of correlation given by laser shadowgraphy clearly demonstrates the dynamic processes of azimuthal correlation of the bubble and spike. A possible mechanism presented here suggests that it is the substantial current redistribution especially in regions surrounding the bubble/spike resulting from change of inductance due to the presence of the bubble/spike that plays an essential part in establishment of azimuthal correlation of wire array and liner Z pinches.

  15. Generating random numbers by means of nonlinear dynamic systems

    NASA Astrophysics Data System (ADS)

    Zang, Jiaqi; Hu, Haojie; Zhong, Juhua; Luo, Duanbin; Fang, Yi

    2018-07-01

    To introduce the randomness of a physical process to students, a chaotic pendulum experiment was opened in East China University of Science and Technology (ECUST) on the undergraduate level in the physics department. It was shown chaotic motion could be initiated through adjusting the operation of a chaotic pendulum. By using the data of the angular displacements of chaotic motion, random binary numerical arrays can be generated. To check the randomness of generated numerical arrays, the NIST Special Publication 800-20 method was adopted. As a result, it was found that all the random arrays which were generated by the chaotic motion could pass the validity criteria and some of them were even better than the quality of pseudo-random numbers generated by a computer. Through the experiments, it is demonstrated that chaotic pendulum can be used as an efficient mechanical facility in generating random numbers, and can be applied in teaching random motion to the students.

  16. The effects of insulating coatings and current prepulse on tungsten planar wire array Z-pinches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, M., E-mail: limo@nint.ac.cn; Li, Y.; State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi'an 710024

    2015-12-15

    This paper presents experimental results on the effects of insulating coatings and current prepulse on tungsten planar wire array Z-pinches on ∼100 ns main current facility. Optical framing images indicated that without a current prepulse the wire ablation process was asymmetrical and the implosion was zippered. The x-ray peak power was ∼320 GW. By using insulating coatings on the wire surface the asymmetry remained, and the processes of ablation and implosion were delayed by ∼30 ns. The x-ray burst was narrow and decreased to ∼200 GW. When current prepulses were used on both standard and insulated wire arrays, implosion symmetry was improved and themore » x-ray burst was improved (to ∼520 GW peak power). In addition, there was a strong emitting precursor column for insulated loads with the current prepulse.« less

  17. Small ICBM area narrowing report. Volume 2. Hard mobile launcher at minuteman facilities basing mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The purpose of this report is to identify those areas that could potentially support deployment of the Small Intercontinental Ballistic Missile (ICBM) utilizing basing modes presently considered viable: the Hard Mobile Launcher in Random Movement, the Hard Mobile Launcher at Minuteman Facilities, and the Hard Silo in Patterned Array. Specifically, this report describes the process and the rationale supporting the application of Exclusionary and Evaluative Criteria and lists those locations that were eliminated through the application of these criteria. The remaining locations will be the subject of further investigations.

  18. SIRTF, the Space Infrared Telescope Facility

    NASA Technical Reports Server (NTRS)

    Simmons, Larry L.

    1999-01-01

    The Space Infrared Telescope Facility (SIRTF) is the last of the NASA Great Observatories, and a cornerstone of the NASA Origins Missions. The Observatory will include an 85 cm telescope in a unique orbit around the sun. The telescope will be launched at ambient temperature and cooled to 5.5K in space. The science instruments will use large detector arrays that will be background limited, and capable of a broad range of astrophysical investigations. The SIRTF architecture will accommodate up to 5 years of cryogenic space operations. This talk will describe both the scientific and technical capabilities of SIRTF.

  19. High Intensity Tests of the NuMI Beam Monitoring Ionization Chambers

    NASA Astrophysics Data System (ADS)

    Zwaska, Robert

    2002-04-01

    The NuMI facility at Fermilab will generate an intense beam of neutrinos directed toward Soudan, MN, 735 km away. Components of the planned beam monitoring system will be exposed to fluences of up to 8 x 10^9 charge particles / cm^2 and 6 x 10^10 neutrons / cm^2 in an 8.6 us beam spill. These fluences will be measured by an array of Helium ionization chambers. We tested a pair of chambers with 8 GeV protons at the Fermilab Booster accelerator, and with high intensity neutron sources at the Texas Experimental Nuclear Facility.

  20. Gamma-Ray Spectroscopy at TRIUMF-ISAC: the New Frontier of Radioactive Ion Beam Research

    NASA Astrophysics Data System (ADS)

    Ball, G. C.; Andreoiu, C.; Austin, R. A. E.; Bandyopadhyay, D.; Becker, J. A.; Bricault, P.; Brown, N.; Chan, S.; Churchman, R.; Colosimo, S.; Coombes, H.; Cross, D.; Demand, G.; Drake, T. E.; Dombsky, M.; Ettenauer, S.; Finlay, P.; Furse, D.; Garnsworthy, A.; Garrett, P. E.; Green, K. L.; Grinyer, G. F.; Hyland, B.; Hackman, G.; Kanungo, R.; Kulp, W. D.; Lassen, J.; Leach, K. G.; Leslie, J. R.; Mattoon, C.; Melconian, D.; Morton, A. C.; Pearson, C. J.; Phillips, A. A.; Rand, E.; Sarazin, F.; Svensson, C. E.; Sumithrarachchi, S.; Schumaker, M. A.; Triambak, S.; Waddington, J. C.; Walker, P. M.; Williams, S. J.; Wood, J. L.; Wong, J.; Zganjar, E. F.

    2009-03-01

    High-resolution gamma-ray spectroscopy is essential to fully exploit the unique scientific opportunities at the next generation radioactive ion beam facilities such as the TRIUMF Isotope Separator and Accelerator (ISAC). At ISAC the 8π spectrometer and its associated auxiliary detectors is optimize for β-decay studies while TIGRESS an array of segmented clover HPGe detectors has been designed for studies with accelerated beams. This paper gives a brief overview of these facilities and also presents recent examples of the diverse experimental program carried out at the 8π spectrometer.

  1. Astronomy and astrophysics for the 1980's, volume 1

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The programs recommended address the most significant questions that confront contemporary astronomy and fall into three general categories: prerequisites for research initiatives, including instrumentation and detectors, theory and data analysis, computational facilities, laboratory astrophysics, and technical support at ground-based observatories; programs including an Advanced X-ray Astrophysics Facility, a Very-Long Baseline Array, a Technology Telescope and a Large Deployable Reflector; and programs for study and development, including X-ray observatories in space, instruments for the detection of gravitational waves from astronomical objects, and long duration spaceflights of infrared telescopes. Estimated costs of these programs are provided.

  2. KSC-99pp0354

    NASA Image and Video Library

    1999-03-26

    Viewed from above in the Vertical Processing Facility, the Chandra X-ray Observatory is seen with one of its solar panel arrays attached, at right. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93

  3. KSC-99pp0356

    NASA Image and Video Library

    1999-03-25

    In the Vertical Processing Facility, TRW workers continue checking the deployment of the solar panel array (right) after attaching it to the Chandra X-ray Observatory (left). Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93

  4. KSC-99pp0352

    NASA Image and Video Library

    1999-03-26

    TRW technicians in the Vertical Processing Facility check the fitting of the solar panel array being attached to the Chandra X-ray Observatory. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93

  5. KSC-99pp0363

    NASA Image and Video Library

    1999-03-26

    TRW workers in the Vertical Processing Facility check equipment after deployment of the solar panel array above them, attached to the Chandra X-ray Observatory. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93

  6. KSC-99pp0362

    NASA Image and Video Library

    1999-03-26

    In the Vertical Processing Facility, the Chandra X-ray Observatory is observed after deployment of the solar panel array (near the bottom and to the right). Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93

  7. Astronomy and astrophysics for the 1980's, volume 1

    NASA Astrophysics Data System (ADS)

    The programs recommended address the most significant questions that confront contemporary astronomy and fall into three general categories: prerequisites for research initiatives, including instrumentation and detectors, theory and data analysis, computational facilities, laboratory astrophysics, and technical support at ground-based observatories; programs including an Advanced X-ray Astrophysics Facility, a Very-Long Baseline Array, a Technology Telescope and a Large Deployable Reflector; and programs for study and development, including X-ray observatories in space, instruments for the detection of gravitational waves from astronomical objects, and long duration spaceflights of infrared telescopes. Estimated costs of these programs are provided.

  8. Hydrothermally formed three-dimensional hexagon-like P doped Ni(OH)2 rod arrays for high performance all-solid-state asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Kunzhen; Li, Shikuo; Huang, Fangzhi; Lu, Yan; Wang, Lei; Chen, Hong; Zhang, Hui

    2018-01-01

    Three dimensional hexagon-like phosphrous (P) doped Ni(OH)2 rod arrays grown on Ni foam (NF) are fabricated by a facile and green one-step hydrothermal process. Ni foam is only reacted in a certain concentration of P containing H2O2 aqueous solution. The possible growth mechanism of the P doped Ni(OH)2 rod arrays is discussed. As a battery-type electrode material in situ formed on Ni foam, the binder-free P doped Ni(OH)2 rod arrays electrode displays a ultrahigh specific areal capacitance of 2.11C cm-2 (3.51 F cm-2) at 2 mA cm-2, and excellent cycling stability (95.5% capacitance retention after 7500 cycles). The assembled all-solid-state asymmetric supercapacitor (AAS) based on such P doped Ni(OH)2 rod arrays as the positive electrode and activated carbon as the negative electrode achieves an energy density of 81.3 Wh kg-1 at the power density of 635 W kg-1. The AAS device also exhibits excellent practical performance, which can easily drive an electric fan (3 W rated power) when two AAS devices are assembled in series. Thus, our synthesized P doped Ni(OH)2 rod arrays has a lot of potential applications in future energy storage prospects.

  9. In situ fabrication of Ni-Co (oxy)hydroxide nanowire-supported nanoflake arrays and their application in supercapacitors.

    PubMed

    Zheng, Xiaoyu; Quan, Honglin; Li, Xiaoxin; He, Hai; Ye, Qinglan; Xu, Xuetang; Wang, Fan

    2016-09-29

    Three-dimensional (3D) hybrid nanostructured arrays grown on a flexible substrate have recently attracted great attention owing to their potential application as supercapacitor electrodes in portable and wearable electronic devices. Here, we report an in situ conversion of Ni-Co active electrode materials for the fabrication of high-performance electrodes. Ni-Co carbonate hydroxide nanowire arrays on carbon cloth were initially synthesized via a hydrothermal method, and they were gradually converted to Ni-Co (oxy)hydroxide nanowire-supported nanoflake arrays after soaking in an alkaline solution. The evolution of the supercapacitor performance of the soaked electrode was investigated in detail. The areal capacitance increases from 281 mF cm -2 at 1 mA cm -2 to 3710 and 3900 mF cm -2 after soaking for 36 h and 48 h, respectively. More interestingly, the electrode also shows an increased capacitance with charge/discharge cycles due to the long-time soaking in KOH solution, suggesting novel cycling durability. The enhancement in capacitive performance should be related to the formation of a unique nanowire-supported nanoflake array architecture, which controls the agglomeration of nanoflakes, making them fully activated. As a result, the facile in situ fabrication of the hybrid architectural design in this study provides a new approach to fabricate high-performance Ni/Co based hydroxide nanostructure arrays for next-generation energy storage devices.

  10. Self-Positioned Nanosized Mask for Transparent and Flexible Ferroelectric Polymer Nanodiodes Array.

    PubMed

    Hyun, Seung; Kwon, Owoong; Choi, Chungryong; Vincent Joseph, Kanniyambatti L; Kim, Yunseok; Kim, Jin Kon

    2016-10-12

    High density arrays of ferroelectric polymer nanodiodes have gained strong attention for next-generation transparent and flexible nonvolatile resistive memory. Here, we introduce a facile and innovative method to fabricate ferroelectric polymer nanodiode array on an ITO-coated poly(ethylene terephthalate) (PET) substrate by using block copolymer self-assembly and oxygen plasma etching. First, polystyrene-block-poly(2-vinylpyridine) copolymer (PS-b-P2VP) micelles were spin-coated on poly(vinylidene fluoride-ran-trifluoroethylene) copolymer (P(VDF-TrFE)) film/ITO-coated PET substrate. After the sample was immersed in a gold precursor (HAuCl 4 ) containing solution, which strongly coordinates with nitrogen group in P2VP, oxygen plasma etching was performed. During the plasma etching, coordinated gold precursors became gold nanoparticles (GNPs), which successfully acted as self-positioned etching mask to fabricate a high density array of P(VDF-TrFE)) nanoislands with GNP at the top. Each nanoisland shows clearly individual diode property, as confirmed by current-voltage (I-V) curve. Furthermore, due to the transparent and flexible nature of P(VDF-TrFE)) nanoisland as well as the substrate, the P(VDF-TrFE) nanodiode array was highly tranparent, and the diode property was maintained even after a large number of bendings (for instance, 1000 times). The array could be used as the next-generation tranparent and flexible nonvolatile memory device.

  11. Locating sources within a dense sensor array using graph clustering

    NASA Astrophysics Data System (ADS)

    Gerstoft, P.; Riahi, N.

    2017-12-01

    We develop a model-free technique to identify weak sources within dense sensor arrays using graph clustering. No knowledge about the propagation medium is needed except that signal strengths decay to insignificant levels within a scale that is shorter than the aperture. We then reinterpret the spatial coherence matrix of a wave field as a matrix whose support is a connectivity matrix of a graph with sensors as vertices. In a dense network, well-separated sources induce clusters in this graph. The geographic spread of these clusters can serve to localize the sources. The support of the covariance matrix is estimated from limited-time data using a hypothesis test with a robust phase-only coherence test statistic combined with a physical distance criterion. The latter criterion ensures graph sparsity and thus prevents clusters from forming by chance. We verify the approach and quantify its reliability on a simulated dataset. The method is then applied to data from a dense 5200 element geophone array that blanketed of the city of Long Beach (CA). The analysis exposes a helicopter traversing the array and oil production facilities.

  12. Specific features of implosion of metallized fiber arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitrofanov, K. N., E-mail: mitrofan@triniti.ru; Aleksandrov, V. V.; Gritsuk, A. N.

    2017-02-15

    Implosion of metallized fiber arrays was studied experimentally at the Angara-5-1 facility. The use of such arrays makes it possible to investigate the production and implosion dynamics of plasmas of various metals (such as tin, indium, and bismuth) that were previously unavailable for such studies. The plasma production rates m-dot (in μg/(cm{sup 2} ns)) for different metals were determined and quantitatively compared. Varying the thickness of the metal layer deposited on kapron fibers (the total linear mass of the metal coating being maintained at the level of 220 μg/cm), the current and velocity of the plasma precursor were studied asmore » functions of the thickness of the metal coating. The strong difference in the rates of plasma production from the metal coating and kapron fibers results in the redistribution of the discharge current between the Z-pinch and the trailing fiber plasma. The outer boundary of the plasma produced from the metal coating is found to be stable against instabilities typical of the final stage of implosion of conventional wire arrays.« less

  13. KSC-00pp1690

    NASA Image and Video Library

    2000-11-10

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, the P6 integrated truss segment is lowered into the payload transport canister under the watchful eyes of the worker inside the canister as well as the workers on the sides. After being secured in the canister, the truss will be transported to Launch Pad 39B and the payload changeout room. Then it will be moved into Space Shuttle Endeavour’s payload bay for mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. The STS-97 launch is scheduled Nov. 30 at 10:06 p.m. EST

  14. KSC00pp1689

    NASA Image and Video Library

    2000-11-10

    KENNEDY SPACE CENTER, FLA. -- Workers in the Space Station Processing Facility line up on the sides of the payload transport canister as an overhead crane moves the P6 integrated truss segment into position above it. After being placed in the canister, the truss will be transported to Launch Pad 39B and the payload changeout room. Then it will be moved into Space Shuttle Endeavour’s payload bay for mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. The STS-97 launch is scheduled Nov. 30 at 10:06 p.m. EST

  15. KSC-00pp1689

    NASA Image and Video Library

    2000-11-10

    KENNEDY SPACE CENTER, FLA. -- Workers in the Space Station Processing Facility line up on the sides of the payload transport canister as an overhead crane moves the P6 integrated truss segment into position above it. After being placed in the canister, the truss will be transported to Launch Pad 39B and the payload changeout room. Then it will be moved into Space Shuttle Endeavour’s payload bay for mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. The STS-97 launch is scheduled Nov. 30 at 10:06 p.m. EST

  16. KSC00pp1690

    NASA Image and Video Library

    2000-11-10

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, the P6 integrated truss segment is lowered into the payload transport canister under the watchful eyes of the worker inside the canister as well as the workers on the sides. After being secured in the canister, the truss will be transported to Launch Pad 39B and the payload changeout room. Then it will be moved into Space Shuttle Endeavour’s payload bay for mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. The STS-97 launch is scheduled Nov. 30 at 10:06 p.m. EST

  17. A LYSO crystal array readout by silicon photomultipliers as compact detector for space applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kryemadhi, A.; Barner, L.; Grove, A.

    Precise measurements of GeV range gamma rays help narrow down among var- ious gamma emission models and increase sensitivity for dark matter searches. Construction of precise as well as compact instruments requires detectors with high efficiency, high stopping power, excellent energy resolution, and excellent angular resolution. Fast and bright crystal scintillators coupled with small foot- print photo-detectors are suitable candidates. We prototyped a detector array consisting of four LYSO crystals where each crystal is read out by a 2x2 SensL ArrayJ60035 silicon photomultipliers. The LYSO crystals were chosen because of their good light yield, fast decay time, demonstrated radiation hardness,more » and small radiation length. Here, we used the silicon photomultiplier arrays as photo- detectors because of their small size, simple readout, low voltage operation, and immunity to magnetic elds. We also studied the detector performance in the energy range of interest by exposing it to 2-16 GeV particles produced at the Test Beam Facility of Fermi National Accelerator Laboratory.« less

  18. STS-97 P6 truss moves to a payload transport canister

    NASA Technical Reports Server (NTRS)

    2000-01-01

    As it travels across the Space Station Processing Facility, the P6 integrated truss segment passes over the two Italian-built Multi-Purpose Logistics Modules, Leonardo (right) and Raffaello (behind Leonardo). The P6 is being moved to a payload transport canister for transfer to Launch Pad 39B. There it will be placed in Endeavour'''s payload bay for launch on mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The Station'''s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a '''blanket''' that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch is scheduled Nov. 30 at 10:06 p.m. EST.

  19. A LYSO crystal array readout by silicon photomultipliers as compact detector for space applications

    DOE PAGES

    Kryemadhi, A.; Barner, L.; Grove, A.; ...

    2017-10-31

    Precise measurements of GeV range gamma rays help narrow down among var- ious gamma emission models and increase sensitivity for dark matter searches. Construction of precise as well as compact instruments requires detectors with high efficiency, high stopping power, excellent energy resolution, and excellent angular resolution. Fast and bright crystal scintillators coupled with small foot- print photo-detectors are suitable candidates. We prototyped a detector array consisting of four LYSO crystals where each crystal is read out by a 2x2 SensL ArrayJ60035 silicon photomultipliers. The LYSO crystals were chosen because of their good light yield, fast decay time, demonstrated radiation hardness,more » and small radiation length. Here, we used the silicon photomultiplier arrays as photo- detectors because of their small size, simple readout, low voltage operation, and immunity to magnetic elds. We also studied the detector performance in the energy range of interest by exposing it to 2-16 GeV particles produced at the Test Beam Facility of Fermi National Accelerator Laboratory.« less

  20. Facile fabrication of CNT-based chemical sensor operating at room temperature

    NASA Astrophysics Data System (ADS)

    Sheng, Jiadong; Zeng, Xian; Zhu, Qi; Yang, Zhaohui; Zhang, Xiaohua

    2017-12-01

    This paper describes a simple, low cost and effective route to fabricate CNT-based chemical sensors, which operate at room temperature. Firstly, the incorporation of silk fibroin in vertically aligned CNT arrays (CNTA) obtained through a thermal chemical vapor deposition (CVD) method makes the direct removal of CNT arrays from substrates without any rigorous acid or sonication treatment feasible. Through a simple one-step in situ polymerization of anilines, the functionalization of CNT arrays with polyaniline (PANI) significantly improves the sensing performance of CNT-based chemical sensors in detecting ammonia (NH3) and hydrogen chloride (HCl) vapors. Chemically modified CNT arrays also show responses to organic vapors like menthol, ethyl acetate and acetone. Although the detection limits of chemically modified CNT-based chemical sensors are of the same orders of magnitudes reported in previous studies, these CNT-based chemical sensors show advantages of simplicity, low cost and energy efficiency in preparation and fabrication of devices. Additionally, a linear relationship between the relative sensitivity and concentration of analyte makes precise estimations on the concentrations of trace chemical vapors possible.

  1. A colorimetric sensor array for detection of triacetone triperoxide vapor.

    PubMed

    Lin, Hengwei; Suslick, Kenneth S

    2010-11-10

    Triacetone triperoxide (TATP), one of the most dangerous primary explosives, has emerged as an explosive of choice for terrorists in recent years. Owing to the lack of UV absorbance, fluorescence, or facile ionization, TATP is extremely difficult to detect directly. Techniques that are able to detect generally require expensive instrumentation, need extensive sample preparation, or cannot detect TATP in the gas phase. Here we report a simple and highly sensitive colorimetric sensor for the detection of TATP vapor with semiquantitative analysis from 50 ppb to 10 ppm. By using a solid acid catalyst to pretreat a gas stream, we have discovered that a colorimetric sensor array of redox sensitive dyes can detect even very low levels of TATP vapor from its acid decomposition products (e.g., H(2)O(2)) with limits of detection (LOD) below 2 ppb (i.e., <0.02% of its saturation vapor pressure). Common potential interferences (e.g., humidity, personal hygiene products, perfume, laundry supplies, volatile organic compounds, etc.) do not generate an array response, and the array can also differentiate TATP from other chemical oxidants (e.g., hydrogen peroxide, bleach, tert-butylhydroperoxide, peracetic acid).

  2. A 2D ion chamber array audit of wedged and asymmetric fields in an inhomogeneous lung phantom.

    PubMed

    Lye, Jessica; Kenny, John; Lehmann, Joerg; Dunn, Leon; Kron, Tomas; Alves, Andrew; Cole, Andrew; Williams, Ivan

    2014-10-01

    The Australian Clinical Dosimetry Service (ACDS) has implemented a new method of a nonreference condition Level II type dosimetric audit of radiotherapy services to increase measurement accuracy and patient safety within Australia. The aim of this work is to describe the methodology, tolerances, and outcomes from the new audit. The ACDS Level II audit measures the dose delivered in 2D planes using an ionization chamber based array positioned at multiple depths. Measurements are made in rectilinear homogeneous and inhomogeneous phantoms composed of slabs of solid water and lung. Computer generated computed tomography data sets of the rectilinear phantoms are supplied to the facility prior to audit for planning of a range of cases including reference fields, asymmetric fields, and wedged fields. The audit assesses 3D planning with 6 MV photons with a static (zero degree) gantry. Scoring is performed using local dose differences between the planned and measured dose within 80% of the field width. The overall audit result is determined by the maximum dose difference over all scoring points, cases, and planes. Pass (Optimal Level) is defined as maximum dose difference ≤3.3%, Pass (Action Level) is ≤5.0%, and Fail (Out of Tolerance) is >5.0%. At close of 2013, the ACDS had performed 24 Level II audits. 63% of the audits passed, 33% failed, and the remaining audit was not assessable. Of the 15 audits that passed, 3 were at Pass (Action Level). The high fail rate is largely due to a systemic issue with modeling asymmetric 60° wedges which caused a delivered overdose of 5%-8%. The ACDS has implemented a nonreference condition Level II type audit, based on ion chamber 2D array measurements in an inhomogeneous slab phantom. The powerful diagnostic ability of this audit has allowed the ACDS to rigorously test the treatment planning systems implemented in Australian radiotherapy facilities. Recommendations from audits have led to facilities modifying clinical practice and changing planning protocols.

  3. FRED: an innovative approach to nursing home level-of-care assignments.

    PubMed

    Morris, J N; Sherwood, S; May, M I; Bernstein, E

    1987-04-01

    A clear need currently exists to consider new approaches for classifying nursing home residents. The traditional intermediate care facility/skilled nursing facility (ICF/SNF) dichotomy cannot provide adequate information on the type of care required by any one individual, and it provides only the most limited information required to address the care and quality-of-life needs of the total patient population within a facility, as well as the level of reimbursement appropriate for their care. This article describes an alternative procedure for allocating nursing home residents according to a more comprehensive array of internally homogeneous categories. This system is based on an operational perspective focused on the total nursing and staffing requirements for types of nursing home residents. The tool is titled "Functionally Ranked Explanatory Designations," or FRED.

  4. FRED: an innovative approach to nursing home level-of-care assignments.

    PubMed Central

    Morris, J N; Sherwood, S; May, M I; Bernstein, E

    1987-01-01

    A clear need currently exists to consider new approaches for classifying nursing home residents. The traditional intermediate care facility/skilled nursing facility (ICF/SNF) dichotomy cannot provide adequate information on the type of care required by any one individual, and it provides only the most limited information required to address the care and quality-of-life needs of the total patient population within a facility, as well as the level of reimbursement appropriate for their care. This article describes an alternative procedure for allocating nursing home residents according to a more comprehensive array of internally homogeneous categories. This system is based on an operational perspective focused on the total nursing and staffing requirements for types of nursing home residents. The tool is titled "Functionally Ranked Explanatory Designations," or FRED. PMID:3570811

  5. FLARE: A New User Facility for Studies of Multiple-Scale Physics of Magnetic Reconnection and Related Phenomena Through in-situ Measurements

    NASA Astrophysics Data System (ADS)

    Ji, Hantao; Bhattacharjee, A.; Goodman, A.; Prager, S.; Daughton, W.; Cutler, R.; Fox, W.; Hoffmann, F.; Kalish, M.; Kozub, T.; Jara-Almonte, J.; Myers, C.; Ren, Y.; Sloboda, P.; Yamada, M.; Yoo, J.; Bale, S. D.; Carter, T.; Dorfman, S.; Drake, J.; Egedal, J.; Sarff, J.; Wallace, J.

    2017-10-01

    The FLARE device (Facility for Laboratory Reconnection Experiments; flare.pppl.gov) is a new laboratory experiment under construction at Princeton for the studies of magnetic reconnection in the multiple X-line regimes directly relevant to space, solar, astrophysical, and fusion plasmas, as guided by a reconnection phase diagram. The whole device have been assembled with first plasmas expected in the fall of 2017. The main diagnostics is an extensive set of magnetic probe arrays, currently under construction, to cover multiple scales from local electron scales ( 2 mm), to intermediate ion scales ( 10 cm), and global MHD scales ( 1 m), simultaneously providing in-situ measurements over all these relevant scales. The planned procedures and example topics as a user facility will be discussed.

  6. A facile one-step synthesis of Mn{sub 3}O{sub 4} nanoparticles-decorated TiO{sub 2} nanotube arrays as high performance electrode for supercapacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jianfang; Wang, Yan; Key Laboratory of Advance Functional Materials and Devices of Anhui Province, Hefei 230009

    Via a facile one-step chemical bath deposition route, homogeneously dispersed Mn{sub 3}O{sub 4} nanoparticles have been successfully deposited onto the inner surface of TiO{sub 2} nanotube arrays (TNAs). The content and size of Mn{sub 3}O{sub 4} can be controlled by changing the deposition time. Field emission scanning electron microscopy and transmission electron microscopy analysis reveal the morphologies structures of Mn{sub 3}O{sub 4}/TNAs composites. The crystal-line structures are characterized by the X-ray diffraction patterns and Raman spectra. X-ray photoelectron spectroscopy further confirms the valence states of the sample elements. The electrochemical properties of Mn{sub 3}O{sub 4}/TNAs electrodes are systematically investigated bymore » the combine use of cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. The resulting Mn{sub 3}O{sub 4}/TNAs electrode prepared by deposition time of 3 h shows the highest specific capacitance of 570 F g{sup −1} at a current density of 1 A g{sup −1}. And it also shows an excellent long-term cycling stability at a current density of 5 A g{sup −1}, which remaining 91.8% of the initial capacitance after 2000 cycles. Thus this kind of Mn{sub 3}O{sub 4} nanoparticles decorated TNAs may be considered as an alternative promising candidate for high performance supercapacitor electrodes. - Graphical abstract: Mn{sub 3}O{sub 4} nanoparticles have been uniformly deposited onto the inner surfaces of TiO{sub 2} nanotube arrays through a facile one-step chemical bath deposition method. As electrodes for supercapacitors, they exhibit a relatively high specific capacity and excellent cycling stability. - Highlights: • Mn{sub 3}O{sub 4} nanoparticles have been deposited onto TiO{sub 2} nanotube arrays by chemical bath deposition. • The Mn{sub 3}O{sub 4}/TNAs exhibits a highest specific capacitance of 570 F g{sup –1} at a current density of 1 A g{sup –1}. • The Mn{sub 3}O{sub 4}/TNAs electrode shows an excellent cycling stability of 91.8% after 2000 cycles.« less

  7. Facile fabrication of nanofluidic diode membranes using anodic aluminium oxide

    NASA Astrophysics Data System (ADS)

    Wu, Songmei; Wildhaber, Fabien; Vazquez-Mena, Oscar; Bertsch, Arnaud; Brugger, Juergen; Renaud, Philippe

    2012-08-01

    Active control of ion transport plays important roles in chemical and biological analytical processes. Nanofluidic systems hold the promise for such control through electrostatic interaction between ions and channel surfaces. Most existing experiments rely on planar geometry where the nanochannels are generally very long and shallow with large aspect ratios. Based on this configuration the concepts of nanofluidic gating and rectification have been successfully demonstrated. However, device minimization and throughput scaling remain significant challenges. We report here an innovative and facile realization of hetero-structured Al2O3/SiO2 (Si) nanopore array membranes by using pattern transfer of self-organized nanopore structures of anodic aluminum oxide (AAO). Thanks to the opposite surface charge states of Al2O3 (positive) and SiO2 (negative), the membrane exhibits clear rectification of ion current in electrolyte solutions with very low aspect ratios compared to previous approaches. Our hetero-structured nanopore arrays provide a valuable platform for high throughput applications such as molecular separation, chemical processors and energy conversion.Active control of ion transport plays important roles in chemical and biological analytical processes. Nanofluidic systems hold the promise for such control through electrostatic interaction between ions and channel surfaces. Most existing experiments rely on planar geometry where the nanochannels are generally very long and shallow with large aspect ratios. Based on this configuration the concepts of nanofluidic gating and rectification have been successfully demonstrated. However, device minimization and throughput scaling remain significant challenges. We report here an innovative and facile realization of hetero-structured Al2O3/SiO2 (Si) nanopore array membranes by using pattern transfer of self-organized nanopore structures of anodic aluminum oxide (AAO). Thanks to the opposite surface charge states of Al2O3 (positive) and SiO2 (negative), the membrane exhibits clear rectification of ion current in electrolyte solutions with very low aspect ratios compared to previous approaches. Our hetero-structured nanopore arrays provide a valuable platform for high throughput applications such as molecular separation, chemical processors and energy conversion. Electronic supplementary information (ESI) available: Pattern transfer of local AAO mask into Si layers of different thickness; characterization of the Ag/AgCl electrodes and the cell constant; control experiments of mono-charged nanopore membranes; and simulation of ionic transport in nanofluidic diodes. See DOI: 10.1039/c2nr31243c

  8. Ion Beam Characterization of a NEXT Multi-Thruster Array Plume

    NASA Technical Reports Server (NTRS)

    Pencil, Eric J.; Foster, John E.; Patterson, Michael J.; Diaz, Esther M.; Van Noord, Jonathan L.; McEwen, Heather K.

    2006-01-01

    Three operational, engineering model, 7-kW ion thrusters and one instrumented, dormant thruster were installed in a cluster array in a large vacuum facility at NASA Glenn Research Center. A series of engineering demonstration tests were performed to evaluate the system performance impacts of operating various multiple-thruster configurations in an array. A suite of diagnostics was installed to investigate multiple-thruster operation impact on thruster performance and life, thermal interactions, and alternative system modes and architectures. The ion beam characterization included measuring ion current density profiles and ion energy distribution with Faraday probes and retarding potential analyzers, respectively. This report focuses on the ion beam characterization during single thruster operation, multiple thruster operation, various neutralizer configurations, and thruster gimbal articulation. Comparison of beam profiles collected during single and multiple thruster operation demonstrated the utility of superimposing single engine beam profiles to predict multi-thruster beam profiles. High energy ions were detected in the region 45 off the thruster axis, independent of thruster power, number of operating thrusters, and facility background pressure, which indicated that the most probable ion energy was not effected by multiple-thruster operation. There were no significant changes to the beam profiles collected during alternate thruster-neutralizer configurations, therefore supporting the viability of alternative system configuration options. Articulation of one thruster shifted its beam profile, whereas the beam profile of a stationary thruster nearby did not change, indicating there were no beam interactions which was consistent with the behavior of a collisionless beam expansion.

  9. Engineering hierarchical ultrathin CuCo2O4 nanosheets array on Ni foam by rapid electrodeposition method toward high-performance binder-free supercapacitors

    NASA Astrophysics Data System (ADS)

    Abbasi, Laleh; Arvand, Majid

    2018-07-01

    In the present work, we engineer hierarchical ultrathin CuCo2O4 nanosheets arrays on Ni foam through a facile, controllable and low-cost electrodeposition method by controlling deposition time and adjusting precursor's type, as a binder-free electrode for high performance supercapacitors. The effects of deposition time and types of precursors on the morphology of the as-prepared electrodes were investigated by X-ray diffraction, energy dispersive X-ray analysis, field-emission scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. As a results, the CuCo2O4 electrode prepared by nitrate salts at the deposition time of 10 min, includes the most uniform and ultrathin nanosheet arrays and exhibits the highest capacitance performance, such as ultrahigh specific capacitance of 1330 F g-1 at 2 A g-1 with 70% capacitance retention (938 F g-1) at ultrahigh current density of 60 A g-1, excellent cycling stability of 93.6% capacitance retention after 5000CD cycles and the maximum energy density of 29.55 Wh kg-1 at the power density of 0.4 kW kg-1. These superior electrochemical performances have been attributed to its unique structures with direct connected ultrathin nanosheets on the surface of Ni foam and abundant pores provide large electroactive sites for electrochemical reactions, as well as facile electron, ion transport and high electrical conductivity.

  10. NiCo2S4 nanotube arrays grown on flexible nitrogen-doped carbon foams as three-dimensional binder-free integrated anodes for high-performance lithium-ion batteries.

    PubMed

    Wu, Xiaoyu; Li, Songmei; Wang, Bo; Liu, Jianhua; Yu, Mei

    2016-02-14

    Binary metal sulfides, especially NiCo2S4, hold great promise as anode materials for high-performance lithium-ion batteries because of their excellent electronic conductivity and high capacity compared to mono-metal sulfides and oxides. Here, NiCo2S4 nanotube arrays are successfully grown on flexible nitrogen-doped carbon foam (NDCF) substrates with robust adhesion via a facile surfactant-assisted hydrothermal route and the subsequent sulfurization treatment. The obtained NiCo2S4/NDCF composites show unique three-dimensional architectures, in which NiCo2S4 nanotubes of ∼5 μm in length and 100 nm in width are uniformly grown on the NDCF skeletons to form arrays. When used directly as integrated anodes for lithium-ion batteries without any conductive additives and binders, the NiCo2S4/NDCF composites exhibit a high reversible capacity of 1721 mA h g(-1) at a high current density of 500 mA g(-1), enhanced cycling performance with the capacity maintained at 1182 mA h g(-1) after 100 cycles, and a remarkable rate capability. The excellent lithium storage performances of the composites could be attributed to the unique material composition, a rationally designed hollow nanostructure and an integrated smart architecture, which offer fast electron transport and ion diffusion, enhanced material/-electrolyte contact area and facile accommodation of strains during the lithium insertion and extraction process.

  11. Development of an underground HPGe array facility for ultra low radioactivity measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sala, E.; Kang, W. G.; Kim, Y. D.

    Low Level Counting techniques using low background facilities are continuously under development to increase the possible sensitivity needed for rare physics events experiments. The CUP (Center for Underground Physics) group of IBS is developing, in collaboration with Canberra, a ultra low background instrument composed of two arrays facing each other with 7 HPGe detectors each. The low radioactive background of each detector has been evaluated and improved by the material selection of the detector components. Samples of all the building materials have been provided by the manufacturer and the contaminations had been measured using an optimized low background 100% HPGemore » with a dedicated shielding. The evaluation of the intrinsic background has been performed using MonteCarlo simulations and considering the contribution of each material with the measured contamination. To further reduce the background, the instrument will be placed in the new underground laboratory at YangYang exploiting the 700m mountain coverage and radon-free air supplying system. The array has been designed to perform various Ultra Low background measurements; the sensitivity we are expecting will allow not only low level measurements of Ra and Th contaminations in Copper or other usually pure materials, but also the search for rare decays. In particular some possible candidates and configurations to detect the 0νECEC (for example {sup 106}Cd and {sup 156}Dy) and rare β decays ({sup 96}Zr, {sup 180m}Ta , etc ) are under study.« less

  12. A new path to first light for the Magdalena Ridge Observatory interferometer

    NASA Astrophysics Data System (ADS)

    Creech-Eakman, M. J.; Romero, V.; Payne, I.; Haniff, C. A.; Buscher, D. F.; Young, J. S.; Cervantes, R.; Dahl, C.; Farris, A.; Fisher, M.; Johnston, P.; Klinglesmith, D.; Love, H.; Ochoa, D.; Olivares, A.; Pino, J.; Salcido, C.; Santoro, F.; Schmidt, L.; Seneta, E. B.; Sun, X.; Jenka, L.; Kelly, R.; Price, J.; Rea, A.; Riker, J.; Rochelle, S.

    2016-08-01

    The Magdalena Ridge Observatory Interferometer (MROI) was the most ambitious infrared interferometric facility conceived of in 2003 when funding began. Today, despite having suffered some financial short-falls, it is still one of the most ambitious interferometric imaging facilities ever designed. With an innovative approach to attaining the original goal of fringe tracking to H = 14th magnitude via completely redesigned mobile telescopes, and a unique approach to the beam train and delay lines, the MROI will be able to image faint and complex objects with milliarcsecond resolutions for a fraction of the cost of giant telescopes or space-based facilities. The design goals of MROI have been optimized for studying stellar astrophysical processes such as mass loss and mass transfer, the formation and evolution of YSOs and their disks, and the environs of nearby AGN. The global needs for Space Situational Awareness (SSA) have moved to the forefront in many communities as Space becomes a more integral part of a national security portfolio. These needs drive imaging capabilities ultimately to a few tens of centimeter resolution at geosynchronous orbits. Any array capable of producing images on faint and complex geosynchronous objects in just a few hours will be outstanding not only as an astrophysical tool, but also for these types of SSA missions. With the recent infusion of new funding from the Air Force Research Lab (AFRL) in Albuquerque, NM, MROI will be able to attain first light, first fringes, and demonstrate bootstrapping with three telescopes by 2020. MROI's current status along with a sketch of our activities over the coming 5 years will be presented, as well as clear opportunities to collaborate on various aspects of the facility as it comes online. Further funding is actively being sought to accelerate the capability of the array for interferometric imaging on a short time-scale so as to achieve the original goals of this ambitious facility

  13. Direct Growth of Crystalline Tungsten Oxide Nanorod Arrays by a Hydrothermal Process and Their Electrochromic Properties

    NASA Astrophysics Data System (ADS)

    Lu, Chih-Hao; Hon, Min Hsiung; Leu, Ing-Chi

    2017-04-01

    Transparent crystalline tungsten oxide nanorod arrays for use as an electrochromic layer have been directly prepared on fluorine-doped tin oxide-coated glass via a facile tungsten film-assisted hydrothermal process using aqueous tungsten hexachloride solution. X-ray diffraction analysis and field-emission scanning electron microscopy were used to characterize the phase and morphology of the grown nanostructures. Arrays of tungsten oxide nanorods with diameter of ˜22 nm and length of ˜240 nm were obtained at 200°C after 8 h of hydrothermal reaction. We propose a growth mechanism for the deposition of the monoclinic tungsten oxide phase in the hydrothermal environment. The tungsten film was first oxidized to tungsten oxide to provide seed sites for crystal growth and address the poor connection between the growing tungsten oxide and substrate. Aligned tungsten oxide nanorod arrays can be grown by a W thin film-assisted heterogeneous nucleation process with NaCl as a structure-directing agent. The fabricated electrochromic device demonstrated optical modulation (coloration/bleaching) at 632.8 nm of ˜41.2% after applying a low voltage of 0.1 V for 10 s, indicating the potential of such nanorod array films for use in energy-saving smart windows.

  14. Experimental Investigation of Very Large Model Wind Turbine Arrays

    NASA Astrophysics Data System (ADS)

    Charmanski, Kyle; Wosnik, Martin

    2013-11-01

    The decrease in energy yield in large wind farms (array losses) and associated revenue losses can be significant. When arrays are sufficiently large they can reach what is known as a fully developed wind turbine array boundary layer, or fully developed wind farm condition. This occurs when the turbulence statistics and the structure of the turbulence, within and above a wind farm, as well as the performance of the turbines remain the same from one row to the next. The study of this condition and how it is affected by parameters such as turbine spacing, power extraction, tip speed ratio, etc. is important for the optimization of large wind farms. An experimental investigation of the fully developed wind farm condition was conducted using a large array of porous disks (upstream) and realistically scaled 3-bladed wind turbines with a diameter of 0.25m. The turbines and porous disks were placed inside a naturally grown turbulent boundary layer in the 6m × 2.5m × 72m test section of the UNH Flow Physics Facility which can achieve test section velocities of up to 14 m/s and Reynolds numbers δ+ = δuτ / ν ~ 20 , 000 . Power, rate of rotation and rotor thrust were measured for select turbines, and hot-wire anemometry was used for flow measurements.

  15. Controlled growth of standing Ag nanorod arrays on bare Si substrate using glancing angle deposition for self-cleaning applications

    NASA Astrophysics Data System (ADS)

    Singh, Dhruv P.; Singh, J. P.

    2014-03-01

    A facile approach to manipulate the hydrophobicity of surface by controlled growth of standing Ag nanorod arrays is presented. Instead of following the complicated conventional method of the template-assisted growth, the morphology or particularly average diameter and number density (nanorods cm-2) of nanorods were controlled on bare Si substrate by simply varying the deposition rate during glancing angle deposition. The contact angle measurements showed that the evolution of Ag nanorods reduces the surface energy and makes an increment in the apparent water contact angle compared to the plain Ag thin film. The contact angle was found to increase for the Ag nanorod samples grown at lower deposition rates. Interestingly, the morphology of the nanorod arrays grown at very low deposition rate (1.2 Å sec-1) results in a self-cleaning superhydrophobic surface of contact angle about 157° and a small roll-off angle about 5°. The observed improvement in hydrophobicity with change in the morphology of nanorod arrays is explained as the effect of reduction in solid fraction within the framework of Cassie-Baxter model. These self-cleaning Ag nanorod arrays could have a significant impact in wide range of applications such as anti-icing coatings, sensors and solar panels.

  16. Controllable synthesis of mesoporous Co{sub 3}O{sub 4} nanoflake array and its application for supercapacitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Anguo, E-mail: hixiaoanguo@126.com; Zhou, Shibiao; Zuo, Chenggang

    Graphical abstract: Electrodeposited mesoporous Co{sub 3}O{sub 4} nanoflake arrays exhibit porous structure composed of mesoporous nanoflakes and high supercapacitor performance. - Highlights: • Mesoporous Co{sub 3}O{sub 4} nanoflake arrays are prepared via electrodeposition method. • Mesoporous nanowall arrays are favorable for fast ion/electron transfer. • Mesoporous Co{sub 3}O{sub 4} nanoflake arrays show excellent supercapacitor performance. - Abstract: A mesoporous Co{sub 3}O{sub 4} nanoflake array grown on carbon cloth is prepared by a facile electrodeposition method with a following annealing process. The as-prepared Co{sub 3}O{sub 4} nanoflake possesses a continuous mesopores ranging from 2 to 5 nm and grows tightly onmore » the substrate forming a porous net-like structure with macropores of 20–200 nm. The electrochemical performance of the mesoporous Co{sub 3}O{sub 4} nanoflake arrays as pseudocapcitor electrode are investigated by cyclic voltammograms and galvanostatic charge/discharge tests in 2 M KOH. The as-prepared Co{sub 3}O{sub 4} array exhibits a high discharge capacitance and excellent rate capability with 450 F g{sup −1}, 436 F g{sup −1}, 408 F g{sup −1}, 380 F g{sup −1}and 363 F g{sup −1} at 1, 2, 4, 10, and 20 A g{sup −1}, respectively. The specific capacitance of 81% is maintained from 1 A g{sup −1} to 20 A g{sup −1}. The electrode also shows rather good cycling stability and exhibits a specific capacitance of 414 F g{sup −1} after 5000 cycles.« less

  17. Solo but Not Separate: Preparing 21st-Century School Library Professionals Who Can "Go It Alone"

    ERIC Educational Resources Information Center

    Pasco, Becky

    2011-01-01

    Preparing school librarians for a diverse array of 21st-century educational environments is a daunting task. Faculty in school library preparation programs send candidates out into sparsely populated rural areas, dense urban settings, and everything in between. Some candidates will provide services and resources in updated, modern facilities,…

  18. Energy Action Day

    NASA Image and Video Library

    2017-10-25

    Chuck Tatro of NASA's Launch Services Program discusses the use of solar arrays on space science missions during the Energy Action Day employee event held in Kennedy Space Center's Space Station Processing Facility. Part of Energy Awareness Month, the event featured subject matter experts in the area of solar energy, its connections to the space program and options for residential solar power.

  19. Maryetta School: The Center of a Rural Community.

    ERIC Educational Resources Information Center

    Fuentes, Nancy

    1995-01-01

    This theme issue describes Maryetta School, a rural pre-K-8 school in Stilwell, Oklahoma, with an enrollment of approximately 500 students, mostly American Indians of Cherokee descent. Although the area has a high poverty rate and virtually all the students are judged to be at risk, the school has an impressive array of programs and facilities and…

  20. Plastic fiber scintillator response to fast neutrons

    NASA Astrophysics Data System (ADS)

    Danly, C. R.; Sjue, S.; Wilde, C. H.; Merrill, F. E.; Haight, R. C.

    2014-11-01

    The Neutron Imaging System at NIF uses an array of plastic scintillator fibers in conjunction with a time-gated imaging system to form an image of the neutron emission from the imploded capsule. By gating on neutrons that have scattered from the 14.1 MeV DT energy to lower energy ranges, an image of the dense, cold fuel around the hotspot is also obtained. An unmoderated spallation neutron beamline at the Weapons Neutron Research facility at Los Alamos was used in conjunction with a time-gated imaging system to measure the yield of a scintillating fiber array over several energy bands ranging from 1 to 15 MeV. The results and comparison to simulation are presented.

  1. Plastic fiber scintillator response to fast neutrons.

    PubMed

    Danly, C R; Sjue, S; Wilde, C H; Merrill, F E; Haight, R C

    2014-11-01

    The Neutron Imaging System at NIF uses an array of plastic scintillator fibers in conjunction with a time-gated imaging system to form an image of the neutron emission from the imploded capsule. By gating on neutrons that have scattered from the 14.1 MeV DT energy to lower energy ranges, an image of the dense, cold fuel around the hotspot is also obtained. An unmoderated spallation neutron beamline at the Weapons Neutron Research facility at Los Alamos was used in conjunction with a time-gated imaging system to measure the yield of a scintillating fiber array over several energy bands ranging from 1 to 15 MeV. The results and comparison to simulation are presented.

  2. STS-97 crew arrives at KSC for launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At the Shuttle Landing Facility, STS-97 Mission Specialist Joseph Tanner (left) is greeted by Center Director Roy Bridges on his arrival at KSC from Johnson Space Center. Tanner and the rest of the crew have returned to KSC for the launch, scheduled for Nov. 30 at about 10:06 p.m. EST. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST.

  3. Performance studies of X3 silicon detectors for the future ELISSA array at ELI-NP

    NASA Astrophysics Data System (ADS)

    Chesnevskaya, S.; Balabanski, D. L.; Choudhury, D.; Constantin, P.; Filipescu, D. M.; Ghita, D. G.; Guardo, G. L.; Lattuada, D.; Matei, C.; Rotaru, A.; State, A.

    2018-05-01

    ELISSA is an array of silicon strip detectors under construction at the ELI-NP facility for measurements of photodissociation reactions using high-brilliance, quasi monoenergetic gamma beams. The detection system consists of 35 single-sided position-sensitive X3 detectors arranged in a cylindrical configuration and eight QQQ3 detectors as end-caps. A batch of forty X3 detectors have been tested at ELI-NP. The energy and position resolution, ballistic deficit, leakage currents, and depletion voltage were measured and analyzed. Measurements of the energy resolution were carried out using two read-out electronic chains, one based on multichannel preamplifiers and another based on multiplexers.

  4. High voltage system: Plasma interaction summary

    NASA Technical Reports Server (NTRS)

    Stevens, N. John

    1986-01-01

    The possible interactions that could exist between a high voltage system and the space plasma environment are reviewed. A solar array is used as an example of such a system. The emphasis in this review is on the discrepancies that exist in this technology in both flight and ground experiment data. It has been found that, in ground testing, there are facility effects, cell size effects and area scaling uncertainties. For space applications there are area scaling and discharge concerns for an array as well as the influence of the large space structures on the collection process. There are still considerable uncertainties in the high voltage-space plasma interaction technology even after several years of effort.

  5. KSC-00pp1756

    NASA Image and Video Library

    2000-11-27

    At the Shuttle Landing Facility, STS-97 Mission Specialist Joseph Tanner (left) is greeted by Center Director Roy Bridges on his arrival at KSC from Johnson Space Center. Tanner and the rest of the crew have returned to KSC for the launch, scheduled for Nov. 30 at about 10:06 p.m. EST. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  6. KSC-00pp1754

    NASA Image and Video Library

    2000-11-27

    At the Shuttle Landing Facility, STS-97 Pilot Michael Bloomfield climbs out of the cockpit of a T-38 jet aircraft he flew from Johnson Space Center. He and the rest of the crew have returned to KSC for the launch, scheduled for Nov. 30 at about 10:06 p.m. EST. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  7. KSC00pp1757

    NASA Image and Video Library

    2000-11-27

    After arriving at the Shuttle Landing Facility, the STS-97 crew gather to address the media. At the microphone, Commander Brent Jett praises the efforts of the KSC workers to get ready for the launch. Behind Jett are Pilot Michael Bloomfield and Mission Specialists Joseph Tanner, Carlos Noriega and Marc Garneau, who is with the Canadian Space Agency. Mission STS-97 is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  8. KSC00pp1756

    NASA Image and Video Library

    2000-11-27

    At the Shuttle Landing Facility, STS-97 Mission Specialist Joseph Tanner (left) is greeted by Center Director Roy Bridges on his arrival at KSC from Johnson Space Center. Tanner and the rest of the crew have returned to KSC for the launch, scheduled for Nov. 30 at about 10:06 p.m. EST. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  9. KSC-00padig098

    NASA Image and Video Library

    2000-11-27

    After their arrival at the Shuttle Landing Facility, the STS-97 crew gather to address the media. At the microphone, Commander Brent Jett praises the efforts of the KSC workers to get ready for the launch. Behind Jett are Pilot Michael Bloomfield and Mission Specialists Joseph Tanner, Carolos Noriega and Marc Garneau, who is with the Canadian Space Agency. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  10. KSC-00pp1757

    NASA Image and Video Library

    2000-11-27

    After arriving at the Shuttle Landing Facility, the STS-97 crew gather to address the media. At the microphone, Commander Brent Jett praises the efforts of the KSC workers to get ready for the launch. Behind Jett are Pilot Michael Bloomfield and Mission Specialists Joseph Tanner, Carlos Noriega and Marc Garneau, who is with the Canadian Space Agency. Mission STS-97 is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  11. KSC00pp1754

    NASA Image and Video Library

    2000-11-27

    At the Shuttle Landing Facility, STS-97 Pilot Michael Bloomfield climbs out of the cockpit of a T-38 jet aircraft he flew from Johnson Space Center. He and the rest of the crew have returned to KSC for the launch, scheduled for Nov. 30 at about 10:06 p.m. EST. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  12. KSC-00pp1663

    NASA Image and Video Library

    2000-11-07

    In the Space Station Processing Facility, workers applaud the turnover of the P6 Integrated Truss Structure by International Space Station ground operations to the NASA shuttle integration team in a special ceremony. Standing in front are STS-97 Mission Specialists Joe Tanner and Carlos Noriega plus Pilot Mike Broomfield. Behind and left of Tanner is Mission Specialist Marc Garneau. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission involves two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at 10:05 p.m. EST

  13. ROSA Transfer (for SpaceX CRS-11)

    NASA Image and Video Library

    2017-04-12

    Outside the Space Station Processing Facility high bay at NASA's Kennedy Space Center in Florida, a technician uses a Hyster forklift to carry the Roll-Out Solar Array, or ROSA, to the loading dock. ROSA will be delivered to the International Space Station aboard the SpaceX Dragon cargo carrier on the company’s 11th commercial resupply services mission to the space station. ROSA is a new type of solar panel that rolls open in space and is more compact than current rigid panel designs. The ROSA investigation will test deployment and retraction, shape changes when the Earth blocks the sun, and other physical challenges to determine the array's strength and durability.

  14. ROSA Transfer (for SpaceX CRS-11)

    NASA Image and Video Library

    2017-04-12

    At the loading dock outside the Space Station Processing Facility high bay at NASA's Kennedy Space Center in Florida, a technician uses a Hyster forklift to load the Roll-Out Solar Array, or ROSA, into a truck. ROSA will be delivered to the International Space Station aboard the SpaceX Dragon cargo carrier on the company’s 11th commercial resupply services mission to the space station. ROSA is a new type of solar panel that rolls open in space and is more compact than current rigid panel designs. The ROSA investigation will test deployment and retraction, shape changes when the Earth blocks the sun, and other physical challenges to determine the array's strength and durability.

  15. KSC-01pp0483

    NASA Image and Video Library

    2001-03-13

    In the Spacecraft Assembly and Encapsulation Facility (SAEF 2), workers stand back as the panels of the solar array on the 2001 Mars Odyssey Orbiter open. The array will undergo illumination testing. Scheduled for launch April 7, 2001, the orbiter contains three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers

  16. KSC-01pp0485

    NASA Image and Video Library

    2001-03-13

    A worker in the Spacecraft Assembly and Encapsulation Facility (SAEF 2) checks the underside of the extended solar array panels on the 2001 Mars Odyssey Orbiter. The array will undergo illumination testing. Scheduled for launch April 7, 2001, the orbiter contains three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers

  17. The solar array is installed on ACE in SAEF-2

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Applied Physics Laboratory engineers and technicians from Johns Hopkins University assist in guiding the Advanced Composition Explorer (ACE) as it is hoisted over a platform for solar array installation in KSC's Spacecraft Assembly and Encapsulation Facility-II. Scheduled for launch on a Delta II rocket from Cape Canaveral Air Station on Aug. 25, ACE will study low-energy particles of solar origin and high-energy galactic particles. The ACE observatory will contribute to the understanding of the formation and evolution of the solar system as well as the astrophysical processes involved. The collecting power of instruments aboard ACE is 10 to 1,000 times greater than anything previously flown to collect similar data by NASA.

  18. STS-97 Mission Specialist Noriega talks to media after arrival for launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    After their arrival at the Shuttle Landing Facility, the STS-97 crew gather to address the media. At the microphone is Mission Specialist Carlos Noriega. Behind him stand Commander Brent Jett, Pilot Michael Bloomfield and Mission Specialists Joseph Tanner and Marc Garneau, who is with the Canadian Space Agency. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST.

  19. STS-97 Mission Specialist Tanner talks to media after arrival for launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    After their arrival at the Shuttle Landing Facility, the STS-97 crew gather to address the media. At the microphone is Mission Specialist Joseph Tanner. Behind him stand Commander Brent Jett, Pilot Michael Bloomfield and Mission Specialists Marc Garneau, who is with the Canadian Space Agency, and Carlos Noriega. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST.

  20. STS-97 Mission Specialist Garneau talks to media after arrival for launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    After their arrival at the Shuttle Landing Facility, the STS-97 crew gather to address the media. At the microphone is Mission Specialist Marc Garneau, who is with the Canadian Space Agency. Behind him stand Commander Brent Jett, Pilot Michael Bloomfield and Mission Specialists Joseph Tanner and Carlos Noriega. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST.

Top