Sample records for facility final safety

  1. Medicare and Medicaid programs; fire safety requirements for certain health care facilities. Final rule.

    PubMed

    2003-01-10

    This final rule amends the fire safety standards for hospitals, long-term care facilities, intermediate care facilities for the mentally retarded, ambulatory surgery centers, hospices that provide inpatient services, religious nonmedical health care institutions, critical access hospitals, and Programs of All-Inclusive Care for the Elderly facilities. Further, this final rule adopts the 2000 edition of the Life Safety Code and eliminates references in our regulations to all earlier editions.

  2. Medicare and Medicaid Programs; Fire Safety Requirements for Certain Health Care Facilities. Final rule.

    PubMed

    2016-05-04

    This final rule will amend the fire safety standards for Medicare and Medicaid participating hospitals, critical access hospitals (CAHs), long-term care facilities, intermediate care facilities for individuals with intellectual disabilities (ICF-IID), ambulatory surgery centers (ASCs), hospices which provide inpatient services, religious non-medical health care institutions (RNHCIs), and programs of all-inclusive care for the elderly (PACE) facilities. Further, this final rule will adopt the 2012 edition of the Life Safety Code (LSC) and eliminate references in our regulations to all earlier editions of the Life Safety Code. It will also adopt the 2012 edition of the Health Care Facilities Code, with some exceptions.

  3. Updating fire safety standards. Final rule; affirmation.

    PubMed

    2011-11-16

    This document affirms as final, without changes, a provision included in a final rule with request for comments that amended the Department of Veterans Affairs (VA) regulations concerning community residential care facilities, contract facilities for certain outpatient and residential services, and State home facilities. That provision established a five-year period within which all covered buildings with nursing home facilities existing as of June 25, 2001, must conform to the automatic sprinkler requirement of the 2009 edition of the National Fire Protection Association (NFPA) 101. This rule helps ensure the safety of veterans in the affected facilities.

  4. Confinement of Radioactive Materials at Defense Nuclear Facilities

    DTIC Science & Technology

    2004-10-01

    The design of defense nuclear facilities includes systems whose reliable operation is vital to the protection of the public, workers, and the...final safety-class barrier to the release of hazardous materials with potentially serious public consequences. The Defense Nuclear Facilities Safety...the public at certain defense nuclear facilities . This change has resulted in downgrading of the functional safety classification of confinement

  5. Medicare and Medicaid programs; fire safety requirements for long term care facilities, automatic sprinkler systems. Final rule.

    PubMed

    2008-08-13

    This final rule requires all long term care facilities to be equipped with sprinkler systems by August 13, 2013. Additionally, this final rule requires affected facilities to maintain their automatic sprinkler systems once they are installed.

  6. 10 CFR 52.79 - Contents of applications; technical information in final safety analysis report.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... assurance program will be implemented; (26) The applicant's organizational structure, allocations or... presents a safety analysis of the structures, systems, and components of the facility as a whole. The final... contain an analysis and evaluation of the major structures, systems, and components of the facility that...

  7. 76 FR 11339 - Update to NFPA 101, Life Safety Code, for State Home Facilities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-02

    ... DEPARTMENT OF VETERANS AFFAIRS 38 CFR Part 51 RIN 2900-AN59 Update to NFPA 101, Life Safety Code..., Life Safety Code. The change is designed to assure that State Home facilities meet current industry- wide standards regarding life safety and fire safety. DATES: Effective Date: This final rule is...

  8. Medicare and Medicaid programs; fire safety requirements for certain health care facilities; amendment. Final rule.

    PubMed

    2006-09-22

    This final rule adopts the substance of the April 15, 2004 tentative interim amendment (TIA) 00-1 (101), Alcohol Based Hand Rub Solutions, an amendment to the 2000 edition of the Life Safety Code, published by the National Fire Protection Association (NFPA). This amendment allows certain health care facilities to place alcohol-based hand rub dispensers in egress corridors under specified conditions. This final rule also requires that nursing facilities at least install battery-operated single station smoke alarms in resident rooms and common areas if they are not fully sprinklered or they do not have system-based smoke detectors in those areas. Finally, this final rule confirms as final the provisions of the March 25, 2005 interim final rule with changes and responds to public comments on that rule.

  9. Medicare and Medicaid programs; fire safety requirements for certain health care facilities; amendment. Interim final rule with comment period.

    PubMed

    2005-03-25

    This interim final rule with comment period adopts the substance of the April 15, 2004 temporary interim amendment (TIA) 00-1 (101), Alcohol Based Hand Rub Solutions, an amendment to the 2000 edition of the Life Safety Code, published by the National Fire Protection Association (NFPA). This amendment will allow certain health care facilities to place alcohol-based hand rub dispensers in egress corridors under specified conditions. This interim final rule with comment period also requires that nursing facilities install smoke detectors in resident rooms and public areas if they do not have a sprinkler system installed throughout the facility or a hard-wired smoke detection system in those areas.

  10. GAO’s Views on DOE’s 1991 Budget for Addressing Problems at the Nuclear Weapons Complex

    DTIC Science & Technology

    1990-03-02

    management, and efforts by DOE to make its contractors more accountable. Also, the Defense Nuclear Facilities Safety Board mandated by the Congress became...and safety matters. 6 Finally, the Defense Nuclear Facilities Safety Board was established. Although not a DOE action, its establishment, nevertheless

  11. CERT tribal internship program. Final intern report: Lewis Yellowrobe, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-09-01

    The purpose of this internship was to present state legislators with the history and an overview of the Department of Energy`s policies towards occupational health and safety during cleanup of nuclear weapons production facilities. The approach used library research and phone and personal interviews to acquire information on DOE policies. This intern report contains the final report to legislators entitled ``Environmental restoration and waste management: Worker health and safety concerns during nuclear facility cleanup.`` It presents the current status of DOE occupational health and safety at production facilities, Congressional intent, past DOE occupational policies, and options for state legislators tomore » use to get involved with DOE policy direction.« less

  12. 76 FR 37799 - DOE Final Decision in Response to Recommendation 2010-1 of the Defense Nuclear Facilities Safety...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ... the public, workers, and the environment. For example, the Board clarified that use of the term.... Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, as a safe harbor methodology..., our workers, and the environment at all of our facilities. We share your conviction that a clear set...

  13. Surrogate Safety Assessment Model and Validation : Final Report

    DOT National Transportation Integrated Search

    2008-06-01

    Safety of traffic facilities is most often measured by counting the number (and severity) of crashes that occur. It is not possible to apply such a measurement technique to traffic facility designs that have not yet been built or deployed in the real...

  14. HSE's safety assessment principles for criticality safety.

    PubMed

    Simister, D N; Finnerty, M D; Warburton, S J; Thomas, E A; Macphail, M R

    2008-06-01

    The Health and Safety Executive (HSE) published its revised Safety Assessment Principles for Nuclear Facilities (SAPs) in December 2006. The SAPs are primarily intended for use by HSE's inspectors when judging the adequacy of safety cases for nuclear facilities. The revised SAPs relate to all aspects of safety in nuclear facilities including the technical discipline of criticality safety. The purpose of this paper is to set out for the benefit of a wider audience some of the thinking behind the final published words and to provide an insight into the development of UK regulatory guidance. The paper notes that it is HSE's intention that the Safety Assessment Principles should be viewed as a reflection of good practice in the context of interpreting primary legislation such as the requirements under site licence conditions for arrangements for producing an adequate safety case and for producing a suitable and sufficient risk assessment under the Ionising Radiations Regulations 1999 (SI1999/3232 www.opsi.gov.uk/si/si1999/uksi_19993232_en.pdf).

  15. Authorization basis supporting documentation for plutonium finishing plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, J.P., Fluor Daniel Hanford

    1997-03-05

    The identification and definition of the authorization basis for the Plutonium Finishing Plant (PFP) facility and operations are essential for compliance to DOE Order 5480.21, Unreviewed Safety Questions. The authorization basis, as defined in the Order, consists of those aspects of the facility design basis, i.e., the structures, systems and components (SSCS) and the operational requirements that are considered to be important to the safety of operations and are relied upon by DOE to authorize operation of the facility. These facility design features and their function in various accident scenarios are described in WHC-SD-CP-SAR-021, Plutonium Finishing Plant Final Safety Analysismore » Report (FSAR), Chapter 9, `Accident Analysis.` Figure 1 depicts the relationship of the Authorization Basis to its components and other information contained in safety documentation supporting the Authorization Basis. The PFP SSCs that are important to safety, collectively referred to as the `Safety Envelope` are discussed in various chapters of the FSAR and in WHC-SD-CP-OSR-010, Plutonium Finishing Plant Operational Safety Requirements. Other documents such as Criticality Safety Evaluation Reports (CSERS) address and support some portions of the Authorization Basis and Safety Envelope.« less

  16. Experimental Fuels Facility Re-categorization Based on Facility Segmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiss, Troy P.; Andrus, Jason

    The Experimental Fuels Facility (EFF) (MFC-794) at the Materials and Fuels Complex (MFC) located on the Idaho National Laboratory (INL) Site was originally constructed to provide controlled-access, indoor storage for radiological contaminated equipment. Use of the facility was expanded to provide a controlled environment for repairing contaminated equipment and characterizing, repackaging, and treating waste. The EFF facility is also used for research and development services, including fuel fabrication. EFF was originally categorized as a LTHC-3 radiological facility based on facility operations and facility radiological inventories. Newly planned program activities identified the need to receive quantities of fissionable materials in excessmore » of the single parameter subcritical limit in ANSI/ANS-8.1, “Nuclear Criticality Safety in Operations with Fissionable Materials Outside Reactors” (identified as “criticality list” quantities in DOE-STD-1027-92, “Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports,” Attachment 1, Table A.1). Since the proposed inventory of fissionable materials inside EFF may be greater than the single parameter sub-critical limit of 700 g of U-235 equivalent, the initial re-categorization is Hazard Category (HC) 2 based upon a potential criticality hazard. This paper details the facility hazard categorization performed for the EFF. The categorization was necessary to determine (a) the need for further safety analysis in accordance with LWP-10802, “INL Facility Categorization,” and (b) compliance with 10 Code of Federal Regulations (CFR) 830, Subpart B, “Safety Basis Requirements.” Based on the segmentation argument presented in this paper, the final hazard categorization for the facility is LTHC-3. Department of Energy Idaho (DOE-ID) approval of the final hazard categorization determined by this hazard assessment document (HAD) was required per the DOE-ID Supplemental Guidance for DOE-STD-1027-92 based on the proposed downgrade of the initial facility categorization of Hazard Category 2.« less

  17. 10 CFR 1707.206 - Final determination.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Final determination. 1707.206 Section 1707.206 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY DNFSB EMPLOYEES AND PRODUCTION OF OFFICIAL RECORDS IN LEGAL PROCEEDINGS Requests for Testimony and Production of Documents § 1707.206 Final determination. The...

  18. 10 CFR 1707.206 - Final determination.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Final determination. 1707.206 Section 1707.206 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY DNFSB EMPLOYEES AND PRODUCTION OF OFFICIAL RECORDS IN LEGAL PROCEEDINGS Requests for Testimony and Production of Documents § 1707.206 Final determination. The...

  19. 10 CFR 1707.206 - Final determination.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Final determination. 1707.206 Section 1707.206 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY DNFSB EMPLOYEES AND PRODUCTION OF OFFICIAL RECORDS IN LEGAL PROCEEDINGS Requests for Testimony and Production of Documents § 1707.206 Final determination. The...

  20. 10 CFR 1707.206 - Final determination.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Final determination. 1707.206 Section 1707.206 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY DNFSB EMPLOYEES AND PRODUCTION OF OFFICIAL RECORDS IN LEGAL PROCEEDINGS Requests for Testimony and Production of Documents § 1707.206 Final determination. The...

  1. 10 CFR 1707.206 - Final determination.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Final determination. 1707.206 Section 1707.206 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY DNFSB EMPLOYEES AND PRODUCTION OF OFFICIAL RECORDS IN LEGAL PROCEEDINGS Requests for Testimony and Production of Documents § 1707.206 Final determination. The...

  2. Enhanced Time Out: An Improved Communication Process.

    PubMed

    Nelson, Patricia E

    2017-06-01

    An enhanced time out is an improved communication process initiated to prevent such surgical errors as wrong-site, wrong-procedure, or wrong-patient surgery. The enhanced time out at my facility mandates participation from all members of the surgical team and requires designated members to respond to specified time out elements on the surgical safety checklist. The enhanced time out incorporated at my facility expands upon the safety measures from the World Health Organization's surgical safety checklist and ensures that all personnel involved in a surgical intervention perform a final check of relevant information. Initiating the enhanced time out at my facility was intended to improve communication and teamwork among surgical team members and provide a highly reliable safety process to prevent wrong-site, wrong-procedure, and wrong-patient surgery. Copyright © 2017 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  3. Spent nuclear fuel project cold vacuum drying facility operations manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    IRWIN, J.J.

    This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998) and, the HNF-SD-SNF-DRD-002, 1997, Cold Vacuum Drying Facility Design Requirements, Rev. 3a. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence, and has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of themore » CVDF until the CVDF final ORR is approved.« less

  4. Preliminary hazards analysis -- vitrification process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coordes, D.; Ruggieri, M.; Russell, J.

    1994-06-01

    This paper presents a Preliminary Hazards Analysis (PHA) for mixed waste vitrification by joule heating. The purpose of performing a PHA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PHA is then followed by a Preliminary Safety Analysis Report (PSAR) performed during Title 1 and 2 design. The PSAR then leads to performance of the Final Safety Analysis Report performed during the facility`s constructionmore » and testing. It should be completed before routine operation of the facility commences. This PHA addresses the first four chapters of the safety analysis process, in accordance with the requirements of DOE Safety Guidelines in SG 830.110. The hazards associated with vitrification processes are evaluated using standard safety analysis methods which include: identification of credible potential hazardous energy sources; identification of preventative features of the facility or system; identification of mitigative features; and analyses of credible hazards. Maximal facility inventories of radioactive and hazardous materials are postulated to evaluate worst case accident consequences. These inventories were based on DOE-STD-1027-92 guidance and the surrogate waste streams defined by Mayberry, et al. Radiological assessments indicate that a facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous materials assessment indicates that a Mixed Waste Vitrification facility will be a Low Hazard facility having minimal impacts to offsite personnel and the environment.« less

  5. Tritium glovebox stripper system seismic design evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grinnell, J. J.; Klein, J. E.

    2015-09-01

    The use of glovebox confinement at US Department of Energy (DOE) tritium facilities has been discussed in numerous publications. Glovebox confinement protects the workers from radioactive material (especially tritium oxide), provides an inert atmosphere for prevention of flammable gas mixtures and deflagrations, and allows recovery of tritium released from the process into the glovebox when a glovebox stripper system (GBSS) is part of the design. Tritium recovery from the glovebox atmosphere reduces emissions from the facility and the radiological dose to the public. Location of US DOE defense programs facilities away from public boundaries also aids in reducing radiological dosesmore » to the public. This is a study based upon design concepts to identify issues and considerations for design of a Seismic GBSS. Safety requirements and analysis should be considered preliminary. Safety requirements for design of GBSS should be developed and finalized as a part of the final design process.« less

  6. Infection prevention and control in the design of healthcare facilities.

    PubMed

    Farrow, Tye S; Black, Stephen M

    2009-01-01

    The lead paper, "Healthcare-Associated Infections as Patient Safety Indicators," written by Gardam, Lemieux, Reason, van Dijk and Goel, puts forward the design of healthcare facilities as one of many strategies to improve patient safety with respect to healthcare-associated infections. This commentary explores some of the issues in balancing infection prevention and control priorities with other needs and values brought to the design process. This balance is challenged not only by a lack of supporting evidence but also by the superficial nature in which infection prevention and control are often discussed within a design context. For the physical environment to support any patient safety initiative, the design of the processes must be developed in conjunction with that of the physical environment so that compliance can be natural and convenient. Finally, consideration is given to the value of documenting decision-making related to infection prevention and control in facility design and ongoing assessments of existing facilities.

  7. K Basin Hazard Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PECH, S.H.

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  8. Plutonium Finishing Plant (PFP) Final Safety Analysis Report (FSAR) [SEC 1 THRU 11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ULLAH, M K

    2001-02-26

    The Plutonium Finishing Plant (PFP) is located on the US Department of Energy (DOE) Hanford Site in south central Washington State. The DOE Richland Operations (DOE-RL) Project Hanford Management Contract (PHMC) is with Fluor Hanford Inc. (FH). Westinghouse Safety Management Systems (WSMS) provides management support to the PFP facility. Since 1991, the mission of the PFP has changed from plutonium material processing to preparation for decontamination and decommissioning (D and D). The PFP is in transition between its previous mission and the proposed D and D mission. The objective of the transition is to place the facility into a stablemore » state for long-term storage of plutonium materials before final disposition of the facility. Accordingly, this update of the Final Safety Analysis Report (FSAR) reflects the current status of the buildings, equipment, and operations during this transition. The primary product of the PFP was plutonium metal in the form of 2.2-kg, cylindrical ingots called buttoms. Plutonium nitrate was one of several chemical compounds containing plutonium that were produced as an intermediate processing product. Plutonium recovery was performed at the Plutonium Reclamation Facility (PRF) and plutonium conversion (from a nitrate form to a metal form) was performed at the Remote Mechanical C (RMC) Line as the primary processes. Plutonium oxide was also produced at the Remote Mechanical A (RMA) Line. Plutonium processed at the PFP contained both weapons-grade and fuels-grade plutonium materials. The capability existed to process both weapons-grade and fuels-grade material through the PRF and only weapons-grade material through the RMC Line although fuels-grade material was processed through the line before 1984. Amounts of these materials exist in storage throughout the facility in various residual forms left from previous years of operations.« less

  9. Aid for Facilities

    ERIC Educational Resources Information Center

    Kennedy, Mike

    2009-01-01

    Even before the state fire marshal ordered the Somersworth (N.H.) School District in 2007 to abandon the top two floors of Hilltop Elementary School because of safety concerns, folks in the city of 12,000 had been debating whether the aging facility should be replaced--and how to pay for it. Finally, in February 2009, the city council approved…

  10. Commission decision on the Department of Water Resources' Application for Certification for the Bottle Rock Geothermal Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-11-01

    The Application for Certification for the construction of a 55 MW geothermal power plant and related facilities in Lake County was approved subject to terms identified in the Final Decision. The following are covered: findings on compliance with statutory site-certification requirements; final environmental impact report; procedural steps; evidentiary bases; need, environmental resources; public health and safety; plant and site safety and reliability; socioeconomic, land use, and cultural concerns, and transmission tap line. (MHR)

  11. Final-Approach-Spacing Subsystem For Air Traffic

    NASA Technical Reports Server (NTRS)

    Davis, Thomas J.; Erzberger, Heinz; Bergeron, Hugh

    1992-01-01

    Automation subsystem of computers, computer workstations, communication equipment, and radar helps air-traffic controllers in terminal radar approach-control (TRACON) facility manage sequence and spacing of arriving aircraft for both efficiency and safety. Called FAST (Final Approach Spacing Tool), subsystem enables controllers to choose among various levels of automation.

  12. Management of radioactive material safety programs at medical facilities. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camper, L.W.; Schlueter, J.; Woods, S.

    A Task Force, comprising eight US Nuclear Regulatory Commission and two Agreement State program staff members, developed the guidance contained in this report. This report describes a systematic approach for effectively managing radiation safety programs at medical facilities. This is accomplished by defining and emphasizing the roles of an institution`s executive management, radiation safety committee, and radiation safety officer. Various aspects of program management are discussed and guidance is offered on selecting the radiation safety officer, determining adequate resources for the program, using such contractual services as consultants and service companies, conducting audits, and establishing the roles of authorized usersmore » and supervised individuals; NRC`s reporting and notification requirements are discussed, and a general description is given of how NRC`s licensing, inspection and enforcement programs work.« less

  13. Final safety analysis report for the Ground Test Accelerator (GTA), Phase 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-10-01

    This document is the second volume of a 3 volume safety analysis report on the Ground Test Accelerator (GTA). The GTA program at the Los Alamos National Laboratory (LANL) is the major element of the national Neutral Particle Beam (NPB) program, which is supported by the Strategic Defense Initiative Office (SDIO). A principal goal of the national NPB program is to assess the feasibility of using hydrogen and deuterium neutral particle beams outside the Earth`s atmosphere. The main effort of the NPB program at Los Alamos concentrates on developing the GTA. The GTA is classified as a low-hazard facility, exceptmore » for the cryogenic-cooling system, which is classified as a moderate-hazard facility. This volume consists of failure modes and effects analysis; accident analysis; operational safety requirements; quality assurance program; ES&H management program; environmental, safety, and health systems critical to safety; summary of waste-management program; environmental monitoring program; facility expansion, decontamination, and decommissioning; summary of emergency response plan; summary plan for employee training; summary plan for operating procedures; glossary; and appendices A and B.« less

  14. Integration of functional safety systems on the Daniel K. Inouye Solar Telescope

    NASA Astrophysics Data System (ADS)

    Williams, Timothy R.; Hubbard, Robert P.; Shimko, Steve

    2016-07-01

    The Daniel K. Inouye Solar Telescope (DKIST) was envisioned from an early stage to incorporate a functional safety system to ensure the safety of personnel and equipment within the facility. Early hazard analysis showed the need for a functional safety system. The design used a distributed approach in which each major subsystem contains a PLC-based safety controller. This PLC-based system complies with the latest international standards for functional safety. The use of a programmable controller also allows for flexibility to incorporate changes in the design of subsystems without adversely impacting safety. Various subsystems were built by different contractors and project partners but had to function as a piece of the overall control system. Using distributed controllers allows project contractors and partners to build components as standalone subsystems that then need to be integrated into the overall functional safety system. Recently factory testing was concluded on the major subsystems of the facility. Final integration of these subsystems is currently underway on the site. Building on lessons learned in early factory tests, changes to the interface between subsystems were made to improve the speed and ease of integration of the entire system. Because of the distributed design each subsystem can be brought online as it is delivered and assembled rather than waiting until the entire facility is finished. This enhances safety during the risky period of integration and testing. The DKIST has implemented a functional safety system that has allowed construction of subsystems in geographically diverse locations but that function cohesively once they are integrated into the facility currently under construction.

  15. Radioactive Wastes.

    PubMed

    Choudri, B S; Charabi, Yassine; Baawain, Mahad; Ahmed, Mushtaque

    2017-10-01

    Papers reviewed herein present a general overview of radioactive waste related activities around the world in 2016. The current reveiw include studies related to safety assessments, decommission and decontamination of nuclear facilities, fusion facilities, transportation. Further, the review highlights on management solutions for the final disposal of low and high level radioactive wastes (LLW and HLW), interim storage and final disposal options for spent fuel (SF), and tritiated wastes, with a focus on environmental impacts due to the mobility of radionuclides in ecosystem, water and soil alongwith other progress made in the management of radioactive wastes.

  16. Labor-Management Cooperation in Illinois: How a Joint Union Company Team Is Improving Facility Safety.

    PubMed

    Mahan, Bruce; Maclin, Reggie; Ruttenberg, Ruth; Mundy, Keith; Frazee, Tom; Schwartzkopf, Randy; Morawetz, John

    2018-01-01

    This study of Afton Chemical Corporation's Sauget facility and its International Chemical Workers Union Council (ICWUC) Local 871C demonstrates how significant safety improvements can be made when committed leadership from both management and union work together, build trust, train the entire work force in U.S. Occupational Safety and Health Administration 10-hour classes, and communicate with their work force, both salaried and hourly. A key finding is that listening to the workers closest to production can lead to solutions, many of them more cost-efficient than top-down decision-making. Another is that making safety and health an authentic value is hard work, requiring time, money, and commitment. Third, union and management must both have leadership willing to take chances and learn to trust one another. Fourth, training must be for everyone and ongoing. Finally, health and safety improvements require dedicated funding. The result was resolution of more than one hundred safety concerns and an ongoing institutionalized process for continuing improvement.

  17. ORNL necessary and sufficient standards for environment, safety, and health. Final report of the Identification Team for other industrial, radiological, and non-radiological hazard facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-07-01

    This Necessary and Sufficient (N and S) set of standards is for Other Industrial, Radiological, and Non-Radiological Hazard Facilities at Oak Ridge National Laboratory (ORNL). These facility classifications are based on a laboratory-wide approach to classify facilities by hazard category. An analysis of the hazards associated with the facilities at ORNL was conducted in 1993. To identify standards appropriate for these Other Industrial, Radiological, and Non-Radiological Hazard Facilities, the activities conducted in these facilities were assessed, and the hazards associated with the activities were identified. A preliminary hazards list was distributed to all ORNL organizations. The hazards identified in priormore » hazard analyses are contained in the list, and a category of other was provided in each general hazard area. A workshop to assist organizations in properly completing the list was held. Completed hazard screening lists were compiled for each ORNL division, and a master list was compiled for all Other Industrial, Radiological Hazard, and Non-Radiological facilities and activities. The master list was compared against the results of prior hazard analyses by research and development and environment, safety, and health personnel to ensure completeness. This list, which served as a basis for identifying applicable environment, safety, and health standards, appears in Appendix A.« less

  18. Nevada State plan; final approval determination. Occupational Safety and Health Administration (OSHA), U.S. Department of Labor. Final State plan approval--Nevada.

    PubMed

    2000-04-18

    This document amends OSHA's regulations to reflect the Assistant Secretary's decision granting final approval to the Nevada State plan. As a result of this affirmative determination under section 18(e) of the Occupational Safety and Health Act of 1970, Federal OSHA's standards and enforcement authority no longer apply to occupational safety and health issues covered by the Nevada plan, and authority for Federal concurrent jurisdiction is relinquished. Federal enforcement jurisdiction is retained over any private sector maritime employment, private sector employers on Indian land, and any contractors or subcontractors on any Federal establishment where the land is exclusive Federal jurisdiction. Federal jurisdiction remains in effect with respect to Federal government employers and employees. Federal OSHA will also retain authority for coverage of the United States Postal Service (USPS), including USPS employees, contract employees, and contractor-operated facilities engaged in USPS mail operations.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mollah, A.S.

    Low level radioactive waste (LLW) is generated from various nuclear applications in Bangladesh. The major sources of radioactive waste in the country are at present: (a) the 3 MW TRIGA Mark-II research reactor; (b) the radioisotope production facility; (c) the medical, industrial and research facilities that use radionuclides; and (d) the industrial facility for processing monazite sands. Radioactive waste needs to be safely managed because it is potentially hazardous to human health and the environment. According to Nuclear Safety and Radiation Control Act-93, the Bangladesh Atomic Energy Commission (BAEC) is the governmental body responsible for the receipt and final disposalmore » of radioactive wastes in the whole country. Waste management policy has become an important environmental, social, and economical issue for LLW in Bangladesh. Policy and strategies will serve as a basic guide for radioactive waste management in Bangladesh. The waste generator is responsible for on-site collection, conditioning and temporary storage of the waste arising from his practice. The Central Waste Processing and Storage Unit (CWPSU) of BAEC is the designated national facility with the requisite facility for the treatment, conditioning and storage of radioactive waste until a final disposal facility is established and becomes operational. The Regulatory Authority is responsible for the enforcement of compliance with provisions of the waste management regulation and other relevant requirements by the waste generator and the CWPSU. The objective of this paper is to present, in a concise form, basic information about the radioactive waste management infrastructure, regulations, policies and strategies including the total inventory of low level radioactive waste in the country. For improvement and strengthening in terms of operational capability, safety and security of RW including spent radioactive sources and overall security of the facility (CWPSF), the facility is expected to serve waste management need in the country and, in the course of time, the facility may be turned into a regional level training centre. It is essential for safe conduction and culture of research and application in nuclear science and technology maintaining the relevant safety of man and environment and future generations to come. (authors)« less

  20. Final safety analysis report for the Ground Test Accelerator (GTA), Phase 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-10-01

    This document is the first volume of a 3 volume safety analysis report on the Ground Test Accelerator (GTA). The GTA program at the Los Alamos National Laboratory (LANL) is the major element of the national Neutral Particle Beam (NPB) program, which is supported by the Strategic Defense Initiative Office (SDIO). A principal goal of the national NPB program is to assess the feasibility of using hydrogen and deuterium neutral particle beams outside the Earth`s atmosphere. The main effort of the NPB program at Los Alamos concentrates on developing the GTA. The GTA is classified as a low-hazard facility, exceptmore » for the cryogenic-cooling system, which is classified as a moderate-hazard facility. This volume consists of an introduction, summary/conclusion, site description and assessment, description of facility, and description of operation.« less

  1. Mitigation Strategies To Protect Food Against Intentional Adulteration. Final rule.

    PubMed

    2016-05-27

    The Food and Drug Administration (FDA or we) is issuing this final rule to require domestic and foreign food facilities that are required to register under the Federal Food, Drug, and Cosmetic Act (the FD&C Act) to address hazards that may be introduced with the intention to cause wide scale public health harm. These food facilities are required to conduct a vulnerability assessment to identify significant vulnerabilities and actionable process steps and implement mitigation strategies to significantly minimize or prevent significant vulnerabilities identified at actionable process steps in a food operation. FDA is issuing these requirements as part of our implementation of the FDA Food Safety Modernization Act (FSMA).

  2. Measure in the ESRD QIP for PY 2020. Final rule.

    PubMed

    2017-08-04

    This final rule updates the payment rates used under the prospective payment system (PPS) for skilled nursing facilities (SNFs) for fiscal year (FY) 2018. It also revises and rebases the market basket index by updating the base year from 2010 to 2014, and by adding a new cost category for Installation, Maintenance, and Repair Services. The rule also finalizes revisions to the SNF Quality Reporting Program (QRP), including measure and standardized resident assessment data policies and policies related to public display. In addition, it finalizes policies for the Skilled Nursing Facility Value-Based Purchasing Program that will affect Medicare payment to SNFs beginning in FY 2019. The final rule also clarifies the regulatory requirements for team composition for surveys conducted for investigating a complaint and aligns regulatory provisions for investigation of complaints with the statutory requirements. The final rule also finalizes the performance period for the National Healthcare Safety Network (NHSN) Healthcare Personnel (HCP) Influenza Vaccination Reporting Measure included in the End-Stage Renal Disease (ESRD) Quality Incentive Program (QIP) for Payment Year 2020.

  3. Engineering specifications for construction of truck only and passenger vehicle only travelways in Missouri--phase I : final report, September 2009.

    DOT National Transportation Integrated Search

    2009-09-01

    The objective of this study is to provide information detailing the safety consideration specifications for the : truck only and passenger only facilities for I-70 and I-44. The categories discussed in this report include: : Traffic Operation and Tru...

  4. 75 FR 47618 - Final Environmental Impact Statement for the Proposed Enterprise Rancheria Gaming Facility and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-06

    ... (consisting of a buffet, gourmet restaurant, and bar), meeting space, guest support services, offices, and a... resources, water resources, air quality, biological resources, cultural and paleontological resources..., Cultural Resources Management and Safety, at the BIA address above or at the telephone number provided in...

  5. Analysis of load-induced strains in a hot mix asphalt perpetual pavement : final report, April 2009.

    DOT National Transportation Integrated Search

    2009-04-01

    This report presents the findings of a research study conducted to investigate the structural performance of a 275 mm hot : mix asphalt perpetual pavement constructed as part of the WIM bypass lane at the Kenosha Safety & Weigh Station : Facility. Tw...

  6. Medicaid program; correction and reduction plans for intermediate care facilities for the mentally retarded--HCFA. Final rule.

    PubMed

    1991-07-05

    This final rule amends the portions of the Medicaid regulations under which an intermediate care facility for the mentally retarded (ICF/MR) with substantial deficiencies that did not pose an immediate jeopardy to the health and safety of clients could continue participation in the Medicaid program. These regulations gave State Medicaid agencies the option of submitting written plans to either correct deficiencies or permanently reduce the number of beds in the certified portion of the facility. This rule removes all requirements for submitting, approving, and monitoring correction plans for ICFs/MR. The requirements for submitting and approving correction plans are being removed because the time limit for submission of these plans has passed. The provisions for monitoring correction plans are being removed because there are no remaining facilities for which these provisions apply. This final rule also removes requirements for submitting and approving reduction plans for ICFs/MR because the time limit for submitting these plans has passed. It retains and updates the requirements for monitoring and compliance that apply to those ICFs/MR for which reduction plans were approved by January 1, 1990.

  7. Environment, Safety, and Health: Status of DOE’s Reorganization of it’s Safety Oversight Function

    DTIC Science & Technology

    1990-01-01

    facilities. After deliberation, the Congress in late 1988 directed that the Defense Nuclear Facilities Safety Board be established to provide...nuclear safety matters will be conducted by either the Advisory Committee on Nuclear Facility Safety or the recently mandated Defense Nuclear Facilities Safety...the facilities under the statutory purview of the Defense Nuclear Facilities Safety Board once the board determines it is ready to assume independent

  8. Final cleanup of buildings within in legacy French research facilities: strategy, tools and lessons learned

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Goaller, C.; Doutreluingne, C.; Berton, M.A.

    2007-07-01

    This paper describes the methodology followed by the French Atomic Energy Commission (CEA) to decommission the buildings of former research facilities for demolition or possible reuse. It is a well known fact that the French nuclear safety authority has decided not to define any general release level for the decommissioning of nuclear facilities, thus effectively prohibiting radiological measurement-driven decommissioning. The decommissioning procedure therefore requires an intensive in-depth examination of each nuclear plant. This requires a good knowledge of the past history of the plant, and should be initiated as early as possible. The paper first describes the regulatory framework recentlymore » unveiled by the French Safety Authority, then, reviews its application to ongoing decommissioning projects. The cornerstone of the strategy is the definition of waste zoning in the buildings to segregate areas producing conventional waste from those generating nuclear waste. After dismantling, suitable measurements are carried out to confirm the conventional state of the remaining walls. This requires low-level measurement methods providing a suitable detection limit within an acceptable measuring time. Although this generally involves particle counting and in-situ low level gamma spectrometry, the paper focuses on y spectrometry. Finally, the lessons learned from ongoing projects are discussed. (authors)« less

  9. Final safety analysis report for the Ground Test Accelerator (GTA), Phase 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-10-01

    This document is the third volume of a 3 volume safety analysis report on the Ground Test Accelerator (GTA). The GTA program at the Los Alamos National Laboratory (LANL) is the major element of the national Neutral Particle Beam (NPB) program, which is supported by the Strategic Defense Initiative Office (SDIO). A principal goal of the national NPB program is to assess the feasibility of using hydrogen and deuterium neutral particle beams outside the Earth`s atmosphere. The main effort of the NPB program at Los Alamos concentrates on developing the GTA. The GTA is classified as a low-hazard facility, exceptmore » for the cryogenic-cooling system, which is classified as a moderate-hazard facility. This volume consists of appendices C through U of the report« less

  10. A modern depleted uranium manufacturing facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zagula, T.A.

    1995-07-01

    The Specific Manufacturing Capabilities (SMC) Project located at the Idaho National Engineering Laboratory (INEL) and operated by Lockheed Martin Idaho Technologies Co. (LMIT) for the Department of Energy (DOE) manufactures depleted uranium for use in the U.S. Army MIA2 Abrams Heavy Tank Armor Program. Since 1986, SMC has fabricated more than 12 million pounds of depleted uranium (DU) products in a multitude of shapes and sizes with varying metallurgical properties while maintaining security, environmental, health and safety requirements. During initial facility design in the early 1980`s, emphasis on employee safety, radiation control and environmental consciousness was gaining momentum throughout themore » DOE complex. This fact coupled with security and production requirements forced design efforts to focus on incorporating automation, local containment and computerized material accountability at all work stations. The result was a fully automated production facility engineered to manufacture DU armor packages with virtually no human contact while maintaining security, traceability and quality requirements. This hands off approach to handling depleted uranium resulted in minimal radiation exposures and employee injuries. Construction of the manufacturing facility was complete in early 1986 with the first armor package certified in October 1986. Rolling facility construction was completed in 1987 with the first certified plate produced in the fall of 1988. Since 1988 the rolling and manufacturing facilities have delivered more than 2600 armor packages on schedule with 100% final product quality acceptance. During this period there was an annual average of only 2.2 lost time incidents and a single individual maximum radiation exposure of 150 mrem. SMC is an example of designing and operating a facility that meets regulatory requirements with respect to national security, radiation control and personnel safety while achieving production schedules and product quality.« less

  11. Are your employees protected from blood-borne pathogens? OSHA standards charge textile rental companies with responsibility for worker safety.

    PubMed

    Weller, S C

    1991-11-01

    Congress is putting pressure on OSHA to finalize its Universal Precaution standards by December. When the standards go into effect, textile rental companies that serve medical, dental, and outpatient care facilities--including private physician and dentist offices--must take steps to protect employees from blood-borne pathogens. Soiled linens, towels, gowns, and other items from any customer in risk categories link a textile rental facility and/or commercial laundry with the OSHA regulations. Read and heed this information.

  12. Exposure to fall hazards and safety climate in the aircraft maintenance industry.

    PubMed

    Neitzel, Richard L; Seixas, Noah S; Harris, Michael J; Camp, Janice

    2008-01-01

    Falls represent a significant occupational hazard, particularly in industries with dynamic work environments. This paper describes rates of noncompliance with fall hazard prevention requirements, perceived safety climate and worker knowledge and beliefs, and the association between fall exposure and safety climate measures in commercial aircraft maintenance activities. Walkthrough observations were conducted on aircraft mechanics at two participating facilities (Sites A and B) to ascertain the degree of noncompliance. Mechanics at each site completed questionnaires concerning fall hazard knowledge, personal safety beliefs, and safety climate. Questionnaire results were summarized into safety climate and belief scores by workgroup and site. Noncompliance rates observed during walkthroughs were compared to the climate-belief scores, and were expected to be inversely associated. Important differences were seen in fall safety performance between the sites. The study provided a characterization of aircraft maintenance fall hazards, and also demonstrated the effectiveness of an objective hazard assessment methodology. Noncompliance varied by height, equipment used, location of work on the aircraft, shift, and by safety system. Although the expected relationship between safety climate and noncompliance was seen for site-average climate scores, workgroups with higher safety climate scores had greater observed noncompliance within Site A. Overall, use of engineered safety systems had a significant impact on working safely, while safety beliefs and climate also contributed, though inconsistently. The results of this study indicate that safety systems are very important in reducing noncompliance with fall protection requirements in aircraft maintenance facilities. Site-level fall safety compliance was found to be related to safety climate, although an unexpected relationship between compliance and safety climate was seen at the workgroup level within site. Finally, observed fall safety compliance was found to differ from self-reported compliance.

  13. Integration Process for Payloads in the Fluids and Combustion Facility

    NASA Technical Reports Server (NTRS)

    Free, James M.; Nall, Marsha M.

    2001-01-01

    The Fluids and Combustion Facility (FCF) is an ISS research facility located in the United States Laboratory (US Lab), Destiny. The FCF is a multi-discipline facility that performs microgravity research primarily in fluids physics science and combustion science. This facility remains on-orbit and provides accommodations to multi-user and Principal investigator (PI) unique hardware. The FCF is designed to accommodate 15 PI's per year. In order to allow for this number of payloads per year, the FCF has developed an end-to-end analytical and physical integration process. The process includes provision of integration tools, products and interface management throughout the life of the payload. The payload is provided with a single point of contact from the facility and works with that interface from PI selection through post flight processing. The process utilizes electronic tools for creation of interface documents/agreements, storage of payload data and rollup for facility submittals to ISS. Additionally, the process provides integration to and testing with flight-like simulators prior to payload delivery to KSC. These simulators allow the payload to test in the flight configuration and perform final facility interface and science verifications. The process also provides for support to the payload from the FCF through the Payload Safety Review Panel (PSRP). Finally, the process includes support in the development of operational products and the operation of the payload on-orbit.

  14. 76 FR 42686 - DOE Response to Recommendation 2011-1 of the Defense Nuclear Facilities Safety Board, Safety...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-19

    ... DEPARTMENT OF ENERGY DOE Response to Recommendation 2011-1 of the Defense Nuclear Facilities... Nuclear Facilities Safety Board, Office of Health, Safety and Security, U.S. Department of Energy, 1000... Department of Energy (DOE) acknowledges receipt of Defense Nuclear Facilities Safety Board (Board...

  15. Nursing home safety: does financial performance matter?

    PubMed

    Oetjen, Reid M; Zhao, Mei; Liu, Darren; Carretta, Henry J

    2011-01-01

    This study examines the relationship between financial performance and selected safety measures of nursing homes in the State of Florida. We used descriptive analysis on a total sample of 1,197. Safety information was from the Online Survey, Certification and Reporting (OSCAR) data of 2003 to 2005, while the financial performance measures were from the Medicare cost reports of 2002 to 2004. Finally, we examined the most frequently cited deficiencies as well as the relationship between financial performance and quality indicators. Nursing homes in the bottom quartile of financial performance perform poorly on most resident-safety measures of care; however, nursing homes in the top two financial categories also experienced a higher number of deficiencies. Nursing homes in the next to lowest quartile of financial performance category best perform on most of these safety measures. The results reinforce the need to monitor nursing home quality and resident safety in US nursing homes, especially among facilities with poor overall financial performance.

  16. 78 FR 69433 - Executive Order 13650 Improving Chemical Facility Safety and Security Listening Sessions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-19

    ... Chemical Facility Safety and Security Listening Sessions AGENCY: National Protection and Programs... from stakeholders on issues pertaining to Improving Chemical Facility Safety and Security (Executive... regulations, guidance, and policies; and identifying best practices in chemical facility safety and security...

  17. [Recommendations for inspections of the French nuclear safety authority].

    PubMed

    Rousse, C; Chauvet, B

    2015-10-01

    The French nuclear safety authority is responsible for the control of radiation protection in radiotherapy since 2002. Controls are based on the public health and the labour codes and on the procedures defined by the controlled health care facility for its quality and safety management system according to ASN decision No. 2008-DC-0103. Inspectors verify the adequacy of the quality and safety management procedures and their implementation, and select process steps on the basis of feedback from events notified to ASN. Topics of the inspection are communicated to the facility at the launch of a campaign, which enables them to anticipate the inspectors' expectations. In cases where they are not physicians, inspectors are not allowed to access information covered by medical confidentiality. The consulted documents must therefore be expunged of any patient-identifying information. Exchanges before the inspection are intended to facilitate the provision of documents that may be consulted. Finally, exchange slots between inspectors and the local professionals must be organized. Based on improvements achieved by the health care centres and on recommendations from a joint working group of radiotherapy professionals and the nuclear safety authority, changes will be made in the control procedure that will be implemented when developing the inspection program for 2016-2019. Copyright © 2015. Published by Elsevier SAS.

  18. 77 FR 51943 - Procedures for Safety Investigations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-28

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD 10 CFR Part 1708 Procedures for Safety Investigations AGENCY: Defense Nuclear Facilities Safety Board. ACTION: Proposed rule; extension of comment period. SUMMARY: The Defense Nuclear Facilities Safety Board is extending the time for comments on its proposed...

  19. 78 FR 12042 - Public Availability of Defense Nuclear Facilities Safety Board FY 2011 Service Contract Inventory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-21

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Public Availability of Defense Nuclear Facilities Safety Board FY 2011 Service Contract Inventory Analysis/FY 2012 Service Contract Inventory AGENCY: Defense Nuclear Facilities Safety Board (DNFSB). ACTION: Notice of Public Availability of FY 2011 Service Contract...

  20. 76 FR 5354 - Public Availability of Defense Nuclear Facilities Safety Board FY 2010 Service Contract Inventory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-31

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Public Availability of Defense Nuclear Facilities Safety Board FY 2010 Service Contract Inventory AGENCY: Defense Nuclear Facilities Safety Board (Board). ACTION: Notice of public availability of FY 2010 Service Contract Inventories. SUMMARY: In accordance with...

  1. 77 FR 7139 - Public Availability of Defense Nuclear Facilities Safety Board; FY 2010 Service Contract...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-10

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Public Availability of Defense Nuclear Facilities Safety Board; FY 2010 Service Contract Inventory Analysis/FY 2011 Service Contract Inventory AGENCY: Defense Nuclear Facilities Safety Board (DNFSB). ACTION: Notice of Public Availability of FY 2010 Service Contract...

  2. Staubli TX-90XL robot qualification at the LLIHE.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Covert, Timothy Todd

    The Light Initiated High Explosive (LIHE) Facility uses a robotic arm to spray explosive material onto test items for impulse tests. In 2007, the decision was made to replace the existing PUMA 760 robot with the Staubli TX-90XL. A qualification plan was developed and implemented to verify the safe operating conditions and failure modes of the new system. The robot satisfied the safety requirements established in the qualification plan. A performance issue described in this report remains unresolved at the time of this publication. The final readiness review concluded the qualification of this robot at the LIHE facility.

  3. Guide for Maintaining Pedestrian Facilities for Enhanced Safety.

    DOT National Transportation Integrated Search

    2013-10-01

    A Guide for Maintaining Pedestrian Facilities for Enhanced Safety provides guidance for maintaining pedestrian facilities with the primary goal of increasing safety and mobility. The Guide addresses the needs for pedestrian facility maintenance; comm...

  4. Poster - Thur Eve - 05: Safety systems and failure modes and effects analysis for a magnetic resonance image guided radiation therapy system.

    PubMed

    Lamey, M; Carlone, M; Alasti, H; Bissonnette, J P; Borg, J; Breen, S; Coolens, C; Heaton, R; Islam, M; van Proojen, M; Sharpe, M; Stanescu, T; Jaffray, D

    2012-07-01

    An online Magnetic Resonance guided Radiation Therapy (MRgRT) system is under development. The system is comprised of an MRI with the capability of travel between and into HDR brachytherapy and external beam radiation therapy vaults. The system will provide on-line MR images immediately prior to radiation therapy. The MR images will be registered to a planning image and used for image guidance. With the intention of system safety we have performed a failure modes and effects analysis. A process tree of the facility function was developed. Using the process tree as well as an initial design of the facility as guidelines possible failure modes were identified, for each of these failure modes root causes were identified. For each possible failure the assignment of severity, detectability and occurrence scores was performed. Finally suggestions were developed to reduce the possibility of an event. The process tree consists of nine main inputs and each of these main inputs consisted of 5 - 10 sub inputs and tertiary inputs were also defined. The process tree ensures that the overall safety of the system has been considered. Several possible failure modes were identified and were relevant to the design, construction, commissioning and operating phases of the facility. The utility of the analysis can be seen in that it has spawned projects prior to installation and has lead to suggestions in the design of the facility. © 2012 American Association of Physicists in Medicine.

  5. 76 FR 26716 - Sunshine Act Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-09

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Sunshine Act Meeting AGENCY: Defense Nuclear Facilities... Defense Nuclear Facilities Safety Board's (Board) public meeting and hearing. FEDERAL REGISTER CITATIONS... Defense Nuclear Facilities Safety Board, Public Hearing Room, 625 Indiana Avenue, NW., Suite 300...

  6. Mapping the Risks. Assessing the Homeland Security Implications of Publicly Available Geospatial Information

    DTIC Science & Technology

    2004-01-01

    Defense Nuclear Facilities Safety Board 1 0.2 Export-Import Bank 1 0.2 National Archives and Records Administration 1 0.2 Supreme Court of the United...Agency Commodity Futures Trading Commission Consumer Product Safety Commission Defense Nuclear Facilities Safety Board Environmental Protection Agency...Intelligence www.cia.gov Defense Nuclear Facilities Safety Board Defense Nuclear Facilities Safety Board www.dnfsb.gov Department of

  7. 75 FR 74022 - Safety Analysis Requirements for Defining Adequate Protection for the Public and the Workers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-30

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD [Recommendation 2010-1] Safety Analysis Requirements for Defining Adequate Protection for the Public and the Workers AGENCY: Defense Nuclear Facilities Safety Board... Nuclear Facilities Safety Board has made a recommendation to the Secretary of Energy requesting an...

  8. Margin of Safety Definition and Examples Used in Safety Basis Documents and the USQ Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beaulieu, R. A.

    The Nuclear Safety Management final rule, 10 CFR 830, provides an undefined term, margin of safety (MOS). Safe harbors listed in 10 CFR 830, Table 2, such as DOE-STD-3009 use but do not define the term. This lack of definition has created the need for the definition. This paper provides a definition of MOS and documents examples of MOS as applied in a U.S. Department of Energy (DOE) approved safety basis for an existing nuclear facility. If we understand what MOS looks like regarding Technical Safety Requirements (TSR) parameters, then it helps us compare against other parameters that do notmore » involve a MOS. This paper also documents parameters that are not MOS. These criteria could be used to determine if an MOS exists in safety basis documents. This paper helps DOE, including the National Nuclear Security Administration (NNSA) and its contractors responsible for the safety basis improve safety basis documents and the unreviewed safety question (USQ) process with respect to MOS.« less

  9. 75 FR 56080 - Sunshine Act Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-15

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Sunshine Act Notice AGENCY: Defense Nuclear Facilities... Facilities Safety Board's public hearing and meeting. FEDERAL REGISTER CITATION OF PREVIOUS ANNOUNCEMENT: 75... INFORMATION: Brian Grosner, General Manager, Defense Nuclear Facilities Safety Board, 625 Indiana Avenue, NW...

  10. 78 FR 4393 - Sunshine Act Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Sunshine Act Notice AGENCY: Defense Nuclear Facilities... given of the Defense Nuclear Facilities Safety Board's (Board) public meeting and hearing described... Session II, the Board will receive testimony concerning safety at Pantex defense nuclear facilities. The...

  11. Facility safety study

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The safety of NASA's in house microelectronics facility is addressed. Industrial health standards, facility emission control requirements, operation and safety checklists, and the disposal of epitaxial vent gas are considered.

  12. 77 FR 479 - Sunshine Act Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-05

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Sunshine Act Notice AGENCY: Defense Nuclear Facilities... of the Defense Nuclear Facilities Safety Board's (Board) public hearing and meeting described below... Nuclear Facilities Safety Board, 625 Indiana Avenue NW., Suite 700, Washington, DC 20004-2901, (800) 788...

  13. 77 FR 48970 - Sunshine Act Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-15

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Sunshine Act Notice AGENCY: Defense Nuclear Facilities... given of the Defense Nuclear Facilities Safety Board's (Board) public meeting and hearing described... (NNSA) efforts to mitigate risks to public and worker safety posed by aging defense nuclear facilities...

  14. Analyses in support of risk-informed natural gas vehicle maintenance facility codes and standards :

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekoto, Isaac W.; Blaylock, Myra L.; LaFleur, Angela Christine

    2014-03-01

    Safety standards development for maintenance facilities of liquid and compressed gas fueled large-scale vehicles is required to ensure proper facility design and operation envelopes. Standard development organizations are utilizing risk-informed concepts to develop natural gas vehicle (NGV) codes and standards so that maintenance facilities meet acceptable risk levels. The present report summarizes Phase I work for existing NGV repair facility code requirements and highlights inconsistencies that need quantitative analysis into their effectiveness. A Hazardous and Operability study was performed to identify key scenarios of interest. Finally, scenario analyses were performed using detailed simulations and modeling to estimate the overpressure hazardsmore » from HAZOP defined scenarios. The results from Phase I will be used to identify significant risk contributors at NGV maintenance facilities, and are expected to form the basis for follow-on quantitative risk analysis work to address specific code requirements and identify effective accident prevention and mitigation strategies.« less

  15. Alignment system for SGII-Up laser facility

    NASA Astrophysics Data System (ADS)

    Gao, Yanqi; Cui, Yong; Li, Hong; Gong, Lei; Lin, Qiang; Liu, Daizhong; Zhu, Baoqiang; Ma, Weixin; Zhu, Jian; Lin, Zunqi

    2018-03-01

    The SGII-Up laser facility in Shanghai is one of the most important high-power laser facilities in China. It is designed to obtain 24 kJ (3ω) of energy with a square pulse of 3 ns using eight laser beams (two bundles). To satisfy the requirements for the safety, efficiency, and quality, an alignment system is developed for this facility. This alignment system can perform automatic alignment of the preamplifier system, main amplifier system, and harmonic conversion system within 30 min before every shot during the routine operation of the facility. In this article, an overview of the alignment system is first presented. Then, its alignment characteristics are discussed, along with the alignment process. Finally, experimental results, including the alignment results and the facility performance, are reported. The results show that the far-field beam pointing alignment accuracy is better than 3 μrad, and the alignment error of the near-field beam centering is no larger than 1 mm. These satisfy the design requirements very well.

  16. 78 FR 9902 - DOE Response to Recommendation 2012-2 of the Defense Nuclear Facilities Safety Board, Hanford...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-12

    ... DEPARTMENT OF ENERGY DOE Response to Recommendation 2012-2 of the Defense Nuclear Facilities Safety Board, Hanford Tank Farms Flammable Gas Safety Strategy; Correction AGENCY: Department of Energy... Facilities Safety Board, Hanford Tank Farms Flammable Gas Safety Strategy. This document corrects an error in...

  17. 75 FR 69648 - Safety Analysis Requirements for Defining Adequate Protection for the Public and the Workers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-15

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD [Recommendation 2010-1] Safety Analysis Requirements for Defining Adequate Protection for the Public and the Workers AGENCY: Defense Nuclear Facilities Safety Board... Facilities Safety Board has made a recommendation to the Secretary of Energy requesting an amendment to the...

  18. Technical evaluation of the susceptibility of safety-related systems to flooding caused by the failure of non-Category I systems for Turkey Point Nuclear Power Plant, Units 3 and 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, E.K.

    1979-08-01

    Three separate reviews of the Turkey Point Units 3 and 4 were conducted by the FPLCO between 1972 and 1975. Initially, at the request of NBC in 1972, the FPLCO reviewed several water systems as sources of flooding. Subsequently, as a result of an abnormal occurrence, the drainage system was reviewed. Finally, the facilities were again reviewed at NRC's request and both the potential sources of flooding and safety-related equipment which could be damaged by flooding were identified. The sources of flooding and the appropriate safety equipment are discussed. An evaluation is presented of measures that were taken by FPLCOmore » to minimize the danger of flooding and to protect safety-related equipment.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunett, A. J.; Fei, T.; Strons, P. S.

    The Transient Reactor Test Facility (TREAT), located at Idaho National Laboratory (INL), is a test facility designed to evaluate the performance of reactor fuels and materials under transient accident conditions. The facility, an air-cooled, graphite-moderated reactor designed to utilize fuel containing high-enriched uranium (HEU), has been in non-operational standby status since 1994. Currently, in support of the missions of the Department of Energy (DOE) National Nuclear Security Administration (NNSA) Material Management and Minimization (M3) Reactor Conversion Program, a new core design is being developed for TREAT that will utilize low-enriched uranium (LEU). The primary objective of this conversion effort ismore » to design an LEU core that is capable of meeting the performance characteristics of the existing HEU core. Minimal, if any, changes are anticipated for the supporting systems (e.g. reactor trip system, filtration/cooling system, etc.); therefore, the LEU core must also be able to function with the existing supporting systems, and must also satisfy acceptable safety limits. In support of the LEU conversion effort, a range of ancillary safety analyses are required to evaluate the LEU core operation relative to that of the existing facility. These analyses cover neutronics, shielding, and thermal hydraulic topics that have been identified as having the potential to have reduced safety margins due to conversion to LEU fuel, or are required to support the required safety analyses documentation. The majority of these ancillary tasks have been identified in [1] and [2]. The purpose of this report is to document the ancillary safety analyses that have been performed at Argonne National Laboratory during the early stages of the LEU design effort, and to describe ongoing and anticipated analyses. For all analyses presented in this report, methodologies are utilized that are consistent with, or improved from, those used in analyses for the HEU Final Safety Analysis Report (FSAR) [3]. Depending on the availability of historical data derived from HEU TREAT operation, results calculated for the LEU core are compared to measurements obtained from HEU TREAT operation. While all analyses in this report are largely considered complete and have been reviewed for technical content, it is important to note that all topics will be revisited once the LEU design approaches its final stages of maturity. For most safety significant issues, it is expected that the analyses presented here will be bounding, but additional calculations will be performed as necessary to support safety analyses and safety documentation. It should also be noted that these analyses were completed as the LEU design evolved, and therefore utilized different LEU reference designs. Preliminary shielding, neutronic, and thermal hydraulic analyses have been completed and have generally demonstrated that the various LEU core designs will satisfy existing safety limits and standards also satisfied by the existing HEU core. These analyses include the assessment of the dose rate in the hodoscope room, near a loaded fuel transfer cask, above the fuel storage area, and near the HEPA filters. The potential change in the concentration of tramp uranium and change in neutron flux reaching instrumentation has also been assessed. Safety-significant thermal hydraulic items addressed in this report include thermally-induced mechanical distortion of the grid plate, and heating in the radial reflector.« less

  20. 78 FR 48029 - Improving Chemical Facility Safety and Security

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-07

    ... responding to risks in chemical facilities (including during pre-inspection, inspection execution, post.... Sec. 2. Establishment of the Chemical Facility Safety and Security Working Group. (a) There is established a Chemical Facility Safety and Security Working Group (Working Group) co-chaired by the Secretary...

  1. 75 FR 13433 - Safety Zone; Invista Inc Facility Docks, Victoria Barge Canal, Victoria, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-22

    ...-AA00 Safety Zone; Invista Inc Facility Docks, Victoria Barge Canal, Victoria, TX AGENCY: Coast Guard... safety zone for a partial blockage of the Victoria Barge Canal when the Invista Inc facility is... channel will be substantially reduced. The safety zone is necessary to help ensure the safety of the...

  2. Health and Safety Management for Small-scale Methane Fermentation Facilities

    NASA Astrophysics Data System (ADS)

    Yamaoka, Masaru; Yuyama, Yoshito; Nakamura, Masato; Oritate, Fumiko

    In this study, we considered health and safety management for small-scale methane fermentation facilities that treat 2-5 ton of biomass daily based on several years operation experience with an approximate capacity of 5 t·d-1. We also took account of existing knowledge, related laws and regulations. There are no qualifications or licenses required for management and operation of small-scale methane fermentation facilities, even though rural sewerage facilities with a relative similar function are required to obtain a legitimate license. Therefore, there are wide variations in health and safety consciousness of the operators of small-scale methane fermentation facilities. The industrial safety and health laws are not applied to the operation of small-scale methane fermentation facilities. However, in order to safely operate a small-scale methane fermentation facility, the occupational safety and health management system that the law recommends should be applied. The aims of this paper are to clarify the risk factors in small-scale methane fermentation facilities and encourage planning, design and operation of facilities based on health and safety management.

  3. 78 FR 70858 - Safety Zones; Pacific Northwest Grain Handlers Association Facilities; Columbia and Willamette...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-27

    ... 1625-AA00 Safety Zones; Pacific Northwest Grain Handlers Association Facilities; Columbia and... establishing temporary safety zones around the following Pacific Northwest Grain Handlers Association... Commodities facility on the Willamette River in Portland, OR. These safety zones extend approximately between...

  4. Overview of Energy Systems` safety analysis report programs. Safety Analysis Report Update Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-03-01

    The primary purpose of an Safety Analysis Report (SAR) is to provide a basis for judging the adequacy of a facility`s safety. The SAR documents the safety analyses that systematically identify the hazards posed by the facility, analyze the consequences and risk of potential accidents, and describe hazard control measures that protect the health and safety of the public and employees. In addition, some SARs document, as Technical Safety Requirements (TSRs, which include Technical Specifications and Operational Safety Requirements), technical and administrative requirements that ensure the facility is operated within prescribed safety limits. SARs also provide conveniently summarized information thatmore » may be used to support procedure development, training, inspections, and other activities necessary to facility operation. This ``Overview of Energy Systems Safety Analysis Report Programs`` Provides an introduction to the programs and processes used in the development and maintenance of the SARs. It also summarizes some of the uses of the SARs within Energy Systems and DOE.« less

  5. Make safety awareness a priority: Use a login software in your research facility

    DOE PAGES

    Camino, Fernando E.

    2017-01-21

    We report on a facility login software, whose objective is to improve safety in multi-user research facilities. Its most important safety features are: 1) blocks users from entering the lab after being absent for more than a predetermined number of days; 2) gives users a random safety quiz question, which they need to answer satisfactorily in order to use the facility; 3) blocks unauthorized users from using the facility afterhours; and 4) displays the current users in the facility. Besides restricting access to unauthorized users, the software keeps users mindful of key safety concepts. In addition, integration of the softwaremore » with a door controller system can convert it into an effective physical safety mechanism. Depending on DOE approval, the code may be available as open source.« less

  6. Make safety awareness a priority: Use a login software in your research facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camino, Fernando E.

    We report on a facility login software, whose objective is to improve safety in multi-user research facilities. Its most important safety features are: 1) blocks users from entering the lab after being absent for more than a predetermined number of days; 2) gives users a random safety quiz question, which they need to answer satisfactorily in order to use the facility; 3) blocks unauthorized users from using the facility afterhours; and 4) displays the current users in the facility. Besides restricting access to unauthorized users, the software keeps users mindful of key safety concepts. In addition, integration of the softwaremore » with a door controller system can convert it into an effective physical safety mechanism. Depending on DOE approval, the code may be available as open source.« less

  7. Functional safety for the Advanced Technology Solar Telescope

    NASA Astrophysics Data System (ADS)

    Bulau, Scott; Williams, Timothy R.

    2012-09-01

    Since inception, the Advanced Technology Solar Telescope (ATST) has planned to implement a facility-wide functional safety system to protect personnel from harm and prevent damage to the facility or environment. The ATST will deploy an integrated safety-related control system (SRCS) to achieve functional safety throughout the facility rather than relying on individual facility subsystems to provide safety functions on an ad hoc basis. The Global Interlock System (GIS) is an independent, distributed, facility-wide, safety-related control system, comprised of commercial off-the-shelf (COTS) programmable controllers that monitor, evaluate, and control hazardous energy and conditions throughout the facility that arise during operation and maintenance. The GIS has been designed to utilize recent advances in technology for functional safety plus revised national and international standards that allow for a distributed architecture using programmable controllers over a local area network instead of traditional hard-wired safety functions, while providing an equivalent or even greater level of safety. Programmable controllers provide an ideal platform for controlling the often complex interrelationships between subsystems in a modern astronomical facility, such as the ATST. A large, complex hard-wired relay control system is no longer needed. This type of system also offers greater flexibility during development and integration in addition to providing for expanded capability into the future. The GIS features fault detection, self-diagnostics, and redundant communications that will lead to decreased maintenance time and increased availability of the facility.

  8. 78 FR 4404 - DOE Response to Recommendation 2012-2 of the Defense Nuclear Facilities Safety Board, Hanford...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... DEPARTMENT OF ENERGY DOE Response to Recommendation 2012-2 of the Defense Nuclear Facilities Safety Board, Hanford Tank Farms Flammable Gas Safety Strategy AGENCY: Department of Energy. ACTION: Notice. SUMMARY: On September 28, 2012 the Defense Nuclear Facilities Safety Board submitted...

  9. The Organization and Management of the Nuclear Weapons Program.

    DTIC Science & Technology

    1997-03-01

    over operations include the Defense Nuclear Facilities Safety Board, the Environmental Protection Agency, the Occupational Safety and Health...Safety, and Health. Still more guidance is received from the Defense Nuclear Facilities Safety Board and other external bodies such as the...state regulatory agencies, and the Defense Nuclear Facilities Safety Board. This chapter briefly reviews the most recent decade of this history, describes

  10. Hydrazine Blending and Storage Facility, Interim Response Action Implementation. Final Safety Plan

    DTIC Science & Technology

    1989-08-30

    operators and visitors, will be required to wear a personal hydrazine dosimeter at all times. These will be available from commercial sources and/or the Naval...suspectea or carcinogenic pocen:tal for =an. -- t, :t ha a,,-cn OSL ?:L. Is I pPm or 1.3 mg/m 3 . zo pp=n4p"NIOSI. (1978) hs a oe -nded a ceiling level

  11. Launch Services Safety Overview

    NASA Technical Reports Server (NTRS)

    Loftin, Charles E.

    2008-01-01

    NASA/KSC Launch Services Division Safety (SA-D) services include: (1) Assessing the safety of the launch vehicle (2) Assessing the safety of NASA ELV spacecraft (S/C) / launch vehicle (LV) interfaces (3) Assessing the safety of spacecraft processing to ensure resource protection of: - KSC facilities - KSC VAFB facilities - KSC controlled property - Other NASA assets (4) NASA personnel safety (5) Interfacing with payload organizations to review spacecraft for adequate safety implementation and compliance for integrated activities (6) Assisting in the integration of safety activities between the payload, launch vehicle, and processing facilities

  12. NREL Provides First-of-its-Kind Guidance Promoting Safety Standards for

    Science.gov Websites

    Promoting Safety Standards for Natural Gas Vehicle Maintenance Facilities NREL Provides First-of-its-Kind Guidance Promoting Safety Standards for Natural Gas Vehicle Maintenance Facilities December 1, 2017 The U.S vehicle maintenance facilities with a new handbook and webinar that outline safety factors and standards

  13. 77 FR 43583 - DOE Response to Recommendation 2012-1 of the Defense Nuclear Facilities Safety Board, Savannah...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-25

    ... DEPARTMENT OF ENERGY DOE Response to Recommendation 2012-1 of the Defense Nuclear Facilities Safety Board, Savannah River Site Building 235-F Safety AGENCY: Department of Energy. ACTION: Notice. SUMMARY: On May 8, 2012, the Defense Nuclear Facilities Safety Board submitted Recommendation 2012-1...

  14. Nuclear Warheads: The Reliable Replacement Warhead Program and the Life Extension Program

    DTIC Science & Technology

    2007-07-16

    The Defense Nuclear Facilities Safety Board was created by Congress 1988 “as an independent oversight organization within the Executive Branch charged... nuclear facilities .” U.S. Defense Nuclear Facilities Safety Board. “Who We Are,” at [http://www.dnfsb.gov/about/index.html]. beginning, addressed safety...approach, if successful, would “reduce or eliminate the need for ESD controls.”55 Kent Fortenberry, Technical Director of the Defense Nuclear Facilities Safety

  15. Type A Accident Investigation Board report on the January 17, 1996, electrical accident with injury in Technical Area 21 Tritium Science and Fabrication Facility Los Alamos National Laboratory. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-04-01

    An electrical accident was investigated in which a crafts person received serious injuries as a result of coming into contact with a 13.2 kilovolt (kV) electrical cable in the basement of Building 209 in Technical Area 21 (TA-21-209) in the Tritium Science and Fabrication Facility (TSFF) at Los Alamos National Laboratory (LANL). In conducting its investigation, the Accident Investigation Board used various analytical techniques, including events and causal factor analysis, barrier analysis, change analysis, fault tree analysis, materials analysis, and root cause analysis. The board inspected the accident site, reviewed events surrounding the accident, conducted extensive interviews and document reviews,more » and performed causation analyses to determine the factors that contributed to the accident, including any management system deficiencies. Relevant management systems and factors that could have contributed to the accident were evaluated in accordance with the guiding principles of safety management identified by the Secretary of Energy in an October 1994 letter to the Defense Nuclear Facilities Safety Board and subsequently to Congress.« less

  16. Animal-assisted interventions: A national survey of health and safety policies in hospitals, eldercare facilities, and therapy animal organizations.

    PubMed

    Linder, Deborah E; Siebens, Hannah C; Mueller, Megan K; Gibbs, Debra M; Freeman, Lisa M

    2017-08-01

    Animal-assisted intervention (AAI) programs are increasing in popularity, but it is unknown to what extent therapy animal organizations that provide AAI and the hospitals and eldercare facilities they work with implement effective animal health and safety policies to ensure safety of both animals and humans. Our study objective was to survey hospitals, eldercare facilities, and therapy animal organizations on their AAI policies and procedures. A survey of United States hospitals, eldercare facilities, and therapy animal organizations was administered to assess existing health and safety policies related to AAI programs. Forty-five eldercare facilities, 45 hospitals, and 27 therapy animal organizations were surveyed. Health and safety policies varied widely and potentially compromised human and animal safety. For example, 70% of therapy animal organizations potentially put patients at risk by allowing therapy animals eating raw meat diets to visit facilities. In general, hospitals had stricter requirements than eldercare facilities. This information suggests that there are gaps between the policies of facilities and therapy animal organizations compared with recent guidelines for animal visitation in hospitals. Facilities with AAI programs need to review their policies to address recent AAI guidelines to ensure the safety of animals and humans involved. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  17. Integrated Framework for Patient Safety and Energy Efficiency in Healthcare Facilities Retrofit Projects.

    PubMed

    Mohammadpour, Atefeh; Anumba, Chimay J; Messner, John I

    2016-07-01

    There is a growing focus on enhancing energy efficiency in healthcare facilities, many of which are decades old. Since replacement of all aging healthcare facilities is not economically feasible, the retrofitting of these facilities is an appropriate path, which also provides an opportunity to incorporate energy efficiency measures. In undertaking energy efficiency retrofits, it is vital that the safety of the patients in these facilities is maintained or enhanced. However, the interactions between patient safety and energy efficiency have not been adequately addressed to realize the full benefits of retrofitting healthcare facilities. To address this, an innovative integrated framework, the Patient Safety and Energy Efficiency (PATSiE) framework, was developed to simultaneously enhance patient safety and energy efficiency. The framework includes a step -: by -: step procedure for enhancing both patient safety and energy efficiency. It provides a structured overview of the different stages involved in retrofitting healthcare facilities and improves understanding of the intricacies associated with integrating patient safety improvements with energy efficiency enhancements. Evaluation of the PATSiE framework was conducted through focus groups with the key stakeholders in two case study healthcare facilities. The feedback from these stakeholders was generally positive, as they considered the framework useful and applicable to retrofit projects in the healthcare industry. © The Author(s) 2016.

  18. Safe design of healthcare facilities

    PubMed Central

    Reiling, J

    2006-01-01

    The physical environment has a significant impact on health and safety; however, hospitals have not been designed with the explicit goal of enhancing patient safety through facility design. In April 2002, St Joseph's Community Hospital of West Bend, a member of SynergyHealth, brought together leaders in healthcare and systems engineering to develop a set of safety‐driven facility design recommendations and principles that would guide the design of a new hospital facility focused on patient safety. By introducing safety‐driven innovations into the facility design process, environmental designers and healthcare leaders will be able to make significant contributions to patient safety. PMID:17142606

  19. 76 FR 17627 - Sunshine Act Meeting Postponed

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-30

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Sunshine Act Meeting Postponed AGENCY: Defense Nuclear Facilities Safety Board. ACTION: Notice of public meeting postponement. SUMMARY: The Defense Nuclear Facilities Safety Board (Board) published a document in the Federal Register of March 3, 2011 (76 FR 11764...

  20. 77 FR 14007 - Sunshine Act Meeting Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-08

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Sunshine Act Meeting Notice Federal Register CITATION OF... THE MEETING: The Defense Nuclear Facilities Safety Board (Board) is expanding the matters to be.../ resolution of safety and technical issues across the defense nuclear facilities complex. Since this panel...

  1. Methanol production from Eucalyptus wood chips. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fishkind, H.H.

    This feasibility study includes all phases of methanol production from seedling to delivery of finished methanol. The study examines: production of 55 million, high quality, Eucalyptus seedlings through tissue culture; establishment of a Eucalyptus energy plantation on approximately 70,000 acres; engineering for a 100 million gallon-per-day methanol production facility; potential environmental impacts of the whole project; safety and health aspects of producing and using methanol; and development of site specific cost estimates.

  2. U.S. Nuclear Weapons: Changes in Policy and Force Structure

    DTIC Science & Technology

    2008-01-23

    Pinellas Plant , in Clearwater, FL; and the Pantex Plant near Amarillo, TX. These facilities were also operated by industrial contractors. Finally, the...These included the Rocky Flats Plant , outside Denver, CO; the Kansas City Plant , near Kansas City, MO; the Mound Plant , near Dayton OH; the...In 1988, DOE closed the nuclear reactors at Hanford and Savannah River, in response to safety concerns. The Rocky Flats Plant , which produced the

  3. Fire safety of ground-based space facilities on the spaceport ;Vostochny;

    NASA Astrophysics Data System (ADS)

    Artamonov, Vladimir S.; Gordienko, Denis M.; Melikhov, Anatoly S.

    2017-06-01

    The facilities of the spaceport ;Vostochny; and the innovative technologies for fire safety to be implemented are considered. The planned approaches and prospects for fire safety ensuring at the facilities of the spaceport ;Vostochny; are presented herein, based on the study of emergency situations having resulted in fire accidents and explosion cases at the facilities supporting space vehicles operation.

  4. 75 FR 27228 - Proposed FOIA Fee Schedule Update

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD 10 CFR Part 1703 Proposed FOIA Fee Schedule Update AGENCY: Defense Nuclear Facilities Safety Board. ACTION: Notice of proposed rulemaking. SUMMARY: Pursuant to 10 CFR 1703.107(b)(6) of the Board's regulations, the Defense Nuclear Facilities Safety Board is...

  5. 77 FR 41258 - FOIA Fee Schedule Update

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-13

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD 10 CFR Part 1703 FOIA Fee Schedule Update AGENCY: Defense Nuclear Facilities Safety Board. ACTION: Establishment of FOIA Fee Schedule. SUMMARY: The Defense Nuclear Facilities Safety Board is publishing its Freedom of Information Act (FOIA) Fee Schedule Update pursuant to...

  6. 76 FR 28194 - Proposed FOIA Fee Schedule Update

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-16

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD 10 CFR Part 1703 Proposed FOIA Fee Schedule Update AGENCY: Defense Nuclear Facilities Safety Board. ACTION: Notice of proposed rulemaking. SUMMARY: Pursuant to 10 CFR 1703.107(b)(6) of the Board's regulations, the Defense Nuclear Facilities Safety Board is...

  7. 76 FR 43819 - FOIA Fee Schedule Update

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-22

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD 10 CFR Part 1703 FOIA Fee Schedule Update AGENCY: Defense Nuclear Facilities Safety Board. ACTION: Establishment of FOIA Fee Schedule. SUMMARY: The Defense Nuclear Facilities Safety Board is publishing its Freedom of Information Act (FOIA) Fee Schedule Update pursuant to...

  8. 78 FR 20625 - Extension of Hearing Record Closure Date

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-05

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Extension of Hearing Record Closure Date AGENCY: Defense Nuclear Facilities Safety Board. ACTION: Extension of hearing record closure date. SUMMARY: The Defense Nuclear Facilities Safety Board (Board) published a document in the Federal Register on January 22, 2013...

  9. 77 FR 65871 - Extension of Hearing Record Closure Date

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-31

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Extension of Hearing Record Closure Date AGENCY: Defense Nuclear Facilities Safety Board. ACTION: Extension of hearing record closure date. SUMMARY: The Defense Nuclear Facilities Safety Board (Board) published a document in the Federal Register on August 15, 2012...

  10. 78 FR 1206 - Second Extension of Hearing Record Closure Date

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-08

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Second Extension of Hearing Record Closure Date AGENCY: Defense Nuclear Facilities Safety Board. ACTION: Second extension of hearing record closure date. SUMMARY: The Defense Nuclear Facilities Safety Board (Board) published a document in the Federal Register on...

  11. Medicare and Medicaid Programs; Emergency Preparedness Requirements for Medicare and Medicaid Participating Providers and Suppliers. Final rule.

    PubMed

    2016-09-16

    This final rule establishes national emergency preparedness requirements for Medicare- and Medicaid-participating providers and suppliers to plan adequately for both natural and man-made disasters, and coordinate with federal, state, tribal, regional, and local emergency preparedness systems. It will also assist providers and suppliers to adequately prepare to meet the needs of patients, residents, clients, and participants during disasters and emergency situations. Despite some variations, our regulations will provide consistent emergency preparedness requirements, enhance patient safety during emergencies for persons served by Medicare- and Medicaid-participating facilities, and establish a more coordinated and defined response to natural and man-made disasters.

  12. 78 FR 65978 - Draft Revised Strategic Plan for FY 2014-2018

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-04

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Draft Revised Strategic Plan for FY 2014-2018 AGENCY: Defense Nuclear Facilities Safety Board. ACTION: Notice. SUMMARY: In accordance with Office of Management and Budget Circular No. A-11, the Defense Nuclear Facilities Safety Board (DNFSB) is soliciting...

  13. 75 FR 4794 - Draft Revised Strategic Plan for FY 2010-2015

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-29

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Draft Revised Strategic Plan for FY 2010-2015 AGENCY: Defense Nuclear Facilities Safety Board. ACTION: Notice. SUMMARY: In accordance with OMB Circular No. A-11, the Defense Nuclear Facilities Safety Board is soliciting comments from all interested and potentially...

  14. Annual Report To Congress. Department of Energy Activities Relating to the Defense Nuclear Facilities Safety Board, Calendar Year 2003

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2004-02-28

    The Department of Energy (Department) submits an Annual Report to Congress each year detailing the Department’s activities relating to the Defense Nuclear Facilities Safety Board (Board), which provides advice and recommendations to the Secretary of Energy (Secretary) regarding public health and safety issues at the Department’s defense nuclear facilities. In 2003, the Department continued ongoing activities to resolve issues identified by the Board in formal recommendations and correspondence, staff issue reports pertaining to Department facilities, and public meetings and briefings. Additionally, the Department is implementing several key safety initiatives to address and prevent safety issues: safety culture and review ofmore » the Columbia accident investigation; risk reduction through stabilization of excess nuclear materials; the Facility Representative Program; independent oversight and performance assurance; the Federal Technical Capability Program (FTCP); executive safety initiatives; and quality assurance activities. The following summarizes the key activities addressed in this Annual Report.« less

  15. 75 FR 66683 - Defense Federal Acquisition Regulation Supplement; Safety of Facilities, Infrastructure, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ... operation of facilities, infrastructure, and equipment for use by DoD military or civilian should be...-7004, Safety of Facilities, Infrastructure, and Equipment for Military Operations. DFARS 246.270-1... operation of facilities. This includes contracts for facilities, infrastructure, and equipment configured...

  16. 48 CFR 252.246-7004 - Safety of Facilities, Infrastructure, and Equipment for Military Operations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...: SAFETY OF FACILITIES, INFRASTRUCTURE, AND EQUIPMENT FOR MILITARY OPERATIONS (OCT 2010) (a) Definition... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Safety of Facilities, Infrastructure, and Equipment for Military Operations. 252.246-7004 Section 252.246-7004 Federal Acquisition...

  17. 48 CFR 246.270 - Safety of facilities, infrastructure, and equipment for military operations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ASSURANCE Contract Quality Requirements 246.270 Safety of facilities, infrastructure, and equipment for... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Safety of facilities, infrastructure, and equipment for military operations. 246.270 Section 246.270 Federal Acquisition Regulations...

  18. Safety Information, Transportation & Public Facilities, State of Alaska

    Science.gov Websites

    Department of Transportation & Public Facilities/ Safety Information Search DOT&PF State of Alaska DOT&PF> Safety Information DOT&PF Safety Information link to 511 511.alaska.gov - Traveler Information link to AHSO Alaska Highway Safety Office link to HSIP Highway Safety Improvement Program link to

  19. Safety analysis, 200 Area, Savannah River Plant: Separations area operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perkins, W.C.; Lee, R.; Allen, P.M.

    1991-07-01

    The nev HB-Line, located on the fifth and sixth levels of Building 221-H, is designed to replace the aging existing HB-Line production facility. The nev HB-Line consists of three separate facilities: the Scrap Recovery Facility, the Neptunium Oxide Facility, and the Plutonium Oxide Facility. There are three separate safety analyses for the nev HB-Line, one for each of the three facilities. These are issued as supplements to the 200-Area Safety Analysis (DPSTSA-200-10). These supplements are numbered as Sup 2A, Scrap Recovery Facility, Sup 2B, Neptunium Oxide Facility, Sup 2C, Plutonium Oxide Facility. The subject of this safety analysis, the, Plutoniummore » Oxide Facility, will convert nitrate solutions of {sup 238}Pu to plutonium oxide (PuO{sub 2}) powder. All these new facilities incorporate improvements in: (1) engineered barriers to contain contamination, (2) barriers to minimize personnel exposure to airborne contamination, (3) shielding and remote operations to decrease radiation exposure, and (4) equipment and ventilation design to provide flexibility and improved process performance.« less

  20. Final Environmental Planning Technical Report. Public Services and Facilities

    DTIC Science & Technology

    1984-06-01

    The marked patrol units have a life expectancy of 2 years (90,000 to 100,000 miles) and about one-half of the 15 units are replaced each year...much more visible police force, longer car life , and lower maintenance costs. The proposal has received support from within the City government, but...Burns, Albin, and Carpenter; the Air Force Military Assistance to Safety and Traffic (MAST) helicopter service; Flight for Life ; and several other suppor

  1. Overview of Energy Systems' safety analysis report programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-03-01

    The primary purpose of an Safety Analysis Report (SAR) is to provide a basis for judging the adequacy of a facility's safety. The SAR documents the safety analyses that systematically identify the hazards posed by the facility, analyze the consequences and risk of potential accidents, and describe hazard control measures that protect the health and safety of the public and employees. In addition, some SARs document, as Technical Safety Requirements (TSRs, which include Technical Specifications and Operational Safety Requirements), technical and administrative requirements that ensure the facility is operated within prescribed safety limits. SARs also provide conveniently summarized information thatmore » may be used to support procedure development, training, inspections, and other activities necessary to facility operation. This Overview of Energy Systems Safety Analysis Report Programs'' Provides an introduction to the programs and processes used in the development and maintenance of the SARs. It also summarizes some of the uses of the SARs within Energy Systems and DOE.« less

  2. 33 CFR 147.815 - ExxonMobil Hoover Floating OCS Facility safety zone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false ExxonMobil Hoover Floating OCS... HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.815 ExxonMobil Hoover Floating OCS Facility safety zone. (a) Description. The ExxonMobil Hoover Floating OCS Facility, Alaminos...

  3. 33 CFR 147.815 - ExxonMobil Hoover Floating OCS Facility safety zone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false ExxonMobil Hoover Floating OCS... HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.815 ExxonMobil Hoover Floating OCS Facility safety zone. (a) Description. The ExxonMobil Hoover Floating OCS Facility, Alaminos...

  4. 33 CFR 147.815 - ExxonMobil Hoover Floating OCS Facility safety zone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false ExxonMobil Hoover Floating OCS... HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.815 ExxonMobil Hoover Floating OCS Facility safety zone. (a) Description. The ExxonMobil Hoover Floating OCS Facility, Alaminos...

  5. 33 CFR 147.815 - ExxonMobil Hoover Floating OCS Facility safety zone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false ExxonMobil Hoover Floating OCS... HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.815 ExxonMobil Hoover Floating OCS Facility safety zone. (a) Description. The ExxonMobil Hoover Floating OCS Facility, Alaminos...

  6. 76 FR 20588 - FDA Food Safety Modernization Act: Focus on Preventive Controls for Facilities; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    .... FDA-2011-N-0251] FDA Food Safety Modernization Act: Focus on Preventive Controls for Facilities... comment. SUMMARY: The Food and Drug Administration (FDA) is announcing a public meeting entitled ``FDA... controls for facilities provisions of the recently enacted FDA Food Safety Modernization Act (FSMA). FDA is...

  7. 75 FR 43495 - Sunshine Act Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-26

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Sunshine Act Notice AGENCY: Defense Nuclear Facilities..., structures, and components, and (5) safety-related design aspects of new facilities or modifications of existing facilities needed to deliver high-level waste feed. The Board will be prepared to accept any other...

  8. Canister Storage Building (CSB) Hazard Analysis Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    POWERS, T.B.

    2000-03-16

    This report describes the methodology used in conducting the Canister Storage Building (CSB) Hazard Analysis to support the final CSB Safety Analysis Report and documents the results. This report describes the methodology used in conducting the Canister Storage Building (CSB) hazard analysis to support the CSB final safety analysis report (FSAR) and documents the results. The hazard analysis process identified hazardous conditions and material-at-risk, determined causes for potential accidents, identified preventive and mitigative features, and qualitatively estimated the frequencies and consequences of specific occurrences. The hazard analysis was performed by a team of cognizant CSB operations and design personnel, safetymore » analysts familiar with the CSB, and technical experts in specialty areas. The material included in this report documents the final state of a nearly two-year long process. Attachment A provides two lists of hazard analysis team members and describes the background and experience of each. The first list is a complete list of the hazard analysis team members that have been involved over the two-year long process. The second list is a subset of the first list and consists of those hazard analysis team members that reviewed and agreed to the final hazard analysis documentation. The material included in this report documents the final state of a nearly two-year long process involving formal facilitated group sessions and independent hazard and accident analysis work. The hazard analysis process led to the selection of candidate accidents for further quantitative analysis. New information relative to the hazards, discovered during the accident analysis, was incorporated into the hazard analysis data in order to compile a complete profile of facility hazards. Through this process, the results of the hazard and accident analyses led directly to the identification of safety structures, systems, and components, technical safety requirements, and other controls required to protect the public, workers, and environment.« less

  9. Emergency and backup power supplies at Department of Energy facilities: Augmented Evaluation Team -- Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report documents the results of the Defense Programs (DP) Augmented Evaluation Team (AET) review of emergency and backup power supplies (i.e., generator, uninterruptible power supply, and battery systems) at DP facilities. The review was conducted in response to concerns expressed by former Secretary of Energy James D. Watkins over the number of incidents where backup power sources failed to provide electrical power during tests or actual demands. The AET conducted a series of on-site reviews for the purpose of understanding the design, operation, maintenance, and safety significance of emergency and backup power (E&BP) supplies. The AET found that themore » quality of programs related to maintenance of backup power systems varies greatly among the sites visited, and often among facilities at the same site. No major safety issues were identified. However, there are areas where the AET believes the reliability of emergency and backup power systems can and should be improved. Recommendations for improving the performance of E&BP systems are provided in this report. The report also discusses progress made by Management and Operating (M&O) contractors to improve the reliability of backup sources used in safety significant applications. One area that requires further attention is the analysis and understanding of the safety implications of backup power equipment. This understanding is needed for proper graded-approach implementation of Department of Energy (DOE) Orders, and to help ensure that equipment important to the safety of DOE workers, the public, and the environment is identified, classified, recognized, and treated as such by designers, users, and maintainers. Another area considered important for improving E&BP system performance is the assignment of overall ownership responsibility and authority for ensuring that E&BP equipment performs adequately and that reliability and availability are maintained at acceptable levels.« less

  10. An Overview of INEL Fusion Safety R&D Facilities

    NASA Astrophysics Data System (ADS)

    McCarthy, K. A.; Smolik, G. R.; Anderl, R. A.; Carmack, W. J.; Longhurst, G. R.

    1997-06-01

    The Fusion Safety Program at the Idaho National Engineering Laboratory has the lead for fusion safety work in the United States. Over the years, we have developed several experimental facilities to provide data for fusion reactor safety analyses. We now have four major experimental facilities that provide data for use in safety assessments. The Steam-Reactivity Measurement System measures hydrogen generation rates and tritium mobilization rates in high-temperature (up to 1200°C) fusion relevant materials exposed to steam. The Volatilization of Activation Product Oxides Reactor Facility provides information on mobilization and transport and chemical reactivity of fusion relevant materials at high temperature (up to 1200°C) in an oxidizing environment (air or steam). The Fusion Aerosol Source Test Facility is a scaled-up version of VAPOR. The ion-implanta-tion/thermal-desorption system is dedicated to research into processes and phenomena associated with the interaction of hydrogen isotopes with fusion materials. In this paper we describe the capabilities of these facilities.

  11. Final report of the decontamination and decommissioning of the BORAX-V facility turbine building

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arave, A.E.; Rodman, G.R.

    1992-12-01

    The Boiling Water Reactor Experiment (BORAX)-V Facility Turbine Building Decontamination and Decommissioning (D&D) Project is described in this report. The BORAX series of five National Reactor Testing Station (NRTS) reactors pioneered intensive work on boiling water reactor (BWR) experiments conducted between 1953 and 1964. Facility characterization, decision analyses, and D&D plans for the turbine building were prepared from 1979 through 1990. D&D activities of the turbine building systems were initiated in November of 1988 and completed with the demolition and backfill of the concrete foundation in March 1992. Due to the low levels of radioactivity and the absence of loosemore » contamination, the D&D activities were completed with no radiation exposure to the workers. The D&D activities were performed in a manner that no radiological health or safety hazard to the public or to personnel at the Idaho National Engineering Laboratory (INEL) remain.« less

  12. Final report of the decontamination and decommissioning of the BORAX-V facility turbine building

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arave, A.E.; Rodman, G.R.

    1992-12-01

    The Boiling Water Reactor Experiment (BORAX)-V Facility Turbine Building Decontamination and Decommissioning (D D) Project is described in this report. The BORAX series of five National Reactor Testing Station (NRTS) reactors pioneered intensive work on boiling water reactor (BWR) experiments conducted between 1953 and 1964. Facility characterization, decision analyses, and D D plans for the turbine building were prepared from 1979 through 1990. D D activities of the turbine building systems were initiated in November of 1988 and completed with the demolition and backfill of the concrete foundation in March 1992. Due to the low levels of radioactivity and themore » absence of loose contamination, the D D activities were completed with no radiation exposure to the workers. The D D activities were performed in a manner that no radiological health or safety hazard to the public or to personnel at the Idaho National Engineering Laboratory (INEL) remain.« less

  13. 33 CFR 165.1406 - Safety Zone: Pacific Missile Range Facility (PMRF), Barking Sands, Island of Kauai, Hawaii.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Safety Zone: Pacific Missile Range Facility (PMRF), Barking Sands, Island of Kauai, Hawaii. 165.1406 Section 165.1406 Navigation and... Areas Fourteenth Coast Guard District § 165.1406 Safety Zone: Pacific Missile Range Facility (PMRF...

  14. 33 CFR 165.1406 - Safety Zone: Pacific Missile Range Facility (PMRF), Barking Sands, Island of Kauai, Hawaii.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Safety Zone: Pacific Missile Range Facility (PMRF), Barking Sands, Island of Kauai, Hawaii. 165.1406 Section 165.1406 Navigation and... Areas Fourteenth Coast Guard District § 165.1406 Safety Zone: Pacific Missile Range Facility (PMRF...

  15. 33 CFR 165.1406 - Safety Zone: Pacific Missile Range Facility (PMRF), Barking Sands, Island of Kauai, Hawaii.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety Zone: Pacific Missile Range Facility (PMRF), Barking Sands, Island of Kauai, Hawaii. 165.1406 Section 165.1406 Navigation and... Areas Fourteenth Coast Guard District § 165.1406 Safety Zone: Pacific Missile Range Facility (PMRF...

  16. 33 CFR 165.1406 - Safety Zone: Pacific Missile Range Facility (PMRF), Barking Sands, Island of Kauai, Hawaii.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Safety Zone: Pacific Missile Range Facility (PMRF), Barking Sands, Island of Kauai, Hawaii. 165.1406 Section 165.1406 Navigation and... Areas Fourteenth Coast Guard District § 165.1406 Safety Zone: Pacific Missile Range Facility (PMRF...

  17. 33 CFR 165.1406 - Safety Zone: Pacific Missile Range Facility (PMRF), Barking Sands, Island of Kauai, Hawaii.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Safety Zone: Pacific Missile Range Facility (PMRF), Barking Sands, Island of Kauai, Hawaii. 165.1406 Section 165.1406 Navigation and... Areas Fourteenth Coast Guard District § 165.1406 Safety Zone: Pacific Missile Range Facility (PMRF...

  18. 33 CFR 147.815 - ExxonMobil Hoover Floating OCS Facility safety zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false ExxonMobil Hoover Floating OCS... Floating OCS Facility safety zone. (a) Description. The ExxonMobil Hoover Floating OCS Facility, Alaminos... (1640.4 feet) from each point on the structure's outer edge is a safety zone. (b) Regulation. No vessel...

  19. Nuclear Warheads: The Reliable Replacement Warhead program and the Life Extension Program

    DTIC Science & Technology

    2007-12-03

    eliminate the need for ESD controls.”67 CRS-22 68 The Defense Nuclear Facilities Safety Board was created by Congress 1988 “as an independent oversight...public health and safety’ at DOE’s defense nuclear facilities .” U.S. Defense Nuclear Facilities Safety Board. “Who We Are,” at [http://www.dnfsb.gov...about/index.html]. 69 Personal communication, Kent Fortenberry, Technical Director, Defense Nuclear Facilities Safety Board, September 14, 2006. 70

  20. Nuclear Warheads: The Reliable Replacement Warhead Program and the Life Extension Program

    DTIC Science & Technology

    2007-04-04

    Information provided by Pantex Plant, Sept. 19, 2006. 50 The Defense Nuclear Facilities Safety Board was created by Congress 1988 “as an independent...protection of public health and safety’ at DOE’s defense nuclear facilities .” U.S. Defense Nuclear Facilities Safety Board. “Who We Are,” at [http...www.dnfsb.gov/about/index.html]. 51 Personal communication, Kent Fortenberry, Technical Director, Defense Nuclear Facilities Safety Board, Sept. 14, 2006

  1. Recent Upgrades at the Safety and Tritium Applied Research Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cadwallader, Lee Charles; Merrill, Brad Johnson; Stewart, Dean Andrew

    This paper gives a brief overview of the Safety and Tritium Applied Research (STAR) facility operated by the Fusion Safety Program (FSP) at the Idaho National Laboratory (INL). FSP researchers use the STAR facility to carry out experiments in tritium permeation and retention in various fusion materials, including wall armor tile materials. FSP researchers also perform other experimentation as well to support safety assessment in fusion development. This lab, in its present two-building configuration, has been in operation for over ten years. The main experiments at STAR are briefly described. This paper discusses recent work to enhance personnel safety atmore » the facility. The STAR facility is a Department of Energy less than hazard category 3 facility; the personnel safety approach calls for ventilation and tritium monitoring for radiation protection. The tritium areas of STAR have about 4 to 12 air changes per hour, with air flow being once through and then routed to the facility vent stack. Additional radiation monitoring has been installed to read the laboratory room air where experiments with tritium are conducted. These ion chambers and bubblers are used to verify that no significant tritium concentrations are present in the experiment rooms. Standby electrical power has been added to the facility exhaust blower so that proper ventilation will now operate during commercial power outages as well as the real-time tritium air monitors.« less

  2. Developing and deploying a patient safety program in a large health care delivery system: you can't fix what you don't know about.

    PubMed

    Bagian, J P; Lee, C; Gosbee, J; DeRosier, J; Stalhandske, E; Eldridge, N; Williams, R; Burkhardt, M

    2001-10-01

    The Veterans Administration (VA) identified patient safety as a high-priority issue in 1997 and implemented the Patient Safety Improvement (PSI) initiative throughout its entire health care system. In spring 1998 the External Panel on Patient Safety System Design recommended alternative methods to enhance reporting and thereby improve patient safety. REDESIGNING THE PSI INITIATIVE: The VA began redesigning the PSI initiative in late 1998. The dedicated National Center for Patient Safety (NCPS) was established. Using the panel's recommendations as a jumping-off point, NCPS began to identify known and suspected obstacles to implementation (such as possible punitive consequences and additional workload). NCPS adopted a prioritization scoring method, the Safety Assessment Code (SAC) Matrix, for close calls and adverse events, which requires assessing the event's actual or potential severity and the probability of occurrence. The SAC Matrix specifies actions that must be taken for given scores. Use of the SAC score permits a consistent handling of reports throughout the VA system and a rational selection of cases to be considered. A system for performing a root cause analysis (RCA) was developed to guide caregivers at the frontline. This system includes a computer-aided tool, a flipbook containing a series of six questions, and reporting of the findings back to the reporter. The final step requires that the facility's chief executive officer "concur" or "nonconcur" on each recommended corrective action. The RCA team outlines how the effectiveness of the corrective action will be evaluated to verify that the action has had the intended effect, and it ascertains that there were no unintended negative consequences. Based on successful implementation in two pilots, full-scale national rollout to the 173 facilities began in April 2000 and was concluded by the end of August 2000. NCPS supplied 3 days of training for individuals at each facility. The training included didactic components, an introduction to human factors engineering concepts, and small- and large-group simulation exercises. Facility leaders were reminded of the necessity to reinforce the point that assignment to an RCA team was considered an important duty. It is essential to design and implement a system that takes into account the concerns of the frontline personnel and is aimed at being a tool for learning and not accountability. The system must have as its primary focus the dissemination of positive actions that reduce or eliminate vulnerabilities that have been identified, not a counting exercise of the number of reports.

  3. Health and safety programs for art and theater schools.

    PubMed

    McCann, M

    2001-01-01

    A wide variety of health and safety hazards exist in schools and colleges of art and theater due to a lack of formal health and safety programs and a failure to include health and safety concerns during planning of new facilities and renovation of existing facilities. This chapter discusses the elements of a health and safety program as well as safety-related structural and equipment needs that should be in the plans for any school of art or theater. These elements include curriculum content, ventilation, storage, housekeeping, waste management, fire and explosion prevention, machine and tool safety, electrical safety, noise, heat stress, and life safety and emergency procedures and equipment. Ideally, these elements should be incorporated into the plans for any new facilities, but ongoing programs can also benefit from a review of existing health and safety programs.

  4. EDITORIAL: Safety aspects of fusion power plants

    NASA Astrophysics Data System (ADS)

    Kolbasov, B. N.

    2007-07-01

    This special issue of Nuclear Fusion contains 13 informative papers that were initially presented at the 8th IAEA Technical Meeting on Fusion Power Plant Safety held in Vienna, Austria, 10-13 July 2006. Following recommendation from the International Fusion Research Council, the IAEA organizes Technical Meetings on Fusion Safety with the aim to bring together experts to discuss the ongoing work, share new ideas and outline general guidance and recommendations on different issues related to safety and environmental (S&E) aspects of fusion research and power facilities. Previous meetings in this series were held in Vienna, Austria (1980), Ispra, Italy (1983), Culham, UK (1986), Jackson Hole, USA (1989), Toronto, Canada (1993), Naka, Japan (1996) and Cannes, France (2000). The recognized progress in fusion research and technology over the last quarter of a century has boosted the awareness of the potential of fusion to be a practically inexhaustible and clean source of energy. The decision to construct the International Thermonuclear Experimental Reactor (ITER) represents a landmark in the path to fusion power engineering. Ongoing activities to license ITER in France look for an adequate balance between technological and scientific deliverables and complying with safety requirements. Actually, this is the first instance of licensing a representative fusion machine, and it will very likely shape the way in which a more common basis for establishing safety standards and policies for licensing future fusion power plants will be developed. Now that ITER licensing activities are underway, it is becoming clear that the international fusion community should strengthen its efforts in the area of designing the next generations of fusion power plants—demonstrational and commercial. Therefore, the 8th IAEA Technical Meeting on Fusion Safety focused on the safety aspects of power facilities. Some ITER-related safety issues were reported and discussed owing to their potential importance for the fusion power plant research programmes. The objective of this Technical Meeting was to examine in an integrated way all the safety aspects anticipated to be relevant to the first fusion power plant prototype expected to become operational by the middle of the century, leading to the first generation of economically viable fusion power plants with attractive S&E features. After screening by guest editors and consideration by referees, 13 (out of 28) papers were accepted for publication. They are devoted to the following safety topics: power plant safety; fusion specific operational safety approaches; test blanket modules; accident analysis; tritium safety and inventories; decommissioning and waste. The paper `Main safety issues at the transition from ITER to fusion power plants' by W. Gulden et al (EU) highlights the differences between ITER and future fusion power plants with magnetic confinement (off-site dose acceptance criteria, consequences of accidents inside and outside the design basis, occupational radiation exposure, and waste management, including recycling and/or final disposal in repositories) on the basis of the most recent European fusion power plant conceptual study. Ongoing S&E studies within the US inertial fusion energy (IFE) community are focusing on two design concepts. These are the high average power laser (HAPL) programme for development of a dry-wall, laser-driven IFE power plant, and the Z-pinch IFE programme for the production of an economically-attractive power plant using high-yield Z-pinch-driven targets. The main safety issues related to these programmes are reviewed in the paper `Status of IFE safety and environmental activities in the US' by S. Reyes et al (USA). The authors propose future directions of research in the IFE S&E area. In the paper `Recent accomplishments and future directions in the US Fusion Safety & Environmental Program' D. Petti et al (USA) state that the US fusion programme has long recognized that the S&E potential of fusion can be attained by prudent materials selection, judicious design choices, and integration of safety requirements into the design of the facility. To achieve this goal, S&E research is focused on understanding the behaviour of the largest sources of radioactive and hazardous materials in a fusion facility, understanding how energy sources in a fusion facility could mobilize those materials, developing integrated state-of-the-art S&E computer codes and risk tools for safety assessment, and evaluating and improving fusion facility design in terms of accident safety, worker safety, and waste disposal. There are three papers considering safety issues of the test blanket modules (TBM) producing tritium to be installed in ITER. These modules represent different concepts of demonstration fusion power facilities (DEMO). L. Boccaccini et al (Germany) analyses the possibility of jeopardizing the ITER safety under specific accidents in the European helium-cooled pebble-bed TBM, e.g. pressurization of the vacuum vessel (VV), hydrogen production from the Be-steam reaction, the possible interconnection between the port cell and VV causing air ingress. Safety analysis is also presented for Chinese TBM with a helium-cooled solid breeder to be tested in ITER by Z. Chen et al (China). Radiological inventories, afterheat, waste disposal ratings, electromagnetic characteristics, LOCA and tritium safety management are considered. An overview of a preliminary safety analysis performed for a US proposed TBM is presented by B. Merrill et al (USA). This DEMO relevant dual coolant liquid lead-lithium TBM has been explored both in the USA and EU. T. Pinna et al (Italy) summarize the six-year development of a failure rate database for fusion specific components on the basis of data coming from operating experience gained in various fusion laboratories. The activity began in 2001 with the study of the Joint European Torus vacuum and active gas handling systems. Two years later the neutral beam injectors and the power supply systems were considered. This year the ion cyclotron resonant heating system is under evaluation. I. Cristescu et al (Germany) present the paper `Tritium inventories and tritium safety design principles for the fuel cycle of ITER'. She and her colleagues developed the dynamic mathematical model (TRIMO) for tritium inventory evaluation within each system of the ITER fuel cycle in various operational scenarios. TRIMO is used as a tool for trade-off studies within the fuel cycle systems with the final goal of global tritium inventory minimization. M. Matsuyama et al (Japan) describes a new technique for in situ quantitative measurements of high-level tritium inventory and its distribution in the VV and tritium systems of ITER and future fusion reactors. This technique is based on utilization of x-rays induced by beta-rays emitting from tritium species. It was applied to three physical states of high-level tritium: to gaseous, aqueous and solid tritium retained on/in various materials. Finally, there are four papers devoted to safety issues in fusion reactor decommissioning and waste management. A paper by R. Pampin et al (UK) provides the revised radioactive waste analysis of two models in the PPCS. Another paper by M. Zucchetti (Italy), S.A. Bartenev (Russia) et al describes a radiochemical extraction technology for purification of V-Cr-Ti alloy components from activation products to the dose rate of 10 µSv/h allowing their clearance or hands-on recycling which has been developed and tested in laboratory stationary conditions. L. El-Guebaly (USA) and her colleagues submitted two papers. In the first paper she optimistically considers the possibility of replacing the disposal of fusion power reactor waste with recycling and clearance. Her second paper considers the implications of new clearance guidelines for nuclear applications, particularly for slightly irradiated fusion materials.

  5. Building 9401-2 Plating Shop Surveillance and Maintenance Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1999-05-01

    This document provides a plan for implementing surveillance and maintenance (S and M) activities to ensure that Building 9401-2 Plating Shop is maintained in a cost effective and environmentally secure configuration until subsequent closure during the final disposition phase of decommissioning. U.S. Department of Energy (DOE) G430.1A-2, Surveillance and Maintenance During Facility Disposition (1997), was used as guidance in the development of this plan. The S and M Plan incorporates DOE O 430.1A, Life Cycle Asset Management (LCAM) (1998a) direction to provide for conducting surveillance and maintenance activities required to maintain the facility and remaining hazardous and radioactive materials, wastes,more » and contamination in a stable and known condition pending facility disposition. Recommendations in the S and M plan have been made that may not be requirement-based but would reduce the cost and frequency of surveillance and maintenance activities. During the course of S and M activities, the facility's condition may change so as to present an immediate or developing hazard or unsatisfactory condition. Corrective action should be coordinated with the appropriate support organizations using the requirements and guidance stated in procedure Y10-202, Rev. 1, Integrated Safety Management Program, (Lockheed Martin Energy Systems, Inc. (LMES), 1998a) implemented at the Oak Ridge Y-12 Plant and the methodology of the Nuclear Operations Conduct of Operations Manual (LMES, 1999) for the Depleted Uranium Operations (DUO) organization. The key S and M objectives applicable to the Plating Shop are to: Ensure adequate containment of remaining residual material in exhaust stacks and outside process piping, stored chemicals awaiting offsite shipment, and items located in the Radioactive Material Area (RMA); Provide access control into the facility and physical safety to S and M personnel; Maintain the facility in a manner that will protect the public, the environment, and the S and M personnel; Provide an S and M plan which identifies and complies with applicable environmental, safety, and health safeguards and security requirements; and Provide a cost effective S and M program for the plating shop, Building 9401-2.« less

  6. 78 FR 49262 - Sunshine Act Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Sunshine Act Meeting AGENCY: Defense Nuclear Facilities... given of the Defense Nuclear Facilities Safety Board's (Board) public meeting and hearing described... associated with continued operation of aging defense nuclear [[Page 49263

  7. New NRO Eastern Processing Facility at Cape Canaveral Air Force Station Florida. Environmental Assessment:

    DTIC Science & Technology

    2005-08-31

    to the launch complex is considered a hazardous operation. Transportation of fueled payloads will comply with AFSPCMAN 91 - 710 , Range Safety User...April. 45th Space Wing (SW). 1996b. Hazardous Materials Response Plan 32- 3 , Volume I, March. 45th Space Wing (SW). 2001. Integrated Natural...control number. 1. REPORT DATE 31 AUG 2005 2. REPORT TYPE 3 . DATES COVERED 00-00-2005 to 00-00-2005 4. TITLE AND SUBTITLE Final Environmental

  8. 30 CFR 75.1712-2 - Location of surface facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1712-2 Location of surface facilities. Bathhouses, change rooms, and sanitary toilet facilities shall be in a location... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Location of surface facilities. 75.1712-2...

  9. 30 CFR 75.1712-2 - Location of surface facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1712-2 Location of surface facilities. Bathhouses, change rooms, and sanitary toilet facilities shall be in a location... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Location of surface facilities. 75.1712-2...

  10. 30 CFR 75.1712-2 - Location of surface facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1712-2 Location of surface facilities. Bathhouses, change rooms, and sanitary toilet facilities shall be in a location... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Location of surface facilities. 75.1712-2...

  11. 30 CFR 75.1712-2 - Location of surface facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1712-2 Location of surface facilities. Bathhouses, change rooms, and sanitary toilet facilities shall be in a location... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Location of surface facilities. 75.1712-2...

  12. 30 CFR 75.1712-2 - Location of surface facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Location of surface facilities. 75.1712-2... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1712-2 Location of surface facilities. Bathhouses, change rooms, and sanitary toilet facilities shall be in a location...

  13. "Defense-in-Depth" Laser Safety and the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, J J

    The National Ignition Facility (NIF) is the largest and most energetic laser in the world contained in a complex the size of a football stadium. From the initial laser pulse, provided by telecommunication style infrared nanoJoule pulsed lasers, to the final 192 laser beams (1.8 Mega Joules total energy in the ultraviolet) converging on a target the size of a pencil eraser, laser safety is of paramount concern. In addition to this, there are numerous high-powered (Class 3B and 4) diagnostic lasers in use that can potentially send their laser radiation travelling throughout the facility. With individual beam paths ofmore » up to 1500 meters and a workforce of more than one thousand, the potential for exposure is significant. Simple laser safety practices utilized in typical laser labs just don't apply. To mitigate these hazards, NIF incorporates a multi layered approach to laser safety or 'Defense in Depth.' Most typical high-powered laser operations are contained and controlled within a single room using relatively simplistic controls to protect both the worker and the public. Laser workers are trained, use a standard operating procedure, and are required to wear Personal Protective Equipment (PPE) such as Laser Protective Eyewear (LPE) if the system is not fully enclosed. Non-workers are protected by means of posting the room with a warning sign and a flashing light. In the best of cases, a Safety Interlock System (SIS) will be employed which will 'safe' the laser in the case of unauthorized access. This type of laser operation is relatively easy to employ and manage. As the operation becomes more complex, higher levels of control are required to ensure personnel safety. Examples requiring enhanced controls are outdoor and multi-room laser operations. At the NIF there are 192 beam lines and numerous other Class 4 diagnostic lasers that can potentially deliver their hazardous energy to locations far from the laser source. This presents a serious and complex potential hazard to personnel. Because of this, a multilayered approach to safety is taken. This paper presents the philosophy and approach taken at the NIF in the multi-layered 'defense-in-depth' approach to laser safety.« less

  14. Nuclear Regulatory Commission Issuances. Opinions and decisions of the Nuclear Regulatory Commission with selected orders: July 1, 1992--December 31, 1992, Volume 36, Pages 1--396

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-12-31

    This is the thirty-sixth volume of issuances (1-396) of the Nuclear Regulatory Commission and its Atomic Safety and Licensing Boards, Administrative Law Judges, and Office Directors. It covers the period from July 1, 1992-December 31, 1992. Atomic Safety and Licensing Boards are authorized by Section 191 of the Atomic Energy Act of 1954. These Boards, comprised of three members conduct adjudicatory hearings on applications to construct and operate nuclear power plants and related facilities and issue initial decisions which, subject to internal review and appellate procedures, become the final Commission action with respect to those applications. Boards are drawn frommore » the Atomic Safety and Licensing Board Panel, comprised of lawyers, nuclear physicists and engineers, environmentalists, chemists, and economists. The Atomic Energy Commission first established Licensing Boards in 1962 and the Panel in 1967.« less

  15. Highway Safety Manual applied in Missouri - freeway/software.

    DOT National Transportation Integrated Search

    2016-06-01

    AASHTOs Highway Safety Manual (HSM) facilitates the quantitative safety analysis of highway facilities. In a 2014 : supplement, freeway facilities were added to the original HSM manual which allows the modeling of highway : interchanges. This repo...

  16. Safety analysis report for the Waste Storage Facility. Revision 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bengston, S.J.

    1994-05-01

    This safety analysis report outlines the safety concerns associated with the Waste Storage Facility located in the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The three main objectives of the report are: define and document a safety basis for the Waste Storage Facility activities; demonstrate how the activities will be carried out to adequately protect the workers, public, and environment; and provide a basis for review and acceptance of the identified risk that the managers, operators, and owners will assume.

  17. 75 FR 44817 - Notice of Availability of Uranium Enrichment Fuel Cycle Facility Inspection Reports Regarding...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-29

    ... Uranium Enrichment Fuel Cycle Facility Inspection Reports Regarding Louisiana Energy Services, National... Enrichment Branch, Division of Fuel Cycle Safety and Safeguards, Office of Nuclear Material Safety and... Enrichment Branch, Division of Fuel Cycle Safety and Safeguards, Office of Nuclear Material Safety and...

  18. 30 CFR 71.400 - Bathing facilities; change rooms; sanitary flush toilet facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... flush toilet facilities. 71.400 Section 71.400 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-SURFACE COAL MINES AND SURFACE... installations and at the surface worksites of such mine. (Note: Sanitary facilities at surface work areas of...

  19. Flight set 360L007 (STS-33) insulation component. Volume 3: Final release

    NASA Technical Reports Server (NTRS)

    Hicken, Steve

    1990-01-01

    Volume 3 of this postfire report deals with the insulation component of the RSRM. The report is released twice for each flight set. The interim release contract date is on or before 60 days after the last field joint or nozzle to case joint is disassembled at KSC and contain the results of the KSC visual evaluation. The data contained in Volume 3 interim release supersedes the insulation data presented in the KSC 10 day report. The final release contract data is on or before 60 days after the last factory joint is disassembled at the Clearfield H-7 facility and contains the results of all visual evaluations and a thermal safety factor analysis. The data contained in the Volume 3 final release supersedes the interim release and the insulation data presented in the Clearfield 10 day report.

  20. 49 CFR 193.2001 - Scope of part.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES... LNG facilities used in the transportation of gas by pipeline that is subject to the pipeline safety...

  1. Postirradiation Testing Laboratory (327 Building)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kammenzind, D.E.

    A Standards/Requirements Identification Document (S/RID) is the total list of the Environment, Safety and Health (ES and H) requirements to be implemented by a site, facility, or activity. These requirements are appropriate to the life cycle phase to achieve an adequate level of protection for worker and public health and safety, and the environment during design, construction, operation, decontamination and decommissioning, and environmental restoration. S/RlDs are living documents, to be revised appropriately based on change in the site`s or facility`s mission or configuration, a change in the facility`s life cycle phase, or a change to the applicable standards/requirements. S/RIDs encompassmore » health and safety, environmental, and safety related safeguards and security (S and S) standards/requirements related to the functional areas listed in the US Department of Energy (DOE) Environment, Safety and Health Configuration Guide. The Fluor Daniel Hanford (FDH) Contract S/RID contains standards/requirements, applicable to FDH and FDH subcontractors, necessary for safe operation of Project Hanford Management Contract (PHMC) facilities, that are not the direct responsibility of the facility manager (e.g., a site-wide fire department). Facility S/RIDs contain standards/requirements applicable to a specific facility that are the direct responsibility of the facility manager. S/RlDs are prepared by those responsible for managing the operation of facilities or the conduct of activities that present a potential threat to the health and safety of workers, public, or the environment, including: Hazard Category 1 and 2 nuclear facilities and activities, as defined in DOE 5480.23. Selected Hazard Category 3 nuclear, and Low Hazard non-nuclear facilities and activities, as agreed upon by RL. The Postirradiation Testing Laboratory (PTL) S/RID contains standards/ requirements that are necessary for safe operation of the PTL facility, and other building/areas that are the direct responsibility of the specific facility manager. The specific DOE Orders, regulations, industry codes/standards, guidance documents and good industry practices that serve as the basis for each element/subelement are identified and aligned with each subelement.« less

  2. 25 CFR 559.7 - May the Chairman request Indian lands or environmental and public health and safety documentation...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... and public health and safety documentation regarding any gaming place, facility, or location where... environmental and public health and safety documentation regarding any gaming place, facility, or location where gaming will occur? A tribe shall provide Indian lands or environmental and public health and safety...

  3. 25 CFR 559.7 - May the Chairman request Indian lands or environmental and public health and safety documentation...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... and public health and safety documentation regarding any gaming place, facility, or location where... environmental and public health and safety documentation regarding any gaming place, facility, or location where gaming will occur? A tribe shall provide Indian lands or environmental and public health and safety...

  4. 25 CFR 559.7 - May the Chairman request Indian lands or environmental and public health and safety documentation...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... and public health and safety documentation regarding any gaming place, facility, or location where... environmental and public health and safety documentation regarding any gaming place, facility, or location where gaming will occur? A tribe shall provide Indian lands or environmental and public health and safety...

  5. 3S (Safeguards, Security, Safety) based pyroprocessing facility safety evaluation plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ku, J.H.; Choung, W.M.; You, G.S.

    The big advantage of pyroprocessing for the management of spent fuels against the conventional reprocessing technologies lies in its proliferation resistance since the pure plutonium cannot be separated from the spent fuel. The extracted materials can be directly used as metal fuel in a fast reactor, and pyroprocessing reduces drastically the volume and heat load of the spent fuel. KAERI has implemented the SBD (Safeguards-By-Design) concept in nuclear fuel cycle facilities. The goal of SBD is to integrate international safeguards into the entire facility design process since the very beginning of the design phase. This paper presents a safety evaluationmore » plan using a conceptual design of a reference pyroprocessing facility, in which 3S (Safeguards, Security, Safety)-By-Design (3SBD) concept is integrated from early conceptual design phase. The purpose of this paper is to establish an advanced pyroprocessing hot cell facility design concept based on 3SBD for the successful realization of pyroprocessing technology with enhanced safety and proliferation resistance.« less

  6. Optimizing Endoscope Reprocessing Resources Via Process Flow Queuing Analysis.

    PubMed

    Seelen, Mark T; Friend, Tynan H; Levine, Wilton C

    2018-05-04

    The Massachusetts General Hospital (MGH) is merging its older endoscope processing facilities into a single new facility that will enable high-level disinfection of endoscopes for both the ORs and Endoscopy Suite, leveraging economies of scale for improved patient care and optimal use of resources. Finalized resource planning was necessary for the merging of facilities to optimize staffing and make final equipment selections to support the nearly 33,000 annual endoscopy cases. To accomplish this, we employed operations management methodologies, analyzing the physical process flow of scopes throughout the existing Endoscopy Suite and ORs and mapping the future state capacity of the new reprocessing facility. Further, our analysis required the incorporation of historical case and reprocessing volumes in a multi-server queuing model to identify any potential wait times as a result of the new reprocessing cycle. We also performed sensitivity analysis to understand the impact of future case volume growth. We found that our future-state reprocessing facility, given planned capital expenditures for automated endoscope reprocessors (AERs) and pre-processing sinks, could easily accommodate current scope volume well within the necessary pre-cleaning-to-sink reprocessing time limit recommended by manufacturers. Further, in its current planned state, our model suggested that the future endoscope reprocessing suite at MGH could support an increase in volume of at least 90% over the next several years. Our work suggests that with simple mathematical analysis of historic case data, significant changes to a complex perioperative environment can be made with ease while keeping patient safety as the top priority.

  7. Challenges Ahead for Nuclear Facility Site-Specific Seismic Hazard Assessment in France: The Alternative Energies and the Atomic Energy Commission (CEA) Vision

    NASA Astrophysics Data System (ADS)

    Berge-Thierry, C.; Hollender, F.; Guyonnet-Benaize, C.; Baumont, D.; Ameri, G.; Bollinger, L.

    2017-09-01

    Seismic analysis in the context of nuclear safety in France is currently guided by a pure deterministic approach based on Basic Safety Rule ( Règle Fondamentale de Sûreté) RFS 2001-01 for seismic hazard assessment, and on the ASN/2/01 Guide that provides design rules for nuclear civil engineering structures. After the 2011 Tohohu earthquake, nuclear operators worldwide were asked to estimate the ability of their facilities to sustain extreme seismic loads. The French licensees then defined the `hard core seismic levels', which are higher than those considered for design or re-assessment of the safety of a facility. These were initially established on a deterministic basis, and they have been finally justified through state-of-the-art probabilistic seismic hazard assessments. The appreciation and propagation of uncertainties when assessing seismic hazard in France have changed considerably over the past 15 years. This evolution provided the motivation for the present article, the objectives of which are threefold: (1) to provide a description of the current practices in France to assess seismic hazard in terms of nuclear safety; (2) to discuss and highlight the sources of uncertainties and their treatment; and (3) to use a specific case study to illustrate how extended source modeling can help to constrain the key assumptions or parameters that impact upon seismic hazard assessment. This article discusses in particular seismic source characterization, strong ground motion prediction, and maximal magnitude constraints, according to the practice of the French Atomic Energy Commission. Due to increases in strong motion databases in terms of the number and quality of the records in their metadata and the uncertainty characterization, several recently published empirical ground motion prediction models are eligible for seismic hazard assessment in France. We show that propagation of epistemic and aleatory uncertainties is feasible in a deterministic approach, as in a probabilistic way. Assessment of seismic hazard in France in the framework of the safety of nuclear facilities should consider these recent advances. In this sense, the opening of discussions with all of the stakeholders in France to update the reference documents (i.e., RFS 2001-01; ASN/2/01 Guide) appears appropriate in the short term.

  8. Radiotherapy and Nuclear Medicine Project for an Integral Oncology Center at the Oaxaca High Specialization Regional Hospital

    NASA Astrophysics Data System (ADS)

    De Jesús, M.; Trujillo-Zamudio, F. E.

    2010-12-01

    A building project of Radiotherapy & Nuclear Medicine services (diagnostic and therapy), within an Integral Oncology Center (IOC), requires interdisciplinary participation of architects, biomedical engineers, radiation oncologists and medical physicists. This report focus on the medical physicist role in designing, building and commissioning stages, for the final clinical use of an IOC at the Oaxaca High Specialization Regional Hospital (HRAEO). As a first step, during design stage, the medical physicist participates in discussions about radiation safety and regulatory requirements for the National Regulatory Agency (called CNSNS in Mexico). Medical physicists propose solutions to clinical needs and take decisions about installing medical equipment, in order to fulfill technical and medical requirements. As a second step, during the construction stage, medical physicists keep an eye on building materials and structural specifications. Meanwhile, regulatory documentation must be sent to CNSNS. This documentation compiles information about medical equipment, radioactivity facility, radiation workers and nuclear material data, in order to obtain the license for the linear accelerator, brachytherapy and nuclear medicine facilities. As a final step, after equipment installation, the commissioning stage takes place. As the conclusion, we show that medical physicists are essentials in order to fulfill with Mexican regulatory requirements in medical facilities.

  9. 75 FR 33899 - Advisory Committee on Structural Safety of Department of Veterans Affairs Facilities; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-15

    ... Construction & Facilities Management (00CFM1A), Department of Veterans Affairs, 810 Vermont Avenue, NW... Affairs Facilities; Notice of Meeting The Department of Veterans Affairs (VA) gives notice under Public... Safety of Department of Veterans Affairs Facilities will be held on June 24-25, 2010, in Room 442, Export...

  10. 76 FR 21108 - Advisory Committee on Structural Safety of Department of Veterans Affairs Facilities; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-14

    ... Quality Service, Office of Construction and Facilities Management (00CFM1A), Department of Veterans... Affairs Facilities; Notice of Meeting The Department of Veterans Affairs (VA) gives notice under Public... Safety of Department of Veterans Affairs Facilities will be held on May 12-13, 2011, in Room 442, at the...

  11. Report to Congress on innovative safety and security technology solutions for alternative transportation facilities

    DOT National Transportation Integrated Search

    2017-05-01

    This research collected information on the frequency and impact of safety and security incidents (threats) at selected facilities and identified priority incidents at each facility. A customized all hazards approach was used to determine the ha...

  12. Safety Management for Water Play Facilities.

    ERIC Educational Resources Information Center

    Thompson, Claude

    1986-01-01

    Modern aquatic facilities, which include wave pools, water slides, and shallow water activity play pools, have a greater potential for injuries and lawsuits than conventional swimming pools. This article outlines comprehensive safety management for such facilities, including potential accident identification and injury control planning. (MT)

  13. 76 FR 11764 - Sunshine Act Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-03

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Sunshine Act Notice AGENCY: Defense Nuclear Facilities... Defense Nuclear Facilities Safety Board's public hearing and meeting described below. Interested persons... the matters to be considered. TIME AND DATE OF MEETING: 9 a.m., March 31, 2011. PLACE: Defense Nuclear...

  14. 10 CFR 1703.105 - Requests for board records not available through the public reading room (FOIA requests).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... public reading room (FOIA requests). 1703.105 Section 1703.105 Energy DEFENSE NUCLEAR FACILITIES SAFETY... address for such requests is: Designated FOIA Officer, Defense Nuclear Facilities Safety Board, 625... pertain to an immediate source of risk to the public health and safety or worker safety at a defense...

  15. 10 CFR 1703.105 - Requests for board records not available through the public reading room (FOIA requests).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... public reading room (FOIA requests). 1703.105 Section 1703.105 Energy DEFENSE NUCLEAR FACILITIES SAFETY... address for such requests is: Designated FOIA Officer, Defense Nuclear Facilities Safety Board, 625... pertain to an immediate source of risk to the public health and safety or worker safety at a defense...

  16. 10 CFR 1703.105 - Requests for board records not available through the public reading room (FOIA requests).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... public reading room (FOIA requests). 1703.105 Section 1703.105 Energy DEFENSE NUCLEAR FACILITIES SAFETY... address for such requests is: Designated FOIA Officer, Defense Nuclear Facilities Safety Board, 625... pertain to an immediate source of risk to the public health and safety or worker safety at a defense...

  17. 10 CFR 1703.105 - Requests for board records not available through the public reading room (FOIA requests).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... public reading room (FOIA requests). 1703.105 Section 1703.105 Energy DEFENSE NUCLEAR FACILITIES SAFETY... address for such requests is: Designated FOIA Officer, Defense Nuclear Facilities Safety Board, 625... pertain to an immediate source of risk to the public health and safety or worker safety at a defense...

  18. 10 CFR 1703.105 - Requests for board records not available through the public reading room (FOIA requests).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... public reading room (FOIA requests). 1703.105 Section 1703.105 Energy DEFENSE NUCLEAR FACILITIES SAFETY... address for such requests is: Designated FOIA Officer, Defense Nuclear Facilities Safety Board, 625... pertain to an immediate source of risk to the public health and safety or worker safety at a defense...

  19. Designing Effective Safety Signs, Based on a Study of Recall for Safety Signs.

    ERIC Educational Resources Information Center

    Berry, Dennis W.

    Aside from direct supervision at a recreational facility, safety signs, if designed properly, are the most effective approach to facility safety. This study was conducted to investigate the effectiveness of various sign designs: (l) multiple concepts with text; (2) single concept with text; and (3) single concept with graphics. A discussion of…

  20. 30 CFR 57.6160 - Main facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Storage... facilities will not prevent escape from the mine, or cause detonation of the contents of another storage...

  1. Limited-scope probabilistic safety analysis for the Los Alamos Meson Physics Facility (LAMPF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharirli, M.; Rand, J.L.; Sasser, M.K.

    1992-01-01

    The reliability of instrumentation and safety systems is a major issue in the operation of accelerator facilities. A probabilistic safety analysis was performed or the key safety and instrumentation systems at the Los Alamos Meson Physics Facility (LAMPF). in Phase I of this unique study, the Personnel Safety System (PSS) and the Current Limiters (XLs) were analyzed through the use of the fault tree analyses, failure modes and effects analysis, and criticality analysis. Phase II of the program was done to update and reevaluate the safety systems after the Phase I recommendations were implemented. This paper provides a brief reviewmore » of the studies involved in Phases I and II of the program.« less

  2. Limited-scope probabilistic safety analysis for the Los Alamos Meson Physics Facility (LAMPF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharirli, M.; Rand, J.L.; Sasser, M.K.

    1992-12-01

    The reliability of instrumentation and safety systems is a major issue in the operation of accelerator facilities. A probabilistic safety analysis was performed or the key safety and instrumentation systems at the Los Alamos Meson Physics Facility (LAMPF). in Phase I of this unique study, the Personnel Safety System (PSS) and the Current Limiters (XLs) were analyzed through the use of the fault tree analyses, failure modes and effects analysis, and criticality analysis. Phase II of the program was done to update and reevaluate the safety systems after the Phase I recommendations were implemented. This paper provides a brief reviewmore » of the studies involved in Phases I and II of the program.« less

  3. Effect of a Manager Training and Certification Program on Food Safety and Hygiene in Food Service Operations

    PubMed Central

    Kassa, Hailu; Silverman, Gary S.; Baroudi, Karim

    2010-01-01

    Food safety is an important public health issue in the U.S. Eating at restaurants and other food service facilities increasingly has been associated with food borne disease outbreaks. Food safety training and certification of food mangers has been used as a method for reducing food safety violations at food service facilities. However, the literature is inconclusive about the effectiveness of such training programs for improving food safety and protecting consumer health. The purpose of this study was to examine the effect of food manger training on reducing food safety violations. We examined food inspection reports from the Toledo/Lucas County Health Department (Ohio) from March 2005 through February 2006 and compared food hygiene violations between food service facilities with certified and without certified food managers. We also examined the impact on food safety of a food service facility being part of a larger group of facilities. Restaurants with trained and certified food managers had significantly fewer critical food safety violations but more non-critical violations than restaurants without certified personnel. Institutional food service facilities had significantly fewer violations than restaurants, and the number of violations did not differ as a function of certification. Similarly, restaurants with many outlets had significantly fewer violations than restaurants with fewer outlets, and training was not associated with lower numbers of violations from restaurants with many outlets. The value of having certified personnel was only observed in independent restaurants and those with few branches. This information may be useful in indicating where food safety problems are most likely to occur. Furthermore, we recommend that those characteristics of institutional and chain restaurants that result in fewer violations should be identified in future research, and efforts made to apply this knowledge at the level of individual restaurants. PMID:20523880

  4. Effect of a manager training and certification program on food safety and hygiene in food service operations.

    PubMed

    Kassa, Hailu; Silverman, Gary S; Baroudi, Karim

    2010-05-06

    Food safety is an important public health issue in the U.S. Eating at restaurants and other food service facilities increasingly has been associated with food borne disease outbreaks. Food safety training and certification of food mangers has been used as a method for reducing food safety violations at food service facilities. However, the literature is inconclusive about the effectiveness of such training programs for improving food safety and protecting consumer health. The purpose of this study was to examine the effect of food manger training on reducing food safety violations. We examined food inspection reports from the Toledo/Lucas County Health Department (Ohio) from March 2005 through February 2006 and compared food hygiene violations between food service facilities with certified and without certified food managers. We also examined the impact on food safety of a food service facility being part of a larger group of facilities.Restaurants with trained and certified food managers had significantly fewer critical food safety violations but more non-critical violations than restaurants without certified personnel. Institutional food service facilities had significantly fewer violations than restaurants, and the number of violations did not differ as a function of certification. Similarly, restaurants with many outlets had significantly fewer violations than restaurants with fewer outlets, and training was not associated with lower numbers of violations from restaurants with many outlets. The value of having certified personnel was only observed in independent restaurants and those with few branches. This information may be useful in indicating where food safety problems are most likely to occur. Furthermore, we recommend that those characteristics of institutional and chain restaurants that result in fewer violations should be identified in future research, and efforts made to apply this knowledge at the level of individual restaurants.

  5. Extremely Intensive and Conservative Fault Capability Studies on Nuclear Facilities in Japan after the 2011 Tohoku Earthquake and Fukushima Daiichi Incident

    NASA Astrophysics Data System (ADS)

    Okumura, K.

    2013-12-01

    Rocks of the Japanese islands are mostly faulted since the Mesozoic Era. The opening of the Sea of Japan in Middle Miocene stretched most of the Japanese crust together with rifting systems. Modern compressional tectonic regime started in Pliocene and accelerated during Quaternary. The ubiquitous bedrock fault prior to the Quaternary had long been regarded as incapable for the future rupturing. This view on the bedrock fault, however, is in question after the March 11, 2011 Tohoku earthquake and tsunamis. There is no scientific reason for the Tohoku earthquake to let the geologists and seismologists worry about the capability of the long-deceased fault. Neither the unexpected April 11, 2011 extensional faulting event on shore in southern Fukushima prefecture has any scientific reason as well. There was no change and no new stress field, but the psychological situation of the scientists and the public welcomed the wrong belief in unexpected stress changes all over Japan, in the same manner that the March 11 M 9 was not expected. Finally, the capabilities of the bedrock faults, fractures, and joints came up to concern about seismic safety of nuclear facilities. After the incidents, the nuclear regulation authority of Japan began reevaluation of the seismic safety of all facilities in Japan. The primary issues of the reevaluation were conjunctive multi-fault mega-earthquakes and the capabilities of the bedrock faults, precisely reflecting the Tohoku events. The former does not require immediate abandonment of a facility. However, the latter now denies any chance of continued operation. It is because of the new (July 2013) safety guide gave top priority to the capability of the displacement under a facility for the evaluation on safe operation. The guide also requires utmost deterministic manner in very conservative ways. The regulators ordered the utility companies to thoroughly examine the capability for several sites, and started review of the studies in late 2012. Many of the Japanese critical nuclear facilities are built on bedrocks with faults, fractures, and joints. They were not regarded as capable when the facilities were built in 1970's to 1990's. In many cases it was not possible to know about Late Pleistocene movement owing to the lack of young sediments on bedrocks. In a few cases, geologist studied past movement and found nothing. Some very cautious researchers on nuclear safety overturned previous evaluation easily. The capability studies by the utility companies then became very serious. The young sediments that may indicate the timing of faulting were completely removed during construction. Within bedrock, it is almost impossible to demonstrate that there was no recent displacement. The regulators are very rigid and relentless to require perfect evidence of incapability. Now several utility companies are opening huge trenches, digging beside a reactor, or drilling many cores from bedrock in the site spending billions of Yen. The results of extremely intensive studies brought a lot of information on the geologic structures and their capabilities. This paper will summarize the scientific finding and their meaning on the seismic safety of critical nuclear facilities.

  6. 30 CFR 75.1712-10 - Underground sanitary facilities; maintenance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Underground sanitary facilities; maintenance... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1712-10 Underground sanitary facilities; maintenance. Sanitary toilets shall be regularly maintained in...

  7. 30 CFR 75.1712-10 - Underground sanitary facilities; maintenance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Underground sanitary facilities; maintenance... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1712-10 Underground sanitary facilities; maintenance. Sanitary toilets shall be regularly maintained in...

  8. 30 CFR 75.1712-10 - Underground sanitary facilities; maintenance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Underground sanitary facilities; maintenance... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1712-10 Underground sanitary facilities; maintenance. Sanitary toilets shall be regularly maintained in...

  9. 30 CFR 75.1712-10 - Underground sanitary facilities; maintenance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground sanitary facilities; maintenance... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1712-10 Underground sanitary facilities; maintenance. Sanitary toilets shall be regularly maintained in...

  10. 30 CFR 75.1712-10 - Underground sanitary facilities; maintenance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Underground sanitary facilities; maintenance... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1712-10 Underground sanitary facilities; maintenance. Sanitary toilets shall be regularly maintained in...

  11. 75 FR 21605 - Sunshine Act Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-26

    ... depth federal safety management and oversight policies being developed by DOE and NNSA for defense... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Sunshine Act Notice AGENCY: Defense Nuclear Facilities... in the Sunshine Act'' (5 U.S.C. 552b), notice is hereby given of the Defense Nuclear Facilities...

  12. The Future of U.S. Nuclear Forces: Boom or Bust

    DTIC Science & Technology

    2007-03-30

    materials, and nuclear waste.45 The Defense Nuclear Facilities Safety Board (DNFSB) was established by Congress in 1988 as an independent federal...adequate protection of public health and safety" at DOE’s defense nuclear facilities .46 This 100- person agency looks at four areas of the nuclear weapons...47 A.J. Eggenberger, Sixteenth Annual Report to Congress (Washington DC: Defense Nuclear Facilities Safety Board, February 2006), 13; available

  13. 77 FR 40891 - Towing Safety Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-11

    ... ``Recommendations for Safety Standards of Portable Facility Vapor Control Systems.'' (4) Period for public comment... teleconference to review and discuss a new Task Statement titled ``Recommendations for Safety Standards of Portable Facility Vapor Control Systems'' and to discuss the progress of open Task Statements. This meeting...

  14. 78 FR 41991 - Pipeline Safety: Potential for Damage to Pipeline Facilities Caused by Flooding

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-12

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No...: Pipeline and Hazardous Materials Safety Administration (PHMSA); DOT. ACTION: Notice; Issuance of Advisory... Gas and Hazardous Liquid Pipeline Systems. Subject: Potential for Damage to Pipeline Facilities Caused...

  15. 77 FR 63437 - Advisory Committee on Structural Safety of Department of Veterans Affairs Facilities, Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-16

    ..., Office of Construction & Facilities Management (003C2B), Department of Veterans Affairs, 425 I Street NW... Affairs Facilities, Notice of Meeting The Department of Veterans Affairs (VA) gives notice under the... Safety of Department of Veterans Affairs Facilities will be held on October 29-30, 2012, in Room 6W405...

  16. 78 FR 21198 - Advisory Committee on Structural Safety of Department of Veterans Affairs Facilities; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-09

    ... Construction and Facilities Management (003C2B), Department of Veterans Affairs, 810 Vermont Avenue NW... Affairs Facilities; Notice of Meeting The Department of Veterans Affairs (VA) gives notice under the... Safety of Department of Veterans Affairs Facilities will be held on April 25-26, 2013, in Room 6W405, 425...

  17. Safe, Cost Effective Management of Inactive Facilities at the Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Austin, W. E.; Yannitell, D. M.; Freeman, D. W.

    The Savannah River Site is part of the U.S. Department of Energy complex. It was constructed during the early 1950s to produce basic materials (such as plutonium-239 and tritium) used in the production of nuclear weapons. The 310-square-mile site is located in South Carolina, about 12 miles south of Aiken, South Carolina, and about 15 miles southeast of Augusta, Georgia. Savannah River Site (SRS) has approximately 200 facilities identified as inactive. These facilities range in size and complexity from large nuclear reactors to small storage buildings. These facilities are located throughout the site including three reactor areas, the heavy watermore » plant area, the manufacturing area, and other research and support areas. Unlike DOE Closure Sites such as Hanford and Rocky Flats, SRS is a Project Completion Site with continuing missions. As facilities complete their defined mission, they are shutdown and transferred from operations to the facility disposition program. At the SRS, Facilities Decontamination and Decommissioning (FDD) personnel manage the disposition phase of a inactive facility's life cycle in a manner that minimizes life cycle cost without compromising (1) the health or safety of workers and the public or (2) the quality of the environment. The disposition phase begins upon completion of operations shutdown and extends through establishing the final end-state. FDD has developed innovative programs to manage their responsibilities within a constrained budget.« less

  18. Technical basis, supporting information, and strategy for development and implementation of DOE policy for natural phenomena hazards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, R.C.

    1991-09-01

    Policy for addressing natural phenomenon comprises a hierarchy of interrelated documents. The top level of policy is contained in the code of Federal Regulations which establishes the framework and intent to ensure overall safety of DOE facilities when subjected to the effects of natural phenomena. The natural phenomena to be considered include earthquakes and tsunami, winds, hurricanes and tornadoes, floods, volcano effects and seiches. Natural phenomena criteria have been established for design of new facilities; evaluation of existing facilities; additions, modifications, and upgrades to existing facilities; and evaluation criteria for new or existing sites. Steps needed to implement these fourmore » general criteria are described. The intent of these criteria is to identify WHAT needs to be done to ensure adequate protection from natural phenomena. The commentary provides discussion of WHY this is needed for DOE facilities within the complex. Implementing procedures identifying HOW to carry out these criteria are next identified. Finally, short and long term tasks needed to identify the implementing procedure are tabulated. There is an overall need for consistency throughout the DOE complex related to natural phenomena including consistent terminology, policy, and implementation. 1 fig, 6 tabs.« less

  19. Guidelines for the evaluation and assessment of the sustainable use of resources and of wastes management at healthcare facilities.

    PubMed

    Townend, William K; Cheeseman, Christopher R

    2005-10-01

    This paper presents guidelines that can be used by managers of healthcare facilities to evaluate and assess the quality of resources and waste management at their facilities and enabling the principles of sustainable development to be addressed. The guidelines include the following key aspects which need to be considered when completing an assessment. They are: (a) general management; (b) social issues; (c) health and safety; (d) energy and water use; (e) purchasing and supply; (f) waste management (responsibility, segregation, storage and packaging); (g) waste transport; (h) recycling and re-use; (i) waste treatment; and (j) final disposal. They identify actions required to achieve a higher level of performance which can readily be applied to any healthcare facility, irrespective of the local level of social, economic and environmental development. The guidelines are presented, and the characteristics of facilities associated with sustainable (level 4) and unsustainable (level 0) healthcare resource and wastes management are outlined. They have been used to assess a major London hospital, and this highlighted a number of deficiencies in current practice, including a lack of control over purchasing and supply, and very low rates of segregation of municipal solid waste from hazardous healthcare waste.

  20. 30 CFR 57.20008 - Toilet facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... kept clean and sanitary. Separate toilet facilities shall be provided for each sex except where toilet... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Toilet facilities. 57.20008 Section 57.20008... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Miscellaneous § 57...

  1. 30 CFR 57.20008 - Toilet facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... kept clean and sanitary. Separate toilet facilities shall be provided for each sex except where toilet... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Toilet facilities. 57.20008 Section 57.20008... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Miscellaneous § 57...

  2. 30 CFR 57.20008 - Toilet facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... kept clean and sanitary. Separate toilet facilities shall be provided for each sex except where toilet... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Toilet facilities. 57.20008 Section 57.20008... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Miscellaneous § 57...

  3. 30 CFR 57.20008 - Toilet facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... kept clean and sanitary. Separate toilet facilities shall be provided for each sex except where toilet... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Toilet facilities. 57.20008 Section 57.20008... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Miscellaneous § 57...

  4. 30 CFR 77.1608 - Dumping facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Dumping facilities. 77.1608 Section 77.1608 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Haulage § 77.1608 Dumping facilities. (a) Dumping locations and haulage roads shall be kept reasonably...

  5. Microprocessor tester for the treat upgrade reactor trip system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lenkszus, F.R.; Bucher, R.G.

    1984-01-01

    The upgrading of the Transient Reactor Test (TREAT) Facility at ANL-Idaho has been designed to provide additional experimental capabilities for the study of core disruptive accident (CDA) phenomena. In addition, a programmable Automated Reactor Control System (ARCS) will permit high-power transients up to 11,000 MW having a controlled reactor period of from 15 to 0.1 sec. These modifications to the core neutronics will improve simulation of LMFBR accident conditions. Finally, a sophisticated, multiply-redundant safety system, the Reactor Trip System (RTS), will provide safe operation for both steady state and transient production operating modes. To insure that this complex safety systemmore » is functioning properly, a Dedicated Microprocessor Tester (DMT) has been implemented to perform a thorough checkout of the RTS prior to all TREAT operations.« less

  6. Leveraging Safety Programs to Improve and Support Security Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leach, Janice; Snell, Mark K.; Pratt, R.

    2015-10-01

    There has been a long history of considering Safety, Security, and Safeguards (3S) as three functions of nuclear security design and operations that need to be properly and collectively integrated with operations. This paper specifically considers how safety programmes can be extended directly to benefit security as part of an integrated facility management programme. The discussion will draw on experiences implementing such a programme at Sandia National Laboratories’ Annular Research Reactor Facility. While the paper focuses on nuclear facilities, similar ideas could be used to support security programmes at other types of high-consequence facilities and transportation activities.

  7. Safety Analysis and Protection Measures of the Control System of the Pulsed High Magnetic Field Facility in WHMFC

    NASA Astrophysics Data System (ADS)

    Shi, J. T.; Han, X. T.; Xie, J. F.; Yao, L.; Huang, L. T.; Li, L.

    2013-03-01

    A Pulsed High Magnetic Field Facility (PHMFF) has been established in Wuhan National High Magnetic Field Center (WHMFC) and various protection measures are applied in its control system. In order to improve the reliability and robustness of the control system, the safety analysis of the PHMFF is carried out based on Fault Tree Analysis (FTA) technique. The function and realization of 5 protection systems, which include sequence experiment operation system, safety assistant system, emergency stop system, fault detecting and processing system and accident isolating protection system, are given. The tests and operation indicate that these measures improve the safety of the facility and ensure the safety of people.

  8. Safety in Elevators and Grain Handling Facilities. Module SH-27. Safety and Health.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on safety in elevators and grain handling facilities is one of 50 modules concerned with job safety and health. Following the introduction, 15 objectives (each keyed to a page in the text) the student is expected to accomplish are listed (e.g., Explain how explosion suppression works). Then each objective is taught in detail,…

  9. A psychometric evaluation of the Chinese version of the nursing home survey on patient safety culture.

    PubMed

    Lin, Shu-Yuan; Tseng, Wei Ting; Hsu, Miao-Ju; Chiang, Hui-Ying; Tseng, Hui-Chen

    2017-12-01

    To test the psychometric properties of the Chinese version of the Nursing Home Survey on Patient Safety Culture scale among staff in long-term care facilities. The Nursing Home Survey on Patient Safety Culture scale is a standard tool for safety culture assessment in nursing homes. Extending its application to different types of long-term care facilities and varied ethnic populations is worth pursuing. A national random survey. A total of 306 managers and staff completed the Chinese version of the Nursing Home Survey on Patient Safety Culture scale among 30 long-term care facilities in Taiwan. Content validity and construct validity were tested by content validity index (CVI) and principal axis factor analysis (PAF) with Promax rotation. Concurrent validity was tested through correlations between the scale and two overall rating items. Reliability was computed by intraclass correlation coefficient and Cronbach's α coefficients. Statistical analyses such as descriptive, Pearson's and Spearman's rho correlations and PAF were completed. Scale-level and item-level CVIs (0.91-0.98) of the Chinese version of the Nursing Home Survey on Patient Safety Culture scale were satisfactory. Four-factor construct and merged item composition differed from the Nursing Home Survey on Patient Safety Culture scale, and it accounted for 53% of variance. Concurrent validity was evident by existing positive correlations between the scale and two overall ratings of resident safety. Cronbach's α coefficients of the subscales and the Chinese version of the Nursing Home Survey on Patient Safety Culture scale ranged from .76-.94. The Chinese version of the Nursing Home Survey on Patient Safety Culture scale identified essential dimensions to reflect the important features of a patient safety culture in long-term care facilities. The researchers introduced the Chinese version of the Nursing Home Survey on Patient Safety Culture for safety culture assessment in long-term care facilities, but further testing of the reliability of the scale in a large Chinese sample and in different long-term care facilities was recommended. The Chinese version of the Nursing Home Survey on Patient Safety Culture scale was developed to increase the users' intention towards safety culture assessment. It can identify areas for improvement, understand safety culture changes over time and evaluate the effectiveness of interventions. © 2017 John Wiley & Sons Ltd.

  10. 49 CFR 192.171 - Compressor stations: Additional safety equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Compressor stations: Additional safety equipment... Pipeline Components § 192.171 Compressor stations: Additional safety equipment. (a) Each compressor station must have adequate fire protection facilities. If fire pumps are a part of these facilities, their...

  11. Financial Management: Extending the Financial Statements Audit Requirement of the CFO Act to Additional Federal Agencies

    DTIC Science & Technology

    2002-05-14

    Defense Nuclear Facilities Safety Board has balance-sheet-only audits every 3 to 5 years, most recently for fiscal year 1997. It did not prepare fiscal...associated with the agency’s operations were the most important factors to Have had financial statements audits Defense Nuclear Facilities Safety...audits, the International Trade Commission and the Defense Nuclear Facilities Safety Board, did not have financial statements audits for fiscal year

  12. Liquid Rocket Booster (LRB) for the Space Transportation System (STS) systems study, volume 2

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Liquid Rocket Booster (LRB) Systems Definition Handbook presents the analyses and design data developed during the study. The Systems Definition Handbook (SDH) contains three major parts: the LRB vehicles definition; the Pressure-Fed Booster Test Bed (PFBTB) study results; and the ALS/LRB study results. Included in this volume are the results of all trade studies; final configurations with supporting rationale and analyses; technology assessments; long lead requirements for facilities, materials, components, and subsystems; operational requirements and scenarios; and safety, reliability, and environmental analyses.

  13. 75 FR 45678 - Notice of Availability of Interim Staff Guidance Document for Fuel Cycle Facilities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-03

    ... Document for Fuel Cycle Facilities AGENCY: Nuclear Regulatory Commission. ACTION: Notice of availability..., Division of Fuel Cycle Safety and Safeguards, Office of Nuclear Material Safety and Safeguards, U.S... Commission (NRC) prepares and issues Interim Staff Guidance (ISG) documents for fuel cycle facilities. These...

  14. 30 CFR 71.404 - Application for waiver of surface facilities requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements. 71.404 Section 71.404 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-SURFACE COAL MINES AND SURFACE WORK AREAS... Facilities at Surface Coal Mines § 71.404 Application for waiver of surface facilities requirements. (a...

  15. Assessment of radiological protection systems among diagnostic radiology facilities in North East India.

    PubMed

    Singh, Thokchom Dewan; Jayaraman, T; Arunkumar Sharma, B

    2017-03-01

    This study aims to assess the adequacy level of radiological protection systems available in the diagnostic radiology facilities located in three capital cities of North East (NE) India. It further attempts to understand, using a multi-disciplinary approach, how the safety codes/standards in diagnostic radiology framed by the Atomic Energy Regulatory Board (AERB) and the International Atomic Energy Agency (IAEA) to achieve adequate radiological protection in facilities, have been perceived, conceptualized, and applied accordingly in these facilities. About 30 diagnostic radiology facilities were randomly selected from three capitals of states in NE India; namely Imphal (Manipur), Shillong (Meghalaya) and Guwahati (Assam). A semi-structured questionnaire developed based on a multi-disciplinary approach was used for this study. It was observed that radiological practices undertaken in these facilities were not exactly in line with safety codes/standards in diagnostic radiology of the AERB and the IAEA. About 50% of the facilities had registered/licensed x-ray equipment with the AERB. More than 80% of the workers did not use radiation protective devices, although these devices were available in the facilities. About 85% of facilities had no institutional risk management system. About 70% of the facilities did not carry out periodic quality assurance testing of their x-ray equipment or surveys of radiation leakage around the x-ray room, and did not display radiation safety indicators in the x-ray rooms. Workers in these facilities exhibited low risk perception about the risks associated with these practices. The majority of diagnostic radiology facilities in NE India did not comply with the radiological safety codes/standards framed by the AERB and IAEA. The study found inadequate levels of radiological protection systems in the majority of facilities. This study suggests a need to establish firm measures that comply with the radiological safety codes/standards of the AERB and IAEA to protect patients, workers and the public of this region.

  16. 49 CFR 192.171 - Compressor stations: Additional safety equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Design of... must have adequate fire protection facilities. If fire pumps are a part of these facilities, their... event of inadequate cooling or lubrication of the unit. (d) Each compressor station gas engine that...

  17. 30 CFR 75.1712 - Bath houses and toilet facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Bath houses and toilet facilities. 75.1712 Section 75.1712 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1712 Bath houses...

  18. 76 FR 67765 - Notice of Availability of Uranium Enrichment Fuel Cycle Facility's Inspection Reports Regarding...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-02

    ... Uranium Enrichment Fuel Cycle Facility's Inspection Reports Regarding Louisiana Energy Services, National..., Uranium Enrichment Branch, Division of Fuel Cycle Safety and Safeguards, Office of Nuclear Material Safety... Commission. Brian W. Smith, Chief, Uranium Enrichment Branch, Division of Fuel Cycle Safety and Safeguards...

  19. 30 CFR 75.1712 - Bath houses and toilet facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Bath houses and toilet facilities. 75.1712 Section 75.1712 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1712 Bath houses...

  20. Medicare and Medicaid programs; rural hospitals: provision of long-term care services (swing-bed provision); flexibility in application of standards--Health Care Financing Administration. Interim final rule with comment period.

    PubMed

    1982-07-20

    These regulations implement sections 904 and 949 of Pub. L. 96-499, the Omnibus Reconciliation Act of 1980. Under section 904 (the swing-bed provision), certain small, rural hospitals may use their inpatient facilities to furnish skilled nursing facility (SNF) services to Medicare and Medicaid beneficiaries, and intermediate care facility (ICF) services to Medicaid beneficiaries. These hospitals will be reimbursed at rates appropriate for those services, which are generally lower than hospital rates. This statutory provision is intended to encourage the most efficient and effective use of inpatient hospital beds for delivery of either hospital or SNF and ICF services. Under section 949, rural hospitals of 50 or fewer beds may be exempted from certain personnel standards in the conditions of participation for hospitals. This exemption applies only to the extent that it does not jeopardize or adversely affect the health and safety of patients.

  1. Improvement of operational safety of dual-purpose transport packaging set for naval SNF in storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guskov, Vladimir; Korotkov, Gennady; Barnes, Ella

    2007-07-01

    Available in abstract form only. Full text of publication follows: In recent ten years a new technology of management of irradiated nuclear fuel (SNF) at the final stage of fuel cycle has been intensely developing on a basis of a new type of casks used for interim storage of SNF and subsequent transportation therein to the place of processing, further storage or final disposal. This technology stems from the concept of a protective cask which provides preservation of its content (SNF) and fulfillment of all other safety requirements for storage and transportation of SNF. Radiation protection against emissions and non-distributionmore » of activity outside the cask is ensured by physical barriers, i.e. all-metal or composite body, shells, inner cavities for irradiated fuel assemblies (SFA), lids with sealing systems. Residual heat release of SFA is discharged to the environment by natural way: through emission and convection of surrounding air. By now more than 100 dual purpose packaging sets TUK-108/1 are in operation in the mode of interim storage and transportation of SNF from decommissioned nuclear powered submarines (NPS). In accordance with certificate, spent fuel is stored in TUK-108/1 on the premises of plants involved in NPS dismantlement for 2 years, whereupon it is transported for processing to PO Mayak. At one Far Eastern plant Zvezda involved in NPS dismantlement there arose a complicated situation due to necessity to extend period of storage of SNF in TUK- 108/1. To ensure safety over a longer period of storage of SNF in TUK-108/1 it is essential to modify conditions of storage by removing of residual water and filling the inner cavity of the cask with an inert gas. Within implementation of the international 1.1- 2 project Development of drying technology for the cask TUK-108/1 intended for naval SNF under the Program, there has been developed the technology of preparation of the cask for long-term storage of SNF in TUK-108/1, the design of a mobile TUK-108/1 drying facility; a pilot facility has been manufactured. This report describes key issues of cask drying technology, justification of terms of dry storage of naval SNF in no-108/1, design features of the mobile drying facility, results of tests of the pilot facility at the Far Eastern plant Zvezda. (authors)« less

  2. Indigenous Starter Cultures to Improve Quality of Artisanal Dry Fermented Sausages from Chaco (Argentina).

    PubMed

    Palavecino Prpich, Noelia Z; Castro, Marcela P; Cayré, María E; Garro, Oscar A; Vignolo, Graciela M

    2015-01-01

    Lactic acid bacteria (LAB) and coagulase negative cocci (CNC) were isolated from artisanal dry sausages sampled from the northeastern region of Chaco, Argentina. In order to evaluate their performance in situ and considering technological features of the isolated strains, two mixed selected autochthonous starter cultures (SAS) were designed: (i) SAS-1 (Lactobacillus sakei 487 + Staphylococcus vitulinus C2) and (ii) SAS-2 (L. sakei 442 + S. xylosus C8). Cultures were introduced into dry sausage manufacturing process at a local small-scale facility. Microbiological and physicochemical parameters were monitored throughout fermentation and ripening periods, while sensory attributes of the final products were evaluated by a trained panel. Lactic acid bacteria revealed their ability to colonize and adapt properly to the meat matrix, inhibiting the growth of spontaneous microflora and enhancing safety and hygienic profile of the products. Both SAS showed a beneficial effect on lipid oxidation and texture of the final products. Staphylococcus vitulinus C2, from SAS-1, promoted a better redness of the final product. Sensory profile revealed that SAS addition preserved typical sensory attributes. Introduction of these cultures could provide an additional tool to standardize manufacturing processes aiming to enhance safety and quality while keeping typical sensory attributes of regional dry fermented sausages.

  3. Disposition of fuel elements from the Aberdeen and Sandia pulse reactor (SPR-II) assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mckerley, Bill; Bustamante, Jacqueline M; Costa, David A

    2010-01-01

    We describe the disposition of fuel from the Aberdeen (APR) and the Sandia Pulse Reactors (SPR-II) which were used to provide intense neutron bursts for radiation effects testing. The enriched Uranium - 10% Molybdenum fuel from these reactors was shipped to the Los Alamos National Laboratory (LANL) for size reduction prior to shipment to the Savannah River Site (SRS) for final disposition in the H Canyon facility. The Shipper/Receiver Agreements (SRA), intra-DOE interfaces, criticality safety evaluations, safety and quality requirements and key materials management issues required for the successful completion of this project will be presented. This work is inmore » support of the DOE Consolidation and Disposition program. Sandia National Laboratories (SNL) has operated pulse nuclear reactor research facilities for the Department of Energy since 1961. The Sandia Pulse Reactor (SPR-II) was a bare metal Godiva-type reactor. The reactor facilities have been used for research and development of nuclear and non-nuclear weapon systems, advanced nuclear reactors, reactor safety, simulation sources and energy related programs. The SPR-II was a fast burst reactor, designed and constructed by SNL that became operational in 1967. The SPR-ll core was a solid-metal fuel enriched to 93% {sup 235}U. The uranium was alloyed with 10 weight percent molybdenum to ensure the phase stabilization of the fuel. The core consisted of six fuel plates divided into two assemblies of three plates each. Figure 1 shows a cutaway diagram of the SPR-II Reactor with its decoupling shroud. NNSA charged Sandia with removing its category 1 and 2 special nuclear material by the end of 2008. The main impetus for this activity was based on NNSA Administrator Tom D'Agostino's six focus areas to reenergize NNSA's nuclear material consolidation and disposition efforts. For example, the removal of SPR-II from SNL to DAF was part of this undertaking. This project was in support of NNSA's efforts to consolidate the locations of special nuclear material (SNM) to reduce the cost of securing many SNM facilities. The removal of SPR-II from SNL was a significant accomplishment in SNL's de-inventory efforts and played a key role in reducing the number of locations requiring the expensive security measures required for category 1 and 2 SNM facilities. A similar pulse reactor was fabricated at the Y-12 National Security Complex beginning in the late 1960's. This Aberdeen Pulse Reactor (APR) was operated at the Army Pulse Radiation Facility (APRF) located at the Aberdeen Test Center (ATC) in Maryland. When the APRF was shut down in 2003, a portion of the DOE-owned Special Nuclear Material (SNM) was shipped to an interim facility for storage. Subsequently, the DOE determined that the material from both the SPR-II and the APR would be processed in the H-Canyon at the Savannah River Site (SRS). Because of the SRS receipt requirements some of the material was sent to the Los Alamos National Laboratory (LANL) for size-reduction prior to shipment to the SRS for final disposition.« less

  4. 75 FR 81765 - Safety Standards for Full-Size Baby Cribs and Non-Full-Size Baby Cribs; Final Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-28

    ...Section 104(b) of the Consumer Product Safety Improvement Act of 2008 (``CPSIA'') requires the United States Consumer Product Safety Commission (``CPSC,'' ``Commission,'' or ``we'') to promulgate consumer product safety standards for durable infant or toddler products. These standards are to be ``substantially the same as'' applicable voluntary standards or more stringent than the voluntary standard if the Commission concludes that more stringent requirements would further reduce the risk of injury associated with the product. The Commission is issuing safety standards for full-size and non-full-size baby cribs in response to the direction under section 104(b) of the CPSIA.\\1\\ Section 104(c) of the CPSIA specifies that the crib standards will cover used as well as new cribs. The crib standards will apply to anyone who manufactures, distributes, or contracts to sell a crib; to child care facilities, family child care homes, and others holding themselves out to be knowledgeable about cribs; to anyone who leases, sublets, or otherwise places a crib in the stream of commerce; and to owners and operators of places of public accommodation affecting commerce. ---------------------------------------------------------------------------

  5. 33 CFR 6.14-1 - Safety measures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., may prescribe such conditions and restrictions relating to the safety of waterfront facilities and... of, and fire-prevention measures for, such vessels and waterfront facilities. [EO 10277, 16 FR 7541...

  6. 33 CFR 6.14-1 - Safety measures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., may prescribe such conditions and restrictions relating to the safety of waterfront facilities and... of, and fire-prevention measures for, such vessels and waterfront facilities. [EO 10277, 16 FR 7541...

  7. 33 CFR 6.14-1 - Safety measures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., may prescribe such conditions and restrictions relating to the safety of waterfront facilities and... of, and fire-prevention measures for, such vessels and waterfront facilities. [EO 10277, 16 FR 7541...

  8. 33 CFR 6.14-1 - Safety measures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., may prescribe such conditions and restrictions relating to the safety of waterfront facilities and... of, and fire-prevention measures for, such vessels and waterfront facilities. [EO 10277, 16 FR 7541...

  9. Assessing patient safety in Canadian ambulatory surgery facilities: A national survey

    PubMed Central

    Ahmad, Jamil; Ho, Olivia A; Carman, Wayne W; Thoma, Achilles; Lalonde, Donald H; Lista, Frank

    2014-01-01

    BACKGROUND: There has been increased interest regarding patient safety and standards of care in Canadian ambulatory surgery facilities where surgical procedures are performed. The Canadian Association for Accreditation of Ambulatory Surgical Facilities (CAAASF) is a national organization formed to establish and maintain standards to ensure that surgical procedures conducted outside of public hospitals are performed safely. OBJECTIVE: To determine how many procedures are performed annually at CAAASF member sites, and to examine complication rates and several key patient safety practices. METHODS: All 69 facilities accredited by the CAAASF were surveyed. The survey focused on procedural data, complication rates and patient safety interventions. RESULTS: In 2010, 40,240 estimated procedures were performed. A total of 263 (0.007%) complications were reported. Sixteen (0.0004%) patients required reoperations in hospital and 19 (0.0004%) patients required transfer to hospital on the day of surgery. There were only two mortalities within 30 days of surgery reported in the past five years. With regard to patient safety practices, 93% used antimicrobial prophylaxis, 100% used strategies to maintain normothermia and 82% used measures for venous thromboembolism prevention. CONCLUSION: The present study is the first to report on the Canadian experience in ambulatory surgery facilities and provides insight into current practices at these facilities. Appropriate accreditation of ambulatory surgery facilities, well-established patient safety-related standards of care, careful patient selection and procedures performed by qualified health care professionals with appropriate certification practicing within the scope of their practice form the basis for safe and effective ambulatory surgery. PMID:25152645

  10. Safety and Security of Radioactive Sealed and Disused/Orphan Sources in Ukraine - German Contribution - 13359

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brasser, Thomas; Hertes, Uwe; Meyer, Thorsten

    2013-07-01

    Within the scope of 'Nuclear Security of Radioactive Sources', the German government implemented the modernization of Ukrainian State Production Company's transport and storage facility for radioactive sources (TSF) in Kiev. The overall management of optimizing the physical protection of the storage facility (including the construction of a hot cell for handling the radioactive sources) is currently carried out by the German Federal Foreign Office (AA). AA jointly have assigned Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Germany's leading expert institution in the area of nuclear safety and waste management, to implement the project and to ensure transparency by financial andmore » technical monitoring. Sealed radioactive sources are widely used in industry, medicine and research. Their life cycle starts with the production and finally ends with the interim/long-term storage of the disused sources. In Ukraine, IZOTOP is responsible for all radioactive sources throughout their life cycle. IZOTOP's transport and storage facility (TSF) is the only Ukrainian storage facility for factory-fresh radioactive sources up to an activity of about 1 million Ci (3.7 1016 Bq). The TSF is specially designed for the storage and handling of radioactive sources. Storage began in 1968, and is licensed by the Ukrainian state authorities. Beside the outdated state of TSF's physical protection and the vulnerability of the facility linked with it, the lack of a hot cell for handling and repacking radioactive sources on the site itself represents an additional potential hazard. The project, financed by the German Federal Foreign Office, aims to significantly improve the security of radioactive sources during their storage and handling at the TSF site. Main tasks of the project are a) the modernization of the physical protection of the TSF itself in order to prevent any unauthorized access to radioactive sources as well as b) the construction of a hot cell to reduce the number of transports of radioactive sources within the city of Kiev. In future, the new established hot cell at IZOTOP's transport and storage facility will be useful for identification and characterization of orphan/disused radioactive sources. The projects implemented are performed in accordance with international recommendations (e. g. IAEA) and national normative documents and will make a crucial contribution towards an improved safety and security management of radioactive sources in Ukraine. (authors)« less

  11. Fire Safety in Nursing Facilities: Participant's Coursebook.

    ERIC Educational Resources Information Center

    Walker (Bonnie) and Associates, Inc., Crofton, MD.

    Fewer people die in nursing facility fires than in fires occurring in other places where older people live. Fire remains, however, a significant threat in nursing facilities. This book is centered around six "modules" that present a fire safety training program for managers and staff in nursing homes. These modules present the following…

  12. 9 CFR 390.4 - Facilities for inspection and copying.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Facilities for inspection and copying. 390.4 Section 390.4 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE FOOD SAFETY AND INSPECTION SERVICE ADMINISTRATIVE PROVISIONS FREEDOM OF INFORMATION AND PUBLIC INFORMATION § 390.4 Facilities for...

  13. 9 CFR 390.4 - Facilities for inspection and copying.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Facilities for inspection and copying. 390.4 Section 390.4 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE FOOD SAFETY AND INSPECTION SERVICE ADMINISTRATIVE PROVISIONS FREEDOM OF INFORMATION AND PUBLIC INFORMATION § 390.4 Facilities for...

  14. 9 CFR 390.4 - Facilities for inspection and copying.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Facilities for inspection and copying. 390.4 Section 390.4 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE FOOD SAFETY AND INSPECTION SERVICE ADMINISTRATIVE PROVISIONS FREEDOM OF INFORMATION AND PUBLIC INFORMATION § 390.4 Facilities for...

  15. 9 CFR 390.4 - Facilities for inspection and copying.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Facilities for inspection and copying. 390.4 Section 390.4 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE FOOD SAFETY AND INSPECTION SERVICE ADMINISTRATIVE PROVISIONS FREEDOM OF INFORMATION AND PUBLIC INFORMATION § 390.4 Facilities for...

  16. High-Explosives Applications Facility (HEAF)

    NASA Astrophysics Data System (ADS)

    Morse, J. L.; Weingart, R. C.

    1989-03-01

    This Safety Analysis Report (SAR) reviews the safety and environmental aspects of the High Explosives Applications Facility (HEAF). Topics covered include the site selected for the HEAF, safety design criteria, operations planned within the facility, and the safety and environmental analyses performed on this project to date. Provided in the Summary section is a review of hazards and the analyses, conclusions, and operating limits developed in this SAR. Appendices provide supporting documents relating to this SAR. This SAR is required by the LLNL Health and Safety Manual and DOE Order 5481.1B(2) to document the safety analysis efforts. The SAR was assembled by the Hazards Control Department, B-Division, and HEAF project personnel. This document was reviewed by B Division, the Chemistry Department, the Hazards Control Department, the Laboratory Associate Director for Administration and Operations, and the Associate Directors ultimately responsible for HEAF operations.

  17. Sharp Decrease of Reported Occupational Blood and Body Fluid Exposures in French Hospitals, 2003-2012: Results of the French National Network Survey, AES-RAISIN.

    PubMed

    Floret, N; Ali-Brandmeyer, O; L'Hériteau, F; Bervas, C; Barquins-Guichard, S; Pelissier, G; Abiteboul, D; Parneix, P; Bouvet, E; Rabaud, C

    2015-08-01

    To assess the temporal trend of reported occupational blood and body fluid exposures (BBFE) in French healthcare facilities. Retrospective follow-up of reported BBFE in French healthcare facilities on a voluntary basis from 2003 to 2012 with a focus on those enrolled every year from 2008 to 2012 (stable cohort 2008-12). Reported BBFE incidence rate per 100 beds decreased from 7.5% in 2003 to 6.3% in 2012 (minus 16%). Percutaneous injuries were the most frequent reported BBFE (84.0% in 2003 and 79.1% in 2012). Compliance with glove use (59.1% in 2003 to 67.0% in 2012) and sharps-disposal container accessibility (68.1% in 2003 to 73.4% in 2012) have both increased. A significant drop in preventable BBFE was observed (48.3% in 2003 to 30.9% in 2012). Finally, the use of safety-engineered devices increased from 2008 to 2012. Of the 415,209 hospital beds in France, 26,158 BBFE could have occurred in France in 2012, compared with 35,364 BBFE in 2003. Healthcare personnel safety has been sharply improved during the past 10 years in France.

  18. The JRC Nanomaterials Repository: A unique facility providing representative test materials for nanoEHS research.

    PubMed

    Totaro, Sara; Cotogno, Giulio; Rasmussen, Kirsten; Pianella, Francesca; Roncaglia, Marco; Olsson, Heidi; Riego Sintes, Juan M; Crutzen, Hugues P

    2016-11-01

    The European Commission has established a Nanomaterials Repository that hosts industrially manufactured nanomaterials that are distributed world-wide for safety testing of nanomaterials. In a first instance these materials were tested in the OECD Testing Programme. They have then also been tested in several EU funded research projects. The JRC Repository of Nanomaterials has thus developed into serving the global scientific community active in the nanoEHS (regulatory) research. The unique Repository facility is a state-of-the-art installation that allows customised sub-sampling under the safest possible conditions, with traceable final sample vials distributed world-wide for research purposes. This paper describes the design of the Repository to perform a semi-automated subsampling procedure, offering high degree of flexibility and precision in the preparation of NM vials for customers, while guaranteeing the safety of the operators, and environmental protection. The JRC nanomaterials are representative for part of the world NMs market. Their wide use world-wide facilitates the generation of comparable and reliable experimental results and datasets in (regulatory) research by the scientific community, ultimately supporting the further development of the OECD regulatory test guidelines. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. DOE standard 3009 - a reasoned, practical approach to integrating criticality safety into SARs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vessard, S.G.

    1995-12-31

    In the past there have been efforts by the U.S. Department of Energy (DOE) to provide guidance on those elements that should be included in a facility`s safety analysis report (SAR). In particular, there are two DOE Orders (5480.23, {open_quotes}Nuclear Safety Analysis Reports,{close_quotes} and 5480.24, {open_quotes}Nuclear Criticality Safety{close_quotes}), an interpretive guidance document (NE-70, Interpretive Guidance for DOE Order 5480.24, {open_quotes}Nuclear Criticality Safety{close_quotes}), and DOE Standard DOE-STD-3009-94 {open_quotes}Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports.{close_quotes} Of these, the most practical and useful (pertaining to the application of criticality safety) is DOE-STD-3009-94. This paper is a reviewmore » of Chapters 3, 4, and 6 of this standard and how they provide very clear, helpful, and reasoned criticality safety guidance.« less

  20. 30 CFR 75.1709 - Accumulations of methane and coal dust on surface coal-handling facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Accumulations of methane and coal dust on surface coal-handling facilities. 75.1709 Section 75.1709 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES...

  1. 30 CFR 75.1709 - Accumulations of methane and coal dust on surface coal-handling facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Accumulations of methane and coal dust on surface coal-handling facilities. 75.1709 Section 75.1709 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES...

  2. 30 CFR 75.1709 - Accumulations of methane and coal dust on surface coal-handling facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Accumulations of methane and coal dust on surface coal-handling facilities. 75.1709 Section 75.1709 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES...

  3. 30 CFR 75.1709 - Accumulations of methane and coal dust on surface coal-handling facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Accumulations of methane and coal dust on surface coal-handling facilities. 75.1709 Section 75.1709 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES...

  4. Nuclear Weapons: NNSA Needs to Establish a Cost and Schedule Baseline for Manufacturing a Critical Nuclear Weapon Component

    DTIC Science & Technology

    2008-05-01

    building up to and beyond the 2013 time frame. However, in October 2007, the Defense Nuclear Facilities Safety Board, which monitors safety...manufacturing. They said that NNSA is still working through this process with the Defense Nuclear Facilities Safety Board. Processing of waste

  5. 76 FR 37798 - DOE Response to Recommendation 2010-2 of the Defense Nuclear Facilities Safety Board, Pulse Jet...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ... Safety Board, Pulse Jet Mixing at the Waste Treatment and Immobilization Plant AGENCY: Department of... their Recommendation 2010-2, concerning Pulse Jet Mixing at the Waste Treatment and Immobilization Plant... Nuclear Facilities Safety Board (Board) Recommendation 2010-2, Pulse Jet Mixing (PJM) at the Waste...

  6. 78 FR 6209 - Safety Zone; Grain-Shipment Vessels, Columbia and Willamette Rivers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-30

    ... 1625-AA00 Safety Zone; Grain-Shipment Vessels, Columbia and Willamette Rivers AGENCY: Coast Guard, DHS... temporary safety zone around all inbound and outbound grain-shipment vessels involved in commerce with the Columbia Grain facility on the Willamette River in Portland, OR, the United Grain Corporation facility on...

  7. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 2, Chemical constituents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neupauer, R.M.; Thurmond, S.M.

    This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.

  8. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neupauer, R.M.; Thurmond, S.M.

    This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.

  9. Effects of health and safety problem recognition on small business facility investment

    PubMed Central

    2013-01-01

    Objectives This study involved a survey of the facility investment experiences, which was designed to recognize the importance of health and safety problems, and industrial accident prevention. Ultimately, we hope that small scale industries will create effective industrial accident prevention programs and facility investments. Methods An individual survey of businesses’ present physical conditions, recognition of the importance of the health and safety problems, and facility investment experiences for preventing industrial accidents was conducted. The survey involved 1,145 business operators or management workers in small business places with fewer than 50 workers in six industrial complexes. Results Regarding the importance of occupational health and safety problems (OHS), 54.1% said it was “very important”. Received technical and financial support, and industrial accidents that occurred during the past three years were recognized as highly important for OHS. In an investigation regarding facility investment experiences for industrial accident prevention, the largest factors were business size, greater numbers of industrial accidents, greater technical and financial support received, and greater recognition of the importance of the OHS. The related variables that decided facility investment for industry accident prevention in a logistic regression analysis were the experiences of business facilities where industrial accidents occurred during the past three years, received technical and financial support, and recognition of the OHS. Those considered very important were shown to be highly significant. Conclusions Recognition of health and safety issues was higher when small businesses had experienced industrial accidents or received financial support. The investment in industrial accidents was greater when health and safety issues were recognized as important. Therefore, the goal of small business health and safety projects is to prioritize health and safety issues in terms of business management and recognition of importance. Therefore, currently various support projects are being conducted. However, there are issues regarding the limitations of the target businesses and inadequacies in maintenance and follow-up. Overall, it is necessary to provide various incentives for onsite participation that can lead to increased recognition of health and safety issues and practical investments, while perfecting maintenance and follow up measures by thoroughly revising existing operating systems. PMID:24472180

  10. Effects of health and safety problem recognition on small business facility investment.

    PubMed

    Park, Jisu; Jeong, Harin; Hong, Sujin; Park, Jong-Tae; Kim, Dae-Sung; Kim, Jongseo; Kim, Hae-Joon

    2013-10-23

    This study involved a survey of the facility investment experiences, which was designed to recognize the importance of health and safety problems, and industrial accident prevention. Ultimately, we hope that small scale industries will create effective industrial accident prevention programs and facility investments. An individual survey of businesses' present physical conditions, recognition of the importance of the health and safety problems, and facility investment experiences for preventing industrial accidents was conducted. The survey involved 1,145 business operators or management workers in small business places with fewer than 50 workers in six industrial complexes. Regarding the importance of occupational health and safety problems (OHS), 54.1% said it was "very important". Received technical and financial support, and industrial accidents that occurred during the past three years were recognized as highly important for OHS. In an investigation regarding facility investment experiences for industrial accident prevention, the largest factors were business size, greater numbers of industrial accidents, greater technical and financial support received, and greater recognition of the importance of the OHS. The related variables that decided facility investment for industry accident prevention in a logistic regression analysis were the experiences of business facilities where industrial accidents occurred during the past three years, received technical and financial support, and recognition of the OHS. Those considered very important were shown to be highly significant. Recognition of health and safety issues was higher when small businesses had experienced industrial accidents or received financial support. The investment in industrial accidents was greater when health and safety issues were recognized as important. Therefore, the goal of small business health and safety projects is to prioritize health and safety issues in terms of business management and recognition of importance. Therefore, currently various support projects are being conducted. However, there are issues regarding the limitations of the target businesses and inadequacies in maintenance and follow-up. Overall, it is necessary to provide various incentives for onsite participation that can lead to increased recognition of health and safety issues and practical investments, while perfecting maintenance and follow up measures by thoroughly revising existing operating systems.

  11. 49 CFR 193.2005 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES..., design, installation, or construction of LNG facilities (including material incorporated by reference in...

  12. Do Safety Culture Scores in Nursing Homes Depend on Job Role and Ownership? Results from a National Survey.

    PubMed

    Banaszak-Holl, Jane; Reichert, Heidi; Todd Greene, M; Mody, Lona; Wald, Heidi L; Crnich, Christopher; McNamara, Sara E; Meddings, Jennifer

    2017-10-01

    To identify facility- and individual-level predictors of nursing home safety culture. Cross-sectional survey of individuals within facilities. Nursing homes participating in the national Agency for Healthcare Research and Quality Safety Program for Long-Term Care: Healthcare-Associated Infections/Catheter-Associated Urinary Tract Infections Project. Responding nursing home staff (N = 14,177) from 170 (81%) of 210 participating facilities. Staff responses to the Nursing Home Survey on Patient Safety Culture (NHSOPS), focused on five domains (teamwork, training and skills, communication openness, supervisor expectations, organizational learning) and individual respondent characteristics (occupation, tenure, hours worked), were merged with data on facility characteristics (from the Certification and Survey Provider Enhanced Reporting): ownership, chain membership, percentage residents on Medicare, bed size. Data were analyzed using multivariate hierarchical models. Nursing assistants rated all domains worse than administrators did (P < .001), with the largest differences for communication openness (24.3 points), teamwork (17.4 points), and supervisor expectations (16.1 points). Clinical staff rated all domains worse than administrators. Nonprofit ownership was associated with worse training and skills (by 6.0 points, P =.04) and communication openness (7.3 points, P =.004), and nonprofit and chain ownership were associated with worse supervisor expectations (5.2 points, P =.001 and 3.2 points, P =.03, respectively) and organizational learning (5.6 points, P =.009 and 4.2 points, P = .03). The percentage of variation in safety culture attributable to facility characteristics was less than 22%, with ownership having the strongest effect. Perceptions of safety culture vary widely among nursing home staff, with administrators consistently perceiving better safety culture than clinical staff who spend more time with residents. Reporting safety culture scores according to occupation may be more important than facility-level scores alone to describe and assess barriers, facilitators, and changes in safety culture. © 2017, Copyright the Authors Journal compilation © 2017, The American Geriatrics Society.

  13. Report on SARS backfit evaluation, Catalytic, Inc. Solvent Refined Coal Pilot Plant, Wilsonville, Alabama

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, A.F. Jr.

    1980-07-02

    A site visit was made in company with the DOE-OPTA-EA Safety and Health Official for the purpose of providing that official with technical assistance in evaluating the validity of an earlier DOE-OPTA recommendation exempting this facility from the Safety and Analysis and Review backfit requirements of DOE Order 5481.1. A further purpose of the visit was to assess and evaluate the occupational safety and health program at this facility, as compared with the criteria and guidelines contained in ASFE Order 5481.1. Adequate documentation regarding compliance with codes, standards, and regulations were observed at this facility. There is in existence anmore » ongoing continuous safety analysis effort for both modifications or additions to this facility. Adequate environmental safeguards and plans and procedures were observed. The SARS backfit exemption is appropriate. The occupational safety and health program is in many ways a model for the scope of work and nature of hazards involved, and is consistent with ASFE guidelines and statutory requirements.« less

  14. Tiger Team Assessment of the Pantex Plant, Amarillo, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-02-01

    This document contains the findings and associated root causes identified during the Tiger Team Assessment of the Department of Energy's (DOE) Pantex Plant in Amarillo, Texas. This assessment was conducted by the Department's Office of Environment, Safety and Health between October 2 and 31, 1989. The scope of the assessment of the Pantex Plant covered all areas of environment, safety and health (ES H) activities, including compliance with federal, state, and local regulations, requirements, permits, agreements, orders and consent decrees, and DOE ES H Orders. The assessment also included an evaluation of the adequacy of DOE and site contractor ESmore » H management programs. The draft findings were submitted to the Office of Defense Programs, the Albuquerque Operations Office, the Amarillo Area Office, and regulatory agencies at the conclusion of the on-site assessment activities for review and comment on technical accuracy. Final modifications and any other appropriate changes have been incorporated in the final report. The Tiger Team Assessment of the Pantex Plant is part of the larger Tiger Team Assessment program which will encompass over 100 DOE operating facilities. The assessment program is part of a 10-point initiative announced by Secretary of Energy James D. Watkins on June 27, 1989, to strengthen environmental protection and waste management activities in the Department. The results of the program will provide the Secretary with information on the compliance status of DOE facilities with regard to ES H requirements, root causes for noncompliance, adequacy of DOE and site contractor ES H management programs, and DOE-wide ES H compliance trends.« less

  15. Water safety in healthcare facilities. The Vieste Charter.

    PubMed

    Bonadonna, L; Cannarozzi de Grazia, M; Capolongo, S; Casini, B; Cristina, M L; Daniele, G; D'Alessandro, D; De Giglio, O; Di Benedetto, A; Di Vittorio, G; Ferretti, E; Frascolla, B; La Rosa, G; La Sala, L; Lopuzzo, M G; Lucentini, L; Montagna, M T; Moscato, U; Pasquarella, C; Prencipe, R; Ricci, M L; Romano Spica, V; Signorelli, C; Veschetti, E

    2017-01-01

    The Study Group on Hospital Hygiene of the Italian Society of Hygiene, Preventive Medicine and Public Health (GISIO-SItI) and the Local Health Authority of Foggia, Apulia, Italy, after the National Convention "Safe water in healthcare facilities" held in Vieste-Pugnochiuso on 27-28 May 2016, present the "Vieste Charter", drawn up in collaboration with experts from the National Institute of Health and the Ministry of Health. This paper considers the risk factors that may affect the water safety in healthcare facilities and reports the current regulatory frameworks governing the management of installations and the quality of the water. The Authors promote a careful analysis of the risks that characterize the health facilities, for the control of which specific actions are recommended in various areas, including water safety plans; approval of treatments; healthcare facilities responsibility, installation and maintenance of facilities; multidisciplinary approach; education and research; regional and national coordination; communication.

  16. 75 FR 36773 - Pipeline Safety: Updating Facility Response Plans in Light of the Deepwater Horizon Oil Spill

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-28

    .... PHMSA-2010-0175] Pipeline Safety: Updating Facility Response Plans in Light of the Deepwater Horizon Oil... 194. In light of the Deepwater Horizon oil spill in the Gulf of Mexico, which has resulted in the... Systems. Subject: Updating Facility Response Plans in Light of the Deepwater Horizon Oil Spill. Advisory...

  17. Industrial Sanitation and Personal Facilities. Module SH-13. Safety and Health.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on industrial sanitation and personal facilities is one of 50 modules concerned with job safety and health. This module deals wth many facets of industrial sanitation and the facilities industries should provide so that proper health procedures may be followed. Following the introduction, 14 objectives (each keyed to a page in…

  18. An approach to radiation safety department benchmarking in academic and medical facilities.

    PubMed

    Harvey, Richard P

    2015-02-01

    Based on anecdotal evidence and networking with colleagues at other facilities, it has become evident that some radiation safety departments are not adequately staffed and radiation safety professionals need to increase their staffing levels. Discussions with management regarding radiation safety department staffing often lead to similar conclusions. Management acknowledges the Radiation Safety Officer (RSO) or Director of Radiation Safety's concern but asks the RSO to provide benchmarking and justification for additional full-time equivalents (FTEs). The RSO must determine a method to benchmark and justify additional staffing needs while struggling to maintain a safe and compliant radiation safety program. Benchmarking and justification are extremely important tools that are commonly used to demonstrate the need for increased staffing in other disciplines and are tools that can be used by radiation safety professionals. Parameters that most RSOs would expect to be positive predictors of radiation safety staff size generally are and can be emphasized in benchmarking and justification report summaries. Facilities with large radiation safety departments tend to have large numbers of authorized users, be broad-scope programs, be subject to increased controls regulations, have large clinical operations, have significant numbers of academic radiation-producing machines, and have laser safety responsibilities.

  19. [Considering the current state of fire safety in Taiwan's care environment from the perspective of the nation's worst recent hospital fire].

    PubMed

    Tseng, Wei-Wen; Shih, Chung-Liang; Chien, Shen-Wen

    2013-04-01

    Taiwan's worst hospital fire in history on October 23rd, 2012 at Sinying Hospital's Bei-Men Branch resulted in 13 elderly patient deaths and over 70 injuries. The heavy casualties were due in part to the serious condition of patients. Some patients on life-support machines were unable to move or be moved. This disaster highlights the issue of fire safety in small-scale hospitals that have transformed existing hospital space into special care environments for elderly patients. Compared with medical centers and general hospitals, these small-scale health facilities are ill equipped to deal properly with fire safety management and emergency response issues due to inadequate fire protection facilities, fire safety equipment, and human resources. Small-scale facilities that offer health care and medical services to mostly immobile patients face fire risks that differ significantly from general health care facilities. This paper focuses on fire risks in small-scale facilities and suggests a strategy for fire prevention and emergency response procedures, including countermeasures for fire risk assessment, management, and emergency response, in order to improve fire safety at these institutions in Taiwan.

  20. 76 FR 13397 - DOE Response to Recommendation 2010-2 of the Defense Nuclear Facilities Safety Board, Pulse Jet...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-11

    ... Safety Board, Pulse Jet Mixing at the Waste Treatment and Immobilization Plant AGENCY: Department of..., concerning Pulse Jet Mixing at the Waste Treatment and Immobilization Plant was published in the Federal... Defense Nuclear Facilities Safety Board (Board) Recommendation 2010-2, Pulse Jet Mixing at the Waste...

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    MITCHELL,GERRY W.; LONGLEY,SUSAN W.; PHILBIN,JEFFREY S.

    This Safety Analysis Report (SAR) is prepared in compliance with the requirements of DOE Order 5480.23, Nuclear Safety Analysis Reports, and has been written to the format and content guide of DOE-STD-3009-94 Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Safety Analysis Reports. The Hot Cell Facility is a Hazard Category 2 nonreactor nuclear facility, and is operated by Sandia National Laboratories for the Department of Energy. This SAR provides a description of the HCF and its operations, an assessment of the hazards and potential accidents which may occur in the facility. The potential consequences and likelihood ofmore » these accidents are analyzed and described. Using the process and criteria described in DOE-STD-3009-94, safety-related structures, systems and components are identified, and the important safety functions of each SSC are described. Additionally, information which describes the safety management programs at SNL are described in ancillary chapters of the SAR.« less

  2. 340 Facility secondary containment and leak detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bendixsen, R.B.

    1995-01-31

    This document presents a preliminary safety evaluation for the 340 Facility Secondary Containment and Leak Containment system, Project W-302. Project W-302 will construct Building 340-C which has been designed to replace the current 340 Building and vault tank system for collection of liquid wastes from the Pacific Northwest Laboratory buildings in the 300 Area. This new nuclear facility is Hazard Category 3. The vault tank and related monitoring and control equipment are Safety Class 2 with the remainder of the structure, systems and components as Safety Class 3 or 4.

  3. Occupational Safety Review of High Technology Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee Cadwallader

    2005-01-31

    This report contains reviews of operating experiences, selected accident events, and industrial safety performance indicators that document the performance of the major US DOE magnetic fusion experiments and particle accelerators. These data are useful to form a basis for the occupational safety level at matured research facilities with known sets of safety rules and regulations. Some of the issues discussed are radiation safety, electromagnetic energy exposure events, and some of the more widespread issues of working at height, equipment fires, confined space work, electrical work, and other industrial hazards. Nuclear power plant industrial safety data are also included for comparison.

  4. Health Care Worker Fatigue.

    PubMed

    Gardner, Lea Anne; Dubeck, Deborah

    2016-08-01

    The Pennsylvania Patient Safety Reporting System is a confidential, statewide Internet reporting system to which all Pennsylvania hospitals, outpatient-surgery facilities, birthing centers, and abortion facilities must file information on incidents and serious events.Safety Monitor is a column from Pennsylvania's Patient Safety Authority, the authority that informs nurses on issues that can affect patient safety and presents strategies they can easily integrate into practice. For more information on the authority, visit www.patientsafetyauthority.org. For the original article discussed in this column or for other articles on patient safety, click on "Patient Safety Advisories" and then "Advisory Library" in the left-hand navigation menu.

  5. Nuclear Warheads: The Reliable Replacement Warhead Program and the Life Extension Program

    DTIC Science & Technology

    2006-12-13

    Defense Nuclear Facilities Safety Board was created by Congress 1988 "as an independent oversight organization within the Executive Branch charged... nuclear facilities ." U.S. Defense Nuclear Facilities Safety Board. “Who We Are,” at [http://www.dnfsb.gov/about/index.html]. involving CHE and plutonium...approach, if successful, would “reduce or eliminate the need for ESD controls.”42 Kent Fortenberry, Technical Director of the Defense Nuclear Facilities

  6. Annual report to Congress: Department of Energy activities relating to the Defense Nuclear Facilities Safety Board, calendar year 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-02-01

    This is the ninth Annual Report to the Congress describing Department of Energy (Department) activities in response to formal recommendations and other interactions with the Defense Nuclear Facilities Safety Board (Board). The Board, an independent executive-branch agency established in 1988, provides advice and recommendations to the Secretary of energy regarding public health and safety issues at the Department`s defense nuclear facilities. The Board also reviews and evaluates the content and implementation of health and safety standards, as well as other requirements, relating to the design, construction, operation, and decommissioning of the Department`s defense nuclear facilities. The locations of the majormore » Department facilities are provided. During 1998, Departmental activities resulted in the proposed closure of one Board recommendation. In addition, the Department has completed all implementation plan milestones associated with four other Board recommendations. Two new Board recommendations were received and accepted by the Department in 1998, and two new implementation plans are being developed to address these recommendations. The Department has also made significant progress with a number of broad-based initiatives to improve safety. These include expanded implementation of integrated safety management at field sites, a renewed effort to increase the technical capabilities of the federal workforce, and a revised plan for stabilizing excess nuclear materials to achieve significant risk reduction.« less

  7. 76 FR 17808 - Final Vehicle Safety Rulemaking and Research Priority Plan 2011-2013

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-31

    ... [Docket No. NHTSA-2009-0108] Final Vehicle Safety Rulemaking and Research Priority Plan 2011- 2013 AGENCY... availability. SUMMARY: This document announces the availability of the Final NHTSA Vehicle Safety and Fuel.... This Priority Plan is an update to the Final Vehicle Safety Rulemaking and Research Priority Plan 2009...

  8. 75 FR 61619 - Safety Zone; IJSBA World Finals, Lower Colorado River, Lake Havasu, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-06

    ...-AA00 Safety Zone; IJSBA World Finals, Lower Colorado River, Lake Havasu, AZ AGENCY: Coast Guard, DHS... Sports Boating Association (IJSBA) World Finals. This temporary safety zone is necessary to provide for... notice of proposed rulemaking (NPRM) entitled Safety Zone; IJSBA World Finals in the Federal Register (75...

  9. 77 FR 70193 - Shaw Areva MOX Services (Mixed Oxide Fuel Fabrication Facility); Notice of Atomic Safety and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-23

    ... MOX Services (Mixed Oxide Fuel Fabrication Facility); Notice of Atomic Safety and Licensing Board Reconstitution Pursuant to 10 CFR 2.313(c) and 2.321(b), the Atomic Safety and Licensing Board (Board) in the... Rockville, Maryland this 16th day of November 2012. E. Roy Hawkens, Chief Administrative Judge, Atomic...

  10. Environmental Survey preliminary report, Pantex Facility, Amarillo, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Pantex Facility, conducted November 3 through 14, 1986.The Survey is being conducted by an interdisciplinary team of environmental specialist, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the Pantex Facility. The Survey covers all environmental media and all areas of environmental regulation.more » It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at the Pantex Facility, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by the Oak Ridge National Laboratory. When completed, the results will be incorporated into the Pantex Facility Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the Survey for the Pantex Facility. 65 refs., 44 figs., 27 tabs.« less

  11. Overview of NORM and activities by a NORM licensed permanent decontamination and waste processing facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirro, G.A.

    1997-02-01

    This paper presents an overview of issues related to handling NORM materials, and provides a description of a facility designed for the processing of NORM contaminated equipment. With regard to handling NORM materials the author discusses sources of NORM, problems, regulations and disposal options, potential hazards, safety equipment, and issues related to personnel protection. For the facility, the author discusses: description of the permanent facility; the operations of the facility; the license it has for handling specific radioactive material; operating and safety procedures; decontamination facilities on site; NORM waste processing capabilities; and offsite NORM services which are available.

  12. A security/safety survey of long term care facilities.

    PubMed

    Acorn, Jonathan R

    2010-01-01

    What are the major security/safety problems of long term care facilities? What steps are being taken by some facilities to mitigate such problems? Answers to these questions can be found in a survey of IAHSS members involved in long term care security conducted for the IAHSS Long Term Care Security Task Force. The survey, the author points out, focuses primarily on long term care facilities operated by hospitals and health systems. However, he believes, it does accurately reflect the security problems most long term facilities face, and presents valuable information on security systems and practices which should be also considered by independent and chain operated facilities.

  13. Nanosafety practices: results from a national survey at research facilities

    NASA Astrophysics Data System (ADS)

    Díaz-Soler, Beatriz María; López-Alonso, Mónica; Martínez-Aires, María Dolores

    2017-05-01

    The exposure to engineered nanomaterials (ENMs) is a new emerging risk at work due to an increase in the number of workers potentially exposed to them and the current lack of data on their health and safety risks. This paper reports the findings of a survey designed to study the safety practices employed by workers in Spanish research facilities performing tasks involving the use of ENMs at research level. A questionnaire pretested and validated by an expert panel was sent by e-mail to the target audience. The 425 surveys completed show that most of the respondents handled up to 5 different ENMs, in suspension, in small amounts during short periods of exposure. The implementation of common hygienic practices, such as the use of protection for hands and the implementation of fume hoods, is widely indicated. The selection of the preventive and protective measures does not depend on the characteristics of ENMs handled. Also, the risks posed by ENMs are widely ignored. Besides the performance of risk assessment, hygienic monitoring and the conducting of a specific health surveillance are practically non-existent although some accidents relating to ENMs were identified. In conclusion, workers' exposure to ENMs seems to be low. Even though the best practices and preventive and protective measures reported were employed, most of the respondents could not be correctly protected. Moreover, workers do not associate the measures implemented with the nanorisks. Finally, there is a lack of proactive action underway to protect the workers, and concerns about safety are weakly evidenced.

  14. Final Design Report for the RH LLW Disposal Facility (RDF) Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Austad, Stephanie Lee

    2015-09-01

    The RH LLW Disposal Facility (RDF) Project was designed by AREVA Federal Services (AFS) and the design process was managed by Battelle Energy Alliance (BEA) for the Department of Energy (DOE). The final design report for the RH LLW Disposal Facility Project is a compilation of the documents and deliverables included in the facility final design.

  15. Final Design Report for the RH LLW Disposal Facility (RDF) Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Austad, S. L.

    2015-05-01

    The RH LLW Disposal Facility (RDF) Project was designed by AREVA Federal Services (AFS) and the design process was managed by Battelle Energy Alliance (BEA) for the Department of Energy (DOE). The final design report for the RH LLW Disposal Facility Project is a compilation of the documents and deliverables included in the facility final design.

  16. Medicaid program; correction and reduction plans for intermediate care facilities for the mentally retarded--HCFA. Final rule.

    PubMed

    1988-01-25

    These final regulations provide States options under which an intermediate care facility for the mentally retarded (ICF/MR) found to have substantial deficiencies only in physical plant and staffing (or physical plant, staffing, and other minor deficiencies) that do not pose an immediate threat to the clients' health and safety may remedy those deficiencies. The regulations provide the State Medicaid agency with options to submit written plans either to correct the necessary staff and physical plant deficiencies, and all other minor deficiencies, within 6 months of the approval date of the plan, or to reduce permanently the number of beds in certified units within 36 months of the approval date of the plan. These regulations implement section 9516 of the Consolidated Omnibus Budget Reconciliation Act of 1985 and section 4217 of the Omnibus Budget Reconciliation Act of 1987. The purpose of the correction plan provision is to promote correction of deficiencies without having to exclude ICFs/MR from the Medicaid program. The reduction plan provision is intended to move Medicaid clients out of deficient ICFs/MR into licensed or certified (as applicable) community settings while maintaining the clients' quality of life and retaining their Medicaid eligibility.

  17. Safety Assessment for a Surface Repository in the Chernobyl Exclusion Zone - Methodology for Assessing Disposal under Intervention Conditions - 13476

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haverkamp, B.; Krone, J.; Shybetskyi, I.

    The Radioactive Waste Disposal Facility (RWDF) Buryakovka was constructed in 1986 as part of the intervention measures after the accident at Chernobyl NPP (ChNPP). Today, RWDF Buryakovka is still being operated but its maximum capacity is nearly reached. Plans for enlargement of the facility exist since more than 10 years but have not been implemented yet. In the framework of an European Commission Project DBE Technology GmbH prepared a safety analysis report of the facility in its current state (SAR) and a preliminary safety analysis report (PSAR) based on the planned enlargement. Due to its history RWDF Buryakovka does notmore » fully comply with today's best international practices and the latest Ukrainian regulations in this area. The most critical aspects are its inventory of long-lived radionuclides, and the non-existent multi-barrier waste confinement system. A significant part of the project was dedicated, therefore, to the development of a methodology for the safety assessment taking into consideration the facility's special situation and to reach an agreement with all stakeholders involved in the later review and approval procedure of the safety analysis reports. Main aspect of the agreed methodology was to analyze the safety, not strictly based on regulatory requirements but on the assessment of the actual situation of the facility including its location within the Exclusion Zone. For both safety analysis reports, SAR and PSAR, the assessment of the long-term safety led to results that were either within regulatory limits or within the limits allowing for a specific situational evaluation by the regulator. (authors)« less

  18. Health and safety impacts of nuclear, geothermal, and fossil-fuel electric generation in California. Volume 9. Methodologies for review of the health and safety aspects of proposed nuclear, geothermal, and fossil-fuel sites and facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nero, A.V.; Quinby-Hunt, M.S.

    1977-01-01

    This report sets forth methodologies for review of the health and safety aspects of proposed nuclear, geothermal, and fossil-fuel sites and facilities for electric power generation. The review is divided into a Notice of Intention process and an Application for Certification process, in accordance with the structure to be used by the California Energy Resources Conservation and Development Commission, the first emphasizing site-specific considerations, the second examining the detailed facility design as well. The Notice of Intention review is divided into three possible stages: an examination of emissions and site characteristics, a basic impact analysis, and an assessment of publicmore » impacts. The Application for Certification review is divided into five possible stages: a review of the Notice of Intention treatment, review of the emission control equipment, review of the safety design, review of the general facility design, and an overall assessment of site and facility acceptability.« less

  19. The safety attitudes of people who use multi-purpose recreation facilities as a physical activity setting.

    PubMed

    Finch, Caroline F; Otago, Leonie; White, Peta; Donaldson, Alex; Mahoney, Mary

    2011-06-01

    Multi-purpose recreation facilities (MPRFs) are a popular setting for physical activity and it is therefore important that they are safe for all patrons. However, the attitudes of MPRF users towards safety are a potential barrier to the success of injury prevention programmes implemented within MPRFs. This article reports a survey of the safety attitudes of over 700 users of four indoor MPRFs. Factor analysis of 12 five-point Likert scale statements showed that the attitudes clustered around three major dimensions - the importance of safety, the benefits of safety and the perceptions of injury risk. Together, these three dimensions accounted for 49% of the variability in the attitudes. More than 85% of respondents agreed/strongly agreed that: safety was an important aspect of physical activity participation; being injured affected enjoyment of physical activity; people should adopt appropriate safety measures for all physical activity; and individuals were responsible for their own safety. The MPRF users, particularly women and older people, were generally safety conscious, believed in adopting safety measures, and were willing to take responsibility for their own safety. Facility managers can be confident that if they provide evidence-based injury prevention interventions in these settings, then users will respond appropriately and adopt the promoted behaviours.

  20. Recent Accomplishments and Future Directions in US Fusion Safety & Environmental Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David A. Petti; Brad J. Merrill; Phillip Sharpe

    2006-07-01

    The US fusion program has long recognized that the safety and environmental (S&E) potential of fusion can be attained by prudent materials selection, judicious design choices, and integration of safety requirements into the design of the facility. To achieve this goal, S&E research is focused on understanding the behavior of the largest sources of radioactive and hazardous materials in a fusion facility, understanding how energy sources in a fusion facility could mobilize those materials, developing integrated state of the art S&E computer codes and risk tools for safety assessment, and evaluating S&E issues associated with current fusion designs. In thismore » paper, recent accomplishments are reviewed and future directions outlined.« less

  1. Relationship between the Quality of Educational Facilities, School Climate, and School Safety of High School Tenth Graders in the United States

    ERIC Educational Resources Information Center

    Bell, Darnell Brushawn

    2011-01-01

    The purpose of the study was to understand the relationships among facility conditions, school climate, and school safety of high school tenth graders in the United States. Previous research on the quality of educational facilities influence on student achievement has varied. Recent research has suggested that the quality of educational facilities…

  2. 76 FR 57980 - Senior Executive Service Performance Review Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-19

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Senior Executive Service Performance Review Board AGENCY... the Defense Nuclear Facilities Safety Board (DNFSB) Senior Executive Service (SES) Performance Review... summary rating of the senior executive's performance, the executive's response, and the higher level...

  3. 78 FR 55244 - Senior Executive Service Performance Review Board; Membership

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-10

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Senior Executive Service Performance Review Board... the membership of the Defense Nuclear Facilities Safety Board (DNFSB) Senior Executive Service (SES... rating of a senior executive's performance, the executive's response, and the higher level official's...

  4. 77 FR 54570 - Senior Executive Service Performance Review Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-05

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Senior Executive Service Performance Review Board AGENCY... the Defense Nuclear Facilities Safety Board (DNFSB) Senior Executive Service (SES) Performance Review.... The PRB shall review and evaluate the initial summary rating of the senior executive's performance...

  5. 24 CFR 232.515 - Refund of fees.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... INSURANCE FOR NURSING HOMES, INTERMEDIATE CARE FACILITIES, BOARD AND CARE HOMES, AND ASSISTED LIVING FACILITIES Eligibility Requirements-Supplemental Loans To Finance Purchase and Installation of Fire Safety... that the installation of fire safety equipment for the project has been prevented because of...

  6. 34 CFR 75.683 - Health or safety standards for facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Conditions Must Be Met by a Grantee? Other Requirements for Certain Projects § 75.683 Health or safety... to the facilities that the grantee uses for the project. (Authority: 20 U.S.C. 1221e-3 and 3474) ...

  7. 77 FR 34457 - Pipeline Safety: Mechanical Fitting Failure Reports

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-11

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No... notice provides clarification to owners and operators of gas distribution pipeline facilities when... of a gas distribution pipeline facility to file a written report for any mechanical fitting failure...

  8. 77 FR 61826 - Pipeline Safety: Communication During Emergency Situations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-11

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No... liquefied natural gas pipeline facilities that operators should immediately and directly notify the Public.... Background Federal regulations for gas, liquefied natural gas (LNG), and hazardous liquid pipeline facilities...

  9. Development of a Medication Safety and Quality Survey for Small Rural Hospitals.

    PubMed

    Winterstein, Almut G; Johns, Thomas E; Campbell, Kyle N; Libby, Joel; Pannell, Bob

    2017-12-01

    We summarize the development and initial implementation of a survey tool to assess medication safety in small rural hospitals. As part of an ongoing rural hospital medication safety improvement program, we developed a survey tool in all 13 critical access hospitals (CAHs) in Florida. The survey was compiled from existing medication safety assessments and standards, clinical practice guidelines, and published literature. Survey items were selected based on considerations regarding practicality and relevance to the CAH setting.The final survey instrument included 134 items representing 17 medication safety domains. Overall hospital scores ranged from 41% to 95%, with a median of 59%. Most hospitals showed large variation in scores across domains, with 5 hospitals having at least 1 domain with scores less than 10%. Highest scores across all facilities were seen for safety procedures concerning high-alert or look-alike medications and the assembly of emergency carts. The lowest median scores included availability and consistent use of standardized order sets and the effective implementation of medication safety committees. Most hospitals used the survey results to identify and prioritize quality improvement activities. The survey can be used to conduct a short medication safety assessment specific to a limited number of areas and services in CAHs. It showed good ability to discriminate medication safety levels across participating sites and highlighted opportunities for improvement. It may need modification if case mix or services differ in other states or if the status quo of medication safety in CAHs or related standards advance. The described process of survey development might be helpful to support such modifications.

  10. Caring for class III obese patients.

    PubMed

    Gardner, Lea Anne

    2013-11-01

    The Pennsylvania Patient Safety Reporting System is a confidential, statewide Internet reporting system to which all Pennsylvania hospitals, outpatient-surgery facilities, and birthing centers, as well as some abortion facilities, must file information on medical errors.Safety Monitor is a column from Pennsylvania's Patient Safety Authority, the authority that informs nurses on issues that can affect patient safety and presents strategies they can easily integrate into practice. For more information on the authority, visit www.patientsafetyauthority.org. For the original article discussed in this column or for other articles on patient safety, click on "Patient Safety Advisories" and then "Advisory Library" in the left-hand navigation menu.

  11. Advanced Test Reactor Safety Basis Upgrade Lessons Learned Relative to Design Basis Verification and Safety Basis Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G. L. Sharp; R. T. McCracken

    The Advanced Test Reactor (ATR) is a pressurized light-water reactor with a design thermal power of 250 MW. The principal function of the ATR is to provide a high neutron flux for testing reactor fuels and other materials. The reactor also provides other irradiation services such as radioisotope production. The ATR and its support facilities are located at the Test Reactor Area of the Idaho National Engineering and Environmental Laboratory (INEEL). An audit conducted by the Department of Energy's Office of Independent Oversight and Performance Assurance (DOE OA) raised concerns that design conditions at the ATR were not adequately analyzedmore » in the safety analysis and that legacy design basis management practices had the potential to further impact safe operation of the facility.1 The concerns identified by the audit team, and issues raised during additional reviews performed by ATR safety analysts, were evaluated through the unreviewed safety question process resulting in shutdown of the ATR for more than three months while these concerns were resolved. Past management of the ATR safety basis, relative to facility design basis management and change control, led to concerns that discrepancies in the safety basis may have developed. Although not required by DOE orders or regulations, not performing design basis verification in conjunction with development of the 10 CFR 830 Subpart B upgraded safety basis allowed these potential weaknesses to be carried forward. Configuration management and a clear definition of the existing facility design basis have a direct relation to developing and maintaining a high quality safety basis which properly identifies and mitigates all hazards and postulated accident conditions. These relations and the impact of past safety basis management practices have been reviewed in order to identify lessons learned from the safety basis upgrade process and appropriate actions to resolve possible concerns with respect to the current ATR safety basis. The need for a design basis reconstitution program for the ATR has been identified along with the use of sound configuration management principles in order to support safe and efficient facility operation.« less

  12. Towards a Food Safety Knowledge Base Applicable in Crisis Situations and Beyond

    PubMed Central

    Falenski, Alexander; Weiser, Armin A.; Thöns, Christian; Appel, Bernd; Käsbohrer, Annemarie; Filter, Matthias

    2015-01-01

    In case of contamination in the food chain, fast action is required in order to reduce the numbers of affected people. In such situations, being able to predict the fate of agents in foods would help risk assessors and decision makers in assessing the potential effects of a specific contamination event and thus enable them to deduce the appropriate mitigation measures. One efficient strategy supporting this is using model based simulations. However, application in crisis situations requires ready-to-use and easy-to-adapt models to be available from the so-called food safety knowledge bases. Here, we illustrate this concept and its benefits by applying the modular open source software tools PMM-Lab and FoodProcess-Lab. As a fictitious sample scenario, an intentional ricin contamination at a beef salami production facility was modelled. Predictive models describing the inactivation of ricin were reviewed, relevant models were implemented with PMM-Lab, and simulations on residual toxin amounts in the final product were performed with FoodProcess-Lab. Due to the generic and modular modelling concept implemented in these tools, they can be applied to simulate virtually any food safety contamination scenario. Apart from the application in crisis situations, the food safety knowledge base concept will also be useful in food quality and safety investigations. PMID:26247028

  13. Accident analysis and control options in support of the sludge water system safety analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HEY, B.E.

    A hazards analysis was initiated for the SWS in July 2001 (SNF-8626, K Basin Sludge and Water System Preliminary Hazard Analysis) and updated in December 2001 (SNF-10020 Rev. 0, Hazard Evaluation for KE Sludge and Water System - Project A16) based on conceptual design information for the Sludge Retrieval System (SRS) and 60% design information for the cask and container. SNF-10020 was again revised in September 2002 to incorporate new hazards identified from final design information and from a What-if/Checklist evaluation of operational steps. The process hazards, controls, and qualitative consequence and frequency estimates taken from these efforts have beenmore » incorporated into Revision 5 of HNF-3960, K Basins Hazards Analysis. The hazards identification process documented in the above referenced reports utilized standard industrial safety techniques (AIChE 1992, Guidelines for Hazard Evaluation Procedures) to systematically guide several interdisciplinary teams through the system using a pre-established set of process parameters (e.g., flow, temperature, pressure) and guide words (e.g., high, low, more, less). The teams generally included representation from the U.S. Department of Energy (DOE), K Basins Nuclear Safety, T Plant Nuclear Safety, K Basin Industrial Safety, fire protection, project engineering, operations, and facility engineering.« less

  14. Towards a Food Safety Knowledge Base Applicable in Crisis Situations and Beyond.

    PubMed

    Falenski, Alexander; Weiser, Armin A; Thöns, Christian; Appel, Bernd; Käsbohrer, Annemarie; Filter, Matthias

    2015-01-01

    In case of contamination in the food chain, fast action is required in order to reduce the numbers of affected people. In such situations, being able to predict the fate of agents in foods would help risk assessors and decision makers in assessing the potential effects of a specific contamination event and thus enable them to deduce the appropriate mitigation measures. One efficient strategy supporting this is using model based simulations. However, application in crisis situations requires ready-to-use and easy-to-adapt models to be available from the so-called food safety knowledge bases. Here, we illustrate this concept and its benefits by applying the modular open source software tools PMM-Lab and FoodProcess-Lab. As a fictitious sample scenario, an intentional ricin contamination at a beef salami production facility was modelled. Predictive models describing the inactivation of ricin were reviewed, relevant models were implemented with PMM-Lab, and simulations on residual toxin amounts in the final product were performed with FoodProcess-Lab. Due to the generic and modular modelling concept implemented in these tools, they can be applied to simulate virtually any food safety contamination scenario. Apart from the application in crisis situations, the food safety knowledge base concept will also be useful in food quality and safety investigations.

  15. 16 CFR Figures 3 and 4 to Part 1204 - High Voltage Test Facility and Antenna System Test Setup

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false High Voltage Test Facility and Antenna System Test Setup 3 Figures 3 and 4 to Part 1204 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR OMNIDIRECTIONAL CITIZENS BAND BASE STATION ANTENNAS Pt. 1204, Figs. 3, 4 Figures 3 and 4...

  16. Safety and the Human Factor.

    ERIC Educational Resources Information Center

    Smith, Ann

    1982-01-01

    Discusses four elements of safety programs: (1) safety training; (2) safety inspections; (3) accident investigations; and (4) protective safety equipment. Also discusses safety considerations in water/wastewater treatment facilities focusing on falls, drowning hazards, trickling filters, confined space entry, collection/distribution system safety,…

  17. The Sepsis Early Recognition and Response Initiative (SERRI)

    PubMed Central

    Jones, Stephen L.; Ashton, Carol M.; Kiehne, Lisa; Gigliotti, Elizabeth; Bell-Gordon, Charyl; Pinn, Teresa T.; Tran, Shirley K.; Nicolas, Juan C.; Rose, Alexis L.; Shirkey, Beverly A.; Disbot, Maureen; Masud, Faisal; Wray, Nelda P.

    2016-01-01

    Duration of Initiative 48 months and currently ongoing. Setting The Houston Methodist Hospital System and affiliated hospitals (3 facilities with 2 hospital-run skilled nursing facilities in and around Houston), St. Joseph’s Regional Health Center (1 acute care hospital and 2 skilled nursing facilities in Bryan, Texas), Hospital Corporation of America (2 acute care facilities in Houston, 1 acute care facility in McAllen, Texas [Rio Grande Valley]), Kindred Healthcare (2 long term acute care facilities in Houston), Select Medical Specialty Hospitals (2 long term acute care facilities in Houston). Whom This Should Concern Hospital administrators, quality and safety officers, performance improvement and patient safety professionals, clinic managers, infection control and prevention staff, and other physicians, nurses, and clinical staff. PMID:26892701

  18. Development of a Checklist for Assessing Good Hygiene Practices of Fresh-Cut Fruits and Vegetables Using Focus Group Interviews.

    PubMed

    Araújo, Jane A M; Esmerino, Erick A; Alvarenga, Verônica O; Cappato, Leandro P; Hora, Iracema C; Silva, Marcia Cristina; Freitas, Monica Q; Pimentel, Tatiana C; Walter, Eduardo H M; Sant'Ana, Anderson S; Cruz, Adriano G

    2018-03-01

    This study aimed to develop a checklist for good hygiene practices (GHP) for raw material of vegetable origin using the focus groups (FGs) approach (n = 4). The final checklist for commercialization of horticultural products totaled 28 questions divided into six blocks, namely: water supply; hygiene, health, and training; waste control; control of pests; packaging and traceability; and hygiene of facilities and equipment. The FG methodology was efficient to elaborate a participatory and objective checklist, based on minimum hygiene requirements, serving as a tool for diagnosis, planning, and training in GHP of fresh vegetables, besides contributing to raise awareness of the consumers' food safety. The FG methodology provided useful information to establish the final checklist for GHP, with easy application, according to the previous participants' perception and experience.

  19. A Pilot Assessment of Occupational Health Hazards in the US Electronic Scrap Recycling Industry

    PubMed Central

    Ceballos, Diana M.; Gong, Wei; Page, Elena

    2015-01-01

    The National Institute for Occupational Safety and Health (NIOSH) surveyed a randomly selected sample of electronic scrap (e-scrap) recycling facilities nationwide to characterize work processes, exposures, and controls. Despite multiple attempts to contact 278 facilities, only 47 responded (17% response rate). Surveyed facilities reported recycling a wide variety of electronics. The most common recycling processes were manual dismantling and sorting. Other processes included shredding, crushing, and automated separation. Many facilities reported that they had health and safety programs in place. However, some facilities reported the use of compressed air for cleaning, a practice that can lead to increased employee dust exposures, and some facilities allowed food and drinks in the production areas, a practice that can lead to ingestion of contaminants. Although our results may not be generalizable to all US e-scrap recycling facilities, they are informative regarding health and safety programs in the industry. We concluded that e-scrap recycling has the potential for a wide variety of occupational exposures particularly because of the frequent use of manual processes. On-site evaluations of e-scrap recyclers are needed to determine if reported work processes, practices, and controls are effective and meet current standards and guidelines. Educating the e-scrap recycling industry about health and safety best practices, specifically related to safe handling of metal dust, would help protect employees. PMID:25738822

  20. A Pilot Assessment of Occupational Health Hazards in the US Electronic Scrap Recycling Industry.

    PubMed

    Ceballos, Diana M; Gong, Wei; Page, Elena

    2015-01-01

    The National Institute for Occupational Safety and Health (NIOSH) surveyed a randomly selected sample of electronic scrap (e-scrap) recycling facilities nationwide to characterize work processes, exposures, and controls. Despite multiple attempts to contact 278 facilities, only 47 responded (17% response rate). Surveyed facilities reported recycling a wide variety of electronics. The most common recycling processes were manual dismantling and sorting. Other processes included shredding, crushing, and automated separation. Many facilities reported that they had health and safety programs in place. However, some facilities reported the use of compressed air for cleaning, a practice that can lead to increased employee dust exposures, and some facilities allowed food and drinks in the production areas, a practice that can lead to ingestion of contaminants. Although our results may not be generalizable to all US e-scrap recycling facilities, they are informative regarding health and safety programs in the industry. We concluded that e-scrap recycling has the potential for a wide variety of occupational exposures particularly because of the frequent use of manual processes. On-site evaluations of e-scrap recyclers are needed to determine if reported work processes, practices, and controls are effective and meet current standards and guidelines. Educating the e-scrap recycling industry about health and safety best practices, specifically related to safe handling of metal dust, would help protect employees.

  1. 75 FR 56999 - Senior Executive Service Performance Review Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-17

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Senior Executive Service Performance Review Board AGENCY... the Defense Nuclear Facilities Safety Board (DNFSB) Senior Executive Service (SES) Performance Review... performance review boards. The PRB shall review and evaluate the initial summary rating of the senior...

  2. The effect of motorcycle travel on the safety and operations of HOV facilities in Virginia.

    DOT National Transportation Integrated Search

    1995-01-01

    The Intermodal Surface Transportation Efficiency Act of 1991 mandated that motorcycles be permitted to travel on federally funded high-occupancy vehicle (HOV) facilities unless they created a safety hazard or adversely affected HOV operations. Althou...

  3. Preschool Comes to School: Design Concerns of Preschool Facilities.

    ERIC Educational Resources Information Center

    Passantino, Richard J.

    1994-01-01

    Addresses design and safety issues of which school business administrators should be aware when they become involved in integrating a preschool facility with an elementary school. Discusses building environmental factors, safety, health codes, play surfaces, energy conservation, and architectural considerations. (KDP)

  4. A bicycle safety index for evaluating urban street facilities.

    PubMed

    Asadi-Shekari, Zohreh; Moeinaddini, Mehdi; Zaly Shah, Muhammad

    2015-01-01

    The objectives of this research are to conceptualize the Bicycle Safety Index (BSI) that considers all parts of the street and to propose a universal guideline with microscale details. A point system method comparing existing safety facilities to a defined standard is proposed to estimate the BSI. Two streets in Singapore and Malaysia are chosen to examine this model. The majority of previous measurements to evaluate street conditions for cyclists usually cannot cover all parts of streets, including segments and intersections. Previous models also did not consider all safety indicators and cycling facilities at a microlevel in particular. This study introduces a new concept of a practical BSI to complete previous studies using its practical, easy-to-follow, point system-based outputs. This practical model can be used in different urban settings to estimate the level of safety for cycling and suggest some improvements based on the standards.

  5. Walk-through survey report, Dravo Corporation, Engineering Works Ddivision, Neville Island, Pittsburgh, Pennsylvania, January 30, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Billings, C.; Lazar, C.

    1980-06-01

    A walk-through survey was conducted on January 30, 1979, at the Engineering Works Division Shipyard of the Dravo Corporation in Pittsburgh, Pennsylvania, to determine whether this site would be suitable for inclusion in the in-depth survey of the shipbuilding-industry segment of the investigation of health hazards to painters. The shipyard is engaged in the design and construction of barges and towboats for river transport of bulk cargoes. Out of a workforce of 1,200 production personnel, there are 10 spray painters, 13 brush painters, 3 sign painters, and 10 painters' assistants. The painters have a low turnover rate and the companymore » has personnel records dating back to World War I. A safety and industrial-hygiene program operates at the facility and requires respiratory usage and various engineering controls for many painting operations. The authors conclude that the facility needs a better industrial-hygiene program than is now in effect. They recommend that the facility be included for consideration in the final study.« less

  6. Information on the Advanced Plant Experiment (APEX) Test Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Curtis Lee

    The purpose of this report provides information related to the design of the Oregon State University Advanced Plant Experiment (APEX) test facility. Information provided in this report have been pulled from the following information sources: Reference 1: R. Nourgaliev and et.al, "Summary Report on NGSAC (Next-Generation Safety Analysis Code) Development and Testing," Idaho National Laboratory, 2011. Note that this is report has not been released as an external report. Reference 2: O. Stevens, Characterization of the Advanced Plant Experiment (APEX) Passive Residual Heat Removal System Heat Exchanger, Master Thesis, June 1996. Reference 3: J. Reyes, Jr., Q. Wu, and J.more » King, Jr., Scaling Assessment for the Design of the OSU APEX-1000 Test Facility, OSU-APEX-03001 (Rev. 0), May 2003. Reference 4: J. Reyes et al, Final Report of the NRC AP600 Research Conducted at Oregon State University, NUREG/CR-6641, July 1999. Reference 5: K. Welter et al, APEX-1000 Confirmatory Testing to Support AP1000 Design Certification (non-proprietary), NUREG-1826, August 2005.« less

  7. Quarterly report on Defense Nuclear Facilities Safety Board Recommendation 90-7 for the period ending December 31, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cash, R.J.; Dukelow, G.T.; Forbes, C.J.

    1993-03-01

    This is the seventh quarterly report on the progress of activities addressing safety issues associated with Hanford Site high-level radioactive waste tanks that contain ferrocyanide compounds. In the presence of oxidizing materials, such as nitrates or nitrites, ferrocyanide can be made to explode in the laboratory by heating it to high temperatures [above 285{degrees}C (545{degrees}F)]. In the mid 1950s approximately 140 metric tons of ferrocyanide were added to 24 underground high-level radioactive waste tanks. An implementation plan (Cash 1991) responding to the Defense Nuclear Facilities Safety Board Recommendation 90-7 (FR 1990) was issued in March 1991 describing the activities thatmore » were planned and underway to address each of the six parts of Recommendation 90-7. A revision to the original plan was transmitted to US Department of Energy by Westinghouse Hanford Company in December 1992. Milestones completed this quarter are described in this report. Contents of this report include: Introduction; Defense Nuclear Facilities Safety Board Implementation Plan Task Activities (Defense Nuclear Facilities Safety Board Recommendation for enhanced temperature measurement, Recommendation for continuous temperature monitoring, Recommendation for cover gas monitoring, Recommendation for ferrocyanide waste characterization, Recommendation for chemical reaction studies, and Recommendation for emergency response planning); Schedules; and References. All actions recommended by the Defense Nuclear Facilities Safety Board for emergency planning by Hanford Site emergency preparedness organizations have been completed.« less

  8. Interdisciplinary group approach to occupational safety and health administration standard: reductions in cost and duplication of effort.

    PubMed

    Canola, T; Kirkis, E J; Meckes, P F; Pitts, S B

    1994-06-01

    After the December 1991 publication of the Occupational Safety and Health Administration standard, "Occupational Exposure to Bloodborne Pathogens; Final Rule," medical facilities in the United States were challenged to meet the mandates of this standard with massive training in a relatively short time. An interdisciplinary task force composed of representative members of a major health maintenance organization was charged with the task of developing a training plan for 11 Southern California medical centers and their 42 satellite medical offices. The task force ultimately developed, refined, and distributed a Trainer Guidebook that could be used by a variety of disciplines. This guidebook provided a method by which the information could be disseminated concisely, thoroughly, and promptly. The processes used in this project can be applied to other health care educational situations. The purpose of this article is to share these processes.

  9. Human Factors Checklist: Think Human Factors - Focus on the People

    NASA Technical Reports Server (NTRS)

    Miller, Darcy; Stelges, Katrine; Barth, Timothy; Stambolian, Damon; Henderson, Gena; Dischinger, Charles; Kanki, Barbara; Kramer, Ian

    2016-01-01

    A quick-look Human Factors (HF) Checklist condenses industry and NASA Agency standards consisting of thousands of requirements into 14 main categories. With support from contractor HF and Safety Practitioners, NASA developed a means to share key HF messages with Design, Engineering, Safety, Project Management, and others. It is often difficult to complete timely assessments due to the large volume of HF information. The HF Checklist evolved over time into a simple way to consider the most important concepts. A wide audience can apply the checklist early in design or through planning phases, even before hardware or processes are finalized or implemented. The checklist is a good place to start to supplement formal HF evaluation. The HF Checklist was based on many Space Shuttle processing experiences and lessons learned. It is now being applied to ground processing of new space vehicles and adjusted for new facilities and systems.

  10. Investigation of a “Sharps” Incident

    DOE PAGES

    Cournoyer, Michael Edward; Trujillo, Stanley; Schreiber, Stephen Bruce

    2016-08-03

    Special nuclear material research, process development, technology demonstration, and manufacturing capabilities are provided at the Los Alamos National Laboratory Plutonium Facility. Engineered barriers provide the most effective protection from radioactive and hazardous materials. The Worker Safety Security Team augments these passive safety feature by investigating incidents to identify appropriate prevention and mitigation measures. “Learning Teams” facilitate employee feedback loop and integration toward process improvement. Here, this article reports an investigation of a “Sharps” incident and reviews a case study of a technician that cuts his left thumb while making a gasket. Causal analysis of the sharps incident uncovered contributing factorsmore » that created the environment in which the incident occurred. Finally, latent organizational conditions that created error-likely situations or weakened defenses were identified and controlled. Effective improvements that reduce the probability or consequence of similar sharps incidents were implemented.« less

  11. First update of the International Xenotransplantation Association consensus statement on conditions for undertaking clinical trials of porcine islet products in type 1 diabetes--Chapter 3: Porcine islet product manufacturing and release testing criteria.

    PubMed

    Rayat, Gina R; Gazda, Lawrence S; Hawthorne, Wayne J; Hering, Bernhard J; Hosking, Peter; Matsumoto, Shinichi; Rajotte, Ray V

    2016-01-01

    In the 2009 IXA consensus, the requirements for the quality and control of manufacturing of porcine islet products were based on the U.S. regulatory framework where the porcine islet products fall within the definition of somatic cell therapy under the statutory authority of the U.S. Food and Drug Administration (FDA). In addition, porcine islet products require pre-market approval as a biologic product under the Public Health Services Act and they meet the definition of a drug under the Federal Food, Drug, and Cosmetic Act (FD&C Act). Thus, they are subject to applicable provisions of the law and as such, control of manufacturing as well as reproducibility and consistency of porcine islet products, safety of porcine islet products, and characterization of porcine islet products must be met before proceeding to clinical trials. In terms of control of manufacturing as well as reproducibility and consistency of porcine islet products, the manufacturing facility must be in compliance with current Good Manufacturing Practices (cGMP) guidelines appropriate for the initiation of Phase 1/2 clinical trials. Sponsors intending to conduct a Phase 1/2 trial of islet xenotransplantation products must be able to demonstrate the safety of the product through the establishment of particular quality assurance and quality control procedures. All materials (including animal source and pancreas) used in the manufacturing process of the porcine islet products must be free of adventitious agents. The final porcine islet product must undergo tests for the presence of these adventitious agents including sterility, mycoplasma (if they are cultured), and endotoxin. Assessments of the final product must include the safety specifications mentioned above even if the results are not available until after release as these data would be useful for patient diagnosis and treatment if necessary. In addition, a plan of action must be in place for patient notification and treatment in case the sterility culture results are positive. In terms of the characterization of porcine islet products and product release criteria, the information on the porcine islet products should be acquired from a sample of the final product to be used for transplantation and must include the morphology of the islets, specific identity, purity, viability, and potency of the product. In addition, information on the quantity of the islet products should also be provided in a standardized fashion and this should be in terms of islet equivalents and/or cell numbers. The current consensus was created to provide guidelines that manufacturing facilities may find helpful in the manufacture of and the release criteria for porcine islet products including encapsulated islets and combined islet products. Our intent with the above recommendations is to provide a framework for individual porcine islet manufacturing facilities to ensure a high level of safety for the initiation of Phase 1/2 clinical trials on porcine islet xenotransplantation. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Understanding the impact of supervision on reducing medication risks: an interview study in long-term elderly care.

    PubMed

    Vermeulen, J A; Kleefstra, S M; Zijp, E M; Kool, R B

    2017-07-06

    In 2009, the Dutch Health Care Inspectorate (IGZ) observed several serious risks to safety involving medication within elderly care facilities. However, by 2011, high risks had been reduced in almost all the organisations we visited. And yet the IGZ analysed too the alarming increase in the number of incidents arising in the self-reported national indicator of medication safety between 2009 and 2010. The aim of this study was to understand the factors that can explain this contradiction between the increase in self-reported medication incidents and the observation of the IGZ in reducing the risks to medication safety through supervision. We interviewed health care professionals of ten care facilities, visited by the IGZ, who were involved in, or responsible for, the improvement of medication safety in their institutions. As outcome measures we used the rate of medication safety risk per facility; the perceptions of the participant with regard to the reports of medication incidents; the level of medication safety of the facility; the measures used to improve medication safety; and the supervision of medication safety. This was a mixed methods study, qualitative in that we used semi-structured interviews, and quantitative, by calculating risks for the different organisations we visited. The findings from both study methods resulted in a comprehensive view and an in-depth understanding of this contradiction. The contradiction between the increase in self-reported medication incidents and the observation of reduced risks was explained by three themes: activities designed to improve medication safety, the reporting of medication incidents, and, lastly, the impact of supervision. The focus of the IGZ on issues of medication safety stimulated most elderly care facilities to reduce medication risks. Also, a change in the culture of reporting incidents caused an increase in the number of reported incidents. Supervision contributed to an improvement in actions geared towards reducing the risks associated with the safety of medication. It also increased a willingness to report such incidents. The more incidents reported are therefore not necessarily a sign of an increase in the risks, but can also be considered as a sign of a safer culture.

  13. 41 CFR 102-80.60 - Are Federal agencies responsible for performing facility assessments?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION REAL PROPERTY 80-SAFETY AND ENVIRONMENTAL MANAGEMENT Safety and Environmental Management Facility Assessments... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Are Federal agencies...

  14. 10 CFR 1707.103 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Definitions. 1707.103 Section 1707.103 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY DNFSB EMPLOYEES AND PRODUCTION OF OFFICIAL RECORDS IN LEGAL PROCEEDINGS General Provisions § 1707.103 Definitions. DNFSB means the Defense Nuclear Facilities Safety Board...

  15. 10 CFR 1707.103 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Definitions. 1707.103 Section 1707.103 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY DNFSB EMPLOYEES AND PRODUCTION OF OFFICIAL RECORDS IN LEGAL PROCEEDINGS General Provisions § 1707.103 Definitions. DNFSB means the Defense Nuclear Facilities Safety Board...

  16. 10 CFR 1707.103 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Definitions. 1707.103 Section 1707.103 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY DNFSB EMPLOYEES AND PRODUCTION OF OFFICIAL RECORDS IN LEGAL PROCEEDINGS General Provisions § 1707.103 Definitions. DNFSB means the Defense Nuclear Facilities Safety Board...

  17. 10 CFR 1707.103 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Definitions. 1707.103 Section 1707.103 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY DNFSB EMPLOYEES AND PRODUCTION OF OFFICIAL RECORDS IN LEGAL PROCEEDINGS General Provisions § 1707.103 Definitions. DNFSB means the Defense Nuclear Facilities Safety Board...

  18. 10 CFR 1707.103 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Definitions. 1707.103 Section 1707.103 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY DNFSB EMPLOYEES AND PRODUCTION OF OFFICIAL RECORDS IN LEGAL PROCEEDINGS General Provisions § 1707.103 Definitions. DNFSB means the Defense Nuclear Facilities Safety Board...

  19. Enhancing the traditional hospital design process: a focus on patient safety.

    PubMed

    Reiling, John G; Knutzen, Barbara L; Wallen, Thomas K; McCullough, Susan; Miller, Ric; Chernos, Sonja

    2004-03-01

    In 2002 St. Joseph's Community Hospital (West Bend, WI), a member of SynergyHealth, brought together leaders in health care and systems engineering to develop a set of safety-driven facility design principles that would guide the hospital design process. DESIGNING FOR SAFETY: Hospital leadership recognized that a cross-departmental team approach would be needed and formed the 11-member Facility Design Advisory Council, which, with departmental teams and the aid of architects, was responsible for overseeing the design process and for ensuring that the safety considerations were met. The design process was a team approach, with input from national experts, patients and families, hospital staff and physicians, architects, contractors, and the community. The new facility, designed using safety-driven design principles, reflects many innovative design elements, including truly standardized patient rooms, new technology to minimize falls, and patient care alcoves for every patient room. The new hospital has been designed with maximum adaptability and flexibility in mind, to accommodate changes and provide for future growth. The architects labeled the innovative design. The Synergy Model, to describe the process of shaping the entire building and its spaces to work efficiently as a whole for the care and safety of patients. Construction began on the new facility in August 2003 and is expected to be completed in 2005.

  20. Annual report to Congress: Department of Energy activities relating to the Defense Nuclear Facilities Safety Board, Calendar Year 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2000-02-01

    This is the tenth Annual Report to the Congress describing Department of Energy activities in response to formal recommendations and other interactions with the Defense Nuclear Facilities Safety Board (Board). The Board, an independent executive-branch agency established in 1988, provides advice and recommendations to the Secretary of Energy regarding public health and safety issues at the Department's defense nuclear facilities. The Board also reviews and evaluates the content and implementation of health and safety standards, as well as other requirements, relating to the design, construction, operation, and decommissioning of the Department's defense nuclear facilities. During 1999, Departmental activities resulted inmore » the closure of nine Board recommendations. In addition, the Department has completed all implementation plan milestones associated with three Board recommendations. One new Board recommendation was received and accepted by the Department in 1999, and a new implementation plan is being developed to address this recommendation. The Department has also made significant progress with a number of broad-based initiatives to improve safety. These include expanded implementation of integrated safety management at field sites, opening of a repository for long-term storage of transuranic wastes, and continued progress on stabilizing excess nuclear materials to achieve significant risk reduction.« less

  1. Development and Assessment of a Medication Safety Measurement Program in a Long-Term Care Pharmacy.

    PubMed

    Hertig, John B; Hultgren, Kyle E; Parks, Scott; Rondinelli, Rick

    2016-02-01

    Medication errors continue to be a major issue in the health care system, including in long-term care facilities. While many hospitals and health systems have developed methods to identify, track, and prevent these errors, long-term care facilities historically have not invested in these error-prevention strategies. The objective of this study was two-fold: 1) to develop a set of medication-safety process measures for dispensing in a long-term care pharmacy, and 2) to analyze the data from those measures to determine the relative safety of the process. The study was conducted at In Touch Pharmaceuticals in Valparaiso, Indiana. To assess the safety of the medication-use system, each step was documented using a comprehensive flowchart (process flow map) tool. Once completed and validated, the flowchart was used to complete a "failure modes and effects analysis" (FMEA) identifying ways a process may fail. Operational gaps found during FMEA were used to identify points of measurement. The research identified a set of eight measures as potential areas of failure; data were then collected on each one of these. More than 133,000 medication doses (opportunities for errors) were included in the study during the research time frame (April 1, 2014, and ended on June 4, 2014). Overall, there was an approximate order-entry error rate of 15.26%, with intravenous errors at 0.37%. A total of 21 errors migrated through the entire medication-use system. These 21 errors in 133,000 opportunities resulted in a final check error rate of 0.015%. A comprehensive medication-safety measurement program was designed and assessed. This study demonstrated the ability to detect medication errors in a long-term pharmacy setting, thereby making process improvements measureable. Future, larger, multi-site studies should be completed to test this measurement program.

  2. Software Tools for Developing and Simulating the NASA LaRC CMF Motion Base

    NASA Technical Reports Server (NTRS)

    Bryant, Richard B., Jr.; Carrelli, David J.

    2006-01-01

    The NASA Langley Research Center (LaRC) Cockpit Motion Facility (CMF) motion base has provided many design and analysis challenges. In the process of addressing these challenges, a comprehensive suite of software tools was developed. The software tools development began with a detailed MATLAB/Simulink model of the motion base which was used primarily for safety loads prediction, design of the closed loop compensator and development of the motion base safety systems1. A Simulink model of the digital control law, from which a portion of the embedded code is directly generated, was later added to this model to form a closed loop system model. Concurrently, software that runs on a PC was created to display and record motion base parameters. It includes a user interface for controlling time history displays, strip chart displays, data storage, and initializing of function generators used during motion base testing. Finally, a software tool was developed for kinematic analysis and prediction of mechanical clearances for the motion system. These tools work together in an integrated package to support normal operations of the motion base, simulate the end to end operation of the motion base system providing facilities for software-in-the-loop testing, mechanical geometry and sensor data visualizations, and function generator setup and evaluation.

  3. RELEASE OF DRIED RADIOACTIVE WASTE MATERIALS TECHNICAL BASIS DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KOZLOWSKI, S.D.

    2007-05-30

    This technical basis document was developed to support RPP-23429, Preliminary Documented Safety Analysis for the Demonstration Bulk Vitrification System (PDSA) and RPP-23479, Preliminary Documented Safety Analysis for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Facility. The main document describes the risk binning process and the technical basis for assigning risk bins to the representative accidents involving the release of dried radioactive waste materials from the Demonstration Bulk Vitrification System (DBVS) and to the associated represented hazardous conditions. Appendices D through F provide the technical basis for assigning risk bins to the representative dried waste release accident and associated represented hazardous conditionsmore » for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Packaging Unit (WPU). The risk binning process uses an evaluation of the frequency and consequence of a given representative accident or represented hazardous condition to determine the need for safety structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls. A representative accident or a represented hazardous condition is assigned to a risk bin based on the potential radiological and toxicological consequences to the public and the collocated worker. Note that the risk binning process is not applied to facility workers because credible hazardous conditions with the potential for significant facility worker consequences are considered for safety-significant SSCs and/or TSR-level controls regardless of their estimated frequency. The controls for protection of the facility workers are described in RPP-23429 and RPP-23479. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, as described below.« less

  4. 10 CFR 1707.301 - Fees.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Fees. 1707.301 Section 1707.301 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY DNFSB EMPLOYEES AND PRODUCTION OF OFFICIAL RECORDS IN LEGAL PROCEEDINGS... (authentication) of copies of records. The Defense Nuclear Facilities Safety Board may certify that records are...

  5. 10 CFR 1707.301 - Fees.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Fees. 1707.301 Section 1707.301 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY DNFSB EMPLOYEES AND PRODUCTION OF OFFICIAL RECORDS IN LEGAL PROCEEDINGS... (authentication) of copies of records. The Defense Nuclear Facilities Safety Board may certify that records are...

  6. 10 CFR 1707.301 - Fees.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Fees. 1707.301 Section 1707.301 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY DNFSB EMPLOYEES AND PRODUCTION OF OFFICIAL RECORDS IN LEGAL PROCEEDINGS... (authentication) of copies of records. The Defense Nuclear Facilities Safety Board may certify that records are...

  7. 10 CFR 1707.301 - Fees.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Fees. 1707.301 Section 1707.301 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY DNFSB EMPLOYEES AND PRODUCTION OF OFFICIAL RECORDS IN LEGAL PROCEEDINGS... (authentication) of copies of records. The Defense Nuclear Facilities Safety Board may certify that records are...

  8. 10 CFR 1707.301 - Fees.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Fees. 1707.301 Section 1707.301 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY DNFSB EMPLOYEES AND PRODUCTION OF OFFICIAL RECORDS IN LEGAL PROCEEDINGS... (authentication) of copies of records. The Defense Nuclear Facilities Safety Board may certify that records are...

  9. 10 CFR 70.62 - Safety program and integrated safety analysis.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Radiological hazards related to possessing or processing licensed material at its facility; (ii) Chemical hazards of licensed material and hazardous chemicals produced from licensed material; (iii) Facility... performed by a team with expertise in engineering and process operations. The team shall include at least...

  10. Hazardous Waste Cleanup: Safety-Kleen Corporation - Congers 2-118-01 in Congers, New York

    EPA Pesticide Factsheets

    Safety-Kleen Corporation, the Congers facility is located at 68 North Harrison Avenue, Congers, Rockland County, New York. The facility is about 2,000 feet northeast of the intersection of Congers Road and Kings Highway, situated atop a small hill located

  11. 30 CFR 71.501 - Sanitary toilet facilities; maintenance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Section 71.501 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Sanitary Toilet Facilities at Surface Worksites of Surface Coal Mines § 71.501 Sanitary...

  12. 10 CFR 52.157 - Contents of applications; technical information in final safety analysis report.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...; technical information in final safety analysis report. The application must contain a final safety analysis...) Information sufficient to demonstrate compliance with the applicable requirements regarding testing, analysis... 10 Energy 2 2013-01-01 2013-01-01 false Contents of applications; technical information in final...

  13. 10 CFR 52.157 - Contents of applications; technical information in final safety analysis report.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...; technical information in final safety analysis report. The application must contain a final safety analysis...) Information sufficient to demonstrate compliance with the applicable requirements regarding testing, analysis... 10 Energy 2 2012-01-01 2012-01-01 false Contents of applications; technical information in final...

  14. 10 CFR 52.157 - Contents of applications; technical information in final safety analysis report.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...; technical information in final safety analysis report. The application must contain a final safety analysis...) Information sufficient to demonstrate compliance with the applicable requirements regarding testing, analysis... 10 Energy 2 2014-01-01 2014-01-01 false Contents of applications; technical information in final...

  15. 10 CFR 52.157 - Contents of applications; technical information in final safety analysis report.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...; technical information in final safety analysis report. The application must contain a final safety analysis...) Information sufficient to demonstrate compliance with the applicable requirements regarding testing, analysis... 10 Energy 2 2011-01-01 2011-01-01 false Contents of applications; technical information in final...

  16. Safety Evaluation Report for the Claiborne Enrichment Center, Homer, Louisiana (Docket No. 70-3070)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-01-01

    This report documents the US Nuclear Regulatory Commission (NRC) staff review and safety evaluation of the Louisiana Energy Services, L.P. (LES, the applicant) application for a license to possess and use byproduct, source, and special nuclear material and to enrich natural uranium to a maximum of 5 percent U-235 by the gas centrifuge process. The plant, to be known as the Claiborne Enrichment Center (CEC), would be constructed near the town of Homer in Claiborne Parish, Louisiana. At full production in a given year, the plant will receive approximately 4,700 tonnes of feed UF{sub 6} and produce 870 tonnes ofmore » low-enriched UF{sub 6}, and 3,830 tonnes of depleted UF{sub 6} tails. Facility construction, operation, and decommissioning are expected to last 5, 30, and 7 years, respectively. The objective of the review is to evaluate the potential adverse impacts of operation of the facility on worker and public health and safety under both normal operating and accident conditions. The review also considers the management organization, administrative programs, and financial qualifications provided to assure safe design and operation of the facility. The NRC staff concludes that the applicant`s descriptions, specifications, and analyses provide an adequate basis for safety review of facility operations and that construction and operation of the facility does not pose an undue risk to public health and safety.« less

  17. Prevention of fall-related injuries in long-term care: a randomized controlled trial of staff education.

    PubMed

    Ray, Wayne A; Taylor, Jo A; Brown, Anne K; Gideon, Patricia; Hall, Kathi; Arbogast, Patrick; Meredith, Sarah

    2005-10-24

    Fall-related injuries, a major public health problem in long-term care, may be reduced by interventions that improve safety practices. Previous studies have shown that safety practice interventions can reduce falls; however, in long-term care these have relied heavily on external funding and staff. The aim of this study was to test whether a training program in safety practices for staff could reduce fall-related injuries in long-term care facilities. A cluster randomization clinical trial with 112 qualifying facilities and 10,558 study residents 65 years or older and not bedridden. The intervention was an intensive 2-day safety training program with 12-month follow-up. The training program targeted living space and personal safety; wheelchairs, canes, and walkers; psychotropic medication use; and transferring and ambulation. The main outcome measure was serious fall-related injuries during the follow-up period. There was no difference in injury occurrence between the intervention and control facilities (adjusted rate ratio, 0.98; 95% confidence interval, 0.83-1.16). For residents with a prior fall in facilities with the best program compliance, there was a nonsignificant trend toward fewer injuries in the intervention group (adjusted rate ratio, 0.79; 95% confidence interval, 0.57-1.10). More intensive interventions are required to prevent fall-related injuries in long-term care facilities.

  18. Exploring Operational Safeguards, Safety, and Security by Design to Address Real Time Threats in Nuclear Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schanfein, Mark J.; Mladineo, Stephen V.

    2015-07-07

    Over the last few years, significant attention has been paid to both encourage application and provide domestic and international guidance for designing in safeguards and security in new facilities.1,2,3 However, once a facility is operational, safeguards, security, and safety often operate as separate entities that support facility operations. This separation is potentially a serious weakness should insider or outsider threats become a reality.Situations may arise where safeguards detects a possible loss of material in a facility. Will they notify security so they can, for example, check perimeter doors for tampering? Not doing so might give the advantage to an insidermore » who has already, or is about to, move nuclear material outside the facility building. If outsiders break into a facility, the availability of any information to coordinate the facility’s response through segregated alarm stations or a failure to include all available radiation sensors, such as safety’s criticality monitors can give the advantage to the adversary who might know to disable camera systems, but would most likely be unaware of other highly relevant sensors in a nuclear facility.This paper will briefly explore operational safeguards, safety, and security by design (3S) at a high level for domestic and State facilities, identify possible weaknesses, and propose future administrative and technical methods, to strengthen the facility system’s response to threats.« less

  19. DOE’s Management and Oversight of the Nuclear Weapons Complex

    DTIC Science & Technology

    1990-03-22

    and Economic Development Division Before the Department of Energy Defense Nuclear Facilities Panel Committee on Armed Services House of Representatives...and newly created DOE offices. The Defense Nuclear Facilities Safety Board, whose board members were appointed this past year, was created to provide 6...mandated Defense Nuclear Facilities Safety Board. Continuing dialogue between DOE and the Board can also serve to enhance DOE’s ability to respond more

  20. [Road map for health and safety management systems in healthcare facilities, according to the OHSAS 18001:2007 standard].

    PubMed

    Pugliese, F; Albini, E; Serio, O; Apostoli, P

    2011-01-01

    The 81/2008 Act has defined a model of a health and safety management system that can contribute to prevent the occupational health and safety risks. We have developed the structure of a health and safety management system model and the necessary tools for its implementation in health care facilities. The realization of a model is structured in various phases: initial review, safety policy, planning, implementation, monitoring, management review and continuous improvement. Such a model, in continuous evolution, is based on the responsibilities of the different corporate characters and on an accurate analysis of risks and involved norms.

  1. The National Shipbuilding Research Program. Ship Breaking: Environmental Health and Safety Regulatory Overview

    DTIC Science & Technology

    1999-09-27

    facility in Alang , India, where ship scrapping typically is performed on beach front property, allowing toxins, oils, PCBs, asbestos, and chromates...in Alang are operated in a manner that endanger the health and safety of their laborers and that government enforcement of...Id. According to the Baltimore Sun, none of the men who work at the Alang facility wear hard hats, safety harnesses, or respirators even though each

  2. 75 FR 51500 - Advisory Committee on Reactor Safeguards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-20

    ..., October 14, 2009 (74 FR 52829-52830). Thursday, September 9, 2010, Conference Room T2-B1, Two White Flint... Fabrication Facility and the Associated Safety Evaluation Report (Open/ Closed)--The Committee will hold... the MOX Fuel Fabrication Facility and the associated Safety Evaluation Report. [Note: A portion of...

  3. 41 CFR 301-11.11 - How do I select lodging and make lodging reservations?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... always stay in a “fire safe” facility. This is a facility that meets the fire safety requirements of the Hotel and Motel Fire Safety Act of 1990 (the Act), as amended (see 5 U.S.C. 5707a). (c) When selecting a...

  4. 41 CFR 301-11.11 - How do I select lodging and make lodging reservations?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... always stay in a “fire safe” facility. This is a facility that meets the fire safety requirements of the Hotel and Motel Fire Safety Act of 1990 (the Act), as amended (see 5 U.S.C. 5707a). (c) When selecting a...

  5. 41 CFR 301-11.11 - How do I select lodging and make lodging reservations?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... always stay in a “fire safe” facility. This is a facility that meets the fire safety requirements of the Hotel and Motel Fire Safety Act of 1990 (the Act), as amended (see 5 U.S.C. 5707a). (c) When selecting a...

  6. 49 CFR 1155.27 - Board determinations under 49 U.S.C. 10909.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... determines that the facility at the existing or proposed location would not pose an unreasonable risk to... risk to public health, safety, or the environment, the Board shall weigh the particular facility's... comply with an environmental, public health, or public safety standard that falls under the traditional...

  7. Implementation of the Generic Safety Analysis Report - Lessons Learned

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanchard, A.

    1999-06-02

    The Savannah River Site has completed the development, review and approval process for the Generic Safety Analysis Report (GSAR) and implemented this information in facility SARs and BIOs. This includes the yearly revision of the GSAR and the facility-specific SARs. The process has provided us with several lessons learned.

  8. 10 CFR 1706.1 - Scope; statement of policy.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Scope; statement of policy. 1706.1 Section 1706.1 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD ORGANIZATIONAL AND CONSULTANT CONFLICTS OF INTERESTS § 1706.1... the Defense Nuclear Facilities Safety Board will follow in determining whether a contractor or offeror...

  9. 10 CFR 1707.205 - Processing demands or requests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Processing demands or requests. 1707.205 Section 1707.205 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY DNFSB EMPLOYEES AND PRODUCTION OF OFFICIAL... and/or produce official records and information. (b) The Defense Nuclear Facilities Safety Board will...

  10. 10 CFR 1707.205 - Processing demands or requests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Processing demands or requests. 1707.205 Section 1707.205 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY DNFSB EMPLOYEES AND PRODUCTION OF OFFICIAL... and/or produce official records and information. (b) The Defense Nuclear Facilities Safety Board will...

  11. 10 CFR 1707.205 - Processing demands or requests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Processing demands or requests. 1707.205 Section 1707.205 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY DNFSB EMPLOYEES AND PRODUCTION OF OFFICIAL... and/or produce official records and information. (b) The Defense Nuclear Facilities Safety Board will...

  12. 10 CFR 1707.204 - Service of subpoenas or requests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Service of subpoenas or requests. 1707.204 Section 1707.204 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY DNFSB EMPLOYEES AND PRODUCTION OF... be served on the General Counsel, Defense Nuclear Facilities Safety Board, 625 Indiana Avenue, NW...

  13. 10 CFR 1705.03 - Systems of records notification.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Systems of records notification. 1705.03 Section 1705.03 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD PRIVACY ACT § 1705.03 Systems of records notification. (a... writing. Written requests should be directed to: Privacy Act Officer, Defense Nuclear Facilities Safety...

  14. 10 CFR 1707.205 - Processing demands or requests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Processing demands or requests. 1707.205 Section 1707.205 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY DNFSB EMPLOYEES AND PRODUCTION OF OFFICIAL... and/or produce official records and information. (b) The Defense Nuclear Facilities Safety Board will...

  15. 10 CFR 1707.205 - Processing demands or requests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Processing demands or requests. 1707.205 Section 1707.205 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY DNFSB EMPLOYEES AND PRODUCTION OF OFFICIAL... and/or produce official records and information. (b) The Defense Nuclear Facilities Safety Board will...

  16. 10 CFR 1707.204 - Service of subpoenas or requests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Service of subpoenas or requests. 1707.204 Section 1707.204 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY DNFSB EMPLOYEES AND PRODUCTION OF... be served on the General Counsel, Defense Nuclear Facilities Safety Board, 625 Indiana Avenue, NW...

  17. 10 CFR 1706.1 - Scope; statement of policy.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Scope; statement of policy. 1706.1 Section 1706.1 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD ORGANIZATIONAL AND CONSULTANT CONFLICTS OF INTERESTS § 1706.1... the Defense Nuclear Facilities Safety Board will follow in determining whether a contractor or offeror...

  18. 10 CFR 1707.204 - Service of subpoenas or requests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Service of subpoenas or requests. 1707.204 Section 1707.204 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY DNFSB EMPLOYEES AND PRODUCTION OF... be served on the General Counsel, Defense Nuclear Facilities Safety Board, 625 Indiana Avenue, NW...

  19. 10 CFR 1706.1 - Scope; statement of policy.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Scope; statement of policy. 1706.1 Section 1706.1 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD ORGANIZATIONAL AND CONSULTANT CONFLICTS OF INTERESTS § 1706.1... the Defense Nuclear Facilities Safety Board will follow in determining whether a contractor or offeror...

  20. 10 CFR 1707.204 - Service of subpoenas or requests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Service of subpoenas or requests. 1707.204 Section 1707.204 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY DNFSB EMPLOYEES AND PRODUCTION OF... be served on the General Counsel, Defense Nuclear Facilities Safety Board, 625 Indiana Avenue, NW...

  1. 10 CFR 1706.1 - Scope; statement of policy.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Scope; statement of policy. 1706.1 Section 1706.1 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD ORGANIZATIONAL AND CONSULTANT CONFLICTS OF INTERESTS § 1706.1... the Defense Nuclear Facilities Safety Board will follow in determining whether a contractor or offeror...

  2. 10 CFR 1707.204 - Service of subpoenas or requests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Service of subpoenas or requests. 1707.204 Section 1707.204 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY DNFSB EMPLOYEES AND PRODUCTION OF... be served on the General Counsel, Defense Nuclear Facilities Safety Board, 625 Indiana Avenue, NW...

  3. 10 CFR 1706.1 - Scope; statement of policy.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Scope; statement of policy. 1706.1 Section 1706.1 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD ORGANIZATIONAL AND CONSULTANT CONFLICTS OF INTERESTS § 1706.1... the Defense Nuclear Facilities Safety Board will follow in determining whether a contractor or offeror...

  4. 76 FR 58049 - Atomic Safety and Licensing Board; Honeywell International, Inc.; Metropolis Works Uranium...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-19

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 40-3392-MLA; ASLBP No. 11-910-01-MLA-BD01] Atomic Safety and Licensing Board; Honeywell International, Inc.; Metropolis Works Uranium Conversion Facility... assurance for its Metropolis Works uranium conversion facility in Metropolis, Illinois. \\1\\ LBP-11-19, 74...

  5. Response to in-depth safety audit of the L Lake sampling station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gladden, J.B.

    1986-10-15

    An in-depth safety audit of several of the facilities and operations supporting the Biological Monitoring Program on L Lake was conducted. Subsequent to the initial audit, the audit team evaluated the handling of samples taken for analysis of Naegleria fowleri at the 704-U laboratory facility.

  6. 10 CFR 1705.08 - Appeals from correction denials.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Appeals from correction denials. 1705.08 Section 1705.08 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD PRIVACY ACT § 1705.08 Appeals from correction denials. (a... in writing. This appeal should be directed to The Chairman, Defense Nuclear Facilities Safety Board...

  7. 10 CFR 1705.06 - Appeals from access denials.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Appeals from access denials. 1705.06 Section 1705.06 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD PRIVACY ACT § 1705.06 Appeals from access denials. When.... This appeal should be directed to The Chairman, Defense Nuclear Facilities Safety Board, 625 Indiana...

  8. 10 CFR 1705.03 - Systems of records notification.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Systems of records notification. 1705.03 Section 1705.03 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD PRIVACY ACT § 1705.03 Systems of records notification. (a... writing. Written requests should be directed to: Privacy Act Officer, Defense Nuclear Facilities Safety...

  9. 10 CFR 1705.08 - Appeals from correction denials.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Appeals from correction denials. 1705.08 Section 1705.08 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD PRIVACY ACT § 1705.08 Appeals from correction denials. (a... in writing. This appeal should be directed to The Chairman, Defense Nuclear Facilities Safety Board...

  10. 10 CFR 1705.03 - Systems of records notification.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Systems of records notification. 1705.03 Section 1705.03 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD PRIVACY ACT § 1705.03 Systems of records notification. (a... writing. Written requests should be directed to: Privacy Act Officer, Defense Nuclear Facilities Safety...

  11. 10 CFR 1705.07 - Requests for correction of records.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Requests for correction of records. 1705.07 Section 1705.07 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD PRIVACY ACT § 1705.07 Requests for correction of..., Defense Nuclear Facilities Safety Board, 625 Indiana Avenue, NW., Suite 700, Washington, DC 20004. The...

  12. 10 CFR 1705.08 - Appeals from correction denials.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Appeals from correction denials. 1705.08 Section 1705.08 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD PRIVACY ACT § 1705.08 Appeals from correction denials. (a... in writing. This appeal should be directed to The Chairman, Defense Nuclear Facilities Safety Board...

  13. 10 CFR 1705.07 - Requests for correction of records.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Requests for correction of records. 1705.07 Section 1705.07 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD PRIVACY ACT § 1705.07 Requests for correction of..., Defense Nuclear Facilities Safety Board, 625 Indiana Avenue, NW., Suite 700, Washington, DC 20004. The...

  14. 10 CFR 1705.06 - Appeals from access denials.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Appeals from access denials. 1705.06 Section 1705.06 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD PRIVACY ACT § 1705.06 Appeals from access denials. When.... This appeal should be directed to The Chairman, Defense Nuclear Facilities Safety Board, 625 Indiana...

  15. 10 CFR 1705.07 - Requests for correction of records.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Requests for correction of records. 1705.07 Section 1705.07 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD PRIVACY ACT § 1705.07 Requests for correction of..., Defense Nuclear Facilities Safety Board, 625 Indiana Avenue, NW., Suite 700, Washington, DC 20004. The...

  16. 10 CFR 1705.06 - Appeals from access denials.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Appeals from access denials. 1705.06 Section 1705.06 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD PRIVACY ACT § 1705.06 Appeals from access denials. When.... This appeal should be directed to The Chairman, Defense Nuclear Facilities Safety Board, 625 Indiana...

  17. 10 CFR 1705.06 - Appeals from access denials.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Appeals from access denials. 1705.06 Section 1705.06 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD PRIVACY ACT § 1705.06 Appeals from access denials. When.... This appeal should be directed to The Chairman, Defense Nuclear Facilities Safety Board, 625 Indiana...

  18. 10 CFR 1705.03 - Systems of records notification.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Systems of records notification. 1705.03 Section 1705.03 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD PRIVACY ACT § 1705.03 Systems of records notification. (a... writing. Written requests should be directed to: Privacy Act Officer, Defense Nuclear Facilities Safety...

  19. 10 CFR 1705.08 - Appeals from correction denials.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Appeals from correction denials. 1705.08 Section 1705.08 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD PRIVACY ACT § 1705.08 Appeals from correction denials. (a... in writing. This appeal should be directed to The Chairman, Defense Nuclear Facilities Safety Board...

  20. 10 CFR 1705.07 - Requests for correction of records.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Requests for correction of records. 1705.07 Section 1705.07 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD PRIVACY ACT § 1705.07 Requests for correction of..., Defense Nuclear Facilities Safety Board, 625 Indiana Avenue, NW., Suite 700, Washington, DC 20004. The...

  1. 10 CFR 1705.07 - Requests for correction of records.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Requests for correction of records. 1705.07 Section 1705.07 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD PRIVACY ACT § 1705.07 Requests for correction of..., Defense Nuclear Facilities Safety Board, 625 Indiana Avenue, NW., Suite 700, Washington, DC 20004. The...

  2. 10 CFR 1705.03 - Systems of records notification.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Systems of records notification. 1705.03 Section 1705.03 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD PRIVACY ACT § 1705.03 Systems of records notification. (a... writing. Written requests should be directed to: Privacy Act Officer, Defense Nuclear Facilities Safety...

  3. 10 CFR 1705.06 - Appeals from access denials.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Appeals from access denials. 1705.06 Section 1705.06 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD PRIVACY ACT § 1705.06 Appeals from access denials. When.... This appeal should be directed to The Chairman, Defense Nuclear Facilities Safety Board, 625 Indiana...

  4. 10 CFR 1705.08 - Appeals from correction denials.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Appeals from correction denials. 1705.08 Section 1705.08 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD PRIVACY ACT § 1705.08 Appeals from correction denials. (a... in writing. This appeal should be directed to The Chairman, Defense Nuclear Facilities Safety Board...

  5. Application of the Life Safety Code to a Historic Test Stand

    NASA Technical Reports Server (NTRS)

    Askins, Bruce; Lemke, Paul R.; Lewis, William L.; Covell, Carol C.

    2011-01-01

    NASA has conducted a study to assess alternatives to refurbishing existing launch vehicle modal test facilities as opposed to developing new test facilities to meet the demands of a very fiscally constrained test and evaluation environment. The results of this study showed that Marshall Space Flight Center (MSFC) Test Stand (TS) 4550 could be made compliant, within reasonable cost and schedule impacts, if safety processes and operational limitations were put in place to meet the safety codes and concerns of the Fire Marshall. Trades were performed with key selection criteria to ensure that appropriate levels of occupant safety are incorporated into test facility design modifications. In preparation for the ground vibration tests that were to be performed on the Ares I launch vehicle, the Ares Flight and Integrated Test Office (FITO) organization evaluated the available test facility options, which included the existing mothballed structural dynamic TS4550 used by Apollo and Shuttle, alternative ground vibration test facilities at other locations, and construction of a new dynamic test stand. After an exhaustive assessment of the alternatives, the results favored modifying the TS4550 because it was the lowest cost option and presented the least schedule risk to the NASA Constellation Program for Ares Integrated Vehicle Ground Vibration Test (IVGVT). As the renovation design plans and drawings were being developed for TS4550, a safety concern was discovered the original design for the construction of the test stand, originally built for the Apollo Program and renovated for the Shuttle Program, was completed before NASA s adoption of the currently imposed safety and building codes per National Fire Protection Association Life Safety Code [NFPA 101] and International Building Codes. The initial FITO assessment of the design changes, required to make TS4550 compliant with current safety and building standards, identified a significant cost increase and schedule impact. An effort was launched to thoroughly evaluate the applicable life safety requirements, examine the context in which they were derived, and determine a means by which the TS4550 modifications could be made within budget and on schedule, while still providing the occupants with appropriate levels of safety.

  6. Passive Safety Features Evaluation of KIPT Neutron Source Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Zhaopeng; Gohar, Yousry

    2016-06-01

    Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have cooperated on the development, design, and construction of a neutron source facility. The facility was constructed at Kharkov, Ukraine and its commissioning process is underway. It will be used to conduct basic and applied nuclear research, produce medical isotopes, and train young nuclear specialists. The facility has an electron accelerator-driven subcritical assembly. The electron beam power is 100 kW using 100 MeV electrons. Tungsten or natural uranium is the target material for generating neutrons driving the subcritical assembly. The subcritical assemblymore » is composed of WWR-M2 - Russian fuel assemblies with U-235 enrichment of 19.7 wt%, surrounded by beryllium reflector assembles and graphite blocks. The subcritical assembly is seated in a water tank, which is a part of the primary cooling loop. During normal operation, the water coolant operates at room temperature and the total facility power is ~300 KW. The passive safety features of the facility are discussed in in this study. Monte Carlo computer code MCNPX was utilized in the analyses with ENDF/B-VII.0 nuclear data libraries. Negative reactivity temperature feedback was consistently observed, which is important for the facility safety performance. Due to the design of WWR-M2 fuel assemblies, slight water temperature increase and the corresponding water density decrease produce large reactivity drop, which offset the reactivity gain by mistakenly loading an additional fuel assembly. The increase of fuel temperature also causes sufficiently large reactivity decrease. This enhances the facility safety performance because fuel temperature increase provides prompt negative reactivity feedback. The reactivity variation due to an empty fuel position filled by water during the fuel loading process is examined. Also, the loading mistakes of removing beryllium reflector assemblies and replacing them with dummy assemblies were analyzed. In all these circumstances, the reactivity change results do not cause any safety concerns.« less

  7. Posttest examination of Sodium Loop Safety Facility experiments. [LMFBR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holland, J.W.

    In-reactor, safety experiments performed in the Sodium Loop Safety Facility (SLSF) rely on comprehensive posttest examinations (PTE) to characterize the postirradiation condition of the cladding, fuel, and other test-subassembly components. PTE information and on-line instrumentation data, are analyzed to identify the sequence of events and the severity of the accident for each experiment. Following in-reactor experimentation, the SLSF loop and test assembly are transported to the Hot Fuel Examination Facility (HFEF) for initial disassembly. Goals of the HFEF-phase of the PTE are to retrieve the fuel bundle by dismantling the loop and withdrawing the test assembly, to assess the macro-conditionmore » of the fuel bundle by nondestructive examination techniques, and to prepare the fuel bundle for shipment to the Alpha-Gamma Hot Cell Facility (AGHCF) at Argonne National Laboratory.« less

  8. Energy Systems Integration Facility Control Room | Energy Systems

    Science.gov Websites

    Integration Facility | NREL Energy Systems Integration Facility Control Room Energy Systems Integration Facility Control Room The Energy Systems Integration Facility control room allows system engineers as the monitoring point for the facility's integrated safety and control systems. Photo of employees

  9. 76 FR 53051 - Safety Zone; ISAF Nations Cup Grand Final Fireworks Display, Sheboygan, WI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-25

    ...-AA00 Safety Zone; ISAF Nations Cup Grand Final Fireworks Display, Sheboygan, WI AGENCY: Coast Guard.... Background and Purpose The ISAF Nations Cup Grand Final fireworks are a City permitted fireworks display that.... 165.T09-0755 Safety Zone; ISAF Nations Cup Grand Final Fireworks Display, Sheboygan, Wisconsin. (a...

  10. 76 FR 61261 - Safety Zone; IJSBA World Finals; Lower Colorado River, Lake Havasu, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-04

    ...-AA00 Safety Zone; IJSBA World Finals; Lower Colorado River, Lake Havasu, AZ AGENCY: Coast Guard, DHS... Boating Association (IJSBA) World Finals. This temporary safety zone is necessary to provide for the... The International Jet Sports Boating Association is sponsoring the IJSBA World Finals. The event will...

  11. Development and perceived effects of an educational programme on quality and safety in medication handling in residential facilities.

    PubMed

    Mygind, Anna; El-Souri, Mira; Rossing, Charlotte; Thomsen, Linda Aagaard

    2018-04-01

    To develop and test an educational programme on quality and safety in medication handling for staff in residential facilities for the disabled. The continuing pharmacy education instructional design model was used to develop the programme with 22 learning objectives on disease and medicines, quality and safety, communication and coordination. The programme was a flexible, modular seven + two days' course addressing quality and safety in medication handling, disease and medicines, and medication supervision and reconciliation. The programme was tested in five Danish municipalities. Municipalities were selected based on their application for participation; each independently selected a facility for residents with mental and intellectual disabilities, and a facility for residents with severe mental illnesses. Perceived effects were measured based on a questionnaire completed by participants before and after the programme. Effects on motivation and confidence as well as perceived effects on knowledge, skills and competences related to medication handling, patient empowerment, communication, role clarification and safety culture were analysed conducting bivariate, stratified analyses and test for independence. Of the 114 participants completing the programme, 75 participants returned both questionnaires (response rate = 66%). Motivation and confidence regarding quality and safety in medication handling significantly improved, as did perceived knowledge, skills and competences on 20 learning objectives on role clarification, safety culture, medication handling, patient empowerment and communication. The programme improved staffs' motivation and confidence and their perceived ability to handle residents' medication safely through improved role clarification, safety culture, medication handling and patient empowerment and communication skills. © 2017 Royal Pharmaceutical Society.

  12. Activities of the US-Japan Safety Monitor Joint Working Group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard L. Savercool; Lee C. Cadwallader

    2004-09-01

    This paper documents the activities of the US-Japan exchange in the area of personnel safety at magnetic and laser fusion experiments. A near-miss event with a visiting scientist to the US in 1992 was the impetus for forming the Joint Working Group on Fusion Safety. This exchnge has been under way for over ten years and has provided many safety insights for both US and Japanese facility personnel at national institutes and at universities. The background and activities of the Joint Working Group are described, including the facilities that have been visited for safety walkthroughs, the participants from both countries,more » and the main safety issues examined during visits. Based on these visits, some operational safety ideas to enhance experiment safety are given. The near-term future plans of the Safety Monitor Joint Working group are also discussed.« less

  13. Safety Oversight of Decommissioning Activities at DOE Nuclear Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zull, Lawrence M.; Yeniscavich, William

    2008-01-15

    The Defense Nuclear Facilities Safety Board (Board) is an independent federal agency established by Congress in 1988 to provide nuclear safety oversight of activities at U.S. Department of Energy (DOE) defense nuclear facilities. The activities under the Board's jurisdiction include the design, construction, startup, operation, and decommissioning of defense nuclear facilities at DOE sites. This paper reviews the Board's safety oversight of decommissioning activities at DOE sites, identifies the safety problems observed, and discusses Board initiatives to improve the safety of decommissioning activities at DOE sites. The decommissioning of former defense nuclear facilities has reduced the risk of radioactive materialmore » contamination and exposure to the public and site workers. In general, efforts to perform decommissioning work at DOE defense nuclear sites have been successful, and contractors performing decommissioning work have a good safety record. Decommissioning activities have recently been completed at sites identified for closure, including the Rocky Flats Environmental Technology Site, the Fernald Closure Project, and the Miamisburg Closure Project (the Mound site). The Rocky Flats and Fernald sites, which produced plutonium parts and uranium materials for defense needs (respectively), have been turned into wildlife refuges. The Mound site, which performed R and D activities on nuclear materials, has been converted into an industrial and technology park called the Mound Advanced Technology Center. The DOE Office of Legacy Management is responsible for the long term stewardship of these former EM sites. The Board has reviewed many decommissioning activities, and noted that there are valuable lessons learned that can benefit both DOE and the contractor. As part of its ongoing safety oversight responsibilities, the Board and its staff will continue to review the safety of DOE and contractor decommissioning activities at DOE defense nuclear sites.« less

  14. Advanced reactors and associated fuel cycle facilities: safety and environmental impacts.

    PubMed

    Hill, R N; Nutt, W M; Laidler, J J

    2011-01-01

    The safety and environmental impacts of new technology and fuel cycle approaches being considered in current U.S. nuclear research programs are contrasted to conventional technology options in this paper. Two advanced reactor technologies, the sodium-cooled fast reactor (SFR) and the very high temperature gas-cooled reactor (VHTR), are being developed. In general, the new reactor technologies exploit inherent features for enhanced safety performance. A key distinction of advanced fuel cycles is spent fuel recycle facilities and new waste forms. In this paper, the performance of existing fuel cycle facilities and applicable regulatory limits are reviewed. Technology options to improve recycle efficiency, restrict emissions, and/or improve safety are identified. For a closed fuel cycle, potential benefits in waste management are significant, and key waste form technology alternatives are described. Copyright © 2010 Health Physics Society

  15. Final Site Safety and Health Plan for Phase II RCRA Facility Investigation Fort Benjamin Harrison Marion County, Indiana

    DTIC Science & Technology

    1996-05-01

    Human Sediment Fly Fish Adipose Sludges, Still- Water Paper Pulp Ash Tissue Tissue Fuel Oil Bottom Lower MCLa 0.02 2.0 2.0 2.0 2.0 10 20 Upper MCLa 4.0...Polychlorinated Dioxins & Furans by HRGC/HRMS SOP No.: Revision No.: LM-CAL-3001 1.0 Complex Fish and Waste Adipose Sample Tissues Soil/ Sediment Voistur...Antimony 7440-36-0 5 12 6 Arsenic 7440-38-2 2 2 50 Barium 7440-39-3 20 40 2,000 Beryllium 7440-41-7 1 1 4 Cadmium 7440-43-9 1 1 5 Calcium 7440-47-3 500

  16. [PRIORITY TECHNOLOGIES OF THE MEDICAL WASTE DISPOSAL SYSTEM].

    PubMed

    Samutin, N M; Butorina, N N; Starodubova, N Yu; Korneychuk, S S; Ustinov, A K

    2015-01-01

    The annual production of waste in health care institutions (HCI) tends to increase because of the growth of health care provision for population. Among the many criteria for selecting the optimal treatment technologies HCI is important to provide epidemiological and chemical safety of the final products. Environmentally friendly method of thermal disinfection of medical waste may be sterilizators of medical wastes intended for hospitals, medical centers, laboratories and other health care facilities that have small and medium volume of processing of all types of waste Class B and C. The most optimal method of centralized disposal of medical waste is a thermal processing method of the collected material.

  17. SLSF in-reactor local fault safety experiment P4. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, D. H.; Holland, J. W.; Braid, T. H.

    The Sodium Loop Safety Facility (SLSF), a major facility in the US fast-reactor safety program, has been used to simulate a variety of sodium-cooled fast reactor accidents. SLSF experiment P4 was conducted to investigate the behavior of a "worse-than-case" local fault configuration. Objectives of this experiment were to eject molten fuel into a 37-pin bundle of full-length Fast-Test-Reactor-type fuel pins form heat-generating fuel canisters, to characterize the severity of any molten fuel-coolant interaction, and to demonstrate that any resulting blockage could either be tolerated during continued power operation or detected by global monitors to prevent fuel failure propagation. The designmore » goal for molten fuel release was 10 to 30 g. Explusion of molten fuel from fuel canisters caused failure of adjacent pins and a partial flow channel blockage in the fuel bundle during full-power operation. Molten fuel and fuel debris also lodged against the inner surface of the test subassembly hex-can wall. The total fuel disruption of 310 g evaluated from posttest examination data was in excellent agreement with results from the SLSF delayed neutron detection system, but exceeded the target molten fuel release by an order of magnitude. This report contains a summary description of the SLSF in-reactor loop and support systems and the experiment operations. results of the detailed macro- and microexamination of disrupted fuel and metal and results from the analysis of the on-line experimental data are described, as are the interpretations and conclusions drawn from the posttest evaluations. 60 refs., 74 figs.« less

  18. Department of Energy: Fundamental Reassessment Needed to Address Major Mission, Structure, and Accountability Problems

    DTIC Science & Technology

    2001-12-01

    addition, the Defense Nuclear Facilities Safety Board warned in 1997 that, given likely future reductions in DOE’s budget, the department needed to...future leaders of the acquisition workforce. The Defense Nuclear Facilities Safety Board’s 2000 report credited DOE with taking steps to improve the...technical capabilities of personnel at its defense nuclear facilities , but pointed out the need for DOE’s leadership to pay increased attention to this

  19. Progress on plutonium stabilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurt, D.

    1996-05-01

    The Defense Nuclear Facilities Safety Board has safety oversight responsibility for most of the facilities where unstable forms of plutonium are being processed and packaged for interim storage. The Board has issued recommendations on plutonium stabilization and has has a considerable influence on DOE`s stabilization schedules and priorities. The Board has not made any recommendations on long-term plutonium disposition, although it may get more involved in the future if DOE develops plans to use defense nuclear facilities for disposition activities.

  20. 75 FR 1615 - Amended Record of Decision: Idaho High-Level Waste and Facilities Disposition Final Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-12

    ... DEPARTMENT OF ENERGY Amended Record of Decision: Idaho High-Level Waste and Facilities Disposition...-Level Waste and Facilities Disposition Final Environmental Impact Statement. This document corrects an... Record of Decision: Idaho High-Level Waste and Facilities [[Page 1616

  1. Safety analysis in test facility design

    NASA Astrophysics Data System (ADS)

    Valk, A.; Jonker, R. J.

    1990-09-01

    The application of safety analysis techniques as developed in, for example nuclear and petrochemical industry, can be very beneficial in coping with the increasing complexity of modern test facility installations and their operations. To illustrate the various techniques available and their phasing in a project, an overview of the most commonly used techniques is presented. Two case studies are described: the hazard and operability study techniques and safety zoning in relation to the possible presence of asphyxiating atmospheres.

  2. Qualification of the gritblast assembly and process for the inside diameter of the RSRM forward and aft domes

    NASA Technical Reports Server (NTRS)

    Nolan, Michael J.

    1992-01-01

    This gritblast assembly shall be used when refurbishing the Inside Diameter (ID) of RSRM forward and aft domes. Initial blasting is used to remove corrosion and adhesive not removed during the insulation washout. Final blasting is conducted just prior to part finalization in order to remove residual contamination and prepare the ID surface for bonding. The media used in this gritblaster is DuPont Zirclean Blasting Abrasive. It is possible to use other media in this gritblast assembly, however the only facility that has the control capability for this assembly is the Zirclean blast booth. This blast booth can not use other media without the occurrence of contamination. This automated process shall replace the manually controlled gritblasting that is currently in operation. Manual gritblasting does not provide the consistency, control, and safety that an automated process is capable of delivering.

  3. CRITICALITY SAFETY CONTROLS AND THE SAFETY BASIS AT PFP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kessler, S

    2009-04-21

    With the implementation of DOE Order 420.1B, Facility Safety, and DOE-STD-3007-2007, 'Guidelines for Preparing Criticality Safety Evaluations at Department of Energy Non-Reactor Nuclear Facilities', a new requirement was imposed that all criticality safety controls be evaluated for inclusion in the facility Documented Safety Analysis (DSA) and that the evaluation process be documented in the site Criticality Safety Program Description Document (CSPDD). At the Hanford site in Washington State the CSPDD, HNF-31695, 'General Description of the FH Criticality Safety Program', requires each facility develop a linking document called a Criticality Control Review (CCR) to document performance of these evaluations. Chapter 5,more » Appendix 5B of HNF-7098, Criticality Safety Program, provided an example of a format for a CCR that could be used in lieu of each facility developing its own CCR. Since the Plutonium Finishing Plant (PFP) is presently undergoing Deactivation and Decommissioning (D&D), new procedures are being developed for cleanout of equipment and systems that have not been operated in years. Existing Criticality Safety Evaluations (CSE) are revised, or new ones written, to develop the controls required to support D&D activities. Other Hanford facilities, including PFP, had difficulty using the basic CCR out of HNF-7098 when first implemented. Interpretation of the new guidelines indicated that many of the controls needed to be elevated to TSR level controls. Criterion 2 of the standard, requiring that the consequence of a criticality be examined for establishing the classification of a control, was not addressed. Upon in-depth review by PFP Criticality Safety staff, it was not clear that the programmatic interpretation of criterion 8C could be applied at PFP. Therefore, the PFP Criticality Safety staff decided to write their own CCR. The PFP CCR provides additional guidance for the evaluation team to use by clarifying the evaluation criteria in DOE-STD-3007-2007. In reviewing documents used in classifying controls for Nuclear Safety, it was noted that DOE-HDBK-1188, 'Glossary of Environment, Health, and Safety Terms', defines an Administrative Control (AC) in terms that are different than typically used in Criticality Safety. As part of this CCR, a new term, Criticality Administrative Control (CAC) was defined to clarify the difference between an AC used for criticality safety and an AC used for nuclear safety. In Nuclear Safety terms, an AC is a provision relating to organization and management, procedures, recordkeeping, assessment, and reporting necessary to ensure safe operation of a facility. A CAC was defined as an administrative control derived in a criticality safety analysis that is implemented to ensure double contingency. According to criterion 2 of Section IV, 'Linkage to the Documented Safety Analysis', of DOESTD-3007-2007, the consequence of a criticality should be examined for the purposes of classifying the significance of a control or component. HNF-PRO-700, 'Safety Basis Development', provides control selection criteria based on consequence and risk that may be used in the development of a Criticality Safety Evaluation (CSE) to establish the classification of a component as a design feature, as safety class or safety significant, i.e., an Engineered Safety Feature (ESF), or as equipment important to safety; or merely provides defense-in-depth. Similar logic is applied to the CACs. Criterion 8C of DOE-STD-3007-2007, as written, added to the confusion of using the basic CCR from HNF-7098. The PFP CCR attempts to clarify this criterion by revising it to say 'Programmatic commitments or general references to control philosophy (e.g., mass control or spacing control or concentration control as an overall control strategy for the process without specific quantification of individual limits) is included in the PFP DSA'. Table 1 shows the PFP methodology for evaluating CACs. This evaluation process has been in use since February of 2008 and has proven to be simple and effective. Each control identified in the applicable new/revised CSE is evaluated via the table. The results of this evaluation are documented in tables attached to the CCR as an appendix, for each CSE, to the base document.« less

  4. 76 FR 73570 - Pipeline Safety: Miscellaneous Changes to Pipeline Safety Regulations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-29

    ... pipeline facilities to facilitate the removal of liquids and other materials from the gas stream. These... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Parts... Changes to Pipeline Safety Regulations AGENCY: Pipeline and Hazardous Materials Safety Administration...

  5. Safety in Academic Chemistry Laboratories. Fourth Edition.

    ERIC Educational Resources Information Center

    American Chemical Society, Washington, DC.

    This booklet provides guidelines for safety in the chemical laboratory. Part I, "Guides for Instructors and Administrators," includes safety rules, safety practices and facilities, preparation for emergencies, safety committees, accident reporting, fire insurance, and listings of some hazardous chemicals. Part II, "Student Guide to…

  6. 76 FR 15348 - Proposed Extension of the Approval of Information Collection Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-21

    ... property to be used for housing migrant agricultural workers shall not permit such housing to be occupied... conducted the housing safety and health inspection is posted at the site of the facility or real property. The certificate attests that the facility or real property meets applicable safety and health...

  7. 76 FR 56458 - Proposed Data Collections Submitted for Public Comment and Recommendations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-13

    ... Registered Nurse (Infection 6,000 1 5/60 500 Preventionist). 57.101: Facility Contact Information Registered Nurse (Infection 6,000 1 10/60 1,000 Preventionist). 57.103: Patient Safety Component--Annual Registered Nurse (Infection 6,000 1 30/60 3,000 Facility Survey. Preventionist). 57.104: Patient Safety Component...

  8. Laboratory Safety Needs of Kentucky School-Based Agricultural Mechanics Teachers

    ERIC Educational Resources Information Center

    Saucier, P. Ryan; Vincent, Stacy K.; Anderson, Ryan G.

    2014-01-01

    The frequency and severity of accidents that occur in the agricultural mechanics laboratory can be reduced when these facilities are managed by educators who are competent in the area of laboratory safety and facility management (McKim & Saucier, 2011). To ensure teachers are technically competent and prepared to manage an agricultural…

  9. 10 CFR 1707.203 - Filing requirements for demands or requests for documents or testimony.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Filing requirements for demands or requests for documents or testimony. 1707.203 Section 1707.203 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY...) The Defense Nuclear Facilities Safety Board reserves the right to require additional information to...

  10. 10 CFR 1707.203 - Filing requirements for demands or requests for documents or testimony.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Filing requirements for demands or requests for documents or testimony. 1707.203 Section 1707.203 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY...) The Defense Nuclear Facilities Safety Board reserves the right to require additional information to...

  11. 10 CFR 1707.203 - Filing requirements for demands or requests for documents or testimony.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Filing requirements for demands or requests for documents or testimony. 1707.203 Section 1707.203 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY...) The Defense Nuclear Facilities Safety Board reserves the right to require additional information to...

  12. 10 CFR 1707.203 - Filing requirements for demands or requests for documents or testimony.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Filing requirements for demands or requests for documents or testimony. 1707.203 Section 1707.203 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY...) The Defense Nuclear Facilities Safety Board reserves the right to require additional information to...

  13. Techniques employed by the NASA White Sands Test Facility to ensure oxygen system component safety

    NASA Technical Reports Server (NTRS)

    Stradling, J. S.; Pippen, D. L.; Frye, G. W.

    1983-01-01

    Methods of ascertaining the safety and suitability of a variety of oxygen system components are discussed. Additionally, qualification and batch control requirements for soft goods in oxygen systems are presented. Current oxygen system component qualification test activities in progress at White Sands Test Facility are described.

  14. 78 FR 67344 - Sunshine Act Meeting; New Time and Date of Proceeding

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-12

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Sunshine Act Meeting; New Time and Date of Proceeding AGENCY: Defense Nuclear Facilities Safety Board. ACTION: Notice of Public Meeting and Hearing; New Time... the postponement in the Federal Register due to the shutdown. The Board has now decided on a new time...

  15. 77 FR 75676 - Standard Review Plan for Review of Fuel Cycle Facility License Applications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-21

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0220] Standard Review Plan for Review of Fuel Cycle... Review of a License Application for a Fuel Cycle Facility.'' The NRC is extending the public comment... of Fuel Cycle Safety and Safeguards, Office of Nuclear Material Safety and Safeguards. [FR Doc. 2012...

  16. 30 CFR 71.500 - Sanitary toilet facilities at surface work sites; installation requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Sanitary toilet facilities at surface work sites; installation requirements. 71.500 Section 71.500 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-SURFACE COAL MINES AND...

  17. 75 FR 9196 - Letter From Secretary of Energy Accepting Defense Nuclear Facilities Safety Board (Board...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-01

    ... capability for non- vital laboratory room electrical loads that provides an engineered control to reduce..., approximately two orders of magnitude higher than our evaluation guideline for selecting safety class controls. Approval of the DSA included recognition of weaknesses in the facility's control set and the need to...

  18. 77 FR 74587 - Safety Zone; Grain-Shipment Vessels, Columbia and Willamette Rivers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-17

    ... 1625-AA00 Safety Zone; Grain-Shipment Vessels, Columbia and Willamette Rivers AGENCY: Coast Guard, DHS... inbound and outbound grain-shipment vessels involved in commerce with the Columbia Grain facility on the Willamette River in Portland, OR, and the United Grain Corporation facility on the Columbia River in...

  19. 40 CFR 170.135 - Posted pesticide safety information.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., pesticide safety information. (b) Pesticide safety poster. A safety poster must be displayed that conveys..., and telephone number of the nearest emergency medical care facility shall be on the safety poster or displayed close to the safety poster. (2) The agricultural employer shall inform workers promptly of any...

  20. 40 CFR 170.135 - Posted pesticide safety information.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., pesticide safety information. (b) Pesticide safety poster. A safety poster must be displayed that conveys..., and telephone number of the nearest emergency medical care facility shall be on the safety poster or displayed close to the safety poster. (2) The agricultural employer shall inform workers promptly of any...

  1. 40 CFR 170.135 - Posted pesticide safety information.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., pesticide safety information. (b) Pesticide safety poster. A safety poster must be displayed that conveys..., and telephone number of the nearest emergency medical care facility shall be on the safety poster or displayed close to the safety poster. (2) The agricultural employer shall inform workers promptly of any...

  2. 40 CFR 170.135 - Posted pesticide safety information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., pesticide safety information. (b) Pesticide safety poster. A safety poster must be displayed that conveys..., and telephone number of the nearest emergency medical care facility shall be on the safety poster or displayed close to the safety poster. (2) The agricultural employer shall inform workers promptly of any...

  3. 40 CFR 170.135 - Posted pesticide safety information.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., pesticide safety information. (b) Pesticide safety poster. A safety poster must be displayed that conveys..., and telephone number of the nearest emergency medical care facility shall be on the safety poster or displayed close to the safety poster. (2) The agricultural employer shall inform workers promptly of any...

  4. 10 CFR 830.204 - Documented safety analysis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Documented safety analysis. 830.204 Section 830.204 Energy DEPARTMENT OF ENERGY NUCLEAR SAFETY MANAGEMENT Safety Basis Requirements § 830.204 Documented safety analysis... approval from DOE for the methodology used to prepare the documented safety analysis for the facility...

  5. 49 CFR 193.2189-193.2233 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Design Lng Storage Tanks §§ 193.2189-193.2233 [Reserved] ...

  6. 49 CFR 193.2121-193.2153 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Design Design of Components and Buildings §§ 193.2121-193...

  7. 10 CFR 70.64 - Requirements for new facilities or new processes at existing facilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... behavior of items relied on for safety. (b) Facility and system design and facility layout must be based on... existing facilities. (a) Baseline design criteria. Each prospective applicant or licensee shall address the following baseline design criteria in the design of new facilities. Each existing licensee shall address the...

  8. 10 CFR 70.64 - Requirements for new facilities or new processes at existing facilities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... behavior of items relied on for safety. (b) Facility and system design and facility layout must be based on... existing facilities. (a) Baseline design criteria. Each prospective applicant or licensee shall address the following baseline design criteria in the design of new facilities. Each existing licensee shall address the...

  9. 10 CFR 70.64 - Requirements for new facilities or new processes at existing facilities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... behavior of items relied on for safety. (b) Facility and system design and facility layout must be based on... existing facilities. (a) Baseline design criteria. Each prospective applicant or licensee shall address the following baseline design criteria in the design of new facilities. Each existing licensee shall address the...

  10. 10 CFR 70.64 - Requirements for new facilities or new processes at existing facilities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... behavior of items relied on for safety. (b) Facility and system design and facility layout must be based on... existing facilities. (a) Baseline design criteria. Each prospective applicant or licensee shall address the following baseline design criteria in the design of new facilities. Each existing licensee shall address the...

  11. 49 CFR 193.2019 - Mobile and temporary LNG facilities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Mobile and temporary LNG facilities. 193.2019... LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS General § 193.2019 Mobile and temporary LNG facilities. (a) Mobile and temporary LNG facilities for peakshaving application, for service maintenance...

  12. Measuring the preparedness of health facilities to deliver emergency obstetric care in a South African district.

    PubMed

    Thwala, Siphiwe Bridget Pearl; Blaauw, Duane; Ssengooba, Freddie

    2018-01-01

    Improving the delivery of emergency obstetric care (EmNOC) remains critical in addressing direct causes of maternal mortality. United Nations (UN) agencies have promoted standard methods for evaluating the availability of EmNOC facilities although modifications have been proposed by others. This study presents an assessment of the preparedness of public health facilities to provide EmNOC using these methods in one South African district with a persistently high maternal mortality ratio. Data collection took place in the final quarter of 2014. Cross-sectional surveys were conducted to classify the 7 hospitals and 8 community health centres (CHCs) in the district as either basic EmNOC (BEmNOC) or comprehensive EmNOC (CEmNOC) facilities using UN EmNOC signal functions. The required density of EmNOC facilities was calculated using UN norms. We also assessed the availability of EmNOC personnel, resuscitation equipment, drugs, fluids, and protocols at each facility. The workload of skilled EmNOC providers at hospitals and CHCs was compared. All 7 hospitals in the district were classified as CEmNOC facilities, but none of the 8 CHCs performed all required signal functions to be classified as BEmNOC facilities. UN norms indicated that 25 EmNOC facilities were required for the district population, 5 of which should be CEmNOCs. None of the facilities had 100% of items on the EmNOC checklists. Hospital midwives delivered an average of 36.4±14.3 deliveries each per month compared to only 7.9±3.2 for CHC midwives (p<0.001). The analysis indicated a shortfall of EmNOC facilities in the district. Full EmNOC services were centralised to hospitals to assure patient safety even though national policy guidelines sanction more decentralisation to CHCs. Studies measuring EmNOC availability need to consider facility opening hours, capacity and staffing in addition to the demonstrated performance of signal functions.

  13. Measuring the preparedness of health facilities to deliver emergency obstetric care in a South African district

    PubMed Central

    Blaauw, Duane; Ssengooba, Freddie

    2018-01-01

    Background Improving the delivery of emergency obstetric care (EmNOC) remains critical in addressing direct causes of maternal mortality. United Nations (UN) agencies have promoted standard methods for evaluating the availability of EmNOC facilities although modifications have been proposed by others. This study presents an assessment of the preparedness of public health facilities to provide EmNOC using these methods in one South African district with a persistently high maternal mortality ratio. Methods Data collection took place in the final quarter of 2014. Cross-sectional surveys were conducted to classify the 7 hospitals and 8 community health centres (CHCs) in the district as either basic EmNOC (BEmNOC) or comprehensive EmNOC (CEmNOC) facilities using UN EmNOC signal functions. The required density of EmNOC facilities was calculated using UN norms. We also assessed the availability of EmNOC personnel, resuscitation equipment, drugs, fluids, and protocols at each facility. The workload of skilled EmNOC providers at hospitals and CHCs was compared. Results All 7 hospitals in the district were classified as CEmNOC facilities, but none of the 8 CHCs performed all required signal functions to be classified as BEmNOC facilities. UN norms indicated that 25 EmNOC facilities were required for the district population, 5 of which should be CEmNOCs. None of the facilities had 100% of items on the EmNOC checklists. Hospital midwives delivered an average of 36.4±14.3 deliveries each per month compared to only 7.9±3.2 for CHC midwives (p<0.001). Conclusions The analysis indicated a shortfall of EmNOC facilities in the district. Full EmNOC services were centralised to hospitals to assure patient safety even though national policy guidelines sanction more decentralisation to CHCs. Studies measuring EmNOC availability need to consider facility opening hours, capacity and staffing in addition to the demonstrated performance of signal functions. PMID:29596431

  14. The Worker Exposure Failure Modes and Effects Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee C. Cadwallader

    2004-09-01

    This paper documents the activities of the US-Japan exchange in the area of personnel safety at magnetic and laser fusion experiments. A near-miss event with a visiting scientist to the US in 1992 was the impetus for forming the Joint Working Group on Fusion Safety. This exchange has been under way for over ten years and has provided many safety insights for both US and Japanese facility personnel at national institutes and at universities. The background and activities of the Joint Working Group are described, including the facilities that have been visited for safety walkthroughs, the participants from both countries,more » and the main safety issues examined during visits. Based on these visits, some operational safety ideas to enhance experiment safety are given. The near-term future plans of the Safety Monitor Joint Working Group are also discussed.« less

  15. The role and working conditions of Movement Science students employed in sport and recreational facilities: An Italian multicenter study.

    PubMed

    Gallè, Francesca; Di Onofrio, Valeria; Arpesella, Marisa; Bacci, Silvia; Bianco, Antonino; Brandi, Giorgio; Bruno, Stefania; Anastasi, Daniela; Carraro, Elisabetta; Flacco, Maria Elena; Giampaoli, Saverio; Izzotti, Alberto; Leoni, Erica; Bertoncello, Chiara; Minelli, Liliana; Napoli, Christian; Nobile, Carmelo; Pasquarella, Cesira; Liguori, Giorgio; Romano Spica, Vincenzo

    2015-01-01

    In Italy, students from Movement Science (MS) Degree Courses often work in sport and recreational facilities before graduation. The employment conditions of Movement Science students working in sport/recreational facilities were investigated, and the management and structural features of the facilities were evaluated, including safety policies. Regional differences were also considered. Questionnaires were administered to undergraduate and graduate students (N = 4,217) in 17 Universities. Students' perceptions of the quality of the facilities where they had been employed was evaluated using multivariate analysis. A latent class model with covariates was used to evaluate how variables relating to participants, employment facilities or regions influence their opinions. A high proportion of MS students were employed in sporting facilities (undergraduate level: 33% ; graduate level: 55%), in most cases without any formal employment contracts. Both the structural and hygienic features, as well as the professional knowledge of the staff, were considered good to excellent by the majority of participants (about 70%). Communication of the basic behavioral rules was considered adequate by 61-63% of undergraduate students and 71-75% of graduate students, while nearly half of the participants were dissatisfied with the staff safety training. Correlations between the perceived good structural/hygienic conditions, the presence of regulations and training programs for the staff were investigated. Differences regarding occupational level and safety training among different regions of Italy were also observed. Italian students in Movement Science were easily employed in sport/recreational facilities, but frequently without a formal contract. This is a consequence of the lack of specific regulations in the field of recreational/leisure employment and could have negative implications, especially in terms of safety.

  16. Association between health worker motivation and healthcare quality efforts in Ghana.

    PubMed

    Alhassan, Robert Kaba; Spieker, Nicole; van Ostenberg, Paul; Ogink, Alice; Nketiah-Amponsah, Edward; de Wit, Tobias F Rinke

    2013-08-14

    Ghana is one of the sub-Saharan African countries making significant progress towards universal access to quality healthcare. However, it remains a challenge to attain the 2015 targets for the health related Millennium Development Goals (MDGs) partly due to health sector human resource challenges including low staff motivation. This paper addresses indicators of health worker motivation and assesses associations with quality care and patient safety in Ghana. The aim is to identify interventions at the health worker level that contribute to quality improvement in healthcare facilities. The study is a baseline survey of health workers (n = 324) in 64 primary healthcare facilities in two regions in Ghana. Data collection involved quality care assessment using the SafeCare Essentials tool, the National Health Insurance Authority (NHIA) accreditation data and structured staff interviews on workplace motivating factors. The Spearman correlation test was conducted to test the hypothesis that the level of health worker motivation is associated with level of effort by primary healthcare facilities to improve quality care and patient safety. The quality care situation in health facilities was generally low, as determined by the SafeCare Essentials tool and NHIA data. The majority of facilities assessed did not have documented evidence of processes for continuous quality improvement and patient safety. Overall, staff motivation appeared low although workers in private facilities perceived better working conditions than workers in public facilities (P <0.05). Significant positive associations were found between staff satisfaction levels with working conditions and the clinic's effort towards quality improvement and patient safety (P <0.05). As part of efforts towards attainment of the health related MDGs in Ghana, more comprehensive staff motivation interventions should be integrated into quality improvement strategies especially in government-owned healthcare facilities where working conditions are perceived to be the worst.

  17. The Department of Energy Nuclear Criticality Safety Program

    NASA Astrophysics Data System (ADS)

    Felty, James R.

    2005-05-01

    This paper broadly covers key events and activities from which the Department of Energy Nuclear Criticality Safety Program (NCSP) evolved. The NCSP maintains fundamental infrastructure that supports operational criticality safety programs. This infrastructure includes continued development and maintenance of key calculational tools, differential and integral data measurements, benchmark compilation, development of training resources, hands-on training, and web-based systems to enhance information preservation and dissemination. The NCSP was initiated in response to Defense Nuclear Facilities Safety Board Recommendation 97-2, Criticality Safety, and evolved from a predecessor program, the Nuclear Criticality Predictability Program, that was initiated in response to Defense Nuclear Facilities Safety Board Recommendation 93-2, The Need for Critical Experiment Capability. This paper also discusses the role Dr. Sol Pearlstein played in helping the Department of Energy lay the foundation for a robust and enduring criticality safety infrastructure.

  18. 48 CFR 923.7001 - Nuclear safety.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Nuclear safety. 923.7001... Efficiency, Renewable Energy Technologies, and Occupational Safety Programs 923.7001 Nuclear safety. The DOE regulates the nuclear safety of its major facilities under its own statutory authority derived from the...

  19. 75 FR 65151 - Marine Vapor Control Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-21

    ...The Coast Guard proposes to increase maritime domain safety by revising existing safety regulations for facility and vessel vapor control systems (VCSs). The proposed changes would make VCS requirements more compatible with new Federal and State environmental requirements, reflect industry advancements in VCS technology, and codify the standards for the design and operation of a VCS at tank barge cleaning facilities. These changes would increase the safety of operations by regulating the design, installation, and use of VCSs, but would not require anyone to install or use VCSs.

  20. Facilities Maintenance in the U.S. Navy

    DTIC Science & Technology

    1986-01-01

    Row’a9IVI s..Nl,I I~de 14. 11111116104 It. safeI MeAI. 5,124 AN (:lgnd) JOHN SMITH I765 IIf Figure 111-1 Work Request is EMIROENCY/SERVICE WORK...Eliminate fire, health and active life of less than 3 years safety hazards o Infrequently or only partially o Patch and reinforce instead used of...safety or health hazards and to permit reactivation within the period prescribed under mobili- zation plans o Surplus facilities a Fliminate fire, safety

  1. 76 FR 14590 - Defense Federal Acquisition Regulation Supplement; Safety of Facilities, Infrastructure, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-17

    ... facilities, infrastructure, and equipment that are intended for use by military or civilian personnel of the..., maintenance, or operation of facilities, infrastructure, and equipment for use by DoD military or civilian... facilities. This includes contracts for facilities, infrastructure, and equipment configured for occupancy...

  2. Final repository for Denmark's low- and intermediate level radioactive waste

    NASA Astrophysics Data System (ADS)

    Nilsson, B.; Gravesen, P.; Petersen, S. S.; Binderup, M.

    2012-12-01

    Bertel Nilsson*, Peter Gravesen, Stig A. Schack Petersen, Merete Binderup Geological Survey of Denmark and Greenland (GEUS), Øster Voldgade 10, 1350 Copenhagen, Denmark, * email address bn@geus.dk The Danish Parliament decided in 2003 that the temporal disposal of the low- and intermediate level radioactive waste at the nuclear facilities at Risø should find another location for a final repository. The Danish radioactive waste must be stored on Danish land territory (exclusive Greenland) and must hold the entire existing radioactive waste, consisting of the waste from the decommissioning of the nuclear facilities at Risø, and the radioactive waste produced in Denmark from hospitals, universities and industry. The radioactive waste is estimated to a total amount of up to 10,000 m3. The Geological Survey of Denmark and Greenland, GEUS, is responsible for the geological studies of suitable areas for the repository. The task has been to locate and recognize non-fractured Quaternary and Tertiary clays or Precambrian bedrocks with low permeability which can isolate the radioactive waste from the surroundings the coming more than 300 years. Twenty two potential areas have been located and sequential reduced to the most favorable two to three locations taking into consideration geology, hydrogeology, nature protection and climate change conditions. Further detailed environmental and geology investigations will be undertaken at the two to three potential localities in 2013 to 2015. This study together with a study of safe transport of the radioactive waste and an investigation of appropriate repository concepts in relation to geology and safety analyses will constitute the basis upon which the final decision by the Danish Parliament on repository concept and repository location. The final repository is planned to be established and in operation at the earliest 2020.

  3. 77 FR 45417 - Pipeline Safety: Inspection and Protection of Pipeline Facilities After Railway Accidents

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-31

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No... Accidents AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA); DOT. [[Page 45418

  4. 10 CFR 830.202 - Safety basis.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Safety basis. 830.202 Section 830.202 Energy DEPARTMENT OF ENERGY NUCLEAR SAFETY MANAGEMENT Safety Basis Requirements § 830.202 Safety basis. (a) The contractor responsible for a hazard category 1, 2, or 3 DOE nuclear facility must establish and maintain the safety basis...

  5. 10 CFR 830.202 - Safety basis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Safety basis. 830.202 Section 830.202 Energy DEPARTMENT OF ENERGY NUCLEAR SAFETY MANAGEMENT Safety Basis Requirements § 830.202 Safety basis. (a) The contractor responsible for a hazard category 1, 2, or 3 DOE nuclear facility must establish and maintain the safety basis...

  6. Safety Practices Followed in ISRO Launch Complex- An Overview

    NASA Astrophysics Data System (ADS)

    Krishnamurty, V.; Srivastava, V. K.; Ramesh, M.

    2005-12-01

    The spaceport of India, Satish Dhawan Space Centre (SDSC) SHAR of Indian Space Research Organisation (ISRO), is located at Sriharikota, a spindle shaped island on the east coast of southern India.SDSC SHAR has a unique combination of facilities, such as a solid propellant production plant, a rocket motor static test facility, launch complexes for different types of rockets, telemetry, telecommand, tracking, data acquisition and processing facilities and other support services.The Solid Propellant Space Booster Plant (SPROB) located at SDSC SHAR produces composite solid propellant for rocket motors of ISRO. The main ingredients of the propellant produced here are ammonium perchlorate (oxidizer), fine aluminium powder (fuel) and hydroxyl terminated polybutadiene (binder).SDSC SHAR has facilities for testing solid rocket motors, both at ambient conditions and at simulated high altitude conditions. Other test facilities for the environmental testing of rocket motors and their subsystems include Vibration, Shock, Constant Acceleration and Thermal / Humidity.SDSC SHAR has the necessary infrastructure for launching satellites into low earth orbit, polar orbit and geo-stationary transfer orbit. The launch complexes provide complete support for vehicle assembly, fuelling with both earth storable and cryogenic propellants, checkout and launch operations. Apart from these, it has facilities for launching sounding rockets for studying the Earth's upper atmosphere and for controlled reentry and recovery of ISRO's space capsule reentry missions.Safety plays a major role at SDSC SHAR right from the mission / facility design phase to post launch operations. This paper presents briefly the infrastructure available at SDSC SHAR of ISRO for launching sounding rockets, satellite launch vehicles, controlled reentry missions and the built in safety systems. The range safety methodology followed as a part of the real time mission monitoring is presented. The built in safety systems provided onboard the launch vehicle are automatic shut off the propulsion system based on real time mission performance and a passivation system incorporated in the orbit insertion stage are highlighted.

  7. 3 CFR 13650 - Executive Order 13650 of August 1, 2013. Improving Chemical Facility Safety and Security

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Working Group. (a) There is established a Chemical Facility Safety and Security Working Group (Working Group) co-chaired by the Secretary of Homeland Security, the Administrator of the Environmental... Secretary level or higher. In addition, the Working Group shall consist of the head of each of the following...

  8. Boiling eXperiment Facility (BXF) Fluid Toxicity Technical Interchange Meeting (TIM) with the Payload Safety Review Panel (PSRP)

    NASA Technical Reports Server (NTRS)

    Sheredy, William A.

    2012-01-01

    A Technical Interchange meeting was held between the payload developers for the Boiling eXperiment Facility (BXF) and the NASA Safety Review Panel concerning operational anomaly that resulted in overheating one of the fluid heaters, shorted a 24VDC power supply and generated Perfluoroisobutylene (PFiB) from Perfluorohexane.

  9. 78 FR 28949 - Fund Availability Under VA's Homeless Providers Grant and Per Diem Program (Rehabilitation)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-16

    ... Per Diem Program as a part of the effort to increase the useful life of the facilities of grantees... grantees are required to ensure that facilities rehabilitated under this NOFA meet the Life Safety Code of the National Fire and Protection Association. Please note, typically the Life Safety Code is more...

  10. TA 55 Reinvestment Project II Phase C Update Project Status May 23, 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giordano, Anthony P.

    The TA-55 Reinvestment Project (TRP) II Phase C is a critical infrastructure project focused on improving safety and reliability of the Los Alamos National Laboratory (LANL) TA-55 Complex. The Project recapitalizes and revitalizes aging and obsolete facility and safety systems providing a sustainable nuclear facility for National Security Missions.

  11. Depleted UF6 Internet Resources

    Science.gov Websites

    been used to color glass for almost 2 millennia. A uranium-colored glass object was found near Naples , Italy, and dated to about 79 A.D. Uranium oxide added to glass produces a yellow to greenish hue. more Board Defense Nuclear Facilities Safety Board (DNFSB) The Defense Nuclear Facilities Safety Board

  12. 30 CFR 75.1712-5 - Application for waiver of surface facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... §§ 75.1712-1 through 75.1712-3 shall be filed with the Coal Mine Safety District Manager and shall... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Application for waiver of surface facilities. 75.1712-5 Section 75.1712-5 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF...

  13. 47 CFR 95.1107 - Authorized locations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO... care facility provided the facility is located anywhere a CB station operation is permitted under § 95... associated with a health care facility. ...

  14. 30 CFR 57.9303 - Construction of ramps and dumping facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Loading, Hauling, and Dumping Safety Devices, Provisions, and Procedures for Roadways, Railroads...

  15. 49 CFR 193.2183-193.2185 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Design Impoundment Design and Capacity §§ 193.2183-193.2185 [Reserved] LNG Storage Tanks ...

  16. 40 CFR 170.235 - Posted pesticide safety information.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... (b) Pesticide safety poster. A safety poster must be displayed that conveys, at a minimum, the... the nearest emergency medical care facility shall be on the safety poster or displayed close to the safety poster. (2) The handler employer shall inform handlers promptly of any change to the information...

  17. 40 CFR 170.235 - Posted pesticide safety information.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... (b) Pesticide safety poster. A safety poster must be displayed that conveys, at a minimum, the... the nearest emergency medical care facility shall be on the safety poster or displayed close to the safety poster. (2) The handler employer shall inform handlers promptly of any change to the information...

  18. 40 CFR 170.235 - Posted pesticide safety information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (b) Pesticide safety poster. A safety poster must be displayed that conveys, at a minimum, the... the nearest emergency medical care facility shall be on the safety poster or displayed close to the safety poster. (2) The handler employer shall inform handlers promptly of any change to the information...

  19. 40 CFR 170.235 - Posted pesticide safety information.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... (b) Pesticide safety poster. A safety poster must be displayed that conveys, at a minimum, the... the nearest emergency medical care facility shall be on the safety poster or displayed close to the safety poster. (2) The handler employer shall inform handlers promptly of any change to the information...

  20. 40 CFR 170.235 - Posted pesticide safety information.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... (b) Pesticide safety poster. A safety poster must be displayed that conveys, at a minimum, the... the nearest emergency medical care facility shall be on the safety poster or displayed close to the safety poster. (2) The handler employer shall inform handlers promptly of any change to the information...

  1. Safety management of an underground-based gravitational wave telescope: KAGRA

    NASA Astrophysics Data System (ADS)

    Ohishi, Naoko; Miyoki, Shinji; Uchiyama, Takashi; Miyakawa, Osamu; Ohashi, Masatake

    2014-08-01

    KAGRA is a unique gravitational wave telescope with its location underground and use of cryogenic mirrors. Safety management plays an important role for secure development and operation of such a unique and large facility. Based on relevant law in Japan, Labor Standard Act and Industrial Safety and Health Law, various countermeasures are mandated to avoid foreseeable accidents and diseases. In addition to the usual safety management of hazardous materials, such as cranes, organic solvents, lasers, there are specific safety issues in the tunnel. Prevention of collapse, flood, and fire accidents are the most critical issues for the underground facility. Ventilation is also important for prevention of air pollution by carbon monoxide, carbon dioxide, organic solvents and radon. Oxygen deficiency should also be prevented.

  2. A microprocessor tester for the treat upgrade reactor trip system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lenkszus, F.R.; Bucher, R.G.

    1985-02-01

    The upgrading of the Transient Reactor Test (TREAT) Facility at ANL-Idaho has been designed to provide additional experimental capabilities for the study of core disruptive accident (CDA) phenomena. To improve the analytical extrapolation of test results to full-size assembly bundles, the facility upgrade will increase the maximum size of the test bundle from 7 to 37 fuel pins. By creating a core convertor zone around the test location, the neutron spectrum incident on the test assembly will be hardened and the maximum energy deposited in the sample will be increased. In addition, a programmable Automated Reactor Control System (ARCS) willmore » permit high-power transients up to 11,000 MW having a controlled reactor period of from 15 to 0.1 sec. These modifications to the core neutronics will improve simulation of LMFBR accident conditions. Finally, a sophisticated, multiply-redundant safety system, the Reactor Trip System (RTS), will provide safe operation for both steady state and transient production operating modes. To insure that this complex safety system is functioning properly, a Dedicated Microprocessor Tester (DMT) has been implemented to perform a thorough checkout of the RTS prior to all TREAT operations. A quantitative reliability analysis of the RTS shows that the unreliability, that is, the probability of failure, is acceptable for a 10 hour mission time or risk interval.« less

  3. Installation and first operation of the International Fusion Materials Irradiation Facility injector at the Rokkasho site

    NASA Astrophysics Data System (ADS)

    Gobin, Raphael; Bogard, Daniel; Bolzon, Benoit; Bourdelle, Gilles; Chauvin, Nicolas; Chel, Stéphane; Girardot, Patrick; Gomes, Adelino; Guiho, Patrice; Harrault, Francis; Loiseau, Denis; Lussignol, Yves; Misiara, Nicolas; Roger, Arnaud; Senée, Franck; Valette, Matthieu; Cara, Philippe; Duglué, Daniel; Gex, Dominique; Okumura, Yoshikazu; Marcos Ayala, Juan; Knaster, Juan; Marqueta, Alvaro; Kasugai, Atsushi; O'Hira, Shigeru; Shinto, Katsuhiro; Takahashi, Hiroki

    2016-02-01

    The International Fusion Materials Irradiation Facility (IFMIF) linear IFMIF prototype accelerator injector dedicated to high intensity deuteron beam production has been designed, built, and tested at CEA/Saclay between 2008 and 2012. After the completion of the acceptance tests at Saclay, the injector has been fully sent to Japan. The re-assembly of the injector has been performed between March and May 2014. Then after the check-out phase, the production of the first proton beam occurred in November 2014. Hydrogen and deuteron beam commissioning is now in progress after having proceeded with the final tests on the entire injector equipment including high power diagnostics. This article reports the different phases of the injector installation pointing out the safety and security needs, as well as the first beam production results in Japan and chopper tests. Detailed operation and commissioning results (with H+ and D+ 100 keV beams) are reported in a second article.

  4. Options Assessment Report: Treatment of Nitrate Salt Waste at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Bruce Alan; Stevens, Patrice Ann

    2015-12-17

    This report documents the methodology used to select a method of treatment for the remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The method selected should treat the containerized waste in a manner that renders the waste safe and suitable for transport and final disposal in the Waste Isolation Pilot Plant (WIPP) repository, under specifications listed in the WIPP Waste Acceptance Criteria (DOE/CBFO, 2013). LANL recognizes that the results must be thoroughly vetted with the New Mexico Environment Department (NMED) and that a modification to the LANL Hazardous Waste Facility Permitmore » is a necessary step before implementation of this or any treatment option. Likewise, facility readiness and safety basis approvals must be received from the Department of Energy (DOE). This report presents LANL’s preferred option, and the documentation of the process for reaching the recommended treatment option for RNS and UNS waste, and is presented for consideration by NMED and DOE.« less

  5. Regulatory Supervision of Radiological Protection in the Russian Federation as Applied to Facility Decommissioning and Site Remediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sneve, M.K.; Shandala, N.K.

    2007-07-01

    The Russian Federation is carrying out major work to manage the legacy of exploitation of nuclear power and use of radioactive materials. This paper describes work on-going to provide enhanced regulatory supervision of these activities as regards radiological protection. The scope includes worker and public protection in routine operation; emergency preparedness and response; radioactive waste management, including treatment, interim storage and transport as well as final disposal; and long term site restoration. Examples examined include waste from facilities in NW Russia, including remediation of previous shore technical bases (STBs) for submarines, spent fuel and radioactive waste management from ice-breakers, andmore » decommissioning of Radio-Thermal-Generators (RTGs) used in navigational devices. Consideration is given to the identification of regulatory responsibilities among different regulators; development of necessary regulatory instruments; and development of regulatory procedures for safety case reviews and compliance monitoring and international cooperation between different regulators. (authors)« less

  6. 49 CFR 807.150 - Program accessibility: Existing facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Program accessibility: Existing facilities. 807... CONDUCTED BY THE NATIONAL TRANSPORTATION SAFETY BOARD § 807.150 Program accessibility: Existing facilities... not— (1) Necessarily require the agency to make each of its existing facilities accessible to and...

  7. 30 CFR 75.382 - Mechanical escape facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Mechanical escape facilities. 75.382 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.382 Mechanical escape facilities. (a) Mechanical escape facilities shall be provided with overspeed, overwind, and automatic stop...

  8. State Requirements for Educational Facilities, 1997.

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee. Office of Educational Facilities.

    This document updates Florida's deregulation of construction of educational facilities guidelines, while keeping as the primary focus the safety of the students in pre-K through community college facilities. Organized by the sequence of steps required in the facilities procurement process, it covers general definitions, property…

  9. Spacecraft fire-safety experiments for space station: Technology development mission

    NASA Technical Reports Server (NTRS)

    Youngblood, Wallace W.

    1988-01-01

    Three concept designs for low-gravity, fire-safety related experiments are presented, as selected for the purpose of addressing key issues of enhancing safety and yet encouraging access to long-duration, manned spacecraft such as the NASA space station. The selected low-gravity experiments are the following: (1) an investigation of the flame-spread rate and combustion-product evolution of the burning of typical thicknesses of spacecraft materials in very low-speed flows; (2) an evaluation of the interaction of fires and candidate extinguishers in various fire scenarios; and (3) an investigation of the persistence and propagation of smoldering and deep-seated combustion. Each experiment is expected to provide fundamental combustion-science data, as well as the fire-safety applications, and each requires the unique long-duration, low-gravity environment of the space station. Two generic test facilities, i.e., the Combustion Tunnel Facility and the Combustion Facility, are proposed for space station accommodation to support the selected experiments. In addition, three near-term, fire-safety related experiments are described along with other related precursor activities.

  10. Dialysis Facility Safety: Processes and Opportunities.

    PubMed

    Garrick, Renee; Morey, Rishikesh

    2015-01-01

    Unintentional human errors are the source of most safety breaches in complex, high-risk environments. The environment of dialysis care is extremely complex. Dialysis patients have unique and changing physiology, and the processes required for their routine care involve numerous open-ended interfaces between providers and an assortment of technologically advanced equipment. Communication errors, both within the dialysis facility and during care transitions, and lapses in compliance with policies and procedures are frequent areas of safety risk. Some events, such as air emboli and needle dislodgments occur infrequently, but are serious risks. Other adverse events include medication errors, patient falls, catheter and access-related infections, access infiltrations and prolonged bleeding. A robust safety system should evaluate how multiple, sequential errors might align to cause harm. Systems of care can be improved by sharing the results of root cause analyses, and "good catches." Failure mode effects and analyses can be used to proactively identify and mitigate areas of highest risk, and methods drawn from cognitive psychology, simulation training, and human factor engineering can be used to advance facility safety. © 2015 Wiley Periodicals, Inc.

  11. Research, development, and implementation of pedestrian safety facilities in the United Kingdom

    DOT National Transportation Integrated Search

    1999-12-01

    This report is one in a series of pedestrian safety synthesis reports prepared for the Federal Highway Administration to document pedestrian safety in other countries. This report reviews recent research on pedestrian safety carried out in the United...

  12. 76 FR 10246 - Updating Fire Safety Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-24

    ... DEPARTMENT OF VETERANS AFFAIRS 38 CFR Parts 17 and 59 RIN 2900-AN57 Updating Fire Safety Standards... regulations and update the standards for VA approval of such facilities, including standards for fire safety... to ``RIN 2900-AN57--Updating Fire Safety [[Page 10247

  13. 49 CFR 193.2627 - Atmospheric corrosion control.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 193.2627 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2627 Atmospheric corrosion...

  14. 49 CFR 193.2635 - Monitoring corrosion control.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....2635 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2635 Monitoring corrosion control...

  15. Twenty-Second National Conference on Campus Safety. Safety Monographs for Schools and Colleges. Monograph No. 35.

    ERIC Educational Resources Information Center

    Green, Jack N., Ed.

    The papers include discussions on: (1) training techniques for safety administrators; (2) materials and services from the National Safety Council; (3) fire safety measures; (4) high-rise buildings; (5) the role of the industrial hygienist in environmental health and safety; (6) chemical waste disposal facilities; (7) a chemistry department safety…

  16. Waste Sampling & Characterization Facility (WSCF) Complex Safety Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MELOY, R.T.

    2002-04-01

    This document was prepared to analyze the Waste Sampling and Characterization Facility for safety consequences by: Determining radionuclide and highly hazardous chemical inventories; Comparing these inventories to the appropriate regulatory limits; Documenting the compliance status with respect to these limits; and Identifying the administrative controls necessary to maintain this status. The primary purpose of the Waste Sampling and Characterization Facility (WSCF) is to perform low-level radiological and chemical analyses on various types of samples taken from the Hanford Site. These analyses will support the fulfillment of federal, Washington State, and Department of Energy requirements.

  17. Chemical Facility Security: Reauthorization, Policy Issues, and Options for Congress

    DTIC Science & Technology

    2009-07-13

    Process Safety, American Institute of Chemical Engineers , before the Senate Committee on Environment and Public Works, June 21, 2006, S.Hrg. 109-1044. See...example, Testimony by Dennis C. Hendershot, Staff Consultant, Center for Chemical Process Safety, American Institute of Chemical Engineers , before...CRS Report for Congress Prepared for Members and Committees of Congress Chemical Facility Security: Reauthorization, Policy Issues, and

  18. 75 FR 13707 - Safety Zones; Annual Events Requiring Safety Zones in the Captain of the Port Lake Michigan Zone

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-23

    ...: Docket Management Facility (M-30), U.S. Department of Transportation, West Building Ground Floor, Room... the ``Keyword'' box. Click ``Search'' then click on the balloon shape in the ``Actions'' column. If... also visit the Docket Management Facility in Room W12-140 on the ground floor of the Department of...

  19. Health facilities safety in natural disasters: experiences and challenges from South East Europe.

    PubMed

    Radovic, Vesela; Vitale, Ksenija; Tchounwou, Paul B

    2012-05-01

    The United Nations named 2010 as a year of natural disasters, and launched a worldwide campaign to improve the safety of schools and hospitals from natural disasters. In the region of South East Europe, Croatia and Serbia have suffered the greatest impacts of natural disasters on their communities and health facilities. In this paper the disaster management approaches of the two countries are compared, with a special emphasis on the existing technological and legislative systems for safety and protection of health facilities and people. Strategic measures that should be taken in future to provide better safety for health facilities and populations, based on the best practices and positive experiences in other countries are recommended. Due to the expected consequences of global climate change in the region and the increased different environmental risks both countries need to refine their disaster preparedness strategies. Also, in the South East Europe, the effects of a natural disaster are amplified in the health sector due to its critical medical infrastructure. Therefore, the principles of environmental security should be implemented in public health policies in the described region, along with principles of disaster management through regional collaborations.

  20. Proposal of the confinement strategy of radioactive and hazardous materials for the European DEMO

    NASA Astrophysics Data System (ADS)

    Jin, X. Z.; Carloni, D.; Stieglitz, R.; Ciattaglia, S.; Johnston, J.; Taylor, N.

    2017-04-01

    Confinement of radioactive and hazardous materials is one of the fundamental safety functions in a nuclear fusion facility, which has to limit the mobilisation and dispersion of sources and hazards during normal, abnormal and accidental situations. In a first step energy sources and radioactive source have been assessed for a conceptual DEMO configuration. The confinement study for the European DEMO has been investigated for the main systems at the plant breakdown structure (PBS) level 1 taking a bottom-up approach. Based on the identification of the systems possessing a confinement function, a confinement strategy has been proposed, in which DEMO confinement systems and barriers have been defined. In addition, confinement for the maintenance has been issued as well. The assignment of confinement barriers to the identified sources under abnormal and accidental conditions has been performed, and the DEMO main safety systems have been proposed as well. Finally, confinement related open issues have been pointed out, which need to be resolved in parallel with DEMO development.

  1. Health hazard evaluation report rdHETA 90-145-2086, Map International, Fairmont, West Virginia. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cornwell, R.J.; Knutti, E.; Lyman, M.

    1990-11-01

    In response to a request from the International Brotherhood of Teamsters, Chauffeurs, Warehousemen, and Helpers of America, a study was conducted of possible hazardous working conditions at MAP International (SIC-3296), Fairmont, West Virginia. The facility manufactured fibrous-glass for thermal and acoustical insulation. Personal breathing zone samples and area air samples were taken and analyzed for exposure to fibrous-glass (14808607), formaldehyde (50000), phenol (108952), ammonia (7664417), and organic vapors. The levels detected were all below allowable standards. Workers were not following recommended safety and health procedures prescribed in the Material Safety Data Sheets for the materials they were using. The medicalmore » questionnaires indicated workers were experiencing symptoms consistent with exposure to fibrous-glass and the materials used in its production. Eye irritation, upper respiratory irritation, skin irritation, chronic cough, and shortness of breath were demonstrated. The author recommends specific measures to reduce exposures and improve work practices.« less

  2. 9 CFR 590.538 - Defrosting facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Defrosting facilities. 590.538 Section 590.538 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG..., and Facility Requirements § 590.538 Defrosting facilities. (a) Approved metal defrosting tanks or vats...

  3. 9 CFR 590.534 - Freezing facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Freezing facilities. 590.534 Section 590.534 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG..., and Facility Requirements § 590.534 Freezing facilities. (a) Freezing rooms, either on or off the...

  4. Multi-KW dc distribution system technology research study

    NASA Technical Reports Server (NTRS)

    Dawson, S. G.

    1978-01-01

    The Multi-KW DC Distribution System Technology Research Study is the third phase of the NASA/MSFC study program. The purpose of this contract was to complete the design of the integrated technology test facility, provide test planning, support test operations and evaluate test results. The subjet of this study is a continuation of this contract. The purpose of this continuation is to study and analyze high voltage system safety, to determine optimum voltage levels versus power, to identify power distribution system components which require development for higher voltage systems and finally to determine what modifications must be made to the Power Distribution System Simulator (PDSS) to demonstrate 300 Vdc distribution capability.

  5. Safety systems in gamma irradiation facilities.

    PubMed

    Drndarevic, V

    1997-08-01

    A new electronic device has been developed to guard against individuals gaining entry through the product entry and exit ports into our irradiation facility for industrial sterilization. This device uses the output from electronic sensors and pressure mats to assure that only the transport cabins may pass through these ports. Any intention of personnel trespassing is detected, the process is stopped by the safety system, and the source is placed in safe position. Owing to a simple construction, the new device enables reliable operation, is inexpensive, easy to implement, and improves the existing safety systems.

  6. A User's Guide for the Spacecraft Fire Safety Facility

    NASA Technical Reports Server (NTRS)

    Goldmeer, Jeffrey S.

    2000-01-01

    The Spacecraft Fire Safety Facility (SFSF) is a test facility that can be flown on NASA's reduced gravity aircraft to perform various types of combustion experiments under a variety of experimental conditions. To date, this facility has flown numerous times on the aircraft and has been used to perform experiments ranging from an examination of the effects transient depressurization on combustion, to ignition and flame spread. A list of pubfications/presentations based on experiments performed in the SFSF is included in the reference section. This facility consists of five main subsystems: combustion chamber, sample holders, gas flow system, imaging system, and the data acquisition/control system. Each of these subsystems will be reviewed in more detail. These subsystems provide the experiment operator with the ability to monitor and/or control numerous experimental parameters.

  7. Medicaid program; revision to Medicaid upper payment limit requirements for hospital services, nursing facility services, intermediate care facility services for the mentally retarded, and clinic services. Health Care Financing Administration (HCFA), HHS. Final rule.

    PubMed

    2001-01-12

    This final rule modifies the Medicaid upper payment limits for inpatient hospital services, outpatient hospital services, nursing facility services, intermediate care facility services for the mentally retarded, and clinic services. For each type of Medicaid inpatient service, existing regulations place an upper limit on overall aggregate payments to all facilities and a separate aggregate upper limit on payments made to State-operated facilities. This final rule establishes an aggregate upper limit that applies to payments made to government facilities that are not State government-owned or operated, and a separate aggregate upper limit on payments made to privately-owned and operated facilities. This rule also eliminates the overall aggregate upper limit that had applied to these services. With respect to outpatient hospital and clinic services, this final rule establishes an aggregate upper limit on payments made to State government-owned or operated facilities, an aggregate upper limit on payments made to government facilities that are not State government-owned or operated, and an aggregate upper limit on payments made to privately-owned and operated facilities. These separate upper limits are necessary to ensure State Medicaid payment systems promote economy and efficiency. We are allowing a higher upper limit for payment to non-State public hospitals to recognize the higher costs of inpatient and outpatient services in public hospitals. In addition, to ensure continued beneficiary access to care and the ability of States to adjust to the changes in the upper payment limits, the final rule includes a transition period for States with approved rate enhancement State plan amendments.

  8. RDS - A systematic approach towards system thermal hydraulics input code development for a comprehensive deterministic safety analysis

    NASA Astrophysics Data System (ADS)

    Salim, Mohd Faiz; Roslan, Ridha; Ibrahim, Mohd Rizal Mamat @

    2014-02-01

    Deterministic Safety Analysis (DSA) is one of the mandatory requirements conducted for Nuclear Power Plant licensing process, with the aim of ensuring safety compliance with relevant regulatory acceptance criteria. DSA is a technique whereby a set of conservative deterministic rules and requirements are applied for the design and operation of facilities or activities. Computer codes are normally used to assist in performing all required analysis under DSA. To ensure a comprehensive analysis, the conduct of DSA should follow a systematic approach. One of the methodologies proposed is the Standardized and Consolidated Reference Experimental (and Calculated) Database (SCRED) developed by University of Pisa. Based on this methodology, the use of Reference Data Set (RDS) as a pre-requisite reference document for developing input nodalization was proposed. This paper shall describe the application of RDS with the purpose of assessing its effectiveness. Two RDS documents were developed for an Integral Test Facility of LOBI-MOD2 and associated Test A1-83. Data and information from various reports and drawings were referred in preparing the RDS. The results showed that by developing RDS, it has made possible to consolidate all relevant information in one single document. This is beneficial as it enables preservation of information, promotes quality assurance, allows traceability, facilitates continuous improvement, promotes solving of contradictions and finally assisting in developing thermal hydraulic input regardless of whichever code selected. However, some disadvantages were also recognized such as the need for experience in making engineering judgments, language barrier in accessing foreign information and limitation of resources. Some possible improvements are suggested to overcome these challenges.

  9. 29 CFR 1924.1 - Applicable safety standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Applicable safety standards. 1924.1 Section 1924.1 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY STANDARDS APPLICABLE TO WORKSHOPS AND REHABILITATION FACILITIES ASSISTED BY GRANTS § 1924...

  10. 48 CFR 923.7001 - Nuclear safety.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Nuclear safety. 923.7001 Section 923.7001 Federal Acquisition Regulations System DEPARTMENT OF ENERGY SOCIOECONOMIC PROGRAMS... Programs 923.7001 Nuclear safety. The DOE regulates the nuclear safety of its major facilities under its...

  11. 48 CFR 923.7001 - Nuclear safety.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Nuclear safety. 923.7001 Section 923.7001 Federal Acquisition Regulations System DEPARTMENT OF ENERGY SOCIOECONOMIC PROGRAMS... Programs 923.7001 Nuclear safety. The DOE regulates the nuclear safety of its major facilities under its...

  12. 48 CFR 923.7001 - Nuclear safety.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Nuclear safety. 923.7001 Section 923.7001 Federal Acquisition Regulations System DEPARTMENT OF ENERGY SOCIOECONOMIC PROGRAMS... Programs 923.7001 Nuclear safety. The DOE regulates the nuclear safety of its major facilities under its...

  13. 48 CFR 923.7001 - Nuclear safety.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Nuclear safety. 923.7001 Section 923.7001 Federal Acquisition Regulations System DEPARTMENT OF ENERGY SOCIOECONOMIC PROGRAMS... Programs 923.7001 Nuclear safety. The DOE regulates the nuclear safety of its major facilities under its...

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Putnam, T.M.

    This report presents the objectives, organization, policies, and essential rules and procedures that have been adopted by MP Division and that form the basis of the Health and Safety Program of the Clinton P. Anderson Meson Physics Facility (LAMPF). The facility includes the beam-delivery systems for the Los Alamos Neutron Scattering Center and the Weapons Neutron Research Facility (LANSCE/WNR). The program is designed not only to assure the health and safety of all personnel, including users, in their work at LAMPF, and of MP-Division staff in their work on the LANSCE/WNR beam lines, but also to protect the facility (buildingsmore » and equipment) and the environment. 33 refs., 18 figs., 2 tabs.« less

  15. Fusion Safety Program annual report, fiscal year 1994

    NASA Astrophysics Data System (ADS)

    Longhurst, Glen R.; Cadwallader, Lee C.; Dolan, Thomas J.; Herring, J. Stephen; McCarthy, Kathryn A.; Merrill, Brad J.; Motloch, Chester C.; Petti, David A.

    1995-03-01

    This report summarizes the major activities of the Fusion Safety Program in fiscal year 1994. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory and Lockheed Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in 1979. Activities are conducted at the INEL, at other DOE laboratories, and at other institutions, including the University of Wisconsin. The technical areas covered in this report include tritium safety, beryllium safety, chemical reactions and activation product release, safety aspects of fusion magnet systems, plasma disruptions, risk assessment failure rate data base development, and thermalhydraulics code development and their application to fusion safety issues. Much of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER). Also included in the report are summaries of the safety and environmental studies performed by the Fusion Safety Program for the Tokamak Physics Experiment and the Tokamak Fusion Test Reactor and of the technical support for commercial fusion facility conceptual design studies. A major activity this year has been work to develop a DOE Technical Standard for the safety of fusion test facilities.

  16. Facility effluent monitoring plan for the plutonium uranium extraction facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiegand, D.L.

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of themore » effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years.« less

  17. 30 CFR 75.1712-1 - Availability of surface bathing facilities; change rooms; and sanitary facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...; change rooms; and sanitary facilities. 75.1712-1 Section 75.1712-1 Mineral Resources MINE SAFETY AND...-UNDERGROUND COAL MINES Miscellaneous § 75.1712-1 Availability of surface bathing facilities; change rooms; and sanitary facilities. Except where a waiver has been granted pursuant to the provisions of § 75.1712-4, each...

  18. 30 CFR 75.1712-1 - Availability of surface bathing facilities; change rooms; and sanitary facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...; change rooms; and sanitary facilities. 75.1712-1 Section 75.1712-1 Mineral Resources MINE SAFETY AND...-UNDERGROUND COAL MINES Miscellaneous § 75.1712-1 Availability of surface bathing facilities; change rooms; and sanitary facilities. Except where a waiver has been granted pursuant to the provisions of § 75.1712-4, each...

  19. 30 CFR 75.1712-1 - Availability of surface bathing facilities; change rooms; and sanitary facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...; change rooms; and sanitary facilities. 75.1712-1 Section 75.1712-1 Mineral Resources MINE SAFETY AND...-UNDERGROUND COAL MINES Miscellaneous § 75.1712-1 Availability of surface bathing facilities; change rooms; and sanitary facilities. Except where a waiver has been granted pursuant to the provisions of § 75.1712-4, each...

  20. 30 CFR 75.1712-1 - Availability of surface bathing facilities; change rooms; and sanitary facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...; change rooms; and sanitary facilities. 75.1712-1 Section 75.1712-1 Mineral Resources MINE SAFETY AND...-UNDERGROUND COAL MINES Miscellaneous § 75.1712-1 Availability of surface bathing facilities; change rooms; and sanitary facilities. Except where a waiver has been granted pursuant to the provisions of § 75.1712-4, each...

Top