Sample records for facility ftf target

  1. The FTF gene family regulates virulence and expression of SIX effectors in Fusarium oxysporum.

    PubMed

    Niño-Sánchez, Jonathan; Casado-Del Castillo, Virginia; Tello, Vega; De Vega-Bartol, José J; Ramos, Brisa; Sukno, Serenella A; Díaz Mínguez, José María

    2016-09-01

    The FTF (Fusarium transcription factor) gene family comprises a single copy gene, FTF2, which is present in all the filamentous ascomycetes analysed, and several copies of a close relative, FTF1, which is exclusive to Fusarium oxysporum. An RNA-mediated gene silencing system was developed to target mRNA produced by all the FTF genes, and tested in two formae speciales: F. oxysporum f. sp. phaseoli (whose host is common bean) and F. oxysporum f. sp. lycopersici (whose host is tomato). Quantification of the mRNA levels showed knockdown of FTF1 and FTF2 in randomly isolated transformants of both formae speciales. The attenuation of FTF expression resulted in a marked reduction in virulence, a reduced expression of several SIX (Secreted In Xylem) genes, the best studied family of effectors in F. oxysporum, and lower levels of SGE1 (Six Gene Expression 1) mRNA, the presumptive regulator of SIX expression. Moreover, the knockdown mutants showed a pattern of colonization of the host plant similar to that displayed by strains devoid of FTF1 copies (weakly virulent strains). Gene knockout of FTF2 also resulted in a reduction in virulence, but to a lesser extent. These results demonstrate the role of the FTF gene expansion, mostly the FTF1 paralogues, as a regulator of virulence in F. oxysporum and suggest that the control of effector expression is the mechanism involved. © 2016 The Authors Molecular Plant Pathology Published by British Society for Plant Pathology and John Wiley & Sons Ltd.

  2. Elaboration, validation and standardization of the five to fifteen (FTF) questionnaire in a Danish population sample.

    PubMed

    Lambek, Rikke; Trillingsgaard, Anegen

    2015-03-01

    The five to fifteen (FTF) is a parent questionnaire developed to assess ADHD, its common comorbid conditions and associated problems in children and adolescents. The present study examined (1) the psychometric properties of scores on the new teacher version of the FTF, (2) competing models of the FTF subdomain structure and (3) the psychometric properties and utility of scores on the newly developed FTF impact questions. Parents (n=4258) and teachers (n=1298) of Danish children and adolescents (ages 5 to 17 years), selected using simple random sampling, completed the FTF. In the largest study of the FTF to date, parent and teacher scores had acceptable psychometric properties. The FTF subdomains were organized into six domains labelled cognitive skills, motor/perception, emotion/socialization/behaviour, attention, literacy skills and activity control and analysis of these domains may provide additional information when applying the FTF in the future. The impact questions yielded information above and beyond that provided by symptom count alone and appeared to increase the ability of the FTF to identify at risk children and adolescents. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Laser-Plasma Interactions on NIKE and the Fusion Test Facility

    NASA Astrophysics Data System (ADS)

    Phillips, Lee; Weaver, James

    2008-11-01

    Recent proposed designs for a Fusion Test Facility (FTF) (Obenchain et al., Phys. Plasmas 13 056320 (2006)) for direct-drive ICF targets for energy applications involve high implosion velocities combined with higher laser irradiances. The use of high irradiances increases the likelihood of deleterious laser plasma instabilities (LPI) but the proposed use of a 248 nm KrF laser to drive these targets is expected to minimize the LPI risk. We examine, using simulation results from NRL's FAST hydrocode, the proposed operational regimes of the FTF in relation to the thresholds for the SRS, SBS, and 2-plasmon instabilities. Simulations are also used to help design and interpret ongoing experiments being conducted at NRL's NIKE facility for the purpose of generating and studying LPI. Target geometries and laser pulseshapes were devised in order to create plasma conditions with long scalelengths and low electron temperatures that allow the growth of parametric instabilities. These simulations include the effects of finite beam angles through the use of raytracing.

  4. Emergency skills learning on video (ESLOV): A single-blinded randomized control trial of teaching common emergency skills using self-instruction video (SIV) versus traditional face-to-face (FTF) methods.

    PubMed

    Mohd Saiboon, Ismail; Jaafar, Mohd Johar; Ahmad, Nurul Saadah; Nasarudin, Nazhatul Muna Ahmad; Mohamad, Nabishah; Ahmad, Mohd Radhi; Gilbert, John H V

    2014-03-01

    Self-instruction video (SIV) has been widely explored as a teaching mode for cardiopulmonary resuscitation (CPR) and automated external defibrillation (AED), but not with other basic emergency skills. To evaluate the effectiveness of SIV in teaching other basic emergency skill in comparison with traditional face-to-face (FTF) methods. Participants were randomized into SIV and FTF groups. Each group was assigned to learn basic airway management (BAM), cervical collar application (CCA), manual cardiac defibrillation (MCD), and emergency extremity splinting (EES) skills. Confidence level was assessed using questionnaires, and skills performances were assessed using calibrated-blinded assessors through an Objective Structured Clinical Examination (OSCE). Forty-five participants took part in the assessment exercises. There were no significant differences between both groups, on all four skill categories. The mean OSCE-score of an individual category between the FTF-group vs. the SIV-group were as follows: BAM (10.23 ± 1.04 vs. 10.04 ± 1.49; p = 0.62); CCA (7.86 ± 4.39 vs. 7.13 ± 4.12; p = 0.57); MCD (8.24 ± 0.89 vs. 7.58 ± 1.14; p = 0.39); EES (5.43 ± 2.11 vs. 4.63 ± 2.30; p = 0.23). The composite mean score for the FTF-group was 6.85, and for the SIV-group was 6.20 (p < 0.05). There was no significant different in the level of confidence for both groups. SIV is as effective as FTF in teaching and learning basic emergency skills.

  5. What is the Impact of Students' Ability to Choose across and within Course Modality (OL or FTF) on Course Completions?

    ERIC Educational Resources Information Center

    DeCosta, James

    2013-01-01

    The participants were college students who attended an accredited private college offering associate, baccalaureate, and graduate degrees in the western United States. The research variables included student choice of modality (either OL or FTF), the covariate was students' GPA. Data were collected from institutional records and analyzed through…

  6. The target vacuum storage facility at iThemba LABS

    NASA Astrophysics Data System (ADS)

    Neveling, R.; Kheswa, N. Y.; Papka, P.

    2018-05-01

    A number of nuclear physics experiments at iThemba LABS require target foils that consist of specific isotopes of elements which are reactive in air. Not only is it important to prepare these targets in a suitable environment to prevent oxidation, but consideration should also be given to the long term storage and handling facilities of such targets. The target vacuum storage facility at iThemba LABS, as well as additional hardware necessary to transport and install the target foils in the experimental chamber, will be discussed.

  7. Facility target insert shielding assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mocko, Michal

    2015-10-06

    Main objective of this report is to assess the basic shielding requirements for the vertical target insert and retrieval port. We used the baseline design for the vertical target insert in our calculations. The insert sits in the 12”-diameter cylindrical shaft extending from the service alley in the top floor of the facility all the way down to the target location. The target retrieval mechanism is a long rod with the target assembly attached and running the entire length of the vertical shaft. The insert also houses the helium cooling supply and return lines each with 2” diameter. In themore » present study we focused on calculating the neutron and photon dose rate fields on top of the target insert/retrieval mechanism in the service alley. Additionally, we studied a few prototypical configurations of the shielding layers in the vertical insert as well as on the top.« less

  8. National Ignition Facility Target Chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wavrik, R W; Cox, J R; Fleming, P J

    2000-10-05

    On June 11, 1999 the Department of Energy dedicated the single largest piece of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) in Livermore, California. The ten (10) meter diameter aluminum target high vacuum chamber will serve as the working end of the largest laser in the world. The output of 192 laser beams will converge at the precise center of the chamber. The laser beams will enter the chamber in two by two arrays to illuminate 10 millimeter long gold cylinders called hohlraums enclosing 2 millimeter capsule containing deuterium, tritium and isotopes of hydrogen. The twomore » isotopes will fuse, thereby creating temperatures and pressures resembling those found only inside stars and in detonated nuclear weapons, but on a minute scale. The NIF Project will serve as an essential facility to insure safety and reliability of our nation's nuclear arsenal as well as demonstrating inertial fusion's contribution to creating electrical power. The paper will discuss the requirements that had to be addressed during the design, fabrication and testing of the target chamber. A team from Sandia National Laboratories (SNL) and LLNL with input from industry performed the configuration and basic design of the target chamber. The method of fabrication and construction of the aluminum target chamber was devised by Pitt-Des Moines, Inc. (PDM). PDM also participated in the design of the chamber in areas such as the Target Chamber Realignment and Adjustment System, which would allow realignment of the sphere laser beams in the event of earth settlement or movement from a seismic event. During the fabrication of the target chamber the sphericity tolerances had to be addressed for the individual plates. Procedures were developed for forming, edge preparation and welding of individual plates. Construction plans were developed to allow the field construction of the target chamber to occur parallel to other NIF construction activities. This was

  9. Segmented beryllium target for a 2 MW super beam facility

    DOE PAGES

    Davenne, T.; Caretta, O.; Densham, C.; ...

    2015-09-14

    The Long Baseline Neutrino Facility (LBNF, formerly the Long Baseline Neutrino Experiment) is under design as a next generation neutrino oscillation experiment, with primary objectives to search for CP violation in the leptonic sector, to determine the neutrino mass hierarchy and to provide a precise measurement of θ 23. The facility will generate a neutrino beam at Fermilab by the interaction of a proton beam with a target material. At the ultimate anticipated proton beam power of 2.3 MW the target material must dissipate a heat load of between 10 and 25 kW depending on the target size. This paper presents amore » target concept based on an array of spheres and compares it to a cylindrical monolithic target such as that which currently operates at the T2K facility. Thus simulation results show that the proposed technology offers efficient cooling and lower stresses whilst delivering a neutrino production comparable with that of a conventional solid cylindrical target.« less

  10. Facility Targeting, Protection and Mission Decision Making Using the VISAC Code

    NASA Technical Reports Server (NTRS)

    Morris, Robert H.; Sulfredge, C. David

    2011-01-01

    The Visual Interactive Site Analysis Code (VISAC) has been used by DTRA and several other agencies to aid in targeting facilities and to predict the associated collateral effects for the go, no go mission decision making process. VISAC integrates the three concepts of target geometric modeling, damage assessment capabilities, and an event/fault tree methodology for evaluating accident/incident consequences. It can analyze a variety of accidents/incidents at nuclear or industrial facilities, ranging from simple component sabotage to an attack with military or terrorist weapons. For nuclear facilities, VISAC predicts the facility damage, estimated downtime, amount and timing of any radionuclides released. Used in conjunction with DTRA's HPAC code, VISAC also can analyze transport and dispersion of the radionuclides, levels of contamination of the surrounding area, and the population at risk. VISAC has also been used by the NRC to aid in the development of protective measures for nuclear facilities that may be subjected to attacks by car/truck bombs.

  11. F-Tank Farm Performance Assessment Updates through the Special Analysis Process at Savannah River Site - 12169

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Layton, Mark H.

    2012-07-01

    The F-Area Tank Farm (FTF) is owned by the U.S. Department of Energy and operated by Savannah River Remediation, LLC (SRR), Liquid Waste Operations contractor at DOE's Savannah River Site (SRS). The FTF is in the north-central portion of the SRS and occupies approximately 22 acres within F-Area. The FTF is an active radioactive waste storage facility consisting of 22 carbon steel waste tanks and ancillary equipment such as transfer lines, evaporators and pump tanks. An FTF Performance Assessment (PA) was prepared to support the eventual closure of the FTF underground radioactive waste tanks and ancillary equipment. The PA providesmore » the technical basis and results to be used in subsequent documents to demonstrate compliance with the pertinent requirements identified below for final closure of FTF. The FTank Farm is subject to a state industrial waste water permit and Federal Facility Agreement. Closure documentation will include an F-Tank Farm Closure Plan and tank-specific closure modules utilizing information from the performance assessment. For this reason, the State of South Carolina and the Environmental Protection Agency must be involved in the performance assessment review process. The residual material remaining after tank cleaning is also subject to reclassification prior to closure via a waste determination pursuant to Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005. The projected waste tank inventories in the FTF PA provide reasonably bounding FTF inventory projections while taking into account uncertainties in the effectiveness of future tank cleaning technologies. As waste is removed from the FTF waste tanks, the residual contaminants will be sampled and the remaining residual inventory is characterized. In this manner, tank specific data for the tank inventories at closure will be available to supplement the waste tank inventory projections currently used in the FTF PA. For FTF, the new tank specific

  12. Implementation of a solid target production facility

    NASA Astrophysics Data System (ADS)

    Tochon-Danguy, H. J.; Poniger, S. S.; Sachinidis, J. I.; Panopoulos, H. P.; Scott, A. M.

    2012-12-01

    The desire to utilize long-lived PET isotopes in Australia has significantly increased over the years and several research projects for labelling of peptides, proteins and biomolecules, including labelling of recombinant antibodies has been restricted due to the limited availability of suitable isotopes. This need has led to the recent installation and commissioning of a new facility dedicated to fully automated solid target isotope production, including 24I, 64Cu, 89Zr and 86Y at the Austin Health Centre for PET.

  13. Design and Fabrication of Opacity Targets for the National Ignition Facility

    DOE PAGES

    Cardenas, Tana; Schmidt, Derek William; Dodd, Evan S.; ...

    2017-12-22

    Accurate models for opacity of partially ionized atoms are important for modeling and understanding stellar interiors and other high-energy-density phenomena such as inertial confinement fusion. Lawrence Livermore National Laboratory is leading a multilaboratory effort to conduct experiments on the National Ignition Facility (NIF) to try to reproduce recent opacity tests at the Sandia National Laboratory Z-facility. Since 2015, the NIF effort has evolved several hohlraum designs that consist of multiple pieces joined together. The target also has three components attached to the main stalk over a long distance with high tolerances that have resulted in several design iterations. The targetmore » has made use of rapid prototyped features to attach a capsule and collimator under the hohlraum while avoiding interference with the beams. Furthermore, this paper discusses the evolution of the hohlraum and overall target design and the challenges involved with fabricating and assembling these targets.« less

  14. Design and Fabrication of Opacity Targets for the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardenas, Tana; Schmidt, Derek William; Dodd, Evan S.

    Accurate models for opacity of partially ionized atoms are important for modeling and understanding stellar interiors and other high-energy-density phenomena such as inertial confinement fusion. Lawrence Livermore National Laboratory is leading a multilaboratory effort to conduct experiments on the National Ignition Facility (NIF) to try to reproduce recent opacity tests at the Sandia National Laboratory Z-facility. Since 2015, the NIF effort has evolved several hohlraum designs that consist of multiple pieces joined together. The target also has three components attached to the main stalk over a long distance with high tolerances that have resulted in several design iterations. The targetmore » has made use of rapid prototyped features to attach a capsule and collimator under the hohlraum while avoiding interference with the beams. Furthermore, this paper discusses the evolution of the hohlraum and overall target design and the challenges involved with fabricating and assembling these targets.« less

  15. The accomplishments of lithium target and test facility validation activities in the IFMIF/EVEDA phase

    NASA Astrophysics Data System (ADS)

    Arbeiter, Frederik; Baluc, Nadine; Favuzza, Paolo; Gröschel, Friedrich; Heidinger, Roland; Ibarra, Angel; Knaster, Juan; Kanemura, Takuji; Kondo, Hiroo; Massaut, Vincent; Saverio Nitti, Francesco; Miccichè, Gioacchino; O'hira, Shigeru; Rapisarda, David; Sugimoto, Masayoshi; Wakai, Eiichi; Yokomine, Takehiko

    2018-01-01

    As part of the engineering validation and engineering design activities (EVEDA) phase for the international fusion materials irradiation facility IFMIF, major elements of a lithium target facility and the test facility were designed, prototyped and validated. For the lithium target facility, the EVEDA lithium test loop was built at JAEA and used to test the stability (waves and long term) of the lithium flow in the target, work out the startup procedures, and test lithium purification and analysis. It was confirmed by experiments in the Lifus 6 plant at ENEA that lithium corrosion on ferritic martensitic steels is acceptably low. Furthermore, complex remote handling procedures for the remote maintenance of the target in the test cell environment were successfully practiced. For the test facility, two variants of a high flux test module were prototyped and tested in helium loops, demonstrating their good capabilities of maintaining the material specimens at the desired temperature with a low temperature spread. Irradiation tests were performed for heated specimen capsules and irradiation instrumentation in the BR2 reactor at SCK-CEN. The small specimen test technique, essential for obtaining material test results with limited irradiation volume, was advanced by evaluating specimen shape and test technique influences.

  16. Gadolinium-148 and other spallation production cross section measurements for accelerator target facilities

    NASA Astrophysics Data System (ADS)

    Kelley, Karen Corzine

    At the Los Alamos Neutron Science Center accelerator complex, protons are accelerated to 800 MeV and directed to two tungsten targets, Target 4 at the Weapons Neutron Research facility and the 1L target at the Lujan Center. The Department of Energy requires hazard classification analyses to be performed on these targets and places limits on certain radionuclide inventories in the targets to avoid characterizing the facilities as "nuclear facilities." Gadolinium-148 is a radionuclide created from the spallation of tungsten. Allowed isotopic inventories are particularly low for this isotope because it is an alpha-particle emitter with a 75-year half-life. The activity level of Gadolinium-148 is low, but it encompasses almost two-thirds of the total dose burden for the two tungsten targets based on present yield estimates. From a hazard classification standpoint, this severely limits the lifetime of these tungsten targets. The cross section is not well-established experimentally and this is the motivation for measuring the Gadolinium-148 production cross section from tungsten. In a series of experiments at the Weapons Neutron Research facility, Gadolinium-148 production was measured for 600- and 800-MeV protons on tungsten, tantalum, and gold. These experiments used 3 mum thin tungsten, tantalum, and gold foils and 10 mum thin aluminum activation foils. In addition, spallation yields were determined for many short-lived and long-lived spallation products with these foils using gamma and alpha spectroscopy and compared with predictions of the Los Alamos National Laboratory codes CEM2k+GEM2 and MCNPX. The cumulative Gadolinium-148 production cross section measured from tantalum, tungsten, and gold for incident 600-MeV protons were 15.2 +/- 4.0, 8.31 +/- 0.92, and 0.591 +/- 0.155, respectively. The average production cross sections measured at 800 MeV were 28.6 +/- 3.5, 19.4 +/- 1.8, and 3.69 +/- 0.50 for tantalum, tungsten, and gold, respectively. These cumulative

  17. The Nike KrF laser facility: Performance and initial target experiments

    NASA Astrophysics Data System (ADS)

    Obenschain, S. P.; Bodner, S. E.; Colombant, D.; Gerber, K.; Lehmberg, R. H.; McLean, E. A.; Mostovych, A. N.; Pronko, M. S.; Pawley, C. J.; Schmitt, A. J.; Sethian, J. D.; Serlin, V.; Stamper, J. A.; Sullivan, C. A.; Dahlburg, J. P.; Gardner, J. H.; Chan, Y.; Deniz, A. V.; Hardgrove, J.; Lehecka, T.; Klapisch, M.

    1996-05-01

    Krypton-fluoride (KrF) lasers are of interest to laser fusion because they have both the large bandwidth capability (≳THz) desired for rapid beam smoothing and the short laser wavelength (1/4 μm) needed for good laser-target coupling. Nike is a recently completed 56-beam KrF laser and target facility at the Naval Research Laboratory. Because of its bandwidth of 1 THz FWHM (full width at half-maximum), Nike produces more uniform focal distributions than any other high-energy ultraviolet laser. Nike was designed to study the hydrodynamic instability of ablatively accelerated planar targets. First results show that Nike has spatially uniform ablation pressures (Δp/p<2%). Targets have been accelerated for distances sufficient to study hydrodynamic instability while maintaining good planarity. In this review we present the performance of the Nike laser in producing uniform illumination, and its performance in correspondingly uniform acceleration of targets.

  18. Overview on the target fabrication facilities at ELI-NP and ongoing strategies

    NASA Astrophysics Data System (ADS)

    Gheorghiu, C. C.; Leca, V.; Popa, D.; Cernaianu, M. O.; Stutman, D.

    2016-10-01

    Along with the development of petawatt class laser systems, the interaction between high power lasers and matter flourished an extensive research, with high-interest applications like: laser nuclear physics, proton radiography or cancer therapy. The new ELI-NP (Extreme Light Infrastructure - Nuclear Physics) petawatt laser facility, with 10PW and ~ 1023W/cm2 beam intensity, is one of the innovative projects that will provide novel research of fundamental processes during light-matter interaction. As part of the ELI-NP facility, Targets Laboratory will provide the means for in-house manufacturing and characterization of the required targets (mainly solid ones) for the experiments, in addition to the research activity carried out in order to develop novel target designs with improved performances. A description of the Targets Laboratory with the main pieces of equipment and their specifications are presented. Moreover, in view of the latest progress in the target design, one of the proposed strategies for the forthcoming experiments at ELI-NP is also described, namely: ultra-thin patterned foil of diamond-like carbon (DLC) coated with a carbon-based ultra-low density layer. The carbon foam which behaves as a near-critical density plasma, will allow the controlled-shaping of the laser pulse before the main interaction with the solid foil. Particular emphasis will be directed towards the target's design optimization, by simulation tests and tuning the key-properties (thickness/length, spacing, density foam, depth, periodicity etc.) which are expected to have a crucial effect on the laser-matter interaction process.

  19. Debris and shrapnel assessments for National Ignition Facility targets and diagnostics

    NASA Astrophysics Data System (ADS)

    Masters, N. D.; Fisher, A.; Kalantar, D.; Stölken, J.; Smith, C.; Vignes, R.; Burns, S.; Doeppner, T.; Kritcher, A.; Park, H.-S.

    2016-05-01

    High-energy laser experiments at the National Ignition Facility (NIF) can create debris and shrapnel capable of damaging laser optics and diagnostic instruments. The size, composition and location of target components and sacrificial shielding (e.g., disposable debris shields, or diagnostic filters) and the protection they provide is constrained by many factors, including: chamber and diagnostic geometries, experimental goals and material considerations. An assessment of the generation, nature and velocity of shrapnel and debris and their potential threats is necessary prior to fielding targets or diagnostics. These assessments may influence target and shielding design, filter configurations and diagnostic selection. This paper will outline the approach used to manage the debris and shrapnel risk associated with NIF targets and diagnostics and present some aspects of two such cases: the Material Strength Rayleigh- Taylor campaign and the Mono Angle Crystal Spectrometer (MACS).

  20. A pulsed supersonic gas jet target for precision spectroscopy at the HITRAP facility at GSI

    NASA Astrophysics Data System (ADS)

    Tiedemann, D.; Stiebing, K. E.; Winters, D. F. A.; Quint, W.; Varentsov, V.; Warczak, A.; Malarz, A.; Stöhlker, Th.

    2014-11-01

    A pulsed supersonic gas jet target for experiments at the HITRAP facility at the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt has been designed and built as a multi-purpose installation for key experiments on fundamental atomic physics in strong fields. This setup is currently installed at the Institut für Kernphysik of Goethe-University, Frankfurt am Main (IKF), in order to explore its operation prior to its installation at the HITRAP facility. Design and performance of the target are described. The measured target densities of 5.9×1012 atoms/cm3 for helium and 8.1×1012 atoms/cm³ for argon at the stagnation pressure of 30 bar match the required values. The target-beam diameter of 0.9 mm and the pulsed operation mode (jet built-up-time ≤15 ms) are well suited for the use at HITRAP.

  1. Both Patient and Facility Contribute to Achieving the Centers for Medicare and Medicaid Services' Pay-for-Performance Target for Dialysis Adequacy

    PubMed Central

    Tighiouart, Hocine; Meyer, Klemens B.; Miskulin, Dana C.

    2011-01-01

    The Centers for Medicare and Medicaid Services (CMS) designated the achieved urea reduction ratio (URR) as a pay-for-performance measure, but to what extent this measure reflects patient characteristics and adherence instead of its intent to reflect facility performance is unknown. Here, we quantified the contributions of patient case-mix and adherence to the variability in achieving URR targets across dialysis facilities. We found that 92% of 10,069 hemodialysis patients treated at 173 facilities during the last quarter of 2004 achieved the target URR ≥65%. Mixed-effect models with random intercept for dialysis facility revealed a significant facility effect: 11.5% of the variation in achievement of target URR was attributable to the facility level. Adjusting for patient case-mix reduced the proportion of variation attributable to the facility level to 6.7%. Patient gender, body surface area, dialysis access, and adherence with treatment strongly associated with achievement of the URR target. We could not identify specific facility characteristics that explained the remaining variation between facilities. These data suggest that if adherence is not a modifiable patient characteristic, providers could be unfairly penalized for caring for these patients under current CMS policy. These penalties may have unintended consequences. PMID:22025629

  2. The first target experiments on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Landen, O. L.; Glenzer, S. H.; Froula, D. H.; Dewald, E. L.; Suter, L. J.; Schneider, M. B.; Hinkel, D. E.; Fernandez, J. C.; Kline, J. L.; Goldman, S. R.; Braun, D. G.; Celliers, P. M.; Moon, S. J.; Robey, H. S.; Lanier, N. E.; Glendinning, S. G.; Blue, B. E.; Wilde, B. H.; Jones, O. S.; Schein, J.; Divol, L.; Kalantar, D. H.; Campbell, K. M.; Holder, J. P.; McDonald, J. W.; Niemann, C.; MacKinnon, A. J.; Collins, G. W.; Bradley, D. K.; Eggert, J. H.; Hicks, D. G.; Gregori, G.; Kirkwood, R. K.; Young, B. K.; Foster, J. M.; Hansen, J. F.; Perry, T. S.; Munro, D. H.; Baldis, H. A.; Grim, G. P.; Heeter, R. F.; Hegelich, M. B.; Montgomery, D. S.; Rochau, G. A.; Olson, R. E.; Turner, R. E.; Workman, J. B.; Berger, R. L.; Cohen, B. I.; Kruer, W. L.; Langdon, A. B.; Langer, S. H.; Meezan, N. B.; Rose, H. A.; Still, C. H.; Williams, E. A.; Dodd, E. S.; Edwards, M. J.; Monteil, M.-C.; Stevenson, R. M.; Thomas, B. R.; Coker, R. F.; Magelssen, G. R.; Rosen, P. A.; Stry, P. E.; Woods, D.; Weber, S. V.; Young, P. E.; Alvarez, S.; Armstrong, G.; Bahr, R.; Bourgade, J.-L.; Bower, D.; Celeste, J.; Chrisp, M.; Compton, S.; Cox, J.; Constantin, C.; Costa, R.; Duncan, J.; Ellis, A.; Emig, J.; Gautier, C.; Greenwood, A.; Griffith, R.; Holdner, F.; Holtmeier, G.; Hargrove, D.; James, T.; Kamperschroer, J.; Kimbrough, J.; Landon, M.; Lee, F. D.; Malone, R.; May, M.; Montelongo, S.; Moody, J.; Ng, E.; Nikitin, A.; Pellinen, D.; Piston, K.; Poole, M.; Rekow, V.; Rhodes, M.; Shepherd, R.; Shiromizu, S.; Voloshin, D.; Warrick, A.; Watts, P.; Weber, F.; Young, P.; Arnold, P.; Atherton, L.; Bardsley, G.; Bonanno, R.; Borger, T.; Bowers, M.; Bryant, R.; Buckman, S.; Burkhart, S.; Cooper, F.; Dixit, S. N.; Erbert, G.; Eder, D. C.; Ehrlich, R. E.; Felker, B.; Fornes, J.; Frieders, G.; Gardner, S.; Gates, C.; Gonzalez, M.; Grace, S.; Hall, T.; Haynam, C. A.; Heestand, G.; Henesian, M. A.; Hermann, M.; Hermes, G.; Huber, S.; Jancaitis, K.; Johnson, S.; Kauffman, B.; Kelleher, T.; Kohut, T.; Koniges, A. E.; Labiak, T.; Latray, D.; Lee, A.; Lund, D.; Mahavandi, S.; Manes, K. R.; Marshall, C.; McBride, J.; McCarville, T.; McGrew, L.; Menapace, J.; Mertens, E.; Murray, J.; Neumann, J.; Newton, M.; Opsahl, P.; Padilla, E.; Parham, T.; Parrish, G.; Petty, C.; Polk, M.; Powell, C.; Reinbachs, I.; Rinnert, R.; Riordan, B.; Ross, G.; Robert, V.; Tobin, M.; Sailors, S.; Saunders, R.; Schmitt, M.; Shaw, M.; Singh, M.; Spaeth, M.; Stephens, A.; Tietbohl, G.; Tuck, J.; van Wonterghem, B. M.; Vidal, R.; Wegner, P. J.; Whitman, P.; Williams, K.; Winward, K.; Work, K.; Wallace, R.; Nobile, A.; Bono, M.; Day, B.; Elliott, J.; Hatch, D.; Louis, H.; Manzenares, R.; O'Brien, D.; Papin, P.; Pierce, T.; Rivera, G.; Ruppe, J.; Sandoval, D.; Schmidt, D.; Valdez, L.; Zapata, K.; MacGowan, B. J.; Eckart, M. J.; Hsing, W. W.; Springer, P. T.; Hammel, B. A.; Moses, E. I.; Miller, G. H.

    2007-08-01

    A first set of shock timing, laser-plasma interaction, hohlraum energetics and hydrodynamic experiments have been performed using the first 4 beams of the National Ignition Facility (NIF), in support of indirect drive Inertial Confinement Fusion (ICF) and High Energy Density Physics (HEDP). In parallel, a robust set of optical and X-ray spectrometers, interferometer, calorimeters and imagers have been activated. The experiments have been undertaken with laser powers and energies of up to 8 TW and 17 kJ in flattop and shaped 1 9 ns pulses focused with various beam smoothing options. The experiments have demonstrated excellent agreement between measured and predicted laser-target coupling in foils and hohlraums, even when extended to a longer pulse regime unattainable at previous laser facilities, validated the predicted effects of beam smoothing on intense laser beam propagation in long scale-length plasmas and begun to test 3D codes by extending the study of laser driven hydrodynamic jets to 3D geometries.

  3. A time-of-flight system for the external target facility

    NASA Astrophysics Data System (ADS)

    Zhang, Xue-Heng; Yu, Yu-Hong; Sun, Zhi-Yu; Mao, Rui-Shi; Wang, Shi-Tao; Zhou, Yong; Yan, Duo; Liu, Long-Xiang

    2013-05-01

    A time-of-flight system with a plastic scintillator coupled to photomultipliers is developed for the external target facility (ETF). This system can satisfy the requirement of an ultrahigh vacuum (~10-9 mbar), a high counting rate (~106 particles per second) and a magnetic field environment. In the beam test experiment, a total time resolution of 580 ps FWHM was obtained for the whole system, and nuclei with a mass of up to 80 could be identified using this system.

  4. Neutron measurements from beam-target reactions at the ELISE neutral beam test facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xufei, X., E-mail: xiexufei@pku.edu.cn; Fan, T.; Nocente, M.

    2014-11-15

    Measurements of 2.5 MeV neutron emission from beam-target reactions performed at the ELISE neutral beam test facility are presented in this paper. The measurements are used to study the penetration of a deuterium beam in a copper dump, based on the observation of the time evolution of the neutron counting rate from beam-target reactions with a liquid scintillation detector. A calculation based on a local mixing model of deuterium deposition in the target up to a concentration of 20% at saturation is used to evaluate the expected neutron yield for comparison with data. The results are of relevance to understandmore » neutron emission associated to beam penetration in a solid target, with applications to diagnostic systems for the SPIDER and MITICA Neutral Beam Injection prototypes.« less

  5. D 2 and D-T Liquid-Layer Target Shots at the National Ignition Facility

    DOE PAGES

    Walters, Curtis; Alger, Ethan; Bhandarkar, Suhas; ...

    2018-01-19

    Experiments at the National Ignition Facility (NIF) using targets containing a deuterium-tritium (D-T) fuel layer have, until recently, required that a high-quality layer of solid D-T (herein referred to as an ice layer) be formed in the capsule. The development of a process to line the inner surface of a target capsule with a foam layer of a thickness that is typical of ice layers has resulted in the ability to field targets with liquid layers wetting the foam. Successful fielding of liquid-layer targets on NIF required not only a foam-lined capsule but also changes to the capsule filling processmore » and the manner with which the inventory is maintained in the capsule. Additionally, changes to target heater power and the temperature drops across target components were required in order to achieve the desired range of shot temperatures. Finally, these changes and the target’s performance during four target shots on NIF are discussed.« less

  6. D 2 and D-T Liquid-Layer Target Shots at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walters, Curtis; Alger, Ethan; Bhandarkar, Suhas

    Experiments at the National Ignition Facility (NIF) using targets containing a deuterium-tritium (D-T) fuel layer have, until recently, required that a high-quality layer of solid D-T (herein referred to as an ice layer) be formed in the capsule. The development of a process to line the inner surface of a target capsule with a foam layer of a thickness that is typical of ice layers has resulted in the ability to field targets with liquid layers wetting the foam. Successful fielding of liquid-layer targets on NIF required not only a foam-lined capsule but also changes to the capsule filling processmore » and the manner with which the inventory is maintained in the capsule. Additionally, changes to target heater power and the temperature drops across target components were required in order to achieve the desired range of shot temperatures. Finally, these changes and the target’s performance during four target shots on NIF are discussed.« less

  7. Initiated chemical vapor deposited nanoadhesive for bonding National Ignition Facility's targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Tom

    Currently, the target fabrication scientists in National Ignition Facility Directorate at Lawrence Livermore National Laboratory (LLNL) is studying the propagation force resulted from laser impulses impacting a target. To best study this, they would like the adhesive used to glue the target substrates to be as thin as possible. The main objective of this research project is to create adhesive glue bonds for NIF’s targets that are ≤ 1 μm thick. Polyglycidylmethacrylate (PGMA) thin films were coated on various substrates using initiated chemical vapor deposition (iCVD). Film quality studies using white light interferometry reveal that the iCVD PGMA films weremore » smooth. The coated substrates were bonded at 150 °C under vacuum, with low inflow of Nitrogen. Success in bonding most of NIF’s mock targets at thicknesses ≤ 1 μm indicates that our process is feasible in bonding the real targets. Key parameters that are required for successful bonding were concluded from the bonding results. They include inert bonding atmosphere, sufficient contact between the PGMA films, and smooth substrates. Average bond strength of 0.60 MPa was obtained from mechanical shearing tests. The bonding failure mode of the sheared interfaces was observed to be cohesive. Future work on this project will include reattempt to bond silica aerogel to iCVD PGMA coated substrates, stabilize carbon nanotube forests with iCVD PGMA coating, and kinetics study of PGMA thermal crosslinking.« less

  8. Overview of Progress on the LANSCE Accelerator and Target Facilities Improvement Program

    NASA Astrophysics Data System (ADS)

    Macek, R. J.; Brun, T.; Donahue, J. B.; Fitzgerald, D. H.

    1997-05-01

    Three projects to improve the performance of the accelerator and target facilities for the Los Alamos Neutron Science Center have been initiated since 1994. The LANSCE Reliability Improvement Project was separated into two phases. Phase I, completed in 1995, was targeted at near-term improvements to beam availability that could be completed in a year. Phase II, now underway, consists of two projects: 1) converting the beam injection into the Proton Storage Ring (PSR) from the present two-step process H^- to H^0 to H^+) to direct injection of H^- beam in one step (H^- to H^+), and 2) an upgrade of the spallation neutron production target which will reduce the target change-out time from about a year to about three weeks. The third project, the SPSS Enhancement Project, is aimed at increasing the PSR output beam current from the present 70 μA at 20 Hz to 200 μA at 30 Hz, plus implementing seven new neutron scattering instruments. Objectives, plans, results and progress to date will be summarized.

  9. The alpha1-fetoprotein locus is activated by a nuclear receptor of the Drosophila FTZ-F1 family.

    PubMed

    Galarneau, L; Paré, J F; Allard, D; Hamel, D; Levesque, L; Tugwood, J D; Green, S; Bélanger, L

    1996-07-01

    The alpha1-fetoprotein (AFP) gene is located between the albumin and alpha-albumin genes and is activated by transcription factor FTF (fetoprotein transcription factor), presumed to transduce early developmental signals to the albumin gene cluster. We have identified FTF as an orphan nuclear receptor of the Drosophila FTZ-F1 family. FTF recognizes the DNA sequence 5'-TCAAGGTCA-3', the canonical recognition motif for FTZ-F1 receptors. cDNA sequence homologies indicate that rat FTF is the ortholog of mouse LRH-1 and Xenopus xFF1rA. Rodent FTF is encoded by a single-copy gene, related to the gene encoding steroidogenic factor 1 (SF-1). The 5.2-kb FTF transcript is translated from several in-frame initiator codons into FTF isoforms (54 to 64 kDa) which appear to bind DNA as monomers, with no need for a specific ligand, similar KdS (approximately equal 3 x 10(-10) M), and similar transcriptional effects. FTF activates the AFP promoter without the use of an amino-terminal activation domain; carboxy-terminus-truncated FTF exerts strong dominant negative effects. In the AFP promoter, FTF recruits an accessory trans-activator which imparts glucocorticoid reactivity upon the AFP gene. FTF binding sites are found in the promoters of other liver-expressed genes, some encoding liver transcription factors; FTF, liver alpha1-antitrypsin promoter factor LFB2, and HNF-3beta promoter factor UF2-H3beta are probably the same factor. FTF is also abundantly expressed in the pancreas and may exert differentiation functions in endodermal sublineages, similar to SF-1 in steroidogenic tissues. HepG2 hepatoma cells seem to express a mutated form of FTF.

  10. The drift chamber array at the external target facility in HIRFL-CSR

    NASA Astrophysics Data System (ADS)

    Sun, Y. Z.; Sun, Z. Y.; Wang, S. T.; Duan, L. M.; Sun, Y.; Yan, D.; Tang, S. W.; Yang, H. R.; Lu, C. G.; Ma, P.; Yu, Y. H.; Zhang, X. H.; Yue, K.; Fang, F.; Su, H.

    2018-06-01

    A drift chamber array at the External Target Facility in HIRFL-CSR has been constructed for three-dimensional particle tracking in high-energy radioactive ion beam experiments. The design, readout, track reconstruction program and calibration procedures for the detector are described. The drift chamber array was tested in a 311 AMeV 40Ar beam experiment. The detector performance based on the measurements of the beam test is presented. A spatial resolution of 230 μm is achieved.

  11. Target design optimization for an electron accelerator driven subcritical facility with circular and square beam profiles.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gohar, M. Y. A; Sofu, T.; Zhong, Z.

    2008-10-30

    A subcritical facility driven by an electron accelerator is planned at the Kharkov Institute of Physics and Technology (KIPT) in Ukraine for medical isotope production, materials research, training, and education. The conceptual design of the facility is being pursued through collaborations between ANL and KIPT. As part of the design effort, the high-fidelity analyses of various target options are performed with formulations to reflect the realistic configuration and the three dimensional geometry of each design. This report summarizes the results of target design optimization studies for electron beams with two different beam profiles. The target design optimization is performed viamore » the sequential neutronic, thermal-hydraulic, and structural analyses for a comprehensive assessment of each configuration. First, a target CAD model is developed with proper emphasis on manufacturability to provide a basis for separate but consistent models for subsequent neutronic, thermal-hydraulic, and structural analyses. The optimizations are pursued for maximizing the neutron yield, streamlining the flow field to avoid hotspots, and minimizing the thermal stresses to increase the durability. In addition to general geometric modifications, the inlet/outlet channel configurations, target plate partitioning schemes, flow manipulations and rates, electron beam diameter/width options, and cladding material choices are included in the design optimizations. The electron beam interactions with the target assembly and the neutronic response of the subcritical facility are evaluated using the MCNPX code. the results for the electron beam energy deposition, neutron generation, and utilization in the subcritical pile are then used to characterize the axisymmetric heat generation profiles in the target assembly with explicit simulations of the beam tube, the coolant, the clad, and the target materials. Both tungsten and uranium are considered as target materials. Neutron spectra from

  12. Wavefront correction by target-phase-locking technology in a 500 TW laser facility

    NASA Astrophysics Data System (ADS)

    Wang, D. E.; Dai, W. J.; Zhou, K. N.; Su, J. Q.; Xue, Q.; Yuan, Q.; Zhang, X.; Deng, X. W.; Yang, Y.; Wang, Y. C.; Xie, N.; Sun, L.; Hu, D. X.; Zhu, Q. H.

    2017-03-01

    We demonstrate a novel approach termed target-phase-locking that could improve the entire beam wavefront quality of a 500 TW Nd3+:phosphate glass laser facility. The thermal and static wavefront from front-end to target is corrected by using one deformable mirror that receives feedback from both the focal-spot sensor and wavefront sensor, and only the main laser of the laser system is employed in the correction process, with auxiliary calibration light no longer necessary. As a result, a static focal spot with full width at half maximum of 8.87  ×  5.74 µm is achieved, the thermal wavefront induced by flash-lamp-pumped Nd3+:phosphate glass is compensated with PV from 3.54-0.43 µm, and a dynamic focal spot with intensity exceeding 1020 W cm-2 is precisely predicted at the target with such an approach.

  13. Pulse shaping and energy storage capabilities of angularly multiplexed KrF laser fusion drivers

    NASA Astrophysics Data System (ADS)

    Lehmberg, R. H.; Giuliani, J. L.; Schmitt, A. J.

    2009-07-01

    This paper describes a rep-rated multibeam KrF laser driver design for the 500kJ Inertial Fusion test Facility (FTF) recently proposed by NRL, then models its optical pulse shaping capabilities using the ORESTES laser kinetics code. It describes a stable and reliable iteration technique for calculating the required precompensated input pulse shape that will achieve the desired output shape, even when the amplifiers are heavily saturated. It also describes how this precompensation technique could be experimentally implemented in real time on a reprated laser system. The simulations show that this multibeam system can achieve a high fidelity pulse shaping capability, even for a high gain shock ignition pulse whose final spike requires output intensities much higher than the ˜4MW/cm2 saturation levels associated with quasi-cw operation; i.e., they show that KrF can act as a storage medium even for pulsewidths of ˜1ns. For the chosen pulse, which gives a predicted fusion energy gain of ˜120, the simulations predict the FTF can deliver a total on-target energy of 428kJ, a peak spike power of 385TW, and amplified spontaneous emission prepulse contrast ratios IASE/I<3×10-7 in intensity and FASE/F<1.5×10-5 in fluence. Finally, the paper proposes a front-end pulse shaping technique that combines an optical Kerr gate with cw 248nm light and a 1μm control beam shaped by advanced fiber optic technology, such as the one used in the National Ignition Facility (NIF) laser.

  14. The physics basis for ignition using indirect-drive targets on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Lindl, John D.; Amendt, Peter; Berger, Richard L.; Glendinning, S. Gail; Glenzer, Siegfried H.; Haan, Steven W.; Kauffman, Robert L.; Landen, Otto L.; Suter, Laurence J.

    2004-02-01

    The 1990 National Academy of Science final report of its review of the Inertial Confinement Fusion Program recommended completion of a series of target physics objectives on the 10-beam Nova laser at the Lawrence Livermore National Laboratory as the highest-priority prerequisite for proceeding with construction of an ignition-scale laser facility, now called the National Ignition Facility (NIF). These objectives were chosen to demonstrate that there was sufficient understanding of the physics of ignition targets that the laser requirements for laboratory ignition could be accurately specified. This research on Nova, as well as additional research on the Omega laser at the University of Rochester, is the subject of this review. The objectives of the U.S. indirect-drive target physics program have been to experimentally demonstrate and predictively model hohlraum characteristics, as well as capsule performance in targets that have been scaled in key physics variables from NIF targets. To address the hohlraum and hydrodynamic constraints on indirect-drive ignition, the target physics program was divided into the Hohlraum and Laser-Plasma Physics (HLP) program and the Hydrodynamically Equivalent Physics (HEP) program. The HLP program addresses laser-plasma coupling, x-ray generation and transport, and the development of energy-efficient hohlraums that provide the appropriate spectral, temporal, and spatial x-ray drive. The HEP experiments address the issues of hydrodynamic instability and mix, as well as the effects of flux asymmetry on capsules that are scaled as closely as possible to ignition capsules (hydrodynamic equivalence). The HEP program also addresses other capsule physics issues associated with ignition, such as energy gain and energy loss to the fuel during implosion in the absence of alpha-particle deposition. The results from the Nova and Omega experiments approach the NIF requirements for most of the important ignition capsule parameters, including

  15. Monitoring System for the Gold Target by Radiation Detectors in Hadron Experimental Facility at J-PARC

    NASA Astrophysics Data System (ADS)

    Muto, Ryotaro; Agari, Keizo; Aoki, Kazuya; Bessho, Kotaro; Hagiwara, Masayuki; Hirose, Erina; Ieiri, Masaharu; Iwasaki, Ruri; Katoh, Yohji; Kitagawa, Jun-ichi; Minakawa, Michifumi; Morino, Yuhei; Saito, Kiwamu; Sato, Yoshinori; Sawada, Shin'ya; Shirakabe, Yoshihisa; Suzuki, Yoshihiro; Takahashi, Hitoshi; Tanaka, Kazuhiro; Toyoda, Akihisa; Watanabe, Hiroaki; Yamanoi, Yutaka

    2017-09-01

    At the Hadron Experimental Facility in J-PARC, we inject a 30-GeV proton beam into a gold target to produce secondary particle beams required for various particle and nuclear physics experiments. The gold target is placed in a hermetic chamber, and helium gas is circulated in the chamber to monitor the soundness of the target. The radioactivity in helium gas is continuously monitored by gamma-ray detectors such as a germanium detector and a NaI(Tl) detector. Beam operations with those target-monitoring systems were successfully performed from April to June and October to December 2015, and from May to June 2016. In this paper, the details of the helium gas circulation system and gamma-ray detectors and the analysis results of the obtained gamma-ray spectra are reported.

  16. Hospital to Post-Acute Care Facility Transfers: Identifying Targets for Information Exchange Quality Improvement.

    PubMed

    Jones, Christine D; Cumbler, Ethan; Honigman, Benjamin; Burke, Robert E; Boxer, Rebecca S; Levy, Cari; Coleman, Eric A; Wald, Heidi L

    2017-01-01

    Information exchange is critical to high-quality care transitions from hospitals to post-acute care (PAC) facilities. We conducted a survey to evaluate the completeness and timeliness of information transfer and communication between a tertiary-care academic hospital and its related PAC facilities. This was a cross-sectional Web-based 36-question survey of 110 PAC clinicians and staff representing 31 PAC facilities conducted between October and December 2013. We received responses from 71 of 110 individuals representing 29 of 31 facilities (65% and 94% response rates). We collapsed 4-point Likert responses into dichotomous variables to reflect completeness (sufficient vs insufficient) and timeliness (timely vs not timely) for information transfer and communication. Among respondents, 32% reported insufficient information about discharge medical conditions and management plan, and 83% reported at least occasionally encountering problems directly related to inadequate information from the hospital. Hospital clinician contact information was the most common insufficient domain. With respect to timeliness, 86% of respondents desired receipt of a discharge summary on or before the day of discharge, but only 58% reported receiving the summary within this time frame. Through free-text responses, several participants expressed the need for paper prescriptions for controlled pain medications to be sent with patients at the time of transfer. Staff and clinicians at PAC facilities perceive substantial deficits in content and timeliness of information exchange between the hospital and facilities. Such deficits are particularly relevant in the context of the increasing prevalence of bundled payments for care across settings as well as forthcoming readmissions penalties for PAC facilities. Targets identified for quality improvement include structuring discharge summary information to include information identified as deficient by respondents, completion of discharge summaries

  17. Calculations of high-power production target and beamdump for the GSI future Super-FRS for a fast extraction scheme at the FAIR Facility

    NASA Astrophysics Data System (ADS)

    Tahir, N. A.; Weick, H.; Iwase, H.; Geissel, H.; Hoffmann, D. H. H.; Kindler, B.; Lommel, B.; Radon, T.; Münzenberg, G.; Shutov, A.; Sümmerer, K.; Winkler, M.

    2005-06-01

    A superconducting fragment separator (Super-FRS) is being designed for the production and separation of radioactive isotopes at the future FAIR (Facility for Antiprotons and Ion Research) facility at Darmstadt. This paper discusses various aspects and requirements for the high-power production target that will be used in the Super-FRS experiments. The production target must survive over an extended period of time as it will be used during the course of many experiments. The specific power deposited by the high intensity beam that will be generated at the future FAIR facility will be high enough to destroy the target in most of the cases as a result of a single shot from the new heavy ion synchrotrons SIS100/300. By using an appropriate beam intensity and focal spot parameters, the target would survive after being irradiated once. However, the heat should be dissipated efficiently before the same target area is irradiated again. We have considered a wheel shaped solid carbon target that rotates around its axis so that different areas of the target are irradiated successively. This allows for cooling of the beam heated region by thermal conduction before the same part of the target is irradiated a second time. Another attractive option is to use a liquid jet target at the Super-FRS. First calculations of a possible liquid lithium target are also presented in this paper. One of the advantages of using lithium as a target is that it will survive even if one uses a smaller focal spot, which has half the area of that used for a solid carbon target. This will significantly improve the isotope resolution. A similar problem associated with these experiments will be safe deposition of the beam energy in a beamdump after its interaction with the production target. We also present calculations to study the suitability of a proposed beamdump.

  18. Thin and thick targets for radioactive ion beam production at SPIRAL1 facility

    NASA Astrophysics Data System (ADS)

    Jardin, P.; Bajeat, O.; Delahaye, P.; Dubois, M.; Kuchi, V.; Maunoury, L.

    2018-05-01

    The upgrade of the Système de Production d'Ions Radioactifs Accélérés en Ligne (SPIRAL1) facility will deliver its new Radioactive Ion Beams (RIB) by summer 2017. The goal of the upgrade is an improvement of the performances of the installation in terms of isotopes species and ion charge states [1]. Ion beams are produced using the Isotope Separator On Line Method, consisting in an association of a primary beam of stable ions, a hot target and an ion source. The primary beam impinges on the material of the target. Radioactive isotopes are produced by nuclear reactions and propagate up to the source, where they are ionized and accelerated to create a RIB. One advantage of SPIRAL1 driver is the variety of its available primary beams, from carbon to uranium with energies up to 95 MeV/A. Within the SPIRAL1 upgrade, they will be combined with targets made of a large choice of materials, extending in this way the number of possible nuclear reactions (fusion-evaporation, transfer, fragmentation) for producing a wider range of isotopes, up to regions of the nuclide chart still scarcely explored. Depending on the reaction process, on the collision energy and on the primary beam power, thin and thick targets are used. As their functions can be different, their design must cope with specific constraints which will be described. After a presentation of the goals of present and future SPIRAL1 Target Ion Source System, the main target features, studies and designs under progress are presented.

  19. The National Ignition Facility: Transition to a User Facility

    NASA Astrophysics Data System (ADS)

    Moses, E. I.; Atherton, J.; Lagin, L.; Larson, D.; Keane, C.; MacGowan, B.; Patterson, R.; Spaeth, M.; Van Wonterghem, B.; Wegner, P.; Kauffman, R.

    2016-03-01

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) has been operational since March 2009 and has been transitioning to a user facility supporting ignition science, high energy density science (HEDS), national security applications, and fundamental science. The facility has achieved its design goal of 1.8 MJ and 500 TW of 3ω light on target, and has performed target experiments with 1.9 MJ at peak powers of 410 TW. The facility is on track to perform over 200 target shots this year in support of all of its user communities. The facility has nearly 60 diagnostic systems operational and has shown flexibility in laser pulse shape and performance to meet the requirements of its multiple users. Progress continues on its goal of demonstrating thermonuclear burn in the laboratory. It has performed over 40 indirect-drive experiments with cryogenic-layered capsules. New platforms are being developed for HEDS and fundamental science. Equation-of-state and material strength experiments have been done on a number of materials with pressures of over 50 MBars obtained in diamond, conditions never previously encountered in the laboratory and similar to those found in planetary interiors. Experiments are also in progress investigating radiation transport, hydrodynamic instabilities, and direct drive implosions. NIF continues to develop as an experimental facility. Advanced Radiographic Capability (ARC) is now being installed on NIF for producing high-energy radiographs of the imploded cores of ignition targets and for short pulse laser-plasma interaction experiments. One NIF beam is planned for conversion to two picosecond beams in 2014. Other new diagnostics such as x-ray Thomson scattering, low energy neutron spectrometer, and multi-layer reflecting x-ray optics are also planned. Incremental improvements in laser performance such as improved optics damage performance, beam balance, and back reflection control are being pursued.

  20. Present status of the liquid lithium target facility in the international fusion materials irradiation facility (IFMIF)

    NASA Astrophysics Data System (ADS)

    Nakamura, Hiroo; Riccardi, B.; Loginov, N.; Ara, K.; Burgazzi, L.; Cevolani, S.; Dell'Orco, G.; Fazio, C.; Giusti, D.; Horiike, H.; Ida, M.; Ise, H.; Kakui, H.; Matsui, H.; Micciche, G.; Muroga, T.; Nakamura, Hideo; Shimizu, K.; Sugimoto, M.; Suzuki, A.; Takeuchi, H.; Tanaka, S.; Yoneoka, T.

    2004-08-01

    During the three year key element technology phase of the International Fusion Materials Irradiation Facility (IFMIF) project, completed at the end of 2002, key technologies have been validated. In this paper, these results are summarized. A water jet experiment simulating Li flow validated stable flow up to 20 m/s with a double reducer nozzle. In addition, a small Li loop experiment validated stable Li flow up to 14 m/s. To control the nitrogen content in Li below 10 wppm will require surface area of a V-Ti alloy getter of 135 m 2. Conceptual designs of diagnostics have been carried out. Moreover, the concept of a remote handling system to replace the back wall based on `cut and reweld' and `bayonet' options has been established. Analysis by FMEA showed safe operation of the target system. Recent activities in the transition phase, started in 2003, and plan for the next phase are also described.

  1. Potential impact of soil microbial heterogeneity on the persistence of hydrocarbons in contaminated subsurface soils.

    PubMed

    Aleer, Sam; Adetutu, Eric M; Weber, John; Ball, Andrew S; Juhasz, Albert L

    2014-04-01

    In situ bioremediation is potentially a cost effective treatment strategy for subsurface soils contaminated with petroleum hydrocarbons, however, limited information is available regarding the impact of soil spatial heterogeneity on bioremediation efficacy. In this study, we assessed issues associated with hydrocarbon biodegradation and soil spatial heterogeneity (samples designated as FTF 1, 5 and 8) from a site in which in situ bioremediation was proposed for hydrocarbon removal. Test pit activities showed similarities in FTF soil profiles with elevated hydrocarbon concentrations detected in all soils at 2 m below ground surface. However, PCR-DGGE-based cluster analysis showed that the bacterial community in FTF 5 (at 2 m) was substantially different (53% dissimilar) and 2-3 fold more diverse than communities in FTF 1 and 8 (with 80% similarity). When hydrocarbon degrading potential was assessed, differences were observed in the extent of (14)C-benzene mineralisation under aerobic conditions with FTF 5 exhibiting the highest hydrocarbon removal potential compared to FTF 1 and 8. Further analysis indicated that the FTF 5 microbial community was substantially different from other FTF samples and dominated by putative hydrocarbon degraders belonging to Pseudomonads, Xanthomonads and Enterobacteria. However, hydrocarbon removal in FTF 5 under anaerobic conditions with nitrate and sulphate electron acceptors was limited suggesting that aerobic conditions were crucial for hydrocarbon removal. This study highlights the importance of assessing available microbial capacity prior to bioremediation and shows that the site's spatial heterogeneity can adversely affect the success of in situ bioremediation unless area-specific optimizations are performed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Target development for 67Cu, 82Sr radionuclide production at the RIC-80 facility

    NASA Astrophysics Data System (ADS)

    Panteleev, V. N.; Barzakh, A. E.; Batist, L. Kh.; Fedorov, D. V.; Ivanov, V. S.; Krotov, S. A.; Molkanov, P. L.; Moroz, F. V.; Orlov, S. Yu.; Volkov, Yu. M.

    2018-01-01

    A high-current cyclotron C-80 capable of producing 40-80 MeV proton beams with a current of up to 200 μA has been constructed and commissioned at PNPI (Petersburg Nuclear Physics Institute). One of the main goals of cyclotron C-80 is the production of a wide spectrum of medical radionuclides for diagnostics and therapy. To date, the project development of a radioisotope facility RIC-80 (radioisotopes at cyclotron C-80) has been completed. The feature of the project is the use of a mass-separator combined with the ion-target device for obtaining ion beams of radioisotopes with a high purity of separation that is especially important for medical applications. The first results of a new high-temperature method for extracting 82Sr and 67Cu radioisotopes from irradiated targets have been presented.

  3. Final Environmental Assessment For the Construction and Operation of a Fire Training Facility

    DTIC Science & Technology

    2010-04-29

    practice drafting (i.e., water uptake through hoses ) operations during live fires. The proposed drafting pit would also allow the department to...FTF to allow the Clear FD to practice drafting (i.e., water uptake through hoses ) operations during live fires. The proposed drafting pit would also...respirators, etc.), but trucks, hoses , and other large equipment would need to be supplied by the host fire department (so as not to leave Clear AFS

  4. Basic features of electromagnetic pulse generated in a laser-target chamber at 3-TW laser facility PALS

    NASA Astrophysics Data System (ADS)

    De Marco, M.; Pfeifer, M.; Krousky, E.; Krasa, J.; Cikhardt, J.; Klir, D.; Nassisi, V.

    2014-04-01

    We describe the radiofrequency emission taking place when 300 ps laser pulses irradiate various solid targets with an intensity of 1016 W/cm2. The emission of intense electromagnetic pulses was observed outside the laser target chamber by two loop antennas up to 1 GHz. Electromagnetic pulses can be 800 MHz transients, which decay from a peak electromagnetic field of E0 ≊ 7 kV/m and H0 ≊ 15 A/m. The occurrence of these electromagnetic pulses is associated with generation of hard x-rays with photon energies extending beyond 1 MeV. This contribution reports the first observation of this effect at the PALS facility.

  5. IRIS : A reaction spectroscopy facility with solid H2 /D2 target

    NASA Astrophysics Data System (ADS)

    Holl, Matthias; Kanungo, Ritu; Alcorta, Martin; Andreoiu, Corina; Bidaman, Harris; Burbadge, Christina; Burke, Devin; Chen, Alan; Davids, Barry; Diaz Varela, Alejandra; Garrett, Paul; Hackman, Greg; Ishimoto, Shigeru; Kaur, Satbir; Keefe, Matthew; Kruecken, Reiner; Mansour, Iymad; Randhawa, Jaspreet; Sanetullaev, Alisher; Shotter, Alan; Smith, Jenna; Tanaka, Junki; Tanihata, Isao; Turko, Joseph; Workman, Orry

    2016-09-01

    The charged particle reaction spectroscopy station IRIS at TRIUMF is designed to allow studies of inelastic scattering and transfer reactions for low intensity beams. To do so, a novel solid H2 /D2 target is used in combination with a low pressure ionization chamber for the identification of incoming beam particles. The light ejectiles are measured using a ΔE - E telescope consisting of an annular silicon detector followed by CsI(Tl) array. Another ΔE - E telescope, consisting of two segmented silicon detectors, is used to identify the heavy outgoing particles. An overview of the faciltity will be given and examples from recent experiments that illustrate that facility's capability for reaction studies of exotic nuclei will be shown. Support from Canada Foundation for Innovation, Nova Scotia Research and Innovation Trust and NSERC.

  6. Odontological light-emitting diode light-curing unit beam quality.

    PubMed

    de Magalhães Filho, Thales Ribeiro; Weig, Karin de Mello; Werneck, Marcelo Martins; da Costa Neto, Célio Albano; da Costa, Marysilvia Ferreira

    2015-05-01

    The distribution of light intensity of three light-curing units (LCUs) to cure the resin-based composite for dental fillings was analyzed, and a homogeneity index [flat-top factor (FTF)] was calculated. The index is based on the M2 index, which is used for laser beams. An optical spectrum analyzer was used with an optical fiber to produce an x-y power profile of each LCU light guide. The FTF-calculated values were 0.51 for LCU1 and 0.55 for LCU2, which was the best FTF, although it still differed greatly from the perfect FTF = 1, and 0.27 for LCU3, which was the poorest value and even lower than the Gaussian FTF = 0.5. All LCUs presented notably heterogeneous light distribution, which can lead professionals and researchers to produce samples with irregular polymerization and poor mechanical properties.

  7. Odontological light-emitting diode light-curing unit beam quality

    NASA Astrophysics Data System (ADS)

    de Magalhães Filho, Thales Ribeiro; Weig, Karin de Mello; Werneck, Marcelo Martins; da Costa Neto, Célio Albano; da Costa, Marysilvia Ferreira

    2015-05-01

    The distribution of light intensity of three light-curing units (LCUs) to cure the resin-based composite for dental fillings was analyzed, and a homogeneity index [flat-top factor (FTF)] was calculated. The index is based on the M2 index, which is used for laser beams. An optical spectrum analyzer was used with an optical fiber to produce an x-y power profile of each LCU light guide. The FTF-calculated values were 0.51 for LCU1 and 0.55 for LCU2, which was the best FTF, although it still differed greatly from the perfect FTF=1, and 0.27 for LCU3, which was the poorest value and even lower than the Gaussian FTF=0.5. All LCUs presented notably heterogeneous light distribution, which can lead professionals and researchers to produce samples with irregular polymerization and poor mechanical properties.

  8. Use of a spatial scan statistic to identify clusters of births occurring outside Ghanaian health facilities for targeted intervention.

    PubMed

    Bosomprah, Samuel; Dotse-Gborgbortsi, Winfred; Aboagye, Patrick; Matthews, Zoe

    2016-11-01

    To identify and evaluate clusters of births that occurred outside health facilities in Ghana for targeted intervention. A retrospective study was conducted using a convenience sample of live births registered in Ghanaian health facilities from January 1 to December 31, 2014. Data were extracted from the district health information system. A spatial scan statistic was used to investigate clusters of home births through a discrete Poisson probability model. Scanning with a circular spatial window was conducted only for clusters with high rates of such deliveries. The district was used as the geographic unit of analysis. The likelihood P value was estimated using Monte Carlo simulations. Ten statistically significant clusters with a high rate of home birth were identified. The relative risks ranged from 1.43 ("least likely" cluster; P=0.001) to 1.95 ("most likely" cluster; P=0.001). The relative risks of the top five "most likely" clusters ranged from 1.68 to 1.95; these clusters were located in Ashanti, Brong Ahafo, and the Western, Eastern, and Greater regions of Accra. Health facility records, geospatial techniques, and geographic information systems provided locally relevant information to assist policy makers in delivering targeted interventions to small geographic areas. Copyright © 2016 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.

  9. UCx target preparations and characterizations

    NASA Astrophysics Data System (ADS)

    Andrighetto, Alberto; Corradetti, Stefano; Manzolaro, Mattia; Scarpa, Daniele; Monetti, Alberto; Rossignoli, Massimo; Borgna, Francesca; Ballan, Michele; Agostini, Mattia; D'Agostini, Fabio; Ferrari, Matteo; Zenoni, Aldo

    2018-05-01

    The Target-Ion Source unit is the core of an ISOL-RIB facility. Many international ISOL facilities have chosen different layouts of this unit. Many research groups are involved in research and development of targets capable of dissipating high power and, at the same time, be able to have a fast isotope release. This is mandatory in order to produce beams of short half-life isotopes. The research of new materials with advanced microstructural features is crucial in this field. The design of a proper target is indeed strictly related to the obtainment of porous refractory materials, which are capable to work under extreme conditions (temperatures up to 2000 °C in high vacuum) with a high release efficiency. For SPES, the second generation Italian ISOL-RIB Facility, the target will be made of uranium carbide (UCx) in which, by fission induced by a proton beam of 40 MeV of energy (8 kW of power), isotopes in the 60-160 amu mass region are produced. The current technological developments are also crucial in the study of third generation ISOL facilities.

  10. Overview of the Neutron experimental facilities at LANSCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mocko, Michal

    2016-06-30

    This presentation gives an overview of the neutron experimental facilities at LANSCE. The layout is mentioned in detail, with a map of the south-side experimental facilities, information on Target-4 and the Lujan Center. Then it goes into detail about neutron sources, specifically continuous versus pulsed. Target 4 is then discussed. In conclusion, we have introduced the south-side experimental facilities in operation at LANSCE. 1L target and Target 4 provide complementary neutron energy spectra. Two spallation neutron sources taken together cover more than 11 orders of magnitude in neutron energy.

  11. ADHD and Other Associated Developmental Problems in Children with Mild Mental Retardation. The Use of the "Five-To-Fifteen" Questionnaire in a Population-Based Sample

    ERIC Educational Resources Information Center

    Lindblad, Ida; Gillberg, Christopher; Fernell, Elisabeth

    2011-01-01

    The aim was to examine the rates and types of parent reported neuropsychiatric problems in children and adolescents with mild mental retardation (MMR) (mild intellectual disability/UK) using the Five-To-Fifteen questionnaire (FTF). The target group comprised all pupils with clinically diagnosed MMR, aged between 7 and 15 years, attending the…

  12. Generalizability of the NAMI Family-to-Family Education Program: Evidence From an Efficacy Study.

    PubMed

    Mercado, Micaela; Fuss, Ashley Ann; Sawano, Nanaho; Gensemer, Alexandra; Brennan, Wendy; McManus, Kinsey; Dixon, Lisa B; Haselden, Morgan; Cleek, Andrew F

    2016-06-01

    Previous studies conducted in Maryland of the Family-to-Family (FTF) education program of the National Alliance on Mental Illness (NAMI) found that FTF reduced subjective burden and distress and improved empowerment, mental health knowledge, self-care, and family functioning, establishing it as an evidence-based practice. In the study reported here, the FTF program of NAMI-NYC Metro was evaluated. Participants (N=83) completed assessments at baseline and at completion of FTF. Participants had improved family empowerment, family functioning, engagement in self-care activities, self-perception of mental health knowledge, and emotional acceptance as a form of coping. Scores for emotional support and positive reframing also improved significantly. Displeasure in caring for the family member, a measure of subjective burden, significantly declined. Despite the lack of a control group and the limited sample size, this study further supports the efficacy of FTF with a diverse urban population.

  13. SECOND TARGET STATION MODERATOR PERFORMANCE WITH A ROTATING TARGET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remec, Igor; Gallmeier, Franz X; Rennich, Mark J

    2016-01-01

    Oak Ridge National Laboratory manages and operates the Spallation Neutron Source and the High Flux Isotope Reactor, two of the world's most advanced neutron scattering facilities. Both facilities are funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Science, and are available to researchers from all over the world. Delivering cutting edge science requires continuous improvements and development of the facilities and instruments. The SNS was designed from the outset to accommodate an additional target station, or Second Target Station (STS), and an upgraded accelerator feeding proton beams to STS and the existing First Targetmore » Station (FTS). Upgrade of the accelerator and the design and construction of STS are being proposed. The presently considered STS configuration is driven with short (<1 s) proton pulses at 10 Hz repetition rate and 467 kW proton beam power, and is optimized for high intensity and high resolution long wavelength neutron applications. STS will allow installation of 22 beamlines and will expand and complement the current national neutron scattering capabilities. In 2015 the STS studies were performed for a compact tungsten target; first a stationary tungsten plate target was analyzed to considerable details and then dropped in favor of a rotating target. For both target options the proton beam footprint as small as acceptable from mechanical and heat removal aspects is required to arrive at a compact-volume neutron production zone in the target, which is essential for tight coupling of target and moderators and for achieving high-intensity peak neutron fluxes. This paper will present recent STS work with the emphasis on neutronics and moderator performance.« less

  14. NRC Consultation and Monitoring at the Savannah River Site: Focusing Reviews of Two Different Disposal Actions - 12181

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ridge, A. Christianne; Barr, Cynthia S.; Pinkston, Karen E.

    Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA) requires the U.S. Department of Energy (DOE) to consult with the U.S. Nuclear Regulatory Commission (NRC) for certain non-high level waste determinations. The NDAA also requires NRC to monitor DOE's disposal actions related to those determinations. In Fiscal Year 2011, the NRC staff reviewed DOE performance assessments for tank closure at the F-Tank Farm (FTF) Facility and salt waste disposal at the Saltstone Disposal Facility (SDF) at the Savannah River Site (SRS) as part of consultation and monitoring, respectively. Differences in inventories, waste forms,more » and key barriers led to different areas of focus in the NRC reviews of these two activities at the SRS. Because of the key role of chemically reducing grouts in both applications, the evaluation of chemical barriers was significant to both reviews. However, radionuclide solubility in precipitated metal oxides is expected to play a significant role in FTF performance whereas release of several key radionuclides from the SDF is controlled by sorption or precipitation within the cementitious wasteform itself. Similarly, both reviews included an evaluation of physical barriers to flow, but differences in the physical configurations of the waste led to differences in the reviews. For example, NRC's review of the FTF focused on the modeled degradation of carbon steel tank liners while the staff's review of the SDF performance included a detailed evaluation of the physical degradation of the saltstone wasteform and infiltration-limiting closure cap. Because of the long time periods considered (i.e., tens of thousands of years), the NRC reviews of both facilities included detailed evaluation of the engineered chemical and physical barriers. The NRC staff reviews of residual waste disposal in the FTF and salt waste disposal in the SDF focused on physical barriers to flow and chemical barriers to radionuclide

  15. Assessment of personal airborne exposures and surface contamination from x-ray vaporization of beryllium targets at the National Ignition Facility.

    PubMed

    Paik, Samuel Y; Epperson, Patrick M; Kasper, Kenneth M

    2017-06-01

    This article presents air and surface sampling data collected over the first two years since beryllium was introduced as a target material at the National Ignition Facility. Over this time, 101 experiments with beryllium-containing targets were executed. The data provides an assessment of current conditions in the facility and a baseline for future impacts as new, reduced regulatory limits for beryllium are being proposed by both the Occupational Safety and Health Administration and Department of Energy. This study also investigates how beryllium deposits onto exposed surfaces as a result of x-ray vaporization and the effectiveness of simple decontamination measures in reducing the amount of removable beryllium from a surface. Based on 1,961 surface wipe samples collected from entrant components (equipment directly exposed to target debris) and their surrounding work areas during routine reconfiguration activities, only one result was above the beryllium release limit of 0.2 µg/100 cm 2 and 27 results were above the analytical reporting limit of 0.01 µg/100 cm 2 , for a beryllium detection rate of 1.4%. Surface wipe samples collected from the internal walls of the NIF target chamber, however, showed higher levels of beryllium, with beryllium detected on 73% and 87% of the samples during the first and second target chamber entries (performed annually), respectively, with 23% of the samples above the beryllium release limit during the second target chamber entry. The analysis of a target chamber wall panel exposed during the first 30 beryllium-containing experiments (cumulatively) indicated that 87% of the beryllium contamination remains fixed onto the surface after wet wiping the surface and 92% of the non-fixed contamination was removed by decontaminating the surface using a dry wipe followed by a wet wipe. Personal airborne exposures assessed during access to entrant components and during target chamber entry indicated that airborne beryllium was not present

  16. Teens in the Twenty-First Century Still Prefer People over Machines: Importance of Intervention Delivery Style in Adolescent HIV/STD Prevention

    ERIC Educational Resources Information Center

    Pendleton, Sara M.; Stanton, Bonita; Cottrell, Lesley A.; Marshall, Sharon; Pack, Robert; Burns, James; Gibson, Catherine; Wu, Ying; Li, Xiaoming; Cole, Matthew

    2007-01-01

    Purpose: To assess and compare youth satisfaction with two delivery approaches to a HIV/STD risk reduction intervention targeting adolescents: an on-site, face-to-face (FTF) approach versus a long distance interactive televised (DIT) approach. Methods: A convenience sample of 571 rural adolescents ages 12-16 years who participated in an HIV/STD…

  17. Assessment of Aphasia Across the International Classification of Functioning, Disability and Health Using an iPad-Based Application.

    PubMed

    Guo, Yiting Emily; Togher, Leanne; Power, Emma; Hutomo, Edwin; Yang, Yi-Fei; Tay, Arthur; Yen, Shih-Cheng; Koh, Gerald Choon-Huat

    2017-04-01

    Access2Aphasia™ is an iPad™-based aphasia assessment application that enables real-time audiovisual communication between people with aphasia (PWA) and speech-language pathologists (SLPs), and the use of supported conversation techniques. This study aimed to establish the reliability of aphasia assessment across the International Classification of Functioning, Disability and Health (ICF) using Access2Aphasia, and compare it with face-to-face (FTF) assessment. Consumer perspectives of Access2Aphasia were also examined. Thirty PWA were randomized into two conditions: online-led and FTF assessment. Participants in the online-led group were assessed remotely using Access2Aphasia™ in their own homes, while an FTF SLP scored silently simultaneously. Participants in the FTF group were assessed FTF using standard administration materials. Assessment included two subtests of the Psycholinguistic Assessment of Language Processing Activities (PALPA) and the Assessment of Living with Aphasia (ALA) to allow for outcomes to be captured across the ICF domains. Consumer perspectives on Access2Aphasia were obtained from both PWA and research SLPs in the online-led group. Kappa statistics indicated moderate to almost perfect agreement between online and FTF SLPs (k = 0.71-1.00). Intrarater and interrater reliability was excellent (ICC = 0.99-1.00) and equivalent for the online-led and FTF conditions. Both PWA and research SLPs in the online-led group reported being satisfied with the experience overall, with suggestions provided by research SLPs to improve Access2Aphasia. This study supports the provision of iPad-based aphasia assessments across the ICF in the online environment, with comparable reliability to FTF assessments. Future research is warranted to support the development of iPad-based aphasia assessment and treatment as an alternative mode of service delivery to PWA.

  18. Investigation into the electromagnetic impulses from long-pulse laser illuminating solid targets inside a laser facility

    NASA Astrophysics Data System (ADS)

    Yi, Tao; Yang, Jinwen; Yang, Ming; Wang, Chuanke; Yang, Weiming; Li, Tingshuai; Liu, Shenye; Jiang, Shaoen; Ding, Yongkun; Xiao, Shaoqiu

    2016-09-01

    Emission of the electromagnetic pulses (EMP) due to laser-target interaction in laser facility had been evaluated using a cone antenna in this work. The microwave in frequencies ranging from several hundreds of MHz to 2 GHz was recorded when long-pulse lasers with several thousands of joules illuminated the solid targets, meanwhile the voltage signals from 1 V to 4 V were captured as functions of laser energy and backlight laser, where the corresponding electric field strengths were obtained by simulating the cone antenna in combination with conducting a mathematical process (Tiknohov Regularization with L curve). All the typical coupled voltage oscillations displayed multiple peaks and had duration of up to 80 ns before decaying into noise and mechanisms of the EMP generation was schematically interpreted in basis of the practical measuring environments. The resultant data were expected to offer basic know-how to achieve inertial confinement fusion.

  19. Methodology for earthquake rupture rate estimates of fault networks: example for the western Corinth rift, Greece

    NASA Astrophysics Data System (ADS)

    Chartier, Thomas; Scotti, Oona; Lyon-Caen, Hélène; Boiselet, Aurélien

    2017-10-01

    -south extension. Modeling results show that geological, seismological and paleoseismological rates of earthquakes cannot be reconciled with only single-fault-rupture scenarios and require hypothesizing a large spectrum of possible FtF rupture sets. In order to fit the imposed regional Gutenberg-Richter (GR) MFD target, some of the slip along certain faults needs to be accommodated either with interseismic creep or as post-seismic processes. Furthermore, computed individual faults' MFDs differ depending on the position of each fault in the system and the possible FtF ruptures associated with the fault. Finally, a comparison of modeled earthquake rupture rates with those deduced from the regional and local earthquake catalog statistics and local paleoseismological data indicates a better fit with the FtF rupture set constructed with a distance criteria based on 5 km rather than 3 km, suggesting a high connectivity of faults in the WCR fault system.

  20. CHEMICAL DIFFERENCES BETWEEN SLUDGE SOLIDS AT THE F AND H AREA TANK FARMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reboul, S.

    2012-08-29

    The primary source of waste solids received into the F Area Tank Farm (FTF) was from PUREX processing performed to recover uranium and plutonium from irradiated depleted uranium targets. In contrast, two primary sources of waste solids were received into the H Area Tank Farm (HTF): a) waste from PUREX processing; and b) waste from H-modified (HM) processing performed to recover uranium and neptunium from burned enriched uranium fuel. Due to the differences between the irradiated depleted uranium targets and the burned enriched uranium fuel, the average compositions of the F and H Area wastes are markedly different from onemore » another. Both F and H Area wastes contain significant amounts of iron and aluminum compounds. However, because the iron content of PUREX waste is higher than that of HM waste, and the aluminum content of PUREX waste is lower than that of HM waste, the iron to aluminum ratios of typical FTF waste solids are appreciably higher than those of typical HTF waste solids. Other constituents present at significantly higher concentrations in the typical FTF waste solids include uranium, nickel, ruthenium, zinc, silver, cobalt and copper. In contrast, constituents present at significantly higher concentrations in the typical HTF waste solids include mercury, thorium, oxalate, and radionuclides U-233, U-234, U-235, U-236, Pu-238, Pu-242, Cm-244, and Cm-245. Because of the higher concentrations of Pu-238 in HTF, the long-term concentrations of Th-230 and Ra-226 (from Pu-238 decay) will also be higher in HTF. The uranium and plutonium distributions of the average FTF waste were found to be consistent with depleted uranium and weapons grade plutonium, respectively (U-235 comprised 0.3 wt% of the FTF uranium, and Pu-240 comprised 6 wt% of the FTF plutonium). In contrast, at HTF, U-235 comprised 5 wt% of the uranium, and Pu-240 comprised 17 wt% of the plutonium, consistent with enriched uranium and high burn-up plutonium. X-ray diffraction analyses of

  1. Assessment of personal airborne exposures and surface contamination from x-ray vaporization of beryllium targets at the National Ignition Facility

    DOE PAGES

    Paik, Samuel Y.; Epperson, Patrick M.; Kasper, Kenneth M.

    2017-02-28

    Here, this article presents air and surface sampling data collected over the first two years since beryllium was introduced as a target material at the National Ignition Facility. Over this time, 101 experiments with beryllium-containing targets were executed. The data provides an assessment of current conditions in the facility and a baseline for future impacts as new, reduced regulatory limits for beryllium are being proposed by both the Occupational Safety and Health Administration and Department of Energy. This study also investigates how beryllium deposits onto exposed surfaces as a result of x-ray vaporization and the effectiveness of simple decontamination measuresmore » in reducing the amount of removable beryllium from a surface. Based on 1,961 surface wipe samples collected from entrant components (equipment directly exposed to target debris) and their surrounding work areas during routine reconfiguration activities, only one result was above the beryllium release limit of 0.2 µg/100 cm 2 and 27 results were above the analytical reporting limit of 0.01 µg/100 cm 2, for a beryllium detection rate of 1.4%. Surface wipe samples collected from the internal walls of the NIF target chamber, however, showed higher levels of beryllium, with beryllium detected on 73% and 87% of the samples during the first and second target chamber entries (performed annually), respectively, with 23% of the samples above the beryllium release limit during the second target chamber entry. The analysis of a target chamber wall panel exposed during the first 30 beryllium-containing experiments (cumulatively) indicated that 87% of the beryllium contamination remains fixed onto the surface after wet wiping the surface and 92% of the non-fixed contamination was removed by decontaminating the surface using a dry wipe followed by a wet wipe. Personal airborne exposures assessed during access to entrant components and during target chamber entry indicated that airborne beryllium was

  2. Evolution of Gas Cell Targets for Magnetized Liner Inertial Fusion Experiments at the Sandia National Laboratories PECOS Test Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paguio, R. R.; Smith, G. E.; Taylor, J. L.

    Z-Beamlet (ZBL) experiments conducted at the PECOS test facility at Sandia National Laboratories (SNL) investigated the nonlinear processes in laser plasma interaction (or laserplasma instabilities LPI) that complicate the deposition of laser energy by enhanced absorption, backscatter, filamentation and beam-spray that can occur in large-scale laser-heated gas cell targets. These targets and experiments were designed to provide better insight into the physics of the laser preheat stage of the Magnetized Liner Inertial Fusion (MagLIF) scheme being tested on the SNL Z-machine. The experiments aim to understand the tradeoffs between laser spot size, laser pulse shape, laser entrance hole (LEH) windowmore » thickness, and fuel density for laser preheat. Gas cell target design evolution and fabrication adaptations to accommodate the evolving experiment and scientific requirements are also described in this paper.« less

  3. Evolution of Gas Cell Targets for Magnetized Liner Inertial Fusion Experiments at the Sandia National Laboratories PECOS Test Facility

    DOE PAGES

    Paguio, R. R.; Smith, G. E.; Taylor, J. L.; ...

    2017-12-04

    Z-Beamlet (ZBL) experiments conducted at the PECOS test facility at Sandia National Laboratories (SNL) investigated the nonlinear processes in laser plasma interaction (or laserplasma instabilities LPI) that complicate the deposition of laser energy by enhanced absorption, backscatter, filamentation and beam-spray that can occur in large-scale laser-heated gas cell targets. These targets and experiments were designed to provide better insight into the physics of the laser preheat stage of the Magnetized Liner Inertial Fusion (MagLIF) scheme being tested on the SNL Z-machine. The experiments aim to understand the tradeoffs between laser spot size, laser pulse shape, laser entrance hole (LEH) windowmore » thickness, and fuel density for laser preheat. Gas cell target design evolution and fabrication adaptations to accommodate the evolving experiment and scientific requirements are also described in this paper.« less

  4. Design of the LBNF Beamline Target Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tariq, S.; Ammigan, K.; Anderson, K.

    2016-10-01

    The Long Baseline Neutrino Facility (LBNF) project will build a beamline located at Fermilab to create and aim an intense neutrino beam of appropriate energy range toward the DUNE detectors at the SURF facility in Lead, South Dakota. Neutrino production starts in the Target Station, which consists of a solid target, magnetic focusing horns, and the associated sub-systems and shielding infrastructure. Protons hit the target producing mesons which are then focused by the horns into a helium-filled decay pipe where they decay into muons and neutrinos. The target and horns are encased in actively cooled steel and concrete shielding inmore » a chamber called the target chase. The reference design chase is filled with air, but nitrogen and helium are being evaluated as alternatives. A replaceable beam window separates the decay pipe from the target chase. The facility is designed for initial operation at 1.2 MW, with the ability to upgrade to 2.4 MW, and is taking advantage of the experience gained by operating Fermilab’s NuMI facility. We discuss here the design status, associated challenges, and ongoing R&D and physics-driven component optimization of the Target Station.« less

  5. Effects of Family-to-Family Psychoeducation Among Relatives of Patients With Severe Mental Disorders in Mexico City.

    PubMed

    Domínguez-Martinez, Tecelli; Rascon-Gasca, Maria Luisa; Alcántara-Chabelas, Humberto; Garcia-Silberman, Sara; Casanova-Rodas, Leticia; Lopez-Jimenez, Jorge Luis

    2017-04-01

    This study examined the effects of a three-month Family-to-Family (FTF) Education Program on expressed emotion and subjective knowledge about mental illness among relatives of Mexican patients with severe mental disorders. A total of 230 relatives of patients with severe mental disorders completed self-reported questionnaires before (pretest) and after (posttest) the FTF program. FTF led to reductions in negative emotional attitudes and improved the understanding of the disorder, regardless of sex or age of the relative. This study supported the evidence-based practice of FTF in a Mexican population and confirmed the importance of providing routine family psychoeducation as an additional component of health care service provision for relatives of people with severe mental illness in the community.

  6. The radioactive beam facility ALTO

    NASA Astrophysics Data System (ADS)

    Essabaa, Saïd; Barré-Boscher, Nicole; Cheikh Mhamed, Maher; Cottereau, Evelyne; Franchoo, Serge; Ibrahim, Fadi; Lau, Christophe; Roussière, Brigitte; Saïd, Abdelhakim; Tusseau-Nenez, Sandrine; Verney, David

    2013-12-01

    The Transnational Access facility ALTO (TNA07-ENSAR/FP7) has been commissioned and received from the French safety authorities, the operation license. It is allowed to run at nominal intensity to produce 1011 fissions/s in a thick uranium carbide target by photo-fission using a 10 μA, 50 MeV electron beam. In addition the recent success in operating the selective laser ion source broadens the physics program with neutron-rich nuclear beams possible at this facility installed at IPN Orsay. The facility also aims at being a test bench for the SPIRAL2 project. In that framework an ambitious R&D program on the target ion source system is being developed.

  7. Excluded Facility Financial Status and Options for Payment System Modification

    PubMed Central

    Schneider, John E.; Cromwell, Jerry; McGuire, Thomas P.

    1993-01-01

    Psychiatric, rehabilitation, long-term care, and children's facilities have remained under the reimbursement system established under the Tax Equity and Fiscal Responsibility Act (TEFRA) of 1982 (Public Law 97-248). The number of TEFRA facilities and discharges has been increasing while their average profit rates have been steadily declining. Modifying TEFRA would require either rebasing the target amount or adjusting cost sharing for facilities exceeding their cost target. Based on our simulations of alternative payment systems, we recommend rebasing facilities' target amounts using a 50/50 blend of own costs and national average costs. Cost sharing above the target amount could be increased to include more government sharing of losses. PMID:10135345

  8. Targeted proteomics coming of age - SRM, PRM and DIA performance evaluated from a core facility perspective.

    PubMed

    Kockmann, Tobias; Trachsel, Christian; Panse, Christian; Wahlander, Asa; Selevsek, Nathalie; Grossmann, Jonas; Wolski, Witold E; Schlapbach, Ralph

    2016-08-01

    Quantitative mass spectrometry is a rapidly evolving methodology applied in a large number of omics-type research projects. During the past years, new designs of mass spectrometers have been developed and launched as commercial systems while in parallel new data acquisition schemes and data analysis paradigms have been introduced. Core facilities provide access to such technologies, but also actively support the researchers in finding and applying the best-suited analytical approach. In order to implement a solid fundament for this decision making process, core facilities need to constantly compare and benchmark the various approaches. In this article we compare the quantitative accuracy and precision of current state of the art targeted proteomics approaches single reaction monitoring (SRM), parallel reaction monitoring (PRM) and data independent acquisition (DIA) across multiple liquid chromatography mass spectrometry (LC-MS) platforms, using a readily available commercial standard sample. All workflows are able to reproducibly generate accurate quantitative data. However, SRM and PRM workflows show higher accuracy and precision compared to DIA approaches, especially when analyzing low concentrated analytes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Building dialogue on complex conservation issues in a conference setting.

    PubMed

    Rock, Jenny; Sparrow, Andrew; Wass, Rob; Moller, Henrik

    2014-10-01

    Dialogue about complex science and society issues is important for contemporary conservation agendas. Conferences provide an appropriate space for such dialogue, but despite its recognized worth, best practices for facilitating active dialogue are still being explored. Face-to-face (FTF) and computer-mediated communication (CMC) are two approaches to facilitating dialogue that have different strengths. We assessed the use of these approaches to create dialogue on cultural perspectives of conservation and biodiversity at a national ecology conference. In particular, we aimed to evaluate their potential to enhance dialogue through their integrated application. We used an interactive blog to generate CMC on participant-sourced issues and to prime subsequent discussion in an FTF conference workshop. The quantity and quality of both CMC and FTF discussion indicated that both approaches were effective in building dialogue. Prior to the conference the blog averaged 126 views per day, and 44 different authors contributed a total of 127 comments. Twenty-five participants subsequently participated in active FTF discussion during a 3-h workshop. Postconference surveys confirmed that CMC had developed participants' thinking and deepened FTF dialogue; 88% indicated specifically that CMC helped facilitate the FTF discussion. A further 83% of respondents concluded that preliminary blog discussion would be useful for facilitating dialogue at future conferences. © 2014 Society for Conservation Biology.

  10. First experimental evidence of hydrodynamic tunneling of ultra–relativistic protons in extended solid copper target at the CERN HiRadMat facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, R.; Grenier, D.; Wollmann, D.

    2014-08-15

    A novel experiment has been performed at the CERN HiRadMat test facility to study the impact of the 440 GeV proton beam generated by the Super Proton Synchrotron on extended solid copper cylindrical targets. Substantial hydrodynamic tunneling of the protons in the target material has been observed that leads to significant lengthening of the projectile range, which confirms our previous theoretical predictions [N. A. Tahir et al., Phys. Rev. Spec. Top.-Accel. Beams 15, 051003 (2012)]. Simulation results show very good agreement with the experimental measurements. These results have very important implications on the machine protection design for powerful machines like themore » Large Hadron Collider (LHC), the future High Luminosity LHC, and the proposed huge 80 km circumference Future Circular Collider, which is currently being discussed at CERN. Another very interesting outcome of this work is that one may also study the field of High Energy Density Physics at this test facility.« less

  11. First experimental evidence of hydrodynamic tunneling of ultra-relativistic protons in extended solid copper target at the CERN HiRadMat facility

    NASA Astrophysics Data System (ADS)

    Schmidt, R.; Blanco Sancho, J.; Burkart, F.; Grenier, D.; Wollmann, D.; Tahir, N. A.; Shutov, A.; Piriz, A. R.

    2014-08-01

    A novel experiment has been performed at the CERN HiRadMat test facility to study the impact of the 440 GeV proton beam generated by the Super Proton Synchrotron on extended solid copper cylindrical targets. Substantial hydrodynamic tunneling of the protons in the target material has been observed that leads to significant lengthening of the projectile range, which confirms our previous theoretical predictions [N. A. Tahir et al., Phys. Rev. Spec. Top.-Accel. Beams 15, 051003 (2012)]. Simulation results show very good agreement with the experimental measurements. These results have very important implications on the machine protection design for powerful machines like the Large Hadron Collider (LHC), the future High Luminosity LHC, and the proposed huge 80 km circumference Future Circular Collider, which is currently being discussed at CERN. Another very interesting outcome of this work is that one may also study the field of High Energy Density Physics at this test facility.

  12. Above scaling short-pulse ion acceleration from flat foil and ``Pizza-top Cone'' targets at the Trident laser facility

    NASA Astrophysics Data System (ADS)

    Flippo, Kirk; Hegelich, B. Manuel; Cort Gautier, D.; Johnson, J. Randy; Kline, John L.; Shimada, Tsutomu; Fernández, Juan C.; Gaillard, Sandrine; Rassuchine, Jennifer; Le Galloudec, Nathalie; Cowan, Thomas E.; Malekos, Steve; Korgan, Grant

    2006-10-01

    Ion-driven Fast Ignition (IFI) has certain advantages over electron-driven FI due to a possible large reduction in the amount of energy required. Recent experiments at the Los Alamos National Laboratory's Trident facility have yielded ion energies and efficiencies many times in excess of recent published scaling laws, leading to even more potential advantages of IFI. Proton energies in excess of 35 MeV have been observed from targets produced by the University of Nevada, Reno - dubbed ``Pizza-top Cone'' targets - at intensities of only 1x10^19 W/cm^2 with 20 joules in 600 fs. Energies in excess of 24 MeV were observed from simple flat foil targets as well. The observed energies, above any published scaling laws, are attributed to target production, preparation, and shot to shot monitoring of many laser parameters, especially the laser ASE prepulse level and laser pulse duration. The laser parameters are monitored in real-time to keep the laser in optimal condition throughout the run providing high quality, reproducible shots.

  13. National Biomedical Tracer Facility: Project definition study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heaton, R.; Peterson, E.; Smith, P.

    The Los Alamos National Laboratory is an ideal institution and New Mexico is an ideal location for siting the National Biomedical Tracer Facility (NBTF). The essence of the Los Alamos proposal is the development of two complementary irradiation facilities that combined with our existing radiochemical processing hot cell facilities and waste handling and disposal facilities provide a low cost alternative to other proposals that seek to satisfy the objectives of the NBTF. We propose the construction of a 30 MeV cyclotron facility at the site of the radiochemical facilities, and the construction of a 100 MeV target station at LAMPFmore » to satisfy the requirements and objectives of the NBTF. We do not require any modifications to our existing radiochemical processing hot cell facilities or our waste treatment and disposal facilities to accomplish the objectives of the NBTF. The total capital cost for the facility defined by the project definition study is $15.2 M. This cost estimate includes $9.9 M for the cyclotron and associated facility, $2.0 M for the 100 MeV target station at LAMPF, and $3.3 M for design.« less

  14. Estimation of marginal costs at existing waste treatment facilities.

    PubMed

    Martinez-Sanchez, Veronica; Hulgaard, Tore; Hindsgaul, Claus; Riber, Christian; Kamuk, Bettina; Astrup, Thomas F

    2016-04-01

    This investigation aims at providing an improved basis for assessing economic consequences of alternative Solid Waste Management (SWM) strategies for existing waste facilities. A bottom-up methodology was developed to determine marginal costs in existing facilities due to changes in the SWM system, based on the determination of average costs in such waste facilities as function of key facility and waste compositional parameters. The applicability of the method was demonstrated through a case study including two existing Waste-to-Energy (WtE) facilities, one with co-generation of heat and power (CHP) and another with only power generation (Power), affected by diversion strategies of five waste fractions (fibres, plastic, metals, organics and glass), named "target fractions". The study assumed three possible responses to waste diversion in the WtE facilities: (i) biomass was added to maintain a constant thermal load, (ii) Refused-Derived-Fuel (RDF) was included to maintain a constant thermal load, or (iii) no reaction occurred resulting in a reduced waste throughput without full utilization of the facility capacity. Results demonstrated that marginal costs of diversion from WtE were up to eleven times larger than average costs and dependent on the response in the WtE plant. Marginal cost of diversion were between 39 and 287 € Mg(-1) target fraction when biomass was added in a CHP (from 34 to 303 € Mg(-1) target fraction in the only Power case), between -2 and 300 € Mg(-1) target fraction when RDF was added in a CHP (from -2 to 294 € Mg(-1) target fraction in the only Power case) and between 40 and 303 € Mg(-1) target fraction when no reaction happened in a CHP (from 35 to 296 € Mg(-1) target fraction in the only Power case). Although average costs at WtE facilities were highly influenced by energy selling prices, marginal costs were not (provided a response was initiated at the WtE to keep constant the utilized thermal capacity). Failing to systematically

  15. Radiation effects on active camera electronics in the target chamber at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Dayton, M.; Datte, P.; Carpenter, A.; Eckart, M.; Manuel, A.; Khater, H.; Hargrove, D.; Bell, P.

    2017-08-01

    The National Ignition Facility's (NIF) harsh radiation environment can cause electronics to malfunction during high-yield DT shots. Until now there has been little experience fielding electronic-based cameras in the target chamber under these conditions; hence, the performance of electronic components in NIF's radiation environment was unknown. It is possible to purchase radiation tolerant devices, however, they are usually qualified for radiation environments different to NIF, such as space flight or nuclear reactors. This paper presents the results from a series of online experiments that used two different prototype camera systems built from non-radiation hardened components and one commercially available camera that permanently failed at relatively low total integrated dose. The custom design built in Livermore endured a 5 × 1015 neutron shot without upset, while the other custom design upset at 2 × 1014 neutrons. These results agreed with offline testing done with a flash x-ray source and a 14 MeV neutron source, which suggested a methodology for developing and qualifying electronic systems for NIF. Further work will likely lead to the use of embedded electronic systems in the target chamber during high-yield shots.

  16. Laser plasma instability experiments with KrF lasersa)

    NASA Astrophysics Data System (ADS)

    Weaver, J. L.; Oh, J.; Afeyan, B.; Phillips, L.; Seely, J.; Feldman, U.; Brown, C.; Karasik, M.; Serlin, V.; Aglitskiy, Y.; Mostovych, A. N.; Holland, G.; Obenschain, S.; Chan, L.-Y.; Kehne, D.; Lehmberg, R. H.; Schmitt, A. J.; Colombant, D.; Velikovich, A.

    2007-05-01

    Deleterious effects of laser-plasma instability (LPI) may limit the maximum laser irradiation that can be used for inertial confinement fusion. The short wavelength (248nm), large bandwidth, and very uniform illumination available with krypton-fluoride (KrF) lasers should increase the maximum usable intensity by suppressing LPI. The concomitant increase in ablation pressure would allow implosion of low-aspect-ratio pellets to ignition with substantial gain (>20) at much reduced laser energy. The proposed KrF-laser-based Fusion Test Facility (FTF) would exploit this strategy to achieve significant fusion power (150MW) with a rep-rate system that has a per pulse laser energy well below 1 MJ. Measurements of LPI using the Nike KrF laser are presented at and above intensities needed for the FTF (I˜2×1015W/cm2). The results to date indicate that LPI is indeed suppressed. With overlapped beam intensity above the planar, single beam intensity threshold for the two-plasmon decay instability, no evidence of instability was observed via measurements of 3/2ωo and 1/2ωo harmonic emissions.

  17. Nike Facility Diagnostics and Data Acquisition System

    NASA Astrophysics Data System (ADS)

    Chan, Yung; Aglitskiy, Yefim; Karasik, Max; Kehne, David; Obenschain, Steve; Oh, Jaechul; Serlin, Victor; Weaver, Jim

    2013-10-01

    The Nike laser-target facility is a 56-beam krypton fluoride system that can deliver 2 to 3 kJ of laser energy at 248 nm onto targets inside a two meter diameter vacuum chamber. Nike is used to study physics and technology issues related to laser direct-drive ICF fusion, including hydrodynamic and laser-plasma instabilities, material behavior at extreme pressures, and optical and x-ray diagnostics for laser-heated targets. A suite of laser and target diagnostics are fielded on the Nike facility, including high-speed, high-resolution x-ray and visible imaging cameras, spectrometers and photo-detectors. A centrally-controlled, distributed computerized data acquisition system provides robust data management and near real-time analysis feedback capability during target shots. Work supported by DOE/NNSA.

  18. Laser-Plasma Interactions in Drive Campaign targets on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Hinkel, D. E.; Callahan, D. A.; Moody, J. D.; Amendt, P. A.; Lasinski, B. F.; MacGowan, B. J.; Meeker, D.; Michel, P. A.; Ralph, J.; Rosen, M. D.; Ross, J. S.; Schneider, M. B.; Storm, E.; Strozzi, D. J.; Williams, E. A.

    2016-03-01

    The Drive campaign [D A Callahan et al., this conference] on the National Ignition Facility (NIF) laser [E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane, R. Al-Ayat, Phys. Plasmas 16, 041006 (2009)] has the focused goal of understanding and optimizing the hohlraum for ignition. Both the temperature and symmetry of the radiation drive depend on laser and hohlraum characteristics. The drive temperature depends on the coupling of laser energy to the hohlraum, and the symmetry of the drive depends on beam-to-beam interactions that result in energy transfer [P. A. Michel, S. H. Glenzer, L. Divol, et al, Phys. Plasmas 17, 056305 (2010).] within the hohlraum. To this end, hohlraums are being fielded where shape (rugby vs. cylindrical hohlraums), gas fill composition (neopentane at room temperature vs. cryogenic helium), and gas fill density (increase of ∼ 150%) are independently changed. Cylindrical hohlraums with higher gas fill density show improved inner beam propagation, as should rugby hohlraums, because of the larger radius over the capsule (7 mm vs. 5.75 mm in a cylindrical hohlraum). Energy coupling improves in room temperature neopentane targets, as well as in hohlraums at higher gas fill density. In addition cross-beam energy transfer is being addressed directly by using targets that mock up one end of a hohlraum, but allow observation of the laser beam uniformity after energy transfer. Ideas such as splitting quads into “doublets” by re-pointing the right and left half of quads are also being pursued. LPI results of the Drive campaign will be summarized, and analyses of future directions presented.

  19. Cryogenic target system for hydrogen layering

    DOE PAGES

    Parham, T.; Kozioziemski, B.; Atkinson, D.; ...

    2015-11-24

    Here, a cryogenic target positioning system was designed and installed on the National Ignition Facility (NIF) target chamber. This instrument incorporates the ability to fill, form, and characterize the NIF targets with hydrogen isotopes needed for ignition experiments inside the NIF target bay then transport and position them in the target chamber. This effort brought to fruition years of research in growing and metrologizing high-quality hydrogen fuel layers and landed it in an especially demanding operations environment in the NIF facility. D-T (deuterium-tritium) layers for NIF ignition experiments have extremely tight specifications and must be grown in a very highlymore » constrained environment: a NIF ignition target inside a cryogenic target positioner inside the NIF target bay. Exquisite control of temperature, pressure, contaminant level, and thermal uniformity are necessary throughout seed formation and layer growth to create an essentially-groove-free single crystal layer.« less

  20. DETECTORS AND EXPERIMENTAL METHODS: Studies of a scintillator-bar detector for a neutron wall at an external target facility

    NASA Astrophysics Data System (ADS)

    Yu, Yu-Hong; Xu, Hua-Gen; Xu, Hu-Shan; Zhan, Wen-Long; Sun, Zhi-Yu; Guo, Zhong-Yan; Hu, Zheng-Guo; Wang, Jian-Song; Chen, Jun-Ling; Zheng, Chuan

    2009-07-01

    To achieve a better time resolution of a scintillator-bar detector for a neutron wall at the external target facility of HIRFL-CSR, we have carried out a detailed study of the photomultiplier, the wrapping material and the coupling media. The timing properties of a scintillator-bar detector have been studied in detail with cosmic rays using a high and low level signal coincidence. A time resolution of 80 ps has been achieved in the center of the scintillator-bar detector.

  1. Plant model of KIPT neutron source facility simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Yan; Wei, Thomas Y.; Grelle, Austin L.

    2016-02-01

    Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine are collaborating on constructing a neutron source facility at KIPT, Kharkov, Ukraine. The facility has 100-kW electron beam driving a subcritical assembly (SCA). The electron beam interacts with a natural uranium target or a tungsten target to generate neutrons, and deposits its power in the target zone. The total fission power generated in SCA is about 300 kW. Two primary cooling loops are designed to remove 100-kW and 300-kW from the target zone and the SCA, respectively. A secondary cooling system ismore » coupled with the primary cooling system to dispose of the generated heat outside the facility buildings to the atmosphere. In addition, the electron accelerator has a low efficiency for generating the electron beam, which uses another secondary cooling loop to remove the generated heat from the accelerator primary cooling loop. One of the main functions the KIPT neutron source facility is to train young nuclear specialists; therefore, ANL has developed the KIPT Neutron Source Facility Simulator for this function. In this simulator, a Plant Control System and a Plant Protection System were developed to perform proper control and to provide automatic protection against unsafe and improper operation of the facility during the steady-state and the transient states using a facility plant model. This report focuses on describing the physics of the plant model and provides several test cases to demonstrate its capabilities. The plant facility model uses the PYTHON script language. It is consistent with the computer language of the plant control system. It is easy to integrate with the simulator without an additional interface, and it is able to simulate the transients of the cooling systems with system control variables changing on real-time.« less

  2. Facile Preparation of Doxorubicin-Loaded and Folic Acid-Conjugated Carbon Nanotubes@Poly(N-vinyl pyrrole) for Targeted Synergistic Chemo-Photothermal Cancer Treatment.

    PubMed

    Wang, Daquan; Ren, Yibo; Shao, Yongping; Yu, Demei; Meng, Lingjie

    2017-11-15

    We developed a bifunctional nanoplatform for targeted synergistic chemo-photothermal cancer treatment. The nanoplatform was constructed through a facile method in which poly(N-vinyl pyrrole) (PVPy) was coated on cut multiwalled carbon nanotubes (c-MWNTs); FA-PEG-SH was then linked by thiol-ene click reaction to improve the active targeting ability, water dispersibility, and biocompatibility and to extend the circulation time in blood. The PVPy shell not only enhanced the photothermal effect of c-MWNTs significantly but also provided a surface that could tailor targeting molecules and drugs. The resulting MWNT@PVPy-S-PEG-FA possessed high drug-loading ratio as well as pH-sensitive unloading capacity for a broad-spectrum anticancer agent, doxorubicin. Owing to its outstanding efficiency in photothermal conversion and ability in targeted drug delivery, the material could potentially be used as an efficient chemo-photothermal therapeutic nanoagent to treat cancer.

  3. Electronic Devices Based on Oxide Thin Films Fabricated by Fiber-to-Film Process.

    PubMed

    Meng, You; Liu, Ao; Guo, Zidong; Liu, Guoxia; Shin, Byoungchul; Noh, Yong-Young; Fortunato, Elvira; Martins, Rodrigo; Shan, Fukai

    2018-05-30

    Technical development for thin-film fabrication is essential for emerging metal-oxide (MO) electronics. Although impressive progress has been achieved in fabricating MO thin films, the challenges still remain. Here, we report a versatile and general thermal-induced nanomelting technique for fabricating MO thin films from the fiber networks, briefly called fiber-to-film (FTF) process. The high quality of the FTF-processed MO thin films was confirmed by various investigations. The FTF process is generally applicable to numerous technologically relevant MO thin films, including semiconducting thin films (e.g., In 2 O 3 , InZnO, and InZrZnO), conducting thin films (e.g., InSnO), and insulating thin films (e.g., AlO x ). By optimizing the fabrication process, In 2 O 3 /AlO x thin-film transistors (TFTs) were successfully integrated by fully FTF processes. High-performance TFT was achieved with an average mobility of ∼25 cm 2 /(Vs), an on/off current ratio of ∼10 7 , a threshold voltage of ∼1 V, and a device yield of 100%. As a proof of concept, one-transistor-driven pixel circuit was constructed, which exhibited high controllability over the light-emitting diodes. Logic gates based on fully FTF-processed In 2 O 3 /AlO x TFTs were further realized, which exhibited good dynamic logic responses and voltage amplification by a factor of ∼4. The FTF technique presented here offers great potential in large-area and low-cost manufacturing for flexible oxide electronics.

  4. PIE preparation of the MEGAPIE target

    NASA Astrophysics Data System (ADS)

    Wohlmuther, Michael; Wagner, Werner

    2012-12-01

    The MEGAPIE target, after successfully operating for 4 months at a beam power of 0.77 MW, is now being prepared for post irradiation examination PIE. The lead-bismuth eutectic (LBE) target was irradiated from August until December 2006, and in this period received a beam charge of 2.8 A h of 575 MeV protons. After that, the target was stored in the target storage facility of PSI, waiting for its post irradiation examination. In the meantime several campaigns of tests have been conducted by PSI and ZWILAG, the interim storage facility of Swiss nuclear power plants. In these tests the feasibility of the conditioning of the target and the extraction of sample material for the PIE has been proven. After transport to the hot cell facility at ZWILAG in June 2009, the dismantling of the MEGAPIE target started. It finally was cut into 21 pieces. Ten of these pieces will be shipped to the Hot Laboratory of PSI ('PSI hotlab') to extract samples from the structural materials as well as from the LBE. Currently it is foreseen that the sample extraction will start in the first half of 2011. The remaining parts of the MEGAPIE target were conditioned as radioactive waste. The present paper will mainly focus on the dismantling and first visual inspection of the MEGAPIE target. In addition an outlook on the PIE phase of MEGAPIE is given.

  5. Requirements Doc for Refurb of JASPER Facility in B131HB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knittel, Kenn M.

    The Joint Actinide Shock Physics Experimental Research (JASPER) Program target fabrication facility is currently located in building 131 (B131) of the Lawrence Livermore National Laboratory (LLNL). A portion of this current facility has been committed to another program as part of a larger effort to consolidate LLNL capabilities into newer facilities. This facility assembles precision targets for scientific studies at the Nevada National Security Site (NNSS). B131 is also going through a modernization project to upgrade the infrastructure and abate asbestos. These activities will interrupt the continuous target fabrication efforts for the JASPER Program. Several options are explored to meetmore » the above conflicting requirements, with the final recommendation to prepare a new facility for JASPER target fabrication operations before modernization efforts begin in the current facility assigned to JASPER. This recommendation fits within all schedule constraints and minimizes the disruption to the JASPER Program. This option is not without risk, as it requires moving an aged, precision coordinate measuring machine, which is essential to the JASPER Program’s success. The selected option balances the risk to the machine with continuity of operations.« less

  6. Effects of Synchronicity and Belongingness on Face-to-Face and Computer-Mediated Constructive Controversy

    ERIC Educational Resources Information Center

    Saltarelli, Andy J.; Roseth, Cary J.

    2014-01-01

    Adapting face-to-face (FTF) pedagogies to online settings raises boundary questions about the contextual conditions in which the same instructional method stimulates different outcomes. We address this issue by examining FTF and computer-mediated communication (CMC) versions of constructive controversy, a cooperative learning procedure involving…

  7. Simulation of Targets Feeding Pipe Rupture in Wendelstein 7-X Facility Using RELAP5 and COCOSYS Codes

    NASA Astrophysics Data System (ADS)

    Kaliatka, T.; Povilaitis, M.; Kaliatka, A.; Urbonavicius, E.

    2012-10-01

    Wendelstein nuclear fusion device W7-X is a stellarator type experimental device, developed by Max Planck Institute of plasma physics. Rupture of one of the 40 mm inner diameter coolant pipes providing water for the divertor targets during the "baking" regime of the facility operation is considered to be the most severe accident in terms of the plasma vessel pressurization. "Baking" regime is the regime of the facility operation during which plasma vessel structures are heated to the temperature acceptable for the plasma ignition in the vessel. This paper presents the model of W7-X cooling system (pumps, valves, pipes, hydro-accumulators, and heat exchangers), developed using thermal-hydraulic state-of-the-art RELAP5 Mod3.3 code, and model of plasma vessel, developed by employing the lumped-parameter code COCOSYS. Using both models the numerical simulation of processes in W7-X cooling system and plasma vessel has been performed. The results of simulation showed, that the automatic valve closure time 1 s is the most acceptable (no water hammer effect occurs) and selected area of the burst disk is sufficient to prevent pressure in the plasma vessel.

  8. International Police Cooperation on Countering Transnational Terrorism

    DTIC Science & Technology

    2012-06-01

    First Response Network FTF Fusion Task Force GNI Gross National Income HENU Heads of EUROPOL National Units Group ICPC International Criminal...Destruction xi ACKNOWLEDGMENTS First and foremost, I would like to submit my sincerest gratitude to my advisors, Michael E. Freeman, Ph.D., and David C...target country). 3 The first known international police cooperation initiative was launched in 1851 under the name Police Union of German States

  9. Overview: Development of the National Ignition Facility and the Transition to a User Facility for the Ignition Campaign and High Energy Density Scientific Research

    DOE PAGES

    Moses, E. I.; Lindl, J. D.; Spaeth, M. L.; ...

    2017-03-23

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory has been operational since March 2009 and has been transitioning to a user facility supporting ignition science, high energy density stockpile science, national security applications, and fundamental science. The facility has achieved its design goal of 1.8 MJ and 500 TW of 3ω light on target, and has performed target experiments with 1.9 MJ at peak powers of 410 TW. The National Ignition Campaign (NIC), established by the U.S. National Nuclear Security Administration in 2005, was responsible for transitioning NIF from a construction project to a national user facility. Besidesmore » the operation and optimization of the use of the NIF laser, the NIC program was responsible for developing capabilities including target fabrication facilities; cryogenic layering capabilities; over 60 optical, X-ray, and nuclear diagnostic systems; experimental platforms; and a wide range of other NIF facility infrastructure. This study provides a summary of some of the key experimental results for NIF to date, an overview of the NIF facility capabilities, and the challenges that were met in achieving these capabilities. Finally, they are covered in more detail in the papers that follow.« less

  10. Overview: Development of the National Ignition Facility and the Transition to a User Facility for the Ignition Campaign and High Energy Density Scientific Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moses, E. I.; Lindl, J. D.; Spaeth, M. L.

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory has been operational since March 2009 and has been transitioning to a user facility supporting ignition science, high energy density stockpile science, national security applications, and fundamental science. The facility has achieved its design goal of 1.8 MJ and 500 TW of 3ω light on target, and has performed target experiments with 1.9 MJ at peak powers of 410 TW. The National Ignition Campaign (NIC), established by the U.S. National Nuclear Security Administration in 2005, was responsible for transitioning NIF from a construction project to a national user facility. Besidesmore » the operation and optimization of the use of the NIF laser, the NIC program was responsible for developing capabilities including target fabrication facilities; cryogenic layering capabilities; over 60 optical, X-ray, and nuclear diagnostic systems; experimental platforms; and a wide range of other NIF facility infrastructure. This study provides a summary of some of the key experimental results for NIF to date, an overview of the NIF facility capabilities, and the challenges that were met in achieving these capabilities. Finally, they are covered in more detail in the papers that follow.« less

  11. Targeting nursing homes under the Quality Improvement Organization program's 9th statement of work.

    PubMed

    Stevenson, David G; Mor, Vincent

    2009-09-01

    In the Quality Improvement Organization (QIO) program's latest Statement of Work, the Centers for Medicare and Medicaid Services (CMS) is targeting its nursing home activities toward facilities that perform poorly on two quality measures-pressure ulcers and restraint use. The designation of target facilities is a shift in strategy for CMS and a direct response to criticism that QIO program resources were not being targeted effectively to facilities or clinical areas that most needed improvement. Using administrative data, this article analyzes implications of using narrowly defined criteria to identify facilities that need improvement, particularly in light of considerable evidence showing that nursing home quality is multidimensional and may change over time. The analyses show that one in four facilities is targeted for improvement nationally but that approximately half of some states' facilities are targeted while other states have almost none targeted. The analyses also convey deeper limitations to using threshold values on individual measures to identify poorly performing homes. Target facilities can be among the top performers on a range of other quality measures, and their performance on targeted measures themselves may change over time. The implication of these features is that a very different group of facilities would have been chosen had the QIO program targeted other measures or examined performance at a different point in time. Ultimately, CMS has chosen a blunt instrument to identify poorly performing nursing homes, and supplemental strategies-such as soliciting input from state survey agencies and more closely aligning quality improvement and quality assurance efforts-should be considered to address potential limitations.

  12. Comparison of audio computer assisted self-interview and face-to-face interview methods in eliciting HIV-related risks among men who have sex with men and men who inject drugs in Nigeria.

    PubMed

    Adebajo, Sylvia; Obianwu, Otibho; Eluwa, George; Vu, Lung; Oginni, Ayo; Tun, Waimar; Sheehy, Meredith; Ahonsi, Babatunde; Bashorun, Adebobola; Idogho, Omokhudu; Karlyn, Andrew

    2014-01-01

    Face-to-face (FTF) interviews are the most frequently used means of obtaining information on sexual and drug injecting behaviours from men who have sex with men (MSM) and men who inject drugs (MWID). However, accurate information on these behaviours may be difficult to elicit because of sociocultural hostility towards these populations and the criminalization associated with these behaviours. Audio computer assisted self-interview (ACASI) is an interviewing technique that may mitigate social desirability bias in this context. This study evaluated differences in the reporting of HIV-related risky behaviours by MSM and MWID using ACASI and FTF interviews. Between August and September 2010, 712 MSM and 328 MWID in Nigeria were randomized to either ACASI or FTF interview for completion of a behavioural survey that included questions on sensitive sexual and injecting risk behaviours. Data were analyzed separately for MSM and MWID. Logistic regression was run for each behaviour as a dependent variable to determine differences in reporting methods. MSM interviewed via ACASI reported significantly higher risky behaviours with both women (multiple female sexual partners 51% vs. 43%, p = 0.04; had unprotected anal sex with women 72% vs. 57%, p = 0.05) and men (multiple male sex partners 70% vs. 54%, p≤0.001) than through FTF. Additionally, they were more likely to self-identify as homosexual (AOR: 3.3, 95%CI:2.4-4.6) and report drug use in the past 12 months (AOR:40.0, 95%CI: 9.6-166.0). MWID interviewed with ACASI were more likely to report needle sharing (AOR:3.3, 95%CI:1.2-8.9) and re-use (AOR:2.2, 95%CI:1.2-3.9) in the past month and prior HIV testing (AOR:1.6, 95%CI 1.02-2.5). The feasibility of using ACASI in studies and clinics targeting key populations in Nigeria must be explored to increase the likelihood of obtaining more accurate data on high risk behaviours to inform improved risk reduction strategies that reduce HIV transmission.

  13. Equivalent weight loss for weight management programs delivered by phone and clinic.

    PubMed

    Donnelly, Joseph E; Goetz, Jeannine; Gibson, Cheryl; Sullivan, Debra K; Lee, Robert; Smith, Bryan K; Lambourne, Kate; Mayo, Matthew S; Hunt, Suzanne; Lee, Jae Hoon; Honas, Jeffrey J; Washburn, Richard A

    2013-10-01

    Face-to-face (FTF) weight management is costly and presents barriers for individuals seeking treatment; thus, alternate delivery systems are needed. The objective of this study was to compare weight management delivered by FTF clinic or group conference calls (phone). Randomized equivalency trial in 295 overweight/obese men/women (BMI = 35.1±4.9, Age = 43.8±10.2, Minority = 39.8%). Weight loss (0-6 months) was achieved by reducing energy intake between 1,200 and 1,500 kcal/day and progressing physical activity (PA) to 300 min/week. Weight maintenance (7-18 months) provided adequate energy to maintain weight and continued 300 min/week of PA. Behavioral weight management strategies were delivered weekly for 6 months and gradually reduced during 7-18 months. A cost analysis provided a comparison of expenses between groups. Weight change from baseline to 6 months was -13.4 ± 6.7% and -12.3 ± 7.0% for FTF clinic and phone, respectively. Weight change from 6-18 months was 6.4 ± 7.0% and 6.4 ± 5.2%, for FTF clinic and phone, respectively. The cost to FTF participants was $789.58 more per person. Phone delivery provided equivalent weight loss and maintenance and reduced program cost. Ubiquitous access to phones provides a vast reach for this approach. Copyright © 2013 The Obesity Society.

  14. Novel neutron sources at the Radiological Research Accelerator Facility.

    PubMed

    Xu, Yanping; Garty, Guy; Marino, Stephen A; Massey, Thomas N; Randers-Pehrson, Gerhard; Johnson, Gary W; Brenner, David J

    2012-03-16

    Since the 1960s, the Radiological Research Accelerator Facility (RARAF) has been providing researchers in biology, chemistry and physics with advanced irradiation techniques, using charged particles, photons and neutrons.We are currently developing a unique facility at RARAF, to simulate neutron spectra from an improvised nuclear device (IND), based on calculations of the neutron spectrum at 1.5 km from the epicenter of the Hiroshima atom bomb. This is significantly different from a standard fission spectrum, because the spectrum changes as the neutrons are transported through air, and is dominated by neutron energies between 0.05 and 8 MeV. This facility will be based on a mixed proton/deuteron beam impinging on a thick beryllium target.A second, novel facility under development is our new neutron microbeam. The neutron microbeam will, for the first time, provide a kinematically collimated neutron beam, 10-20 micron in diameter. This facility is based on a Proton Microbeam, impinging on a thin lithium target near the threshold of the (7)Li(p,n)(7)Be reaction. This novel neutron microbeam will enable studies of neutron damage to small targets, such as single cells, individual organs within small animals or microelectronic components.

  15. Novel neutron sources at the Radiological Research Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Garty, G.; Marino, S. A.; Massey, T. N.; Randers-Pehrson, G.; Johnson, G. W.; Brenner, D. J.

    2012-03-01

    Since the 1960s, the Radiological Research Accelerator Facility (RARAF) has been providing researchers in biology, chemistry and physics with advanced irradiation techniques, using charged particles, photons and neutrons. We are currently developing a unique facility at RARAF, to simulate neutron spectra from an improvised nuclear device (IND), based on calculations of the neutron spectrum at 1.5 km from the epicenter of the Hiroshima atom bomb. This is significantly different from a standard fission spectrum, because the spectrum changes as the neutrons are transported through air, and is dominated by neutron energies between 0.05 and 8 MeV. This facility will be based on a mixed proton/deuteron beam impinging on a thick beryllium target. A second, novel facility under development is our new neutron microbeam. The neutron microbeam will, for the first time, provide a kinematically collimated neutron beam, 10-20 micron in diameter. This facility is based on a proton microbeam, impinging on a thin lithium target near the threshold of the 7Li(p,n)7Be reaction. This novel neutron microbeam will enable studies of neutron damage to small targets, such as single cells, individual organs within small animals or microelectronic components.

  16. Large Dog Relinquishment to Two Municipal Facilities in New York City and Washington, D.C.: Identifying Targets for Intervention

    PubMed Central

    Weiss, Emily; Slater, Margaret; Garrison, Laurie; Drain, Natasha; Dolan, Emily; Scarlett, Janet M.; Zawistowski, Stephen L.

    2014-01-01

    Simple Summary While the overall trend in euthanasia has been decreasing nationally, large dogs are at a higher risk of euthanasia than other-sized dogs in most animal shelters in the United States. We hypothesized that one way to increase the lives saved with regard to large dogs in shelters is to keep them home in the first place when possible. Our research is the first to collect data in New York City and Washington, D.C., identifying the process leading to the owner relinquishment of large dogs. We found that targets for interventions to decrease large dog relinquishment are likely different in each community. Abstract While the overall trend in euthanasia has been decreasing nationally, large dogs are at a higher risk of euthanasia than other sized dogs in most animal shelters in the United States. We hypothesized one way to increase the lives saved with respect to these large dogs is to keep them home when possible. In order to develop solutions to decrease relinquishment, a survey was developed to learn more about the reasons owners relinquish large dogs. The survey was administered to owners relinquishing their dogs at two large municipal facilities, one in New York City and one in Washington, D.C. There were 157 responses between the two facilities. We found both significant similarities and differences between respondents and their dogs from the two cities. We identified opportunities to potentially support future relinquishers and found that targets for interventions are likely different in each community. PMID:26480315

  17. Learners' Willingness to Communicate in Face-to-Face versus Oral Computer-Mediated Communication

    ERIC Educational Resources Information Center

    Yanguas, Íñigo; Flores, Alayne

    2014-01-01

    The present study had two main goals: to explore performance differences in a task-based environment between face-to-face (FTF) and oral computer-mediated communication (OCMC) groups, and to investigate the relationship between trait-like willingness to communicate (WTC) and performance in the FTF and OCMC groups. Students from two intact…

  18. How To Achieve Better Impressions in Computer-Mediated Communication?

    ERIC Educational Resources Information Center

    Liu, Yuliang; Ginther, Dean

    This paper presents a review of the literature on impression formation in face-to-face (FtF) and computer-mediated communication (CMC) and provides impression management recommendations for CMC users in a variety of environments. The first section provides an introduction to impression formation. Factors affecting impression formation in FtF and…

  19. Framing the Future. Re-framing the Future: A Report on the Long-Term Impacts of Framing the Future.

    ERIC Educational Resources Information Center

    Mitchell, John

    Australia's Framing the Future (FTF) project was designed to develop a model of staff development to support implementation of the National Training Framework (NTF). A survey of FTF project managers found these long-term impacts: implementation of training packages and other aspects of NTF, new forms of collaboration between industry and training…

  20. The South African isotope facility project

    NASA Astrophysics Data System (ADS)

    Bark, R. A.; Barnard, A. H.; Conradie, J. L.; de Villiers, J. G.; van Schalkwyk, P. A.

    2018-05-01

    The South African Isotope Facility (SAIF) is a project in which iThemba LABS plans to build a radioactive-ion beam (RIB) facility. The project is divided into the Accelerator Centre of Exotic Isotopes (ACE Isotopes) and the Accelerator Centre for Exotic Beams (ACE Beams). For ACE Isotopes, a high-current, 70 MeV cyclotron will be acquired to take radionuclide production off the existing Separated Sector Cyclotron (SSC). A freed up SSC will then be available for an increased tempo of nuclear physics research and to serve as a driver accelerator for the ACE Beams project, in which protons will be used for the direct fission of Uranium, producing beams of fission fragments. The ACE Beams project has begun with "LeRIB" - a Low Energy RIB facility, now under construction. In a collaboration with INFN Legnaro, the target/ion-source "front-end" will be a copy of the front-end developed for the SPES project. A variety of targets may be inserted into the SPES front-end; a uranium-carbide target has been designed to produce up to 2 × 1013 fission/s using a 70 MeV proton beam of 150 µA intensity.

  1. Outdoor performance results for NBS Round Robin collector no. 1

    NASA Technical Reports Server (NTRS)

    Miller, D. R.

    1976-01-01

    The efficiency of a PPG flat-plate solar collector was evaluated utilizing an outdoor solar collector test facility at the NASA-Lewis Research Center, as part of the National Bureau of Standards 'round robin' collector test program. The correlation equation for collector thermal efficiency Eta curve fit of the data was: Eta = 0.666 - 1.003(Btu/hr-sq ft-F) Theta, where the parameter Theta is the difference between the average fluid temperature and the ambient temperature, all divided by the total flux impinging on the collector.

  2. Target weight achievement and ultrafiltration rate thresholds: potential patient implications.

    PubMed

    Flythe, Jennifer E; Assimon, Magdalene M; Overman, Robert A

    2017-06-02

    Higher ultrafiltration (UF) rates and extracellular hypo- and hypervolemia are associated with adverse outcomes among maintenance hemodialysis patients. The Centers for Medicare and Medicaid Services recently considered UF rate and target weight achievement measures for ESRD Quality Incentive Program inclusion. The dual measures were intended to promote balance between too aggressive and too conservative fluid removal. The National Quality Forum endorsed the UF rate measure but not the target weight measure. We examined the proposed target weight measure and quantified weight gains if UF rate thresholds were applied without treatment time (TT) extension or interdialytic weight gain (IDWG) reduction. Data were taken from the 2012 database of a large dialysis organization. Analyses considered 152,196 United States hemodialysis patients. We described monthly patient and dialysis facility target weight achievement patterns and examined differences in patient characteristics across target weight achievement status and differences in facilities across target weight measure scores. We computed the cumulative, theoretical 1-month fluid-related weight gain that would occur if UF rates were capped at 13 mL/h/kg without concurrent TT extension or IDWG reduction. Target weight achievement patterns were stable over the year. Patients who did not achieve target weight (post-dialysis weight ≥ 1 kg above or below target weight) tended to be younger, black and dialyze via catheter, and had shorter dialysis vintage, greater body weight, higher UF rate and more missed treatments compared with patients who achieved target weight. Facilities had, on average, 27.1 ± 9.7% of patients with average post-dialysis weight ≥ 1 kg above or below the prescribed target weight. In adjusted analyses, facilities located in the midwest and south and facilities with higher proportions of black and Hispanic patients and higher proportions of patients with shorter TTs were more likely to

  3. [Computer mediated discussion and attitude polarization].

    PubMed

    Shiraishi, Takashi; Endo, Kimihisa; Yoshida, Fujio

    2002-10-01

    This study examined the hypothesis that computer mediated discussions lead to more extreme decisions than face-to-face (FTF) meeting. Kiesler, Siegel, & McGuire (1984) claimed that computer mediated communication (CMC) tended to be relatively uninhibited, as seen in 'flaming', and that group decisions under CMC using Choice Dilemma Questionnaire tended to be more extreme and riskier than FTF meetings. However, for the same reason, CMC discussions on controversial social issues for which participants initially hold strongly opposing views, might be less likely to reach a consensus, and no polarization should occur. Fifteen 4-member groups discussed a controversial social issue under one of three conditions: FTF, CMC, and partition. After discussion, participants rated their position as a group on a 9-point bipolar scale ranging from strong disagreement to strong agreement. A stronger polarization effect was observed for FTF groups than those where members were separated with partitions. However, no extreme shift from their original, individual positions was found for CMC participants. There results were discussed in terms of 'expertise and status equalization' and 'absence of social context cues' under CMC.

  4. The National Ignition Facility (NIF) as a User Facility

    NASA Astrophysics Data System (ADS)

    Keane, Christopher; NIF Team

    2013-10-01

    The National Ignition Facility (NIF) has made significant progress towards operation as a user facility. Through June 2013, NIF conducted over 1200 experiments in support of ICF, HED science, and development of facility capabilities. The NIF laser has met or achieved all specifications and a wide variety of diagnostic and target fabrication capabilities are in place. A NIF User Group and associated Executive Board have been formed. Two User Group meetings have been conducted since formation of the User Group. NIF experiments in fundamental science have provided important new results. NIF ramp compression experiments have been conducted using diamond and iron, with EOS results obtained at pressures up to approximately 50 Mbar and 8 Mbar, respectively. Initial experiments in supernova hydrodynamics, the fundamental physics of the Rayleigh-Taylor instability, and equation of state in the Gbar pressure regime have also been conducted. This presentation will discuss the fundamental science program at NIF, including the proposal solicitation and scientific review processes and other aspects of user facility operation. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  5. High-efficiency-release targets for use at ISOL facilities: computational design

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Alton, G. D.

    1999-12-01

    This report describes efforts made at the Oak Ridge National Laboratory to design high-efficiency-release targets that simultaneously incorporate the short diffusion lengths, high permeabilities, controllable temperatures, and heat-removal properties required for the generation of useful radioactive ion beam (RIB) intensities for nuclear physics and astrophysics research using the isotope separation on-line (ISOL) technique. Short diffusion lengths are achieved either by using thin fibrous target materials or by coating thin layers of selected target material onto low-density carbon fibers such as reticulated-vitreous-carbon fiber (RVCF) or carbon-bonded-carbon fiber (CBCF) to form highly permeable composite target matrices. Computational studies that simulate the generation and removal of primary beam deposited heat from target materials have been conducted to optimize the design of target/heat-sink systems for generating RIBs. The results derived from diffusion release-rate simulation studies for selected targets and thermal analyses of temperature distributions within a prototype target/heat-sink system subjected to primary ion beam irradiation are presented in this report.

  6. Target diagnostics for commissioning the AWE HELEN Laser Facility 100 TW chirped pulse amplification beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eagleton, R. T.; Clark, E. L.; Davies, H. M.

    2006-10-15

    The capability of the HELEN laser at the Atomic Weapons Establishment Aldermaston has been enhanced by the addition of a short-pulse laser beam to augment the twin opposing nanosecond time scale beams. The short-pulse beam utilizes the chirped pulse amplification (CPA) technique and is capable of delivering up to 60 J on target in a 500 fs pulse, around 100 TW, at the fundamental laser wavelength of 1.054 {mu}m. During the commissioning phase a number of diagnostic systems have been fielded, these include: x-ray pinhole imaging of the laser heated spot, charged particle time of flight, thermoluminescent dosimeter array, calibratedmore » radiochromic film, and CR39 nuclear track detector. These diagnostic systems have been used to verify the performance of the CPA beam to achieve a focused intensity of around 10{sup 19} W cm{sup -2} and to underwrite the facility radiological safety system.« less

  7. Power, Influence Tactics, and Influence Processes in Virtual Teams

    ERIC Educational Resources Information Center

    Boughton, Marla

    2011-01-01

    Current studies of power, influence tactics, and influence processes in virtual teams assume that these constructs operate in a similar manner as they do in the face-to-face (FtF) environment. However, the virtual context differs from the FtF environment on a variety of dimensions, such as the availability of status cues. The differences between…

  8. Improving Weight Maintenance Using Virtual Reality (Second Life)

    ERIC Educational Resources Information Center

    Sullivan, Debra K.; Goetz, Jeannine R.; Gibson, Cheryl A.; Washburn, Richard A.; Smith, Bryan K.; Lee, Jaehoon; Gerald, Stephanie; Fincham, Tennille; Donnelly, Joseph E.

    2013-01-01

    Objective: Compare weight loss and maintenance between a face-to-face (FTF) weight management clinic and a clinic delivered via virtual reality (VR). Methods: Participants were randomized to 3 months of weight loss with a weekly clinic delivered via FTF or VR and then 6 months' weight maintenance delivered with VR. Data were collected at baseline…

  9. Improving the Performance of Online Learning Teams--A Discourse Analysis

    ERIC Educational Resources Information Center

    Liu, Ying Chieh; Burn, Janice M.

    2007-01-01

    This paper compares the processes of Face-To-Face (FTF) teams and Online Learning Teams (OLTs) and proposes methods to improve the performance of OLTs. An empirical study reviewed the performance of fifteen FTF teams and OLTs and their communication patterns were coded by the TEMPO system developed by Futoran et al. (1989) in order to develop a…

  10. Novel neutron sources at the Radiological Research Accelerator Facility

    PubMed Central

    Xu, Yanping; Garty, Guy; Marino, Stephen A.; Massey, Thomas N.; Randers-Pehrson, Gerhard; Johnson, Gary W.; Brenner, David J.

    2012-01-01

    Since the 1960s, the Radiological Research Accelerator Facility (RARAF) has been providing researchers in biology, chemistry and physics with advanced irradiation techniques, using charged particles, photons and neutrons. We are currently developing a unique facility at RARAF, to simulate neutron spectra from an improvised nuclear device (IND), based on calculations of the neutron spectrum at 1.5 km from the epicenter of the Hiroshima atom bomb. This is significantly different from a standard fission spectrum, because the spectrum changes as the neutrons are transported through air, and is dominated by neutron energies between 0.05 and 8 MeV. This facility will be based on a mixed proton/deuteron beam impinging on a thick beryllium target. A second, novel facility under development is our new neutron microbeam. The neutron microbeam will, for the first time, provide a kinematically collimated neutron beam, 10–20 micron in diameter. This facility is based on a Proton Microbeam, impinging on a thin lithium target near the threshold of the 7Li(p,n)7Be reaction. This novel neutron microbeam will enable studies of neutron damage to small targets, such as single cells, individual organs within small animals or microelectronic components. PMID:22545061

  11. Novel neutron sources at the Radiological Research Accelerator Facility

    DOE PAGES

    Xu, Yanping; Garty, G.; Marino, S. A.; ...

    2012-03-16

    Since the 1960s, the Radiological Research Accelerator Facility (RARAF) has been providing researchers in biology, chemistry and physics with advanced irradiation techniques, using charged particles, photons and neutrons. We are currently developing a unique facility at RARAF, to simulate neutron spectra from an improvised nuclear device (IND), based on calculations of the neutron spectrum at 1.5 km from the epicenter of the Hiroshima atom bomb. This is significantly different from a standard fission spectrum, because the spectrum changes as the neutrons are transported through air, and is dominated by neutron energies between 0.05 and 8 MeV. This facility will bemore » based on a mixed proton/deuteron beam impinging on a thick beryllium target. A second, novel facility under development is our new neutron microbeam. The neutron microbeam will, for the first time, provide a kinematically collimated neutron beam, 10-20 micron in diameter. This facility is based on a proton microbeam, impinging on a thin lithium target near the threshold of the Li-7(p,n)Be-7 reaction. Lastly, this novel neutron microbeam will enable studies of neutron damage to small targets, such as single cells, individual organs within small animals or microelectronic components.« less

  12. Recent progress on the National Ignition Facility advanced radiographic capability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wegner, P.; Bowers, M.; Chen, H.

    2016-01-08

    The National Ignition Facility (NIF) is a megajoule (million-joule)-class laser and experimental facility built for Stockpile Stewardship and High Energy Density (HED) science research [1]. Up to several times a day, 192 laser pulses from NIF's 192 laser beamlines converge on a millimeter-scale target located at the center of the facility's 10-meter diameter target chamber. The carefully synchronized pulses, typically a few nanoseconds (billionths of a second) in duration and co-times to better than 20 picoseconds (trillionths of a second), a deliver a combined energy of up to 1.8 megajoules and a peak power of 500 terawatts (trillion watts). Furthermore,more » this drives temperatures inside the target to tens of millions of degrees and pressures to many billion times greater than Earth's atmosphere.« less

  13. The RIB production target for the SPES project

    NASA Astrophysics Data System (ADS)

    Monetti, Alberto; Andrighetto, Alberto; Petrovich, Carlo; Manzolaro, Mattia; Corradetti, Stefano; Scarpa, Daniele; Rossetto, Francesco; Martinez Dominguez, Fernando; Vasquez, Jesus; Rossignoli, Massimo; Calderolla, Michele; Silingardi, Roberto; Mozzi, Aldo; Borgna, Francesca; Vivian, Gianluca; Boratto, Enrico; Ballan, Michele; Prete, Gianfranco; Meneghetti, Giovanni

    2015-10-01

    Facilities making use of the Isotope Separator On-Line (ISOL) method for the production of Radioactive Ion Beams (RIB) attract interest because they can be used for nuclear structure and reaction studies, astrophysics research and interdisciplinary applications. The ISOL technique is based on the fast release of the nuclear reaction products from the chosen target material together with their ionization into short-lived nuclei beams. Within this context, the SPES (Selective Production of Exotic Species) facility is now under construction in Italy at INFN-LNL (Istituto Nazionale di Fisica Nucleare — Laboratori Nazionali di Legnaro). The SPES facility will produce RIBs mainly from n-rich isotopes obtained by a 40 MeV cyclotron proton beam (200 μA) directly impinging on a uranium carbide multi-foil fission target. The aim of this work is to describe and update, from a comprehensive point of view, the most important results obtained by the analysis of the on-line behavior of the SPES production target assembly. In particular an improved target configuration has been studied by comparing different codes and physics models: the thermal analyses and the isotope production are re-evaluated. Then some consequent radioprotection aspects, which are essential for the installation and operation of the facility, are presented.

  14. High power neutron production targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wender, S.

    1996-06-01

    The author describes issues of concern in the design of targets and associated systems for high power neutron production facilities. The facilities include uses for neutron scattering, accelerator driven transmutation, accelerator production of tritium, short pulse spallation sources, and long pulse spallation sources. Each of these applications requires a source with different design needs and consequently different implementation in practise.

  15. Emergency department access targets and the older patient: a retrospective cohort study of emergency department presentations by people living in residential aged care facilities.

    PubMed

    Street, Maryann; Marriott, Jonathon R; Livingston, Patricia M

    2012-11-01

    There is limited research on the effect of emergency access targets on health outcomes for older patients from Residential Aged Care Facilities. The aims were to: (1) identify length of stay for Residential Aged Care patients relative to access targets; and (2) examine hospital admission rates, readmission rates, inpatient costs and mortality. Retrospective cohort study of all emergency presentations for Residential Aged Care patients in 2009 at one Australian metropolitan health service. The 4637 emergency presentations by 3184 Residential Aged Care patients in 2009 represented 3.4% of all emergency presentations. Mean length of stay was 7.9 hours (SD=4.5 hours); 84% of Residential Aged Care patients remained in the Emergency Department longer than four hours. Admitted patients were 3.6 times more likely to spend more than eight hours in the Emergency Department compared with those not admitted (p<0.001). Patients in the urgent triage category were 9.5 times more likely to spend more than eight hours in the Emergency Department compared to patients triaged as non-urgent (p<0.001). Inpatient costs were associated with length of admission and median cost per day was $AUD 1175. Few Residential Aged Care patients were discharged within the four hours access target. This has implications for health care outcomes and costs associated with providing emergency care for patients living in Residential Aged Care Facilities. Copyright © 2012 College of Emergency Nursing Australasia Ltd. Published by Elsevier Ltd. All rights reserved.

  16. Communicating Performance Assessments Results - 13609

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Layton, Mark

    2013-07-01

    The F-Area Tank Farms (FTF) and H-Area Tank Farm (HTF) are owned by the U.S. Department of Energy (DOE) and operated by Savannah River Remediation LLC (SRR), Liquid Waste Operations contractor at DOE's Savannah River Site (SRS). The FTF and HTF are active radioactive waste storage and treatment facilities consisting of 51 carbon steel waste tanks and ancillary equipment such as transfer lines, evaporators and pump tanks. Performance Assessments (PAs) for each Tank Farm have been prepared to support the eventual closure of the underground radioactive waste tanks and ancillary equipment. PAs provide the technical bases and results to bemore » used in subsequent documents to demonstrate compliance with the pertinent requirements for final closure of the Tank Farms. The Tank Farms are subject to a number of regulatory requirements. The State regulates Tank Farm operations through an industrial waste water permit and through a Federal Facility Agreement approved by the State, DOE and the Environmental Protection Agency (EPA). Closure documentation will include State-approved Tank Farm Closure Plans and tank-specific closure modules utilizing information from the PAs. For this reason, the State of South Carolina and the EPA must be involved in the performance assessment review process. The residual material remaining after tank cleaning is also subject to reclassification prior to closure via a waste determination pursuant to Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005. PAs are performance-based, risk-informed analyses of the fate and transport of FTF and HTF residual wastes following final closure of the Tank Farms. Since the PAs serve as the primary risk assessment tools in evaluating readiness for closure, it is vital that PA conclusions be communicated effectively. In the course of developing the FTF and HTF PAs, several lessons learned have emerged regarding communicating PA results. When communicating PA results it

  17. Design and construction of a time-of-flight wall detector at External Target Facility of HIRFL-CSR

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Sun, Z. Y.; Yu, Y. H.; Yan, D.; Tang, S. W.; Sun, Y. Z.; Wang, S. T.; Zhang, X. H.; Yue, K.; Fang, F.; Chen, J. L.; Zhang, Y. J.; Hu, B. T.

    2018-06-01

    A Time-Of-Flight Wall (TOFW) detector has been designed and constructed at the External Target Facility (ETF) of HIRFL-CSR. The detector covers a sensitive area of 1.2 × 1.2 m2 and consists of 30 modules. Each module is composed of a long plastic scintillator bar with two photo-multiplier tubes coupled at both ends for readout. The design and manufacture details are described and the test results are reported. The performance of the TOFW detector has been tested and measured with cosmic rays and a 310 MeV/u 40Ar beam. The results show that the time resolutions of all the TOFW modules are better than 128 ps, satisfying the requirements of the experiments which will be carried out at the ETF.

  18. Quantitative Skills, Critical Thinking, and Writing Mechanics in Blended versus Face-to-Face Versions of a Research Methods and Statistics Course

    ERIC Educational Resources Information Center

    Goode, Christopher T.; Lamoreaux, Marika; Atchison, Kristin J.; Jeffress, Elizabeth C.; Lynch, Heather L.; Sheehan, Elizabeth

    2018-01-01

    Hybrid or blended learning (BL) has been shown to be equivalent to or better than face-to-face (FTF) instruction in a broad variety of contexts. We randomly assigned students to either 50/50 BL or 100% FTF versions of a research methods and statistics in psychology course. Students who took the BL version of the course scored significantly lower…

  19. Interpersonal Communication Motives for Flirting Face to Face and Through Texting.

    PubMed

    Punyanunt-Carter, Narissra M; Wagner, Thomas R

    2018-04-01

    The objective of this study was to investigate specific interpersonal communication motives that college students use to flirt through texting versus face to face (FtF). Four hundred college students (101 men, 299 women) were surveyed and reported using various communication motives to flirt using texting with a potential romantic partner. College students reported specific motives for flirting. Women reported flirting through text and FtF for pleasure motives significantly more than men, whereas men reported flirting for control and relaxation. In addition, men were more likely to flirt FtF for escape compared with women. Findings suggest that individuals are likely to flirt for pleasure if they are in a committed romantic relationship compared with those not in a committed relationship.

  20. Pulsed-coil magnet systems for applying uniform 10-30 T fields to centimeter-scale targets on Sandia's Z facility

    NASA Astrophysics Data System (ADS)

    Rovang, D. C.; Lamppa, D. C.; Cuneo, M. E.; Owen, A. C.; McKenney, J.; Johnson, D. W.; Radovich, S.; Kaye, R. J.; McBride, R. D.; Alexander, C. S.; Awe, T. J.; Slutz, S. A.; Sefkow, A. B.; Haill, T. A.; Jones, P. A.; Argo, J. W.; Dalton, D. G.; Robertson, G. K.; Waisman, E. M.; Sinars, D. B.; Meissner, J.; Milhous, M.; Nguyen, D. N.; Mielke, C. H.

    2014-12-01

    Sandia has successfully integrated the capability to apply uniform, high magnetic fields (10-30 T) to high energy density experiments on the Z facility. This system uses an 8-mF, 15-kV capacitor bank to drive large-bore (5 cm diameter), high-inductance (1-3 mH) multi-turn, multi-layer electromagnets that slowly magnetize the conductive targets used on Z over several milliseconds (time to peak field of 2-7 ms). This system was commissioned in February 2013 and has been used successfully to magnetize more than 30 experiments up to 10 T that have produced exciting and surprising physics results. These experiments used split-magnet topologies to maintain diagnostic lines of sight to the target. We describe the design, integration, and operation of the pulsed coil system into the challenging and harsh environment of the Z Machine. We also describe our plans and designs for achieving fields up to 20 T with a reduced-gap split-magnet configuration, and up to 30 T with a solid magnet configuration in pursuit of the Magnetized Liner Inertial Fusion concept.

  1. Pulsed-coil magnet systems for applying 10-30 Tesla Fields to cm-scale targets on Sandia's Z facility

    DOE PAGES

    Rovang, Dean C.; Lamppa, Derek C.; Cuneo, Michael Edward; ...

    2014-12-04

    We have successfully integrated the capability to apply uniform, high magnetic fields (10–30 T) to high energy density experiments on the Z facility. This system uses an 8-mF, 15-kV capacitor bank to drive large-bore (5 cm diameter), high-inductance (1–3 mH) multi-turn, multi-layer electromagnets that slowly magnetize the conductive targets used on Z over several milliseconds (time to peak field of 2–7 ms). This system was commissioned in February 2013 and has been used successfully to magnetize more than 30 experiments up to 10 T that have produced exciting and surprising physics results. These experiments used split-magnet topologies to maintain diagnosticmore » lines of sight to the target. We then describe the design, integration, and operation of the pulsed coil system into the challenging and harsh environment of the Z Machine. We also describe our plans and designs for achieving fields up to 20 T with a reduced-gap split-magnet configuration, and up to 30 T with a solid magnet configuration in pursuit of the Magnetized Liner Inertial Fusion concept.« less

  2. Overview of the ISOL facility for the RISP

    NASA Astrophysics Data System (ADS)

    Woo, H. J.; Kang, B. H.; Tshoo, K.; Seo, C. S.; Hwang, W.; Park, Y.-H.; Yoon, J. W.; Yoo, S. H.; Kim, Y. K.; Jang, D. Y.

    2015-02-01

    The key feature of the Isotope Separation On-Line (ISOL) facility is its ability to provide high-intensity and high-quality beams of neutron-rich isotopes with masses in the range of 80-160 by means of a 70-MeV proton beam directly impinging on uranium-carbide thin-disc targets to perform forefront research in nuclear structure, nuclear astrophysics, reaction dynamics and interdisciplinary fields like medical, biological and material sciences. The technical design of the 10-kW and the 35-kW direct fission targets with in-target fission rates of up to 1014 fissions/s has been finished, and for the development of the ISOL fission-target chemistry an initial effort has been made to produce porous lanthanum-carbide (LaCx) discs as a benchmark for the final production of porous UCx discs. For the production of various beams, three classes of ion sources are under development at RISP (Rare Isotope Science Project), the surface ion source, the plasma ion source (FEBIAD), the laser ion source, and the engineering design of the FEBIAD is in progress for prototype fabrication. The engineering design of the ISOL target/ion source front-end system is also in progress, and a prototype will be used for an off-line test facility in front of the pre-separator. The technical designs of other basic elements at the ISOL facility, such as the RF-cooler, the high-resolution mass separator, and the A/q separator, have been finished, and the results, along with the future plans, are introduced.

  3. F-15B/Flight Test Fixture 2: A Test Bed for Flight Research

    NASA Technical Reports Server (NTRS)

    Richwine, David M.

    1996-01-01

    NASA Dryden Flight Research Center has developed a second-generation flight test fixture for use as a generic test bed for aerodynamic and fluid mechanics research. The Flight Test Fixture 2 (FTF-2) is a low-aspect-ratio vertical fin-like shape that is mounted on the centerline of the F-I5B lower fuselage. The fixture is designed for flight research at Mach numbers to a maximum of 2.0. The FTF-2 is a composite structure with a modular configuration and removable components for functional flexibility. This report documents the flow environment of the fixture, such as surface pressure distributions and boundary-layer profiles, throughout a matrix of conditions within the F-15B/FTF-2 flight envelope. Environmental conditions within the fixture are presented to assist in the design and testing of future avionics and instrumentation. The intent of this document is to serve as a user's guide and assist in the development of future flight experiments that use the FTF-2 as a test bed. Additional information enclosed in the appendices has been included to assist with more detailed analyses, if required.

  4. Stepped Care Versus Direct Face-to-Face Cognitive Behavior Therapy for Social Anxiety Disorder and Panic Disorder: A Randomized Effectiveness Trial.

    PubMed

    Nordgreen, Tine; Haug, Thomas; Öst, Lars-Göran; Andersson, Gerhard; Carlbring, Per; Kvale, Gerd; Tangen, Tone; Heiervang, Einar; Havik, Odd E

    2016-03-01

    The aim of this study was to assess the effectiveness of a cognitive behavioral therapy (CBT) stepped care model (psychoeducation, guided Internet treatment, and face-to-face CBT) compared with direct face-to-face (FtF) CBT. Patients with panic disorder or social anxiety disorder were randomized to either stepped care (n=85) or direct FtF CBT (n=88). Recovery was defined as meeting two of the following three criteria: loss of diagnosis, below cut-off for self-reported symptoms, and functional improvement. No significant differences in intention-to-treat recovery rates were identified between stepped care (40.0%) and direct FtF CBT (43.2%). The majority of the patients who recovered in the stepped care did so at the less therapist-demanding steps (26/34, 76.5%). Moderate to large within-groups effect sizes were identified at posttreatment and 1-year follow-up. The attrition rates were high: 41.2% in the stepped care condition and 27.3% in the direct FtF CBT condition. These findings indicate that the outcome of a stepped care model for anxiety disorders is comparable to that of direct FtF CBT. The rates of improvement at the two less therapist-demanding steps indicate that stepped care models might be useful for increasing patients' access to evidence-based psychological treatments for anxiety disorders. However, attrition in the stepped care condition was high, and research regarding the factors that can improve adherence should be prioritized. Copyright © 2015. Published by Elsevier Ltd.

  5. An electric propulsion long term test facility

    NASA Technical Reports Server (NTRS)

    Trump, G.; James, E.; Vetrone, R.; Bechtel, R.

    1979-01-01

    An existing test facility was modified to provide for extended testing of multiple electric propulsion thruster subsystems. A program to document thruster subsystem characteristics as a function of time is currently in progress. The facility is capable of simultaneously operating three 2.7-kW, 30-cm mercury ion thrusters and their power processing units. Each thruster is installed via a separate air lock so that it can be extended into the 7m x 10m main chamber without violating vacuum integrity. The thrusters exhaust into a 3m x 5m frozen mercury target. An array of cryopanels collect sputtered target material. Power processor units are tested in an adjacent 1.5m x 2m vacuum chamber or accompanying forced convection enclosure. The thruster subsystems and the test facility are designed for automatic unattended operation with thruster operation computer controlled. Test data are recorded by a central data collection system scanning 200 channels of data a second every two minutes. Results of the Systems Demonstration Test, a short shakedown test of 500 hours, and facility performance during the first year of testing are presented.

  6. The emergence of care facilities in Thailand for older German-speaking people: structural backgrounds and facility operators as transnational actors.

    PubMed

    Bender, Désirée; Hollstein, Tina; Schweppe, Cornelia

    2017-12-01

    This paper presents findings from an ethnographic study of old age care facilities for German-speaking people in Thailand. It analyses the conditions and processes behind the development and specific designs of such facilities. It first looks at the intertwinement, at the socio-structural level, of different transborder developments in which the facilities' emergence is embedded. Second, it analyses the processes that accompany the emergence, development and organisation of these facilities at the local level. In this regard, it points out the central role of the facility operators as transnational actors who mediate between different frames of reference and groups of actors involved in these facilities. It concludes that the processes of mediation and intertwining are an important and distinctive feature of the emergence of these facilities, necessitated by the fact that, although the facilities are located in Thailand, their 'markets' are in the German-speaking countries of their target groups.

  7. Roles of Fructosyltransferase and Levanase-Sucrase of Actinomyces naeslundii in Fructan and Sucrose Metabolism

    PubMed Central

    Bergeron, Lori J.; Burne, Robert A.

    2001-01-01

    The ability of Actinomyces naeslundii to convert sucrose to extracellular homopolymers of fructose and to catabolize these types of polymers is suspected to be a virulence trait that contributes to the initiation and progression of dental caries and periodontal diseases. Previously, we reported on the isolation and characterization of the gene, ftf, encoding the fructosyltransferase (FTF) of A. naeslundii WVU45. Allelic exchange mutagenesis was used to inactivate ftf, revealing that FTF-deficient stains were completely devoid of the capacity to produce levan-type (β2,6-linked) polysaccharides. A polyclonal antibody was raised to a histidine-tagged, purified A. naeslundii FTF, and the antibody was used to localize the enzyme in the supernatant fluid. A sensitive technique was developed to detect levan formation by proteins that had been separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the method was used to confirm that the levan-synthesizing activity of A. naeslundii existed predominantly in a cell-free form, that a small amount of the activity was cell associated, and that the ftf mutant was unable to produce levans. By using the nucleotide sequence of the levanase gene of a genospecies 2 A. naeslundii, formerly Actinomyces viscosus, a portion of a homologue of this gene (levJ) was amplified by PCR and inserted into a suicide vector, and the resulting construct was used to inactivate the levJ gene in the genospecies 1 strain WVU45. A variety of physiologic and biochemical studies were performed on the wild-type and LevJ-deficient strains to demonstrate that (i) this enzyme was the dominant levanase and sucrase of A. naeslundii; (ii) that LevJ was inducible by growth in sucrose; (iii) that the LevJ activity was found predominantly (>90%) in a cell-associated form; and (iv) that there was a second, fructose-inducible fructan hydrolase activity produced by these strains. The data provide the first detailed molecular analysis of fructan

  8. Transcription Factors Encoded on Core and Accessory Chromosomes of Fusarium oxysporum Induce Expression of Effector Genes

    PubMed Central

    van der Does, H. Charlotte; Schmidt, Sarah M.; Langereis, Léon; Hughes, Timothy R.

    2016-01-01

    Proteins secreted by pathogens during host colonization largely determine the outcome of pathogen-host interactions and are commonly called ‘effectors’. In fungal plant pathogens, coordinated transcriptional up-regulation of effector genes is a key feature of pathogenesis and effectors are often encoded in genomic regions with distinct repeat content, histone code and rate of evolution. In the tomato pathogen Fusarium oxysporum f. sp. lycopersici (Fol), effector genes reside on one of four accessory chromosomes, known as the ‘pathogenicity’ chromosome, which can be exchanged between strains through horizontal transfer. The three other accessory chromosomes in the Fol reference strain may also be important for virulence towards tomato. Expression of effector genes in Fol is highly up-regulated upon infection and requires Sge1, a transcription factor encoded on the core genome. Interestingly, the pathogenicity chromosome itself contains 13 predicted transcription factor genes and for all except one, there is a homolog on the core genome. We determined DNA binding specificity for nine transcription factors using oligonucleotide arrays. The binding sites for homologous transcription factors were highly similar, suggesting that extensive neofunctionalization of DNA binding specificity has not occurred. Several DNA binding sites are enriched on accessory chromosomes, and expression of FTF1, its core homolog FTF2 and SGE1 from a constitutive promoter can induce expression of effector genes. The DNA binding sites of only these three transcription factors are enriched among genes up-regulated during infection. We further show that Ftf1, Ftf2 and Sge1 can activate transcription from their binding sites in yeast. RNAseq analysis revealed that in strains with constitutive expression of FTF1, FTF2 or SGE1, expression of a similar set of plant-responsive genes on the pathogenicity chromosome is induced, including most effector genes. We conclude that the Fol

  9. Comparison and analysis of the results of direct-driven targets implosion

    NASA Astrophysics Data System (ADS)

    Demchenko, N. N.; Dolgoleva, G. V.; Gus'kov, S. Yu; Kuchugov, P. A.; Rozanov, V. B.; Stepanov, R. V.; Zmitrenko, N. V.; Yakhin, R. A.

    2017-10-01

    The article presents calculation results, which were received for the implosion of the typical cryogenic thermonuclear direct-drive targets that are intended for use at the OMEGA facility, NIF and Russian laser facility. The compression and burning characteristics, which were obtained using various numerical codes of different scientific groups, are compared. The data indicate good agreement between the numerical results. Various sources of target irradiation inhomogeneity and their influence on the implosion parameters are considered. The nominal scales of these disturbances for various facilities are close to each other. The main negative effect on the efficiency of compression and burning is due to the accidental offset of the target from the center of the chamber.

  10. Quantitative Properties of the Macro Supply and Demand Structure for Care Facilities for Elderly in Japan.

    PubMed

    Nishino, Tatsuya

    2017-12-01

    As the Asian country with the most aged population, Japan, has been modifying its social welfare system. In 2000, the Japanese social care vision turned towards meeting the elderly's care needs in their own homes with proper formal care services. This study aims to understand the quantitative properties of the macro supply and demand structure for facilities for the elderly who require support or long-term care throughout Japan and present them as index values. Additionally, this study compares the targets for establishing long-term care facilities set by Japan's Ministry of Health, Labor and Welfare for 2025. In 2014, approximately 90% of all the people who were certified as requiring support and long-term care and those receiving preventive long-term care or long-term care services, were 75 years or older. The target increases in the number of established facilities by 2025 (for the 75-years-or-older population) were calculated to be 3.3% for nursing homes; 2.71% for long-term-care health facilities; 1.7% for group living facilities; and, 1.84% for community-based multi-care facilities. It was revealed that the establishment targets for 2025 also increase over current projections with the expected increase of the absolute number of users of group living facilities and community-based multi-care facilities. On the other hand, the establishment target for nursing homes remains almost the same as the current projection, whereas that for long-term-care health facilities decreases. These changes of facility ratios reveal that the Japanese social care system is shifting to realize 'Ageing in Place'. When considering households' tendencies, the target ratios for established facilities are expected to be applied to the other countries in Asia.

  11. Quantitative Properties of the Macro Supply and Demand Structure for Care Facilities for Elderly in Japan

    PubMed Central

    Nishino, Tatsuya

    2017-01-01

    As the Asian country with the most aged population, Japan, has been modifying its social welfare system. In 2000, the Japanese social care vision turned towards meeting the elderly’s care needs in their own homes with proper formal care services. This study aims to understand the quantitative properties of the macro supply and demand structure for facilities for the elderly who require support or long-term care throughout Japan and present them as index values. Additionally, this study compares the targets for establishing long-term care facilities set by Japan’s Ministry of Health, Labor and Welfare for 2025. In 2014, approximately 90% of all the people who were certified as requiring support and long-term care and those receiving preventive long-term care or long-term care services, were 75 years or older. The target increases in the number of established facilities by 2025 (for the 75-years-or-older population) were calculated to be 3.3% for nursing homes; 2.71% for long-term-care health facilities; 1.7% for group living facilities; and, 1.84% for community-based multi-care facilities. It was revealed that the establishment targets for 2025 also increase over current projections with the expected increase of the absolute number of users of group living facilities and community-based multi-care facilities. On the other hand, the establishment target for nursing homes remains almost the same as the current projection, whereas that for long-term-care health facilities decreases. These changes of facility ratios reveal that the Japanese social care system is shifting to realize ‘Ageing in Place’. When considering households’ tendencies, the target ratios for established facilities are expected to be applied to the other countries in Asia. PMID:29194405

  12. Computational design of high efficiency release targets for use at ISOL facilities

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Alton, G. D.; Middleton, J. W.

    1999-06-01

    This report describes efforts made at the Oak Ridge National Laboratory to design high-efficiency-release targets that simultaneously incorporate the short diffusion lengths, high permeabilities, controllable temperatures, and heat removal properties required for the generation of useful radioactive ion beam (RIB) intensities for nuclear physics and astrophysics research using the isotope separation on-line (ISOL) technique. Short diffusion lengths are achieved either by using thin fibrous target materials or by coating thin layers of selected target material onto low-density carbon fibers such as reticulated vitreous carbon fiber (RVCF) or carbon-bonded-carbon-fiber (CBCF) to form highly permeable composite target matrices. Computational studies which simulate the generation and removal of primary beam deposited heat from target materials have been conducted to optimize the design of target/heat-sink systems for generating RIBs. The results derived from diffusion release-rate simulation studies for selected targets and thermal analyses of temperature distributions within a prototype target/heat-sink system subjected to primary ion beam irradiation will be presented in this report.

  13. Comparison of Audio Computer Assisted Self-Interview and Face-To-Face Interview Methods in Eliciting HIV-Related Risks among Men Who Have Sex with Men and Men Who Inject Drugs in Nigeria

    PubMed Central

    Adebajo, Sylvia; Obianwu, Otibho; Eluwa, George; Vu, Lung; Oginni, Ayo; Tun, Waimar; Sheehy, Meredith; Ahonsi, Babatunde; Bashorun, Adebobola; Idogho, Omokhudu; Karlyn, Andrew

    2014-01-01

    Introduction Face-to-face (FTF) interviews are the most frequently used means of obtaining information on sexual and drug injecting behaviours from men who have sex with men (MSM) and men who inject drugs (MWID). However, accurate information on these behaviours may be difficult to elicit because of sociocultural hostility towards these populations and the criminalization associated with these behaviours. Audio computer assisted self-interview (ACASI) is an interviewing technique that may mitigate social desirability bias in this context. Methods This study evaluated differences in the reporting of HIV-related risky behaviours by MSM and MWID using ACASI and FTF interviews. Between August and September 2010, 712 MSM and 328 MWID in Nigeria were randomized to either ACASI or FTF interview for completion of a behavioural survey that included questions on sensitive sexual and injecting risk behaviours. Data were analyzed separately for MSM and MWID. Logistic regression was run for each behaviour as a dependent variable to determine differences in reporting methods. Results MSM interviewed via ACASI reported significantly higher risky behaviours with both women (multiple female sexual partners 51% vs. 43%, p = 0.04; had unprotected anal sex with women 72% vs. 57%, p = 0.05) and men (multiple male sex partners 70% vs. 54%, p≤0.001) than through FTF. Additionally, they were more likely to self-identify as homosexual (AOR: 3.3, 95%CI:2.4–4.6) and report drug use in the past 12 months (AOR:40.0, 95%CI: 9.6–166.0). MWID interviewed with ACASI were more likely to report needle sharing (AOR:3.3, 95%CI:1.2–8.9) and re-use (AOR:2.2, 95%CI:1.2–3.9) in the past month and prior HIV testing (AOR:1.6, 95%CI 1.02–2.5). Conclusion The feasibility of using ACASI in studies and clinics targeting key populations in Nigeria must be explored to increase the likelihood of obtaining more accurate data on high risk behaviours to inform improved risk reduction strategies

  14. National Ignition Facility: Experimental plan

    NASA Astrophysics Data System (ADS)

    1994-05-01

    As part of the Conceptual Design Report (CDR) for the National Ignition Facility (NIF), scientists from Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), the University of Rochester's Laboratory for Laser Energetics (UR/LLE), and EG&G formed an NIF Target Diagnostics Working Group. The purpose of the Target Diagnostics Working Group is to prepare conceptual designs of target diagnostics for inclusion in the facility CDR and to determine how these specifications impact the CDR. To accomplish this, a subgroup has directed its efforts at constructing an approximate experimental plan for the ignition campaign of the NIF CDR. The results of this effort are contained in this document, the Experimental Plan for achieving fusion ignition in the NIF. This group initially concentrated on the flow-down requirements of the experimental campaign leading to ignition, which will dominate the initial efforts of the NIF. It is envisaged, however, that before ignition, there will be parallel campaigns supporting weapons physics, weapons effects, and other research. This plan was developed by analyzing the sequence of activities required to finally fire the laser at the level of power and precision necessary to achieve the conditions of an ignition hohlraum target, and to then use our experience in activating and running Nova experiments to estimate the rate of completing these activities.

  15. Exploring Learner Perception and Use of Task-Based Interactional Feedback in FTF and CMC Modes

    ERIC Educational Resources Information Center

    Gurzynski-Weiss, Laura; Baralt, Melissa

    2014-01-01

    Theoretical claims about the benefits of corrective feedback have been largely premised on learners' noticing of feedback (e.g., Gass & Mackey, 2006; Long, 1996; Schmidt, 1990, 1995; Swain, 1995), and findings have demonstrated that both the feedback target (Mackey, Gass, & McDonough, 2000) and the mode of provision (Lai & Zhao,…

  16. Simple model of the indirect compression of targets under conditions close to the national ignition facility at an energy of 1.5 MJ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rozanov, V. B., E-mail: rozanov@sci.lebedev.ru; Vergunova, G. A., E-mail: verg@sci.lebedev.ru

    2015-11-15

    The possibility of the analysis and interpretation of the reported experiments with the megajoule National Ignition Facility (NIF) laser on the compression of capsules in indirect-irradiation targets by means of the one-dimensional RADIAN program in the spherical geometry has been studied. The problem of the energy balance in a target and the determination of the laser energy that should be used in the spherical model of the target has been considered. The results of action of pulses differing in energy and time profile (“low-foot” and “high-foot” regimes) have been analyzed. The parameters of the compression of targets with a high-densitymore » carbon ablator have been obtained. The results of the simulations are in satisfactory agreement with the measurements and correspond to the range of the observed parameters. The set of compared results can be expanded, in particular, for a more detailed determination of the parameters of a target near the maximum compression of the capsule. The physical foundation of the possibility of using the one-dimensional description is the necessity of the closeness of the last stage of the compression of the capsule to a one-dimensional process. The one-dimensional simulation of the compression of the capsule can be useful in establishing the boundary behind which two-dimensional and three-dimensional simulation should be used.« less

  17. Developing targets for radiation transport experiments at the Omega laser facility

    DOE PAGES

    Capelli, Deanna; Charsley-Groffman, C. A.; Randolph, Randall Blaine; ...

    2017-07-13

    Targets have been developed to measure supersonic radiation transport in aerogel foams using absorption spectroscopy. The target consists of an aerogel foam uniformly doped with either titanium or scandium inserted into an undoped aerogel foam package. This creates a localized doped foam region to provide spatial resolution for the measurement. Development and characterization of the foams is a key challenge in addition to machining and assembling the two foams so they mate without gaps. The foam package is inserted into a beryllium sleeve and mounted on a gold hohlraum. The target is mounted to a holder created using additive manufacturingmore » and mounted on a stalk. As a result, the manufacturing of the components, along with assembly and metrology of the target are described here.« less

  18. Developing targets for radiation transport experiments at the Omega laser facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capelli, Deanna; Charsley-Groffman, C. A.; Randolph, Randall Blaine

    Targets have been developed to measure supersonic radiation transport in aerogel foams using absorption spectroscopy. The target consists of an aerogel foam uniformly doped with either titanium or scandium inserted into an undoped aerogel foam package. This creates a localized doped foam region to provide spatial resolution for the measurement. Development and characterization of the foams is a key challenge in addition to machining and assembling the two foams so they mate without gaps. The foam package is inserted into a beryllium sleeve and mounted on a gold hohlraum. The target is mounted to a holder created using additive manufacturingmore » and mounted on a stalk. As a result, the manufacturing of the components, along with assembly and metrology of the target are described here.« less

  19. [Segment analysis of the target market of physiotherapeutic services].

    PubMed

    Babaskin, D V

    2010-01-01

    The objective of the present study was to demonstrate the possibilities to analyse selected segments of the target market of physiotherapeutic services provided by medical and preventive-facilities of two major types. The main features of a target segment, such as provision of therapeutic massage, are illustrated in terms of two characteristics, namely attractiveness to the users and the ability of a given medical facility to satisfy their requirements. Based on the analysis of portfolio of the available target segments the most promising ones (winner segments) were selected for further marketing studies. This choice does not exclude the possibility of involvement of other segments of medical services in marketing activities.

  20. 75 FR 54627 - Best Management Practices for Unused Pharmaceuticals at Health Care Facilities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-08

    ... at Health Care Facilities AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. SUMMARY: EPA... Unused Pharmaceuticals at Health Care Facilities. The guidance is targeted at hospitals, medical clinics... drafted a guidance document for health care facilities, which describes: Techniques for reducing or...

  1. Experimental equipment for an advanced ISOL facility[Isotope Separation On-Line Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baktash, C.; Lee, I.Y.; Rehm, K.E.

    This report summarizes the proceedings and recommendations of the Workshop on the Experimental Equipment for an Advanced ISOL Facility which was held at Lawrence Berkeley National Laboratory on July 22--25, 1998. The purpose of this workshop was to discuss the performance requirements, manpower and cost estimates, as well as a schedule of the experimental equipment needed to fully exploit the new physics which can be studied at an advanced ISOL facility. An overview of the new physics opportunities that would be provided by such a facility has been presented in the White Paper that was issued following the Columbus Meeting.more » The reactions and experimental techniques discussed in the Columbus White Paper served as a guideline for the formulation of the detector needs at the Berkeley Workshop. As outlined a new ISOL facility with intense, high-quality beams of radioactive nuclei would provide exciting new research opportunities in the areas of: the nature of nucleonic matter; the origin of the elements; and tests of the Standard Model. After an introductory section, the following equipment is discussed: gamma-ray detectors; recoil separators; magnetic spectrographs; particle detectors; targets; and apparatus using non-accelerated beams.« less

  2. A target development program for beamhole spallation neutron sources in the megawatt range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, G.S.; Atchison, F.

    1995-10-01

    Spallation sources as an alternative to fission neutron sources have been operating successfully up to 160 kW of beam power. With the next generation of these facilities aiming at the medium power range between 0.5 and 5 MW, loads on the targets will be high enough to make present experience of little relevance. With the 0.6 MW continuous facility SINQ under construction, and a 5 MW pulsed facility (ESS) under study in Europe, a research and development program is about to be started which aimes at assessing the limits of stationary and moving solid targets and the feasibility and potentialmore » benefits of flowing liquid metal targets. Apart from theoretical work and examination of existing irradiated material, including used targets from ISIS, it is intended to take advantage of the SINQ solid rod target design to improve the relevant data base by building the target in such a way that individual rods can be equipped as irradiation capsules.« less

  3. Relations between brain volumes, neuropsychological assessment and parental questionnaire in prematurely born children.

    PubMed

    Lind, Annika; Haataja, Leena; Rautava, Liisi; Väliaho, Anniina; Lehtonen, Liisa; Lapinleimu, Helena; Parkkola, Riitta; Korkman, Marit

    2010-05-01

    The objective of this study is to assess the relationship between brain volumes at term equivalent age and neuropsychological functions at 5 years of age in very low birth weight (VLBW) children, and to compare the results from a neuropsychological assessment and a parental questionnaire at 5 years of age. The study group included a regional cohort of 97 VLBW children and a control group of 161 children born at term. At term equivalent age, brain magnetic resonance imaging (MRI) was performed on the VLBW children, and analysed for total and regional brain volumes. At 5 years of age, a psychologist assessed the neuropsychological performance with NEPSY II, and parents completed the Five to fifteen (FTF) questionnaire on development and behaviour. The results of the control group were used to give the age-specific reference values. No significant associations were found between the brain volumes and the NEPSY II domains. As for the FTF, significant associations were found between a smaller total brain tissue volume and poorer executive functions, between a smaller cerebellar volume and both poorer executive functions and motor skills, and, surprisingly, between a larger volume of brainstem and poorer language functions. Even after adjustment for total brain tissue volume, the two associations between the cerebellar volume and the FTF domains remained borderline significant (P = 0.05). The NEPSY II domains Executive Functioning, Language and Motor Skills were significantly associated with the corresponding FTF domains. In conclusion, altered brain volumes at term equivalent age appear to affect development still at 5 years of age. The FTF seems to be a good instrument when used in combination with other neuropsychological assessment.

  4. Closeup of F-15B Flight Test Fixture (FTF) with X-33 Thermal Protection Systems (TPS)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A close up of the Flight Test Fixture II, mounted on the underside of the F-15B Aerodynamic Flight Facility aircraft. The Thermal Protection System (TPS)samples, which included metallic Inconel tiles, soft Advanced Flexible Reusable Surface Insulation tiles, and sealing materials, were attached to the forward-left side position of the test fixture. In-flight video from the aircraft's on-board video system, as well as chase aircraft photos and video footage, documented the condition of the TPS during flights. Surface pressures over the TPS was measured by thermocouples contained in instrumentation 'islands,' to document shear and shock loads.

  5. Closeup of F-15B Flight Test Fixture (FTF) with X-33 Thermal Protection Systems (TPS)

    NASA Image and Video Library

    1998-05-14

    A close up of the Flight Test Fixture II, mounted on the underside of the F-15B Aerodynamic Flight Facility aircraft. The Thermal Protection System (TPS) samples, which included metallic Inconel tiles, soft Advanced Flexible Reusable Surface Insulation tiles, and sealing materials, were attached to the forward-left side position of the test fixture. In-flight video from the aircraft's on-board video system, as well as chase aircraft photos and video footage, documented the condition of the TPS during flights. Surface pressures over the TPS was measured by thermocouples contained in instrumentation "islands," to document shear and shock loads.

  6. USGS aerial resolution targets.

    USGS Publications Warehouse

    Salamonowicz, P.H.

    1982-01-01

    It is necessary to measure the achievable resolution of any airborne sensor that is to be used for metric purposes. Laboratory calibration facilities may be inadequate or inappropriate for determining the resolution of non-photographic sensors such as optical-mechanical scanners, television imaging tubes, and linear arrays. However, large target arrays imaged in the field can be used in testing such systems. The USGS has constructed an array of resolution targets in order to permit field testing of a variety of airborne sensing systems. The target array permits any interested organization with an airborne sensing system to accurately determine the operational resolution of its system. -from Author

  7. Haven't we met somewhere before? The effects of a brief Internet introduction on social anxiety in a subsequent face to face interaction.

    PubMed

    Markovitzky, Omer; Anholt, Gideon E; Lipsitz, Joshua D

    2012-05-01

    Social anxiety occurs in a range of social situations, the salience of which is influenced by prevailing modes of social contact. The emergence of computer mediated communication (CMC), buoyed by the recent explosion of social networks, has changed the way many people make and maintain social contacts. We randomly assigned 30 socially anxious and 30 low social anxiety participants to a brief internet chat introduction or a control internet surfing condition followed by a standardized face to face (FTF) interaction. We hypothesized that for socially anxious participants the chat introduction would reduce anxiety of and preference to avoid the subsequent FTF interaction. Results supported hypotheses for most indices. Findings suggest that, at least for the common situation in which internet chat precedes FTF interaction with the same person, such contact may reduce social anxiety. It is not known whether this decrease would generalize to FTF contact in other contexts. It is suggested that CMC might be construed as a particularly useful form of safety behavior that may help in the allocation of attentional resources to process new information relevant for disconfirmation of negative beliefs maintaining social anxiety. Potential clinical implications are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. geant4 hadronic cascade models analysis of proton and charged pion transverse momentum spectra from p + Cu and Pb collisions at 3, 8, and 15 GeV/c

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdel-Waged, Khaled; Benha University, Faculty of Science, Physics Department; Felemban, Nuha

    2011-07-15

    We describe how various hadronic cascade models, which are implemented in the geant4 toolkit, describe proton and charged pion transverse momentum spectra from p + Cu and Pb collisions at 3, 8, and 15 GeV/c, recently measured in the hadron production (HARP) experiment at CERN. The Binary, ultrarelativistic quantum molecular dynamics (UrQMD) and modified FRITIOF (FTF) hadronic cascade models are chosen for investigation. The first two models are based on limited (Binary) and branched (UrQMD) binary scattering between cascade particles which can be either a baryon or meson, in the three-dimensional space of the nucleus, while the latter (FTF) considersmore » collective interactions between nucleons only, on the plane of impact parameter. It is found that the slow (p{sub T}{<=}0.3 GeV/c) proton spectra are quite sensitive to the different treatments of cascade pictures, while the fast (p{sub T}>0.3 GeV/c) proton spectra are not strongly affected by the differences between the FTF and UrQMD models. It is also shown that the UrQMD and FTF combined with Binary (FTFB) models could reproduce both proton and charged pion spectra from p + Cu and Pb collisions at 3, 8, and 15 GeV/c with the same accuracy.« less

  9. Simulation of Soil Frost and Thaw Fronts Dynamics with Community Land Model 4.5

    NASA Astrophysics Data System (ADS)

    Gao, J.; Xie, Z.

    2016-12-01

    Freeze-thaw processes in soils, including changes in frost and thaw fronts (FTFs) , are important physical processes. The movement of FTFs affects soil water and thermal characteristics, as well as energy and water exchanges between land surface and the atmosphere, and then the land surface hydrothermal process. In this study, a two-directional freeze and thaw algorithm for simulating FTFs is incorporated into the community land surface model CLM4.5, which is called CLM4.5-FTF. The simulated FTFs depth and soil temperature of CLM4.5-FTF compared well with the observed data both in D66 station (permafrost) and Hulugou station (seasonally frozen soil). Because the soil temperature profile within a soil layer can be estimated according to the position of FTFs, CLM4.5 performed better in soil temperature simulation. Permafrost and seasonally frozen ground conditions in China from 1980 to 2010 were simulated using the CLM4.5-FTF. Numerical experiments show that the spatial distribution of simulated maximum frost depth by CLM4.5-FTF has seasonal variation obviously. Significant positive active-layer depth trends for permafrost regions and negative maximum freezing depth trends for seasonal frozen soil regions are simulated in response to positive air temperature trends except west of Black Sea.

  10. The National Ignition Facility and Industry

    NASA Astrophysics Data System (ADS)

    Harri, J. G.; Paisner, J. A.; Lowdermilk, W. H.; Boyes, J. D.; Kumpan, S. A.; Sorem, M. S.

    1994-09-01

    The mission of the National Ignition Facility is to achieve ignition and gain in inertial confinement fusion targets in the laboratory. The facility will be used for defense applications such as weapons physics and weapons effects testing, and for civilian applications such as fusion energy development and fundamental studies of matter at high temperatures and densities. The National Ignition Facility construction project will require the best of our construction industries and its success will depend on the best products offered by hundreds of the nation's high technology companies. Three-fourths of the construction costs will be invested in industry. This article reviews the design, cost and schedule, and required industrial involvement associated with the construction project.

  11. Automatic target alignment of the Helios laser system

    NASA Astrophysics Data System (ADS)

    Liberman, I.; Viswanathan, V. K.; Klein, M.; Seery, B. D.

    1980-05-01

    An automatic target-alignment technique for the Helios laser facility is reported and verified experimentally. The desired alignment condition is completely described by an autocollimation test. A computer program examines the autocollimated return pattern from the surrogate target and correctly describes any changes required in mirror orientation to yield optimum target alignment with either aberrated or misaligned beams. Automated on-line target alignment is thus shown to be feasible.

  12. Target materials for exotic ISOL beams

    NASA Astrophysics Data System (ADS)

    Gottberg, A.

    2016-06-01

    The demand for intensity, purity, reliability and availability of short-lived isotopes far from stability is steadily high, and considerably exceeding the supply. In many cases the ISOL (Isotope Separation On-Line) method can provide beams of high intensity and purity. Limitations in terms of accessible chemical species and minimum half-life are driven mainly by chemical reactions and physical processes inside of the thick target. A wide range of materials are in use, ranging from thin metallic foils and liquids to refractory ceramics, while poly-phasic mixed uranium carbides have become the reference target material for most ISOL facilities world-wide. Target material research and development is often complex and especially important post-irradiation analyses are hindered by the high intrinsic radiotoxicity of these materials. However, recent achievements have proven that these investigations are possible if the effort of different facilities is combined, leading to the development of new material matrices that can supply new beams of unprecedented intensity and beam current stability.

  13. Biotechnology Protein Expression and Purification Facility

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The purpose of the Project Scientist Core Facility is to provide purified proteins, both recombinant and natural, to the Biotechnology Science Team Project Scientists and the NRA-Structural Biology Test Investigators. Having a core facility for this purpose obviates the need for each scientist to develop the necessary expertise and equipment for molecular biology, protein expression, and protein purification. Because of this, they are able to focus their energies as well as their funding on the crystallization and structure determination of their target proteins.

  14. Commercial-scale biotherapeutics manufacturing facility for plant-made pharmaceuticals.

    PubMed

    Holtz, Barry R; Berquist, Brian R; Bennett, Lindsay D; Kommineni, Vally J M; Munigunti, Ranjith K; White, Earl L; Wilkerson, Don C; Wong, Kah-Yat I; Ly, Lan H; Marcel, Sylvain

    2015-10-01

    Rapid, large-scale manufacture of medical countermeasures can be uniquely met by the plant-made-pharmaceutical platform technology. As a participant in the Defense Advanced Research Projects Agency (DARPA) Blue Angel project, the Caliber Biotherapeutics facility was designed, constructed, commissioned and released a therapeutic target (H1N1 influenza subunit vaccine) in <18 months from groundbreaking. As of 2015, this facility was one of the world's largest plant-based manufacturing facilities, with the capacity to process over 3500 kg of plant biomass per week in an automated multilevel growing environment using proprietary LED lighting. The facility can commission additional plant grow rooms that are already built to double this capacity. In addition to the commercial-scale manufacturing facility, a pilot production facility was designed based on the large-scale manufacturing specifications as a way to integrate product development and technology transfer. The primary research, development and manufacturing system employs vacuum-infiltrated Nicotiana benthamiana plants grown in a fully contained, hydroponic system for transient expression of recombinant proteins. This expression platform has been linked to a downstream process system, analytical characterization, and assessment of biological activity. This integrated approach has demonstrated rapid, high-quality production of therapeutic monoclonal antibody targets, including a panel of rituximab biosimilar/biobetter molecules and antiviral antibodies against influenza and dengue fever. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  15. Water, sanitation and hygiene in Jordan's healthcare facilities.

    PubMed

    Khader, Yousef Saleh

    2017-08-14

    Purpose The purpose of this paper is to determine water availability, sanitation and hygiene (WSH) services, and healthcare waste management in Jordan healthcare facilities. Design/methodology/approach In total, 19 hospitals (15 public and four private) were selected. The WSH services were assessed in hospitals using the WSH in health facilities assessment tool developed for this purpose. Findings All hospitals (100 percent) had a safe water source and most (84.2 percent) had functional water sources to provide enough water for users' needs. All hospitals had appropriate and sufficient gender separated toilets in the wards and 84.2 percent had the same in outpatient settings. Overall, 84.2 percent had sufficient and functioning handwashing basins with soap and water, and 79.0 percent had sufficient showers. Healthcare waste management was appropriately practiced in all hospitals. Practical implications Jordan hospital managers achieved major achievements providing access to drinking water and improved sanitation. However, there are still areas that need improvements, such as providing toilets for patients with special needs, establishing handwashing basins with water and soap near toilets, toilet maintenance and providing sufficient trolleys for collecting hazardous waste. Efforts are needed to integrate WSH service policies with existing national policies on environmental health in health facilities, establish national standards and targets for the various healthcare facilities to increase access and improve services. Originality/value There are limited WSH data on healthcare facilities and targets for basic coverage in healthcare facilities are also lacking. A new assessment tool was developed to generate core WSH indicators and to assess WSH services in Jordan's healthcare facilities. This tool can be used by a non-WSH specialist to quickly assess healthcare facility-related WSH services and sanitary hazards in other countries. This tool identified some areas

  16. The targeting of nutritionally at-risk children attending a primary health care facility in the Western Cape Province of South Africa.

    PubMed

    Schoeman, S E; Hendricks, M K; Hattingh, S P; Benadé, A J S; Laubscher, J A; Dhansay, M A

    2006-12-01

    The aim of this study was to determine the practices of primary health care (PHC) nurses in targeting nutritionally at-risk infants and children for intervention at a PHC facility in a peri-urban area of the Western Cape Province of South Africa. Nutritional risk status of infants and children <6 years of age was based on criteria specified in standardised nutrition case management guidelines developed for PHC facilities in the province. Children were identified as being nutritionally at-risk if their weight was below the 3rd centile, their birth weight was less than 2500 g, and their growth curve showed flattening or dropping off for at least two consecutive monthly visits. The study assessed the practices of nurses in identifying children who were nutritionally at-risk and the entry of these children into the food supplementation programme (formerly the Protein-Energy Malnutrition Scheme) of the health facility. Structured interviews were conducted with nurses to determine their knowledge of the case management guidelines; interviews were also conducted with caregivers to determine their sociodemographic status. One hundred and thirty-four children were enrolled in the study. The mean age of their caregivers was 29.5 (standard deviation 7.5) years and only 47 (38%) were married. Of the caregivers, 77% were unemployed, 46% had poor household food security and 40% were financially dependent on non-family members. Significantly more children were nutritionally at-risk if the caregiver was unemployed (54%) compared with employed (32%) (P=0.04) and when there was household food insecurity (63%) compared with household food security (37%) (P<0.004). Significantly more children were found not to be nutritionally at-risk if the caregiver was financially self-supporting or supported by their partners (61%) compared with those who were financially dependent on non-family members (35%) (P=0.003). The weight results of the nurses and the researcher differed significantly (P

  17. Indoor tanning facility density in eighty U.S. cities.

    PubMed

    Palmer, Richard C; Mayer, Joni A; Woodruff, Susan I; Eckhardt, Laura; Sallis, James F

    2002-06-01

    The purpose of this study was to examine the number of tanning facilities in select U.S. cities. The twenty most populated cities from each of 4 U.S. regions were selected for the sample. For each city, data on the number of tanning facilities, climate, and general demographic profile were collected. Data for state tanning facility legislation also were collected. A tanning facility density variable was created by dividing the city's number of facilities by its population size. The 80 cities had an average of 50 facilities each. Results of linear regression analysis indicated that higher density was significantly associated with colder climate, lower median income, and higher proportion of Whites. These data indicate that indoor tanning facilities are prevalent in the environments of U.S. urban-dwellers. Cities having the higher density profile may be logical targets for interventions promoting less or safer use of these facilities.

  18. 75 FR 51808 - Lead-Based Paint Renovation, Repair and Painting Activities in Target Housing and Child Occupied...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-23

    ... Renovation, Repair and Painting Activities in Target Housing and Child Occupied Facilities; State of Rhode.... These rules already cover all lead-based paint activities that are conducted in target housing and child... in target housing and child-occupied facilities. These rules: 1. Establish the discipline of lead...

  19. LLNL Scientist is Passionate About Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butlin, Becky

    With a lifelong passion for problem-solving and a love of production, Becky Butlin has helped lead the National Ignition Facility Target Fabrication Team through obstacles and challenges for the past six years.

  20. Overview of laser systems for the Orion facility at the AWE.

    PubMed

    Hopps, Nicholas; Danson, Colin; Duffield, Stuart; Egan, David; Elsmere, Stephen; Girling, Mark; Harvey, Ewan; Hillier, David; Norman, Michael; Parker, Stefan; Treadwell, Paul; Winter, David; Bett, Thomas

    2013-05-20

    The commissioning of the Orion laser facility at the Atomic Weapons Establishment (AWE) in the UK has recently been completed. The facility is a twelve beam Nd:glass-based system for studying high energy density physics. It consists of ten frequency-tripled beam-lines operating with nanosecond pulses, synchronized with two beam-lines with subpicosecond pulses, each capable of delivering 500 J to target. One of the short pulse beams has the option of frequency doubling, at reduced aperture, to yield up to 100 J at 527 nm in a subpicosecond pulse with high temporal contrast. An extensive array of target diagnostics is provided. This article describes the laser design and commissioning and presents key performance data of the facility's laser systems.

  1. Facility Search Criteria Help | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides powerful search capabilities offering more than 100 search criteria to target your results. Use the ECHO to search compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide.

  2. Identification of flame transfer functions in the presence of intrinsic thermoacoustic feedback and noise

    NASA Astrophysics Data System (ADS)

    Jaensch, Stefan; Merk, Malte; Emmert, Thomas; Polifke, Wolfgang

    2018-05-01

    The Large Eddy Simulation/System Identification (LES/SI) approach is a general and efficient numerical method for deducing a Flame Transfer Function (FTF) from the LES of turbulent reacting flow. The method may be summarised as follows: a simulated flame is forced with a broadband excitation signal. The resulting fluctuations of the reference velocity and of the global heat release rate are post-processed via SI techniques in order to estimate a low-order model of the flame dynamics. The FTF is readily deduced from the low-order model. The SI method most frequently applied in aero- and thermo-acoustics has been Wiener-Hopf Inversion (WHI). This method is known to yield biased estimates in situations with feedback, thus it was assumed that non-reflective boundary conditions are required to generate accurate results with the LES/SI approach. Recent research has shown that the FTF is part of the so-called Intrinsic ThermoAcoustic (ITA) feedback loop. Hence, identifying an FTF from a compressible LES is always a closed-loop problem, and consequently one should expect that the WHI would yield biased results. However, several studies proved that WHI results compare favourably with validation data. To resolve this apparent contradiction, a variety of identification methods are compared against each other, including models designed for closed-loop identification. In agreement with theory, we show that the estimate given by WHI does not converge to the actual FTF. Fortunately, the error made is small if excitation amplitudes can be set such that the signal-to-noise ratio is large, but not large enough to trigger nonlinear flame dynamics. Furthermore, we conclude that non-reflective boundary conditions are not essentially necessary to apply the LES/SI approach.

  3. Characterization studies of prototype ISOL targets for the RIA

    NASA Astrophysics Data System (ADS)

    Greene, John P.; Burtseva, Tatiana; Neubauer, Janelle; Nolen, Jerry A.; Villari, Antonio C. C.; Gomes, Itacil C.

    2005-12-01

    Targets employing refractory compounds are being developed for the rare isotope accelerator (RIA) facility to produce ion species far from stability. With the 100 kW beams proposed for the production targets, dissipation of heat becomes a challenging issue. In our two-step target design, neutrons are generated in a refractory primary target, inducing fission in the surrounding uranium carbide. The interplay of density, grain size, thermal conductivity and diffusion properties of the UC2 needs to be well understood before fabrication. Thin samples of uranium carbide were prepared for thermal conductivity measurements using an electron beam to heat the sample and an optical pyrometer to observe the thermal radiation. Release efficiencies and independent thermal analysis on these samples are being undertaken at Oak Ridge National Laboratory (ORNL). An alternate target concept for RIA, the tilted slab approach promises to be simple with fast ion release and capable of withstanding high beam intensities while providing considerable yields via spallation. A proposed small business innovative research (SBIR) project will design a prototype tilted target, exploring the materials needed for fabrication and testing at an irradiation facility to address issues of heat transfer and stresses within the target.

  4. Lean coding machine. Facilities target productivity and job satisfaction with coding automation.

    PubMed

    Rollins, Genna

    2010-07-01

    Facilities are turning to coding automation to help manage the volume of electronic documentation, streamlining workflow, boosting productivity, and increasing job satisfaction. As EHR adoption increases, computer-assisted coding may become a necessity, not an option.

  5. Cell-targeted platinum nanoparticles and nanoparticle clusters.

    PubMed

    Papst, Stefanie; Brimble, Margaret A; Evans, Clive W; Verdon, Daniel J; Feisst, Vaughan; Dunbar, P Rod; Tilley, Richard D; Williams, David E

    2015-06-21

    Herein, we report the facile preparation of cell-targeted platinum nanoparticles (PtNPs), through the design of peptides that, as a single molecule added in small concentration during the synthesis, control the size of PtNP clusters during their growth, stabilise the PtNPs in aqueous suspension and enable the functionalisation of the PtNPs with a versatile range of cell-targeting ligands. Water-soluble PtNPs targeted respectively at blood group antigens and at integrin receptors are demonstrated.

  6. Weight management by phone conference call: A comparison with a traditional face-to-face clinic. Rationale and design for a randomized equivalence trial

    PubMed Central

    Lambourne, Kate; Washburn, Richard A.; Gibson, Cheryl; Sullivan, Debra K.; Goetz, Jeannine; Lee, Robert; Smith, Bryan K.; Mayo, Matthew S.; Donnelly, Joseph E.

    2012-01-01

    State-of-the-art treatment for weight management consists of a behavioral intervention to facilitate decreased energy intake and increased physical activity. These interventions are typically delivered face-to-face (FTF) by a health educator to a small group of participants. There are numerous barriers to participation in FTF clinics including availability, scheduling, the expense and time required to travel to the clinic site, and possible need for dependent care. Weight management clinics delivered by conference call have the potential to diminish or eliminate these barriers. The conference call approach may also reduce burden on providers, who could conduct clinic groups from almost any location without the expenses associated with maintaining FTF clinic space. A randomized trial will be conducted in 395 overweight/obese adults (BMI 25–39.9 kg/m2) to determine if weight loss (6 months) and weight maintenance (12 months) are equivalent between weight management interventions utilizing behavioral strategies and pre-packaged meals delivered by either a conference call or the traditional FTF approach. The primary outcome, body weight, will be assessed at baseline, 6, 12 and 18 months. Secondary outcomes including waist circumference, energy and macronutrient intake, and physical activity and will be assessed on the same schedule. In addition, a cost analysis and extensive process evaluation will be completed. PMID:22664647

  7. Weight management by phone conference call: a comparison with a traditional face-to-face clinic. Rationale and design for a randomized equivalence trial.

    PubMed

    Lambourne, Kate; Washburn, Richard A; Gibson, Cheryl; Sullivan, Debra K; Goetz, Jeannine; Lee, Robert; Smith, Bryan K; Mayo, Matthew S; Donnelly, Joseph E

    2012-09-01

    State-of-the-art treatment for weight management consists of a behavioral intervention to facilitate decreased energy intake and increased physical activity. These interventions are typically delivered face-to-face (FTF) by a health educator to a small group of participants. There are numerous barriers to participation in FTF clinics including availability, scheduling, the expense and time required to travel to the clinic site, and possible need for dependent care. Weight management clinics delivered by conference call have the potential to diminish or eliminate these barriers. The conference call approach may also reduce burden on providers, who could conduct clinic groups from almost any location without the expenses associated with maintaining FTF clinic space. A randomized trial will be conducted in 395 overweight/obese adults (BMI 25-39.9 kg/m(2)) to determine if weight loss (6 months) and weight maintenance (12 months) are equivalent between weight management interventions utilizing behavioral strategies and pre-packaged meals delivered by either a conference call or the traditional FTF approach. The primary outcome, body weight, will be assessed at baseline, 6, 12 and 18 months. Secondary outcomes including waist circumference, energy and macronutrient intake, and physical activity and will be assessed on the same schedule. In addition, a cost analysis and extensive process evaluation will be completed. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Decision Accuracy in Computer-Mediated versus Face-to-Face Decision-Making Teams.

    PubMed

    Hedlund; Ilgen; Hollenbeck

    1998-10-01

    Changes in the way organizations are structured and advances in communication technologies are two factors that have altered the conditions under which group decisions are made. Decisions are increasingly made by teams that have a hierarchical structure and whose members have different areas of expertise. In addition, many decisions are no longer made via strictly face-to-face interaction. The present study examines the effects of two modes of communication (face-to-face or computer-mediated) on the accuracy of teams' decisions. The teams are characterized by a hierarchical structure and their members differ in expertise consistent with the framework outlined in the Multilevel Theory of team decision making presented by Hollenbeck, Ilgen, Sego, Hedlund, Major, and Phillips (1995). Sixty-four four-person teams worked for 3 h on a computer simulation interacting either face-to-face (FtF) or over a computer network. The communication mode had mixed effects on team processes in that members of FtF teams were better informed and made recommendations that were more predictive of the correct team decision, but leaders of CM teams were better able to differentiate staff members on the quality of their decisions. Controlling for the negative impact of FtF communication on staff member differentiation increased the beneficial effect of the FtF mode on overall decision making accuracy. Copyright 1998 Academic Press.

  9. PST 2009: XIII International Workshop on Polarized Sources Targets and Polarimetry

    NASA Astrophysics Data System (ADS)

    Lenisa, Paolo

    2011-05-01

    The workshops on polarized sources, targets, and polarimetry are held every two years. In 2009 the meeting took place in Ferrara, Italy, and was organized by the University of Ferrara and INFN. Sessions on Polarized Proton and Deuterium Sources, Polarized Electron Sources, Polarimetry, Polarized Solid Targets, and Polarized Internal Targets, highlighted topics, recent developments, and progress in the field. A session dedicated to Future Facilities provided an overview of a number of new activities in the spin-physics sector at facilities that are currently in the planning stage. Besides presenting a broad overview of polarized ion sources, electron sources, solid and gaseous targets, and their neighbouring fields, the workshop also addressed the application of polarized atoms in applied sciences and medicine that is becoming increasingly important.

  10. Improving Robotic Assembly of Planar High Energy Density Targets

    NASA Astrophysics Data System (ADS)

    Dudt, D.; Carlson, L.; Alexander, N.; Boehm, K.

    2016-10-01

    Increased quantities of planar assemblies for high energy density targets are needed with higher shot rates being implemented at facilities such as the National Ignition Facility and the Matter in Extreme Conditions station of the Linac Coherent Light Source. To meet this growing demand, robotics are used to reduce assembly time. This project studies how machine vision and force feedback systems can be used to improve the quantity and quality of planar target assemblies. Vision-guided robotics can identify and locate parts, reducing laborious manual loading of parts into precision pallets and associated teaching of locations. On-board automated inspection can measure part pickup offsets to correct part drop-off placement into target assemblies. Force feedback systems can detect pickup locations and apply consistent force to produce more uniform glue bond thickness, thus improving the performance of the targets. System designs and performance evaluations will be presented. Work supported in part by the US DOE under the Science Undergraduate Laboratory Internships Program (SULI) and ICF Target Fabrication DE-NA0001808.

  11. ORION laser target diagnostics.

    PubMed

    Bentley, C D; Edwards, R D; Andrew, J E; James, S F; Gardner, M D; Comley, A J; Vaughan, K; Horsfield, C J; Rubery, M S; Rothman, S D; Daykin, S; Masoero, S J; Palmer, J B; Meadowcroft, A L; Williams, B M; Gumbrell, E T; Fyrth, J D; Brown, C R D; Hill, M P; Oades, K; Wright, M J; Hood, B A; Kemshall, P

    2012-10-01

    The ORION laser facility is one of the UK's premier laser facilities which became operational at AWE in 2010. Its primary mission is one of stockpile stewardship, ORION will extend the UK's experimental plasma physics capability to the high temperature, high density regime relevant to Atomic Weapons Establishment's (AWE) program. The ORION laser combines ten laser beams operating in the ns regime with two sub ps short pulse chirped pulse amplification beams. This gives the UK a unique combined long pulse/short pulse laser capability which is not only available to AWE personnel but also gives access to our international partners and visiting UK academia. The ORION laser facility is equipped with a comprehensive suite of some 45 diagnostics covering optical, particle, and x-ray diagnostics all able to image the laser target interaction point. This paper focuses on a small selection of these diagnostics.

  12. Environmental Management Guide for Educational Facilities

    ERIC Educational Resources Information Center

    APPA: Association of Higher Education Facilities Officers, 2017

    2017-01-01

    Since 1996, APPA and CSHEMA, the Campus Safety Health and Environmental Management Association, have collaborated to produce guidance documents to help educational facilities get ahead of the moving target that is environmental compliance. This new 2017 edition will help you identify which regulations pertain to your institution, and assist in…

  13. Winning market positioning strategies for long term care facilities.

    PubMed

    Higgins, L F; Weinstein, K; Arndt, K

    1997-01-01

    The decision to develop an aggressive marketing strategy for its long term care facility has become a priority for the management of a one-hundred bed facility in the Rocky Mountain West. Financial success and lasting competitiveness require that the facility in question (Deer Haven) establish itself as the preferred provider of long term care for its target market. By performing a marketing communications audit, Deer Haven evaluated its present market position and created a strategy for solidifying and dramatizing this position. After an overview of present conditions in the industry, we offer a seven step process that provides practical guidance for positioning a long term care facility. We conclude by providing an example application.

  14. A space debris simulation facility for spacecraft materials evaluation

    NASA Technical Reports Server (NTRS)

    Taylor, Roy A.

    1987-01-01

    A facility to simulate the effects of space debris striking an orbiting spacecraft is described. This facility was purchased in 1965 to be used as a micrometeoroid simulation facility. Conversion to a Space Debris Simulation Facility began in July 1984 and it was placed in operation in February 1985. The facility consists of a light gas gun with a 12.7-mm launch tube capable of launching 2.5-12.7 mm projectiles with a mass of 4-300 mg and velocities of 2-8 km/sec, and three target tanks of 0.067 m, 0.53 a m and 28.5 a m. Projectile velocity measurements are accomplished via pulsed X-ray, laser diode detectors, and a Hall photographic station. This facility is being used to test development structural configurations and candidate materials for long duration orbital spacecraft. A summary of test results are also described.

  15. Assessment and Mitigation of Diagnostic-Generated Electromagnetic Interference at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, C G; Ayers, M J; Felker, B

    2012-04-20

    Electromagnetic interference (EMI) is an ever-present challenge at laser facilities such as the National Ignition Facility (NIF). The major source of EMI at such facilities is laser-target interaction that can generate intense electromagnetic fields within, and outside of, the laser target chamber. In addition, the diagnostics themselves can be a source of EMI, even interfering with themselves. In this paper we describe EMI generated by ARIANE and DIXI, present measurements, and discuss effects of the diagnostic-generated EMI on ARIANE's CCD and on a PMT nearby DIXI. Finally we present some of the efforts we have made to mitigate the effectsmore » of diagnostic-generated EMI on NIF diagnostics.« less

  16. Shock effects in particle beam fusion targets

    NASA Astrophysics Data System (ADS)

    Sweeney, M. A.; Perry, F. C.; Asay, J. R.; Widner, M. M.

    1982-04-01

    At Sandia National Laboratorics we are assessing the response of fusion target materials to shock loading with the particle beam accelerators HYDRA and PROTO I and the gas gun facility. Nonlinear shock-accelerated unstable growth of fabriction irregularities has been demonstrated, and jetting is found to occur in imploding targets because of asymmetric beam deposition. Cylindrical ion targets display an instability due either to beam or target nonuniformity. However, the data suggest targets with aspect ratios of 30 may implode stably. The first time- and space-resolved measurements of shock-induced vaporization have been made. A homogeneous mixed phase EOS model cannot adequately explain the results because of the kinetic effects of vapor formation and expansion.

  17. Summary of the XIII International Workshop on Polarized Sources, Targets and Polarimetry

    NASA Astrophysics Data System (ADS)

    Rathmann, F.

    2011-01-01

    The workshops on polarized sources, targets, and polarimetry are held every two years. The present meeting took place in Ferrara, Italy, and was organized by the University of Ferrara. Sessions on Polarized Proton and Deuterium Sources, Polarized Electron Sources, Polarimetry, Polarized Solid Targets, and Polarized Internal Targets, highlighted topics, recent developments, and progress in the field. A session decicated to Future Facilities provided an overview of a number of new activities in the spin-physics sector at facilities that are currently in the planning stage. Besides presenting a broad overview of polarized ion sources, electron sources, solid and gaseous targets, and their neighboring fields, the workshop also addressed the application of polarized atoms in applied sciences and medicine that is becoming increasingly important.

  18. The Scottish Structural Proteomics Facility: targets, methods and outputs.

    PubMed

    Oke, Muse; Carter, Lester G; Johnson, Kenneth A; Liu, Huanting; McMahon, Stephen A; Yan, Xuan; Kerou, Melina; Weikart, Nadine D; Kadi, Nadia; Sheikh, Md Arif; Schmelz, Stefan; Dorward, Mark; Zawadzki, Michal; Cozens, Christopher; Falconer, Helen; Powers, Helen; Overton, Ian M; van Niekerk, C A Johannes; Peng, Xu; Patel, Prakash; Garrett, Roger A; Prangishvili, David; Botting, Catherine H; Coote, Peter J; Dryden, David T F; Barton, Geoffrey J; Schwarz-Linek, Ulrich; Challis, Gregory L; Taylor, Garry L; White, Malcolm F; Naismith, James H

    2010-06-01

    The Scottish Structural Proteomics Facility was funded to develop a laboratory scale approach to high throughput structure determination. The effort was successful in that over 40 structures were determined. These structures and the methods harnessed to obtain them are reported here. This report reflects on the value of automation but also on the continued requirement for a high degree of scientific and technical expertise. The efficiency of the process poses challenges to the current paradigm of structural analysis and publication. In the 5 year period we published ten peer-reviewed papers reporting structural data arising from the pipeline. Nevertheless, the number of structures solved exceeded our ability to analyse and publish each new finding. By reporting the experimental details and depositing the structures we hope to maximize the impact of the project by allowing others to follow up the relevant biology.

  19. A comparison of audio computer-assisted self-interviews to face-to-face interviews of sexual behavior among perinatally HIV-exposed youth.

    PubMed

    Dolezal, Curtis; Marhefka, Stephanie L; Santamaria, E Karina; Leu, Cheng-Shiun; Brackis-Cott, Elizabeth; Mellins, Claude Ann

    2012-04-01

    Computer-assisted interview methods are increasingly popular in the assessment of sensitive behaviors (e.g., substance abuse and sexual behaviors). It has been suggested that the effect of social desirability is diminished when answering via computer, as compared to an interviewer-administered face-to-face (FTF) interview, although studies exploring this hypothesis among adolescents are rare and yield inconsistent findings. This study compared two interview modes among a sample of urban, ethnic-minority, perinatally HIV-exposed U.S. youth (baseline = 148 HIV+, 126 HIV-, ages 9-16 years; follow-up = 120 HIV+, 110 HIV-, ages 10-19 years). Participants were randomly assigned to receive a sexual behavior interview via either Audio Computer-Assisted Self-Interview (ACASI) or FTF interview. The prevalence of several sexual behaviors and participants' reactions to the interviews were compared. Although higher rates of sexual behaviors were typically reported in the ACASI condition, the differences rarely reached statistical significance, even when limited to demographic subgroups--except for gender. Boys were significantly more likely to report several sexual behaviors in the ACASI condition compared to FTF, whereas among girls no significant differences were found between the two conditions. ACASI-assigned youth rated the interview process as easier and more enjoyable than did FTF-assigned youth, and this was fairly consistent across subgroup analyses as well. We conclude that these more positive reactions to the ACASI interview give that methodology a slight advantage, and boys may disclose more sexual behavior when using computer-assisted interviews.

  20. Equivalent weight loss for weight management programs delivered by phone and clinic

    PubMed Central

    Donnelly, Joseph E.; Goetz, Jeannine; Gibson, Cheryl; Sullivan, Debra K.; Lee, Robert; Smith, Bryan K.; Lambourne, Kate; Mayo, Matthew S.; Hunt, Suzanne; Lee, Jae Hoon; Honas, Jeffrey J.; Washburn, Richard A.

    2013-01-01

    Objective Face-to-face weight management is costly and presents barriers for individuals seeking treatment; thus, alternate delivery systems are needed. The objective of this study was to compare weight management delivered by face-to-face (FTF) clinic or group conference calls (phone). Design and Methods Randomized equivalency trial in 295 overweight/obese men/women (BMI = 35.1±4.9, Age = 43.8±10.2, Minority = 39.8%). Weight loss (0–6 months) was achieved by reducing energy intake between 1,200– 1,500 kcal/day and progressing physical activity to 300 minutes/week. Weight maintenance (7–18 months) provided adequate energy to maintain weight and continued 300 minutes/week of physical activity. Behavioral weight management strategies were delivered weekly for 6 months and gradually reduced during months 7–18. A cost analysis provided a comparison of expenses between groups. Results Weight change from baseline to 6 months was −13.4 ± 6.7% and −12.3 ± 7.0% for FTF clinic and phone, respectively. Weight change from 6 months to 18 months was 6.4 ± 7.0% and 6.4 ± 5.2%, for FTF clinic and phone, respectively. The cost to FTF participants was $789.58 more person. Conclusions Phone delivery provided equivalent weight loss and maintenance and reduced program cost. Ubiquitous access to phones provides a vast reach for this approach. PMID:23408579

  1. Sexual Behavior and STI/HIV Status Among Adolescents in Rural Malawi: An Evaluation of the Effect of Interview Mode on Reporting

    PubMed Central

    Mensch, Barbara S.; Hewett, Paul C.; Gregory, Richard; Helleringer, Stephane

    2008-01-01

    This study investigates the reporting of premarital sex in rural southern Malawi. It summarizes the results of an interview-mode experiment conducted with unmarried young women aged 15–21 in which respondents were randomly assigned to either an audio computer-assisted self-interview (ACASI) or a conventional face-to-face (FTF) interview. In addition, biomarkers were collected for HIV and three STIs: gonorrhea, chlamydia, and trichomoniasis. Prior to collecting the biomarkers, nurses conducted a short face-to-face interview in which they repeated questions about sexual behavior. The study builds on earlier research among adolescents in Kenya where we first investigated the feasibility and effectiveness of ACASI. In both Malawi and Kenya, the mode of interviewing and questions about types of sexual partners affect the reporting of sexual activity. Yet the results are not always in accordance with expectations. Reporting for “ever had sex” and “sex with a boyfriend” is higher in the FTF mode. When we ask about other partners as well as multiple lifetime partners, however, the reporting is consistently higher with ACASI, in many cases significantly so. The FTF mode produced more consistent reporting of sexual activity between the main interview and a subsequent interview. The association between infection status and reporting of sexual behavior is stronger in the FTF mode, although in both modes a number of young women who denied ever having sex test positive for STIs/HIV. PMID:19248718

  2. SPES and the neutron facilities at Laboratori Nazionali di Legnaro

    NASA Astrophysics Data System (ADS)

    Silvestrin, L.; Bisello, D.; Esposito, J.; Mastinu, P.; Prete, G.; Wyss, J.

    2016-03-01

    The SPES Radioactive Ion Beam (RIB) facility, now in the construction phase at INFN-LNL, has the aim to provide high-intensity and high-quality beams of neutron-rich nuclei for nuclear physics research as well as to develop an interdisciplinary research center based on the cyclotron proton beam. The SPES system is based on a dual-exit high-current cyclotron, with tunable proton beam energy 35-70MeV and 0.20-0.75mA. The first exit is used as proton driver to supply an ISOL system with an UCx Direct Target able to sustain a power of 10kW. The expected fission rate in the target is of the order of 10^{13} fissions per second. The exotic isotopes will be re-accelerated by the ALPI superconducting LINAC at energies of 10 A MeV and higher, for masses around A=130 amu, with an expected beam intensity of 10^7 - 10^9 pps. The second exit will be used for applied physics: radioisotope production for medicine and neutrons for material studies. Fast neutron spectra will be produced by the proton beam interaction with a conversion target. A production rate in excess of 10^{14} n/s can be achieved: this opens up the prospect of a high-flux neutron irradiation facility (NEPIR) to produce both discrete and continuous energy neutrons. A direct proton beam line is also envisaged. NEPIR and the direct proton line would dramatically increase the wide range of irradiation facilities presently available at LNL. We also present LENOS, a proposed project dedicated to accurate neutron cross-sections measurements using intense, well-characterized, broad energy neutron beams. Other activities already in operation at LNL are briefly reviewed: the SIRAD facility for proton and heavy-ion irradiation at the TANDEM-ALPI accelerator and the BELINA test facility at CN van de Graaff accelerator.

  3. 75 FR 13127 - Lead-Based Paint Renovation, Repair and Painting Activities in Target Housing and Child Occupied...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-18

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-R07-OPPT-2010-0155; FRL-9128-4] Lead-Based Paint Renovation, Repair and Painting Activities in Target Housing and Child Occupied Facilities; State of Iowa. Notice of... target housing and child-occupied facilities: 1. Establish the discipline of lead-safe renovator. 2...

  4. Moderator Demonstration Facility Design and Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClanahan, Tucker C.; Gallmeier, Franz X.; Iverson, Erik B.

    2017-02-01

    The Spallation Neutron Source (SNS) facility at Oak Ridge National Laboratory (ORNL) is implementing a Moderator Demonstration Facility (MDF) to demonstrate the performance characteristics of advanced moderators central to the Second Target Station (STS) for SNS. The MDF will use the "spare" front-end installation within the SNS accelerator support complex – an ion source, radio-frequency quadrupole (RFQ) accelerator, and medium-energy beam transport (MEBT) chopper - to provide a 2.5 MeV proton beam of peak current 50 mA and maximum pulse length of less than 10 s at a repetition rate of no more than 60 Hz to a suitable neutron-producingmore » target to demonstrate those aspects of moderator performance necessary to meet the goals of the STS design e ort. The accelerator beam parameters are not open to variation beyond that described above - they are fixed by the nature of the spare front-end installation (the Integrated Test Stand Facility; ITSF). Accordingly, there are some neutronic challenges in developing prototypic moderator illumination from a very non-prototypic primary neutron source; the spallation source we are attempting to mimic has an extended neutron source volume approximately 40 cm long (in the direction of the proton beam), approximately 10 cm wide (horizontally transverse to the proton beam) and approximately 5 cm high (vertically transverse to the proton beam), and an isotropic evaporation energy spectrum with mean energy above 1 MeV. In contrast, the primary neutron source available from the 7Li(p,n) reaction (the most prolific at 2.5 MeV proton energy by more than an order of magnitude) is strongly anisotropic, with an energy spectrum that is both strongly dependent on emission angle and kinematically limited to less than 700 keV, and the interaction zone between the incident protons and any target material (neutron-producing or not) is intrinsically limited to a few tens of microns. The MDF will be unique and innovative amongst the world

  5. State Law Approaches to Facility Regulation of Abortion and Other Office Interventions

    PubMed Central

    Daniel, Sara; Cloud, Lindsay K.

    2018-01-01

    Objectives. To compare the prevalence and characteristics of facility laws governing abortion provision specifically (targeted regulation of abortion providers [TRAP] laws); office-based surgeries, procedures, sedation or anesthesia (office interventions) generally (OBS laws); and other procedures specifically. Methods. We conducted cross-sectional legal assessments of state facility laws for office interventions in effect as of August 1, 2016. We coded characteristics for each law and compared characteristics across categories of laws. Results. TRAP laws (n = 55; in 34 states) were more prevalent than OBS laws (n = 25; in 25 states) or laws targeting other procedures (n = 1; in 1 state). TRAP laws often regulated facilities that would not be regulated under OBS laws (e.g., all TRAP laws, but only 2 OBS laws, applied regardless of sedation or anesthesia used). TRAP laws imposed more numerous and more stringent requirements than OBS laws. Conclusions. Many states regulate abortion-providing facilities differently, and more stringently, than facilities providing other office interventions. The Supreme Court’s 2016 decision in Whole Woman’s Health v Hellerstedt casts doubt on the legitimacy of that differential treatment. PMID:29470114

  6. A High-Lift Building Block Flow: Turbulent Boundary Layer Relaminarization A Final Report

    NASA Technical Reports Server (NTRS)

    Bourassa, Corey; Thomas, Flint O.; Nelson, Robert C.

    2000-01-01

    Experimental evidence exists which suggests turbulent boundary layer relaminarization may play an important role in the inverse Reynolds number effect in high-lift systems. An experimental investigation of turbulent boundary layer relaminarization has been undertaken at the University of Notre Dame's Hessert Center for Aerospace Research in cooperation with NASA Dryden Flight Research Center. A wind tunnel facility has been constructed at the Hessert Center and relaminarization achieved. Preliminary evidence suggests the current predictive tools available are inadequate at determining the onset of relaminarization. In addition, an in-flight relaminarization experiment for the NASA Dryden FTF-II has been designed to explore relaminarization at Mach and Reynolds numbers more typical of commercial high-lift systems.

  7. The comparison of the effects of three physiotherapy techniques on hamstring flexibility in children: a prospective, randomized, single-blind study.

    PubMed

    Czaprowski, Dariusz; Leszczewska, Justyna; Kolwicz, Aleksandra; Pawłowska, Paulina; Kędra, Agnieszka; Janusz, Piotr; Kotwicki, Tomasz

    2013-01-01

    The aim of the study was to evaluate changes in hamstring flexibility in 120 asymptomatic children who participated in a 6-week program consisting of one physiotherapy session per week and daily home exercises. The recruitment criteria included age (10-13 years), no pain, injury or musculoskeletal disorder throughout the previous year, physical activity limited to school sport. Subjects were randomly assigned to one of the three groups: (1) post-isometric relaxation - PIR (n = 40), (2) static stretch combined with stabilizing exercises - SS (n = 40) and (3) stabilizing exercises - SE (n = 40). Hamstring flexibility was assessed with straight leg raise (SLR), popliteal angle (PA) and finger-to-floor (FTF) tests. The examinations were conducted by blinded observers twice, prior to the program and a week after the last session with the physiotherapist. Twenty-six children who did not participate in all six exercise sessions with physiotherapists were excluded from the analysis. The results obtained by 94 children were analyzed (PIR, n = 32; SS, n = 31; SE, n = 31). In the PIR and SS groups, a significant (P<0.01) increase in SLR, PA, FTF results was observed. In the SE group, a significant (P<0.001) increase was observed in the SLR but not in the PA and FTF (P>0.05). SLR result in the PIR and SS groups was significantly (P<0.001) higher than in the SE group. As far as PA results are concerned, a significant difference was observed only between the SS and SE groups (P = 0.014). There were no significant (P = 0.15) differences regarding FTF results between the three groups. Post-isometric muscle relaxation and static stretch with stabilizing exercises led to a similar increase in hamstring flexibility and trunk forward bend in healthy 10-13-year-old children. The exercises limited to straightening gluteus maximus improved the SLR result, but did not change the PA and FTF results.

  8. Scope of Work for Integration Management and Installation Services of the National Ignition Facility Beampath Infrastructure System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coyle, P.D.

    2000-04-25

    The goal of the National Ignition Facility (NIF) project is to provide an aboveground experimental capability for maintaining nuclear competence and weapons effects simulation and to provide a facility capable of achieving fusion ignition using solid-state lasers as the energy driver. The facility will incorporate 192 laser beams, which will be focused onto a small target located at the center of a spherical target chamber--the energy from the laser beams will be deposited in a few billionths of a second. The target will then implode, forcing atomic nuclei to sufficiently high temperatures and densities necessary to achieve a miniature fusionmore » reaction. The NIF is under construction, at Livermore, California, located approximately 50 miles southeast of San Francisco, California.« less

  9. Scope of Work for Integration Management and Installation Services of the National Ignition Facility Beampath Infrastructure System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coyle, P.D.

    The goal of the National Ignition Facility (NIF) project is to provide an aboveground experimental capability for maintaining nuclear competence and weapons effects simulation and to provide a facility capable of achieving fusion ignition using solid-state lasers as the energy driver. The facility will incorporate 192 laser beams, which will be focused onto a small target located at the center of a spherical target chamber--the energy from the laser beams will be deposited in a few billionths of a second. The target will then implode, forcing atomic nuclei to sufficiently high temperatures and densities necessary to achieve a miniature fusionmore » reaction. The NIF is under construction, at Livermore, California, located approximately 50 miles southeast of San Francisco, California.« less

  10. Geant4 simulation of the CERN-EU high-energy reference field (CERF) facility.

    PubMed

    Prokopovich, D A; Reinhard, M I; Cornelius, I M; Rosenfeld, A B

    2010-09-01

    The CERN-EU high-energy reference field facility is used for testing and calibrating both active and passive radiation dosemeters for radiation protection applications in space and aviation. Through a combination of a primary particle beam, target and a suitable designed shielding configuration, the facility is able to reproduce the neutron component of the high altitude radiation field relevant to the jet aviation industry. Simulations of the facility using the GEANT4 (GEometry ANd Tracking) toolkit provide an improved understanding of the neutron particle fluence as well as the particle fluence of other radiation components present. The secondary particle fluence as a function of the primary particle fluence incident on the target and the associated dose equivalent rates were determined at the 20 designated irradiation positions available at the facility. Comparisons of the simulated results with previously published simulations obtained using the FLUKA Monte Carlo code, as well as with experimental results of the neutron fluence obtained with a Bonner sphere spectrometer, are made.

  11. Flyer Target Acceleration and Energy Transfer at its Collision with Massive Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borodziuk, S.; Kasperczuk, A.; Pisarczyk, T.

    2006-01-15

    Numerical modelling was aimed at simulation of successive events resulting from interaction of laser beam-single and double targets. It was performed by means of the 2D Lagrangian hydrodynamics code ATLANT-HE. This code is based on one-fluid and two-temperature model of plasma with electron and ion heat conductivity considerations. The code has an advanced treatment of laser light propagation and absorption. This numerical modelling corresponds to the experiment, which was carried out with the use of the PALS facility. Two types of planar solid targets, i.e. single massive Al slabs and double targets consisting of 6 {mu}m thick Al foil andmore » Al slab were applied. The targets were irradiated by the iodine laser pulses of two wavelengths: 1.315 and 0.438 {mu}m. A pulse duration of 0.4 ns and a focal spot diameter of 250 {mu}m at a laser energy of 130 J were used. The numerical modelling allowed us to obtain a more detailed description of shock wave propagation and crater formation.« less

  12. Simulations for the future converter of the e-linac for the TRIUMF ARIEL facility

    NASA Astrophysics Data System (ADS)

    Lebois, M.; Bricault, P.

    2011-09-01

    In the next years, TRIUMF activity will be focused on building a new facility to produce very intense neutron rich radioactive ion beams. Unlike others ISOL facilities, the e-linac primary beam, that will induce the fission, is an intense electron beam (50 MeV energy and 10 mA intensity). This challenging choice, which make this installation unique, despite the ALTO facility, makes an average fission rate of 1013-14fissions/s in the target.This beam is sent on an uranium carbide target (UCx), but due to its power, it is essential to insert a "converter" on the beam path to avoid a target overheating. The purpose of this converter is to convert electrons into Bremsstralhung radiation. The γ rays produce excite the dipole resonance of 23892U (15 MeV) inducing fission. Energy deposition, fission rate and thermal behavior were simulated using Monte Carlo techniques are presented in this paper

  13. Healthcare worker influenza vaccination in Oregon nursing homes: correlates of facility characteristics.

    PubMed

    Campbell, Lauren J; Li, Qinghua; Li, Yue

    2014-10-01

    Nursing home (NH) employee influenza vaccination is associated with reductions in morbidity and mortality among residents. Little is known regarding associations between NH characteristics and employee influenza vaccination rates (EVRs). This study identifies NH characteristics that may be associated with EVRs. Data on employee vaccination rates and programs were gathered from the Office for Oregon Health Policy and Research reports for 3 influenza seasons from 2009 to 2012 and merged with Online Survey, Certification, and Reporting files, from which facility characteristics were obtained. Market controls were obtained from the 2010 Area Health Resource File. Multivariate linear and logistic regression were used to model relationships between facility characteristics and EVR per facility per year, whether formal education for employees was conducted, and whether 2010, 2015, and 2020 Healthy People targets were met. Oregon nursing homes from 2009 to 2012. NHs reporting sufficient data to calculate an EVR were included. Based on information obtained from 2009-2010, 2010-2011, and 2011-2012 surveys, EVRs were calculated for 113/140, 129/141, and 137/140 (81%, 91%, and 98% of) NHs, respectively. Dependent variables were EVR per facility per year, whether formal education for employees was conducted, and whether 2010, 2015, and 2020 Healthy People targets were met. Independent variables included facility characteristics and market controls. On average, chain-affiliated NHs had 9% higher EVRs (P = .01) and 73% higher odds of achieving 60% EVR (2010 target, P = .05) than free-standing NHs. For-profit NHs had, on average, 8% lower EVRs (P = .04) than not-for-profit NHs. Surprisingly, a 10% increase in proportion of Medicaid residents was associated with a 2% increase in EVR (P = .01) and higher odds of achieving 60% (odds ratio = 1.20, P = .004) and 70% (2015 target, odds ratio = 1.14, P = .05) EVR. Given that NHs generally have low employee influenza vaccination

  14. Encapsulation methods for solid radionuclide production targets at a medium-energy cyclotron facility

    NASA Astrophysics Data System (ADS)

    Steyn, Gideon; Vermeulen, Christiaan; Isaacs, Eugene

    2018-05-01

    The techniques employed at iThemba LABS for the encapsulation of solid radionuclide production targets, based on cold indentation welding, electron beam welding and laser welding, are described. Some aspects of the target holders and cooling requirements to bombard targets in a tandem configuration with a 66 MeV proton beam, with intensities up to nominally 250 A, are also briefly discussed. These techniques are inter alia suitable for a production regimen compatible with the new generation of commercial, high-intensity 70 MeV cyclotrons.

  15. Ca-48 targets - Home and abroad!

    NASA Astrophysics Data System (ADS)

    Greene, John P.; Carpenter, Michael; Janssens, Robert V. F.

    2018-05-01

    Using the method of reduction/distillation, high-purity films of robust and ductile calcium metal were prepared for use as targets in nuclear physics experiments. These targets, however, are extremely air-sensitive and procedures must be developed for their handling and use without exposure to the air. In most instances, the thin 48Ca target is used on a carrier foil (backing) and a thin covering film of similar material is employed to further reduce re-oxidation. Un-backed metallic targets are rarely produced due to these concerns. In addition, the low natural abundance of the isotope 48Ca provided an increased incentive for the best efficiencies available in their preparation. Here, we describe the preparation of 48Ca targets employing a gold backing and thin gold cover for use at home, Argonne National Laboratory (ANL), as well as abroad, at Osaka University. For the overseas shipments, much care and preparation were necessary to ensure good targets and safe arrival to the experimental facilities.

  16. National Ignition Facility under fire over ignition failure

    NASA Astrophysics Data System (ADS)

    Allen, Michael

    2016-08-01

    The 3.5bn National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory in California is no nearer to igniting a sustainable nuclear fusion burn - four years after its initial target date - according to a report by the US National Nuclear Security Administration (NNSA).

  17. Communication, compassion, and computers: Adolescents' and adults' evaluations of online and face-to-face deception.

    PubMed

    O'Rourke, Sean; Eskritt, Michelle; Bosacki, Sandra

    2018-06-01

    We explored Canadian adolescents', emergent adults', and adults' understandings of deception in computer mediated communication (CMC) compared to face to face (FtF). Participants between 13 and 50 years read vignettes of different types of questionable behaviour that occurred online or in real life, and were asked to judge whether deception was involved, and the acceptability of the behaviour. Age groups evaluated deception similarly; however, adolescents held slightly different views from adults about what constitutes deception, suggesting that the understanding of deception continues to develop into adulthood. Furthermore, CMC behaviour was rated as more deceptive than FtF in general, and participants scoring higher on compassion perceived vignettes to be more deceptive. This study is a step towards better understanding the relationships between perceptions of deception across adolescence into adulthood, mode of communication, and compassion, and may have implications for how adults communicate with youth about deception in CMC and FtF contexts. Copyright © 2018 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  18. The Alto Tandem and Isol Facility at IPN Orsay

    NASA Astrophysics Data System (ADS)

    Franchoo, Serge

    Alto is an infrastructure for experimental nuclear physics in France that comprises both an on-line isotope-separation facility based on the photofission of uranium and a stable-ion beam facility based on a 14.5-MV tandem accelerator. The isotope-separation on-line section of Alto is dedicated to the production of neutron-rich radioactive ion beams (RIB) from the interaction of the γ-flux induced by a 50-MeV 10-µA electron beam in a uranium-carbide target. It is dimensioned for 1011 fissions per second. The RIB facility is exploited in alternating mode with the tandem-based section of Alto, capable of accelerating both light ions for nuclear astrophysics and heavy ions for γ-spectroscopy. The facility thereby offers the opportunity to deliver beams to a large range of physics programmes from nuclear to interdisciplinary physics. In this article, we present the Alto facility as well as some of the highlights and prospects of the experimental programme.

  19. Critical need for MFE: the Alcator DX advanced divertor test facility

    NASA Astrophysics Data System (ADS)

    Vieira, R.; Labombard, B.; Marmar, E.; Irby, J.; Wolf, S.; Bonoli, P.; Fiore, C.; Granetz, R.; Greenwald, M.; Hutchinson, I.; Hubbard, A.; Hughes, J.; Lin, Y.; Lipschultz, B.; Parker, R.; Porkolab, M.; Reinke, M.; Rice, J.; Shiraiwa, S.; Terry, J.; Theiler, C.; Wallace, G.; White, A.; Whyte, D.; Wukitch, S.

    2013-10-01

    Three critical challenges must be met before a steady-state, power-producing fusion reactor can be realized: how to (1) safely handle extreme plasma exhaust power, (2) completely suppress material erosion at divertor targets and (3) do this while maintaining a burning plasma core. Advanced divertors such as ``Super X'' and ``X-point target'' may allow a fully detached, low temperature plasma to be produced in the divertor while maintaining a hot boundary layer around a clean plasma core - a potential game-changer for magnetic fusion. No facility currently exists to test these ideas at the required parallel heat flux densities. Alcator DX will be a national facility, employing the high magnetic field technology of Alcator combined with high-power ICRH and LHCD to test advanced divertor concepts at FNSF/DEMO power exhaust densities and plasma pressures. Its extended vacuum vessel contains divertor cassettes with poloidal field coils for conventional, snowflake, super-X and X-point target geometries. Divertor and core plasma performance will be explored in regimes inaccessible in conventional devices. Reactor relevant ICRF and LH drivers will be developed, utilizing high-field side launch platforms for low PMI. Alcator DX will inform the conceptual development and accelerate the readiness-for-deployment of next-step fusion facilities.

  20. Targets used in the production of radioactive ion beams at the HRIBF

    NASA Astrophysics Data System (ADS)

    Stracener, D. W.; Alton, G. D.; Auble, R. L.; Beene, J. R.; Mueller, P. E.; Bilheux, J. C.

    2004-03-01

    Radioactive ion beams are produced at the Holifield Radioactive Ion Beam Facility using the Isotope Separation On-Line (ISOL) technique where the atoms are produced in a thick target, transported to an ion source, ionized, and extracted from the ion source to form an ion beam. These radioactive ion beams are then accelerated to energies of a few MeV per nucleon and delivered to experimental stations for use in nuclear physics and nuclear astrophysics experiments. At the heart of this facility is the RIB production target, where the radioactive nuclei are produced using beams of light ions (p, d, 3He, α) to induce nuclear reactions in the target nuclei. Several target materials have been developed and used successfully, including Al 2O 3, HfO 2, SiC, CeS, liquid Ge, liquid Ni, and a low-density matrix of uranium carbide. The details of these targets and some of the target developments that led to the delivery of high-quality radioactive ion beams are discussed in this paper.

  1. Murine norovirus infection in Brazilian animal facilities

    PubMed Central

    Rodrigues, Daniele Masselli; Moreira, Josélia Cristina de Oliveira; Lancellotti, Marcelo; Gilioli, Rovilson; Corat, Marcus Alexandre Finzi

    2016-01-01

    Murine norovirus (MNV) is a single-stranded positive-sense RNA virus of the Caliciviridae family. MNV has been reported to infect laboratory mice with the ability to cause lethal infections in strains lacking components of the innate immune response. Currently, MNV is considered the most prevalent infectious agent detected in laboratory mouse facilities. In this study, mice in 22 laboratory animal facilities within Brazil were analyzed for MNV infection. Using primers targeting a conserved region of the viral capsid, MNV was detected by RT-PCR in 137 of 359 mice from all 22 facilities. Nucleotide sequencing and phylogenetic analysis of the capsid region from the viral genome showed identity ranging from 87% to 99% when compared to reported MNV sequences. In addition, RAW264.7 cells inoculated with a mouse fecal suspension displayed cytopathic effect after the fifth passage. This study represents the first report of MNV in mouse colonies in Brazilian laboratory animal facilities, emphasizing the relevance of a health surveillance program in such environments. PMID:28049885

  2. Detection of facilities in satellite imagery using semi-supervised image classification and auxiliary contextual observables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, Neal R; Ruggiero, Christy E; Pawley, Norma H

    2009-01-01

    Detecting complex targets, such as facilities, in commercially available satellite imagery is a difficult problem that human analysts try to solve by applying world knowledge. Often there are known observables that can be extracted by pixel-level feature detectors that can assist in the facility detection process. Individually, each of these observables is not sufficient for an accurate and reliable detection, but in combination, these auxiliary observables may provide sufficient context for detection by a machine learning algorithm. We describe an approach for automatic detection of facilities that uses an automated feature extraction algorithm to extract auxiliary observables, and a semi-supervisedmore » assisted target recognition algorithm to then identify facilities of interest. We illustrate the approach using an example of finding schools in Quickbird image data of Albuquerque, New Mexico. We use Los Alamos National Laboratory's Genie Pro automated feature extraction algorithm to find a set of auxiliary features that should be useful in the search for schools, such as parking lots, large buildings, sports fields and residential areas and then combine these features using Genie Pro's assisted target recognition algorithm to learn a classifier that finds schools in the image data.« less

  3. Electron Shock Ignition of Inertial Fusion Targets

    DOE PAGES

    Shang, W. L.; Betti, R.; Hu, S. X.; ...

    2017-11-07

    Here, it is shown that inertial fusion targets designed with low implosion velocities can be shock ignited using laser–plasma interaction generated hot electrons (hot-e) to obtain high-energy gains. These designs are robust to multimode asymmetries and are predicted to ignite even for significantly distorted implosions. Electron shock ignition requires tens of kilojoules of hot-e, which can only be produced on a large laser facility like the National Ignition Facility, with the laser to hot-e conversion efficiency greater than 10% at laser intensities ~10 16 W/cm 2.

  4. Electron Shock Ignition of Inertial Fusion Targets

    NASA Astrophysics Data System (ADS)

    Shang, W. L.; Betti, R.; Hu, S. X.; Woo, K.; Hao, L.; Ren, C.; Christopherson, A. R.; Bose, A.; Theobald, W.

    2017-11-01

    It is shown that inertial confinement fusion targets designed with low implosion velocities can be shock-ignited using laser-plasma interaction generated hot electrons (hot-e 's) to obtain high energy gains. These designs are robust to multimode asymmetries and are predicted to ignite even for significantly distorted implosions. Electron shock ignition requires tens of kilojoules of hot-e 's which can be produced only at a large laser facility like the National Ignition Facility, with the laser-to-hot-e conversion efficiency greater than 10% at laser intensities ˜1016 W /cm2 .

  5. Electron Shock Ignition of Inertial Fusion Targets.

    PubMed

    Shang, W L; Betti, R; Hu, S X; Woo, K; Hao, L; Ren, C; Christopherson, A R; Bose, A; Theobald, W

    2017-11-10

    It is shown that inertial confinement fusion targets designed with low implosion velocities can be shock-ignited using laser-plasma interaction generated hot electrons (hot-e's) to obtain high energy gains. These designs are robust to multimode asymmetries and are predicted to ignite even for significantly distorted implosions. Electron shock ignition requires tens of kilojoules of hot-e's which can be produced only at a large laser facility like the National Ignition Facility, with the laser-to-hot-e conversion efficiency greater than 10% at laser intensities ∼10^{16}  W/cm^{2}.

  6. Geophysical background and as-built target characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, J.W.

    1994-09-01

    The US Department of Energy (DOE) Grand Junction Projects Office (GJPO) has provided a facility for DOE, other Government agencies, and the private sector to evaluate and document the utility of specific geophysical measurement techniques for detecting and defining cultural and environmental targets. This facility is the Rabbit Valley Geophysics Performance Evaluation Range (GPER). Geophysical surveys prior to the fiscal year (FY) 1994 construction of new test cells showed the primary test area to be relatively homogeneous and free from natural or man-made artifacts, which would generate spurious responses in performance evaluation data. Construction of nine new cell areas inmore » Rabbit Valley was completed in June 1994 and resulted in the emplacement of approximately 150 discrete targets selected for their physical and electrical properties. These targets and their geophysical environment provide a broad range of performance evaluation parameters from ``very easy to detect`` to ``challenging to the most advanced systems.`` Use of nonintrusive investigative techniques represents a significant improvement over intrusive characterization methods, such as drilling or excavation, because there is no danger of exposing personnel to possible hazardous materials and no risk of releasing or spreading contamination through the characterization activity. Nonintrusive geophysical techniques provide the ability to infer near-surface structure and waste characteristics from measurements of physical properties associated with those targets.« less

  7. A Comparison of Audio Computer-Assisted Self-Interviews to Face-to-Face Interviews of Sexual Behavior Among Perinatally HIV-Exposed Youth

    PubMed Central

    Marhefka, Stephanie L.; Santamaria, E. Karina; Leu, Cheng-Shiun; Brackis-Cott, Elizabeth; Mellins, Claude Ann

    2013-01-01

    Computer-assisted interview methods are increasingly popular in the assessment of sensitive behaviors (e.g., substance abuse and sexual behaviors). It has been suggested that the effect of social desirability is diminished when answering via computer, as compared to an interviewer-administered face-to-face (FTF) interview, although studies exploring this hypothesis among adolescents are rare and yield inconsistent findings. This study compared two interview modes among a sample of urban, ethnic-minority, perinatally HIV-exposed U.S. youth (baseline = 148 HIV+, 126 HIV−, ages 9–16 years; follow-up = 120 HIV+, 110 HIV−, ages 10–19 years). Participants were randomly assigned to receive a sexual behavior interview via either Audio Computer-Assisted Self-Interview (ACASI) or FTF interview. The prevalence of several sexual behaviors and participants’ reactions to the interviews were compared. Although higher rates of sexual behaviors were typically reported in the ACASI condition, the differences rarely reached statistical significance, even when limited to demographic subgroups—except for gender. Boys were significantly more likely to report several sexual behaviors in the ACASI condition compared to FTF, whereas among girls no significant differences were found between the two conditions. ACASI-assigned youth rated the interview process as easier and more enjoyable than did FTF-assigned youth, and this was fairly consistent across subgroup analyses as well. We conclude that these more positive reactions to the ACASI interview give that methodology a slight advantage, and boys may disclose more sexual behavior when using computer-assisted interviews. PMID:21604065

  8. The Scottish Structural Proteomics Facility: targets, methods and outputs

    PubMed Central

    Oke, Muse; Carter, Lester G.; Johnson, Kenneth A.; Liu, Huanting; McMahon, Stephen A.; Yan, Xuan; Kerou, Melina; Weikart, Nadine D.; Kadi, Nadia; Sheikh, Md. Arif; Schmelz, Stefan; Dorward, Mark; Zawadzki, Michal; Cozens, Christopher; Falconer, Helen; Powers, Helen; Overton, Ian M.; van Niekerk, C. A. Johannes; Peng, Xu; Patel, Prakash; Garrett, Roger A.; Prangishvili, David; Botting, Catherine H.; Coote, Peter J.; Dryden, David T. F.; Barton, Geoffrey J.; Schwarz-Linek, Ulrich; Challis, Gregory L.; Taylor, Garry L.; White, Malcolm F.

    2010-01-01

    The Scottish Structural Proteomics Facility was funded to develop a laboratory scale approach to high throughput structure determination. The effort was successful in that over 40 structures were determined. These structures and the methods harnessed to obtain them are reported here. This report reflects on the value of automation but also on the continued requirement for a high degree of scientific and technical expertise. The efficiency of the process poses challenges to the current paradigm of structural analysis and publication. In the 5 year period we published ten peer-reviewed papers reporting structural data arising from the pipeline. Nevertheless, the number of structures solved exceeded our ability to analyse and publish each new finding. By reporting the experimental details and depositing the structures we hope to maximize the impact of the project by allowing others to follow up the relevant biology. Electronic supplementary material The online version of this article (doi:10.1007/s10969-010-9090-y) contains supplementary material, which is available to authorized users. PMID:20419351

  9. Observations of radiation damage and recovery in ammonia targets

    NASA Astrophysics Data System (ADS)

    McKee, P. M.

    2004-06-01

    The Polarized Target Group at the University of Virginia has conducted experiments at both the Stanford Linear Accelerator Center (SLAC) and the Thomas Jefferson National Accelerator Facility (JLab) in which a high-intensity (100 nA) electron beam was focused on a polarized target of solid ammonia and/ or solid, deuterated ammonia. Analysis of the target polarization data have revealed several unique characteristics of ammonia. Topics discussed include the rate of polarization decay with accumulated charge, methods of recovering polarization through target annealing and damage-induced shifts in the optimum microwave frequency used to drive the polarization.

  10. Computer-mediated focus groups.

    PubMed

    Walston, J T; Lissitz, R W

    2000-10-01

    This article discusses the feasibility and effectiveness of computer-mediated (CM) focus groups. The study describes technological and practical considerations the authors learned from conducting such groups and reports on a comparison of the reactions of CM and face-to-face (FTF) participants in focus groups discussing academic dishonesty. The results suggest that the CM environment, in comparison to FTF, may lessen members' concern about what the moderator thinks of them and discourage participants from withholding embarrassing information. The article concludes with a list of suggestions for this technique and a discussion of the potential advantages and limitations associated with CM focus groups.

  11. Laser Irradiated Foam Targets: Absorption and Radiative Properties

    NASA Astrophysics Data System (ADS)

    Salvadori, Martina; Luigi Andreoli, Pier; Cipriani, Mattia; Consoli, Fabrizio; Cristofari, Giuseppe; De Angelis, Riccardo; di Giorgio, Giorgio; Giulietti, Danilo; Ingenito, Francesco; Gus'kov, Sergey Yu.; Rupasov, Alexander A.

    2018-01-01

    An experimental campaign to characterize the laser radiation absorption of foam targets and the subsequent emission of radiation from the produced plasma was carried out in the ABC facility of the ENEA Research Center in Frascati (Rome). Different targets have been used: plastic in solid or foam state and aluminum targets. The activated different diagnostics allowed to evaluate the plasma temperature, the density distribution, the fast particle spectrum and the yield of the X-Ray radiation emitted by the plasma for the different targets. These results confirm the foam homogenization action on laser-plasma interaction, mainly attributable to the volume absorption of the laser radiation propagating in such structured materials. These results were compared with simulation absorption models of the laser propagating into a foam target.

  12. Performance Characterization of the Production Facility Prototype Helium Flow System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woloshun, Keith Albert; Dale, Gregory E.; Dalmas, Dale Allen

    2015-12-16

    The roots blower in use at ANL for in-beam experiments and also at LANL for flow tests was sized for 12 mm diameter disks and significantly less beam heating. Currently, the disks are 29 mm in diameter, with a 12 mm FWHM Gaussian beam spot at 42 MeV and 2.86 μA on each side of the target, 5.72 μA total. The target design itself is reported elsewhere. With the increased beam heating, the helium flow requirement increased so that a larger blower was need for a mass flow rate of 400 g/s at 2.76 MPa (400 psig). An Aerzen GMmore » 12.4 blower was selected, and is currently being installed at the LANL facility for target and component flow testing. This report describes this blower/motor/pressure vessel package and the status of the facility preparations. Blower performance (mass flow rate as a function of loop pressure drop) was measured at 4 blower speeds. Results are reported below.« less

  13. The Impact of Pollution Prevention on Toxic Environmental Releases from U.S. Manufacturing Facilities.

    PubMed

    Ranson, Matthew; Cox, Brendan; Keenan, Cheryl; Teitelbaum, Daniel

    2015-11-03

    Between 1991 and 2012, the facilities that reported to the U.S. Environmental Protection Agency's Toxic Release Inventory (TRI) Program conducted 370,000 source reduction projects. We use this data set to conduct the first quasi-experimental retrospective evaluation of how implementing a source reduction (pollution prevention) project affects the quantity of toxic chemicals released to the environment by an average industrial facility. We use a differences-in-differences methodology, which measures how implementing a source reduction project affects a facility's releases of targeted chemicals, relative to releases of (a) other untargeted chemicals from the same facility, or (b) the same chemical from other facilities in the same industry. We find that the average source reduction project causes a 9-16% decrease in releases of targeted chemicals in the year of implementation. Source reduction techniques vary in effectiveness: for example, raw material modification causes a large decrease in releases, while inventory control has no detectable effect. Our analysis suggests that in aggregate, the source reduction projects carried out in the U.S. since 1991 have prevented between 5 and 14 billion pounds of toxic releases.

  14. The SPES High Power ISOL production target

    NASA Astrophysics Data System (ADS)

    Andrighetto, A.; Corradetti, S.; Ballan, M.; Borgna, F.; Manzolaro, M.; Scarpa, D.; Monetti, A.; Rossignoli, M.; Silingardi, R.; Mozzi, A.; Vivian, G.; Boratto, E.; De Ruvo, L.; Sattin, N.; Meneghetti, G.; Oboe, R.; Guerzoni, M.; Margotti, A.; Ferrari, M.; Zenoni, A.; Prete, G.

    2016-11-01

    SPES (Selective Production of Exotic Species) is a facility under construction at INFN-LNL (Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Legnaro), aimed to produce intense neutron-rich radioactive ion beams (RIBs). These will be obtained using the ISOL (Isotope Separation On-Line) method, bombarding a uranium carbide target with a proton beam of 40MeV energy and currents up to 200μA. The target configuration was designed to obtain a high number of fissions, up to 1013 per second, low power deposition and fast release of the produced isotopes. The exotic isotopes generated in the target are ionized, mass separated and re-accelerated by the ALPI superconducting LINAC at energies of 10AMeV and higher, for masses in the region of A = 130 amu , with an expected rate on the secondary target up to 109 particles per second. In this work, recent results on the R&D activities regarding the SPES RIB production target-ion source system are reported.

  15. PEGASYS: A proposed internal target-spectrometer facility for the PEP storage ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Bibber, K.

    A proposal for an internal gas-jet target and forward spectrometer for the PEP storage ring is described. The beam structure, allowable luminosity (L=10/sup 33/ cm/sup /minus/2/s/sup /minus/1/ for H/sub 2/, D/sub 2/ decreasing as Z/sup /minus/1.75/ for nuclear targets) and energy (E/sub e/less than or equal to 15 GeV) make the ring ideal for multiparticle coincidence studies in the scaling regime, and where perturbative QCD may be an apt description of some exclusive and semi-inclusive reactions. 17 refs., 5 figs.

  16. A new gun facility dedicated to performing shock physics and terminal ballistics experiments

    NASA Astrophysics Data System (ADS)

    Zakraysek, Alan J.; Sutherland, Gerrit T.; Sandusky, Harold D.; Strange, David

    2000-04-01

    A new building has been constructed to house various powder and single-stage and two-stage gas guns at the Naval Surface Warfare Center, Indian Head Division. Guns previously located at the Naval Research Laboratory and the former White Oak Site of the Naval Surface Warfare Center have been relocated here. Most of the guns are mounted on moveable pedestals to allow them to be shot into various chambers. The facility includes a concrete blast chamber, a target chamber/catch tank for flyer plate experiments, and a target chamber outfitted for terminal ballistics measurements. This paper will discuss the capabilities of this new facility.

  17. EOS/AMSU: A Blackbody Spacecraft Test Targets Operation and Maintenance Manual

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This report describes the spacecraft test targets and readout console as described in section 5.3.3 of the performance specification S-480-80. The spacecraft targets are to be used to provide a well-known radiometric reference for testing the functionality of the AMSU-A instruments at the spacecraft contractor's facility.

  18. Prospects for a Muon Spin Resonance Facility in the MuCool Test Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnstone, John A.

    2017-04-12

    This paper investigates the feasibility of re-purposing the MuCool Test Area beamline and experimental hall to support a Muon Spin Resonance facility, which would make it the only such facility in the US. This report reviews the basic muon production concepts studied and operationally implemented at TRIUMF, PSI, and RAL and their application to the MTA facility. Two scenarios were determined feasible. One represents an initial minimal-shielding and capital-cost investment stage with a single secondary muon beamline that transports the primary beam to an existing high-intensity beam absorber located outside of the hall. Another, upgraded stage, involves an optimized productionmore » target pile and high-intensity absorber installed inside the experimental hall and potentially multiple secondary muon lines. In either scenario, with attention to target design, the MTA can host enabling and competitive Muon Spin Resonance experiments« less

  19. NASA-SETI microwave observing project: Targeted Search Element (TSE)

    NASA Technical Reports Server (NTRS)

    Webster, L. D.

    1991-01-01

    The Targeted Search Element (TSE) performs one of two complimentary search strategies of the NASA-SETI Microwave Observing Project (MOP): the targeted search. The principle objective of the targeted search strategy is to scan the microwave window between the frequencies of one and three gigahertz for narrowband microwave emissions eminating from the direction of 773 specifically targeted stars. The scanning process is accomplished at a minimum resolution of one or two Hertz at very high sensitivity. Detectable signals will be of a continuous wave or pulsed form and may also drift in frequency. The TSE will possess extensive radio frequency interference (RFI) mitigation and verification capability as the majority of signals detected by the TSE will be of local origin. Any signal passing through RFI classification and classifiable as an extraterrestrial intelligence (ETI) candidate will be further validated at non-MOP observatories using established protocol. The targeted search will be conducted using the capability provided by the TSE. The TSE provides six Targeted Search Systems (TSS) which independently or cooperatively perform automated collection, analysis, storage, and archive of signal data. Data is collected in 10 megahertz chunks and signal processing is performed at a rate of 160 megabits per second. Signal data is obtained utilizing the largest radio telescopes available for the Targeted Search such as those at Arecibo and Nancay or at the dedicated NASA-SETI facility. This latter facility will allow continuous collection of data. The TSE also provides for TSS utilization planning, logistics, remote operation, and for off-line data analysis and permanent archive of both the Targeted Search and Sky Survey data.

  20. Production of 9Be targets for nuclear physics experiments

    NASA Astrophysics Data System (ADS)

    Marín-Lámbarri, D. J.; Kheswa, N. Y.

    2018-05-01

    Self-supporting beryllium (9Be) targets were produced by mechanical rolling method in which a double pack technique was implemented. Targets were used for the investigation of the low-lying excitation energy region in 9B through the 9Be(3He,t)9B reaction at the K600 spectrometer, at iThemba LABS facility. Beryllium is a semi-metal in nature and this makes it hard to deform by rolling or vacuum evaporate as a self-supporting target. Therefore heat treatment was needed to avoid brittleness and breakage of the material during rolling process. A description is given on how beryllium targets were manufactured.

  1. Risk-based targeting: A new approach in environmental protection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, C.A.

    1995-12-31

    Risk-based targeting has recently emerged as an effective tool to help prioritize efforts to identify and manage geographic areas, chemicals, facilities, and agricultural activities that cause the most environmental degradation. This paper focuses on how the Environmental Protection Agency (EPA) has recently used risk-based targeting to identify and screen Federal, industrial, commercial and municipal facilities which contribute to probable human health (fish consumption advisories and contaminated fish tissue) and aquatic life (contaminated sediments) impacts. Preliminary results identified several hundred potential contributors of problem chemicals to probable impacts within the same river reach in 1991--93. Analysis by industry sector showed thatmore » the majority of the facilities identified were publicly owned treatment works (POTWs), in addition to industry organic and inorganic chemical manufacturers, petroleum refineries, and electric services, coatings, engravings, and allied services, among others. Both compliant and non-compliant potentially contributing facilities were identified to some extent in all EPA regions. Additional results identifying possible linkages of other pollutant sources to probable impacts, as well as estimation of potential exposure of these contaminants to minority and/or poverty populations are also presented. Out of these analyses, a number of short and long-term strategies are being developed that EPA may use to reduce loadings of problem contaminants to impacted waterbodies.« less

  2. Lawmakers target PURPA for repeal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkhart, L.A.

    This article is a review of current legislative initiatives to repeal certain sections of the Public Utilities Regulatory Policy Act (PURPA). Targeted for repeal is Section 210 of PURPA, which mandates purchases from qualifying facilities at avoided-cost rates. Pros and cons of this proposed repeal are reviewed, with Administration officials lining up against the repeal and industry casting their vote for repeal of this and other sections of PURPA.

  3. Comprehensive description of the Orion laser facility

    NASA Astrophysics Data System (ADS)

    Hopps, Nicholas; Oades, Kevin; Andrew, Jim; Brown, Colin; Cooper, Graham; Danson, Colin; Daykin, Simon; Duffield, Stuart; Edwards, Ray; Egan, David; Elsmere, Stephen; Gales, Steve; Girling, Mark; Gumbrell, Edward; Harvey, Ewan; Hillier, David; Hoarty, David; Horsfield, Colin; James, Steven; Leatherland, Alex; Masoero, Stephen; Meadowcroft, Anthony; Norman, Michael; Parker, Stefan; Rothman, Stephen; Rubery, Michael; Treadwell, Paul; Winter, David; Bett, Thomas

    2015-06-01

    The Orion laser facility at the atomic weapons establishment (AWE) in the UK has been operational since April 2013, fielding experiments that require both its long and short pulse capability. This paper provides a full description of the facility in terms of laser performance, target systems and diagnostics currently available. Inevitably, this is a snapshot of current capability—the available diagnostics and the laser capability are evolving continuously. The laser systems consist of ten beams, optimised around 1 ns pulse duration, which each provide a nominal 500 J at a wavelength of 351 nm. There are also two short pulse beams, which each provide 500 J in 0.5 ps at 1054 nm. There are options for frequency doubling one short pulse beam to enhance the pulse temporal contrast. More recently, further contrast enhancement, based on optical parametric amplification (OPA) in the front end with a pump pulse duration of a few ps, has been installed. An extensive suite of diagnostics are available for users, probing the optical emission, x-rays and particles produced in laser-target interactions. Optical probe diagnostics are also available. A description of the diagnostics is provided.

  4. Validating Innovative Renewable Energy Technologies: ESTCP Demonstrations at Two DoD Facilities

    DTIC Science & Technology

    2011-11-01

    4. TITLE AND SUBTITLE Validating Innovative Renewable Energy Technologies: ESTCP Demonstrations at Two DoD Facilities 5a. CONTRACT NUMBER 5b...goals of 25% of energy consumed required to be from renewable energy by 2025, the DoD has set aggressive, yet achievable targets. With its array of land...holdings facilities, and environments, the potential for renewable energy generation on DoD lands is great. Reaching these goals will require

  5. Implementation of EPA criminal enforcement strategy for RCRA interim status facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1985-11-15

    The directive discusses criminal enforcement priorities and procedures related to the RCRA section 3007(e)(2) Loss of Interim Status (LOIS) provision, including: (1) identifying/targeting facilities with violations, (2) verifying receipt of RCRA 3007 letters, and (3) inspections of facilities. The directive supplements directive no. 9930.0-1 RCRA LOIS Enforcement Strategy, dated October 15, 1985. The directive is supplemented by directive no. 9930.0-2a, Accepting Nonhazardous Waste After Losing Interim Status, dated December 20, 1986.

  6. Frequent electronic media communication with friends is associated with higher adolescent substance use.

    PubMed

    Gommans, Rob; Stevens, Gonneke W J M; Finne, Emily; Cillessen, Antonius H N; Boniel-Nissim, Meyran; ter Bogt, Tom F M

    2015-02-01

    This study investigated the unique associations between electronic media communication (EMC) with friends and adolescent substance use (tobacco, alcohol, and cannabis), over and beyond the associations of face-to-face (FTF) interactions with friends and the average level of classroom substance use. Drawn from the cross-national 2009/2010 Health Behaviour in School-aged Children (HBSC) study in The Netherlands, 5,642 Dutch adolescents (Mage = 14.29) reported on their substance use, EMC, and FTF interactions. Two-level multilevel analyses (participants nested within classrooms) were run. Electronic media communication was positively associated with adolescent substance use, though significantly more strongly with alcohol (β = 0.15, SEβ = 0.02) than with tobacco (β = 0.05, SEβ = 0.02, t (5,180) = 3.33, p < 0.001) or cannabis use (β = 0.06, SEβ = 0.02, t (5,160) = 2.79, p < 0.01). Further, EMC strengthened several positive associations of FTF interactions and average classroom substance use with adolescent substance use. Electronic media communication was uniquely associated with substance use, predominantly with alcohol use. Thus, adolescents' EMC and other online behaviors should not be left unnoticed in substance use research and prevention programs.

  7. The Nike Laser Facility and its Capabilities

    NASA Astrophysics Data System (ADS)

    Serlin, V.; Aglitskiy, Y.; Chan, L. Y.; Karasik, M.; Kehne, D. M.; Oh, J.; Obenschain, S. P.; Weaver, J. L.

    2013-10-01

    The Nike laser is a 56-beam krypton fluoride (KrF) system that provides 3 to 4 kJ of laser energy on target. The laser uses induced spatial incoherence to achieve highly uniform focal distributions. 44 beams are overlapped onto target with peak intensities up to 1016 W/cm2. The effective time-averaged illumination nonuniformity is < 0 . 2 %. Nike produces highly uniform ablation pressures on target allowing well-controlled experiments at pressures up to 20 Mbar. The other 12 laser beams are used to generate diagnostic x-rays radiographing the primary laser-illuminated target. The facility includes a front end that generates the desired temporal and spatial laser profiles, two electron-beam pumped KrF amplifiers, a computer-controlled optical system, and a vacuum target chamber for experiments. Nike is used to study the physics and technology issues of direct-drive laser fusion, such as, hydrodynamic and laser-plasma instabilities, studies of the response of materials to extreme pressures, and generation of X rays from laser-heated targets. Nike features a computer-controlled data acquisition system, high-speed, high-resolution x-ray and visible imaging systems, x-ray and visible spectrometers, and cryogenic target capability. Work supported by DOE/NNSA.

  8. Downgrading Nuclear Facilities to Radiological Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarry, Jeffrey F.; Farr, Jesse Oscar; Duran, Leroy

    2015-08-01

    Based on inventory reductions and the use of alternate storage facilities, the Sandia National Laboratories (SNL) downgraded 4 SNL Hazard Category 3 (HC-3) nuclear facilities to less-than-HC-3 radiological facilities. SNL’s Waste Management and Pollution Prevention Department (WMPPD) managed the HC-3 nuclear facilities and implemented the downgrade. This paper will examine the downgrade process,

  9. Proceedings of the twelfth target fabrication specialists` meeting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-04-01

    Research in fabrication for inertial confinement fusion (ICF) comprises at least three broad categories: targets for high energy density physics on existing drivers, ignition capsule fabrication, and cryogenic fuel layer formation. The latter two are being pursued primarily for the National Ignition Facility (NIF). Scientists from over 14 laboratories, universities, and businesses contributed over 100 papers on all aspects of ICF target fabrication. The NIF is well along in construction and photos of poured concrete and exposed steel added to the technical excitement. It was clear from the meeting that there has been significant progress toward the fabrication of anmore » ignition target for NIF and that new techniques are resulting in higher quality targets for high energy density research.« less

  10. A blended learning program on undergraduate nursing students' learning of electrocardiography.

    PubMed

    Jang, Keum-Seong; Kim, Yun-Min; Park, Soon-Joo

    2006-01-01

    This study sought to evaluate the feasibility of applying the blended learning program that combines the advantages of face-to-face(FTF) learning and e-learning. The blended learning program was developed by the authors and implemented for 4 weeks. 56 senior nursing students were recruited at a university in Korea. Significant improvement was noted in learning achievement. No significant differences were noted between FTF and web-based learning in learning motivation. Learning satisfaction and students' experience in taking this course revealed some positive effects of blended learning. The use of blended learning program for undergraduate nursing students will provide an effective learning model.

  11. Design study of a raster scanning system for moving target irradiation in heavy-ion radiotherapy.

    PubMed

    Furukawa, Takuji; Inaniwa, Taku; Sato, Shinji; Tomitani, Takehiro; Minohara, Shinichi; Noda, Koji; Kanai, Tatsuaki

    2007-03-01

    A project to construct a new treatment facility as an extension of the existing heavy-ion medical accelerator in chiba (HIMAC) facility has been initiated for further development of carbon-ion therapy. The greatest challenge of this project is to realize treatment of a moving target by scanning irradiation. For this purpose, we decided to combine the rescanning technique and the gated irradiation method. To determine how to avoid hot and/or cold spots by the relatively large number of rescannings within an acceptable irradiation time, we have studied the scanning strategy, scanning magnets and their control, and beam intensity dynamic control. We have designed a raster scanning system and carried out a simulation of irradiating moving targets. The result shows the possibility of practical realization of moving target irradiation with pencil beam scanning. We describe the present status of our design study of the raster scanning system for the HIMAC new treatment facility.

  12. Deuterium-Tritium Beta-Layering Within a National Ignition Facility Scale Polymer Target in the LANL Cryogenic Pressure Loader

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebey, Peter S.; Dole, James M.; Geller, Drew A.

    2005-11-15

    Beta-layering, the process of beta-decay heat-driven mass redistribution, has been demonstrated in a deuterium-tritium (D-T)-filled polymer sphere of the type required for fusion ignition experiments at the National Ignition Facility. This is the first report, to the best of the authors' knowledge, of a D-T layer formed in a permeation-filled sphere. The 2-mm-diam sphere was filled with D-T by permeation; cooled to cryogenic temperatures while in the high-pressure permeation vessel; and, while cold, removed to an optical axis where the D-T was frozen, melted, and beta-layered in a series of experiments over several weeks' time. This work was performed inmore » the Los Alamos National Laboratory cryogenic pressure loader system. The beta-layering time constant was 24.0 {+-} 2.5 min, less than the theoretical value of 26.8 min, and not showing the significant increase due to build-up of {sup 3}He often observed in beta-layered samples. Supercooling of the liquid D-T was observed. Neither the polymer target nor its tenting material showed visual signs of degradation after 5 weeks of exposure to D-T. Small external thermal gradients were used to shift the D-T material back and forth within the sphere.« less

  13. The National Ignition Facility: alignment from construction to shot operations

    NASA Astrophysics Data System (ADS)

    Burkhart, S. C.; Bliss, E.; Di Nicola, P.; Kalantar, D.; Lowe-Webb, R.; McCarville, T.; Nelson, D.; Salmon, T.; Schindler, T.; Villanueva, J.; Wilhelmsen, K.

    2010-08-01

    The National Ignition Facility in Livermore, California, completed it's commissioning milestone on March 10, 2009 when it fired all 192 beams at a combined energy of 1.1 MJ at 351nm. Subsequently, a target shot series from August through December of 2009 culminated in scale ignition target design experiments up to 1.2 MJ in the National Ignition Campaign. Preparations are underway through the first half of of 2010 leading to DT ignition and gain experiments in the fall of 2010 into 2011. The top level requirement for beam pointing to target of 50μm rms is the culmination of 15 years of engineering design of a stable facility, commissioning of precision alignment, and precise shot operations controls. Key design documents which guided this project were published in the mid 1990's, driving systems designs. Precision Survey methods were used throughout construction, commissioning and operations for precision placement. Rigorous commissioning processes were used to ensure and validate placement and alignment throughout commissioning and in present day operations. Accurate and rapid system alignment during operations is accomplished by an impressive controls system to align and validate alignment readiness, assuring machine safety and productive experiments.

  14. The national ignition facility: Path to ignition in the laboratory

    NASA Astrophysics Data System (ADS)

    Moses, E. I.; Bonanno, R. E.; Haynam, C. A.; Kauffman, R. L.; MacGowan, B. J.; Patterson, R. W., Jr.; Sawicki, R. H.; van Wonterghem, B. M.

    2006-06-01

    The National Ignition Facility (NIF) is a 192-beam laser facility presently under construction at LLNL. When completed, NIF will be a 1.8-MJ, 500-TW ultraviolet laser system. Its missions are to obtain fusion ignition and to perform high energy density experiments in support of the U.S. nuclear weapons stockpile. Four of the NIF beams have been commissioned to demonstrate laser performance and to commission the target area including target and beam alignment and laser timing. During this time, NIF demonstrated on a single-beam basis that it will meet its performance goals and demonstrated its precision and flexibility for pulse shaping, pointing, timing and beam conditioning. It also performed four important experiments for Inertial Confinement Fusion and High Energy Density Science. Presently, the project is installing production hardware to complete the project in 2009 with the goal to begin ignition experiments in 2010. An integrated plan has been developed including the NIF operations, user equipment such as diagnostics and cryogenic target capability, and experiments and calculations to meet this goal. This talk will provide NIF status, the plan to complete NIF, and the path to ignition.

  15. The national ignition facility: path to ignition in the laboratory

    NASA Astrophysics Data System (ADS)

    Moses, E. I.; Bonanno, R. E.; Haynam, C. A.; Kauffman, R. L.; MacGowan, B. J.; Patterson, R. W., Jr.; Sawicki, R. H.; van Wonterghem, B. M.

    2007-08-01

    The National Ignition Facility (NIF) is a 192-beam laser facility presently under construction at LLNL. When completed, NIF will be a 1.8-MJ, 500-TW ultraviolet laser system. Its missions are to obtain fusion ignition and to perform high energy density experiments in support of the US nuclear weapons stockpile. Four of the NIF beams have been commissioned to demonstrate laser performance and to commission the target area including target and beam alignment and laser timing. During this time, NIF demonstrated on a single-beam basis that it will meet its performance goals and demonstrated its precision and flexibility for pulse shaping, pointing, timing and beam conditioning. It also performed four important experiments for Inertial Confinement Fusion and High Energy Density Science. Presently, the project is installing production hardware to complete the project in 2009 with the goal to begin ignition experiments in 2010. An integrated plan has been developed including the NIF operations, user equipment such as diagnostics and cryogenic target capability, and experiments and calculations to meet this goal. This talk will provide NIF status, the plan to complete NIF, and the path to ignition.

  16. MYRRHA: A multipurpose nuclear research facility

    NASA Astrophysics Data System (ADS)

    Baeten, P.; Schyns, M.; Fernandez, Rafaël; De Bruyn, Didier; Van den Eynde, Gert

    2014-12-01

    MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) is a multipurpose research facility currently being developed at SCK•CEN. MYRRHA is based on the ADS (Accelerator Driven System) concept where a proton accelerator, a spallation target and a subcritical reactor are coupled. MYRRHA will demonstrate the ADS full concept by coupling these three components at a reasonable power level to allow operation feedback. As a flexible irradiation facility, the MYRRHA research facility will be able to work in both critical as subcritical modes. In this way, MYRRHA will allow fuel developments for innovative reactor systems, material developments for GEN IV and fusion reactors, and radioisotope production for medical and industrial applications. MYRRHA will be cooled by lead-bismuth eutectic and will play an important role in the development of the Pb-alloys technology needed for the LFR (Lead Fast Reactor) GEN IV concept. MYRRHA will also contribute to the study of partitioning and transmutation of high-level waste. Transmutation of minor actinides (MA) can be completed in an efficient way in fast neutron spectrum facilities, so both critical reactors and subcritical ADS are potential candidates as dedicated transmutation systems. However critical reactors heavily loaded with fuel containing large amounts of MA pose reactivity control problems, and thus safety problems. A subcritical ADS operates in a flexible and safe manner, even with a core loading containing a high amount of MA leading to a high transmutation rate. In this paper, the most recent developments in the design of the MYRRHA facility are presented.

  17. High intensity neutrino oscillation facilities in Europe

    DOE PAGES

    Edgecock, T. R.; Caretta, O.; Davenne, T.; ...

    2013-02-20

    The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Fréjus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of μ + and μ – beams in a storage ring. The far detector in thismore » case is a 100 kt magnetized iron neutrino detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular 6He and 18Ne, also stored in a ring. The far detector is also the MEMPHYS detector in the Fréjus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the physics reach of each facility, in particular for the measurement of CP violation in the lepton sector, and estimated the cost of construction. These have demonstrated that the best facility to build is the Neutrino Factory. Furthermore, if a powerful proton driver is constructed for another purpose or if the MEMPHYS detector is built for astroparticle physics, the Super Beam also becomes very attractive.« less

  18. Activation Levels, Handling, and Storage of Activated Components in the Target Hall at FRIB

    NASA Astrophysics Data System (ADS)

    Georgobiani, D.; Bennett, R.; Bollen, G.; Kostin, M.; Ronningen, R.

    2018-06-01

    The Facility for Rare Isotope Beams (FRIB) is a major new scientific user facility under construction in the United States for nuclear science research with beams of rare isotopes. 400 kW beam operations with heavy ions ranging from oxygen to uranium will create a high radiation environment for many components, particularly for the beam line components located in the target hall, where approximately 100 kW of beam power are dissipated in the target and another 300 kW are dissipated in the beam dump. Detailed studies of the component activation, their remote handling, storage, and transport, have been performed to ensure safe operation levels in this environment. Levels of activation are calculated for the beam line components within the FRIB target hall.

  19. An Innovative Approach for Decreasing Fall Trauma Admissions from Geriatric Living Facilities: Preliminary Investigation.

    PubMed

    Evans, Tracy; Gross, Brian; Rittenhouse, Katelyn; Harnish, Carissa; Vellucci, Ashley; Bupp, Katherine; Horst, Michael; Miller, Jo Ann; Baier, Ron; Chandler, Roxanne; Rogers, Frederick B

    2015-12-01

    Geriatric living facilities have been associated with a high rate of falls. We sought to develop an innovative intervention approach targeting geriatric living facilities that would reduce geriatric fall admissions to our Level II trauma center. In 2011, a Trauma Prevention Taskforce visited 5 of 28 local geriatric living facilities to present a fall prevention protocol composed of three sections: fall education, risk factor identification, and fall prevention strategies. To determine the impact of the intervention, the trauma registry was queried for all geriatric fall admissions attributed to patients living at local geriatric living facilities. The fall admission rate (total fall admissions/total beds) of the pre-intervention period (2010-2011) was compared with that of the postintervention period (2012-2013) at the 5 intervention and 23 control facilities. A P value < 0.05 was considered statistically significant. From 2010 to 2013, there were 487 fall admissions attributed to local geriatric living facilities (intervention: 179 fall admissions; control: 308 fall admissions). The unadjusted fall rate decreased at intervention facilities from 8.9 fall admissions/bed pre-intervention to 8.1 fall admissions/bed postintervention, whereas fall admission rates increased at control sites from 5.9 to 7.7 fall admissions/bed during the same period [control/intervention odds ratio (OR), 95% confidence interval (CI) = 1.32, 1.05-1.67; period OR, 95%CI = 1.55, 1.18-2.04, P = 0.002; interaction of control/intervention group and period OR 95% CI = 0.68, 0.46-1.00, P = 0.047]. An aggressive intervention program targeting high-risk geriatric living facilities resulted in a statistically significant decrease in geriatric fall admissions to our Level II trauma center.

  20. Cryogenci DT and D2 Targets for Inertial Confinement Fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sangster, T.C.; Betti, R.; Craxton, R.S.

    Ignition target designs for inertial confinement fusion on the National Ignition Facility (NIF) are based on a spherical ablator containing a solid, cryogenic-fuel layer of deuterium and tritium. The need for solid-fuel layers was recognized more than 30 years ago and considerable effort has resulted in the production of cryogenic targets that meet most of the critical fabrication tolerances for ignition on the NIf. Significant progress with the formation and characterization of cryogenic targets for both direct and x-ray drive will be described. Results from recent cryogenic implosions will also be presented.

  1. Simulation study of 3-5 keV x-ray conversion efficiency from Ar K-shell vs. Ag L-shell targets on the National Ignition Facility laser

    NASA Astrophysics Data System (ADS)

    Kemp, G. E.; Colvin, J. D.; Fournier, K. B.; May, M. J.; Barrios, M. A.; Patel, M. V.; Scott, H. A.; Marinak, M. M.

    2015-05-01

    Tailored, high-flux, multi-keV x-ray sources are desirable for studying x-ray interactions with matter for various civilian, space and military applications. For this study, we focus on designing an efficient laser-driven non-local thermodynamic equilibrium 3-5 keV x-ray source from photon-energy-matched Ar K-shell and Ag L-shell targets at sub-critical densities (˜nc/10) to ensure supersonic, volumetric laser heating with minimal losses to kinetic energy, thermal x rays and laser-plasma instabilities. Using Hydra, a multi-dimensional, arbitrary Lagrangian-Eulerian, radiation-hydrodynamics code, we performed a parameter study by varying initial target density and laser parameters for each material using conditions readily achievable on the National Ignition Facility (NIF) laser. We employ a model, benchmarked against Kr data collected on the NIF, that uses flux-limited Lee-More thermal conductivity and multi-group implicit Monte-Carlo photonics with non-local thermodynamic equilibrium, detailed super-configuration accounting opacities from Cretin, an atomic-kinetics code. While the highest power laser configurations produced the largest x-ray yields, we report that the peak simulated laser to 3-5 keV x-ray conversion efficiencies of 17.7% and 36.4% for Ar and Ag, respectively, occurred at lower powers between ˜100-150 TW. For identical initial target densities and laser illumination, the Ag L-shell is observed to have ≳10× higher emissivity per ion per deposited laser energy than the Ar K-shell. Although such low-density Ag targets have not yet been demonstrated, simulations of targets fabricated using atomic layer deposition of Ag on silica aerogels (˜20% by atomic fraction) suggest similar performance to atomically pure metal foams and that either fabrication technique may be worth pursuing for an efficient 3-5 keV x-ray source on NIF.

  2. Magnetized Target Fusion: Prospects for Low-Cost Fusion Energy

    NASA Technical Reports Server (NTRS)

    Siemon, Richard E.; Turchi, Peter J.; Barnes, Daniel C.; Degnan, James; Parks, Paul; Ryutov, Dmitri D.; Thio, Y. C. Francis; Schafer, Charles (Technical Monitor)

    2001-01-01

    Magnetized Target Fusion (MTF) has attracted renewed interest in recent years because it has the potential to resolve one of the major problems with conventional fusion energy research - the high cost of facilities to do experiments and in general develop practical fusion energy. The requirement for costly facilities can be traced to fundamental constraints. The Lawson condition implies large system size in the case of conventional magnetic confinement, or large heating power in the case of conventional inertial confinement. The MTF approach is to use much higher fuel density than with conventional magnetic confinement (corresponding to megabar pressures), which results in a much-reduced system size to achieve Lawson conditions. Intrinsically the system must be pulsed because the pressures exceed the strength of any known material. To facilitate heating the fuel (or "target") to thermonuclear conditions with a high-power high-intensity source of energy, magnetic fields are used to insulate the high-pressure fuel from material surroundings (thus "magnetized target"). Because of magnetic insulation, the required heating power intensity is reduced by many orders of magnitude compared to conventional inertial fusion, even with relatively poor energy confinement in the magnetic field, such as that characterized by Bohm diffusion. In this paper we show semi-quantitatively why MTF-should allow fusion energy production without costly facilities within the same generally accepted physical constraints used for conventional magnetic and inertial fusion. We also briefly discuss potential applications of this technology ranging from nuclear rockets for space propulsion to a practical commercial energy system. Finally, we report on the exploratory research underway, and the interesting physics issues that arise in the MTF regime of parameters. Experiments at Los Alamos are focused on formation of a suitable plasma target for compression, utilizing the knowledge base for compact

  3. Using health-facility data to assess subnational coverage of maternal and child health indicators, Kenya.

    PubMed

    Maina, Isabella; Wanjala, Pepela; Soti, David; Kipruto, Hillary; Droti, Benson; Boerma, Ties

    2017-10-01

    To develop a systematic approach to obtain the best possible national and subnational statistics for maternal and child health coverage indicators from routine health-facility data. Our approach aimed to obtain improved numerators and denominators for calculating coverage at the subnational level from health-facility data. This involved assessing data quality and determining adjustment factors for incomplete reporting by facilities, then estimating local target populations based on interventions with near-universal coverage (first antenatal visit and first dose of pentavalent vaccine). We applied the method to Kenya at the county level, where routine electronic reporting by facilities is in place via the district health information software system. Reporting completeness for facility data were well above 80% in all 47 counties and the consistency of data over time was good. Coverage of the first dose of pentavalent vaccine, adjusted for facility reporting completeness, was used to obtain estimates of the county target populations for maternal and child health indicators. The country and national statistics for the four-year period 2012/13 to 2015/16 showed good consistency with results of the 2014 Kenya demographic and health survey. Our results indicated a stagnation of immunization coverage in almost all counties, a rapid increase of facility-based deliveries and caesarean sections and limited progress in antenatal care coverage. While surveys will continue to be necessary to provide population-based data, web-based information systems for health facility reporting provide an opportunity for more frequent, local monitoring of progress, in maternal and child health.

  4. University of Minnesota Aquifer Thermal Energy Storage (ATES) project report on the first long-term cycle

    NASA Astrophysics Data System (ADS)

    Walton, M.

    1991-10-01

    The technical feasibility of high-temperature (greater than 100 C) aquifer thermal energy storage (IOTAS) in a deep, confined aquifer was tested in a series of experimental cycles at the University of Minnesota's St. Paul field test facility (FTF). This report describes the additions to the FTF for the long-term cycles and the details of the first long-term cycle (LT1) that was conducted from November 1984 through May 1985. Heat recovery; operational experience; and thermal, chemical, hydrologic, and geologic aspects of LT1 are reported. The permits for long-term cycles required the addition of a monitoring well 30.5 m from the storage well for monitoring near the edge of the thermally affected area and allowed the addition of a cation-exchange water softener to enable continuous operation during the injection phase. Approximately 62 percent of the 9.47 GWh of energy added to the 9.21 x 10(exp 4) cu m of ground water stored in the aquifer LT1 was recovered. Ion-exchange water softening of the heated and stored ground water prevented scaling in the system heat exchangers and the storage well and changed the major-ion chemistry of the stored water. Temperatures at the storage horizons in site monitoring wells reached as high as 108 C during the injection phase of LT1. Following heat recovery, temperatures were less than 30 C at the same locations. Less permeable horizons underwent slow temperature changes. No thermal or chemical effects were observed at the remote monitoring site.

  5. Measurements and FLUKA simulations of bismuth and aluminium activation at the CERN Shielding Benchmark Facility (CSBF)

    NASA Astrophysics Data System (ADS)

    Iliopoulou, E.; Bamidis, P.; Brugger, M.; Froeschl, R.; Infantino, A.; Kajimoto, T.; Nakao, N.; Roesler, S.; Sanami, T.; Siountas, A.

    2018-03-01

    The CERN High Energy AcceleRator Mixed field facility (CHARM) is located in the CERN Proton Synchrotron (PS) East Experimental Area. The facility receives a pulsed proton beam from the CERN PS with a beam momentum of 24 GeV/c with 5 ṡ1011 protons per pulse with a pulse length of 350 ms and with a maximum average beam intensity of 6.7 ṡ1010 p/s that then impacts on the CHARM target. The shielding of the CHARM facility also includes the CERN Shielding Benchmark Facility (CSBF) situated laterally above the target. This facility consists of 80 cm of cast iron and 360 cm of concrete with barite concrete in some places. Activation samples of bismuth and aluminium were placed in the CSBF and in the CHARM access corridor in July 2015. Monte Carlo simulations with the FLUKA code have been performed to estimate the specific production yields for these samples. The results estimated by FLUKA Monte Carlo simulations are compared to activation measurements of these samples. The comparison between FLUKA simulations and the measured values from γ-spectrometry gives an agreement better than a factor of 2.

  6. Do resource utilization and clinical measures still vary across dialysis chains after controlling for the local practices of facilities and physicians?

    PubMed

    Hirth, Richard A; Turenne, Marc N; Wheeler, John R C; Ma, Yu; Messana, Joseph M

    2010-08-01

    Because of adverse survival effects, anemia management and financial incentives to increase doses of erythropoiesis-stimulating agents (ESAs) have been controversial. Prior studies showed more aggressive anemia management in dialysis facilities owned by for-profit chains, but have been criticized for not accounting for practices of individual physicians and facilities. To improve understanding of how dialysis practices and resource utilization are influenced by physicians, facilities, and chains. Mixed models with chain fixed effects and facility and physician random effects. Medicare hemodialysis patients in 2004. A total of 234,158 patients, 3995 facilities, 4838 physicians, and 7 chain classifications were included. Spending per session for dialysis-related services billed separately from the dialysis treatment and for ESAs. Achievement of hematocrit (HCT) and urea reduction ratio (URR) targets. Of the 4 largest for-profit chains, 3 had higher resource use than independents, with differences up to $17.92 higher ESA/session. Utilization was positively associated with achieving target HCT. Despite incurring lower costs, patients treated by a large nonprofit chain were as likely as patients of independents to achieve the HCT target. The largest chains were more likely than independents to achieve the URR target. Substantial variation occurred across physicians and facilities, and adjustment for chain only modestly decreased this variation. Chains' methods of influencing practices were not directly observed. Chains appear to have the ability to implement protocols that shift practices, but not the ability to substantially reduce local variation. Assertions that chain effects found by earlier studies were spurious are not supported.

  7. The Orbital Maneuvering Vehicle Training Facility visual system concept

    NASA Technical Reports Server (NTRS)

    Williams, Keith

    1989-01-01

    The purpose of the Orbital Maneuvering Vehicle (OMV) Training Facility (OTF) is to provide effective training for OMV pilots. A critical part of the training environment is the Visual System, which will simulate the video scenes produced by the OMV Closed-Circuit Television (CCTV) system. The simulation will include camera models, dynamic target models, moving appendages, and scene degradation due to the compression/decompression of video signal. Video system malfunctions will also be provided to ensure that the pilot is ready to meet all challenges the real-world might provide. One possible visual system configuration for the training facility that will meet existing requirements is described.

  8. Endocrinology Telehealth Consultation Improved Glycemic Control Similar to Face-to-Face Visits in Veterans

    PubMed Central

    Liu, Winnie; Saxon, David R.; McNair, Bryan; Sanagorski, Rebecca; Rasouli, Neda

    2016-01-01

    Background: Rates of diabetes for veterans who receive health care through the Veterans Health Administration are higher than rates in the general population. Furthermore, many veterans live in rural locations, far from Veterans Affairs (VA) hospitals, thus limiting their ability to readily seek face-to-face endocrinology care for diabetes. Telehealth (TH) technologies present an opportunity to improve access to specialty diabetes care for such patients; however, there is a lack of evidence regarding the ability of TH to improve glycemic control in comparison to traditional face-to-face consultations. Methods: This was a retrospective cohort study of all new endocrinology diabetes consultations at the Denver VA Medical Center over a 1-year period. Results: A total of 189 patients were included in the analysis. In all, 85 patients had received face-to-face (FTF) endocrinology consultation for diabetes and 104 patients had received TH consultation. Subjects were mostly males (94.7%) and the mean age was 62.8 ± 10.1 years old. HbA1c improved from 9.76% (9.40% to 10.11%) to 8.55% (8.20% to 8.91%) (P < .0001) for the TH group and from 9.56% (9.16% to 9.95%) to 8.62% (8.22% to 9.01%) (P < .0001) for the FTF group after 1 visit. This change in HbA1c was not significantly different in the TH and FTF groups (P = .24). TH visits were associated with a hypothetical savings in median distance traveled of 231.2 miles per trip (which equates to $94.79 saved per trip). Conclusions: Endocrinology TH consultations improved short-term glycemic control as effectively as traditional FTF visits in a veteran population with diabetes. PMID:27170633

  9. Endocrinology Telehealth Consultation Improved Glycemic Control Similar to Face-to-Face Visits in Veterans.

    PubMed

    Liu, Winnie; Saxon, David R; McNair, Bryan; Sanagorski, Rebecca; Rasouli, Neda

    2016-09-01

    Rates of diabetes for veterans who receive health care through the Veterans Health Administration are higher than rates in the general population. Furthermore, many veterans live in rural locations, far from Veterans Affairs (VA) hospitals, thus limiting their ability to readily seek face-to-face endocrinology care for diabetes. Telehealth (TH) technologies present an opportunity to improve access to specialty diabetes care for such patients; however, there is a lack of evidence regarding the ability of TH to improve glycemic control in comparison to traditional face-to-face consultations. This was a retrospective cohort study of all new endocrinology diabetes consultations at the Denver VA Medical Center over a 1-year period. A total of 189 patients were included in the analysis. In all, 85 patients had received face-to-face (FTF) endocrinology consultation for diabetes and 104 patients had received TH consultation. Subjects were mostly males (94.7%) and the mean age was 62.8 ± 10.1 years old. HbA1c improved from 9.76% (9.40% to 10.11%) to 8.55% (8.20% to 8.91%) (P < .0001) for the TH group and from 9.56% (9.16% to 9.95%) to 8.62% (8.22% to 9.01%) (P < .0001) for the FTF group after 1 visit. This change in HbA1c was not significantly different in the TH and FTF groups (P = .24). TH visits were associated with a hypothetical savings in median distance traveled of 231.2 miles per trip (which equates to $94.79 saved per trip). Endocrinology TH consultations improved short-term glycemic control as effectively as traditional FTF visits in a veteran population with diabetes. © 2016 Diabetes Technology Society.

  10. EVALUATION OF PROMPT DOSE ENVIRONMENT IN THE NATIONAL IGNITION FACILITY DURING D-D AND THD SHOTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khater, H; Dauffy, L; Sitaraman, S

    2009-04-28

    Evaluation of the prompt dose environment expected in the National Ignition Facility (NIF) during Deuterium-Deuterium (D-D) and Tritium-Hydrogen-Deuterium (THD) shots have been completed. D-D shots resulting in the production of an annual fusion yield of up to 2.4 kJ (200 shots with 10{sup 13} neutrons per shot) are considered. During the THD shot campaign, shots generating a total of 2 x 10{sup 14} neutrons per shot are also planned. Monte Carlo simulations have been performed to estimate prompt dose values inside the facility as well as at different locations outside the facility shield walls. The Target Chamber shielding, along withmore » Target Bay and Switchyard walls, roofs, and shield doors (when needed) will reduce dose levels in occupied areas to acceptable values during these shot campaigns. The calculated dose values inside occupied areas are small, estimated at 25 and 85 {micro}rem per shot during the D-D and THD shots, respectively. Dose values outside the facility are insignificant. The nearest building to the NIF facility where co-located workers may reside is at a distance of about 100 m from the Target Chamber Center (TCC). The dose in such a building is estimated at a fraction of a ?rem during a D-D or a THD shot. Dose at the nearest site boundary location (350 m from TCC), is caused by skyshine and to a lesser extent by direct radiation. The maximum off-site dose during any of the shots considered is less than 10 nano rem.« less

  11. Reliable Facility Location Problem with Facility Protection

    PubMed Central

    Tang, Luohao; Zhu, Cheng; Lin, Zaili; Shi, Jianmai; Zhang, Weiming

    2016-01-01

    This paper studies a reliable facility location problem with facility protection that aims to hedge against random facility disruptions by both strategically protecting some facilities and using backup facilities for the demands. An Integer Programming model is proposed for this problem, in which the failure probabilities of facilities are site-specific. A solution approach combining Lagrangian Relaxation and local search is proposed and is demonstrated to be both effective and efficient based on computational experiments on random numerical examples with 49, 88, 150 and 263 nodes in the network. A real case study for a 100-city network in Hunan province, China, is presented, based on which the properties of the model are discussed and some managerial insights are analyzed. PMID:27583542

  12. Preparedness of elderly long-term care facilities in HSE East for influenza outbreaks.

    PubMed

    O'Connor, L; Boland, M; Murphy, H

    2015-01-01

    Abstract We assessed preparedness of HSE East elderly long-term care facilities for an influenza outbreak, and identified Public Health Department support needs. We surveyed 166 facilities based on the HSE checklist document for influenza outbreaks, with 58% response rate. Client flu vaccination rates were > 75%; leading barriers were client anxiety and consent issues. Target flu vaccine uptake of 40% in staff occurred in 43% of facilities and was associated with staff vaccine administration by afacility-attached GP (p = 0.035), having a facility outbreak plan (p = 0.013) and being anon-HSE run facility (p = 0.013). Leading barriers were staff personal anxiety (94%) and lack of awareness of the protective effect on clients (21%). Eighty-nine percent found Public Health helpful, and requested further educational support and advocacy. Staff vaccine uptake focus, organisational leadership, optimal vaccine provision models, outbreak plans and Public Health support are central to the influenza campaign in elderly long-term care facilities.

  13. A review of the Fermilab fixed-target program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rameika, R.

    1994-12-01

    All eyes are now on the Fermilab collider program as the intense search for the top quark continues. Nevertheless, Fermilab`s long tradition of operating a strong, diverse physics program depends not only on collider physics but also on effective use of the facilities the Laboratory was founded on, the fixed-target beamlines. In this talk the author presents highlights of the Fermilab fixed-target program from its (not too distant) past, (soon to be) present, and (hopefully, not too distant) future program. The author concentrates on those experiments which are unique to the fixed-target program, in particular hadron structure measurements which usemore » the varied beams and targets available in this mode and the physics results from kaon, hyperon and high statistics charm experiments which are not easily accessible in high p{sub T} hadron collider detectors.« less

  14. Improving medication information transfer between hospitals, skilled-nursing facilities, and long-term-care pharmacies for hospital discharge transitions of care: A targeted needs assessment using the Intervention Mapping framework.

    PubMed

    Kerstenetzky, Luiza; Birschbach, Matthew J; Beach, Katherine F; Hager, David R; Kennelty, Korey A

    2018-02-01

    Patients transitioning from the hospital to a skilled nursing home (SNF) are susceptible to medication-related errors resulting from fragmented communication between facilities. Through continuous process improvement efforts at the hospital, a targeted needs assessment was performed to understand the extent of medication-related issues when patients transition from the hospital into a SNF, and the gaps between the hospital's discharge process, and the needs of the SNF and long-term care (LTC) pharmacy. We report on the development of a logic model that will be used to explore methods for minimizing patient care medication delays and errors while further improving handoff communication to SNF and LTC pharmacy staff. Applying the Intervention Mapping (IM) framework, a targeted needs assessment was performed using quantitative and qualitative methods. Using the hospital discharge medication list as reference, medication discrepancies in the SNF and LTC pharmacy lists were identified. SNF and LTC pharmacy staffs were also interviewed regarding the continuity of medication information post-discharge from the hospital. At least one medication discrepancy was discovered in 77.6% (n = 45/58) of SNF and 76.0% (n = 19/25) of LTC pharmacy medication lists. A total of 191 medication discrepancies were identified across all SNF and LTC pharmacy records. Of the 69 SNF staff interviewed, 20.3% (n = 14) reported patient care delays due to omitted documents during the hospital-to-SNF transition. During interviews, communication between the SNF/LTC pharmacy and the discharging hospital was described by facility staff as unidirectional with little opportunity for feedback on patient care concerns. The targeted needs assessment guided by the IM framework has lent to several planned process improvements initiatives to help reduce medication discrepancies during the hospital-to-SNF transition as well as improve communication between healthcare entities. Opening lines of

  15. Australian national networked tele-test facility for integrated systems

    NASA Astrophysics Data System (ADS)

    Eshraghian, Kamran; Lachowicz, Stefan W.; Eshraghian, Sholeh

    2001-11-01

    The Australian Commonwealth government recently announced a grant of 4.75 million as part of a 13.5 million program to establish a world class networked IC tele-test facility in Australia. The facility will be based on a state-of-the-art semiconductor tester located at Edith Cowan University in Perth that will operate as a virtual centre spanning Australia. Satellite nodes will be located at the University of Western Australia, Griffith University, Macquarie University, Victoria University and the University of Adelaide. The facility will provide vital equipment to take Australia to the frontier of critically important and expanding fields in microelectronics research and development. The tele-test network will provide state of the art environment for the electronics and microelectronics research and the industry community around Australia to test and prototype Very Large Scale Integrated (VLSI) circuits and other System On a Chip (SOC) devices, prior to moving to the manufacturing stage. Such testing is absolutely essential to ensure that the device performs to specification. This paper presents the current context in which the testing facility is being established, the methodologies behind the integration of design and test strategies and the target shape of the tele-testing Facility.

  16. High-Flux Neutron Generator Facility for Geochronology and Nuclear Physics Research

    NASA Astrophysics Data System (ADS)

    Waltz, Cory; HFNG Collaboration

    2015-04-01

    A facility based on a next-generation, high-flux D-D neutron generator (HFNG) is being commissioned at UC Berkeley. The generator is designed to produce monoenergetic 2.45 MeV neutrons at outputs exceeding 1011 n/s. The HFNG is designed around two RF-driven multi-cusp ion sources that straddle a titanium-coated copper target. D + ions, accelerated up to 150 keV from the ion sources, self-load the target and drive neutron generation through the d(d,n)3 He fusion reaction. A well-integrated cooling system is capable of handling beam power reaching 120 kW impinging on the target. The unique design of the HFNG target permits experimental samples to be placed inside the target volume, allowing the samples to receive the highest neutron flux (1011 cm-2 s-1) possible from the generator. In addition, external beams of neutrons will be available simultaneously, ranging from thermal to 2.45 MeV. Achieving the highest neutron yields required carefully designed schemes to mitigate back-streaming of high energy electrons liberated from the cathode target by deuteron bombardment. The proposed science program is focused on pioneering advances in the 40 Ar/39 Ar dating technique for geochronology, new nuclear data measurements, basic nuclear science, and education. An end goal is to become a user facility for researchers. This work is supported by NSF Grant No. EAR-0960138, U.S. DOE LBNL Contract No. DE-AC02-05CH11231, U.S. DOE LLNL Contract No. DE-AC52-07NA27344, and UC Office of the President Award 12-LR-238745.

  17. D 2 and DT Liquid-Layer Target Shots on NIF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walters, Curtis; Alger, Ethan; Bhandarkar, Suhas

    Experiments at the National Ignition Facility (NIF) using targets containing a Deuterium-Tritium (DT) fuel layer have, until recently, required that a high-quality layer of solid deuterium-tritium (herein referred to as an "ice-layer") be formed in the capsule. The development of a process to line the inner surface of a target capsule with a foam layer of a thickness that is typical of icelayers has resulted in the ability to field targets with liquid layers wetting the foam. Successful fielding of liquid-layer targets on NIF required not only a foam lined capsule, but also changes to the capsule filling process andmore » the manner with which the inventory is maintained in the capsule. Additionally, changes to target heater power and the temperature drops across target components were required in order to achieve the desired range of shot temperatures. These changes, and the target's performance during four target shots on NIF will be discussed.« less

  18. Preface: Twenty-First Target Fabrication Specialists Meeting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikroo, Abbas; Czechowicz, Don

    The Twenty First Target Fabrication Meeting held in Las Vegas, Nevada, from June xx-yy 2015, was attended by more than 100 scientists, engineers, and technicians from the United States, the United Kingdom, France, and Japan, bringing together international experts on the design, development, and fabrication of inertial confinement fusion (ICF) and high-energy-density (HED) experimental targets fielded on laser and pulsed-power facilities around the world. We were delighted to have such exceptional international representation. The program included 4 invited papers, 53 contributed papers, and 55 posters. A selection of these is presented in this dedicated issue of Fusion Science and Technologymore » (FST).« less

  19. Preface: Twenty-First Target Fabrication Specialists Meeting

    DOE PAGES

    Nikroo, Abbas; Czechowicz, Don

    2017-04-21

    The Twenty First Target Fabrication Meeting held in Las Vegas, Nevada, from June xx-yy 2015, was attended by more than 100 scientists, engineers, and technicians from the United States, the United Kingdom, France, and Japan, bringing together international experts on the design, development, and fabrication of inertial confinement fusion (ICF) and high-energy-density (HED) experimental targets fielded on laser and pulsed-power facilities around the world. We were delighted to have such exceptional international representation. The program included 4 invited papers, 53 contributed papers, and 55 posters. A selection of these is presented in this dedicated issue of Fusion Science and Technologymore » (FST).« less

  20. Neutron-rich isotope production using a uranium carbide - carbon nanotubes SPES target prototype

    NASA Astrophysics Data System (ADS)

    Corradetti, S.; Biasetto, L.; Manzolaro, M.; Scarpa, D.; Carturan, S.; Andrighetto, A.; Prete, G.; Vasquez, J.; Zanonato, P.; Colombo, P.; Jost, C. U.; Stracener, D. W.

    2013-05-01

    The SPES (Selective Production of Exotic Species) project, under development at the Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Legnaro (INFN-LNL), is a new-generation Isotope Separation On-Line (ISOL) facility for the production of radioactive ion beams by means of the proton-induced fission of uranium. In the framework of the research on the SPES target, seven uranium carbide discs, obtained by reacting uranium oxide with graphite and carbon nanotubes, were irradiated with protons at the Holifield Radioactive Ion Beam Facility (HRIBF) of Oak Ridge National Laboratory (ORNL). In the following, the yields of several fission products obtained during the experiment are presented and discussed. The experimental results are then compared to those obtained using a standard uranium carbide target. The reported data highlights the capability of the new type of SPES target to produce and release isotopes of interest for the nuclear physics community.

  1. National Ignition Facility Project: An Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogan, W J; Moses, E; Warner, B

    2000-12-07

    The National Ignition Facility (NIF) consists of 192 forty-centimeter-square laser beams and a 10-m-diameter target chamber. Physical construction began in 1997. The Laser and Target Area Building and the Optics Assembly Building were the first major construction activities, and despite several unforeseen obstacles, the buildings are now 92% complete and have been done on time and within cost. Prototype component development and testing has proceeded in parallel. Optics vendors have installed full-scale production lines and have done prototype production runs. The assembly and integration of the beampath infrastructure has been reconsidered and a new approach has been developed. This papermore » will discuss the status of the NIF project and the plans for completion. It will also include summary information on Laser MegaJoule (LMJ) provided by M. Andre, LMJ Project Director.« less

  2. Electromagnetic Pulses Generated From Laser Target Interactions at Shenguang II Laser Facility

    NASA Astrophysics Data System (ADS)

    Yang, Jinwen; Li, Tingshuai; Yi, Tao; Wang, Chuanke; Yang, Ming; Yang, Weiming; Liu, Shenye; Jiang, Shaoen; Ding, Yongkun

    2016-10-01

    Significant electromagnetic pulses (EMP) can be generated by the intensive laser irradiating solid targets in inertial confinement fusion (ICF). To evaluate the EMP intensity and distribution in and outside the laser chamber, we designed and fabricated a discone antenna with ultra-wide bands of over 10 GHz. The return loss (S11 parameter) of this antenna was below -10 dB and could even achieve under -30 dB at 3.1 GHz. The EMP intensity in this study at 80 cm and 40 cm away from the target chamber center (TCC) reached 400 kV/m and 2000 kV/m. The current results are expected to offer preliminary information to study physics regarding laser plasma interactions and will also lay experimental foundation for EMI shielding design to protect various diagnostics. supported by the Fundamental Research Funds for the Central Universities of China (No. ZYGX2015J108) and National Natural Science Foundation of China (Nos. 11575166 and 51581140)

  3. Time history prediction of direct-drive implosions on the Omega facility

    DOE PAGES

    Laffite, S.; Bourgade, J. L.; Caillaud, T.; ...

    2016-01-14

    We present in this article direct-drive experiments that were carried out on the Omega facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. Two different pulse shapes were tested in order to vary the implosion stability of the same target whose parameters, dimensions and composition, remained the same. The direct-drive configuration on the Omega facility allows the accurate time-resolvedmeasurement of the scattered light. We show that, provided the laser coupling is well controlled, the implosion time history, assessed by the “bang-time” and the shell trajectory measurements, can be predicted. This conclusion is independent on the pulse shape. Inmore » contrast, we show that the pulse shape affects the implosion stability, assessed by comparing the target performances between prediction and measurement. For the 1-ns square pulse, the measuredneutron number is about 80% of the prediction. Lastly, for the 2-step 2-ns pulse, we test here that this ratio falls to about 20%.« less

  4. Time history prediction of direct-drive implosions on the Omega facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laffite, S.; Bourgade, J. L.; Caillaud, T.

    We present in this article direct-drive experiments that were carried out on the Omega facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. Two different pulse shapes were tested in order to vary the implosion stability of the same target whose parameters, dimensions and composition, remained the same. The direct-drive configuration on the Omega facility allows the accurate time-resolvedmeasurement of the scattered light. We show that, provided the laser coupling is well controlled, the implosion time history, assessed by the “bang-time” and the shell trajectory measurements, can be predicted. This conclusion is independent on the pulse shape. Inmore » contrast, we show that the pulse shape affects the implosion stability, assessed by comparing the target performances between prediction and measurement. For the 1-ns square pulse, the measuredneutron number is about 80% of the prediction. Lastly, for the 2-step 2-ns pulse, we test here that this ratio falls to about 20%.« less

  5. Time history prediction of direct-drive implosions on the Omega facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laffite, S.; Bourgade, J. L.; Caillaud, T.

    We present in this article direct-drive experiments that were carried out on the Omega facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. Two different pulse shapes were tested in order to vary the implosion stability of the same target whose parameters, dimensions and composition, remained the same. The direct-drive configuration on the Omega facility allows the accurate time-resolved measurement of the scattered light. We show that, provided the laser coupling is well controlled, the implosion time history, assessed by the “bang-time” and the shell trajectory measurements, can be predicted. This conclusion is independent on the pulse shape.more » In contrast, we show that the pulse shape affects the implosion stability, assessed by comparing the target performances between prediction and measurement. For the 1-ns square pulse, the measured neutron number is about 80% of the prediction. For the 2-step 2-ns pulse, we test here that this ratio falls to about 20%.« less

  6. Simulations of laser-driven ion acceleration from a thin CH target

    NASA Astrophysics Data System (ADS)

    Park, Jaehong; Bulanov, Stepan; Ji, Qing; Steinke, Sven; Treffert, Franziska; Vay, Jean-Luc; Schenkel, Thomas; Esarey, Eric; Leemans, Wim; Vincenti, Henri

    2017-10-01

    2D and 3D computer simulations of laser driven ion acceleration from a thin CH foil using code WARP were performed. As the foil thickness varies from a few nm to μm, the simulations confirm that the acceleration mechanism transitions from the RPA (radiation pressure acceleration) to the TNSA (target normal sheath acceleration). In the TNSA regime, with the CH target thickness of 1 μ m and a pre-plasma ahead of the target, the simulations show the production of the collimated proton beam with the maximum energy of about 10 MeV. This agrees with the experimental results obtained at the BELLA laser facility (I 5 × 18 W / cm2 , λ = 800 nm). Furthermore, the maximum proton energy dependence on different setups of the initialization, i.e., different angles of the laser incidence from the target normal axis, different gradient scales and distributions of the pre-plasma, was explored. This work was supported by LDRD funding from LBNL, provided by the U.S. DOE under Contract No. DE-AC02-05CH11231, and used resources of the NERSC, a DOE office of Science User Facility supported by the U.S. DOE under Contract No. DE-AC02-05CH11231.

  7. Ejecta Experiments at the Pegasus Pulsed Power Facility

    DTIC Science & Technology

    1997-06-01

    Laboratory (LANL ). The facility provides both radial and axial access for making measurements. There exist optical, laser , and X-Ray paths for performing...and axial access for making measurements. There exist optical, laser , and X-Ray paths for performing measurements on the target assembly located near...surface variations, microjets can be formed thus contributing to the amount of ejecta. In addition to material properties which contribute to ejecta

  8. Micro-channel-based high specific power lithium target

    NASA Astrophysics Data System (ADS)

    Mastinu, P.; Martın-Hernández, G.; Praena, J.; Gramegna, F.; Prete, G.; Agostini, P.; Aiello, A.; Phoenix, B.

    2016-11-01

    A micro-channel-based heat sink has been produced and tested. The device has been developed to be used as a Lithium target for the LENOS (Legnaro Neutron Source) facility and for the production of radioisotope. Nevertheless, applications of such device can span on many areas: cooling of electronic devices, diode laser array, automotive applications etc. The target has been tested using a proton beam of 2.8MeV energy and delivering total power shots from 100W to 1500W with beam spots varying from 5mm2 to 19mm2. Since the target has been designed to be used with a thin deposit of lithium and since lithium is a low-melting-point material, we have measured that, for such application, a specific power of about 3kW/cm2 can be delivered to the target, keeping the maximum surface temperature not exceeding 150° C.

  9. High volume fabrication of laser targets using MEMS techniques

    NASA Astrophysics Data System (ADS)

    Spindloe, C.; Arthur, G.; Hall, F.; Tomlinson, S.; Potter, R.; Kar, S.; Green, J.; Higginbotham, A.; Booth, N.; Tolley, M. K.

    2016-04-01

    The latest techniques for the fabrication of high power laser targets, using processes developed for the manufacture of Micro-Electro-Mechanical System (MEMS) devices are discussed. These laser targets are designed to meet the needs of the increased shot numbers that are available in the latest design of laser facilities. Traditionally laser targets have been fabricated using conventional machining or coarse etching processes and have been produced in quantities of 10s to low 100s. Such targets can be used for high complexity experiments such as Inertial Fusion Energy (IFE) studies and can have many complex components that need assembling and characterisation with high precision. Using the techniques that are common to MEMS devices and integrating these with an existing target fabrication capability we are able to manufacture and deliver targets to these systems. It also enables us to manufacture novel targets that have not been possible using other techniques. In addition, developments in the positioning systems that are required to deliver these targets to the laser focus are also required and a system to deliver the target to a focus of an F2 beam at 0.1Hz is discussed.

  10. Optical laboratory facilities at the Finnish Meteorological Institute - Arctic Research Centre

    NASA Astrophysics Data System (ADS)

    Lakkala, Kaisa; Suokanerva, Hanne; Matti Karhu, Juha; Aarva, Antti; Poikonen, Antti; Karppinen, Tomi; Ahponen, Markku; Hannula, Henna-Reetta; Kontu, Anna; Kyrö, Esko

    2016-07-01

    This paper describes the laboratory facilities at the Finnish Meteorological Institute - Arctic Research Centre (FMI-ARC, target="_blank">http://fmiarc.fmi.fi). They comprise an optical laboratory, a facility for biological studies, and an office. A dark room has been built, in which an optical table and a fixed lamp test system are set up, and the electronics allow high-precision adjustment of the current. The Brewer spectroradiometer, NILU-UV multifilter radiometer, and Analytical Spectral Devices (ASD) spectroradiometer of the FMI-ARC are regularly calibrated or checked for stability in the laboratory. The facilities are ideal for responding to the needs of international multidisciplinary research, giving the possibility to calibrate and characterize the research instruments as well as handle and store samples.

  11. A new gated x-ray detector for the Orion laser facility

    NASA Astrophysics Data System (ADS)

    Clark, David D.; Aragonez, Robert; Archuleta, Thomas; Fatherley, Valerie; Hsu, Albert; Jorgenson, Justin; Mares, Danielle; Oertel, John; Oades, Kevin; Kemshall, Paul; Thomas, Phillip; Young, Trevor; Pederson, Neal

    2012-10-01

    Gated X-Ray Detectors (GXD) are considered the work-horse target diagnostic of the laser based inertial confinement fusion (ICF) program. Recently, Los Alamos National Laboratory (LANL) has constructed three new GXDs for the Orion laser facility at the Atomic Weapons Establishment (AWE) in the United Kingdom. What sets these three new instruments apart from what has previously been constructed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is: improvements in detector head microwave transmission lines, solid state embedded hard drive and updated control software, and lighter air box design and other incremental mechanical improvements. In this paper we will present the latest GXD design enhancements and sample calibration data taken on the Trident laser facility at Los Alamos National Laboratory using the newly constructed instruments.

  12. Prospects for a Muon Spin Resonance Facility in the Fermilab MuCool Test Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnstone, John A.; Johnstone, Carol

    This paper investigates the feasibility of re-purposing the MuCool Test Area (MTA) beamline and experimental hall to support a Muon Spin Resonance (MuSR) facility, which would make it the only such facility in the US. This report reviews the basic muon production concepts studied and operationally implemented at TRIUMF, PSI, and RAL and their application in the context of the MTA facility. Two scenarios were determined feasible. One, an initial minimal-shielding and capital-cost investment stage with a single secondary muon beamline that utilizes an existing high- intensity beam absorber and, another, upgraded stage, that implements an optimized production target pile,more » a proximate high-intensity absorber, and optimized secondary muon lines. A unique approach is proposed which chops or strips a macropulse of H$^-$ beam into a micropulse substructure – a muon creation timing scheme – which allows Muon Spin Resonance experiments in a linac environment. With this timing scheme, and attention to target design and secondary beam collection, the MTA can host enabling and competitive Muon Spin Resonance experiments.« less

  13. Scoping the parameter space for demo and the engineering test facility (ETF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, Wayne R.

    1999-01-19

    In our IFE development plan, we have set a goal of building an Engineering Test Facility (ETF) for a total cost of $2B and a Demo for $3B. In Mike Campbell' s presentation at Madison, we included a viewgraph with an example Demo that had 80 to 250 MWe of net power and showed a plausible argument that it could cost less than $3B. In this memo, I examine the design space for the Demo and then briefly for the ETF. Instead of attempting to estimate the costs of the drivers, I pose the question in a way to definemore » R&D goals: As a function of key design and performance parameters, how much can the driver cost if the total facility cost is limited to the specified goal? The design parameters examined for the Demo included target gain, driver energy, driver efficiency, and net power output. For the ETF; the design parameters are target gain, driver energy, and target yield. The resulting graphs of allowable driver cost determine the goals that the driver R&D programs must seek to meet.« less

  14. Development and Validation of Pathogen Environmental Monitoring Programs for Small Cheese Processing Facilities.

    PubMed

    Beno, Sarah M; Stasiewicz, Matthew J; Andrus, Alexis D; Ralyea, Robert D; Kent, David J; Martin, Nicole H; Wiedmann, Martin; Boor, Kathryn J

    2016-12-01

    Pathogen environmental monitoring programs (EMPs) are essential for food processing facilities of all sizes that produce ready-to-eat food products exposed to the processing environment. We developed, implemented, and evaluated EMPs targeting Listeria spp. and Salmonella in nine small cheese processing facilities, including seven farmstead facilities. Individual EMPs with monthly sample collection protocols were designed specifically for each facility. Salmonella was detected in only one facility, with likely introduction from the adjacent farm indicated by pulsed-field gel electrophoresis data. Listeria spp. were isolated from all nine facilities during routine sampling. The overall Listeria spp. (other than Listeria monocytogenes ) and L. monocytogenes prevalences in the 4,430 environmental samples collected were 6.03 and 1.35%, respectively. Molecular characterization and subtyping data suggested persistence of a given Listeria spp. strain in seven facilities and persistence of L. monocytogenes in four facilities. To assess routine sampling plans, validation sampling for Listeria spp. was performed in seven facilities after at least 6 months of routine sampling. This validation sampling was performed by independent individuals and included collection of 50 to 150 samples per facility, based on statistical sample size calculations. Two of the facilities had a significantly higher frequency of detection of Listeria spp. during the validation sampling than during routine sampling, whereas two other facilities had significantly lower frequencies of detection. This study provides a model for a science- and statistics-based approach to developing and validating pathogen EMPs.

  15. A continuously self regenerating high-flux neutron-generator facility

    NASA Astrophysics Data System (ADS)

    Rogers, A. M.; Becker, T. A.; Bernstein, L. A.; van Bibber, K.; Bleuel, D. L.; Chen, A. X.; Daub, B. H.; Goldblum, B. L.; Firestone, R. B.; Leung, K.-N.; Renne, P. R.; Waltz, C.

    2013-10-01

    A facility based on a next-generation, high-flux D-D neutron generator (HFNG) is being constructed at UC Berkeley. The current generator, designed around two RF-driven multicusp deuterium ion sources, is capable of producing a neutron output of >1011 n/s. A specially designed titanium-coated copper target located between the ion sources accelerates D+ ions up to 150 keV, generating 2.45 MeV neutrons through the d(d,3He)n fusion reaction. Deuterium in the target is self loaded and regenerating through ion implantation, enabling stable and continuous long-term operation. The proposed science program is focused on pioneering advances in the 40Ar/39Ar dating technique for geochronology, new nuclear data measurements, basic nuclear science research including statistical model studies of radiative-strength functions and level densities, and education. An overview of the facility and its unique capabilities as well as first measurements from the HFNG commissioning will be presented. Work supported by NSF Grant No. EAR-0960138, U.S. DOE LBL Contract No. DE-AC02-05CH11231, and U.S. DOE LLNL Contract No. DE-AC52-07NA27344.

  16. The national ignition facility high-energy ultraviolet laser system

    NASA Astrophysics Data System (ADS)

    Moses, Edward I.

    2004-09-01

    The National Ignition Facility (NIF), currently under construction at the Lawrence Livermore National Laboratory, is a stadium-sized facility containing a 192-beam, 1.8 MJ, 500 TW, ultraviolet laser system together with a 10-m diameter target chamber with room for nearly 100 experimental diagnostics. When completed, NIF will be the world's largest and most energetic laser experimental system, providing an international center to study inertial confinement fusion and the physics of matter at extreme energy densities and pressures. NIF's 192 energetic laser beams will compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. Other NIF experiments will allow the study of physical processes at temperatures approaching 10 8 K and 10 11 Bar, conditions that exist naturally only in the interior of stars, planets and in nuclear weapons. NIF is now entering the first phases of its laser commissioning program. The first four beams of the NIF laser system have generated 106 kJ of infrared light and over 10 kJ at the third harmonic (351 nm). NIF's target experimental systems are also being installed in preparation for experiments to begin in late 2003. This paper provides a detailed look the NIF laser systems, the significant laser and optical systems breakthroughs that were developed, the results of recent laser commissioning shots, and plans for commissioning diagnostics for experiments on NIF.

  17. PEGASYS---A proposed internal target facility for the PEP storage ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Biber, K.

    A proposal for an integral gas-jet target and forward spectrometer for the PEP storage ring is described. The beam structure, allowable, luminosity (L = 10/sup 33/ cm/sup /minus/2/s/sup /minus/1/ for H/sub 2/, D/sub 2/) and energy (E/sub e/ less than or equal to 15 GeV) make the ring ideal for multiparticle coincidence studies in the scaling regime, and where perturbative QCD may be an apt description of some exclusive and semi-inclusive reactions. 14 refs., 7 figs.

  18. Production Facility Prototype Blower Installation Report with 1000 Hr Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woloshun, Keith Albert; Olivas, Eric Richard; Dale, Gregory E.

    2016-09-23

    The roots blower in use at ANL for in-beam experiments and also at LANL for flow tests was sized for 12 mm diameter disks and significantly less beam heating. Currently, the disks are 29 mm in diameter, with a 12 mm FWHM Gaussian beam spot at 42 MeV and 2.86 μA on each side of the target, 5.72 μA total. The target design itself is reported elsewhere. With the increased beam heating, the helium flow requirement increased so that a larger blower was needed for a mass flow rate of 400 g/s at 2.76 MPa (400 psig). An Aerzen GMmore » 12.4 blower was selected, and is currently being installed at the LANL facility for target and component flow testing. This report describes this blower/motor/pressure vessel package and the status of the facility preparations. The blower has been operated for 1000 hours as a preliminary investigation of long-term performance, operation and possible maintenance issues. The blower performed well, with no significant change in blower head or mass flow rate developed under the operating conditions. Upon inspection, some oil had leaked out of the shaft seal of the blower. The shaft seal and bearing race have been replaced.« less

  19. Parallel machine architecture and compiler design facilities

    NASA Technical Reports Server (NTRS)

    Kuck, David J.; Yew, Pen-Chung; Padua, David; Sameh, Ahmed; Veidenbaum, Alex

    1990-01-01

    The objective is to provide an integrated simulation environment for studying and evaluating various issues in designing parallel systems, including machine architectures, parallelizing compiler techniques, and parallel algorithms. The status of Delta project (which objective is to provide a facility to allow rapid prototyping of parallelized compilers that can target toward different machine architectures) is summarized. Included are the surveys of the program manipulation tools developed, the environmental software supporting Delta, and the compiler research projects in which Delta has played a role.

  20. Scope of Work for Integration Management and Installation Services of the National Ignition Facility Beampath Infrastructure System

    NASA Astrophysics Data System (ADS)

    Coyle, P. D.

    2000-03-01

    The goal of the National Ignition Facility (NIF) project is to provide an above ground experimental capability for maintaining nuclear competence and weapons effects simulation and to provide a facility capable of achieving fusion ignition using solid-state lasers as the energy driver. The facility will incorporate 192 laser beams, which will be focused onto a small target located at the center of a spherical target chamber-the energy from the laser beams will be deposited in a few billionths of a second. The target will then implode, forcing atomic nuclei to sufficiently high temperatures and densities necessary to achieve a miniature fusion reaction. The NIF is under construction, at Livermore, California, located approximately 50 miles southeast of San Francisco, California. The University of California, Lawrence Livermore National Laboratory (LLNL), operating under Prime Contract W-7405-ENG. 48 with the U.S. Department of Energy (DOE), shall subcontract for Integration Management and Installation (IMI) Services for the Beampath Infrastructure System (BIS). The BIS includes Beampath Hardware and Beampath Utilities. Conventional Facilities work for the NIF Laser and Target Area Building (LTAB) and Optics Assembly Building (OAB) is over 86 percent constructed. This Scope of Work is for Integration Management and Installation (IMI) Services corresponding to Management Services, Design Integration Services, Construction Services, and Commissioning Services for the NIB BIS. The BIS includes Beampath Hardware and Beampath Utilities. Beampath Hardware and Beampath Utilities include beampath vessels, enclosures, and beam tubes; auxiliary and utility systems; and support structures. A substantial amount of GFE will be provided by the University for installation as part of the infrastructure packages.

  1. Radiological Protection and Nuclear Engineering Studies in Multi-MW Target Systems

    NASA Astrophysics Data System (ADS)

    Luis, Raul Fernandes

    Several innovative projects involving nuclear technology have emerged around the world in recent years, for applications such as spallation neutron sources, accelerator-driven systems for the transmutation of nuclear waste and radioactive ion beam (RIB) production. While the available neutron Wuxes from nuclear reactors did not increase substantially in intensity over the past three decades, the intensities of neutron sources produced in spallation targets have increased steadily, and should continue to do so during the 21st century. Innovative projects like ESS, MYRRHA and EURISOL lie at the forefront of the ongoing pursuit for increasingly bright neutron sources; driven by proton beams with energies up to 2 GeV and intensities up to several mA, the construction of their proposed facilities involves complex Nuclear Technology and Radiological Protection design studies executed by multidisciplinary teams of scientists and engineers from diUerent branches of Science. The intense neutron Wuxes foreseen for those facilities can be used in several scientiVc research Velds, such as Nuclear Physics and Astrophysics, Medicine and Materials Science. In this work, the target systems of two facilitites for the production of RIBs using the Isotope Separation On-Line (ISOL) method were studied in detail: ISOLDE, operating at CERN since 1967, and EURISOL, the next-generation ISOL facility to be built in Europe. For the EURISOL multi-MW target station, a detailed study of Radiological Protection was carried out using the Monte Carlo code FLUKA. Simulations were done to assess neutron Wuences, Vssion rates, ambient dose equivalent rates during operation and after shutdown and the production of radioactive nuclei in the targets and surrounding materials. DiUerent materials were discussed for diUerent components of the target system, aiming at improving its neutronics performance while keeping the residual activities resulting from material activation as low as possible. The second

  2. Longitudinal variation in pressure injury incidence among long-term aged care facilities.

    PubMed

    Jorgensen, Mikaela; Siette, Joyce; Georgiou, Andrew; Westbrook, Johanna I

    2018-05-04

    To examine variation in pressure injury (PI) incidence among long-term aged care facilities and identify resident- and facility-level factors that explain this variation. Longitudinal incidence study using routinely-collected electronic care management data. A large aged care service provider in New South Wales and the Australian Capital Territory, Australia. About 6556 people aged 65 years and older who were permanent residents in 60 long-term care facilities between December 2014 and November 2016. Risk-adjusted PI incidence rates over eight study quarters. Incidence density over the study period was 1.33 pressure injuries per 1000 resident days (95% confidence interval (CI) = 1.29-1.37). Funnel plots were used to identify variation among facilities. On average, 14% of facilities had risk-adjusted PI rates that were higher than expected in each quarter (above 95% funnel plot control limits). Ten percent of facilities had persistently high rates in any three or more consecutive quarters (n = 6). The variation between facilities was only partly explained by resident characteristics in multilevel regression models. Residents were more likely to have higher-pressure injury rates in facilities in regional areas compared with major city areas (adjusted incidence rate ratio = 1.25, 95% CI = 1.04-1.51), and facilities with persistently high rates were more likely to be located in areas with low socioeconomic status (P = 0.038). There is considerable variation among facilities in PI incidence. This study demonstrates the potential of routinely-collected care management data to monitor PI incidence and to identify facilities that may benefit from targeted intervention.

  3. National facilities study. Volume 4: Space operations facilities task group

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The principal objectives of the National Facilities Study (NFS) were to: (1) determine where U.S. facilities do not meet national aerospace needs; (2) define new facilities required to make U.S. capabilities 'world class' where such improvements are in the national interest; (3) define where consolidation and phase-out of existing facilities is appropriate; and (4) develop a long-term national plan for world-class facility acquisition and shared usage. The Space Operations Facilities Task Group defined discrete tasks to accomplish the above objectives within the scope of the study. An assessment of national space operations facilities was conducted to determine the nation's capability to meet the requirements of space operations during the next 30 years. The mission model used in the study to define facility requirements is described in Volume 3. Based on this model, the major focus of the Task Group was to identify any substantive overlap or underutilization of space operations facilities and to identify any facility shortfalls that would necessitate facility upgrades or new facilities. The focus of this initial study was directed toward facility recommendations related to consolidations, closures, enhancements, and upgrades considered necessary to efficiently and effectively support the baseline requirements model. Activities related to identifying facility needs or recommendations for enhancing U.S. international competitiveness and achieving world-class capability, where appropriate, were deferred to a subsequent study phase.

  4. Experiments with radioactive target samples at FRANZ

    NASA Astrophysics Data System (ADS)

    Sonnabend, K.; Altstadt, S.; Beinrucker, C.; Berger, M.; Endres, A.; Fiebiger, S.; Gerbig, J.; Glorius, J.; Göbel, K.; Heftrich, T.; Hinrichs, O.; Koloczek, A.; Lazarus, A.; Lederer, C.; Lier, A.; Mei, B.; Meusel, O.; Mevius, E.; Ostermöller, J.; Plag, R.; Pohl, M.; Reifarth, R.; Schmidt, S.; Slavkovská, Z.; Thomas, B.; Thomas, T.; Weigand, M.; Wolf, C.

    2016-01-01

    The FRANZ facility is currently under construction at Goethe Universität Frankfurt a.M., Germany. It is designed to produce the world's highest neutron intensities in the astrophysically relevant energy range between 10 keV and 1 MeV and consists of a high-intensity proton linac providing energies close to the threshold of the 7Li(p,n) reaction at Ep = 1880 keV. The high intensities of both the proton and the neutron beam allow the investigation of reactions of unstable target isotopes since the needed amount of target material is significantly reduced. We will present two examplary reactions relevant for the s process and the nucleosynthesis of p nuclei, respectively.

  5. Building Air Quality: A Guide for Building Owners and Facility Managers.

    ERIC Educational Resources Information Center

    Agle, Elizabeth; Galbraith, Susan

    The past two decades have witnessed increased concerns over the health and comfort of indoor air quality (IAQ), but little indoor air-related information has been targeted at building owners and facility managers of public and commercial buildings. This manual, specifically created for such a population, provides guidance on preventing,…

  6. Dance Facilities.

    ERIC Educational Resources Information Center

    Ashton, Dudley, Ed.; Irey, Charlotte, Ed.

    This booklet represents an effort to assist teachers and administrators in the professional planning of dance facilities and equipment. Three chapters present the history of dance facilities, provide recommended dance facilities and equipment, and offer some adaptations of dance facilities and equipment, for elementary, secondary and college level…

  7. Research and development on materials for the SPES target

    NASA Astrophysics Data System (ADS)

    Corradetti, Stefano; Andrighetto, Alberto; Manzolaro, Mattia; Scarpa, Daniele; Vasquez, Jesus; Rossignoli, Massimo; Monetti, Alberto; Calderolla, Michele; Prete, Gianfranco

    2014-03-01

    The SPES project at INFN-LNL (Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Legnaro) is focused on the production of radioactive ion beams. The core of the SPES facility is constituted by the target, which will be irradiated with a 40 MeV, 200 µA proton beam in order to produce radioactive species. In order to efficiently produce and release isotopes, the material constituting the target should be able to work under extreme conditions (high vacuum and temperatures up to 2000 °C). Both neutron-rich and proton-rich isotopes will be produced; in the first case, carbon dispersed uranium carbide (UCx) will be used as a target, whereas to produce p-rich isotopes, several types of targets will have to be irradiated. The synthesis and characterization of different types of material will be reported. Moreover, the results of irradiation and isotopes release tests on different uranium carbide target prototypes will be discussed.

  8. Antimicrobial stewardship in long term care facilities: what is effective?

    PubMed

    Nicolle, Lindsay E

    2014-02-12

    Intense antimicrobial use in long term care facilities promotes the emergence and persistence of antimicrobial resistant organisms and leads to adverse effects such as C. difficile colitis. Guidelines recommend development of antimicrobial stewardship programs for these facilities to promote optimal antimicrobial use. However, the effectiveness of these programs or the contribution of any specific program component is not known. For this review, publications describing evaluation of antimicrobial stewardship programs for long term care facilities were identified through a systematic literature search. Interventions included education, guidelines development, feedback to practitioners, and infectious disease consultation. The studies reviewed varied in types of facilities, interventions used, implementation, and evaluation. Comprehensive programs addressing all infections were reported to have improved antimicrobial use for at least some outcomes. Targeted programs for treatment of pneumonia were minimally effective, and only for indicators of uncertain relevance for stewardship. Programs focusing on specific aspects of treatment of urinary infection - limiting treatment of asymptomatic bacteriuria or prophylaxis of urinary infection - were reported to be effective. There were no reports of cost-effectiveness, and the sustainability of most of the programs is unclear. There is a need for further evaluation to characterize effective antimicrobial stewardship for long term care facilities.

  9. National Ignition Facility Control and Information System Operational Tools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, C D; Beeler, R G; Bowers, G A

    The National Ignition Facility (NIF) in Livermore, California, is the world's highest-energy laser fusion system and one of the premier large scale scientific projects in the United States. The system is designed to setup and fire a laser shot to a fusion ignition or high energy density target at rates up to a shot every 4 hours. NIF has 192 laser beams delivering up to 1.8 MJ of energy to a {approx}2 mm target that is planned to produce >100 billion atm of pressure and temperatures of >100 million degrees centigrade. NIF is housed in a ten-story building footprint themore » size of three football fields as shown in Fig. 1. Commissioning was recently completed and NIF will be formally dedicated at Lawrence Livermore National Laboratory on May 29, 2009. The control system has 60,000 hardware controls points and employs 2 million lines of control system code. The control room has highly automated equipment setup prior to firing laser system shots. This automation has a data driven implementation that is conducive to dynamic modification and optimization depending on the shot goals defined by the end user experimenters. NIF has extensive facility machine history and infrastructure maintenance workflow tools both under development and deployed. An extensive operational tools suite has been developed to support facility operations including experimental shot setup, machine readiness, machine health and safety, and machine history. The following paragraphs discuss the current state and future upgrades to these four categories of operational tools.« less

  10. National Transonic Facility Characterization Status

    NASA Technical Reports Server (NTRS)

    Bobbitt, C., Jr.; Everhart, J.; Foster, J.; Hill, J.; McHatton, R.; Tomek, W.

    2000-01-01

    This paper describes the current status of the characterization of the National Transonic Facility. The background and strategy for the tunnel characterization, as well as the current status of the four main areas of the characterization (tunnel calibration, flow quality characterization, data quality assurance, and support of the implementation of wall interference corrections) are presented. The target accuracy requirements for tunnel characterization measurements are given, followed by a comparison of the measured tunnel flow quality to these requirements based on current available information. The paper concludes with a summary of which requirements are being met, what areas need improvement, and what additional information is required in follow-on characterization studies.

  11. LBNF 1.2 MW Target: Conceptual Design & Fabrication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowley, C.; Ammigan, K.; Anderson, K.

    2015-06-01

    Fermilab’s Long-Baseline Neutrino Facility (LBNF) will utilize a modified design based on the NuMI low energy target that is reconfigured to accommodate beam operation at 1.2 MW. Achieving this power with a graphite target material and ancillary systems originally rated for 400 kW requires several design changes and R&D efforts related to material bonding and electrical isolation. Target cooling, structural design, and fabrication techniques must address higher stresses and heat loads that will be present during 1.2 MW operation, as the assembly will be subject to cyclic loads and thermal expansion. Mitigations must be balanced against compromises in neutrino yield.more » Beam monitoring and subsystem instrumentation will be updated and added to ensure confidence in target positioning and monitoring. Remote connection to the target hall support structure must provide for the eventual upgrade to a 2.4 MW target design, without producing excessive radioactive waste or unreasonable exposure to technicians during reconfiguration. Current designs and assembly layouts will be presented, in addition to current findings on processes and possibilities for prototype and final assembly fabrication.« less

  12. LBNF 1.2 MW TARGET: CONCEPTUAL DESIGN & FABRICATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowley, Cory F.; Ammigan, K.; Anderson, K.

    2015-06-29

    Fermilab’s Long-Baseline Neutrino Facility (LBNF) will utilize a modified design based on the NuMI low energy target that is reconfigured to accommodate beam operation at 1.2 MW. Achieving this power with a graphite target material and ancillary systems originally rated for 400 kW requires several design changes and R&D efforts related to material bonding and electrical isolation. Target cooling, structural design, and fabrication techniques must address higher stresses and heat loads that will be present during 1.2 MW operation, as the assembly will be subject to cyclic loads and thermal expansion. Mitigations must be balanced against compromises in neutrino yield.more » Beam monitoring and subsystem instrumentation will be updated and added to ensure confidence in target positioning and monitoring. Remote connection to the target hall support structure must provide for the eventual upgrade to a 2.4 MW target design, without producing excessive radioactive waste or unreasonable exposure to technicians during reconfiguration. Current designs and assembly layouts will be presented, in addition to current findings on processes and possibilities for prototype and final assembly fabrication.« less

  13. Medicaid claims history of Florida long-term care facility residents hospitalized for pressure ulcers.

    PubMed

    Baker, J

    1996-01-01

    The purpose of this study was to identify patterns of admission, discharge, and readmission between hospital and long-term care facility among a group of Florida long-term care facility residents with pressure ulcers whose care was paid for by Medicaid. A patient-specific, longitudinal claims history database was constructed from data provided by the Florida Department of Health and Rehabilitative Services. This database was used to determine and analyze hospital admissions for pressure ulcer care among Medicaid recipients cared for in a long-term care facility. Analysis of the data determined that more than half of the Medicaid-covered long-term care facility residents who formed the target study group (54.57%) had multiple hospital admissions associated with pressure ulcers. Pressure ulcer hospital admissions amounted to a program cost of $9.9 million.

  14. Safe motherhood voucher programme coverage of health facility deliveries among poor women in South-western Uganda.

    PubMed

    Kanya, Lucy; Obare, Francis; Warren, Charlotte; Abuya, Timothy; Askew, Ian; Bellows, Ben

    2014-07-01

    There has been increased interest in and experimentation with demand-side mechanisms such as the use of vouchers that place purchasing power in the hands of targeted consumers to improve the uptake of healthcare services in low-income settings. A key measure of the success of such interventions is the extent to which the programmes have succeeded in reaching the target populations. This article estimates the coverage of facility deliveries by a maternal health voucher programme in South-western Uganda and examines whether such coverage is correlated with district-level characteristics such as poverty density and the number of contracted facilities. Analysis entails estimating the voucher coverage of health facility deliveries among the general population and poor population (PP) using programme data for 2010, which was the most complete calendar year of implementation of the Uganda safe motherhood (SM) voucher programme. The results show that: (1) the programme paid for 38% of estimated deliveries among the PP in the targeted districts, (2) there was a significant negative correlation between the poverty density in a district and proportions of births to poor women that were covered by the programme and (3) improving coverage of health facility deliveries for poor women is dependent upon increasing the sales and redemption rates. The findings suggest that to the extent that the programme stimulated demand for SM services by new users, it has the potential of increasing facility-based births among poor women in the region. In addition, the significant negative correlation between the poverty density and the proportions of facility-based births to poor women that are covered by the voucher programme suggests that there is need to increase both voucher sales and the rate of redemption to improve coverage in districts with high levels of poverty. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine © The Author

  15. SINGLE EVENT EFFECTS TEST FACILITY AT OAK RIDGE NATIONAL LABORATORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riemer, Bernie; Gallmeier, Franz X; Dominik, Laura J

    2015-01-01

    Increasing use of microelectronics of ever diminishing feature size in avionics systems has led to a growing Single Event Effects (SEE) susceptibility arising from the highly ionizing interactions of cosmic rays and solar particles. Single event effects caused by atmospheric radiation have been recognized in recent years as a design issue for avionics equipment and systems. To ensure a system meets all its safety and reliability requirements, SEE induced upsets and potential system failures need to be considered, including testing of the components and systems in a neutron beam. Testing of ICs and systems for use in radiation environments requiresmore » the utilization of highly advanced laboratory facilities that can run evaluations on microcircuits for the effects of radiation. This paper provides a background of the atmospheric radiation phenomenon and the resulting single event effects, including single event upset (SEU) and latch up conditions. A study investigating requirements for future single event effect irradiation test facilities and developing options at the Spallation Neutron Source (SNS) is summarized. The relatively new SNS with its 1.0 GeV proton beam, typical operation of 5000 h per year, expertise in spallation neutron sources, user program infrastructure, and decades of useful life ahead is well suited for hosting a world-class SEE test facility in North America. Emphasis was put on testing of large avionics systems while still providing tunable high flux irradiation conditions for component tests. Makers of ground-based systems would also be served well by these facilities. Three options are described; the most capable, flexible, and highest-test-capacity option is a new stand-alone target station using about one kW of proton beam power on a gas-cooled tungsten target, with dual test enclosures. Less expensive options are also described.« less

  16. Development of target ion source systems for radioactive beams at GANIL

    NASA Astrophysics Data System (ADS)

    Bajeat, O.; Delahaye, P.; Couratin, C.; Dubois, M.; Franberg-Delahaye, H.; Henares, J. L.; Huguet, Y.; Jardin, P.; Lecesne, N.; Lecomte, P.; Leroy, R.; Maunoury, L.; Osmond, B.; Sjodin, M.

    2013-12-01

    The GANIL facility (Caen, France) is dedicated to the acceleration of heavy ion beams including radioactive beams produced by the Isotope Separation On-Line (ISOL) method at the SPIRAL1 facility. To extend the range of radioactive ion beams available at GANIL, using the ISOL method two projects are underway: SPIRAL1 upgrade and the construction of SPIRAL2. For SPIRAL1, a new target ion source system (TISS) using the VADIS FEBIAD ion source coupled to the SPIRAL1 carbon target will be tested on-line by the end of 2013 and installed in the cave of SPIRAL1 for operation in 2015. The SPIRAL2 project is under construction and is being design for using different production methods as fission, fusion or spallation reactions to cover a large area of the chart of nuclei. It will produce among others neutron rich beams obtained by the fission of uranium induced by fast neutrons. The production target made from uranium carbide and heated at 2000 °C will be associated with several types of ion sources. Developments currently in progress at GANIL for each of these projects are presented.

  17. Requirements and Capabilities for Fielding Cryogenic DT-Containing Fill-Tube Targets for Direct-Drive Experiments on OMEGA

    DOE PAGES

    Harding, D. R.; Ulreich, J.; Wittman, M. D.; ...

    2017-12-06

    Improving the performance of direct-drive cryogenic targets at the Omega Laser Facility requires the development of a new cryogenic system to (i) field non permeable targets with a fill tube, and (ii) provide a clean environment around the target. This capability is to demonstrate that imploding a scaled-down version of the direct-drive–ignition target for the National Ignition Facility (NIF) on the OMEGA laser will generate the hot-spot pressure that is needed for ignition; this will justify future cryogenic direct-drive experiments on the NIF. The paper describes the target, the cryogenic equipment that is being constructed to achieve this goal, andmore » the proposed target delivery process. Thermal calculations, fill-tube–based target designs, and structural/vibrational analyses are provided to demonstrate the credibility of the design. This new design will include capabilities not available (or possible) with the existing OMEGA cryogenic system, with the emphasis being to preserve a pristinely clean environment around the target, and to provide upgraded diagnostics to characterize both the ice layer and the target’s surface. The conceptual design is complete and testing of prototypes and subcomponents is underway. The rationale and capabilities of the new design are discussed.« less

  18. Requirements and Capabilities for Fielding Cryogenic DT-Containing Fill-Tube Targets for Direct-Drive Experiments on OMEGA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harding, D. R.; Ulreich, J.; Wittman, M. D.

    Improving the performance of direct-drive cryogenic targets at the Omega Laser Facility requires the development of a new cryogenic system to (i) field non permeable targets with a fill tube, and (ii) provide a clean environment around the target. This capability is to demonstrate that imploding a scaled-down version of the direct-drive–ignition target for the National Ignition Facility (NIF) on the OMEGA laser will generate the hot-spot pressure that is needed for ignition; this will justify future cryogenic direct-drive experiments on the NIF. The paper describes the target, the cryogenic equipment that is being constructed to achieve this goal, andmore » the proposed target delivery process. Thermal calculations, fill-tube–based target designs, and structural/vibrational analyses are provided to demonstrate the credibility of the design. This new design will include capabilities not available (or possible) with the existing OMEGA cryogenic system, with the emphasis being to preserve a pristinely clean environment around the target, and to provide upgraded diagnostics to characterize both the ice layer and the target’s surface. The conceptual design is complete and testing of prototypes and subcomponents is underway. The rationale and capabilities of the new design are discussed.« less

  19. Neutron Source Facility Training Simulator Based on EPICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Young Soo; Wei, Thomas Y.; Vilim, Richard B.

    A plant operator training simulator is developed for training the plant operators as well as for design verification of plant control system (PCS) and plant protection system (PPS) for the Kharkov Institute of Physics and Technology Neutron Source Facility. The simulator provides the operator interface for the whole plant including the sub-critical assembly coolant loop, target coolant loop, secondary coolant loop, and other facility systems. The operator interface is implemented based on Experimental Physics and Industrial Control System (EPICS), which is a comprehensive software development platform for distributed control systems. Since its development at Argonne National Laboratory, it has beenmore » widely adopted in the experimental physics community, e.g. for control of accelerator facilities. This work is the first implementation for a nuclear facility. The main parts of the operator interface are the plant control panel and plant protection panel. The development involved implementation of process variable database, sequence logic, and graphical user interface (GUI) for the PCS and PPS utilizing EPICS and related software tools, e.g. sequencer for sequence logic, and control system studio (CSS-BOY) for graphical use interface. For functional verification of the PCS and PPS, a plant model is interfaced, which is a physics-based model of the facility coolant loops implemented as a numerical computer code. The training simulator is tested and demonstrated its effectiveness in various plant operation sequences, e.g. start-up, shut-down, maintenance, and refueling. It was also tested for verification of the plant protection system under various trip conditions.« less

  20. The National Ignition Facility Project: An Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogan, W.J.; Moses, E.; Warner, B.

    2000-12-07

    The National Ignition Facility (NIT) consists of 192 forty-centimeter-square laser beams and a 10-m-diameter target chamber. Physical construction began in 1997. The Laser and Target Area Building and the Optics Assembly Building were the first major construction activities, and despite several unforeseen obstacles, the buildings are now 92% complete and have been done on time and within cost. Prototype component development and testing has proceeded in parallel. Optics vendors have installed full-scale production lines and have done prototype production runs. The assembly and integration of the beam path infrastructure has been reconsidered and a new approach has been developed. Thismore » paper will discuss the status of the NIF project and the plans for completion. It will also include summary information on Laser MegaJoule (LMJ) provided by M. Andre, LMJ Project Director.« less

  1. 'System-Risk' Flood Task Force

    NASA Astrophysics Data System (ADS)

    Schröter, Kai; Ridder, Nina; Tavares da Costa, Ricardo; Diederen, Dirk; Viglione, Alberto

    2017-04-01

    Current scientific methods and engineering practice in flood risk assessment do not consider the full complexity of flood risk systems. Fundamental spatio-temporal dependencies, interactions and feedbacks need to be addressed to comprehensively quantify the effects of measures at various levels, ranging from local technical to high-level policy options. As each flood is unique, each event offers an unparalleled opportunity to collect data and to gain insights into system's behavior under extreme conditions potentially revealing exceptional circumstances, unexpected failures and cascading effects, and thus a chance to learn and to improve methods and models. To make use of this the Marie-Skłodowska-Curie European Training Network 'System-Risk' (www.system-risk.eu) establishes a Flood Task Force (FTF) that aims to learn about successful practical approaches, but also potential pitfalls and failures in the management of real flood events. The FTF consists of an interdisciplinary group of researchers who will apply in situ their latest methods and knowledge of e.g. how the event developed, how the risk management responded, and what the consequences were. This multi-layered perspective is intended to deepen the understanding of the complexity of flood risk systems as for instance in terms of interactions between hazard, the natural and the built environment, societal institutions and coping capacities. This contribution gives an overview of the conceptual approach to the System-Risk FTF.

  2. In-situ formation of solidified hydrogen thin-membrane targets using a pulse tube cryocooler

    NASA Astrophysics Data System (ADS)

    Astbury, S.; Bedacht, S.; Brummitt, P.; Carroll, D.; Clarke, R.; Crisp, S.; Hernandez-Gomez, C.; Holligan, P.; Hook, S.; Merchan, J. S.; Neely, D.; Ortner, A.; Rathbone, D.; Rice, P.; Schaumann, G.; Scott, G.; Spindloe, C.; Spurdle, S.; Tebartz, A.; Tomlinson, S.; Wagner, F.; Borghesi, M.; Roth, M.; Tolley, M. K.

    2016-04-01

    An account is given of the Central Laser Facility's work to produce a cryogenic hydrogen targetry system using a pulse tube cryocooler. Due to the increasing demand for low Z thin laser targets, CLF (in collaboration with TUD) have been developing a system which allows the production of solid hydrogen membranes by engineering a design which can achieve this remotely; enabling the gas injection, condensation and solidification of hydrogen without compromising the vacuum of the target chamber. A dynamic sealing mechanism was integrated which allows targets to be grown and then remotely exposed to open vacuum for laser interaction. Further research was conducted on the survivability of the cryogenic targets which concluded that a warm gas effect causes temperature spiking when exposing the solidified hydrogen to the outer vacuum. This effect was shown to be mitigated by improving the pumping capacity of the environment and reducing the minimum temperature obtainable on the target mount. This was achieved by developing a two-stage radiation shield encased with superinsulating blanketing; reducing the base temperature from 14 ± 0.5 K to 7.2 ± 0.2 K about the coldhead as well as improving temperature control stability following the installation of a high-performance temperature controller and sensor apparatus. The system was delivered experimentally and in July 2014 the first laser shots were taken upon hydrogen targets in the Vulcan TAP facility.

  3. A beamline systems model for Accelerator-Driven Transmutation Technology (ADTT) facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todd, A.M.M.; Paulson, C.C.; Peacock, M.A.

    1995-10-01

    A beamline systems code, that is being developed for Accelerator-Driven Transmutation Technology (ADTT) facility trade studies, is described. The overall program is a joint Grumman, G.H. Gillespie Associates (GHGA) and Los Alamos National Laboratory effort. The GHGA Accelerator Systems Model (ASM) has been adopted as the framework on which this effort is based. Relevant accelerator and beam transport models from earlier Grumman systems codes are being adapted to this framework. Preliminary physics and engineering models for each ADTT beamline component have been constructed. Examples noted include a Bridge Coupled Drift Tube Linac (BCDTL) and the accelerator thermal system. A decisionmore » has been made to confine the ASM framework principally to beamline modeling, while detailed target/blanket, balance-of-plant and facility costing analysis will be performed externally. An interfacing external balance-of-plant and facility costing model, which will permit the performance of iterative facility trade studies, is under separate development. An ABC (Accelerator Based Conversion) example is used to highlight the present models and capabilities.« less

  4. A beamline systems model for Accelerator-Driven Transmutation Technology (ADTT) facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todd, Alan M. M.; Paulson, C. C.; Peacock, M. A.

    1995-09-15

    A beamline systems code, that is being developed for Accelerator-Driven Transmutation Technology (ADTT) facility trade studies, is described. The overall program is a joint Grumman, G. H. Gillespie Associates (GHGA) and Los Alamos National Laboratory effort. The GHGA Accelerator Systems Model (ASM) has been adopted as the framework on which this effort is based. Relevant accelerator and beam transport models from earlier Grumman systems codes are being adapted to this framework. Preliminary physics and engineering models for each ADTT beamline component have been constructed. Examples noted include a Bridge Coupled Drift Tube Linac (BCDTL) and the accelerator thermal system. Amore » decision has been made to confine the ASM framework principally to beamline modeling, while detailed target/blanket, balance-of-plant and facility costing analysis will be performed externally. An interfacing external balance-of-plant and facility costing model, which will permit the performance of iterative facility trade studies, is under separate development. An ABC (Accelerator Based Conversion) example is used to highlight the present models and capabilities.« less

  5. Effect of facility on the operative costs of distal radius fractures.

    PubMed

    Mather, Richard C; Wysocki, Robert W; Mack Aldridge, J; Pietrobon, Ricardo; Nunley, James A

    2011-07-01

    The purpose of this study was to investigate whether ambulatory surgery centers can deliver lower-cost care and to identify sources of those cost savings. We performed a cost identification analysis of outpatient volar plating for closed distal radius fractures at a single academic medical center. Multiple costs and time measures were taken from an internal database of 130 consecutive patients and were compared by venue of treatment, either an inpatient facility or an ambulatory, stand-alone surgery facility. The relationships between total cost and operative time and multiple variables, including fracture severity, patient age, gender, comorbidities, use of bone graft, concurrent carpal tunnel release, and surgeon experience, were examined, using multivariate analysis and regression modeling to identify other cost drivers or explanatory variables. The mean operative cost was considerably greater at the inpatient facility ($7,640) than at the outpatient facility ($5,220). Cost drivers of this difference were anesthesia services, post-anesthesia care unit, and operating room costs. Total surgical time, nursing time, set-up, and operative times were 33%, 109%, 105%, and 35% longer, respectively, at the inpatient facility. There was no significant difference between facilities for the additional variables, and none of those variables independently affected cost or operative time. The only predictor of cost and time was facility type. This study supports the use of ambulatory stand-alone surgical facilities to achieve efficient resource utilization in the operative treatment of distal radius fractures. We also identified several specific costs and time measurements that differed between facilities, which can serve as potential targets for tertiary facilities to improve utilization. Economic and Decisional Analysis III. Copyright © 2011 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  6. Aerosol-Assisted Solid Debris Collection for the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, S L; Shaughnessy, D A; Moody, K J

    2010-05-21

    The National Ignition Facility (NIF) has been completed and has made its first shots on-target. While upcoming experiments will be focused on achieving ignition, a variety of subsequent experiments are planned for the facility, including measurement of cross sections, astrophysical measurements, and investigation of hydrodynamic instability in the target capsule. In order to successfully execute several of these planned experiments, the ability to collect solid debris following a NIF capsule shot will be required. The ability to collect and analyze solid debris generated in a shot at the National Ignition Facility (NIF) will greatly expand the number of nuclear reactionsmore » studied for diagnostic purposes. Currently, reactions are limited to only those producing noble gases for cryogenic collection and counting with the Radchem Apparatus for Gas Sampling (RAGS). The radchem solid collection diagnostic has already been identified by NIF to be valuable for the determination and understanding of mix generated in the target capsule's ablation. LLNL is currently developing this solid debris collection capability at NIF, and is in the stage of testing credible designs. Some of these designs explore the use of x-ray generated aerosols to assist in collection of solid debris. However, the variety of harsh experimental conditions this solid collection device will encounter in NIF are challenging to replicate. Experiments performed by Gary Grim et al. at Sandia National Laboratory's RHEPP1 facility have shown that ablation causes a cloud of material removed from an exposed surface to move normal to and away from the surface. This ablation is certain to be a concern in the NIF target chamber from the prompt x-rays, gamma rays, etc. generated in the shot. The cloud of ablated material could interfere with the collection of the desired reaction debris by slowing down the debris so that the kinetic energy is too low to allow implantation, or by stopping the debris from

  7. Development of cloud-operating platform for detention facility design

    NASA Astrophysics Data System (ADS)

    Tun Lee, Kwan; Hung, Meng-Chiu; Tseng, Wei-Fan; Chan, Yi-Ping

    2017-04-01

    In the past 20 years, the population of Taiwan has accumulated in urban areas. The land development has changed the hydrological environment and resulted in the increase of surface runoff and shortened the time to peak discharge. The change of runoff characteristics increases the flood risk and reduces resilient ability of the city during flood. Considering that engineering measures may not be easy to implement in populated cities, detention facilities set on building basements have been proposed to compromise the increase of surface runoff resulting from development activities. In this study, a web-based operational platform has been developed to integrate the GIS technologies, hydrological analyses, as well as relevant regulations for the design of detention facilities. The design procedure embedded in the system includes a prior selection of type and size of the detention facility, integrated hydrological analysis for the developing site, and inspection of relevant regulations. After login the platform, designers can access the system database to retrieve road maps, land use coverages, and storm sewer information. Once the type, size, inlet, and outlet of the detention facility are assigned, the system can acquire the rainfall intensity-duration-frequency information from adjacent rain gauges to perform hydrological analyses for the developing site. The increase of the runoff volume due to the development and the reduction of the outflow peak through the construction of the detention facility can be estimated. The outflow peak at the target site is then checked with relevant regulations to confirm the suitability of the detention facility design. The proposed web-based platform can provide a concise layout of the detention facility and the drainageway of the developing site on a graphical interface. The design information can also be delivered directly through a web link to authorities for inspecting to simplify the complex administrative procedures.

  8. Medical Isotope Production Analyses In KIPT Neutron Source Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talamo, Alberto; Gohar, Yousry

    Medical isotope production analyses in Kharkov Institute of Physics and Technology (KIPT) neutron source facility were performed to include the details of the irradiation cassette and the self-shielding effect. An updated detailed model of the facility was used for the analyses. The facility consists of an accelerator-driven system (ADS), which has a subcritical assembly using low-enriched uranium fuel elements with a beryllium-graphite reflector. The beryllium assemblies of the reflector have the same outer geometry as the fuel elements, which permits loading the subcritical assembly with different number of fuel elements without impacting the reflector performance. The subcritical assembly is drivenmore » by an external neutron source generated from the interaction of 100-kW electron beam with a tungsten target. The facility construction was completed at the end of 2015, and it is planned to start the operation during the year of 2016. It is the first ADS in the world, which has a coolant system for removing the generated fission power. Argonne National Laboratory has developed the design concept and performed extensive design analyses for the facility including its utilization for the production of different radioactive medical isotopes. 99Mo is the parent isotope of 99mTc, which is the most commonly used medical radioactive isotope. Detailed analyses were performed to define the optimal sample irradiation location and the generated activity, for several radioactive medical isotopes, as a function of the irradiation time.« less

  9. Simultaneous identification of transfer functions and combustion noise of a turbulent flame

    NASA Astrophysics Data System (ADS)

    Merk, M.; Jaensch, S.; Silva, C.; Polifke, W.

    2018-05-01

    The Large Eddy Simulation/System Identification (LES/SI) approach allows to deduce a flame transfer function (FTF) from LES of turbulent reacting flow: Time series of fluctuations of reference velocity and global heat release rate resulting from broad-band excitation of a simulated turbulent flame are post-processed via SI techniques to derive a low order model of the flame dynamics, from which the FTF is readily deduced. The current work investigates an extension of the established LES/SI approach: In addition to estimation of the FTF, a low order model for the combustion noise source is deduced from the same time series data. By incorporating such a noise model into a linear thermoacoustic model, it is possible to predict the overall level as well as the spectral distribution of sound pressure in confined combustion systems that do not exhibit self-excited thermoacoustic instability. A variety of model structures for estimation of a noise model are tested in the present study. The suitability and quality of these model structures are compared against each other, their sensitivity regarding certain time series properties is studied. The influence of time series length, signal-to-noise ratio as well as acoustic reflection coefficient of the boundary conditions on the identification are examined. It is shown that the Box-Jenkins model structure is superior to simpler approaches for the simultaneous identification of models that describe the FTF as well as the combustion noise source. Subsequent to the question of the most adequate model structure, the choice of optimal model order is addressed, as in particular the optimal parametrization of the noise model is not obvious. Akaike's Information Criterion and a model residual analysis are applied to draw qualitative and quantitative conclusions on the most suitable model order. All investigations are based on a surrogate data model, which allows a Monte Carlo study across a large parameter space with modest

  10. Measurement of electromagnetic pulses generated during interactions of high power lasers with solid targets

    NASA Astrophysics Data System (ADS)

    De Marco, M.; Krása, J.; Cikhardt, J.; Pfeifer, M.; Krouský, E.; Margarone, D.; Ahmed, H.; Borghesi, M.; Kar, S.; Giuffrida, L.; Vrana, R.; Velyhan, A.; Limpouch, J.; Korn, G.; Weber, S.; Velardi, L.; Delle Side, D.; Nassisi, V.; Ullschmied, J.

    2016-06-01

    A target irradiated with a high power laser pulse, blows off a large amount of charge and as a consequence the target itself becomes a generator of electromagnetic pulses (EMP) owing to high return current flowing to the ground through the target holder. The first measurement of the magnetic field induced by the neutralizing current reaching a value of a few kA was performed with the use of an inductive target probe at the PALS Laser Facility (Cikhardt et al. Rev. Sci. Instrum. 85 (2014) 103507). A full description of EMP generation should contain information on the spatial distribution and temporal variation of the electromagnetic field inside and outside of the interaction chamber. For this reason, we consider the interaction chamber as a resonant cavity in which different modes of EMP oscillate for hundreds of nanoseconds, until the EMP is transmitted outside through the glass windows and EM waves are attenuated. Since the experimental determination of the electromagnetic field distribution is limited by the number of employed antennas, a mapping of the electromagnetic field has to be integrated with numerical simulations. Thus, this work reports on a detailed numerical mapping of the electromagnetic field inside the interaction chamber at the PALS Laser Facility (covering a frequency spectrum from 100 MHz to 3 GHz) using the commercial code COMSOL Multiphysics 5.2. Moreover we carried out a comparison of the EMP generated in the parallelepiped-like interaction chamber used in the Vulcan Petawatt Laser Facility at the Rutherford Appleton Laboratory, against that produced in the spherical interaction chamber of PALS.

  11. The Physics of Advanced High-Gain Targets for Inertial Fusion Energy

    NASA Astrophysics Data System (ADS)

    Perkins, L. John

    2010-11-01

    In ca. 2011-2012, the National Ignition Facility is poised to demonstrate fusion ignition and gain in the laboratory for the first time. This key milestone in the development of inertial confinement fusion (ICF) can be expected to engender interest in the development of inertial fusion energy (IFE) and expanded efforts on a number of advanced targets that may achieve high fusion energy gain at lower driver energies. In this tutorial talk, we will discuss the physics underlying ICF ignition and thermonuclear burn, examine the requirements for high gain, and outline candidate R&D programs that will be required to assess the performance of these target concepts under various driver systems including lasers, heavy-ions and pulsed power. Such target concepts include those operating by fast ignition, shock ignition, impact ignition, dual-density, magnetically-insulated, one- and two-sided drive, etc., some of which may have potential to burn advanced, non-DT fusion fuels. We will then delineate the role of such targets in their application to the production of high average fusion power. Here, systems studies of IFE economics suggest that we should strive for target fusion gains of around 100 at drive energies of 1MJ, together with corresponding rep-rates of up to 10Hz and driver electrical efficiencies around 15%. In future years, there may be exciting opportunities to study such ``innovative confinement concepts'' with prospects of fielding them on facilities such as NIF to obtain high fusion energy gains on a single shot basis.

  12. The Nature of Scatter at the DARHT Facility and Suggestions for Improved Modeling of DARHT Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morneau, Rachel Anne; Klasky, Marc Louis

    The U.S. Stockpile Stewardship Program [1] is designed to sustain and evaluate the nuclear weapons stockpile while foregoing underground nuclear tests. The maintenance of a smaller, aging U.S. nuclear weapons stockpile without underground testing requires complex computer calculations [14]. These calculations in turn need to be verified and benchmarked [14]. A wide range of research facilities have been used to test and evaluate nuclear weapons while respecting the Comprehensive Nuclear Test-Ban Treaty (CTBT) [2]. Some of these facilities include the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory, the Z machine at Sandia National Laboratories, and the Dual Axismore » Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory. This research will focus largely on DARHT (although some information from Cygnus and the Los Alamos Microtron may be used in this research) by modeling it and comparing to experimental data. DARHT is an electron accelerator that employs high-energy flash x-ray sources for imaging hydro-tests. This research proposes to address some of the issues crucial to understanding DARHT Axis II and the analysis of the radiographic images produced. Primarily, the nature of scatter at DARHT will be modeled and verified with experimental data. It will then be shown that certain design decisions can be made to optimize the scatter field for hydrotest experiments. Spectral effects will be briefly explored to determine if there is any considerable effect on the density reconstruction caused by changes in the energy spectrum caused by target changes. Finally, a generalized scatter model will be made using results from MCNP that can be convolved with the direct transmission of an object to simulate the scatter of that object at the detector plane. The region in which with this scatter model is appropriate will be explored.« less

  13. Early-time radiation flux symmetry optimization and its effect on gas-filled hohlraum ignition targets on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Milovich, J. L.; Dewald, E. L.; Pak, A.; Michel, P.; Town, R. P. J.; Bradley, D. K.; Landen, O.; Edwards, M. J.

    2016-03-01

    Achieving ignition on the National Ignition Facility (NIF) is tied to our ability to control and minimize deviations from sphericity of the capsule implosion. Low-mode asymmetries of the hot spot result from the combined effect of radiation drive asymmetries throughout the laser pulse and initial roughness on the capsule surface. In this paper, we report on simulations and experiments designed to assess, measure, and correct the drive asymmetries produced by the early-time (≈first 2 ns or "picket") period of the laser pulse. The drive asymmetry during the picket is commonly thought to introduce distortions in the hot-spot shape at ignition time. However, a more subtle effect not previously considered is that it also leads to an asymmetry in shock velocity and timing, thereby increasing the fuel adiabat and reducing the margin for ignition. It is shown via hydrodynamic simulations that minimizing this effect requires that the early-time asymmetry be kept below 7.5% in the second Legendre mode (P2), thus keeping the loss of performance margin below ≈10% for a layered implosion. Asymmetries during the picket of the laser pulse are measured using the instantaneous self-emission of a high-Z re-emission sphere in place of an ignition capsule in a hohlraum with large azimuthal diagnostic windows. Three dimensional simulations using the code HYDRA (to capture the effect of non-azimuthal hohlraum features) coupled to a cross-beam energy transfer model [Michel et al., Phys. Plasmas 17, 056305 (2010)] are used to establish the surrogacy of the re-emit target and to assess the early-time drive symmetry. Calculations using this model exhibit the same sensitivity to variations in the relative input powers between the different cones of NIF beams as measured for the "Rev5" CH target [Haan et al., Phys Plasmas 18, 051001 (2011)] and reported by Dewald et al. [Phys. Rev. Lett. 111, 235001 (2013)]. The same methodology applied to recently improved implosions using different

  14. Application of an atomic oxygen beam facility to the investigation of shuttle glow chemistry

    NASA Technical Reports Server (NTRS)

    Arnold, G. S.; Peplinski, D. R.

    1985-01-01

    A facility for the investigation of the interactions of energetic atomic oxygen with solids is described. The facility is comprised of a four chambered, differentially pumped molecular beam apparatus which can be equipped with one of a variety of sources of atomic oxygen. The primary source is a dc arc heated supersonic nozzle source which produces a flux of atomic oxygen in excess of 10 to the 15th power sq cm/sec at the target, at a velocity of 3.5 km/sec. Results of applications of this facility to the study of the reactions of atomic oxygen with carbon and polyimide films are briefly reviewed and compared to data obtained on various flights of the space shuttle. A brief discussion of possible application of this facility to investigation of chemical reactions which might contribute to atmosphere induced vehicle glow is presented.

  15. Production Facility Prototype Blower Installation Report with 1000 Hour Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woloshun, Keith Albert; Dale, Gregory E.; Romero, Frank Patrick

    2016-04-01

    The roots blower in use at ANL for in-beam experiments and also at LANL for flow tests was sized for 12 mm diameter disks and significantly less beam heating. Currently, the disks are 29 mm in diameter, with a 12 mm FWHM Gaussian beam spot at 42 MeV and 2.86 μA on each side of the target, 5.72 μA total. The target design itself is reported elsewhere. With the increased beam heating, the helium flow requirement increased so that a larger blower was needed for a mass flow rate of 400 g/s at 2.76 MPa (400 psig). An Aerzen GMmore » 12.4 blower was selected, and is currently being installed at the LANL facility for target and component flow testing. This report describes this blower/motor/pressure vessel package and the status of the facility preparations. The blower has been operated for 1000 hours as a preliminary investigation of long term performance, operation and possible maintenance issues. The blower performed well, with no significant change in blower head or mass flow rate developed under the operating conditions. Upon inspection, some oil had leaked out of the shaft seal of the blower. The shaft seal and bearing race have been replaced. Test results and conclusions are reported.« less

  16. Simulation Facilities and Test Beds for Galileo

    NASA Astrophysics Data System (ADS)

    Schlarmann, Bernhard Kl.; Leonard, Arian

    2002-01-01

    Galileo is the European satellite navigation system, financed by the European Space Agency (ESA) and the European Commission (EC). The Galileo System, currently under definition phase, will offer seamless global coverage, providing state-of-the-art positioning and timing services. Galileo services will include a standard service targeted at mass market users, an augmented integrity service, providing integrity warnings when fault occur and Public Regulated Services (ensuring a continuity of service for the public users). Other services are under consideration (SAR and integrated communications). Galileo will be interoperable with GPS, and will be complemented by local elements that will enhance the services for specific local users. In the frame of the Galileo definition phase, several system design and simulation facilities and test beds have been defined and developed for the coming phases of the project, respectively they are currently under development. These are mainly the following tools: Galileo Mission Analysis Simulator to design the Space Segment, especially to support constellation design, deployment and replacement. Galileo Service Volume Simulator to analyse the global performance requirements based on a coverage analysis for different service levels and degrades modes. Galileo System Simulation Facility is a sophisticated end-to-end simulation tool to assess the navigation performances for a complete variety of users under different operating conditions and different modes. Galileo Signal Validation Facility to evaluate signal and message structures for Galileo. Galileo System Test Bed (Version 1) to assess and refine the Orbit Determination &Time Synchronisation and Integrity algorithms, through experiments relying on GPS space infrastructure. This paper presents an overview on the so called "G-Facilities" and describes the use of the different system design tools during the project life cycle in order to design the system with respect to

  17. Facilities Performance Indicators Report 2013-14: Tracking Your Facilities Vital Signs

    ERIC Educational Resources Information Center

    APPA: Association of Higher Education Facilities Officers, 2015

    2015-01-01

    This paper features an expanded Web-based "Facilities Performance Indicators (FPI) Report." The purpose of APPA: Association of Higher Education Facilities Officers (APPA's) Facilities Performance Indicators is to provide a representative set of statistics about facilities in educational institutions. "The Facilities Performance…

  18. Methodology for worker neutron exposure evaluation in the PDCF facility design.

    PubMed

    Scherpelz, R I; Traub, R J; Pryor, K H

    2004-01-01

    A project headed by Washington Group International is meant to design the Pit Disassembly and Conversion Facility (PDCF) to convert the plutonium pits from excessed nuclear weapons into plutonium oxide for ultimate disposition. Battelle staff are performing the shielding calculations that will determine appropriate shielding so that the facility workers will not exceed target exposure levels. The target exposure levels for workers in the facility are 5 mSv y(-1) for the whole body and 100 mSv y(-1) for the extremity, which presents a significant challenge to the designers of a facility that will process tons of radioactive material. The design effort depended on shielding calculations to determine appropriate thickness and composition for glove box walls, and concrete wall thicknesses for storage vaults. Pacific Northwest National Laboratory (PNNL) staff used ORIGEN-S and SOURCES to generate gamma and neutron source terms, and Monte Carlo (computer code for) neutron photon (transport) (MCNP-4C) to calculate the radiation transport in the facility. The shielding calculations were performed by a team of four scientists, so it was necessary to develop a consistent methodology. There was also a requirement for the study to be cost-effective, so efficient methods of evaluation were required. The calculations were subject to rigorous scrutiny by internal and external reviewers, so acceptability was a major feature of the methodology. Some of the issues addressed in the development of the methodology included selecting appropriate dose factors, developing a method for handling extremity doses, adopting an efficient method for evaluating effective dose equivalent in a non-uniform radiation field, modelling the reinforcing steel in concrete, and modularising the geometry descriptions for efficiency. The relative importance of the neutron dose equivalent compared with the gamma dose equivalent varied substantially depending on the specific shielding conditions and lessons

  19. First experiment on LMJ facility: pointing and synchronisation qualification

    NASA Astrophysics Data System (ADS)

    Henry, Olivier; Raffestin, Didier; Bretheau, Dominique; Luttmann, Michel; Graillot, Herve; Ferri, Michel; Seguineau, Frederic; Bar, Emmanuel; Patissou, Loic; Canal, Philippe; Sautarel, Franöise; Tranquille-Marques, Yves

    2017-10-01

    The LMJ (Laser mega Joule) facility at the CESTA site (Aquitaine, France) is a tool designed to deliver up to 1.2 MJ at 351 nm for plasma experiments. The experiment system will include 11 diagnostics: UV and X energy balances, imagers (Streak and stripe camera, CCD), spectrometers, and a Visar/pyrometer. The facility must be able to deliver, within the hour following the shot, all the results of the plasma diagnostics, alignment images and laser diagnostic measurements. These results have to be guaranteed in terms of conformity to the request and quality of measurement. The end of 2016 was devoted to the qualification of system pointing on target and synchronization within and between beams. The shots made with two chains (divided in 4 quads - 8 laser beams) have achieved 50 µm of misalignment accuracy (chain and quad channel) and a synchronization accuracy in the order of 50 ps . The performances achieved for plasma diagnostic (in the order of less 100 µm of alignment and timing accuracy less than 150 ps) comply with expectations. At the same time the first automatic sequences were tested. They allowed a shot on target every 6h:30 and in some case twice a day by reducing preparation actions, leading to a sequence of 4h:00.

  20. Actinide targets for the synthesis of super-heavy elements

    DOE PAGES

    Roberto, J.; Alexander, Charles W.; Boll, Rose Ann; ...

    2015-06-18

    Since 2000, six new super-heavy elements with atomic numbers 113 through 118 have been synthesized in hot fusion reactions of 48Ca beams on actinide targets. These target materials, including 242Pu, 244Pu, 243Am, 245Cm, 248Cm, 249Cf, and 249Bk, are available in very limited quantities and require specialized production and processing facilities resident in only a few research centers worldwide. This report describes the production and chemical processing of heavy actinide materials for super-heavy element research, current availabilities of these materials, and related target fabrication techniques. The impact of actinide materials in super-heavy element discovery is reviewed, and strategies for enhancing themore » production of rare actinides including 249Bk, 251Cf, and 254Es are described.« less

  1. Laser-driven proton acceleration with nanostructured targets

    NASA Astrophysics Data System (ADS)

    Vallières, Simon; Morabito, Antonia; Veltri, Simona; Scisciò, Massimiliano; Barberio, Marianna; Antici, Patrizio

    2017-05-01

    Laser-driven particle acceleration has become a growing field of research, in particular for its numerous interesting applications. One of the most common proton acceleration mechanism that is obtained on typically available multi-hundred TW laser systems is based on the irradiation of thin solid metal foils by the intense laser, generating the proton acceleration on its rear target surface. The efficiency of this acceleration scheme strongly depends on the type of target used. Improving the acceleration mechanism, i.e. enhancing parameters such as maximum proton energy, laminarity, efficiency, monocromaticy, and number of accelerated particles, is heavily depending on the laser-to-target absorption, where obviously cheap and easy to implement targets are best candidates. In this work, we present nanostructured targets that are able to increase the absorption of light compared to what can be achieved with a classical solid (non-nanostructured) target and are produced with a method that is much simpler and cheaper than conventional lithographic processes. Several layers of gold nanoparticles were deposited on solid targets (aluminum, Mylar and multiwalled carbon nanotube buckypaper) and allow for an increased photon absorption. This ultimately permits to increase the laser-to-particle energy transfer, and thus to enhance the yield in proton production. Experimental characterization results on the nanostructured films are presented (UV-Vis spectroscopy and AFM), along with preliminary experimental proton spectra obtained at the JLF-TITAN laser facility at LLNL.

  2. Resource implications of a national health target: The New Zealand experience of a Shorter Stays in Emergency Departments target.

    PubMed

    Jones, Peter; Sopina, Elizaveta; Ashton, Toni

    2014-12-01

    The Shorter Stays in Emergency Departments health target was introduced in New Zealand in 2009. District Health Boards (DHBs) are expected to meet the target with no additional funding or incentives. The costs of implementing such targets have not previously been studied. A survey of clinical/service managers in ED throughout New Zealand determined the type and cost of resources used for the target. Responses to the target were classified according to their impact in ED, the hospital and the community. Quantifiable resource changes were assigned a financial value and grouped into categories: structure (facilities/beds), staff and processes. Simple statistics were used to describe the data, and the correlation between expenditure and target performance was determined. There was 100% response to the survey. Most DHBs reported some expenditure specifically on the target, with estimated total expenditure of over NZ$52 m. The majority of expenditure occurred in ED (60.8%) and hospital (38.7%) with little spent in the community. New staff accounted for 76.5% of expenditure. Per capita expenditure in the ED was associated with improved target performance (r = 0.48, P = 0.03), whereas expenditure in the hospital was not (r = 0.08, P = 0.75). The fact that estimated expenditure on the target was over $50 million without additional funding suggests that DHBs were able to make savings through improved efficiencies and/or that funds were reallocated from other services. The majority of expenditure occurred in the ED. Most of the funds were spent on staff, and this was associated with improved target performance. © 2014 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.

  3. Project for the development of the linac based NCT facility in University of Tsukuba.

    PubMed

    Kumada, H; Matsumura, A; Sakurai, H; Sakae, T; Yoshioka, M; Kobayashi, H; Matsumoto, H; Kiyanagi, Y; Shibata, T; Nakashima, H

    2014-06-01

    A project team headed by University of Tsukuba launched the development of a new accelerator based BNCT facility. In the project, we have adopted Radio-Frequency Quadrupole (RFQ)+Drift Tube Linac (DTL) type linac as proton accelerators. Proton energy generated from the linac was set to 8MeV and average current was 10mA. The linac tube has been constructed by Mitsubishi Heavy Industry Co. For neutron generator device, beryllium is selected as neutron target material; high intensity neutrons are generated by the reaction with beryllium and the 80kW proton beam. Our team chose beryllium as the neutron target material. At present beryllium target system is being designed with Monte-Carlo estimations and heat analysis with ANSYS. The neutron generator consists of moderator, collimator and shielding. It is being designed together with the beryllium target system. We also acquired a building in Tokai village; the building has been renovated for use as BNCT treatment facility. It is noteworthy that the linac tube had been installed in the facility in September 2012. In BNCT procedure, several medical devices are required for BNCT treatment such as treatment planning system, patient positioning device and radiation monitors. Thus these are being developed together with the linac based neutron source. For treatment planning system, we are now developing a new multi-modal Monte-Carlo treatment planning system based on JCDS. The system allows us to perform dose estimation for BNCT as well as particle radiotherapy and X-ray therapy. And the patient positioning device can navigate a patient to irradiation position quickly and properly. Furthermore the device is able to monitor movement of the patient׳s position during irradiation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Definition of Capabilities Needed for a Single Event Effects Test Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riemer, Bernie; Gallmeier, Franz X.

    The Federal Aviation Administration (FAA) is contemplating new regulations mandating testing of the vulnerability of flight-critical avionics to single event effects (SEE). A limited number of high-energy neutron test facilities currently serve the SEE industrial and institutional research community. The FAA recognizes that existing facilities have insufficient test capacity to meet new demand from such mandates; it desires more flexible irradiation capabilities to test complete, large systems and would like capabilities to address greater concerns for thermal neutrons. For this reason, the FAA funded this study by Spallation Neutron Source (SNS) staff with the ultimate aim of developing options formore » SEE test facilities using high-energy neutrons at the SNS complex. After an investigation of current SEE test practices and assessment of future testing requirements, three concepts were identified covering a range of test functionality, neutron flux levels, and fidelity to the atmospheric neutron spectrum. The costs and times required to complete each facility were also estimated. SEE testing is generally performed by accelerating the event rate to a point where the effects are still dominated by single events and double event causes of failures are negligible. In practice, acceleration factors of as high as 10 6 are applicable for component testing, whereas for systems testing acceleration factors of 10 4 seem to be the upper limit. It is strongly desirable that the irradiation facility be tunable over a large range of high-energy neutron fluxes of 10 2 - 10 4 n/cm²/s for systems testing and from 10 4 - 10 7 n/cm²/s for components testing. The most capable, most flexible, and highest-test-capacity option is a new stand-alone target station named the High-Energy neutron Test Station (HETS). It is also the most expensive option, with a cost to complete of approximately $100 million. Dual test enclosures would allow for simultaneous testing activity effectively

  5. Research with Radioactive Targets

    NASA Astrophysics Data System (ADS)

    Ahle, Larry

    2004-10-01

    Obtaining precise information about neutron capture cross-sections for s-process branch points is a key goal of nuclear astrophysics. Since these nuclei are unstable and neutron targets do not exist, performing these measurements require a facility that can produce the nuclei of interest at a sufficient rate to allow formation of a meaningful target (at least 1015 atoms). The Rare Isotope Accelerator (RIA) promises such rates, often enabling collection of greater than 1016 atoms after only of few days of production running. By properly designing both the ISOL and fragmentation lines, these collections will often be possible to obtained parasitically to other radioactive ion beam production. But given a target, performing the neutron capture cross-section measurement also presents its own challenges. In many cases, activation measurements are feasible, providing one obtains a target of sufficient purity. But for many branch point nuclei, the capture product is stable or long enough lived that no radiation signature is available for detection. Measurements for these nuclei will require a BaF2 array like DANCE at Los Alamos National Laboratory, which uses gamma calorimetry to detect neutron capture events. Plans and issues associated with isotope harvesting will be discussed, as well as challenges associated with performing theses measurements. Current plans for doing DANCE type measurements at RIA will also be discussed. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  6. Opportunities for Automated Demand Response in California Wastewater Treatment Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aghajanzadeh, Arian; Wray, Craig; McKane, Aimee

    Previous research over a period of six years has identified wastewater treatment facilities as good candidates for demand response (DR), automated demand response (Auto-­DR), and Energy Efficiency (EE) measures. This report summarizes that work, including the characteristics of wastewater treatment facilities, the nature of the wastewater stream, energy used and demand, as well as details of the wastewater treatment process. It also discusses control systems and automated demand response opportunities. Furthermore, this report summarizes the DR potential of three wastewater treatment facilities. In particular, Lawrence Berkeley National Laboratory (LBNL) has collected data at these facilities from control systems, submetered processmore » equipment, utility electricity demand records, and governmental weather stations. The collected data were then used to generate a summary of wastewater power demand, factors affecting that demand, and demand response capabilities. These case studies show that facilities that have implemented energy efficiency measures and that have centralized control systems are well suited to shed or shift electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. In summary, municipal wastewater treatment energy demand in California is large, and energy-­intensive equipment offers significant potential for automated demand response. In particular, large load reductions were achieved by targeting effluent pumps and centrifuges. One of the limiting factors to implementing demand response is the reaction of effluent turbidity to reduced aeration at an earlier stage of the process. Another limiting factor is that cogeneration capabilities of municipal facilities, including existing power purchase agreements and utility receptiveness to purchasing electricity from cogeneration facilities, limit a facility’s potential to participate in other DR activities.« less

  7. Numerical studies of the use of thin high-Z layers for reducing laser imprint in direct-drive inertial-fusion targets

    NASA Astrophysics Data System (ADS)

    Bates, Jason; Schmitt, Andrew; Karasik, Max; Obenschain, Steve

    2012-10-01

    Using the FAST code, we present numerical studies of the effect of thin metallic layers with high atomic number (high-Z) on the hydrodynamics of directly-driven inertial-confinement-fusion (ICF) targets. Previous experimental work on the NIKE Laser Facility at the U.S. Naval Research Laboratory demonstrated that the use of high-Z layers may be efficacious in reducing laser non-uniformities imprinted on the target during the start-up phase of the implosion. Such a reduction is highly desirable in a direct-drive ICF scenario because laser non-uniformities seed hydrodynamic instabilities that can amplify during the implosion process, prevent uniform compression and spoil high gain. One of the main objectives of the present work is to assess the utility of high-Z layers for achieving greater laser uniformity in polar-drive target designs planned for the National Ignition Facility. To address this problem, new numerical routines have recently been incorporated in the FAST code, including an improved radiation-transfer package and a three-dimensional ray-tracing algorithm. We will discuss these topics, and present initial simulation results for high-Z planar-target experiments planned on the NIKE Laser Facility later this year.

  8. 40 CFR 745.226 - Certification of individuals and firms engaged in lead-based paint activities: target housing and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... LEAD-BASED PAINT POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES Lead-Based Paint Activities § 745.226 Certification of individuals and firms engaged in lead-based paint activities: target housing... engaged in lead-based paint activities: target housing and child-occupied facilities. 745.226 Section 745...

  9. 40 CFR 745.226 - Certification of individuals and firms engaged in lead-based paint activities: target housing and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... LEAD-BASED PAINT POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES Lead-Based Paint Activities § 745.226 Certification of individuals and firms engaged in lead-based paint activities: target housing... engaged in lead-based paint activities: target housing and child-occupied facilities. 745.226 Section 745...

  10. 40 CFR 745.226 - Certification of individuals and firms engaged in lead-based paint activities: target housing and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... LEAD-BASED PAINT POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES Lead-Based Paint Activities § 745.226 Certification of individuals and firms engaged in lead-based paint activities: target housing... engaged in lead-based paint activities: target housing and child-occupied facilities. 745.226 Section 745...

  11. Facilities maintenance handbook

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This handbook is a guide for facilities maintenance managers. Its objective is to set minimum facilities maintenance standards. It also provides recommendations on how to meet the standards to ensure that NASA maintains its facilities in a manner that protects and preserves its investment in the facilities in a cost-effective manner while safely and efficiently performing its mission. This handbook implements NMI 8831.1, which states NASA facilities maintenance policy and assigns organizational responsibilities for the management of facilities maintenance activities on all properties under NASA jurisdiction. It is a reference for facilities maintenance managers, not a step-by-step procedural manual. Because of the differences in NASA Field Installation organizations, this handbook does not assume or recommend a typical facilities maintenance organization. Instead, it uses a systems approach to describe the functions that should be included in any facilities maintenance management system, regardless of its organizational structure. For documents referenced in the handbook, the most recent version of the documents is applicable. This handbook is divided into three parts: Part 1 specifies common definitions and facilities maintenance requirements and amplifies the policy requirements contained in NMI 8831. 1; Part 2 provides guidance on how to meet the requirements of Part 1, containing recommendations only; Part 3 contains general facilities maintenance information. One objective of this handbook is to fix commonality of facilities maintenance definitions among the Centers. This will permit the application of uniform measures of facilities conditions, of the relationship between current replacement value and maintenance resources required, and of the backlog of deferred facilities maintenance. The utilization of facilities maintenance system functions will allow the Centers to quantitatively define maintenance objectives in common terms, prepare work plans, and

  12. Facile construction of mitochondria-targeting nanoparticles for enhanced phototherapeutic effects.

    PubMed

    Liu, Yi; Li, Heping; Xie, Jin; Zhou, Mengxue; Huang, Hui; Lu, Huiru; Chai, Zhifang; Chen, Jun; Hu, Yi

    2017-05-02

    Phototherapy, as a noninvasive therapeutic procedure, has been applied to treat tumors. However, the application of phototherapy is often compromised by its low efficiency. Herein, we developed a novel nanoplatform based on cationic amphiphilic polymer-wrapped carbon nanotubes (rPAA@SWCNTs) with a photosensitizer, indocyanine green (ICG), for phototherapy. The as-prepared nanoparticles exhibited excellent mitochondria targeting due to the synergistic properties of highly positive charges from the polycations on the corona and the high hydrophobicity from the carbon nanotubes in the core. Moreover, the high buffer capacity of the polycations facilitated the endosomal escape of nanoparticles via a proton-sponge effect. When irradiated with an 808 nm NIR laser, ICG/rPAA@SWCNTs could precisely damage mitochondria with high efficiency and produce reactive oxygen species (ROS) and hyperthermia, which further induced the ROS burst from damaged mitochondria. The overproduced ROS accumulated in mitochondria ultimately resulted in mitochondrial damage and cell death. Therefore ICG/rPAA@SWCNTs may be able to achieve an amplifying phototherapeutic effect.

  13. New separators at the ATLAS facility

    NASA Astrophysics Data System (ADS)

    Back, Birger; Agfa Collaboration; Airis Team

    2015-10-01

    Two new separators are being built for the ATLAS facility. The Argonne Gas-Filled Analyzer (AGFA) is a novel design consisting of a single quadrupole and a multipole magnet that has both dipole and quadrupole field components. The design allows for placing Gammasphere at the target position while providing a solid angle of ~ 22 msr for capturing recoil products emitted at zero degrees. This arrangement enables studies of prompt gamma ray emission from weakly populated trans-fermium nuclei and those near the doubly-magic N = Z = 50 shell closure measured in coincidence with the recoils registered by AGFA. The Argonne In-flight Radioactive Ion Separator (AIRIS) is a magnetic chicane that will be installed immediately downstream of the last ATLAS cryostat and serve to separate radioactive ion beams generated in flight at an upstream high intensity production target. These beams will be further purified by a downstream RF sweeper and transported into a number of target stations including HELIOS, the Enge spectrograph, the FMA and Gammasphere. This talk will present the status of these two projects. This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357.

  14. Numerical Modeling of Complex Targets for High-Energy- Density Experiments with Ion Beams and other Drivers

    DOE PAGES

    Koniges, Alice; Liu, Wangyi; Lidia, Steven; ...

    2016-04-01

    We explore the simulation challenges and requirements for experiments planned on facilities such as the NDCX-II ion accelerator at LBNL, currently undergoing commissioning. Hydrodynamic modeling of NDCX-II experiments include certain lower temperature effects, e.g., surface tension and target fragmentation, that are not generally present in extreme high-energy laser facility experiments, where targets are completely vaporized in an extremely short period of time. Target designs proposed for NDCX-II range from metal foils of order one micron thick (thin targets) to metallic foam targets several tens of microns thick (thick targets). These high-energy-density experiments allow for the study of fracture as wellmore » as the process of bubble and droplet formation. We incorporate these physics effects into a code called ALE-AMR that uses a combination of Arbitrary Lagrangian Eulerian hydrodynamics and Adaptive Mesh Refinement. Inclusion of certain effects becomes tricky as we must deal with non-orthogonal meshes of various levels of refinement in three dimensions. A surface tension model used for droplet dynamics is implemented in ALE-AMR using curvature calculated from volume fractions. Thick foam target experiments provide information on how ion beam induced shock waves couple into kinetic energy of fluid flow. Although NDCX-II is not fully commissioned, experiments are being conducted that explore material defect production and dynamics.« less

  15. Using Rutherford Backscattering Spectroscopy to Characterize Targets for MTW

    NASA Astrophysics Data System (ADS)

    Brown, Gunnar; Stockler, Barak; Ward, Ryan; Freeman, Charlie; Padalino, Stephen; Stillman, Collin; Ivancic, Steven; Reagan, S. P.; Sangster, T. C.

    2017-10-01

    A study is underway to determine the composition and thickness of targets used at the Multiterawatt (MTW) laser facility at the Laboratory for Laser Energetics (LLE) using Rutherford backscattering spectroscopy (RBS). In RBS, an ion beam is incident on a sample and the scattered ions are detected with a surface barrier detector. The resulting energy spectra of the scattered ions can be analyzed to determine important parameters of the target including elemental composition and thickness. Proton, helium and deuterium beams from the 1.7 MV Pelletron accelerator at SUNY Geneseo have been used to characterize several different targets for MTW, including CH and aluminum foils of varying thickness. RBS spectra were also obtained for a cylindrical iron buried-layer target with aluminum dopant which was mounted on a silicon carbide stalk. The computer program SIMNRA is used to analyze the spectra. This work was funded in part by a Grant from the DOE through the Laboratory for Laser Energetics.

  16. Lead (Pb) Hohlraum: Target for Inertial Fusion Energy

    PubMed Central

    Ross, J. S.; Amendt, P.; Atherton, L. J.; Dunne, M.; Glenzer, S. H.; Lindl, J. D.; Meeker, D.; Moses, E. I.; Nikroo, A.; Wallace, R.

    2013-01-01

    Recent progress towards demonstrating inertial confinement fusion (ICF) ignition at the National Ignition Facility (NIF) has sparked wide interest in Laser Inertial Fusion Energy (LIFE) for carbon-free large-scale power generation. A LIFE-based fleet of power plants promises clean energy generation with no greenhouse gas emissions and a virtually limitless, widely available thermonuclear fuel source. For the LIFE concept to be viable, target costs must be minimized while the target material efficiency or x-ray albedo is optimized. Current ICF targets on the NIF utilize a gold or depleted uranium cylindrical radiation cavity (hohlraum) with a plastic capsule at the center that contains the deuterium and tritium fuel. Here we show a direct comparison of gold and lead hohlraums in efficiently ablating deuterium-filled plastic capsules with soft x rays. We report on lead hohlraum performance that is indistinguishable from gold, yet costing only a small fraction. PMID:23486285

  17. Lead (Pb) hohlraum: target for inertial fusion energy.

    PubMed

    Ross, J S; Amendt, P; Atherton, L J; Dunne, M; Glenzer, S H; Lindl, J D; Meeker, D; Moses, E I; Nikroo, A; Wallace, R

    2013-01-01

    Recent progress towards demonstrating inertial confinement fusion (ICF) ignition at the National Ignition Facility (NIF) has sparked wide interest in Laser Inertial Fusion Energy (LIFE) for carbon-free large-scale power generation. A LIFE-based fleet of power plants promises clean energy generation with no greenhouse gas emissions and a virtually limitless, widely available thermonuclear fuel source. For the LIFE concept to be viable, target costs must be minimized while the target material efficiency or x-ray albedo is optimized. Current ICF targets on the NIF utilize a gold or depleted uranium cylindrical radiation cavity (hohlraum) with a plastic capsule at the center that contains the deuterium and tritium fuel. Here we show a direct comparison of gold and lead hohlraums in efficiently ablating deuterium-filled plastic capsules with soft x rays. We report on lead hohlraum performance that is indistinguishable from gold, yet costing only a small fraction.

  18. Facilities Performance Indicators Report, 2004-05. Facilities Core Data Survey

    ERIC Educational Resources Information Center

    Glazner, Steve, Ed.

    2006-01-01

    The purpose of "Facilities Performance Indicators" is to provide a representative set of statistics about facilities in educational institutions. The second iteration of the web-based Facilities Core Data Survey was posted and available to facilities professionals at more than 3,000 institutions in the Fall of 2005. The website offered a printed…

  19. TARGET: Rapid Capture of Process Knowledge

    NASA Technical Reports Server (NTRS)

    Ortiz, C. J.; Ly, H. V.; Saito, T.; Loftin, R. B.

    1993-01-01

    TARGET (Task Analysis/Rule Generation Tool) represents a new breed of tool that blends graphical process flow modeling capabilities with the function of a top-down reporting facility. Since NASA personnel frequently perform tasks that are primarily procedural in nature, TARGET models mission or task procedures and generates hierarchical reports as part of the process capture and analysis effort. Historically, capturing knowledge has proven to be one of the greatest barriers to the development of intelligent systems. Current practice generally requires lengthy interactions between the expert whose knowledge is to be captured and the knowledge engineer whose responsibility is to acquire and represent the expert's knowledge in a useful form. Although much research has been devoted to the development of methodologies and computer software to aid in the capture and representation of some types of knowledge, procedural knowledge has received relatively little attention. In essence, TARGET is one of the first tools of its kind, commercial or institutional, that is designed to support this type of knowledge capture undertaking. This paper will describe the design and development of TARGET for the acquisition and representation of procedural knowledge. The strategies employed by TARGET to support use by knowledge engineers, subject matter experts, programmers and managers will be discussed. This discussion includes the method by which the tool employs its graphical user interface to generate a task hierarchy report. Next, the approach to generate production rules for incorporation in and development of a CLIPS based expert system will be elaborated. TARGET also permits experts to visually describe procedural tasks as a common medium for knowledge refinement by the expert community and knowledge engineer making knowledge consensus possible. The paper briefly touches on the verification and validation issues facing the CLIPS rule generation aspects of TARGET. A description of

  20. A physics-based solver to optimize the illumination of cylindrical targets in spherically distributed high power laser systems.

    PubMed

    Gourdain, P-A

    2017-05-01

    In recent years, our understanding of high energy density plasmas has played an important role in improving inertial fusion confinement and in emerging new fields of physics, such as laboratory astrophysics. Every new idea required developing innovative experimental platforms at high power laser facilities, such as OMEGA or NIF. These facilities, designed to focus all their beams onto spherical targets or hohlraum windows, are now required to shine them on more complex targets. While the pointing on planar geometries is relatively straightforward, it becomes problematic for cylindrical targets or target with more complex geometries. This publication describes how the distribution of laser beams on a cylindrical target can be done simply by using a set of physical laws as a pointing procedure. The advantage of the method is threefold. First, it is straightforward, requiring no mathematical enterprise besides solving ordinary differential equations. Second, it will converge if a local optimum exists. Finally, it is computationally inexpensive. Experimental results show that this approach produces a geometrical beam distribution that yields cylindrically symmetric implosions.

  1. A physics-based solver to optimize the illumination of cylindrical targets in spherically distributed high power laser systems

    NASA Astrophysics Data System (ADS)

    Gourdain, P.-A.

    2017-05-01

    In recent years, our understanding of high energy density plasmas has played an important role in improving inertial fusion confinement and in emerging new fields of physics, such as laboratory astrophysics. Every new idea required developing innovative experimental platforms at high power laser facilities, such as OMEGA or NIF. These facilities, designed to focus all their beams onto spherical targets or hohlraum windows, are now required to shine them on more complex targets. While the pointing on planar geometries is relatively straightforward, it becomes problematic for cylindrical targets or target with more complex geometries. This publication describes how the distribution of laser beams on a cylindrical target can be done simply by using a set of physical laws as a pointing procedure. The advantage of the method is threefold. First, it is straightforward, requiring no mathematical enterprise besides solving ordinary differential equations. Second, it will converge if a local optimum exists. Finally, it is computationally inexpensive. Experimental results show that this approach produces a geometrical beam distribution that yields cylindrically symmetric implosions.

  2. An off-line method to characterize the fission product release from uranium carbide-target prototypes developed for SPIRAL2 project

    NASA Astrophysics Data System (ADS)

    Hy, B.; Barré-Boscher, N.; Özgümüs, A.; Roussière, B.; Tusseau-Nenez, S.; Lau, C.; Cheikh Mhamed, M.; Raynaud, M.; Said, A.; Kolos, K.; Cottereau, E.; Essabaa, S.; Tougait, O.; Pasturel, M.

    2012-10-01

    In the context of radioactive ion beams, fission targets, often based on uranium compounds, have been used for more than 50 years at isotope separator on line facilities. The development of several projects of second generation facilities aiming at intensities two or three orders of magnitude higher than today puts an emphasis on the properties of the uranium fission targets. A study, driven by Institut de Physique Nucléaire d'Orsay (IPNO), has been started within the SPIRAL2 project to try and fully understand the behavior of these targets. In this paper, we have focused on five uranium carbide based targets. We present an off-line method to characterize their fission product release and the results are examined in conjunction with physical characteristics of each material such as the microstructure, the porosity and the chemical composition.

  3. Renton's Quendall Terminals on List of EPA Superfund Sites Targeted for Immediate, Intense Attention

    EPA Pesticide Factsheets

    EPA released the list of Superfund sites that Administrator Pruitt has targeted for intense and immediate attention, including the Quendall Terminals Site, a former creosote facility on the shore of Lake Washington in Renton, Washington.

  4. A step by step selection method for the location and the size of a waste-to-energy facility targeting the maximum output energy and minimization of gate fee.

    PubMed

    Kyriakis, Efstathios; Psomopoulos, Constantinos; Kokkotis, Panagiotis; Bourtsalas, Athanasios; Themelis, Nikolaos

    2017-06-23

    This study attempts the development of an algorithm in order to present a step by step selection method for the location and the size of a waste-to-energy facility targeting the maximum output energy, also considering the basic obstacle which is in many cases, the gate fee. Various parameters identified and evaluated in order to formulate the proposed decision making method in the form of an algorithm. The principle simulation input is the amount of municipal solid wastes (MSW) available for incineration and along with its net calorific value are the most important factors for the feasibility of the plant. Moreover, the research is focused both on the parameters that could increase the energy production and those that affect the R1 energy efficiency factor. Estimation of the final gate fee is achieved through the economic analysis of the entire project by investigating both expenses and revenues which are expected according to the selected site and outputs of the facility. In this point, a number of commonly revenue methods were included in the algorithm. The developed algorithm has been validated using three case studies in Greece-Athens, Thessaloniki, and Central Greece, where the cities of Larisa and Volos have been selected for the application of the proposed decision making tool. These case studies were selected based on a previous publication made by two of the authors, in which these areas where examined. Results reveal that the development of a «solid» methodological approach in selecting the site and the size of waste-to-energy (WtE) facility can be feasible. However, the maximization of the energy efficiency factor R1 requires high utilization factors while the minimization of the final gate fee requires high R1 and high metals recovery from the bottom ash as well as economic exploitation of recovered raw materials if any.

  5. Project definition study for the National Biomedical Tracer Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roozen, K.

    The University of Alabama at Birmingham (UAB) has conducted a study of the proposed National Biomedical Tracer Facility (NBTF). In collaboration with General Atomics, RUST International, Coleman Research Corporation (CRC), IsoMed, Ernst and Young and the advisory committees, they have examined the issues relevant to the NBTF in terms of facility design, operating philosophy, and a business plan. They have utilized resources within UAB, CRC and Chem-Nuclear to develop recommendations on environmental, safety and health issues. The Institute of Medicine Panel`s Report on Isotopes for Medicine and the Life Sciences took the results of prior workshops further in developing recommendationsmore » for the mission of the NBTF. The IOM panel recommends that the NBTF accelerator have the capacity to accelerate protons to 80 MeV and a minimum of 750 microamperes of current. The panel declined to recommend a cyclotron or a linac. They emphasized a clear focus on research and development for isotope production including target design, separation chemistry and generator development. The facility needs to emphasize education and training in its mission. The facility must focus on radionuclide production for the research and clinical communities. The formation of a public-private partnership resembling the TRIUMF-Nordion model was encouraged. An advisory panel should assist with the NBTF operations and prioritization.« less

  6. Design study of 10 kW direct fission target for RISP project

    NASA Astrophysics Data System (ADS)

    Tshoo, K.; Jang, D. Y.; Woo, H. J.; Kang, B. H.; Kim, G. D.; Hwang, W.; Kim, Y. K.

    2014-03-01

    We are developing Isotope Separation On-Line (ISOL) target system, which consists of 1.3 mm-thick uranium-carbide multi-disks and cylindrical tantalum heater, to be installed in new facility for Rare Isotope Science Project in Korea. The intense neutron-rich nuclei are produced via the fission process using the uranium carbide targets with a 70 MeV proton beam. The fission rate was estimated to be ˜1.5 × 1013/sec for 10 kW proton beam. The target system has been designed to be operated at a temperature of ˜2000 °C so as to improve the release effciency.

  7. Multi probes measurements at the PALS Facility Research Centre during high intense laser pulse interactions with various target materials

    NASA Astrophysics Data System (ADS)

    De Marco, Massimo; Krása, Josef; Cikhardt, Jakub; Consoli, Fabrizio; De Angelis, Riccardo; Pfeifer, Miroslav; Krůs, Miroslav; Dostál, Jan; Margarone, Daniele; Picciotto, Antonino; Velyhan, Andriy; Klír, Daniel; Dudžák, Roman; Limpouch, Jiří; Korn, Georg

    2018-01-01

    During the interaction of high intense laser pulse with solid target, a large amount of hot electrons is produced and a giant Electromagnetic Pulse (EMP) is generated due to the current flowing into the system target-target holder, as well as due to the escaping charged particles in vacuum. EMP production for different target materials is investigated inside and outside the target chamber, using monopole antenna, super wide-band microstrip antenna and Moebius antenna. The EMP consists in a fast transient magnetic field lasting hundreds of nanosecond with frequencies ranging from MHz to tens of GHz. Measurements of magnetic field and return target current in the range of kA were carried out by an inductive target probe (Cikhardt J. et al. Rev. Sci. Instrum. 85 (2014) 103507).

  8. NASA Wallops Flight Facility Air-Sea Interaction Research Facility

    NASA Technical Reports Server (NTRS)

    Long, Steven R.

    1992-01-01

    This publication serves as an introduction to the Air-Sea Interaction Research Facility at NASA/GSFC/Wallops Flight Facility. The purpose of this publication is to provide background information on the research facility itself, including capabilities, available instrumentation, the types of experiments already done, ongoing experiments, and future plans.

  9. The national ignition facility and atomic data

    NASA Astrophysics Data System (ADS)

    Crandall, David H.

    1998-07-01

    The National Ignition Facility (NIF) is under construction, capping over 25 years of development of the inertial confinement fusion concept by providing the facility to obtain fusion ignition in the laboratory for the first time. The NIF is a 192 beam glass laser to provide energy controlled in space and time so that a millimeter-scale capsule containing deuterium and tritium can be compressed to fusion conditions. Light transport, conversion of light in frequency, interaction of light with matter in solid and plasma forms, and diagnostics of extreme material conditions on small scale all use atomic data in preparing for use of the NIF. The NIF will provide opportunity to make measurements of atomic data in extreme physical environments related to fusion energy, nuclear weapon detonation, and astrophysics. The first laser beams of NIF should be operational in 2001 and the full facility completed at the end of 2003. NIF is to provide 1.8 megajoule of blue light on fusion targets and is intended to achieve fusion ignition by about the end of 2007. Today's inertial fusion development activities use atomic data to design and predict fusion capsule performance and in non-fusion applications to analyze radiation transport and radiation effects on matter. Conditions investigated involve radiation temperature of hundreds of eV, pressures up to gigabars and time scales of femptoseconds.

  10. Performance of the first Japanese large-scale facility for radon inhalation experiments with small animals.

    PubMed

    Ishimori, Yuu; Mitsunobu, Fumihiro; Yamaoka, Kiyonori; Tanaka, Hiroshi; Kataoka, Takahiro; Sakoda, Akihiro

    2011-07-01

    A radon test facility for small animals was developed in order to increase the statistical validity of differences of the biological response in various radon environments. This paper illustrates the performances of that facility, the first large-scale facility of its kind in Japan. The facility has a capability to conduct approximately 150 mouse-scale tests at the same time. The apparatus for exposing small animals to radon has six animal chamber groups with five independent cages each. Different radon concentrations in each animal chamber group are available. Because the first target of this study is to examine the in vivo behaviour of radon and its effects, the major functions to control radon and to eliminate thoron were examined experimentally. Additionally, radon progeny concentrations and their particle size distributions in the cages were also examined experimentally to be considered in future projects.

  11. 40 CFR 745.226 - Certification of individuals and firms engaged in lead-based paint activities: target housing and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Certification of individuals and firms engaged in lead-based paint activities: target housing and child-occupied facilities. 745.226 Section 745... § 745.226 Certification of individuals and firms engaged in lead-based paint activities: target housing...

  12. 40 CFR 745.226 - Certification of individuals and firms engaged in lead-based paint activities: target housing and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Certification of individuals and firms engaged in lead-based paint activities: target housing and child-occupied facilities. 745.226 Section 745... § 745.226 Certification of individuals and firms engaged in lead-based paint activities: target housing...

  13. Facilities Performance Indicators Report 2012-13: Tracking Your Facilities Vital Signs

    ERIC Educational Resources Information Center

    APPA: Association of Higher Education Facilities Officers, 2014

    2014-01-01

    This paper features an expanded Web-based "Facilities Performance Indicators (FPI) Report." The purpose of APPA's Facilities Performance Indicators is to provide a representative set of statistics about facilities in educational institutions. "The Facilities Performance Indicators Report" is designed for survey…

  14. Planning and Designing Facilities. Facility Design and Development--Part 1

    ERIC Educational Resources Information Center

    Hypes, Michael G.

    2006-01-01

    Before one begins the planning process for a new facility, it is important to determine if there is a need for a new facility. The demand for a new facility can be drawn from increases in the number of users, the type of users, and the type of events to be conducted in the facility. A feasibility study should be conducted to analyze the legal…

  15. Target development for diversified irradiations at a medical cyclotron.

    PubMed

    Spellerberg, S; Scholten, B; Spahn, I; Bolten, W; Holzgreve, M; Coenen, H H; Qaim, S M

    2015-10-01

    The irradiation facility at an old medical cyclotron (Ep=17 MeV; Ed=10 MeV) was upgraded by extending the beam line and incorporation of solid state targetry. Tests performed to check the quality of the available beam are outlined. Results on nuclear data measurements and improvement of radiochemical separations are described. Using solid targets, with the proton beam falling at a slanting angle of 20°, a few radionuclides, e.g. (75)Se, (120)I, (124)I, etc. were produced with medium currents (up to 20 µA) in no-carrier-added form in quantities sufficient for local use. The extended irradiation facility has considerably enhanced the utility of the medical cyclotron. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. 18. Topside facility, interior of facility manager's room, view towards ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Topside facility, interior of facility manager's room, view towards west. Lyon - Whiteman Air Force Base, Oscar O-1 Minuteman Missile Alert Facility, Southeast corner of Twelfth & Vendenberg Avenues, Knob Noster, Johnson County, MO

  17. Timeliness of abnormal screening and diagnostic mammography follow-up at facilities serving vulnerable women.

    PubMed

    Goldman, L Elizabeth; Walker, Rod; Hubbard, Rebecca; Kerlikowske, Karla

    2013-04-01

    Whether timeliness of follow-up after abnormal mammography differs at facilities serving vulnerable populations, such as women with limited education or income, in rural areas, and racial/ethnic minorities is unknown. We examined receipt of diagnostic evaluation after abnormal mammography using 1998-2006 Breast Cancer Surveillance Consortium-linked Medicare claims. We compared whether time to recommended breast imaging or biopsy depended on whether women attended facilities serving vulnerable populations. We characterized a facility by the proportion of mammograms performed on women with limited education or income, in rural areas, or racial/ethnic minorities. We analyzed 30,874 abnormal screening examinations recommended for follow-up imaging across 142 facilities and 10,049 abnormal diagnostic examinations recommended for biopsy across 114 facilities. Women at facilities serving populations with less education or more racial/ethnic minorities had lower rates of follow-up imaging (4%-5% difference, P<0.05), and women at facilities serving more rural and low-income populations had lower rates of biopsy (4%-5% difference, P<0.05). Women undergoing biopsy at facilities serving vulnerable populations had longer times until biopsy than those at facilities serving nonvulnerable populations (21.6 vs. 15.6 d; 95% confidence interval for mean difference 4.1-7.7). The proportion of women receiving recommended imaging within 11 months and biopsy within 3 months varied across facilities (interquartile range, 85.5%-96.5% for imaging and 79.4%-87.3% for biopsy). Among Medicare recipients, follow-up rates were slightly lower at facilities serving vulnerable populations, and among those women who returned for diagnostic evaluation, time to follow-up was slightly longer at facilities that served vulnerable population. Interventions should target variability in follow-up rates across facilities, and evaluate effectiveness particularly at facilities serving vulnerable populations.

  18. Timeliness of abnormal screening and diagnostic mammography follow-up at facilities serving vulnerable women

    PubMed Central

    Goldman, L. Elizabeth; Walker, Rod; Hubbard, Rebecca; Kerlikowske, Karla

    2013-01-01

    Background Whether timeliness of follow-up after abnormal mammography differs at facilities serving vulnerable populations such as women with limited education or income, in rural areas, and racial/ethnic minorities is unknown. Methods We examined receipt of diagnostic evaluation following abnormal mammography using 1998-2006 Breast Cancer Surveillance Consortium-linked Medicare claims. We compared whether time to recommended breast imaging or biopsy depended on whether women attended facilities serving vulnerable populations. We characterized a facility by the proportion of mammograms performed on women with limited education or income, in rural areas, or racial/ethnic minorities. Results We analyzed 30,874 abnormal screening examinations recommended for follow-up imaging across 142 facilities and 10,049 abnormal diagnostic examinations recommended for biopsy across 114 facilities. Women at facilities serving populations with less education or more racial/ethnic minorities had lower rates of follow-up imaging (4-5% difference, p<0.05), and women at facilities serving more rural and low income populations had lower rates of biopsy (4-5% difference, p<0.05). Women undergoing biopsy at facilities serving vulnerable populations had longer times until biopsy than those at facilities serving non-vulnerable populations (21.6 days vs. 15.6 days; 95% CI for mean difference 4.1-7.7). The proportion of women receiving recommended imaging within 11 months and biopsy within 3 months varied across facilities (interquartile range 85.5%-96.5% for imaging and 79.4%-87.3% for biopsy). Conclusions Among Medicare recipients, follow-up rates were slightly lower at facilities serving vulnerable populations, and among those women who returned for diagnostic evaluation, time to follow-up was slightly longer at facilities that served vulnerable population. Interventions should target variability in follow-up rates across facilities, and evaluate effectiveness particularly at facilities

  19. Experimental Fuels Facility Re-categorization Based on Facility Segmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiss, Troy P.; Andrus, Jason

    The Experimental Fuels Facility (EFF) (MFC-794) at the Materials and Fuels Complex (MFC) located on the Idaho National Laboratory (INL) Site was originally constructed to provide controlled-access, indoor storage for radiological contaminated equipment. Use of the facility was expanded to provide a controlled environment for repairing contaminated equipment and characterizing, repackaging, and treating waste. The EFF facility is also used for research and development services, including fuel fabrication. EFF was originally categorized as a LTHC-3 radiological facility based on facility operations and facility radiological inventories. Newly planned program activities identified the need to receive quantities of fissionable materials in excessmore » of the single parameter subcritical limit in ANSI/ANS-8.1, “Nuclear Criticality Safety in Operations with Fissionable Materials Outside Reactors” (identified as “criticality list” quantities in DOE-STD-1027-92, “Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports,” Attachment 1, Table A.1). Since the proposed inventory of fissionable materials inside EFF may be greater than the single parameter sub-critical limit of 700 g of U-235 equivalent, the initial re-categorization is Hazard Category (HC) 2 based upon a potential criticality hazard. This paper details the facility hazard categorization performed for the EFF. The categorization was necessary to determine (a) the need for further safety analysis in accordance with LWP-10802, “INL Facility Categorization,” and (b) compliance with 10 Code of Federal Regulations (CFR) 830, Subpart B, “Safety Basis Requirements.” Based on the segmentation argument presented in this paper, the final hazard categorization for the facility is LTHC-3. Department of Energy Idaho (DOE-ID) approval of the final hazard categorization determined by this hazard assessment document (HAD) was required

  20. The RaDIATE High-Energy Proton Materials Irradiation Experiment at the Brookhaven Linac Isotope Producer Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ammigan, Kavin; et al.

    The RaDIATE collaboration (Radiation Damage In Accelerator Target Environments) was founded in 2012 to bring together the high-energy accelerator target and nuclear materials communities to address the challenging issue of radiation damage effects in beam-intercepting materials. Success of current and future high intensity accelerator target facilities requires a fundamental understanding of these effects including measurement of materials property data. Toward this goal, the RaDIATE collaboration organized and carried out a materials irradiation run at the Brookhaven Linac Isotope Producer facility (BLIP). The experiment utilized a 181 MeV proton beam to irradiate several capsules, each containing many candidate material samples formore » various accelerator components. Materials included various grades/alloys of beryllium, graphite, silicon, iridium, titanium, TZM, CuCrZr, and aluminum. Attainable peak damage from an 8-week irradiation run ranges from 0.03 DPA (Be) to 7 DPA (Ir). Helium production is expected to range from 5 appm/DPA (Ir) to 3,000 appm/DPA (Be). The motivation, experimental parameters, as well as the post-irradiation examination plans of this experiment are described.« less

  1. Project Nuclotron-based Ion Collider fAcility at JINR

    NASA Astrophysics Data System (ADS)

    Kekelidze, V. D.; Matveev, V. A.; Meshkov, I. N.; Sorin, A. S.; Trubnikov, G. V.

    2017-09-01

    The project of Nuclotron-based Ion Collider fAcility (NICA) that is under development at JINR (Dubna) is presented. The general goals of the project are experimental studies of both hot and dense baryonic matter and spin physics (in collisions of polarized protons and deuterons). The first program requires providing of heavy ion collisions in the energy range of √ {{s_{NN}}} = 4-11 Gev at average luminosity of L = 1 × 1027 cm-2 s-1 for 197Au79+ nuclei. The polarized beams mode is proposed to be used in energy range of √ {{s_{NN}}} = 12-27 Gev (protons at luminosity of L ≥ 1 × 1030 cm-2 s-1. The report contains description of the facility scheme and its characteristics in heavy ion operation mode. The Collider will be equipped with two detectors—MultiPurpose Detector (MPD), which is in an active stage of construction, and Spin Physics Detector (SPD) that is in the stage of conceptual design. Fixed target experiment "Baryonic matter at Nuclotron" (BM@N) will be performed in very beginning of the project. The wide program of applied researches at NICA facility is being developed as well.

  2. The Nova Upgrade Facility for ICF ignition and gain

    NASA Astrophysics Data System (ADS)

    Lowdermilk, W. H.; Campbell, E. M.; Hunt, J. T.; Murray, J. R.; Storm, E.; Tobin, M. T.; Trenholme, J. B.

    1992-01-01

    Research on Inertial Confinement Fusion (ICF) is motivated by its potential defense and civilian applications, including ultimately the generation of electric power. The U.S. ICF Program was reviewed recently by the National Academy of Science (NAS) and the Fusion Policy Advisory Committee (FPAC). Both committees issued final reports in 1991 which recommended that first priority in the ICF program be placed on demonstrating fusion ignition and modest gain (G less than 10). The U.S. Department of Energy and Lawrence Livermore National Laboratory (LLNL) have proposed an upgrade of the existing Nova Laser Facility at LLNL to accomplish these goals. Both the NAS and FPAC have endorsed the upgrade of Nova as the optimal path to achieving ignition and gain. Results from Nova Upgrade Experiments will be used to define requirements for driver and target technology both for future high-yield military applications, such as the Laboratory Microfusion Facility (LMF) proposed by the Department of Energy, and for high-gain energy applications leading to an ICF engineering test facility. The central role and modifications which Nova Upgrade would play in the national ICF strategy are described.

  3. Hanford Facility dangerous waste permit application, liquid effluent retention facility and 200 area effluent treatment facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coenenberg, J.G.

    1997-08-15

    The Hanford Facility Dangerous Waste Permit Application is considered to 10 be a single application organized into a General Information Portion (document 11 number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the 12 Unit-Specific Portion is limited to Part B permit application documentation 13 submitted for individual, `operating` treatment, storage, and/or disposal 14 units, such as the Liquid Effluent Retention Facility and 200 Area Effluent 15 Treatment Facility (this document, DOE/RL-97-03). 16 17 Both the General Information and Unit-Specific portions of the Hanford 18 Facility Dangerous Waste Permit Application address the content of the Part B 19 permit applicationmore » guidance prepared by the Washington State Department of 20 Ecology (Ecology 1987 and 1996) and the U.S. Environmental Protection Agency 21 (40 Code of Federal Regulations 270), with additional information needs 22 defined by the Hazardous and Solid Waste Amendments and revisions of 23 Washington Administrative Code 173-303. For ease of reference, the Washington 24 State Department of Ecology alpha-numeric section identifiers from the permit 25 application guidance documentation (Ecology 1996) follow, in brackets, the 26 chapter headings and subheadings. A checklist indicating where information is 27 contained in the Liquid Effluent Retention Facility and 200 Area Effluent 28 Treatment Facility permit application documentation, in relation to the 29 Washington State Department of Ecology guidance, is located in the Contents 30 Section. 31 32 Documentation contained in the General Information Portion is broader in 33 nature and could be used by multiple treatment, storage, and/or disposal units 34 (e.g., the glossary provided in the General Information Portion). Wherever 35 appropriate, the Liquid Effluent Retention Facility and 200 Area Effluent 36 Treatment Facility permit application documentation makes cross-reference to 37 the General Information Portion, rather than

  4. Hypervelocity Impact Test Facility: A gun for hire

    NASA Technical Reports Server (NTRS)

    Johnson, Calvin R.; Rose, M. F.; Hill, D. C.; Best, S.; Chaloupka, T.; Crawford, G.; Crumpler, M.; Stephens, B.

    1994-01-01

    An affordable technique has been developed to duplicate the types of impacts observed on spacecraft, including the Shuttle, by use of a certified Hypervelocity Impact Facility (HIF) which propels particulates using capacitor driven electric gun techniques. The fully operational facility provides a flux of particles in the 10-100 micron diameter range with a velocity distribution covering the space debris and interplanetary dust particle environment. HIF measurements of particle size, composition, impact angle and velocity distribution indicate that such parameters can be controlled in a specified, tailored test designed for or by the user. Unique diagnostics enable researchers to fully describe the impact for evaluating the 'targets' under full power or load. Users regularly evaluate space hardware, including solar cells, coatings, and materials, exposing selected portions of space-qualified items to a wide range of impact events and environmental conditions. Benefits include corroboration of data obtained from impact events, flight simulation of designs, accelerated aging of systems, and development of manufacturing techniques.

  5. Survey of quantitative antimicrobial consumption in two different pig finishing systems.

    PubMed

    Moreno, M A

    2012-09-29

    The primary objectives of this study were to: (a) collect on-farm antimicrobial use (AMU) data in fattener pigs employing two questionnaire-based surveys; (b) assess different quantitative measures for quantifying AMU in fattener pigs; (c) compare AMU in fattener pigs between two different management systems producing finishers: farrow-to-finish (FtF) farms versus finisher farms. Two questionnaires were designed both containing five groups of questions focused on the responder, the farm and AMU (eg, in-feed, in-drinking water and parenteral); both surveys were carried out by means of personal face-to-face interviews. Both surveys started with a sample size of 108 potentially eligible farms per survey; nevertheless, finally 67 finisher farms and 49 FtF farms were recruited. Overall percentages of animals exposed to antimicrobials (AM) were high (90 per cent in finisher farms and 54 per cent FtF farms); colistin (61 per cent and 33 per cent) and doxycycline (62 per cent and 23 per cent) were the most common AMs, followed by amoxicillin (51 per cent and 19 per cent) and lincomycin (49 per cent), respectively. Questionnaire-based surveys using face-to-face interviews are useful for capturing information regarding AMU at the farm level. Farm-level data per administration route can be used for comparative AMU analysis between farms. Nevertheless, for the analysis of the putative relationships between AMU and AM resistance, measures based on exposed animals or exposure events are needed.

  6. Polymeric nanoparticles for targeted drug delivery system for cancer therapy.

    PubMed

    Masood, Farha

    2016-03-01

    A targeted delivery system based on the polymeric nanoparticles as a drug carrier represents a marvelous avenue for cancer therapy. The pivotal characteristics of this system include biodegradability, biocompatibility, non-toxicity, prolonged circulation and a wide payload spectrum of a therapeutic agent. Other outstanding features are their distinctive size and shape properties for tissue penetration via an active and passive targeting, specific cellular/subcellular trafficking pathways and facile control of cargo release by sophisticated material engineering. In this review, the current implications of encapsulation of anticancer agents within polyhydroxyalkanoates, poly-(lactic-co-glycolic acid) and cyclodextrin based nanoparticles to precisely target the tumor site, i.e., cell, tissue and organ are highlighted. Furthermore, the promising perspectives in this emerging field are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Control and Information Systems for the National Ignition Facility

    DOE PAGES

    Brunton, Gordon; Casey, Allan; Christensen, Marvin; ...

    2017-03-23

    Orchestration of every National Ignition Facility (NIF) shot cycle is managed by the Integrated Computer Control System (ICCS), which uses a scalable software architecture running code on more than 1950 front-end processors, embedded controllers, and supervisory servers. The ICCS operates laser and industrial control hardware containing 66 000 control and monitor points to ensure that all of NIF’s laser beams arrive at the target within 30 ps of each other and are aligned to a pointing accuracy of less than 50 μm root-mean-square, while ensuring that a host of diagnostic instruments record data in a few billionths of a second.more » NIF’s automated control subsystems are built from a common object-oriented software framework that distributes the software across the computer network and achieves interoperation between different software languages and target architectures. A large suite of business and scientific software tools supports experimental planning, experimental setup, facility configuration, and post-shot analysis. Standard business services using open-source software, commercial workflow tools, and database and messaging technologies have been developed. An information technology infrastructure consisting of servers, network devices, and storage provides the foundation for these systems. Thus, this work is an overview of the control and information systems used to support a wide variety of experiments during the National Ignition Campaign.« less

  8. Control and Information Systems for the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunton, Gordon; Casey, Allan; Christensen, Marvin

    Orchestration of every National Ignition Facility (NIF) shot cycle is managed by the Integrated Computer Control System (ICCS), which uses a scalable software architecture running code on more than 1950 front-end processors, embedded controllers, and supervisory servers. The ICCS operates laser and industrial control hardware containing 66 000 control and monitor points to ensure that all of NIF’s laser beams arrive at the target within 30 ps of each other and are aligned to a pointing accuracy of less than 50 μm root-mean-square, while ensuring that a host of diagnostic instruments record data in a few billionths of a second.more » NIF’s automated control subsystems are built from a common object-oriented software framework that distributes the software across the computer network and achieves interoperation between different software languages and target architectures. A large suite of business and scientific software tools supports experimental planning, experimental setup, facility configuration, and post-shot analysis. Standard business services using open-source software, commercial workflow tools, and database and messaging technologies have been developed. An information technology infrastructure consisting of servers, network devices, and storage provides the foundation for these systems. Thus, this work is an overview of the control and information systems used to support a wide variety of experiments during the National Ignition Campaign.« less

  9. Shielding analyses of an AB-BNCT facility using Monte Carlo simulations and simplified methods

    NASA Astrophysics Data System (ADS)

    Lai, Bo-Lun; Sheu, Rong-Jiun

    2017-09-01

    Accurate Monte Carlo simulations and simplified methods were used to investigate the shielding requirements of a hypothetical accelerator-based boron neutron capture therapy (AB-BNCT) facility that included an accelerator room and a patient treatment room. The epithermal neutron beam for BNCT purpose was generated by coupling a neutron production target with a specially designed beam shaping assembly (BSA), which was embedded in the partition wall between the two rooms. Neutrons were produced from a beryllium target bombarded by 1-mA 30-MeV protons. The MCNP6-generated surface sources around all the exterior surfaces of the BSA were established to facilitate repeated Monte Carlo shielding calculations. In addition, three simplified models based on a point-source line-of-sight approximation were developed and their predictions were compared with the reference Monte Carlo results. The comparison determined which model resulted in better dose estimation, forming the basis of future design activities for the first ABBNCT facility in Taiwan.

  10. Passive Safety Features Evaluation of KIPT Neutron Source Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Zhaopeng; Gohar, Yousry

    2016-06-01

    Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have cooperated on the development, design, and construction of a neutron source facility. The facility was constructed at Kharkov, Ukraine and its commissioning process is underway. It will be used to conduct basic and applied nuclear research, produce medical isotopes, and train young nuclear specialists. The facility has an electron accelerator-driven subcritical assembly. The electron beam power is 100 kW using 100 MeV electrons. Tungsten or natural uranium is the target material for generating neutrons driving the subcritical assembly. The subcritical assemblymore » is composed of WWR-M2 - Russian fuel assemblies with U-235 enrichment of 19.7 wt%, surrounded by beryllium reflector assembles and graphite blocks. The subcritical assembly is seated in a water tank, which is a part of the primary cooling loop. During normal operation, the water coolant operates at room temperature and the total facility power is ~300 KW. The passive safety features of the facility are discussed in in this study. Monte Carlo computer code MCNPX was utilized in the analyses with ENDF/B-VII.0 nuclear data libraries. Negative reactivity temperature feedback was consistently observed, which is important for the facility safety performance. Due to the design of WWR-M2 fuel assemblies, slight water temperature increase and the corresponding water density decrease produce large reactivity drop, which offset the reactivity gain by mistakenly loading an additional fuel assembly. The increase of fuel temperature also causes sufficiently large reactivity decrease. This enhances the facility safety performance because fuel temperature increase provides prompt negative reactivity feedback. The reactivity variation due to an empty fuel position filled by water during the fuel loading process is examined. Also, the loading mistakes of removing beryllium reflector assemblies

  11. Nuclear targets within the project of solving CHAllenges in Nuclear DAta

    NASA Astrophysics Data System (ADS)

    Sibbens, Goedele; Moens, André; Vanleeuw, David; Lewis, David; Aregbe, Yetunde

    2017-09-01

    In the frame of the European Commission funded integrated project CHANDA (solving CHAllenges in Nuclear DAta) the importance of nuclear target preparation for the accurateness and reliability of experimental nuclear data is set in a dedicated work package (WP3). The global aim of WP3 is the development of a network for nuclear target preparation and characterization, enabling to coordinate the target production corresponding to the experimental requirements. Therefore, a set of tasks within the work package needs to be followed. Primarily, an inventory of target related facilities and radioisotope providers was created. In the next step a priority list of target requests was made in agreement with the target user considering the technical specification, the scheduled experiments and the availability of the target laboratories. A set of target requests has been assigned to the Target Preparation laboratory of the European Commission - Joint Research Centre - Directorate G (EC-JRC.G.2) in Geel, Belgium. This contribution gives an overview of the nuclear targets that are produced within the CHANDA project. The equipment and techniques available for the preparation and characterization of uranium, plutonium and neptunium layers with an areal density ranging from 60 to 205 μg cm-2 will be emphasized.

  12. Shock-induced perturbation evolution in planar laser targets

    NASA Astrophysics Data System (ADS)

    Aglitskiy, Y.; Karasik, M.; Velikovich, A. L.; Serlin, V.; Weaver, J. L.; Kessler, T. J.; Schmitt, A. J.; Obenschain, S. P.; Metzler, N.; Oh, J.

    2013-10-01

    Experimental studies of hydrodynamic perturbation evolution triggered by a laser-driven shock wave in a planar target done on the KrF Nike laser facility are reported. The targets were made of solid plastic and/or plastic foam with single mode sinusoidal perturbation on the front or back surface or plastic/foam interface. Two specific cases are discussed. When a planar solid plastic target rippled at the front side is irradiated with a 350 ps long laser pulse, ablative Richtmyer-Meshkov (RM) oscillation of its areal mass modulation amplitude is detected while the laser is on, followed by observed strong oscillations of the areal mass in the unsupported shock flow after the laser pulse ends. When the target is rippled at the rear side, the nature of the perturbation evolution after the shock breakout is determined by the strength of the laser-driven shock wave. At pressure below 1 Mbar shock interaction with rear-surface ripples produces planar collimated jets manifesting the development of a classical RM instability in a weakly compressible shocked fluid. At shock pressure ~ 8 Mbar sufficient for vaporizing the shocked target material we observed instead the strong areal mass oscillations characteristic of a rippled centered rarefaction wave. Work supported by US DOE, Defense Programs.

  13. A randomized trial of heart failure disease management in skilled nursing facilities (SNF Connect): Lessons learned.

    PubMed

    Daddato, Andrea; Wald, Heidi L; Horney, Carolyn; Fairclough, Diane L; Leister, Erin C; Coors, Marilyn; Capell, Warren H; Boxer, Rebecca S

    2017-06-01

    Conducting clinical trials in skilled nursing facilities is particularly challenging. This manuscript describes facility and patient recruitment challenges and solutions for clinical research in skilled nursing facilities. Lessons learned from the SNF Connect Trial, a randomized trial of a heart failure disease management versus usual care for patients with heart failure receiving post-acute care in skilled nursing facilities, are discussed. Description of the trial design and barriers to facility and patient recruitment along with regulatory issues are presented. The recruitment of Denver-metro skilled nursing facilities was facilitated by key stakeholders of the skilled nursing facilities community. However, there were still a number of barriers to facility recruitment including leadership turnover, varying policies regarding research, fear of litigation and of an increased workload. Engagement of facilities was facilitated by their strong interest in reducing hospital readmissions, marketing potential to hospitals, and heart failure management education for their staff. Recruitment of patients proved difficult and there were few facilitators. Identified patient recruitment challenges included patients being unaware of their heart failure diagnosis, patients overwhelmed with their illness and care, and frequently there was no available proxy for cognitively impaired patients. Flexibility in changing the recruitment approach and targeting skilled nursing facilities with higher rates of admissions helped to overcome some barriers. Recruitment of skilled nursing facilities and patients in skilled nursing facilities for clinical trials is challenging. Strategies to attract both facilities and patients are warranted. These include aligning study goals with facility incentives and flexible recruitment protocols to work with patients in "transition crisis."

  14. Analysis of EPA's Federal Facilities Restoration and Reuse Office (FFRRO) Regional Program Performance: Fiscal Years 2005-2011

    EPA Pesticide Factsheets

    This is a summary report of a series of analyses of the Federal Facilities Restoration and Reuse Office (FFRRO) regional programs' performance in meeting their annual targets for the last seven years (2005-2011).

  15. Savannah River Plant engineering and design history. Volume 4: 300/700 Areas & general services and facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1957-01-01

    The primary function of the 300 Area is the production and preparation of the fuel and target elements required for the 100 Area production reactors. Uranium slugs and lithium-aluminium alloy control and blanket rods are prepared in separate structures. Other facilities include a test pile, a physics assembly laboratory, an office and change house, an electrical substation, and various service facilities such as rail lines, roads, sewers, steam and water distribution lines, etc. The 700 Area contains housing and facilities for plant management, general plant services, and certain technical activities. The technical buildings include the Main Technical Laboratory, the Wastemore » Concentration Building, the Health Physics Headquarters, and the Health Physics Calibration building. Sections of this report describe the following: development of the 300-M Area; selection and description of process; design of main facilities of the 300 Area; development of the 700-A Area; design of the main facilities of the 700 Area; and general services and facilities, including transportation, plant protection, waste disposal and drainage, site work, pilot plants, storage, and furniture and fixtures.« less

  16. Single Event Effects Test Facility Options at the Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riemer, Bernie; Gallmeier, Franz X; Dominik, Laura J

    2015-01-01

    Increasing use of microelectronics of ever diminishing feature size in avionics systems has led to a growing Single Event Effects (SEE) susceptibility arising from the highly ionizing interactions of cosmic rays and solar particles. Single event effects caused by atmospheric radiation have been recognized in recent years as a design issue for avionics equipment and systems. To ensure a system meets all its safety and reliability requirements, SEE induced upsets and potential system failures need to be considered, including testing of the components and systems in a neutron beam. Testing of integrated circuits (ICs) and systems for use in radiationmore » environments requires the utilization of highly advanced laboratory facilities that can run evaluations on microcircuits for the effects of radiation. This paper provides a background of the atmospheric radiation phenomenon and the resulting single event effects, including single event upset (SEU) and latch up conditions. A study investigating requirements for future single event effect irradiation test facilities and developing options at the Spallation Neutron Source (SNS) is summarized. The relatively new SNS with its 1.0 GeV proton beam, typical operation of 5000 h per year, expertise in spallation neutron sources, user program infrastructure, and decades of useful life ahead is well suited for hosting a world-class SEE test facility in North America. Emphasis was put on testing of large avionics systems while still providing tunable high flux irradiation conditions for component tests. Makers of ground-based systems would also be served well by these facilities. Three options are described; the most capable, flexible, and highest-test-capacity option is a new stand-alone target station using about one kW of proton beam power on a gas-cooled tungsten target, with dual test enclosures. Less expensive options are also described.« less

  17. FACILITY 846, SOUTHEAST END ON LEFT, WITH FACILITY 845 ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 846, SOUTHEAST END ON LEFT, WITH FACILITY 845 ON RIGHT AND FACILITY 847 IN CENTER BACKGROUND, QUADRANGLE J, VIEW FACING NORTH. - Schofield Barracks Military Reservation, Quadrangles I & J Barracks Type, Between Wright-Smith & Capron Avenues near Williston Avenue, Wahiawa, Honolulu County, HI

  18. Opportunities for animal alternatives implementation in the evolving OECD fish testing framework

    EPA Science Inventory

    This presentation reviews opportunities for animal alternative approaches in the FTF. These will be placed in the context of in vivo tests required in many regulatory situations for the registration of industrial chemicals, pharmaceuticals, and agrochemicals. The Framework inte...

  19. Community outreach at biomedical research facilities.

    PubMed

    Goldman, M; Hedetniemi, J N; Herbert, E R; Sassaman, J S; Walker, B C

    2000-12-01

    For biomedical researchers to fulfill their responsibility for protecting the environment, they must do more than meet the scientific challenge of reducing the number and volume of hazardous materials used in their laboratories and the engineering challenge of reducing pollution and shifting to cleaner energy sources. They must also meet the public relations challenge of informing and involving their neighbors in these efforts. The experience of the Office of Community Liaison of the National Institutes of Health (NIH) in meeting the latter challenge offers a model and several valuable lessons for other biomedical research facilities to follow. This paper is based on presentations by an expert panel during the Leadership Conference on Biomedical Research and the Environment held 1--2 November 1999 at NIH, Bethesda, Maryland. The risks perceived by community members are often quite different from those identified by officials at the biomedical research facility. The best antidote for misconceptions is more and better information. If community organizations are to be informed participants in the decision-making process, they need a simple but robust mechanism for identifying and evaluating the environmental hazards in their community. Local government can and should be an active and fully informed partner in planning and emergency preparedness. In some cases this can reduce the regulatory burden on the biomedical research facility. In other cases it might simplify and expedite the permitting process or help the facility disseminate reliable information to the community. When a particular risk, real or perceived, is of special concern to the community, community members should be involved in the design, implementation, and evaluation of targeted risk assessment activities. Only by doing so will the community have confidence in the results of those activities. NIH has involved community members in joint efforts to deal with topics as varied as recycling and soil

  20. Implementing Target Value Design.

    PubMed

    Alves, Thais da C L; Lichtig, Will; Rybkowski, Zofia K

    2017-04-01

    An alternative to the traditional way of designing projects is the process of target value design (TVD), which takes different departure points to start the design process. The TVD process starts with the client defining an allowable cost that needs to be met by the design and construction teams. An expected cost in the TVD process is defined through multiple interactions between multiple stakeholders who define wishes and others who define ways of achieving these wishes. Finally, a target cost is defined based on the expected profit the design and construction teams are expecting to make. TVD follows a series of continuous improvement efforts aimed at reaching the desired goals for the project and its associated target value cost. The process takes advantage of rapid cycles of suggestions, analyses, and implementation that starts with the definition of value for the client. In the traditional design process, the goal is to identify user preferences and find solutions that meet the needs of the client's expressed preferences. In the lean design process, the goal is to educate users about their values and advocate for a better facility over the long run; this way owners can help contractors and designers to identify better solutions. This article aims to inform the healthcare community about tools and techniques commonly used during the TVD process and how they can be used to educate and support project participants in developing better solutions to meet their needs now as well as in the future.

  1. Together but apart: Caring for a spouse with dementia resident in a care facility.

    PubMed

    Hemingway, Dawn; MacCourt, Penny; Pierce, Joanna; Strudsholm, Tina

    2016-07-01

    This longitudinal, exploratory study was designed to better understand the lived experience of spousal caregivers age 60 and older providing care to partners with Alzheimer's disease and related dementias resident in a care facility. Twenty eight spousal caregivers were interviewed up to three times over a period of 2 years, and long-term care facility staff from four locations across British Columbia (BC), Canada participated in four focus groups. Thematic analysis of interview and focus group transcripts revealed a central, unifying theme 'together but apart'. The results identify key targets for policy makers and service providers to support positive health and well-being outcomes for spousal caregivers providing care to their partners diagnosed with Alzheimer's disease and related dementia and living in care facilities. © The Author(s) 2014.

  2. Optical design of the National Ignition Facility main laser and switchyard/target area beam transport systems

    NASA Astrophysics Data System (ADS)

    Miller, John L.; English, R. Edward, Jr.; Korniski, Ronald J.; Rodgers, J. Michael

    1999-07-01

    The optical design of the main laser and transport mirror sections of the National Ignition Facility are described. For the main laser the configuration, layout constraints, multiple beam arrangement, pinhole layout and beam paths, clear aperture budget, ray trace models, alignment constraints, lens designs, wavefront performance, and pupil aberrations are discussed. For the transport mirror system the layout, alignment controls and clear aperture budget are described.

  3. Solid hydrogen target for laser driven proton acceleration

    NASA Astrophysics Data System (ADS)

    Perin, J. P.; Garcia, S.; Chatain, D.; Margarone, D.

    2015-05-01

    The development of very high power lasers opens up new horizons in various fields, such as laser plasma acceleration in Physics and innovative approaches for proton therapy in Medicine. Laser driven proton acceleration is commonly based on the so-called Target Normal Sheath Acceleration (TNSA) mechanisms: a high power laser is focused onto a solid target (thin metallic or plastic foil) and interact with matter at very high intensity, thus generating a plasma; as a consequence "hot" electrons are produced and move into the forward direction through the target. Protons are generated at the target rear side, electrons try to escape from the target and an ultra-strong quasi-electrostatic field (~1TV/m) is generated. Such a field can accelerate protons with a wide energy spectrum (1-200 MeV) in a few tens of micrometers. The proton beam characteristics depend on the laser parameters and on the target geometry and nature. This technique has been validated experimentally in several high power laser facilities by accelerating protons coming from hydrogenated contaminant (mainly water) at the rear of metallic target, however, several research groups are investigating the possibility to perform experiments by using "pure" hydrogen targets. In this context, the low temperature laboratory at CEA-Grenoble has developed a cryostat able to continuously produce a thin hydrogen ribbon (from 40 to 100 microns thick). A new extrusion concept, without any moving part has been carried out, using only the thermodynamic properties of the fluid. First results and perspectives are presented in this paper.

  4. Early-time radiation flux symmetry optimization and its effect on gas-filled hohlraum ignition targets on the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milovich, J. L., E-mail: milovich1@llnl.gov; Dewald, E. L.; Pak, A.

    2016-03-15

    Achieving ignition on the National Ignition Facility (NIF) is tied to our ability to control and minimize deviations from sphericity of the capsule implosion. Low-mode asymmetries of the hot spot result from the combined effect of radiation drive asymmetries throughout the laser pulse and initial roughness on the capsule surface. In this paper, we report on simulations and experiments designed to assess, measure, and correct the drive asymmetries produced by the early-time (≈first 2 ns or “picket”) period of the laser pulse. The drive asymmetry during the picket is commonly thought to introduce distortions in the hot-spot shape at ignition time.more » However, a more subtle effect not previously considered is that it also leads to an asymmetry in shock velocity and timing, thereby increasing the fuel adiabat and reducing the margin for ignition. It is shown via hydrodynamic simulations that minimizing this effect requires that the early-time asymmetry be kept below 7.5% in the second Legendre mode (P{sub 2}), thus keeping the loss of performance margin below ≈10% for a layered implosion. Asymmetries during the picket of the laser pulse are measured using the instantaneous self-emission of a high-Z re-emission sphere in place of an ignition capsule in a hohlraum with large azimuthal diagnostic windows. Three dimensional simulations using the code HYDRA (to capture the effect of non-azimuthal hohlraum features) coupled to a cross-beam energy transfer model [Michel et al., Phys. Plasmas 17, 056305 (2010)] are used to establish the surrogacy of the re-emit target and to assess the early-time drive symmetry. Calculations using this model exhibit the same sensitivity to variations in the relative input powers between the different cones of NIF beams as measured for the “Rev5” CH target [Haan et al., Phys Plasmas 18, 051001 (2011)] and reported by Dewald et al. [Phys. Rev. Lett. 111, 235001 (2013)]. The same methodology applied to recently improved

  5. Preliminary study for small animal preclinical hadrontherapy facility

    NASA Astrophysics Data System (ADS)

    Russo, G.; Pisciotta, P.; Cirrone, G. A. P.; Romano, F.; Cammarata, F.; Marchese, V.; Forte, G. I.; Lamia, D.; Minafra, L.; Bravatá, V.; Acquaviva, R.; Gilardi, M. C.; Cuttone, G.

    2017-02-01

    Aim of this work is the study of the preliminary steps to perform a particle treatment of cancer cells inoculated in small animals and to realize a preclinical hadrontherapy facility. A well-defined dosimetric protocol was developed to explicate the steps needed in order to perform a precise proton irradiation in small animals and achieve a highly conformal dose into the target. A precise homemade positioning and holding system for small animals was designed and developed at INFN-LNS in Catania (Italy), where an accurate Monte Carlo simulation was developed, using Geant4 code to simulate the treatment in order to choose the best animal position and perform accurately all the necessary dosimetric evaluations. The Geant4 application can also be used to realize dosimetric studies and its peculiarity consists in the possibility to introduce the real target composition in the simulation using the DICOM micro-CT image. This application was fully validated comparing the results with the experimental measurements. The latter ones were performed at the CATANA (Centro di AdroTerapia e Applicazioni Nucleari Avanzate) facility at INFN-LNS by irradiating both PMMA and water solid phantom. Dosimetric measurements were performed using previously calibrated EBT3 Gafchromic films as a detector and the results were compared with the Geant4 simulation ones. In particular, two different types of dosimetric studies were performed: the first one involved irradiation of a phantom made up of water solid slabs where a layer of EBT3 was alternated with two different slabs in a sandwich configuration, in order to validate the dosimetric distribution. The second one involved irradiation of a PMMA phantom made up of a half hemisphere and some PMMA slabs in order to simulate a subcutaneous tumour configuration, normally used in preclinical studies. In order to evaluate the accordance between experimental and simulation results, two different statistical tests were made: Kolmogorov test and

  6. Computational study of radiation doses at UNLV accelerator facility

    NASA Astrophysics Data System (ADS)

    Hodges, Matthew; Barzilov, Alexander; Chen, Yi-Tung; Lowe, Daniel

    2017-09-01

    A Varian K15 electron linear accelerator (linac) has been considered for installation at University of Nevada, Las Vegas (UNLV). Before experiments can be performed, it is necessary to evaluate the photon and neutron spectra as generated by the linac, as well as the resulting dose rates within the accelerator facility. A computational study using MCNPX was performed to characterize the source terms for the bremsstrahlung converter. The 15 MeV electron beam available in the linac is above the photoneutron threshold energy for several materials in the linac assembly, and as a result, neutrons must be accounted for. The angular and energy distributions for bremsstrahlung flux generated by the interaction of the 15 MeV electron beam with the linac target were determined. This source term was used in conjunction with the K15 collimators to determine the dose rates within the facility.

  7. Facilities | Bioenergy | NREL

    Science.gov Websites

    Facilities Facilities At NREL's state-of-the-art bioenergy research facilities, researchers design options. Photo of interior of industrial, two-story building with high-bay, piping, and large processing

  8. Design considerations for attaining 250-knot test velocities at the aircraft landing dynamics facility

    NASA Technical Reports Server (NTRS)

    Gray, C. E., Jr.; Snyder, R. E.; Taylor, J. T.; Cires, A.; Fitzgerald, A. L.; Armistead, M. F.

    1980-01-01

    Preliminary design studies are presented which consider the important parameters in providing 250 knot test velocities at the Aircraft Landing Dynamics Facility. Four major components of this facility are: the hydraulic jet catapult, the test carriage structure, the reaction turning bucket, and the wheels. Using the hydraulic-jet catapult characteristics, a target design point was selected and a carriage structure was sized to meet the required strength requirements. The preliminary design results indicate that to attain 250 knot test velocities for a given hydraulic jet catapult system, a carriage mass of 25,424 kg (56,000 lbm.) cannot be exceeded.

  9. The Progress of Research Project for Magnetized Target Fusion in China

    NASA Astrophysics Data System (ADS)

    Yang, Xian-Jun

    2015-11-01

    The fusion of magnetized plasma called Magnetized Target Fusion (MTF) is a hot research area recently. It may significantly reduce the cost and size. Great progress has been achieved in past decades around the world. Five years ago, China initiated the MTF project and has gotten some progress as follows: 1. Verifying the feasibility of ignition of MTF by means of first principle and MHD simulation; 2. Generating the magnetic field over 1400 Tesla, which can be suppress the heat conduction from charged particles, deposit the energy of alpha particle to promote the ignition process, and produce the stable magnetized plasma for the target of ignition; 3. The imploding facility of FP-1 can put several Mega Joule energy to the solid liner of about ten gram in the range of microsecond risen time, while the simulating tool has been developed for design and analysis of the process; 4. The target of FRC can be generated by ``YG 1 facility'' while some simulating tools have be developed. Next five years, the above theoretical work and the experiments of MTF may be integrated to step up as the National project, which may make my term play an important lead role and be supposed to achieve farther progress in China. Supported by the National Natural Science Foundation of China under Grant No 11175028.

  10. Neutron-rich isotope production using the uranium carbide multi-foil SPES target prototype

    NASA Astrophysics Data System (ADS)

    Scarpa, D.; Biasetto, L.; Corradetti, S.; Manzolaro, M.; Andrighetto, A.; Carturan, S.; Prete, G.; Zanonato, P.; Stracener, D. W.

    2011-03-01

    In the framework of the R&D program for the SPES (Selective Production of Exotic Species) project of the Istituto Nazionale di Fisica Nucleare (INFN), production yields of neutron-rich isotopes have been measured at the Holifield Radioactive Ion Beam Facility (HRIBF, Oak Ridge National Laboratory, USA). This experiment makes use of the multi-foil SPES target prototype composed of 7 uranium carbide discs, with excess of graphite (ratio C/ U = 4 . 77 isotopes of medium mass (between 72 and 141amu), produced via proton-induced fission of uranium using a 40MeV proton beam, have been collected and analyzed for the target heated at 2000 ° C target temperature.

  11. The comparison of fossil carbon fraction and greenhouse gas emissions through an analysis of exhaust gases from urban solid waste incineration facilities.

    PubMed

    Kim, Seungjin; Kang, Seongmin; Lee, Jeongwoo; Lee, Seehyung; Kim, Ki-Hyun; Jeon, Eui-Chan

    2016-10-01

    In this study, in order to understand accurate calculation of greenhouse gas emissions of urban solid waste incineration facilities, which are major waste incineration facilities, and problems likely to occur at this time, emissions were calculated by classifying calculation methods into 3 types. For the comparison of calculation methods, the waste characteristics ratio, dry substance content by waste characteristics, carbon content in dry substance, and (12)C content were analyzed; and in particular, CO2 concentration in incineration gases and (12)C content were analyzed together. In this study, 3 types of calculation methods were made through the assay value, and by using each calculation method, emissions of urban solid waste incineration facilities were calculated then compared. As a result of comparison, with Calculation Method A, which used the default value as presented in the IPCC guidelines, greenhouse gas emissions were calculated for the urban solid waste incineration facilities A and B at 244.43 ton CO2/day and 322.09 ton CO2/day, respectively. Hence, it showed a lot of difference from Calculation Methods B and C, which used the assay value of this study. It is determined that this was because the default value as presented in IPCC, as the world average value, could not reflect the characteristics of urban solid waste incineration facilities. Calculation Method B indicated 163.31 ton CO2/day and 230.34 ton CO2/day respectively for the urban solid waste incineration facilities A and B; also, Calculation Method C indicated 151.79 ton CO2/day and 218.99 ton CO2/day, respectively. This study intends to compare greenhouse gas emissions calculated using (12)C content default value provided by the IPCC (Intergovernmental Panel on Climate Change) with greenhouse gas emissions calculated using (12)C content and waste assay value that can reflect the characteristics of the target urban solid waste incineration facilities. Also, the concentration and (12)C content

  12. Investigation on target normal sheath acceleration through measurements of ions energy distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tudisco, S., E-mail: tudisco@lns.infn.it; Cirrone, G. A. P.; Mascali, D.

    2016-02-15

    An experimental campaign aiming at investigating the ion acceleration mechanisms through laser-matter interaction in femtosecond domain has been carried out at the Intense Laser Irradiation Laboratory facility with a laser intensity of up to 2 × 10{sup 19} W/cm{sup 2}. A Thomson parabola spectrometer was used to obtain the spectra of the ions of the different species accelerated. Here, we show the energy spectra of light-ions and we discuss their dependence on structural characteristics of the target and the role of surface and target bulk in the acceleration process.

  13. Morphology of meteoroid and space debris craters on LDEF metal targets

    NASA Technical Reports Server (NTRS)

    Love, S. G.; Brownlee, D. E.; King, N. L.; Hoerz, F.

    1994-01-01

    We measured the depths, average diameters, and circularity indices of over 600 micrometeoroid and space debris craters on various metal surfaces exposed to space on the Long Duration Exposure Facility (LDEF) satellite, as a test of some of the formalisms used to convert the diameters of craters on space-exposed surfaces into penetration depths for the purpose of calculating impactor sizes or masses. The topics covered include the following: targe materials orientation; crater measurements and sample populations; effects of oblique impacts; effects of projectile velocity; effects of crater size; effects of target hardness; effects of target density; and effects of projectile properties.

  14. EPA Facility Registry Service (FRS): Facility Interests Dataset

    EPA Pesticide Factsheets

    This web feature service consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are available in the FRS individual feature layers. The layers comprise the FRS major program databases, including:Assessment Cleanup and Redevelopment Exchange System (ACRES) : brownfields sites ; Air Facility System (AFS) : stationary sources of air pollution ; Air Quality System (AQS) : ambient air pollution data from monitoring stations; Bureau of Indian Affairs (BIA) : schools data on Indian land; Base Realignment and Closure (BRAC) facilities; Clean Air Markets Division Business System (CAMDBS) : market-based air pollution control programs; Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS) : hazardous waste sites; Integrated Compliance Information System (ICIS) : integrated enforcement and compliance information; National Compliance Database (NCDB) : Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Toxic Substances Control Act (TSCA); National Pollutant Discharge Elimination System (NPDES) module of ICIS : NPDES surface water permits; Radiation Information Database (RADINFO) : radiation and radioactivity facilities; RACT/BACT/LAER Clearinghouse (RBLC) : best available air pollution technology requirements; Resource Conservation and Recovery Act Information System (RCRAInfo) : tracks generators, transporters, treaters, storers, and disposers of haz

  15. A novel facility for 3D micro-irradiation of living cells in a controlled environment by MeV ions.

    PubMed

    Mäckel, V; Meissl, W; Ikeda, T; Clever, M; Meissl, E; Kobayashi, T; Kojima, T M; Imamoto, N; Ogiwara, K; Yamazaki, Y

    2014-01-01

    We present a novel facility for micro-irradiation of living targets with ions from a 1.7 MV tandem accelerator. We show results using 1 MeV protons and 2 MeV He(2+). In contrast to common micro-irradiation facilities, which use electromagnetic or electrostatic focusing and specially designed vacuum windows, we employ a tapered glass capillary with a thin end window, made from polystyrene with a thickness of 1-2 μm, for ion focusing and extraction. The capillary is connected to a beamline tilted vertically by 45°, which allows for easy immersion of the extracted ions into liquid environment within a standard cell culture dish. An inverted microscope is used for simultaneously observing the samples as well as the capillary tip, while a stage-top incubator provides an appropriate environment for the samples. Furthermore, our setup allows to target volumes in cells within a μm(3) resolution, while monitoring the target in real time during and after irradiation.

  16. Targeted Assessment for Prevention of Healthcare-Associated Infections: A New Prioritization Metric.

    PubMed

    Soe, Minn M; Gould, Carolyn V; Pollock, Daniel; Edwards, Jonathan

    2015-12-01

    To develop a method for calculating the number of healthcare-associated infections (HAIs) that must be prevented to reach a HAI reduction goal and identifying and prioritizing healthcare facilities where the largest reductions can be achieved. Acute care hospitals that report HAI data to the Centers for Disease Control and Prevention's National Healthcare Safety Network. METHODS :The cumulative attributable difference (CAD) is calculated by subtracting a numerical prevention target from an observed number of HAIs. The prevention target is the product of the predicted number of HAIs and a standardized infection ratio goal, which represents a HAI reduction goal. The CAD is a numeric value that if positive is the number of infections to prevent to reach the HAI reduction goal. We calculated the CAD for catheter-associated urinary tract infections for each of the 3,639 hospitals that reported such data to National Healthcare Safety Network in 2013 and ranked the hospitals by their CAD values in descending order. Of 1,578 hospitals with positive CAD values, preventing 10,040 catheter-associated urinary tract infections at 293 hospitals (19%) with the highest CAD would enable achievement of the national 25% catheter-associated urinary tract infection reduction goal. The CAD is a new metric that facilitates ranking of facilities, and locations within facilities, to prioritize HAI prevention efforts where the greatest impact can be achieved toward a HAI reduction goal.

  17. Consequences of electroplated targets on radiopharmaceutical preparations

    NASA Astrophysics Data System (ADS)

    Finn, R. D.; Tirelli, S.; Sheh, Y.; Knott, A.; Gelbard, A. S.; Larson, S. M.; Dahl, J. R.

    1991-05-01

    The staff of the cyclotron facility at Memorial Sloan-Kettering Cancer Center is involved in a comprehensive radionuclide preparation program which culminates with the formulation of numerous requested short-lived, positron-emitting radiopharmaceutical agents for clinical investigation. Both the produced radionuclide as well as the final radiolabeled compound are subjected to stringent quality control standards including assays for radiochemical and chemical purity. The subtle chemical consequences resulting from the irradiation of a nickel-plated target for 13N production serve to emphasize some of these potential technical difficulties.

  18. Large Area Solid Radiochemistry (LASR) collector at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Waltz, Cory; Gharibyan, Narek; Hardy, Mike; Shaughnessy, Dawn; Jedlovec, Don; Smith, Cal

    2017-08-01

    The flux of neutrons and charged particles produced from inertial confinement fusion experiments at the National Ignition Facility (NIF) induces measurable concentrations of nuclear reaction products in various target materials. The collection and radiochemical analysis of the post-shot debris can be utilized as an implosion diagnostic to obtain information regarding fuel areal density and ablator-fuel mixing. Furthermore, assessment of the debris from specially designed targets, material doped in capsules or mounted on the external surface of the target assembly, can support experiments relevant to nuclear forensic research. To collect the shot debris, we have deployed the Large Area Solid Radiochemistry Collector (LASR) at NIF. LASR uses a main collector plate that contains a large collection foil with an exposed 20 cm diameter surface located ˜50 cm from the NIF target. This covers ˜0.12 steradians, or about 1% of the total solid angle. We will describe the design, analysis, and operation of this experimental platform as well as the initial results. To speed up the design process 3-dimensional printing was utilized. Design analysis includes the dynamic loading of the NIF target vaporized mass, which was modeled using LS-DYNA.

  19. Capabilities of the Impact Testing Facility at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Finchum, Andy; Nehls, Mary; Young, Whitney; Gray, Perry; Suggs, Bart; Lowrey, Nikki M.

    2011-01-01

    The test and analysis capabilities of the Impact Testing Facility at NASA's Marshall Space Flight Center are described. Nine different gun systems accommodate a wide range of projectile and target sizes and shapes at velocities from subsonic through hypersonic, to accomplish a broad range of ballistic and hypervelocity impact tests. These gun systems include ballistic and microballistic gas and powder guns, a two-stage light gas gun, and specialty guns for weather encounter studies. The ITF "rain gun" is the only hydrometeor impact gun known to be in existence in the United States that can provide single impact performance data with known raindrop sizes. Simulation of high velocity impact is available using the Smooth Particle Hydrodynamic Code. The Impact Testing Facility provides testing, custom test configuration design and fabrication, and analytical services for NASA, the Department of Defense, academic institutions, international space agencies, and private industry in a secure facility located at Marshall Space Flight Center, on the US Army's Redstone Arsenal in Huntsville, Alabama. This facility performs tests that are subject to International Traffic in Arms Regulations (ITAR) and DoD secret classified restrictions as well as proprietary and unrestricted tests for civil space agencies, academic institutions, and commercial aerospace and defense companies and their suppliers.

  20. Research and test facilities

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A description is given of each of the following Langley research and test facilities: 0.3-Meter Transonic Cryogenic Tunnel, 7-by 10-Foot High Speed Tunnel, 8-Foot Transonic Pressure Tunnel, 13-Inch Magnetic Suspension & Balance System, 14-by 22-Foot Subsonic Tunnel, 16-Foot Transonic Tunnel, 16-by 24-Inch Water Tunnel, 20-Foot Vertical Spin Tunnel, 30-by 60-Foot Wind Tunnel, Advanced Civil Transport Simulator (ACTS), Advanced Technology Research Laboratory, Aerospace Controls Research Laboratory (ACRL), Aerothermal Loads Complex, Aircraft Landing Dynamics Facility (ALDF), Avionics Integration Research Laboratory, Basic Aerodynamics Research Tunnel (BART), Compact Range Test Facility, Differential Maneuvering Simulator (DMS), Enhanced/Synthetic Vision & Spatial Displays Laboratory, Experimental Test Range (ETR) Flight Research Facility, General Aviation Simulator (GAS), High Intensity Radiated Fields Facility, Human Engineering Methods Laboratory, Hypersonic Facilities Complex, Impact Dynamics Research Facility, Jet Noise Laboratory & Anechoic Jet Facility, Light Alloy Laboratory, Low Frequency Antenna Test Facility, Low Turbulence Pressure Tunnel, Mechanics of Metals Laboratory, National Transonic Facility (NTF), NDE Research Laboratory, Polymers & Composites Laboratory, Pyrotechnic Test Facility, Quiet Flow Facility, Robotics Facilities, Scientific Visualization System, Scramjet Test Complex, Space Materials Research Laboratory, Space Simulation & Environmental Test Complex, Structural Dynamics Research Laboratory, Structural Dynamics Test Beds, Structures & Materials Research Laboratory, Supersonic Low Disturbance Pilot Tunnel, Thermal Acoustic Fatigue Apparatus (TAFA), Transonic Dynamics Tunnel (TDT), Transport Systems Research Vehicle, Unitary Plan Wind Tunnel, and the Visual Motion Simulator (VMS).

  1. Biosecurity and bird movement practices in upland game bird facilities in the United States.

    PubMed

    Slota, Katharine E; Hill, Ashley E; Keefe, Thomas J; Bowen, Richard A; Pabilonia, Kristy L

    2011-06-01

    Since 1996, the emergence of Asian-origin highly pathogenic avian influenza subtype H5N1 has spurred great concern for the global poultry industry. In the United States, there is concern over the potential of a foreign avian disease incursion into the country. Noncommercial poultry operations, such as upland game bird facilities in the United States, may serve as a potential source of avian disease introduction to other bird populations including the commercial poultry industry, backyard flocks, or wildlife. In order to evaluate how to prevent disease transmission from these facilities to other populations, we examined biosecurity practices and bird movement within the upland game bird industry in the United States. Persons that held a current permit to keep, breed, or release upland game birds were surveyed for information on biosecurity practices, flock and release environments, and bird movement parameters. Biosecurity practices vary greatly among permit holders. Many facilities allow for interaction between wild birds and pen-reared birds, and there is regular long-distance movement of live adult birds among facilities. Results suggest that upland game bird facilities should be targeted for biosecurity education and disease surveillance efforts.

  2. 30 CFR 71.400 - Bathing facilities; change rooms; sanitary flush toilet facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... WORK AREAS OF UNDERGROUND COAL MINES Surface Bathing Facilities, Change Rooms, and Sanitary Flush Toilet Facilities at Surface Coal Mines § 71.400 Bathing facilities; change rooms; sanitary flush toilet... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Bathing facilities; change rooms; sanitary...

  3. 30 CFR 71.400 - Bathing facilities; change rooms; sanitary flush toilet facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... WORK AREAS OF UNDERGROUND COAL MINES Surface Bathing Facilities, Change Rooms, and Sanitary Flush Toilet Facilities at Surface Coal Mines § 71.400 Bathing facilities; change rooms; sanitary flush toilet... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Bathing facilities; change rooms; sanitary...

  4. 30 CFR 71.400 - Bathing facilities; change rooms; sanitary flush toilet facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... WORK AREAS OF UNDERGROUND COAL MINES Surface Bathing Facilities, Change Rooms, and Sanitary Flush Toilet Facilities at Surface Coal Mines § 71.400 Bathing facilities; change rooms; sanitary flush toilet... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Bathing facilities; change rooms; sanitary...

  5. 30 CFR 71.400 - Bathing facilities; change rooms; sanitary flush toilet facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... WORK AREAS OF UNDERGROUND COAL MINES Surface Bathing Facilities, Change Rooms, and Sanitary Flush Toilet Facilities at Surface Coal Mines § 71.400 Bathing facilities; change rooms; sanitary flush toilet... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Bathing facilities; change rooms; sanitary...

  6. Selecting long-term care facilities with high use of acute hospitalisations: issues and options

    PubMed Central

    2014-01-01

    , recent history of admissions is highly predictive. To target a few high-use facilities that have high rates after considering facility and resident characteristics, model residuals or a large increase in rank may be preferable. PMID:25052433

  7. An evaluation of remote communication versus face-to-face in clinical dental education.

    PubMed

    Martin, N; Lazalde, O Martínez; Stokes, C; Romano, D

    2012-03-23

    Distance learning and internet-based delivery of educational content are becoming very popular as an alternative to real face-to-face delivery. Clinical-based discussions still remain greatly face-to-face despite the advancement of remote communication and internet sharing technology. In this study we have compared three communication modalities between a learner and educator: audio and video using voice over internet protocol (VoIP) alone [AV]; audio and video VoIP with the addition of a three dimensional virtual artefact [AV3D] and physical face-to-face [FTF]. Clinical case discussions based on fictitious patients were held between a 'learner' and an 'expert' using the three communication modalities. The learner presented a clinical scenario to the experts, with the aid of a prop (partially dentate cast, digitised for AV3D), to obtain advice on the management of the clinical case. Each communication modality was tested in timed exercises in a random order among one of three experts (senior clinical restorative staff) and a learner (from a cohort of 15 senior clinical undergraduate students) all from the School of Clinical Dentistry, University of Sheffield. All learners and experts used each communication modality in turn with no prior training. Video recording and structured analysis were used to ascertain learner behaviour and levels of interactivity. Evaluation questionnaires were completed by experts and learners immediately after the experiment to ascertain effectiveness of information exchange and barriers/facilitators to communication. The video recordings showed that students were more relaxed with AV and AV3D than FTF (p = 0.01). The evaluation questionnaires showed that students felt they could provide (p = 0.03) and obtain (p = 0.003) more information using the FTF modality, followed by AV and then AV3D. Experts also ranked FTF better than AV and AV3D for providing (p = 0.012) and obtaining (p = 0) information to/from the expert. Physical face

  8. Blended CBT versus face-to-face CBT: a randomised non-inferiority trial.

    PubMed

    Mathiasen, Kim; Andersen, Tonny E; Riper, Heleen; Kleiboer, Annet A M; Roessler, Kirsten K

    2016-12-05

    Internet based cognitive behavioural therapy (iCBT) has been demonstrated to be cost- and clinically effective. There is a need, however, for increased therapist contact for some patient groups. Combining iCBT with traditional face-to-face (ftf) consultations in a blended format (B-CBT) may produce a new treatment format with multiple benefits from both traditional CBT and iCBT such as individual adaptation, lower costs than traditional therapy, wide geographical and temporal availability, and possibly lower threshold to implementation. The primary aim of the present study is to compare directly the clinical effectiveness of B-CBT with face-to-face CBT for adult major depressive disorder. The study is designed as a two arm randomised controlled non-inferiority trial comparing blended CBT for adult depression with treatment as usual (TAU). In the blended condition six sessions of ftf CBT is alternated with six to eight online modules (NoDep). TAU is defined as 12 sessions of ftf CBT. The primary outcome is symptomatic change of depressive symptoms on the patient-health questionnaire (PHQ-9). Additionally, the study will include an economic evaluation. All participants must be 18 years of age or older and meet the diagnostic criteria for major depressive disorder according to the Diagnostic and Statistical Manual of Mental disorders 4th edition. Participants are randomised on an individual level by a researcher not involved in the project. The primary outcome is analysed by regressing the three-month follow-up PHQ-9 data on the baseline PHQ-9 score and a treatment group indicator using ancova. A sample size of 130 in two balanced groups will yield a power of at least 80% to detect standardised mean differences above 0.5 on a normally distributed variable. This study design will compare B-CBT and ftf CBT in a concise and direct manner with only a minimal of the variance explained by differences in therapeutic content. On the other hand, while situated in routine care

  9. Richtmyer-Meshkov jet formation from rear target ripples in plastic and plastic/aluminum laser targets

    NASA Astrophysics Data System (ADS)

    Aglitskiy, Y.; Velikovich, A. L.; Karasik, M.; Serlin, V.; Weaver, J. L.; Schmitt, A. J.; Obenschain, S. P.

    2015-11-01

    We report experimental observations of jets produced from the rear surface of laser targets after a passage of the laser-driven shock wave. As in our previous work, Aglitskiy et al., Phys. Plasmas (2012), the jets are produced via the shaped-charge mechanism, a manifestation of a Richtmyer-Meshkov instability for a particular case of the Atwood number A =-1. The experiments done on the KrF Nike laser facility with laser wavelength 248 nm, a 4 ns pulse, and low-energy drive regime that used only 1 to 3 overlapping Nike beams and generated ablative pressure below 1 Mbar. Our 50 um thick planar targets were rippled on the rear side with wavelength 45 μm and peak-to-valley amplitude 15 μm. The targets were made either of solid plastic or of aluminum with a 10 μm thick plastic ablator attached to avoid the radiation preheat. The jets were extremely well collimated, which made possible our side-on observations with monochromatic x-ray imaging. We saw a regular set of jets, clearly separated along the 500 μm line of sight. Aluminum jets were found to be slightly better collimated than plastic jets. A quasi-spherical late-time expansion of Al jets starting from the tips has not been previously seen in experiments or simulations. Work supported by the US DOE/NNSA.

  10. Indoor Athletic Facilities.

    ERIC Educational Resources Information Center

    Fleming, E. Scott

    2000-01-01

    Examines the concept of shared-use facilities to help financially support and meet the demand for athletic facilities. Shared-use considerations are explored including cost sharing of ongoing operations, aesthetics, locker rooms, support facilities, parking and site access, and building access and security. (GR)

  11. Aircraft Landing Dynamics Facility - A unique facility with new capabilities

    NASA Technical Reports Server (NTRS)

    Davis, P. A.; Stubbs, S. M.; Tanner, J. A.

    1985-01-01

    The Aircraft Landing Dynamics Facility (ALDF), formerly called the Landing Loads Track, is described. The paper gives a historical overview of the original NASA Langley Research Center Landing Loads Track and discusses the unique features of this national test facility. Comparisons are made between the original track characteristics and the new capabilities of the Aircraft Landing Dynamics Facility following the recently completed facility update. Details of the new propulsion and arresting gear systems are presented along with the novel features of the new high-speed carriage. The data acquisition system is described and the paper concludes with a review of future test programs.

  12. A Close-Coupled, Heavy Ion ICF Target

    NASA Astrophysics Data System (ADS)

    Callahan-Miller, Debra A.; Tabak, Max

    1998-11-01

    A ``close-coupled'' version of the distributed radiator, heavy ion ICF target has produced gain > 130 from 3.1 MJ of ion beam energy. To achieve these results, we reduced the hohlraum dimensions by 27% from our previous designs(M. Tabak, D. Callahan-Miller, D. D.-M. Ho, G. B. Zimmerman, Nuc. Fusion, 38, 509 (1998)) (M. Tabak, D. A. Callahan-Miller, Phys. Plasmas, 5, 1895 (1998).) while driving the same capsule. This reduced the beam energy required from 5.9-6.5 MJ to 3.1 MJ. The smaller hohlraum resulted in a smaller beam spot; elliptically shaped beams with effective radius 1.7 mm were used in this design. In addition to describing this target, we will discuss the effect of the close-coupled hohlraum on the Rayleigh-Taylor instability and scaling this design down to 1.5-2 MJ for an ETF (Engineering Test Facility).

  13. First experiment on LMJ facility: pointing and synchronisation qualification, sequences qualification

    NASA Astrophysics Data System (ADS)

    Henry, Olivier; Raffestin, Didier; Bretheau, Dominique; Luttmann, Michel; Graillot, Herve; Ferri, Michel; Seguineau, Frederic; Bar, Emmanuel; Patissou, Loic; Canal, Philippe; Sautarel, Françoise; Tranquille-Marques, Yves

    2015-11-01

    The LMJ (Laser mega Joule) facility at the CESTA site (Aquitaine, France) is a tool designed to deliver up to 1.2 MJ at 351 nm. The experiment system will include plasma diagnostics: UV and X energy balances, imagers (Streak and stripe camera, CCD), spectrometers, and a Visar/pyrometer. The facility must be able to deliver, within the hour following the shot, all the results of the plasma diagnostics, alignment images and laser diagnostic measurements. Part of the end of 2014 was devoted to the qualification of system pointing on target and synchronization within and between beams. The shots made with one chain (divided in 2 quads - 8 laser beams) have achieved 50 μm of misalignment accuracy and a synchronization accuracy in the order of 50 ps. The performances achieved for plasma diagnostic (in the order of less 100 μm of alignment and timing accuracy less than 150 ps) comply with expectations. At the same time the first automatic sequences were tested. They allowed a shot on target every 6h:30 and in some case twice a day by reducing preparation actions, leading to a sequence of 4h:00. These shooting sequences are managed by an operating team of 7 people helped by 3 people for security aspects.

  14. Online Learning and the Development of Counseling Self-Efficacy Beliefs

    ERIC Educational Resources Information Center

    Watson, Joshua C.

    2012-01-01

    This study examined the relationship between enrollment in online counseling courses and students' counseling selfefficacy beliefs. Results indicate that students enrolled in online courses report statistically significant higher selfefficacy beliefs than students in traditional FTF courses. Online instructional method may increase counselor…

  15. EPA Facility Registry Service (FRS): Facility Interests Dataset Download

    EPA Pesticide Factsheets

    This downloadable data package consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are available in the FRS individual feature layers. The layers comprise the FRS major program databases, including:Assessment Cleanup and Redevelopment Exchange System (ACRES) : brownfields sites ; Air Facility System (AFS) : stationary sources of air pollution ; Air Quality System (AQS) : ambient air pollution data from monitoring stations; Bureau of Indian Affairs (BIA) : schools data on Indian land; Base Realignment and Closure (BRAC) facilities; Clean Air Markets Division Business System (CAMDBS) : market-based air pollution control programs; Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS) : hazardous waste sites; Integrated Compliance Information System (ICIS) : integrated enforcement and compliance information; National Compliance Database (NCDB) : Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Toxic Substances Control Act (TSCA); National Pollutant Discharge Elimination System (NPDES) module of ICIS : NPDES surface water permits; Radiation Information Database (RADINFO) : radiation and radioactivity facilities; RACT/BACT/LAER Clearinghouse (RBLC) : best available air pollution technology requirements; Resource Conservation and Recovery Act Information System (RCRAInfo) : tracks generators, transporters, treaters, storers, and disposers

  16. An inexpensive and fast method for infiltration coating of complex geometry matrices for ISOL production target applications

    NASA Astrophysics Data System (ADS)

    Kawai, Y.; Alton, G. D.; Bilheux, J.-C.

    2005-12-01

    An inexpensive, fast, and close to universal infiltration coating technique has been developed for fabricating fast diffusion-release ISOL targets. Targets are fabricated by deposition of finely divided (∼1 μm) compound materials in a paint-slurry onto highly permeable, complex structure reticulated-vitreous-carbon-foam (RVCF) matrices, followed by thermal heat treatment. In this article, we describe the coating method and present information on the physical integrity, uniformity of deposition, and matrix adherence of SiC, HfC and UC2 targets, destined for on-line use as targets at the Holifield Radioactive Ion Beam Facility (HRIBF).

  17. Health Facilities

    MedlinePlus

    Health facilities are places that provide health care. They include hospitals, clinics, outpatient care centers, and specialized care centers, ... psychiatric care centers. When you choose a health facility, you might want to consider How close it ...

  18. Aeronautical facilities assessment

    NASA Technical Reports Server (NTRS)

    Penaranda, F. E. (Compiler)

    1985-01-01

    A survey of the free world's aeronautical facilities was undertaken and an evaluation made on where the relative strengths and weaknesses exist. Special emphasis is given to NASA's own capabilities and needs. The types of facilities surveyed are: Wind Tunnels; Airbreathing Propulsion Facilities; and Flight Simulators

  19. Obstetric Facility Quality and Newborn Mortality in Malawi: A Cross-Sectional Study

    PubMed Central

    Fink, Günther; Nsona, Humphreys

    2016-01-01

    results imply a newborn mortality rate of 28 per 1,000 births at low-quality facilities and of 5 per 1,000 births at the top 25% of facilities, accounting for maternal and newborn characteristics. This estimate applies to newborns whose mothers would switch from a lower-quality to a higher-quality facility if one were more accessible. Although we did not find an indication of unmeasured associations between the instrument and outcome, this remains a potential limitation of IV analysis. Conclusions Poor quality of delivery facilities is associated with higher risk of newborn mortality in Malawi. A shift in focus from increasing utilization of delivery facilities to improving their quality is needed if global targets for further reductions in newborn mortality are to be achieved. PMID:27755547

  20. High-intensity laser-accelerated ion beam produced from cryogenic micro-jet target

    DOE PAGES

    Gauthier, M.; Kim, J. B.; Curry, C. B.; ...

    2016-08-24

    Here, we report on the successful operation of a newly developed cryogenic jet target at high intensity laser-irradiation. Using the frequency-doubled Titan short pulse laser system at Jupiter Laser Facility, Lawrence Livermore National Laboratory, we demonstrate the generation of a pure proton beam a with maximum energy of 2 MeV. Furthermore, we record a quasi-monoenergetic peak at 1.1 MeV in the proton spectrum emitted in the laser forward direction suggesting an alternative acceleration mechanism. Using a solid-density mixed hydrogen-deuterium target, we are also able to produce pure proton-deuteron ion beams. With its high purity, limited size, near-critical density, and high-repetitionmore » rate capability, this target is promising for future applications.« less

  1. High-intensity laser-accelerated ion beam produced from cryogenic micro-jet target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gauthier, M., E-mail: maxence.gauthier@stanford.edu; Kim, J. B.; Curry, C. B.

    2016-11-15

    We report on the successful operation of a newly developed cryogenic jet target at high intensity laser-irradiation. Using the frequency-doubled Titan short pulse laser system at Jupiter Laser Facility, Lawrence Livermore National Laboratory, we demonstrate the generation of a pure proton beam a with maximum energy of 2 MeV. Furthermore, we record a quasi-monoenergetic peak at 1.1 MeV in the proton spectrum emitted in the laser forward direction suggesting an alternative acceleration mechanism. Using a solid-density mixed hydrogen-deuterium target, we are also able to produce pure proton-deuteron ion beams. With its high purity, limited size, near-critical density, and high-repetition ratemore » capability, this target is promising for future applications.« less

  2. Patient Care Staffing Levels and Facility Characteristics in U.S. Hemodialysis Facilities

    PubMed Central

    Yoder, Laura A. G.; Xin, Wenjun; Norris, Keith C.; Yan, Guofen

    2013-01-01

    Background Higher numbers of registered nurses per patient have been associated with improved patient outcomes in acute care facilities. Variation and associations of patient-care staffing levels and hemodialysis facility characteristics have not been previously examined. Study Design Cross-sectional study using Poisson regression to examine associations betwee patient-care staffing levels and hemodialysis facility characteristics. Setting & Participants 4,800 U.S. hemodialysis facilities in the 2009 CMS ESRD Annual Facility Survey (CMS-2744), USRDS. Predictors Facility characteristics, including profit status, freestanding status, chain affiliatio and geographic region, adjusted for facility size, capacity, functional type, and urbanicity. Outcomes Patient care staffing levels, including ratios of Registered Nurses (RN), Licensed Practical Nurses (LPN), Patient Care Technicians (PCT), composite staff (RN+LPN+PCT), Social Workers, and Dietitians to in-center hemodialysis patients. Results After adjusting for background facility characteristics, the ratios of RNs and LPNs to patients were 35% (p<0.001) and 42% (p<0.001) lower, but the PCT-to-patient ratio was 16% (p<0.001) higher in for-profit facilities than those in nonprofit facilities (Rate ratio, 0.65, 95%CI, 0.63–0.68; 0.58, 0.51–0.65; 1.16, 1.12–1.19; respectively). Regionally, compared to the Northeast, the adjusted RN-to-patient ratio was 14% (p< 0.001) lower in the Midwest, 25% (p< 0.001) lower in the South, and 18% (p< 0.001) lower in the West. Even after additional adjustments, the large for-profit chains had significantly lower RN and LPN ratios than the largest nonprofit chain, but a significantly higher PCT-to-patient ratio. The overall composite staffing levels were also lower in for-profit and chain-affiliated facilities. The patterns hold when the hospital-based units were excluded. Limitations Nursing hours were not available. Conclusions The significant variation in patient-care staffing

  3. Advances in shock timing experiments on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Robey, H. F.; Celliers, P. M.; Moody, J. D.; Sater, J.; Parham, T.; Kozioziemski, B.; Dylla-Spears, R.; Ross, J. S.; LePape, S.; Ralph, J. E.; Hohenberger, M.; Dewald, E. L.; Berzak Hopkins, L.; Kroll, J. J.; Yoxall, B. E.; Hamza, A. V.; Boehly, T. R.; Nikroo, A.; Landen, O. L.; Edwards, M. J.

    2016-03-01

    Recent advances in shock timing experiments and analysis techniques now enable shock measurements to be performed in cryogenic deuterium-tritium (DT) ice layered capsule implosions on the National Ignition Facility (NIF). Previous measurements of shock timing in inertial confinement fusion (ICF) implosions were performed in surrogate targets, where the solid DT ice shell and central DT gas were replaced with a continuous liquid deuterium (D2) fill. These previous experiments pose two surrogacy issues: a material surrogacy due to the difference of species (D2 vs. DT) and densities of the materials used and a geometric surrogacy due to presence of an additional interface (ice/gas) previously absent in the liquid-filled targets. This report presents experimental data and a new analysis method for validating the assumptions underlying this surrogate technique.

  4. Assessment and Mitigation of Radiation, EMP, Debris & Shrapnel Impacts at Megajoule-Class Laser Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eder, D C; Anderson, R W; Bailey, D S

    2009-10-05

    The generation of neutron/gamma radiation, electromagnetic pulses (EMP), debris and shrapnel at mega-Joule class laser facilities (NIF and LMJ) impacts experiments conducted at these facilities. The complex 3D numerical codes used to assess these impacts range from an established code that required minor modifications (MCNP - calculates neutron and gamma radiation levels in complex geometries), through a code that required significant modifications to treat new phenomena (EMSolve - calculates EMP from electrons escaping from laser targets), to a new code, ALE-AMR, that is being developed through a joint collaboration between LLNL, CEA, and UC (UCSD, UCLA, and LBL) for debrismore » and shrapnel modelling.« less

  5. The status of the SNS external antenna ion source and spare RFQ test facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welton, R. F., E-mail: welton@ornl.gov; Aleksandrov, A. V.; Han, B. X.

    The Oak Ridge National Laboratory operates the Spallation Neutron Source, consisting of a H{sup −} ion source, a 1 GeV linac and an accumulator ring. The accumulated <1 μs-long, ∼35 A beam pulses are extracted from the ring at 60 Hz and directed onto a liquid Hg target. Spalled neutrons are directed to ∼20 world class instruments. Currently, the facility operates routinely with ∼1.2 MW of average beam power, which soon will be raised to 1.4 MW. A future upgrade with a second target station calls for raising the power to 2.8 MW. This paper describes the status of twomore » accelerator components expected to play important roles in achieving these goals: a recently acquired RFQ accelerator and the external antenna ion source. Currently, the RFQ is being conditioned in a newly constructed 2.5 MeV Integrated Test Facility (ITF) and the external antenna source is also being tested on a separate test stand. This paper presents the results of experiments and the testing of these systems.« less

  6. SHiP: a new facility with a dedicated detector for studying tau neutrino properties

    NASA Astrophysics Data System (ADS)

    Komatsu, M.; SHiP Collaboration

    2017-06-01

    SHiP (Search for Hidden Particles) is a new general purpose fixed target facility at the CERN SPS accelerator, with the aim of search for New Physics which has small coupling with standard particles by searching for long lived beyond standard model particles with masses below a few GeV/c2. The SHiP facility is a high intensity beam bump, the 400GeV proton beam extracted from the SPS will be dumped on a heavy target with the aim of integrating 2 ×1020 pot in 5 years. A dedicated detector, based on the OPERA-like ECC (Emulsion Cloud Chamber), will provide tau and anti-tau neutrino detection capability to study ντ and ν‾τ cross-sections with a statistics a few 100 times larger than the DONUT experiment. Moreover, the structure functions F4 and F5 which is only accessible by tau neutrino interactions can be measured first time. SHiP is the unique chance to study tau and anti tau neutrino properties.

  7. Take a Tour of Our Facility | Energy Systems Integration Facility | NREL

    Science.gov Websites

    Take a Tour of Our Facility Take a Tour of Our Facility The Energy Systems Integration Facility Optical Characterization Laboratory System Performance Laboratory Power Systems Integration Laboratory Control Room Energy Storage Laboratory Outdoor Testing Areas Outdoor Testing Areas Energy Systems

  8. Weight management for adolescents with intellectual and developmental disabilities: Rationale and design for an 18month randomized trial.

    PubMed

    Donnelly, J E; Ptomey, L T; Goetz, J R; Sullivan, D K; Gibson, C A; Greene, J L; Lee, R H; Mayo, M S; Honas, J J; Washburn, R A

    2016-11-01

    Adolescents with intellectual and developmental disabilities (IDD) are an underserved group in need of weight management. However, information regarding effective weight management for this group is limited, and is based primarily on results from small, non-powered, non-randomized trials that were not conducted in accordance with current weight management guidelines. Additionally, the comparative effectiveness of emerging dietary approaches, such as portion-controlled meals (PCMs) or program delivery strategies such as video chat using tablet computers have not been evaluated. Therefore, we will conduct an 18month trial to compare weight loss (6months) and maintenance (7-18months) in 123 overweight/obese adolescents with mild to moderate IDD, and a parent, randomized to a weight management intervention delivered remotely using FaceTime™ on an iPad using either a conventional meal plan diet (RD/CD) or a Stop Light diet enhanced with PCMs (RD/eSLD), or conventional diet delivered during face-to-face home visits (FTF/CD). This design will provide an adequately powered comparison of both diet (CD vs. eSLD) and delivery strategy (FTF vs. RD). Exploratory analyses will examine the influence of behavioral session attendance, compliance with recommendations for diet (energy intake), physical activity (min/day), self-monitoring of diet and physical activity, medications, and parental variables including diet quality, physical activity, baseline weight, weight change, and beliefs and attitudes regarding diet and physical activity on both weight loss and maintenance. We will also complete a cost and contingent valuation analysis to compare costs between RD and FTF delivery. Copyright © 2016. Published by Elsevier Inc.

  9. Increasing Breast and Cervical Cancer Screening in Rural and Border Texas with Friend to Friend Plus Patient Navigation.

    PubMed

    Falk, Derek; Cubbin, Catherine; Jones, Barbara; Carrillo-Kappus, Kristen; Crocker, Andrew; Rice, Carol

    2016-11-29

    The Friend to Friend plus Patient Navigation Program (FTF+PN) aims to build an effective, sustainable infrastructure to increase breast and cervical screening rates for underserved women in rural Texas. The objective of this paper is to identify factors that (1) distinguish participants who chose patient navigation (PN) services from those who did not (non-PN) and (2) were associated with receiving a mammogram or Papanicolaou (Pap) test. This prospective study analyzed data collected from 2689 FTF+PN participants aged 18-99 years from March 1, 2012 to February 28, 2015 who self-identified as African American (AA), Latina, and non-Hispanic white (NHW). Women who were younger, AA or Latina, had less than some college education, attended a FTF+PN event because of the cost of screening or were told they needed a screening, and who reported a barrier to screening had higher odds of being a PN participant. Women who were PN participants and had more contacts with program staff had greater odds of receiving a mammogram and a Pap compared with their reference groups. Latina English-speaking women had lower odds of receiving a mammogram and a Pap compared with NHW women and Latina Spanish-speaking women had higher odds of receiving a Pap test compared with NHW women. Women with greater need chose PN services, and PN participants had higher odds of getting a screening compared with women who did not choose PN services. These results demonstrate the success of PN in screening women in rural Texas but also that racial/ethnic disparities in screening remain.

  10. Conceptual studies for a mercury target circuit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sigg, B.

    1996-06-01

    For the now favored target design of the European Spallation Source project, i.e. the version using mercury as target material, a basic concept of the primary system has been worked out. It does not include a detailed design of the various components of the target circuit, but tries to outline a feasible solution for the system. Besides the removal of the thermal power of about 3MW produced in the target by the proton beam, the primary system has to satisfy a number of other requirements related to processing, safety, and operation. The basic proposal uses an electromagnetic pump and amore » mercury-water intermediate heat excanger, but other alternatives are also being discussed. Basic safety requirements, i.e. protection against radiation and toxic mercury vapours, are satisfied by a design using an air-tight primary system containment, double-walled tubes in the intermediate heat exchanger, a fail-safe system for decay heat removal, and a remote handling facility for the active part of the system. Much engineering work has still to be done, because many details of the design of the mercury and gas processing systems remain to be clarified, the thermal-hydraulic components need further optimisation, the system for control and instrumentation is only known in outline and a through safety analysis will be required.« less

  11. Electron beam plasma ionizing target for the production of neutron-rich nuclides

    NASA Astrophysics Data System (ADS)

    Panteleev, V. N.; Barzakh, A. E.; Essabaa, S.; Fedorov, D. V.; Ionan, A. M.; Ivanov, V. S.; Lau, C.; Leroy, R.; Lhersonneau, G.; Mezilev, K. A.; Molkanov, P. L.; Moroz, F. V.; Orlov, S. Yu.; Stroe, L.; Tecchio, L. B.; Villari, A. C. C.; Volkov, Yu. M.

    2008-10-01

    The production of neutron-rich Ag, In and Sn isotopes from a uranium carbide target of a high density has been investigated at the IRIS facility in the PLOG (PNPI-Legnaro-GANIL-Orsay) collaboration. The UC target material with a density of 12 g/cm3 was prepared by the method of powder metallurgy in a form of pellets of 2 mm thickness, 11 mm in diameter and grain dimensions of about 20 μm. The uranium target mass of 31 g was exposed at a 1 GeV proton beam of intensity 0.05-0.07 μA. For the ionization of the produced species the electron beam-plasma ionization inside the target container (ionizing target) has been used. It was the first experiment when the new high density UC target material was exploited with the electron-plasma ionization. Yields of Sn isotopes have been measured in the target temperature range of (1900-2100) °C. The yields of some Pd, In and Cd isotopes were measured as well to compare to previously measured ones from a high density uranium carbide target having a ceramic-like structure. For the first time a nickel isotope was obtained from a high density UC target.

  12. Uranium carbide fission target R&D for RIA - an update

    NASA Astrophysics Data System (ADS)

    Greene, J. P.; Levand, A.; Nolen, J.; Burtseva, T.

    2004-12-01

    For the Rare Isotope Accelerator (RIA) facility, ISOL targets employing refractory compounds of uranium are being developed to produce radioactive ions for post-acceleration. The availability of refractory uranium compounds in forms that have good thermal conductivity, relatively high density, and adequate release properties for short-lived isotopes remains an important issue. Investigations using commercially obtained uranium carbide material and prepared into targets involving various binder materials have been carried out at ANL. Thin sample pellets have been produced for measurements of thermal conductivity using a new method based on electron bombardment with the thermal radiation observed using a two-color optical pyrometer and performed on samples as a function of grain size, pressing pressure and sintering temperature. Manufacture of uranium carbide powder has now been achieved at ANL. Simulations have been carried out on the thermal behavior of the secondary target assembly incorporating various heat shield configurations.

  13. Facilities | Argonne National Laboratory

    Science.gov Websites

    Skip to main content Argonne National Laboratory Toggle Navigation Toggle Search Research Facilities Advanced Powertrain Research Facility Center for Transportation Research Distributed Energy Research Center Engine Research Facility Heat Transfer Laboratory Materials Engineering Research Facility

  14. EPA Facility Registry Service (FRS): Facility Interests Dataset - Intranet

    EPA Pesticide Factsheets

    This web feature service consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are available in the FRS individual feature layers. The layers comprise the FRS major program databases, including:Assessment Cleanup and Redevelopment Exchange System (ACRES) : brownfields sites ; Air Facility System (AFS) : stationary sources of air pollution ; Air Quality System (AQS) : ambient air pollution data from monitoring stations; Bureau of Indian Affairs (BIA) : schools data on Indian land; Base Realignment and Closure (BRAC) facilities; Clean Air Markets Division Business System (CAMDBS) : market-based air pollution control programs; Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS) : hazardous waste sites; Integrated Compliance Information System (ICIS) : integrated enforcement and compliance information; National Compliance Database (NCDB) : Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Toxic Substances Control Act (TSCA); National Pollutant Discharge Elimination System (NPDES) module of ICIS : NPDES surface water permits; Radiation Information Database (RADINFO) : radiation and radioactivity facilities; RACT/BACT/LAER Clearinghouse (RBLC) : best available air pollution technology requirements; Resource Conservation and Recovery Act Information System (RCRAInfo) : tracks generators, transporters, treaters, storers, and disposers of haz

  15. Association of U.S. Dialysis Facility Neighborhood Characteristics with Facility-Level Kidney Transplantation

    PubMed Central

    Plantinga, Laura; Pastan, Stephen; Kramer, Michael; McClellan, Ann; Krisher, Jenna; Patzer, Rachel E.

    2014-01-01

    Background Improving access to optimal healthcare may depend on attributes of neighborhoods where patients receive healthcare services. We investigated whether characteristics of dialysis facility neighborhoods—where most patients with end-stage renal disease are treated—were associated with facility-level kidney transplantation. Methods We examined the association between census tract (neighborhood)-level sociodemographic factors and facility-level kidney transplantation rate in 3,983 U.S. dialysis facilities with reported kidney transplantation rates. Number of kidney transplants and total person-years contributed at the facility level in 2007-2010 were obtained from the Dialysis Facility Report and linked to census tract data on sociodemographic characteristics from the American Community Survey 2006-2010 by dialysis facility location. We used multivariable Poisson models with generalized estimating equations to estimate associations between neighborhood characteristics and transplant incidence. Results U.S. dialysis facilities were located in neighborhoods with substantially greater proportions of black and poor residents, relative to the national average. Most facility neighborhood characteristics were associated with transplant, with incidence rate ratios (95% CI) for standardized increments (in percentage) of neighborhood exposures of: living in poverty, 0.88 (0.84-0.92), black race, 0.83 (0.78-0.89); high school graduates, 1.22 (1.17-1.26); and unemployed, 0.90 (0.85-0.95). Conclusion Dialysis facility neighborhood characteristics may be modestly associated with facility rates of kidney transplantation. The success of dialysis facility interventions to improve access to kidney transplantation may partially depend on reducing neighborhood-level barriers. PMID:25196018

  16. X-ray diffraction diagnostic design for the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Ahmed, Maryum F.; House, Allen; Smith, R. F.; Ayers, Jay; Lamb, Zachary S.; Swift, David W.

    2013-09-01

    This paper describes the design considerations for Target Diffraction In-Situ (TARDIS), an x-ray diffraction diagnostic at the National Ignition Facility. A crystal sample is ramp-compressed to peak pressures between 10 and 30 Mbar and, during a pressure hold period, is probed with quasi-monochromatic x-rays emanating from a backlighter source foil. The crystal spectrography diffraction lines are recorded onto image plates. The crystal sample, filter, and image plates are packaged into one assembly, allowing for accurate and repeatable target to image plate registration. Unconverted laser light impinges upon the device, generating debris, the effects of which have been mitigated. Dimpled blast shields, high strength steel alloy, and high-z tungsten are used to shield and protect the image plates. A tapered opening was designed to provide adequate thickness of shielding materials without blocking the drive beams or x-ray source from reaching the crystal target. The high strength steel unit serves as a mount for the crystal target and x-ray source foil. A tungsten body contains the imaging components. Inside this sub-assembly, there are three image plates: a 160 degree field of view curved plate directly opposite the target opening and two flat plates for the top and bottom. A polycarbonate frame, coated with the appropriate filter material and embedded with registration features for image plate location, is inserted into the diagnostic body. The target assembly is metrologized and then the diagnostic assembly is attached.

  17. Facilities Performance Indicators Report 2011-12: Tracking Your Facilities Vital Signs

    ERIC Educational Resources Information Center

    APPA: Association of Higher Education Facilities Officers, 2013

    2013-01-01

    This paper provides an expanded Web-based "Facilities Performance Indicators (FPI) Report." The purpose of APPA's Facilities Performance Indicators is to provide a representative set of statistics about facilities in educational institutions. APPA's Information and Research Committee's goal for this year was to enhance the…

  18. Front surface structured targets for enhancing laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Snyder, Joseph; George, Kevin; Ji, Liangliang; Yalamanchili, Sasir; Simonoff, Ethan; Cochran, Ginevra; Daskalova, Rebecca; Poole, Patrick; Willis, Christopher; Lewis, Nathan; Schumacher, Douglass

    2016-10-01

    We present recent progress made using front surface structured interfaces for enhancing ultrashort, relativistic laser-plasma interactions. Structured targets can increase laser absorption and enhance ion acceleration through a number of mechanisms such as direct laser acceleration and laser guiding. We detail experimental results obtained at the Scarlet laser facility on hollow, micron-scale plasma channels for enhancing electron acceleration. These targets show a greater than three times enhancement in the electron cutoff energy as well as an increased slope temperature for the electron distribution when compared to a flat interface. Using three-dimensional particle-in-cell (PIC) simulations, we have modeled the interaction to give insight into the physical processes responsible for the enhancement. Furthermore, we have used PIC simulations to design structures that are more advantageous for ion acceleration. Such targets necessitate advanced target fabrication methods and we describe techniques used to manufacture optimized structures, including vapor-liquid-solid growth, cryogenic etching, and 3D printing using two-photon-polymerization. This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-14-1-0085.

  19. Pulsed Magnetic Field System for Magnetized Target Experiments at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Rhodes, M. A.; Solberg, J. M.; Logan, B. G.; Perkins, L. J.

    2014-10-01

    High-magnitude magnetic fields applied to inertially confined targets may improve fusion yield and enable basic science applications. We discuss the development of a pulsed magnetic field system for NIF with the goal of applying 10--70 T to various NIF targets. While the driver may be little more than a spark-gap switched capacitor, numerous complex challenges exist in fielding such a system on NIF. The coil surrounding the metallic hohlraum drives induced current in the hohlraum wall. Both the coil and hohlraum wall must survive ohmic heating and J × B forces for several microseconds. Pulsed power must couple to the coil in the NIF environment. The system must not cause late-time optics damage due to debris. There is very limited volume for the driver in a NIF Diagnostic Instrument Manipulator (DIM). We are modeling the coil and hohlraum MHD effects with the LLNL code, ALE3D. However, the simulations lack complete and accurate data for all the required thermo-physical material properties over the expected range of temperatures (below vaporization) and pressures. Therefore, substantial experimental development is planned in the coming year. We present coil and hohlraum simulations results, overall system design, and progress towards an operational prototype test-stand. LLNL is operated by LLNS, LLC, for the U.S. D.O.E., NNSA under Contract DE-AC52-07NA27344. This work was supported by LLNL LDRD 14-ER-028.

  20. Mobile terawatt laser propagation facility (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shah, Lawrence; Roumayah, Patrick; Bodnar, Nathan; Bradford, Joshua D.; Maukonen, Douglas; Richardson, Martin C.

    2017-03-01

    This presentation will describe the design and construction status of a new mobile high-energy femtosecond laser systems producing 500 mJ, 100 fs pulses at 10 Hz. This facility is built into a shipping container and includes a cleanroom housing the laser system, a separate section for the beam director optics with a retractable roof, and the environmental control equipment necessary to maintain stable operation. The laser system includes several innovations to improve the utility of the system for "in field" experiments. For example, this system utilizes a fiber laser oscillator and a monolithic chirped Bragg grating stretcher to improve system robustness/size and employs software to enable remote monitoring and system control. Uniquely, this facility incorporates a precision motion-controlled gimbal altitude-azimuth mount with a coudé path to enable aiming of the beam over a wide field of view. In addition to providing the ability to precisely aim at multiple targets, it is also possible to coordinate the beam with separate tracking/diagnostic sensing equipment as well as other laser systems. This mobile platform will be deployed at the Townes Institute Science and Technology Experimental Facility (TISTEF) located at the Kennedy Space Center in Florida, to utilize the 1-km secured laser propagation range and the wide array of meteorological instrumentation for atmospheric and turbulence characterization. This will provide significant new data on the propagation of high peak power ultrashort laser pulses and detailed information on the atmospheric conditions in a coastal semi-tropical environment.

  1. Centrifuge Facility Conceptual System Study. Volume 1: Facility overview and habitats

    NASA Technical Reports Server (NTRS)

    Synnestvedt, Robert (Editor)

    1990-01-01

    The results are presented for a NASA Phase 1 study conducted from mid 1987 through mid 1989 at Ames Research Center. The Centrifuge Facility is the major element of the biological research facility for the implementation of NASA's Life Science Research Program on Space Station Freedom using non-human specimens (such as small primates, rodents, plants, insects, cell tissues). Five systems are described which comprise the Facility: habitats, holding units, centrifuge, glovebox, and service unit. Volume 1 presents a facility overview and describes the habitats - modular units which house living specimens.

  2. 47 CFR 4.5 - Definitions of outage, special offices and facilities, and 911 special facilities.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... facilities, and 911 special facilities. 4.5 Section 4.5 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... Definitions of outage, special offices and facilities, and 911 special facilities. (a) Outage is defined as a... government facilities.” 911 special facilities are addressed separately in paragraph (e) of this section. (c...

  3. Upstream dispersal of an invasive crayfish aided by a fish passage facility

    USGS Publications Warehouse

    Welsh, Stuart A.; Loughman, Zachary J.

    2015-01-01

    Fish passage facilities for reservoir dams have been used to restore habitat connectivity within riverine networks by allowing upstream passage for native species. These facilities may also support the spread of invasive species, an unintended consequence and potential downside of upstream passage structures. We documented dam passage of the invasive virile crayfish, Orconectes virilis (Hagen, 1870), at fish ladders designed for upstream passage of American eels, Anguilla rostrata (Lesueur, 1817), in the Shenandoah River drainage, USA. Ladder use and upstream passage of 11 virile crayfish occurred from 2007–2014 during periods of low river discharge (<30 m3s–1) and within a wide range of water temperatures from 9.0–28.6 °C. Virile crayfish that used the eel ladders were large adults with a mean carapace length and width of 48.0 mm and 24.1 mm, respectively. Our data demonstrated the use of species-specific fish ladders by a non-target non-native species, which has conservation and management implications for the spread of aquatic invasive species and upstream passage facilities. Specifically, managers should consider implementing long-term monitoring of fish passage facilities with emphasis on detection of invasive species, as well as methods to reduce or eliminate passage of invasive species. 

  4. Targeted Assessment for Prevention of Healthcare-Associated Infections: A New Prioritization Metric

    PubMed Central

    Soe, Minn M.; Gould, Carolyn V.; Pollock, Daniel; Edwards, Jonathan

    2015-01-01

    OBJECTIVE To develop a method for calculating the number of healthcare-associated infections (HAIs) that must be prevented to reach a HAI reduction goal and identifying and prioritizing healthcare facilities where the largest reductions can be achieved. SETTING Acute care hospitals that report HAI data to the Centers for Disease Control and Prevention’s National Healthcare Safety Network. METHODS The cumulative attributable difference (CAD) is calculated by subtracting a numerical prevention target from an observed number of HAIs. The prevention target is the product of the predicted number of HAIs and a standardized infection ratio goal, which represents a HAI reduction goal. The CAD is a numeric value that if positive is the number of infections to prevent to reach the HAI reduction goal. We calculated the CAD for catheter-associated urinary tract infections for each of the 3,639 hospitals that reported such data to National Healthcare Safety Network in 2013 and ranked the hospitals by their CAD values in descending order. RESULTS Of 1,578 hospitals with positive CAD values, preventing 10,040 catheter-associated urinary tract infections at 293 hospitals (19%) with the highest CAD would enable achievement of the national 25% catheter-associated urinary tract infection reduction goal. CONCLUSION The CAD is a new metric that facilitates ranking of facilities, and locations within facilities, to prioritize HAI prevention efforts where the greatest impact can be achieved toward a HAI reduction goal. PMID:26310913

  5. Target marketing for the hospital-based wellness center.

    PubMed

    Cangelosi, J D

    1997-01-01

    The American population is aging, medical technology is advancing, and life expectancies are on the rise. At the same time hospitals are looking for additional sources of income due to the pressures of government regulations and managed care. One of the options for hospitals looking for additional sources of income is the hospital-based but free-standing comprehensive wellness and fitness center. Such centers go beyond the facilities, programs and services offered by traditional health and fitness centers. In addition to physical fitness programs, hospital-based wellness centers offer programs in CPR, nutrition, weight control and many other programs of interest to an aging but active American populace. This research documents the hospital industry, wellness industry and the prospects of success or failure for he hospital attempting such a venture. The focus of the research is the experience of a particular hospital with regard to the programs, facilities and services deemed most important by its target market.

  6. Energy Systems Integration Facility (ESIF) Facility Stewardship Plan: Revision 2.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torres, Juan; Anderson, Art

    The U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), has established the Energy Systems Integration Facility (ESIF) on the campus of the National Renewable Energy Laboratory (NREL) and has designated it as a DOE user facility. This 182,500-ft2 research facility provides state-of-the-art laboratory and support infrastructure to optimize the design and performance of electrical, thermal, fuel, and information technologies and systems at scale. This Facility Stewardship Plan provides DOE and other decision makers with information about the existing and expected capabilities of the ESIF and the expected performance metrics to be applied to ESIF operations.more » This plan is a living document that will be updated and refined throughout the lifetime of the facility.« less

  7. The large area high resolution gamma ray astrophysics facility - HR-GRAF

    NASA Astrophysics Data System (ADS)

    Fenyves, E. J.; Chaney, R. C.; Hoffman, J. H.; Cline, D. B.; Atac, M.; Park, J.; White, S. R.; Zych, A. D.; Tumer, Q. T.; Hughes, E. B.

    1990-03-01

    The long-term program is described in terms of its equipment, scientific objectives, and long-range scientific studies. A prototype of a space-based large-area high-resolution gamma-ray facility (HR-GRAF) is being developed to examine pointlike and diffuse gamma-ray sources in the range 1 MeV-100 GeV. The instrument for the facility is proposed to have high angular and energy resolution and very high sensitivity to permit the study of the proposed objects. The primary research targets include the mapping of galactic gamma radiation, observing the angular variations of diffuse gamma rays, and studying the Galactic center with particular emphasis on the hypothetical black hole. Also included in the research plans are obtaining data on gamma-ray bursters, investigating the transmission of gamma rays from cold dark matter, and studying nuclear gamma-ray lines.

  8. Light ion production for a future radiobiological facility at CERN: preliminary studies.

    PubMed

    Stafford-Haworth, Joshua; Bellodi, Giulia; Küchler, Detlef; Lombardi, Alessandra; Röhrich, Jörg; Scrivens, Richard

    2014-02-01

    Recent medical applications of ions such as carbon and helium have proved extremely effective for the treatment of human patients. However, before now a comprehensive study of the effects of different light ions on organic targets has not been completed. There is a strong desire for a dedicated facility which can produce ions in the range of protons to neon in order to perform this study. This paper will present the proposal and preliminary investigations into the production of light ions, and the development of a radiobiological research facility at CERN. The aims of this project will be presented along with the modifications required to the existing linear accelerator (Linac3), and the foreseen facility, including the requirements for an ion source in terms of some of the specification parameters and the flexibility of operation for different ion types. Preliminary results from beam transport simulations will be presented, in addition to some planned tests required to produce some of the required light ions (lithium, boron) to be conducted in collaboration with the Helmholtz-Zentrum für Materialien und Energie, Berlin.

  9. PREFACE: 1st Tensor Polarized Solid Target Workshop

    NASA Astrophysics Data System (ADS)

    2014-10-01

    These are the proceedings of the first Tensor Spin Observables Workshop that was held in March 2014 at the Thomas Jefferson National Accelerator Facility in Newport News, Virginia. The conference was convened to study the physics that can be done with the recently approved E12-13-011 polarized target. A tensor polarized target holds the potential of initiating a new generation of tensor spin physics at Jefferson Lab. Experiments which utilize tensor polarized targets can help clarify how nuclear properties arise from partonic degrees of freedom, provide unique insight into short-range correlations and quark angular momentum, and also help pin down the polarization of the quark sea with a future Electron Ion Collider. This three day workshop was focused on tensor spin observables and the associated tensor target development. The workshop goals were to stimulate progress in the theoretical treatment of polarized spin-1 systems, foster the development of new proposals, and to reach a consensus on the optimal polarized target configuration for the tensor spin program. The workshop was sponsored by the University of New Hampshire, the Jefferson Science Associates, Florida International University, and Jefferson Lab. It was organized by Karl Slifer (chair), Patricia Solvignon, and Elena Long of the University of New Hampshire, Douglas Higinbotham and Christopher Keith of Jefferson Lab, and Misak Sargsian of the Florida International University. These proceedings represent the effort put forth by the community to begin exploring the possibilities that a high-luminosity, high-tensor polarized solid target can offer.

  10. Why Women Are Averse to Facility Delivery in Northwest Nigeria: A Qualitative Inquiry.

    PubMed

    Tukur, Ismail; Cheekhoon, Chan; Tinsu, Tin; Muhammed-Baba, Tukur; Aderemi Ijaiya, Munir'deen

    2016-05-01

    In many sub-Saharan African countries the rate of antenatal care (ANC) has been increased but skilled birth attendance rate is still low. The objective of this study was to evaluate the reasons why women prefer home delivery when facility based delivery is available at minimal cost. This study was conducted in Northwest Nigeria using a qualitative method (phenomenology) among five categories of women in April - May 2013. This study investigated different categories of women (those that never attend ANC nor deliver in the facility, those that attend ANC but delivered at home and those that delivered once in the facility but fail to return in subsequent deliveries, the in-laws and facilities staff). Through focus group discussions and In-depth interviews several reasons why women are averse to hospital deliveries were identified. Women reported ignorance, abuse, illiteracy, and poverty, and low esteem, poor attitude of health workers, few working hours and some integrated health services like preventing mother to child transmission of HIV testing as deterrents, while cheap and accessible services were reasons for preference to traditional birth attendants. The findings highlighted important entrenched barriers to facility deliveries among women, which is basically socio-cultural and economic. Therefore emphasis must be given to health education program to ensure comprehensive and target specific messages that will address individual needs of the groups.

  11. Fluids and Combustion Facility: Fluids Integrated Rack Modal Model Correlation

    NASA Technical Reports Server (NTRS)

    McNelis, Mark E.; Suarez, Vicente J.; Sullivan, Timothy L.; Otten, Kim D.; Akers, James C.

    2005-01-01

    The Fluids Integrated Rack (FIR) is one of two racks in the Fluids and Combustion Facility on the International Space Station. The FIR is dedicated to the scientific investigation of space system fluids management supporting NASA s Exploration of Space Initiative. The FIR hardware was modal tested and FIR finite element model updated to satisfy the International Space Station model correlation criteria. The final cross-orthogonality results between the correlated model and test mode shapes was greater than 90 percent for all primary target modes.

  12. Marshall Space Flight Center's Impact Testing Facility Capabilities

    NASA Technical Reports Server (NTRS)

    Finchum, Andy; Hubbs, Whitney; Evans, Steve

    2008-01-01

    Marshall Space Flight Center s (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960s, then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California. The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility s unique capabilities were deemed a "National Asset" by the DoD. The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. The current and proposed ITF capabilities range from rain to micrometeoroids allowing the widest test parameter range possible for materials investigations in support of space, atmospheric, and ground environments. These test capabilities including hydrometeor, single/multi-particle, ballistic gas guns, exploding wire gun, and light gas guns combined with Smooth Particle Hydrodynamics Code (SPHC) simulations represent the widest range of impact test capabilities in the country.

  13. Water, sanitation and hygiene infrastructure and quality in rural healthcare facilities in Rwanda.

    PubMed

    Huttinger, Alexandra; Dreibelbis, Robert; Kayigamba, Felix; Ngabo, Fidel; Mfura, Leodomir; Merryweather, Brittney; Cardon, Amelie; Moe, Christine

    2017-08-03

    WHO and UNICEF have proposed an action plan to achieve universal water, sanitation and hygiene (WASH) coverage in healthcare facilities (HCFs) by 2030. The WASH targets and indicators for HCFs include: an improved water source on the premises accessible to all users, basic sanitation facilities, a hand washing facility with soap and water at all sanitation facilities and patient care areas. To establish viable targets for WASH in HCFs, investigation beyond 'access' is needed to address the state of WASH infrastructure and service provision. Patient and caregiver use of WASH services is largely unaddressed in previous studies despite being critical for infection control. The state of WASH services used by staff, patients and caregivers was assessed in 17 rural HCFs in Rwanda. Site selection was non-random and predicated upon piped water and power supply. Direct observation and semi-structured interviews assessed drinking water treatment, presence and condition of sanitation facilities, provision of soap and water, and WASH-related maintenance and record keeping. Samples were collected from water sources and treated drinking water containers and analyzed for total coliforms, E. coli, and chlorine residual. Drinking water treatment was reported at 15 of 17 sites. Three of 18 drinking water samples collected met the WHO guideline for free chlorine residual of >0.2 mg/l, 6 of 16 drinking water samples analyzed for total coliforms met the WHO guideline of <1 coliform/100 mL and 15 of 16 drinking water samples analyzed for E. coli met the WHO guideline of <1 E. coli/100 mL. HCF staff reported treating up to 20 L of drinking water per day. At all sites, 60% of water access points (160 of 267) were observed to be functional, 32% of hand washing locations (46 of 142) had water and soap and 44% of sanitary facilities (48 of 109) were in hygienic condition and accessible to patients. Regular maintenance of WASH infrastructure consisted of cleaning; no HCF had on

  14. EPA Facility Registry Service (FRS): Facility Interests Dataset - Intranet Download

    EPA Pesticide Factsheets

    This downloadable data package consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are available in the FRS individual feature layers. The layers comprise the FRS major program databases, including:Assessment Cleanup and Redevelopment Exchange System (ACRES) : brownfields sites ; Air Facility System (AFS) : stationary sources of air pollution ; Air Quality System (AQS) : ambient air pollution data from monitoring stations; Bureau of Indian Affairs (BIA) : schools data on Indian land; Base Realignment and Closure (BRAC) facilities; Clean Air Markets Division Business System (CAMDBS) : market-based air pollution control programs; Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS) : hazardous waste sites; Integrated Compliance Information System (ICIS) : integrated enforcement and compliance information; National Compliance Database (NCDB) : Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Toxic Substances Control Act (TSCA); National Pollutant Discharge Elimination System (NPDES) module of ICIS : NPDES surface water permits; Radiation Information Database (RADINFO) : radiation and radioactivity facilities; RACT/BACT/LAER Clearinghouse (RBLC) : best available air pollution technology requirements; Resource Conservation and Recovery Act Information System (RCRAInfo) : tracks generators, transporters, treaters, storers, and disposers

  15. The law (and politics) of safe injection facilities in the United States.

    PubMed

    Beletsky, Leo; Davis, Corey S; Anderson, Evan; Burris, Scott

    2008-02-01

    Safe injection facilities (SIFs) have shown promise in reducing harms and social costs associated with injection drug use. Favorable evaluations elsewhere have raised the issue of their implementation in the United States. Recognizing that laws shape health interventions targeting drug users, we analyzed the legal environment for publicly authorized SIFs in the United States. Although states and some municipalities have the power to authorize SIFs under state law, federal authorities could still interfere with these facilities under the Controlled Substances Act. A state- or locally-authorized SIF could proceed free of legal uncertainty only if federal authorities explicitly authorized it or decided not to interfere. Given legal uncertainty, and the similar experience with syringe exchange programs, we recommend a process of sustained health research, strategic advocacy, and political deliberation.

  16. The Automation of the Transonic Experimental Facility (TEF) and the Aerodynamic Experimental Facility (AEF)

    DTIC Science & Technology

    2015-10-01

    ARL-TR-7506 ● OCT 2015 US Army Research Laboratory The Automation of the Transonic Experimental Facility (TEF) and the...Laboratory The Automation of the Transonic Experimental Facility (TEF) and the Aerodynamic Experimental Facility (AEF) by Charith R Ranawake Weapons...To) 05/2015–08/2015 4. TITLE AND SUBTITLE The Automation of the Transonic Experimental Facility (TEF) and the Aerodynamic Experimental Facility

  17. Manufacturing of calcium, lithium and molybdenum targets for use in nuclear physics experiments

    NASA Astrophysics Data System (ADS)

    Kheswa, N. Y.; Papka, P.; Buthelezi, E. Z.; Lieder, R. M.; Neveling, R.; Newman, R. T.

    2010-02-01

    This paper describes methods used in the manufacturing of chemically reactive targets such as calcium ( natCa), lithium-6 ( 6Li) and molybdenum-97 ( 97Mo) for nuclear physics experiments at the iThemba LABS cyclotron facility (Faure, South Africa). Due to the chemical properties of these materials a suitable and controlled environment was established in order to minimize oxygen contamination of targets. Calcium was prepared by means of vacuum evaporation while lithium was cold rolled to a desired thickness. In the case of molybdenum, the metallic powder was melted under vacuum using an e-gun followed by cold rolling of the metal bead to a desired thickness. In addition, latest developments toward the establishment of a dedicated nuclear physics target laboratory are discussed.

  18. GEOScan: A GEOScience Facility From Space

    NASA Astrophysics Data System (ADS)

    Dyrud, L. P.; Fentzke, J. T.; Anderson, B. J.; Bishop, R. L.; Bust, G. S.; Cahoy, K.; Erlandson, R. E.; Fish, C. S.; Gunter, B. C.; Hall, F. G.; Hilker, T.; Lorentz, S. R.; Mazur, J. E.; Murphy, S. D.; Mustard, J. F.; O'Brien, P. P.; Slagowski, S.; Trenberth, K. E.; Wiscombe, W. J.

    2012-12-01

    GEOScan is a proposed globally networked orbiting facility that will provide revolutionary, massively dense global geosciences observations. Major scientific research projects are typically conducted using two approaches: community facilities, or investigator led focused missions. GEOScan is a new concept in space science, blending the PI mission and community facility models: it is PI-led, but it carries sensors that are the result of a grass-roots competition, and, uniquely, it preserves open slots for sensors which are purposely not yet decided. The goal is threefold: first, to select sensors that maximize science value for the greatest number of scientific disciplines, second, to target science questions that cannot be answered without simultaneous global space-based measurements, and third to reap the cost advantages of scale manufacturing for space instrumentation. The relatively small size, mass, and power requirements of the GEOScan sensor suite would make it an ideal hosted payload aboard a global constellation of communication satellites, such as Iridium NEXT's 66-satellite constellation or as hosted small-sat payload. Each GEOScan sensor suite consists of 6 instruments: a Radiometer to measure Earth's total outgoing radiation; a GPS Compact Total Electron Content Sensor to image Earth's plasma environment and gravity field; a MicroCam Multispectral Imager to provide the first uniform, instantaneous image of Earth and measure global cloud cover, vegetation, land use, and bright aurora; a Radiation Belt Mapping System (dosimeter) to measure energetic electron and proton distributions; a Compact Earth Observing Spectrometer to measure aerosol-atmospheric composition and vegetation; and MEMS Accelerometers to deduce non-conservative forces aiding gravity and neutral drag studies. These instruments, employed in a constellation, can provide major breakthroughs in Earth and Geospace science, as well as offering a low-cost technology demonstration for

  19. Student Predisposition to Instructor Feedback and Perceptions of Teaching Presence Predict Motivation toward Online Courses

    ERIC Educational Resources Information Center

    Cole, Andrew William; Nicolini, Kristine M.; Anderson, Christopher; Bunton, Thomas; Cherney, Maura R.; Fisher, Valerie Cronin; Draeger, Richard, Jr.; Featherston, Michelle; Motel, Laura; Peck, Brittnie; Allen, Mike

    2017-01-01

    Much research into college student motivation focuses on traditional face-to-face (FtF) classroom settings. Building from previous research in Feedback Intervention Theory (Kluger & DeNisi, 1996) and the Community of Inquiry framework (Anderson, Rourke, Garrison, & Archer, 2001; Garrison, Anderson, & Archer, 1999), this study sought to…

  20. Does the Medium Really Matter in L2 Development? The Validity of Call Research Designs

    ERIC Educational Resources Information Center

    Cerezo, Luis; Baralt, Melissa; Suh, Bo-Ram; Leow, Ronald P.

    2014-01-01

    Currently, an increasing number of educational institutions are redefining second/foreign language (L2) classrooms by enhancing--or even replacing--traditional face-to-face (FTF) instruction with computer-assisted language learning (CALL). However, are these curricular decisions supported by research? Overall, a cursory review of empirical studies…

  1. Face-to-Face versus Computer-Mediated Discussion of Teaching Cases: Impacts on Preservice Teachers' Engagement, Critical Analyses, and Self-Efficacy

    ERIC Educational Resources Information Center

    PytlikZillig, Lisa M.; Horn, Christy A.; Bruning, Roger; Bell, Stephanie; Liu, Xiongyi; Siwatu, Kamau O.; Bodvarsson, Mary C.; Kim, Doyoung; Carlson, Deborah

    2011-01-01

    Two frequently-used discussion protocols were investigated as part of a program to implement teaching cases in undergraduate educational psychology classes designed for preservice teachers. One protocol involved synchronous face-to-face (FTF) discussion of teaching cases, which occurred in class after students had individually completed written…

  2. Pre-Service English Teachers in Blended Learning Environment in Respect to Their Learning Approaches

    ERIC Educational Resources Information Center

    Yilmaz, M. Betul; Orhan, Feza

    2010-01-01

    Blended learning environment (BLE) is increasingly used in the world, especially in university degrees and it is based on integrating web-based learning and face-to-face (FTF) learning environments. Besides integrating different learning environments, BLE also addresses to students with different learning approaches. The "learning…

  3. Shock ignition targets: gain and robustness vs ignition threshold factor

    NASA Astrophysics Data System (ADS)

    Atzeni, Stefano; Antonelli, Luca; Schiavi, Angelo; Picone, Silvia; Volponi, Gian Marco; Marocchino, Alberto

    2017-10-01

    Shock ignition is a laser direct-drive inertial confinement fusion scheme, in which the stages of compression and hot spot formation are partly separated. The hot spot is created at the end of the implosion by a converging shock driven by a final ``spike'' of the laser pulse. Several shock-ignition target concepts have been proposed and relevant gain curves computed (see, e.g.). Here, we consider both pure-DT targets and more facility-relevant targets with plastic ablator. The investigation is conducted with 1D and 2D hydrodynamic simulations. We determine ignition threshold factors ITF's (and their dependence on laser pulse parameters) by means of 1D simulations. 2D simulations indicate that robustness to long-scale perturbations increases with ITF. Gain curves (gain vs laser energy), for different ITF's, are generated using 1D simulations. Work partially supported by Sapienza Project C26A15YTMA, Sapienza 2016 (n. 257584), Eurofusion Project AWP17-ENR-IFE-CEA-01.

  4. Understanding Release from Actinide Targets -- Recent Results from RIB Development

    NASA Astrophysics Data System (ADS)

    Kronenberg, Andreas; Carter, H. K.; Spejewski, E. H.; Stracener, D. W.

    2006-10-01

    Development of ion beams of short-lived isotopes is crucial for modern nuclear structure and nuclear astrophysics. The Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory uses the ISOL (Isotope Separation Online) technique to provide radioactive ion beams. So far, uranium carbide has been used as a target to produce neutron-rich fission fragments. Thermodynamic calculations indicate the possibility of in-situ chemical side band formations of volatile species of refractory metals, such as V and Re. These elements release out of oxide targets after production in a nuclear reaction, and can occur only through in-situ formation of their volatile oxide. These have been confirmed experimentally. The results from recent, more detailed investigations of ThO2, UB4 and other actinide targets as well as conclusions from systematic studies will be presented. This research was sponsored by the NNSA under Stewardship Science Academic Alliance program through DOE Cooperative Agreement # DE-FC03-3NA00143.

  5. Magnetic Fields on the National Ignition Facility (MagNIF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mason, D.; Folta, J.

    2016-08-12

    A magnetized target capability on the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) has been investigated. Stakeholders’ needs and project feasibility analysis were considered in order to down-select from a wide variety of different potential magnetic field magnitudes and volumes. From the large range of different target platforms, laser configurations, and diagnostics configurations of interest to the stakeholders, the gas-pipe platform has been selected for the first round of magnetized target experiments. Gas pipe targets are routinely shot on the NIF and provide unique value for external collaborators. High-level project goals have been established including an experimentallymore » relevant 20Tesla magnetic field magnitude. The field will be achieved using pulsed power-driven coils. A system architecture has been proposed. The pulsed power drive system will be located in the NIF target bay. This decision provides improved maintainability and mitigates equipment safety risks associated with explosive failure of the drive capacitor. High-level and first-level subsystem requirements have been established. Requirements have been included for two distinct coil designs – full solenoid and quasi-Helmholtz. A Failure Modes and Effects Analysis (FMEA) has been performed and documented. Additional requirements have been derived from the mitigations included in the FMEA document. A project plan is proposed. The plan includes a first phase of electromagnetic simulations to assess whether the design will meet performance requirements, then a second phase of risk mitigation projects to address the areas of highest technical risk. The duration from project kickoff to the first magnetized target shot is approximately 29 months.« less

  6. High-power liquid-lithium jet target for neutron production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halfon, S.; Feinberg, G.; Racah Institute of Physics, Hebrew University, Jerusalem 91904

    2013-12-15

    A compact liquid-lithium target (LiLiT) was built and tested with a high-power electron gun at the Soreq Nuclear Research Center. The lithium target, to be bombarded by the high-intensity proton beam of the Soreq Applied Research Accelerator Facility (SARAF), will constitute an intense source of neutrons produced by the {sup 7}Li(p,n){sup 7}Be reaction for nuclear astrophysics research and as a pilot setup for accelerator-based Boron Neutron Capture Therapy. The liquid-lithium jet target acts both as neutron-producing target and beam dump by removing the beam thermal power (>5 kW, >1 MW/cm{sup 3}) with fast transport. The target was designed based onmore » a thermal model, accompanied by a detailed calculation of the {sup 7}Li(p,n) neutron yield, energy distribution, and angular distribution. Liquid lithium is circulated through the target loop at ∼200 °C and generates a stable 1.5 mm-thick film flowing at a velocity up to 7 m/s onto a concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power areal densities of >4 kW/cm{sup 2} and volume power density of ∼2 MW/cm{sup 3} at a lithium flow of ∼4 m/s while maintaining stable temperature and vacuum conditions. The LiLiT setup is presently in online commissioning stage for high-intensity proton beam irradiation (1.91–2.5 MeV, 1–2 mA) at SARAF.« less

  7. OPTIMIZATION OF EXPERIMENTAL DESIGNS BY INCORPORATING NIF FACILITY IMPACTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eder, D C; Whitman, P K; Koniges, A E

    2005-08-31

    For experimental campaigns on the National Ignition Facility (NIF) to be successful, they must obtain useful data without causing unacceptable impact on the facility. Of particular concern is excessive damage to optics and diagnostic components. There are 192 fused silica main debris shields (MDS) exposed to the potentially hostile target chamber environment on each shot. Damage in these optics results either from the interaction of laser light with contamination and pre-existing imperfections on the optic surface or from the impact of shrapnel fragments. Mitigation of this second damage source is possible by identifying shrapnel sources and shielding optics from them.more » It was recently demonstrated that the addition of 1.1-mm thick borosilicate disposable debris shields (DDS) block the majority of debris and shrapnel fragments from reaching the relatively expensive MDS's. However, DDS's cannot stop large, faster moving fragments. We have experimentally demonstrated one shrapnel mitigation technique showing that it is possible to direct fast moving fragments by changing the source orientation, in this case a Ta pinhole array. Another mitigation method is to change the source material to one that produces smaller fragments. Simulations and validating experiments are necessary to determine which fragments can penetrate or break 1-3 mm thick DDS's. Three-dimensional modeling of complex target-diagnostic configurations is necessary to predict the size, velocity, and spatial distribution of shrapnel fragments. The tools we are developing will be used to set the allowed level of debris and shrapnel generation for all NIF experimental campaigns.« less

  8. Engineering directorate technical facilities catalog

    NASA Technical Reports Server (NTRS)

    Maloy, Joseph E.

    1993-01-01

    The Engineering Directorate Technical Facilities Catalog is designed to provide an overview of the technical facilities available within the Engineering Directorate at the National Aeronautics and Space Administration (NASA), Lyndon B. Johnson Space Center (JSC) in Houston, Texas. The combined capabilities of these engineering facilities are essential elements of overall JSC capabilities required to manage and perform major NASA engineering programs. The facilities are grouped in the text by chapter according to the JSC division responsible for operation of the facility. This catalog updates the facility descriptions for the JSC Engineering Directorate Technical Facilities Catalog, JSC 19295 (August 1989), and supersedes the Engineering Directorate, Principle test and Development Facilities, JSC, 19962 (November 1984).

  9. "DIANA" - A New, Deep-Underground Accelerator Facility for Astrophysics Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leitner, M.; Leitner, D.; Lemut, A.

    2009-05-28

    The DIANA project (Dakota Ion Accelerators for Nuclear Astrophysics) is a collaboration between the University of Notre Dame, University of North Carolina, Western Michigan University, and Lawrence Berkeley National Laboratory to build a nuclear astrophysics accelerator facility 1.4 km below ground. DIANA is part of the US proposal DUSEL (Deep Underground Science and Engineering Laboratory) to establish a cross-disciplinary underground laboratory in the former gold mine of Homestake in South Dakota, USA. DIANA would consist of two high-current accelerators, a 30 to 400 kV variable, high-voltage platform, and a second, dynamitron accelerator with a voltage range of 350 kV tomore » 3 MV. As a unique feature, both accelerators are planned to be equipped with either high-current microwave ion sources or multi-charged ECR ion sources producing ions from protons to oxygen. Electrostatic quadrupole transport elements will be incorporated in the dynamitron high voltage column. Compared to current astrophysics facilities, DIANA could increase the available beam densities on target by magnitudes: up to 100 mA on the low energy accelerator and several mA on the high energy accelerator. An integral part of the DIANA project is the development of a high-density super-sonic gas-jet target which can handle these anticipated beam powers. The paper will explain the main components of the DIANA accelerators and their beam transport lines and will discuss related technical challenges.« less

  10. A polar-drive-ignition design for the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, T. J. B.; Marozas, J. A.; Anderson, K. S.

    2012-05-15

    Polar drive [Skupsky et al., Phys. Plasmas 11, 2763 (2004)] will enable direct-drive experiments to be conducted on the National Ignition Facility (NIF) [Miller et al., Opt. Eng. 43, 2841 (2004)], while the facility is configured for x-ray drive. A polar-drive ignition design for the NIF has been developed that achieves a gain of 32 in two-dimensional (2-D) simulations, which include single- and multiple-beam nonuniformities and ice and outer-surface roughness. This design requires both single-beam UV polarization smoothing and one-dimensional (1-D) multi-frequency modulator (MFM) single-beam smoothing to achieve the required laser uniformity. The multi-FM smoothing is employed only during themore » low-intensity portion of the laser pulse, allowing for the use of sufficient smoothing-by-spectral-dispersion bandwidth while maintaining safe laser operations during the high-intensity part of the pulse. This target is robust to all expected sources of perturbations.« less

  11. High energy X-ray pinhole imaging at the Z facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McPherson, L. Armon; Ampleford, David J.; Coverdale, Christine A.

    A new high photon energy (hv > 15 keV) time-integrated pinhole camera (TIPC) has become available at the Z facility for diagnostic applications. This camera employs five pinholes in a linear array for recording five images at once onto an image plate detector. Each pinhole may be independently filtered to yield five different spectral responses. The pinhole array is fabricated from a 1-cm thick tungsten block and is available with either straight pinholes or conical pinholes. Each pinhole within the array block is 250 μm in diameter. The five pinholes are splayed with respect to each other such that theymore » point to the same location in space, and hence present the same view of the target load at the Z facility. The fielding distance is 66 cm and the nominal image magnification is 0.374. Initial experimental results are shown to illustrate the performance of the camera.« less

  12. High energy X-ray pinhole imaging at the Z facility

    DOE PAGES

    McPherson, L. Armon; Ampleford, David J.; Coverdale, Christine A.; ...

    2016-06-06

    A new high photon energy (hv > 15 keV) time-integrated pinhole camera (TIPC) has become available at the Z facility for diagnostic applications. This camera employs five pinholes in a linear array for recording five images at once onto an image plate detector. Each pinhole may be independently filtered to yield five different spectral responses. The pinhole array is fabricated from a 1-cm thick tungsten block and is available with either straight pinholes or conical pinholes. Each pinhole within the array block is 250 μm in diameter. The five pinholes are splayed with respect to each other such that theymore » point to the same location in space, and hence present the same view of the target load at the Z facility. The fielding distance is 66 cm and the nominal image magnification is 0.374. Initial experimental results are shown to illustrate the performance of the camera.« less

  13. View of Facility 222 (on right) and Facility 221 through ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Facility 222 (on right) and Facility 221 through trees (parapet of latter above trees) from the parade ground. - U.S. Naval Base, Pearl Harbor, Gymnasium & Theater, Neville Way, Pearl City, Honolulu County, HI

  14. Exploring the Use of Activity Patterns for Smart Monitoring of Nuclear Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Karen Ann

    The world is at an inflection point where our ability to collect data now far outpaces our ability to make use of it. LANL has a number of efforts to help us pull more meaningful insights out of our data and target resources to where they will be most impactful. We are exploring an approach to recognizing activity patterns across disparate data streams for a more holistic view of nuclear facility monitoring.

  15. The National Direct-Drive Program: OMEGA to the National Ignition Facility

    DOE PAGES

    Regan, S. P.; Goncharov, V. N.; Sangster, T. C.; ...

    2017-12-28

    The goal of the National Direct-Drive Program is to demonstrate and understand the physics of laser direct drive (LDD). Efforts are underway on OMEGA for the 100-Gbar Campaign to demonstrate and understand the physics for hot-spot conditions and formation relevant for ignition at the 1-MJ scale, and at the National Ignition Facility to develop an understanding of the direct-drive physics at long scale lengths for the MJ Direct-Drive Campaign. For this paper the strategy of the National Direct-Drive Program is described; the requirements for the DT cryogenic fill-tube target being developed for OMEGA are presented; and preliminary LDD implosion measurementsmore » of hydrodynamic mixing seeded by laser imprint, the target-mounting stalk, and microscopic surface debris are reported.« less

  16. The National Direct-Drive Program: OMEGA to the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Regan, S. P.; Goncharov, V. N.; Sangster, T. C.

    The goal of the National Direct-Drive Program is to demonstrate and understand the physics of laser direct drive (LDD). Efforts are underway on OMEGA for the 100-Gbar Campaign to demonstrate and understand the physics for hot-spot conditions and formation relevant for ignition at the 1-MJ scale, and at the National Ignition Facility to develop an understanding of the direct-drive physics at long scale lengths for the MJ Direct-Drive Campaign. For this paper the strategy of the National Direct-Drive Program is described; the requirements for the DT cryogenic fill-tube target being developed for OMEGA are presented; and preliminary LDD implosion measurementsmore » of hydrodynamic mixing seeded by laser imprint, the target-mounting stalk, and microscopic surface debris are reported.« less

  17. The spectral imaging facility: Setup characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Angelis, Simone, E-mail: simone.deangelis@iaps.inaf.it; De Sanctis, Maria Cristina; Manzari, Paola Olga

    2015-09-15

    The SPectral IMager (SPIM) facility is a laboratory visible infrared spectrometer developed to support space borne observations of rocky bodies of the solar system. Currently, this laboratory setup is used to support the DAWN mission, which is in its journey towards the asteroid 1-Ceres, and to support the 2018 Exo-Mars mission in the spectral investigation of the Martian subsurface. The main part of this setup is an imaging spectrometer that is a spare of the DAWN visible infrared spectrometer. The spectrometer has been assembled and calibrated at Selex ES and then installed in the facility developed at the INAF-IAPS laboratorymore » in Rome. The goal of SPIM is to collect data to build spectral libraries for the interpretation of the space borne and in situ hyperspectral measurements of planetary materials. Given its very high spatial resolution combined with the imaging capability, this instrument can also help in the detailed study of minerals and rocks. In this paper, the instrument setup is first described, and then a series of test measurements, aimed to the characterization of the main subsystems, are reported. In particular, laboratory tests have been performed concerning (i) the radiation sources, (ii) the reference targets, and (iii) linearity of detector response; the instrumental imaging artifacts have also been investigated.« less

  18. R2 REGULATED FACILITIES

    EPA Science Inventory

    The Facility Registry System (FRS) is a centrally managed database that identifies facilities, sites or places subject to environmental regulations or of environmental interest. FRS creates high-quality, accurate, and authoritative facility identification records through rigorous...

  19. Preparation of 7Be targets for nuclear astrophysics research

    NASA Astrophysics Data System (ADS)

    Maugeri, E. A.; Heinitz, S.; Dressler, R.; Barbagallo, M.; Kivel, N.; Schumann, D.; Ayranov, M.; Musumarra, A.; Gai, M.; Colonna, N.; Paul, M.; Halfon, S.; Cosentino, L.; Finocchiaro, P.; Pappalardo, A.

    2017-02-01

    This work describes the preparation of three 7Be targets which were used in two independent measurements of the 7Be(n,α)4He cross section in the energy range of interest for the Big-Bang nucleosynthesis at the n\\_TOF-CERN facility and at Soreq-SARAF . A more precise value of this cross section could shed light on the long lasting "Cosmological Lithium problem". Two methods for target preparation were used. A target was obtained by deposition and subsequent air-drying of (24.50± 0.54) GBq of Be(NO3)2 droplets precisely positioned onto a stretched low density polyethylene film 0.635 μm thick. The thickness of the deposited Be(NO3)2 layer was deduced using Monte-Carlo simulations to be 0.36 μm. The energy loss of 8500 keV alpha particles passing through the target obtained by air-drying of 7Be(NO3)2 droplets was estimated to be 88 keV . Two other targets were prepared via molecular plating onto ~ 5 μm and 1 mm thick aluminium backings, respectively. The first was obtained by molecular plating (24.47± 0.53) GBq of 7Be, resulting in a deposited layer of Be(OH)2, 1.04 μm thick. The second molecular plated target was obtained depositing (3.95± 0.08) GBq of 7Be. The mean energy loss of 8500 keV alpha particles, passing through the molecular plated target with 5 μm thick aluminium backings was estimated as 814 keV . The energy loss by 8500 keV alpha particles in all the obtained targets is considered tolerable for the envisaged cross section measurements. The preparation and characterization of the targets is here described.

  20. FACILITY 316. EXTERIOR OBLIQUE OF FRONT AS SEEN FROM FACILITY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 316. EXTERIOR OBLIQUE OF FRONT AS SEEN FROM FACILITY 362. VIEW FACING SOUTH. - U.S. Naval Base, Pearl Harbor, Naval Housing Area Hospital Point, Pharmacist's Quarters Type, 13-16 First Street, Pearl City, Honolulu County, HI

  1. Experimental studies of the effect target geometry on the evolution of laser produced plasma plumes

    NASA Astrophysics Data System (ADS)

    Beatty, Cuyler; Anderson, Austin; Iratcabal, Jeremy; Dutra, Eric; Covington, Aaron

    2016-10-01

    The expansion of the laser plumes was shown to be dependent on the initial target geometry. A 16 channel framing camera was used to record the plume shape and propagation speeds were determined from analysis of the images. Plastic targets were manufactured using different methods including 3D printing, CNC machining and vacuum casting. Preliminary target designs were made using a 3D printer and ABS plastic material. These targets were then tested using a 3 J laser with a 5 ns duration pulse. Targets with a deep conical depression were shown to produce highly collimated plumes when compared to flat top targets. Preliminary results of these experiments will be discussed along with planned future experiments that will use the indented targets with a 30 J laser with a 0.8 ns duration pulse in preparation for pinched laser plume experiments at the Nevada Terawatt Facility. Other polymers that are readily available in a deuterated form will also be explored as part of an effort to develop a cost effective plasma plume target for follow on neutron production experiments. Dr. Austin Anderson.

  2. An ion source module for the Beijing Radioactive Ion-beam Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, B., E-mail: cui@ciae.ac.cn; Huang, Q.; Tang, B.

    2014-02-15

    An ion source module is developed for Beijing Radioactive Ion-beam Facility. The ion source module is designed to meet the requirements of remote handling. The connection and disconnection of the electricity, cooling and vacuum between the module and peripheral units can be executed without on-site manual work. The primary test of the target ion source has been carried out and a Li{sup +} beam has been extracted. Details of the ion source module and its primary test results are described.

  3. Gas-Grain Simulation Facility (GGSF). Volume 1: Stage 1 facility definition studies

    NASA Technical Reports Server (NTRS)

    Gat, Nahum

    1993-01-01

    The Gas-Grain Simulation Facility (GGSF) is a facility-type payload to be included in the Space Station Freedom (SSF). The GGSF is a multidisciplinary facility that will accommodate several classes of experiments, including exobiology, planetary science, atmospheric science, and astrophysics. The physical mechanisms envisioned to be investigated include crystal growth, aggregation, nucleation, coagulation, condensation, collisions, fractal growth, cycles of freezing and evaporation, scavenging, longevity of bacteria, and more. TRW performed a Phase A study that included analyses of the science and technical (S&T) requirements, the development of facility functional requirements, and a conceptual design of the facility. The work that was performed under Stage 1 of the Phase A study and the results to date are summarized. In this stage, facility definition studies were conducted in sufficient detail to establish the technical feasibility of the candidate strawman experiments. The studies identified technical difficulties, identified required facility subsystems, surveyed existing technology studies and established preliminary facility weight, volume, power consumption, data systems, interface definition, and crew time requirements. The results of this study served as the basis for Stage 2 of the Phase A study in which a conceptual design and a reference design were performed. The results also served as a basis for a related study for a Gas-Grain Simulation Experiment Module (GGSEM), which is an apparatus intended to perform a subset of the GGSF experiments on board a low-Earth-orbiting platform.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orozco, Luis A

    This is a report of the construction of a Francium Trapping Facility (FTF) at the Isotope Separator and Accelerator (ISAC) of TRIUMF in Vancouver, Canada, where the Francium Parity Non Conservation (FrPNC) international collaboration has its home. This facility will be used to study fundamental symmetries with high-resolution atomic spectroscopy. The primary scientific objective of the program is a measurement of the anapole moment of francium in a chain of isotopes by observing the parity violation induced by the weak interaction. The anapole moment of francium and associated signal are expected to be ten times larger than in cesium, themore » only element in which an anapole moment has been observed. The measurement will provide crucial information for better understanding weak hadronic interactions in the context of Quantum Chromodynamics (QCD). The methodology combines nuclear and particle physics techniques for the production of francium with precision measurements based on laser cooling and trapping and microwave spectroscopy. The program builds on an initial series of atomic spectroscopy measurements of the nuclear structure of francium, based on isotope shifts and hyperfine anomalies, before conducting the anapole moment measurements, these measurements performed during commissioning runs help understand the atomic and nuclear structure of Fr.« less

  5. [Associations between workplace bullying, harassment, and stress reactions of professional caregivers at welfare facilities for the elderly in Japan].

    PubMed

    Taniguchi, Toshiyo; Takaki, Jiro; Harano, Kaori; Hirokawa, Kumi; Takahashi, Kazumi; Fukuoka, Etsuko

    2012-01-01

    The purpose of this study was to describe workplace bullying experienced by professional caregivers at welfare facilities for the elderly in Japan and to confirm its effects on stress reactions. A cross-sectional survey was carried out using self-administered questionnaires in 2009 of all the employees working in rural area of facilities for long-term care. Among the 1,233 respondents who filled out all questionnaires concerning stress reactions the Japanese version of the Negative Acts Questionnaire (NAQ) (response rate: 63.9%), we analyzed 897 professional caregivers. We measured stress reactions by using the stress reaction scores of the Brief Job Stress Questionnaire (29 items) and workplace bullying and harassment by using NAQ. We used the unpaired t-test and analysis of covariance (ANCOVA) to compare crude and adjusted average stress reactions with groups classified on the basis of each subscale of the NAQ or all of them. About 40% of both men and women suffered from "malicious gossip" and over 60% of both men and women experienced "someone withholding necessary information so that their work gets complicated". Among women, scores of the lack of vigor and fatigue were significantly higher in caregivers targeted by person-related bullying than those not targeted (p<0.05). Scores of depression were significantly higher in caregivers targeted by work-related bullying than those not targeted (p<0.05). Scores of anxiety were significantly higher among caregivers targeted by sexual harassment than those not targeted (p<0.05). Among men, scores of the lack of vigor were significantly lower in caregivers targeted by work-related bullying than those not targeted (p<0.05). Among women, workplace bullying or harassment could may aggravate effects on psychological stress responses. While among men, work-related bullying was positively associated with vigor.

  6. EPA Facility Registry Service (FRS): OIL

    EPA Pesticide Factsheets

    This dataset contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of facilities that link to the Oil database. The Oil database contains information on Spill Prevention, Control, and Countermeasure (SPCC) and Facility Response Plan (FRP) subject facilities to prevent and respond to oil spills. FRP facilities are referred to as substantial harm facilities due to the quantities of oil stored and facility characteristics. FRS identifies and geospatially locates facilities, sites or places subject to environmental regulations or of environmental interest. Using vigorous verification and data management procedures, FRS integrates facility data from EPA's national program systems, other federal agencies, and State and tribal master facility records and provides EPA with a centrally managed, single source of comprehensive and authoritative information on facilities. This data set contains the subset of FRS integrated facilities that link to Oil facilities once the Oil data has been integrated into the FRS database. Additional information on FRS is available at the EPA website https://www.epa.gov/enviro/facility-registry-service-frs.

  7. Transitioning from Targeted to Comprehensive Mass Spectrometry Using Genetic Algorithms.

    PubMed

    Jaffe, Jacob D; Feeney, Caitlin M; Patel, Jinal; Lu, Xiaodong; Mani, D R

    2016-11-01

    Targeted proteomic assays are becoming increasingly popular because of their robust quantitative applications enabled by internal standardization, and they can be routinely executed on high performance mass spectrometry instrumentation. However, these assays are typically limited to 100s of analytes per experiment. Considerable time and effort are often expended in obtaining and preparing samples prior to targeted analyses. It would be highly desirable to detect and quantify 1000s of analytes in such samples using comprehensive mass spectrometry techniques (e.g., SWATH and DIA) while retaining a high degree of quantitative rigor for analytes with matched internal standards. Experimentally, it is facile to port a targeted assay to a comprehensive data acquisition technique. However, data analysis challenges arise from this strategy concerning agreement of results from the targeted and comprehensive approaches. Here, we present the use of genetic algorithms to overcome these challenges in order to configure hybrid targeted/comprehensive MS assays. The genetic algorithms are used to select precursor-to-fragment transitions that maximize the agreement in quantification between the targeted and the comprehensive methods. We find that the algorithm we used provided across-the-board improvement in the quantitative agreement between the targeted assay data and the hybrid comprehensive/targeted assay that we developed, as measured by parameters of linear models fitted to the results. We also found that the algorithm could perform at least as well as an independently-trained mass spectrometrist in accomplishing this task. We hope that this approach will be a useful tool in the development of quantitative approaches for comprehensive proteomics techniques. Graphical Abstract ᅟ.

  8. Transitioning from Targeted to Comprehensive Mass Spectrometry Using Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Jaffe, Jacob D.; Feeney, Caitlin M.; Patel, Jinal; Lu, Xiaodong; Mani, D. R.

    2016-11-01

    Targeted proteomic assays are becoming increasingly popular because of their robust quantitative applications enabled by internal standardization, and they can be routinely executed on high performance mass spectrometry instrumentation. However, these assays are typically limited to 100s of analytes per experiment. Considerable time and effort are often expended in obtaining and preparing samples prior to targeted analyses. It would be highly desirable to detect and quantify 1000s of analytes in such samples using comprehensive mass spectrometry techniques (e.g., SWATH and DIA) while retaining a high degree of quantitative rigor for analytes with matched internal standards. Experimentally, it is facile to port a targeted assay to a comprehensive data acquisition technique. However, data analysis challenges arise from this strategy concerning agreement of results from the targeted and comprehensive approaches. Here, we present the use of genetic algorithms to overcome these challenges in order to configure hybrid targeted/comprehensive MS assays. The genetic algorithms are used to select precursor-to-fragment transitions that maximize the agreement in quantification between the targeted and the comprehensive methods. We find that the algorithm we used provided across-the-board improvement in the quantitative agreement between the targeted assay data and the hybrid comprehensive/targeted assay that we developed, as measured by parameters of linear models fitted to the results. We also found that the algorithm could perform at least as well as an independently-trained mass spectrometrist in accomplishing this task. We hope that this approach will be a useful tool in the development of quantitative approaches for comprehensive proteomics techniques.

  9. 10 CFR 70.64 - Requirements for new facilities or new processes at existing facilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... behavior of items relied on for safety. (b) Facility and system design and facility layout must be based on... existing facilities. (a) Baseline design criteria. Each prospective applicant or licensee shall address the following baseline design criteria in the design of new facilities. Each existing licensee shall address the...

  10. 10 CFR 70.64 - Requirements for new facilities or new processes at existing facilities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... behavior of items relied on for safety. (b) Facility and system design and facility layout must be based on... existing facilities. (a) Baseline design criteria. Each prospective applicant or licensee shall address the following baseline design criteria in the design of new facilities. Each existing licensee shall address the...

  11. 10 CFR 70.64 - Requirements for new facilities or new processes at existing facilities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... behavior of items relied on for safety. (b) Facility and system design and facility layout must be based on... existing facilities. (a) Baseline design criteria. Each prospective applicant or licensee shall address the following baseline design criteria in the design of new facilities. Each existing licensee shall address the...

  12. 10 CFR 70.64 - Requirements for new facilities or new processes at existing facilities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... behavior of items relied on for safety. (b) Facility and system design and facility layout must be based on... existing facilities. (a) Baseline design criteria. Each prospective applicant or licensee shall address the following baseline design criteria in the design of new facilities. Each existing licensee shall address the...

  13. FACILITY 317. EXTERIOR OF FRONT SIDE, WITH FACILITY 316 BEYOND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 317. EXTERIOR OF FRONT SIDE, WITH FACILITY 316 BEYOND ON THE LEFT. VIEW FACING NORTH. - U.S. Naval Base, Pearl Harbor, Naval Housing Area Hospital Point, Pharmacist's Quarters Type, 13-16 First Street, Pearl City, Honolulu County, HI

  14. Facility safety study

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The safety of NASA's in house microelectronics facility is addressed. Industrial health standards, facility emission control requirements, operation and safety checklists, and the disposal of epitaxial vent gas are considered.

  15. Development of a single ion hit facility at the Pierre Sue Laboratory: a collimated microbeam to study radiological effects on targeted living cells.

    PubMed

    Daudin, L; Carrière, M; Gouget, B; Hoarau, J; Khodja, H

    2006-01-01

    A single ion hit facility is being developed at the Pierre Süe Laboratory (LPS) since 2004. This set-up will be dedicated to the study of ionising radiation effects on living cells, which will complete current research conducted on uranium chemical toxicity on renal and osteoblastic cells. The study of the response to an exposure to alpha particles will allow us to distinguish radiological and chemical toxicities of uranium, with a special emphasis on the bystander effect at low doses. Designed and installed on the LPS Nuclear microprobe, up to now dedicated to ion beam microanalysis, this set-up will enable us to deliver an exact number of light ions accelerated by a 3.75 MV electrostatic accelerator. An 'in air' vertical beam permits the irradiation of cells in conditions compatible with cell culture techniques. Furthermore, cellular monolayer will be kept in controlled conditions of temperature and atmosphere in order to diminish stress. The beam is collimated with a fused silica capillary tubing to target pre-selected cells. Motorisation of the collimator with piezo-electric actuators should enable fast irradiation without moving the sample, thus avoiding mechanical stress. An automated epifluorescence microscope, mounted on an antivibration table, allows pre- and post-irradiation cell observation. An ultra thin silicon surface barrier detector has been developed and tested to be able to shoot a cell with a single alpha particle.

  16. National direct-drive program on OMEGA and the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Goncharov, V. N.; Regan, S. P.; Campbell, E. M.; Sangster, T. C.; Radha, P. B.; Myatt, J. F.; Froula, D. H.; Betti, R.; Boehly, T. R.; Delettrez, J. A.; Edgell, D. H.; Epstein, R.; Forrest, C. J.; Glebov, V. Yu; Harding, D. R.; Hu, S. X.; Igumenshchev, I. V.; Marshall, F. J.; McCrory, R. L.; Michel, D. T.; Seka, W.; Shvydky, A.; Stoeckl, C.; Theobald, W.; Gatu-Johnson, M.

    2017-01-01

    A major advantage of the laser direct-drive (DD) approach to ignition is the increased fraction of laser drive energy coupled to the hot spot and relaxed hot-spot requirements for the peak pressure and convergence ratios relative to the indirect-drive approach at equivalent laser energy. With the goal of a successful ignition demonstration using DD, the recently established national strategy has several elements and involves multiple national and international institutions. These elements include the experimental demonstration on OMEGA cryogenic implosions of hot-spot conditions relevant for ignition at MJ-scale energies available at the National Ignition Facility (NIF) and developing an understanding of laser-plasma interactions and laser coupling using DD experiments on the NIF. DD designs require reaching central stagnation pressures in excess of 100 Gbar. The current experiments on OMEGA have achieved inferred peak pressures of 56 Gbar (Regan et al 2016 Phys. Rev. Lett. 117 025001). Extensive analysis of the cryogenic target experiments and two- and three-dimensional simulations suggest that power balance, target offset, and target quality are the main limiting factors in target performance. In addition, cross-beam energy transfer (CBET) has been identified as the main mechanism reducing laser coupling. Reaching the goal of demonstrating hydrodynamic equivalence on OMEGA includes improving laser power balance, target position, and target quality at shot time. CBET must also be significantly reduced and several strategies have been identified to address this issue.

  17. VIEW TO NORTHWEST, SHOWING FACILITY NO. 525 AND HOSPITAL (FACILITY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW TO NORTHWEST, SHOWING FACILITY NO. 525 AND HOSPITAL (FACILITY No. 515) BEYOND. See CA-2398-CP-8 for detail of the stairway in the distance - Hamilton Field, Amphitheater, North Oakland Drive near East Hospital Drive, Novato, Marin County, CA

  18. Materiel Acquisition Handbook. Revision

    DTIC Science & Technology

    1987-03-26

    DISTRIBUTION: CINC USAREUR & SEVEN.TH ARMY (AEAGC- FMD (75)) (if primary user) (see over) S. A TRANSMITTAL LETTERS OFFICE SYMBOL SUBJECT: DISTRIBUTICN...outlines adv•;rtising procedures and the process for collecting and considering industry comments. ft-F .’.0. , ftA - ATCD-ET/AMCDE-PQ SUBJECT: Letter of

  19. Framing the Future: People, Places, Projects.

    ERIC Educational Resources Information Center

    Knapsey, Kath

    This publication describes six Framing the Future (FTF) staff development projects that use work-based learning with different project teams and learning activities varying from general awareness to specific skills development in Australia. "The Center for Human Services--Working for Its People" describes a project that introduced a…

  20. Location of planar targets in three space from monocular images

    NASA Technical Reports Server (NTRS)

    Cornils, Karin; Goode, Plesent W.

    1987-01-01

    Many pieces of existing and proposed space hardware that would be targets of interest for a telerobot can be represented as planar or near-planar surfaces. Examples include the biostack modules on the Long Duration Exposure Facility, the panels on Solar Max, large diameter struts, and refueling receptacles. Robust and temporally efficient methods for locating such objects with sufficient accuracy are therefore worth developing. Two techniques that derive the orientation and location of an object from its monocular image are discussed and the results of experiments performed to determine translational and rotational accuracy are presented. Both the quadrangle projection and elastic matching techniques extract three-space information using a minimum of four identifiable target points and the principles of the perspective transformation. The selected points must describe a convex polygon whose geometric characteristics are prespecified in a data base. The rotational and translational accuracy of both techniques was tested at various ranges. This experiment is representative of the sensing requirements involved in a typical telerobot target acquisition task. Both techniques determined target location to an accuracy sufficient for consistent and efficient acquisition by the telerobot.