Sample records for facility hazard analysis

  1. Preliminary hazards analysis -- vitrification process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coordes, D.; Ruggieri, M.; Russell, J.

    1994-06-01

    This paper presents a Preliminary Hazards Analysis (PHA) for mixed waste vitrification by joule heating. The purpose of performing a PHA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PHA is then followed by a Preliminary Safety Analysis Report (PSAR) performed during Title 1 and 2 design. The PSAR then leads to performance of the Final Safety Analysis Report performed during the facility`s constructionmore » and testing. It should be completed before routine operation of the facility commences. This PHA addresses the first four chapters of the safety analysis process, in accordance with the requirements of DOE Safety Guidelines in SG 830.110. The hazards associated with vitrification processes are evaluated using standard safety analysis methods which include: identification of credible potential hazardous energy sources; identification of preventative features of the facility or system; identification of mitigative features; and analyses of credible hazards. Maximal facility inventories of radioactive and hazardous materials are postulated to evaluate worst case accident consequences. These inventories were based on DOE-STD-1027-92 guidance and the surrogate waste streams defined by Mayberry, et al. Radiological assessments indicate that a facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous materials assessment indicates that a Mixed Waste Vitrification facility will be a Low Hazard facility having minimal impacts to offsite personnel and the environment.« less

  2. Risk assessment of CST-7 proposed waste treatment and storage facilities Volume I: Limited-scope probabilistic risk assessment (PRA) of proposed CST-7 waste treatment & storage facilities. Volume II: Preliminary hazards analysis of proposed CST-7 waste storage & treatment facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasser, K.

    1994-06-01

    In FY 1993, the Los Alamos National Laboratory Waste Management Group [CST-7 (formerly EM-7)] requested the Probabilistic Risk and Hazards Analysis Group [TSA-11 (formerly N-6)] to conduct a study of the hazards associated with several CST-7 facilities. Among these facilities are the Hazardous Waste Treatment Facility (HWTF), the HWTF Drum Storage Building (DSB), and the Mixed Waste Receiving and Storage Facility (MWRSF), which are proposed for construction beginning in 1996. These facilities are needed to upgrade the Laboratory`s storage capability for hazardous and mixed wastes and to provide treatment capabilities for wastes in cases where offsite treatment is not availablemore » or desirable. These facilities will assist Los Alamos in complying with federal and state requlations.« less

  3. Hazard Analysis for Building 34 Vacuum Glove Box Assembly

    NASA Technical Reports Server (NTRS)

    Meginnis, Ian

    2014-01-01

    One of the characteristics of an effective safety program is the recognition and control of hazards before mishaps or failures occur. Conducting potentially hazardous tests necessitates a thorough hazard analysis in order to prevent injury to personnel, and to prevent damage to facilities and equipment. The primary purpose of this hazard analysis is to define and address the potential hazards and controls associated with the Building 34 Vacuum Glove Box Assembly, and to provide the applicable team of personnel with the documented results. It is imperative that each member of the team be familiar with the hazards and controls associated with his/her particular tasks, assignments and activities while interfacing with facility test systems, equipment and hardware. In fulfillment of the stated purposes, the goal of this hazard analysis is to identify all hazards that have the potential to harm personnel, damage the facility or its test systems or equipment, test articles, Government or personal property, or the environment. This analysis may also assess the significance and risk, when applicable, of lost test objectives when substantial monetary value is involved. The hazards, causes, controls, verifications, and risk assessment codes have been documented on the hazard analysis work sheets in Appendix A of this document. The preparation and development of this report is in accordance with JPR 1700.1, "JSC Safety and Health Handbook" and JSC 17773 Rev D "Instructions for Preparation of Hazard Analysis for JSC Ground Operations".

  4. Experimental Fuels Facility Re-categorization Based on Facility Segmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiss, Troy P.; Andrus, Jason

    The Experimental Fuels Facility (EFF) (MFC-794) at the Materials and Fuels Complex (MFC) located on the Idaho National Laboratory (INL) Site was originally constructed to provide controlled-access, indoor storage for radiological contaminated equipment. Use of the facility was expanded to provide a controlled environment for repairing contaminated equipment and characterizing, repackaging, and treating waste. The EFF facility is also used for research and development services, including fuel fabrication. EFF was originally categorized as a LTHC-3 radiological facility based on facility operations and facility radiological inventories. Newly planned program activities identified the need to receive quantities of fissionable materials in excessmore » of the single parameter subcritical limit in ANSI/ANS-8.1, “Nuclear Criticality Safety in Operations with Fissionable Materials Outside Reactors” (identified as “criticality list” quantities in DOE-STD-1027-92, “Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports,” Attachment 1, Table A.1). Since the proposed inventory of fissionable materials inside EFF may be greater than the single parameter sub-critical limit of 700 g of U-235 equivalent, the initial re-categorization is Hazard Category (HC) 2 based upon a potential criticality hazard. This paper details the facility hazard categorization performed for the EFF. The categorization was necessary to determine (a) the need for further safety analysis in accordance with LWP-10802, “INL Facility Categorization,” and (b) compliance with 10 Code of Federal Regulations (CFR) 830, Subpart B, “Safety Basis Requirements.” Based on the segmentation argument presented in this paper, the final hazard categorization for the facility is LTHC-3. Department of Energy Idaho (DOE-ID) approval of the final hazard categorization determined by this hazard assessment document (HAD) was required per the DOE-ID Supplemental Guidance for DOE-STD-1027-92 based on the proposed downgrade of the initial facility categorization of Hazard Category 2.« less

  5. ORNL necessary and sufficient standards for environment, safety, and health. Final report of the Identification Team for other industrial, radiological, and non-radiological hazard facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-07-01

    This Necessary and Sufficient (N and S) set of standards is for Other Industrial, Radiological, and Non-Radiological Hazard Facilities at Oak Ridge National Laboratory (ORNL). These facility classifications are based on a laboratory-wide approach to classify facilities by hazard category. An analysis of the hazards associated with the facilities at ORNL was conducted in 1993. To identify standards appropriate for these Other Industrial, Radiological, and Non-Radiological Hazard Facilities, the activities conducted in these facilities were assessed, and the hazards associated with the activities were identified. A preliminary hazards list was distributed to all ORNL organizations. The hazards identified in priormore » hazard analyses are contained in the list, and a category of other was provided in each general hazard area. A workshop to assist organizations in properly completing the list was held. Completed hazard screening lists were compiled for each ORNL division, and a master list was compiled for all Other Industrial, Radiological Hazard, and Non-Radiological facilities and activities. The master list was compared against the results of prior hazard analyses by research and development and environment, safety, and health personnel to ensure completeness. This list, which served as a basis for identifying applicable environment, safety, and health standards, appears in Appendix A.« less

  6. 10 CFR 70.62 - Safety program and integrated safety analysis.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Radiological hazards related to possessing or processing licensed material at its facility; (ii) Chemical hazards of licensed material and hazardous chemicals produced from licensed material; (iii) Facility... performed by a team with expertise in engineering and process operations. The team shall include at least...

  7. Assessing the need for an update of a probabilistic seismic hazard analysis using a SSHAC Level 1 study and the Seismic Hazard Periodic Reevaluation Methodology

    DOE PAGES

    Payne, Suzette J.; Coppersmith, Kevin J.; Coppersmith, Ryan; ...

    2017-08-23

    A key decision for nuclear facilities is evaluating the need for an update of an existing seismic hazard analysis in light of new data and information that has become available since the time that the analysis was completed. We introduce the newly developed risk-informed Seismic Hazard Periodic Review Methodology (referred to as the SHPRM) and present how a Senior Seismic Hazard Analysis Committee (SSHAC) Level 1 probabilistic seismic hazard analysis (PSHA) was performed in an implementation of this new methodology. The SHPRM offers a defensible and documented approach that considers both the changes in seismic hazard and engineering-based risk informationmore » of an existing nuclear facility to assess the need for an update of an existing PSHA. The SHPRM has seven evaluation criteria that are employed at specific analysis, decision, and comparison points which are applied to seismic design categories established for nuclear facilities in United States. The SHPRM is implemented using a SSHAC Level 1 study performed for the Idaho National Laboratory, USA. The implementation focuses on the first six of the seven evaluation criteria of the SHPRM which are all provided from the SSHAC Level 1 PSHA. Finally, to illustrate outcomes of the SHPRM that do not lead to the need for an update and those that do, the example implementations of the SHPRM are performed for nuclear facilities that have target performance goals expressed as the mean annual frequency of unacceptable performance at 1x10 -4, 4x10 -5 and 1x10 -5.« less

  8. Assessing the need for an update of a probabilistic seismic hazard analysis using a SSHAC Level 1 study and the Seismic Hazard Periodic Reevaluation Methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Payne, Suzette J.; Coppersmith, Kevin J.; Coppersmith, Ryan

    A key decision for nuclear facilities is evaluating the need for an update of an existing seismic hazard analysis in light of new data and information that has become available since the time that the analysis was completed. We introduce the newly developed risk-informed Seismic Hazard Periodic Review Methodology (referred to as the SHPRM) and present how a Senior Seismic Hazard Analysis Committee (SSHAC) Level 1 probabilistic seismic hazard analysis (PSHA) was performed in an implementation of this new methodology. The SHPRM offers a defensible and documented approach that considers both the changes in seismic hazard and engineering-based risk informationmore » of an existing nuclear facility to assess the need for an update of an existing PSHA. The SHPRM has seven evaluation criteria that are employed at specific analysis, decision, and comparison points which are applied to seismic design categories established for nuclear facilities in United States. The SHPRM is implemented using a SSHAC Level 1 study performed for the Idaho National Laboratory, USA. The implementation focuses on the first six of the seven evaluation criteria of the SHPRM which are all provided from the SSHAC Level 1 PSHA. Finally, to illustrate outcomes of the SHPRM that do not lead to the need for an update and those that do, the example implementations of the SHPRM are performed for nuclear facilities that have target performance goals expressed as the mean annual frequency of unacceptable performance at 1x10 -4, 4x10 -5 and 1x10 -5.« less

  9. Hazard Analysis for Pneumatic Flipper Suitport/Z-1 Manned Evaluation, Chamber B, Building 32. Revision: Basic

    NASA Technical Reports Server (NTRS)

    2012-01-01

    One of the characteristics of an effective safety program is the recognition and control of hazards before mishaps or failures occur. Conducting potentially hazardous tests necessitates a thorough hazard analysis in order to protect our personnel from injury and our equipment from damage. The purpose of this hazard analysis is to define and address the potential hazards and controls associated with the Z1 Suit Port Test in Chamber B located in building 32, and to provide the applicable team of personnel with the documented results. It is imperative that each member of the team be familiar with the hazards and controls associated with his/her particular tasks, assignments, and activities while interfacing with facility test systems, equipment, and hardware. The goal of this hazard analysis is to identify all hazards that have the potential to harm personnel and/or damage facility equipment, flight hardware, property, or harm the environment. This analysis may also assess the significance and risk, when applicable, of lost test objectives when substantial monetary value is involved. The hazards, causes, controls, verifications, and risk assessment codes have been documented on the hazard analysis work sheets in appendix A of this document. The preparation and development of this report is in accordance with JPR 1700.1, JSC Safety and Health Handbook.

  10. Chemical hazards database and detection system for Microgravity and Materials Processing Facility (MMPF)

    NASA Technical Reports Server (NTRS)

    Steele, Jimmy; Smith, Robert E.

    1991-01-01

    The ability to identify contaminants associated with experiments and facilities is directly related to the safety of the Space Station. A means of identifying these contaminants has been developed through this contracting effort. The delivered system provides a listing of the materials and/or chemicals associated with each facility, information as to the contaminant's physical state, a list of the quantity and/or volume of each suspected contaminant, a database of the toxicological hazards associated with each contaminant, a recommended means of rapid identification of the contaminants under operational conditions, a method of identifying possible failure modes and effects analysis associated with each facility, and a fault tree-type analysis that will provide a means of identifying potential hazardous conditions related to future planned missions.

  11. K Basin Hazard Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PECH, S.H.

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  12. Automated Hazard Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riddle, F. J.

    2003-06-26

    The Automated Hazard Analysis (AHA) application is a software tool used to conduct job hazard screening and analysis of tasks to be performed in Savannah River Site facilities. The AHA application provides a systematic approach to the assessment of safety and environmental hazards associated with specific tasks, and the identification of controls regulations, and other requirements needed to perform those tasks safely. AHA is to be integrated into existing Savannah River site work control and job hazard analysis processes. Utilization of AHA will improve the consistency and completeness of hazard screening and analysis, and increase the effectiveness of the workmore » planning process.« less

  13. Risk factors for acute chemical releases with public health consequences: Hazardous Substances Emergency Events Surveillance in the U.S., 1996–2001

    PubMed Central

    Ruckart, Perri Z; Wattigney, Wendy A; Kaye, Wendy E

    2004-01-01

    Background Releases of hazardous materials can cause substantial morbidity and mortality. To reduce and prevent the public health consequences (victims or evacuations) from uncontrolled or illegally released hazardous substances, a more comprehensive analysis is needed to determine risk factors for hazardous materials incidents. Methods Hazardous Substances Emergency Events Surveillance (HSEES) data from 1996 through 2001 were analyzed using bivariate and multiple logistic regression. Fixed-facility and transportation-related events were analyzed separately. Results For fixed-facility events, 2,327 (8%) resulted in at least one victim and 2,844 (10%) involved ordered evacuations. For transportation-related events, 759 (8%) resulted in at least one victim, and 405 (4%) caused evacuation orders. Fire and/or explosion were the strongest risk factors for events involving either victims or evacuations. Stratified analysis of fixed-facility events involving victims showed a strong association for acid releases in the agriculture, forestry, and fisheries industry. Chlorine releases in fixed-facility events resulted in victims and evacuations in more industry categories than any other substance. Conclusions Outreach efforts should focus on preventing and preparing for fires and explosions, acid releases in the agricultural industry, and chlorine releases in fixed facilities. PMID:15496226

  14. Guide for Oxygen Hazards Analyses on Components and Systems

    NASA Technical Reports Server (NTRS)

    Stoltzfus, Joel M.; Dees, Jesse; Poe, Robert F.

    1996-01-01

    Because most materials, including metals, will burn in an oxygen-enriched environment, hazards are always present when using oxygen. Most materials will ignite at lower temperatures in an oxygen-enriched environment than in air, and once ignited, combustion rates are greater in the oxygen-enriched environment. Many metals burn violently in an oxygen-enriched environment when ignited. Lubricants, tapes, gaskets, fuels, and solvents can increase the possibility of ignition in oxygen systems. However, these hazards do not preclude the use of oxygen. Oxygen may be safely used if all the materials in a system are not flammable in the end-use environment or if ignition sources are identified and controlled. These ignition and combustion hazards necessitate a proper oxygen hazards analysis before introducing a material or component into oxygen service. The objective of this test plan is to describe the White Sands Test Facility oxygen hazards analysis to be performed on components and systems before oxygen is introduced and is recommended before implementing the oxygen component qualification procedure. The plan describes the NASA Johnson Space Center White Sands Test Facility method consistent with the ASTM documents for analyzing the hazards of components and systems exposed to an oxygen-enriched environment. The oxygen hazards analysis is a useful tool for oxygen-system designers, system engineers, and facility managers. Problem areas can be pinpointed before oxygen is introduced into the system, preventing damage to hardware and possible injury or loss of life.

  15. Nitrate Waste Treatment Sampling and Analysis Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigil-Holterman, Luciana R.; Martinez, Patrick Thomas; Garcia, Terrence Kerwin

    2017-07-05

    This plan is designed to outline the collection and analysis of nitrate salt-bearing waste samples required by the New Mexico Environment Department- Hazardous Waste Bureau in the Los Alamos National Laboratory (LANL) Hazardous Waste Facility Permit (Permit).

  16. A Guidance Manual: Waste Analysis at Facilities that Generate, Treat, Store, and Dispose of Hazardous Wastes

    EPA Pesticide Factsheets

    Discusses how a person can perform waste analyses and develop waste analysis plans (WAPs) in accordance with the federal hazardous waste regulations of the Resource Conservation and Recovery Act (RCRA)

  17. Overview of Energy Systems` safety analysis report programs. Safety Analysis Report Update Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-03-01

    The primary purpose of an Safety Analysis Report (SAR) is to provide a basis for judging the adequacy of a facility`s safety. The SAR documents the safety analyses that systematically identify the hazards posed by the facility, analyze the consequences and risk of potential accidents, and describe hazard control measures that protect the health and safety of the public and employees. In addition, some SARs document, as Technical Safety Requirements (TSRs, which include Technical Specifications and Operational Safety Requirements), technical and administrative requirements that ensure the facility is operated within prescribed safety limits. SARs also provide conveniently summarized information thatmore » may be used to support procedure development, training, inspections, and other activities necessary to facility operation. This ``Overview of Energy Systems Safety Analysis Report Programs`` Provides an introduction to the programs and processes used in the development and maintenance of the SARs. It also summarizes some of the uses of the SARs within Energy Systems and DOE.« less

  18. High-Explosives Applications Facility (HEAF)

    NASA Astrophysics Data System (ADS)

    Morse, J. L.; Weingart, R. C.

    1989-03-01

    This Safety Analysis Report (SAR) reviews the safety and environmental aspects of the High Explosives Applications Facility (HEAF). Topics covered include the site selected for the HEAF, safety design criteria, operations planned within the facility, and the safety and environmental analyses performed on this project to date. Provided in the Summary section is a review of hazards and the analyses, conclusions, and operating limits developed in this SAR. Appendices provide supporting documents relating to this SAR. This SAR is required by the LLNL Health and Safety Manual and DOE Order 5481.1B(2) to document the safety analysis efforts. The SAR was assembled by the Hazards Control Department, B-Division, and HEAF project personnel. This document was reviewed by B Division, the Chemistry Department, the Hazards Control Department, the Laboratory Associate Director for Administration and Operations, and the Associate Directors ultimately responsible for HEAF operations.

  19. Guide for Hydrogen Hazards Analysis on Components and Systems

    NASA Technical Reports Server (NTRS)

    Beeson, Harold; Woods, Stephen

    2003-01-01

    The physical and combustion properties of hydrogen give rise to hazards that must be considered when designing and operating a hydrogen system. One of the major concerns in the use of hydrogen is that of fire or detonation because of hydrogen's wide flammability range, low ignition energy, and flame speed. Other concerns include the contact and interaction of hydrogen with materials, such as the hydrogen embrittlement of materials and the formation of hydrogen hydrides. The low temperature of liquid and slush hydrogen bring other concerns related to material compatibility and pressure control; this is especially important when dissimilar, adjoining materials are involved. The potential hazards arising from these properties and design features necessitate a proper hydrogen hazards analysis before introducing a material, component, or system into hydrogen service. The objective of this guide is to describe the NASA Johnson Space Center White Sands Test Facility hydrogen hazards analysis method that should be performed before hydrogen is used in components and/or systems. The method is consistent with standard practices for analyzing hazards. It is recommended that this analysis be made before implementing a hydrogen component qualification procedure. A hydrogen hazards analysis is a useful tool for hydrogen-system designers, system and safety engineers, and facility managers. A hydrogen hazards analysis can identify problem areas before hydrogen is introduced into a system-preventing damage to hardware, delay or loss of mission or objective, and possible injury or loss of life.

  20. Risk Management Technique for design and operation of facilities and equipment

    NASA Technical Reports Server (NTRS)

    Fedor, O. H.; Parsons, W. N.; Coutinho, J. De S.

    1975-01-01

    The Risk Management System collects information from engineering, operating, and management personnel to identify potentially hazardous conditions. This information is used in risk analysis, problem resolution, and contingency planning. The resulting hazard accountability system enables management to monitor all identified hazards. Data from this system are examined in project reviews so that management can decide to eliminate or accept these risks. This technique is particularly effective in improving the management of risks in large, complex, high-energy facilities. These improvements are needed for increased cooperation among industry, regulatory agencies, and the public.

  1. Space Station Furnace Facility. Volume 2: Requirements Definition and Conceptual Design Study. Appendix 3: Environment Analysis. Volume 2; Appendix 3

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A Preliminary Safety Analysis (PSA) is being accomplished as part of the Space Station Furnace Facility (SSFF) contract. This analysis is intended to support SSFF activities by analyzing concepts and designs as they mature to develop essential safety requirements for inclusion in the appropriate specifications, and designs, as early as possible. In addition, the analysis identifies significant safety concerns that may warrant specific trade studies or design definition, etc. The analysis activity to date concentrated on hazard and hazard cause identification and requirements development with the goal of developing a baseline set of detailed requirements to support trade study, specifications development, and preliminary design activities. The analysis activity will continue as the design and concepts mature. Section 2 defines what was analyzed, but it is likely that the SSFF definitions will undergo further changes. The safety analysis activity will reflect these changes as they occur. The analysis provides the foundation for later safety activities. The hazards identified will in most cases have Preliminary Design Review (PDR) applicability. The requirements and recommendations developed for each hazard will be tracked to ensure proper and early resolution of safety concerns.

  2. Hydrotreater/Distillation Column Hazard Analysis Report Rev. 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowry, Peter P.; Wagner, Katie A.

    This project Hazard and Risk Analysis Report contains the results of several hazard analyses and risk assessments. An initial assessment was conducted in 2012, which included a multi-step approach ranging from design reviews to a formal What-If hazard analysis. A second What-If hazard analysis was completed during February 2013 to evaluate the operation of the hydrotreater/distillation column processes to be installed in a process enclosure within the Process Development Laboratory West (PDL-West) facility located on the PNNL campus. The qualitative analysis included participation of project and operations personnel and applicable subject matter experts. The analysis identified potential hazardous scenarios, eachmore » based on an initiating event coupled with a postulated upset condition. The unmitigated consequences of each hazardous scenario were generally characterized as a process upset; the exposure of personnel to steam, vapors or hazardous material; a spray or spill of hazardous material; the creation of a flammable atmosphere; or an energetic release from a pressure boundary.« less

  3. SSHAC Level 1 Probabilistic Seismic Hazard Analysis for the Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Payne, Suzette Jackson; Coppersmith, Ryan; Coppersmith, Kevin

    A Probabilistic Seismic Hazard Analysis (PSHA) was completed for the Materials and Fuels Complex (MFC), Advanced Test Reactor (ATR), and Naval Reactors Facility (NRF) at the Idaho National Laboratory (INL). The PSHA followed the approaches and procedures for Senior Seismic Hazard Analysis Committee (SSHAC) Level 1 study and included a Participatory Peer Review Panel (PPRP) to provide the confident technical basis and mean-centered estimates of the ground motions. A new risk-informed methodology for evaluating the need for an update of an existing PSHA was developed as part of the Seismic Risk Assessment (SRA) project. To develop and implement the newmore » methodology, the SRA project elected to perform two SSHAC Level 1 PSHAs. The first was for the Fuel Manufacturing Facility (FMF), which is classified as a Seismic Design Category (SDC) 3 nuclear facility. The second was for the ATR Complex, which has facilities classified as SDC-4. The new methodology requires defensible estimates of ground motion levels (mean and full distribution of uncertainty) for its criteria and evaluation process. The INL SSHAC Level 1 PSHA demonstrates the use of the PPRP, evaluation and integration through utilization of a small team with multiple roles and responsibilities (four team members and one specialty contractor), and the feasibility of a short duration schedule (10 months). Additionally, a SSHAC Level 1 PSHA was conducted for NRF to provide guidance on the potential use of a design margin above rock hazard levels for the Spent Fuel Handling Recapitalization Project (SFHP) process facility.« less

  4. Petroleum and hazardous material releases from industrial facilities associated with Hurricane Katrina.

    PubMed

    Santella, Nicholas; Steinberg, Laura J; Sengul, Hatice

    2010-04-01

    Hurricane Katrina struck an area dense with industry, causing numerous releases of petroleum and hazardous materials. This study integrates information from a number of sources to describe the frequency, causes, and effects of these releases in order to inform analysis of risk from future hurricanes. Over 200 onshore releases of hazardous chemicals, petroleum, or natural gas were reported. Storm surge was responsible for the majority of petroleum releases and failure of storage tanks was the most common mechanism of release. Of the smaller number of hazardous chemical releases reported, many were associated with flaring from plant startup, shutdown, or process upset. In areas impacted by storm surge, 10% of the facilities within the Risk Management Plan (RMP) and Toxic Release Inventory (TRI) databases and 28% of SIC 1311 facilities experienced accidental releases. In areas subject only to hurricane strength winds, a lower fraction (1% of RMP and TRI and 10% of SIC 1311 facilities) experienced a release while 1% of all facility types reported a release in areas that experienced tropical storm strength winds. Of industrial facilities surveyed, more experienced indirect disruptions such as displacement of workers, loss of electricity and communication systems, and difficulty acquiring supplies and contractors for operations or reconstruction (55%), than experienced releases. To reduce the risk of hazardous material releases and speed the return to normal operations under these difficult conditions, greater attention should be devoted to risk-based facility design and improved prevention and response planning.

  5. Risk assessment and optimization (ALARA) analysis for the environmental remediation of Brookhaven National Laboratory`s hazardous waste management facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dionne, B.J.; Morris, S.C. III; Baum, J.W.

    1998-01-01

    The Department of Energy`s (DOE) Office of Environment, Safety, and Health (EH) sought examples of risk-based approaches to environmental restoration to include in their guidance for DOE nuclear facilities. Extensive measurements of radiological contamination in soil and ground water have been made at Brookhaven National Laboratory`s Hazardous Waste Management Facility (HWMF) as part of a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation process. This provided an ideal opportunity for a case study. This report provides a risk assessment and an {open_quotes}As Low as Reasonably Achievable{close_quotes} (ALARA) analysis for use at other DOE nuclear facilities as an example ofmore » a risk-based decision technique. This document contains the Appendices for the report.« less

  6. INTERNAL HAZARDS ANALYSIS FOR LICENSE APPLICATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R.J. Garrett

    2005-02-17

    The purpose of this internal hazards analysis is to identify and document the internal hazards and potential initiating events associated with preclosure operations of the repository at Yucca Mountain. Internal hazards are those hazards presented by the operation of the facility and by its associated processes that can potentially lead to a radioactive release or cause a radiological hazard. In contrast to external hazards, internal hazards do not involve natural phenomena and external man-made hazards. This internal hazards analysis was performed in support of the preclosure safety analysis and the License Application for the Yucca Mountain Project. The methodology formore » this analysis provides a systematic means to identify internal hazards and potential initiating events that may result in a radiological hazard or radiological release during the repository preclosure period. These hazards are documented in tables of potential internal hazards and potential initiating events (Section 6.6) for input to the repository event sequence categorization process. The results of this analysis will undergo further screening and analysis based on the criteria that apply to the performance of event sequence analyses for the repository preclosure period. The evolving design of the repository will be re-evaluated periodically to ensure that internal hazards that have not been previously evaluated are identified.« less

  7. Evaluation of aircraft crash hazard at Los Alamos National Laboratory facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selvage, R.D.

    This report selects a method for use in calculating the frequency of an aircraft crash occurring at selected facilities at the Los Alamos National Laboratory (the Laboratory). The Solomon method was chosen to determine these probabilities. Each variable in the Solomon method is defined and a value for each variable is selected for fourteen facilities at the Laboratory. These values and calculated probabilities are to be used in all safety analysis reports and hazards analyses for the facilities addressed in this report. This report also gives detailed directions to perform aircraft-crash frequency calculations for other facilities. This will ensure thatmore » future aircraft-crash frequency calculations are consistent with calculations in this report.« less

  8. RELEASE OF DRIED RADIOACTIVE WASTE MATERIALS TECHNICAL BASIS DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KOZLOWSKI, S.D.

    2007-05-30

    This technical basis document was developed to support RPP-23429, Preliminary Documented Safety Analysis for the Demonstration Bulk Vitrification System (PDSA) and RPP-23479, Preliminary Documented Safety Analysis for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Facility. The main document describes the risk binning process and the technical basis for assigning risk bins to the representative accidents involving the release of dried radioactive waste materials from the Demonstration Bulk Vitrification System (DBVS) and to the associated represented hazardous conditions. Appendices D through F provide the technical basis for assigning risk bins to the representative dried waste release accident and associated represented hazardous conditionsmore » for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Packaging Unit (WPU). The risk binning process uses an evaluation of the frequency and consequence of a given representative accident or represented hazardous condition to determine the need for safety structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls. A representative accident or a represented hazardous condition is assigned to a risk bin based on the potential radiological and toxicological consequences to the public and the collocated worker. Note that the risk binning process is not applied to facility workers because credible hazardous conditions with the potential for significant facility worker consequences are considered for safety-significant SSCs and/or TSR-level controls regardless of their estimated frequency. The controls for protection of the facility workers are described in RPP-23429 and RPP-23479. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, as described below.« less

  9. Analysis of LNG peakshaving-facility release-prevention systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pelto, P.J.; Baker, E.G.; Powers, T.B.

    1982-05-01

    The purpose of this study is to provide an analysis of release prevention systems for a reference LNG peakshaving facility. An overview assessment of the reference peakshaving facility, which preceeded this effort, identified 14 release scenarios which are typical of the potential hazards involved in the operation of LNG peakshaving facilities. These scenarios formed the basis for this more detailed study. Failure modes and effects analysis and fault tree analysis were used to estimate the expected frequency of each release scenario for the reference peakshaving facility. In addition, the effectiveness of release prevention, release detection, and release control systems weremore » evaluated.« less

  10. Overview of Energy Systems' safety analysis report programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-03-01

    The primary purpose of an Safety Analysis Report (SAR) is to provide a basis for judging the adequacy of a facility's safety. The SAR documents the safety analyses that systematically identify the hazards posed by the facility, analyze the consequences and risk of potential accidents, and describe hazard control measures that protect the health and safety of the public and employees. In addition, some SARs document, as Technical Safety Requirements (TSRs, which include Technical Specifications and Operational Safety Requirements), technical and administrative requirements that ensure the facility is operated within prescribed safety limits. SARs also provide conveniently summarized information thatmore » may be used to support procedure development, training, inspections, and other activities necessary to facility operation. This Overview of Energy Systems Safety Analysis Report Programs'' Provides an introduction to the programs and processes used in the development and maintenance of the SARs. It also summarizes some of the uses of the SARs within Energy Systems and DOE.« less

  11. 40 CFR 270.310 - What equipment information must I keep at my facility?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (e.g., identify the hazardous waste management unit on a facility plot plan). (3) Type of equipment... compliance test required by 40 CFR 264.1033(j). (3) A design analysis, specifications, drawings, schematics... acceptable to the Director that present basic control device design information. The design analysis must...

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    MITCHELL,GERRY W.; LONGLEY,SUSAN W.; PHILBIN,JEFFREY S.

    This Safety Analysis Report (SAR) is prepared in compliance with the requirements of DOE Order 5480.23, Nuclear Safety Analysis Reports, and has been written to the format and content guide of DOE-STD-3009-94 Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Safety Analysis Reports. The Hot Cell Facility is a Hazard Category 2 nonreactor nuclear facility, and is operated by Sandia National Laboratories for the Department of Energy. This SAR provides a description of the HCF and its operations, an assessment of the hazards and potential accidents which may occur in the facility. The potential consequences and likelihood ofmore » these accidents are analyzed and described. Using the process and criteria described in DOE-STD-3009-94, safety-related structures, systems and components are identified, and the important safety functions of each SSC are described. Additionally, information which describes the safety management programs at SNL are described in ancillary chapters of the SAR.« less

  13. Analysis of the preemptive effect of federal hazardous material laws on Virginia's bridge-tunnel regulations : technical assistance report.

    DOT National Transportation Integrated Search

    1994-01-01

    In May 1988, the Virginia Department of Transportation (VDOT) adopted regulations that govern the transportation of hazardous materials through seven highway tunnel facilities. Recently, the validity of these regulations have been called into questio...

  14. Fire hazard analysis for Plutonium Finishing Plant complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MCKINNIS, D.L.

    1999-02-23

    A fire hazards analysis (FHA) was performed for the Plutonium Finishing Plant (PFP) Complex at the Department of Energy (DOE) Hanford site. The scope of the FHA focuses on the nuclear facilities/structures in the Complex. The analysis was conducted in accordance with RLID 5480.7, [DOE Directive RLID 5480.7, 1/17/94] and DOE Order 5480.7A, ''Fire Protection'' [DOE Order 5480.7A, 2/17/93] and addresses each of the sixteen principle elements outlined in paragraph 9.a(3) of the Order. The elements are addressed in terms of the fire protection objectives stated in paragraph 4 of DOE 5480.7A. In addition, the FHA also complies with WHC-CM-4-41,more » Fire Protection Program Manual, Section 3.4 [1994] and WHC-SD-GN-FHA-30001, Rev. 0 [WHC, 1994]. Objectives of the FHA are to determine: (1) the fire hazards that expose the PFP facilities, or that are inherent in the building operations, (2) the adequacy of the fire safety features currently located in the PFP Complex, and (3) the degree of compliance of the facility with specific fire safety provisions in DOE orders, related engineering codes, and standards.« less

  15. Development of a Probabilistic Tsunami Hazard Analysis in Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toshiaki Sakai; Tomoyoshi Takeda; Hiroshi Soraoka

    2006-07-01

    It is meaningful for tsunami assessment to evaluate phenomena beyond the design basis as well as seismic design. Because once we set the design basis tsunami height, we still have possibilities tsunami height may exceeds the determined design tsunami height due to uncertainties regarding the tsunami phenomena. Probabilistic tsunami risk assessment consists of estimating for tsunami hazard and fragility of structures and executing system analysis. In this report, we apply a method for probabilistic tsunami hazard analysis (PTHA). We introduce a logic tree approach to estimate tsunami hazard curves (relationships between tsunami height and probability of excess) and present anmore » example for Japan. Examples of tsunami hazard curves are illustrated, and uncertainty in the tsunami hazard is displayed by 5-, 16-, 50-, 84- and 95-percentile and mean hazard curves. The result of PTHA will be used for quantitative assessment of the tsunami risk for important facilities located on coastal area. Tsunami hazard curves are the reasonable input data for structures and system analysis. However the evaluation method for estimating fragility of structures and the procedure of system analysis is now being developed. (authors)« less

  16. Final safety analysis report for the Ground Test Accelerator (GTA), Phase 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-10-01

    This document is the first volume of a 3 volume safety analysis report on the Ground Test Accelerator (GTA). The GTA program at the Los Alamos National Laboratory (LANL) is the major element of the national Neutral Particle Beam (NPB) program, which is supported by the Strategic Defense Initiative Office (SDIO). A principal goal of the national NPB program is to assess the feasibility of using hydrogen and deuterium neutral particle beams outside the Earth`s atmosphere. The main effort of the NPB program at Los Alamos concentrates on developing the GTA. The GTA is classified as a low-hazard facility, exceptmore » for the cryogenic-cooling system, which is classified as a moderate-hazard facility. This volume consists of an introduction, summary/conclusion, site description and assessment, description of facility, and description of operation.« less

  17. Hazardous Materials Verification and Limited Characterization Report on Sodium and Caustic Residuals in Materials and Fuel Complex Facilities MFC-799/799A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gary Mecham

    2010-08-01

    This report is a companion to the Facilities Condition and Hazard Assessment for Materials and Fuel Complex Sodium Processing Facilities MFC-799/799A and Nuclear Calibration Laboratory MFC-770C (referred to as the Facilities Condition and Hazards Assessment). This report specifically responds to the requirement of Section 9.2, Item 6, of the Facilities Condition and Hazards Assessment to provide an updated assessment and verification of the residual hazardous materials remaining in the Sodium Processing Facilities processing system. The hazardous materials of concern are sodium and sodium hydroxide (caustic). The information supplied in this report supports the end-point objectives identified in the Transition Planmore » for Multiple Facilities at the Materials and Fuels Complex, Advanced Test Reactor, Central Facilities Area, and Power Burst Facility, as well as the deactivation and decommissioning critical decision milestone 1, as specified in U.S. Department of Energy Guide 413.3-8, “Environmental Management Cleanup Projects.” Using a tailored approach and based on information obtained through a combination of process knowledge, emergency management hazardous assessment documentation, and visual inspection, this report provides sufficient detail regarding the quantity of hazardous materials for the purposes of facility transfer; it also provides that further characterization/verification of these materials is unnecessary.« less

  18. Three-dimensional displays for natural hazards analysis, using classified Landsat Thematic Mapper digital data and large-scale digital elevation models

    NASA Technical Reports Server (NTRS)

    Butler, David R.; Walsh, Stephen J.; Brown, Daniel G.

    1991-01-01

    Methods are described for using Landsat Thematic Mapper digital data and digital elevation models for the display of natural hazard sites in a mountainous region of northwestern Montana, USA. Hazard zones can be easily identified on the three-dimensional images. Proximity of facilities such as highways and building locations to hazard sites can also be easily displayed. A temporal sequence of Landsat TM (or similar) satellite data sets could also be used to display landscape changes associated with dynamic natural hazard processes.

  19. LA-UR-14-27684, Analysis of Wildland Fire Hazard to the TWF at Los Alamos National Labs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbertson, Sarah

    Wildfires represent an Anticipated Natural Phenomena Hazard for LANL and the surrounding area. The TWF facility is located in a cleared area and is surrounded on three sides by roadway pavement. Therefore, direct propagation of flames to the facility is not considered the most credible means of ignition. Rather, fires started by airborne transport of burning brands constitute the most significant wildland fire threat to the TWF. The purpose of this document is to update LA-UR-13-24529, Airborne Projection of Burning Embers – Planning and Controls for Los Alamos National Laboratory Facilities, to be specific to the TWF site and operations.

  20. An Application of the SSHAC Level 3 Process to the Probabilistic Seismic Hazard Analysis for Nuclear Facilities at the Hanford Site, Eastern Washington, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coppersmith , Kevin J.; Bommer, Julian J.; Bryce, Robert W.

    Under the sponsorship of the US Department of Energy (DOE) and the electric utility Energy Northwest, the Pacific Northwest National Laboratory (PNNL) is conducting a probabilistic seismic hazard analysis (PSHA) within the framework of a SSHAC Level 3 procedure (Senior Seismic Hazard Analysis Committee; Budnitz et al., 1997). Specifically, the project is being conducted following the guidelines and requirements specified in NUREG-2117 (USNRC, 2012b) and consistent with approach given in the American Nuclear Standard ANSI/ANS-2.29-2008 Probabilistic Seismic Hazard Analysis. The collaboration between DOE and Energy Northwest is spawned by the needs of both organizations for an accepted PSHA with highmore » levels of regulatory assurance that can be used for the design and safety evaluation of nuclear facilities. DOE committed to this study after performing a ten-year review of the existing PSHA, as required by DOE Order 420.1C. The study will also be used by Energy Northwest as a basis for fulfilling the NRC’s 10CFR50.54(f) requirement that the western US nuclear power plants conduct PSHAs in conformance with SSHAC Level 3 procedures. The study was planned and is being carried out in conjunction with a project Work Plan, which identifies the purpose of the study, the roles and responsibilities of all participants, tasks and their associated schedules, Quality Assurance (QA) requirements, and project deliverables. New data collection and analysis activities are being conducted as a means of reducing the uncertainties in key inputs to the PSHA. It is anticipated that the results of the study will provide inputs to the site response analyses at multiple nuclear facility sites within the Hanford Site and at the Columbia Generating Station.« less

  1. Canister Storage Building (CSB) Hazard Analysis Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    POWERS, T.B.

    2000-03-16

    This report describes the methodology used in conducting the Canister Storage Building (CSB) Hazard Analysis to support the final CSB Safety Analysis Report and documents the results. This report describes the methodology used in conducting the Canister Storage Building (CSB) hazard analysis to support the CSB final safety analysis report (FSAR) and documents the results. The hazard analysis process identified hazardous conditions and material-at-risk, determined causes for potential accidents, identified preventive and mitigative features, and qualitatively estimated the frequencies and consequences of specific occurrences. The hazard analysis was performed by a team of cognizant CSB operations and design personnel, safetymore » analysts familiar with the CSB, and technical experts in specialty areas. The material included in this report documents the final state of a nearly two-year long process. Attachment A provides two lists of hazard analysis team members and describes the background and experience of each. The first list is a complete list of the hazard analysis team members that have been involved over the two-year long process. The second list is a subset of the first list and consists of those hazard analysis team members that reviewed and agreed to the final hazard analysis documentation. The material included in this report documents the final state of a nearly two-year long process involving formal facilitated group sessions and independent hazard and accident analysis work. The hazard analysis process led to the selection of candidate accidents for further quantitative analysis. New information relative to the hazards, discovered during the accident analysis, was incorporated into the hazard analysis data in order to compile a complete profile of facility hazards. Through this process, the results of the hazard and accident analyses led directly to the identification of safety structures, systems, and components, technical safety requirements, and other controls required to protect the public, workers, and environment.« less

  2. 40 CFR 267.56 - What are the required emergency procedures for the emergency coordinator?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., and, if necessary, by chemical analysis. (2) Assess possible hazards to human health or the... explosion which could threaten human health, or the environment, outside the facility, he must report his...) The extent of injuries, if any. (vi) The possible hazards to human health or the environment outside...

  3. Facile synthesis of light harvesting semiconductor bismuth oxychloride nano photo-catalysts for efficient removal of hazardous organic pollutants

    PubMed Central

    Seddigi, Zaki S.; Baig, Umair; Ahmed, Saleh A.; Abdulaziz, M. A.; Danish, Ekram Y.; Khaled, Mazen M.; Lais, Abul

    2017-01-01

    In the present work, bismuth oxychloride nanoparticles–a light harvesting semiconductor photocatalyst–were synthesized by a facile hydrolysis route, with sodium bismuthate and hydroxylammonium chloride as the precursor materials. The as-synthesized semiconductor photocatalysts were characterized using X-ray diffraction analysis, Fourier transform infra-red spectroscopy, Raman spectroscopy, Field emission scanning electron microscopy, X-ray photoelectron spectroscopy and Photoluminescence spectroscopy techniques. The crystal structure, morphology, composition, and optical properties of these facile synthesized bismuth oxychloride nanoparticles (BiOCl NPs) were compared to those of traditional bismuth oxychloride. In addition, the photocatalytic performance of facile-synthesized BiOCl NPs and traditional BiOCl, as applied to the removal of hazardous organic dyes under visible light illumination, is thoroughly investigated. Our results reveal that facile-synthesized BiOCl NPs display strong UV-Vis light adsorption, improved charge carrier mobility and an inhibited rate of charge carrier recombination, when compared to traditional BiOCl. These enhancements result in an improved photocatalytic degradation rate of hazardous organic dyes under UV-Vis irradiance. For instance, the facile-synthesized BiOCl NPs attained 100% degradation of methylene blue and methyl orange dyes in approximately 30 mins under UV-Vis irradiation, against 55% degradation for traditional BiOCl under similar experimental conditions. PMID:28245225

  4. Facile synthesis of light harvesting semiconductor bismuth oxychloride nano photo-catalysts for efficient removal of hazardous organic pollutants.

    PubMed

    Seddigi, Zaki S; Gondal, Mohammed A; Baig, Umair; Ahmed, Saleh A; Abdulaziz, M A; Danish, Ekram Y; Khaled, Mazen M; Lais, Abul

    2017-01-01

    In the present work, bismuth oxychloride nanoparticles-a light harvesting semiconductor photocatalyst-were synthesized by a facile hydrolysis route, with sodium bismuthate and hydroxylammonium chloride as the precursor materials. The as-synthesized semiconductor photocatalysts were characterized using X-ray diffraction analysis, Fourier transform infra-red spectroscopy, Raman spectroscopy, Field emission scanning electron microscopy, X-ray photoelectron spectroscopy and Photoluminescence spectroscopy techniques. The crystal structure, morphology, composition, and optical properties of these facile synthesized bismuth oxychloride nanoparticles (BiOCl NPs) were compared to those of traditional bismuth oxychloride. In addition, the photocatalytic performance of facile-synthesized BiOCl NPs and traditional BiOCl, as applied to the removal of hazardous organic dyes under visible light illumination, is thoroughly investigated. Our results reveal that facile-synthesized BiOCl NPs display strong UV-Vis light adsorption, improved charge carrier mobility and an inhibited rate of charge carrier recombination, when compared to traditional BiOCl. These enhancements result in an improved photocatalytic degradation rate of hazardous organic dyes under UV-Vis irradiance. For instance, the facile-synthesized BiOCl NPs attained 100% degradation of methylene blue and methyl orange dyes in approximately 30 mins under UV-Vis irradiation, against 55% degradation for traditional BiOCl under similar experimental conditions.

  5. Final safety analysis report for the Ground Test Accelerator (GTA), Phase 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-10-01

    This document is the second volume of a 3 volume safety analysis report on the Ground Test Accelerator (GTA). The GTA program at the Los Alamos National Laboratory (LANL) is the major element of the national Neutral Particle Beam (NPB) program, which is supported by the Strategic Defense Initiative Office (SDIO). A principal goal of the national NPB program is to assess the feasibility of using hydrogen and deuterium neutral particle beams outside the Earth`s atmosphere. The main effort of the NPB program at Los Alamos concentrates on developing the GTA. The GTA is classified as a low-hazard facility, exceptmore » for the cryogenic-cooling system, which is classified as a moderate-hazard facility. This volume consists of failure modes and effects analysis; accident analysis; operational safety requirements; quality assurance program; ES&H management program; environmental, safety, and health systems critical to safety; summary of waste-management program; environmental monitoring program; facility expansion, decontamination, and decommissioning; summary of emergency response plan; summary plan for employee training; summary plan for operating procedures; glossary; and appendices A and B.« less

  6. Executive Order 12898 and Social, Economic, and Sociopolitical Factors Influencing Toxic Release Inventory Facility Location in EPA Region 6: A Multi-Scale Spatial Assessment of Environmental Justice

    ERIC Educational Resources Information Center

    Moore, Andrea Lisa

    2013-01-01

    Toxic Release Inventory facilities are among the many environmental hazards shown to create environmental inequities in the United States. This project examined four factors associated with Toxic Release Inventory, specifically, manufacturing facility location at multiple spatial scales using spatial analysis techniques (i.e., O-ring statistic and…

  7. Race, ethnicity, and noxious facilities: Environmental racism re- examined

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nieves, A.L.; Nieves, L.A.

    1992-10-01

    The charge has been made that hazardous facilities tend to be located in proximity to minority populations. This study uses a facility density measure for three categories of noxious facilities to examine the relationship between facilities and minority population concentrations. County-level data are used in a correlation analysis for African Americans, Hispanics, and Asians in the four major regions of the US. Even controlling for income and housing value, and limiting the data set to urban areas, consistent patterns of moderate to strong association of facility densities with minority population percentages are found.

  8. Safety analysis, risk assessment, and risk acceptance criteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jamali, K.; Stack, D.W.; Sullivan, L.H.

    1997-08-01

    This paper discusses a number of topics that relate safety analysis as documented in the Department of Energy (DOE) safety analysis reports (SARs), probabilistic risk assessments (PRA) as characterized primarily in the context of the techniques that have assumed some level of formality in commercial nuclear power plant applications, and risk acceptance criteria as an outgrowth of PRA applications. DOE SARs of interest are those that are prepared for DOE facilities under DOE Order 5480.23 and the implementing guidance in DOE STD-3009-94. It must be noted that the primary area of application for DOE STD-3009 is existing DOE facilities andmore » that certain modifications of the STD-3009 approach are necessary in SARs for new facilities. Moreover, it is the hazard analysis (HA) and accident analysis (AA) portions of these SARs that are relevant to the present discussions. Although PRAs can be qualitative in nature, PRA as used in this paper refers more generally to all quantitative risk assessments and their underlying methods. HA as used in this paper refers more generally to all qualitative risk assessments and their underlying methods that have been in use in hazardous facilities other than nuclear power plants. This discussion includes both quantitative and qualitative risk assessment methods. PRA has been used, improved, developed, and refined since the Reactor Safety Study (WASH-1400) was published in 1975 by the Nuclear Regulatory Commission (NRC). Much debate has ensued since WASH-1400 on exactly what the role of PRA should be in plant design, reactor licensing, `ensuring` plant and process safety, and a large number of other decisions that must be made for potentially hazardous activities. Of particular interest in this area is whether the risks quantified using PRA should be compared with numerical risk acceptance criteria (RACs) to determine whether a facility is `safe.` Use of RACs requires quantitative estimates of consequence frequency and magnitude.« less

  9. Investigation of injury/illness data at a nuclear facility. Part II

    DOE PAGES

    Cournoyer, Michael E.; Garcia, Vincent E.; Sandoval, Arnold N.; ...

    2015-07-01

    At Los Alamos National Laboratory (LANL), there are several nuclear facilities, accelerator facilities, radiological facilities, explosives sites, moderate- and high-hazard non-nuclear facilities, biosciences laboratory, etc. The Plutonium Science and Manufacturing Directorate (ADPSM) provides special nuclear material research, process development, technology demonstration, and manufacturing capabilities. ADPSM manages the LANL Plutonium Facility. Within the Radiological Control Area at TA-55 (PF-4), chemical and metallurgical operations with plutonium and other hazardous materials are performed. LANL Health and Safety Programs investigate injury and illness data. In this study, statistically significant trends have been identified and compared for LANL, ADPSM, and PF-4 injury/illness cases. A previouslymore » described output metric is used to measures LANL management progress towards meeting its operational safety objectives and goals. Timelines are used to determine trends in Injury/Illness types. Pareto Charts are used to prioritize causal factors. The data generated from analysis of Injury/Illness data have helped identify and reduce the number of corresponding causal factors.« less

  10. KSC VAB Aeroacoustic Hazard Assessment

    NASA Technical Reports Server (NTRS)

    Oliveira, Justin M.; Yedo, Sabrina; Campbell, Michael D.; Atkinson, Joseph P.

    2010-01-01

    NASA Kennedy Space Center (KSC) carried out an analysis of the effects of aeroacoustics produced by stationary solid rocket motors in processing areas at KSC. In the current paper, attention is directed toward the acoustic effects of a motor burning within the Vehicle Assembly Building (VAB). The analysis was carried out with support from ASRC Aerospace who modeled transmission effects into surrounding facilities. Calculations were done using semi-analytical models for both aeroacoustics and transmission. From the results it was concluded that acoustic hazards in proximity to the source of ignition and plume can be severe; acoustic hazards in the far-field are significantly lower.

  11. Advanced Mechanistic 3D Spatial Modeling and Analysis Methods to Accurately Represent Nuclear Facility External Event Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sezen, Halil; Aldemir, Tunc; Denning, R.

    Probabilistic risk assessment of nuclear power plants initially focused on events initiated by internal faults at the plant, rather than external hazards including earthquakes and flooding. Although the importance of external hazards risk analysis is now well recognized, the methods for analyzing low probability external hazards rely heavily on subjective judgment of specialists, often resulting in substantial conservatism. This research developed a framework to integrate the risk of seismic and flooding events using realistic structural models and simulation of response of nuclear structures. The results of four application case studies are presented.

  12. Design and evaluation guidelines for Department of Energy facilities subjected to natural phenomena hazards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, R.P.; Short, S.A.; McDonald, J.R.

    1990-06-01

    The Department of Energy (DOE) and the DOE Natural Phenomena Hazards Panel have developed uniform design and evaluation guidelines for protection against natural phenomena hazards at DOE sites throughout the United States. The goal of the guidelines is to assure that DOE facilities can withstand the effects of natural phenomena such as earthquakes, extreme winds, tornadoes, and flooding. The guidelines apply to both new facilities (design) and existing facilities (evaluation, modification, and upgrading). The intended audience is primarily the civil/structural or mechanical engineers conducting the design or evaluation of DOE facilities. The likelihood of occurrence of natural phenomena hazards atmore » each DOE site has been evaluated by the DOE Natural Phenomena Hazard Program. Probabilistic hazard models are available for earthquake, extreme wind/tornado, and flood. Alternatively, site organizations are encouraged to develop site-specific hazard models utilizing the most recent information and techniques available. In this document, performance goals and natural hazard levels are expressed in probabilistic terms, and design and evaluation procedures are presented in deterministic terms. Design/evaluation procedures conform closely to common standard practices so that the procedures will be easily understood by most engineers. Performance goals are expressed in terms of structure or equipment damage to the extent that: (1) the facility cannot function; (2) the facility would need to be replaced; or (3) personnel are endangered. 82 refs., 12 figs., 18 tabs.« less

  13. Structural and seismic analyses of waste facility reinforced concrete storage vaults

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, C.Y.

    1995-07-01

    Facility 317 of Argonne National Laboratory consists of several reinforced concrete waste storage vaults designed and constructed in the late 1940`s through the early 1960`s. In this paper, structural analyses of these concrete vaults subjected to various natural hazards are described, emphasizing the northwest shallow vault. The natural phenomenon hazards considered include both earthquakes and tornados. Because these vaults are deeply embedded in the soil, the SASSI (System Analysis of Soil-Structure Interaction) code was utilized for the seismic calculations. The ultimate strength method was used to analyze the reinforced concrete structures. In all studies, moment and shear strengths at criticalmore » locations of the storage vaults were evaluated. Results of the structural analyses show that almost all the waste storage vaults meet the code requirements according to ACI 349--85. These vaults also satisfy the performance goal such that confinement of hazardous materials is maintained and functioning of the facility is not interrupted.« less

  14. The national biennial RCRA hazardous waste report (based on 1999 data) : state detail analysis

    DOT National Transportation Integrated Search

    2001-06-01

    The State Detail Analysis is a detailed look at each State's waste handling practices, including overall totals for generation, management, and shipments and receipts, as well as totals for the largest fifty facilities.

  15. Accident analysis and control options in support of the sludge water system safety analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HEY, B.E.

    A hazards analysis was initiated for the SWS in July 2001 (SNF-8626, K Basin Sludge and Water System Preliminary Hazard Analysis) and updated in December 2001 (SNF-10020 Rev. 0, Hazard Evaluation for KE Sludge and Water System - Project A16) based on conceptual design information for the Sludge Retrieval System (SRS) and 60% design information for the cask and container. SNF-10020 was again revised in September 2002 to incorporate new hazards identified from final design information and from a What-if/Checklist evaluation of operational steps. The process hazards, controls, and qualitative consequence and frequency estimates taken from these efforts have beenmore » incorporated into Revision 5 of HNF-3960, K Basins Hazards Analysis. The hazards identification process documented in the above referenced reports utilized standard industrial safety techniques (AIChE 1992, Guidelines for Hazard Evaluation Procedures) to systematically guide several interdisciplinary teams through the system using a pre-established set of process parameters (e.g., flow, temperature, pressure) and guide words (e.g., high, low, more, less). The teams generally included representation from the U.S. Department of Energy (DOE), K Basins Nuclear Safety, T Plant Nuclear Safety, K Basin Industrial Safety, fire protection, project engineering, operations, and facility engineering.« less

  16. Modern tornado design of nuclear and other potentially hazardous facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevenson, J.D.; Zhao, Y.

    Tornado wind loads and other tornado phenomena, including tornado missiles and differential pressure effects, have not usually been considered in the design of conventional industrial, commercial, or residential facilities in the United States; however, tornado resistance has often become a design requirement for certain hazardous facilities, such as large nuclear power plants and nuclear materials and waste storage facilities, as well as large liquefied natural gas storage facilities. This article provides a review of current procedures for the design of hazardous industrial facilities to resist tornado effects. 23 refs., 19 figs., 13 tabs.

  17. Microbiological Analysis of the Food Preparation and Dining Facilities at Fort Myer and Bolling Air Force Base

    DTIC Science & Technology

    1975-02-01

    the viewpoint of microbiological safety one would be tempted to conclude that Ft. Myer had a much lower risk hazard than Bolting Air Force Base. The...I TECHNICAL REPORT I I 76·63-FSL MICROBIOLOGICAL ANAL.YSIS OF THE FOOD PREPARATION AND DINING FACILITIES AT FORT MYER AND BOLLING AIR FORCE...RECIPIENT’ S CATALOG NUMBER 75-53-ESL 4. TITLE (and Subtltlo) 5. TYPE OF REPOR T & PERIOD COVERED Microbiological Analysis of the Food Preparation and

  18. Proposed Risk-Informed Seismic Hazard Periodic Reevaluation Methodology for Complying with DOE Order 420.1C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kammerer, Annie

    Department of Energy (DOE) nuclear facilities must comply with DOE Order 420.1C Facility Safety, which requires that all such facilities review their natural phenomena hazards (NPH) assessments no less frequently than every ten years. The Order points the reader to Standard DOE-STD-1020-2012. In addition to providing a discussion of the applicable evaluation criteria, the Standard references other documents, including ANSI/ANS-2.29-2008 and NUREG-2117. These documents provide supporting criteria and approaches for evaluating the need to update an existing probabilistic seismic hazard analysis (PSHA). All of the documents are consistent at a high level regarding the general conceptual criteria that should bemore » considered. However, none of the documents provides step-by-step detailed guidance on the required or recommended approach for evaluating the significance of new information and determining whether or not an existing PSHA should be updated. Further, all of the conceptual approaches and criteria given in these documents deal with changes that may have occurred in the knowledge base that might impact the inputs to the PSHA, the calculated hazard itself, or the technical basis for the hazard inputs. Given that the DOE Order is aimed at achieving and assuring the safety of nuclear facilities—which is a function not only of the level of the seismic hazard but also the capacity of the facility to withstand vibratory ground motions—the inclusion of risk information in the evaluation process would appear to be both prudent and in line with the objectives of the Order. The purpose of this white paper is to describe a risk-informed methodology for evaluating the need for an update of an existing PSHA consistent with the DOE Order. While the development of the proposed methodology was undertaken as a result of assessments for specific SDC-3 facilities at Idaho National Laboratory (INL), and it is expected that the application at INL will provide a demonstration of the methodology, there is potential for general applicability to other facilities across the DOE complex. As such, both a general methodology and a specific approach intended for INL are described in this document. The general methodology proposed in this white paper is referred to as the “seismic hazard periodic review methodology,” or SHPRM. It presents a graded approach for SDC-3, SDC-4 and SDC-5 facilities that can be applied in any risk-informed regulatory environment by once risk-objectives appropriate for the framework are developed. While the methodology was developed for seismic hazard considerations, it can also be directly applied to other types of natural hazards.« less

  19. Proposed Risk-Informed Seismic Hazard Periodic Reevaluation Methodology for Complying with DOE Order 420.1C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kammerer, Annie

    Department of Energy (DOE) nuclear facilities must comply with DOE Order 420.1C Facility Safety, which requires that all such facilities review their natural phenomena hazards (NPH) assessments no less frequently than every ten years. The Order points the reader to Standard DOE-STD-1020-2012. In addition to providing a discussion of the applicable evaluation criteria, the Standard references other documents, including ANSI/ANS-2.29-2008 and NUREG-2117. These documents provide supporting criteria and approaches for evaluating the need to update an existing probabilistic seismic hazard analysis (PSHA). All of the documents are consistent at a high level regarding the general conceptual criteria that should bemore » considered. However, none of the documents provides step-by-step detailed guidance on the required or recommended approach for evaluating the significance of new information and determining whether or not an existing PSHA should be updated. Further, all of the conceptual approaches and criteria given in these documents deal with changes that may have occurred in the knowledge base that might impact the inputs to the PSHA, the calculated hazard itself, or the technical basis for the hazard inputs. Given that the DOE Order is aimed at achieving and assuring the safety of nuclear facilities—which is a function not only of the level of the seismic hazard but also the capacity of the facility to withstand vibratory ground motions—the inclusion of risk information in the evaluation process would appear to be both prudent and in line with the objectives of the Order. The purpose of this white paper is to describe a risk-informed methodology for evaluating the need for an update of an existing PSHA consistent with the DOE Order. While the development of the proposed methodology was undertaken as a result of assessments for specific SDC-3 facilities at Idaho National Laboratory (INL), and it is expected that the application at INL will provide a demonstration of the methodology, there is potential for general applicability to other facilities across the DOE complex. As such, both a general methodology and a specific approach intended for INL are described in this document. The general methodology proposed in this white paper is referred to as the “seismic hazard periodic review methodology,” or SHPRM. It presents a graded approach for SDC-3, SDC-4 and SDC-5 facilities that can be applied in any risk-informed regulatory environment once risk-objectives appropriate for the framework are developed. While the methodology was developed for seismic hazard considerations, it can also be directly applied to other types of natural hazards.« less

  20. Grand Junction projects office mixed-waste treatment program, VAC*TRAX mobile treatment unit process hazards analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bloom, R.R.

    1996-04-01

    The objective of this report is to demonstrate that a thorough assessment of the risks associated with the operation of the Rust Geotech patented VAC*TRAX mobile treatment unit (MTU) has been performed and documented. The MTU was developed to treat mixed wastes at the US Department of Energy (DOE) Albuquerque Operations Office sites. The MTU uses an indirectly heated, batch vacuum dryer to thermally desorb organic compounds from mixed wastes. This process hazards analysis evaluated 102 potential hazards. The three significant hazards identified involved the inclusion of oxygen in a process that also included an ignition source and fuel. Changesmore » to the design of the MTU were made concurrent with the hazard identification and analysis; all hazards with initial risk rankings of 1 or 2 were reduced to acceptable risk rankings of 3 or 4. The overall risk to any population group from operation of the MTU was determined to be very low; the MTU is classified as a Radiological Facility with low hazards.« less

  1. The national biennial RCRA hazardous waste report (based on 1997 data) : national analysis

    DOT National Transportation Integrated Search

    1999-09-01

    National Analysis presents a detailed look at waste-handling practices in the EPA Regions, States, and largest facilities nationally, including (1) the quantity of waste generated, managed, shipped and received, and imported and exported between Stat...

  2. Final safety analysis report for the Ground Test Accelerator (GTA), Phase 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-10-01

    This document is the third volume of a 3 volume safety analysis report on the Ground Test Accelerator (GTA). The GTA program at the Los Alamos National Laboratory (LANL) is the major element of the national Neutral Particle Beam (NPB) program, which is supported by the Strategic Defense Initiative Office (SDIO). A principal goal of the national NPB program is to assess the feasibility of using hydrogen and deuterium neutral particle beams outside the Earth`s atmosphere. The main effort of the NPB program at Los Alamos concentrates on developing the GTA. The GTA is classified as a low-hazard facility, exceptmore » for the cryogenic-cooling system, which is classified as a moderate-hazard facility. This volume consists of appendices C through U of the report« less

  3. EPA Facility Registry Service (FRS): RCRA

    EPA Pesticide Factsheets

    This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of hazardous waste facilities that link to the Resource Conservation and Recovery Act Information System (RCRAInfo). EPA's comprehensive information system in support of the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984, RCRAInfo tracks many types of information about generators, transporters, treaters, storers, and disposers of hazardous waste. FRS identifies and geospatially locates facilities, sites or places subject to environmental regulations or of environmental interest. Using vigorous verification and data management procedures, FRS integrates facility data from EPA's national program systems, other federal agencies, and State and tribal master facility records and provides EPA with a centrally managed, single source of comprehensive and authoritative information on facilities. This data set contains the subset of FRS integrated facilities that link to RCRAInfo hazardous waste facilities once the RCRAInfo data has been integrated into the FRS database. Additional information on FRS is available at the EPA website https://www.epa.gov/enviro/facility-registry-service-frs

  4. Quantitative risk analysis of oil storage facilities in seismic areas.

    PubMed

    Fabbrocino, Giovanni; Iervolino, Iunio; Orlando, Francesca; Salzano, Ernesto

    2005-08-31

    Quantitative risk analysis (QRA) of industrial facilities has to take into account multiple hazards threatening critical equipment. Nevertheless, engineering procedures able to evaluate quantitatively the effect of seismic action are not well established. Indeed, relevant industrial accidents may be triggered by loss of containment following ground shaking or other relevant natural hazards, either directly or through cascade effects ('domino effects'). The issue of integrating structural seismic risk into quantitative probabilistic seismic risk analysis (QpsRA) is addressed in this paper by a representative study case regarding an oil storage plant with a number of atmospheric steel tanks containing flammable substances. Empirical seismic fragility curves and probit functions, properly defined both for building-like and non building-like industrial components, have been crossed with outcomes of probabilistic seismic hazard analysis (PSHA) for a test site located in south Italy. Once the seismic failure probabilities have been quantified, consequence analysis has been performed for those events which may be triggered by the loss of containment following seismic action. Results are combined by means of a specific developed code in terms of local risk contour plots, i.e. the contour line for the probability of fatal injures at any point (x, y) in the analysed area. Finally, a comparison with QRA obtained by considering only process-related top events is reported for reference.

  5. Hazard Analysis for the Mark III Space Suit Assembly (SSA) Used in One-g Operations

    NASA Technical Reports Server (NTRS)

    Mitchell, Kate; Ross, Amy; Blanco, Raul; Wood, Art

    2012-01-01

    This Hazard Analysis document encompasses the Mark III Space Suit Assembly (SSA) and associated ancillary equipment. It has been prepared using JSC17773, "Preparing Hazard Analyses for JSC Ground Operation", as a guide. The purpose of this document is to present the potential hazards involved in ground (23 % maximum O2, One-g) operations of the Mark III and associated ancillary support equipment system. The hazards listed in this document are specific to suit operations only; each supporting facility (Bldg. 9, etc.) is responsible for test specific Hazard Analyses. A "hazard" is defined as any condition that has the potential for harming personnel or equipment. This analysis was performed to document the safety aspects associated with manned use of the Mark III for pressurized and unpressurized ambient, ground-based, One-g human testing. The hazards identified herein represent generic hazards inherent to all standard JSC test venues for nominal ground test configurations. Non-standard test venues or test specific configurations may warrant consideration of additional hazards analysis prior to test. The cognizant suit engineer is responsible for the safety of the astronaut/test subject, space suit, and suit support personnel. The test requester, for the test supported by the suit test engineer and suited subject, is responsible for overall safety and any necessary Test Readiness Reviews (TRR).

  6. Criminal Justice Outcomes after Engagement in Outpatient Substance Abuse Treatment

    PubMed Central

    Garnick, Deborah W.; Horgan, Constance M.; Acevedo, Andrea; Lee, Margaret T.; Panas, Lee; Ritter, Grant A.; Dunigan, Robert; Bidorini, Alfred; Campbell, Kevin; Haberlin, Karin; Huber, Alice; Lambert-Wacey, Dawn; Leeper, Tracy; Reynolds, Mark; Wright, David

    2013-01-01

    The relationship between engagement in outpatient treatment facilities in the public sector and subsequent arrest is examined for clients in Connecticut, New York, Oklahoma and Washington. Engagement is defined as receiving another treatment service within 14 days of beginning a new episode of specialty treatment and at least two additional services within the next 30 days. Data are from 2008 and survival analysis modeling is used. Survival analyses express the effects of model covariates in terms of “hazard ratios,” which reflect a change in the likelihood of outcome because of the covariate. Engaged clients had a significantly lower hazard of any arrest than non-engaged in all four states. In NY and OK, engaged clients also had a lower hazard of arrest for substance-related crimes. In CT, NY, and OK engaged clients had a lower hazard of arrest for violent crime. Clients in facilities with higher engagement rates had a lower hazard of any arrest in NY and OK. Engaging clients in outpatient treatment is a promising approach to decrease their subsequent criminal justice involvement. PMID:24238717

  7. Health concerns and hazardous waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yassi, A.; Weeks, J.; Kraut, A.

    1990-01-01

    This report discusses health effects of hazardous waste and emphasizes human health concerns related to establishing a hazardous waste management facility. The study reviewed world epidemiological and public health literature to identify cases of suspected or substantiated claims of public health impacts associated with hazardous waste management facilities and potential products or emissions from such facilities, and placed them into perspective, including possible routes and consequences of exposure, risk assessment, and the toxicity of selected organic and inorganic compounds.

  8. 40 CFR 264.13 - General waste analysis.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false General waste analysis. 264.13 Section 264.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES General...

  9. 40 CFR 264.13 - General waste analysis.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false General waste analysis. 264.13 Section 264.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES General...

  10. 40 CFR 264.13 - General waste analysis.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false General waste analysis. 264.13 Section 264.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES General...

  11. 40 CFR 264.13 - General waste analysis.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false General waste analysis. 264.13 Section 264.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES General...

  12. 40 CFR 265.273 - Waste analysis.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Waste analysis. 265.273 Section 265... FACILITIES Land Treatment § 265.273 Waste analysis. In addition to the waste analyses required by § 265.13... listed as a hazardous waste. As required by § 265.13, the waste analysis plan must include analyses...

  13. Earthquakes and building design: a primer for the laboratory animal professional.

    PubMed

    Vogelweid, Catherine M; Hill, James B; Shea, Robert A; Johnson, Daniel B

    2005-01-01

    Earthquakes can occur in most regions of the United States, so it might be necessary to reinforce vulnerable animal facilities to better protect research animals during these unpredictable events. A risk analysis should include an evaluation of the seismic hazard risk at the proposed building site balanced against the estimated consequences of losses. Risk analysis can help in better justifying and recommending to building owners the costs of incorporating additional seismic reinforcements. The planning team needs to specify the level of post-earthquake building function that is desired in the facility, and then design the facility to it.

  14. 77 FR 50497 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-21

    ... of hazardous waste; Location, design, and construction of such hazardous waste treatment, disposal... Activities; Submission to OMB for Review and Approval; Comment Request; General Hazardous Waste Facility... the electronic docket, go to www.regulations.gov . Title: General Hazardous Waste Facility Standards...

  15. Safety analysis in test facility design

    NASA Astrophysics Data System (ADS)

    Valk, A.; Jonker, R. J.

    1990-09-01

    The application of safety analysis techniques as developed in, for example nuclear and petrochemical industry, can be very beneficial in coping with the increasing complexity of modern test facility installations and their operations. To illustrate the various techniques available and their phasing in a project, an overview of the most commonly used techniques is presented. Two case studies are described: the hazard and operability study techniques and safety zoning in relation to the possible presence of asphyxiating atmospheres.

  16. The Main Biological Hazards in Animal Biosafety Level 2 Facilities and Strategies for Control.

    PubMed

    Li, Xiao Yan; Xue, Kang Ning; Jiang, Jin Sheng; Lu, Xuan Cheng

    2016-04-01

    Concern about the biological hazards involved in microbiological research, especially research involving laboratory animals, has increased in recent years. Working in an animal biosafety level 2 facility (ABSL-2), commonly used for research on infectious diseases, poses various biological hazards. Here, the regulations and standards related to laboratory biosafety in China are introduced, the potential biological hazards present in ABSL-2 facilities are analyzed, and a series of strategies to control the hazards are presented. Copyright © 2016 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  17. Analysis of Precipitation (Rain and Snow) Levels and Straight-line Wind Speeds in Support of the 10-year Natural Phenomena Hazards Review for Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, Elizabeth J.; Dewart, Jean Marie; Deola, Regina

    This report provides site-specific return level analyses for rain, snow, and straight-line wind extreme events. These analyses are in support of the 10-year review plan for the assessment of meteorological natural phenomena hazards at Los Alamos National Laboratory (LANL). These analyses follow guidance from Department of Energy, DOE Standard, Natural Phenomena Hazards Analysis and Design Criteria for DOE Facilities (DOE-STD-1020-2012), Nuclear Regulatory Commission Standard Review Plan (NUREG-0800, 2007) and ANSI/ ANS-2.3-2011, Estimating Tornado, Hurricane, and Extreme Straight-Line Wind Characteristics at Nuclear Facility Sites. LANL precipitation and snow level data have been collected since 1910, although not all years are complete.more » In this report the results from the more recent data (1990–2014) are compared to those of past analyses and a 2004 National Oceanographic and Atmospheric Administration report. Given the many differences in the data sets used in these different analyses, the lack of statistically significant differences in return level estimates increases confidence in the data and in the modeling and analysis approach.« less

  18. 33 CFR 127.1501 - General.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Firefighting Equipment § 127.1501 General. (a) The... applicable, of Underwriters Laboratories, Inc., Factory Mutual Research Corporation, or other independent...

  19. 33 CFR 127.1501 - General.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Firefighting Equipment § 127.1501 General. (a) The... applicable, of Underwriters Laboratories, Inc., Factory Mutual Research Corporation, or other independent...

  20. Ground Water Monitoring Requirements for Hazardous Waste Treatment, Storage and Disposal Facilities

    EPA Pesticide Factsheets

    The groundwater monitoring requirements for hazardous waste treatment, storage and disposal facilities (TSDFs) are just one aspect of the Resource Conservation and Recovery Act (RCRA) hazardous waste management strategy for protecting human health and the

  1. Hazardous Waste Manifest System

    EPA Pesticide Factsheets

    EPA’s hazardous waste manifest system is designed to track hazardous waste from the time it leaves the generator facility where it was produced, until it reaches the off-site waste management facility that will store, treat, or dispose of the waste.

  2. Post-nuclear disaster evacuation and survival amongst elderly people in Fukushima: A comparative analysis between evacuees and non-evacuees.

    PubMed

    Nomura, Shuhei; Blangiardo, Marta; Tsubokura, Masaharu; Nishikawa, Yoshitaka; Gilmour, Stuart; Kami, Masahiro; Hodgson, Susan

    2016-01-01

    Considering the health impacts of evacuation is fundamental to disaster planning especially for vulnerable elderly populations; however, evacuation-related mortality risks have not been well-investigated. We conducted an analysis to compare survival of evacuated and non-evacuated residents of elderly care facilities, following the Great East Japan Earthquake and subsequent Fukushima Dai-ichi nuclear power plant incident on 11th March 2011. To assess associations between evacuation and mortality after the Fukushima nuclear incident; and to present discussion points on disaster planning, with reference to vulnerable elderly populations. The study population comprised 1,215 residents admitted to seven elderly care facilities located 20-40km from the nuclear plant in the five years before the incident. Demographic and clinical characteristics were obtained from medical records. Evacuation histories were tracked until mid 2013. Main outcome measures are hazard ratios in evacuees versus non-evacuees using random-effects Cox proportional hazards models, and pre- and post-disaster survival probabilities and relative mortality incidence. Experiencing the disasters did not have a significant influence on mortality (hazard ratio 1.10, 95% confidence interval: 0.84-1.43). Evacuation was associated with 1.82 times higher mortality (95% confidence interval: 1.22-2.70) after adjusting for confounders, with the initial evacuation from the original facility associated with 3.37 times higher mortality risk (95% confidence interval: 1.66-6.81) than non evacuation. The government should consider updating its requirements for emergency planning for elderly facilities and ensure that, in a disaster setting, these facilities have the capacity and support to shelter in place for at least sufficient time to adequately prepare initial evacuation. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. 78 FR 64735 - Current Good Manufacturing Practice and Hazard Analysis and Risk-Based Preventive Controls for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-29

    ...The Food and Drug Administration (FDA) is proposing regulations for domestic and foreign facilities that are required to register under the Federal Food, Drug, and Cosmetic Act (the FD&C Act) to establish requirements for current good manufacturing practice in manufacturing, processing, packing, and holding of animal food. FDA also is proposing regulations to require that certain facilities establish and implement hazard analysis and risk-based preventive controls for food for animals. FDA is taking this action to provide greater assurance that animal food is safe and will not cause illness or injury to animals or humans and is intended to build an animal food safety system for the future that makes modern, science and risk-based preventive controls the norm across all sectors of the animal food system.

  4. Two-dimensional fuzzy fault tree analysis for chlorine release from a chlor-alkali industry using expert elicitation.

    PubMed

    Renjith, V R; Madhu, G; Nayagam, V Lakshmana Gomathi; Bhasi, A B

    2010-11-15

    The hazards associated with major accident hazard (MAH) industries are fire, explosion and toxic gas releases. Of these, toxic gas release is the worst as it has the potential to cause extensive fatalities. Qualitative and quantitative hazard analyses are essential for the identification and quantification of these hazards related to chemical industries. Fault tree analysis (FTA) is an established technique in hazard identification. This technique has the advantage of being both qualitative and quantitative, if the probabilities and frequencies of the basic events are known. This paper outlines the estimation of the probability of release of chlorine from storage and filling facility of chlor-alkali industry using FTA. An attempt has also been made to arrive at the probability of chlorine release using expert elicitation and proven fuzzy logic technique for Indian conditions. Sensitivity analysis has been done to evaluate the percentage contribution of each basic event that could lead to chlorine release. Two-dimensional fuzzy fault tree analysis (TDFFTA) has been proposed for balancing the hesitation factor involved in expert elicitation. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. 40 CFR 265.273 - Waste analysis.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Waste analysis. 265.273 Section 265... FACILITIES Land Treatment § 265.273 Waste analysis. In addition to the waste analyses required by § 265.13... any substances which caused the waste to be listed as a hazardous waste; and (c) If food chain crops...

  6. 40 CFR 265.273 - Waste analysis.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Waste analysis. 265.273 Section 265... FACILITIES Land Treatment § 265.273 Waste analysis. In addition to the waste analyses required by § 265.13... any substances which caused the waste to be listed as a hazardous waste; and (c) If food chain crops...

  7. 40 CFR 264.110 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Closure and Post... and operators of: (1) All hazardous waste disposal facilities; (2) Waste piles and surface....115 (which concern closure) apply to the owners and operators of all hazardous waste management...

  8. 40 CFR 300.510 - State assurances.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... assure the availability of hazardous waste treatment or disposal facilities which: (i) Have adequate... subdivision thereof at the time of disposal of hazardous substances therein and a remedial action is... was publicly operated at the time of the disposal of hazardous substances. For other facilities...

  9. 40 CFR 265.110 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Closure... the owners and operators of: (1) All hazardous waste disposal facilities; (2) Waste piles and surface... through 265.115 (which concern closure) apply to the owners and operators of all hazardous waste...

  10. Examining the Association between Hazardous Waste Facilities and Rural "Brain Drain"

    ERIC Educational Resources Information Center

    Hunter, Lori M.; Sutton, Jeannette

    2004-01-01

    Rural communities are increasingly being faced with the prospect of accepting facilities characterized as "opportunity-threat," such as facilities that generate, treat, store, or otherwise dispose of hazardous wastes. Such facilities may offer economic gains through jobs and tax revenue, although they may also act as environmental "disamenities."…

  11. 76 FR 9276 - Tank Vessel and Marine Transportation-Related Facility Response Plans for Hazardous Substances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-17

    ... and USCG-1999-5705] RIN 2115-AE87 and 2115-AE88 Tank Vessel and Marine Transportation-Related Facility... Marine Transportation-Related Facility Response Plans for Hazardous Substances (USCG-1999-5705). The... marine transportation-related facilities, that could reasonably be expected to cause substantial harm to...

  12. 40 CFR 264.31 - Design and operation of facility.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....31 Section 264.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water which...

  13. 40 CFR 264.31 - Design and operation of facility.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....31 Section 264.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water which...

  14. 40 CFR 264.31 - Design and operation of facility.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....31 Section 264.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water which...

  15. 76 FR 48857 - Agency Information Collection Activities; Proposed Collection; Comment Request; Standardized...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-09

    ... Collection Request (ICR) concerning the standardized permit for RCRA hazardous waste management facilities... Business or other for-profit. Title: Standardized Permit for RCRA Hazardous Waste Management Facilities ICR... Activities; Proposed Collection; Comment Request; Standardized Permit for RCRA Hazardous Waste Management...

  16. 40 CFR 264.31 - Design and operation of facility.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....31 Section 264.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water which...

  17. 78 FR 41991 - Pipeline Safety: Potential for Damage to Pipeline Facilities Caused by Flooding

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-12

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No...: Pipeline and Hazardous Materials Safety Administration (PHMSA); DOT. ACTION: Notice; Issuance of Advisory... Gas and Hazardous Liquid Pipeline Systems. Subject: Potential for Damage to Pipeline Facilities Caused...

  18. Mechanisms of and facility types involved in hazardous materials incidents.

    PubMed Central

    Kales, S N; Polyhronopoulos, G N; Castro, M J; Goldman, R H; Christiani, D C

    1997-01-01

    The purpose of this study was to systematically investigate hazardous materials (hazmat) releases and determine the mechanisms of these accidents, and the industries/activities and chemicals involved. We analyzed responses by Massachusetts' six district hazmat teams from their inception through May 1996. Information from incident reports was extracted onto standard coding sheets. The majority of hazardous materials incidents were caused by spills, leaks, or escapes of hazardous materials (76%) and occurred at fixed facilities (80%). Transportation-related accidents accounted for 20% of incidents. Eleven percent of hazardous materials incidents were at schools or health care facilities. Petroleum-derived fuels were involved in over half of transportation-related accidents, and these accounted for the majority of petroleum fuel releases. Chlorine derivatives were involved in 18% of all accidents and were associated with a wide variety of facility types and activities. In conclusion, systematic study of hazardous materials incidents allows the identification of preventable causes of these incidents. PMID:9300926

  19. Hazard characterization and management of tetramethyl tin in the production of photovoltaic cell transparent conductive oxide layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalb, P.D.; Moskowitz, P.D.

    1988-01-01

    Tetramethyl tin (TMT) has been used by the photovoltaics industry to prepare transparent conductive oxide films on glass. Significant health hazards, however may be associated with the use of TMT. Short-term exposures to TMT vapors in excess of accepted exposure limits can produce a range of physiological symptoms. Although less is known about the hazards from prolonged exposure to low levels of TMT, some studies suggest that effects are both cumulative and persistent. TMT also is highly flammable and emits toxic fumes on decomposition. In an occupational setting, workers may be routinely or accidentally exposed to TMT liquids or vapors.more » Approaches for controlling these occupational hazards are described. Analysis suggests that routine emissions from large scale manufacturing facilities using TMT will need to be reduced by approximately 90% to comply with toxic gas containment guidelines to protect public health. Thermal afterburners combined with particle filtration may be used to meet these guidelines. Accidental release of the total inventory of TMT at a large-scale plant may present hazards to individuals living about 1 km from the facility's boundary. Because of these hazards, strategies to prevent in-plant release coupled with community emergency response programs are needed. 32 refs., 2 figs., 4 tabs.« less

  20. Hazardous characterization and management of tetramethyl tin in the production of photovoltaic cell transparent conductive oxide layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalb, P.D.; Moskowitz, P.D.

    1987-08-01

    Tetramethyl tin (TMT) has been used by the photovoltaics industry to prepare transparent conductive oxide films on glass. Significant health hazards, however may be associated with the use of TMT. Short-term exposures to TMT vapors in excess of accepted exposure limits can produce a range of physiological symptoms. Although less is known about the hazards from prolonged exposure to low levels of TMT, some studies suggest that effects are both cumulative and persistent. TMT also is highly flammable and emits toxic fumes on decomposition. In an occupational setting, workers may be routinely or accidentally exposed to TMT liquids or vapors.more » Approaches for controlling these occupational hazards are described. Analysis suggests that routine emissions from large scale manufacturing facilities using TMT will need to be reduced by approximately 90% to comply with toxic gas containment guidelines to protect public health. Thermal afterburners combined with particle filtration may be used to meet these guidelines. Accidental release of the total inventory of TMT at a large-scale plant may present hazards to individuals living about 1 km from the facility's boundary. Because of these hazards, strategies to prevent in-plant release coupled with community emergency response programs are needed. 36 refs., 3 figs., 6 tabs.« less

  1. Using a 3D CAD plant model to simplify process hazard reviews

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolpa, G.

    A Hazard and Operability (HAZOP) review is a formal predictive procedure used to identify potential hazard and operability problems associated with certain processes and facilities. The HAZOP procedure takes place several times during the life cycle of the facility. Replacing plastic models, layout and detail drawings with a 3D CAD electronic model, provides access to process safety information and a detailed level of plant topology that approaches the visualization capability of the imagination. This paper describes the process that is used for adding the use of a 3D CAD model to flowsheets and proven computer programs for the conduct ofmore » hazard and operability reviews. Using flowsheets and study nodes as a road map for the review the need for layout and other detail drawings is all but eliminated. Using the 3D CAD model again for a post-P and ID HAZOP supports conformance to layout and safety requirements, provides superior visualization of the plant configuration and preserves the owners equity in the design. The response from the review teams are overwhelmingly in favor of this type of review over a review that uses only drawings. Over the long term the plant model serves more than just process hazards analysis. Ongoing use of the model can satisfy the required access to process safety information, OHSA documentation and other legal requirements. In this paper extensive instructions address the logic for the process hazards analysis and the preparation required to assist anyone who wishes to add the use of a 3D model to their review.« less

  2. 33 CFR 127.1315 - Preliminary transfer inspection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Operations § 127.1315 Preliminary... capacity of each storage tank to or from which LHG will be transferred, to ensure that it is safe for...

  3. Assessing Natural Hazard Vulnerability Through Marmara Region Using GIS

    NASA Astrophysics Data System (ADS)

    Sabuncu, A.; Garagon Dogru, A.; Ozener, H.

    2013-12-01

    Natural hazards are natural phenomenon occured in the Earth's system that include geological and meteorological events such as earthquakes, floods, landslides, droughts, fires and tsunamis. The metropolitan cities are vulnerable to natural hazards due to their population densities, industrial facilities and proporties. The urban layout of the megacities are complex since industrial facilities are interference with residential area. The Marmara region is placed in North-western Turkey suffered from natural hazards (earthquakes, floods etc.) for years. After 1999 Kocaeli and Duzce earthquakes and 2009 Istanbul flash floods, dramatic number of casualities and economic losses were reported by the authorities. Geographic information systems (GIS) have substantial capacity in order to develop natural disaster management. As these systems provide more efficient and reliable analysis and evaluation of the data in the management, and also convenient and better solutions for the decision making before during and after the natural hazards. The Earth science data and socio-economic data can be integrated into a GIS as different layers. Additionally, satellite data are used to understand the changes pre and post the natural hazards. GIS is a powerful software for the combination of different type of digital data. A natural hazard database for the Marmara region provides all different types of digital data to the users. All proper data collection processing and analysing are critical to evaluate and identify hazards. The natural hazard database allows users to monitor, analyze and query past and recent disasters in the Marmara Region. The long term aim of this study is to develop geodatabase and identify the natural hazard vulnerabilities of the metropolitan cities.

  4. 78 FR 37760 - Electrical Equipment in Hazardous Locations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-24

    ... floating facilities engaged in OCS activities, however, equipment could be installed in hazardous locations... composition and the extent of equipment replacement. The myriad types of MODUs and facilities operating on the.... USCG-2012-0850] RIN 1625-AC00 Electrical Equipment in Hazardous Locations AGENCY: Coast Guard, DHS...

  5. 75 FR 8139 - Biweekly Notice; Applications and Amendments to Facility Operating Licenses Involving No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... the large break loss-of-coolant accident (LOCA) analysis methodology with a reference to WCAP-16009-P... required by 10 CFR 50.91(a), the licensee has provided its analysis of the issue of no significant hazards... Section 5.6.5 to incorporate a new large break LOCA analysis methodology. Specifically, the proposed...

  6. 49 CFR 195.426 - Scraper and sphere facilities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Scraper and sphere facilities. 195.426 Section 195.426 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS... HAZARDOUS LIQUIDS BY PIPELINE Operation and Maintenance § 195.426 Scraper and sphere facilities. No operator...

  7. Flood Impacts on People: from Hazard to Risk Maps

    NASA Astrophysics Data System (ADS)

    Arrighi, C.; Castelli, F.

    2017-12-01

    The mitigation of adverse consequences of floods on people is crucial for civil protection and public authorities. According to several studies, in the developed countries the majority of flood-related fatalities occurs due to inappropriate high risk behaviours such as driving and walking in floodwaters. In this work both the loss of stability of vehicles and pedestrians in floodwaters are analysed. Flood hazard is evaluated, based on (i) a 2D inundation model of an urban area, (ii) 3D hydrodynamic simulations of water flows around vehicles and human body and (iii) a dimensional analysis of experimental activity. Exposure and vulnerability of vehicles and population are assessed exploiting several sources of open GIS data in order to produce risk maps for a testing case study. The results show that a significant hazard to vehicles and pedestrians exists in the study area. Particularly high is the hazard to vehicles, which are likely to be swept away by flood flow, possibly aggravate damages to structures and infrastructures and locally alter the flood propagation. Exposure and vulnerability analysis identifies some structures such as schools and public facilities, which may attract several people. Moreover, some shopping facilities in the area, which attract both vehicular and pedestrians' circulation are located in the highest flood hazard zone.The application of the method demonstrates that, at municipal level, such risk maps can support civil defence strategies and education to active citizenship, thus contributing to flood impact reduction to population.

  8. SLUDGE TREATMENT PROJECT KOP CONCEPTUAL DESIGN CONTROL DECISION REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CARRO CA

    2010-03-09

    This control decision addresses the Knock-Out Pot (KOP) Disposition KOP Processing System (KPS) conceptual design. The KPS functions to (1) retrieve KOP material from canisters, (2) remove particles less than 600 {micro}m in size and low density materials from the KOP material, (3) load the KOP material into Multi-Canister Overpack (MCO) baskets, and (4) stage the MCO baskets for subsequent loading into MCOs. Hazard and accident analyses of the KPS conceptual design have been performed to incorporate safety into the design process. The hazard analysis is documented in PRC-STP-00098, Knock-Out Pot Disposition Project Conceptual Design Hazard Analysis. The accident analysismore » is documented in PRC-STP-CN-N-00167, Knock-Out Pot Disposition Sub-Project Canister Over Lift Accident Analysis. Based on the results of these analyses, and analyses performed in support of MCO transportation and MCO processing and storage activities at the Cold Vacuum Drying Facility (CVDF) and Canister Storage Building (CSB), control decision meetings were held to determine the controls required to protect onsite and offsite receptors and facility workers. At the conceptual design stage, these controls are primarily defined by their safety functions. Safety significant structures, systems, and components (SSCs) that could provide the identified safety functions have been selected for the conceptual design. It is anticipated that some safety SSCs identified herein will be reclassified based on hazard and accident analyses performed in support of preliminary and detailed design.« less

  9. Multi-hazards risk assessment at different levels

    NASA Astrophysics Data System (ADS)

    Frolova, N.; Larionov, V.; Bonnin, J.

    2012-04-01

    Natural and technological disasters are becoming more frequent and devastating. Social and economic losses due to those events increase annually, which is definitely in relation with evolution of society. Natural hazards identification and analysis, as well natural risk assessment taking into account secondary technological accidents are the first steps in prevention strategy aimed at saving lives and protecting property against future events. The paper addresses methodological issues of natural and technological integrated risk assessment and mapping at different levels [1, 2]. At the country level the most hazardous natural processes, which may results in fatalities, injuries and economic loss in the Russian Federation, are considered. They are earthquakes, landslides, mud flows, floods, storms, avalanches. The special GIS environment for the country territory was developed which includes information about hazards' level and reoccurrence, an impact databases for the last 20 years, as well as models for estimating damage and casualties caused by these hazards. Federal maps of seismic individual and collective risk, as well as multi-hazards natural risk maps are presented. The examples of regional seismic risk assessment taking into account secondary accidents at fire, explosion and chemical hazardous facilities and regional integrated risk assessment are given for the earthquake prone areas of the Russian Federation. The paper also gives examples of loss computations due to scenario earthquakes taking into account accidents trigged by strong events at critical facilities: fire and chemical hazardous facilities, including oil pipe lines routes located in the earthquake prone areas. The estimations of individual seismic risk obtained are used by EMERCOM of the Russian Federation, as well as by other federal and local authorities, for planning and implementing preventive measures, aimed at saving lives and protecting property against future disastrous events. The results also allow to develop effective emergency response plans taking into account possible scenario events. Taking into consideration the size of the oil pipe line systems located in the highly active seismic zones, the results of seismic risk computation are used by TRANSNEFT JSC.

  10. Radiation predictions and shielding calculations for RITS-6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maenchen, John Eric; O'Malley, John; Kensek, Ronald Patrick

    2005-06-01

    The mission of Radiographic Integrated Test Stand-6 (RITS-6) facility is to provide the underlying science and technology for pulsed-power-driven flash radiographic X-ray sources for the National Nuclear Security Administration (NNSA). Flash X-ray radiography is a penetrating diagnostic to discern the internal structure in dynamic experiments. Short (~50 nanosecond (ns) duration) bursts of very high intensity Xrays from mm-scale source sizes are required at a variety of voltages to address this mission. RITS-6 was designed and is used to both develop the accelerator technology needed for these experiments and serves as the principal test stand to develop the high intensity electronmore » beam diodes that generate the required X-ray sources. RITS is currently in operation with three induction cavities (RITS-3) with a maximum voltage output of 5.5 MV and is classified as a low hazard non-nuclear facility in accordance with CPR 400.1.1, Chapter 13, Hazards Identification/Analysis and Risk Management. The facility will be expanded from three to six cavities (RITS-6) effectively doubling the operating voltage. The increase in the operating voltage to above 10 MV has resulted in RITS-6 being classified as an accelerator facility. RITS-6 will come under DOE Order 420.2B, Safety of Accelerator Facilities. The hazards of RITS are detailed in the "Safety Assessment Document for the Radiographic Integrated Test Stand Facility." The principal non-industrial hazard is prompt x-ray radiation. As the operating voltage is increased, both the penetration power and the total amount (dose) of x-rays are increased, thereby increasing the risk to local personnel. Fixed site shielding (predominantly concrete walls and a steel/lead skyshine shield) is used to attenuate these x-rays and mitigate this risk. This SAND Report details the anticipated x-ray doses, the shielding design, and the anticipated x-ray doses external to this shielding structure both in areas where administrative access control restricts occupation and in adjacent uncontrolled areas.« less

  11. 14 CFR 135.67 - Reporting potentially hazardous meteorological conditions and irregularities of ground facilities...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Reporting potentially hazardous meteorological conditions and irregularities of ground facilities or navigation aids. 135.67 Section 135.67... navigation aids. Whenever a pilot encounters a potentially hazardous meteorological condition or an...

  12. 14 CFR 135.67 - Reporting potentially hazardous meteorological conditions and irregularities of ground facilities...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Reporting potentially hazardous meteorological conditions and irregularities of ground facilities or navigation aids. 135.67 Section 135.67... navigation aids. Whenever a pilot encounters a potentially hazardous meteorological condition or an...

  13. 14 CFR 135.67 - Reporting potentially hazardous meteorological conditions and irregularities of ground facilities...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Reporting potentially hazardous meteorological conditions and irregularities of ground facilities or navigation aids. 135.67 Section 135.67... navigation aids. Whenever a pilot encounters a potentially hazardous meteorological condition or an...

  14. Kauai Test Facility hazards assessment document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swihart, A

    1995-05-01

    The Department of Energy Order 55003A requires facility-specific hazards assessment be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Kauai Test Facility, Barking Sands, Kauai, Hawaii. The Kauai Test Facility`s chemical and radiological inventories were screened according to potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distance to themore » Early Severe Health Effects threshold is 4.2 kilometers. The highest emergency classification is a General Emergency at the {open_quotes}Main Complex{close_quotes} and a Site Area Emergency at the Kokole Point Launch Site. The Emergency Planning Zone for the {open_quotes}Main Complex{close_quotes} is 5 kilometers. The Emergency Planning Zone for the Kokole Point Launch Site is the Pacific Missile Range Facility`s site boundary.« less

  15. Natural phenomena hazards design and evaluation criteria for Department of Energy Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-01-01

    The Department of Energy (DOE) has issued an Order 420.1 which establishes policy for its facilities in the event of natural phenomena hazards (NPH) along with associated NPH mitigation requirements. This DOE Standard gives design and evaluation criteria for NPH effects as guidance for implementing the NPH mitigation requirements of DOE Order 420.1 and the associated implementation Guides. These are intended to be consistent design and evaluation criteria for protection against natural phenomena hazards at DOE sites throughout the United States. The goal of these criteria is to assure that DOE facilities can withstand the effects of natural phenomena suchmore » as earthquakes, extreme winds, tornadoes, and flooding. These criteria apply to the design of new facilities and the evaluation of existing facilities. They may also be used for modification and upgrading of existing facilities as appropriate. The design and evaluation criteria presented herein control the level of conservatism introduced in the design/evaluation process such that earthquake, wind, and flood hazards are treated on a consistent basis. These criteria also employ a graded approach to ensure that the level of conservatism and rigor in design/evaluation is appropriate for facility characteristics such as importance, hazards to people on and off site, and threat to the environment. For each natural phenomena hazard covered, these criteria consist of the following: Performance Categories and target performance goals as specified in the DOE Order 420.1 NPH Implementation Guide, and DOE-STD-1 021; specified probability levels from which natural phenomena hazard loading on structures, equipment, and systems is developed; and design and evaluation procedures to evaluate response to NPH loads and criteria to assess whether or not computed response is permissible.« less

  16. Commonwealth of Pennsylvania. [Establishment of hazardous waste facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Environmental Resources Secretary Arthur A. Davis and Commerce Secretary Raymond R. Christman have announced a joint initiative to establish commercial hazardous waste treatment and disposal facilities Pennsylvania. The state Hazardous Sites Cleanup Act, which Gov. Robert P. Casey signed into law last October, called for accelerated efforts in this regard. These included an expedited permitting process for facilities, requiring the Department of Environmental Resources (DER) to appoint a special sitting team to review permit applications, and designation of sitting coordinator within the Department of Commerce to identify potential developers of the facilities and encourage them to operate within Pennsylvania.

  17. Toxic Substances: The Extent of Lead Hazards in Child Care Facilities and Schools Is Unknown. Report to the Chairman, Subcommittee on Health and the Environment, Committee on Energy and Commerce, House of Representatives.

    ERIC Educational Resources Information Center

    General Accounting Office, Washington, DC. Resources, Community, and Economic Development Div.

    This report by the United States General Accounting Office discusses federal, state, and local programs and activities to inspect for and address lead hazards in the nation's child care facilities and schools, and existing information on the extent and treatment of lead hazards in these facilities and schools. Federal agencies conduct numerous…

  18. 33 CFR 127.1205 - Emergency shutdown.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Equipment § 127.1205 Emergency shutdown. (a) Each... elements that melt at less than 105 °C (221 °F) and activate the emergency shutdown, or have a sensor that...

  19. 33 CFR 127.1205 - Emergency shutdown.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Equipment § 127.1205 Emergency shutdown. (a) Each... elements that melt at less than 105 °C (221 °F) and activate the emergency shutdown, or have a sensor that...

  20. 2002 Hyperspectral Analysis of Hazardous Waste Sites on the Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gladden, J.B.

    2003-08-28

    Hazardous waste site inspection is a labor intensive, time consuming job, performed primarily on the ground using visual inspection and instrumentation. It is an expensive process to continually monitor hazardous waste and/or landfill sites to determine if they are maintaining their integrity. In certain instances, it may be possible to monitor aspects of the hazardous waste sites and landfills remotely. The utilization of multispectral data was suggested for the mapping of clays and iron oxides associated with contaminated groundwater, vegetation stress, and methane gas emissions (which require longer wavelength detectors). The Savannah River Site (SRS) near Aiken, S.C. is amore » United States Department of Energy facility operated by the Westinghouse Savannah River Company. For decades the SRS was responsible for developing weapons grade plutonium and other materials for the nation's nuclear defense. Hazardous waste was generated during this process. Waste storage site inspection is a particularly important issue at the SRS because there are over 100 hazardous waste sites scattered throughout the 300 mile complex making it difficult to continually monitor all of the facilities. The goal is to use remote sensing technology to identify surface anomalies on the hazardous waste sites as early as possible so that remedial work can take place rapidly to maintain the integrity of the storage sites. The anomalous areas are then targeted for intensive in situ human examination and measurement. During the 1990s, many of the hazardous waste sites were capped with protective layers of polyethelene sheeting and soil, and planted with bahia grass and/or centipede grass. This research investigated hyperspectral remote sensing technology to determine if it can be used to measure accurately and monitor possible indicators of change on vegetated hazardous waste sites. Specifically, it evaluated the usefulness of hyperspectral remote sensing to assess the condition of vegetation on clay- caps on the Mixed Waste Management Facility (MWMF). This report first describes the principles of hyperspectral remote sensing. In situ measurement and hyperspectral remote sensing methods used to analyze hazardous waste sites on the Savannah River Site are then presented.« less

  1. 49 CFR 175.25 - Notification at air passenger facilities of hazardous materials restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Notification at air passenger facilities of... MATERIALS REGULATIONS CARRIAGE BY AIRCRAFT General Information and Regulations § 175.25 Notification at air passenger facilities of hazardous materials restrictions. Each person who engages in for-hire air...

  2. 14 CFR 121.561 - Reporting potentially hazardous meteorological conditions and irregularities of ground facilities...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Reporting potentially hazardous meteorological conditions and irregularities of ground facilities or navigation aids. 121.561 Section 121.561... meteorological conditions and irregularities of ground facilities or navigation aids. (a) Whenever he encounters...

  3. 14 CFR 121.561 - Reporting potentially hazardous meteorological conditions and irregularities of ground facilities...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Reporting potentially hazardous meteorological conditions and irregularities of ground facilities or navigation aids. 121.561 Section 121.561... meteorological conditions and irregularities of ground facilities or navigation aids. (a) Whenever he encounters...

  4. 14 CFR 121.561 - Reporting potentially hazardous meteorological conditions and irregularities of ground facilities...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Reporting potentially hazardous meteorological conditions and irregularities of ground facilities or navigation aids. 121.561 Section 121.561... meteorological conditions and irregularities of ground facilities or navigation aids. (a) Whenever he encounters...

  5. USP <800> Adds Significant Safety Standards: Facility Upgrades Needed to Protect Employees From Hazardous Drugs.

    PubMed

    Beans, Bruce E

    2017-05-01

    The new USP standard for handling hazardous drugs (HDs) will require millions of dollars in capital outlays for facility and equipment upgrades and also requires in-depth assessments of each HD that facilities handle, significant workflow and work practice changes, and thorough staff training.

  6. NHERI: Advancing the Research Infrastructure of the Multi-Hazard Community

    NASA Astrophysics Data System (ADS)

    Blain, C. A.; Ramirez, J. A.; Bobet, A.; Browning, J.; Edge, B.; Holmes, W.; Johnson, D.; Robertson, I.; Smith, T.; Zuo, D.

    2017-12-01

    The Natural Hazards Engineering Research Infrastructure (NHERI), supported by the National Science Foundation (NSF), is a distributed, multi-user national facility that provides the natural hazards research community with access to an advanced research infrastructure. Components of NHERI are comprised of a Network Coordination Office (NCO), a cloud-based cyberinfrastructure (DesignSafe-CI), a computational modeling and simulation center (SimCenter), and eight Experimental Facilities (EFs), including a post-disaster, rapid response research facility (RAPID). Utimately NHERI enables researchers to explore and test ground-breaking concepts to protect homes, businesses and infrastructure lifelines from earthquakes, windstorms, tsunamis, and surge enabling innovations to help prevent natural hazards from becoming societal disasters. When coupled with education and community outreach, NHERI will facilitate research and educational advances that contribute knowledge and innovation toward improving the resiliency of the nation's civil infrastructure to withstand natural hazards. The unique capabilities and coordinating activities over Year 1 between NHERI's DesignSafe-CI, the SimCenter, and individual EFs will be presented. Basic descriptions of each component are also found at https://www.designsafe-ci.org/facilities/. Additionally to be discussed are the various roles of the NCO in leading development of a 5-year multi-hazard science plan, coordinating facility scheduling and fostering the sharing of technical knowledge and best practices, leading education and outreach programs such as the recent Summer Institute and multi-facility REU program, ensuring a platform for technology transfer to practicing engineers, and developing strategic national and international partnerships to support a diverse multi-hazard research and user community.

  7. Race, Wealth, and Solid Waste Facilities in North Carolina

    PubMed Central

    Norton, Jennifer M.; Wing, Steve; Lipscomb, Hester J.; Kaufman, Jay S.; Marshall, Stephen W.; Cravey, Altha J.

    2007-01-01

    Background Concern has been expressed in North Carolina that solid waste facilities may be disproportionately located in poor communities and in communities of color, that this represents an environmental injustice, and that solid waste facilities negatively impact the health of host communities. Objective Our goal in this study was to conduct a statewide analysis of the location of solid waste facilities in relation to community race and wealth. Methods We used census block groups to obtain racial and economic characteristics, and information on solid waste facilities was abstracted from solid waste facility permit records. We used logistic regression to compute prevalence odds ratios for 2003, and Cox regression to compute hazard ratios of facilities issued permits between 1990 and 2003. Results The adjusted prevalence odds of a solid waste facility was 2.8 times greater in block groups with ≥50% people of color compared with block groups with < 10% people of color, and 1.5 times greater in block groups with median house values < $60,000 compared with block groups with median house values ≥$100,000. Among block groups that did not have a previously permitted solid waste facility, the adjusted hazard of a new permitted facility was 2.7 times higher in block groups with ≥50% people of color compared with block groups with < 10% people of color. Conclusion Solid waste facilities present numerous public health concerns. In North Carolina solid waste facilities are disproportionately located in communities of color and low wealth. In the absence of action to promote environmental justice, the continued need for new facilities could exacerbate this environmental injustice. PMID:17805426

  8. Waste Sampling & Characterization Facility (WSCF) Complex Safety Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MELOY, R.T.

    2002-04-01

    This document was prepared to analyze the Waste Sampling and Characterization Facility for safety consequences by: Determining radionuclide and highly hazardous chemical inventories; Comparing these inventories to the appropriate regulatory limits; Documenting the compliance status with respect to these limits; and Identifying the administrative controls necessary to maintain this status. The primary purpose of the Waste Sampling and Characterization Facility (WSCF) is to perform low-level radiological and chemical analyses on various types of samples taken from the Hanford Site. These analyses will support the fulfillment of federal, Washington State, and Department of Energy requirements.

  9. Environmental Projects. Volume 9: Construction of hazardous materials storage facilities

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Activities at the Goldstone Deep Space Communications Complex (GDSCC) are carried out in support of seven parabolic dish antennas. These activities may give rise to environmental hazards. This report is one in a series of reports describing environmental projects at GDSCC. The construction of two hazardous materials and wastes storage facilities and an acid-wash facility is described. An overview of the Goldstone complex is also presented along with a description of the environmental aspects of the GDSCC site.

  10. Challenges Ahead for Nuclear Facility Site-Specific Seismic Hazard Assessment in France: The Alternative Energies and the Atomic Energy Commission (CEA) Vision

    NASA Astrophysics Data System (ADS)

    Berge-Thierry, C.; Hollender, F.; Guyonnet-Benaize, C.; Baumont, D.; Ameri, G.; Bollinger, L.

    2017-09-01

    Seismic analysis in the context of nuclear safety in France is currently guided by a pure deterministic approach based on Basic Safety Rule ( Règle Fondamentale de Sûreté) RFS 2001-01 for seismic hazard assessment, and on the ASN/2/01 Guide that provides design rules for nuclear civil engineering structures. After the 2011 Tohohu earthquake, nuclear operators worldwide were asked to estimate the ability of their facilities to sustain extreme seismic loads. The French licensees then defined the `hard core seismic levels', which are higher than those considered for design or re-assessment of the safety of a facility. These were initially established on a deterministic basis, and they have been finally justified through state-of-the-art probabilistic seismic hazard assessments. The appreciation and propagation of uncertainties when assessing seismic hazard in France have changed considerably over the past 15 years. This evolution provided the motivation for the present article, the objectives of which are threefold: (1) to provide a description of the current practices in France to assess seismic hazard in terms of nuclear safety; (2) to discuss and highlight the sources of uncertainties and their treatment; and (3) to use a specific case study to illustrate how extended source modeling can help to constrain the key assumptions or parameters that impact upon seismic hazard assessment. This article discusses in particular seismic source characterization, strong ground motion prediction, and maximal magnitude constraints, according to the practice of the French Atomic Energy Commission. Due to increases in strong motion databases in terms of the number and quality of the records in their metadata and the uncertainty characterization, several recently published empirical ground motion prediction models are eligible for seismic hazard assessment in France. We show that propagation of epistemic and aleatory uncertainties is feasible in a deterministic approach, as in a probabilistic way. Assessment of seismic hazard in France in the framework of the safety of nuclear facilities should consider these recent advances. In this sense, the opening of discussions with all of the stakeholders in France to update the reference documents (i.e., RFS 2001-01; ASN/2/01 Guide) appears appropriate in the short term.

  11. 7 CFR 210.13 - Facilities management.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... authority with a food safety program based on traditional hazard analysis and critical control point (HACCP... Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE CHILD NUTRITION PROGRAMS NATIONAL SCHOOL LUNCH PROGRAM Requirements for School Food Authority...

  12. 7 CFR 210.13 - Facilities management.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... authority with a food safety program based on traditional hazard analysis and critical control point (HACCP... Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE CHILD NUTRITION PROGRAMS NATIONAL SCHOOL LUNCH PROGRAM Requirements for School Food Authority...

  13. 7 CFR 210.13 - Facilities management.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... authority with a food safety program based on traditional hazard analysis and critical control point (HACCP... Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE CHILD NUTRITION PROGRAMS NATIONAL SCHOOL LUNCH PROGRAM Requirements for School Food Authority...

  14. 7 CFR 210.13 - Facilities management.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... authority with a food safety program based on traditional hazard analysis and critical control point (HACCP... Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE CHILD NUTRITION PROGRAMS NATIONAL SCHOOL LUNCH PROGRAM Requirements for School Food Authority...

  15. Risk management study for the retired Hanford Site facilities: Qualitative risk evaluation for the retired Hanford Site facilities. Volume 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coles, G.A.; Shultz, M.V.; Taylor, W.E.

    1993-09-01

    This document provides a risk evaluation of the 100 and 200 Area retired, surplus facilities on the Hanford Site. Also included are the related data that were compiled by the risk evaluation team during investigations performed on the facilities. Results are the product of a major effort performed in fiscal year 1993 to produce qualitative information that characterizes certain risks associated with these facilities. The retired facilities investigated for this evaluation are located in the 100 and 200 Areas of the 1,450-km{sup 2} (570-mi{sup 2}) Hanford Site. The Hanford Site is a semiarid tract of land in southeastern Washington State.more » The nearest population center is Richland, Washington, (population 32,000) 30-km (20 mi) southeast of the 200 Area. During walkdown investigations of these facilities, data on real and potential hazards that threatened human health or safety or created potential environmental release issues were identified by the risk evaluation team. Using these findings, the team categorized the identified hazards by facility and evaluated the risk associated with each hazard. The factors contributing to each risk, and the consequence and likelihood of harm associated with each hazard also are included in this evaluation.« less

  16. 2013 Los Alamos National Laboratory Hazardous Waste Minimization Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salzman, Sonja L.; English, Charles J.

    2015-08-24

    Waste minimization and pollution prevention are inherent goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE) and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program (a component of the overall Waste Minimization/Pollution Prevention [WMin/PP] Program) administered by the Environmentalmore » Stewardship Group (ENV-ES). This report also supports the waste minimization and pollution prevention goals of the Environmental Programs Directorate (EP) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. LANS was very successful in fiscal year (FY) 2013 (October 1-September 30) in WMin/PP efforts. Staff funded four projects specifically related to reduction of waste with hazardous constituents, and LANS won four national awards for pollution prevention efforts from the National Nuclear Security Administration (NNSA). In FY13, there was no hazardous, mixedtransuranic (MTRU), or mixed low-level (MLLW) remediation waste generated at the Laboratory. More hazardous waste, MTRU waste, and MLLW was generated in FY13 than in FY12, and the majority of the increase was related to MTRU processing or lab cleanouts. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.« less

  17. SSHAC Level 1 Probabilistic Seismic Hazard Analysis for the Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Payne, Suzette; Coppersmith, Ryan; Coppersmith, Kevin

    A Probabilistic Seismic Hazard Analysis (PSHA) was completed for the Materials and Fuels Complex (MFC), Naval Reactors Facility (NRF), and the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) (Figure 1-1). The PSHA followed the approaches and procedures appropriate for a Study Level 1 provided in the guidance advanced by the Senior Seismic Hazard Analysis Committee (SSHAC) in U.S. Nuclear Regulatory Commission (NRC) NUREG/CR-6372 and NUREG-2117 (NRC, 1997; 2012a). The SSHAC Level 1 PSHAs for MFC and ATR were conducted as part of the Seismic Risk Assessment (SRA) project (INL Project number 31287) to develop and apply a new-riskmore » informed methodology, respectively. The SSHAC Level 1 PSHA was conducted for NRF to provide guidance on the potential use of a design margin above rock hazard levels. The SRA project is developing a new risk-informed methodology that will provide a systematic approach for evaluating the need for an update of an existing PSHA. The new methodology proposes criteria to be employed at specific analysis, decision, or comparison points in its evaluation process. The first four of seven criteria address changes in inputs and results of the PSHA and are given in U.S. Department of Energy (DOE) Standard, DOE-STD-1020-2012 (DOE, 2012a) and American National Standards Institute/American Nuclear Society (ANSI/ANS) 2.29 (ANS, 2008a). The last three criteria address evaluation of quantitative hazard and risk-focused information of an existing nuclear facility. The seven criteria and decision points are applied to Seismic Design Category (SDC) 3, 4, and 5, which are defined in American Society of Civil Engineers/Structural Engineers Institute (ASCE/SEI) 43-05 (ASCE, 2005). The application of the criteria and decision points could lead to an update or could determine that such update is not necessary.« less

  18. How to HAMMER home hazardous materials training

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ollero, J.

    1994-10-01

    This article describes HAMMER - the Hazardous Materials Management and Emergency Response Training - program being developed at the Hanford Reservation. The program uses true-to-life props and facilities to simulate emergencies and hazardous conditions. Topics covered include the set-up of the facility and training; the demand for such training; the involvement of the Army Corps of Engineers; the props to be constructed; the educational involvement of Tulane and Xavier Univerisities of Louisiana; temporary facility for the program; partnership with Indian Nations and Stakeholders; and budget plans and constriction. 9 figs.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willoughby III, O.H.; Lukes, G.C.

    EnergySolutions, LLC operates its Mixed Waste Facility at Clive, Utah under the provisions of its State-issued Part B Permit. The facility accepts waste that contains both hazardous and radioactive contaminants. Utah is an EPA Agreement State and therefore the Utah Division of Solid and Hazardous Waste (DSHW) is authorized to regulate the hazardous waste operations at the facility. The radioactive portion of the waste is regulated by the Utah Division of Radiation Control. 40 CFR 264.142 outlines the facility requirements for Closure Costs. The owner or operator must have a detailed written estimate of the cost of closing the facilitymore » in accordance with the rules. For many years the State of Utah had relied on the facility's estimate of closure costs as the amount that needed to be funded. This amount is reviewed annually and adjusted for inflation and for changes at the facility. In 2004 the agency and the facility requested bids from independent contractors to provide their estimate for closure costs. Three engineering firms bid on the project. The facility funded the project and both the agency and the facility chose one of the firms to provide an independent estimate. The engineering firms met with both parties and toured the facility. They were also provided with the current closure cost line items. Each firm provided an estimated cost for closure of the facility at the point in the facility's active life that would make the closure most expensive. Included with the direct costs were indirect line items such as overhead, profit, mobilization, hazardous working conditions and regulatory oversight. The agency and the facility reviewed the independent estimates and negotiated a final Closure and Post-Closure Cost Estimate for the Mixed Waste Facility. There are several mechanisms allowed under the rules to fund the Closure and Post- Closure Care Funds. EnergySolutions has chosen to fund their costs through the use of an insurance policy. Changing mechanisms from an irrevocable trust to an insurance policy required extensive review by the DSHW and the Utah Attorney General's Office. The duration of the Post-Closure Care Period is generally designated as 30 years under the hazardous waste rules. The Legislature of the State of Utah commissioned a review of the need for Perpetual Care Funds for hazardous waste facilities. This fund would provide funds for maintenance and monitoring of facilities following termination of the Post-Closure Permit. The DSHW has recommended to the legislature that a perpetual care fund be created. The legislature will study the recommendation and take appropriate action. (authors)« less

  20. The NHERI RAPID Facility: Enabling the Next-Generation of Natural Hazards Reconnaissance

    NASA Astrophysics Data System (ADS)

    Wartman, J.; Berman, J.; Olsen, M. J.; Irish, J. L.; Miles, S.; Gurley, K.; Lowes, L.; Bostrom, A.

    2017-12-01

    The NHERI post-disaster, rapid response research (or "RAPID") facility, headquartered at the University of Washington (UW), is a collaboration between UW, Oregon State University, Virginia Tech, and the University of Florida. The RAPID facility will enable natural hazard researchers to conduct next-generation quick response research through reliable acquisition and community sharing of high-quality, post-disaster data sets that will enable characterization of civil infrastructure performance under natural hazard loads, evaluation of the effectiveness of current and previous design methodologies, understanding of socio-economic dynamics, calibration of computational models used to predict civil infrastructure component and system response, and development of solutions for resilient communities. The facility will provide investigators with the hardware, software and support services needed to collect, process and assess perishable interdisciplinary data following extreme natural hazard events. Support to the natural hazards research community will be provided through training and educational activities, field deployment services, and by promoting public engagement with science and engineering. Specifically, the RAPID facility is undertaking the following strategic activities: (1) acquiring, maintaining, and operating state-of-the-art data collection equipment; (2) developing and supporting mobile applications to support interdisciplinary field reconnaissance; (3) providing advisory services and basic logistics support for research missions; (4) facilitating the systematic archiving, processing and visualization of acquired data in DesignSafe-CI; (5) training a broad user base through workshops and other activities; and (6) engaging the public through citizen science, as well as through community outreach and education. The facility commenced operations in September 2016 and will begin field deployments beginning in September 2018. This poster will provide an overview of the vision for the RAPID facility, the equipment that will be available for use, the facility's operations, and opportunities for user training and facility use.

  1. Analyses in support of risk-informed natural gas vehicle maintenance facility codes and standards :

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekoto, Isaac W.; Blaylock, Myra L.; LaFleur, Angela Christine

    2014-03-01

    Safety standards development for maintenance facilities of liquid and compressed gas fueled large-scale vehicles is required to ensure proper facility design and operation envelopes. Standard development organizations are utilizing risk-informed concepts to develop natural gas vehicle (NGV) codes and standards so that maintenance facilities meet acceptable risk levels. The present report summarizes Phase I work for existing NGV repair facility code requirements and highlights inconsistencies that need quantitative analysis into their effectiveness. A Hazardous and Operability study was performed to identify key scenarios of interest. Finally, scenario analyses were performed using detailed simulations and modeling to estimate the overpressure hazardsmore » from HAZOP defined scenarios. The results from Phase I will be used to identify significant risk contributors at NGV maintenance facilities, and are expected to form the basis for follow-on quantitative risk analysis work to address specific code requirements and identify effective accident prevention and mitigation strategies.« less

  2. Influence of potential sea level rise on societal vulnerability to hurricane storm-surge hazards, Sarasota County, Florida

    USGS Publications Warehouse

    Frazier, T.G.; Wood, N.; Yarnal, B.; Bauer, D.H.

    2010-01-01

    Although the potential for hurricanes under current climatic conditions continue to threaten coastal communities, there is concern that climate change, specifically potential increases in sea level, could influence the impacts of future hurricanes. To examine the potential effect of sea level rise on community vulnerability to future hurricanes, we assess variations in socioeconomic exposure in Sarasota County, FL, to contemporary hurricane storm-surge hazards and to storm-surge hazards enhanced by sea level rise scenarios. Analysis indicates that significant portions of the population, economic activity, and critical facilities are in contemporary and future hurricane storm-surge hazard zones. The addition of sea level rise to contemporary storm-surge hazard zones effectively causes population and asset (infrastructure, natural resources, etc) exposure to be equal to or greater than what is in the hazard zone of the next higher contemporary Saffir-Simpson hurricane category. There is variability among communities for this increased exposure, with greater increases in socioeconomic exposure due to the addition of sea level rise to storm-surge hazard zones as one progresses south along the shoreline. Analysis of the 2050 comprehensive land use plan suggests efforts to manage future growth in residential, economic and infrastructure development in Sarasota County may increase societal exposure to hurricane storm-surge hazards. ?? 2010 Elsevier Ltd.

  3. Influence of potential sea level rise on societal vulnerability to hurricane storm-surge hazards, Sarasota County, Florida

    USGS Publications Warehouse

    Frazier, Tim G.; Wood, Nathan; Yarnal, Brent; Bauer, Denise H.

    2010-01-01

    Although the potential for hurricanes under current climatic conditions continue to threaten coastal communities, there is concern that climate change, specifically potential increases in sea level, could influence the impacts of future hurricanes. To examine the potential effect of sea level rise on community vulnerability to future hurricanes, we assess variations in socioeconomic exposure in Sarasota County, FL, to contemporary hurricane storm-surge hazards and to storm-surge hazards enhanced by sea level rise scenarios. Analysis indicates that significant portions of the population, economic activity, and critical facilities are in contemporary and future hurricane storm-surge hazard zones. The addition of sea level rise to contemporary storm-surge hazard zones effectively causes population and asset (infrastructure, natural resources, etc) exposure to be equal to or greater than what is in the hazard zone of the next higher contemporary Saffir–Simpson hurricane category. There is variability among communities for this increased exposure, with greater increases in socioeconomic exposure due to the addition of sea level rise to storm-surge hazard zones as one progresses south along the shoreline. Analysis of the 2050 comprehensive land use plan suggests efforts to manage future growth in residential, economic and infrastructure development in Sarasota County may increase societal exposure to hurricane storm-surge hazards.

  4. The role of hazardousness and regulatory practice in the accidental release of chemicals at U.S. industrial facilities.

    PubMed

    Elliott, Michael R; Keindorfer, Paul R; Lowe, Robert A

    2003-10-01

    This article presents the results of an analysis of the accident history data reported under section 112(r) of the Clean Air Act Amendments. These data provide a fairly complete record of the consequences of reportable accidental releases occurring during the time frame 1995-1999 in the U.S. chemical industry and covering 77 toxic and 63 flammable substances subject to the provisions of section 112(r). As such, these results are of fundamental interest to the affected communities, regulators, and insurers, as well as to owners and managers in the chemical industry. The results show the statistical associations between accident frequency and severity and a number of characteristics of reporting facilities, including their size, the hazardousness of the processes and chemicals inventoried, and the regulatory programs (in addition to section 112(r)) to which these facilities are subject. The results are interpreted in light of economic drivers of protective activity and regulatory priorities for monitoring and enforcement.

  5. Analysis of Possible Explosions at Kennedy Space Center Due to Spontaneous Ignition of Hypergolic Propellants

    NASA Technical Reports Server (NTRS)

    Brown, Stephen

    2010-01-01

    NASA's Constellation Program plan currently calls for the replacement of the Space Shuttle with the ARES I & V spacecraft and booster vehicles to send astronauts to the moon and beyond. Part of the ARES spacecraft is the Orion Crew Exploration Vehicle (CEV), which includes the Crew Module (CM) and Service Module (SM). The Orion CM's main propulsion system and supplies are provided by the SM. The SM is to be processed off line and moved to the Vehicle Assembly Building (V AB) for stacking to the first stage booster motors prior to ARES move to the launch pad. The new Constellation Program philosophy to process in this manner has created a major task for the KSC infrastructure in that conventional QD calculations are no longer viable because of the location of surrounding facilities near the VAB and the Multi Purpose Processing Facility (MPPF), where the SM will be serviced with nearly 18,000 pounds of hypergolic propellants. The Multi-Payload Processing Facility (MPPF) complex, constructed by NASA in 1994, is located just off E Avenue south of the Operations and Checkout (O&C) building in the Kennedy Space Center industrial area. The MPPF includes a high bay and a low bay. The MPPF high bay is 40.2 m (132 ft) long x 18.9 m (60 ft) wide with a ceiling height of 18.9 m (62 ft). The low bay is a 10.4 m (34 ft) long x 10.4 m (34 ft) wide processing area and has a ceiling height of6.1 m (20 ft). The MPPF is currently used to process non-hazardous payloads. Engineering Analysis Inc. (EAI), under contract with ASRC Aerospace, Inc. in conjunction with the Explosive Safety Office, NASA, Kennedy Space Center (KSC), has carried out an analysis of the effects of explosions at KSC in or near various facilities produced by the spontaneous ignition ofhypergolic fuel stored in the CEV SM. The facilities considered included (1) Vehicle Assembly Building (VAB) (2) Multi-Payload Processing Facility (MPPF) (3) Canister Rotation Facility (CRF) Subsequent discussion deals with the MPPF analysis. Figure 1 provides a view of the MPPF from the northwest. An interior view ofthe facility is shown in Figure 2. The study was concerned with both blast hazards and hazardous fragments which exceed existing safety standards, as described in Section 2.0. The analysis included both blast and fragmentation effects and was divided into three parts as follows: (1) blast (2) primary fragmentation (3) secondary fragmentation Blast effects are summarized in Section 3.0, primary fragmentation in Section 4.0, and secondary fragmentation (internal and external) in Section 5.0. Conclusions are provided in Section 6.0, while references cited are included in Section 7.0. A more detailed description of the entire study is available in a separate document.

  6. Canadian Innovations in Siting Hazardous Waste Management Facilities

    PubMed

    Kuhn; Ballard

    1998-07-01

    / Siting hazardous waste facilities is an extremely complex and difficult endeavor. Public aversion to the construction of these facilities in or near their community often results in concerted opposition, referred to as the NIMBY syndrome. For the most part, siting processes do not fail because of inadequate environmental or technical considerations, but because of the adversarial decision-making strategies employed by the proponents. Innovative siting processes used in the provinces of Alberta and Manitoba offer tangible evidence of the successful application of an innovative siting approach based on the principles of decentralization of decision-making authority and full and meaningful public involvement. The purpose of this paper is to evaluate four Canadian siting processes from the perspective of public participation and access to decision-making authority. Examples of siting processes related to hazardous waste management facilities are provided from the provinces of Alberta, Manitoba, British Columbia, and Ontario. Siting has evolved from approaches dominated by top-down decision making to increasing decentralized and pluralistic approaches. Focusing on social and political concerns of potentially affected communities and on the process of decision making itself are fundamental to achieving siting success. In Alberta initially, and later in Manitoba, this new "open approach" to siting has resulted in the construction of the first two comprehensive hazardous waste treatment facilities in Canada.KEY WORDS: Hazardous waste facilities; Siting methodologies; Public participation

  7. Facilities Condition and Hazards Assessment for Materials and Fuel Complex Facilities MFC-799, 799A, and 770C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gary Mecham; Don Konoyer

    2009-11-01

    The Materials & Fuel Complex (MFC) facilities 799 Sodium Processing Facility (a single building consisting of two areas: the Sodium Process Area (SPA) and the Carbonate Process Area (CPA), 799A Caustic Storage Area, and 770C Nuclear Calibration Laboratory have been declared excess to future Department of Energy mission requirements. Transfer of these facilities from Nuclear Energy to Environmental Management, and an associated schedule for doing so, have been agreed upon by the two offices. The prerequisites for this transfer to occur are the removal of nonexcess materials and chemical inventory, deinventory of the calibration source in MFC-770C, and the reroutingmore » and/or isolation of utility and service systems. This report provides a description of the current physical condition and any hazards (material, chemical, nuclear or occupational) that may be associated with past operations of these facilities. This information will document conditions at time of transfer of the facilities from Nuclear Energy to Environmental Management and serve as the basis for disposition planning. The process used in obtaining this information included document searches, interviews and facility walk-downs. A copy of the facility walk-down checklist is included in this report as Appendix A. MFC-799/799A/770C are all structurally sound and associated hazardous or potentially hazardous conditions are well defined and well understood. All installed equipment items (tanks, filters, etc.) used to process hazardous materials remain in place and appear to have maintained their integrity. There is no evidence of leakage and all openings are properly sealed or closed off and connections are sound. The pits appear clean with no evidence of cracking or deterioration that could lead to migration of contamination. Based upon the available information/documentation reviewed and the overall conditions observed during the facilities walk-down, it is concluded that these facilities may be disposed of at minimal risk to human health, safety or the environment.« less

  8. Environmental justice: frequency and severity of US chemical industry accidents and the socioeconomic status of surrounding communities.

    PubMed

    Elliott, M R; Wang, Y; Lowe, R A; Kleindorfer, P R

    2004-01-01

    The Clean Air Act Amendments of 1990 requires that chemical facilities in the US with specified quantities of certain toxic or flammable chemicals file a five year history of accidents. This study considers the relation between the reported accidents and surrounding community characteristics. This study is a retrospective analysis of the association between the demographics of counties in which facilities are located and the risk of accidental chemical release and resulting injuries at those facilities. The "location risk" (the risk that a facility having large volumes of hazardous chemicals is located in a community) and "operations risk" (the risk of an accident itself) are investigated. 1994-2000 accident history data from 15 083 US industrial facilities using one or more of 140 flammable or toxic substances above a threshold level. Demographic makeup of 2333 counties surrounding these facilities was determined from the 1990 US census. Larger and more chemical intensive facilities tend to be located in counties with larger African-American populations and in counties with both higher median incomes and high levels of income inequality. Even after adjusting for location risk there is greater risk of accidents for facilities in heavily African-American counties (OR of accident = 1.9, 95% CI = 1.5 to 2.4). Further research and policy interventions are required to reduce the probability of locating facilities in an inequitable fashion, as well as health surveillance, and regulatory monitoring and enforcement activities to ensure that hazardous facilities in minority communities prepare and prevent accidental chemical releases to the same standards as elsewhere.

  9. Two Springfield, Mass. Facilities Agree to Improve Handling and Reporting of Hazardous Chemicals

    EPA Pesticide Factsheets

    Two facilities located in Springfield, Mass. have agreed with the U.S. EPA to come into compliance with federal requirements designed to protect the public and first responders from exposure to hazardous chemicals.

  10. Hazardous Waste Cleanup: Clean Harbors BTD, LLC in Clarence, New York

    EPA Pesticide Factsheets

    The Clean Harbors BDT, LLC site was a commercial treatment, storage, and disposal facility that treated reactive hazardous wastes, pressurized waste, pharmaceutical and packaged laboratory chemicals. The facility was initially owned and operated by Wilson-

  11. Closure of hazardous and mixed radioactive waste management units at DOE facilities. [Contains glossary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This is document addresses the Federal regulations governing the closure of hazardous and mixed waste units subject to Resource Conservation and Recovery Act (RCRA) requirements. It provides a brief overview of the RCRA permitting program and the extensive RCRA facility design and operating standards. It provides detailed guidance on the procedural requirements for closure and post-closure care of hazardous and mixed waste management units, including guidance on the preparation of closure and post-closure plans that must be submitted with facility permit applications. This document also provides guidance on technical activities that must be conducted both during and after closure ofmore » each of the following hazardous waste management units regulated under RCRA.« less

  12. Hazardous waste: Siting of storage facility at Kelly Air Force Base, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-01-01

    This report provides information on whether the hazardous waste storage facility at Kelly Air Force Base meets Resource Conservation and Recovery Act, state, and Air Force siting requirements; on whether the Air Force or the Defense Reutilization and Marketing Office selected the best site available to protect the public and to preserve good public relations with the community; on whether the Air Force, Kelly Air Force Base, or the Defense Logistics Agency adjusted siting standards as a result of the adverse publicity the hazardous waste facility has generated; and on whether Kelly Air Force Base is revising its hazardous wastemore » management organization so that it is similar to the organizations at Tinker and McClellan Air Force Bases.« less

  13. 29 CFR 1917.73 - Terminal facilities handling menhaden and similar species of fish (see also § 1917.2, definition...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Terminal facilities handling menhaden and similar species of fish (see also § 1917.2, definition of hazardous cargo, material, substance or atmosphere). 1917... facilities handling menhaden and similar species of fish (see also § 1917.2, definition of hazardous cargo...

  14. Hazardous Waste: Learn the Basics of Hazardous Waste

    MedlinePlus

    ... to set up a framework for the proper management of hazardous waste. Need More Information on Hazardous Waste? The RCRA Orientation Manual provides ... facility management standards, specific provisions governing hazardous waste management units ... information on the final steps in EPA’s hazardous waste ...

  15. Natural phenomena hazards design and evaluation criteria for Department of Energy Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-04-01

    This DOE standard gives design and evaluation criteria for natural phenomena hazards (NPH) effects as guidance for implementing the NPH mitigation requirements of DOE 5480.28. Goal of the criteria is to assure that DOE facilities can withstand the effects of earthquakes, extreme winds, tornadoes, flooding, etc. They apply to the design of new facilities and the evaluation of existing facilities; they may also be used for modification and upgrading of the latter.

  16. 77 FR 66486 - Applications and Amendments to Facility Operating Licenses and Combined Licenses Involving...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-05

    .... The analyses for LSCS, Unit 2, Cycle 15 have concluded that a two-loop MCPR SL of >= 1.14, based on... safety. The NRC staff has reviewed the licensee's analysis and, based on this review, it appears that the... has provided its analysis of the issue of no significant hazards consideration, which is presented...

  17. RCRA Facility Information

    EPA Pesticide Factsheets

    This asset includes hazardous waste information, which is mostly contained in the Resource Conservation and Recovery Act Information (RCRAInfo) System, a national program management and inventory system addressing hazardous waste handlers. In general, all entities that generate, transport, treat, store, and dispose of hazardous waste are required to provide information about their activities to state environmental agencies. These agencies pass on that information to regional and national EPA offices. This regulation is governed by the Resource Conservation and Recovery Act (RCRA), as amended by the Hazardous and Solid Waste Amendments of 1984. RCRAInfo Search can be used to determine identification and location data for specific hazardous waste handlers and to find a wide range of information on treatment, storage, and disposal facilities regarding permit/closure status, compliance with Federal and State regulations, and cleanup activities. Categories of information in this asset include:-- Handlers-- Permit Information-- GIS information on facility location-- Financial Assurance-- Corrective Action-- Compliance Monitoring and Enforcement (CM&E)

  18. 77 FR 61826 - Pipeline Safety: Communication During Emergency Situations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-11

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No... liquefied natural gas pipeline facilities that operators should immediately and directly notify the Public.... Background Federal regulations for gas, liquefied natural gas (LNG), and hazardous liquid pipeline facilities...

  19. Safety analysts training

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolton, P.

    The purpose of this task was to support ESH-3 in providing Airborne Release Fraction and Respirable Fraction training to safety analysts at LANL who perform accident analysis, hazard analysis, safety analysis, and/or risk assessments at nuclear facilities. The task included preparation of materials for and the conduct of two 3-day training courses covering the following topics: safety analysis process; calculation model; aerosol physic concepts for safety analysis; and overview of empirically derived airborne release fractions and respirable fractions.

  20. PO*WW*ER mobile treatment unit process hazards analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, R.B.

    1996-06-01

    The objective of this report is to demonstrate that a thorough assessment of the risks associated with the operation of the Rust Geotech patented PO*WW*ER mobile treatment unit (MTU) has been performed and documented. The MTU was developed to treat aqueous mixed wastes at the US Department of Energy (DOE) Albuquerque Operations Office sites. The MTU uses evaporation to separate organics and water from radionuclides and solids, and catalytic oxidation to convert the hazardous into byproducts. This process hazards analysis evaluated a number of accident scenarios not directly related to the operation of the MTU, such as natural phenomena damagemore » and mishandling of chemical containers. Worst case accident scenarios were further evaluated to determine the risk potential to the MTU and to workers, the public, and the environment. The overall risk to any group from operation of the MTU was determined to be very low; the MTU is classified as a Radiological Facility with low hazards.« less

  1. On the Storm Surge and Sea Level Rise Projections for Infrastructure Risk Analysis and Adaptation

    EPA Science Inventory

    Storm surge can cause coastal hydrology changes, flooding, water quality changes, and even inundation of low-lying terrain. Strong wave actions and disruptive winds can damage water infrastructure and other environmental assets (hazardous and solid waste management facilities, w...

  2. Federal Agency Hazardous Waste Compliance Docket

    EPA Pesticide Factsheets

    The Federal Agency Hazardous Waste Compliance Docket contains information reported to EPA by federal facilities that manage hazardous waste or from which hazardous substances, pollutants, or contaminants have been - or may be - released.

  3. 2016 Los Alamos National Laboratory Hazardous Waste Minimization Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salzman, Sonja L.; English, Charles Joe

    Waste minimization and pollution prevention are goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE), inclusive of the National Nuclear Security Administration (NNSA) and the Office of Environmental Management, and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program, whichmore » is a component of the overall Pollution Prevention (P2) Program, administered by the Environmental Stewardship Group (EPC-ES). This report also supports the waste minimization and P2 goals of the Associate Directorate of Environmental Management (ADEM) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. This report includes data for all waste shipped offsite from LANL during fiscal year (FY) 2016 (October 1, 2015 – September 30, 2016). LANS was active during FY2016 in waste minimization and P2 efforts. Multiple projects were funded that specifically related to reduction of hazardous waste. In FY2016, there was no hazardous, mixed-transuranic (MTRU), or mixed low-level (MLLW) remediation waste shipped offsite from the Laboratory. More non-remediation hazardous waste and MLLW was shipped offsite from the Laboratory in FY2016 compared to FY2015. Non-remediation MTRU waste was not shipped offsite during FY2016. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.« less

  4. Cleanups In My Community (CIMC) - RCRA and Base Realignment and Closure (BRAC) Federal Facilities, National Layer

    EPA Pesticide Factsheets

    This data layer provides access to Resource Conservation and Recovery Act (RCRA) Base Realignment and Closure (BRAC) sites as part of the CIMC web service. The Resource Conservation and Recovery Act, among other things, helps ensure that wastes are managed in an environmentally sound manner so as to protect human health and the environment from the potential hazards of waste disposal.In particular RCRA tightly regulates all hazardous waste from cradle to grave. In general, all generators, transporters, treaters, storers, and disposers of hazardous waste are required to provide information about their activities to state environmental agencies. These agencies, in turn pass on the information to regional and national EPA offices. Accidents or other activities at facilities that treat, store or dispose of hazardous wastes have sometimes led to the release of hazardous waste or hazardous constituents into soil, ground water, surface water, or air. When that happens, the RCRA Corrective Action program is one program that may be used to accomplish the necessary cleanup.This data layer shows those RCRA sites that are located at BRAC Federal Facilities. Additional RCRA sites and other BRAC sites (those that are not RCRA sites) are included in other data layers as part of this web service.Note: RCRA facilities which are not undergoing corrective action are not considered ??Cleanups?? in Cleanups in My Community. The complete set of RCRA facilities can be accessed via

  5. Previous Federal Agency Hazardous Waste Compliance Docket Updates

    EPA Pesticide Factsheets

    The Federal Agency Hazardous Waste Compliance Docket contains information reported to EPA by federal facilities that manage hazardous waste or from which hazardous substances, pollutants, or contaminants have been - or may be - released.

  6. Hazardous Waste Cleanup: IBM Corporation, Former in Owego, New York

    EPA Pesticide Factsheets

    The corrective action activities at the facility are conducted by IBM Corporation, therefore IBM is listed as the operator of the Part 373 Hazardous Waste Management (HWM) Permit for corrective action. Lockheed Martin Corporation owns the facility and is l

  7. Hazardous Waste Cleanup: Northeast Environmental Services in Canastota, New York

    EPA Pesticide Factsheets

    The Haz-O-Waste Corporation operated this treatment and storage facility for hazardous and industrial wastes from August 1976 until it was purchased by Northeast Environmental Services, Inc., in September, 1986. The facility is located on Canal Road in Can

  8. Decision Analysis with Value Focused Thinking as a Methodology to Select Buildings for Deconstruction

    DTIC Science & Technology

    2007-03-01

    Congress Facility 7366 30251 Hazardous Material Storage Shed 432 20447 Aircraft Research Lab 1630 20449 Aircraft Research Lab 2480 34042 Reserve Forces...Congress Facility 0.566 20055 Engineering Admin. Building 0.578 20449 Aircraft Research Lab 0.595 20447 Aircraft Research Lab 0.605 20464...0.525 $39.00 0.01346 20447 Aircraft Research Lab 0.605 $59.50 0.01017 20449 Aircraft Research Lab 0.595 $62.40 0.00954 20464 Area B Gas Station

  9. Audits of hazardous waste TSDFs let generators sleep easy. [Hazardous waste treatment, storage and disposal facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carr, F.H.

    1990-02-01

    Because of the increasingly strict enforcement of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and the Resource Conservation and Recovery Act (RCRA), generators of hazardous waste are compelled to investigate the hazardous waste treatment, storage and disposal facility (TSDF) they use. This investigation must include an environmental and a financial audit. Simple audits may be performed by the hazardous waste generator, while more thorough ones such as those performed for groups of generators are more likely to be conducted by environmental consultants familiar with treatment, storage, and disposal techniques and the regulatory framework that guides them.

  10. Treatment at high-volume facilities and academic centers is independently associated with improved survival in patients with locally advanced head and neck cancer.

    PubMed

    David, John M; Ho, Allen S; Luu, Michael; Yoshida, Emi J; Kim, Sungjin; Mita, Alain C; Scher, Kevin S; Shiao, Stephen L; Tighiouart, Mourad; Zumsteg, Zachary S

    2017-10-15

    The treatment of head and neck cancers is complex and associated with significant morbidity, requiring multidisciplinary care and physician expertise. Thus, facility characteristics, such as clinical volume and academic status, may influence outcomes. The current study included 46,567 patients taken from the National Cancer Data Base who were diagnosed with locally advanced invasive squamous cell carcinomas of the oropharynx, larynx, and hypopharynx and were undergoing definitive radiotherapy. High-volume facilities (HVFs) were defined as the top 1% of centers by the number of patients treated from 2004 through 2012. Multivariable Cox regression and propensity score matching were performed to account for imbalances in covariates. The median follow-up was 55.1 months. Treatment at a HVF (hazard ratio, 0.798; 95% confidence interval, 0.753-0.845 [P<.001]) and treatment at an academic facility (hazard ratio, 0.897; 95% confidence interval, 0.871-0.923 [P<.001]) were found to be independently associated with improved overall survival in multivariable analysis. In propensity score-matched cohorts, the 5-year overall survival rate was 61.6% versus 55.5% for patients treated at an HVF versus lower-volume facilities, respectively (P<.001). Similarly, the 5-year overall survival rate was 52.3% versus 49.7% for patients treated at academic versus nonacademic facilities (P<.001). Analysis of facility volume as a continuous variable demonstrated continual improvement in survival with an increased number of patients treated. The impact of facility volume and academic designation on survival was observed when using a variety of thresholds to define HVF, and across the vast majority of subgroups, including both oropharyngeal and nonoropharyngeal subsites. Patients with locally advanced head and neck squamous cell carcinoma who are undergoing curative radiotherapy at HVFs and academic centers appear to have improved survival. Cancer 2017;123:3933-42. © 2017 American Cancer Society. © 2017 American Cancer Society.

  11. SWEIS annual review - CY2002 : a comparison of CY2002 operations to projections included in the site-wide environmental impact statement for continued operation of Sandia National Laboratories/New Mexico.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayliss, Linda Sue; White, Brenda Bailey; Guerrero, Joseph Vincent

    2003-10-01

    The SNL/NM CY2002 SWEIS Annual Review discusses changes in facilities and facility operations that have occurred in selected and notable facilities since source data were collected for the SNL/NM SWEIS (DOE/EIS-0281). The following information is presented: {sm_bullet} An updated overview of SNL/NM selected and notable facilities and infrastructure capabilities. {sm_bullet} An overview of SNL/NM environment, safety, and health programs, including summaries of the purpose, operations, activities, hazards, and hazard controls at relevant facilities and risk management methods for SNL/NM. {sm_bullet} Updated base year activities data, together with related inventories, material consumption, emissions, waste, and resource consumption. {sm_bullet} Appendices summarizing activitiesmore » and related hazards at SNL/NM individual special, general, and highbay laboratories, and chemical purchases.« less

  12. Analysis of the Hazardous Material Reutilization Facilities at SUBASE Bangor and NS San Diego

    DTIC Science & Technology

    1990-12-01

    soprene * styrene methyl acrylate methyl methacrylate *turpentine? varnish 9 GROUP IV: OXIDES AND PEROXIDE -rORKING COMPOUNDS a) Gases b) Liquids...lead fluorine GROUP XV: POISON a GROUP XVI: OXIDIZERS .a) Solid a) Solid phosphorus red ammonium nitrate phosphorus white/, ammonium perchlorate yellow

  13. 10 CFR Appendix A to Subpart B of... - General Statement of Safety Basis Policy

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Analysis Reports for Nuclear Power Plants, or successor document. (2) A DOE nonreactor nuclear facility... with DOE Policy 450.2A, “Identifying, Implementing and Complying with Environment, Safety and Health..., the public and the environment from adverse consequences. These analyses and hazard controls...

  14. NACA Zero Power Reactor Facility Hazards Summary

    NASA Technical Reports Server (NTRS)

    1957-01-01

    The Lewis Flight Propulsion Laboratory of the National Advisory Committee for Aeronautics proposes to build a zero power research reactor facility which will be located in the laboratory grounds near Clevelaurd, Ohio. The purpose of this report is to inform the Advisory Commit tee on Reactor Safeguards of the U. S. Atomic Energy Commission in re gard to the design of the reactor facility, the cha,acteristics of th e site, and the hazards of operation at this location, The purpose o f this reactor is to perform critical experiments, to measure reactiv ity effects, to serve as a neutron source, and to serve as a training tool. The reactor facility is described. This is followed by a discu ssion of the nuclear characteristics and the control system. Site cha racteristics are then discussed followed by a discussion of the exper iments which may be conducted in the facility. The potential hazards of the facility are then considered, particularly, the maximum credib le accident. Finally, the administrative procedure is discussed.

  15. 40 CFR 264.1035 - Recordkeeping requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... management units in one recordkeeping system if the system identifies each record by each hazardous waste management unit. (b) Owners and operators must record the following information in the facility operating...., identify the hazardous waste management units on a facility plot plan). (ii) Information and data...

  16. 75 FR 72877 - Pipeline Safety: Updates to Pipeline and Liquefied Natural Gas Reporting Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-26

    ... liquid pipelines, and liquefied natural gas (LNG) facilities. These revisions will enhance PHMSA's... of natural gas pipelines, hazardous liquid pipelines, and LNG facilities. Specifically, PHMSA... commodity transported, and type of commodity transported. 8. Modify hazardous liquid operator telephonic...

  17. 40 CFR 270.1 - Purpose and scope of these regulations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements, such as application requirements, standard permit conditions, and monitoring and reporting... stores hazardous waste on-site in tanks, containers, or containment buildings; or (2) The facility... facility, and then stores or non-thermally treats the hazardous waste in containers, tanks, or containment...

  18. Identification of elements at risk for a credible tsunami event for Istanbul

    NASA Astrophysics Data System (ADS)

    Hancilar, U.

    2012-01-01

    Physical and social elements at risk are identified for a credible tsunami event for Istanbul. For this purpose, inundation maps resulting from probabilistic tsunami hazard analysis for a 10% probability of exceedance in 50 yr are utilised in combination with the geo-coded inventories of building stock, lifeline systems and demographic data. The built environment on Istanbul's shorelines that is exposed to tsunami inundation comprises residential, commercial, industrial, public (governmental/municipal, schools, hospitals, sports and religious), infrastructure (car parks, garages, fuel stations, electricity transformer buildings) and military buildings, as well as piers and ports, gas tanks and stations and other urban elements (e.g., recreational facilities). Along the Marmara Sea shore, Tuzla shipyards and important port and petrochemical facilities at Ambarlı are expected to be exposed to tsunami hazard. Significant lifeline systems of the city of Istanbul such as natural gas, electricity, telecommunication and sanitary and waste-water transmission, are also under the threat of tsunamis. In terms of social risk, it is estimated that there are about 32 000 inhabitants exposed to tsunami hazard.

  19. A needs analysis method for land-use planning of illegal dumping sites: a case study in Aomori-Iwate, Japan.

    PubMed

    Ishii, Kazuei; Furuichi, Toru; Nagao, Yukari

    2013-02-01

    Land use at contaminated sites, following remediation, is often needed for regional redevelopment. However, there exist few methods of developing economically and socially feasible land-use plans based on regional needs because of the wide variety of land-use requirements. This study proposes a new needs analysis method for the conceptual land-use planning of contaminated sites and illustrates this method with a case study of an illegal dumping site for hazardous waste. In this method, planning factors consisting of the land-use attributes and related facilities are extracted from the potential needs of the residents through a preliminary questionnaire. Using the extracted attributes of land use and the related facilities, land-use cases are designed for selection-based conjoint analysis. A second questionnaire for respondents to the first one who indicated an interest in participating in the second questionnaire is conducted for the conjoint analysis to determine the utility function and marginal cost of each attribute in order to prioritize the planning factors to develop a quantitative and economically and socially feasible land-use plan. Based on the results, site-specific land-use alternatives are developed and evaluated by the utility function obtained from the conjoint analysis. In this case study of an illegal dumping site for hazardous waste, the uses preferred as part of a conceptual land-use plan following remediation of the site were (1) agricultural land and a biogas plant designed to recover energy from biomass or (2) a park with a welfare facility and an athletic field. Our needs analysis method with conjoint analysis is applicable to the development of conceptual land-use planning for similar sites following remediation, particularly when added value is considered. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Environmental justice: frequency and severity of US chemical industry accidents and the socioeconomic status of surrounding communities

    PubMed Central

    Elliott, M; Wang, Y; Lowe, R; Kleindorfer, P

    2004-01-01

    Study objectives: The Clean Air Act Amendments of 1990 requires that chemical facilities in the US with specified quantities of certain toxic or flammable chemicals file a five year history of accidents. This study considers the relation between the reported accidents and surrounding community characteristics. Design: This study is a retrospective analysis of the association between the demographics of counties in which facilities are located and the risk of accidental chemical release and resulting injuries at those facilities. The "location risk" (the risk that a facility having large volumes of hazardous chemicals is located in a community) and "operations risk" (the risk of an accident itself) are investigated. Setting:1994–2000 accident history data from 15 083 US industrial facilities using one or more of 140 flammable or toxic substances above a threshold level. Demographic makeup of 2333 counties surrounding these facilities was determined from the 1990 US census. Main results: Larger and more chemical intensive facilities tend to be located in counties with larger African-American populations and in counties with both higher median incomes and high levels of income inequality. Even after adjusting for location risk there is greater risk of accidents for facilities in heavily African-American counties (OR of accident = 1.9, 95% CI = 1.5 to 2.4). Conclusions: Further research and policy interventions are required to reduce the probability of locating facilities in an inequitable fashion, as well as health surveillance, and regulatory monitoring and enforcement activities to ensure that hazardous facilities in minority communities prepare and prevent accidental chemical releases to the same standards as elsewhere. PMID:14684723

  1. 33 CFR 154.525 - Monitoring devices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... monitoring devices at the facility would significantly limit the size of a discharge of oil or hazardous... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Monitoring devices. 154.525...) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Equipment Requirements § 154.525...

  2. 33 CFR 154.525 - Monitoring devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... monitoring devices at the facility would significantly limit the size of a discharge of oil or hazardous... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Monitoring devices. 154.525...) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Equipment Requirements § 154.525...

  3. 33 CFR 154.525 - Monitoring devices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... monitoring devices at the facility would significantly limit the size of a discharge of oil or hazardous... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Monitoring devices. 154.525...) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Equipment Requirements § 154.525...

  4. 33 CFR 154.525 - Monitoring devices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... monitoring devices at the facility would significantly limit the size of a discharge of oil or hazardous... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Monitoring devices. 154.525...) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Equipment Requirements § 154.525...

  5. Oil and Natural Gas Production Facilities National Emissions Standards for Hazardous Air Pollutants (NESHAP) Final Rule Fact Sheet

    EPA Pesticide Factsheets

    This page contains a January 2007 fact sheet for the final National Emission Standards for Hazardous Air Pollutants (NESHAP) for Oil and Natural Gas Production Facilities. This document provides a summary of the 2007 final rule.

  6. National Emission Standards for Hazardous Air Pollutants (NESHAP) for Source Categories: Perchloroethylene Dry Cleaning Facilities - 1993 Final Rule (58 FR 49354)

    EPA Pesticide Factsheets

    This document is a copy of the Federal Register publication of the September 22, 1993 Final Rule for the National Emission Standards for Hazardous Air Pollutants for Source Categories: Perchloroethylene Dry Cleaning Facilities.

  7. Enforcement Alert: Hazardous Waste Management Practices at Mineral Processing Facilities Under Scrutiny by U.S. EPA; EPA Clarifies 'Bevill Exclusion' Wastes and Establishes Disposal Standards

    EPA Pesticide Factsheets

    This is the enforcement alert for Hazardous Waste Management Practices at Mineral Processing Facilities Under Scrutiny by U.S. EPA; EPA Clarifies 'Bevill Exclusion' Wastes and Establishes Disposal Standards

  8. 40 CFR 745.326 - Renovation: State and Tribal program requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT LEAD-BASED PAINT POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES... distribution of lead hazard information to owners and occupants of target housing and child-occupied facilities... distributing the lead hazard information to owners and occupants of housing and child-occupied facilities prior...

  9. Hazardous Waste Cleanup: Thermo King de Puerto Rico Incorporated in Arecibo, Puerto Rico

    EPA Pesticide Factsheets

    Thermo King de Puerto Rico, Inc. facility is located in the Zeno Gandia Industrial Area in Arecibo, Puerto Rico. Major features of the facility include six buildings used for manufacturing and storage, a wastewater treatment plant, a hazardous waste and no

  10. 75 FR 42361 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-21

    ... and Hazardous Substances Pollution Contingency Plan; National Priorities List: Partial Deletion of the Rocky Mountain Arsenal Federal Facility AGENCY: Environmental Protection Agency. ACTION: Proposed rule... Notice of Intent to Delete portions of the Rocky Mountain Arsenal Federal Facility (RMA) from the...

  11. EPCRA Tier II Emergency and Hazardous Chemical Inventory Form

    EPA Pesticide Factsheets

    Required for Emergency and Hazardous Chemical Inventory reporting. Must provide facility identification, chemical description, indication of physical and health hazards, inventory information, and storage details.

  12. A complete electrical shock hazard classification system and its application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, Lloyd; Cartelli, Laura; Graham, Nicole

    Current electrical safety standards evolved to address the hazards of 60-Hz power that are faced primarily by electricians, linemen, and others performing facility and utility work. As a result, this leaves a substantial gap in the management of electrical hazards in Research and Development (R&D) and specialized high voltage and high power equipment. We find substantial use of direct current (dc) electrical energy, and the use of capacitors, inductors, batteries, and radiofrequency (RF) power. The electrical hazards of these forms of electricity and their systems are different than for 50/60 Hz power. This paper proposes a method of classifying allmore » of the electrical shock hazards found in all types of R&D and utilization equipment. Examples of the variation of these hazards from NFPA 70E include (a) high voltage can be harmless, if the available current is sufficiently low, (b) low voltage can be harmful if the available current/power is high, (c) high voltage capacitor hazards are unique and include severe reflex action, affects on the heart, and tissue damage, and (d) arc flash hazard analysis for dc and capacitor systems are not provided in existing standards. This work has led to a comprehensive electrical hazard classification system that is based on various research conducted over the past 100 years, on analysis of such systems in R&D, and on decades of experience. Lastly, the new comprehensive electrical shock hazard classification system uses a combination of voltage, shock current available, fault current available, power, energy, and waveform to classify all forms of electrical hazards.« less

  13. A complete electrical shock hazard classification system and its application

    DOE PAGES

    Gordon, Lloyd; Cartelli, Laura; Graham, Nicole

    2018-02-08

    Current electrical safety standards evolved to address the hazards of 60-Hz power that are faced primarily by electricians, linemen, and others performing facility and utility work. As a result, this leaves a substantial gap in the management of electrical hazards in Research and Development (R&D) and specialized high voltage and high power equipment. We find substantial use of direct current (dc) electrical energy, and the use of capacitors, inductors, batteries, and radiofrequency (RF) power. The electrical hazards of these forms of electricity and their systems are different than for 50/60 Hz power. This paper proposes a method of classifying allmore » of the electrical shock hazards found in all types of R&D and utilization equipment. Examples of the variation of these hazards from NFPA 70E include (a) high voltage can be harmless, if the available current is sufficiently low, (b) low voltage can be harmful if the available current/power is high, (c) high voltage capacitor hazards are unique and include severe reflex action, affects on the heart, and tissue damage, and (d) arc flash hazard analysis for dc and capacitor systems are not provided in existing standards. This work has led to a comprehensive electrical hazard classification system that is based on various research conducted over the past 100 years, on analysis of such systems in R&D, and on decades of experience. Lastly, the new comprehensive electrical shock hazard classification system uses a combination of voltage, shock current available, fault current available, power, energy, and waveform to classify all forms of electrical hazards.« less

  14. Revision to flood hazard evaluation for the Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buckley, R.; Werth, D.

    Requirements for the Natural Phenomena Hazard (NPH) mitigation for new and existing Department of Energy (DOE) facilities are outlined in DOE Order 420.1. This report examines the hazards posed by potential flooding and represents an update to two previous reports. The facility-specific probabilistic flood hazard curve is defined as the water elevation for each annual probability of precipitation occurrence (or inversely, the return period in years). New design hyetographs for both 6-hr and 24-hr precipitation distributions were used in conjunction with hydrological models of various basins within the Savannah River Site (SRS). For numerous locations of interest, peak flow dischargemore » and flood water elevation were determined. In all cases, the probability of flooding of these facilities for a 100,000 year precipitation event is negligible.« less

  15. 49 CFR 190.233 - Corrective action orders.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... facility to be hazardous to life, property, or the environment, the Associate Administrator, OPS shall... the failure to do so would result in the likelihood of serious harm to life, property, or the... Administrator, OPS finds the facility is or would be hazardous to life, property, or the environment, the...

  16. 49 CFR 190.233 - Corrective action orders.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... facility to be hazardous to life, property, or the environment, the Associate Administrator, OPS shall... the failure to do so would result in the likelihood of serious harm to life, property, or the... Administrator, OPS finds the facility is or would be hazardous to life, property, or the environment, the...

  17. 14 CFR 135.67 - Reporting potentially hazardous meteorological conditions and irregularities of ground facilities...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Reporting potentially hazardous... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS... irregularity in a ground facility or navigation aid in flight, the knowledge of which the pilot considers...

  18. 14 CFR 135.67 - Reporting potentially hazardous meteorological conditions and irregularities of ground facilities...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Reporting potentially hazardous... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS... irregularity in a ground facility or navigation aid in flight, the knowledge of which the pilot considers...

  19. 33 CFR 127.1507 - Water systems for fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Water systems for fire protection... HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Firefighting Equipment § 127.1507 Water systems for fire protection. (a) Each waterfront facility handling LHG must have a supply of water and a...

  20. 31. SECTIONS AND DETAILS OF ARVFS FACILITY, INCLUDING RADIATION HAZARD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. SECTIONS AND DETAILS OF ARVFS FACILITY, INCLUDING RADIATION HAZARD SIGN, WOOD RETAINING WALL, TANK COVER, AND DRAIN BOX. F.C. TORKELSON DRAWING NUMBER 842-ARVFS-701-3. INEL INDEX CODE NUMBER: 075 0701 851 151972. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID

  1. M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities groundwater monitoring and corrective-action report (U). Third and fourth quarters 1996, Vol. I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-03-01

    This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River Site (SRS) during 1996.

  2. 78 FR 22576 - Application and Amendment to Facility Operating License Involving Proposed No Significant Hazards...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-16

    ... Facility Operating License Involving Proposed No Significant Hazards Consideration Determination; San... Operating License No. NPF-10, issued to Southern California Edison (SCE, the licensee), for operation of the... operating conditions'' and ``normal steady state full power operation'' and restricts operation to 70...

  3. 40 CFR 267.1106 - What do I do if I detect a release?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A... procedures. (a) Upon detection of a condition that has lead to a release of hazardous waste (for example... the facility operating record; (2) Immediately remove the portion of the containment building affected...

  4. 40 CFR 267.1106 - What do I do if I detect a release?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A... procedures. (a) Upon detection of a condition that has lead to a release of hazardous waste (for example... the facility operating record; (2) Immediately remove the portion of the containment building affected...

  5. 40 CFR 267.1106 - What do I do if I detect a release?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A... procedures. (a) Upon detection of a condition that has lead to a release of hazardous waste (for example... the facility operating record; (2) Immediately remove the portion of the containment building affected...

  6. 40 CFR 267.1106 - What do I do if I detect a release?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A... procedures. (a) Upon detection of a condition that has lead to a release of hazardous waste (for example... the facility operating record; (2) Immediately remove the portion of the containment building affected...

  7. 40 CFR 264.31 - Design and operation of facility.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Design and operation of facility. 264.31 Section 264.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES...-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water which...

  8. 40 CFR 63.2131 - Am I subject to this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) National Emission Standards for Hazardous Air Pollutants: Manufacturing of Nutritional Yeast What This... operate a nutritional yeast manufacturing facility that is, is located at, or is part of a major source of hazardous air pollutants (HAP) emissions. (1) A manufacturer of nutritional yeast is a facility that makes...

  9. 40 CFR 63.2131 - Am I subject to this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) National Emission Standards for Hazardous Air Pollutants: Manufacturing of Nutritional Yeast What This... operate a nutritional yeast manufacturing facility that is, is located at, or is part of a major source of hazardous air pollutants (HAP) emissions. (1) A manufacturer of nutritional yeast is a facility that makes...

  10. 40 CFR 63.2131 - Am I subject to this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) National Emission Standards for Hazardous Air Pollutants: Manufacturing of Nutritional Yeast What This... operate a nutritional yeast manufacturing facility that is, is located at, or is part of a major source of hazardous air pollutants (HAP) emissions. (1) A manufacturer of nutritional yeast is a facility that makes...

  11. Preliminary volcanic hazards evaluation for Los Alamos National Laboratory Facilities and Operations : current state of knowledge and proposed path forward

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keating, Gordon N.; Schultz-Fellenz, Emily S.; Miller, Elizabeth D.

    2010-09-01

    The integration of available information on the volcanic history of the region surrounding Los Alamos National Laboratory indicates that the Laboratory is at risk from volcanic hazards. Volcanism in the vicinity of the Laboratory is unlikely within the lifetime of the facility (ca. 50–100 years) but cannot be ruled out. This evaluation provides a preliminary estimate of recurrence rates for volcanic activity. If further assessment of the hazard is deemed beneficial to reduce risk uncertainty, the next step would be to convene a formal probabilistic volcanic hazards assessment.

  12. Running to Safety: Analysis of Disaster Susceptibility of Neighborhoods and Proximity of Safety Facilities in Silay City, Philippines

    NASA Astrophysics Data System (ADS)

    Patiño, C. L.; Saripada, N. A.; Olavides, R. D.; Sinogaya, J.

    2016-06-01

    Going on foot is the most viable option when emergency responders fail to show up in disaster zones at the quickest and most reasonable time. In the Philippines, the efficacy of disaster management offices is hampered by factors such as, but not limited to, lack of equipment and personnel, distance, and/or poor road networks and traffic systems. In several instances, emergency response times exceed acceptable norms. This study explores the hazard susceptibility, particularly to fire, flood, and landslides, of neighborhoods vis-à-vis their proximity to safety facilities in Silay City, Philippines. Imbang River exposes communities in the city to flooding while the mountainous terrain makes the city landslide prone. Building extraction was done to get the possible human settlements in the city. The building structures were extracted through image processing using a ruleset-based approach in the process of segmentation and classification of LiDAR derivatives and ortho-photos. Neighborhoods were then identified whether they have low to high susceptibility to disaster risks in terms of floods and landslides based on the hazards maps obtained from the Philippines' Mines and Geosciences Bureau (MGB). Service area analyses were performed to determine the safety facilities available to different neighborhoods at varying running times. Locations which are inaccessible or are difficult to run to because of distance and corresponding hazards were determined. Recommendations are given in the form of infrastructure installation, relocation of facilities, safety equipment and vehicle procurement, and policy changes for specific areas in Silay City.

  13. Cleanups In My Community (CIMC) - Hazardous Waste Corrective Actions, National Layer

    EPA Pesticide Factsheets

    This data layer provides access to Hazardous Waste Corrective Action sites as part of the CIMC web service. Hazardous waste is waste that is dangerous or potentially harmful to our health or the environment. Hazardous wastes can be liquids, solids, gases, or sludges. They can be discarded commercial products, like cleaning fluids or pesticides, or the by-products of manufacturing processes. The RCRA Corrective Action Program, run by EPA and 43 authorized states and territories, works with facilities that have treated, stored, or disposed of hazardous wastes (TSDs) to protect public health and the environment by investigating and cleaning up hazardous releases to soil, ground water, surface water, and air at their facilities.RCRA Corrective Action sites in all 50 states and four U.S. territories cover 18 million acres of land.EPA estimates that more than 35 million people, roughly 12 percent of the U.S. population, live within one mile of a RCRA Corrective Action site (based on the 2000 U.S. Census).RCRA Corrective Action facilities include many current and former chemical manufacturing plants, oil refineries, lead smelters, wood preservers, steel mills, commercial landfills, and a variety of other types of entities. Due to poor practices prior to environmental regulations, Corrective Action facilities have left large stretches of river sediments laden with PCBs; deposited lead in residential yards and parks beyond site boundaries; polluted drinking water wells

  14. Cleanups In My Community (CIMC) - Federal Facility RCRA Sites, National Layer

    EPA Pesticide Factsheets

    Federal facilities are properties owned by the federal government. This data layer provides access to Federal facilities that are Resource Conservation and Recovery Act (RCRA) sites as part of the CIMC web service. The Resource Conservation and Recovery Act, among other things, helps ensure that wastes are managed in an environmentally sound manner so as to protect human health and the environment from the potential hazards of waste disposal.In particular, RCRA tightly regulates all hazardous waste from cradle to grave. In general, all generators, transporters, treaters, storers, and disposers of hazardous waste are required to provide information about their activities to state environmental agencies. These agencies, in turn pass on the information to regional and national EPA offices. Accidents or other activities at facilities that treat, store or dispose of hazardous wastes have sometimes led to the release of hazardous waste or hazardous constituents into soil, ground water, surface water, or air. When that happens, the RCRA Corrective Action program is one program that may be used to accomplish the necessary cleanup.In Cleanups in My Community, you can map or list RCRA Corrective Action sites that are currently undergoing corrective action, sites for which a remedy has been selected, sites for which construction has been completed, and sites where the corrective action cleanup is complete. This data layer shows those RCRA sites that are located at Federa

  15. Reducing drinking water supply chemical contamination: risks from underground storage tanks.

    PubMed

    Enander, Richard T; Hanumara, R Choudary; Kobayashi, Hisanori; Gagnon, Ronald N; Park, Eugene; Vallot, Christopher; Genovesi, Richard

    2012-12-01

    Drinking water supplies are at risk of contamination from a variety of physical, chemical, and biological sources. Ranked among these threats are hazardous material releases from leaking or improperly managed underground storage tanks located at municipal, commercial, and industrial facilities. To reduce human health and environmental risks associated with the subsurface storage of hazardous materials, government agencies have taken a variety of legislative and regulatory actions--which date back more than 25 years and include the establishment of rigorous equipment/technology/operational requirements and facility-by-facility inspection and enforcement programs. Given a history of more than 470,000 underground storage tank releases nationwide, the U.S. Environmental Protection Agency continues to report that 7,300 new leaks were found in federal fiscal year 2008, while nearly 103,000 old leaks remain to be cleaned up. In this article, we report on an alternate evidence-based intervention approach for reducing potential releases from the storage of petroleum products (gasoline, diesel, kerosene, heating/fuel oil, and waste oil) in underground tanks at commercial facilities located in Rhode Island. The objective of this study was to evaluate whether a new regulatory model can be used as a cost-effective alternative to traditional facility-by-facility inspection and enforcement programs for underground storage tanks. We conclude that the alternative model, using an emphasis on technical assistance tools, can produce measurable improvements in compliance performance, is a cost-effective adjunct to traditional facility-by-facility inspection and enforcement programs, and has the potential to allow regulatory agencies to decrease their frequency of inspections among low risk facilities without sacrificing compliance performance or increasing public health risks. © 2012 Society for Risk Analysis.

  16. Pollution prevention and the use of low-VOC/HAP coatings at wood furniture manufacturing facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, A.M.; Spaight, J.L.; Jones, J.W.

    1999-10-01

    Midwest Research Institute, under a cooperative agreement with the Air Pollution Prevention and Control Division of the US Environmental Protection Agency`s (EPA`s) National Risk Management Research Laboratory, is conducting a study to identify wood furniture and cabinet manufacturing facilities that have converted to low-volatile organic compound/hazardous air pollutant (VOC/HAP) coatings and to develop case studies for those facilities. This paper discusses the progress of the project and pollution prevention options at wood furniture manufacturing facilities and the regulatory requirements (e.g., the National Emissions Standards for Hazardous Air Pollutants (NESHAP) for Wood Furniture Manufacturing Operations) that these facilities face.

  17. 40 CFR 265.1200 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... FACILITIES Hazardous Waste Munitions and Explosives Storage § 265.1200 Applicability. The requirements of this subpart apply to owners or operators who store munitions and explosive hazardous wastes, except as § 265.1 provides otherwise. (NOTE: Depending on explosive hazards, hazardous waste munitions and...

  18. 40 CFR 265.1200 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... FACILITIES Hazardous Waste Munitions and Explosives Storage § 265.1200 Applicability. The requirements of this subpart apply to owners or operators who store munitions and explosive hazardous wastes, except as § 265.1 provides otherwise. (NOTE: Depending on explosive hazards, hazardous waste munitions and...

  19. 40 CFR 265.1200 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... FACILITIES Hazardous Waste Munitions and Explosives Storage § 265.1200 Applicability. The requirements of this subpart apply to owners or operators who store munitions and explosive hazardous wastes, except as § 265.1 provides otherwise. (NOTE: Depending on explosive hazards, hazardous waste munitions and...

  20. 40 CFR 265.1200 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... FACILITIES Hazardous Waste Munitions and Explosives Storage § 265.1200 Applicability. The requirements of this subpart apply to owners or operators who store munitions and explosive hazardous wastes, except as § 265.1 provides otherwise. (NOTE: Depending on explosive hazards, hazardous waste munitions and...

  1. 40 CFR 265.1200 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... FACILITIES Hazardous Waste Munitions and Explosives Storage § 265.1200 Applicability. The requirements of this subpart apply to owners or operators who store munitions and explosive hazardous wastes, except as § 265.1 provides otherwise. (NOTE: Depending on explosive hazards, hazardous waste munitions and...

  2. Community exposure to potential climate-driven changes to coastal-inundation hazards for six communities in Essex County, Massachusetts

    USGS Publications Warehouse

    Abdollahian, Nina; Ratliff, Jamie L.; Wood, Nathan J.

    2016-11-09

    IntroductionUnderstanding if and how community exposure to coastal hazards may change over time is crucial information for coastal managers tasked with developing climate adaptation plans. This report summarizes estimates of population and asset exposure to coastal-inundation hazards associated with sea-level-rise and storm scenarios in six coastal communities of the Great Marsh region of Essex County, Massachusetts. This U.S. Geological Survey (USGS) analysis was conducted in collaboration with National Wildlife Federation (NWF) representatives, who are working with local stakeholders to develop local climate adaptation plans for the Towns of Salisbury, Newbury, Rowley, Ipswich, and Essex and the City of Newburyport (hereafter referred to as communities). Community exposure was characterized by integrating various community indicators (land cover and land use, population, economic assets, critical facilities, and infrastructure) with coastal-hazard zones that estimate inundation extents and water depth for three time periods.Estimates of community exposure are based on the presence of people, businesses, and assets in hazard zones that are calculated from geospatial datasets using geographic-information-system (GIS) tools. Results are based on current distributions of people and assets in hazard zones and do not take into account projections of human population, asset, or land-use changes over time. Results are not loss estimates based on engineering analysis or field surveys for any particular facility and do not take into account aspects of individual and household preparedness before an extreme event, adaptive capacity of a community during an event, or long-term resilience of individuals and communities after an event. Potential losses would match reported inventories only if all residents, business owners, public managers, and elected officials were unaware of what to do if warned of an imminent threat, failed to take protective measures during an extreme event, or failed to implement any long-term strategies to mitigate potential impacts. This analysis is intended to serve as a foundation for additional risk-related studies, plans, and mitigation efforts that are tailored to local needs. After a summary of the geospatial methods used in the analysis, results are organized by community so that local officials can easily use them in their local adaptation planning efforts.

  3. Hazardous Waste Permitting

    EPA Pesticide Factsheets

    To provide RCRA hazardous waste permitting regulatory information and resources permitted facilities, hazardous waste generators, and permit writers. To provide the public with information on how they can be involved in the permitting process.

  4. 10 CFR Appendix A to Subpart B of... - General Statement of Safety Basis Policy

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... for the design and construction of a new DOE nuclear facility or a major modification to an existing... acceptable nuclear safety design criteria for use in preparing a preliminary documented safety analysis. As a... mitigate hazards to workers, the public, or the environment. They include (1) physical, design, structural...

  5. Installation Restoration Program. Phase I: Records Search Willow Grove Air Reserve Facility, Willow Grove, Pennsylvania.

    DTIC Science & Technology

    1984-11-01

    FLOW CHART Complet List of Location/Shtes Evaluation of Past Operations at LUste SNMe * ~Potential Hazard to Healh WelareS Reglaor Agencon consolidat...siting studies were also a part of this tions, soil, groundwater sampling and large complex project. analysis, and remedial concept engi- neering. Project

  6. 78 FR 3646 - Current Good Manufacturing Practice and Hazard Analysis and Risk-Based Preventive Controls for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-16

    ...The Food and Drug Administration (FDA) is proposing to amend its regulation for Current Good Manufacturing Practice In Manufacturing, Packing, or Holding Human Food (CGMPs) to modernize it and to add requirements for domestic and foreign facilities that are required to register under the Federal Food, Drug, and Cosmetic Act (the FD&C Act) to establish and implement hazard analysis and risk- based preventive controls for human food. FDA also is proposing to revise certain definitions in FDA's current regulation for Registration of Food Facilities to clarify the scope of the exemption from registration requirements provided by the FD&C Act for ``farms.'' FDA is taking this action as part of its announced initiative to revisit the CGMPs since they were last revised in 1986 and to implement new statutory provisions in the FD&C Act. The proposed rule is intended to build a food safety system for the future that makes modern, science-, and risk-based preventive controls the norm across all sectors of the food system.

  7. Department of Energy Operational Readiness Review for the Waste Isolation Pilot Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The U.S. Department of Energy (DOE) has completed an Operational Readiness Review (ORR) for the restart of Contact Handled (CH) waste emplacement at the Waste Isolation Pilot Plant (WIPP) located near Carlsbad, New Mexico. The ORR team assessed the readiness of Nuclear Waste Partnership, LLC (NWP) to manage and perform receipt through CH waste emplacement, and associated waste handling and management activities, including the ability of the National TRU Program (NTP) to evaluate the waste currently stored at the WIPP site against the revised and enhanced Waste Acceptance Criteria (WAC). Field work for this review began on November 14, 2015more » and was completed on November 30, 2016. The DOE ORR was conducted in accordance with the Department of Energy Operational Readiness Review Implementation Plan for the Waste Isolation Pilot Plant, dated November 8, 2016, and DOE Order 425.1D, Verification of Readiness to Start Up or Restart Nuclear Facilities. The review activities included personnel interviews, record reviews, direct observation of operations and maintenance demonstrations, and observation of multiple operational and emergency drills/exercises. The DOE ORR also evaluated the adequacy of the contractor’s ORR (CORR) and the readiness of the DOE Carlsbad field Office (CBFO) to oversee the startup and execution of CH waste emplacement activities at the WIPP facility. The WIPP facility is categorized as a Hazard Category 2 DOE Nonreactor Nuclear Facility for all surface and Underground (UG) operations per DOE-STD-1027-92, Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports. In addition, the WIPP experienced two events in February, 2014 that resulted in Accident Investigations being performed in accordance with the requirements of DOE Order 225.1B, Accident Investigations. Based upon the results of the accident investigations and hazard categorization of the facility, the team placed significant emphasis on the following areas: fire protection, emergency preparedness, radiological protection, nuclear safety, and operations. The identification of specific focus areas was not intended to diminish the importance of other areas of the review, but to ensure that these areas received a particularly thorough and in-depth evaluation due to their significance with respect to the safe operation of the facility.« less

  8. Association of Time between Surgery and Adjuvant Therapy with Survival in Oral Cavity Cancer.

    PubMed

    Chen, Michelle M; Harris, Jeremy P; Orosco, Ryan K; Sirjani, Davud; Hara, Wendy; Divi, Vasu

    2018-06-01

    Objective The National Cancer Center Network recommends starting radiation therapy within 6 weeks after surgery for oral cavity squamous cell carcinoma (OCSCC), but there is limited evidence of the importance of the total time from surgery to completion of radiation therapy (package time). We set out to determine if there was an association between package time and survival in OCSCC and to evaluate the impact of treatment location on outcomes. Study Design Retrospective cohort study. Setting Tertiary academic medical center. Subjects and Methods We reviewed the records of patients with OCSCC who completed postoperative radiation therapy at an academic medical center from 2008 to 2016. The primary endpoints were overall survival and recurrence-free survival. Statistical analysis included χ 2 tests and Cox proportional hazards regressions. Results We identified 132 patients with an average package time of 12.6 weeks. On multivariate analysis, package time >11 weeks was independently associated with decreased overall survival (hazard ratio, 6.68; 95% CI, 1.42-31.44) and recurrence-free survival (hazard ratio, 2.94; 95% CI, 1.20-7.18). Patients who received radiation therapy at outside facilities were more likely to have treatment delays (90.2% vs 62.9%, P = .001). Conclusions Prolonged package times are associated with decreased overall and recurrence-free survival among patients with OCSCC. Patients who received radiation therapy at outside facilities are more likely to have prolonged package times.

  9. Fire Hazard Assessment in Supporting Fire Protection System Design of a Chemical Process Facility

    DTIC Science & Technology

    1996-08-01

    CSDP/Studies/FireHaz –i– 3/28/97 FIRE HAZARD ASSESSMENT IN SUPPORTING FIRE PROTECTION SYSTEM DESIGN OF A CHEMICAL PROCESS FACILITY Ali Pezeshk...Joseph Chang, Dwight Hunt, and Peter Jahn Parsons Infrastructure & Technology Group, Inc. Pasadena, California 91124 ABSTRACT Because fires in a chemical ...Assessment in Supporting Fire Protection System Design of a Chemical Process Facility 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  10. Hazard and operability study of the multi-function Waste Tank Facility. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, M.E.

    1995-05-15

    The Multi-Function Waste Tank Facility (MWTF) East site will be constructed on the west side of the 200E area and the MWTF West site will be constructed in the SW quadrant of the 200W site in the Hanford Area. This is a description of facility hazards that site personnel or the general public could potentially be exposed to during operation. A list of preliminary Design Basis Accidents was developed.

  11. 33 CFR 127.1105 - Layout and spacing of marine transfer area for LHG.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Layout and spacing of marine... AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Design and Construction § 127.1105 Layout and spacing of marine transfer area for LHG. Each new waterfront facility...

  12. 33 CFR 127.1105 - Layout and spacing of marine transfer area for LHG.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Layout and spacing of marine... AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Design and Construction § 127.1105 Layout and spacing of marine transfer area for LHG. Each new waterfront facility...

  13. 33 CFR 127.1105 - Layout and spacing of marine transfer area for LHG.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Layout and spacing of marine... AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Design and Construction § 127.1105 Layout and spacing of marine transfer area for LHG. Each new waterfront facility...

  14. 33 CFR 127.1105 - Layout and spacing of marine transfer area for LHG.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Layout and spacing of marine... AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Design and Construction § 127.1105 Layout and spacing of marine transfer area for LHG. Each new waterfront facility...

  15. 33 CFR 127.1105 - Layout and spacing of marine transfer area for LHG.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Layout and spacing of marine... AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Design and Construction § 127.1105 Layout and spacing of marine transfer area for LHG. Each new waterfront facility...

  16. 40 CFR 63.2131 - Am I subject to this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Standards for Hazardous Air Pollutants: Manufacturing of Nutritional Yeast What This Subpart Covers § 63... nutritional yeast manufacturing facility that is, is located at, or is part of a major source of hazardous air pollutants (HAP) emissions. (1) A manufacturer of nutritional yeast is a facility that makes yeast for the...

  17. 40 CFR 63.2131 - Am I subject to this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Standards for Hazardous Air Pollutants: Manufacturing of Nutritional Yeast What This Subpart Covers § 63... nutritional yeast manufacturing facility that is, is located at, or is part of a major source of hazardous air pollutants (HAP) emissions. (1) A manufacturer of nutritional yeast is a facility that makes yeast for the...

  18. Searching for Solutions. A Citizen's Guide to Hazardous Waste Management in Ohio.

    ERIC Educational Resources Information Center

    Clapham, Pete, Comp.

    This guide was developed to promote responsible hazardous waste management by Ohio citizens, citizens who are interested in upgrading operations of existing waste facilities, oppose the development of any new landfills, and those who promote the establishment of modern, efficient facilities. Information is presented in six chapters. The hazardous…

  19. 40 CFR 266.350 - What records must you keep at your facility and for how long?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... after the exempted waste is sent for disposal. (e) If you are not already subject to NRC, or NRC... AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Conditional Exemption for Low-Level Mixed Waste...

  20. Hazardous Waste Treatment, Storage, and Disposal Facilities-Organic Air Emission Standards for Process Vents and Equipment Leaks - Technical Amendment - Federal Register Notice, April 26, 1991

    EPA Pesticide Factsheets

    This document corrects typographical errors in the regulatory text of the final standards that would limit organic air emissions as a class at hazardous waste treatment, storage, and disposal facilities (TSDF) that are subject to regulation under subtitle

  1. Nasreya: a treatment and disposal facility for industrial hazardous waste in Alexandria, Egypt: phase I.

    PubMed

    Ramadan, Adham R; Kock, Per; Nadim, Amani

    2005-04-01

    A facility for the treatment and disposal of industrial hazardous waste has been established in Alexandria, Egypt. Phase I of the facility encompassing a secure landfill and solar evaporation ponds is ready to receive waste, and Phase II encompassing physico-chemical treatment, solidification, and interim storage is underway. The facility, the Nasreya Centre, is the first of its kind in Egypt, and represents the nucleus for the integration, improvement and further expansion of different hazardous waste management practices and services in Alexandria. It has been developed within the overall legal framework of the Egyptian Law for the Environment, and is expected to improve prospects for enforcement of the regulatory requirements specified in this law. It has been developed with the overall aim of promoting the establishment of an integrated industrial hazardous waste management system in Alexandria, serving as a demonstration to be replicated elsewhere in Egypt. For Phase I, the Centre only accepts inorganic industrial wastes. In this respect, a waste acceptance policy has been developed, which is expected to be reviewed during Phase II, with an expansion of the waste types accepted.

  2. Hazardous waste crime: a contextual analysis of the offense and the offender

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rebovich, D.J.

    The goal of this study is to analyze hazardous waste offense and offender characteristics. Criminal case data were collected from four sample states (Maine, Maryland, New Jersey, and Pennsylvania). Files of disposed criminal cases charged between 1977 and 1984 were content-analyzed, and interviews were conducted with prominent hazardous waste crime enforcement personnel from the sample states. Areas of analysis include methods of crime commission, skills required for crime commission, patterns of criminal network relationships, and degree of syndicate crime influence. While there has been some previous speculation that hazardous waste criminal behavior is directed through centralized racketeering, the present studymore » of known offenders found little evidence of syndicate crime family infiltration. Crimes occurred within small, informal networks of waste generators, waste transporters, the employees of treatment/storage/disposal (TSD) facilities and certain non-industry peripheral actors. The study concludes that, while attempts have been made by syndicate crime operatives to infiltrate, these attempts have failed largely due to features of criminal commission methods and to the inherent fragmentation of hauling and TSD firm interests.« less

  3. Unequal exposure to ecological hazards: environmental injustices in the Commonwealth of Massachusetts.

    PubMed Central

    Faber, Daniel R; Krieg, Eric J

    2002-01-01

    This study analyzes the social and geographic distribution of ecological hazards across 368 communities in the Commonwealth of Massachusetts. Combining census data with a variety of environmental data, we tested for and identified both income-based and racially based biases to the geographic distribution of 17 different types of environmentally hazardous sites and industrial facilities. We also developed a composite measure of cumulative exposure to compare the relative overall risks characteristic of each community. To the best of our knowledge, this point system makes this the first environmental justice study to develop a means for measuring and ranking cumulative exposure for communities. The study also controls for the intensity of hazards in each community by accounting for the area across which hazards are distributed. The findings indicate that ecologically hazardous sites and facilities are disproportionately located and concentrated in communities of color and working-class communities. The implication of this research for policymakers and citizen advocates is that cumulative exposure of residents to environmentally hazardous facilities and sites should receive greater consideration regarding community demographics and environmental health indicators. We conclude that the provision of additional resources for environmental monitoring and ranking, as well as yearly progress reports, is necessary for communities and state agencies to achieve equal access to clean and healthy environments for all residents. PMID:11929739

  4. 40 CFR 265.316 - Disposal of small containers of hazardous waste in overpacked drums (lab packs).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Landfills § 265.316 Disposal of small containers of hazardous waste in overpacked drums (lab packs). Small containers of hazardous waste... hazardous waste in overpacked drums (lab packs). 265.316 Section 265.316 Protection of Environment...

  5. 40 CFR 264.316 - Disposal of small containers of hazardous waste in overpacked drums (lab packs).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Landfills § 264.316 Disposal of small containers of hazardous waste in overpacked drums (lab packs). Small containers of hazardous waste in overpacked... hazardous waste in overpacked drums (lab packs). 264.316 Section 264.316 Protection of Environment...

  6. Assessing the Congregate Disaster Shelter: Using Shelter Facility Assessment Data for Evaluating Potential Hazards to Occupants During Disasters.

    PubMed

    Cruz, Miguel A; Garcia, Stephanie; Chowdhury, Muhammad A B; Malilay, Josephine; Perea, Nancy; Williams, O Dale

    Disaster shelter assessments are environmental health assessments conducted during disaster situations to evaluate the living environment of shelters for hygiene, sanitation, and safety conditions. We conducted a secondary data analysis of shelter assessment records available (n = 108) on ice storms, floods, and tornado events from 1 state jurisdiction. Descriptive statistics were used to analyze results of environmental health deficiencies found in the facilities. The greater numbers of environmental health deficiencies were associated with sanitation (26%), facility physical issues (19%), and food areas (17%). Most deficiencies were reported following ice storms, tornadoes, and flood events. This report describes the first analysis of environmental health deficiencies found in disaster shelters across a spectrum of disaster events. Although the number of records analyzed for this project was small and results may not be generalizable, this new insight into the living environment in shelter facilities offers the first analysis of deficiencies of the shelter operation and living environment that have great potential to affect the safety and health of shelter occupants.

  7. Hazardous Waste Generator Regulations: A User-Friendly Reference Document

    EPA Pesticide Factsheets

    User-friendly reference to assist EPA and state staff, industrial facilities generating and managing hazardous wastes as well as the general public, in locating and understanding RCRA hazardous waste generator regulations.

  8. Compressed Gas Safety for Experimental Fusion Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee C. Cadwallader

    2004-09-01

    Experimental fusion facilities present a variety of hazards to the operators and staff. There are unique or specialized hazards, including magnetic fields, cryogens, radio frequency emissions, and vacuum reservoirs. There are also more general industrial hazards, such as a wide variety of electrical power, pressurized air, and cooling water systems in use, there are crane and hoist loads, working at height, and handling compressed gas cylinders. This paper outlines the projectile hazard assoicated with compressed gas cylinders and mthods of treatment to provide for compressed gas safety. This information should be of interest to personnel at both magnetic and inertialmore » fusion experiments.« less

  9. Spatial Analysis of the Level of Exposure to Seismic Hazards of Health Facilities in Mexico City, Mexico

    NASA Astrophysics Data System (ADS)

    Moran, S.; Novelo-Casanova, D. A.

    2011-12-01

    Although health facilities are essential infrastructure during disasters and emergencies, they are also usually highly vulnerable installations in the case of the occurrence of large and major earthquakes. Hospitals are one of the most complex critical facilities in modern cities and they are used as first response in emergency situations. The operability of a hospital must be maintained after the occurrence of a local strong earthquake in order to satisfy the need for medical care of the affected population. If a health facility is seriously damaged, it cannot fulfill its function when most is needed. In this case, hospitals become a casualty of the disaster. To identify the level of physical exposure of hospitals to seismic hazards in Mexico City, we analyzed their geographic location with respect to the seismic response of the different type of soils of the city from past earthquakes, mainly from the events that occurred on September 1985 (Ms= 8.0) and April 1989 (Ms= 6.9). Seismic wave amplification in this city is the result of the interaction of the incoming seismic waves with the soft and water saturated clay soils, on which a large part of Mexico City is built. The clay soils are remnants of the lake that existed in the Valley of Mexico and which has been drained gradually to accommodate the growing urban sprawl. Hospital facilities were converted from a simple database of names and locations into a map layer of resources. This resource layer was combined with other map layers showing areas of seismic microzonation in Mexico City. This overlay was then used to identify those hospitals that may be threatened by the occurrence of a large or major seismic event. We analyzed the public and private hospitals considered as main health facilities. Our results indicate that more than 50% of the hospitals are highly exposed to seismic hazards. Besides, in most of these health facilities we identified the lack of preventive measures and preparedness to reduce their vulnerability. For proper interpretation, our results are also presented in a Geographical Information System (GIS) that provides elements to support government plans to mitigate the impact of future earthquakes.

  10. Report on SARS backfit evaluation, Catalytic, Inc. Solvent Refined Coal Pilot Plant, Wilsonville, Alabama

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, A.F. Jr.

    1980-07-02

    A site visit was made in company with the DOE-OPTA-EA Safety and Health Official for the purpose of providing that official with technical assistance in evaluating the validity of an earlier DOE-OPTA recommendation exempting this facility from the Safety and Analysis and Review backfit requirements of DOE Order 5481.1. A further purpose of the visit was to assess and evaluate the occupational safety and health program at this facility, as compared with the criteria and guidelines contained in ASFE Order 5481.1. Adequate documentation regarding compliance with codes, standards, and regulations were observed at this facility. There is in existence anmore » ongoing continuous safety analysis effort for both modifications or additions to this facility. Adequate environmental safeguards and plans and procedures were observed. The SARS backfit exemption is appropriate. The occupational safety and health program is in many ways a model for the scope of work and nature of hazards involved, and is consistent with ASFE guidelines and statutory requirements.« less

  11. The Shuttle processing contractors (SPC) reliability program at the Kennedy Space Center - The real world

    NASA Astrophysics Data System (ADS)

    McCrea, Terry

    The Shuttle Processing Contract (SPC) workforce consists of Lockheed Space Operations Co. as prime contractor, with Grumman, Thiokol Corporation, and Johnson Controls World Services as subcontractors. During the design phase, reliability engineering is instrumental in influencing the development of systems that meet the Shuttle fail-safe program requirements. Reliability engineers accomplish this objective by performing FMEA (failure modes and effects analysis) to identify potential single failure points. When technology, time, or resources do not permit a redesign to eliminate a single failure point, the single failure point information is formatted into a change request and presented to senior management of SPC and NASA for risk acceptance. In parallel with the FMEA, safety engineering conducts a hazard analysis to assure that potential hazards to personnel are assessed. The combined effort (FMEA and hazard analysis) is published as a system assurance analysis. Special ground rules and techniques are developed to perform and present the analysis. The reliability program at KSC is vigorously pursued, and has been extremely successful. The ground support equipment and facilities used to launch and land the Space Shuttle maintain an excellent reliability record.

  12. 49 CFR 175.25 - Notification at air passenger facilities of hazardous materials restrictions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... restrictions on hazardous materials in baggage. (d) Signage. When the check in process is not conducted... permitted and forbidden hazardous materials may be completed through signage (electronic or otherwise...

  13. Social & Economic Issues in Siting a Hazardous Waste Facility: Ideas for Communities and Local Assessment Committees.

    ERIC Educational Resources Information Center

    Hurley, Mike

    This handbook was prepared for communities selected as potential sites for hazardous waste facilities, identifying issues which need to be addressed and suggesting specific and positive steps that communities can take to shape proposals to meet their concerns. Following an introduction, specific areas addressed include: community controls,…

  14. 40 CFR 266.350 - What records must you keep at your facility and for how long?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... three years after the exempted waste is sent for disposal. (e) If you are not already subject to NRC, or... AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Conditional Exemption for Low-Level Mixed Waste...

  15. 40 CFR 266.350 - What records must you keep at your facility and for how long?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... three years after the exempted waste is sent for disposal. (e) If you are not already subject to NRC, or... AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Conditional Exemption for Low-Level Mixed Waste...

  16. 62. BUILDING NO. 1301, ORDNANCE FACILITY (MORTAR POWDER BUILDING), LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    62. BUILDING NO. 1301, ORDNANCE FACILITY (MORTAR POWDER BUILDING), LOOKING AT NORTHWEST FACADE. ACCESS TO ROOF ALLOWS MAINTENANCE OF VENTILATION EQUIPMENT WHICH IS PLACED OUTSIDE BUILDING TO MINIMIZE EXPLOSION HAZARD. NO. 2 VISIBLE ON WALL OF BUILDING STANDS FOR EXPLOSION HAZARD WITH FRAGMENTATION. - Picatinny Arsenal, State Route 15 near I-80, Dover, Morris County, NJ

  17. 75 FR 58346 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ... Chemical Company-Texas Operations (Eastman) to exclude (or delist) certain solid wastes generated by its Longview, Texas, facility from the lists of hazardous wastes. EPA used the Delisting Risk Assessment... Waste Management System; Identification and Listing of Hazardous Waste AGENCY: Environmental Protection...

  18. 33 CFR 127.1313 - Storage of hazardous materials.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Storage of hazardous materials. 127.1313 Section 127.1313 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Operations § 127.1313 Storage of...

  19. 33 CFR 127.1313 - Storage of hazardous materials.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Storage of hazardous materials. 127.1313 Section 127.1313 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Operations § 127.1313 Storage of...

  20. 33 CFR 127.1313 - Storage of hazardous materials.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Storage of hazardous materials. 127.1313 Section 127.1313 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Operations § 127.1313 Storage of...

  1. 33 CFR 127.1313 - Storage of hazardous materials.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Storage of hazardous materials. 127.1313 Section 127.1313 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Operations § 127.1313 Storage of...

  2. 33 CFR 127.1313 - Storage of hazardous materials.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Storage of hazardous materials. 127.1313 Section 127.1313 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Operations § 127.1313 Storage of...

  3. A hazards-model analysis of the covariates of infant and child mortality in Sri Lanka.

    PubMed

    Trussell, J; Hammerslough, C

    1983-02-01

    The purpose of this paper is twofold: (a) to provide a complete self-contained exposition of estimating life tables with covariates through the use of hazards models, and (b) to illustrate this technique with a substantive analysis of child mortality in Sri Lanka, thereby demonstrating that World Fertility Survey data are a valuable source for the study of child mortality. We show that life tables with covariates can be easily estimated with standard computer packages designed for analysis of contingency tables. The substantive analysis confirms and supplements an earlier study of infant and child mortality in Sri Lanka by Meegama. Those factors found to be strongly associated with mortality are mother's and father's education, time period of birth, urban/rural/estate residence, ethnicity, sex, birth order, age of the mother at the birth, and type of toilet facility.

  4. Risk based requirements for long term stewardship: A proof-of-principle analysis of an analytic method tested on selected Hanford locations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarvis, T.T.; Andrews, W.B.; Buck, J.W.

    1998-03-01

    Since 1989, the Department of Energy`s (DOE) Environmental Management (EM) Program has managed the environmental legacy of US nuclear weapons production, research and testing at 137 facilities in 31 states and one US territory. The EM program has conducted several studies on the public risks posed by contaminated sites at these facilities. In Risks and the Risk Debate [DOE, 1995a], the Department analyzed the risks at sites before, during, and after remediation work by the EM program. The results indicated that aside from a few urgent risks, most hazards present little inherent risk because physical and active site management controlsmore » limit both the releases of site contaminants, and public access to these hazards. Without these controls, these sites would pose greater risks to the public. Past risk reports, however, provided little information about post-cleanup risk, primarily because of uncertainty about future site uses and site characteristics at the end of planned cleanup activities. This is of concern because in many cases current cleanup technologies, and remedies, will last a shorter period of time than the waste itself and the resulting contamination will remain hazardous.« less

  5. The evaluation of stack metal emissions from hazardous waste incinerators: assessing human exposure through noninhalation pathways.

    PubMed Central

    Sedman, R M; Polisini, J M; Esparza, J R

    1994-01-01

    Potential public health effects associated with exposure to metal emissions from hazardous waste incinerators through noninhalation pathways were evaluated. Instead of relying on modeling the movement of toxicants through various environmental media, an approach based on estimating changes from baseline levels of exposure was employed. Changes in soil and water As, Cd, Hg, Pb, Cr, and Be concentrations that result from incinerator emissions were first determined. Estimates of changes in human exposure due to direct contact with shallow soil or the ingestion of surface water were then ascertained. Projected changes in dietary intakes of metals due to incinerator emissions were estimated based on changes from baseline dietary intakes that are monitored in U.S. Food and Drug Administration total diet studies. Changes from baseline intake were deemed to be proportional to the projected changes in soil or surface water metal concentrations. Human exposure to metals emitted from nine hazardous waste incinerators were then evaluated. Metal emissions from certain facilities resulted in tangible human exposure through noninhalation pathways. However, the analysis indicated that the deposition of metals from ambient air would result in substantially greater human exposure through noninhalation pathways than the emissions from most of the facilities. PMID:7925180

  6. New York State School Facilities and Student Health, Achievement, and Attendance: A Data Analysis Report

    ERIC Educational Resources Information Center

    Boese, Stephen; Shaw, John

    2005-01-01

    Students who attend schools with environmental hazards that impact indoor air quality are more likely to miss class, and therefore lose learning opportunities. Yet school environmental health and safety remains largely unregulated and there is no state or federal agency in charge of protecting children's environmental health in schools. This…

  7. Probability-Based Design Criteria of the ASCE 7 Tsunami Loads and Effects Provisions (Invited)

    NASA Astrophysics Data System (ADS)

    Chock, G.

    2013-12-01

    Mitigation of tsunami risk requires a combination of emergency preparedness for evacuation in addition to providing structural resilience of critical facilities, infrastructure, and key resources necessary for immediate response and economic and social recovery. Critical facilities would include emergency response, medical, tsunami refuges and shelters, ports and harbors, lifelines, transportation, telecommunications, power, financial institutions, and major industrial/commercial facilities. The Tsunami Loads and Effects Subcommittee of the ASCE/SEI 7 Standards Committee is developing a proposed new Chapter 6 - Tsunami Loads and Effects for the 2016 edition of the ASCE 7 Standard. ASCE 7 provides the minimum design loads and requirements for structures subject to building codes such as the International Building Code utilized in the USA. In this paper we will provide a review emphasizing the intent of these new code provisions and explain the design methodology. The ASCE 7 provisions for Tsunami Loads and Effects enables a set of analysis and design methodologies that are consistent with performance-based engineering based on probabilistic criteria. . The ASCE 7 Tsunami Loads and Effects chapter will be initially applicable only to the states of Alaska, Washington, Oregon, California, and Hawaii. Ground shaking effects and subsidence from a preceding local offshore Maximum Considered Earthquake will also be considered prior to tsunami arrival for Alaska and states in the Pacific Northwest regions governed by nearby offshore subduction earthquakes. For national tsunami design provisions to achieve a consistent reliability standard of structural performance for community resilience, a new generation of tsunami inundation hazard maps for design is required. The lesson of recent tsunami is that historical records alone do not provide a sufficient measure of the potential heights of future tsunamis. Engineering design must consider the occurrence of events greater than scenarios in the historical record, and should properly be based on the underlying seismicity of subduction zones. Therefore, Probabilistic Tsunami Hazard Analysis (PTHA) consistent with source seismicity must be performed in addition to consideration of historical event scenarios. A method of Probabilistic Tsunami Hazard Analysis has been established that is generally consistent with Probabilistic Seismic Hazard Analysis in the treatment of uncertainty. These new tsunami design zone maps will define the coastal zones where structures of greater importance would be designed for tsunami resistance and community resilience. Structural member acceptability criteria will be based on performance objectives for a 2,500-year Maximum Considered Tsunami. The approach developed by the ASCE Tsunami Loads and Effects Subcommittee of the ASCE 7 Standard would result in the first national unification of tsunami hazard criteria for design codes reflecting the modern approach of Performance-Based Engineering.

  8. Air quality assessment for land disposal of industrial wastes

    NASA Astrophysics Data System (ADS)

    Shen, Thomas T.

    1982-07-01

    Air pollution from hazardous waste landfills and lagoons is largely unknown. Routine monitoring of toxic air contaminants associated with hazardous waste facilities is difficult and very costly. The method presented in this paper would be useful for air quality assessment in the absence of monitoring data. It may be used as a screening process to examine the question of whether or not volatilization is considered to be significant for a given contaminant and also to evaluate permit applications for new hazardous waste facilities concerning waste volatilization problems.

  9. Hazardous organic chemicals in rubber recycled tire playgrounds and pavers.

    PubMed

    Llompart, Maria; Sanchez-Prado, Lucia; Pablo Lamas, J; Garcia-Jares, Carmen; Roca, Enrique; Dagnac, Thierry

    2013-01-01

    In this study, the presence of hazardous organic chemicals in surfaces containing recycled rubber tires is investigated. Direct material analyses using solvent extraction, as well as SPME analysis of the vapour phase above the sample, were carried out. Twenty-one rubber mulch samples were collected from nine different playgrounds. In addition, seven commercial samples of recycled rubber pavers were acquired in a local store of a multinational company. All samples were extracted by ultrasound energy, followed by analysis of the extract by GC-MS. The analysis confirmed the presence of a large number of hazardous substances including PAHs, phthalates, antioxidants (e.g. BHT, phenols), benzothiazole and derivatives, among other chemicals. The study evidences the high content of toxic chemicals in these recycled materials. The concentration of PAHs in the commercial pavers was extremely high, reaching values up to 1%. In addition, SPME studies of the vapour phase above the samples confirm the volatilisation of many of those organic compounds. Uses of recycled rubber tires, especially those targeting play areas and other facilities for children, should be a matter of regulatory concern. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Mapping Natech risk due to earthquakes using RAPID-N

    NASA Astrophysics Data System (ADS)

    Girgin, Serkan; Krausmann, Elisabeth

    2013-04-01

    Natural hazard-triggered technological accidents (so-called Natech accidents) at hazardous installations are an emerging risk with possibly serious consequences due to the potential for release of hazardous materials, fires or explosions. For the reduction of Natech risk, one of the highest priority needs is the identification of Natech-prone areas and the systematic assessment of Natech risks. With hardly any Natech risk maps existing within the EU the European Commission's Joint Research Centre has developed a Natech risk analysis and mapping tool called RAPID-N, that estimates the overall risk of natural-hazard impact to industrial installations and its possible consequences. The results are presented as risk summary reports and interactive risk maps which can be used for decision making. Currently, RAPID-N focuses on Natech risk due to earthquakes at industrial installations. However, it will be extended to also analyse and map Natech risk due to floods in the near future. The RAPID-N methodology is based on the estimation of on-site natural hazard parameters, use of fragility curves to determine damage probabilities of plant units for various damage states, and the calculation of spatial extent, severity, and probability of Natech events potentially triggered by the natural hazard. The methodology was implemented as a web-based risk assessment and mapping software tool which allows easy data entry, rapid local or regional risk assessment and mapping. RAPID-N features an innovative property estimation framework to calculate on-site natural hazard parameters, industrial plant and plant unit characteristics, and hazardous substance properties. Custom damage states and fragility curves can be defined for different types of plant units. Conditional relationships can be specified between damage states and Natech risk states, which describe probable Natech event scenarios. Natech consequences are assessed using a custom implementation of U.S. EPA's Risk Management Program (RMP) Guidance for Offsite Consequence Analysis methodology. This custom implementation is based on the property estimation framework and allows the easy modification of model parameters and the substitution of equations with alternatives. RAPID-N can be applied at different stages of the Natech risk management process: It allows on the one hand the analysis of hypothetical Natech scenarios to prevent or prepare for a Natech accident by supporting land-use and emergency planning. On the other hand, once a natural disaster occurs RAPID-N can be used for rapidly locating facilities with potential Natech accident damage based on actual natural-hazard information. This provides a means to warn the population in the vicinity of the facilities in a timely manner. This presentation will introduce the specific features of RAPID-N and show the use of the tool by application to a case-study area.

  11. Mars Sample Handling and Requirements Panel (MSHARP)

    NASA Technical Reports Server (NTRS)

    Carr, Michael H.; McCleese, Daniel J.; Bada, Jeffrey L.; Bogard, Donald D.; Clark, Benton C.; DeVincenzi, Donald; Drake, Michael J.; Nealson, Kenneth H.; Papike, James J.; Race, Margaret S.; hide

    1999-01-01

    In anticipation of the return of samples from Mars toward the end of the first decade of the next century, NASA's Office of Space Sciences chartered a panel to examine how Mars samples should be handled. The panel was to make recommendations in three areas: (1) sample collection and transport back to Earth; (2) certification of the samples as nonhazardous; and (3) sample receiving, curation, and distribution. This report summarizes the findings of that panel. The samples should be treated as hazardous until proven otherwise. They are to be sealed within a canister on Mars, and the canister is not to be opened until within a Biosafety Hazard Level 4 (BSL-4) containment facility here on Earth. This facility must also meet or exceed the cleanliness requirements of the Johnson Space Center (JSC) facility for curation of extraterrestrial materials. A containment facility meeting both these requirements does not yet exist. Hazard assessment and life detection experiments are to be done at the containment facility, while geochemical characterization is being performed on a sterilized subset of the samples released to the science community. When and if the samples are proven harmless, they are to be transferred to a curation facility, such as that at JSC.

  12. Community Environmental Response Facilitation Act (CERFA) Report, Sacramento Army Depot, Sacramento, California

    DTIC Science & Technology

    1994-04-01

    Response, Compensation, and Liability Information System CERFA Community Environmental Response Facilitation Act CORTESE State-designated hazardous...waste cleanup sites DESCOM U.S. Army Depot Systems Command DTSC Department of Toxic Substance Control EMD Environmental Management Division EPA U.S...Environmental Protection Agency ERNS Emergency Response Notification system FFA Federal Facility Agreement FINDS Facility index system HWCSA Hazardous

  13. RCRA Refresher Self-Study, Course 28582

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, Lewis Edward

    Federal and state regulations require hazardous and mixed waste facility workers at treatment and storage facilities (TSFs) and <90-day accumulation areas to be trained in hazardous and mixed waste management. This course will refamiliarize and update <90-day accumulation area workers, TSF workers, and supervisors of TSF workers regarding waste identification, pollution prevention, storage area requirements, emergency response procedures, and record-keeping requirements.

  14. RCRA Personnel Training, Course 7488

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, Lewis Edward

    Federal and state regulations require hazardous and mixed waste facility workers at treatment and storage facilities (TSFs) and <90-day accumulation areas to be trained in hazardous and mixed waste management. This course will refamiliarize and update <90-day accumulation area workers, TSF workers, and supervisors of TSF workers regarding waste identification, pollution prevention, storage area requirements, emergency response procedures, and record-keeping requirements.

  15. 40 CFR 261.142 - Cost estimate.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE Financial Requirements for Management of Excluded Hazardous Secondary... hazardous waste, and the potential cost of closing the facility as a treatment, storage, and disposal...

  16. 40 CFR 261.142 - Cost estimate.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE Financial Requirements for Management of Excluded Hazardous Secondary... hazardous waste, and the potential cost of closing the facility as a treatment, storage, and disposal...

  17. 40 CFR 261.142 - Cost estimate.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE Financial Requirements for Management of Excluded Hazardous Secondary... hazardous waste, and the potential cost of closing the facility as a treatment, storage, and disposal...

  18. 75 FR 60689 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-01

    ... exclude (or delist) a certain solid waste generated by its Beaumont, Texas, facility from the lists of hazardous wastes. EPA used the Delisting Risk Assessment Software (DRAS) Version 3.0 in the evaluation of... Waste Management System; Identification and Listing of Hazardous Waste; Proposed Rule AGENCY...

  19. Physical, Structural and Operational Vulnerability of Critical Facilities in Valle de Chalco Solidaridad, Estado de Mexico, Mexico. Case of study: Avándaro, San Isidro and El Triunfo

    NASA Astrophysics Data System (ADS)

    Garcia Payne, D. G.; Novelo-Casanova, D. A.; Ponce-Pacheco, A. B.; Espinosa-Campos, O.; Huerta-Parra, M.; Reyes-Pimentel, T.; Rodriguez, F.; Benitez-Olivares, I.

    2010-12-01

    Valle de Chalco Solidaridad is located in Mexico City Metropolitan Area in Estado de Mexico, Mexico. In this town there is a sewage canal called “La Compañía”. A wall of this canal collapsed on February 5, 2010 due to heavy rains creating the flooding of four surrounding communities. It is important to point out that this area is frequently exposed to floods. In this work, we consider a critical facility as an essential structure for performance, health care and welfare within a community or/and as a place that can be used as shelter in case of emergency or disaster. Global vulnerability (the sum of the three measured vulnerabilities) of the 25 critical facilities identified in the locations of Avándaro, San Isidro and El Triunfo was assessed using the Community Vulnerability Assessment Tool developed by the National Oceanic and Atmospheric Administration (NOAA). For each critical facility we determined its operational, structural and physical vulnerabilities. For our analysis, we considered the four main natural hazards to which Valle de Chalco is exposed: earthquakes, floods, landslides and sinking. We considered five levels of vulnerability using a scale from 1 to 5, where values range from very low to very high vulnerability, respectively. A critical facilities database was generated by collecting general information for three categories: schools, government and church. Each facility was evaluated considering its location in relation to identified high-risk areas. Our results indicate that in average, the global vulnerability of all facilities is low, however, there are particular cases in which this global vulnerability is high. The average operational vulnerability of the three communities is moderate. The global structural vulnerability (sum of the structural vulnerability for the four analyzed hazards) is moderate. In particular, the structural vulnerability to earthquakes is low, to landslides is very low, to flooding is moderate and to sinking is low. Due to the location of the critical facilities, its global physical vulnerability (sum of the physical vulnerability to the four analyzed hazards) is moderate. Only three facilities have very high physical vulnerability to floods. Churches (six facilities) have the highest operational vulnerability, whereas its structural vulnerability is the lowest. Schools (13 facilities) have the lowest operational vulnerability, nevertheless, there are two schools with very high vulnerability. Regarding the six government facilities, we identified that their structural vulnerability range from moderate to high. As a result of this work, we believe in the importance of strengthening the culture of civil protection within the critical facilities of the communities of Valle de Chalco.

  20. 33 CFR 154.120 - Facility examinations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Facility examinations. 154.120...) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK General § 154.120 Facility examinations. (a) The facility operator shall allow the Coast Guard, at any time, to make any examination and shall...

  1. Appendix E: Research papers. Analysis of landfills with historic airphotos

    NASA Technical Reports Server (NTRS)

    Liang, T.; Philipson, W. R. (Principal Investigator); Erb, T. L.; Teng, W. L.

    1980-01-01

    The nature of landfill-related information that can be derived from existing, or historic, aerial photographs, is reviewed. This information can be used for conducting temporal assessments of landfill existence, land use and land cover, and the physical environment. As such, analysis of low cost, readily available aerial photographs can provide important, objective input to landfill inventories, assessing contamination or health hazards, planning corrective measures, planning waste collection and facilities, and developing on inactive landfills.

  2. Seismic risk management solution for nuclear power plants

    DOE PAGES

    Coleman, Justin; Sabharwall, Piyush

    2014-12-01

    Nuclear power plants should safely operate during normal operations and maintain core-cooling capabilities during off-normal events, including external hazards (such as flooding and earthquakes). Management of external hazards to expectable levels of risk is critical to maintaining nuclear facility and nuclear power plant safety. Seismic risk is determined by convolving the seismic hazard with seismic fragilities (capacity of systems, structures, and components). Seismic isolation (SI) is one protective measure showing promise to minimize seismic risk. Current SI designs (used in commercial industry) reduce horizontal earthquake loads and protect critical infrastructure from the potentially destructive effects of large earthquakes. The benefitmore » of SI application in the nuclear industry is being recognized and SI systems have been proposed in American Society of Civil Engineer Standard 4, ASCE-4, to be released in the winter of 2014, for light water reactors facilities using commercially available technology. The intent of ASCE-4 is to provide criteria for seismic analysis of safety related nuclear structures such that the responses to design basis seismic events, computed in accordance with this standard, will have a small likelihood of being exceeded. The U.S. nuclear industry has not implemented SI to date; a seismic isolation gap analysis meeting was convened on August 19, 2014, to determine progress on implementing SI in the U.S. nuclear industry. The meeting focused on the systems and components that could benefit from SI. As a result, this article highlights the gaps identified at this meeting.« less

  3. 40 CFR 264.54 - Amendment of contingency plan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Section 264.54 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... of hazardous waste or hazardous waste constituents, or changes the response necessary in an emergency...

  4. 40 CFR 264.54 - Amendment of contingency plan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Section 264.54 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... of hazardous waste or hazardous waste constituents, or changes the response necessary in an emergency...

  5. 77 FR 26822 - Pipeline Safety: Verification of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-07

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No. PHMSA-2012-0068] Pipeline Safety: Verification of Records AGENCY: Pipeline and Hazardous Materials... issuing an Advisory Bulletin to remind operators of gas and hazardous liquid pipeline facilities to verify...

  6. FEDFacts: Information about the Federal Electronic Docket Facilities

    EPA Pesticide Factsheets

    Cleanup status information related to Federal Facilities contained in EPA's Federal Agency Hazardous Waste Compliance Docket. Information includes maps, lists of facilities, dashboard view with graphs, links to community resources, and news items.

  7. Financial Assurance Requirements for Hazardous Waste Treatment, Storage and Disposal Facilities

    EPA Pesticide Factsheets

    The Resource Conservation and Recovery Act (RCRA) requires all treatment, storage and disposal facilities (TSDFs) to demonstrate that they will have the financial resources to properly close the facility

  8. Economic Analysis of National Nuclear Security Administration (NNSA) Modernization Alternatives

    DTIC Science & Technology

    2007-11-01

    without nuclear testing; works to reduce global danger from weapons of mass destruction; provides the U.S. Navy with safe and effective nuclear...SFE) covers the acquisition of glove boxes, long-lead facility, and actinide chemistry/materials characterization (AC/MC) equipment whose uniqueness...Hazard Category II AC/MC and actinide Research and Development operations, special nuclear 5 Babcock

  9. Development and Pilot Testing of a Food Safety Curriculum for Managers and Staff of Residential Childcare Institutions (RCCIs)

    ERIC Educational Resources Information Center

    Pivarnik, Lori F.; Patnoad, Martha S.; Nyachuba, David; McLandsborough, Lynne; Couto, Stephen; Hagan, Elsina E.; Breau, Marti

    2013-01-01

    Food safety training materials, targeted for residential childcare institution (RCCI) staff of facilities of 20 residents or less, were developed, piloted, and evaluated. The goal was to assist in the implementation of a Hazard Analysis Critical Control Points (HACCP)-based food safety plan as required by Food and Nutrition Service/United States…

  10. Best Practices for Optimizing DoD Contractor Safety and Occupational Health Program Performance

    DTIC Science & Technology

    2012-12-01

    such as Accident Prevention Plan (APP), Activity Hazard Analysis (AHA), Quality Assurance Surveillance Plans (QASP), etc. Contract administration...technology support, medical , and maintenance of equipment and facilities. The DoD Guidebook for the Acquisition of Services, provides acquisition...OSHA regulations and perform in accordance with an applicable accident prevention program that complies with State and Federal requirements. The

  11. You and the Law: Oops! Analysis of a Slip and Fall Hazard

    ERIC Educational Resources Information Center

    Belt, Drake E.; Young, Sarah J.

    2017-01-01

    In December 2009, Janette Ferguson traveled to Corpus Christi, Texas, to participate in the Harbor Lights Festival boat parade. The day prior to the festival, Ferguson spent the night on her family's sailboat that was kept in a slip on the city marina's C pier. Upon waking the following morning, Ferguson walked to the marina's bathroom facility to…

  12. Analysis of Camp Pendleton California Medical Treatment Facility Budget and Execution Process

    DTIC Science & Technology

    2008-12-01

    for the formal internship, residency, fellowship and graduate training in medicine and dentistry . Graduate Medical Education involves costs of in...Conservation, medical aspects of ergonomics , reproductive hazards, ionizing and non- ionizing radiation safety, workplace assessments (afloat & ashore...care and services to authorized beneficiaries through the operation of hospital departments of dentistry and dental clinics and operation of

  13. Materials, processes, and environmental engineering network

    NASA Technical Reports Server (NTRS)

    White, Margo M.

    1993-01-01

    The Materials, Processes, and Environmental Engineering Network (MPEEN) was developed as a central holding facility for materials testing information generated by the Materials and Processes Laboratory. It contains information from other NASA centers and outside agencies, and also includes the NASA Environmental Information System (NEIS) and Failure Analysis Information System (FAIS) data. Environmental replacement materials information is a newly developed focus of MPEEN. This database is the NASA Environmental Information System, NEIS, which is accessible through MPEEN. Environmental concerns are addressed regarding materials identified by the NASA Operational Environment Team, NOET, to be hazardous to the environment. An environmental replacement technology database is contained within NEIS. Environmental concerns about materials are identified by NOET, and control or replacement strategies are formed. This database also contains the usage and performance characteristics of these hazardous materials. In addition to addressing environmental concerns, MPEEN contains one of the largest materials databases in the world. Over 600 users access this network on a daily basis. There is information available on failure analysis, metals and nonmetals testing, materials properties, standard and commercial parts, foreign alloy cross-reference, Long Duration Exposure Facility (LDEF) data, and Materials and Processes Selection List data.

  14. [Implementation and evaluation of critical hazards and check points analysis (CHCPA) in gofio-producing industries from Tenerife].

    PubMed

    Caballero Mesa, J M; Alonso Marrero, S; González Weller, D M; Afonso Gutiérrez, V L; Rubio Armendariz, C; Hardisson de la Torre, A

    2006-01-01

    To satisfactorily implement the critical hazards and check points analysis. Tenerife Island Subjects: 15 industries visits to gofio-manufacturing industries were done with the aim of giving advice to employers and workers, and thereafter, the intervention was assessed verifying the hygiene and sanitary conditions of the industry and the correct application of the established auto-control system. After the advising intervention, we observed that certain parameters taken into account from the hygiene and sanitary perspective have been corrected, such as modifying the facilities to adapt them to in force regulations, or asking the suppliers to certify raw materials. With regards to food production process, the intervention was effective in such a way that more than have of the industries reduced the time of those phases with higher contamination susceptibility and to carry out the control registries that were established. All industries implemented the auto-control system by means of registration charts of each one of the elaboration phases. 86% of the industries have introduced more hygienic materials. 60% implemented a reduction in intermediate times of production phases. 26% perfmored some obsolete machinery replacement modernaizing the facilities.

  15. The natech events during the 17 August 1999 Kocaeli earthquake: aftermath and lessons learned

    NASA Astrophysics Data System (ADS)

    Girgin, S.

    2011-04-01

    Natural-hazard triggered technological accidents (natechs) at industrial facilities have been recognized as an emerging risk. Adequate preparedness, proper emergency planning, and effective response are crucial for the prevention of natechs and mitigation of the consequences. Under the conditions of a natural disaster, the limited resources, the possible unavailability of mitigation measures, and the lack of adequate communication complicate the management of natechs. The analysis of past natechs is crucial for learning lessons and for preventing or preparing for future natechs. The 17 August 1999, Kocaeli earthquake, which was a devastating disaster hitting one of the most industrialized regions of Turkey, offers opportunities in this respect. Among many natechs that occurred due to the earthquake, the massive fire at the TUPRAS Izmit refinery and the acrylonitrile spill at the AKSA acrylic fiber production plant were especially important and highlight problems in the consideration of natechs in emergency planning, response to industrial emergencies during natural hazards, and information to the public during and following the incidents. The analysis of these events shows that even the largest and seemingly well-prepared facilities can be vulnerable to natechs if risks are not considered adequately.

  16. Preliminary assessment report for Virginia Army National Guard Army Aviation Support Facility, Richmond International Airport, Installation 51230, Sandston, Virginia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis, C.B.

    This report presents the results of the preliminary assessment (PA) conducted by Argonne National Laboratory at the Virginia Army National Guard (VaARNG) property in Sandston, Virginia. The Army Aviation Support Facility (AASF) is contiguous with the Richmond International Airport. Preliminary assessments of federal facilities are being conducted to compile the information necessary for completing preremedial activities and to provide a basis for establishing corrective actions in response to releases of hazardous substances. The PA is designed to characterize the site accurately and determine the need for further action by examining site activities, quantities of hazardous substances present, and potential pathwaysmore » by which contamination could affect public health and the environment. The AASF, originally constructed as an active Air Force interceptor base, provides maintenance support for VaARNG aircraft. Hazardous materials used and stored at the facility include JP-4 jet fuel, diesel fuel, gasoline, liquid propane gas, heating oil, and motor oil.« less

  17. Downgrading Nuclear Facilities to Radiological Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarry, Jeffrey F.; Farr, Jesse Oscar; Duran, Leroy

    2015-08-01

    Based on inventory reductions and the use of alternate storage facilities, the Sandia National Laboratories (SNL) downgraded 4 SNL Hazard Category 3 (HC-3) nuclear facilities to less-than-HC-3 radiological facilities. SNL’s Waste Management and Pollution Prevention Department (WMPPD) managed the HC-3 nuclear facilities and implemented the downgrade. This paper will examine the downgrade process,

  18. Prospects for resolving hazardous-waste-siting disputes through negotiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bingham, G.; Miller, D.S.

    The impasse created by public opposition to siting hazardous waste facilities has prompted several efforts to reform the siting process, but most of the approaches have failed because they do not deal fully with causes and dynamics of public opposition. Negotiation, with offers of appropriate compensation for actual and potential losses, appears to offer a more direct and equitable response to this opposition than do traditional approaches. Negotiation allows the parties to address the problem of unequal cost and benefit distribution associated with siting hazardous waste facilities. There are several examples of negotiated siting agreements. 79 references.

  19. (Hydrogeology of hazardous waste, Sede Boker Campus, Ben-Gurion University, Israel)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stow, S.H.

    1990-03-29

    This trip report describes progress made by the International Commission on the Hydrogeology of Hazardous Waste in preparing a document on hydrogeologic and environmental issues associated with siting of hazardous waste disposal facilities. This document follows the successful completion of a commission report on siting of facilities for subsurface disposal of liquid wastes. Also contained in this trip report are descriptions of water and waste management activities throughout the southern part of Israel. Water availability and the need to protect the country's limited water supplies from contamination resulting from waste disposal are issues of paramount importance to Israel.

  20. Standards Development Activities at White Sands Test Facility

    NASA Technical Reports Server (NTRS)

    Baker, D. L.; Beeson, H. D.; Saulsberry, R. L.; Julien, H. L.; Woods, S. S.

    2003-01-01

    The development of standards and standard activities at the JSC White Sands Test Facility (WSTF) has been expanded to include the transfer of technology and standards to voluntary consensus organizations in five technical areas of importance to NASA. This effort is in direct response to the National Technology Transfer Act designed to accelerate transfer of technology to industry and promote government-industry partnerships. Technology transfer is especially important for WSTF, whose longterm mission has been to develop and provide vital propellant safety and hazards information to aerospace designers, operations personnel, and safety personnel. Meeting this mission is being accomplished through the preparation of consensus guidelines and standards, propellant hazards analysis protocols, and safety courses for the propellant use of hydrogen, oxygen, and hypergols, as well as the design and inspection of spacecraft pressure vessels and the use of pyrovalves in spacecraft propulsion systems. The overall WSTF technology transfer program is described and the current status of technology transfer activities are summarized.

  1. Use of cloud computing technology in natural hazard assessment and emergency management

    NASA Astrophysics Data System (ADS)

    Webley, P. W.; Dehn, J.

    2015-12-01

    During a natural hazard event, the most up-to-date data needs to be in the hands of those on the front line. Decision support system tools can be developed to provide access to pre-made outputs to quickly assess the hazard and potential risk. However, with the ever growing availability of new satellite data as well as ground and airborne data generated in real-time there is a need to analyze the large volumes of data in an easy-to-access and effective environment. With the growth in the use of cloud computing, where the analysis and visualization system can grow with the needs of the user, then these facilities can used to provide this real-time analysis. Think of a central command center uploading the data to the cloud compute system and then those researchers in-the-field connecting to a web-based tool to view the newly acquired data. New data can be added by any user and then viewed instantly by anyone else in the organization through the cloud computing interface. This provides the ideal tool for collaborative data analysis, hazard assessment and decision making. We present the rationale for developing a cloud computing systems and illustrate how this tool can be developed for use in real-time environments. Users would have access to an interactive online image analysis tool without the need for specific remote sensing software on their local system therefore increasing their understanding of the ongoing hazard and mitigate its impact on the surrounding region.

  2. Chemical Safety Alert: Fire Hazard from Carbon Adsorption Deodorizing Systems

    EPA Pesticide Factsheets

    Activated carbon systems used to adsorb vapors for odor control may pose a fire hazard when used for certain types of substances, such as crude sulfate turpentine. Facilities should take precautions and proper procedures to avoid or mitigate these hazards.

  3. 40 CFR 265.31 - Maintenance and operation of facility.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT... any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water which could threaten human health or the -environment. ...

  4. 40 CFR 265.31 - Maintenance and operation of facility.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT... any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water which could threaten human health or the -environment. ...

  5. 40 CFR 265.31 - Maintenance and operation of facility.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT... any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water which could threaten human health or the -environment. ...

  6. 40 CFR 270.65 - Research, development, and demonstration permits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM... may issue a research, development, and demonstration permit for any hazardous waste treatment facility which proposes to utilize an innovative and experimental hazardous waste treatment technology or process...

  7. 40 CFR 270.65 - Research, development, and demonstration permits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM... may issue a research, development, and demonstration permit for any hazardous waste treatment facility which proposes to utilize an innovative and experimental hazardous waste treatment technology or process...

  8. 40 CFR 267.142 - Cost estimate for closure.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... zero cost for hazardous wastes, or non-hazardous wastes that might have economic value. (b) During the... Section 267.142 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED...

  9. 40 CFR 267.142 - Cost estimate for closure.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... zero cost for hazardous wastes, or non-hazardous wastes that might have economic value. (b) During the... Section 267.142 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED...

  10. 40 CFR 267.142 - Cost estimate for closure.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... zero cost for hazardous wastes, or non-hazardous wastes that might have economic value. (b) During the... Section 267.142 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED...

  11. 40 CFR 265.31 - Maintenance and operation of facility.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT... any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water which could threaten human health or the -environment. ...

  12. 40 CFR 264.4 - Imminent hazard action.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Imminent hazard action. 264.4 Section 264.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES General...

  13. Summary environmental site assessment report for the U.S. Department of Energy Oxnard Facility, Oxnard, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-02-01

    This report summarizes the investigations conducted by Rust Geotech at the U.S. Department of Energy (DOE) Oxnard facility, 1235 East Wooley Road, Oxnard, California. These investigations were designed to locate, identify, and characterize any regulated contaminated media on the site. The effort included site visits; research of ownership, historical uses of the Oxnard facility and adjacent properties, incidences of and investigations for contaminants on adjacent properties, and the physical setting of the site; sampling and analysis; and reporting. These investigations identified two friable asbestos gaskets on the site, which were removed, and nonfriable asbestos, which will be managed through themore » implementation of an asbestos management plan. The California primary drinking water standards were exceeded for aluminum on two groundwater samples and for lead in one sample collected from the shallow aquifer underlying the site; remediation of the groundwater in this aquifer is not warranted because it is not used. Treated water is available from a municipal water system. Three sludge samples indicated elevated heavy metals concentrations; the sludge must be handled as a hazardous waste if disposed. Polychlorinated biphenyls (PCBs) were detected at concentrations below remediation criteria in facility soils at two locations. In accordance with U.S. Environmental Protection Agency (EPA) and State of California guidance, remediation of the PCBs is not required. No other hazardous substances were detected in concentrations exceeding regulatory limits.« less

  14. Earthquake Hazard Mitigation Using a Systems Analysis Approach to Risk Assessment

    NASA Astrophysics Data System (ADS)

    Legg, M.; Eguchi, R. T.

    2015-12-01

    The earthquake hazard mitigation goal is to reduce losses due to severe natural events. The first step is to conduct a Seismic Risk Assessment consisting of 1) hazard estimation, 2) vulnerability analysis, 3) exposure compilation. Seismic hazards include ground deformation, shaking, and inundation. The hazard estimation may be probabilistic or deterministic. Probabilistic Seismic Hazard Assessment (PSHA) is generally applied to site-specific Risk assessments, but may involve large areas as in a National Seismic Hazard Mapping program. Deterministic hazard assessments are needed for geographically distributed exposure such as lifelines (infrastructure), but may be important for large communities. Vulnerability evaluation includes quantification of fragility for construction or components including personnel. Exposure represents the existing or planned construction, facilities, infrastructure, and population in the affected area. Risk (expected loss) is the product of the quantified hazard, vulnerability (damage algorithm), and exposure which may be used to prepare emergency response plans, retrofit existing construction, or use community planning to avoid hazards. The risk estimate provides data needed to acquire earthquake insurance to assist with effective recovery following a severe event. Earthquake Scenarios used in Deterministic Risk Assessments provide detailed information on where hazards may be most severe, what system components are most susceptible to failure, and to evaluate the combined effects of a severe earthquake to the whole system or community. Casualties (injuries and death) have been the primary factor in defining building codes for seismic-resistant construction. Economic losses may be equally significant factors that can influence proactive hazard mitigation. Large urban earthquakes may produce catastrophic losses due to a cascading of effects often missed in PSHA. Economic collapse may ensue if damaged workplaces, disruption of utilities, and resultant loss of income produces widespread default on payments. With increased computational power and more complete inventories of exposure, Monte Carlo methods may provide more accurate estimation of severe losses and the opportunity to increase resilience of vulnerable systems and communities.

  15. Evaluation of an active learning module to teach hazard and risk in Hazard Analysis and Critical Control Points (HACCP) classes.

    PubMed

    Oyarzabal, Omar A; Rowe, Ellen

    2017-04-01

    The terms hazard and risk are significant building blocks for the organization of risk-based food safety plans. Unfortunately, these terms are not clear for some personnel working in food manufacturing facilities. In addition, there are few examples of active learning modules for teaching adult participants the principles of hazard analysis and critical control points (HACCP). In this study, we evaluated the effectiveness of an active learning module to teach hazard and risk to participants of HACCP classes provided by the University of Vermont Extension in 2015 and 2016. This interactive module is comprised of a questionnaire; group playing of a dice game that we have previously introduced in the teaching of HACCP; the discussion of the terms hazard and risk; and a self-assessment questionnaire to evaluate the teaching of hazard and risk. From 71 adult participants that completed this module, 40 participants (56%) provided the most appropriate definition of hazard, 19 participants (27%) provided the most appropriate definition of risk, 14 participants (20%) provided the most appropriate definitions of both hazard and risk, and 23 participants (32%) did not provide an appropriate definition for hazard or risk. Self-assessment data showed an improvement in the understanding of these terms (P < 0.05). Thirty participants (42%) stated that the most valuable thing they learned with this interactive module was the difference between hazard and risk, and 40 participants (65%) responded that they did not attend similar presentations in the past. The fact that less than one third of the participants answered properly to the definitions of hazard and risk at baseline is not surprising. However, these results highlight the need for the incorporation of modules to discuss these important food safety terms and include more active learning modules to teach food safety classes. This study suggests that active learning helps food personnel better understand important food safety terms that serve as building blocks for the understanding of more complex food safety topics.

  16. 40 CFR 267.51 - What is the purpose of the contingency plan and how do I use it?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE... facility. You must design the plan to minimize hazards to human health or the environment from fires, explosions, or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents...

  17. 40 CFR 267.51 - What is the purpose of the contingency plan and how do I use it?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE... facility. You must design the plan to minimize hazards to human health or the environment from fires, explosions, or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents...

  18. 40 CFR 267.51 - What is the purpose of the contingency plan and how do I use it?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE... facility. You must design the plan to minimize hazards to human health or the environment from fires, explosions, or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents...

  19. 40 CFR 267.51 - What is the purpose of the contingency plan and how do I use it?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE... facility. You must design the plan to minimize hazards to human health or the environment from fires, explosions, or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents...

  20. Mission hazard assessment for STARS Mission 1 (M1) in the Marshall Islands area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Outka, D.E.; LaFarge, R.A.

    1993-07-01

    A mission hazard assessment has been performed for the Strategic Target System Mission 1 (known as STARS M1) for hazards due to potential debris impact in the Marshall Islands area. The work was performed at Sandia National Laboratories as a result of discussion with Kwajalein Missile Range (KMR) safety officers. The STARS M1 rocket will be launched from the Kauai Test Facility (KTF), Hawaii, and deliver two payloads to within the viewing range of sensors located on the Kwajalein Atoll. The purpose of this work has been to estimate upper bounds for expected casualty rates and impact probability or themore » Marshall Islands areas which adjoin the STARS M1 instantaneous impact point (IIP) trace. This report documents the methodology and results of the analysis.« less

  1. 40 CFR 264.142 - Cost estimate for closure.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Section 264.142 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... may be realized with the sale of hazardous wastes, or non-hazardous wastes if applicable under § 264...

  2. 40 CFR 264.142 - Cost estimate for closure.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Section 264.142 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... may be realized with the sale of hazardous wastes, or non-hazardous wastes if applicable under § 264...

  3. 40 CFR 264.142 - Cost estimate for closure.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Section 264.142 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... may be realized with the sale of hazardous wastes, or non-hazardous wastes if applicable under § 264...

  4. 40 CFR 264.142 - Cost estimate for closure.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Section 264.142 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... may be realized with the sale of hazardous wastes, or non-hazardous wastes if applicable under § 264...

  5. Hazardous Waste Cleanup: Safety-Kleen Corporation - Linden Recycling Center in Linden, New Jersey

    EPA Pesticide Factsheets

    Safety-Kleen Incorporated occupies this 11-acre facility at 1200 Sylvan Street in an industrial section of Linden, New Jersey. Safety-Kleen recovers spent solvents and treats both hazardous and non-hazardous waste. The Linden Airport and Conrail surround

  6. 40 CFR 264.190 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Tank Systems § 264... use tank systems for storing or treating hazardous waste except as otherwise provided in paragraphs (a... treat hazardous waste which contains no free liquids and are situated inside a building with an...

  7. Environmental Hazards: What You Need To Know.

    ERIC Educational Resources Information Center

    DiNardo, Cathy

    1996-01-01

    Discusses what school business officials should know concerning environmental hazards in educational facilities, particularly bloodborne pathogens (Human Immunodeficiency Virus and Hepatitis B), lead in paint and water, and asbestos. The keys to managing environmental hazards are education and a knowledgeable inhouse employee or outside consultant…

  8. 78 FR 6402 - Pipeline Safety: Accident and Incident Notification Time Limit

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-30

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No.... SUMMARY: Owners and operators of gas and hazardous liquid pipeline systems and liquefied natural gas (LNG... operators of gas and hazardous liquids pipeline systems and LNG facilities that, ``at the earliest...

  9. FF Site Information

    EPA Pesticide Factsheets

    This asset includes the EPA Federal Agency Hazardous Waste Compliance Docket (Docket), which is required by Section 120(c) of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). The Docket contains information reported to EPA by federal facilities that manage hazardous waste or from which hazardous substances, pollutants or contaminants have been or may be released. The Docket serves three major purposes:1. To identify all federal facilities that must be evaluated through the site assessment process to determine whether they pose a risk to human health and the environment sufficient to warrant inclusion on the National Priorities List (NPL); 2. To compile and maintain the information submitted to EPA on such facilities under the provisions listed in section 120(c) of CERCLA; and3. To provide a mechanism to make the information available to the public.The docket includes facilities which have provided information to EPA through documents such as reports under a Federal agency environmental restoration program, regardless of the absence of section 103 reporting. E-Docket is an internal business management tool that will improve the tracking and record keeping of information about facilities that have been identified as potential Docket sites. The functionality of the system is basic record tracking, and it will contain a list of draft proposed facilities which can be sorted based on Agency ownership, region, or status (Draft Propose

  10. 40 CFR 61.340 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Benzene Waste Operations... provisions of this subpart are the benzene-containing hazardous waste from any facility listed in paragraph...

  11. 40 CFR 61.340 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Benzene Waste Operations... provisions of this subpart are the benzene-containing hazardous waste from any facility listed in paragraph...

  12. 40 CFR 61.340 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Benzene Waste Operations... provisions of this subpart are the benzene-containing hazardous waste from any facility listed in paragraph...

  13. 33 CFR 127.601 - Fire equipment: General.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Firefighting § 127.601 Fire equipment: General. (a) Fire... Laboratories, Inc., the Factory Mutual Research Corp., or the Coast Guard. ...

  14. 33 CFR 127.601 - Fire equipment: General.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Firefighting § 127.601 Fire equipment: General. (a) Fire... Laboratories, Inc., the Factory Mutual Research Corp., or the Coast Guard. ...

  15. Grasse River Superfund Site, Massena, NY

    EPA Pesticide Factsheets

    Alcoa, Inc. has owned and operated an aluminum product manufacturing facility called Alcoa West facility in the Town of Massena, New York, since 1903. In connection with its past operations at the facility, Alcoa released hazardous substances, including

  16. Facility effluent monitoring plan for the plutonium uranium extraction facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiegand, D.L.

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of themore » effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years.« less

  17. The role of service readiness and health care facility factors in attrition from Option B+ in Haiti: a joint examination of electronic medical records and service provision assessment survey data.

    PubMed

    Lipira, Lauren; Kemp, Christopher; Domercant, Jean Wysler; Honoré, Jean Guy; Francois, Kesner; Puttkammer, Nancy

    2018-01-01

    Option B+ is a strategy wherein pregnant or breastfeeding women with HIV are enrolled in lifelong antiretroviral therapy (ART) for prevention of mother-to-child transmission (PMTCT) of HIV. In Haiti, attrition from Option B+ is problematic and variable across health care facilities. This study explores service readiness and other facility factors as predictors of Option B+ attrition in Haiti. This analysis used longitudinal data from 2012 to 2014 from the iSanté electronic medical record system and cross-sectional data from Haiti's 2013 Service Provision Assessment. Predictors included Service Availability and Readiness Assessment (SARA) measures for antenatal care (ANC), PMTCT, HIV care services and ART services; general facility characteristics and patient-level factors. Multivariable Cox proportional hazards models modelled the time to first attrition. Analysis of data from 3147 women at 63 health care facilities showed no significant relationships between SARA measures and attrition. Having integrated ANC/PMTCT care and HIV-related training were significant protective factors. Being a public-sector facility, having a greater number of quality improvement activities and training in ANC were significant risk factors. Several facility-level factors were associated with Option B+ attrition. Future research is needed to explore unmeasured facility factors, clarify causal relationships, and incorporate community-level factors into the analysis of Option B+ attrition. © The Author(s) 2018. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. A paradigm of international environmental law: the case for controlling the transboundary movements of hazardous wastes.

    PubMed

    Asante-Duah, K; Nagy, I V

    2001-06-01

    The production of large quantities of wastes globally has created a commercial activity involving the transfrontier shipments of hazardous wastes, intended to be managed at economically attractive waste-handling facilities located elsewhere. In fact, huge quantities of hazardous wastes apparently travel the world in search of "acceptable" waste management facilities. For instance, within the industrialized countries alone, millions of tonnes of potentially hazardous waste cross national frontiers each year on their way for recycling or to treatment, storage, and disposal facilities (TSDFs) because there is no local disposal capacity for these wastes, or because legal disposal or reuse in a foreign country may be more environmentally sound, or managing the wastes in the foreign country may be less expensive than at home. The cross-boundary traffic in hazardous wastes has lately been under close public scrutiny, however, resulting in the accession of several international agreements and laws to regulate such activities. This paper discusses and analyzes the most significant control measures and major agreements in this new commercial activity involving hazardous wastes. In particular, the discussion recognizes the difficulties with trying to implement the relevant international agreements among countries of vastly different socioeconomic backgrounds. Nonetheless, it is also noted that global environmental agreements will generally be a necessary component of ensuring adequate environmental protection for the world community-and thus a need for the careful implementation of such agreements and regulations.

  19. 40 CFR 63.7180 - What is the purpose of this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Semiconductor Manufacturing What... emission standards for hazardous air pollutants (NESHAP) for semiconductor manufacturing facilities. This...

  20. 40 CFR 63.7180 - What is the purpose of this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Semiconductor Manufacturing What... emission standards for hazardous air pollutants (NESHAP) for semiconductor manufacturing facilities. This...

  1. Quantification of tsunami hazard on Canada's Pacific Coast; implications for risk assessment

    NASA Astrophysics Data System (ADS)

    Evans, Stephen G.; Delaney, Keith B.

    2015-04-01

    Our assessment of tsunami hazard on Canada's Pacific Coast (i.e., the coast of British Columbia) begins with a review of the 1964 tsunami generated by The Great Alaska Earthquake (M9.2) that resulted in significant damage to coastal communities and infrastructure. In particular, the tsunami waves swept up inlets on the west coast of Vancouver Island and damaged several communities; Port Alberni suffered upwards of 5M worth of damage. At Port Alberni, the maximum tsunami wave height was estimated at 8.2 m above mean sea level and was recorded on the stream gauge on the Somass River located at about 7 m a.s.l, 6 km upstream from its mouth. The highest wave (9.75 m above tidal datum) was reported from Shields Bay, Graham Island, Queen Charlotte Islands (Haida Gwaii). In addition, the 1964 tsunami was recorded on tide gauges at a number of locations on the BC coast. The 1964 signal and the magnitude and frequency of traces of other historical Pacific tsunamis (both far-field and local) are analysed in the Tofino tide gauge records and compared to tsunami traces in other tide gauges in the Pacific Basin (e.g., Miyako, Japan). Together with a review of the geological evidence for tsunami occurrence along Vancouver Island's west coast, we use this tide gauge data to develop a quantitative framework for tsunami hazard on Canada's Pacific coast. In larger time scales, tsunamis are a major component of the hazard from Cascadia megathrust events. From sedimentological evidence and seismological considerations, the recurrence interval of megathrust events on the Cascadia Subduction Zone has been estimated by others at roughly 500 years. We assume that the hazard associated with a high-magnitude destructive tsunami thus has an annual frequency of roughly 1/500. Compared to other major natural hazards in western Canada this represents a very high annual probability of potentially destructive hazard that, in some coastal communities, translates into high levels of local risk including life-loss risk. Our analysis further indicates that in terms of life-loss risk, communities on Canada's Pacific Coast that are exposed to high tsunami hazard, experience the highest natural risk in Canada. Although sparsely populated, the (outer) coast of British Columbia has important critical infrastructure that includes port developments, shoreline facilities related to forest resource exploitation, a large number of First Nations Reserves, small municipal centres, towns, and villages, (some of which are ecotourism and sport fishing centres), and a limited number of industrial facilities. For selected areas on the west coast of Vancouver Island inundation maps have been prepared for a range of tsunami scenarios. We find that key facilities and critical infrastructure are exposed to the hazards associated with tsunami inundation.

  2. An exploration of moral hazard behaviors under the national health insurance scheme in Northern Ghana: a qualitative study.

    PubMed

    Debpuur, Cornelius; Dalaba, Maxwell Ayindenaba; Chatio, Samuel; Adjuik, Martin; Akweongo, Patricia

    2015-10-15

    The government of Ghana introduced the National Health Insurance Scheme (NHIS) in 2003 through an Act of Parliament (Act 650) as a strategy to improve financial access to quality basic health care services. Although attendance at health facilities has increased since the introduction of the NHIS, there have been media reports of widespread abuse of the NHIS by scheme operators, service providers and insured persons. The aim of the study was to document behaviors and practices of service providers and clients of the NHIS in the Kassena-Nankana District (KND) of Ghana that constitute moral hazards (abuse of the scheme) and identify strategies to minimize such behaviors. Qualitative methods through 14 Focused Group Discussions (FGDs) and 5 individual in-depth interviews were conducted between December 2009 and January 2010. Thematic analysis was performed with the aid of QSR NVivo 8 software. Analysis of FGDs and in-depth interviews showed that community members, health providers and NHIS officers are aware of various behaviors and practices that constitute abuse of the scheme. Behaviors such as frequent and 'frivolous' visits to health facilities, impersonation, feigning sickness to collect drugs for non-insured persons, over charging for services provided to clients, charging clients for services not provided and over prescription were identified. Suggestions on how to minimize abuse of the NHIS offered by respondents included: reduction of premiums and registration fees, premium payments by installment, improvement in the picture quality of the membership cards, critical examination and verification of membership cards at health facilities, some ceiling on the number of times one can seek health care within a specified time period, and general education to change behaviors that abuse the scheme. Attention should be focused on addressing the identified moral hazard behaviors and pursue cost containment strategies to ensure the smooth operation of the scheme and enhance its sustainability.

  3. Association Between Treatment at High-Volume Facilities and Improved Overall Survival in Soft Tissue Sarcomas.

    PubMed

    Venigalla, Sriram; Nead, Kevin T; Sebro, Ronnie; Guttmann, David M; Sharma, Sonam; Simone, Charles B; Levin, William P; Wilson, Robert J; Weber, Kristy L; Shabason, Jacob E

    2018-03-15

    Soft tissue sarcomas (STS) are rare malignancies that require complex multidisciplinary management. Therefore, facilities with high sarcoma case volume may demonstrate superior outcomes. We hypothesized that STS treatment at high-volume (HV) facilities would be associated with improved overall survival (OS). Patients aged ≥18 years with nonmetastatic STS treated with surgery and radiation therapy at a single facility from 2004 through 2013 were identified from the National Cancer Database. Facilities were dichotomized into HV and low-volume (LV) cohorts based on total case volume over the study period. OS was assessed using multivariable Cox regression with propensity score-matching. Patterns of care were assessed using multivariable logistic regression analysis. Of 9025 total patients, 1578 (17%) and 7447 (83%) were treated at HV and LV facilities, respectively. On multivariable analysis, high educational attainment, larger tumor size, higher grade, and negative surgical margins were statistically significantly associated with treatment at HV facilities; conversely, black race and non-metropolitan residence were negative predictors of treatment at HV facilities. On propensity score-matched multivariable analysis, treatment at HV facilities versus LV facilities was associated with improved OS (hazard ratio, 0.87, 95% confidence interval, 0.80-0.95; P = .001). Older age, lack of insurance, greater comorbidity, larger tumor size, higher tumor grade, and positive surgical margins were associated with statistically significantly worse OS. In this observational cohort study using the National Cancer Database, receipt of surgery and radiation therapy at HV facilities was associated with improved OS in patients with STS. Potential sociodemographic disparities limit access to care at HV facilities for certain populations. Our findings highlight the importance of receipt of care at HV facilities for patients with STS and warrant further study into improving access to care at HV facilities. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Information for Importers and Receiving Facilities of Resource Conservation and Recovery Act (RCRA) Hazardous Waste

    EPA Pesticide Factsheets

    Information for importers of hazardous waste from Canada, Chile, Mexico, or non-OECD countries who are subject to the hazardous waste generator and importer requirements described in 40 CFR Part 262 Subpart A – D and F, under RCRA

  5. 40 CFR 264.113 - Closure; time allowed for closure.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....113 Section 264.113 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... the final volume of hazardous wastes, or the final volume of non-hazardous wastes if the owner or...

  6. 40 CFR 745.61 - Scope and applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CONTROL ACT LEAD-BASED PAINT POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES Lead-Based Paint Hazards § 745.61 Scope and applicability. (a) This subpart identifies lead-based paint hazards. (b) The standards for lead-based paint hazards apply to target housing and child-occupied facilities. (c) Nothing in...

  7. 40 CFR 745.61 - Scope and applicability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CONTROL ACT LEAD-BASED PAINT POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES Lead-Based Paint Hazards § 745.61 Scope and applicability. (a) This subpart identifies lead-based paint hazards. (b) The standards for lead-based paint hazards apply to target housing and child-occupied facilities. (c) Nothing in...

  8. 40 CFR 745.61 - Scope and applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CONTROL ACT LEAD-BASED PAINT POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES Lead-Based Paint Hazards § 745.61 Scope and applicability. (a) This subpart identifies lead-based paint hazards. (b) The standards for lead-based paint hazards apply to target housing and child-occupied facilities. (c) Nothing in...

  9. 40 CFR 745.61 - Scope and applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CONTROL ACT LEAD-BASED PAINT POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES Lead-Based Paint Hazards § 745.61 Scope and applicability. (a) This subpart identifies lead-based paint hazards. (b) The standards for lead-based paint hazards apply to target housing and child-occupied facilities. (c) Nothing in...

  10. 40 CFR 745.61 - Scope and applicability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CONTROL ACT LEAD-BASED PAINT POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES Lead-Based Paint Hazards § 745.61 Scope and applicability. (a) This subpart identifies lead-based paint hazards. (b) The standards for lead-based paint hazards apply to target housing and child-occupied facilities. (c) Nothing in...

  11. 75 FR 5640 - Pipeline Safety: Implementation of Revised Incident/Accident Report Forms for Distribution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-03

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No... Distribution Systems, Gas Transmission and Gathering Systems, and Hazardous Liquid Systems AGENCY: Pipeline and.... SUMMARY: This notice advises owners and operators of gas pipeline facilities and hazardous liquid pipeline...

  12. Environmental Assessment of Remove Objects Along Flightline at Davis-Monthan Air Force Base, Arizona

    DTIC Science & Technology

    2005-08-01

    of Defense DRMO Defense Reutilization and Marketing Office EA Environmental Assessment EIAP Environmental Impact Analysis Process EIS...the ADA to advertise that protected species might be available for salvage, facilitating the salvage process for the project area. 3.5 Hazardous...are stored at the Defense Reutilization and Marketing Office (DRMO). Asbestos. AFI 32-1052, Facilities Asbestos Management, provides direction for

  13. AFRL Solid Propellant Laboratory Explosive Siting and Renovation Lessons Learned

    DTIC Science & Technology

    2010-07-01

    Area 1-30A explosive facility and provide consultation/support during the review process for each of the site plans. • Applied Engineering Services...provided consultation/support during the siting review process. • Applied Engineering Services (AES) Inc. performed a detailed structural, blast, thermal... Applied Engineering Services (AES) Inc. structural, blast, thermal and fragment hazard analysis to determine the appropriate siting values based on

  14. Environmental and economic solutions: Pollution prevention technical assistance and the City of Los Angeles Hazardous and Toxic Materials Office

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toy-Chen, D.; Joyce, M.M.

    1994-12-31

    The City of Los Angeles faces a challenge to assist industrial facilities to minimize and manage hazardous materials in order to sustain the local economy and natural environment. Industrial facilities in Los Angeles County released into the environment or transferred off-site 103,442,074 tons of hazardous materials and waste in 1988. This enormous quantity of hazardous waste requires generators to be in compliance with several environmental regulatory agencies. The City of Los Angeles Hazardous and Toxic Materials (HTM) Office has increased the awareness, commitments, and implementation of hazardous waste at the source, the amount of toxic pollutants discharged into the City`smore » publicly owned treatment works, surface and groundwaters, soils and atmosphere can be substantially reduced. Quantifying hazardous waste minimization progress is extremely difficult and complex. However, the HTM Office anticipates that if the challenge of pollution prevention is successful, more businesses will decide to remain in the region and Los Angeles residents will feel convinced that industry is making good faith efforts to protect the environment. Pollution prevention is a long term solution for the hazardous waste crisis that society has only recently recognized.« less

  15. Biennial Hazardous Waste Report

    EPA Pesticide Factsheets

    Federal regulations require large quantity generators to submit a report (EPA form 8700-13A/B) every two years regarding the nature, quantities and disposition of hazardous waste generated at their facility.

  16. The Global Tsunami Model (GTM)

    NASA Astrophysics Data System (ADS)

    Thio, H. K.; Løvholt, F.; Harbitz, C. B.; Polet, J.; Lorito, S.; Basili, R.; Volpe, M.; Romano, F.; Selva, J.; Piatanesi, A.; Davies, G.; Griffin, J.; Baptista, M. A.; Omira, R.; Babeyko, A. Y.; Power, W. L.; Salgado Gálvez, M.; Behrens, J.; Yalciner, A. C.; Kanoglu, U.; Pekcan, O.; Ross, S.; Parsons, T.; LeVeque, R. J.; Gonzalez, F. I.; Paris, R.; Shäfer, A.; Canals, M.; Fraser, S. A.; Wei, Y.; Weiss, R.; Zaniboni, F.; Papadopoulos, G. A.; Didenkulova, I.; Necmioglu, O.; Suppasri, A.; Lynett, P. J.; Mokhtari, M.; Sørensen, M.; von Hillebrandt-Andrade, C.; Aguirre Ayerbe, I.; Aniel-Quiroga, Í.; Guillas, S.; Macias, J.

    2016-12-01

    The large tsunami disasters of the last two decades have highlighted the need for a thorough understanding of the risk posed by relatively infrequent but disastrous tsunamis and the importance of a comprehensive and consistent methodology for quantifying the hazard. In the last few years, several methods for probabilistic tsunami hazard analysis have been developed and applied to different parts of the world. In an effort to coordinate and streamline these activities and make progress towards implementing the Sendai Framework of Disaster Risk Reduction (SFDRR) we have initiated a Global Tsunami Model (GTM) working group with the aim of i) enhancing our understanding of tsunami hazard and risk on a global scale and developing standards and guidelines for it, ii) providing a portfolio of validated tools for probabilistic tsunami hazard and risk assessment at a range of scales, and iii) developing a global tsunami hazard reference model. This GTM initiative has grown out of the tsunami component of the Global Assessment of Risk (GAR15), which has resulted in an initial global model of probabilistic tsunami hazard and risk. Started as an informal gathering of scientists interested in advancing tsunami hazard analysis, the GTM is currently in the process of being formalized through letters of interest from participating institutions. The initiative has now been endorsed by the United Nations International Strategy for Disaster Reduction (UNISDR) and the World Bank's Global Facility for Disaster Reduction and Recovery (GFDRR). We will provide an update on the state of the project and the overall technical framework, and discuss the technical issues that are currently being addressed, including earthquake source recurrence models, the use of aleatory variability and epistemic uncertainty, and preliminary results for a probabilistic global hazard assessment, which is an update of the model included in UNISDR GAR15.

  17. The Global Tsunami Model (GTM)

    NASA Astrophysics Data System (ADS)

    Lorito, S.; Basili, R.; Harbitz, C. B.; Løvholt, F.; Polet, J.; Thio, H. K.

    2017-12-01

    The tsunamis occurred worldwide in the last two decades have highlighted the need for a thorough understanding of the risk posed by relatively infrequent but often disastrous tsunamis and the importance of a comprehensive and consistent methodology for quantifying the hazard. In the last few years, several methods for probabilistic tsunami hazard analysis have been developed and applied to different parts of the world. In an effort to coordinate and streamline these activities and make progress towards implementing the Sendai Framework of Disaster Risk Reduction (SFDRR) we have initiated a Global Tsunami Model (GTM) working group with the aim of i) enhancing our understanding of tsunami hazard and risk on a global scale and developing standards and guidelines for it, ii) providing a portfolio of validated tools for probabilistic tsunami hazard and risk assessment at a range of scales, and iii) developing a global tsunami hazard reference model. This GTM initiative has grown out of the tsunami component of the Global Assessment of Risk (GAR15), which has resulted in an initial global model of probabilistic tsunami hazard and risk. Started as an informal gathering of scientists interested in advancing tsunami hazard analysis, the GTM is currently in the process of being formalized through letters of interest from participating institutions. The initiative has now been endorsed by the United Nations International Strategy for Disaster Reduction (UNISDR) and the World Bank's Global Facility for Disaster Reduction and Recovery (GFDRR). We will provide an update on the state of the project and the overall technical framework, and discuss the technical issues that are currently being addressed, including earthquake source recurrence models, the use of aleatory variability and epistemic uncertainty, and preliminary results for a probabilistic global hazard assessment, which is an update of the model included in UNISDR GAR15.

  18. The Global Tsunami Model (GTM)

    NASA Astrophysics Data System (ADS)

    Løvholt, Finn

    2017-04-01

    The large tsunami disasters of the last two decades have highlighted the need for a thorough understanding of the risk posed by relatively infrequent but disastrous tsunamis and the importance of a comprehensive and consistent methodology for quantifying the hazard. In the last few years, several methods for probabilistic tsunami hazard analysis have been developed and applied to different parts of the world. In an effort to coordinate and streamline these activities and make progress towards implementing the Sendai Framework of Disaster Risk Reduction (SFDRR) we have initiated a Global Tsunami Model (GTM) working group with the aim of i) enhancing our understanding of tsunami hazard and risk on a global scale and developing standards and guidelines for it, ii) providing a portfolio of validated tools for probabilistic tsunami hazard and risk assessment at a range of scales, and iii) developing a global tsunami hazard reference model. This GTM initiative has grown out of the tsunami component of the Global Assessment of Risk (GAR15), which has resulted in an initial global model of probabilistic tsunami hazard and risk. Started as an informal gathering of scientists interested in advancing tsunami hazard analysis, the GTM is currently in the process of being formalized through letters of interest from participating institutions. The initiative has now been endorsed by the United Nations International Strategy for Disaster Reduction (UNISDR) and the World Bank's Global Facility for Disaster Reduction and Recovery (GFDRR). We will provide an update on the state of the project and the overall technical framework, and discuss the technical issues that are currently being addressed, including earthquake source recurrence models, the use of aleatory variability and epistemic uncertainty, and preliminary results for a probabilistic global hazard assessment, which is an update of the model included in UNISDR GAR15.

  19. Risks to offshore installations in Europe due to natural hazards

    NASA Astrophysics Data System (ADS)

    Necci, Amos; Krausmann, Elisabeth

    2017-04-01

    Natural hazards, such as storms, earthquakes, or lightning are a major threat to industry. In particular, chemical plants, storage facilities, pipelines, and offshore oil and gas facilities are vulnerable to natural events which can cause hazardous materials releases and thereby endanger workers, the population and the environment. These technological accidents are commonly referred to as Natech accidents. Recent events have increased concerns about safety in the offshore oil and gas sector, and the need for improving knowledge on the matter has become evident. With those premises, we analyzed accidents, near misses and accident precursors at offshore facilities in Europe caused by natural events using both a statistical and a qualitative approach. For this purpose, we screened the World Offshore Accident Database (WOAD) to identify all incidents that featured natural events as causes or aggravating factors. A dataset of 1,085 global Natech events was built for the statistical analysis. Among those, a subset composed of 303 European records was selected. The results of the analysis showed that offshore Natech events in Europe are frequent; they resulted, however, in low consequences. The main threat to offshore facilities resulted from bad weather, such as strong winds and heavy seas. Storms can put intense loads on the structural parts of offshore installations, eventually exceeding design resistance specifications. Several incidents triggered by lightning strikes and earthquakes were also recorded. Substantial differences in terms of vulnerability, damage modality and consequences emerged between fixed and floating offshore structures. The main damage mode for floating structures was the failure of station keeping systems due to the rupture of mooring or anchors, mainly caused by adverse meteorological conditions. Most of the incidents at fixed offshore structures in Europe involved falling loads for both metal jacket and concrete base platforms due to storms. In contrast, in other parts of the world, and in particular in the Gulf of Mexico, tropical storms are likely to trigger severe direct damage to structures, resulting in platform capsizing, sinking or grounding. The in-depth analysis of the incident records also showed that the natural event was often just the triggering cause of the accident, which was frequently accompanied by contributing factors (e.g. corrosion, fatigue, wrong procedures, etc.). Under these circumstances, not only extreme storms, but also storms with moderate intensity can trigger incidents. Due to the high density of offshore structures and the unique environmental conditions promoting fatigue and corrosion, the North Sea is the area with the highest number of incidents recorded in Europe, as well as the area with the highest number of incidents at semi-submersible units in the world. About 4% of all reported global Natech events at offshore infrastructures involved casualties, and 2.6% for the European incident subset. Hazardous materials releases were documented for 21 events in Europe, resulting in fires and hydrocarbon spills polluting the sea. Furthermore, a surprisingly high number of severe events occurred during towing which highlights the impact of natural hazards on the safety of offshore transfer operations.

  20. Radiological Worker II Training, Course 20301 (Live), Course 12909 (Test)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, Jimmy D.

    Radiological worker training is the basic building block for any additional radiological training you may receive. Upon completing radiological worker training, you will have the basic knowledge needed to work safely, using proper radiological practices, in areas where radiological hazards exist. You will also have a better understanding of the hazards and responsibilities associated with radiological work to help prevent the carelessness that can occur when working continually with or around radioactive material. This course does not qualify you for any specific radiological work. You may be required to take additional training at individual facilities to address facility- and job-specificmore » hazards and procedures.« less

  1. 77 FR 45417 - Pipeline Safety: Inspection and Protection of Pipeline Facilities After Railway Accidents

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-31

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No... Accidents AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA); DOT. [[Page 45418

  2. Implementation of the SSHAC Guidelines for Level 3 and 4 PSHAs - Experience Gained from Actual Applications

    USGS Publications Warehouse

    Hanks, Thomas C.; Abrahamson, Norm A.; Boore, David M.; Coppersmith, Kevin J.; Knepprath, Nichole E.

    2009-01-01

    In April 1997, after four years of deliberations, the Senior Seismic Hazard Analysis Committee released its report 'Recommendations for Probabilistic Seismic Hazard Analysis: Guidance on Uncertainty and Use of Experts' through the U.S. Nuclear Regulatory Commission as NUREG/CR-6372, hereafter SSHAC (1997). Known informally ever since as the 'SSHAC Guidelines', SSHAC (1997) addresses why and how multiple expert opinions - and the intrinsic uncertainties that attend them - should be used in Probabilistic Seismic Hazard Analyses (PSHA) for critical facilities such as commercial nuclear power plants. Ten years later, in September 2007, the U.S. Geological Survey (USGS) entered into a 13-month agreement with the U.S. Nuclear Regulatory Commission (NRC) titled 'Practical Procedures for Implementation of the SSHAC Guidelines and for Updating PSHAs'. The NRC was interested in understanding and documenting lessons learned from recent PSHAs conducted at the higher SSHAC Levels (3 and 4) and in gaining input from the seismic community for updating PSHAs as new information became available. This study increased in importance in anticipation of new applications for nuclear power facilities at both existing and new sites. The intent of this project was not to replace the SSHAC Guidelines but to supplement them with the experience gained from putting the SSHAC Guidelines to work in practical applications. During the course of this project, we also learned that updating PSHAs for existing nuclear power facilities involves very different issues from the implementation of the SSHAC Guidelines for new facilities. As such, we report our findings and recommendations from this study in two separate documents, this being the first. The SSHAC Guidelines were written without regard to whether the PSHAs to which they would be applied were site-specific or regional in scope. Most of the experience gained to date from high-level SSHAC studies has been for site-specific cases, although three ongoing (as of this writing) studies are regional in scope. Updating existing PSHAs will depend more critically on the differences between site-specific and regional studies, and we will also address these differences in more detail in the companion report. Most of what we report here and in the second report on updating PSHAs emanates from three workshops held by the USGS at their Menlo Park facility: 'Lessons Learned from SSHAC Level 3 and 4 PSHAs' on January 30-31, 2008; 'Updates to Existing PSHAs' on May 6-7, 2008; and 'Draft Recommendations, SSHAC Implementation Guidance' on June 4-5, 2009. These workshops were attended by approximately 40 scientists and engineers familiar with hazard studies for nuclear facilities. This company included four of the authors of SSHAC (1997) and four other experts whose contributions to this document are mentioned in the Acknowledgments section; numerous scientists and engineers who in one role or another have participated in one or more high-level SSHAC PSHAs summarized later in this report; and representatives of the nuclear industry, the consulting world, the regulatory community, and academia with a keen interest and expertise in hazard analysis. This report is a community-based set of recommendations to NRC for improved practical procedures for implementation of the SSHAC Guidelines. In an early publication specifically addressing the SSHAC Guidelines, Hanks (1997) noted that the SSHAC Guidelines were likely to evolve for some time to come, and this remains true today. While the broad philosophical and theoretical dimensions of the SSHAC Guidelines will not change, much has been learned during the past decade from various applications of the SSHAC Guidelines to real PSHAs in terms of how they are implemented. We anticipate that, in their practical applications, the SSHAC Guidelines will continue to evolve as more experience is gained from future SSHAC applications. Indeed, to the extent that every PSHA has its

  3. Integration of Aquifer Storage Transfer and Recovery and HACCP for Ensuring Drinking Water Quality

    NASA Astrophysics Data System (ADS)

    Lee, S. I.; Ji, H. W.

    2015-12-01

    The integration of ASTR (Aquifer Storage Transfer and Recovery) and HACCP (Hazard Analysis and Critical Control Point) is being attempted to ensure drinking water quality in a delta area. ASTR is a water supply system in which surface water is injected into a well for storage and recovered from a different well. During the process natural water treatment is achieved in the aquifer. ASTR has advantages over surface reservoirs in that the water is protected from external contaminants and free from water loss by evaporation. HACCP, originated from the food industry, can efficiently manage hazards and reduce risks when it is introduced to the drinking water production. The study area is the located in the Nakdong River Delta, South Korea. Water quality of this region has been deteriorated due to the increased pollution loads from the upstream cities and industrial complexes. ASTR equipped with HACCP system is suggested as a means to heighten the public trust in drinking water. After the drinking water supply system using ASTR was decomposed into ten processes, principles of HACCP were applied. Hazardous event analysis was conducted for 114 hazardous events and nine major hazardous events were identified based on the likelihood and the severity assessment. Potential risk of chemical hazards, as a function of amounts, travel distance and toxicity, was evaluated and the result shows the relative threat a city poses to the drinking water supply facility. Next, critical control points were determined using decision tree analysis. Critical limits, maximum and/or minimum values to which biological, chemical or physical parameters must be controlled, were established. Other procedures such as monitoring, corrective actions and will be presented.

  4. 40 CFR 270.1 - Purpose and scope of these regulations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... hazardous waste, and owners or operators of hazardous waste treatment, storage, or disposal facilities may be required to file a notification of that activity under section 3010. Six months after the initial promulgation of the part 261 regulations, treatment, storage, or disposal of hazardous waste by any person who...

  5. 40 CFR 270.1 - Purpose and scope of these regulations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... hazardous waste, and owners or operators of hazardous waste treatment, storage, or disposal facilities may be required to file a notification of that activity under section 3010. Six months after the initial promulgation of the part 261 regulations, treatment, storage, or disposal of hazardous waste by any person who...

  6. 40 CFR 270.1 - Purpose and scope of these regulations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... hazardous waste, and owners or operators of hazardous waste treatment, storage, or disposal facilities may be required to file a notification of that activity under section 3010. Six months after the initial promulgation of the part 261 regulations, treatment, storage, or disposal of hazardous waste by any person who...

  7. 40 CFR 270.1 - Purpose and scope of these regulations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... hazardous waste, and owners or operators of hazardous waste treatment, storage, or disposal facilities may be required to file a notification of that activity under section 3010. Six months after the initial promulgation of the part 261 regulations, treatment, storage, or disposal of hazardous waste by any person who...

  8. CHARACTERIZATION OF ORGANIC EMISSIONS FROM HAZARDOUS WASTE INCINERATION PROCESSES UNDER THE NEW EPA DRAFT RISK BURN GUIDANCE: MEASUREMENT ISSUES

    EPA Science Inventory

    The paper discusses measurement issues relating to the characterization of organic emissions from hazardous waste incineration processes under EPA's new risk burn guidance. The recently published draft quidance recommends that hazardous waste combustion facilities complete a mass...

  9. 40 CFR 267.31 - What are the general design and operation standards?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... possibility of a fire, explosion, or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water that could threaten human health or the... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES...

  10. 40 CFR 267.31 - What are the general design and operation standards?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... possibility of a fire, explosion, or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water that could threaten human health or the... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES...

  11. 40 CFR 267.31 - What are the general design and operation standards?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... possibility of a fire, explosion, or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water that could threaten human health or the... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES...

  12. 40 CFR 267.31 - What are the general design and operation standards?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... possibility of a fire, explosion, or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water that could threaten human health or the... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES...

  13. 33 CFR 154.105 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK General § 154.105 Definitions. As used in this part... equipment in the marine transfer area are completely free of oil or hazardous materials, where these..., used or capable of being used to transfer oil or hazardous materials to or from a vessel or public...

  14. 33 CFR 154.105 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK General § 154.105 Definitions. As used in this part... equipment in the marine transfer area are completely free of oil or hazardous materials, where these..., used or capable of being used to transfer oil or hazardous materials to or from a vessel or public...

  15. 40 CFR 266.220 - What does a storage and treatment conditional exemption do?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Conditional Exemption for Low-Level Mixed Waste Storage... exemption exempts your low-level mixed waste from the regulatory definition of hazardous waste in 40 CFR 261...

  16. 40 CFR 266.305 - What does the transportation and disposal conditional exemption do?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Conditional Exemption for Low-Level... exemption exempts your waste from the regulatory definition of hazardous waste in 40 CFR 261.3 if your waste...

  17. 40 CFR 266.104 - Standards to control organic emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... DRE trial burn. (5) Low risk waste. Owners and operators of boilers or industrial furnaces that burn... HAZARDOUS WASTE MANAGEMENT FACILITIES Hazardous Waste Burned in Boilers and Industrial Furnaces § 266.104...) of this section, a boiler or industrial furnace burning hazardous waste must achieve a destruction...

  18. 40 CFR 266.104 - Standards to control organic emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... DRE trial burn. (5) Low risk waste. Owners and operators of boilers or industrial furnaces that burn... HAZARDOUS WASTE MANAGEMENT FACILITIES Hazardous Waste Burned in Boilers and Industrial Furnaces § 266.104...) of this section, a boiler or industrial furnace burning hazardous waste must achieve a destruction...

  19. 40 CFR 267.54 - When must I amend the contingency plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A... for fires, explosions, or releases of hazardous waste or hazardous waste constituents, or changes the response necessary in an emergency. (d) You change the list of emergency coordinators. (e) You change the...

  20. 40 CFR 267.54 - When must I amend the contingency plan?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A... for fires, explosions, or releases of hazardous waste or hazardous waste constituents, or changes the response necessary in an emergency. (d) You change the list of emergency coordinators. (e) You change the...

  1. 40 CFR 266.104 - Standards to control organic emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... HAZARDOUS WASTE MANAGEMENT FACILITIES Hazardous Waste Burned in Boilers and Industrial Furnaces § 266.104...) of this section, a boiler or industrial furnace burning hazardous waste must achieve a destruction... demonstrate conformance with this requirement, 99.99% DRE must be demonstrated during a trial burn for each...

  2. 40 CFR 266.104 - Standards to control organic emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... HAZARDOUS WASTE MANAGEMENT FACILITIES Hazardous Waste Burned in Boilers and Industrial Furnaces § 266.104...) of this section, a boiler or industrial furnace burning hazardous waste must achieve a destruction... demonstrate conformance with this requirement, 99.99% DRE must be demonstrated during a trial burn for each...

  3. 40 CFR 266.104 - Standards to control organic emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... HAZARDOUS WASTE MANAGEMENT FACILITIES Hazardous Waste Burned in Boilers and Industrial Furnaces § 266.104...) of this section, a boiler or industrial furnace burning hazardous waste must achieve a destruction... demonstrate conformance with this requirement, 99.99% DRE must be demonstrated during a trial burn for each...

  4. KSC-2015-1075

    NASA Image and Video Library

    2015-01-13

    CAPE CANAVERAL, Fla. -- Workers take photographs of NASA's Orion spacecraft during a viewing at the Launch Abort System Facility at NASA's Kennedy Space Center in Florida. Orion's back shell panels have been removed. The spacecraft completed the first flight test in December, was retrieved from the Pacific Ocean, and transported 2,700 miles overland to Kennedy from Naval Base San Diego in California. Analysis of data obtained during its two-orbit, four-and-a-half hour mission Dec. 5 will provide engineers detailed information on how the spacecraft fared. Orion will be transported to the Payload Hazardous Servicing Facility for deservicing. For more information, visit www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett

  5. KSC-2015-1076

    NASA Image and Video Library

    2015-01-13

    CAPE CANAVERAL, Fla. -- Workers take photographs of NASA's Orion spacecraft during a viewing at the Launch Abort System Facility at NASA's Kennedy Space Center in Florida. Orion's back shell panels have been removed. The spacecraft completed the first flight test in December, was retrieved from the Pacific Ocean, and transported 2,700 miles overland to Kennedy from Naval Base San Diego in California. Analysis of data obtained during its two-orbit, four-and-a-half hour mission Dec. 5 will provide engineers detailed information on how the spacecraft fared. Orion will be transported to the Payload Hazardous Servicing Facility for deservicing. For more information, visit www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett

  6. KSC-2015-1077

    NASA Image and Video Library

    2015-01-13

    CAPE CANAVERAL, Fla. -- Workers take photographs of NASA's Orion spacecraft during a viewing at the Launch Abort System Facility at NASA's Kennedy Space Center in Florida. Orion's back shell panels have been removed. The spacecraft completed the first flight test in December, was retrieved from the Pacific Ocean, and transported 2,700 miles overland to Kennedy from Naval Base San Diego in California. Analysis of data obtained during its two-orbit, four-and-a-half hour mission Dec. 5 will provide engineers detailed information on how the spacecraft fared. Orion will be transported to the Payload Hazardous Servicing Facility for deservicing. For more information, visit www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett

  7. KSC-2015-1074

    NASA Image and Video Library

    2015-01-13

    CAPE CANAVERAL, Fla. -- Workers take photographs of NASA's Orion spacecraft during a viewing at the Launch Abort System Facility at NASA's Kennedy Space Center in Florida. Orion's back shell panels have been removed. The spacecraft completed the first flight test in December, was retrieved from the Pacific Ocean, and transported 2,700 miles overland to Kennedy from Naval Base San Diego in California. Analysis of data obtained during its two-orbit, four-and-a-half hour mission Dec. 5 will provide engineers detailed information on how the spacecraft fared. Orion will be transported to the Payload Hazardous Servicing Facility for deservicing. For more information, visit www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett

  8. KSC-2015-1079

    NASA Image and Video Library

    2015-01-13

    CAPE CANAVERAL, Fla. -- Workers take photographs of NASA's Orion spacecraft during a viewing at the Launch Abort System Facility at NASA's Kennedy Space Center in Florida. Orion's back shell panels have been removed. The spacecraft completed the first flight test in December, was retrieved from the Pacific Ocean, and transported 2,700 miles overland to Kennedy from Naval Base San Diego in California. Analysis of data obtained during its two-orbit, four-and-a-half hour mission Dec. 5 will provide engineers detailed information on how the spacecraft fared. Orion will be transported to the Payload Hazardous Servicing Facility for deservicing. For more information, visit www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett

  9. Air modelling as an alternative to sampling for low-level radioactive airborne releases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgenstern, M.Y.; Hueske, K.

    1995-05-01

    This paper describes our efforts to assess the effect of airborne releases at one DOE laboratory using air modelling based on historical data. Among the facilities affected by these developments is Los Alamos National Laboratory (LANL) in New Mexico. RCRA, as amended by the Hazardous and Solid Waste Amendments (HSWA) in 1984, requires all facilities which involve the treatment, storage, and disposal of hazardous waste obtain a RCRA/HSWA waste facility permit. LANL complied with CEARP by initiating a process of identifying potential release sites associated with LANL operations prior to filing a RCRA/HSWA permit application. In the process of preparingmore » the RCRA/HSWA waste facility permit application to the U.S. Environmental Protection Agency (EPA), a total of 603 Solid Waste Management Units (SWMUs) were identified as part of the requirements of the HSWA Module VIH permit requirements. The HSWA Module VIII permit requires LANL to determine whether there have been any releases of hazardous waste or hazardous constituents from SWMUs at the facility dating from the 1940`s by performing a RCRA Facility Investigation to address known or suspected releases from specified SWMUs to affected media (i.e. soil, groundwater, surface water, and air). Among the most troublesome of the potential releases sites are those associated with airborne radioactive releases. In order to assess health risks associated with radioactive contaminants in a manner consistent with exposure standards currently in place, the DOE and LANL have established Screening Action Levels (SALs) for radioactive soil contamination. The SALs for each radionuclide in soil are derived from calculations based on a residential scenario in which individuals are exposed to contaminated soil via inhalation and ingestion as well as external exposure to gamma emitters in the soil. The applicable SALs are shown.« less

  10. Sound Waste Management Plan environmental operations, and used oil management system: Restoration project 97115. Exxon Valdez oil spill restoration project final report: Volumes 1 and 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-06-01

    This project constitutes Phase 2 of the Sound Waste Management Plan and created waste oil collection and disposal facilities, bilge water collection and disposal facilities, recycling storage, and household hazardous waste collection and storage, and household hazardous waste collection and storage facilities in Prince William Sound. A wide range of waste streams are generated within communities in the Sound including used oil generated from vehicles and vessels, and hazardous wastes generated by households. This project included the design and construction of Environmental Operations Stations buildings in Valdez, Cordova, Whittier, Chenega Bay and Tatitlek to improve the overall management of oilymore » wastes. They will house new equipment to facilitate oily waste collection, treatment and disposal. This project also included completion of used oil management manuals.« less

  11. 40 CFR 271.12 - Requirements for hazardous waste management facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and 266. These standards shall include: (a) Technical standards for tanks, containers, waste piles...-closure monitoring and maintenance; (e) Groundwater monitoring; (f) Security to prevent unauthorized access to the facility; (g) Facility personnel training; (h) Inspections, monitoring, recordkeeping, and...

  12. 40 CFR 271.12 - Requirements for hazardous waste management facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and 266. These standards shall include: (a) Technical standards for tanks, containers, waste piles...-closure monitoring and maintenance; (e) Groundwater monitoring; (f) Security to prevent unauthorized access to the facility; (g) Facility personnel training; (h) Inspections, monitoring, recordkeeping, and...

  13. 40 CFR 271.12 - Requirements for hazardous waste management facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and 266. These standards shall include: (a) Technical standards for tanks, containers, waste piles...-closure monitoring and maintenance; (e) Groundwater monitoring; (f) Security to prevent unauthorized access to the facility; (g) Facility personnel training; (h) Inspections, monitoring, recordkeeping, and...

  14. 40 CFR 271.12 - Requirements for hazardous waste management facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and 266. These standards shall include: (a) Technical standards for tanks, containers, waste piles...-closure monitoring and maintenance; (e) Groundwater monitoring; (f) Security to prevent unauthorized access to the facility; (g) Facility personnel training; (h) Inspections, monitoring, recordkeeping, and...

  15. 40 CFR 271.12 - Requirements for hazardous waste management facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and 266. These standards shall include: (a) Technical standards for tanks, containers, waste piles...-closure monitoring and maintenance; (e) Groundwater monitoring; (f) Security to prevent unauthorized access to the facility; (g) Facility personnel training; (h) Inspections, monitoring, recordkeeping, and...

  16. Asbestos: A Present Hazard in Education

    ERIC Educational Resources Information Center

    Yeager, L. Dayle; Bilbo, David

    1983-01-01

    Explains what asbestos is, how it can be identified, where it has been used in educational facilities, the health hazards, government regulation, how it can be removed, and lists information sources. (MLF)

  17. Secondary Aluminum Production: National Emission Standards for Hazardous Air Pollutants

    EPA Pesticide Factsheets

    National emission standards for hazardous air pollutants (NESHAP) for new and existing sources at secondary aluminum production facilities. Includes rule history, summary, federal register citations and implementation information.

  18. Pharmaceuticals Production Industry: National Emission Standards for Hazardous Air Pollutants (NESHAP)

    EPA Pesticide Factsheets

    National emission standards for hazardous air pollutants (NESHAP) from facilities that manufacture pharmaceutical products. Includes rule history, Federal Register citations, implementation and compliance information, and additional resources.

  19. 44 CFR 201.6 - Local Mitigation Plans.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., infrastructure, and critical facilities located in the identified hazard areas; (B) An estimate of the potential... effects of each hazard, with particular emphasis on new and existing buildings and infrastructure. All...

  20. 44 CFR 201.6 - Local Mitigation Plans.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., infrastructure, and critical facilities located in the identified hazard areas; (B) An estimate of the potential... effects of each hazard, with particular emphasis on new and existing buildings and infrastructure. All...

  1. 44 CFR 201.6 - Local Mitigation Plans.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., infrastructure, and critical facilities located in the identified hazard areas; (B) An estimate of the potential... effects of each hazard, with particular emphasis on new and existing buildings and infrastructure. All...

  2. Flood risk assessment of land pollution hotspots

    NASA Astrophysics Data System (ADS)

    Masi, Matteo; Arrighi, Chiara; Iannelli, Renato

    2017-04-01

    Among the risks caused by extreme events, the potential spread of pollutants stored in land hotspots due to floods is an aspect that has been rarely examined with a risk-based approach. In this contribution, an attempt to estimate pollution risks related to flood events of land pollution hotspots was carried out. Flood risk has been defined as the combination of river flood hazard, hotspots exposure and vulnerability to contamination of the area, i.e. the expected severity of the environmental impacts. The assessment was performed on a geographical basis, using geo-referenced open data, available from databases of land management institutions, authorities and agencies. The list of land pollution hotspots included landfills and other waste handling facilities (e.g., temporary storage, treatment and recycling sites), municipal wastewater treatment plants, liquid waste treatment facilities and contaminated sites. The assessment was carried out by combining geo-referenced data of pollution hotspots with flood hazard maps. We derived maps of land pollution risk based on geographical and geological properties and source characteristics available from environmental authorities. These included information about soil particle size, soil hydraulic conductivity, terrain slope, type of stored pollutants, the type of facility, capacity, size of the area, land use, etc. The analysis was carried out at catchment scale. The case study of the Arno river basin in Tuscany (central Italy) is presented.

  3. State Decision-Makers Guide for Hazardous Waste Management: Defining Hazardous Wastes, Problem Recognition, Land Use, Facility Operations, Conceptual Framework, Policy Issues, Transportation.

    ERIC Educational Resources Information Center

    Corson, Alan; And Others

    Presented are key issues to be addressed by state, regional, and local governments and agencies in creating effective hazardous waste management programs. Eight chapters broadly frame the topics which state-level decision makers should consider. These chapters include: (1) definition of hazardous waste; (2) problem definition and recognition; (3)…

  4. Resource Conservation and Recovery Act (RCRA) and Federal Facilities

    EPA Pesticide Factsheets

    Federal facilities have responsibilities with hazardous waste under RCRA, including the generation, transportation, treatment, storage, and disposal under the Resource Conservation and Recovery Act (RCRA). .

  5. 33 CFR 154.1240 - Specific requirements for animal fats and vegetable oils facilities that could reasonably be...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... fats and vegetable oils facilities that could reasonably be expected to cause substantial harm to the... SECURITY (CONTINUED) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Response Plans for Animal Fats and Vegetable Oils Facilities § 154.1240 Specific requirements for animal fats and vegetable...

  6. Reinforced Plastic Composites Production: National Emission Standards for Hazardous Air Pollutants

    EPA Pesticide Factsheets

    National emissions standards for hazardous air pollutants for reinforced plastic composites production facilities. Regulates production and ancillary processes used to manufacture products with thermoset resins and gel coats.

  7. An Extreme Meteorological Events Analysis For Nuclear Power Plant (NPP) Siting Project at Bangka Island, Indonesia

    NASA Astrophysics Data System (ADS)

    Septiadi, Deni; S, Yarianto Sugeng B.; Sriyana; Anzhar, Kurnia; Suntoko, Hadi

    2018-03-01

    The potential sources of meteorological phenomena in Nuclear Power Plant (NPP) area of interest are identified and the extreme values of the possible resulting hazards associated which such phenomena are evaluated to derive the appropriate design bases for the NPP. The appropriate design bases shall be determined according to the Nuclear Energy Regulatory Agency (Bapeten) applicable regulations, which presently do not indicate quantitative criteria for purposes of determining the design bases for meteorological hazards. These meteorological investigations are also carried out to evaluate the regional and site specific meteorological parameters which affect the transport and dispersion of radioactive effluents on the environment of the region around the NPP site. The meteorological hazards are to be monitored and assessed periodically over the lifetime of the plant to ensure that consistency with the design assumptions is maintained throughout the full lifetime of the facility.

  8. 33 CFR 127.205 - Emergency shutdown.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Equipment § 127.205 Emergency shutdown. Each transfer... automatically when the fixed sensors under § 127.201(b) measure LNG concentrations exceeding 40% of the lower...

  9. 33 CFR 127.205 - Emergency shutdown.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Equipment § 127.205 Emergency shutdown. Each transfer... automatically when the fixed sensors under § 127.201(b) measure LNG concentrations exceeding 40% of the lower...

  10. Report to Congress on innovative safety and security technology solutions for alternative transportation facilities

    DOT National Transportation Integrated Search

    2017-05-01

    This research collected information on the frequency and impact of safety and security incidents (threats) at selected facilities and identified priority incidents at each facility. A customized all hazards approach was used to determine the ha...

  11. 33 CFR 127.311 - Motor vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Operations § 127.311 Motor vehicles. (a) The operator... storage tank or loading flange. (b) During transfer operations, no person may— (1) Stop or park a motor...

  12. 33 CFR 127.315 - Preliminary transfer inspection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Operations § 127.315 Preliminary transfer... parts; (b) For each of the vessel's cargo tanks from which cargo will be transferred, note the pressure...

  13. Hazardous Waste Cleanup: Sabic Innovative Plastics US, LLC in Selkirk, New York

    EPA Pesticide Factsheets

    The ownership of the facility was transferred from General Electric to Sabic Innovative Plastics in May 2007. The facility is located on Noryl Avenue in the town of Selkirk. The facility is approximately six miles from the Hudson River.

  14. Federal Facilities (Executive Offices) Sector (NAICS 921110)

    EPA Pesticide Factsheets

    Find EPA regulatory information for federal facilities (NAICS 92), including information on base closures and transfers, hazardous waste, military munitions, perchorlate, environmentally preferable purchasing and comprehensive procurement guidelines

  15. Federal Agency Hazardous Waste Compliance Docket

    EPA Pesticide Factsheets

    List of the Federal Agency Hazardous Waste Compliance Docket Facilities comprised of four lists: National Priorities List (NPL), Non-National Priorities List, Base Realignment and Closure Act (BRAC), and Resource Conservation and Recovery Act (RCRA).

  16. Emergency preparedness and planning

    NASA Technical Reports Server (NTRS)

    Bouvier, Kenneth

    1993-01-01

    Monsanto's emergency response plan in dealing with hazardous materials at their facilities is presented. Topics discussed include the following: CPR training; emergency medial training; incident reports; contractor injuries; hazardous materials transport; evacuation; and other industrial safety concerns.

  17. Wedron Groundwater Site in Wedron, Illinois

    EPA Pesticide Factsheets

    Wedron Resource Conservation and Recovery Act (RCRA) Corrective Action program to work with hazardous waste facilities to investigate and clean up any release of hazardous waste into the soil, ground water, surface water and air.

  18. Safety in the Chemical Laboratory: Hazards in a Photography Lab.

    ERIC Educational Resources Information Center

    Houk, Cliff; Hart, Charles

    1987-01-01

    Described are case studies illustrating chemical hazards in a photography lab due to compounds containing cyanide. Suggestions for preventing problems including proper procedures, housekeeping, facilities, and ventilation are considered. (RH)

  19. Simulation Technology Laboratory Building 970 hazards assessment document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, C.L.; Starr, M.D.

    1994-11-01

    The Department of Energy Order 5500.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Simulation Technology Laboratory, Building 970. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distances at which a postulated facility event will producemore » consequences exceeding the ERPG-2 and Early Severe Health Effects thresholds are 78 and 46 meters, respectively. The highest emergency classification is a Site Area Emergency. The Emergency Planning Zone is 100 meters.« less

  20. 40 CFR 267.115 - After I stop operating, how long until I must close?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES...? (a) Within 90 days after the final volume of hazardous waste is sent to a unit, you must treat or remove from the unit all hazardous wastes following the approved closure plan. (b) You must complete...

  1. 40 CFR 267.115 - After I stop operating, how long until I must close?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES...? (a) Within 90 days after the final volume of hazardous waste is sent to a unit, you must treat or remove from the unit all hazardous wastes following the approved closure plan. (b) You must complete...

  2. 40 CFR 267.115 - After I stop operating, how long until I must close?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES...? (a) Within 90 days after the final volume of hazardous waste is sent to a unit, you must treat or remove from the unit all hazardous wastes following the approved closure plan. (b) You must complete...

  3. 40 CFR Appendix I to Part 265 - Recordkeeping Instructions

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... physical form, i.e., liquid, sludge, solid, or contained gas. If the waste is not listed in part 261..., solid filter cake from production of ___, EPA Hazardous Waste Number W051). Each hazardous waste listed... technique(s) used at the facility to treat, store or dispose of each quantity of hazardous waste received. 1...

  4. 40 CFR 262.212 - Making the hazardous waste determination at an on-site interim status or permitted treatment...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... permitted treatment, storage or disposal facility. (e) If the unwanted material is a hazardous waste, the... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Making the hazardous waste... 262.212 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED...

  5. 40 CFR 262.212 - Making the hazardous waste determination at an on-site interim status or permitted treatment...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... permitted treatment, storage or disposal facility. (e) If the unwanted material is a hazardous waste, the... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Making the hazardous waste... 262.212 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED...

  6. 40 CFR 262.212 - Making the hazardous waste determination at an on-site interim status or permitted treatment...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... permitted treatment, storage or disposal facility. (e) If the unwanted material is a hazardous waste, the... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Making the hazardous waste... 262.212 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED...

  7. 40 CFR 262.212 - Making the hazardous waste determination at an on-site interim status or permitted treatment...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... permitted treatment, storage or disposal facility. (e) If the unwanted material is a hazardous waste, the... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Making the hazardous waste... 262.212 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED...

  8. 40 CFR 262.212 - Making the hazardous waste determination at an on-site interim status or permitted treatment...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... permitted treatment, storage or disposal facility. (e) If the unwanted material is a hazardous waste, the... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Making the hazardous waste... 262.212 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED...

  9. Environmental factor(tm) system: RCRA hazardous waste handler information (on CD-ROM). Data file

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-11-01

    Environmental Factor(trademark) RCRA Hazardous Waste Handler Information on CD-ROM unleashes the invaluable information found in two key EPA data sources on hazardous waste handlers and offers cradle-to-grave waste tracking. It`s easy to search and display: (1) Permit status, design capacity, and compliance history for facilities found in the EPA Research Conservation and Recovery Information System (RCRIS) program tracking database; (2) Detailed information on hazardous wastes generation, management, and minimization by companies who are large quantity generators; and (3) Data on the waste management practices of treatment, storage, and disposal (TSD) facilities from the EPA Biennial Reporting System which is collectedmore » every other year. Environmental Factor`s powerful database retrieval system lets you: (1) Search for RCRA facilities by permit type, SIC code, waste codes, corrective action, or violation information, TSD status, generator and transporter status, and more. (2) View compliance information - dates of evaluation, violation, enforcement, and corrective action. (3) Lookup facilities by waste processing categories of marketing, transporting, processing, and energy recovery. (4) Use owner/operator information and names, titles, and telephone numbers of project managers for prospecting. (5) Browse detailed data on TSD facility and large quantity generators` activities such as onsite waste treatment, disposal, or recycling, offsite waste received, and waste generation and management. The product contains databases, search and retrieval software on two CD-ROMs, an installation diskette and User`s Guide. Environmental Factor has online context-sensitive help from any screen and a printed User`s Guide describing installation and step-by-step procedures for searching, retrieving, and exporting.« less

  10. Hazardous medical waste generation in Greece: case studies from medical facilities in Attica and from a small insular hospital.

    PubMed

    Komilis, Dimitrios; Katsafaros, Nikolaos; Vassilopoulos, Panagiotis

    2011-08-01

    The accurate calculation of the unit generation rates and composition of medical waste generated from medical facilities is necessary in order to design medical waste treatment systems. In this work, the unit medical waste generation rates of 95 public and private medical facilities in the Attica region were calculated based on daily weight records from a central medical waste incineration facility. The calculated medical waste generation rates (in kg bed(-1) day( -1)) varied widely with average values at 0.27 ± 113% and 0.24 ± 121%, for public and private medical facilities, respectively. The hazardous medical waste generation was measured, at the source, in the 40 bed hospital of the island of Ikaria for a period of 42 days during a 6 month period. The average hazardous medical waste generation rate was 1.204 kg occupied bed(-1) day(-1) or 0.33 kg (official) bed( -1) day(-1). From the above amounts, 54% resulted from the patients' room (solid and liquid wastes combined), 24% from the emergency department (solid waste), 17% from the clinical pathology lab and 6% from the X-ray lab. In average, 17% of the total hazardous medical waste was solely infectious. Conclusively, no correlation among the number of beds and the unit medical waste generation rate could be established. Each hospital should be studied separately, since medical waste generation and composition depends on the number and type of departments/laboratories at each hospital, number of external patients and number of occupied beds.

  11. Factors affecting minority population proximity to hazardous facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nieves, L.A.; Nieves, A.L.

    1995-04-01

    Disproportionate exposure of minority groups to environmental hazards has been attributed to ``environmental racism`` by some authors, without systematic investigation of the factors underlying this exposure pattern. This study examines regional differences in the proximity of African-Americans, Hispanics, Asians, and non-Hispanic Whites to a broad range of facility types and explores the effects of urban and income factors. A statistically significant inverse relationship is found between the percentage of non-Hispanic Whites and virtually all facility categories in all regions. Except for Hispanics in the South, all such associations for minority groups show a direct relationship, though some are nonsignificant. Themore » geographic concentration of facilities is more closely tied to urbanization than to economic factors. Controlling for both urban and economic factors, minority population concentration is still a significant explanatory variable for some facility types in some regions. This finding is most consistent for African-Americans.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Curtis L.; Prescott, Steven; Coleman, Justin

    This report describes the current progress and status related to the Industry Application #2 focusing on External Hazards. For this industry application within the Light Water Reactor Sustainability (LWRS) Program Risk-Informed Safety Margin Characterization (RISMC) R&D Pathway, we will create the Risk-Informed Margin Management (RIMM) approach to represent meaningful (i.e., realistic facility representation) event scenarios and consequences by using an advanced 3D facility representation that will evaluate external hazards such as flooding and earthquakes in order to identify, model and analyze the appropriate physics that needs to be included to determine plant vulnerabilities related to external events; manage the communicationmore » and interactions between different physics modeling and analysis technologies; and develop the computational infrastructure through tools related to plant representation, scenario depiction, and physics prediction. One of the unique aspects of the RISMC approach is how it couples probabilistic approaches (the scenario) with mechanistic phenomena representation (the physics) through simulation. This simulation-based modeling allows decision makers to focus on a variety of safety, performance, or economic metrics. In this report, we describe the evaluation of various physics toolkits related to flooding representation. Ultimately, we will be coupling the flooding representation with other events such as earthquakes in order to provide coupled physics analysis for scenarios where interactions exist.« less

  13. 44 CFR 201.4 - Standard State Mitigation Plans.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... State owned or operated buildings, infrastructure, and critical facilities located in the identified... vulnerable to damage and loss associated with hazard events. State owned or operated critical facilities...

  14. 44 CFR 201.4 - Standard State Mitigation Plans.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... State owned or operated buildings, infrastructure, and critical facilities located in the identified... vulnerable to damage and loss associated with hazard events. State owned or operated critical facilities...

  15. Soil Sample Report in Support of the Site 300 EWTF Ecological Risk Assessment and Permit Renewal-September 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terusaki, Stanley; Gallegos, Gretchen; MacQueen, Donald

    2012-10-02

    LLNL Site 300 has applied to renew the permits for its Explosives Waste Treatment Facility (EWTF), Explosives Waste Storage Facility (EWSF) and Building 883 Storage Facility. As a part of the permit renewal process, the Department of Toxic Substances Control (DTSC) requested LLNL to obtain soil samples in order to conduct a scoping-level ecological risk assessment pursuant to the Department of Toxic Substances Control, Guidance for Ecological Risk Assessment at Hazardous Waste Sites and Permitted Facilities, Part A: Overview, July 4, 1996. As stated in the guidance document, the scoping-level ecological risk assessment provides a framework to determine the potentialmore » interaction ecological receptors and chemicals of concern from hazardous waste treatment operations in the area of EWTF.« less

  16. The Integrated Hazard Analysis Integrator

    NASA Technical Reports Server (NTRS)

    Morris, A. Terry; Massie, Michael J.

    2009-01-01

    Hazard analysis addresses hazards that arise in the design, development, manufacturing, construction, facilities, transportation, operations and disposal activities associated with hardware, software, maintenance, operations and environments. An integrated hazard is an event or condition that is caused by or controlled by multiple systems, elements, or subsystems. Integrated hazard analysis (IHA) is especially daunting and ambitious for large, complex systems such as NASA s Constellation program which incorporates program, systems and element components that impact others (International Space Station, public, International Partners, etc.). An appropriate IHA should identify all hazards, causes, controls and verifications used to mitigate the risk of catastrophic loss of crew, vehicle and/or mission. Unfortunately, in the current age of increased technology dependence, there is the tendency to sometimes overlook the necessary and sufficient qualifications of the integrator, that is, the person/team that identifies the parts, analyzes the architectural structure, aligns the analysis with the program plan and then communicates/coordinates with large and small components, each contributing necessary hardware, software and/or information to prevent catastrophic loss. As viewed from both Challenger and Columbia accidents, lack of appropriate communication, management errors and lack of resources dedicated to safety were cited as major contributors to these fatalities. From the accident reports, it would appear that the organizational impact of managers, integrators and safety personnel contributes more significantly to mission success and mission failure than purely technological components. If this is so, then organizations who sincerely desire mission success must put as much effort in selecting managers and integrators as they do when designing the hardware, writing the software code and analyzing competitive proposals. This paper will discuss the necessary and sufficient requirements of one of the significant contributors to mission success, the IHA integrator. Discussions will be provided to describe both the mindset required as well as deleterious assumptions/behaviors to avoid when integrating within a large scale system.

  17. Postirradiation Testing Laboratory (327 Building)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kammenzind, D.E.

    A Standards/Requirements Identification Document (S/RID) is the total list of the Environment, Safety and Health (ES and H) requirements to be implemented by a site, facility, or activity. These requirements are appropriate to the life cycle phase to achieve an adequate level of protection for worker and public health and safety, and the environment during design, construction, operation, decontamination and decommissioning, and environmental restoration. S/RlDs are living documents, to be revised appropriately based on change in the site`s or facility`s mission or configuration, a change in the facility`s life cycle phase, or a change to the applicable standards/requirements. S/RIDs encompassmore » health and safety, environmental, and safety related safeguards and security (S and S) standards/requirements related to the functional areas listed in the US Department of Energy (DOE) Environment, Safety and Health Configuration Guide. The Fluor Daniel Hanford (FDH) Contract S/RID contains standards/requirements, applicable to FDH and FDH subcontractors, necessary for safe operation of Project Hanford Management Contract (PHMC) facilities, that are not the direct responsibility of the facility manager (e.g., a site-wide fire department). Facility S/RIDs contain standards/requirements applicable to a specific facility that are the direct responsibility of the facility manager. S/RlDs are prepared by those responsible for managing the operation of facilities or the conduct of activities that present a potential threat to the health and safety of workers, public, or the environment, including: Hazard Category 1 and 2 nuclear facilities and activities, as defined in DOE 5480.23. Selected Hazard Category 3 nuclear, and Low Hazard non-nuclear facilities and activities, as agreed upon by RL. The Postirradiation Testing Laboratory (PTL) S/RID contains standards/ requirements that are necessary for safe operation of the PTL facility, and other building/areas that are the direct responsibility of the specific facility manager. The specific DOE Orders, regulations, industry codes/standards, guidance documents and good industry practices that serve as the basis for each element/subelement are identified and aligned with each subelement.« less

  18. Wedron Groundwater Site Frequently Asked Questions 2013

    EPA Pesticide Factsheets

    Wedron Resource Conservation and Recovery Act (RCRA) Corrective Action program to work with hazardous waste facilities to investigate and clean up any release of hazardous waste into the soil, ground water, surface water and air.

  19. Fact Sheet: Water Monitoring Reveals More Well Contamination

    EPA Pesticide Factsheets

    Wedron Resource Conservation and Recovery Act (RCRA) Corrective Action program to work with hazardous waste facilities to investigate and clean up any release of hazardous waste into the soil, ground water, surface water and air.

  20. Benefits Assessment of Two California Hazardous Waste Disposal Facilities (1983)

    EPA Pesticide Factsheets

    The purpose of this study was to assess the benefits of RCRA regulations, comparing the results before and after new regulations at two existing hazardous waste sites previously regulated under California state law

  1. 49 CFR 193.2007 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES... Administrator, Pipeline and Hazardous Materials Safety Administration or his or her delegate. Ambient vaporizer...

  2. 40 CFR 270.300 - What container information must I keep at my facility?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false What container information must I keep at my facility? 270.300 Section 270.300 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Facility § 270.300 What container information must I keep at my facility? If you store or treat hazardous...

  3. 33 CFR 154.1325 - Response plan development and evaluation criteria for facilities that handle, store, or transport...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... evaluation criteria for facilities that handle, store, or transport other non-petroleum oils. 154.1325...) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Response Plans for Other Non-Petroleum..., store, or transport other non-petroleum oils. (a) An owner or operator of a facility that handles...

  4. 33 CFR 154.1325 - Response plan development and evaluation criteria for facilities that handle, store, or transport...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... evaluation criteria for facilities that handle, store, or transport other non-petroleum oils. 154.1325...) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Response Plans for Other Non-Petroleum..., store, or transport other non-petroleum oils. (a) An owner or operator of a facility that handles...

  5. 33 CFR 154.1045 - Response plan development and evaluation criteria for facilities that handle, store, or transport...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Response plan development and... (CONTINUED) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Response Plans for Oil Facilities § 154.1045 Response plan development and evaluation criteria for facilities that handle, store, or...

  6. 33 CFR 154.1045 - Response plan development and evaluation criteria for facilities that handle, store, or transport...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Response plan development and... (CONTINUED) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Response Plans for Oil Facilities § 154.1045 Response plan development and evaluation criteria for facilities that handle, store, or...

  7. 33 CFR 154.1045 - Response plan development and evaluation criteria for facilities that handle, store, or transport...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Response plan development and... (CONTINUED) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Response Plans for Oil Facilities § 154.1045 Response plan development and evaluation criteria for facilities that handle, store, or...

  8. 33 CFR 154.1045 - Response plan development and evaluation criteria for facilities that handle, store, or transport...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Response plan development and... (CONTINUED) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Response Plans for Oil Facilities § 154.1045 Response plan development and evaluation criteria for facilities that handle, store, or...

  9. A logistics and potential hazard study of propellant systems for a Saturn 5 derived heavy lift (three-stage core) launch vehicle

    NASA Technical Reports Server (NTRS)

    Whitney, E. Dow

    1992-01-01

    The Bush Administration has directed NASA to prepare for a return to the Moon and on to Mars - the Space Exploration Initiative. To meet this directive, powerful rocket boosters will be required in order to lift payloads that may reach the half-million pound range into low earth orbit. In this report an analysis is presented on logistics and potential hazards of the propellant systems envisioned for future Saturn 5 derived heavy lift launch vehicles. In discussing propellant logistics, particular attention has been given to possible problems associated with procurement, transportation, and storage of RP-1, HL2, and LOX, the heavy lift launch vehicle propellants. Current LOX producing facilities will need to be expanded and propellant storage and some support facilities will require relocation if current Launch Pads 39A and/or 39B are to be used for future heavy noise-abatement measures. Included in the report is a discussion of suggested additional studies, primarily economic and environmental, which should be undertaken in support of the goals of the Space Exploration Initiative.

  10. Overview of the U.S. Nuclear Regulatory Commission collaborative research program to assess tsunami hazard for nuclear power plants on the Atlantic and Gulf Coasts

    USGS Publications Warehouse

    Kammerer, A.M.; ten Brink, Uri S.; Titov, V.V.

    2017-01-01

    In response to the 2004 Indian Ocean Tsunami, the United States Nuclear Regulatory Commission (US NRC) initiated a long-term research program to improve understanding of tsunami hazard levels for nuclear facilities in the United States. For this effort, the US NRC organized a collaborative research program with the United States Geological Survey (USGS) and the National Oceanic and Atmospheric Administration (NOAA) with a goal of assessing tsunami hazard on the Atlantic and Gulf Coasts of the United States. Necessarily, the US NRC research program includes both seismic- and landslide-based tsunamigenic sources in both the near and the far fields. The inclusion of tsunamigenic landslides, an important category of sources that impact tsunami hazard levels for the Atlantic and Gulf Coasts is a key difference between this program and most other tsunami hazard assessment programs. The initial phase of this work consisted of collection, interpretation, and analysis of available offshore data, with significant effort focused on characterizing offshore near-field landslides and analyzing their tsunamigenic potential and properties. In the next phase of research, additional field investigations will be conducted in key locations of interest and additional analysis will be undertaken. Simultaneously, the MOST tsunami generation and propagation model used by NOAA will first be enhanced to include landslide-based initiation mechanisms and then will be used to investigate the impact of the tsunamigenic sources identified and characterized by the USGS. The potential for probabilistic tsunami hazard assessment will also be explore in the final phases of the program.

  11. Evaluating the Emergency Notification Systems of the NASA White Sands Test

    NASA Technical Reports Server (NTRS)

    Chavez, Alfred Paul

    2004-01-01

    The problem was that the NASA Fire and Emergency Services did not know if the current emergency notification systems on the NASA White Sands Test Facility were appropriate for alerting the employees of an emergency. The purpose of this Applied Research Project was to determine if the current emergency notification systems of the White Sands Test Facility are appropriate for alerting the employees of an emergency. This was a descriptive research project. The research questions were: 1) What are similar facilities using to alert the employees of an emergency?; 2) Are the current emergency notification systems suitable for the community hazards on the NASA White Sands Test Facility?; 3) What is the NASA Fire and Emergency Services currently using to measure the effectiveness of the emergency notification systems?; and 4) What are the current training methods used to train personnel to the emergency notification systems at the NASA White Sands Test Facility? The procedures involved were to research other established facilities, research published material from credible sources, survey the facility to determine the facility perception of the emergency notification systems, and evaluate the operating elements of the established emergency notification systems for the facility. The results were that the current systems are suitable for the type of hazards the facility may endure. The emergency notification systems are tested frequently to ensure effectiveness in the event of an emergency. Personnel are trained and participate in a yearly drill to make certain personnel are educated on the established systems. The recommendations based on the results were to operationally improve the existing systems by developing and implementing one system that can overall notify the facility of a hazard. Existing procedures and training should also be improved to ensure that all personnel are educated on what to do when the emergency notification systems are activated.

  12. GEOTAIL Spacecraft historical data report

    NASA Technical Reports Server (NTRS)

    Boersig, George R.; Kruse, Lawrence F.

    1993-01-01

    The purpose of this GEOTAIL Historical Report is to document ground processing operations information gathered on the GEOTAIL mission during processing activities at the Cape Canaveral Air Force Station (CCAFS). It is hoped that this report may aid management analysis, improve integration processing and forecasting of processing trends, and reduce real-time schedule changes. The GEOTAIL payload is the third Delta 2 Expendable Launch Vehicle (ELV) mission to document historical data. Comparisons of planned versus as-run schedule information are displayed. Information will generally fall into the following categories: (1) payload stay times (payload processing facility/hazardous processing facility/launch complex-17A); (2) payload processing times (planned, actual); (3) schedule delays; (4) integrated test times (experiments/launch vehicle); (5) unique customer support requirements; (6) modifications performed at facilities; (7) other appropriate information (Appendices A & B); and (8) lessons learned (reference Appendix C).

  13. 33 CFR 154.1220 - Response plan submission requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SECURITY (CONTINUED) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Response Plans for Animal Fats and Vegetable Oils Facilities § 154.1220 Response plan submission requirements. (a) The owner...

  14. 33 CFR 154.1220 - Response plan submission requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SECURITY (CONTINUED) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Response Plans for Animal Fats and Vegetable Oils Facilities § 154.1220 Response plan submission requirements. (a) The owner...

  15. Masters Thesis- Criticality Alarm System Design Guide with Accompanying Alarm System Development for the Radioisotope Production Laboratory in Richland, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenfield, Bryce A.

    2009-12-01

    A detailed instructional manual was created to guide criticality safety engineers through the process of designing a criticality alarm system (CAS) for Department of Energy (DOE) hazard class 1 and 2 facilities. Regulatory and technical requirements were both addressed. A list of design tasks and technical subtasks are thoroughly analyzed to provide concise direction for how to complete the analysis. An example of the application of the design methodology, the Criticality Alarm System developed for the Radioisotope Production Laboratory (RPL) of Richland, Washington is also included. The analysis for RPL utilizes the Monte Carlo code MCNP5 for establishing detector coveragemore » in the facility. Significant improvements to the existing CAS were made that increase the reliability, transparency, and coverage of the system.« less

  16. Hazardous Waste Cleanup: Matlack Incorporated in Swedesboro, New Jersey

    EPA Pesticide Factsheets

    The Matlack facility is a 31-acre site on the south side of U.S. Route 322 in Swedesboro, New Jersey. The facility has been operating since 1962 and consisted of a truck terminal and tank-trailer cleaning facility. The site operations, which were closed

  17. Hazardous Waste Cleanup: Von Roll Isola USA Incorporated in Schenectady, New York

    EPA Pesticide Factsheets

    The Riverview facility is a 52-acre manufacturing facility located on Von Roll Drive in Schenectady, New York. The facility is owned and operated by Von Roll Isola USA, Inc., and produces solid and liquid insulating materials and tapes for the electrical

  18. 33 CFR 127.201 - Sensing and alarm systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... vapor or gas may accumulate; and (2) Meet Section 9-4 of NFPA 59A. (c) Fixed sensors that continuously... (CONTINUED) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Equipment § 127.201 Sensing and alarm...

  19. 33 CFR 127.201 - Sensing and alarm systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... vapor or gas may accumulate; and (2) Meet Section 9-4 of NFPA 59A. (c) Fixed sensors that continuously... (CONTINUED) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Equipment § 127.201 Sensing and alarm...

  20. 33 CFR 154.1210 - Purpose and applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Response Plans for Animal Fats and Vegetable Oils Facilities § 154.1210 Purpose and applicability. (a) The requirements of this... fats or vegetable oils including— (1) A fixed MTR facility capable of transferring oil in bulk, to or...

  1. 33 CFR 154.1210 - Purpose and applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Response Plans for Animal Fats and Vegetable Oils Facilities § 154.1210 Purpose and applicability. (a) The requirements of this... fats or vegetable oils including— (1) A fixed MTR facility capable of transferring oil in bulk, to or...

  2. Biological treatment of hazardous aqueous wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Opatken, E.J.; Howard, H.K.; Bond, J.J.

    1987-06-01

    Studies were conducted with a rotating biological conractor (RBC) to evaluate the treatability of leachates from the Stringfellow and New Lyme hazardous-waste sites. The leachates were transported from the waste sites to Cincinnati at the United States Environmental Protection Agency's Testing and Evaluation Facility. A series of batches were run with primary effluent from Cincinnati's Mill Creek Sewage Treatment Facility. The paper reports on the results from these experiments and the effectiveness of an RBC to adequately treat leachates from Superfund sites.

  3. Facilities Maintenance in the U.S. Navy

    DTIC Science & Technology

    1986-01-01

    Row’a9IVI s..Nl,I I~de 14. 11111116104 It. safeI MeAI. 5,124 AN (:lgnd) JOHN SMITH I765 IIf Figure 111-1 Work Request is EMIROENCY/SERVICE WORK...Eliminate fire, health and active life of less than 3 years safety hazards o Infrequently or only partially o Patch and reinforce instead used of...safety or health hazards and to permit reactivation within the period prescribed under mobili- zation plans o Surplus facilities a Fliminate fire, safety

  4. KSC-2014-2341

    NASA Image and Video Library

    2014-04-30

    CAPE CANAVERAL, Fla. – Engineers and technicians check NASA's Project Morpheus prototype lander after it touched down on a dedicated landing pad inside the autonomous landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Morpheus launched on a free-flight test from a new launch pad at the north end of the landing facility. The 98-second test began at 1:57 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending more than 800 feet at a peak speed of 36 mph. The vehicle, with its recently installed ALHAT sensors, surveyed the hazard field to determine safe landing sites. Morpheus then flew forward and downward covering approximately 1300 feet while performing a 78-foot divert to simulate a hazard avoidance maneuver before landing on the dedicated pad inside the ALHAT hazard field. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett

  5. Liaison Officer Toolkit

    DTIC Science & Technology

    2010-01-01

    Planning Chapters Chapter 5 provides DSCA planning factors for response to all hazard events. Chapter 6 is a review of safety and operational/composite...risk management processes. Chapters 7 through 11 contain the Concepts of Operation (CONOPS) and details five natural hazards /disasters and the...Restoring critical public services and facilities through temporary measures • Identifying hazard mitigation opportunities 3.3.1.5 Rehabilitation

  6. A joint labor-management hazard communication training program: a case study in worker health and safety training.

    PubMed

    Robins, T G; Hugentobler, M K; Kaminski, M; Klitzman, S

    1994-01-01

    The 1983 OSHA Hazard Communication Standard requires training of employees exposed to hazardous chemicals. The authors provide a detailed look at the successes and failures of a joint labor-management training program that was designed to bring a firm with more than 50 manufacturing facilities into compliance with the standard.

  7. 40 CFR 266.23 - Standards applicable to users of materials that are used in a manner that constitutes disposal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Recyclable... material, which is contaminated with dioxin or any other hazardous waste (other than a waste identified... materials that are used in a manner that constitutes disposal. 266.23 Section 266.23 Protection of...

  8. Siting of hazardous waste landfills and their correlation with racial and economic status of surrounding communities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-06-01

    This report provides information on the racial and economic characteristics of communities surrounding four hazardous waste landfills in three southeastern States. It also describes Federal criteria for siting landfills and provides data on public participation and how the Environmental Protection Agency's (EPA's) proposed hazardous waste facility permit changes will affect it.

  9. Development of Inspection and Investigation Techniques to Prepare Debris Flow in Urban Areas

    NASA Astrophysics Data System (ADS)

    Seong, Joo-Hyun; Jung, Min-Hyeong; Park, Kyung-Han; An, Jai-Wook; Kim, Jiseong

    2017-04-01

    Due to the urban development, various facilities are located in mountainous areas near the city, and the damage to the occurrence of the debris flow is increasing in the urban area. However, quantitative inspection and investigation techniques are not sufficient for preparing debris flow in the urban area around the world. Therefore, in this study, we developed the debris flow inspection and investigation techniques, which are suitable for urban characteristics, regarding the soil hazard prevention and restoration in urban area. First, the inspection and investigation system is divided into the daily occurrence and the occurrence of the soil hazard event, and the inspection / investigation flow chart were developed based on the kind of inspection and correspondence required for each situation. The types of inspections applied in this study were determined as daily inspection, regular inspections, special emergency inspection, damage emergency inspection and In-depth safety inspection. The management agency, term of inspection, objects to be inspected, and contents of inspection work were presented according to type of each inspection. The daily inspection routinely checks for signs of collapse and conditions of facilities in urban areas which show vulnerability for soil hazard and that are conducted from the management agency. In the case of regular inspection, an expert for soil hazards regularly conducts detailed visual surveys on mountainous areas, steep slopes, prevention facilities and adjacent facilities in vulnerable areas. On the other hand, it was decided that the emergency inspection is carried out in the event of the occurrence of vulnerable element or soil hazards. Acknowledgement This study was conducted with the research iund support by the constructiontechnology research project of the Ministry of Land, Infrastructure and Transport (project number 16SCIP-B069989-04)

  10. Possible safety hazards associated with the operation of the 0.3-m transonic cryogenic tunnel at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Webster, T. J.

    1982-01-01

    The 0.3 m Transonic Cryogenic Tunnel (TCT) at the NASA Langley Research Center was built in 1973 as a facility intended to be used for no more than 60 hours in order to verify the validity of the cryogenic wind tunnel concept at transonic speeds. The role of the 0.3 m TCT has gradually changed until now, after over 3000 hours of operation, it is classified as a major NASA research facility and, under the administration of the Experimental Techniques Branch, it is used extensively for the testing of airfoils at high Reynolds numbers and for the development of various technologies related to the efficient operation and use of cryogenic wind tunnels. The purpose of this report is to document the results of a recent safety analysis of the 0.3 m TCT facility. This analysis was made as part of an on going program with the Experimental Techniques Branch designed to ensure that the existing equipment and current operating procedures of the 0.3 m TCT facility are acceptable in terms of today's standards of safety for cryogenic systems.

  11. 40 CFR 270.72 - Changes during interim status.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... reconstruction of the hazardous waste management facility. Reconstruction occurs when the capital investment in the changes to the facility exceeds 50 percent of the capital cost of a comparable entirely new...

  12. 40 CFR 267.52 - What must be in the contingency plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... hazardous waste or hazardous waste constituents to air, soil, or surface water at the facility. (2) Describe... decontamination equipment), where this equipment is required. In addition, you must include the location and a...

  13. 75 FR 51671 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-23

    ... wastewater treatment plant (WWTP) sludge filter cake (called sludge hereinafter) generated by Tokusen in... brass coating. The facility generates F006 filter cake by the dewatering of wastewater sludge generated...

  14. 40 CFR 63.9545 - What records must I keep?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Section 63.9545 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Friction Materials Manufacturing Facilities...

  15. KSC-2015-1078

    NASA Image and Video Library

    2015-01-13

    CAPE CANAVERAL, Fla. -- NASA's Orion spacecraft is positioned inside the Launch Abort System Facility at NASA's Kennedy Space Center in Florida in preparation for a viewing by Kennedy workers. Orion's back shell panels have been removed. The spacecraft completed the first flight test in December, was retrieved from the Pacific Ocean, and transported 2,700 miles overland to Kennedy from Naval Base San Diego in California. Analysis of data obtained during its two-orbit, four-and-a-half hour mission Dec. 5 will provide engineers detailed information on how the spacecraft fared. Orion will be transported to the Payload Hazardous Servicing Facility for deservicing. For more information, visit www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett

  16. 44 CFR 206.252 - Insurance requirements for facilities damaged by flood.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... facilities damaged by flood. 206.252 Section 206.252 Emergency Management and Assistance FEDERAL EMERGENCY... Assistance Insurance Requirements § 206.252 Insurance requirements for facilities damaged by flood. (a) Where an insurable building damaged by flooding is located in a special flood hazard area identified for...

  17. 76 FR 20850 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Stage I Vapor Recovery Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-14

    ... gasoline dispensing facilities more stringent by applying them statewide, making the rule applicable to... Emissions Standards for Hazardous Air Pollutants (NESHAPs) for gasoline dispensing facilities. The revisions... January 10, 2008, EPA issued new, more stringent National Regulations for Gasoline Dispensing Facilities...

  18. 40 CFR 63.9485 - Am I subject to this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) National Emission Standards for Hazardous Air Pollutants for Friction Materials Manufacturing Facilities... you own or operate a friction materials manufacturing facility (as defined in § 63.9565) that is (or... that applies to you, as specified in § 63.9495. Your friction materials manufacturing facility is a...

  19. 40 CFR 63.9485 - Am I subject to this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) National Emission Standards for Hazardous Air Pollutants for Friction Materials Manufacturing Facilities... you own or operate a friction materials manufacturing facility (as defined in § 63.9565) that is (or... that applies to you, as specified in § 63.9495. Your friction materials manufacturing facility is a...

  20. 40 CFR 63.9485 - Am I subject to this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) National Emission Standards for Hazardous Air Pollutants for Friction Materials Manufacturing Facilities... you own or operate a friction materials manufacturing facility (as defined in § 63.9565) that is (or... that applies to you, as specified in § 63.9495. Your friction materials manufacturing facility is a...

  1. 40 CFR 63.9485 - Am I subject to this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) National Emission Standards for Hazardous Air Pollutants for Friction Materials Manufacturing Facilities... you own or operate a friction materials manufacturing facility (as defined in § 63.9565) that is (or... that applies to you, as specified in § 63.9495. Your friction materials manufacturing facility is a...

  2. 75 FR 12576 - Duke Energy Carolinas, LLC; Notice of Consideration of Issuance of Amendments to Facility...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-16

    ... Carolinas, LLC; Notice of Consideration of Issuance of Amendments to Facility Operating License, Proposed No Significant Hazards Consideration Determination, and Opportunity for a Hearing and Order Imposing Procedures... Commission (the Commission) is considering issuance of an amendment to Renewed Facility Operating Licenses...

  3. 75 FR 6731 - Carolina Power & Light Company; Notice of Consideration of Issuance of Amendment to Facility...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-10

    ...; Notice of Consideration of Issuance of Amendment to Facility Operating License, Proposed No Significant Hazards Consideration Determination and Opportunity for a Hearing, and Order Imposing Procedures for... Commission) is considering issuance of an amendment to Facility Operating License No. DPR-23 issued to...

  4. Hazardous Waste Cleanup: Frontier Chemical Waste Process Incorporated – Royal Avenue Site in Niagara Falls, New York

    EPA Pesticide Factsheets

    Frontier Chemical Waste Process facility is located in a heavy industrial/commercial area. Several large industrial facilities surround the facility. The closest residential area is located about ½ mile west and the closest off-site building is located 300

  5. 40 CFR 63.9485 - Am I subject to this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) National Emission Standards for Hazardous Air Pollutants for Friction Materials Manufacturing Facilities... you own or operate a friction materials manufacturing facility (as defined in § 63.9565) that is (or... that applies to you, as specified in § 63.9495. Your friction materials manufacturing facility is a...

  6. 40 CFR 267.151 - Wording of the instruments.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... owner or operator of a facility with a standardized permit who uses a financial test to demonstrate... financial officer of an owner or operator of a facility with a standardized permit who use a financial test... (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED...

  7. 40 CFR 267.151 - Wording of the instruments.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... owner or operator of a facility with a standardized permit who uses a financial test to demonstrate... financial officer of an owner or operator of a facility with a standardized permit who use a financial test... (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED...

  8. 40 CFR 267.151 - Wording of the instruments.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... owner or operator of a facility with a standardized permit who uses a financial test to demonstrate... financial officer of an owner or operator of a facility with a standardized permit who use a financial test... (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED...

  9. 40 CFR 267.151 - Wording of the instruments.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... owner or operator of a facility with a standardized permit who uses a financial test to demonstrate... financial officer of an owner or operator of a facility with a standardized permit who use a financial test... (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED...

  10. POLLUTION PREVENTION AND THE USE OF LOW-VOC/HAP COATINGS AT WOOD FURNITURE MANUFACTURING FACILITIES

    EPA Science Inventory

    The paper discusses a study of pollution prevention and the use of low-VOC/HAP (volatile organic compound/hazardous air pollutant) coatings at wood furniture manufacturing facilities. The study is to identify wood furniture and cabinet manufacturing facilities that have converted...

  11. CASE STUDY PROJECT: THE USE OF LOW-VOC/HAP COATINGS AT WOOD FURNITURE MANUFACTURING FACILITIES

    EPA Science Inventory

    The paper discusses a study of pollution prevention and the use of low-VOC/HAP (volatile organic compound/hazardous air pollutant) coatings at wood furniture manufacturing facilities. The study is to identify wood furniture and cabinet manufacturing facilities that have converted...

  12. A comparison of spacecraft penetration hazards due to meteoroids and manmade earth-orbiting objects

    NASA Technical Reports Server (NTRS)

    Brooks, D. R.

    1976-01-01

    The ability of a typical double-walled spacecraft structure to protect against penetration by high-velocity incident objects is reviewed. The hazards presented by meteoroids are compared to the current and potential hazards due to manmade orbiting objects. It is shown that the nature of the meteoroid number-mass relationship makes adequate protection for large space facilities a conceptually straightforward structural problem. The present level of manmade orbiting objects (an estimated 10,000 in early 1975) does not pose an unacceptable risk to manned space operations proposed for the near future, but it does produce penetration probabilities in the range of 1-10 percent for a 100-m diameter sphere in orbit for 1,000 days. The number-size distribution of manmade objects is such that adequate protection is difficult to achieve for large permanent space facilities, to the extent that future restrictions on such facilities may result if the growth of orbiting objects continues at its historical rate.

  13. Use of personal protective equipment for respiratory protection.

    PubMed

    Sargent, Edward V; Gallo, Frank

    2003-01-01

    Management of hazards in biomedical research facilities requires the application of the traditional industrial hygiene responsibilities of anticipation, recognition, evaluation, and control to characterize the work environment, evaluate tasks and equipment, identify hazards, define exposure groups, and recommend controls. Generally, the diversity and unique characteristics of hazards faced by laboratory and animal facility employees and the short-term and low-level nature of the exposures factor into the selection of proper exposure control measures in the laboratory. The proper selection of control measures is based on a hierarchy of elimination and minimization by engineering controls, followed last by personal protective equipment when exposures cannot be eliminated. Once it is decided that personal protective equipment is needed, specific regulations and guidelines define safety standards for research facilities, including the elements of a sound respiratory protection program. These elements include respirator selection (including appropriate protection factors), medical evaluation, fit testing, training, inspection, maintenance and care, quality, quantity and flow of breathing air, and routine and emergency use procedures.

  14. KSC-2014-2644

    NASA Image and Video Library

    2014-05-21

    CAPE CANAVERAL, Fla. – From left, Chirold Epp, the Autonomous Landing and Hazard Avoidance Technology, or ALHAT, project manager, and Jon Olansen, Morpheus project manager, speak to members of the media near the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Media also viewed Morpheus inside a facility near the landing facility. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Frankie Martin

  15. Fact Sheet for Friction Materials Manufacturing Facilities Residual Risk and Technology Review

    EPA Pesticide Factsheets

    proposed amendments to the National Emission Standards for Hazardous Air Pollutants (NESHAP) for Friction Materials Manufacturing Facilities to address the results of the residual risk and technology review

  16. 49 CFR 193.2005 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES..., design, installation, or construction of LNG facilities (including material incorporated by reference in...

  17. Application of Non-destructive Methods of Stress-strain State at Hazardous Production Facilities

    NASA Astrophysics Data System (ADS)

    Shram, V.; Kravtsova, Ye; Selsky, A.; Bezborodov, Yu; Lysyannikova, N.; Lysyannikov, A.

    2016-06-01

    The paper deals with the sources of accidents in distillation columns, on the basis of which the most dangerous defects are detected. The analysis of the currently existing methods of non-destructive testing of the stress-strain state is performed. It is proposed to apply strain and acoustic emission techniques to continuously monitor dangerous objects, which helps prevent the possibility of accidents, as well as reduce the work.

  18. Ocean Thermal Conversion (OTEC) Project Bottom Cable Protection Study: Environmental Characteristics and Hazards Analysis,

    DTIC Science & Technology

    1981-10-01

    Chesaneake Division, Naval Facilities Engineering Command, Washington, DC) 34. "Strait of Belle Isle Crossing HVDC Transmission - Submarine Cable...phenomena; such as wind storm generated wave action, bottom currents, bottom mudslides, or seismic activity; as well as human activity, such as...engaging a cable. Ship anchors are used to develop holding power on the seafloor for mooring a floating body permanently or temporary on site. The major

  19. Confinement of Radioactive Materials at Defense Nuclear Facilities

    DTIC Science & Technology

    2004-10-01

    The design of defense nuclear facilities includes systems whose reliable operation is vital to the protection of the public, workers, and the...final safety-class barrier to the release of hazardous materials with potentially serious public consequences. The Defense Nuclear Facilities Safety...the public at certain defense nuclear facilities . This change has resulted in downgrading of the functional safety classification of confinement

  20. Volcanic hazards at distant critical infrastructure: A method for bespoke, multi-disciplinary assessment

    NASA Astrophysics Data System (ADS)

    Odbert, H. M.; Aspinall, W.; Phillips, J.; Jenkins, S.; Wilson, T. M.; Scourse, E.; Sheldrake, T.; Tucker, P.; Nakeshree, K.; Bernardara, P.; Fish, K.

    2015-12-01

    Societies rely on critical services such as power, water, transport networks and manufacturing. Infrastructure may be sited to minimise exposure to natural hazards but not all can be avoided. The probability of long-range transport of a volcanic plume to a site is comparable to other external hazards that must be considered to satisfy safety assessments. Recent advances in numerical models of plume dispersion and stochastic modelling provide a formalized and transparent approach to probabilistic assessment of hazard distribution. To understand the risks to critical infrastructure far from volcanic sources, it is necessary to quantify their vulnerability to different hazard stressors. However, infrastructure assets (e.g. power plantsand operational facilities) are typically complex systems in themselves, with interdependent components that may differ in susceptibility to hazard impact. Usually, such complexity means that risk either cannot be estimated formally or that unsatisfactory simplifying assumptions are prerequisite to building a tractable risk model. We present a new approach to quantifying risk by bridging expertise of physical hazard modellers and infrastructure engineers. We use a joint expert judgment approach to determine hazard model inputs and constrain associated uncertainties. Model outputs are chosen on the basis of engineering or operational concerns. The procedure facilitates an interface between physical scientists, with expertise in volcanic hazards, and infrastructure engineers, with insight into vulnerability to hazards. The result is a joined-up approach to estimating risk from low-probability hazards to critical infrastructure. We describe our methodology and show preliminary results for vulnerability to volcanic hazards at a typical UK industrial facility. We discuss our findings in the context of developing bespoke assessment of hazards from distant sources in collaboration with key infrastructure stakeholders.

Top