An improved out-cell to in-cell rapid transfer system at the HFEF-south
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bacca, J.P.; Sherman, E.K.
1990-01-01
The Argonne National Laboratory (ANL) Hot Fuel Examination Facility-South (HFEF-S), located at the ANL-West site of the Idaho National Engineering Laboratory, is currently undergoing extensive refurbishment and modifications in preparation for its use, beginning in 1991, in demonstrating remote recycling of fast reactor, metal-alloy fuel as part of the US Department of Energy liquid-metal reactor, Integral Fast Reactor (IFR) program. Included in these improvements to HFEF-S is a new, small-item, rapid transfer system (RTS). When installed, this system will enable the rapid transfer of small items from the hot-cell exterior into the argon cell (argon-gas atmosphere) of the facility withoutmore » necessitating the use of time-consuming and laborious procedures. The new RTS will also provide another important function associated with HFEF-S hot-cell operation in the IFR Fuel Recycle Program; namely, the rapid insertion of clean, radioactive contamination-measuring smear paper specimens into the hot cells for area surveys, and the expedited removal of these contaminated (including alpha as well as beta/gamma contamination) smears from the argon cell for transfer to an adjacent health physics field laboratory in the facility for nuclear contamination/radiation counting.« less
Posttest examination of Sodium Loop Safety Facility experiments. [LMFBR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holland, J.W.
In-reactor, safety experiments performed in the Sodium Loop Safety Facility (SLSF) rely on comprehensive posttest examinations (PTE) to characterize the postirradiation condition of the cladding, fuel, and other test-subassembly components. PTE information and on-line instrumentation data, are analyzed to identify the sequence of events and the severity of the accident for each experiment. Following in-reactor experimentation, the SLSF loop and test assembly are transported to the Hot Fuel Examination Facility (HFEF) for initial disassembly. Goals of the HFEF-phase of the PTE are to retrieve the fuel bundle by dismantling the loop and withdrawing the test assembly, to assess the macro-conditionmore » of the fuel bundle by nondestructive examination techniques, and to prepare the fuel bundle for shipment to the Alpha-Gamma Hot Cell Facility (AGHCF) at Argonne National Laboratory.« less
US RERTR FUEL DEVELOPMENT POST IRRADIATION EXAMINATION RESULTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
A. B. Robinson; D. M. Wachs; D. E. Burkes
2008-10-01
Post irradiation examinations of irradiated RERTR plate type fuel at the Idaho National Laboratory have led to in depth characterization of fuel behavior and performance. Both destructive and non-destructive examination capabilities at the Hot Fuels Examination Facility (HFEF) as well as recent results obtained are discussed herein. New equipment as well as more advanced techniques are also being developed to further advance the investigation into the performance of the high density U-Mo fuel.
Thermal evaluation of alternative shipping cask for irradiated experiments
Guillen, Donna Post
2015-06-01
Results of a thermal evaluation are provided for a new shipping cask under consideration for transporting irradiated experiments between the test reactor and post-irradiation examination (PIE) facilities. Most of the experiments will be irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL), then later shipped to the Hot Fuel Examination Facility (HFEF) located at the Materials and Fuels Complex for PIE. To date, the General Electric (GE)-2000 cask has been used to transport experiment payloads between these facilities. However, the availability of the GE-2000 cask to support future experiment shipping is uncertain. In addition, the internal cavitymore » of the GE-2000 cask is too short to accommodate shipping the larger payloads. Therefore, an alternate shipping capability is being pursued. The Battelle Energy Alliance, LLC, Research Reactor (BRR) cask has been determined to be the best alternative to the GE-2000 cask. An evaluation of the thermal performance of the BRR cask is necessary before proceeding with fabrication of the newly designed cask hardware and the development of handling, shipping and transport procedures. This paper presents the results of the thermal evaluation of the BRR cask loaded with a representative set of fueled and non-fueled payloads. When analyzed with identical payloads, experiment temperatures were found to be lower with the BRR cask than with the GE-2000 cask. Furthermore, from a thermal standpoint, the BRR cask was found to be a suitable alternate to the GE-2000 cask for shipping irradiated experiment payloads.« less
Four-point Bend Testing of Irradiated Monolithic U-10Mo Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabin, B. H.; Lloyd, W. R.; Schulthess, J. L.
2015-03-01
This paper presents results of recently completed studies aimed at characterizing the mechanical properties of irradiated U-10Mo fuel in support of monolithic base fuel qualification. Mechanical properties were evaluated in four-point bending. Specimens were taken from fuel plates irradiated in the RERTR-12 and AFIP-6 Mk. II irradiation campaigns, and tests were conducted in the Hot Fuel Examination Facility (HFEF) at Idaho National Laboratory (INL). The monolithic fuel plates consist of a U-10Mo fuel meat covered with a Zr diffusion barrier layer fabricated by co-rolling, clad in 6061 Al using a hot isostatic press (HIP) bonding process. Specimens exhibited nominal (fresh)more » fuel meat thickness ranging from 0.25 mm to 0.64 mm, and fuel plate average burnup ranged from approximately 0.4 x 1021 fissions/cm 3 to 6.0 x 1021 fissions/cm 3. After sectioning the fuel plates, the 6061 Al cladding was removed by dissolution in concentrated NaOH. Pre- and post-dissolution dimensional inspections were conducted on test specimens to facilitate accurate analysis of bend test results. Four-point bend testing was conducted on the HFEF Remote Load Frame at a crosshead speed of 0.1 mm/min using custom-designed test fixtures and calibrated load cells. All specimens exhibited substantially linear elastic behavior and failed in a brittle manner. The influence of burnup on the observed slope of the stress-strain curve and the calculated fracture strength is discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jason M. Harp; Paul A. Demkowicz
2014-10-01
In the High Temperature Gas-Cooled Reactor (HTGR) the TRISO particle fuel serves as the primary fission product containment. However the large number of TRISO particles present in proposed HTGRs dictates that there will be a small fraction (~10 -4 to 10 -5) of as manufactured and in-pile particle failures that will lead to some fission product release. The matrix material surrounding the TRISO particles in fuel compacts and the structural graphite holding the TRISO particles in place can also serve as sinks for containing any released fission products. However data on the migration of solid fission products through these materialsmore » is lacking. One of the primary goals of the AGR-3/4 experiment is to study fission product migration from failed TRISO particles in prototypic HTGR components such as structural graphite and compact matrix material. In this work, the potential for a Gamma Emission Computed Tomography (GECT) technique to non-destructively examine the fission product distribution in AGR-3/4 components and other irradiation experiments is explored. Specifically, the feasibility of using the Idaho National Laboratory (INL) Hot Fuels Examination Facility (HFEF) Precision Gamma Scanner (PGS) system for this GECT application is considered. To test the feasibility, the response of the PGS system to idealized fission product distributions has been simulated using Monte Carlo radiation transport simulations. Previous work that applied similar techniques during the AGR-1 experiment will also be discussed as well as planned uses for the GECT technique during the post irradiation examination of the AGR-2 experiment. The GECT technique has also been applied to other irradiated nuclear fuel systems that were currently available in the HFEF hot cell including oxide fuel pins, metallic fuel pins, and monolithic plate fuel.« less
Improving the recognition of fingerprint biometric system using enhanced image fusion
NASA Astrophysics Data System (ADS)
Alsharif, Salim; El-Saba, Aed; Stripathi, Reshma
2010-04-01
Fingerprints recognition systems have been widely used by financial institutions, law enforcement, border control, visa issuing, just to mention few. Biometric identifiers can be counterfeited, but considered more reliable and secure compared to traditional ID cards or personal passwords methods. Fingerprint pattern fusion improves the performance of a fingerprint recognition system in terms of accuracy and security. This paper presents digital enhancement and fusion approaches that improve the biometric of the fingerprint recognition system. It is a two-step approach. In the first step raw fingerprint images are enhanced using high-frequency-emphasis filtering (HFEF). The second step is a simple linear fusion process between the raw images and the HFEF ones. It is shown that the proposed approach increases the verification and identification of the fingerprint biometric recognition system, where any improvement is justified using the correlation performance metrics of the matching algorithm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ingham, J.G.
The IDENT 1578 container, which is a 110-in. long 5.5-in. OD tube, is designed for shipping FFTF fuel elements in T-3 casks between HEDL, HFEF, and other laboratories. The thermal analysis was conducted to evaluate whether or not the container satisfies its thermal design criteria (handle a decay heat load of 600 watts, max fuel pin cladding temperature not exceeding 800/sup 0/F).
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. Frank
The current method for the immobilization of fission products that accumulate in electrorefiner salt during the electrochemical processing of used metallic nuclear fuel is to encapsulate the electrorefiner salt in a glass-bonded sodalite ceramic waste form. This process was developed by Argonne National Laboratory in the USA and is currently performed at the Idaho National Laboratory for the treatment of Experimental Breeder Reactor-II (EBR-II) used fuel. This process utilizes a “once-through” option for the disposal of spent electrorefiner salt; where, after the treatment of the EBR-II fuel, the electrorefiner salt containing the active fission products will be disposed of inmore » the ceramic waste form (CWF). The CWF produced will have low fission product loading of approximately 2 to 5 weight percent due to the limited fuel inventory currently being processed. However; the design and implementation of advanced electrochemical processing facilities to treat used fuel would process much greater quantities fuel. With an advanced processing facility, it would be necessary to selectively remove fission products from the electrorefiner salt for salt recycle and to concentrate the fission products to reduce the volume of high-level waste from the treatment facility. The Korean Atomic Energy Research Institute and the Idaho National Laboratory have been collaborating on I-NERI research projects for a number of years to investigate both aspects of selective fission product separation from electrorefiner salt, and to develop advanced waste forms for the immobilization of the collected fission products. The first joint KAERI/INL I-NERI project titled: 2006-002-K, Separation of Fission Products from Molten LiCl-KCl Salt Used for Electrorefining of Metal Fuels, was successfully completed in 2009 by concentrating and isolating fission products from actual electrorefiner salt used for the treated used EBR-II fuel. Two separation methods were tested and from these tests were produced concentrated salt products that acted as the feed material for development of advanced waste forms investigated in this proposal. Accomplishments from the first year activities associated with this I-NERI project included the down selection of candidate waste forms to immobilize fission products separated from electrorefiner salt, and the design of equipment to fabricate actual waste forms in the Hot Fuels Examination Facility (HFEF) at the INL. Reported in this document are accomplishments from the second year (FY10) work performed at the INL, and includes the testing of waste form fabrication equipment, repeating the fission product precipitation experiment, and initial waste form fabrication efforts.« less
Thermal Stress in HFEF Hot Cell Windows Due to an In-Cell Metal Fire
Solbrig, Charles W.; Warmann, Stephen A.
2016-01-01
This work investigates an accident during the pyrochemical extraction of Uranium and Plutonium from PWR spent fuel in an argon atmosphere hot cell. In the accident, the heavy metals (U and Pu) being extracted are accidentally exposed to air from a leaky instrument penetration which goes through the cell walls. The extracted pin size pieces of U and Pu metal readily burn when exposed to air. Technicians perform the electrochemical extraction using manipulators through a 4 foot thick hot cell concrete wall which protects them from the radioactivity of the spent fuel. Four foot thick windows placed in the wallmore » allow the technicians to visually control the manipulators. These windows would be exposed to the heat of the metal fire. As a result, this analysis determines if the thermal stress caused by the fire would crack the windows and if the heat would degrade the window seals allowing radioactivity to escape from the cell.« less
Thermal Stress in HFEF Hot Cell Windows Due to an In-Cell Metal Fire
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solbrig, Charles W.; Warmann, Stephen A.
This work investigates an accident during the pyrochemical extraction of Uranium and Plutonium from PWR spent fuel in an argon atmosphere hot cell. In the accident, the heavy metals (U and Pu) being extracted are accidentally exposed to air from a leaky instrument penetration which goes through the cell walls. The extracted pin size pieces of U and Pu metal readily burn when exposed to air. Technicians perform the electrochemical extraction using manipulators through a 4 foot thick hot cell concrete wall which protects them from the radioactivity of the spent fuel. Four foot thick windows placed in the wallmore » allow the technicians to visually control the manipulators. These windows would be exposed to the heat of the metal fire. As a result, this analysis determines if the thermal stress caused by the fire would crack the windows and if the heat would degrade the window seals allowing radioactivity to escape from the cell.« less
Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report November 2014
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soelberg, Renae
2014-11-01
Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report November 2014 Highlights Rory Kennedy and Sarah Robertson attended the American Nuclear Society Winter Meeting and Nuclear Technology Expo in Anaheim, California, Nov. 10-13. ATR NSUF exhibited at the technology expo where hundreds of meeting participants had an opportunity to learn more about ATR NSUF. Dr. Kennedy briefed the Nuclear Engineering Department Heads Organization (NEDHO) on the workings of the ATR NSUF. • Rory Kennedy, James Cole and Dan Ogden participated in a reactor instrumentation discussion with Jean-Francois Villard and Christopher Destouches of CEA and several members of themore » INL staff. • ATR NSUF received approval from the NE-20 office to start planning the annual Users Meeting. The meeting will be held at INL, June 22-25. • Mike Worley, director of the Office of Innovative Nuclear Research (NE-42), visited INL Nov. 4-5. Milestones Completed • Recommendations for the Summer Rapid Turnaround Experiment awards were submitted to DOE-HQ Nov. 12 (Level 2 milestone due Nov. 30). Major Accomplishments/Activities • The University of California, Santa Barbara 2 experiment was unloaded from the GE-2000 at HFEF. The experiment specimen packs will be removed and shipped to ORNL for PIE. • The Terrani experiment, one of three FY 2014 new awards, was completed utilizing the Advanced Photon Source MRCAT beamline. The experiment investigated the chemical state of Ag and Pd in SiC shell of irradiated TRISO particles via X-ray Absorption Fine Structure (XAFS) spectroscopy. Upcoming Meetings/Events • The ATR NSUF program review meeting will be held Dec. 9-10 at L’Enfant Plaza. In addition to NSUF staff and users, NE-4, NE-5 and NE-7 representatives will attend the meeting. Awarded Research Projects Boise State University Rapid Turnaround Experiments (14-485 and 14-486) Nanoindentation and TEM work on the T91, HT9, HCM12A and 9Cr ODS specimens has been completed at CAES by Boise State PI Janelle Wharry and Cory Dolph. PI Corey Dolph returned in early November to complete their research by performing nanoindentation on unirradiated specimens that will be used as a baseline for their research.« less
NASA Technical Reports Server (NTRS)
Killian, D. A.; Menninger, F. J.; Gorman, T.; Glenn, P.
1988-01-01
The Technical Facilities Controller is a microprocessor-based energy management system that is to be implemented in the Deep Space Network facilities. This system is used in conjunction with facilities equipment at each of the complexes in the operation and maintenance of air-conditioning equipment, power generation equipment, power distribution equipment, and other primary facilities equipment. The implementation of the Technical Facilities Controller was completed at the Goldstone Deep Space Communications Complex and is now operational. The installation completed at the Goldstone Complex is described and the utilization of the Technical Facilities Controller is evaluated. The findings will be used in the decision to implement a similar system at the overseas complexes at Canberra, Australia, and Madrid, Spain.
NASA Technical Reports Server (NTRS)
1993-01-01
A description is given of each of the following Langley research and test facilities: 0.3-Meter Transonic Cryogenic Tunnel, 7-by 10-Foot High Speed Tunnel, 8-Foot Transonic Pressure Tunnel, 13-Inch Magnetic Suspension & Balance System, 14-by 22-Foot Subsonic Tunnel, 16-Foot Transonic Tunnel, 16-by 24-Inch Water Tunnel, 20-Foot Vertical Spin Tunnel, 30-by 60-Foot Wind Tunnel, Advanced Civil Transport Simulator (ACTS), Advanced Technology Research Laboratory, Aerospace Controls Research Laboratory (ACRL), Aerothermal Loads Complex, Aircraft Landing Dynamics Facility (ALDF), Avionics Integration Research Laboratory, Basic Aerodynamics Research Tunnel (BART), Compact Range Test Facility, Differential Maneuvering Simulator (DMS), Enhanced/Synthetic Vision & Spatial Displays Laboratory, Experimental Test Range (ETR) Flight Research Facility, General Aviation Simulator (GAS), High Intensity Radiated Fields Facility, Human Engineering Methods Laboratory, Hypersonic Facilities Complex, Impact Dynamics Research Facility, Jet Noise Laboratory & Anechoic Jet Facility, Light Alloy Laboratory, Low Frequency Antenna Test Facility, Low Turbulence Pressure Tunnel, Mechanics of Metals Laboratory, National Transonic Facility (NTF), NDE Research Laboratory, Polymers & Composites Laboratory, Pyrotechnic Test Facility, Quiet Flow Facility, Robotics Facilities, Scientific Visualization System, Scramjet Test Complex, Space Materials Research Laboratory, Space Simulation & Environmental Test Complex, Structural Dynamics Research Laboratory, Structural Dynamics Test Beds, Structures & Materials Research Laboratory, Supersonic Low Disturbance Pilot Tunnel, Thermal Acoustic Fatigue Apparatus (TAFA), Transonic Dynamics Tunnel (TDT), Transport Systems Research Vehicle, Unitary Plan Wind Tunnel, and the Visual Motion Simulator (VMS).
Construction continues on the RLV complex at the Shuttle Landing Facility
NASA Technical Reports Server (NTRS)
1999-01-01
At the construction site of the Reusable Launch Vehicle (RLV) complex at KSC, workers take measurements for one of the buildings. Located near the Shuttle Landing Facility, the complex will include facilities for related ground support equipment and administrative/ technical support. It will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000.
Construction continues on the RLV complex at the Shuttle Landing Facility
NASA Technical Reports Server (NTRS)
1999-01-01
At the construction site of the Reusable Launch Vehicle (RLV) complex at KSC, a worker takes a measurement. Located near the Shuttle Landing Facility, the complex will include facilities for related ground support equipment and administrative/ technical support. It will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000.
Construction continues on the RLV complex at the Shuttle Landing Facility
NASA Technical Reports Server (NTRS)
1999-01-01
Construction is under way for the X-33/X-34 hangar complex near the Shuttle Landing Facility at KSC. The Reusable Launch Vehicle (RLV) complex will include facilities for related ground support equipment and administrative/ technical support. It will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000.
Materials and Fuels Complex Tour
Miley, Don
2017-12-11
The Materials and Fuels Complex at Idaho National Laboratory is home to several facilities used for the research and development of nuclear fuels. Stops include the Fuel Conditioning Facility, the Hot Fuel Examination Facility (post-irradiation examination), and the Space and Security Power System Facility, where radioisotope thermoelectric generators (RTGs) are assembled for deep space missions.
Closely Spaced Independent Parallel Runway Simulation.
1984-10-01
facility consists of the Central Computer Facility, the Controller Laboratory, and the Simulator Pilot Complex. CENTRAL COMPUTER FACILITY. The Central... Computer Facility consists of a group of mainframes, minicomputers, and associated peripherals which host the operational and data acquisition...in the Controller Laboratory and convert their verbal directives into a keyboard entry which is transmitted to the Central Computer Complex, where
7. Historic aerial photo of rocket engine test facility complex, ...
7. Historic aerial photo of rocket engine test facility complex, June 1962. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-60674. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
9. Historic aerial photo of rocket engine test facility complex, ...
9. Historic aerial photo of rocket engine test facility complex, June 11, 1965. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-65-1270. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
8. Historic aerial photo of rocket engine test facility complex, ...
8. Historic aerial photo of rocket engine test facility complex, June 11, 1965. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-65-1271. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
ICD Complex Operations and Maintenance Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibson, P. L.
2007-06-25
This Operations and Maintenance (O&M) Plan describes how the Idaho National Laboratory (INL) conducts operations, winterization, and startup of the Idaho CERCLA Disposal Facility (ICDF) Complex. The ICDF Complex is the centralized INL facility responsible for the receipt, storage, treatment (as necessary), and disposal of INL Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation waste.
1999-08-23
A worker takes a measurement for construction of the Reusable Launch Vehicle (RLV) complex at KSC. Located near the Shuttle Landing Facility, the complex will include facilities for related ground support equipment and administrative/ technical support. It will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000
1999-08-23
At the construction site of the Reusable Launch Vehicle (RLV) complex at KSC, workers take measurements for one of the buildings. Located near the Shuttle Landing Facility, the complex will include facilities for related ground support equipment and administrative/ technical support. It will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000
1999-08-23
At the construction site of the Reusable Launch Vehicle (RLV) complex at KSC, a worker takes a measurement. Located near the Shuttle Landing Facility, the complex will include facilities for related ground support equipment and administrative/ technical support. It will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000
1999-08-23
Construction is under way for the X-33/X-34 hangar complex near the Shuttle Landing Facility at KSC. The Reusable Launch Vehicle (RLV) complex will include facilities for related ground support equipment and administrative/ technical support. It will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000
Aerial views of construction on the RLV hangar at the Shuttle Landing Facility
NASA Technical Reports Server (NTRS)
1999-01-01
Looking southwest, this view shows ongoing construction of a multi-purpose hangar, which is part of the $8 million Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. Edging the construction is Sharkey Road, which parallels the landing strip of the Shuttle Landing Facility nearby. The RLV complex will include facilities for related ground support equipment and administrative/ technical support. It will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000.
41 CFR 102-72.67 - What work is covered under an ancillary repair and alteration delegation?
Code of Federal Regulations, 2013 CFR
2013-07-01
...-complex in nature, such as routine painting or carpeting, simple hanging of drywall, basic electrical or... buildings, roads, parking lots, and other facilities; (2) Complex repair and alteration of entire facilities...
41 CFR 102-72.67 - What work is covered under an ancillary repair and alteration delegation?
Code of Federal Regulations, 2014 CFR
2014-01-01
...-complex in nature, such as routine painting or carpeting, simple hanging of drywall, basic electrical or... buildings, roads, parking lots, and other facilities; (2) Complex repair and alteration of entire facilities...
41 CFR 102-72.67 - What work is covered under an ancillary repair and alteration delegation?
Code of Federal Regulations, 2012 CFR
2012-01-01
...-complex in nature, such as routine painting or carpeting, simple hanging of drywall, basic electrical or... buildings, roads, parking lots, and other facilities; (2) Complex repair and alteration of entire facilities...
41 CFR 102-72.67 - What work is covered under an ancillary repair and alteration delegation?
Code of Federal Regulations, 2010 CFR
2010-07-01
...-complex in nature, such as routine painting or carpeting, simple hanging of drywall, basic electrical or... buildings, roads, parking lots, and other facilities; (2) Complex repair and alteration of entire facilities...
41 CFR 102-72.67 - What work is covered under an ancillary repair and alteration delegation?
Code of Federal Regulations, 2011 CFR
2011-01-01
...-complex in nature, such as routine painting or carpeting, simple hanging of drywall, basic electrical or... buildings, roads, parking lots, and other facilities; (2) Complex repair and alteration of entire facilities...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gary Mecham
2010-08-01
This report is a companion to the Facilities Condition and Hazard Assessment for Materials and Fuel Complex Sodium Processing Facilities MFC-799/799A and Nuclear Calibration Laboratory MFC-770C (referred to as the Facilities Condition and Hazards Assessment). This report specifically responds to the requirement of Section 9.2, Item 6, of the Facilities Condition and Hazards Assessment to provide an updated assessment and verification of the residual hazardous materials remaining in the Sodium Processing Facilities processing system. The hazardous materials of concern are sodium and sodium hydroxide (caustic). The information supplied in this report supports the end-point objectives identified in the Transition Planmore » for Multiple Facilities at the Materials and Fuels Complex, Advanced Test Reactor, Central Facilities Area, and Power Burst Facility, as well as the deactivation and decommissioning critical decision milestone 1, as specified in U.S. Department of Energy Guide 413.3-8, “Environmental Management Cleanup Projects.” Using a tailored approach and based on information obtained through a combination of process knowledge, emergency management hazardous assessment documentation, and visual inspection, this report provides sufficient detail regarding the quantity of hazardous materials for the purposes of facility transfer; it also provides that further characterization/verification of these materials is unnecessary.« less
Shielding and Radiation Protection in Ion Beam Therapy Facilities
NASA Astrophysics Data System (ADS)
Wroe, Andrew J.; Rightnar, Steven
Radiation protection is a key aspect of any radiotherapy (RT) department and is made even more complex in ion beam therapy (IBT) by the large facility size, secondary particle spectra and intricate installation of these centers. In IBT, large and complex radiation producing devices are used and made available to the public for treatment. It is thus the responsibility of the facility to put in place measures to protect not only the patient but also the general public, occupationally and nonoccupationally exposed personnel working within the facility, and electronics installed within the department to ensure maximum safety while delivering maximum up-time.
Code of Federal Regulations, 2010 CFR
2010-07-01
... RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Plans and Information... facilities on my limited lease or any facilities on my project easement proposed under my GAP? 285.651... facilities on my limited lease or any facilities on my project easement proposed under my GAP? If you are...
22. V2 GANTRY, LAUNCH COMPLEX 33: GENERAL VIEW, LOOKING WEST ...
22. V-2 GANTRY, LAUNCH COMPLEX 33: GENERAL VIEW, LOOKING WEST AND UPWARD FROM APRON OF BLAST PIT, 20,000 POUND MOTOR TEST AND LAUNCH FACILITY - White Sands Missile Range, V-2 Rocket Facilities, Near Headquarters Area, White Sands, Dona Ana County, NM
21. V2 GANTRY, LAUNCH COMPLEX 33: VIEW OF CRANE WITH ...
21. V-2 GANTRY, LAUNCH COMPLEX 33: VIEW OF CRANE WITH BLAST PIT OF 20,000 POUND MOTOR TEST AND LAUNCH FACILITY, IN FOREGROUND, LOOKING WEST - White Sands Missile Range, V-2 Rocket Facilities, Near Headquarters Area, White Sands, Dona Ana County, NM
Academic status does not affect outcome following complex hepato-pancreato-biliary procedures.
Altieri, Maria S; Yang, Jie; Groves, Donald; Yin, Donglei; Cagino, Kristen; Talamini, Mark; Pryor, Aurora
2018-05-01
There is a growing debate regarding outcomes following complex hepato-pancreato-biliary (HPB) procedures. The purpose of our study is to examine if facility type has any impact on complications, readmission rates, emergency department (ED) visit rates, and length of stay (LOS) for patients undergoing HPB surgery. The SPARCS administrative database was used to identify patients undergoing complex HPB procedures between 2012 and 2014 in New York. Univariate generalized linear mixed models were fit to estimate the marginal association between outcomes such as overall/severe complication rates, 30-day and 1-year readmission rates, 30-day and 1-year ED-visit rates, and potential risk factors. Univariate linear mixed models were used to estimate the marginal association between possible risk factors and LOS. Facility type, as well as any variables found to be significant in our univariate analysis (p = 0.05), was further included in the multivariable regression models. There were 4122 complex HPB procedures performed. Academic facilities were more likely to have a higher hospital volume (p < 0001). Surgery at academic facilities were less likely to have coexisting comorbidities; however, they were more likely to have metastatic cancer and/or liver disease (p = 0.0114, < 0. 0001, and = 0.0299, respectively). Postoperatively, patients at non-academic facilities experienced higher overall complication rates, and higher severe complication rates, when compared to those at academic facilities (p < 0.0001 and = 0.0018, respectively). Further analysis via adjustment for possible confounding factors, however, revealed no significant difference in the risk of severe complications between the two facility types. Such adjustment also demonstrated higher 30-day readmission risk in patients who underwent their surgery at an academic facility. No significant difference was found when comparing the outcomes of academic and non-academic facilities, after adjusting for age, gender, race, region, insurance, and hospital volume. Patients from academic facilities were more likely to be readmitted within the first 30-days after surgery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorr, Kent A.; Freeman-Pollard, Jhivaun R.; Ostrom, Michael J.
CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energy's (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built to an accelerated schedule with American Recovery and Reinvestment Act (ARRA) funds. There were many contractual, technical, configuration management, quality, safety, and Leadership in Energy and Environmental Design (LEED) challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility tomore » meet DOE's mission objective of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012. The project team's successful integration of the project's core values and green energy technology throughout design, procurement, construction, and start-up of this complex, first-of-its-kind Bio Process facility resulted in successful achievement of DOE's mission objective, as well as attainment of LEED GOLD certification (Figure 1), which makes this Bio Process facility the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award. (authors)« less
Environmental Projects. Volume 9: Construction of hazardous materials storage facilities
NASA Technical Reports Server (NTRS)
1989-01-01
Activities at the Goldstone Deep Space Communications Complex (GDSCC) are carried out in support of seven parabolic dish antennas. These activities may give rise to environmental hazards. This report is one in a series of reports describing environmental projects at GDSCC. The construction of two hazardous materials and wastes storage facilities and an acid-wash facility is described. An overview of the Goldstone complex is also presented along with a description of the environmental aspects of the GDSCC site.
Description and operational status of the National Transonic Facility computer complex
NASA Technical Reports Server (NTRS)
Boyles, G. B., Jr.
1986-01-01
This paper describes the National Transonic Facility (NTF) computer complex and its support of tunnel operations. The capabilities of the research data acquisition and reduction are discussed along with the types of data that can be acquired and presented. Pretest, test, and posttest capabilities are also outlined along with a discussion of the computer complex to monitor the tunnel control processes and provide the tunnel operators with information needed to control the tunnel. Planned enhancements to the computer complex for support of future testing are presented.
Alves-Conceição, Vanessa; Silva, Daniel Tenório da; Santana, Vanessa Lima de; Santos, Edileide Guimarães Dos; Santos, Lincoln Marques Cavalcante; Lyra, Divaldo Pereira de
2017-07-25
Polypharmacy is a reality in long-term care facilities. However, number of medications used by the patient should not be the only predictor of a complex pharmacotherapy. Although the level of complexity of pharmacotherapy is considered an important factor that may lead to side effects, there are few studies in this field. The aim of this study was to evaluate the complexity of pharmacotherapy in residents of three long-term care facilities. A cross-sectional study was performed to evaluate the complexity of pharmacotherapy using the protocols laid out in the Medication Regimen Complexity Index instrument in three long-term care facilities in northeastern Brazil. As a secondary result, potential drug interactions, potentially inappropriate medications, medication duplication, and polypharmacy were evaluated. After the assessment, the association among these variables and the Medication Regimen Complexity Index was performed. In this study, there was a higher prevalence of women (64.4%) with a high mean age among the study population of 81.8 (±9.7) years. The complexity of pharmacotherapy obtained a mean of 15.1 points (±9.8), with a minimum of 2 and a maximum of 59. The highest levels of complexity were associated with dose frequency, with a mean of 5.5 (±3.6), followed by additional instructions of use averaging 4.9 (±3.7) and by the dosage forms averaging 4.6 (±3.0). The present study evaluated some factors that complicate the pharmacotherapy of geriatric patients. Although polypharmacy was implicated as a factor directly related to complexity, other indicators such as drug interactions, potentially inappropriate medications, and therapeutic duplication can also make the use of pharmacotherapy in such patients more difficult.
FACILITY LAYOUT OF FUEL STORAGE BUILDING (CPP603) SHOWING STORAGE BASINS, ...
FACILITY LAYOUT OF FUEL STORAGE BUILDING (CPP-603) SHOWING STORAGE BASINS, FUEL ELEMENT CUTTING FACILITY, AND DRY GRAPHITE STORAGE FACILITY. INL DRAWING NUMBER 200-0603-00-030-056329. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
Code of Federal Regulations, 2011 CFR
2011-07-01
... facilities on my limited lease or any facilities on my project easement proposed under my GAP? 285.651 Section 285.651 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER...
NASA Technical Reports Server (NTRS)
Hollis, Brian R.
1996-01-01
A computational algorithm has been developed which can be employed to determine the flow properties of an arbitrary real (virial) gas in a wind tunnel. A multiple-coefficient virial gas equation of state and the assumption of isentropic flow are used to model the gas and to compute flow properties throughout the wind tunnel. This algorithm has been used to calculate flow properties for the wind tunnels of the Aerothermodynamics Facilities Complex at the NASA Langley Research Center, in which air, CF4. He, and N2 are employed as test gases. The algorithm is detailed in this paper and sample results are presented for each of the Aerothermodynamic Facilities Complex wind tunnels.
1998-12-18
An artist's rendering shows the $8-million Reusable Launch Vehicle (RLV) Support Complex planned for the Shuttle Landing Facility (SLF) at Kennedy Space Center. The ground breaking took place today. To be located at the tow-way adjacent to the SLF, the complex will include a multi-purpose RLV hangar and adjacent facilities for related ground support equipment and administrative/technical support. It will be available to accommodate the Space Shuttle, the X-34 RLV technology demonstrator, the L-1011 carrier aircraft for Pegasus and X-34, and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorr, Kent A.; Ostrom, Michael J.; Freeman-Pollard, Jhivaun R.
CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energy’s (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built to an accelerated schedule with American Recovery and Reinvestment Act (ARRA) funds. There were many contractual, technical, configuration management, quality, safety, and Leadership in Energy and Environmental Design (LEED) challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility tomore » meet DOE’s mission objective of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012. The project team’s successful integration of the project’s core values and green energy technology throughout design, procurement, construction, and start-up of this complex, first-of-its-kind Bio Process facility resulted in successful achievement of DOE’s mission objective, as well as attainment of LEED GOLD certification, which makes this Bio Process facility the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award.« less
Creating a Shared Context for Value-Based Collaboration & Decision Making
ERIC Educational Resources Information Center
Guckert, Donald J.; King, Jeri Ripley
2012-01-01
How does one succinctly communicate the breadth, complexity, and forward-thinking approaches that are necessary for facilities management organizations to operate in today's complex and ever-changing environment? Recently, the authors were asked to do just that at the University of Iowa Department of Facilities Management. In this article, they…
Laboratory Animal Facilities. Laboratory Design Notes.
ERIC Educational Resources Information Center
Jonas, Albert M.
1965-01-01
Design of laboratory animal facilities must be functional. Accordingly, the designer should be aware of the complex nature of animal research and specifically the type of animal research which will be conducted in a new facility. The building of animal-care facilities in research institutions requires special knowledge in laboratory animal…
8. Photocopy of engineering drawing. AETR DIGS FACILITY THEODOLITE AND ...
8. Photocopy of engineering drawing. AETR DIGS FACILITY THEODOLITE AND PRISM SHELTER: SECTIONS AND DETAILS, 1971. - Cape Canaveral Air Station, Launch Complex 17, Facility 28413, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL
Code of Federal Regulations, 2014 CFR
2014-07-01
... facilities on my limited lease or any facilities on my project easement proposed under my GAP? 585.651 Section 585.651 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Plans and...
Code of Federal Regulations, 2013 CFR
2013-07-01
... facilities on my limited lease or any facilities on my project easement proposed under my GAP? 585.651 Section 585.651 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Plans and...
Code of Federal Regulations, 2012 CFR
2012-07-01
... facilities on my limited lease or any facilities on my project easement proposed under my GAP? 585.651 Section 585.651 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Plans and...
NASA Astrophysics Data System (ADS)
Telichenko, Valeriy; Malykha, Galina; Dorogan, Igor
2017-10-01
The article is devoted to the organization of construction of nuclear medicine facilities in Russia. The article describes the main methods of nuclear medical diagnostics, as well as the peculiarities of nuclear medicine facilities that determine the need for application of specific methods for organizing and managing the construction, methods of requirements management in the organization of construction of nuclear medicine facilities. Sustainable development of the transport of radioactive isotopes from the place of production to places of consumption is very important for the safety of the population. The requirements management system is an important and necessary component in organizing the construction of complex facilities, such as nuclear medicine facilities. The author developed and proposed a requirements management system for the design, construction and operation of a nuclear medicine facility, which provides for a cyclic sequence of actions. This system allows reducing the consumption of resources including material and energy during construction and operation of complex objects.
7. Photocopy of engineering drawing. AETR DIGS FACILITY THEODOLITE AND ...
7. Photocopy of engineering drawing. AETR DIGS FACILITY THEODOLITE AND PRISM SHELTER: ELEVATIONS, FLOOR AND FOUNDATION PLANS, 1971. - Cape Canaveral Air Station, Launch Complex 17, Facility 28413, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL
1. West facade of Plutonium Concentration Facility (Building 233S), ReductionOxidation ...
1. West facade of Plutonium Concentration Facility (Building 233-S), Reduction-Oxidation Building (REDOX-202-S) to the right. Looking east. - Reduction-Oxidation Complex, Plutonium Concentration Facility, 200 West Area, Richland, Benton County, WA
Specialized Environmental Chamber Test Complex: User Test Planning Guide
NASA Technical Reports Server (NTRS)
Montz, Michael E.
2011-01-01
Test process, milestones and inputs are unknowns to first-time users of the Specialized Environmental Test Complex. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.
6. Photocopy of engineering drawing. AETR DIGS FACILITY THEODOLITE AND ...
6. Photocopy of engineering drawing. AETR DIGS FACILITY THEODOLITE AND PRISM SHELTER: MONUMENT LOCATION AND LINE-OF-SIGHT PLAN, 1972. - Cape Canaveral Air Station, Launch Complex 17, Facility 28413, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL
Unmanned launch vehicle impacts on existing major facilities : V23
DOT National Transportation Integrated Search
1984-10-18
This study measures the impact on the existing major facilities of Space Launch Complex (SLC-6) to accommodate the launching of an Unmanned Launch Vehicle (ULV). Modifications to the existing facilities were determined for two basic vehicle concepts,...
2001-07-25
Since the 1940s the Dryden Flight Research Center, Edwards, California, has developed a unique and highly specialized capability for conducting flight research programs. The organization, made up of pilots, scientists, engineers, technicians, and mechanics, has been and will continue to be leaders in the field of advanced aeronautics. Located on the northwest "shore" of Rogers Dry Lake, the complex was built around the original administrative-hangar building constructed in 1954. Since then many additional support and operational facilities have been built including a number of unique test facilities such as the Thermalstructures Research Facility, Flow Visualization Facility, and the Integrated Test Facility. One of the most prominent structures is the space shuttle program's Mate-Demate Device and hangar in Area A to the north of the main complex. On the lakebed surface is a Compass Rose that gives pilots an instant compass heading. The Dryden complex originated at Edwards Air Force Base in support of the X-1 supersonic flight program. As other high-speed aircraft entered research programs, the facility became permanent and grew from a staff of five engineers in 1947 to a population in 2006 of nearly 1100 full-time government and contractor employees.
2001-07-25
Since the 1940s the Dryden Flight Research Center, Edwards, California, has developed a unique and highly specialized capability for conducting flight research programs. The organization, made up of pilots, scientists, engineers, technicians, and mechanics, has been and will continue to be leaders in the field of advanced aeronautics. Located on the northwest "shore" of Rogers Dry Lake, the complex was built around the original administrative-hangar building constructed in 1954. Since then many additional support and operational facilities have been built including a number of unique test facilities such as the Thermalstructures Research Facility, Flow Visualization Facility, and the Integrated Test Facility. One of the most prominent structures is the space shuttle program's Mate-Demate Device and hangar in Area A to the north of the main complex. On the lakebed surface is a Compass Rose that gives pilots an instant compass heading. The Dryden complex originated at Edwards Air Force Base in support of the X-1 supersonic flight program. As other high-speed aircraft entered research programs, the facility became permanent and grew from a staff of five engineers in 1947 to a population in 2006 of nearly 1100 full-time government and contractor employees.
Preliminary definition of a lunar landing and launch facility (Complex 39L)
NASA Technical Reports Server (NTRS)
Matthews, H. Dennis; Jenson, Eric B.; Linsley, Jerald N.
1992-01-01
A preliminary definition of a lunar landing and launch facility has been formulated. A permanently manned lunar base and a baseline lunar module are assumed. The major features of the facility are specified and major design areas are described.
10. Historic photo of rendering of rocket engine test facility ...
10. Historic photo of rendering of rocket engine test facility complex, April 28, 1964. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-69472. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
77 FR 14007 - Sunshine Act Meeting Notice
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-08
... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Sunshine Act Meeting Notice Federal Register CITATION OF... THE MEETING: The Defense Nuclear Facilities Safety Board (Board) is expanding the matters to be.../ resolution of safety and technical issues across the defense nuclear facilities complex. Since this panel...
Cape Canaveral Air Force Station, Launch Complex 39, Solid Rocket ...
Cape Canaveral Air Force Station, Launch Complex 39, Solid Rocket Booster Disassembly & Refurbishment Complex, Thrust Vector Control Deservicing Facility, Hangar Road, Cape Canaveral, Brevard County, FL
Kauai Test Facility hazards assessment document
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swihart, A
1995-05-01
The Department of Energy Order 55003A requires facility-specific hazards assessment be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Kauai Test Facility, Barking Sands, Kauai, Hawaii. The Kauai Test Facility`s chemical and radiological inventories were screened according to potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distance to themore » Early Severe Health Effects threshold is 4.2 kilometers. The highest emergency classification is a General Emergency at the {open_quotes}Main Complex{close_quotes} and a Site Area Emergency at the Kokole Point Launch Site. The Emergency Planning Zone for the {open_quotes}Main Complex{close_quotes} is 5 kilometers. The Emergency Planning Zone for the Kokole Point Launch Site is the Pacific Missile Range Facility`s site boundary.« less
Engine component instrumentation development facility at NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Bruckner, Robert J.; Buggele, Alvin E.; Lepicovsky, Jan
1992-01-01
The Engine Components Instrumentation Development Facility at NASA Lewis is a unique aeronautics facility dedicated to the development of innovative instrumentation for turbine engine component testing. Containing two separate wind tunnels, the facility is capable of simulating many flow conditions found in most turbine engine components. This facility's broad range of capabilities as well as its versatility provide an excellent location for the development of novel testing techniques. These capabilities thus allow a more efficient use of larger and more complex engine component test facilities.
Data reduction complex analog-to-digital data processing requirements for onsite test facilities
NASA Technical Reports Server (NTRS)
Debbrecht, J. D.
1976-01-01
The analog to digital processing requirements of onsite test facilities are described. The source and medium of all input data to the Data Reduction Complex (DRC) and the destination and medium of all output products of the analog-to-digital processing are identified. Additionally, preliminary input and output data formats are presented along with the planned use of the output products.
NASA Technical Reports Server (NTRS)
2006-01-01
NASA Test Operations Group employees, from left, Todd Pearson, Tim Delcuze and Rodney Wilkinson maintain a water pump in Stennis Space Center's high-pressure water facility. The three were part of a group of employees who rode out Hurricane Katrina at the facility and helped protect NASA's rocket engine test complex.
28 CFR 91.55 - Categorical exclusions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... disposal, or water facilities. (c) Expansion of support facilities. Projects for the expansion of bed space... Historic Places, or is eligible for listing on the register. (b) Limited expansion. Projects for the expansion of an existing facility or within an existing correctional complex, which does not add more than...
28 CFR 91.55 - Categorical exclusions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... disposal, or water facilities. (c) Expansion of support facilities. Projects for the expansion of bed space... Historic Places, or is eligible for listing on the register. (b) Limited expansion. Projects for the expansion of an existing facility or within an existing correctional complex, which does not add more than...
28 CFR 91.55 - Categorical exclusions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... disposal, or water facilities. (c) Expansion of support facilities. Projects for the expansion of bed space... Historic Places, or is eligible for listing on the register. (b) Limited expansion. Projects for the expansion of an existing facility or within an existing correctional complex, which does not add more than...
2006-02-15
NASA Test Operations Group employees, from left, Todd Pearson, Tim Delcuze and Rodney Wilkinson maintain a water pump in Stennis Space Center's high-pressure water facility. The three were part of a group of employees who rode out Hurricane Katrina at the facility and helped protect NASA's rocket engine test complex.
6. Historic photo of rocket engine test facility Building 202 ...
6. Historic photo of rocket engine test facility Building 202 complex in operation at night, September 12, 1957. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-45924. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
Korom-Djakovic, Danijela; Canamucio, Anne; Lempa, Michele; Yano, Elizabeth M; Long, Judith A
2016-01-01
This study examined how aspects of quality improvement (QI) culture changed during the introduction of the Veterans Health Administration (VHA) patient-centered medical home initiative and how they were influenced by existing organizational factors, including VHA facility complexity and practice location. A voluntary survey, measuring primary care providers' (PCPs') perspectives on QI culture at their primary care clinics, was administered in 2010 and 2012. Participants were 320 PCPs from hospital- and community-based primary care practices in Pennsylvania, West Virginia, Delaware, New Jersey, New York, and Ohio. PCPs in community-based outpatient clinics reported an improvement in established processes for QI, and communication and cooperation from 2010 to 2012. However, their peers in hospital-based clinics did not report any significant improvements in QI culture. In both years, compared with high-complexity facilities, medium- and low-complexity facilities had better scores on the scales assessing established processes for QI, and communication and cooperation. © The Author(s) 2014.
Proton facility economics: the importance of "simple" treatments.
Johnstone, Peter A S; Kerstiens, John; Richard, Helsper
2012-08-01
Given the cost and debt incurred to build a modern proton facility, impetus exists to minimize treatment of patients with complex setups because of their slower throughput. The aim of this study was to determine how many "simple" cases are necessary given different patient loads simply to recoup construction costs and debt service, without beginning to cover salaries, utilities, beam costs, and so on. Simple cases are ones that can be performed quickly because of an easy setup for the patient or because the patient is to receive treatment to just one or two fields. A "standard" construction cost and debt for 1, 3, and 4 gantry facilities were calculated from public documents of facilities built in the United States, with 100% of the construction funded through standard 15-year financing at 5% interest. Clinical best case (that each room was completely scheduled with patients over a 14-hour workday) was assumed, and a statistical analysis was modeled with debt, case mix, and payer mix moving independently. Treatment times and reimbursement data from the investigators' facility for varying complexities of patients were extrapolated for varying numbers treated daily. Revenue assumptions of $X per treatment were assumed both for pediatric cases (a mix of Medicaid and private payer) and state Medicare simple case rates. Private payer reimbursement averages $1.75X per treatment. The number of simple patients required daily to cover construction and debt service costs was then derived. A single gantry treating only complex or pediatric patients would need to apply 85% of its treatment slots simply to service debt. However, that same room could cover its debt treating 4 hours of simple patients, thus opening more slots for complex and pediatric patients. A 3-gantry facility treating only complex and pediatric cases would not have enough treatment slots to recoup construction and debt service costs at all. For a 4-gantry center, focusing on complex and pediatric cases alone, there would not be enough treatment slots to cover even 60% of debt service. Personnel and recurring costs and profit further reduce the business case for performing more complex patients. Debt is not variable with capacity. Absent philanthropy, financing a modern proton center requires treating a case load emphasizing simple patients even before operating costs and any profit are achieved. Copyright © 2012 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Construction bidding cost of KSC's space shuttle facilities
NASA Technical Reports Server (NTRS)
Brown, Joseph Andrew
1977-01-01
The bidding cost of the major Space Transportation System facilities constructed under the responsibility of the John F. Kennedy Space Center (KSC) is described and listed. These facilities and Ground Support Equipment (GSE) are necessary for the receiving, assembly, testing, and checkout of the Space Shuttle for launch and landing missions at KSC. The Shuttle launch configuration consists of the Orbiter, the External Tank, and the Solid Rocket Boosters (SRB). The reusable Orbiter and SRB's is the major factor in the program that will result in lowering space travel costs. The new facilities are the Landing Facility; Orbiter Processing Facility; Orbiter Approach and Landing Test Facility (Dryden Test Center, California); Orbiter Mating Devices; Sound Suppression Water System; and Emergency Power System for LC-39. Also, a major factor was to use as much Apollo facilities and hardware as possible to reduce the facilities cost. The alterations to existing Apollo facilities are the VAB modifications; Mobile Launcher Platforms; Launch Complex 39 Pads A and B (which includes a new concept - the Rotary Service Structure), which was featured in ENR, 3 Feb. 1977, 'Hinged Space Truss will Support Shuttle Cargo Room'; Launch Control Center mods; External Tank and SRB Processing and Storage; Fluid Test Complex mods; O&C Spacelab mods; Shuttle mods for Parachute Facility; SRB Recovery and Disassembly Facility at Hangar 'AF'; and an interesting GSE item - the SRB Dewatering Nozzle Plug Sets (Remote Controlled Submarine System) used to inspect and acquire for reuse of SRB's.
PERT Planning for Physical Educational Facilities.
ERIC Educational Resources Information Center
Moriarty, R. J.
1973-01-01
Because of the high degree of interest in education and physical education in Canada, there has been a phenomenal growth in physical education facilities. Physical educators must become facility specialists in order to contribute to the planning, procurement, and utilization of the new complexes that are being developed. Among the most difficult…
Nuclear thermal propulsion test facility requirements and development strategy
NASA Technical Reports Server (NTRS)
Allen, George C.; Warren, John; Clark, J. S.
1991-01-01
The Nuclear Thermal Propulsion (NTP) subpanel of the Space Nuclear Propulsion Test Facilities Panel evaluated facility requirements and strategies for nuclear thermal propulsion systems development. High pressure, solid core concepts were considered as the baseline for the evaluation, with low pressure concepts an alternative. The work of the NTP subpanel revealed that a wealth of facilities already exists to support NTP development, and that only a few new facilities must be constructed. Some modifications to existing facilities will be required. Present funding emphasis should be on long-lead-time items for the major new ground test facility complex and on facilities supporting nuclear fuel development, hot hydrogen flow test facilities, and low power critical facilities.
TAN HOT SHOP AND SUPPORT FACILITY UTILIZATION STUDY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, Ken Crawforth
2001-11-01
Impacts to the U.S. Department of Energy (DOE) complex caused by early closure (prior to 2018) and Demolition and Dismantlement (D&D) of the Test Area North (TAN) hot shop and its support facilities are explored in this report. Various possible conditions, such as Standby, Safe Store and Lay-up, that the facility may be placed in prior to eventually being turned over to D&D are addressed. The requirements, impacts, and implications to the facility and to the DOE Complex are discussed for each condition presented in the report. Some details of the report reference the Idaho National Engineering and Environmental Laboratorymore » (INEEL) Spent Nuclear Fuel Life Cycle Baseline Plan, the INEEL 2000 Infrastructure Long Range Plan, and other internal INEEL reports.« less
TAN Hot Shop and Support Facility Utilization Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Picker, B.A.
2001-11-16
Impacts to the U.S. Department of Energy (DOE) complex caused by early closure (prior to 2018) and Demolition and Dismantlement (D and D) of the Test Area North (TAN) hot shop and its support facilities are explored in this report. Various possible conditions, such as Standby, Safe Store and Lay-up, that the facility may be placed in prior to eventually being turned over to D and D are addressed. The requirements, impacts, and implications to the facility and to the DOE Complex are discussed for each condition presented in the report. Some details of the report reference the Idaho Nationalmore » Engineering and Environmental Laboratory (INEEL) Spent Nuclear Fuel Life Cycle Baseline Plan, the INEEL 2000 Infrastructure Long Range Plan, and other internal INEEL reports.« less
1999-10-14
Construction continues on an $8 million Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. At left is a multi-purpose hangar and at right a building for related ground support equipment and administrative/ technical support. The complex is situated at the Shuttle Landing Facility (upper right). Near the top of the photo is the tow-way. The RLV complex will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000
1999-10-14
An aerial closeup view reveals the ongoing construction of an $8 million Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. At right is a multi-purpose hangar and at left a building for related ground support equipment and administrative/ technical support. The complex is situated at the Shuttle Landing Facility. Near the top of the photo can be seen the tow-way. The RLV complex will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000
AGR-3/4 Irradiation Test Train Disassembly and Component Metrology First Look Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stempien, John Dennis; Rice, Francine Joyce; Harp, Jason Michael
2016-03-01
The AGR-3/4 experiment was designed to study fission product transport within graphitic matrix material and nuclear-grade graphite. To this end, this experiment consisted of 12 capsules, each fueled with 4 compacts containing UCO TRISO particles as driver fuel and 20 UCO designed-to-fail (DTF) fuel particles in each compact. The DTF fuel was fabricated with a thin pyrocarbon layer which was intended to fail during irradiation and provide a source of fission products. These fission products could then migrate through the compact and into the surrounding concentric rings of graphitic matrix material and/or nuclear graphite. Through post-irradiation examination (PIE) of themore » rings (including physical sampling and gamma scanning) fission product concentration profiles within the rings can be determined. These data can be used to elucidate fission product transport parameters (e.g. diffusion coefficients within the test materials) which will be used to inform and refine models of fission product transport. After irradiation in the Advanced Test Reactor (ATR) had been completed in April 2014, the AGR-3/4 experiment was shipped to the Hot Fuel Examination Facility (HFEF) at the Materials and Fuels Complex (MFC) for inspection, disassembly, and metrology. The AGR-3/4 test train was received at MFC in two separate shipments between February and April 2015. Visual examinations of the test train exterior did not indicate dimensional distortion, and only two small discolored areas were observed at the bottom of Capsules 8 and 9. No corresponding discoloration was found on the inside of these capsules, however. Prior to disassembly, the two test train sections were subject to analysis via the Precision Gamma Scanner (PGS), which did not indicate that any gross fuel relocation had occurred. A series of specialized tools (including clamps, cutters, and drills) had been designed and fabricated in order to carry out test train disassembly and recovery of capsule components (graphite rings and fuel compacts). This equipment performed well for separating each capsule in the test train and extracting the capsule components. Only a few problems were encountered. In one case, the outermost ring (the sink ring) was cracked during removal of the capsule through tubes. Although the sink ring will be analyzed in order to obtain a mass balance of fission products in the experiment, these cracks do not pose a major concern because the sink ring will not be analyzed in detail to obtain the spatial distribution of fission products. In Capsules 4 and 5, the compacts could not be removed from the inner rings. Strategies for removing the compacts are being evaluated. Sampling the inner rings with the compacts in-place is also an option. Dimensional measurements were made on the compacts, inner rings, outer rings, and sink rings. The diameters of all compacts decreased by 0.5 to 2.0 %. Generally, the extent of diametric shrinkage increased linearly with increasing neutron fluence. Most compact lengths also decreased. Compact lengths decreased with increasing fluence, reaching maximum shrinkage of about 0.9 % at a fast fluence of 4.0x10 25 n/m 2 E > 0.18 MeV. Above this fluence, the extent of length shrinkage appeared to decrease with fluence, and two compacts from Capsule 7 were found to have slightly increased in length (< 0.1 %) after a fluence of 5.2x10 25 n/m 2.« less
AGR-3/4 Irradiation Test Train Disassembly and Component Metrology First Look Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stempien, John Dennis; Rice, Francine Joyce; Harp, Jason Michael
The AGR-3/4 experiment was designed to study fission product transport within graphitic matrix material and nuclear-grade graphite. To this end, this experiment consisted of 12 capsules, each fueled with 4 compacts containing UCO TRISO particles as driver fuel and 20 UCO designed-to-fail (DTF) fuel particles in each compact. The DTF fuel was fabricated with a thin pyrocarbon layer which was intended to fail during irradiation and provide a source of fission products. These fission products could then migrate through the compact and into the surrounding concentric rings of graphitic matrix material and/or nuclear graphite. Through post-irradiation examination (PIE) of themore » rings (including physical sampling and gamma scanning) fission product concentration profiles within the rings can be determined. These data can be used to elucidate fission product transport parameters (e.g. diffusion coefficients within the test materials) which will be used to inform and refine models of fission product transport. After irradiation in the Advanced Test Reactor (ATR) had been completed in April 2014, the AGR-3/4 experiment was shipped to the Hot Fuel Examination Facility (HFEF) at the Materials and Fuels Complex (MFC) for inspection, disassembly, and metrology. The AGR-3/4 test train was received at MFC in two separate shipments between February and April 2015. Visual examinations of the test train exterior did not indicate dimensional distortion, and only two small discolored areas were observed at the bottom of Capsules 8 and 9. No corresponding discoloration was found on the inside of these capsules, however. Prior to disassembly, the two test train sections were subject to analysis via the Precision Gamma Scanner (PGS), which did not indicate that any gross fuel relocation had occurred. A series of specialized tools (including clamps, cutters, and drills) had been designed and fabricated in order to carry out test train disassembly and recovery of capsule components (graphite rings and fuel compacts). This equipment performed well for separating each capsule in the test train and extracting the capsule components. Only a few problems were encountered. In one case, the outermost ring (the sink ring) was cracked during removal of the capsule through tubes. Although the sink ring will be analyzed in order to obtain a mass balance of fission products in the experiment, these cracks do not pose a major concern because the sink ring will not be analyzed in detail to obtain the spatial distribution of fission products. In Capsules 4 and 5, the compacts could not be removed from the inner rings. Strategies for removing the compacts are being evaluated. Sampling the inner rings with the compacts in-place is also an option. Dimensional measurements were made on the compacts, inner rings, outer rings, and sink rings. The diameters of all compacts decreased by 0.5 to 2.0 %. Generally, the extent of diametric shrinkage increased linearly with increasing neutron fluence. Most compact lengths also decreased. Compact lengths decreased with increasing fluence, reaching maximum shrinkage of about 0.9 % at a fast fluence of 4.0x1025 n/m2 E > 0.18 MeV. Above this fluence, the extent of length shrinkage appeared to decrease with fluence, and two compacts from Capsule 7 were found to have slightly increased in length (< 0.1 %) after a fluence of 5.2x1025 n/m2.« less
Space technology test facilities at the NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Gross, Anthony R.; Rodrigues, Annette T.
1990-01-01
The major space research and technology test facilities at the NASA Ames Research Center are divided into five categories: General Purpose, Life Support, Computer-Based Simulation, High Energy, and the Space Exploraton Test Facilities. The paper discusses selected facilities within each of the five categories and discusses some of the major programs in which these facilities have been involved. Special attention is given to the 20-G Man-Rated Centrifuge, the Human Research Facility, the Plant Crop Growth Facility, the Numerical Aerodynamic Simulation Facility, the Arc-Jet Complex and Hypersonic Test Facility, the Infrared Detector and Cryogenic Test Facility, and the Mars Wind Tunnel. Each facility is described along with its objectives, test parameter ranges, and major current programs and applications.
Munin, Michael C; Putman, Koen; Hsieh, Ching-Hui; Smout, Randall J; Tian, Wenqiang; DeJong, Gerben; Horn, Susan D
2010-07-01
To characterize rehabilitation services in two types of postacute facilities in patients who underwent hip replacement following a hip fracture. Multisite prospective observational cohort from 6 freestanding skilled nursing facilities and 11 inpatient rehabilitation facilities. Patients (n = 218) with hip fracture who had either hemiarthroplasty or total hip arthroplasty followed by rehabilitation at skilled nursing facilities or inpatient rehabilitation facilities were enrolled. Using a point-of-care methodology, we recorded data from actual physical therapy and occupational therapy sessions completed including functional outcomes during the postacute admission. Onset time from surgical repair to rehabilitation admission was not significantly different between sites. Average skilled nursing facilities length of stay was 24.7 +/- 13.6 days, whereas inpatient rehabilitation facilities was 13.0 +/- 5.7 days (P < 0.01). Total hours of physical therapy and occupational therapy services per patient day were 1.2 in skilled nursing facilities and 2.0 in inpatient rehabilitation facilities. For weekdays only, these data changed to 1.6 in skilled nursing facilities and 2.6 hrs per patient in inpatient rehabilitation facilities (P < 0.01). Patients in inpatient rehabilitation facilities accrued more time for gait training and exercise in physical therapy, which was found to be 48% and 40% greater, respectively, through day 8. In occupational therapy, patients of inpatient rehabilitation facilities had more time allocated to lower body dressing and transfers. Significant differences in rehabilitation activities were observed, and intensity was notably different within the first 8 therapy days even though baseline demographics and medical complexity were comparable across facility types. Our data suggest that after more complex hip replacement surgery, hip fracture patients can tolerate more intensive therapy earlier within the rehabilitation program.
Capsule review of the DOE research and development and field facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1980-09-01
A description is given of the roles of DOE's headquarters, field offices, major multiprogram laboratories, Energy Technology and Mining Technology Centers, and other government-owned, contractor-operated facilities, which are located in all regions of the US. Descriptions of DOE facilities are given for multiprogram laboratories (12); program-dedicated facilities (biomedical and environmental facilities-12, fossil energy facilities-7, fusion energy facility-1, nuclear development facilities-3, physical research facilities-4, safeguards facility-1, and solar facilities-2); and Production, Testing, and Fabrication Facilities (nuclear materials production facilities-5, weapon testing and fabrication complex-8). Three appendices list DOE field and project offices; DOE field facilities by state or territory, names, addresses,more » and telephone numbers; DOE R and D field facilities by type, contractor names, and names of directors. (MCW)« less
Recent "Ground Testing" Experiences in the National Full-Scale Aerodynamics Complex
NASA Technical Reports Server (NTRS)
Zell, Peter; Stich, Phil; Sverdrup, Jacobs; George, M. W. (Technical Monitor)
2002-01-01
The large test sections of the National Full-scale Aerodynamics Complex (NFAC) wind tunnels provide ideal controlled wind environments to test ground-based objects and vehicles. Though this facility was designed and provisioned primarily for aeronautical testing requirements, several experiments have been designed to utilize existing model mount structures to support "non-flying" systems. This presentation will discuss some of the ground-based testing capabilities of the facility and provide examples of groundbased tests conducted in the facility to date. It will also address some future work envisioned and solicit input from the SATA membership on ways to improve the service that NASA makes available to customers.
NASA Astrophysics Data System (ADS)
Seurig, R.; Burfeindt, J.; Castegini, R.; Griethe, W.; Hofmann, P.
2002-01-01
On March 03, 2001, the PKE-Nefedov plasma experiment was successfully put into operation on board ISS. This complex plasma experiment is the predecessor for the semi-autonomous multi-user facility IMPF (International Microgravity Plasma Facility) to be flown in 2006 with an expected operational lifetime of 10 years. IMPF is envisioned to be an international research facility for investigators in the field of multi-component plasmas containing ions, electrons, and charged microparticles. This research filed is often referred to as "complex plasmas". The actual location of IMPF on ISS is not decided yet; potential infrastructure under consideration are EXPRESS Rack, Standard Interface Rack SIR, European Drawer Rack EDR, or a to be designed custom rack infrastructure on the Russian Segment. The actual development status of the DLR funded Pre-phase B Study for IMPF will be presented. For this phase, IMPF was assumed to be integrated in an EXPRESS Rack requiring four middeck lockers with two 4-PU ISIS drawers for accommodation. Technical and operational challenges, like a 240 Mbytes/sec continuous experimental data stream for 60 minutes, will be addressed. The project was funded by the German Space Agency (DLR) and was performed in close cooperation with scientists from the Max-Planck-Institute for Extraterrestical Physics in Munich, Germany.
High Intensity Proton Accelerator Project in Japan (J-PARC).
Tanaka, Shun-ichi
2005-01-01
The High Intensity Proton Accelerator Project, named as J-PARC, was started on 1 April 2001 at Tokai-site of JAERI. The accelerator complex of J-PARC consists of three accelerators: 400 MeV Linac, 3 GeV rapid cycle synchrotron and 50 GeV synchrotron; and four major experimental facilities: Material and Life Science Facility, Nuclear and Particle Physics Facility, Nuclear Transmutation Experiment Facility and Neutrino Facility. The outline of the J-PARC is presented with the current status of construction.
Juno at the Vertical Integration Facility
2011-08-03
At Space Launch Complex 41, the Juno spacecraft, enclosed in an Atlas payload fairing, was transferred into the Vertical Integration Facility where it was positioned on top of the Atlas rocket stacked inside.
Library Facility Siting and Location Handbook. The Greenwood Library Management Collection.
ERIC Educational Resources Information Center
Koontz, Christine M.
This handbook is a guide to the complex process of library facility siting and location. It includes relevant research and professionals' siting experiences, as well as actual case studies of closures, openings, mergers, and relocations of library facilities. While the bulk of the volume provides practical information, the work also presents an…
Help for Charters in Race for Space
ERIC Educational Resources Information Center
Robelen, Erik W.
2008-01-01
The world of charter school facilities is sometimes strange. Many charter operators have had to show considerable creativity and resourcefulness in finding a place to educate their students, whether it's a former K-Mart or car dealership, a church facility, or space in an office complex. Obtaining and paying for adequate facilities are often big…
Smith, Richard; Mozzer, Michael; Albanese, Joseph; Paturas, James; Gold, Julia
2017-06-01
Elderly populations are disproportionately affected by disasters. In part, this is true because for many older adults, special assistance is needed to mitigate the consequences of disasters on their health and wellbeing. In addition, many older adults may reside in diverse living complexes such as long-term care facilities, assisted living facilities and independent-living senior housing complexes. Planning for each type of facility is different and the unique features of these facilities must be considered to develop readiness to deal with disasters. Based on this, the Rhode Island Department of Health established the Senior Resiliency Project to bolster the level of resiliency for the types of living facilities housing older adults. The project involves performing onsite assessments of energy resources, developing site-specific sheltering-inplace and energy resiliency plans, and educating and training facility employees and residents on these plans and steps they can take to be better prepared. Based on the feasibility of conducting these activities within a variety of facilities housing older adults, the project is segmented into three phases. This paper describes survey findings, outcomes of interventions, challenges and recommendations for bridging gaps observed in phases 1 and 2 of the project.
Water facilities in retrospect and prospect: An illuminating tool for vehicle design
NASA Technical Reports Server (NTRS)
Erickson, G. E.; Peak, D. J.; Delfrate, J.; Skow, A. M.; Malcolm, G. N.
1986-01-01
Water facilities play a fundamental role in the design of air, ground, and marine vehicles by providing a qualitative, and sometimes quantitative, description of complex flow phenomena. Water tunnels, channels, and tow tanks used as flow-diagnostic tools have experienced a renaissance in recent years in response to the increased complexity of designs suitable for advanced technology vehicles. These vehicles are frequently characterized by large regions of steady and unsteady three-dimensional flow separation and ensuing vortical flows. The visualization and interpretation of the complicated fluid motions about isolated vehicle components and complete configurations in a time and cost effective manner in hydrodynamic test facilities is a key element in the development of flow control concepts, and, hence, improved vehicle designs. A historical perspective of the role of water facilities in the vehicle design process is presented. The application of water facilities to specific aerodynamic and hydrodynamic flow problems is discussed, and the strengths and limitations of these important experimental tools are emphasized.
The United States Naval Air Facility at Atsugi, Japan (NAF Atsugi) is located in the Kanto Plain area on the island of Honshu, Japan. Directly to the south of the facility, in the Tade River Valley, was the Shinkampo Incinerator Complex (SIC). The Incinerator is no longer in op...
SSC Test Operations Contract Overview
NASA Technical Reports Server (NTRS)
Kleim, Kerry D.
2010-01-01
This slide presentation reviews the Test Operations Contract at the Stennis Space Center (SSC). There are views of the test stands layouts, and closer views of the test stands. There are descriptions of the test stand capabilities, some of the other test complexes, the Cryogenic propellant storage facility, the High Pressure Industrial Water (HPIW) facility, and Fluid Component Processing Facility (FCPF).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eder, D C; Anderson, R W; Bailey, D S
2009-10-05
The generation of neutron/gamma radiation, electromagnetic pulses (EMP), debris and shrapnel at mega-Joule class laser facilities (NIF and LMJ) impacts experiments conducted at these facilities. The complex 3D numerical codes used to assess these impacts range from an established code that required minor modifications (MCNP - calculates neutron and gamma radiation levels in complex geometries), through a code that required significant modifications to treat new phenomena (EMSolve - calculates EMP from electrons escaping from laser targets), to a new code, ALE-AMR, that is being developed through a joint collaboration between LLNL, CEA, and UC (UCSD, UCLA, and LBL) for debrismore » and shrapnel modelling.« less
Solid waste management complex site development plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greager, T.M.
1994-09-30
The main purpose of this Solid Waste Management Complex Site Development Plan is to optimize the location of future solid waste treatment and storage facilities and the infrastructure required to support them. An overall site plan is recommended. Further, a series of layouts are included that depict site conditions as facilities are constructed at the SWMC site. In this respect the report serves not only as the siting basis for future projects, but provides siting guidance for Project W-112, as well. The plan is intended to function as a template for expected growth of the site over the next 30more » years so that future facilities and infrastructure will be properly integrated.« less
Planning for the scientific use of the international Space Station complex
NASA Technical Reports Server (NTRS)
Halpern, R. E.
1988-01-01
Plans for the development of an international Space Station complex in cooperation with Japan, Canada, and the European Space Agency are reviewed. The discussion covers the planned uses of the Space Station, the principal research facilities, allocation of the resources available to the research facilities, and tactical and strategic planning related to the Space Station project. Particular attention is given to problems related to microgravity sciences and approaches to the solutions of these problems.
2018-05-02
The 2017 class of astronaut candidates are at United Launch Alliance's Space Launch Complex 41 at Cape Canaveral Air Force Station (CCAFS) in Florida for a familiarization tour. They also toured facilities at Kennedy Space Center, including the Neil Armstrong Operations and Checkout Building high bay; the Launch Control Center, Launch Complex 39B, the Vehicle Assembly Building, Boeing's Commercial Crew and Cargo Facility, and SpaceX's Launch Complex 39A. The candidates will spend about two years getting to know the space station systems and learning how to spacewalk, speak Russian, control the International Space Station's robotic arm and fly T-38s, before they're eligible to be assigned to a mission.
ERIC Educational Resources Information Center
Ellis, Jim
1977-01-01
The Parks and Recreation Department of Montgomery, Alabama, has developed a five-field softball complex as part of a growing community park with facilities for camping, golf, aquatics, tennis, and picnicking. (MJB)
McKinney, Selina H; Corazzini, Kirsten; Anderson, Ruth A; Sloane, Richard; Castle, Nicholas G
2016-01-01
Nursing homes are becoming increasingly complex clinical environments because of rising resident acuity and expansion of postacute services within a context of historically poor quality performance. Discrete quality markers have been linked to director of nursing (DON) leadership behaviors. However, the impact of DON leadership across all measured areas of DON jurisdiction has not been tested using comprehensive domains of quality deficiencies. The aim of this study was to examine the effects of DON leadership style including behaviors that facilitate the exchange of information between diverse people on care quality domains through the lens of complexity science. Three thousand six hundred nine DONs completed leadership and intent-to-quit surveys. Quality markers that were deemed DON sensitive included all facility survey deficiencies in the domains of resident behaviors/facility practices, quality of life, nursing services, and quality of care. Logistic regression procedures estimated associations between variables. The odds of deficiencies for all DON sensitive survey domains were lower in facilities where DONs practiced complexity leadership including more staff input and shared decisional authority. DON quit intentions were aligned with higher odds of facility deficiencies across all domains. Results supported the hypotheses that DONs using complexity leadership approaches by interacting more freely with staff, discussing resident issues, and sharing decision making produced better care outcomes from every DON sensitive metric assessed by Centers for Medicare and Medicaid Services. The mechanism linking poor quality with high DON quit intentions is an area for future research. Encouraging DON use of complexity leadership approaches has the potential to improve a broad swath of quality outcomes.
NASA Technical Reports Server (NTRS)
Amos, Jeff; Beeman, Randy; Brown, Susan; Calhoun, John; Hill, John; Howorth, Lark; Mcfaden, Clay; Nguyen, Paul; Reid, Philip; Rexrode, Stuart
1989-01-01
A basic procedure for robotically constructing a manned Mars base is outlined. The research procedure was divided into three areas: environment, robotics, and habitat. The base as designed will consist of these components: two power plants, communication facilities, a habitat complex, and a hangar, a garage, recreation and manufacturing facilities. The power plants will be self-contained nuclear fission reactors placed approx. 1 km from the base for safety considerations. The base communication system will use a combination of orbiting satellites and surface relay stations. This system is necessary for robotic contact with Phobos and any future communication requirements. The habitat complex will consist of six self-contained modules: core, biosphere, science, living quarters, galley/storage, and a sick bay which will be brought from Phobos. The complex will be set into an excavated hole and covered with approximately 0.5 m of sandbags to provide radiation protection for the astronauts. The recreation, hangar, garage, and manufacturing facilities will each be transformed from the four one-way landers. The complete complex will be built by autonomous, artificially intelligent robots. Robots incorporated into the design are as follows: Large Modular Construction Robots with detachable arms capable of large scale construction activities; Small Maneuverable Robotic Servicers capable of performing delicate tasks normally requiring a suited astronaut; and a trailer vehicle with modular type attachments to complete specific tasks; and finally, Mobile Autonomous Rechargeable Transporters capable of transferring air and water from the manufacturing facility to the habitat complex.
NASA Astrophysics Data System (ADS)
Amos, Jeff; Beeman, Randy; Brown, Susan; Calhoun, John; Hill, John; Howorth, Lark; McFaden, Clay; Nguyen, Paul; Reid, Philip; Rexrode, Stuart
1989-05-01
A basic procedure for robotically constructing a manned Mars base is outlined. The research procedure was divided into three areas: environment, robotics, and habitat. The base as designed will consist of these components: two power plants, communication facilities, a habitat complex, and a hanger, a garage, recreation and manufacturing facilities. The power plants will be self-contained nuclear fission reactors placed approx. 1 km from the base for safety considerations. The base communication system will use a combination of orbiting satellites and surface relay stations. This system is necessary for robotic contact with Phobos and any future communication requirements. The habitat complex will consist of six self-contained modules: core, biosphere, science, living quarters, galley/storage, and a sick bay which will be brought from Phobos. The complex will be set into an excavated hole and covered with approximately 0.5 m of sandbags to provide radiation protection for the astronauts. The recreation, hangar, garage, and manufacturing facilities will each be transformed from the four one-way landers. The complete complex will be built by autonomous, artificially intelligent robots. Robots incorporated into the design are as follows: Large Modular Construction Robots with detachable arms capable of large scale construction activities; Small Maneuverable Robotic Servicers capable of performing delicate tasks normally requiring a suited astronaut; and a trailer vehicle with modular type attachments to complete specific tasks; and finally, Mobile Autonomous Rechargeable Transporters capable of transferring air and water from the manufacturing facility to the habitat complex.
2012-06-16
Engineers to help identify and develop energy and water conservation projects in the facilities for which they are responsible. DISCLAIMER: The...and water throughout their facility. To identify energy and water conservation measures (ECMs), an energy manager would generally start by performing...an Energy and Water Conservation Assessment, essentially a facility-level evaluation of the en- ergy and water consuming equipment and systems that
Users Guide for the National Transonic Facility Research Data System
NASA Technical Reports Server (NTRS)
Foster, Jean M.; Adcock, Jerry B.
1996-01-01
The National Transonic Facility is a complex cryogenic wind tunnel facility. This report briefly describes the facility, the data systems, and the instrumentation used to acquire research data. The computational methods and equations are discussed in detail and many references are listed for those who need additional technical information. This report is intended to be a user's guide, not a programmer's guide; therefore, the data reduction code itself is not documented. The purpose of this report is to assist personnel involved in conducting a test in the National Transonic Facility.
Decision support tool to assess importance of transportation facilities.
DOT National Transportation Integrated Search
2008-01-01
Assessing the importance of transportation facilities is an increasingly growing topic of interest to federal and state transportation agencies. This work proposes an optimization based model that uses concepts and techniques of complex networks scie...
Predictive Analytics to Support Real-Time Management in Pathology Facilities.
Lessard, Lysanne; Michalowski, Wojtek; Chen Li, Wei; Amyot, Daniel; Halwani, Fawaz; Banerjee, Diponkar
2016-01-01
Predictive analytics can provide valuable support to the effective management of pathology facilities. The introduction of new tests and technologies in anatomical pathology will increase the volume of specimens to be processed, as well as the complexity of pathology processes. In order for predictive analytics to address managerial challenges associated with the volume and complexity increases, it is important to pinpoint the areas where pathology managers would most benefit from predictive capabilities. We illustrate common issues in managing pathology facilities with an analysis of the surgical specimen process at the Department of Pathology and Laboratory Medicine (DPLM) at The Ottawa Hospital, which processes all surgical specimens for the Eastern Ontario Regional Laboratory Association. We then show how predictive analytics could be used to support management. Our proposed approach can be generalized beyond the DPLM, contributing to a more effective management of pathology facilities and in turn to quicker clinical diagnoses.
Predictive Analytics to Support Real-Time Management in Pathology Facilities
Lessard, Lysanne; Michalowski, Wojtek; Chen Li, Wei; Amyot, Daniel; Halwani, Fawaz; Banerjee, Diponkar
2016-01-01
Predictive analytics can provide valuable support to the effective management of pathology facilities. The introduction of new tests and technologies in anatomical pathology will increase the volume of specimens to be processed, as well as the complexity of pathology processes. In order for predictive analytics to address managerial challenges associated with the volume and complexity increases, it is important to pinpoint the areas where pathology managers would most benefit from predictive capabilities. We illustrate common issues in managing pathology facilities with an analysis of the surgical specimen process at the Department of Pathology and Laboratory Medicine (DPLM) at The Ottawa Hospital, which processes all surgical specimens for the Eastern Ontario Regional Laboratory Association. We then show how predictive analytics could be used to support management. Our proposed approach can be generalized beyond the DPLM, contributing to a more effective management of pathology facilities and in turn to quicker clinical diagnoses. PMID:28269873
Functional safety for the Advanced Technology Solar Telescope
NASA Astrophysics Data System (ADS)
Bulau, Scott; Williams, Timothy R.
2012-09-01
Since inception, the Advanced Technology Solar Telescope (ATST) has planned to implement a facility-wide functional safety system to protect personnel from harm and prevent damage to the facility or environment. The ATST will deploy an integrated safety-related control system (SRCS) to achieve functional safety throughout the facility rather than relying on individual facility subsystems to provide safety functions on an ad hoc basis. The Global Interlock System (GIS) is an independent, distributed, facility-wide, safety-related control system, comprised of commercial off-the-shelf (COTS) programmable controllers that monitor, evaluate, and control hazardous energy and conditions throughout the facility that arise during operation and maintenance. The GIS has been designed to utilize recent advances in technology for functional safety plus revised national and international standards that allow for a distributed architecture using programmable controllers over a local area network instead of traditional hard-wired safety functions, while providing an equivalent or even greater level of safety. Programmable controllers provide an ideal platform for controlling the often complex interrelationships between subsystems in a modern astronomical facility, such as the ATST. A large, complex hard-wired relay control system is no longer needed. This type of system also offers greater flexibility during development and integration in addition to providing for expanded capability into the future. The GIS features fault detection, self-diagnostics, and redundant communications that will lead to decreased maintenance time and increased availability of the facility.
Safe, Cost Effective Management of Inactive Facilities at the Savannah River Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Austin, W. E.; Yannitell, D. M.; Freeman, D. W.
The Savannah River Site is part of the U.S. Department of Energy complex. It was constructed during the early 1950s to produce basic materials (such as plutonium-239 and tritium) used in the production of nuclear weapons. The 310-square-mile site is located in South Carolina, about 12 miles south of Aiken, South Carolina, and about 15 miles southeast of Augusta, Georgia. Savannah River Site (SRS) has approximately 200 facilities identified as inactive. These facilities range in size and complexity from large nuclear reactors to small storage buildings. These facilities are located throughout the site including three reactor areas, the heavy watermore » plant area, the manufacturing area, and other research and support areas. Unlike DOE Closure Sites such as Hanford and Rocky Flats, SRS is a Project Completion Site with continuing missions. As facilities complete their defined mission, they are shutdown and transferred from operations to the facility disposition program. At the SRS, Facilities Decontamination and Decommissioning (FDD) personnel manage the disposition phase of a inactive facility's life cycle in a manner that minimizes life cycle cost without compromising (1) the health or safety of workers and the public or (2) the quality of the environment. The disposition phase begins upon completion of operations shutdown and extends through establishing the final end-state. FDD has developed innovative programs to manage their responsibilities within a constrained budget.« less
Adaptive management: a paradigm for remediation of public facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janecky, David R; Whicker, Jeffrey J; Doerr, Ted B
2009-01-01
Public facility restoration planning traditionally focused on response to natural disasters and hazardous materials accidental releases. These plans now need to integrate response to terrorist actions. Therefore, plans must address a wide range of potential vulnerabilities. Similar types of broad remediation planning are needed for restoration of waste and hazardous material handling areas and facilities. There are strong similarities in damage results and remediation activities between unintentional and terrorist actions; however, the uncertainties associated with terrorist actions result in a re-evaluation of approaches to planning. Restoration of public facilities following a release of a hazardous material is inherently far moremore » complex than in confined industrial settings and has many unique technical, economic, social, and political challenges. Therefore, they arguably involve a superset of drivers, concerns and public agencies compared to other restoration efforts. This superset of conditions increases complexity of interactions, reduces our knowledge of the initial conditions, and even condenses the timeline for restoration response. Therefore, evaluations of alternative restoration management approaches developed for responding to terrorist actions provide useful knowledge for large, complex waste management projects. Whereas present planning documents have substantial linearity in their organization, the 'adaptive management' paradigm provides a constructive parallel operations paradigm for restoration of facilities that anticipates and plans for uncertainty, multiple/simUltaneous public agency actions, and stakeholder participation. Adaptive management grew out of the need to manage and restore natural resources in highly complex and changing environments with limited knowledge about causal relationships and responses to restoration actions. Similarities between natural resource management and restoration of a facility and surrounding area(s) after a disruptive event suggest numerous advantages over preset linearly-structured plans by incorporating the flexibility and overlap of processes inherent in effective facility restoration. We discuss three restoration case studies (e.g., the Hart Senate Office Building anthrax restoration, Rocky Flats actinide remediation, and hurricane destruction restoration), that implement aspects of adaptive management but not a formal approach. We propose that more formal adoption of adaptive management principles could be a basis for more flexible standards to improve site-specific remediation plans under conditions of high uncertainty.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jing Ma; Rudolf Addink; Sehun Yun
2009-10-01
In this study, 11 2,3,7,8-substituted PBDD/Fs and 10 polybrominated diphenyl ether (PBDE) congeners were determined in electronic shredder waste, workshop-floor dust, soil, and leaves (of plants on the grounds of the facility) from a large-scale electronic wastes (e-waste) recycling facility and in surface soil from a chemical-industrial complex (comprising a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant) as well as agricultural areas in eastern China. Total PBDD/F concentrations in environmental samples were in the range of 113-818 pg/g dry wt (dw) for leaves, 392-18,500 pg/g dw for electronic shredder residues, 716-80,0000 pg/g dw for soil samples, andmore » 89,600-14,3000 pg/g dw for workshop-floor dust from the e-waste recycling facility and in a range from nondetect (ND) to 427 pg/g dw in soil from the chemical-industrial complex. The highest mean concentrations of total PBDD/Fs were found in soil samples and workshop-floor dust from the e-waste recycling facility. The dioxin-like toxic equivalent (measured as TEQ) concentrations of PBDD/Fs were greater than the TEQs of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) reported in our previous study for the same set of samples. The concentrations of PBDFs were several orders of magnitude higher than the concentrations of PBDDs in samples from the e-waste facility or from soil from the chemical-industrial complex. A significant correlation was found between the concentrations of {Sigma}PBDD/Fs and {Sigma}PBDEs (r = 0.769, p < 0.01) and between SPBDD/Fs and the previously reported SPCDD/F concentrations (r = 0.805, p < 0.01). The estimated daily human intakes of TEQs contributed by PBDD/Fs via soil/dust ingestion and dermal exposures in e-waste recycling facilities were higher than the intakes of TEQs contributed by PCDD/Fs, calculated in our previous study. 45 refs., 2 figs., 2 tabs.« less
Extreme Environments Test Capabilities at NASA GRC for Parker Hannifin Visit
NASA Technical Reports Server (NTRS)
Arnett, Lori
2016-01-01
The presentation includes general description on the following test facilities: Fuel Cell Testing Lab, Structural Dynamics Lab, Thermal Vacuum Test Facilities - including a description of the proposed Kinetic High Altitude Simulator concept, EMI Test Lab, and the Creek Road Cryogenic Complex - specifically the Small Multi-purpose Research Facility (SMiRF) and the Cryogenics Components Lab 7 (CCL-7).
Credit BG. Northeast and northwest facades of Building 4496 (Security ...
Credit BG. Northeast and northwest facades of Building 4496 (Security Facility) as seen when looking south (178°) from entrance to secured area. The Control Tower (Building 4500) appears in background. The Security Facility is part of the secured Building 4505 complex - Edwards Air Force Base, North Base, Security Facility, Northeast of A Street, Boron, Kern County, CA
A user's guide to the Langley 16-foot transonic tunnel complex. Revision 1
NASA Technical Reports Server (NTRS)
1990-01-01
The operational characteristics and equipment associated with the Langley 16-foot transonic tunnel complex which is located in buildings 1146 and 1234 at the Langley Research Center are described in detail. This complex consists of the 16-foot transonic wind tunnel, the static test facility, and the 16- by 24-inch water tunnel research facilities. The 16-foot transonic tunnel is a single-return atmospheric wind tunnel with a 15.5 foot diameter test section and a Mach number capability from 0.20 to 1.30. The emphasis for research conducted in this research complex is on the integration of the propulsion system into advanced aircraft concepts. In the past, the primary focus has been on the integration of nozzles and empennage into the afterbody of fighter aircraft. During the last several years this experimental research has been expanded to include developing the fundamental data base necessary to verify new theoretical concepts, inlet integration into fighter aircraft, nozzle integration for supersonic and hypersonic transports, nacelle/pylon/wing integration for subsonic transport configurations, and the study of vortical flows (in the 16- by 24-inch water tunnel). The purpose here is to provide a comprehensive description of the operational characteristics of the research facilities of the 16-foot transonic tunnel complex and their associated systems and equipments.
Wen, Wei; Wu, Jin-Ming; Cao, Min-Hua
2014-11-07
A facile strategy is developed for mass fabrication of porous Co3O4 networks via the thermal decomposition of an amorphous cobalt-based complex. At a low mass loading, the achieved porous Co3O4 network exhibits excellent performance for lithium storage, which has a high capacity of 587 mA h g(-1) after 500 cycles at a current density of 1000 mA g(-1).
Aerial view of a new site at KSC's Visitor Complex
NASA Technical Reports Server (NTRS)
1999-01-01
Seen from above, construction of a new site at KSC's Visitor Complex, The Early Space Exploration and Conference Center, is nearly finished. It is expected to be open to the public by mid- November. The space exploration facility will feature Mercury and Gemini capsules and the recently relocated Mission Control Center. Attached to it is a state-of-the-art conference center. Built by Delaware North Park Services, the facility is located between the Rock Garden and the Center for Space Education.
21. Photocopy of engineering drawing. COMPLEX 17A AND B: SERVICE ...
21. Photocopy of engineering drawing. COMPLEX 17A AND B: SERVICE STRUCTURE SPACECRAFT AREA-MECHANICAL, ELEVATIONS, SHEET 4, DECEMBER 1965. - Cape Canaveral Air Station, Launch Complex 17, Facility 28417, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL
30 CFR 285.650 - When may I begin conducting activities under my GAP?
Code of Federal Regulations, 2010 CFR
2010-07-01
... OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Plans and... involve a project easement or the construction of facilities on the OCS that MMS has deemed to be complex...
CONSTRUCTION PROGRESS PHOTO OF REMOTE ANALYTICAL FACILITY (CPP627). INL PHOTO ...
CONSTRUCTION PROGRESS PHOTO OF REMOTE ANALYTICAL FACILITY (CPP-627). INL PHOTO NUMBER NRTS-54-12124. Unknown Photographer, 9/21/1954 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
DETAILS OF REMOTE ANALYTICAL FACILITY (CPP627). INL DRAWING NUMBER 200062700098105071. ...
DETAILS OF REMOTE ANALYTICAL FACILITY (CPP-627). INL DRAWING NUMBER 200-0627-00-098-105071. ALTERNATE ID NUMBER 4272-14-108. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
Ma, Jing; Addink, Rudolf; Yun, Sehun; Cheng, Jinping; Wang, Wenhua; Kannan, Kurunthachalam
2009-10-01
The formation and release of polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs) from the incineration of electronic wastes (e-waste) that contain brominated flame retardants (BFRs) are a concern. However, studies on the determination of PBDD/Fs in environmental samples collected from e-waste recycling facilities are scarce. In this study, 11 2,3,7,8-substituted PBDD/Fs and 10 polybrominated diphenyl ether (PBDE) congeners were determined in electronic shredder waste, workshop-floor dust soil, and leaves (of plants on the grounds of the facility) from a large-scale e-waste recycling facility and in surface soil from a chemical-industrial complex (comprising a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant) as well as agricultural areas in eastern China. Total PBDD/F concentrations in environmental samples were in the range of 113-818 pg/g dry wt (dw) for leaves, 392-18500 pg/g dw for electronic shredder residues, 716-800000 pg/g dw for soil samples, and 89600-pg/g dw for workshop-floor dust from the e-waste recycling facility and in a range from nondetect (ND) to 427 pg/g dw in soil from the chemical-industrial complex. The highest mean concentrations of total PBDD/Fs were found in soil samples and workshop-floor dust from the e-waste recycling facility. The dioxin-like toxic equivalent (measured as TEQ) concentrations of PBDD/Fs were greater than the TEQs of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) reported in our previous study for the same set of samples. The concentrations of PBDFs were several orders of magnitude higher than the concentrations of PBDDs in samples from the e-waste facility or from soil from the chemical-industrial complex. A significant correlation was found between the concentrations of sigmaPBDD/Fs and sigmaPBDEs (r = 0.769, p < 0.01) and between sigmaPBDD/Fs and the previously reported sigmaPCDD/F concentrations (r = 0.805, p < 0.01). The estimated daily human intakes of TEQs contributed by PBDD/Fs via soil/dust ingestion and dermal exposures in e-waste recycling facilities were higher than the intakes of TEQs contributed by PCDD/ Fs, calculated in our previous study.
NASA Technical Reports Server (NTRS)
Hughes, Mark S.; Hebert, Phillip W.; Davis, Dawn M.; Jensen, Scott L.; Abell, Frederick K., Jr.
2004-01-01
The John C. Stennis Space Center (SSC) provides test operations services to a variety of customers, including NASA, DoD, and commercial enterprises for the development of current and next-generation rocket propulsion systems. Many of these testing services are provided in the E-Complex test facilities composed of three active test stands (E1, E2, & E3) and 7 total test positions. Each test position is outfitted with unique sets of data acquisition and controls hardware and software that record both facility and test article data and enable safe operation of the test facility. This paper addresses each system in more detail including efforts to upgrade hardware and software.
Life-Cycle Assessments of Selected NASA Ground-Based Test Facilities
NASA Technical Reports Server (NTRS)
Sydnor, George Honeycutt
2012-01-01
In the past two years, two separate facility-specific life cycle assessments (LCAs) have been performed as summer student projects. The first project focused on 13 facilities managed by NASA s Aeronautics Test Program (ATP), an organization responsible for large, high-energy ground test facilities that accomplish the nation s most advanced aerospace research. A facility inventory was created for each facility, and the operational-phase carbon footprint and environmental impact were calculated. The largest impacts stemmed from electricity and natural gas used directly at the facility and to generate support processes such as compressed air and steam. However, in specialized facilities that use unique inputs like R-134a, R-14, jet fuels, or nitrogen gas, these sometimes had a considerable effect on the facility s overall environmental impact. The second LCA project was conducted on the NASA Ames Arc Jet Complex and also involved creating a facility inventory and calculating the carbon footprint and environmental impact. In addition, operational alternatives were analyzed for their effectiveness at reducing impact. Overall, the Arc Jet Complex impact is dominated by the natural-gas fired boiler producing steam on-site, but alternatives were provided that could reduce the impact of the boiler operation, some of which are already being implemented. The data and results provided by these LCA projects are beneficial to both the individual facilities and NASA as a whole; the results have already been used in a proposal to reduce carbon footprint at Ames Research Center. To help future life cycle projects, several lessons learned have been recommended as simple and effective infrastructure improvements to NASA, including better utility metering and data recording and standardization of modeling choices and methods. These studies also increased sensitivity to and appreciation for quantifying the impact of NASA s activities.
19. Photocopy of engineering drawing. COMPLEX 17A AND B: SERVICE ...
19. Photocopy of engineering drawing. COMPLEX 17A AND B: SERVICE STRUCTURE SPACECRAFT AREA A/C-MECHANICAL, ELEVATIONS, SHEET 3, DECEMBER 1965. - Cape Canaveral Air Station, Launch Complex 17, Facility 28416, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL
22. Photocopy of engineering drawing. MODIFICATION TO LAUNCH COMPLEX 17 ...
22. Photocopy of engineering drawing. MODIFICATION TO LAUNCH COMPLEX 17 MOBILE SERVICE TOWER 'A'-MECHANICAL, PROPULSION DRIVE TRUCKS AND KEY PLAN, MARCH 1967. - Cape Canaveral Air Station, Launch Complex 17, Facility 28416, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL
DOE Office of Scientific and Technical Information (OSTI.GOV)
McHugh, M.G.; Coleman, G.H.
2006-07-01
The contents of a safety basis (SB) are based upon the facility's purpose of operation, radiological inventory, and safety systems in place to mitigate any releases to the employees, general public and environment. Specifically, the radiological inventory is used for facility categorizations (e.g., Category 2, Category 3) and determining the material at risk used in the associated nuclear safety analysis calculations. Radiological inventory discrepancies, referred to as 'mismatches', have the potential to adversely impact the SB. This paper summarizes a process developed to: 1) identify these 'mismatches' based on a facility's radiological inventory, 2) categorize these 'mismatches' according to availablemore » data, and then 3) determine if these 'mismatches' yield either trivial or significant cumulative impacts on credited assumptions associated with a particular facility's SB. The two facilities evaluated for 'mismatches' were the K-1065 Complex and the Above Grade Storage Facility (AGSF). The randomly selected containers from each facility were obtained along with screening the radiological inventories found in the Waste Information Tracking System (WITS) database and the Request for Disposal (RFD) forms. Ideally, the radiological inventory, which is comprised of isotopic data for each container, is maintained in the WITS database. However, the RFD is the official repository record for isotopic data for each container. Historically, neither WITS nor the RFDs were required to contain isotopic data. Based on the WITS and RFD data, the containers were then categorized into five (5) separate conditions: Condition 1) Isotopic data in the RFD matches the isotopic data in WITS; Condition 2) Isotopic data in the RFD does not match the isotopic data in WITS; Condition 3) Isotopic data are in the RFD, but are not in WITS; Condition 4) No isotopic data in the RFD, but isotopic data are found in WITS; Condition 5) No isotopic data found in either the RFD or WITS. The results show trivial cumulative impacts (i.e., no inherent data biases) on credited assumptions associated with the K-1065 Complex and AGSF SBs. Recent random comparisons of WITS and RFDs continue to verify and validate that the administrative and procedural controls are adequate to ensure compliance with the SB for these facilities, thus providing a useful model for evaluating other facilities located at the Department of Energy's Oak Ridge Reservation (DOE-ORR). (authors)« less
Kelley Hot Spring Geothermal Project: Kelly Hot Spring Agricultural Center conceptual design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Longyear, A.B.
1980-06-01
The proposed core activity in the Kelly Hot Spring Agricultural Center is a nominal 1200 sow swine raising complex. The swine raising is to be a totally confined operation for producing premium pork in controlled environment facilities that utilize geothermal energy. The complex will include a feedmill for producing the various feed formulae required for the animals from breeding through gestation, farrowing, nursery, growing and finishing. The market animals are shipped live by truck to slaughter in Modesto, California. A complete waste management facility will include manure collection from all raising areas, transport via a water flush sysem to methanemore » (biogas) generators, manure separation, settling ponds and disposition of the surplus agricultural quality water. The design is based upon the best commercial practices in confined swine raising in the US today. The most unique feature of the facility is the utilization of geothermal hot water for space heating and process energy throughout the complex.« less
Shen, Ruwei; Chen, Tieqiao; Zhao, Yalei; Qiu, Renhua; Zhou, Yongbo; Yin, Shuangfeng; Wang, Xiangbo; Goto, Midori; Han, Li-Biao
2011-10-26
A facile, highly stereo- and regioselective hydrometalation of alkynes generating alkenylmetal complex is disclosed for the first time from a reaction of alkyne, carboxylic acid, and a zerovalent group 10 transition metal complex M(PEt(3))(4) (M = Ni, Pd, Pt). A mechanistic study showed that the hydrometalation does not proceed via the reaction of alkyne with a hydridometal generated by the protonation of a carboxylic acid with Pt(PEt(3))(4), but proceeds via a reaction of an alkyne coordinate metal complex with the acid. This finding clarifies the long proposed reaction mechanism that operates via the generation of an alkenylpalladium intermediate and subsequent transformation of this complex in a variety of reactions catalyzed by a combination of Brϕnsted acid and Pd(0) complex. This finding also leads to the disclosure of an unprecedented reduction of alkynes with formic acid that can selectively produce cis-, trans-alkenes and alkanes by slightly tuning the conditions.
End State Condition Report for Materials and Fuels Complex Facilities MFC-799, 799A, and 770C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gary Mecham
2010-10-01
The Materials and Fuels Complex (MFC) facilities MFC-799, “Sodium Processing Facility” (a single building consisting of two areas: the Sodium Process Area and the Carbonate Process Area); MFC-799A, “Caustic Storage Area;” and MFC-770C, “Nuclear Calibration Laboratory,” have been declared excess to future Department of Energy (DOE) Office of Nuclear Energy(NE) mission requirements. Transfer of these facilities from NE to the DOE Office of Environmental Management (EM), and an associated schedule for doing so, have been agreed upon by the two offices. This report documents the completion of pre-transfer stabilization actions, as identified in DOE Guide 430.1-5, “Transition Implementation Guide,” formore » buildings MFC-799/799A and 770C, and indicates that these facilities are ready for transfer from NE to EM. The facilities are in a known, safe condition and information is provided to support efficient decommissioning and demolition (D&D) planning while minimizing the possibility of encountering unforeseen circumstances during the D&D activities.« less
Sluggett, Janet K; Ilomäki, Jenni; Seaman, Karla L; Corlis, Megan; Bell, J Simon
2017-02-01
Eight percent of Australians aged 65 years and over receive residential aged care each year. Residents are increasingly older, frailer and have complex care needs on entry to residential aged care. Up to 63% of Australian residents of aged care facilities take nine or more medications regularly. Together, these factors place residents at high risk of adverse drug events. This paper reviews medication-related policies, practices and research in Australian residential aged care. Complex processes underpin prescribing, supply and administration of medications in aged care facilities. A broad range of policies and resources are available to assist health professionals, aged care facilities and residents to optimise medication management. These include national guiding principles, a standardised national medication chart, clinical medication reviews and facility accreditation standards. Recent Australian interventions have improved medication use in residential aged care facilities. Generating evidence for prescribing and deprescribing that is specific to residential aged care, health workforce reform, medication-related quality indicators and inter-professional education in aged care are important steps toward optimising medication use in this setting. Copyright © 2016 Elsevier Ltd. All rights reserved.
VIEW OF FLIGHT CREW SYSTEMS, FLIGHT KITS FACILITY, ROOM NO. ...
VIEW OF FLIGHT CREW SYSTEMS, FLIGHT KITS FACILITY, ROOM NO. 1N12, FACING NORTH - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL
VIEW OF FLIGHT CREW SYSTEMS, FLIGHT KITS FACILITY, ROOM NO. ...
VIEW OF FLIGHT CREW SYSTEMS, FLIGHT KITS FACILITY, ROOM NO. 1N12, FACING SOUTH - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL
MISCELLANEOUS ARCHITECTURAL DETAILS OF REMOTE ANALYTICAL FACILITY (CPP627). INL DRAWING ...
MISCELLANEOUS ARCHITECTURAL DETAILS OF REMOTE ANALYTICAL FACILITY (CPP-627). INL DRAWING NUMBER 200-0627-00-098-105631. ALTERNATE ID NUMBER 4272-814-134. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
CONSTRUCTION PROGRESS PHOTO OF REMOTE ANALYTICAL FACILITY (CPP627). INL PHOTO ...
CONSTRUCTION PROGRESS PHOTO OF REMOTE ANALYTICAL FACILITY (CPP-627). INL PHOTO NUMBER NRTS-54-12573. R.G. Larsen, Photographer, 10/20/1954 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
CONSTRUCTION PROGRESS PHOTO OF REMOTE ANALYTICAL FACILITY (CPP627) SHOWING INITIAL ...
CONSTRUCTION PROGRESS PHOTO OF REMOTE ANALYTICAL FACILITY (CPP-627) SHOWING INITIAL EXCAVATION. INL PHOTO NUMBER NRTS-54-10703. Unknown Photographer, 5/21/1954 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
DETAIL VIEW OF ELECTRONICS TEST AREA, FLIGHT KITS FACILITY, ROOM ...
DETAIL VIEW OF ELECTRONICS TEST AREA, FLIGHT KITS FACILITY, ROOM NO. 1N12, FACING WEST - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL
Designing Communication and Learning Environments.
ERIC Educational Resources Information Center
Gayeski, Diane M., Ed.
Designing and remodeling educational facilities are becoming more complex with options that include computer-based collaboration, classrooms with multimedia podiums, conference centers, and workplaces with desktop communication systems. This book provides a collection of articles that address educational facility design categorized in the…
Ghazzawi, Andrea; Kuziemsky, Craig; O'Sullivan, Tracey
2016-10-01
Family caregivers provide the stroke survivor with social support and continuity during the transition home from a rehabilitation facility. In this exploratory study we examined family caregivers' perceptions and experiences navigating the stroke rehabilitation system. The theories of continuity of care and complex adaptive systems were integrated to examine the transition from a stroke rehabilitation facility to the patient's home. This study provides an understanding of the interacting complexities at the macro and micro levels. A convenient sample of family caregivers (n = 14) who provide care for a stroke survivor were recruited 4-12 weeks following the patient's discharge from a stroke rehabilitation facility in Ontario, Canada. Interviews were conducted with family caregivers to examine their perceptions and experiences navigating the stroke rehabilitation system. Directed and inductive content analysis and the theory of Complex Adaptive Systems were used to interpret the perceptions of family caregivers. Health system policies and procedures at the macro-level determined the types and timing of information being provided to caregivers, and impacted continuity of care and access to supports and services at the micro-level. Supports and services in the community, such as outpatient physiotherapy services, were limited or did not meet the specific needs of the stroke survivors or family caregivers. Relationships with health providers, informational support, and continuity in case management all influence the family caregiving experience and ultimately the quality of care for the stroke survivor, during the transition home from a rehabilitation facility.
Fire hazard analysis for Plutonium Finishing Plant complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
MCKINNIS, D.L.
1999-02-23
A fire hazards analysis (FHA) was performed for the Plutonium Finishing Plant (PFP) Complex at the Department of Energy (DOE) Hanford site. The scope of the FHA focuses on the nuclear facilities/structures in the Complex. The analysis was conducted in accordance with RLID 5480.7, [DOE Directive RLID 5480.7, 1/17/94] and DOE Order 5480.7A, ''Fire Protection'' [DOE Order 5480.7A, 2/17/93] and addresses each of the sixteen principle elements outlined in paragraph 9.a(3) of the Order. The elements are addressed in terms of the fire protection objectives stated in paragraph 4 of DOE 5480.7A. In addition, the FHA also complies with WHC-CM-4-41,more » Fire Protection Program Manual, Section 3.4 [1994] and WHC-SD-GN-FHA-30001, Rev. 0 [WHC, 1994]. Objectives of the FHA are to determine: (1) the fire hazards that expose the PFP facilities, or that are inherent in the building operations, (2) the adequacy of the fire safety features currently located in the PFP Complex, and (3) the degree of compliance of the facility with specific fire safety provisions in DOE orders, related engineering codes, and standards.« less
In-Plant Reuse of Pollution Abated Waters.
1984-08-01
Carbon Treatment Facility Prefilters D-10 Spent Carbon Receiving Tank EZ D-11 Powdered Carbon Feeder System E. Process Chemical Assay/Monitoring...PBA manufacturing complex, several wastewater treatment facilities were built to treat wastewater from various plants . This task deals with...all of which discharge to the Central Treatment Facility (Appendix K-I). The plant is permitted (Appendix I-I) by EPA and consists of a lime/alum
19. CONSTRUCTION PROGRESS PHOTO SHOWING (TYPICALLY COMPLEX) WASTE HOLDING CELL ...
19. CONSTRUCTION PROGRESS PHOTO SHOWING (TYPICALLY COMPLEX) WASTE HOLDING CELL PIPING. INEEL PHOTO NUMBER NRTS-59-3212. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID
Lessons Learned from Radioactive Waste Storage and Disposal Facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esh, David W.; Bradford, Anna H.
2008-01-15
The safety of radioactive waste disposal facilities and the decommissioning of complex sites may be predicated on the performance of engineered and natural barriers. For assessing the safety of a waste disposal facility or a decommissioned site, a performance assessment or similar analysis is often completed. The analysis is typically based on a site conceptual model that is developed from site characterization information, observations, and, in many cases, expert judgment. Because waste disposal facilities are sited, constructed, monitored, and maintained, a fair amount of data has been generated at a variety of sites in a variety of natural systems. Thismore » paper provides select examples of lessons learned from the observations developed from the monitoring of various radioactive waste facilities (storage and disposal), and discusses the implications for modeling of future waste disposal facilities that are yet to be constructed or for the development of dose assessments for the release of decommissioning sites. Monitoring has been and continues to be performed at a variety of different facilities for the disposal of radioactive waste. These include facilities for the disposal of commercial low-level waste (LLW), reprocessing wastes, and uranium mill tailings. Many of the lessons learned and problems encountered provide a unique opportunity to improve future designs of waste disposal facilities, to improve dose modeling for decommissioning sites, and to be proactive in identifying future problems. Typically, an initial conceptual model was developed and the siting and design of the disposal facility was based on the conceptual model. After facility construction and operation, monitoring data was collected and evaluated. In many cases the monitoring data did not comport with the original site conceptual model, leading to additional investigation and changes to the site conceptual model and modifications to the design of the facility. The following cases are discussed: commercial LLW disposal facilities; uranium mill tailings disposal facilities; and reprocessing waste storage and disposal facilities. The observations developed from the monitoring and maintenance of waste disposal and storage facilities provide valuable lessons learned for the design and modeling of future waste disposal facilities and the decommissioning of complex sites.« less
Performance Predictions for Proposed ILS Facilities at St. Louis Municipal Airport
DOT National Transportation Integrated Search
1978-01-01
The results of computer simulations of performance of proposed ILS facilities on Runway 12L/30R at St. Louis Municipal Airport (Lambert Field) are reported. These simulations indicate that an existing industrial complex located near the runway is com...
2 CFR 200.468 - Specialized service facilities.
Code of Federal Regulations, 2014 CFR
2014-01-01
... OFFICE OF MANAGEMENT AND BUDGET GUIDANCE Reserved UNIFORM ADMINISTRATIVE REQUIREMENTS, COST PRINCIPLES, AND AUDIT REQUIREMENTS FOR FEDERAL AWARDS Cost Principles General Provisions for Selected Items of Cost § 200.468 Specialized service facilities. (a) The costs of services provided by highly complex or...
MISCELLANEOUS ARCHITECTURAL DETAILS AND SECTIONS OF REMOTE ANALYTICAL FACILITY (CPP627). ...
MISCELLANEOUS ARCHITECTURAL DETAILS AND SECTIONS OF REMOTE ANALYTICAL FACILITY (CPP-627). INL DRAWING NUMBER 200-0627-00-098-105632. ALTERNATE ID NUMBER 4272-814-135. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
NORTH AND SOUTH SECTIONS OF REMOTE ANALYTICAL FACILITY (CPP627). INL ...
NORTH AND SOUTH SECTIONS OF REMOTE ANALYTICAL FACILITY (CPP-627). INL DRAWING NUMBER 200-0627-00-098-105068. ALTERNATE ID NUMBER 4272-14-105. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
EAST AND WEST ELEVATIONS OF REMOTE ANALYTICAL FACILITY (CPP627). INL ...
EAST AND WEST ELEVATIONS OF REMOTE ANALYTICAL FACILITY (CPP-627). INL DRAWING NUMBER 200-0627-00-098-105067. ALTERNATE ID NUMBER 4272-14-104. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
INTERIOR PHOTO OF THE REMOTE ANALYTICAL FACILITY OF SHIELDED GLOVE ...
INTERIOR PHOTO OF THE REMOTE ANALYTICAL FACILITY OF SHIELDED GLOVE BOXES IN OPERATING CORRIDOR (CPP-627). INL PHOTO NUMBER NRTS-55-1524. Unknown Photographer, 1955 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
CONSTRUCTION PROGRESS PHOTO OF REMOTE ANALYTICAL FACILITY (CPP627) SHOWING PLACEMENT ...
CONSTRUCTION PROGRESS PHOTO OF REMOTE ANALYTICAL FACILITY (CPP-627) SHOWING PLACEMENT OF PIERS. INL PHOTO NUMBER NRTS-54-11716. Unknown Photographer, 8/20/1954 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
2012-09-05
CAPE CANAVERAL, Fla. – A steel beam is lifted to the highest point of a new exhibit facility under construction at the Kennedy Space Center Visitor Complex. The 90,000-square-foot facility will house space shuttle Atlantis and 62 shuttle program exhibits. Photo credit: NASA/Kim Shiflett
2012-09-05
CAPE CANAVERAL, Fla. – A steel beam is lifted to the highest point of a new exhibit facility under construction at the Kennedy Space Center Visitor Complex. The 90,000-square-foot facility will house space shuttle Atlantis and 62 shuttle program exhibits. Photo credit: NASA/Kim Shiflett
Cape Canaveral Air Force Station, Launch Complex 39, The Solid ...
Cape Canaveral Air Force Station, Launch Complex 39, The Solid Rocket Booster Assembly and Refurbishment Facility Manufacturing Building, Southeast corner of Schwartz Road and Contractors Road, Cape Canaveral, Brevard County, FL
Connolly, Martin J; Boyd, Michal; Broad, Joanna B; Kerse, Ngaire; Lumley, Thomas; Whitehead, Noeline; Foster, Susan
2015-01-01
To assess effect of a complex, multidisciplinary intervention aimed at reducing avoidable acute hospitalization of residents of residential aged care (RAC) facilities. Cluster randomized controlled trial. RAC facilities with higher than expected hospitalizations in Auckland, New Zealand, were recruited and randomized to intervention or control. A total of 1998 residents of 18 intervention facilities and 18 control facilities. A facility-based complex intervention of 9 months' duration. The intervention comprised gerontology nurse specialist (GNS)-led staff education, facility bench-marking, GNS resident review, and multidisciplinary (geriatrician, primary-care physician, pharmacist, GNS, and facility nurse) discussion of residents selected using standard criteria. Primary end point was avoidable hospitalizations. Secondary end points were all acute admissions, mortality, and acute bed-days. Follow-up was for a total of 14 months. The intervention did not affect main study end points: number of acute avoidable hospital admissions (RR 1.07; 95% CI 0.85-1.36; P = .59) or mortality (RR 1.11; 95% CI 0.76-1.61; P = .62). This multidisciplinary intervention, packaging selected case review, and staff education had no overall impact on acute hospital admissions or mortality. This may have considerable implications for resourcing in the acute and RAC sectors in the face of population aging. Australian and New Zealand Clinical Trials Registry (ACTRN12611000187943). Copyright © 2015 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.
1980-11-01
facility common to all facilities as well as a separate municipal waste treatment plant . The crude refinery and petrochemicals plant produces high...offshore: refinery L M H I power plant I L L M I industrial complex I L L L I II Extensive use of sub-sea production systems I M H I up to 5,000 ft. I... petrochemicals factory or a refinery acting as the core around which an in- dustrial complex is built. The type of core industry selected would depend
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erickson, T.A.
1998-11-01
The objectives of this task are to: Develop a model (paper) to estimate the cost and waste generation of cleanup within the Environmental Management (EM) complex; Identify technologies applicable to decontamination and decommissioning (D and D) operations within the EM complex; Develop a database of facility information as linked to project baseline summaries (PBSs). The above objectives are carried out through the following four subtasks: Subtask 1--D and D Model Development, Subtask 2--Technology List; Subtask 3--Facility Database, and Subtask 4--Incorporation into a User Model.
Advancing Sensor Technology for Aerospace Propulsion
NASA Technical Reports Server (NTRS)
Figueroa, Fernando; Mercer, Carolyn R.
2002-01-01
NASA's Stennis Space Center (SSC) and Glenn Research Center (GRC) participate in the development of technologies for propulsion testing and propulsion applications in air and space transportation. Future transportation systems and the test facilities needed to develop and sustain them are becoming increasingly complex. Sensor technology is a fundamental pillar that makes possible development of complex systems that must operate in automatic mode (closed loop systems), or even in assisted-autonomous mode (highly self-sufficient systems such as planetary exploration spacecraft). Hence, a great deal of effort is dedicated to develop new sensors and related technologies to be used in research facilities, test facilities, and in vehicles and equipment. This paper describes sensor technologies being developed and in use at SSC and GRC, including new technologies in integrated health management involving sensors, components, processes, and vehicles.
Seasonal influenza vaccination of healthcare employees: results of a 4-year campaign.
Hirsch, Pamela; Hodgson, Michael; Davey, Victoria
2011-05-01
To document successful substantial increases in healthcare worker influenza vaccination rates and to identify reasons for success and failure. (1) Four-year longitudinal characterization of facility vaccination rates, (2) Web-based facility-level questionnaire for influenza coordinators to identify success factors in year 3, and (3) semistructured telephone interviews of influenza coordinators at facilities with substantial increases or declines in year 4. National single-payer hospital (healthcare) system with 153 hospitals in 5 levels of complexity. Facility leadership staff. (1) Vaccination data collected from management sources (doses from pharmacies, denominator data from payrolls); (2) a Web-based survey aligned with a previously administered instrument (Wisconsin Health Department), piloted in-house, modified to reflect national strategies and improvements; and (3) semistructured telephone interviews with influenza coordinators at facilities that improved or worsened by more than 20% between the 2007-2008 and 2008-2009 influenza seasons. Vaccination acceptance rates improved from 45% of healthcare workers in 2005-2006 to 66.5% in 2008-2009. Facilities with lower complexity had higher vaccination rates. No individual factors were associated with improved performance. Sustained management attention can lead to improvements in healthcare worker influenza vaccination rates. Wavering of attention, though, may lead to rapid loss of effectiveness. Declination statements in this system did not contribute to vaccine acceptance.
Hazardous Waste Cleanup: HOVENSA, LLC in Christiansted, U.S. Virgin Islands
The HOVENSA facility (the facility) is located at Limetree Bay, St. Croix, U.S. Virgin Islands. It is a petroleum refinery covering 1,500 acres in what is known as South Industrial Complex, on the south central coast of St. Croix.
11. Historic photo of cutaway rendering of rocket engine test ...
11. Historic photo of cutaway rendering of rocket engine test facility complex, June 11, 1965. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-74433. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
CONSTRUCTION PROGRESS PHOTO REMOTE ANALYTICAL FACILITY (CPP627) SHOWING EMPLACEMENT OF ...
CONSTRUCTION PROGRESS PHOTO REMOTE ANALYTICAL FACILITY (CPP-627) SHOWING EMPLACEMENT OF ROOF SLABS. INL PHOTO NUMBER NRTS-54-13463. R.G. Larsen, Photographer, 12/20/1954 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
2012-09-05
CAPE CANAVERAL, Fla. – A steel beam after being fitted to the highest point of a new exhibit facility under construction at the Kennedy Space Center Visitor Complex. The 90,000-square-foot facility will house space shuttle Atlantis and 62 shuttle program exhibits. Photo credit: NASA/Kim Shiflett
2012-09-05
CAPE CANAVERAL, Fla. – A steel beam after being fitted to the highest point of a new exhibit facility under construction at the Kennedy Space Center Visitor Complex. The 90,000-square-foot facility will house space shuttle Atlantis and 62 shuttle program exhibits. Photo credit: NASA/Kim Shiflett
2012-09-05
CAPE CANAVERAL, Fla. – A steel beam after being fitted to the highest point of a new exhibit facility under construction at the Kennedy Space Center Visitor Complex. The 90,000-square-foot facility will house space shuttle Atlantis and 62 shuttle program exhibits. Photo credit: NASA/Kim Shiflett
Cytarabine Lipid Complex Injection
Cytarabine lipid complex comes as a liquid to be injected intrathecally (into the fluid-filled space of the spinal canal) over 1 to 5 minutes by a doctor or nurse in a medical facility. At first, cytarabine lipid ...
Safety Practices Followed in ISRO Launch Complex- An Overview
NASA Astrophysics Data System (ADS)
Krishnamurty, V.; Srivastava, V. K.; Ramesh, M.
2005-12-01
The spaceport of India, Satish Dhawan Space Centre (SDSC) SHAR of Indian Space Research Organisation (ISRO), is located at Sriharikota, a spindle shaped island on the east coast of southern India.SDSC SHAR has a unique combination of facilities, such as a solid propellant production plant, a rocket motor static test facility, launch complexes for different types of rockets, telemetry, telecommand, tracking, data acquisition and processing facilities and other support services.The Solid Propellant Space Booster Plant (SPROB) located at SDSC SHAR produces composite solid propellant for rocket motors of ISRO. The main ingredients of the propellant produced here are ammonium perchlorate (oxidizer), fine aluminium powder (fuel) and hydroxyl terminated polybutadiene (binder).SDSC SHAR has facilities for testing solid rocket motors, both at ambient conditions and at simulated high altitude conditions. Other test facilities for the environmental testing of rocket motors and their subsystems include Vibration, Shock, Constant Acceleration and Thermal / Humidity.SDSC SHAR has the necessary infrastructure for launching satellites into low earth orbit, polar orbit and geo-stationary transfer orbit. The launch complexes provide complete support for vehicle assembly, fuelling with both earth storable and cryogenic propellants, checkout and launch operations. Apart from these, it has facilities for launching sounding rockets for studying the Earth's upper atmosphere and for controlled reentry and recovery of ISRO's space capsule reentry missions.Safety plays a major role at SDSC SHAR right from the mission / facility design phase to post launch operations. This paper presents briefly the infrastructure available at SDSC SHAR of ISRO for launching sounding rockets, satellite launch vehicles, controlled reentry missions and the built in safety systems. The range safety methodology followed as a part of the real time mission monitoring is presented. The built in safety systems provided onboard the launch vehicle are automatic shut off the propulsion system based on real time mission performance and a passivation system incorporated in the orbit insertion stage are highlighted.
Sandia, California Tritium Research Laboratory transition and reutilization project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, T.B.
1997-02-01
This paper describes a project within Sandia National Laboratory to convert the shut down Tritium Research Laboratory into a facility which could be reused within the laboratory complex. In the process of decommissioning and decontaminating the facility, the laboratory was able to save substantial financial resources by transferring much existing equipment to other DOE facilities, and then expeditiously implementing a decontamination program which has resulted in the building being converted into laboratory space for new lab programs. This project of facility reuse has been a significant financial benefit to the laboratory.
Discriminative facility and its role in the perceived quality of interactional experiences.
Cheng, C; Chiu, C Y; Hong, Y Y; Cheung, J S
2001-10-01
Discriminative facility refers to an individual's sensitivity to subtle cues about the psychological meaning of a situation. This research aimed at examining (a) the conceptual distinctiveness of discriminative facility, (b) the situation-appropriate aspect of this construct, and (c) the relationship between discriminative facility and interpersonal experiences. Discriminative facility was assessed by a new measure of situation-appropriate behaviors across a variety of novel stressful situations. Results from study 1 showed that discriminative facility had weak positive relationships with cognitive complexity and nonsignificant relationships with self-monitoring and social desirability, indicating that discriminative facility is a unique construct. Results from Study 2 revealed that higher levels of discriminative facility were associated with higher levels of perceived social support and a greater number of pleasant interpersonal events experienced, thus providing support for the theoretical proposition that discriminative facility is an aspect of social intelligence.
2018-05-01
The 2017 class of astronaut candidates tour Boeing's Commercial Crew and Cargo Facility at NASA's Kennedy Space Center in Florida on May 1. They are at the center for a familiarization tour of facilities, including the Neil Armstrong Operations and Checkout Building high bay; the Launch Control Center, Launch Complex 39B, and the Vehicle Assembly Building. They also toured United Launch Alliance's Space Launch Complex 41 at Cape Canaveral Air Force Station, and SpaceX's Launch Complex 39A at Kennedy. The candidates will spend about two years getting to know the space station systems and learning how to spacewalk, speak Russian, control the International Space Station's robotic arm and fly T-38s, before they're eligible to be assigned to a mission.
2018-05-01
The 2017 class of astronaut candidates arrive at Boeing's Commercial Crew and Cargo Facility at NASA's Kennedy Space Center in Florida on May 1. They are at the center for a familiarization tour of facilities, including the Neil Armstrong Operations and Checkout Building high bay; the Launch Control Center, Launch Complex 39B, and the Vehicle Assembly Building. They also toured United Launch Alliance's Space Launch Complex 41 at Cape Canaveral Air Force Station, and SpaceX's Launch Complex 39A at Kennedy. The candidates will spend about two years getting to know the space station systems and learning how to spacewalk, speak Russian, control the International Space Station's robotic arm and fly T-38s, before they're eligible to be assigned to a mission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Chan-Joong; Kim, Jimin; Hong, Taehoon
Climate change has become one of the most significant environmental issues, of which about 40% come from the building sector. In particular, complex building projects with various functions have increased, which should be managed from a program-level perspective. Therefore, this study aimed to develop a program-level management system for the life-cycle environmental and economic assessment of complex building projects. The developed system consists of three parts: (i) input part: database server and input data; (ii) analysis part: life cycle assessment and life cycle cost; and (iii) result part: microscopic analysis and macroscopic analysis. To analyze the applicability of the developedmore » system, this study selected ‘U’ University, a complex building project consisting of research facility and residential facility. Through value engineering with experts, a total of 137 design alternatives were established. Based on these alternatives, the macroscopic analysis results were as follows: (i) at the program-level, the life-cycle environmental and economic cost in ‘U’ University were reduced by 6.22% and 2.11%, respectively; (ii) at the project-level, the life-cycle environmental and economic cost in research facility were reduced 6.01% and 1.87%, respectively; and those in residential facility, 12.01% and 3.83%, respective; and (iii) for the mechanical work at the work-type-level, the initial cost was increased 2.9%; but the operation and maintenance phase was reduced by 20.0%. As a result, the developed system can allow the facility managers to establish the operation and maintenance strategies for the environmental and economic aspects from a program-level perspective. - Highlights: • A program-level management system for complex building projects was developed. • Life-cycle environmental and economic assessment can be conducted using the system. • The design alternatives can be analyzed from the microscopic perspective. • The system can be used to establish the optimal O&M strategy at the program-level. • It can be applied to any other country or sector in the global environment.« less
ERIC Educational Resources Information Center
Ontario Dept. of Education, Toronto. School Planning and Building Research Section.
This booklet begins by explaining the function, the common planning errors, some location specifications, and the general requirements for any dramatic arts area. Facilities for (1) a single classroom, (2) a double classroom, (3) a specifically designed studio, and (4) a specifically designed studio complex are then described and illustrated.…
Science and Technology Facilities
ERIC Educational Resources Information Center
Moonen, Jean-Marie; Buono, Nicolas; Handfield, Suzanne
2004-01-01
These four articles relate to science and technology infrastructure for secondary and tertiary institutions. The first article presents a view on approaches to teaching science in school and illustrates ideal science facilities for secondary education. The second piece reports on work underway to improve the Science Complex at the "Universite…
12. SOUTHWEST VIEW OF BUILDING 25C (SUBSONIC AERODYNAMICS TEST FACILITY) ...
12. SOUTHWEST VIEW OF BUILDING 25C (SUBSONIC AERODYNAMICS TEST FACILITY) (1992). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH
WEST ELEVATION OF REMOTE ANALYTICAL FACILITY (CPP627) AND HOT PILOT ...
WEST ELEVATION OF REMOTE ANALYTICAL FACILITY (CPP-627) AND HOT PILOT PLANT (CPP-640) LOOKING NORTHEAST. INL PHOTO NUMBER HD-22-2-1. Mike Crane, Photographer, 11/1998 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
SOUTH ELEVATION OF IRRADIATED FUEL STORAGE FACILITY LOCATED IN FUEL ...
SOUTH ELEVATION OF IRRADIATED FUEL STORAGE FACILITY LOCATED IN FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORTH. INL PHOTO NUMBER HD-54-15-2. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
NORTH ELEVATION OF IRRADIATED FUEL STORAGE FACILITY LOCATED IN FUEL ...
NORTH ELEVATION OF IRRADIATED FUEL STORAGE FACILITY LOCATED IN FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING SOUTH. INL PHOTO NUMBER HD-54-16-1. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
2012-09-05
CAPE CANAVERAL, Fla. – Workers sign a steel beam before it is placed at the highest point of a new exhibit facility under construction at the Kennedy Space Center Visitor Complex. The 90,000-square-foot facility will house space shuttle Atlantis and 62 shuttle program exhibits. Photo credit: NASA/Kim Shiflett
2012-09-05
CAPE CANAVERAL, Fla. – Workers sign a steel beam before it is placed at the highest point of a new exhibit facility under construction at the Kennedy Space Center Visitor Complex. The 90,000-square-foot facility will house space shuttle Atlantis and 62 shuttle program exhibits. Photo credit: NASA/Kim Shiflett
2012-09-05
CAPE CANAVERAL, Fla. – Workers sign a steel beam before it is placed at the highest point of a new exhibit facility under construction at the Kennedy Space Center Visitor Complex. The 90,000-square-foot facility will house space shuttle Atlantis and 62 shuttle program exhibits. Photo credit: NASA/Kim Shiflett
2012-09-05
CAPE CANAVERAL, Fla. – Signatures on a steel beam that was placed at the highest point of a new exhibit facility under construction at the Kennedy Space Center Visitor Complex. The 90,000-square-foot facility will house space shuttle Atlantis and 62 shuttle program exhibits. Photo credit: NASA/Kim Shiflett
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, R.C.
1991-09-01
Policy for addressing natural phenomenon comprises a hierarchy of interrelated documents. The top level of policy is contained in the code of Federal Regulations which establishes the framework and intent to ensure overall safety of DOE facilities when subjected to the effects of natural phenomena. The natural phenomena to be considered include earthquakes and tsunami, winds, hurricanes and tornadoes, floods, volcano effects and seiches. Natural phenomena criteria have been established for design of new facilities; evaluation of existing facilities; additions, modifications, and upgrades to existing facilities; and evaluation criteria for new or existing sites. Steps needed to implement these fourmore » general criteria are described. The intent of these criteria is to identify WHAT needs to be done to ensure adequate protection from natural phenomena. The commentary provides discussion of WHY this is needed for DOE facilities within the complex. Implementing procedures identifying HOW to carry out these criteria are next identified. Finally, short and long term tasks needed to identify the implementing procedure are tabulated. There is an overall need for consistency throughout the DOE complex related to natural phenomena including consistent terminology, policy, and implementation. 1 fig, 6 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorr, Kent A.; Ostrom, Michael J.; Freeman-Pollard, Jhivaun R.
CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energy's (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built in an accelerated manner with American Recovery and Reinvestment Act (ARRA) funds and has attained Leadership in Energy and Environmental Design (LEED) GOLD certification, which makes it the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award. There were many contractual, technical, configurationmore » management, quality, safety, and LEED challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility. This paper will present the Project and LEED accomplishments, as well as Lessons Learned by CHPRC when additional ARRA funds were used to accelerate design, procurement, construction, and commissioning of the 200 West Groundwater Pump and Treatment (2W P&T) Facility to meet DOE's mission of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-23
...-FXES11120800000F2-123] Draft Environmental Impact Statement and Proposed Maricopa Sun Solar Complex Multi-Species... National Environmental Policy Act for the proposed Maricopa Sun Solar Complex Habitat Conservation Plan... construction, operation, and decommissioning of a 700 megawatt photo-voltaic power generating facility and...
DOE’s Management and Oversight of the Nuclear Weapons Complex
1990-03-22
and Economic Development Division Before the Department of Energy Defense Nuclear Facilities Panel Committee on Armed Services House of Representatives...and newly created DOE offices. The Defense Nuclear Facilities Safety Board, whose board members were appointed this past year, was created to provide 6...mandated Defense Nuclear Facilities Safety Board. Continuing dialogue between DOE and the Board can also serve to enhance DOE’s ability to respond more
State machine analysis of sensor data from dynamic processes
Cook, William R.; Brabson, John M.; Deland, Sharon M.
2003-12-23
A state machine model analyzes sensor data from dynamic processes at a facility to identify the actual processes that were performed at the facility during a period of interest for the purpose of remote facility inspection. An inspector can further input the expected operations into the state machine model and compare the expected, or declared, processes to the actual processes to identify undeclared processes at the facility. The state machine analysis enables the generation of knowledge about the state of the facility at all levels, from location of physical objects to complex operational concepts. Therefore, the state machine method and apparatus may benefit any agency or business with sensored facilities that stores or manipulates expensive, dangerous, or controlled materials or information.
2014-09-25
CAPE CANAVERAL, Fla. – Coupled Florida East Coast Railway, or FEC, locomotives No. 433 and No. 428 make the first run past the Orbiter Processing Facility and Thermal Protection System Facility in Launch Complex 39 at NASA’s Kennedy Space Center in Florida during the Rail Vibration Test for the Canaveral Port Authority. Seismic monitors are collecting data as the train passes by. The purpose of the test is to collect amplitude, frequency and vibration test data utilizing two Florida East Coast locomotives operating on KSC tracks to ensure that future railroad operations will not affect launch vehicle processing at the center. Buildings instrumented for the test include the Rotation Processing Surge Facility, Thermal Protection Systems Facility, Vehicle Assembly Building, Orbiter Processing Facility and Booster Fabrication Facility. Photo credit: NASA/Daniel Casper
Complex Plasmas under free fall conditions aboard the International Space Station
NASA Astrophysics Data System (ADS)
Konopka, Uwe; Thomas, Edward, Jr.; Funk, Dylan; Doyle, Brandon; Williams, Jeremiah; Knapek, Christina; Thomas, Hubertus
2017-10-01
Complex Plasmas are dynamically dominated by massive, highly negatively charged, micron-sized particles. They are usually strongly coupled and as a result can show fluid-like behavior or undergo phase transitions to form crystalline structures. The dynamical time scale of these systems is easily accessible in experiments because of the relatively high mass/inertia of the particles. However, the high mass also leads to sedimentation effects and as a result prevents the conduction of large scale, fully three dimensional experiments that are necessary to utilize complex plasmas as model systems in the transition to continuous media. To reduce sedimentation influences it becomes necessary to perform experiments in a free-fall (``microgravity'') environment, such as the ISS based experiment facility ``Plasma-Kristall-4'' (``PK-4''). In our paper we will present our recently started research activities to investigate the basic properties of complex plasmas by utilizing the PK-4 experiment facility aboard the ISS. We further give an overview of developments towards the next generation experiment facility ``Ekoplasma'' (formerly named ``PlasmaLab'') and discuss potential additional small-scale space-based experiment scenarios. This work was supported by the JPL/NASA (JPL-RSA 1571699), the US Dept. of Energy (DE-SC0016330) and the NSF (PHY-1613087).
Jarjies, Adnan; Abbas, Mohammed; Monken Fernandes, Horst; Wong, Melanie; Coates, Roger
2013-05-01
There are a number of sites in Iraq which have been used for nuclear activities and which contain potentially significant amounts of radioactive waste. The principal nuclear site being Al-Tuwaitha. Many of these sites suffered substantial physical damage during the Gulf Wars and have been subjected to subsequent looting. All require decommissioning in order to ensure both radiological and non-radiological safety. However, it is not possible to undertake the decommissioning of all sites and facilities at the same time. Therefore, a prioritization methodology has been developed in order to aid the decision-making process. The methodology comprises three principal stages of assessment: i) a quantitative surrogate risk assessment ii) a range of sensitivity analyses and iii) the inclusion of qualitative modifying factors. A group of Tuwaitha facilities presented the highest risk among the evaluated ones, followed by a middle ranking grouping of Tuwaitha facilities and some other sites, and a relatively large group of lower risk facilities and sites. The initial order of priority is changed when modifying factors are taken into account. It has to be considered the Iraq's isolation from the international nuclear community over the last two decades and the lack of experienced personnel. Therefore it is appropriate to initiate decommissioning operations on selected low risk facilities at Tuwaitha in order to build capacity and prepare for work to be carried out in more complex and potentially high hazard facilities. In addition it is appropriate to initiate some prudent precautionary actions relating to some of the higher risk facilities. Copyright © 2012 Elsevier Ltd. All rights reserved.
Estabrooks, Carole A; Knopp-Sihota, Jennifer A; Cummings, Greta G; Norton, Peter G
2016-08-01
The success of evidence-based practice depends on clearly and effectively communicating often complex data to stakeholders. In our program of research, Translating Research in Elder Care (TREC), we focus on improving the quality and safety of care delivered to nursing home residents in western Canada. More specifically, we investigate associations among organizational context, the use of best practices and resident outcomes. Our data are complex and we have been challenged with presenting these data in a way that is not only intuitive, but also useful for our stakeholders. To illustrate a technique of organizing and presenting complex data to nonresearch stakeholders. Using observational data previously collected within the TREC study, we used k-means cluster analysis to categorize nursing home resident care units or facilities within our sample into two distinct groups-those with more favorable contexts (work environment) and those with less favorable contexts. We then produced scatter plots to illustrate group differences between context and various quality indicators among resident care units or facilities. Care aides working on units with more favorable context reported higher use of best practices. When aggregated at the nursing home facility level, facilities with low rates of both urinary tract infections and indwelling catheter use are higher in organizational context. When feeding back these results to stakeholders, we identify their units so that they are able to visually assess their units, both relative to each other and relative to all other units and facilities both within and among provinces. Although we have not formally evaluated this method, we have used it extensively as part of the feedback we provide to stakeholders. As we are examining modifiable aspects of context, the stakeholder can then identify areas for improvement and thus implement a focused plan. © 2016 Sigma Theta Tau International.
Molecular Modeling and Computational Chemistry at Humboldt State University.
ERIC Educational Resources Information Center
Paselk, Richard A.; Zoellner, Robert W.
2002-01-01
Describes a molecular modeling and computational chemistry (MM&CC) facility for undergraduate instruction and research at Humboldt State University. This facility complex allows the introduction of MM&CC throughout the chemistry curriculum with tailored experiments in general, organic, and inorganic courses as well as a new molecular modeling…
FIRST FLOOR PLAN OF REMOTE ANALYTICAL FACILITY (CPP627) SHOWING REMOTE ...
FIRST FLOOR PLAN OF REMOTE ANALYTICAL FACILITY (CPP-627) SHOWING REMOTE ANALYTICAL LABORATORY, DECONTAMINATION ROOM, AND MULTICURIE CELL ROOM. INL DRAWING NUMBER 200-0627-00-008-105065. ALTERNATE ID NUMBER 4272-14-102. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
NORTH AND WEST ELEVATIONS OF REMOTE ANALYTICAL FACILITY (CPP627) LOOKING ...
NORTH AND WEST ELEVATIONS OF REMOTE ANALYTICAL FACILITY (CPP-627) LOOKING SOUTHEAST. HEADEND PLANT (CPP-640) APPEARS IN THE BACKGROUND. INL PHOTO NUMBER HD-22-1-4. Mike Crane, Photographer, 11/1998 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
2016 Annual Report - Argonne Leadership Computing Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, Jim; Papka, Michael E.; Cerny, Beth A.
The Argonne Leadership Computing Facility (ALCF) helps researchers solve some of the world’s largest and most complex problems, while also advancing the nation’s efforts to develop future exascale computing systems. This report presents some of the ALCF’s notable achievements in key strategic areas over the past year.
Master Planning School District Facility Needs
ERIC Educational Resources Information Center
Prager, Gary; Matschulat, Robert
2010-01-01
Most educational entities confront any number of facility issues. Upgrading the physical infrastructure to meet current and future demands can be intimidating. The quantity and magnitude of capital issues in a changing environment can be overwhelming. How can all this complexity be made coherent to assure that decisions are sound and limited…
2012-09-05
CAPE CANAVERAL, Fla. – A worker signs a steel beam before it is placed at the highest point of a new exhibit facility under construction at the Kennedy Space Center Visitor Complex. The 90,000-square-foot facility will house space shuttle Atlantis and 62 shuttle program exhibits. Photo credit: NASA/Kim Shiflett
2012-09-05
CAPE CANAVERAL, Fla. – An event observer signs a steel beam before it is placed at the highest point of a new exhibit facility under construction at the Kennedy Space Center Visitor Complex. The 90,000-square-foot facility will house space shuttle Atlantis and 62 shuttle program exhibits. Photo credit: NASA/Kim Shiflett
ERIC Educational Resources Information Center
Ellis, Tom
2010-01-01
School design has become increasingly complex for the owner, educator, architect and designer. Decisions can affect a student's performance, a teacher's ability to educate, a facility's impact on the environment, a staff's ability to maintain that facility, and a community's desire to be prudent. But the first consideration should be the students.…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gary Mecham; Don Konoyer
2009-11-01
The Materials & Fuel Complex (MFC) facilities 799 Sodium Processing Facility (a single building consisting of two areas: the Sodium Process Area (SPA) and the Carbonate Process Area (CPA), 799A Caustic Storage Area, and 770C Nuclear Calibration Laboratory have been declared excess to future Department of Energy mission requirements. Transfer of these facilities from Nuclear Energy to Environmental Management, and an associated schedule for doing so, have been agreed upon by the two offices. The prerequisites for this transfer to occur are the removal of nonexcess materials and chemical inventory, deinventory of the calibration source in MFC-770C, and the reroutingmore » and/or isolation of utility and service systems. This report provides a description of the current physical condition and any hazards (material, chemical, nuclear or occupational) that may be associated with past operations of these facilities. This information will document conditions at time of transfer of the facilities from Nuclear Energy to Environmental Management and serve as the basis for disposition planning. The process used in obtaining this information included document searches, interviews and facility walk-downs. A copy of the facility walk-down checklist is included in this report as Appendix A. MFC-799/799A/770C are all structurally sound and associated hazardous or potentially hazardous conditions are well defined and well understood. All installed equipment items (tanks, filters, etc.) used to process hazardous materials remain in place and appear to have maintained their integrity. There is no evidence of leakage and all openings are properly sealed or closed off and connections are sound. The pits appear clean with no evidence of cracking or deterioration that could lead to migration of contamination. Based upon the available information/documentation reviewed and the overall conditions observed during the facilities walk-down, it is concluded that these facilities may be disposed of at minimal risk to human health, safety or the environment.« less
2003-05-02
KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) observatory is lowered to the ground and taken back to NASA Spacecraft Hangar AE. SIRTF will remain in the clean room at Hangar AE until it returns to the pad in early August.
2003-05-02
KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) observatory is on a transporter to be taken back to NASA Spacecraft Hangar AE. SIRTF will remain in the clean room at Hangar AE until it returns to the pad in early August.
2003-05-02
KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) observatory is lowered onto a transporter to be taken back to NASA Spacecraft Hangar AE. SIRTF will remain in the clean room at Hangar AE until it returns to the pad in early August.
2003-11-05
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, a technician takes readings for pre-assembly measurements on the Japanese Experiment Module (JEM). Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.
2003-11-05
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, technicians begin pre-assembly measurements on the Japanese Experiment Module (JEM). Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.
2003-11-05
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, technicians take readings for pre-assembly measurements on the Japanese Experiment Module (JEM). Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.
2003-11-05
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, the Japanese Experiment Module (JEM) rests on a workstand during pre-assembly measurement activities. Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.
Journey to the Nevada Test Site Radioactive Waste Management Complex
None
2018-01-16
Journey to the Nevada Test Site Radioactive Waste Management Complex begins with a global to regional perspective regarding the location of low-level and mixed low-level waste disposal at the Nevada Test Site. For decades, the Nevada National Security Site (NNSS) has served as a vital disposal resource in the nation-wide cleanup of former nuclear research and testing facilities. State-of-the-art waste management sites at the NNSS offer a safe, permanent disposal option for U.S. Department of Energy/U.S. Department of Defense facilities generating cleanup-related radioactive waste.
2004-09-09
KENNEDY SPACE CENTER, FLA. - KSC employees move equipment from the Thermal Protection System Facility (TPSF), damaged by Hurricane Frances, into a hangar and storage facility near the KSC Shuttle Landing Facility. Previously, this hangar was used to house the Space Shuttle Columbia debris. Located in Launch Complex 39, the TPSF is used to manufacture both internal and external insulation products for the Space Shuttle orbiters. The storm's path over Florida took it through Cape Canaveral and KSC property during Labor Day weekend.
2004-09-09
KENNEDY SPACE CENTER, FLA. - Equipment from the Thermal Protection System Facility (TPSF), damaged by Hurricane Frances, is moved into a hangar and storage facility near the KSC Shuttle Landing Facility. Previously, this hangar was used to house the Space Shuttle Columbia debris. Located in Launch Complex 39, the TPSF is used to manufacture both internal and external insulation products for the Space Shuttle orbiters. The storm's path over Florida took it through Cape Canaveral and KSC property during Labor Day weekend.
2004-09-09
KENNEDY SPACE CENTER, FLA. - KSC employees move equipment from the Thermal Protection System Facility (TPSF), damaged by Hurricane Frances, into a hangar and storage facility near the KSC Shuttle Landing Facility. Previously, this hangar was used to house the Space Shuttle Columbia debris. Located in Launch Complex 39, the TPSF is used to manufacture both internal and external insulation products for the Space Shuttle orbiters. The storm's path over Florida took it through Cape Canaveral and KSC property during Labor Day weekend.
2004-09-09
KENNEDY SPACE CENTER, FLA. - Equipment from the Thermal Protection System Facility (TPSF), damaged by Hurricane Frances, is moved into a hangar and storage facility near the KSC Shuttle Landing Facility. Previously, this hangar was used to house the Space Shuttle Columbia debris. Located in Launch Complex 39, the TPSF is used to manufacture both internal and external insulation products for the Space Shuttle orbiters. The storm's path over Florida took it through Cape Canaveral and KSC property during Labor Day weekend.
2004-09-09
KENNEDY SPACE CENTER, FLA. - Equipment from the Thermal Protection System Facility (TPSF), damaged by Hurricane Frances, is relocated to a hangar and storage facility near the KSC Shuttle Landing Facility. Previously, this hangar was used to house the Space Shuttle Columbia debris. Located in Launch Complex 39, the TPSF is used to manufacture both internal and external insulation products for the Space Shuttle orbiters. The storm's path over Florida took it through Cape Canaveral and KSC property during Labor Day weekend.
2004-09-09
KENNEDY SPACE CENTER, FLA. - Equipment from the Thermal Protection System Facility (TPSF), damaged by Hurricane Frances, is relocated to a hangar and storage facility near the KSC Shuttle Landing Facility. Previously, this hangar was used to house the Space Shuttle Columbia debris. Located in Launch Complex 39, the TPSF is used to manufacture both internal and external insulation products for the Space Shuttle orbiters. The storm's path over Florida took it through Cape Canaveral and KSC property during Labor Day weekend.
2004-09-09
KENNEDY SPACE CENTER, FLA. - Equipment from the Thermal Protection System Facility (TPSF), damaged by Hurricane Frances, is moved into a hangar and storage facility near the KSC Shuttle Landing Facility. Previously, this hangar was used to house the Space Shuttle Columbia debris. Located in Launch Complex 39, the TPSF is used to manufacture both internal and external insulation products for the Space Shuttle orbiters. The storm's path over Florida took it through Cape Canaveral and KSC property during Labor Day weekend.
National facilities study. Volume 2A: Facility Study Office on the National Wind Tunnel Complex
NASA Technical Reports Server (NTRS)
1994-01-01
The Facility Study Office (FSO) has completed its assigned activities. The results of the FSO efforts, studies, and assessments are documented. An overview of the FSO activities as well as a general comparison of all concepts considered are provided. Detailed information is also provided for the selected concept, Concept D-Option 5. Only findings are presented. The FSO developed recommendations only as a consequence of assumptions for cost and schedule assessments.
2004-09-09
KENNEDY SPACE CENTER, FLA. - KSC employees move equipment from the Thermal Protection System Facility (TPSF), damaged by Hurricane Frances, into a hangar and storage facility near the KSC Shuttle Landing Facility. Previously, this hangar was used to house the Space Shuttle Columbia debris. Located in Launch Complex 39, the TPSF is used to manufacture both internal and external insulation products for the Space Shuttle orbiters. The storm's path over Florida took it through Cape Canaveral and KSC property during Labor Day weekend.
2004-09-09
KENNEDY SPACE CENTER, FLA. - A KSC employee moves equipment from the Thermal Protection System Facility (TPSF), damaged by Hurricane Frances, into a hangar and storage facility near the KSC Shuttle Landing Facility. Previously, this hangar was used to house the Space Shuttle Columbia debris. Located in Launch Complex 39, the TPSF is used to manufacture both internal and external insulation products for the Space Shuttle orbiters. The storm's path over Florida took it through Cape Canaveral and KSC property during Labor Day weekend.
2004-09-09
KENNEDY SPACE CENTER, FLA. - Equipment from the Thermal Protection System Facility (TPSF), damaged by Hurricane Frances, is moved into a hangar and storage facility near the KSC Shuttle Landing Facility. Previously, this hangar was used to house the Space Shuttle Columbia debris. Located in Launch Complex 39, the TPSF is used to manufacture both internal and external insulation products for the Space Shuttle orbiters. The storm's path over Florida took it through Cape Canaveral and KSC property during Labor Day weekend.
2004-09-09
KENNEDY SPACE CENTER, FLA. - Equipment from the Thermal Protection System Facility (TPSF), damaged by Hurricane Frances, is moved into a hangar and storage facility near the KSC Shuttle Landing Facility. Previously, this hangar was used to house the Space Shuttle Columbia debris. Located in Launch Complex 39, the TPSF is used to manufacture both internal and external insulation products for the Space Shuttle orbiters. The storm's path over Florida took it through Cape Canaveral and KSC property during Labor Day weekend.
2004-09-09
KENNEDY SPACE CENTER, FLA. - KSC employees move equipment from the Thermal Protection System Facility (TPSF), damaged by Hurricane Frances, into a hangar and storage facility near the KSC Shuttle Landing Facility. Previously, this hangar was used to house the Space Shuttle Columbia debris. Located in Launch Complex 39, the TPSF is used to manufacture both internal and external insulation products for the Space Shuttle orbiters. The storm's path over Florida took it through Cape Canaveral and KSC property during Labor Day weekend.
Use of Information Technology for Management of U.S. Postal Service Facilities.
1996-05-01
change closeout status, request for proposal log) Projected income and expenses of a U.S. Postal Service facility Direct capitalization model Tax...Unclassified 19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified 15. NUMBER OF PAGES 107 16. PRICE CODE 20. LIMITATION OF ABSTRACT UL NSN 7540-01...time and at the right price is a huge and complex job. In any one year, the USPS Facilities organization may acquire more than 100 sites, plan
Blue Origin Facility - Construction Progress
2017-03-21
Construction is progressing on Blue Origin's 750,000-square-foot facility being built at Exploration Park on NASA Kennedy Space Center property in Florida. Blue Origin will use the factory to manufacture its two-stage super-heavy-lift New Glenn launch vehicle and launch the vehicles from Space Launch Complex 46 at Cape Canaveral Air Force Station.
Keys to Success: School Facilities Primer, Questions & Answers 101.
ERIC Educational Resources Information Center
Brady, Jim
This publication provides answers to basic questions to help school board members more fully address the complexities of the planning, design, and construction process in order to maximize the goal of student success. The 101 questions and answers are in the areas of: facility planning; learning environment; information technology; safe schools;…
76 FR 38657 - Agency Information Collection Activities: Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-01
...: Skilled Nursing Facility and Skilled Nursing Facility Health Care Complex Cost Report. Use: Form CMS 2540... in the Medicare program to report the health care costs to determine the amount of reimbursable costs... settlement of costs for health care services rendered to Medicare beneficiaries. The revision is due to new...
2004-09-08
KENNEDY SPACE CENTER, FLA. - The second floor of the Thermal Protection System Facility sustained significant damage from Hurricane Frances. The storm's path over Florida took it through Cape Canaveral and KSC property during Labor Day weekend. Located in Launch Complex 39, the facility is used to manufacture both internal and external insulation products for the Space Shuttle orbiters.
ERIC Educational Resources Information Center
Inverness Research, 2016
2016-01-01
In facilities throughout the United States and abroad, communities of scientists share infrastructure, instrumentation, and equipment to conduct scientific research. In these large facilities--laboratories, accelerators, telescope arrays, and research vessels--scientists are researching key questions that have the potential to make a significant…
GAO’s Views on DOE’s 1991 Budget for Addressing Problems at the Nuclear Weapons Complex
1990-03-02
management, and efforts by DOE to make its contractors more accountable. Also, the Defense Nuclear Facilities Safety Board mandated by the Congress became...and safety matters. 6 Finally, the Defense Nuclear Facilities Safety Board was established. Although not a DOE action, its establishment, nevertheless
AERIAL SHOWING COMPLETED REMOTE ANALYTICAL FACILITY (CPP627) ADJOINING FUEL PROCESSING ...
AERIAL SHOWING COMPLETED REMOTE ANALYTICAL FACILITY (CPP-627) ADJOINING FUEL PROCESSING BUILDING AND EXCAVATION FOR HOT PILOT PLANT TO RIGHT (CPP-640). INL PHOTO NUMBER NRTS-60-1221. J. Anderson, Photographer, 3/22/1960 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
SECOND FLOOR PLAN OF REMOTE ANALYTICAL FACILITY (CPP627) WARM LABORATORY ...
SECOND FLOOR PLAN OF REMOTE ANALYTICAL FACILITY (CPP-627) WARM LABORATORY ROOM, DECONTAMINATION ROOM, HOT CHEMISTRY LABORATORY, AND MULTICURIE CELL ROOM. INL DRAWING NUMBER 200-0627-00-098-105066. ALTERNATE ID NUMBER 4272-14-103. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
ERIC Educational Resources Information Center
Leone, Peter; Wilson, Michael; Mulcahy, Candace
2010-01-01
This guide is designed to support the development of mathematics proficiency for youth in short-term juvenile correctional facilities. Mathematics proficiency includes mastery and fluency in foundational numeracy; an understanding of complex, grade-appropriate concepts and procedures; and application of those competencies to solve relevant,…
THE JAMES MADISON WOOD QUADRANGLE, STEPHENS COLLEGE, COLUMBIA, MISSOURI.
ERIC Educational Resources Information Center
MCBRIDE, WILMA
THE JAMES MADISON WOOD QUADRANGLE AT STEPHENS COLLEGE IS A COMPLEX OF BUILDINGS DESIGNED TO MAKE POSSIBLE A FLEXIBLE EDUCATIONAL ENVIRONMENT. A LIBRARY HOUSES A GREAT VARIETY OF AUDIO-VISUAL RESOURCES AND BOOKS. A COMMUNICATION CENTER INCORPORATES TELEVISION AND RADIO FACILITIES, A FILM PRODUCTION STUDIO, AND AUDIO-VISUAL FACILITIES. THE LEARNING…
NASA Technical Reports Server (NTRS)
Tri, Terry O.
1999-01-01
As a key component in its ground test bed capability, NASA's Advanced Life Support Program has been developing a large-scale advanced life support test facility capable of supporting long-duration evaluations of integrated bioregenerative life support systems with human test crews. This facility-targeted for evaluation of hypogravity compatible life support systems to be developed for use on planetary surfaces such as Mars or the Moon-is called the Bioregenerative Planetary Life Support Systems Test Complex (BIO-Plex) and is currently under development at the Johnson Space Center. This test bed is comprised of a set of interconnected chambers with a sealed internal environment which are outfitted with systems capable of supporting test crews of four individuals for periods exceeding one year. The advanced technology systems to be tested will consist of both biological and physicochemical components and will perform all required crew life support functions. This presentation provides a description of the proposed test "missions" to be supported by the BIO-Plex and the planned development strategy for the facility.
Cheng, Guanhui; Huang, Guohe; Dong, Cong; Xu, Ye; Chen, Jiapei; Chen, Xiujuan; Li, Kailong
2017-03-01
As presented in the first companion paper, distributed mixed-integer fuzzy hierarchical programming (DMIFHP) was developed for municipal solid waste management (MSWM) under complexities of heterogeneities, hierarchy, discreteness, and interactions. Beijing was selected as a representative case. This paper focuses on presenting the obtained schemes and the revealed mechanisms of the Beijing MSWM system. The optimal MSWM schemes for Beijing under various solid waste treatment policies and their differences are deliberated. The impacts of facility expansion, hierarchy, and spatial heterogeneities and potential extensions of DMIFHP are also discussed. A few of findings are revealed from the results and a series of comparisons and analyses. For instance, DMIFHP is capable of robustly reflecting these complexities in MSWM systems, especially for Beijing. The optimal MSWM schemes are of fragmented patterns due to the dominant role of the proximity principle in allocating solid waste treatment resources, and they are closely related to regulated ratios of landfilling, incineration, and composting. Communities without significant differences among distances to different types of treatment facilities are more sensitive to these ratios than others. The complexities of hierarchy and heterogeneities pose significant impacts on MSWM practices. Spatial dislocation of MSW generation rates and facility capacities caused by unreasonable planning in the past may result in insufficient utilization of treatment capacities under substantial influences of transportation costs. The problems of unreasonable MSWM planning, e.g., severe imbalance among different technologies and complete vacancy of ten facilities, should be gained deliberation of the public and the municipal or local governments in Beijing. These findings are helpful for gaining insights into MSWM systems under these complexities, mitigating key challenges in the planning of these systems, improving the related management practices, and eliminating potential socio-economic and eco-environmental issues resulting from unreasonable management.
Trends in the Purchase of Surgical Care in the Community by the Veterans Health Administration.
Rosen, Amy K; O'Brien, William; Chen, Qi; Shwartz, Michael; Itani, Kamal F M; Gunnar, William
2017-07-01
The 2014 implementation of the Veterans Choice Program increased opportunities for Veterans to receive care in the community. Although surgical care is a Veterans Health Administration (VHA) priority, little is known about the types of surgeries provided in the VHA versus those referred to community care (CC), and whether Veterans are increasing their use of surgical care through CC with these additional opportunities. To examine national trends across VHA facilities in the frequencies and types of surgeries provided in the VHA and through CC, and explore the association between facilities' purchase of care with rurality and surgical complexity designation. Retrospective study using Veterans Administration (VA) outpatient and CC data from the VA's Corporate Data Warehouse (October 1, 2013-September 30, 2016). Veterans' demographics, outpatient surgeries, facility rurality, and surgical complexity. Our sample included 525,283 outpatient surgeries; 79% occurred in the VHA over the study timeframe. The proportion of CC surgeries increased from 16% in October 2013 to 29% in December 2014, and then subsequently declined, leveling off at 21% in June 2016 (trend, P<0.05). These trends varied by surgery type. Increases in CC surgeries were evident for 4 surgery types: cardiovascular, digestive, eye and ocular, and male genital surgeries (all trends, P<0.05). Rural and low-complexity facilities were more likely to purchase surgical CC than their urban and high-complexity counterparts (P<0.0001). Although the VHA remains the primary provider of surgical care for Veterans, Veterans Choice Program implementation increased Veterans' use of CC relative to the VHA for certain types of surgeries, potentially bringing challenges to the VHA in delivering and coordinating surgical care across settings.
View east from western edge of complex. Collapsed overhead conveyor ...
View east from western edge of complex. Collapsed overhead conveyor in foreground carried ganister down to the brickyard from crushing and grinding facility on the mountain. - Harbison-Walker Refractories Company, West end of Shirley Street, Mount Union, Huntingdon County, PA
76 FR 64330 - Advanced Scientific Computing Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-18
... talks on HPC Reliability, Diffusion on Complex Networks, and Reversible Software Execution Systems Report from Applied Math Workshop on Mathematics for the Analysis, Simulation, and Optimization of Complex Systems Report from ASCR-BES Workshop on Data Challenges from Next Generation Facilities Public...
2013-06-28
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, Mike Konzen of PGAV Destinations speaks to news media representatives during the opening of the 90,000-square-foot "Space Shuttle Atlantis" facility. PGAV was responsible for the "Space Shuttle Atlantis" facility design and architecture. The new $100 million facility includes interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. The "Space Shuttle Atlantis" exhibit formally opened to the public on June 29, 2013.Photo credit: NASA/Jim Grossmann
2004-09-09
KENNEDY SPACE CENTER, FLA. - A KSC employee unpacks and sorts equipment moved from the Thermal Protection System Facility (TPSF), damaged by Hurricane Frances, to a hangar and storage facility near the KSC Shuttle Landing Facility. Previously, this hangar was used to house the Space Shuttle Columbia debris. Located in Launch Complex 39, the TPSF is used to manufacture both internal and external insulation products for the Space Shuttle orbiters. The storm's path over Florida took it through Cape Canaveral and KSC property during Labor Day weekend.
2004-09-09
KENNEDY SPACE CENTER, FLA. - KSC employees check out equipment moved from the Thermal Protection System Facility (TPSF), damaged by Hurricane Frances, to a hangar and storage facility near the KSC Shuttle Landing Facility. Previously, this hangar was used to house the Space Shuttle Columbia debris. Located in Launch Complex 39, the TPSF is used to manufacture both internal and external insulation products for the Space Shuttle orbiters. The storm's path over Florida took it through Cape Canaveral and KSC property during Labor Day weekend.
2004-09-09
KENNEDY SPACE CENTER, FLA. - A KSC employee uses a fork lift to move equipment relocated from the Thermal Protection System Facility (TPSF), damaged by Hurricane Frances, inside a hangar and storage facility near the KSC Shuttle Landing Facility. Previously, this hangar was used to house the Space Shuttle Columbia debris. Located in Launch Complex 39, the TPSF is used to manufacture both internal and external insulation products for the Space Shuttle orbiters. The storm's path over Florida took it through Cape Canaveral and KSC property during Labor Day weekend.
Safety analysis report for the Waste Storage Facility. Revision 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bengston, S.J.
1994-05-01
This safety analysis report outlines the safety concerns associated with the Waste Storage Facility located in the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The three main objectives of the report are: define and document a safety basis for the Waste Storage Facility activities; demonstrate how the activities will be carried out to adequately protect the workers, public, and environment; and provide a basis for review and acceptance of the identified risk that the managers, operators, and owners will assume.
NASA Astrophysics Data System (ADS)
Theveneau, P.; Baker, R.; Barrett, R.; Beteva, A.; Bowler, M. W.; Carpentier, P.; Caserotto, H.; de Sanctis, D.; Dobias, F.; Flot, D.; Guijarro, M.; Giraud, T.; Lentini, M.; Leonard, G. A.; Mattenet, M.; McCarthy, A. A.; McSweeney, S. M.; Morawe, C.; Nanao, M.; Nurizzo, D.; Ohlsson, S.; Pernot, P.; Popov, A. N.; Round, A.; Royant, A.; Schmid, W.; Snigirev, A.; Surr, J.; Mueller-Dieckmann, C.
2013-03-01
Automation and advances in technology are the key elements in addressing the steadily increasing complexity of Macromolecular Crystallography (MX) experiments. Much of this complexity is due to the inter-and intra-crystal heterogeneity in diffraction quality often observed for crystals of multi-component macromolecular assemblies or membrane proteins. Such heterogeneity makes high-throughput sample evaluation an important and necessary tool for increasing the chances of a successful structure determination. The introduction at the ESRF of automatic sample changers in 2005 dramatically increased the number of samples that were tested for diffraction quality. This "first generation" of automation, coupled with advances in software aimed at optimising data collection strategies in MX, resulted in a three-fold increase in the number of crystal structures elucidated per year using data collected at the ESRF. In addition, sample evaluation can be further complemented using small angle scattering experiments on the newly constructed bioSAXS facility on BM29 and the micro-spectroscopy facility (ID29S). The construction of a second generation of automated facilities on the MASSIF (Massively Automated Sample Screening Integrated Facility) beam lines will build on these advances and should provide a paradigm shift in how MX experiments are carried out which will benefit the entire Structural Biology community.
Langley Aerothermodynamic Facilities Complex: Enhancements and Testing Capabilities
NASA Technical Reports Server (NTRS)
Micol, J. R.
1998-01-01
Description, capabilities, recent upgrades, and utilization of the NASA Langley Research Center (LaRC) Aerothermodynamic Facilities Complex (AFC) are presented. The AFC consists of five hypersonic, blow-down-to-vacuum wind tunnels that collectively provide a range of Mach number from 6 to 20, unit Reynolds number from 0.04 to 22 million per foot and, most importantly for blunt configurations, normal shock density ratio from 4 to 12. These wide ranges of hypersonic simulation parameters are due, in part, to the use of three different test gases (air, helium, and tetrafluoromethane), thereby making several of the facilities unique. The Complex represents nearly three-fourths of the conventional (as opposed to impulse)-type hypersonic wind tunnels operational in this country. AFC facilities are used to assess and optimize the hypersonic aerodynamic performance and aeroheating characteristics of aerospace vehicle concepts and to provide benchmark aerodynamic/aeroheating data fr generating the flight aerodynamic databook and final design of the thermal protection system (TPS) (e.g., establishment of flight limitations not to exceed TPS design limits). Modifications and enhancements of AFC hardware components and instrumentation have been pursued to increase capability, reliability, and productivity in support of programmatic goals. Examples illustrating facility utilization in recent years to generate essentially all of the experimental hypersonic aerodynamic and aeroheating information for high-priority, fast-paced Agency programs are presented. These programs include Phase I of the Reusable Launch Vehicle (RLV) Advanced Technology Demonstrator, X-33 program, PHase II of the X-33 program, X-34 program, the Hyper-X program ( a Mach 5,7, and 10 airbreathing propulsion flight experiment), and the X-38 program (Experimental Crew Return Vehicle, X-CRV). Current upgrades/enchancements and future plans for the AFC are discussed.
B Plant Complex preclosure work plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
ADLER, J.G.
1999-02-02
This preclosure work plan describes the condition of the dangerous waste treatment storage, and/or disposal (TSD) unit after completion of the B Plant Complex decommissioning Transition Phase preclosure activities. This description includes waste characteristics, waste types, locations, and associated hazards. The goal to be met by the Transition Phase preclosure activities is to place the TSD unit into a safe and environmentally secure condition for the long-term Surveillance and Maintenance (S&M) Phase of the facility decommissioning process. This preclosure work plan has been prepared in accordance with Section 8.0 of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement)more » (Ecology et al. 1996). The preclosure work plan is one of three critical Transition Phase documents, the other two being: B Plant End Points Document (WHC-SD-WM-TPP-054) and B Plant S&M plan. These documents are prepared by the U.S. Department of Energy, Richland Operations Office (DOE-RL) and its contractors with the involvement of Washington State Department of Ecology (Ecology). The tanks and vessels addressed by this preclosure work plan are limited to those tanks end vessels included on the B Plant Complex Part A, Form 3, Permit Application (DOE/RL-88-21). The criteria for determining which tanks or vessels are in the Part A, Form 3, are discussed in the following. The closure plan for the TSD unit will not be prepared until the Disposition Phase of the facility decommissioning process is initiated, which follows the long-term S&M Phase. Final closure will occur during the Disposition Phase of the facility decommissioning process. The Waste Encapsulation Storage Facility (WESF) is excluded from the scope of this preclosure work plan.« less
Reilly, Sean W; Webster, Charles Edwin; Hollis, T Keith; Valle, Henry U
2016-02-21
Development of CCC-NHC pincer Co complexes via transmetalation from Zr is reported. Formation of these air-stable Co(iii) complexes was achieved through use of a CoCl2 or Co(acac)3in situ or with a discrete CCC-NHC pincer Zr transmetallating agent. Preliminary activity in the hydroboration of styrene is reported. This facile methodology will further the development of CCC-NHC pincer first-row transition metal complexes.
Ganguly, Debabani; Zhang, Weihong; Chen, Jianhan
2013-01-01
Achieving facile specific recognition is essential for intrinsically disordered proteins (IDPs) that are involved in cellular signaling and regulation. Consideration of the physical time scales of protein folding and diffusion-limited protein-protein encounter has suggested that the frequent requirement of protein folding for specific IDP recognition could lead to kinetic bottlenecks. How IDPs overcome such potential kinetic bottlenecks to viably function in signaling and regulation in general is poorly understood. Our recent computational and experimental study of cell-cycle regulator p27 (Ganguly et al., J. Mol. Biol. (2012)) demonstrated that long-range electrostatic forces exerted on enriched charges of IDPs could accelerate protein-protein encounter via “electrostatic steering” and at the same time promote “folding-competent” encounter topologies to enhance the efficiency of IDP folding upon encounter. Here, we further investigated the coupled binding and folding mechanisms and the roles of electrostatic forces in the formation of three IDP complexes with more complex folded topologies. The surface electrostatic potentials of these complexes lack prominent features like those observed for the p27/Cdk2/cyclin A complex to directly suggest the ability of electrostatic forces to facilitate folding upon encounter. Nonetheless, similar electrostatically accelerated encounter and folding mechanisms were consistently predicted for all three complexes using topology-based coarse-grained simulations. Together with our previous analysis of charge distributions in known IDP complexes, our results support a prevalent role of electrostatic interactions in promoting efficient coupled binding and folding for facile specific recognition. These results also suggest that there is likely a co-evolution of IDP folded topology, charge characteristics, and coupled binding and folding mechanisms, driven at least partially by the need to achieve fast association kinetics for cellular signaling and regulation. PMID:24278008
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, J.; Kannan, K.; Cheng, J.
2008-11-15
Electronic shredder waste and dust from e-waste facilities, and leaves and surface soil collected in the vicinity of a large scale e-waste recycling facility in Taizhou, Eastern China, were analyzed for total dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) including 2,3,7,8-substituted congeners. We also determined PCDD/Fs in surface agricultural soils from several provinces in China for comparison with soils from e-waste facilities. Concentrations of total PCDD/Fs were high in all of the matrices analyzed and ranged from 30.9 to 11,400 pg/g for shredder waste, 3460 to 9820 pg/g dry weight for leaves, 2560 to 148,000 pg/g dry weight for workshop-floor dust, and 854more » to 10200 pg/g dry weight for soils. We also analyzed surface soils from a chemical industrial complex (a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant) in Shanghai. Concentrations of total PCDD/Fs in surface soil from the chemical industrial complex were lower than the concentrations found in soils from e-waste recycling plants, but higher than the concentrations found in agricultural soils. Agricultural soils from six cities in China contained low levels of total PCDD/Fs. Profiles of dioxin toxic equivalents (TEQs) of 2,3,7,8-PCDD/Fs in soils from e-waste facilities in Taizhou differed from the profiles found in agricultural soils. The estimated daily intakes of TEQs of PCDD/Fs via soil/dust ingestion and dermal exposure were 2 orders of magnitude higher in people at e-waste recycling facilities than in people at the chemical industrial site, implying greater health risk for humans from dioxin exposures at e-waste recycling facilities. The calculated TEQ exposures for e-waste workers from dust and soil ingestion alone were 2-3 orders of magnitude greater than the exposures from soils in reference locations. 37 refs., 1 fig., 2 tabs.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-22
... proposed change is designed to create an appropriate fee structure for Complex Orders on the Exchange. The... because it is designed to allow the Exchange to better compete with other exchanges for Complex Order flow... To Create a New Fee Structure for Complex Orders on the BOX Market LLC Options Facility May 16, 2013...
Trending Technologies for Indoor FM: Looking for "Geo" in Information
NASA Astrophysics Data System (ADS)
Gunduz, M.; Isikdag, U.; Basaraner, M.
2016-10-01
Today technological developments in the Architecture Engineering and Construction (AEC) industry provides opportunities to build huge and complex buildings and facilities. In order to operate these facilities and to meet the requirements of the occupants and also to manage energy, waste and to keep all facility services operational, several Facility Management (FM) solutions were developed. This paper starts by presenting a state of art review of research related to Indoor Facility Management Systems. Later, a textual analysis focused to identify the research trends in this field is presented in the paper. The result of the literature review and textual analysis indicates that current research in Indoor FM Systems is underestimating the role of Geoinformation, Geoinformation models and systems.
Skylab materials processing facility experiment developer's report
NASA Technical Reports Server (NTRS)
Parks, P. G.
1975-01-01
The development of the Skylab M512 Materials Processing Facility is traced from the design of a portable, self-contained electron beam welding system for terrestrial applications to the highly complex experiment system ultimately developed for three Skylab missions. The M512 experiment facility was designed to support six in-space experiments intended to explore the advantages of manufacturing materials in the near-zero-gravity environment of Earth orbit. Detailed descriptions of the M512 facility and related experiment hardware are provided, with discussions of hardware verification and man-machine interfaces included. An analysis of the operation of the facility and experiments during the three Skylab missions is presented, including discussions of the hardware performance, anomalies, and data returned to earth.
NASA Technical Reports Server (NTRS)
1983-01-01
A 20 ft vertical spin tunnel, a 30 by 60 ft tunnel, a 7 by 10 ft high speed tunnel, a 4 by 7 meter tunnel, an 8 ft transonic pressure tunnel, a transonic dynamics tunnel, a 16 ft transonic tunnel, a national transonic facility, a 0.3 meter transonic cryogenic tunnel, a unitary plan wind tunnel, a hypersonic facilities complex, an 8 ft high temperature tunnel, an aircraft noise reduction lab, an avionics integration research lab, a DC9 full workload simulator, a transport simulator, a general aviation simulator, an advanced concepts simulator, a mission oriented terminal area simulation (MOTAS), a differential maneuvering simulator, a visual/motion simulator, a vehicle antenna test facility, an impact dynamics research facility, and a flight research facility are all reviewed.
2014-09-25
CAPE CANAVERAL, Fla. – Coupled Florida East Coast Railway, or FEC, locomotives No. 433 and No. 428 pass the Vehicle Assembly Building in Launch Complex 39 at NASA’s Kennedy Space Center in Florida on their way to NASA's Locomotive Maintenance Facility. Kennedy's Center Planning and Development Directorate has enlisted the locomotives to support a Rail Vibration Test for the Canaveral Port Authority. The purpose of the test is to collect amplitude, frequency and vibration test data utilizing two Florida East Coast locomotives operating on KSC tracks to ensure that future railroad operations will not affect launch vehicle processing at the center. Buildings instrumented for the test include the Rotation Processing Surge Facility, Thermal Protection Systems Facility, Vehicle Assembly Building, Orbiter Processing Facility and Booster Fabrication Facility. Photo credit: NASA/Daniel Casper
Aerial view of Launch Complex 39
NASA Technical Reports Server (NTRS)
1998-01-01
In this aerial view looking south can be seen Launch Complex (LC) 39 area, where assembly, checkout and launch of the Space Shuttle Orbiter and its External Tank and twin Solid Rocket Boosters take place. Central to the complex is the tallest building at the center, the Vehicle Assembly Building (VAB). To the immediate left, from top to bottom, are the Orbiter Processing Facility (OPF) High Bay 3 and new engine shop (north side), OPF Modular Office Building, Thermal Protection System Facility, and a crawler-transporter (to its left). In front of the VAB are OPF 1 and OPF 2. At right is the Processing Control Center. West of OPF 3 is the Mobile Launch Platform. In the upper left corner is Launch Pad B; at the far right is the turn basin, with the Press Site located just below it to the right.
2003-05-02
KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) observatory is ready to be lowered to the ground and taken back to NASA Spacecraft Hangar AE. SIRTF will remain in the clean room at Hangar AE until it returns to the pad in early August.
2003-05-02
KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) observatory is being dismantled from atop the Delta II rocket. It will be taken back to NASA Spacecraft Hangar AE. SIRTF will remain in the clean room at Hangar AE until it returns to the pad in early August.
2003-05-02
KENNEDY SPACE CENTER, FLA. - Workers on Launch Complex 17-B, Cape Canaveral Air Force Station, start dismantling the Space Infrared Telescope Facility (SIRTF) observatory from atop the Delta II rocket. It will be taken back to NASA Spacecraft Hangar AE. SIRTF will remain in the clean room at Hangar AE until it returns to the pad in early August.
Radiation Challenges for Electronics in the Vision for Space Exploration
NASA Technical Reports Server (NTRS)
LaBel, Kenneth A.
2006-01-01
The slides present a brief snapshot discussing electronics and exploration-related challenges. Radiation effects have been the prime target, however, electronic parts reliability issues must also be considered. Modern electronics are designed with a 3-5 year lifetime. Upscreening does not improve reliability, merely determines inherent levels. Testing costs are driven by device complexity; they increase tester complexity, beam requirements, and facility choices. Commercial devices may improve performance, but are not cost panaceas. There is need for a more cost-effective access to high energy heavy ion facilities such as NSCL and NSRL. Costs for capable test equipment can run more than $1M for full testing.
2003-11-05
KENNEDY SPACE CENTER, FLA. - The Japanese Experiment Module (JEM) is moved on its workstand in the Space Station Processing Facility. The JEM will undergo pre-assembly measurements. Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stratton, Elaine
2003-01-16
Vegetation Management for the non-electric portions of the Bonneville Power Administration’s Ross Complex. BPA proposes to manage and maintain grounds and landscaping in the non-electrical portions of the Ross Facility. Vegetation management at the Facility shall include: 1) bare ground management of graveled storage areas, perimeter roads and parking areas; 2) mechanical and/or spot herbicide control of some broad leafs and noxious weeds; 3) mowing, fertilizing, and broadleaf control of landscaped lawn areas; 4) weed control in ornamental shrub areas; and 4) areas requiring only mechanical control to manage unwanted grasses, and shrubs.
Meteorological Support at the Savanna River Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Addis, Robert P.
2005-10-14
The Department of Energy (DOE) operates many nuclear facilities on large complexes across the United States in support of national defense. The operation of these many and varied facilities and processes require meteorological support for many purposes, including: for routine operations, to respond to severe weather events, such as lightning, tornadoes and hurricanes, to support the emergency response functions in the event of a release of materials to the environment, for engineering baseline and safety documentation, as well as hazards assessments etc. This paper describes a program of meteorological support to the Savannah River Site, a DOE complex located inmore » South Carolina.« less
Elzy, Pamela Smith
2016-01-01
Today's dynamic health care environment is exceedingly complex, and health care facilities across the United States are struggling to respond to changes in technology, health care reimbursement, the Affordable Care Act, and the much-anticipated nursing shortage. Mergers, acquisitions, and integrations are the current health care reality. These are proposed to increase efficiency, efficacy, quality, satisfaction, and safety while effectively reducing cost to the consumer and stabilizing the economy of the health care system. Many of these projects fail to achieve objectives, even years after the formal change in status. Clinical education departments in merged organizations are often operated in the single-facility mindset, or contain an element of the shared services model. They are not truly integrated. Development of skills in complex analysis of current state, identification of desired scope of service and expectations of performance, and articulation of the benefits of the desired future state are all essential to nursing executive practice. This article describes an experience integrating 3 legacy education departments across 21 facilities into a centralized education system. The complexity of integration activities is illustrated and outcome measures of success are discussed. Barriers, facilitators, and risks of the project are identified and evaluated.
Nonproliferation Test and Evaluation Complex - NPTEC
None
2018-01-16
The Nonproliferation Test and Evaluation Complex, or NPTEC, is the world's largest facility for open air testing of hazardous toxic materials and biological simulants. NPTEC is used for testing, experimentation, and training for technologies that require the release of toxic chemicals or biological simulants into the environment.
NASA Astrophysics Data System (ADS)
Zhou, Lin; Liu, Jihua; Wei, Shaohua; Ge, Xuefeng; Zhou, Jiahong; Yu, Boyang; Shen, Jian
2013-09-01
Many anticancer drugs have the capability to form stable complex with metal ions. Based on such property, a simple method to combine these drugs with transferrin, through the interaction between drug and Fe ion of transferrin, to improve their anticancer activity, is proposed. To demonstrate this technique, the complex of photosensitive anticancer drug hypocrellin A and transferrin was prepared by such facile method. The results indicated that the complex of hypocrellin A and transferrin can stabilize in aqueous solution. In vitro studies have demonstrated the superior cancer cell uptake ability of hypocrellin A-transferrin complex to the free hypocrellin A. Significant damage to such drug-impregnated tumor cells was observed upon irradiation and the cancer cells killing ability of hypocrellin A-transferrin was stronger than the free hypocrellin A within a certain range of concentrations. The above results demonstrated the validity and potential of our proposed strategy to prepare the drug delivery system of this type of anti-cancer drugs and transferrin.
Using Workflow Diagrams to Address Hand Hygiene in Pediatric Long-Term Care Facilities1
Carter, Eileen J.; Cohen, Bevin; Murray, Meghan T.; Saiman, Lisa; Larson, Elaine L.
2015-01-01
Hand hygiene (HH) in pediatric long-term care settings has been found to be sub-optimal. Multidisciplinary teams at three pediatric long-term care facilities developed step-by-step workflow diagrams of commonly performed tasks highlighting HH opportunities. Diagrams were validated through observation of tasks and concurrent diagram assessment. Facility teams developed six workflow diagrams that underwent 22 validation observations. Four main themes emerged: 1) diagram specificity, 2) wording and layout, 3) timing of HH indications, and 4) environmental hygiene. The development of workflow diagrams is an opportunity to identify and address the complexity of HH in pediatric long-term care facilities. PMID:25773517
Advanced Hypervelocity Aerophysics Facility Workshop
NASA Technical Reports Server (NTRS)
Witcofski, Robert D. (Compiler); Scallion, William I. (Compiler)
1989-01-01
The primary objective of the workshop was to obtain a critical assessment of a concept for a large, advanced hypervelocity ballistic range test facility powered by an electromagnetic launcher, which was proposed by the Langley Research Center. It was concluded that the subject large-scale facility was feasible and would provide the required ground-based capability for performing tests at entry flight conditions (velocity and density) on large, complex, instrumented models. It was also concluded that advances in remote measurement techniques and particularly onboard model instrumentation, light-weight model construction techniques, and model electromagnetic launcher (EML) systems must be made before any commitment for the construction of such a facility can be made.
2004-09-08
KENNEDY SPACE CENTER, FLA. - KSC employees clean up inside the second floor of the Thermal Protection System Facility damaged by Hurricane Frances. The storm's path over Florida took it through Cape Canaveral and KSC property during Labor Day weekend. Located in Launch Complex 39, the facility is used to manufacture both internal and external insulation products for the Space Shuttle orbiters.
2004-09-08
KENNEDY SPACE CENTER, FLA. - KSC workers survey the considerable damage sustained by the second floor of the Thermal Protection System Facility from Hurricane Frances. The storm's path over Florida took it through Cape Canaveral and KSC property during Labor Day weekend. Located in Launch Complex 39, the facility is used to manufacture both internal and external insulation products for the Space Shuttle orbiters.
Design Principles of an Open Agent Architecture for Web-Based Learning Community.
ERIC Educational Resources Information Center
Jin, Qun; Ma, Jianhua; Huang, Runhe; Shih, Timothy K.
A Web-based learning community involves much more than putting learning materials into a Web site. It can be seen as a complex virtual organization involved with people, facilities, and cyber-environment. Tremendous work and manpower for maintaining, upgrading, and managing facilities and the cyber-environment are required. There is presented an…
2004-09-08
KENNEDY SPACE CENTER, FLA. - KSC employees clean up inside the second floor of the Thermal Protection System Facility damaged by Hurricane Frances. The storm's path over Florida took it through Cape Canaveral and KSC property during Labor Day weekend. Located in Launch Complex 39, the facility is used to manufacture both internal and external insulation products for the Space Shuttle orbiters.
2004-09-08
KENNEDY SPACE CENTER, FLA. - KSC employees clean up inside the second floor of the Thermal Protection System Facility damaged by Hurricane Frances. The storm's path over Florida took it through Cape Canaveral and KSC property during Labor Day weekend. Located in Launch Complex 39, the facility is used to manufacture both internal and external insulation products for the Space Shuttle orbiters.
TA 55 Reinvestment Project II Phase C Update Project Status May 23, 2017
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giordano, Anthony P.
The TA-55 Reinvestment Project (TRP) II Phase C is a critical infrastructure project focused on improving safety and reliability of the Los Alamos National Laboratory (LANL) TA-55 Complex. The Project recapitalizes and revitalizes aging and obsolete facility and safety systems providing a sustainable nuclear facility for National Security Missions.
The Revolutionary Vertical Lift Technology (RVLT) Project
NASA Technical Reports Server (NTRS)
Yamauchi, Gloria K.
2018-01-01
The Revolutionary Vertical Lift Technology (RVLT) Project is one of six projects in the Advanced Air Vehicles Program (AAVP) of the NASA Aeronautics Research Mission Directorate. The overarching goal of the RVLT Project is to develop and validate tools, technologies, and concepts to overcome key barriers for vertical lift vehicles. The project vision is to enable the next generation of vertical lift vehicles with aggressive goals for efficiency, noise, and emissions, to expand current capabilities and develop new commercial markets. The RVLT Project invests in technologies that support conventional, non-conventional, and emerging vertical-lift aircraft in the very light to heavy vehicle classes. Research areas include acoustic, aeromechanics, drive systems, engines, icing, hybrid-electric systems, impact dynamics, experimental techniques, computational methods, and conceptual design. The project research is executed at NASA Ames, Glenn, and Langley Research Centers; the research extensively leverages partnerships with the US Army, the Federal Aviation Administration, industry, and academia. The primary facilities used by the project for testing of vertical-lift technologies include the 14- by 22-Ft Wind Tunnel, Icing Research Tunnel, National Full-Scale Aerodynamics Complex, 7- by 10-Ft Wind Tunnel, Rotor Test Cell, Landing and Impact Research facility, Compressor Test Facility, Drive System Test Facilities, Transonic Turbine Blade Cascade Facility, Vertical Motion Simulator, Mobile Acoustic Facility, Exterior Effects Synthesis and Simulation Lab, and the NASA Advanced Supercomputing Complex. To learn more about the RVLT Project, please stop by booth #1004 or visit their website at https://www.nasa.gov/aeroresearch/programs/aavp/rvlt.
39. CALCINER CELL PLANS. TOGETHER WITH HAER ID33C37 ILLUSTRATES COMPLEXITY ...
39. CALCINER CELL PLANS. TOGETHER WITH HAER ID-33-C-37 ILLUSTRATES COMPLEXITY OF PIPING. INEEL DRAWING NUMBER 200-0633-00-287-106445. FLUOR NUMBER 5775-CPP-633-P-50 - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID
40. CALCINER CELL SECTIONS. TOGETHER WITH HAER ID33C37 ILLUSTRATES COMPLEXITY ...
40. CALCINER CELL SECTIONS. TOGETHER WITH HAER ID-33-C-37 ILLUSTRATES COMPLEXITY OF PIPING. INEEL DRAWING NUMBER 200-0633-00-287-106446. FLUOR NUMBER 5775-CPP-P-51. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID
EFFECTS OF A COASTAL GOLF COMPLEX ON WATER QUALITY, PERIPHYTON, AND SEAGRASS.
The objective of this study was to determine the effects of a golf course complex on water quality, colonized periphyton and seagrass meadows in adjacent freshwater, near-coastal and wetland areas. The environmental impact of the recreational facility, which uses spray wastewater...
Nevada National Security Site Environmental Report Summary 2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wills, Cathy
This document is a summary of the full 2016 Nevada National Security Site Environmental Report (NNSSER) prepared by the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/ NFO). This summary provides an abbreviated and more readable version of the full NNSSER. NNSA/NFO prepares the NNSSER to provide the public an understanding of the environmental monitoring and compliance activities that are conducted on the Nevada National Security Site (NNSS) to protect the public and the environment from radiation hazards and from potential nonradiological impacts. It is a comprehensive report of environmental activities performed at the NNSS andmore » offsite facilities over the previous calendar year. The NNSS is currently the nation’s unique site for ongoing national security–related missions and high-risk operations. The NNSS is located about 65 miles northwest of Las Vegas. The approximately 1,360-square-mile site is one of the largest restricted access areas in the United States. It is surrounded by federal installations with strictly controlled access as well as by lands that are open to public entry. In 2016, National Security Technologies, LLC (NSTec), was the NNSS Management and Operations Contractor accountable for ensuring work was performed in compliance with environmental regulations. NNSS activities in 2016 continued to be diverse, with the primary goal to ensure that the existing U.S. stockpile of nuclear weapons remains safe and reliable. Other activities included weapons of mass destruction first responder training; the controlled release of hazardous material at the Nonproliferation Test and Evaluation Complex (NPTEC); remediation of legacy contamination sites; characterization of waste destined for the Waste Isolation Pilot Plant in Carlsbad, New Mexico, or the Idaho National Laboratory in Idaho Falls, Idaho; disposal of low-level and mixed low-level radioactive waste; and environmental research. Facilities and centers that support the National Security/Defense mission include the U1a Facility, Big Explosives Experimental Facility (BEEF), Device Assembly Facility (DAF), National Criticality Experiments Research Center (NCERC) located in the DAF, Joint Actinide Shock Physics Experimental Research (JASPER) Facility, Dense Plasma Focus (DPF) Facility located in the Los Alamos Technical Facility (LATF), and the Radiological/ Nuclear Countermeasures Test and Evaluation Complex (RNCTEC). Facilities that support the Environmental Management mission include the Area 5 Radioactive Waste Management Complex (RWMC) and the Area 3 Radioactive Waste Management Site (RWMS), which has been in cold standby since 2006.« less
Options to improve energy efficiency for educational building
NASA Astrophysics Data System (ADS)
Jahan, Mafruha
The cost of energy is a major factor that must be considered for educational facility budget planning purpose. The analysis of energy related issues and options can be complex and requires significant time and detailed effort. One way to facilitate the inclusion of energy option planning in facility planning efforts is to utilize a tool that allows for quick appraisal of the facility energy profile. Once such an appraisal is accomplished, it is then possible to rank energy improvement options consistently with other facility needs and requirements. After an energy efficiency option has been determined to have meaningful value in comparison with other facility planning options, it is then possible to utilize the initial appraisal as the basis for an expanded consideration of additional facility and energy use detail using the same analytic system used for the initial appraisal. This thesis has developed a methodology and an associated analytic model to assist in these tasks and thereby improve the energy efficiency of educational facilities. A detailed energy efficiency and analysis tool is described that utilizes specific university building characteristics such as size, architecture, envelop, lighting, occupancy, thermal design which allows reducing the annual energy consumption. Improving the energy efficiency of various aspects of an educational building's energy performance can be complex and can require significant time and experience to make decisions. The approach developed in this thesis initially assesses the energy design for a university building. This initial appraisal is intended to assist administrators in assessing the potential value of energy efficiency options for their particular facility. Subsequently this scoping design can then be extended as another stage of the model by local facility or planning personnel to add more details and engineering aspects to the initial screening model. This approach can assist university planning efforts to identify the most cost effective combinations of energy efficiency strategies. The model analyzes and compares the payback periods of all proposed Energy Performance Measures (EPMs) to determine which has the greatest potential value.
Oak Ridge Reservation Physical Characteristics and Natural Resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parr, P.D.; Hughes, J.F.
The topography, geology, hydrology, vegetation, and wildlife of the Oak Ridge Reservation (ORR) provide a complex and intricate array of resources that directly impact land stewardship and use decisions (Fig. 1). The purpose of this document is to consolidate general information regarding the natural resources and physical characteristics of the ORR. The ORR, encompassing 33,114 acres (13,401 ha) of federally owned land and three Department of Energy (DOE) installations, is located in Roane and Anderson Counties in east Tennessee, mostly within the corporate limits of the city of Oak Ridge and southwest of the population center of Oak Ridge. Themore » ORR is bordered on the north and east by the population center of the city of Oak Ridge and on the south and west by the Clinch River/Melton Hill Lake impoundment. All areas of the ORR are relatively pristine when compared with the surrounding region, especially in the Valley and Ridge Physiographic Province (Fig. 2). From the air, the ORR is clearly a large and nearly continuous island of forest within a landscape that is fragmented by urban development and agriculture. Satellite imagery from 2006 was used to develop a land-use/land-cover cover map of the ORR and surrounding lands (Fig. 3). Following the acquisition of the land comprising the ORR in the early 1940s, much of the Reservation served as a buffer for the three primary facilities: the X-10 nuclear research facility (now known as the Oak Ridge National Laboratory [ORNL]), the first uranium enrichment facility or Y-12 (now known as the Y-12 National Security Complex [Y-12 Complex]), and a gaseous diffusion enrichment facility (now known as the East Tennessee Technology Park [ETTP]). Over the past 60 years, this relatively undisturbed area has evolved into a rich and diverse eastern deciduous forest ecosystem of streams and reservoirs, hardwood forests, and extensive upland mixed forests. The combination of a large land area with complex physical characteristics and diverse natural resources has provided a critical foundation for supporting DOE's environmental research mission, as well as the area in which to build leading-edge facilities.« less
Aeropropulsion facilities configuration control: Procedures manual
NASA Technical Reports Server (NTRS)
Lavelle, James J.
1990-01-01
Lewis Research Center senior management directed that the aeropropulsion facilities be put under configuration control. A Configuration Management (CM) program was established by the Facilities Management Branch of the Aeropropulsion Facilities and Experiments Division. Under the CM program, a support service contractor was engaged to staff and implement the program. The Aeronautics Directorate has over 30 facilities at Lewis of various sizes and complexities. Under the program, a Facility Baseline List (FBL) was established for each facility, listing which systems and their documents were to be placed under configuration control. A Change Control System (CCS) was established requiring that any proposed changes to FBL systems or their documents were to be processed as per the CCS. Limited access control of the FBL master drawings was implemented and an audit system established to ensure all facility changes are properly processed. This procedures manual sets forth the policy and responsibilities to ensure all key documents constituting a facilities configuration are kept current, modified as needed, and verified to reflect any proposed change. This is the essence of the CM program.
Nuclotron-Based Ion Collider Facility (nica)
NASA Astrophysics Data System (ADS)
Meshkov, I.; Sissakian, A.; Sorin, A.
2008-09-01
The project of an ion collider accelerator complex NICA that is under development at JINR is presented. The article is based on the Conceptual Design Report (CDR)1 of the NICA project delivered in January 2008. The article contains NICA facility scheme, the facility operation scenario, its elements parameters, the proposed methods of intense ion beam acceleration and achievement of the required luminosity of the collider. The symmetric mode of the collider operation is considered here and most attention is concentrated on the luminosity provision in collisions of uranium ions (nuclei).
Waste Sampling & Characterization Facility (WSCF) Complex Safety Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
MELOY, R.T.
2002-04-01
This document was prepared to analyze the Waste Sampling and Characterization Facility for safety consequences by: Determining radionuclide and highly hazardous chemical inventories; Comparing these inventories to the appropriate regulatory limits; Documenting the compliance status with respect to these limits; and Identifying the administrative controls necessary to maintain this status. The primary purpose of the Waste Sampling and Characterization Facility (WSCF) is to perform low-level radiological and chemical analyses on various types of samples taken from the Hanford Site. These analyses will support the fulfillment of federal, Washington State, and Department of Energy requirements.
One of the criteria for selecting a contractor for high-rise construction
NASA Astrophysics Data System (ADS)
Tuskaeva, Zalina; Tagirov, Timur
2018-03-01
The mechanisms for management of the building complex used and proposed to date do not always provide the required result in the assessment of the construction organization facilities. Therefore, the development of new effective methods for such an assessment is an urgent task especially in questions related to high-rise construction. The article formally sets the task of assessing the technical facilities of a construction organization. Due to the use of expert methods, the weighted values of the coefficients of local indicators for technical facilities are identified
2012-02-17
Industrial Area Construction: Located 5 miles south of Launch Complex 39, construction of the main buildings -- Operations and Checkout Building, Headquarters Building, and Central Instrumentation Facility – began in 1963. In 1992, the Space Station Processing Facility was designed and constructed for the pre-launch processing of International Space Station hardware that was flown on the space shuttle. Along with other facilities, the industrial area provides spacecraft assembly and checkout, crew training, computer and instrumentation equipment, hardware preflight testing and preparations, as well as administrative offices. Poster designed by Kennedy Space Center Graphics Department/Greg Lee. Credit: NASA
32. Photocopy of engineering drawing. NEW WHITE ROOM AND MULTISOLIDS ...
32. Photocopy of engineering drawing. NEW WHITE ROOM AND MULTISOLIDS MODIFICATIONS FOR STRETCHED TANK DELTA, LAUNCH COMPLEX 17-A: UMBILICAL MAST ELEVATIONS-REMOVAL WORK, STRUCTURAL, APRIL 1969. - Cape Canaveral Air Station, Launch Complex 17, Facility 28501, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL
26. Photocopy of engineering drawing. NEW WHITE ROOM AND MULTISOLIDS ...
26. Photocopy of engineering drawing. NEW WHITE ROOM AND MULTISOLIDS MODS FOR STRETCHED TANK DELTA LAUNCH COMPLEX 17-A, MOBILE SERVICE TOWER: SOUTH AND EAST ELEVATIONS-MODIFICATIONS, ARCHITECTURAL, APRIL 1972. - Cape Canaveral Air Station, Launch Complex 17, Facility 28416, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL
24. Photocopy of engineering drawing. NEW WHITE ROOM AND MULTISOLIDS ...
24. Photocopy of engineering drawing. NEW WHITE ROOM AND MULTISOLIDS MODS FOR STRETCHED TANK DELTA LAUNCH COMPLEX 17-A, PAD AREA: PAD AREA PLAN-MODIFICATIONS CIVIL, APRIL 1972. - Cape Canaveral Air Station, Launch Complex 17, Facility 28416, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL
33. Photocopy of engineering drawing. NEW WHITE ROOM AND MULTISOLIDS ...
33. Photocopy of engineering drawing. NEW WHITE ROOM AND MULTISOLIDS MODIFICATIONS FOR STRETCHED TANK DELTA, LAUNCH COMPLEX 17-A: PAD AREA PLAN-REMOVAL WORK, CIVIL, APRIL 1972. - Cape Canaveral Air Station, Launch Complex 17, Facility 28501, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL
27. Photocopy of engineering drawing. NEW WHITE ROOM AND MULTISOLIDS ...
27. Photocopy of engineering drawing. NEW WHITE ROOM AND MULTISOLIDS MODS FOR STRETCHED TANK DELTA LAUNCH COMPLEX 17-A, MOBILE SERVICE TOWER: NORTH AND WEST ELEVATIONS-MODIFICATIONS, ARCHITECTURAL, APRIL 1972. - Cape Canaveral Air Station, Launch Complex 17, Facility 28416, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL
3. CONTEXT VIEW OF GARAGE COMPLEX AT SOUTHEAST END OF ...
3. CONTEXT VIEW OF GARAGE COMPLEX AT SOUTHEAST END OF OPERATOR' CAMP SHOWING MECHANIC'S GARAGE NO. 48 AT LEFT, 4-CAR GARAGE AT CENTER, AND 3-CAR GARAGE AT RIGHT. VIEW TO NORTH-NORTHWEST - Holter Hydroelectric Facility, End of Holter Dam Road, Wolf Creek, Lewis and Clark County, MT
1. CONTEXT VIEW OF GARAGE COMPLEX AT SOUTHEAST END OF ...
1. CONTEXT VIEW OF GARAGE COMPLEX AT SOUTHEAST END OF OPERATOR'S CAMP SHOWING MECHANIC'S GARAGE AT RIGHT, 4-CAR GARAGE AT CENTER, AND 3-CAR GARAGE AT LEFT. VIEW TO SOUTHEAST. - Holter Hydroelectric Facility, End of Holter Dam Road, Wolf Creek, Lewis and Clark County, MT
2. CONTEXT VIEW OF GARAGE COMPLEX AT SOUTHEAST END OF ...
2. CONTEXT VIEW OF GARAGE COMPLEX AT SOUTHEAST END OF OPERATOR'S CAMP SHOWING MECHANIC'S GARAGE AT RIGHT, 4-CAR GARAGE AT CENTER, AND 3-CAR GARAGE AT LEFT. VIEW TO SOUTHWEST. - Holter Hydroelectric Facility, End of Holter Dam Road, Wolf Creek, Lewis and Clark County, MT
Complexity Science and the Dynamics of Climate and Communication: Reducing Nursing Home Turnover
ERIC Educational Resources Information Center
Anderson, Ruth A.; Corazzini, Kirsten N.; McDaniel, Reuben R., Jr.
2004-01-01
Purpose: Turnover in nursing homes is a widespread problem adversely affecting care quality. Using complexity theory, we tested the effect of administrative climate, communication patterns, and the interaction between the two on turnover, controlling for facility context. Design and Methods: Perceptions of administrative climate and communication…
Burlakov, R I; Iurevich, V M
1981-01-01
The authors proved the advisability of complex technical provision for certain functional cycles, or parts of medical technological process. The example given is a modification of working place for anesthesiologist at the operating theatre. Principle and additional devices included in the complex are specified.
Laboratory simulations of the atmospheric mixed-layer in flow over complex topography
A laboratory study of the influence of complex terrain on the interface between a well-mixed boundary layer and an elevated stratified layer was conducted in the towing-tank facility of the U.S. Environmental Protection Agency. The height of the mixed layer in the daytime boundar...
Cabana Multi-User Spaceport Tour/CRS-10
2017-02-17
Robert Cabana, director of NASA’s Kennedy Space Center, accompanied news media on Friday, February 17 for a three-part tour of facilities in the Launch Complex 39 area at Kennedy. Media received an update on the transition of government facilities to the aerospace industry, and how that approach enables NASA and industry success. The tour included the Vehicle Assembly Building, where extensive work is being completed to prepare not only for NASA’s Space Launch System, but also enables members of the aerospace industry to use the facility between NASA missions. The tour completed at Boeing’s Commercial Crew and Cargo Processing Facility, previously a shuttle processing facility, where the company is manufacturing its Starliner spacecraft for flight tests and ultimately crew rotation missions with NASA’s Commercial Crew Program.
A Space Station tethered orbital refueling facility
NASA Technical Reports Server (NTRS)
Fester, D. A.; Rudolph, L. K.; Kiefel, E. R.
1985-01-01
A planned function of the Space Station is to refurbish and refuel an advanced space-based LO2/LH2 orbit transfer vehicle. An alternative to propellant storage at the station is to use a remote facility tied to the station with a long tether. Preliminary design of such a facility is described with emphasis on fluid transfer and storage requirements. Using tether lengths of at least 300 ft, gravity gradient forces will dominate surface tension in such a system. Although gravity driven transfer is difficult because of line pressure drops, fluid settling over the tank outlet greatly alleviates acquisition concerns and will facilitate vented tank fills. The major concern with a tethered orbital refueling facility is its considerable operational complexity including transport of the OTV to and from the facility.
ERIC Educational Resources Information Center
Filardo, Mary; Vincent, Jeffrey M.
2014-01-01
Joint use of public school facilities is a complex but manageable approach to efficiently enhancing the services and programs available to students and supporting the community use of public schools. Building upon on our 2010 paper titled "Joint Use of Public Schools: A Framework for a New Social Contract," this paper identifies the…
Facile synthesis of covalent probes to capture enzymatic intermediates during E1 enzyme catalysis.
An, Heeseon; Statsyuk, Alexander V
2016-02-11
We report a facile synthetic strategy to prepare UBL-AMP electrophilic probes that form a covalent bond with the catalytic cysteine of cognate E1s, mimicking the tetrahedral intermediate of the E1-UBL-AMP complex. These probes enable the structural and biochemical study of both canonical- and non-canonical E1s.
2012-09-05
CAPE CANAVERAL, Fla. – Cheryl Hurst, director of Education and External Relations at NASA's Kennedy Space Center, speaks during a ceremony marking the placement of a steel beam at the highest point of a new exhibit facility under construction at the Kennedy Space Center Visitor Complex. The 90,000-square-foot facility will house space shuttle Atlantis and 62 shuttle program exhibits. Photo credit: NASA/Kim Shiflett
Dahlkvist, Eva; Hartig, Terry; Nilsson, Annika; Högberg, Hans; Skovdahl, Kirsti; Engström, Maria
2016-09-01
To test the relationship between greenery in gardens at residential facilities for older people and the self-perceived health of residents, mediated by experiences of being away and fascination when in the garden and the frequency of visitation there. To examine how these indirect effects vary with the number of physical barriers to visiting the garden. Many older people in residential facilities suffer from complex health problems. Access to a green outdoor environment may enable psychological distance, engage effortless attention, encourage more frequent visitation and promote resident health. A multi-level, cross-sectional, correlational design. Questionnaires were administered June-August, 2011 to convenience samples of residents at 72 facilities for older people with complex healthcare needs. One to 10 eligible residents were sampled during self-motivated garden visits at each facility (n = 290). They reported on their garden experiences and health. Facility staff reported on objective garden characteristics and barriers to access. A serial mediation model was tested with multiple linear regression analysis. The total indirect effect of greenery on self-perceived health was positive and significant. Garden greenery appears to affect health by enhancing a sense of being away, affording possibilities to experience the outdoor environment as interesting and encouraging visitation. Among residents in homes with multiple barriers, only fascination mediated the relationship between greenery and self-perceived health. Ample greenery in outdoor space at residential facilities for older people appears to promote experiences of being away and fascination, more frequent visitation and better health. © 2016 The Authors. Journal of Advanced Nursing Published by John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Lee, Katharine K.; Davis, Thomas J.; Levin, Kerry M.; Rowe, Dennis W.
2001-01-01
The Traffic Management Advisor (TMA) is a decision-support tool for traffic managers and air traffic controllers that provides traffic flow visualization and other flow management tools. TMA creates an efficiently sequenced and safely spaced schedule for arrival traffic that meets but does not exceed specified airspace system constraints. TMA is being deployed at selected facilities throughout the National Airspace System in the US as part of the FAA's Free Flight Phase 1 program. TMA development and testing, and its current deployment, focuses on managing the arrival capacity for single major airports within single terminal areas and single en route centers. The next phase of development for this technology is the expansion of the TMA capability to complex facilities in which a terminal area or airport is fed by multiple en route centers, thus creating a multicenter TMA functionality. The focus of the multi-center TMA (McTMA) development is on the busy facilities in the Northeast comdor of the US. This paper describes the planning and development of McTMA and the challenges associated with adapting a successful traffic flow management tool for a very complex airspace.
2009-12-11
CAPE CANAVERAL, Fla. - Trenches are prepared to support the walls of the Propellants North Administrative and Maintenance Facility in Launch Complex 39 at NASA's Kennedy Space Center in Florida. The facility will have a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy adjacent to an 1,800-square-foot single-story shop to store cryogenic fuel transfer equipment. The new facility will feature high-efficiency roofs and walls, “Cool Dry Quiet” air conditioning with energy recovery technology, efficient lighting, and other sustainable features. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design, or LEED, Platinum certification. If successful, Propellants North will be the first Kennedy facility to achieve this highest of LEED ratings after it is completed in the summer of 2010. The facility was designed for NASA by Jones Edmunds and Associates. Photo credit: NASA/Jim Grossmann
2009-12-11
CAPE CANAVERAL, Fla. - Construction of the Propellants North Administrative and Maintenance Facility begins in Launch Complex 39 at NASA's Kennedy Space Center in Florida. The facility will have a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy adjacent to an 1,800-square-foot single-story shop to store cryogenic fuel transfer equipment. The new facility will feature high-efficiency roofs and walls, “Cool Dry Quiet” air conditioning with energy recovery technology, efficient lighting, and other sustainable features. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design, or LEED, Platinum certification. If successful, Propellants North will be the first Kennedy facility to achieve this highest of LEED ratings after it is completed in the summer of 2010. The facility was designed for NASA by Jones Edmunds and Associates. Photo credit: NASA/Jim Grossmann
Improving the explanation capabilities of advisory systems
NASA Technical Reports Server (NTRS)
Porter, Bruce; Souther, Art
1993-01-01
A major limitation of current advisory systems (e.g., intelligent tutoring systems and expert systems) is their restricted ability to give explanations. The goal of our research is to develop and evaluate a flexible explanation facility, one that can dynamically generate responses to questions not anticipated by the system's designers and that can tailor these responses to individual users. To achieve this flexibility, we are developing a large knowledge base, a viewpoint construction facility, and a modeling facility. In the long term we plan to build and evaluate advisory systems with flexible explanation facilities for scientists in numerous domains. In the short term, we are focusing on a single complex domain in biological science, and we are working toward two important milestones: (1) building and evaluating an advisory system with a flexible explanation facility for freshman-level students studying biology; and (2) developing general methods and tools for building similar explanation facilities in other domains.
Improving the explanation capabilities of advisory systems
NASA Technical Reports Server (NTRS)
Porter, Bruce; Souther, Art
1994-01-01
A major limitation of current advisory systems (e.g., intelligent tutoring systems and expert systems) is their restricted ability to give explanations. The goal of our research is to develop and evaluate a flexible explanation facility, one that can dynamically generate responses to questions not anticipated by the system's designers and that can tailor these responses to individual users. To achieve this flexibility, we are developing a large knowledge base, a viewpoint construction facility, and a modeling facility. In the long term we plan to build and evaluate advisory systems with flexible explanation facilities for scientists in numerous domains. In the short term, we are focusing on a single complex domain in biological science, and we are working toward two important milestones: (1) building and evaluating an advisory system with a flexible explanation facility for freshman-level students studying biology, and (2) developing general methods and tools for building similar explanation facilities in other domains.
Concept definition study for an extremely large aerophysics range facility
NASA Technical Reports Server (NTRS)
Swift, H.; Witcofski, R.
1992-01-01
The development of a large aerophysical ballistic range facility is considered to study large-scale hypersonic flows at high Reynolds numbers for complex shapes. A two-stage light gas gun is considered for the hypervelocity launcher, and the extensive range tankage is discussed with respect to blast suppression, model disposition, and the sabot impact tank. A layout is given for the large aerophysics facility, and illustrations are provided for key elements such as the guide rail. The paper shows that such a facility could be used to launch models with diameters approaching 250 mm at velocities of 6.5 km/s with peak achievable accelerations of not more than 85.0 kgs. The envisioned range would provide gas-flow facilities capable of controlling the modeled quiescent atmospheric conditions. The facility is argued to be a feasible and important step in the investigation and experiment of such hypersonic vehicles as the National Aerospace Plane.
Improvement Plans of Fermilab’s Proton Accelerator Complex
NASA Astrophysics Data System (ADS)
Shiltsev, Vladimir
2017-09-01
The flagship of Fermilab’s long term research program is the Deep Underground Neutrino Experiment (DUNE), located Sanford Underground Research Facility (SURF) in Lead, South Dakota, which will study neutrino oscillations with a baseline of 1300 km. The neutrinos will be produced in the Long Baseline Neutrino Facility (LBNF), a proposed new beam line from Fermilab’s Main Injector. The physics goals of the DUNE require a proton beam with a power of some 2.4 MW at 120 GeV, which is roughly four times the current maximum power. Here I discuss current performance of the Fermilab proton accelerator complex, our plans for construction of the SRF proton linac as key part of the Proton Improvement Plan-II (PIP-II), outline the main challenges toward multi-MW beam power operation of the Fermilab accelerator complex and the staged plan to achieve the required performance over the next 15 years.
Advanced Post-Irradiation Examination Capabilities Alternatives Analysis Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeff Bryan; Bill Landman; Porter Hill
2012-12-01
An alternatives analysis was performed for the Advanced Post-Irradiation Capabilities (APIEC) project in accordance with the U.S. Department of Energy (DOE) Order DOE O 413.3B, “Program and Project Management for the Acquisition of Capital Assets”. The Alternatives Analysis considered six major alternatives: ? No Action ? Modify Existing DOE Facilities – capabilities distributed among multiple locations ? Modify Existing DOE Facilities – capabilities consolidated at a few locations ? Construct New Facility ? Commercial Partnership ? International Partnerships Based on the alternatives analysis documented herein, it is recommended to DOE that the advanced post-irradiation examination capabilities be provided by amore » new facility constructed at the Materials and Fuels Complex at the Idaho National Laboratory.« less
2011-01-20
CAPE CANAVERAL, Fla. -- NASA's Kennedy Space Center in Florida hosts a ribbon-cutting ceremony for the space agency's most environmentally friendly facility, the Propellants North Administrative and Maintenance Facility in Kennedy's Launch Complex 39 area. Propellants North consists of two buildings, one to store cryogenic fuel transfer equipment and one to house personnel who support fueling spacecraft. The recently rebuilt buildings will be NASA's first carbon neutral facility, which means it will produce enough energy on site from renewable sources to offset what it requires to operate. The facility also will reach for the U.S. Green Building Council's Leadership in Environmental and Energy Design (LEED) Platinum status, which is the highest LEED rating. Photo credit: NASA/Kim Shiflett
NASA Astrophysics Data System (ADS)
Hoang, Tuan L.; Nazarov, Roman; Kang, Changwoo; Fan, Jiangyuan
2018-07-01
Under the multi-ion irradiation conditions present in accelerated material-testing facilities or fission/fusion nuclear reactors, the combined effects of atomic displacements with radiation products may induce complex synergies in the structural materials. However, limited access to multi-ion irradiation facilities and the lack of computational models capable of simulating the evolution of complex defects and their synergies make it difficult to understand the actual physical processes taking place in the materials under these extreme conditions. In this paper, we propose the application of pulsed single/dual-beam irradiation as replacements for the expensive steady triple-beam irradiation to study radiation damages in materials under multi-ion irradiation.
10. AERIAL VIEW LOOKING NORTHWEST AT THE 400AREA COMPLEX. THIS ...
10. AERIAL VIEW LOOKING NORTHWEST AT THE 400-AREA COMPLEX. THIS AREA OF THE PLANT MANUFACTURED NON-PLUTONIUM WEAPONS COMPONENTS FROM BERYLLIUM, DEPLETED URANIUM, AND STAINLESS STEEL. THE 400 - AREA ALSO INCLUDED A FACILITY FOR THE MODIFICATION OF SAFE SECURE TRANSPORT VEHICLES FOR SPECIAL NUCLEAR MATERIALS BEING SHIPPED TO AND FROM THE SITE. BUILDING 444, IN THE UPPER RIGHT EDGE OF THE PHOTOGRAPH, WAS THE ORIGINAL PLANT A. THE LARGE BUILDING IN THE TOP OF THE PHOTOGRAPH IS BUILDING 460, BUILT AS A STATE-OF-THE-ART STAINLESS STEEL MANUFACTURING FACILITY (6/27/95). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO
Close to real life. [solving for transonic flow about lifting airfoils using supercomputers
NASA Technical Reports Server (NTRS)
Peterson, Victor L.; Bailey, F. Ron
1988-01-01
NASA's Numerical Aerodynamic Simulation (NAS) facility for CFD modeling of highly complex aerodynamic flows employs as its basic hardware two Cray-2s, an ETA-10 Model Q, an Amdahl 5880 mainframe computer that furnishes both support processing and access to 300 Gbytes of disk storage, several minicomputers and superminicomputers, and a Thinking Machines 16,000-device 'connection machine' processor. NAS, which was the first supercomputer facility to standardize operating-system and communication software on all processors, has done important Space Shuttle aerodynamics simulations and will be critical to the configurational refinement of the National Aerospace Plane and its intergrated powerplant, which will involve complex, high temperature reactive gasdynamic computations.
2003-05-02
KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) observatory is moved toward the outside of the launch tower. It will be lowered and taken back to NASA Spacecraft Hangar AE. SIRTF will remain in the clean room at Hangar AE until it returns to the pad in early August.
2012-04-17
CAPE CANAVERAL, Fla. – This aerial view over NASA’s Kennedy Space Center in Florida reveals a new road winding its way from Space Commerce Way, in the foreground, past the construction site for the new Exploration Park, to the Space Life Sciences Laboratory SLSL. At right is Kennedy’s Industrial Area. Spanning the background is the Atlantic Ocean. In the distance, the facilities in Launch Complex 39 are, from left, the Vehicle Assembly Building, Pad 39B, Pad 39A, and Space Launch Complex-41 on Cape Canaveral Air Force Station. The land was cleared for the first phase of construction following the park’s groundbreaking in June 2010. The park encompasses 60 acres just outside Kennedy’s security gates near the Kennedy Space Center Visitor Complex. Exploration Park is designed to be a strategically located complex, adjacent to the SLSL, for servicing diverse tenants and uses that will engage in activities to support the space-related activities of NASA, other government agencies and the U.S. commercial space industry, as well as attract new aerospace work to the Space Coast. Its nine sustainable, state-of-the-art buildings will include educational, office, research and laboratory, and high-bay facilities and provide 350,000-square feet of work space. Each building is expected to qualify for the U.S. Green Building Council’s Leadership in Environmental and Energy Design LEED certification. The SLSL will be the anchor facility for the park. Photo credit: NASA/Glenn Benson
Cohen, Deborah A; Sehgal, Amber; Williamson, Stephanie; Marsh, Terry; Golinelli, Daniela; McKenzie, Thomas L
2009-01-01
It is assumed that higher quality recreation facilities promote physical activity and serve communities better. We tested this assumption by comparing changes in the use of an expanded and renovated skate park (a facility for skateboarding) and a modernized senior citizen's center to two similar facilities that were not refurbished. The skate park was nearly tripled in size, and the senior center was remodeled and received new exercise equipment, a courtyard garden, and modern architectural features. We assessed use of these facilities through direct observation and surveyed both facility users and residents living within 2 miles of each facility. We found that making improvements to facilities alone will not always guarantee increased use. Although there was a 510% increase in use of the expanded skate park compared to a 77% increase in the comparison skate park, the senior center had substantially fewer users and provided fewer hours of exercise classes and other programmed activities after the facility was renovated. The implication of our study is that use results from a complex equation that includes not only higher quality recreation facilities but also progamming, staffing, fees, hours of operation, marketing, outreach, and perhaps a host of other human factors.
Commissioning for the European XFEL facility
NASA Astrophysics Data System (ADS)
Nölle, D.
2017-06-01
The European XFEL is a 4th generation light source based on the Self Amplified Spontaneous Emission (SASE) FreeElectron-Laser concept. It is currently being commissioned in North- Germany. The core installation is a 17.5 GeV superconducting accelerator driving 3 SASE lines with photon energies from 1 to beyond 20 keV range with a maximum of 27.000 pulses per second. The international facility is organized as a limited liability company with shareholders from the contributing countries. DESY has taken over the leadership of the accelerator construction consortium, and will be in charge of the operation of the accelerator complex. The facility was set up with contributions from the 11 shareholder countries, either being hardware systems and/or staff or cash contributions. The construction is almost complete, and the commissioning phase has started by the end of 2015. This contribution will report the status of the accelerator complex with emphasis on the commissioning of the accelerator and an outlook to the commissioning of the SASE 1 FEL line.
NASA Astrophysics Data System (ADS)
Obracaj, Piotr; Fabianowski, Dariusz
2017-10-01
Implementations concerning adaptation of historic facilities for public utility objects are associated with the necessity of solving many complex, often conflicting expectations of future users. This mainly concerns the function that includes construction, technology and aesthetic issues. The list of issues is completed with proper protection of historic values, different in each case. The procedure leading to obtaining the expected solution is a multicriteria procedure, usually difficult to accurately define and requiring designer’s large experience. An innovative approach has been used for the analysis, namely - the modified EA FAHP (Extent Analysis Fuzzy Analytic Hierarchy Process) Chang’s method of a multicriteria analysis for the assessment of complex functional and spatial issues. Selection of optimal spatial form of an adapted historic building intended for the multi-functional public utility facility was analysed. The assumed functional flexibility was determined in the scope of: education, conference, and chamber spectacles, such as drama, concerts, in different stage-audience layouts.
Air-flow distortion and turbulence statistics near an animal facility
NASA Astrophysics Data System (ADS)
Prueger, J. H.; Eichinger, W. E.; Hipps, L. E.; Hatfield, J. L.; Cooper, D. I.
The emission and dispersion of particulates and gases from concentrated animal feeding operations (CAFO) at local to regional scales is a current issue in science and society. The transport of particulates, odors and toxic chemical species from the source into the local and eventually regional atmosphere is largely determined by turbulence. Any models that attempt to simulate the dispersion of particles must either specify or assume various statistical properties of the turbulence field. Statistical properties of turbulence are well documented for idealized boundary layers above uniform surfaces. However, an animal production facility is a complex surface with structures that act as bluff bodies that distort the turbulence intensity near the buildings. As a result, the initial release and subsequent dispersion of effluents in the region near a facility will be affected by the complex nature of the surface. Previous Lidar studies of plume dispersion over the facility used in this study indicated that plumes move in complex yet organized patterns that would not be explained by the properties of turbulence generally assumed in models. The objective of this study was to characterize the near-surface turbulence statistics in the flow field around an array of animal confinement buildings. Eddy covariance towers were erected in the upwind, within the building array and downwind regions of the flow field. Substantial changes in turbulence intensity statistics and turbulence-kinetic energy (TKE) were observed as the mean wind flow encountered the building structures. Spectra analysis demonstrated unique distribution of the spectral energy in the vertical profile above the buildings.
NASA Technical Reports Server (NTRS)
Fretter, E. F. (Editor); Kuhns, Jay (Editor); Nuez, Jay (Editor)
2003-01-01
The Ames Arc Jet Complex has a rich heritage of over 40 years in Thermal Protection System (TPS) development for every NASA Space Transportation and Planetary program, including Apollo, Space Shuttle, Viking, Pioneer-Venus, Galileo, Mars Pathfinder,Stardust, NASP,X-33,X-34,SHARP-B1 and B2,X-37 and Mars Exploration Rovers. With this early TPS history came a long heritage in the development of the arc jet facilities. These are used to simulate the aerodynamic heating that occurs on the nose cap, wing leading edges and on other areas of the spacecraft requiring thermal protection. TPS samples have been run in the arc jets from a few minutes to over an hour,from one exposure to multiple exposures of the same sample, in order t o understand the TPS materials response to a hot gas flow environment (representative of real hyperthermal environments experienced in flight). The Ames Arc l e t Complex is a key enabler for customers involved in the three major areas of TPS development: selection, validation, and qualification. The arc jet data are critical for validating TPS thermal models, heat shield designs and repairs, and ultimately for flight qualification.
NASA Astrophysics Data System (ADS)
Vasilkin, Andrey
2018-03-01
The more designing solutions at the search stage for design for high-rise buildings can be synthesized by the engineer, the more likely that the final adopted version will be the most efficient and economical. However, in modern market conditions, taking into account the complexity and responsibility of high-rise buildings the designer does not have the necessary time to develop, analyze and compare any significant number of options. To solve this problem, it is expedient to use the high potential of computer-aided designing. To implement automated search for design solutions, it is proposed to develop the computing facilities, the application of which will significantly increase the productivity of the designer and reduce the complexity of designing. Methods of structural and parametric optimization have been adopted as the basis of the computing facilities. Their efficiency in the synthesis of design solutions is shown, also the schemes, that illustrate and explain the introduction of structural optimization in the traditional design of steel frames, are constructed. To solve the problem of synthesis and comparison of design solutions for steel frames, it is proposed to develop the computing facilities that significantly reduces the complexity of search designing and based on the use of methods of structural and parametric optimization.
Chen, Peter P.-Y.; Yang, Richard B.-G.; Lee, Jason C.-M.; Chan, Sunney I.
2007-01-01
Two trinuclear copper [CuICuICuI(L)]1+ complexes have been prepared with the multidentate ligands (L) 3,3′-(1,4-diazepane-1,4-diyl)bis(1-((2-(dimethylamino)ethyl)(methyl)amino)propan-2-ol) (7-Me) and (3,3′-(1,4-diazepane-1,4-diyl)bis(1-((2-(diethylamino) ethyl)(ethyl) amino)propan-2-ol) (7-Et) as models for the active site of the particulate methane monooxygenase (pMMO). The ligands were designed to form the proper spatial and electronic geometry to harness a “singlet oxene,” according to the mechanism previously suggested by our laboratory. Consistent with the design strategy, both [CuICuICuI(L)]1+ reacted with dioxygen to form a putative bis(μ3-oxo)CuIICuIICuIII species, capable of facile O-atom insertion across the central CC bond of benzil and 2,3-butanedione at ambient temperature and pressure. These complexes also catalyze facile O-atom transfer to the CH bond of CH3CN to form glycolonitrile. These results, together with our recent biochemical studies on pMMO, provide support for our hypothesis that the hydroxylation site of pMMO contains a trinuclear copper cluster that mediates CH bond activation by a singlet oxene mechanism. PMID:17804786
25. Photocopy of engineering drawing. NEW WHITE ROOM AND MULTISOLIDS ...
25. Photocopy of engineering drawing. NEW WHITE ROOM AND MULTISOLIDS MODS FOR STRETCHED TANK DELTA LAUNCH COMPLEX 17-A, PAD AREA: PLAN-RAIL BEAMS AND HURRICANE ANCHOR FOUNDATIONS, STRUCTURAL, APRIL 1972. - Cape Canaveral Air Station, Launch Complex 17, Facility 28416, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL
The Paul A. Elsner Library and High Technology Complex--A Place for Learning.
ERIC Educational Resources Information Center
Moore, Chas. T., Jr.; Sugiyama, Kaoru K.
2001-01-01
Discusses the new Paul A. Elsner Library and High Technology Complex at Mesa Community College in Mesa, Arizona. Describes six planning goals for the facility, including access, integration of services, academic linkages, college services, district-wide services, and linkages with the community. Reports that the library offers faculty support…
The Urban Complex in Cattolica, Italy.
ERIC Educational Resources Information Center
PEB Exchange, 2003
2003-01-01
The Italian city of Cattolica has developed an urban complex, the Piazza della Repubblica, that offers a wide range of public services. In renovated facilities it provides a modern architectural setting based on the idea of a traditional town square. It houses a primary school, cultural center (including a library), and theater, and it is an…
Improved understanding of protein complex offers insight into DNA
replication - through its crystal structure offers new insight into fundamental mechanisms of DNA replication Advanced Photon Source (APS), a U.S. Department of Energy User Facility based at Argonne National Laboratory, to obtain the first atomic-level resolution picture of this complex. The structure shows that
Mendoza-Espinosa, Daniel; Donnadieu, Bruno
2011-01-01
A series of bimetallic complexes supported by a 4-phosphino substituted NHC ligand have been synthesized. The use of the stable ligand reduces the number of synthetic steps and allows for a wide range of metal combinations. PMID:21322115
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becthel Jacobs Company LLC
2002-11-01
The Y-12 National Security Complex (Y-12 Complex) is an active manufacturing and developmental engineering facility that is located on the U.S. Department of Energy (DOE) Oak Ridge Reservation. Building 9201-2 was one of the first process buildings constructed at the Y-12 Complex. Construction involved relocating and straightening of the Upper East Fork Poplar Creek (UEFPC) channel, adding large quantities of fill material to level areas along the creek, and pumping of concrete into sinkholes and solution cavities present within the limestone bedrock. Flow from a large natural spring designated as ''Big Spring'' on the original 1943 Stone & Webster Buildingmore » 9201-2 Field Sketch FS6003 was captured and directed to UEFPC through a drainpipe designated Outfall 51. The building was used from 1953 to 1955 for pilot plant operations for an industrial process that involved the use of large quantities of elemental mercury. Past operations at the Y-12 Complex led to the release of mercury to the environment. Significant environmental media at the site were contaminated by accidental releases of mercury from the building process facilities piping and sumps associated with Y-12 Complex mercury handling facilities. Releases to the soil surrounding the buildings have resulted in significant levels of mercury in these areas of contamination, which is ultimately transported to UEFPC, its streambed, and off-site. Bechtel Jacobs Company LLC (BJC) is the DOE-Oak Ridge Operations prime contractor responsible for conducting environmental restoration activities at the Y-12 Complex. In order to mitigate the mercury being released to UEFPC, the Big Spring Water Treatment System will be designed and constructed as a Comprehensive Environmental Response, Compensation, and Liability Act action. This facility will treat the combined flow from Big Spring feeding Outfall 51 and the inflow now being processed at the East End Mercury Treatment System (EEMTS). Both discharge to UEFPC adjacent to Bldg. 9201-2. The EEMTS treats mercury-contaminated groundwater that collects in sumps in the basement of Bldg. 9201-2. A pre-design study was performed to investigate the applicability of various treatment technologies for reducing mercury discharges at Outfall 51 in support of the design of the Big Spring Water Treatment System. This document evaluates the results of the pre-design study for selection of the mercury removal technology for the treatment system.« less
Nevada National Security Site Environmental Report 2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wills
This Nevada National Security Site Environmental Report (NNSSER) was prepared to satisfy DOE Order DOE O 231.1B, “Environment, Safety and Health Reporting.” Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the National Nuclear Security Administration Nevada Field Office (NNSA/NFO) Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts. This NNSSERmore » summarizes data and compliance status for calendar year 2016 at the Nevada National Security Site (NNSS) and its two Nevada-based support facilities, the North Las Vegas Facility (NLVF) and the Remote Sensing Laboratory–Nellis (RSL-Nellis). It also addresses environmental restoration (ER) projects conducted at the Tonopah Test Range (TTR) and the Nevada Test and Training Range (NTTR). NNSA/NFO directs the management and operation of the NNSS and six sites across the nation. In addition to the NNSA itself, the six sites include two in Nevada (NLVF and RSL-Nellis) and four in other states (RSL-Andrews in Maryland, Livermore Operations in California, Los Alamos Operations in New Mexico, and Special Technologies Laboratory in California). Los Alamos, Lawrence Livermore, and Sandia National Laboratories are the principal organizations that sponsor and implement the nuclear weapons programs at the NNSS. National Security Technologies, LLC (NSTec), is the current Management and Operating contractor accountable for the successful execution of work and ensuring that work is performed in compliance with environmental regulations. The six sites all provide support to enhance the NNSS as a location for its multiple missions. The three major NNSS missions include National Security/Defense, Environmental Management, and Nondefense. The major programs that support these missions are Stockpile Stewardship and Management, Nonproliferation and Counterterrorism, Nuclear Emergency Response, Strategic Partnership Projects, Environmental Restoration, Waste Management, Conservation and Renewable Energy, Other Research and Development, and Infrastructure. The major facilities that support the programs include the U1a Facility, Big Explosives Experimental Facility (BEEF), Device Assembly Facility, Dense Plasma Focus Facility, Joint Actinide Shock Physics Experimental Research Facility, Radiological/Nuclear Countermeasures Test and Evaluation Complex, Nonproliferation Test and Evaluation Complex (NPTEC), Radiological/Nuclear Weapons of Mass Destruction Incident Exercise Site, the Area 5 Radioactive Waste Management Complex (RWMC), and the Area 3 Radioactive Waste Management Site (RWMS).« less
Factors Associated With Pupil Toilet Use in Kenyan Primary Schools
Garn, Joshua V.; Caruso, Bethany A.; Drews-Botsch, Carolyn D.; Kramer, Michael R.; Brumback, Babette A.; Rheingans, Richard D.; Freeman, Matthew C.
2014-01-01
The purpose of this study was to quantify how school sanitation conditions are associated with pupils’ use of sanitation facilities. We conducted a longitudinal assessment in 60 primary schools in Nyanza Province, Kenya, using structured observations to measure facility conditions and pupils’ use at specific facilities. We used multivariable mixed regression models to characterize how pupil to toilet ratio was associated with toilet use at the school-level and also how facility conditions were associated with pupils’ use at specific facilities. We found a piecewise linear relationship between decreasing pupil to toilet ratio and increasing pupil toilet use (p < 0.01). Our data also revealed significant associations between toilet use and newer facility age (p < 0.01), facility type (p < 0.01), and the number of toilets in a facility (p < 0.01). We found some evidence suggesting facility dirtiness may deter girls from use (p = 0.06), but not boys (p = 0.98). Our study is the first to rigorously quantify many of these relationships, and provides insight into the complexity of factors affecting pupil toilet use patterns, potentially leading to a better allocation of resources for school sanitation, and to improved health and educational outcomes for children. PMID:25233014
Factors associated with pupil toilet use in kenyan primary schools.
Garn, Joshua V; Caruso, Bethany A; Drews-Botsch, Carolyn D; Kramer, Michael R; Brumback, Babette A; Rheingans, Richard D; Freeman, Matthew C
2014-09-17
The purpose of this study was to quantify how school sanitation conditions are associated with pupils' use of sanitation facilities. We conducted a longitudinal assessment in 60 primary schools in Nyanza Province, Kenya, using structured observations to measure facility conditions and pupils' use at specific facilities. We used multivariable mixed regression models to characterize how pupil to toilet ratio was associated with toilet use at the school-level and also how facility conditions were associated with pupils' use at specific facilities. We found a piecewise linear relationship between decreasing pupil to toilet ratio and increasing pupil toilet use (p < 0.01). Our data also revealed significant associations between toilet use and newer facility age (p < 0.01), facility type (p < 0.01), and the number of toilets in a facility (p < 0.01). We found some evidence suggesting facility dirtiness may deter girls from use (p = 0.06), but not boys (p = 0.98). Our study is the first to rigorously quantify many of these relationships, and provides insight into the complexity of factors affecting pupil toilet use patterns, potentially leading to a better allocation of resources for school sanitation, and to improved health and educational outcomes for children.
Aerial photo shows RLV complex at KSC
NASA Technical Reports Server (NTRS)
2000-01-01
This closeup photo shows the Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. At right is a multi- purpose hangar and to the left is a building for related ground support equipment and administrative/ technical support. The complex is situated at the Shuttle Landing Facility. The RLV complex will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC.
A feasibility study of a hypersonic real-gas facility
NASA Technical Reports Server (NTRS)
Gully, J. H.; Driga, M. D.; Weldon, W. F.
1987-01-01
A four month feasibility study of a hypersonic real-gas free flight test facility for NASA Langley Research Center (LARC) was performed. The feasibility of using a high-energy electromagnetic launcher (EML) to accelerate complex models (lifting and nonlifting) in the hypersonic, real-gas facility was examined. Issues addressed include: design and performance of the accelerator; design and performance of the power supply; design and operation of the sabot and payload during acceleration and separation; effects of high current, magnetic fields, temperature, and stress on the sabot and payload; and survivability of payload instrumentation during acceleration, flight, and soft catch.
Measuring Clinical Productivity.
Hudson, Mark E; Lebovitz, Evan E
2018-06-01
Productivity measurements have been used to evaluate and compare physicians and physician practices. Anesthesiology is unique in that factors outside anesthesiologist control impact opportunity for revenue generation and make comparisons between providers and facilities challenging. This article uses data from the multicenter University of Pittsburgh Physicians Department of Anesthesiology to demonstrate factors influencing productivity opportunity by surgical facility, between department divisions and subspecialties within multispecialty divisions, and by individuals within divisions. The complexities of benchmarking anesthesiology productivity are demonstrated, and the potential value of creating a productivity profile for facilities and groups is illustrated. Copyright © 2018 Elsevier Inc. All rights reserved.
Photographic copy of photograph, aerial view looking down at Jet ...
Photographic copy of photograph, aerial view looking down at Jet Propulsion Laboratory, Edwards Test Station complex in 1961, with north toward the top of the view. Dd test station has been added to Test Stand 'D,' liquid nitrogen storage facility E-63 has been built, as well as several adjuncts to Test Stand 'C' behind earth barriers, such as oxidizer facility at 4263/E-64 and hydrogen tank at 4264/E-65. (JPL negative no. 384-3003-A, 12 December 1961) - Jet Propulsion Laboratory Edwards Facility, Edwards Air Force Base, Boron, Kern County, CA
2011-02-08
CAPE CANAVERAL, Fla. -- NASA's Kennedy Space Center in Florida hosts a ribbon-cutting ceremony at a new 18,500-square-foot Electrical Maintenance Facility (EMF) officially opening for business. Addressing the attendees is NASA Construction of Facility Project Manager Nick Rivieccio. Located in Kennedy's Launch Complex 39 area, the EMF will provide new and renovated space for maintenance shops, offices, and equipment and material storage in support of the electrical maintenance functions for the center. The facility is projected to receive Gold certification under the U.S. Green Building Council’s Leadership in Energy and Environmental Design (LEED) rating system. Photo credit: NASA/ Troy Cryder
Combined analysis of modeled and monitored SO2 concentrations at a complex smelting facility.
Rehbein, Peter J G; Kennedy, Michael G; Cotsman, David J; Campeau, Madonna A; Greenfield, Monika M; Annett, Melissa A; Lepage, Mike F
2014-03-01
Vale Canada Limited owns and operates a large nickel smelting facility located in Sudbury, Ontario. This is a complex facility with many sources of SO2 emissions, including a mix of source types ranging from passive building roof vents to North America's tallest stack. In addition, as this facility performs batch operations, there is significant variability in the emission rates depending on the operations that are occurring. Although SO2 emission rates for many of the sources have been measured by source testing, the reliability of these emission rates has not been tested from a dispersion modeling perspective. This facility is a significant source of SO2 in the local region, making it critical that when modeling the emissions from this facility for regulatory or other purposes, that the resulting concentrations are representative of what would actually be measured or otherwise observed. To assess the accuracy of the modeling, a detailed analysis of modeled and monitored data for SO2 at the facility was performed. A mobile SO2 monitor sampled at five locations downwind of different source groups for different wind directions resulting in a total of 168 hr of valid data that could be used for the modeled to monitored results comparison. The facility was modeled in AERMOD (American Meteorological Society/U.S. Environmental Protection Agency Regulatory Model) using site-specific meteorological data such that the modeled periods coincided with the same times as the monitored events. In addition, great effort was invested into estimating the actual SO2 emission rates that would likely be occurring during each of the monitoring events. SO2 concentrations were modeled for receptors around each monitoring location so that the modeled data could be directly compared with the monitored data. The modeled and monitored concentrations were compared and showed that there were no systematic biases in the modeled concentrations. This paper is a case study of a Combined Analysis of Modelled and Monitored Data (CAMM), which is an approach promulgated within air quality regulations in the Province of Ontario, Canada. Although combining dispersion models and monitoring data to estimate or refine estimates of source emission rates is not a new technique, this study shows how, with a high degree of rigor in the design of the monitoring and filtering of the data, it can be applied to a large industrial facility, with a variety of emission sources. The comparison of modeled and monitored SO2 concentrations in this case study also provides an illustration of the AERMOD model performance for a large industrial complex with many sources, at short time scales in comparison with monitored data. Overall, this analysis demonstrated that the AERMOD model performed well.
2010-12-21
CAPE CANAVERAL, Fla. -- The Propellants North Administrative and Maintenance Facility in the Launch Complex 39 area of NASA's Kennedy Space Center in Florida is ready for business. The environmentally friendly facility is slated to be NASA's second Platinum-rated by the U.S. Green Building Council's (USGBC) Leadership in Environmental and Energy Design (LEED) certification system. It will be the space agency's first carbon-neutral facility, which means it will produce enough energy onsite from renewable sources to offset what it requires to operate. The facility consists of a two-story administrative building, which will house managers, mechanics and technicians who fuel spacecraft at Kennedy, and a single-story shop that will be used to store cryogenic fuel transfer equipment. Photo credit: NASA/Frank Michaux
2010-12-21
CAPE CANAVERAL, Fla. -- The Propellants North Administrative and Maintenance Facility in the Launch Complex 39 area of NASA's Kennedy Space Center in Florida is ready for business. The environmentally friendly facility is slated to be NASA's second Platinum-rated by the U.S. Green Building Council's (USGBC) Leadership in Environmental and Energy Design (LEED) certification system. It will be the space agency's first carbon-neutral facility, which means it will produce enough energy onsite from renewable sources to offset what it requires to operate. The facility consists of a two-story administrative building, which will house managers, mechanics and technicians who fuel spacecraft at Kennedy, and a single-story shop that will be used to store cryogenic fuel transfer equipment. Photo credit: NASA/Frank Michaux
2010-12-17
CAPE CANAVERAL, Fla. -- Kennedy Space Center's Propellants North Administrative and Maintenance Facility with the NASA insignia glistens a shade of green in the Launch Complex 39 area. The environmentally friendly facility is slated to be NASA's second Platinum-rated by the U.S. Green Building Council's (USGBC) Leadership in Environmental and Energy Design (LEED) certification system. It will be the space agency's first carbon-neutral facility, which means it will produce enough energy onsite from renewable sources to offset what it requires to operate. Shown here is the facility's two-story administrative building, which will house managers, mechanics and technicians who fuel spacecraft at Kennedy. Next door is a single-story shop that will be used to store cryogenic fuel transfer equipment. Photo credit: NASA/Frank Michaux
2010-12-17
CAPE CANAVERAL, Fla. -- The NASA insignia glistens a shade of green on Kennedy Space Center's Propellants North Administrative and Maintenance Facility in the Launch Complex 39 area. The environmentally friendly facility is slated to be NASA's second Platinum-rated by the U.S. Green Building Council's (USGBC) Leadership in Environmental and Energy Design (LEED) certification system. It will be the space agency's first carbon-neutral facility, which means it will produce enough energy onsite from renewable sources to offset what it requires to operate. The facility consists of a two-story administrative building, which will house managers, mechanics and technicians who fuel spacecraft at Kennedy, and a single-story shop that will be used to store cryogenic fuel transfer equipment. Photo credit: NASA/Frank Michaux
2010-11-24
CAPE CANAVERAL, Fla. -- Construction begins to wrap up at the Propellants North Administrative and Maintenance Facility in the Launch Complex 39 area of NASA's Kennedy Space Center in Florida. This is the facility's two-story administrative building, which will house managers, mechanics and technicians who fuel spacecraft at Kennedy. Next door is a single-story shop that will be used to store cryogenic fuel transfer equipment. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design (LEED) Platinum certification, which is the highest of LEED ratings. The facility, set to be complete in December 2010, was designed for NASA by Jones Edmunds and Associates. H. W. Davis Construction is the construction contractor. Photo credit: NASA/Frankie Martin
2010-11-24
CAPE CANAVERAL, Fla. -- Construction begins to wrap up at the Propellants North Administrative and Maintenance Facility in the Launch Complex 39 area of NASA's Kennedy Space Center in Florida. This is the facility's two-story administrative building, which will house managers, mechanics and technicians who fuel spacecraft at Kennedy. Next door is a single-story shop that will be used to store cryogenic fuel transfer equipment. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design (LEED) Platinum certification, which is the highest of LEED ratings. The facility, set to be complete in December 2010, was designed for NASA by Jones Edmunds and Associates. H. W. Davis Construction is the construction contractor. Photo credit: NASA/Frankie Martin
2010-11-24
CAPE CANAVERAL, Fla. -- Construction begins to wrap up at the Propellants North Administrative and Maintenance Facility in the Launch Complex 39 area of NASA's Kennedy Space Center in Florida. On the left is the facility's single-story shop, which will be used to store cryogenic fuel transfer equipment. On the right is a two-story administrative building that will house managers, mechanics and technicians who fuel spacecraft at Kennedy. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design (LEED) Platinum certification, which is the highest of LEED ratings. The facility, set to be complete in December 2010, was designed for NASA by Jones Edmunds and Associates. H. W. Davis Construction is the construction contractor. Photo credit: NASA/Frankie Martin
2014-09-25
CAPE CANAVERAL, Fla. – Operations are underway to couple Florida East Coast Railway, or FEC, locomotives No. 433 and No. 428 on the track alongside the Indian River, north of Launch Complex 39 at NASA’s Kennedy Space Center in Florida. Kennedy's Center Planning and Development Directorate has enlisted the locomotives to support a Rail Vibration Test for the Canaveral Port Authority. The purpose of the test is to collect amplitude, frequency and vibration test data utilizing two Florida East Coast locomotives operating on KSC tracks to ensure that future railroad operations will not affect launch vehicle processing at the center. Buildings instrumented for the test include the Rotation Processing Surge Facility, Thermal Protection Systems Facility, Vehicle Assembly Building, Orbiter Processing Facility and Booster Fabrication Facility. Photo credit: NASA/Daniel Casper
Tethered orbital propellant depot
NASA Technical Reports Server (NTRS)
Fester, D. A.; Rudolph, L. K.; Kiefel, E. R.
1985-01-01
A planned function of the Space Station is to refurbish and refuel an advanced space-based LO2/LH2 orbit transfer vehicle. An alternative to propellant storage at the station is to use a remote facility tied to the station with a log tether. Preliminary design of such a facility is described with emphasis on fluid transfer and storage requirements. Using tether lengths of at least 300 ft, gravity gradient forces will dominate surface tension in such a system. Although gravity given transfer is difficult because of line pressure drops, fluid settling over the tank outlet greatly alleviates acquisition concerns and will facilitate vented tank fills. The major concern with a tethered orbital refueling facility is its considerable operational complexity including transport of the OTV to and from the facility.
NASA Technical Reports Server (NTRS)
Aoyagi, Kiyoshi; Olson, Lawrence E.; Peterson, Randall L.; Yamauchi, Gloria K.; Ross, James C.; Norman, Thomas R.
1987-01-01
Time-averaged aerodynamic loads are estimated for each of the vane sets in the National Full-Scale Aerodynamic Complex (NFAC). The methods used to compute global and local loads are presented. Experimental inputs used to calculate these loads are based primarily on data obtained from tests conducted in the NFAC 1/10-Scale Vane-Set Test Facility and from tests conducted in the NFAC 1/50-Scale Facility. For those vane sets located directly downstream of either the 40- by 80-ft test section or the 80- by 120-ft test section, aerodynamic loads caused by the impingement of model-generated wake vortices and model-generated jet and propeller wakes are also estimated.
2000-06-02
This closeup photo shows the Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. At right is a multi-purpose hangar and to the left is a building for related ground support equipment and administrative/ technical support. The complex is situated at the Shuttle Landing Facility. The RLV complex will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA’s Space Shuttle Program and KSC
2000-06-02
This closeup photo shows the Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. At right is a multi-purpose hangar and to the left is a building for related ground support equipment and administrative/ technical support. The complex is situated at the Shuttle Landing Facility. The RLV complex will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA’s Space Shuttle Program and KSC
Health care delivery system for long duration manned space operations
NASA Technical Reports Server (NTRS)
Logan, J. S.; Shulman, E. L.; Johnson, P. C.
1983-01-01
Specific requirements for medical support of a long-duration manned facility in a low earth orbit derive from inflight medical experience, projected medical scenarios, mission related spacecraft and environmental hazards, health maintenance, and preventive medicine. A sequential buildup of medical capabilities tailored to increasing mission complexity is proposed. The space station health maintenance facility must provide preventive, diagnostic, and therapeutic medical support as immediate rescue capability may not exist.
2003-07-23
CAPE CANAVERAL, Fla. -- This view shows much of the Launch Complex 39 Area looking north. At center is the 525-foot-tall Vehicle Assembly Building. Other buildings surrounding it are counter clockwise from left the Orbiter Processing Facility, Multi-Function Facility, Operations Support Building and Launch Control Center, next to the VAB. The crawlerway leads from the VAB toward the launch pads. In the background are the waters of the Banana Creek. Photo credit: NASA
2003-07-23
KENNEDY SPACE CENTER, FLA. – This view shows much of the Launch Complex 39 Area looking north. At center is the 525-foot-tall Vehicle Assembly Building. Other buildings surrounding it are (counter clockwise from left) the Orbiter Processing Facility, Multi-Function Facility, Operations Support Building and Launch Control Center (next to VAB). The crawlerway leads from the VAB toward the launch pads. In the background are the waters of the Banana Creek.
Heritage Park Facilities PV Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hobaica, Mark
Project Objective: To procure a photovoltaic array (PV) system which will generate approximately 256kW of power to be used for the operations of the Aquatic Complex and the adjacent Senior Facility at the Heritage Park. This project complies with the EERE’s work and objectives by promoting the development and deployment of an energy system that will provide current and future generations with clean, efficient, affordable, and reliable energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staller, G.E.; Hamilton, I.D.; Aker, M.F.
1978-02-01
A single-unit electron beam accelerator was designed, fabricated, and assembled in Sandia's Technical Area V to conduct magnetically insulated transmission experiments. Results of these experiments will be utilized in the future design of larger, more complex accelerators. This design makes optimum use of existing facilities and equipment. When designing new components, possible future applications were considered as well as compatibility with existing facilities and hardware.
86. VIEW OF LIQUID NITROGEN STORAGE FACILITY LOCATED DIRECTLY WEST ...
86. VIEW OF LIQUID NITROGEN STORAGE FACILITY LOCATED DIRECTLY WEST OF THE SLC-3W FUEL APRON. NOTE HEAT EXCHANGER IN BACKGROUND. CAMERA TOWER LOCATED DIRECTLY IN FRONT OF LIQUID NITROGEN STORAGE TANK. NITROGEN AND HELIUM GAS STORAGE TANKS AT SOUTH END OF FUEL APRON IN LOWER RIGHT CORNER. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
NASA Technical Reports Server (NTRS)
Arnold, James O.; Deiwert, George S.
1997-01-01
This paper surveys the use of aerothermodynamic facilities which have been useful in the study of external flows and propulsion aspects of hypersonic, air-breathing vehicles. While the paper is not a survey of all facilities, it covers the utility of shock tunnels and conventional hypersonic blow-down facilities which have been used for hypersonic air-breather studies. The problems confronting researchers in the field of aerothermodynamics are outlined. Results from the T5 GALCIT tunnel for the shock-on lip problem are outlined. Experiments on combustors and short expansion nozzles using the semi-free jet method have been conducted in large shock tunnels. An example which employed the NASA Ames 16-Inch shock tunnel is outlined, and the philosophy of the test technique is described. Conventional blow-down hypersonic wind tunnels are quite useful in hypersonic air-breathing studies. Results from an expansion ramp experiment, simulating the nozzle on a hypersonic air-breather from the NASA Ames 3.5 Foot Hypersonic wind tunnel are summarized. Similar work on expansion nozzles conducted in the NASA Langley hypersonic wind tunnel complex is cited. Free-jet air-frame propulsion integration and configuration stability experiments conducted at Langley in the hypersonic wind tunnel complex on a small generic model are also summarized.
Factors influencing organizational adoption and implementation of clinical genetic services.
Hamilton, Alison B; Oishi, Sabine; Yano, Elizabeth M; Gammage, Cynthia E; Marshall, Nell J; Scheuner, Maren T
2014-03-01
We sought to identify characteristics of genetic services that facilitate or hinder adoption. We conducted semi-structured key informant interviews in five clinical specialties (primary care, medical oncology, neurology, cardiology, pathology/laboratory medicine) within 13 Veterans Administration facilities. Genetic services (defined as genetic testing and consultation) were not typically characterized by informants (n = 64) as advantageous for their facilities or their patients; compatible with organizational norms of low cost and high clinical impact; or applicable to patient populations or norms of clinical care. Furthermore, genetic services had not been systematically adopted in most facilities because of their complexity: knowledge of and expertise on genetic testing was limited, and organizational barriers to utilization of genetic services were formidable. The few facilities that had some success with implementation of genetic services had knowledgeable clinicians interested in developing services and organizational-level facilitators such as accessible genetic test-ordering processes. Adoption and implementation of genetic services will require a multilevel effort that includes education of providers and administrators, opportunities for observing the benefits of genetic medicine, strategies for reducing the complexity of genomic medicine, expanded strategies for accessing genetics expertise and streamlining utilization, and resources dedicated to assessing the value of genetic information for the outcomes that matter to health-care organizations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, John Russell
The Al Tuwaitha nuclear complex near Baghdad contains a number of facilities from Saddam Hussan's nuclear weapons program. Past military operations, lack of upkeep and looting have created an enormous radioactive waste problem at the Al Tuwaitha complex, which contains various, uncharacterized radioactive wastes, yellow cake, sealed radioactive sources, and contaminated metals that must be constantly guarded. Iraq has never had a radioactive waste disposal facility and the lack of a disposal facility means that ever increasing quantities of radioactive material must be held in guarded storage. The Iraq Nuclear Facility Dismantlement and Disposal Program (the NDs Program) has beenmore » initiated by the U.S. Department of State (DOS) to assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials, while building human capacities so that the GOI can manage other environmental cleanups in their country. The DOS is funding the IAEA to provide technical assistance via Technical Cooperation projects. Program coordination will be provided by the DOS, consistent with GOI policies, and Sandia National Laboratories will be responsible for coordination of participants and waste management support. Texas Tech University will continue to provide in-country assistance, including radioactive waste characterization and the stand-up of the Iraq Nuclear Services Company. The GOI owns the problems in Iraq and will be responsible for implementation of the NDs Program.« less
Hanford Facility Dangerous Waste Permit Application for T Plant Complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
BARNES, B.M.
2002-09-01
The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, operating treatment, storage, and/or disposal units, such as the T Plant Complex (this document, DOE/RL-95-36). Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the content of the Part B permit application guidance prepared by the Washington State Department of Ecology (Ecology 1996) and the U.S. Environmental Protection Agencymore » (40 Code of Federal Regulations 270), with additional information needs defined by the Hazardous and Solid Waste Amendments and revisions of Washington Administrative Code 173-303. For ease of reference, the Washington State Department of Ecology alpha-numeric section identifiers from the permit application guidance documentation (Ecology 1996) follow, in brackets, the chapter headings and subheadings. A checklist indicating where information is contained in the T Plant Complex permit application documentation, in relation to the Washington State Department of Ecology guidance, is located in the Contents Section. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Wherever appropriate, the T Plant Complex permit application documentation makes cross-reference to the General Information Portion, rather than duplicating text.« less
ERIC Educational Resources Information Center
Nippold, Marilyn A.; Mansfield, Tracy C.; Billow, Jesse L.
2007-01-01
Purpose: Expository discourse, the use of language to convey information, requires facility with complex syntax. Although expository discourse is often employed in school and work settings, little is known about its development in children, adolescents, and adults. Hence, it is difficult to evaluate this genre in students who have language…
2010-09-20
CAPE CANAVERAL, Fla. - Workers of Superior Solar LLC in Longwood, Fla., begin to install more than 300 solar panels on the roof of the Propellants North Administrative and Maintenance Facility at NASA's Kennedy Space Center in Florida. Each panel, built in Sharp Corp.'s Memphis, Tenn., plant, will produce 235 watts of clean energy. The green facility in Kennedy's Launch Complex 39 area will have a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy adjacent to a single-story shop to store cryogenic fuel transfer equipment. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design (LEED) Platinum certification. If successful, it will be the first NASA facility to achieve this highest of LEED ratings after it is completed. The facility was designed for NASA by Jones Edmunds and Associates. H. W. Davis Construction is the construction contractor. Photo credit: NASA/Jim Grossmann
2010-09-20
CAPE CANAVERAL, Fla. - Workers of Superior Solar LLC in Longwood, Fla., begin to install more than 300 solar panels on the roof of the Propellants North Administrative and Maintenance Facility at NASA's Kennedy Space Center in Florida. Each panel, built in Sharp Corp.'s Memphis, Tenn., plant, will produce 235 watts of clean energy. The green facility in Kennedy's Launch Complex 39 area will have a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy adjacent to a single-story shop to store cryogenic fuel transfer equipment. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design (LEED) Platinum certification. If successful, it will be the first NASA facility to achieve this highest of LEED ratings after it is completed. The facility was designed for NASA by Jones Edmunds and Associates. H. W. Davis Construction is the construction contractor. Photo credit: NASA/Jim Grossmann
2010-09-20
CAPE CANAVERAL, Fla. - Workers of Superior Solar LLC in Longwood, Fla., prepare to install more than 300 solar panels on the roof of the Propellants North Administrative and Maintenance Facility at NASA's Kennedy Space Center in Florida. Each panel, built in Sharp Corp.'s Memphis, Tenn., plant, will produce 235 watts of clean energy. The green facility in Kennedy's Launch Complex 39 area will have a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy adjacent to a single-story shop to store cryogenic fuel transfer equipment. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design (LEED) Platinum certification. If successful, it will be the first NASA facility to achieve this highest of LEED ratings after it is completed. The facility was designed for NASA by Jones Edmunds and Associates. H. W. Davis Construction is the construction contractor. Photo credit: NASA/Jim Grossmann
2010-09-20
CAPE CANAVERAL, Fla. - Workers of Superior Solar LLC in Longwood, Fla., begin to install more than 300 solar panels on the roof of the Propellants North Administrative and Maintenance Facility at NASA's Kennedy Space Center in Florida. Each panel, built in Sharp Corp.'s Memphis, Tenn., plant, will produce 235 watts of clean energy. The green facility in Kennedy's Launch Complex 39 area will have a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy adjacent to a single-story shop to store cryogenic fuel transfer equipment. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design (LEED) Platinum certification. If successful, it will be the first NASA facility to achieve this highest of LEED ratings after it is completed. The facility was designed for NASA by Jones Edmunds and Associates. H. W. Davis Construction is the construction contractor. Photo credit: NASA/Jim Grossmann
C-N bond cleavage of anilines by a (salen)ruthenium(VI) nitrido complex.
Man, Wai-Lun; Xie, Jianhui; Pan, Yi; Lam, William W Y; Kwong, Hoi-Ki; Ip, Kwok-Wa; Yiu, Shek-Man; Lau, Kai-Chung; Lau, Tai-Chu
2013-04-17
We report experimental and computational studies of the facile oxidative C-N bond cleavage of anilines by a (salen)ruthenium(VI) nitrido complex. We provide evidence that the initial step involves nucleophilic attack of aniline at the nitrido ligand of the ruthenium complex, which is followed by proton and electron transfer to afford a (salen)ruthenium(II) diazonium intermediate. This intermediate then undergoes unimolecular decomposition to generate benzene and N2.
2009-12-11
CAPE CANAVERAL, Fla. - Concrete is poured into the trenches that will provide the foundation for the walls of the Propellants North Administrative and Maintenance Facility in Launch Complex 39 at NASA's Kennedy Space Center in Florida. A tilt-up construction method is being used to erect a THERMOMASS concrete wall insulation system for the facility's walls. The facility will have a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy adjacent to an 1,800-square-foot single-story shop to store cryogenic fuel transfer equipment. The new facility will feature high-efficiency roofs and walls, “Cool Dry Quiet” air conditioning with energy recovery technology, efficient lighting, and other sustainable features. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design, or LEED, Platinum certification. If successful, Propellants North will be the first Kennedy facility to achieve this highest of LEED ratings after it is completed in the summer of 2010. The facility was designed for NASA by Jones Edmunds and Associates. Photo credit: NASA/Jim Grossmann
Integration of the White Sands Complex into a Wide Area Network
NASA Technical Reports Server (NTRS)
Boucher, Phillip Larry; Horan, Sheila, B.
1996-01-01
The NASA White Sands Complex (WSC) satellite communications facility consists of two main ground stations, an auxiliary ground station, a technical support facility, and a power plant building located on White Sands Missile Range. When constructed, terrestrial communication access to these facilities was limited to copper telephone circuits. There was no local or wide area communications network capability. This project incorporated a baseband local area network (LAN) topology at WSC and connected it to NASA's wide area network using the Program Support Communications Network-Internet (PSCN-I). A campus-style LAN is configured in conformance with the International Standards Organization (ISO) Open Systems Interconnect (ISO) model. Ethernet provides the physical and data link layers. Transmission Control Protocol and Internet Protocol (TCP/IP) are used for the network and transport layers. The session, presentation, and application layers employ commercial software packages. Copper-based Ethernet collision domains are constructed in each of the primary facilities and these are interconnected by routers over optical fiber links. The network and each of its collision domains are shown to meet IEEE technical configuration guidelines. The optical fiber links are analyzed for the optical power budget and bandwidth allocation and are found to provide sufficient margin for this application. Personal computers and work stations attached to the LAN communicate with and apply a wide variety of local and remote administrative software tools. The Internet connection provides wide area network (WAN) electronic access to other NASA centers and the world wide web (WWW). The WSC network reduces and simplifies the administrative workload while providing enhanced and advanced inter-communications capabilities among White Sands Complex departments and with other NASA centers.
Modelling Pedestrian Travel Time and the Design of Facilities: A Queuing Approach
Rahman, Khalidur; Abdul Ghani, Noraida; Abdulbasah Kamil, Anton; Mustafa, Adli; Kabir Chowdhury, Md. Ahmed
2013-01-01
Pedestrian movements are the consequence of several complex and stochastic facts. The modelling of pedestrian movements and the ability to predict the travel time are useful for evaluating the performance of a pedestrian facility. However, only a few studies can be found that incorporate the design of the facility, local pedestrian body dimensions, the delay experienced by the pedestrians, and level of service to the pedestrian movements. In this paper, a queuing based analytical model is developed as a function of relevant determinants and functional factors to predict the travel time on pedestrian facilities. The model can be used to assess the overall serving rate or performance of a facility layout and correlate it to the level of service that is possible to provide the pedestrians. It has also the ability to provide a clear suggestion on the designing and sizing of pedestrian facilities. The model is empirically validated and is found to be a robust tool to understand how well a particular walking facility makes possible comfort and convenient pedestrian movements. The sensitivity analysis is also performed to see the impact of some crucial parameters of the developed model on the performance of pedestrian facilities. PMID:23691055
Refining the W1 and SE1 Facilities
NASA Technical Reports Server (NTRS)
Chambers, Rodney D.
2004-01-01
The Engine Research Building (ERB) houses more than 60 test rigs that study all aspects of engine development. By working with Mary Gibson in the SE1 and W1A Turbine Facilities, I became aware of her responsibilities and better acquainted with the inner workings of the ERB. The SE1 Supersonic/Subsonic Wind Tunnel Facility contains 2 small wind tunnels. The first tunnel uses an atmospheric inlet, while the second uses treated 40-psig air. Both of the tunnels are capable of subsonic and supersonic operation. An auxiliary air supply and exhaust piping providing both test sections with suction, blowing, and crossfire capabilities. The current configuration of SE1 consists of a curved diffuser that studies the blockage along the endwalls. The W1A Low Speed Compressor Facility provides insight for the complex flow phenomena within its 4-stage axial compressor, sand the data obtained from W 1A is used to develop advanced models for fluid dynamic assessment. W1A is based off of a low speed research compressor developed by GE in the 1950's. This compressor has a removable casing treatment under rotor 1, which allows for various tip treatment studies. The increased size and low speed allows instrumentation to be located in the compressor s complex flow paths. Air enters the facility through a filtered roof vent, conditioned for temperature and turbulence, and then passed through the compressor W1A is described as a dynamic facility with many projects taking place simultaneously. This current environment makes it challenging to follow the various affairs that are taking place within the area. During my first 4 weeks at the NASA Glenn Research Center, I have assisted Mary Gibson in multiple tasks such as facility documents, record keeping, maintenance and upgrades. The facility has lube systems for its gearbox and compressor. These systems are critical in the successful operation of the facility. I was assigned the task of creating a facility estimate list, which included the filters and strainers required for the compressor. For my remaining time spent here, we expect to complete a facility parts listing and a virtual project summary so that W1A and SE1 will become ergonomic facilities that will make it easier for people to observe the capabilities and history of the area and the employees that operate. Bolstering our efforts in achieving these goal are the online technical tutorials, software such as Microsoft Excel. Macromedia Flash MX Macromedia Dreamweaver MX, Photoshop 6.0 and the assistance of several NASA employees.
Partin, Melissa R; Gravely, Amy; Gellad, Ziad F; Nugent, Sean; Burgess, James F; Shaukat, Aasma; Nelson, David B
2016-02-01
Cancelled and missed colonoscopy appointments waste resources, increase colonoscopy delays, and can adversely affect patient outcomes. We examined individual and organizational factors associated with missed and cancelled colonoscopy appointments in Veteran Health Administration facilities. From 69 facilities meeting inclusion criteria, we identified 27,994 patients with colonoscopy appointments scheduled for follow-up, on the basis of positive fecal occult blood test results, between August 16, 2009 and September 30, 2011. We identified factors associated with colonoscopy appointment status (completed, cancelled, or missed) by using hierarchical multinomial regression. Individual factors examined included age, race, sex, marital status, residence, drive time to nearest specialty care facility, limited life expectancy, comorbidities, colonoscopy in the past decade, referring facility type, referral month, and appointment lead time. Organizational factors included facility region, complexity, appointment reminders, scheduling, and prep education practices. Missed appointments were associated with limited life expectancy (odds ratio [OR], 2.74; P = .0004), no personal history of polyps (OR, 2.74; P < .0001), high facility complexity (OR, 2.69; P = .007), dual diagnosis of psychiatric disorders and substance abuse (OR, 1.82; P < .0001), and opt-out scheduling (OR, 1.57; P = .02). Cancelled appointments were associated with age (OR, 1.61; P = .0005 for 85 years or older and OR, 1.44; P < .0001 for 65-84 years old), no history of polyps (OR, 1.51; P < .0001), and opt-out scheduling (OR, 1.26; P = .04). Additional predictors of both outcomes included race, marital status, and lead time. Several factors within Veterans Health Administration clinic control can be targeted to reduce missed and cancelled colonoscopy appointments. Specifically, developing systems to minimize referrals for patients with limited life expectancy could reduce missed appointments, and use of opt-in scheduling and reductions in appointment lead time could improve both outcomes. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.
Concept Of Revitalization Of Selected Military Facilities Of Dragoons Barracks In Olsztyn
NASA Astrophysics Data System (ADS)
Zagroba, Marek
2015-12-01
Revitalization is a complex program to restore the functioning of the neglected urban areas in terms of spatial, economic and social. Revitalization activities on post-military facilities are stopping negative phenomena, such as degradation of space, social pathology or lack of proper functioning of the area, adapted to modern needs. The object of the work is to present some aspects with the revitalization of former military facilities in the area of the Artyleryjska Street in Olsztyn. The presented design concept aims to revitalize a neglected area of the barracks, which will enable the activation site and include it in the city urban space. The method adopted in this work is the architectural project of adapting selected post-military facilities for new functions, affecting the economic development and social integration of people.
Data management integration for biomedical core facilities
NASA Astrophysics Data System (ADS)
Zhang, Guo-Qiang; Szymanski, Jacek; Wilson, David
2007-03-01
We present the design, development, and pilot-deployment experiences of MIMI, a web-based, Multi-modality Multi-Resource Information Integration environment for biomedical core facilities. This is an easily customizable, web-based software tool that integrates scientific and administrative support for a biomedical core facility involving a common set of entities: researchers; projects; equipments and devices; support staff; services; samples and materials; experimental workflow; large and complex data. With this software, one can: register users; manage projects; schedule resources; bill services; perform site-wide search; archive, back-up, and share data. With its customizable, expandable, and scalable characteristics, MIMI not only provides a cost-effective solution to the overarching data management problem of biomedical core facilities unavailable in the market place, but also lays a foundation for data federation to facilitate and support discovery-driven research.
An encoding readout method used for Multi-gap Resistive Plate Chambers (MRPCs) for muon tomography
NASA Astrophysics Data System (ADS)
Yue, X.; Zeng, M.; Wang, Y.; Wang, X.; Zeng, Z.; Zhao, Z.; Cheng, J.
2014-09-01
A muon tomography facility has been built in Tsinghua University. Because of the low flux of cosmic muon, an encoding readout method, based on the fine-fine configuration, was implemented for the 2880 channels induced signals from the Multi-gap Resistive Plate Chamber (MRPC) detectors. With the encoding method, the number of the readout electronics was dramatically reduced and thus the complexity and the cost of the facility was reduced, too. In this paper, the details of the encoding method, and the overall readout system setup in the muon tomography facility are described. With the commissioning of the facility, the readout method works well. The spatial resolution of all MRPC detectors are measured with cosmic muon and the preliminary imaging result are also given.
Aerial photo shows RLV complex at KSC
NASA Technical Reports Server (NTRS)
2000-01-01
In the foreground of this aerial photo is the Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. At right is a multi-purpose hangar and to its left is a building for related ground support equipment and administrative/ technical support. The complex is situated at the Shuttle Landing Facility (center). At the upper left is the runway. The RLV complex will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC.
ERIC Educational Resources Information Center
Philadelphia School District, PA.
The Philadelphia Art Commission refused to approve the proposed Eastwick/Pepper Educational Complex that combines a high school and a middle school into one facility. Their rejection was based on (1) the prohibitively large numbers of children the school is to serve, (2) the overly broad age span of the students, and (3) the inadequate outside…
2013-06-28
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, center director Bob Cabana speaks to news media representatives during the opening of the 90,000-square-foot "Space Shuttle Atlantis" facility. The new $100 million facility includes interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. The "Space Shuttle Atlantis" exhibit formally opened to the public on June 29, 2013.Photo credit: NASA/Jim Grossmann
Dialysis Facility Safety: Processes and Opportunities.
Garrick, Renee; Morey, Rishikesh
2015-01-01
Unintentional human errors are the source of most safety breaches in complex, high-risk environments. The environment of dialysis care is extremely complex. Dialysis patients have unique and changing physiology, and the processes required for their routine care involve numerous open-ended interfaces between providers and an assortment of technologically advanced equipment. Communication errors, both within the dialysis facility and during care transitions, and lapses in compliance with policies and procedures are frequent areas of safety risk. Some events, such as air emboli and needle dislodgments occur infrequently, but are serious risks. Other adverse events include medication errors, patient falls, catheter and access-related infections, access infiltrations and prolonged bleeding. A robust safety system should evaluate how multiple, sequential errors might align to cause harm. Systems of care can be improved by sharing the results of root cause analyses, and "good catches." Failure mode effects and analyses can be used to proactively identify and mitigate areas of highest risk, and methods drawn from cognitive psychology, simulation training, and human factor engineering can be used to advance facility safety. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Poluyan, A. Y.; Fugarov, D. D.; Purchina, O. A.; Nesterchuk, V. V.; Smirnova, O. V.; Petrenkova, S. B.
2018-05-01
To date, the problems associated with the detection of errors in digital equipment (DE) systems for the automation of explosive objects of the oil and gas complex are extremely actual. Especially this problem is actual for facilities where a violation of the accuracy of the DE will inevitably lead to man-made disasters and essential material damage, at such facilities, the diagnostics of the accuracy of the DE operation is one of the main elements of the industrial safety management system. In the work, the solution of the problem of selecting the optimal variant of the errors detection system of errors detection by a validation criterion. Known methods for solving these problems have an exponential valuation of labor intensity. Thus, with a view to reduce time for solving the problem, a validation criterion is compiled as an adaptive bionic algorithm. Bionic algorithms (BA) have proven effective in solving optimization problems. The advantages of bionic search include adaptability, learning ability, parallelism, the ability to build hybrid systems based on combining. [1].
NASA Technical Reports Server (NTRS)
Warmbrodt, W.; Smith, C. A.; Johnson, W.
1985-01-01
The unique capabilities of the National Full-Scale Aerodynamics Complex (NFAC) for testing rotorcraft systems are described. The test facilities include the 40- by 80-Foot Wind Tunnel, the 80- by 120-Foot Wind Tunnel, and the Outdoor Aerodynamic Research Facility. The Ames 7- by 10-Foot Subsonic Wind Tunnel is also used in support of the rotor research programs conducted in the NFAC. Detailed descriptions of each of the facilities, with an emphasis on helicopter rotor test capability, are presented. The special purpose rotor test equipment used in conducting helicopter research is reviewed. Test rigs to operate full-scale helicopter main rotors, helicopter tail rotors, and tilting prop-rotors are available, as well as full-scale and small-scale rotor systems for use in various research programs. The test procedures used in conducting rotor experiments are discussed together with representative data obtained from previous test programs. Specific examples are given for rotor performance, loads, acoustics, system interactions, dynamic and aeroelastic stability, and advanced technology and prototype demonstration models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The Liquid Phase Methanol (LPMEOH{trademark}) Demonstration Project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the US Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership). The LPMEOH{trademark} Process Demonstration Unit is being built at a site located at the Eastman Chemical Company (Eastman) complex in Kingsport. The project involves the construction of an 80,000 gallons per day (260 tons per day (TPD)) methanol unit utilizing coal-derived synthesis gas from Eastman`s integrated coal gasification facility. The new equipment consists of synthesis gas feed preparation and compression facilities, the liquid phase reactor and auxiliaries,more » product distillation facilities, and utilities. This liquid phase process suspends fine catalyst particles in an inert liquid, forming a slurry. The slurry dissipates the heat of the chemical reaction away from the catalyst surface, protecting the catalyst and allowing the methanol synthesis reaction to proceed at higher rates. At the Eastman complex, the technology is being integrated with existing coal-gasifiers.« less
Commercial Decommissioning at DOE's Rocky Flats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freiboth, C.; Sandlin, N.; Schubert, A.
2002-02-25
Due in large part to the number of nuclear facilities that make up the DOE complex, DOE-EM work has historically been paperwork intensive and driven by extensive regulations. Requirements for non-nuclear facilities are often grouped with those of nuclear facilities, driving up costs. Kaiser-Hill was interested in applying a commercial model to demolition of these facilities and wanted to apply necessary and sufficient standards to the work activities, but avoid applying unnecessary requirements. Faced with demolishing hundreds of uncontaminated or non-radiologically contaminated facilities, Kaiser-Hill has developed a subcontracting strategy to drastically reduce the cost of demolishing these facilities at Rockymore » Flats. Aiming to tailor the demolition approach of such facilities to more closely follow commercial practices, Kaiser-Hill recently released a Request for Proposals (RFP) for the demolition of the site's former central administration facility. The RFP significantly reduced requirements for compliance with specific DOE directives. Instead, the RFP required subcontractors to comply with health and safety requirements commonly found in the demolition of similar facilities in a commercial setting. This resulted in a number of bids from companies who have normally not bid on DOE work previously and at a reduced cost over previous approaches. This paper will discuss the details of this subcontracting strategy.« less
2013-06-29
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, CNN correspondent John Zarrella counted down for the ceremonial opening of the new "Space Shuttle Atlantis" facility. Smoke bellows near a full-scale set of space shuttle twin solid rocket boosters and external fuel tank at the entrance to the exhibit building. Guests may walk beneath the 184-foot-tall boosters and tank as they enter the facility. The new $100 million facility includes interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. The "Space Shuttle Atlantis" exhibit formally opened to the public on June 29, 2013.Photo credit: NASA/Jim Grossmann
2011-02-08
CAPE CANAVERAL, Fla. -- A traditional ribbon-cutting ceremony takes place inside the new 18,500-square-foot Electrical Maintenance Facility (EMF) at NASA's Kennedy Space Center in Florida. From left are Kennedy Director of Operations Mike Benik, NASA Construction of Facility Project Manager Nick Rivieccio and Kennedy Center Director Bob Cabana. Located in Kennedy's Launch Complex 39 area, the EMF will provide new and renovated space for maintenance shops, offices, and equipment and material storage in support of the electrical maintenance functions for the center. The facility is projected to receive Gold certification under the U.S. Green Building Council’s Leadership in Energy and Environmental Design (LEED) rating system. Photo credit: NASA/ Troy Cryder
Silver Complexes of Dihalogen Molecules.
Malinowski, Przemysław J; Himmel, Daniel; Krossing, Ingo
2016-08-01
The perfluorohexane-soluble and donor-free silver compound Ag(A) (A=Al(OR(F) )4 ; R(F) =C(CF3 )3 ) prepared using a facile novel route has unprecedented capabilities to form unusual and weakly bound complexes. Here, we report on the three dihalogen-silver complexes Ag(Cl2 )A, Ag(Br2 )A, and Ag(I2 )A derived from the soluble silver compound Ag(A) (characterized by single-crystal/powder XRD, Raman spectra, and quantum-mechanical calculations). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Achieving control and interoperability through unified model-based systems and software engineering
NASA Technical Reports Server (NTRS)
Rasmussen, Robert; Ingham, Michel; Dvorak, Daniel
2005-01-01
Control and interoperation of complex systems is one of the most difficult challenges facing NASA's Exploration Systems Mission Directorate. An integrated but diverse array of vehicles, habitats, and supporting facilities, evolving over the long course of the enterprise, must perform ever more complex tasks while moving steadily away from the sphere of ground support and intervention.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Hye Sun; Department of Materials Science and Engineering, Yonsei University, Seoul 120-749; Kim, Won Hee
2012-01-15
Highly ordered mesoporous silica nanoparticles with tunable morphology and pore-size are prepared by the use of a transition metal-chelating surfactant micelle complex using Co{sup 2+}, Ni{sup 2+}, Cu{sup 2+}, and Zn{sup 2+} ions. These metal ions formed a metal-P123 micelle complex in an aqueous solution, while the metal ions are chelated to the hydrophilic domain such as the poly(ethylene oxide) group of a P123 surfactant. The different complexation abilities of the utilized transition metal ions play an important role in determining the formation of nano-sized ordered MSNs due to the different stabilization constant of the metal-P123 complex. Consequently, from amore » particle length of 1700 nm in the original mesoporous silica materials, the particle length of ordered MSNs through the metal-chelating P123 micelle templates can be reduced to a range of 180-800 nm. Furthermore, the variation of pore size shows a slight change from 8.8 to 6.6 nm. In particular, the Cu{sup 2+}-chelated MSNs show only decreased particle size to 180 nm. The stability constants for the metal-P123 complex are calculated on the basis of molar conductance measurements in order to elucidate the formation mechanism of MSNs by the metal-chelating P123 complex templates. In addition, solid-state {sup 29}Si, {sup 13}C-NMR and ICP-OES measurements are used for quantitative characterization reveal that the utilized metal ions affect only the formation of a metal-P123 complex in a micelle as a template. - Graphical abstract: Metal-chelating surfactant micelle templates support a simple and facile preparations of size-tunable ordered MSNs. Black-Small-Square Highlights: Black-Right-Pointing-Pointer Facile preparation of mesoporous silica nanoparticles (MSNs) was achieved by metal-chelating surfactant micelle complex using Co{sup 2+}, Ni{sup 2+}, Cu{sup 2+}, and Zn{sup 2+} ions. Black-Right-Pointing-Pointer Different complexation of metal ions plays an important role in determining the formation of nano-sized ordered MSNs. Black-Right-Pointing-Pointer Systematic characterization of the synthesized materials was achieved by solid-state {sup 29}Si and {sup 13}C-NMR techniques, BET, FT-IR, and XPS. Black-Right-Pointing-Pointer Stability constants for the metal-P123 complex are calculated on the basis of molar conductance measurements in order to elucidate the formation mechanism.« less
NASA Astrophysics Data System (ADS)
Avagyan, R. H.; Kerobyan, I. A.
2015-07-01
The final goal of the proposed project is the creation of a Complex of Accelerator Facilities at the Yerevan Physics Institute (CAF YerPhI) for nuclear physics basic researches, as well as for applied programs including boron neutron capture therapy (BNCT). The CAF will include the following facilities: Cyclotron C70, heavy material (uranium) target/ion source, mass-separator, LINAC1 (0.15-1.5 MeV/u) and LINAC2 (1.5-10 MeV/u). The delivered by C70 proton beams with energy 70 MeV will be used for investigations in the field of basic nuclear physics and with energy 30 MeV for use in applications.
2013-04-26
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, construction crews are removing 16,000 square feet of plastic shrink-wrap from the space shuttle Atlantis. The spacecraft was enclosed in the plastic shrink-wrap since November of last year to protect the artifact from dust and debris during construction of the 90,000-square-foot facility. Last November, the space shuttle Atlantis made its historic final journey to its new home, traveling 10 miles from the Kennedy Space Center's Vehicle Assembly Building to the spaceport's visitor complex. The new $100 million "Space Shuttle Atlantis" facility will include interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlights the future of space exploration. The "Space Shuttle Atlantis" exhibit scheduled to open June 29, 2013.Photo credit: NASA/Cory Huston
2013-04-26
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, construction crews are removing 16,000 square feet of plastic shrink-wrap from the space shuttle Atlantis. The spacecraft was enclosed in the plastic shrink-wrap since November of last year to protect the artifact from dust and debris during construction of the 90,000-square-foot facility. Last November, the space shuttle Atlantis made its historic final journey to its new home, traveling 10 miles from the Kennedy Space Center's Vehicle Assembly Building to the spaceport's visitor complex. The new $100 million "Space Shuttle Atlantis" facility will include interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlights the future of space exploration. The "Space Shuttle Atlantis" exhibit scheduled to open June 29, 2013.Photo credit: NASA/Cory Huston
2013-04-26
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, construction crews remove 16,000 square feet of plastic shrink-wrap from the space shuttle Atlantis. The spacecraft was enclosed in the plastic shrink-wrap since November of last year to protect the artifact from dust and debris during construction of the 90,000-square-foot facility. Last November, the space shuttle Atlantis made its historic final journey to its new home, traveling 10 miles from the Kennedy Space Center's Vehicle Assembly Building to the spaceport's visitor complex. The new $100 million "Space Shuttle Atlantis" facility will include interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlights the future of space exploration. The "Space Shuttle Atlantis" exhibit scheduled to open June 29, 2013.Photo credit: NASA/Cory Huston
2013-04-26
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, construction crews are removing 16,000 square feet of plastic shrink-wrap from the space shuttle Atlantis. The spacecraft was enclosed in the plastic shrink-wrap since November of last year to protect the artifact from dust and debris during construction of the 90,000-square-foot facility. Last November, the space shuttle Atlantis made its historic final journey to its new home, traveling 10 miles from the Kennedy Space Center's Vehicle Assembly Building to the spaceport's visitor complex. The new $100 million "Space Shuttle Atlantis" facility will include interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlights the future of space exploration. The "Space Shuttle Atlantis" exhibit scheduled to open June 29, 2013.Photo credit: NASA/Cory Huston
2013-04-26
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, construction crews have removed 16,000 square feet of plastic shrink-wrap from the space shuttle Atlantis. The spacecraft was enclosed in the plastic shrink-wrap since November of last year to protect the artifact from dust and debris during construction of the 90,000-square-foot facility. Last November, the space shuttle Atlantis made its historic final journey to its new home, traveling 10 miles from the Kennedy Space Center's Vehicle Assembly Building to the spaceport's visitor complex. The new $100 million "Space Shuttle Atlantis" facility will include interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlights the future of space exploration. The "Space Shuttle Atlantis" exhibit scheduled to open June 29, 2013.Photo credit: NASA/Cory Huston
2013-04-26
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, construction crews are removing 16,000 square feet of plastic shrink-wrap from the space shuttle Atlantis. The spacecraft was enclosed in the plastic shrink-wrap since November of last year to protect the artifact from dust and debris during construction of the 90,000-square-foot facility. Last November, the space shuttle Atlantis made its historic final journey to its new home, traveling 10 miles from the Kennedy Space Center's Vehicle Assembly Building to the spaceport's visitor complex. The new $100 million "Space Shuttle Atlantis" facility will include interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlights the future of space exploration. The "Space Shuttle Atlantis" exhibit scheduled to open June 29, 2013.Photo credit: NASA/Cory Huston
2013-04-26
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, construction crews are removing 16,000 square feet of plastic shrink-wrap from the space shuttle Atlantis. The spacecraft was enclosed in the plastic shrink-wrap since November of last year to protect the artifact from dust and debris during construction of the 90,000-square-foot facility. Last November, the space shuttle Atlantis made its historic final journey to its new home, traveling 10 miles from the Kennedy Space Center's Vehicle Assembly Building to the spaceport's visitor complex. The new $100 million "Space Shuttle Atlantis" facility will include interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlights the future of space exploration. The "Space Shuttle Atlantis" exhibit scheduled to open June 29, 2013.Photo credit: NASA/Cory Huston
2013-04-26
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, construction crews are removing 16,000 square feet of plastic shrink-wrap from the space shuttle Atlantis. The spacecraft was enclosed in the plastic shrink-wrap since November of last year to protect the artifact from dust and debris during construction of the 90,000-square-foot facility. Last November, the space shuttle Atlantis made its historic final journey to its new home, traveling 10 miles from the Kennedy Space Center's Vehicle Assembly Building to the spaceport's visitor complex. The new $100 million "Space Shuttle Atlantis" facility will include interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlights the future of space exploration. The "Space Shuttle Atlantis" exhibit scheduled to open June 29, 2013.Photo credit: NASA/Cory Huston
2013-04-26
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, construction crews are removing 16,000 square feet of plastic shrink-wrap from the space shuttle Atlantis. The spacecraft was enclosed in the plastic shrink-wrap since November of last year to protect the artifact from dust and debris during construction of the 90,000-square-foot facility. Last November, the space shuttle Atlantis made its historic final journey to its new home, traveling 10 miles from the Kennedy Space Center's Vehicle Assembly Building to the spaceport's visitor complex. The new $100 million "Space Shuttle Atlantis" facility will include interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlights the future of space exploration. The "Space Shuttle Atlantis" exhibit scheduled to open June 29, 2013.Photo credit: NASA/Cory Huston
2013-04-26
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, construction crews are removing 16,000 square feet of plastic shrink-wrap from the space shuttle Atlantis. The spacecraft was enclosed in the plastic shrink-wrap since November of last year to protect the artifact from dust and debris during construction of the 90,000-square-foot facility. Last November, the space shuttle Atlantis made its historic final journey to its new home, traveling 10 miles from the Kennedy Space Center's Vehicle Assembly Building to the spaceport's visitor complex. The new $100 million "Space Shuttle Atlantis" facility will include interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlights the future of space exploration. The "Space Shuttle Atlantis" exhibit scheduled to open June 29, 2013.Photo credit: NASA/Cory Huston
2013-04-26
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, construction crews have removed 16,000 square feet of plastic shrink-wrap from the space shuttle Atlantis. The spacecraft was enclosed in the plastic shrink-wrap since November of last year to protect the artifact from dust and debris during construction of the 90,000-square-foot facility. Last November, the space shuttle Atlantis made its historic final journey to its new home, traveling 10 miles from the Kennedy Space Center's Vehicle Assembly Building to the spaceport's visitor complex. The new $100 million "Space Shuttle Atlantis" facility will include interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlights the future of space exploration. The "Space Shuttle Atlantis" exhibit scheduled to open June 29, 2013.Photo credit: NASA/Cory Huston
2013-04-26
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, construction crews have removed 16,000 square feet of plastic shrink-wrap from the space shuttle Atlantis. The spacecraft was enclosed in the plastic shrink-wrap since November of last year to protect the artifact from dust and debris during construction of the 90,000-square-foot facility. Last November, the space shuttle Atlantis made its historic final journey to its new home, traveling 10 miles from the Kennedy Space Center's Vehicle Assembly Building to the spaceport's visitor complex. The new $100 million "Space Shuttle Atlantis" facility will include interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlights the future of space exploration. The "Space Shuttle Atlantis" exhibit scheduled to open June 29, 2013.Photo credit: NASA/Cory Huston
2013-04-26
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, construction crews are removing 16,000 square feet of plastic shrink-wrap from the space shuttle Atlantis. The spacecraft was enclosed in the plastic shrink-wrap since November of last year to protect the artifact from dust and debris during construction of the 90,000-square-foot facility. Last November, the space shuttle Atlantis made its historic final journey to its new home, traveling 10 miles from the Kennedy Space Center's Vehicle Assembly Building to the spaceport's visitor complex. The new $100 million "Space Shuttle Atlantis" facility will include interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlights the future of space exploration. The "Space Shuttle Atlantis" exhibit scheduled to open June 29, 2013.Photo credit: NASA/Cory Huston
2013-04-26
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, construction crews are removing 16,000 square feet of plastic shrink-wrap from the space shuttle Atlantis. The spacecraft was enclosed in the plastic shrink-wrap since November of last year to protect the artifact from dust and debris during construction of the 90,000-square-foot facility. Last November, the space shuttle Atlantis made its historic final journey to its new home, traveling 10 miles from the Kennedy Space Center's Vehicle Assembly Building to the spaceport's visitor complex. The new $100 million "Space Shuttle Atlantis" facility will include interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlights the future of space exploration. The "Space Shuttle Atlantis" exhibit scheduled to open June 29, 2013.Photo credit: NASA/Cory Huston
2012-04-05
CAPE CANAVERAL, Fla. – Florida’s Lt. Gov. Jennifer Carroll signs a wall of the White Room during a tour of Kennedy Space Center’s Orbiter Processing Facility-1. The room affords access to the shuttle as it is undergoing processing in the facility. Everyone visiting the interior of the shuttle – astronauts, technicians and guests alike - is given the opportunity to “autograph” a wall of the room. The tour coincided with Carroll’s visit to Kennedy for a meeting with Cabana. Atlantis is being prepared for public display at the Kennedy Space Center Visitor Complex in 2013. The groundbreaking for Atlantis’ exhibit hall took place in January Atlantis is scheduled to be moved to the visitor complex in November. For more information, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Jim Grossmann
2005-12-17
KENNEDY SPACE CENTER, FLA. - New Horizons leaves the Payload Hazardous Servicing Facility before dawn for its journey to the Vertical Integration Facility at Complex 41 on Cape Canaveral Air Force Station. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015.
2005-12-17
KENNEDY SPACE CENTER, FLA. - Technicians prepare to move New Horizons before dawn from the Payload Hazardous Servicing Facility to the Vertical Integration Facility at Complex 41 on Cape Canaveral Air Force Station. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015.
Elmusharaf, Khalifa; Byrne, Elaine; AbuAgla, Ayat; AbdelRahim, Amal; Manandhar, Mary; Sondorp, Egbert; O'Donovan, Diarmuid
2017-08-29
Maternity referral systems have been under-documented, under-researched, and under-theorised. Responsive emergency referral systems and appropriate transportation are cornerstones in the continuum of care and central to the complex health system. The pathways that women follow to reach Emergency Obstetric and Neonatal Care (EmONC) once a decision has been made to seek care have received relatively little attention. The aim of this research was to identify patterns and determinants of the pathways pregnant women follow from the onset of labour or complications until they reach an appropriate health facility. This study was conducted in Renk County in South Sudan between 2010 and 2012. Data was collected using Critical Incident Technique (CIT) and stakeholder interviews. CIT systematically identified pathways to healthcare during labour, and factors associated with an event of maternal mortality or near miss through a series of in-depth interviews with witnesses or those involved. Face-to-face stakeholder interviews were conducted with 28 purposively identified key informants. Diagrammatic pathway and thematic analysis were conducted using NVIVO 10 software. Once the decision is made to seek emergency obstetric care, the pregnant woman may face a series of complex steps before she reaches an appropriate health facility. Four pathway patterns to CEmONC were identified of which three were associated with high rates of maternal death: late referral, zigzagging referral, and multiple referrals. Women who bypassed nonfunctional Basic EmONC facilities and went directly to CEmONC facilities (the fourth pathway pattern) were most likely to survive. Overall, the competencies of the providers and the functionality of the first point of service determine the pathway to further care. Our findings indicate that outcomes are better where there is no facility available than when the woman accesses a non-functioning facility, and the absence of a healthcare provider is better than the presence of a non-competent provider. Visiting non-functioning or partially functioning healthcare facilities on the way to competent providers places the woman at greater risk of dying. Non-functioning facilities and non-competent providers are likely to contribute to the deaths of women.
NASA Astrophysics Data System (ADS)
KIM, H.; Lee, D. K.; Yoo, S.
2014-12-01
As regional torrential rains become frequent due to climate change, urban flooding happens very often. That is why it is necessary to prepare for integrated measures against a wide range of rainfall. This study proposes introduction of effective rainwater management facilities to maximize the rainwater runoff reductions and recover natural water circulation for unpredictable extreme rainfall in apartment complex scale. The study site is new apartment complex in Hanam located in east of Seoul, Korea. It has an area of 7.28ha and is analysed using the EPA-SWMM and STORM model. First, it is analyzed that green infrastructure(GI) had efficiency of flood reduction at the various rainfall events and soil characteristics, and then the most effective value of variables are derived. In case of rainfall event, Last 10 years data of 15 minutes were used for analysis. A comparison between A(686mm rainfall during 22days) and B(661mm/4days) knew that soil infiltration of A is 17.08% and B is 5.48% of the rainfall. Reduction of runoff after introduction of the GI of A is 24.76% and B is 6.56%. These results mean that GI is effective to small rainfall intensity, and artificial rainwater retarding reservoir is needed at extreme rainfall. Second, set of target year is conducted for the recovery of hydrological cycle at the predevelopment. And an amount of infiltration, evaporation, surface runoff of the target year and now is analysed on the basis of land coverage, and an arrangement of LID facilities. Third, rainwater management scenarios are established and simulated by the SWMM-LID. Rainwater management facilities include GI(green roof, porous pavement, vegetative swale, ecological pond, and raingarden), and artificial rainwater. Design scenarios are categorized five type: 1)no GI, 2)conventional GI design(current design), 3)intensive GI design, 4)GI design+rainwater retarding reservoir 5)maximized rainwater retarding reservoir. Intensive GI design is to have attribute value to obtain the maximum efficiency for each GI facility with in-depth experts interviews. Climate change scenario is also used to set the capacity of the rainwater management facilities considering the extreme precipitation. These all scenarios are not only simulated for calculating the hydrological balance but analysed the cost for each scenarios effect.
Santone, Giovanni; Bellantuono, Cesario; Rucci, Paola; Picardi, Angelo; Preti, Antonio; de Girolamo, Giovanni
2011-05-01
The present study investigated: (i) the rate of prescription of antipsychotic (AP) polypharmacy (APP) in a large, representative sample of psychiatric inpatients; and (ii) the relationship between APP prescription and the characteristics of patients and facilities. The sample included 1022 psychiatric patients scheduled to be discharged from acute inpatient facilities with drug therapies including AP. Demographic and clinical data were obtained from the treating physician or retrieved from patients' records through a standardized Patient Form. Patients were administered the 24-item Brief Psychiatric Rating Scale. Three indicators were used to describe the process of care in the facilities: a Restrictiveness score, a Standardization score, and a Treatment score. A multilevel mixed-effect logistic regression was used to predict APP using patient and facility as the variables. APP was prescribed to 333 (32.5%) patients, the most common patterns being a first-generation and a second-generation AP (n = 178, 17.6%) or of two first-generation APs (n = 80, 7.8%). Patients with a diagnosis of schizophrenia and poorer insight into illness at admission were significantly more likely to receive APP. The availability of more complex therapeutic interventions in the facility was also associated with APP. In our nationwide sample of psychiatric inpatients, APP was frequently prescribed to treat the more severe patients. However, it was also associated with process of care characteristics such as delivery of more complex therapeutic interventions, and was therefore not used only to control patient behavior. Copyright © 2010 John Wiley & Sons, Ltd.
SSHAC Level 1 Probabilistic Seismic Hazard Analysis for the Idaho National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Payne, Suzette Jackson; Coppersmith, Ryan; Coppersmith, Kevin
A Probabilistic Seismic Hazard Analysis (PSHA) was completed for the Materials and Fuels Complex (MFC), Advanced Test Reactor (ATR), and Naval Reactors Facility (NRF) at the Idaho National Laboratory (INL). The PSHA followed the approaches and procedures for Senior Seismic Hazard Analysis Committee (SSHAC) Level 1 study and included a Participatory Peer Review Panel (PPRP) to provide the confident technical basis and mean-centered estimates of the ground motions. A new risk-informed methodology for evaluating the need for an update of an existing PSHA was developed as part of the Seismic Risk Assessment (SRA) project. To develop and implement the newmore » methodology, the SRA project elected to perform two SSHAC Level 1 PSHAs. The first was for the Fuel Manufacturing Facility (FMF), which is classified as a Seismic Design Category (SDC) 3 nuclear facility. The second was for the ATR Complex, which has facilities classified as SDC-4. The new methodology requires defensible estimates of ground motion levels (mean and full distribution of uncertainty) for its criteria and evaluation process. The INL SSHAC Level 1 PSHA demonstrates the use of the PPRP, evaluation and integration through utilization of a small team with multiple roles and responsibilities (four team members and one specialty contractor), and the feasibility of a short duration schedule (10 months). Additionally, a SSHAC Level 1 PSHA was conducted for NRF to provide guidance on the potential use of a design margin above rock hazard levels for the Spent Fuel Handling Recapitalization Project (SFHP) process facility.« less
Monteiro, Heloísa Mirelle Costa; de Mendonça, Débora Carneiro; Sousa, Mariana Séfora Bezerra; Amancio-Dos-Santos, Angela
2018-06-01
This investigation studied whether physical exercise could modulate cortical spreading depression (CSD) propagation velocity in adult rat offspring from dams that had received a high-fat (HF) diet during lactation. Wistar male rats suckled by dams fed either control (C) or HF diet ad libitum. After weaning, pups received standard laboratory chow. From 40 to 60 days of life, half of the animals exercised on a treadmill (group E); the other half remained sedentary (group S). Two additional HF groups (E and S) received fluoxetine (F; 10 mg/kg/day, orogastrically) from 40 to 60 days of life (groups HF/EF and HF/F). At 40 days of life, rats from the maternal HF diet presented higher weight, thoracic circumference, and Lee Index than C animals and remained heavier at 60 days of life. Physical exercise decreased abdominal circumference. HF diet increased CSD propagation velocity (mean ± SD; mm/min) in sedentaries (HF/S 3.47 ± 0.31 versus C/S 3.24 ± 0.26). Treadmill exercise decelerated CSD propagation in both groups C/E (2.94 ± 0.28) and HF/E (2.97 ± 0.40). Fluoxetine alone decreased CSD propagation (HF/F 2.88 ± 0.45) compared with HF/S group. The combination of fluoxetine + exercise under HF condition (2.98 ± 0.27) was similar to HF/E group. Physical exercise is able to reduce CSD propagation velocity in rat adult brains even when they have suffered over-nourishing during lactation. The effects of exercise alone or fluoxetine alone on CSD were similar to the effects of fluoxetine + exercise, under the HF condition. Data reinforce malnutrition during lactation modifies cortical electrophysiology even when the HF condition no longer exists.
2013-06-27
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, a display inside the "Space Shuttle Atlantis" facility features a 43-feet-tall full-scale replica of the Hubble telescope hung through an opening in the second floor. The new $100 million facility will include interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. The "Space Shuttle Atlantis" exhibit is scheduled to open June 29, 2013.Photo credit: NASA/Jim Grossmann
2013-06-29
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, CNN correspondent John Zarrella speaks to guests at the opening of the new "Space Shuttle Atlantis" facility. Zarrella served as master of ceremonies for the event. The new $100 million facility includes interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. The "Space Shuttle Atlantis" exhibit formally opened to the public on June 29, 2013.Photo credit: NASA/Jim Grossmann
2013-06-29
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, CNN correspondent John Zarrella speaks to guests at the opening of the new "Space Shuttle Atlantis" facility. Zarrella served as master of ceremonies for the event. The new $100 million facility includes interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. The "Space Shuttle Atlantis" exhibit formally opened to the public on June 29, 2013.Photo credit: NASA/Jim Grossmann
2013-06-29
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, CNN correspondent John Zarrella speaks to guests at the opening of the new "Space Shuttle Atlantis" facility. Zarrella served as master of ceremonies for the event. The new $100 million facility includes interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. The "Space Shuttle Atlantis" exhibit formally opened to the public on June 29, 2013.Photo credit: NASA/Jim Grossmann
2007-05-28
KENNEDY SPACE CENTER, FLA. -- At Astrotech's Payload Processing Facility, technicians check the Dawn spacecraft as it is lowered onto a transporter. Dawn will be moved to the Hazardous Processing Facility for fueling. Dawn is scheduled to launch June 30 aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Photo credit: NASA/Charisse Nahser
2007-05-28
KENNEDY SPACE CENTER, FLA. --At Astrotech's Payload Processing Facility, technicians maneuver the shipping container to place around the Dawn spacecraft, at right. Dawn will be moved to the Hazardous Processing Facility for fueling. Dawn is scheduled to launch June 30 aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Photo credit: NASA/Charisse Nahser
1999-10-14
Seen from above, construction of a new site at KSC's Visitor Complex, The Early Space Exploration and Conference Center, is nearly finished. It is expected to be open to the public by mid-November. The space exploration facility will feature Mercury and Gemini capsules and the recently relocated Mission Control Center. Attached to it is a state-of-the-art conference center. Built by Delaware North Park Services, the facility is located between the Rock Garden and the Center for Space Education
FLOOR PLAN OF MAIN PROCESSING BUILDING (CPP601), FIRST FLOOR SHOWING ...
FLOOR PLAN OF MAIN PROCESSING BUILDING (CPP-601), FIRST FLOOR SHOWING SAMPLE CORRIDORS AND EIGHTEEN CELLS AND ADJOINING REMOTE ANALYTICAL FACILITY (CPP-627) SHOWING REMOTE ANALYTICAL FACILITIES LAB, DECONTAMINATION ROOM, AND MULTICURIE CELL ROOM. TO LEFT ARE LABORATORY BUILDING (CPP-602) AND MAINTENANCE BUILDING (CPP-630). INL DRAWING NUMBER 200-0601-00-706-051979. ALTERNATE ID NUMBER CPP-E-1979. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
2013-06-29
CAPE CANAVERAL, Fla. -- During opening ceremonies for the new 90,000-square-foot "Space Shuttle Atlantis" facility at the Kennedy Space Center Visitor Complex in Florida, NASA Administrator Charlie Bolden speaks to guests gathered for the ceremony. The new $100 million facility includes interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. The "Space Shuttle Atlantis" exhibit formally opened to the public on June 29, 2013.Photo credit: NASA/Jim Grossmann
2013-06-29
CAPE CANAVERAL, Fla. -- During opening ceremonies for the new 90,000-square-foot "Space Shuttle Atlantis" facility at the Kennedy Space Center Visitor Complex in Florida, center director Bob Cabana speaks to guests gathered for the ceremony. The new $100 million facility includes interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. The "Space Shuttle Atlantis" exhibit formally opened to the public on June 29, 2013.Photo credit: NASA/Jim Grossmann
2013-06-29
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, Rick Abramson, Delaware North Parks and Resorts president, speaks to guests during the opening of the 90,000-square-foot "Space Shuttle Atlantis" facility. The new $100 million facility includes interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. The "Space Shuttle Atlantis" exhibit formally opened to the public on June 29, 2013.Photo credit: NASA/Jim Grossmann
2013-06-29
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, Rick Abramson, Delaware North Parks and Resorts president, speaks to guests during the opening of the 90,000-square-foot "Space Shuttle Atlantis" facility. The new $100 million facility includes interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. The "Space Shuttle Atlantis" exhibit formally opened to the public on June 29, 2013.Photo credit: NASA/Jim Grossmann
2013-06-28
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, Rick Abramson, Delaware North Parks and Resorts president speaks to news media representatives during the opening of the 90,000-square-foot "Space Shuttle Atlantis" facility. The new $100 million facility includes interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. The "Space Shuttle Atlantis" exhibit formally opened to the public on June 29, 2013.Photo credit: NASA/Jim Grossmann
2014-08-14
CAPE CANAVERAL, Fla. – A storm is brewing over Launch Complex 39 at NASA’s Kennedy Space Center in Florida. At left are the news networks' facilities on the NASA Press Site. At right is the behemoth Vehicle Assembly Building. Kennedy's Ground Support Development and Operations Program is hard at work transforming the center's facilities into a multi-user spaceport, when the weather permits. For more on Kennedy Space Center, visit http://www.nasa.gov/kennedy. Photo credit: NASA/Ben Smegelsky
2013-06-29
CAPE CANAVERAL, Fla. -- Inside the new "Space Shuttle Atlantis" facility at the Kennedy Space Center Visitor Complex in Florida, guests gather around the spacecraft on display with payload bay doors open and remote manipulator system robot arm extended. The new $100 million facility includes interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. The "Space Shuttle Atlantis" exhibit formally opened to the public on June 29, 2013.Photo credit: NASA/Jim Grossmann
2013-06-29
CAPE CANAVERAL, Fla. -- Inside the new "Space Shuttle Atlantis" facility at the Kennedy Space Center Visitor Complex in Florida, 40 astronauts posed with the spacecraft on display with payload bay doors open and remote manipulator system robot arm extended. The new $100 million facility includes interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. The "Space Shuttle Atlantis" exhibit formally opened to the public on June 29, 2013.Photo credit: NASA/Jim Grossmann
Safety analysis in test facility design
NASA Astrophysics Data System (ADS)
Valk, A.; Jonker, R. J.
1990-09-01
The application of safety analysis techniques as developed in, for example nuclear and petrochemical industry, can be very beneficial in coping with the increasing complexity of modern test facility installations and their operations. To illustrate the various techniques available and their phasing in a project, an overview of the most commonly used techniques is presented. Two case studies are described: the hazard and operability study techniques and safety zoning in relation to the possible presence of asphyxiating atmospheres.
NASA Technical Reports Server (NTRS)
Purves, Lloyd R. (Inventor)
1992-01-01
A robot serviced space facility includes multiple modules which are identical in physical structure, but selectively differing in function. and purpose. Each module includes multiple like attachment points which are identically placed on each module so as to permit interconnection with immediately adjacent modules. Connection is made through like outwardly extending flange assemblies having identical male and female configurations for interconnecting to and locking to a complementary side of another flange. Multiple rows of interconnected modules permit force, fluid, data and power transfer to be accomplished by redundant circuit paths. Redundant modules of critical subsystems are included. Redundancy of modules and of interconnections results in a space complex with any module being removable upon demand, either for module replacement or facility reconfiguration. without eliminating any vital functions of the complex. Module replacement and facility assembly or reconfiguration are accomplished by a computer controlled articulated walker type robotic manipulator arm assembly having two identical end-effectors in the form of male configurations which are identical to those on module flanges and which interconnect to female configurations on other flanges. The robotic arm assembly moves along a connected set or modules by successively disconnecting, moving and reconnecting alternate ends of itself to a succession of flanges in a walking type maneuver. To transport a module, the robot keeps the transported module attached to one of its end-effectors and uses another flange male configuration of the attached module as a substitute end-effector during walking.
Arno, Matthew; Hamilton, Ian S
2003-10-01
Texas is investigating the idea of building a long term waste storage facility, also known as an Assured Isolation Facility. This is an above-ground, retrievable low-level radioactive waste storage facility. A preliminary, scoping-level analysis has been extended to consider more complex scenarios of radiation streaming and skyshine by using MCNP to model the facility in greater detail. Using bounding source term assumptions, the radiation doses and dose rates are found to exceed applicable limits by an order of magnitude. By altering the facility design to fill in the hollow cores of the prefabricated concrete slabs used in the roof over the "high-gamma" rooms where the waste with greatest gamma radiation intensity is stored, dose rates outside the facility decrease by an order of magnitude. With the modified design, the annual dose at the site fenceline is less than the 1 mSv annual limit for exposure of the public. Within the site perimeter, modifying the roof results in an order of magnitude drop in the dose rate for personnel outside the facility and on the facility roof, as well as a significant drop inside the facility. Radiation streaming inside the facility can be lowered almost two orders of magnitude by placing operational restrictions to keep at least two rows of waste containers in front of the high-gamma room to cut down on the size of the path for streaming.
Development of an integrated set of research facilities for the support of research flight test
NASA Technical Reports Server (NTRS)
Moore, Archie L.; Harney, Constance D.
1988-01-01
The Ames-Dryden Flight Research Facility (DFRF) serves as the site for high-risk flight research on many one-of-a-kind test vehicles like the X-29A advanced technology demonstrator, F-16 advanced fighter technology integration (AFTI), AFTI F-111 mission adaptive wing, and F-18 high-alpha research vehicle (HARV). Ames-Dryden is on a section of the historic Muroc Range. The facility is oriented toward the testing of high-performance aircraft, as shown by its part in the development of the X-series aircraft. Given the cost of research flight tests and the complexity of today's systems-driven aircraft, an integrated set of ground support experimental facilities is a necessity. In support of the research flight test of highly advanced test beds, the DFRF is developing a network of facilities to expedite the acquisition and distribution of flight research data to the researcher. The network consists of an array of experimental ground-based facilities and systems as nodes and the necessary telecommunications paths to pass research data and information between these facilities. This paper presents the status of the current network, an overview of current developments, and a prospectus on future major enhancements.
2010-11-24
CAPE CANAVERAL, Fla. -- The finishing touches of the Propellants North Administrative and Maintenance Facility begin to take place at NASA's Kennedy Space Center in Florida. Inside the green facility is window glazing and framing from the iconic firing rooms of Kennedy's Launch Control Center (LCC). The windows are set at the same orientation and angle as they were in the LCC, looking out toward Launch Complex 39. The facility also features sustainable flooring made of polished concrete and laminated bamboo, as well as a high-efficiency roof and walls. This is the facility's two-story administrative building, which will house managers, mechanics and technicians who fuel spacecraft at Kennedy. Next door is a single-story shop that will be used to store cryogenic fuel transfer equipment. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design (LEED) Platinum certification, which is the highest of LEED ratings. The facility, set to be complete in December 2010, was designed for NASA by Jones Edmunds and Associates. H. W. Davis Construction is the construction contractor. Photo credit: NASA/Frankie Martin
Estimation of Stormwater Interception Rate for various LID Facilities
NASA Astrophysics Data System (ADS)
Kim, S.; Lee, O.; Choi, J.
2017-12-01
In this study, the stormwater interception rate is proposed to apply in the design of LID facilities. For this purpose, EPA-SWMM is built with some areas of Noksan National Industrial Complex where long-term observed stormwater data were monitored and stormwater interception rates for various design capacities of various LID facilities are estimated. While the sensitivity of stormwater interception rate according to design specifications of bio-retention and infiltration trench facilities is not large, the sensitivity of stormwater interception rate according to local rainfall characteristics is relatively big. As a result of comparing the present rainfall interception rate estimation method which is officially operated in Korea with the one proposed in this study, it will be presented that the present method is highly likely to overestimate the performance of the bio-retention and infiltration trench facilities. Finally, a new stormwater interception rate formulas for the bio-retention and infiltration trench LID facilities will be proposed. Acknowledgement This research was supported by a grant (2016000200002) from Public Welfare Technology Development Program funded by Ministry of Environment of Korean government.
2010-12-21
CAPE CANAVERAL, Fla. -- The Vehicle Assembly Building towers over the new Propellants North Administrative and Maintenance Facility in the Launch Complex 39 area of NASA's Kennedy Space Center in Florida. The environmentally friendly facility is slated to be NASA's second Platinum-rated by the U.S. Green Building Council's (USGBC) Leadership in Environmental and Energy Design (LEED) certification system. It will be the space agency's first carbon-neutral facility, which means it will produce enough energy onsite from renewable sources to offset what it requires to operate. On the right is the facility's two-story administrative building, which will house managers, mechanics and technicians who fuel spacecraft at Kennedy. On the left is a single-story shop that will be used to store cryogenic fuel transfer equipment. In the parking lot is a solar-powered parking station for alternative fuel vehicles. Photo credit: NASA/Frank Michaux
2010-12-21
CAPE CANAVERAL, Fla. -- The Propellants North Administrative and Maintenance Facility in the Launch Complex 39 area of NASA's Kennedy Space Center in Florida is ready for business. The environmentally friendly facility is slated to be NASA's second Platinum-rated by the U.S. Green Building Council's (USGBC) Leadership in Environmental and Energy Design (LEED) certification system. It will be the space agency's first carbon-neutral facility, which means it will produce enough energy onsite from renewable sources to offset what it requires to operate. On the right is the facility's two-story administrative building, which will house managers, mechanics and technicians who fuel spacecraft at Kennedy. On the left is a single-story shop that will be used to store cryogenic fuel transfer equipment. In the parking lot is a solar-powered parking station for alternative fuel vehicles. Photo credit: NASA/Frank Michaux
2010-12-21
CAPE CANAVERAL, Fla. -- The Propellants North Administrative and Maintenance Facility in the Launch Complex 39 area of NASA's Kennedy Space Center in Florida is ready for business. The environmentally friendly facility is slated to be NASA's second Platinum-rated by the U.S. Green Building Council's (USGBC) Leadership in Environmental and Energy Design (LEED) certification system. It will be the space agency's first carbon-neutral facility, which means it will produce enough energy onsite from renewable sources to offset what it requires to operate. On the right is the facility's two-story administrative building, which will house managers, mechanics and technicians who fuel spacecraft at Kennedy. On the left is a single-story shop that will be used to store cryogenic fuel transfer equipment. In the parking lot is a solar-powered parking station for alternative fuel vehicles. Photo credit: NASA/Frank Michaux
2010-12-21
CAPE CANAVERAL, Fla. -- The Propellants North Administrative and Maintenance Facility in the Launch Complex 39 area of NASA's Kennedy Space Center in Florida is ready for business. The environmentally friendly facility is slated to be NASA's second Platinum-rated by the U.S. Green Building Council's (USGBC) Leadership in Environmental and Energy Design (LEED) certification system. It will be the space agency's first carbon-neutral facility, which means it will produce enough energy onsite from renewable sources to offset what it requires to operate. On the right is the facility's two-story administrative building, which will house managers, mechanics and technicians who fuel spacecraft at Kennedy. On the left is a single-story shop that will be used to store cryogenic fuel transfer equipment. In the parking lot is a solar-powered parking station for alternative fuel vehicles. Photo credit: NASA/Frank Michaux
2010-12-21
CAPE CANAVERAL, Fla. -- The Propellants North Administrative and Maintenance Facility in the Launch Complex 39 area of NASA's Kennedy Space Center in Florida is ready for business. The environmentally friendly facility is slated to be NASA's second Platinum-rated by the U.S. Green Building Council's (USGBC) Leadership in Environmental and Energy Design (LEED) certification system. It will be the space agency's first carbon-neutral facility, which means it will produce enough energy onsite from renewable sources to offset what it requires to operate. On the right is the facility's two-story administrative building, which will house managers, mechanics and technicians who fuel spacecraft at Kennedy. On the left is a single-story shop that will be used to store cryogenic fuel transfer equipment. In the parking lot is a solar-powered parking station for alternative fuel vehicles. Photo credit: NASA/Frank Michaux
2010-12-21
CAPE CANAVERAL, Fla. -- This is the back view of the new Propellants North Administrative and Maintenance Facility in the Launch Complex 39 area of NASA's Kennedy Space Center in Florida. The environmentally friendly facility is slated to be NASA's second Platinum-rated by the U.S. Green Building Council's (USGBC) Leadership in Environmental and Energy Design (LEED) certification system. It will be the space agency's first carbon-neutral facility, which means it will produce enough energy onsite from renewable sources to offset what it requires to operate. On the right is the facility's single-story shop that will be used to store cryogenic fuel transfer equipment. On the left is a two-story administrative building, which will house managers, mechanics and technicians who fuel spacecraft at Kennedy. In the parking lot is a solar-powered parking station for alternative fuel vehicles. Photo credit: NASA/Frank Michaux
View east northeast at Test Stand 'A' complex from road, ...
View east northeast at Test Stand 'A' complex from road, showing Test Stand 'C' test tower in left background (Building 4217/E-18). Curved I-beam labeled '3-ton' is for small traveling hoist. Fuel tanks, propellant lines, and control panels have been removed from tower. - Jet Propulsion Laboratory Edwards Facility, Test Stand A, Edwards Air Force Base, Boron, Kern County, CA
Examining Food Risk in the Large using a Complex, Networked System-of-sytems Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ambrosiano, John; Newkirk, Ryan; Mc Donald, Mark P
2010-12-03
The food production infrastructure is a highly complex system of systems. Characterizing the risks of intentional contamination in multi-ingredient manufactured foods is extremely challenging because the risks depend on the vulnerabilities of food processing facilities and on the intricacies of the supply-distribution networks that link them. A pure engineering approach to modeling the system is impractical because of the overall system complexity and paucity of data. A methodology is needed to assess food contamination risk 'in the large', based on current, high-level information about manufacturing facilities, corrunodities and markets, that will indicate which food categories are most at risk ofmore » intentional contamination and warrant deeper analysis. The approach begins by decomposing the system for producing a multi-ingredient food into instances of two subsystem archetypes: (1) the relevant manufacturing and processing facilities, and (2) the networked corrunodity flows that link them to each other and consumers. Ingredient manufacturing subsystems are modeled as generic systems dynamics models with distributions of key parameters that span the configurations of real facilities. Networks representing the distribution systems are synthesized from general information about food corrunodities. This is done in a series of steps. First, probability networks representing the aggregated flows of food from manufacturers to wholesalers, retailers, other manufacturers, and direct consumers are inferred from high-level approximate information. This is followed by disaggregation of the general flows into flows connecting 'large' and 'small' categories of manufacturers, wholesalers, retailers, and consumers. Optimization methods are then used to determine the most likely network flows consistent with given data. Vulnerability can be assessed for a potential contamination point using a modified CARVER + Shock model. Once the facility and corrunodity flow models are instantiated, a risk consequence analysis can be performed by injecting contaminant at chosen points in the system and propagating the event through the overarching system to arrive at morbidity and mortality figures. A generic chocolate snack cake model, consisting of fluid milk, liquid eggs, and cocoa, is described as an intended proof of concept for multi-ingredient food systems. We aim for an eventual tool that can be used directly by policy makers and planners.« less
NASA Astrophysics Data System (ADS)
Remijan, Anthony John
2015-08-01
The formation and distribution of complex organic material in astronomical environments continues to be a focused research area in astrochemistry. For several decades now, emphasis has been placed on the millimeter/submillimeter regime of the radio spectrum for trying to detect new molecular species and to constrain the chemical formation route of complex molecules by comparing and contrasting their relative distributions towards varying astronomical environments. This effort has been extremely laborious as millimeter/submillimeter facilities have been only able to detect and map the distribution of the strongest transition(s) of the simplest organic molecules. Even then, these single transition "chemical maps" have been very low spatial resolution because early millimeter/submillimeter facilities did not have access to broadband spectral coverage or the imaging capabilities to truly ascertain the morphology of the molecular emission. In the era of ALMA, these limitations have been greatly lifted. Broadband spectral line surveys now hold the key to uncovering the full molecular complexity in astronomical environments. In addition, searches for complex organic material is no longer limited to investigating the strongest lines of the simplest molecules toward the strongest sources of emission in the Galaxy. ALMA is issuing a new era of exploration as the search for complex molecules will now be available to an increased suite of sources in the Galaxy and our understanding of the formation of this complex material will be greatly increased as a result. This presentation will highlight the current and future ALMA capabilities in the search for complex molecules towards astronomical environments, highlight the recent searches that ALMA scientists have conducted from the start of ALMA Early Science and provide the motivation for the next suite of astronomical searches to investigate our pre-biotic origins in the universe.
Marshak Lectureship: The Turkish Accelerator Center, TAC
NASA Astrophysics Data System (ADS)
Yavas, Omer
2012-02-01
The Turkish Accelerator Center (TAC) project is comprised of five different electron and proton accelerator complexes, to be built over 15 years, with a phased approach. The Turkish Government funds the project. Currently there are 23 Universities in Turkey associated with the TAC project. The current funded project, which is to run until 2013 aims *To establish a superconducting linac based infra-red free electron laser and Bremsstrahlung Facility (TARLA) at the Golbasi Campus of Ankara University, *To establish the Institute of Accelerator Technologies in Ankara University, and *To complete the Technical Design Report of TAC. The proposed facilities are a 3^rd generation Synchrotron Radiation facility, SASE-FEL facility, a GeV scale Proton Accelerator facility and an electron-positron collider as a super charm factory. In this talk, an overview on the general status and road map of TAC project will be given. National and regional importance of TAC will be expressed and the structure of national and internatonal collaborations will be explained.
The new postirradiation examination facility of the Atomic Energy Corporation of South Africa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walt, P.L. van der; Aspeling, J.C.; Jonker, W.D.
1992-01-01
The Pelindaba Hot Cell Complex (HCC) forms an important part of the infrastructure and support services of the Atomic Energy Corporation (AEC) of South Africa. It is a comprehensive, one-stop facility designed to make South Africa self-sufficient in the fields of spent-fuel qualification and verification, reactor pressure vessel surveillance program testing, ad hoc failure analyses for the nuclear power industry, and research and development studies in conjunction with the Safari I material test reactor (MTR) and irradiation rigs. Local technology and expertise was used for the design and construction of the HCC, which start up in 1980. The facility wasmore » commissioned in 1990.« less
Tynan, Anna; Deeth, Lisa; McKenzie, Debra; Bourke, Carolyn; Stenhouse, Shayne; Pitt, Jacinta; Linneman, Helen
2018-04-16
Residents of residential aged care facilities are at very high risk of developing complex oral diseases and dental problems. Key barriers exist in delivering oral health services to residential aged care facilities, particularly in regional and rural areas. A quality improvement study incorporating pre- and post chart audits and pre- and post consultation with key stakeholders, including staff and residents, expert opinion on cost estimates and field notes were used. One regional and three rural residential aged care facilities situated in a non-metropolitan hospital and health service in Queensland. Number of appointments avoided at an oral health facility Feedback on program experience by staff and residents Compliance with oral health care plan implementation Observations of costs involved to deliver new service. The model developed incorporated a visit by an oral health therapist for screening, education, simple intervention and referral for a teledentistry session if required. Results showed an improvement in implementation of oral health care plans and a minimisation of need for residents to attend an oral health care facility. Potential financial and social cost savings for residents and the facilities were also noted. Screening via the oral health therapist and teledentistry appointment minimises the need for a visit to an oral health facility and subsequent disruption to residents in residential aged care facilities. © 2018 National Rural Health Alliance Ltd.
Methodological aspects of fuel performance system analysis at raw hydrocarbon processing plants
NASA Astrophysics Data System (ADS)
Kulbjakina, A. V.; Dolotovskij, I. V.
2018-01-01
The article discusses the methodological aspects of fuel performance system analysis at raw hydrocarbon (RH) processing plants. Modern RH processing facilities are the major consumers of energy resources (ER) for their own needs. To reduce ER, including fuel consumption, and to develop rational fuel system structure are complex and relevant scientific tasks that can only be done using system analysis and complex system synthesis. In accordance with the principles of system analysis, the hierarchical structure of the fuel system, the block scheme for the synthesis of the most efficient alternative of the fuel system using mathematical models and the set of performance criteria have been developed on the main stages of the study. The results from the introduction of specific engineering solutions to develop their own energy supply sources for RH processing facilities have been provided.
Validity and reliability of the Questionnaire for Compliance with Standard Precaution
Valim, Marília Duarte; Marziale, Maria Helena Palucci; Hayashida, Miyeko; Rocha, Fernanda Ludmilla Rossi; Santos, Jair Lício Ferreira
2015-01-01
ABSTRACT OBJECTIVE : To evaluate the validity and reliability of the Questionnaire for Compliance with Standard Precaution for nurses. METHODS : This methodological study was conducted with 121 nurses from health care facilities in Sao Paulo’s countryside, who were represented by two high-complexity and by three average-complexity health care facilities. Internal consistency was calculated using Cronbach’s alpha and stability was calculated by the intraclass correlation coefficient, through test-retest. Convergent, discriminant, and known-groups construct validity techniques were conducted. RESULTS : The questionnaire was found to be reliable (Cronbach’s alpha: 0.80; intraclass correlation coefficient: (0.97) In regards to the convergent and discriminant construct validity, strong correlation was found between compliance to standard precautions, the perception of a safe environment, and the smaller perception of obstacles to follow such precautions (r = 0.614 and r = 0.537, respectively). The nurses who were trained on the standard precautions and worked on the health care facilities of higher complexity were shown to comply more (p = 0.028 and p = 0.006, respectively). CONCLUSIONS : The Brazilian version of the Questionnaire for Compliance with Standard Precaution was shown to be valid and reliable. Further investigation must be conducted with nurse samples that are more representative of the Brazilian reality. The use of the questionnaire may support the creation of educational measures considering the possible gaps that can be identified, focusing on the workers’ health and on the patients’ safety. PMID:26759967
2001-06-20
CAPE CANAVERAL, Fla. – An aerial view of Launch Complex 39 shows the south and west sides of the Vehicle Assembly Building. The curved roadway heading to the VAB leads to high bay 2, the Safe Haven facility constructed in 2000. Beyond it is the Orbiter Processing Facility, bays 1 and 2. The OPF bay 3 is farther still, closer to the VAB. Farther in the background are the waters of the Banana Creek in the Merritt Island National Wildlife Refuge. Photo credit: NASA
2003-07-23
KENNEDY SPACE CENTER, FLA. – This view shows much of the Launch Complex 39 Area stretching beyond the Turn Basin in the foreground. The largest building is the 525-foot-tall Vehicle Assembly Building. In front of it is the Launch Control Center. Behind and to the left of the VAB are the Orbiter Processing Facility bays. At left are the Multi-Function Facility and Operations Support Building. At left of the Turn Basin is the Press Site, which comprises the NASA News Center, grandstand, TV studio and media buildings.
1980-06-20
located between the six cells of the lagoon system. Table 23 shows the characteristics of the system. I The detention lagoon was designed to...Wastewater Facilities for Selected Rural Nevada Communities B Municipal Water Resources Analysis for Area Potential- ly Impacted by MX Missile Complex in Utah...order teaet very large grocth up tntiel grond-cater rights In Stepee 0.4e/a , for average demand plus io a designated basin these quentiti Ruth- c~ill
1994-11-24
complexes with reversible ligands, including edrophonium, d-tubocurarine and huperzine A , diffracting to similar resolution. The X26c Laue beam line...The EMBL-DESY synchrotron facility at Hamburg was employed to collect a complete 2.3 A data set for a crystal of native Torpedo AChE, as well as for...at the NSLS synchrotron facility at Brookhaven National Laboratory (BNL) was used to obtain a Laue diffraction pattern for a crystal of native Torpedo
2013-06-28
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, Bill Moore, Delaware North Parks and Resorts chief operating officer speaks to news media representatives during the opening of the 90,000-square-foot "Space Shuttle Atlantis" facility. The new $100 million facility includes interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. The "Space Shuttle Atlantis" exhibit formally opened to the public on June 29, 2013.Photo credit: NASA/Jim Grossmann
2013-06-28
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, Andrea Farmer, Delaware North Parks and Resorts manager of Public Relations speaks to news media representatives during the opening of the 90,000-square-foot "Space Shuttle Atlantis" facility. The new $100 million facility includes interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. The "Space Shuttle Atlantis" exhibit formally opened to the public on June 29, 2013.Photo credit: NASA/Jim Grossmann
2013-06-29
CAPE CANAVERAL, Fla. -- During opening ceremonies for the new 90,000-square-foot "Space Shuttle Atlantis" facility at the Kennedy Space Center Visitor Complex in Florida, Expedition 36 flight engineers Karen Nyberg, left, and Chris Cassidy speak to guests via television from the International Space Station. The new $100 million facility includes interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. The "Space Shuttle Atlantis" exhibit formally opened to the public on June 29, 2013.Photo credit: NASA/Jim Grossmann
2013-06-28
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, Bill Moore, Delaware North Parks and Resorts chief operating officer speaks to news media representatives during the opening of the 90,000-square-foot "Space Shuttle Atlantis" facility. The new $100 million facility includes interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. The "Space Shuttle Atlantis" exhibit formally opened to the public on June 29, 2013.Photo credit: NASA/Jim Grossmann
Developments of a new data acquisition system at ANNRI
NASA Astrophysics Data System (ADS)
Nakao, T.; Terada, K.; Kimura, A.; Nakamura, S.; Iwamoto, O.; Harada, H.; Katabuchi, T.; Igashira, M.; Hori, J.
2017-09-01
A new data acquisition system (DAQ system) has been developed at the Accurate Neutron-Nucleus Reaction Measurement Instrument (ANNRI) facility in the Japan Proton Accelerator Research Complex, Materials and Life Science Experimental Facility (J-PARC/MLF). DAQ systems for both the Ge detector system and the Li-glass detector system were tested by using a gold sample. The applicability of the time-of-flight method was checked. System performance was evaluated on the basis of digital conversion nonlinearity, energy resolution, multi-channel coincidence and dead time.
Relocation of the Deep Space Network Maintenance Center
NASA Technical Reports Server (NTRS)
Beutler, K. F.
1981-01-01
The Jet Propulsion Laboratory maintains a Deep Space Network (DSN) maintenance center (DMC), whose task is to engineer and manage the repair and calibration program for the electronic and mechanical equipment used in the tracking stations located at Madrid, Spain, and Canberra, Australia. The DMC also manages the Goldstone complex maintenance facility (GCMF), whose task is to repair and calibrate the Goldstone electronic and mechanical equipment. The rationale for moving the facility to Barstow, California, and the benefits derived from the move are discussed.
IRIS thermal balance test within ESTEC LSS
NASA Technical Reports Server (NTRS)
Messidoro, Piero; Ballesio, Marino; Vessaz, J. P.
1988-01-01
The Italian Research Interim Stage (IRIS) thermal balance test was successfully performed in the ESTEC Large Space Simulator (LSS) to qualify the thermal design and to validate the thermal mathematical model. Characteristics of the test were the complexity of the set-up required to simulate the Shuttle cargo bay and allowing IRIS mechanism actioning and operation for the first time in the new LSS facility. Details of the test are presented, and test results for IRIS and the LSS facility are described.
Considerations for Planning a Monitoring Campaign at Petrochemical Complexes: Lessons Learned
NASA Astrophysics Data System (ADS)
Cuclis, A.
2010-12-01
An air quality monitoring campaign was developed for the late spring of 2009 near Houston area petrochemical facilities. The focus of the field campaign was to measure free radicals that contribute to the formation of ozone, however refinery and chemical plants monitored are also emitters of many different volatile organic compounds (vocs) and hazardous air pollutants (haps). The Houston area is home to the largest aggregation of petrochemical facilities in the U.S. Three specific geographical areas with industrial facilities were considered: Mont Belvieu, the Houston Ship Channel and the Texas City Industrial Complex. Previous experiences with field campaigns in the area led to the presumption that there would be little if any access inside the facilities. Considerations for which areas to focus on included: how close could the facility be approached, what were the directions of the prevailing winds, what kind of barriers to measurement existed (e.g. trees, buildings, highways, privately owned land, etc.), and what were the possible chemical interferences from other sources near the measurement sites? Close communications with the plant security, the local police, the Federal Bureau of Investigations (FBI), Homeland Security, the Federal Aviation Administration (FAA), and the Texas Commission on Environmental Quality (TCEQ) were required. Substantial delays can occur due to local concerns regarding homeland security and plant safety. Also, a system of communications is essential to coordinate the participating scientists operating stationary analyzers with the scientists who have analyzers mounted in ground vehicles and in aircraft. The researchers were provided with information regarding plant operations, types of equipment and potential pollutants. A wide variety of stationery and mobile ambient air monitoring techniques were used to measure formaldehyde and other volatile organic compounds. In order to identify likely formaldehyde sources the self-reported submissions to the EPA in the Toxic Release Inventory and emissions reports to the Texas Commission on Environmental Quality were reviewed. Other considerations were the locations of boilers, furnaces and flares, since formaldehyde is a product of combustion. In addition, a review was made to identify any sources of formaldehyde stored, consumed or produced in the petrochemical processes. The Texas City complex was chosen for the focus on formaldehyde study due to the very heavy concentration (fence-line to fence-line) of several refineries, chemical plants and storage facilities. Also there were sites upwind and downwind of the complex that were available for installing critical stationary analyzers for the study. Formaldehyde was identified in several locations, including from flares and smokestacks on ships. Also, benzene was measured less than a mile away from a plume emanating from a 200 foot flare. The solar occultation flux method was used to identify voc emissions that were 5-10 times higher than expected based on the emissions reported to the state environmental agency by the facilities. This paper will describe how the site selection and preparation enhanced the data that was retrieved, and how preparations might be adjusted to improve future air quality studies at petrochemical sites.
1999-10-29
The support building at the $8 million Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center takes form. It will house related ground support equipment and administrative/technical support. The RLV complex includes a multi-purpose hangar that will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000
Refurbishment and Automation of the Thermal/Vacuum Facilities at the Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Donohue, John T.; Johnson, Chris; Ogden, Rick; Sushon, Janet
1998-01-01
The thermal/vacuum facilities located at the Goddard Space Flight Center (GSFC) have supported both manned and unmanned space flight since the 1960s. Of the 11 facilities, currently 10 of the systems are scheduled for refurbishment and/or replacement as part of a 5-year implementation. Expected return on investment includes the reduction in test schedules, improvements in the safety of facility operations, reduction in the complexity of a test and the reduction in personnel support required for a test. Additionally, GSFC will become a global resource renowned for expertise in thermal engineering, mechanical engineering and for the automation of thermal/vacuum facilities and thermal/vacuum tests. Automation of the thermal/vacuum facilities includes the utilization of Programmable Logic Controllers (PLCs) and the use of Supervisory Control and Data Acquisition (SCADA) systems. These components allow the computer control and automation of mechanical components such as valves and pumps. In some cases, the chamber and chamber shroud require complete replacement while others require only mechanical component retrofit or replacement. The project of refurbishment and automation began in 1996 and has resulted in the computer control of one Facility (Facility #225) and the integration of electronically controlled devices and PLCs within several other facilities. Facility 225 has been successfully controlled by PLC and SCADA for over one year. Insignificant anomalies have occurred and were resolved with minimal impact to testing and operations. The amount of work remaining to be performed will occur over the next four to five years. Fiscal year 1998 includes the complete refurbishment of one facility, computer control of the thermal systems in two facilities, implementation of SCADA and PLC systems to support multiple facilities and the implementation of a Database server to allow efficient test management and data analysis.
Chen, Min; Yang, Bangpei; Chen, Changle
2015-12-14
The facile and reversible interconversion between neutral and oxidized forms of palladium complexes containing ferrocene-bridged phosphine sulfonate ligands was demonstrated. The activity of these palladium complexes could be controlled using redox reagents during ethylene homopolymerization, ethylene/methyl acrylate copolymerization, and norbornene oligomerization. Specifically in norbornene oligomerization, the neutral complexes were not active at all whereas the oxidized counterparts showed appreciable activity. In situ switching between the neutral and oxidized forms resulted in an interesting "off" and "on" behavior in norbornene oligomerization. This work provides a new strategy to control the olefin polymerization process. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ricordi, Camillo; Goldstein, Julia S; Balamurugan, A N; Szot, Gregory L; Kin, Tatsuya; Liu, Chengyang; Czarniecki, Christine W; Barbaro, Barbara; Bridges, Nancy D; Cano, Jose; Clarke, William R; Eggerman, Thomas L; Hunsicker, Lawrence G; Kaufman, Dixon B; Khan, Aisha; Lafontant, David-Erick; Linetsky, Elina; Luo, Xunrong; Markmann, James F; Naji, Ali; Korsgren, Olle; Oberholzer, Jose; Turgeon, Nicole A; Brandhorst, Daniel; Chen, Xiaojuan; Friberg, Andrew S; Lei, Ji; Wang, Ling-Jia; Wilhelm, Joshua J; Willits, Jamie; Zhang, Xiaomin; Hering, Bernhard J; Posselt, Andrew M; Stock, Peter G; Shapiro, A M James; Chen, Xiaojuan
2016-11-01
Eight manufacturing facilities participating in the National Institutes of Health-sponsored Clinical Islet Transplantation (CIT) Consortium jointly developed and implemented a harmonized process for the manufacture of allogeneic purified human pancreatic islet (PHPI) product evaluated in a phase 3 trial in subjects with type 1 diabetes. Manufacturing was controlled by a common master production batch record, standard operating procedures that included acceptance criteria for deceased donor organ pancreata and critical raw materials, PHPI product specifications, certificate of analysis, and test methods. The process was compliant with Current Good Manufacturing Practices and Current Good Tissue Practices. This report describes the manufacturing process for 75 PHPI clinical lots and summarizes the results, including lot release. The results demonstrate the feasibility of implementing a harmonized process at multiple facilities for the manufacture of a complex cellular product. The quality systems and regulatory and operational strategies developed by the CIT Consortium yielded product lots that met the prespecified characteristics of safety, purity, potency, and identity and were successfully transplanted into 48 subjects. No adverse events attributable to the product and no cases of primary nonfunction were observed. © 2016 by the American Diabetes Association.
Balamurugan, A.N.; Szot, Gregory L.; Kin, Tatsuya; Liu, Chengyang; Czarniecki, Christine W.; Barbaro, Barbara; Bridges, Nancy D.; Cano, Jose; Clarke, William R.; Eggerman, Thomas L.; Hunsicker, Lawrence G.; Kaufman, Dixon B.; Khan, Aisha; Lafontant, David-Erick; Linetsky, Elina; Luo, Xunrong; Markmann, James F.; Naji, Ali; Korsgren, Olle; Oberholzer, Jose; Turgeon, Nicole A.; Brandhorst, Daniel; Chen, Xiaojuan; Friberg, Andrew S.; Lei, Ji; Wang, Ling-jia; Wilhelm, Joshua J.; Willits, Jamie; Zhang, Xiaomin; Hering, Bernhard J.; Posselt, Andrew M.; Stock, Peter G.; Shapiro, A.M. James
2016-01-01
Eight manufacturing facilities participating in the National Institutes of Health–sponsored Clinical Islet Transplantation (CIT) Consortium jointly developed and implemented a harmonized process for the manufacture of allogeneic purified human pancreatic islet (PHPI) product evaluated in a phase 3 trial in subjects with type 1 diabetes. Manufacturing was controlled by a common master production batch record, standard operating procedures that included acceptance criteria for deceased donor organ pancreata and critical raw materials, PHPI product specifications, certificate of analysis, and test methods. The process was compliant with Current Good Manufacturing Practices and Current Good Tissue Practices. This report describes the manufacturing process for 75 PHPI clinical lots and summarizes the results, including lot release. The results demonstrate the feasibility of implementing a harmonized process at multiple facilities for the manufacture of a complex cellular product. The quality systems and regulatory and operational strategies developed by the CIT Consortium yielded product lots that met the prespecified characteristics of safety, purity, potency, and identity and were successfully transplanted into 48 subjects. No adverse events attributable to the product and no cases of primary nonfunction were observed. PMID:27465220
1963-06-04
CAPE CANAVERAL, Fla. - Between 1962 and 1963, the Mission Control Center was modified to handle the additional complexities of the Gemini Program. In 1962, Pan American World Airways Inc. was contracted to design an addition to the facility, which wrapped around the east, north, and most of the west and south sides. The Mercury Mission Control Center in Florida played a key role in the United States' early spaceflight program. Located at Cape Canaveral Air Force Station, the original part of the building was constructed between 1956 and 1958, with additions in 1959 and 1963. The facility officially was transferred to NASA on Dec. 26, 1963, and served as mission control during all the Project Mercury missions, as well as the first three flights of the Gemini Program, when it was renamed Mission Control Center. With its operational days behind, on June 1, 1967, the Mission Control Center became a stop on the public tour of NASA facilities until the mid-90s. In 1999, much of the equipment and furnishings from the Flight Control Area were moved to the Kennedy Space Center Visitor Complex where they became part of the exhibit there. The building was demolished in spring 2010. Photo credit: NASA
1963-02-13
CAPE CANAVERAL, Fla. - Between 1962 and 1963, the Mission Control Center was modified to handle the additional complexities of the Gemini Program. In 1962, Pan American World Airways Inc. was contracted to design an addition to the facility, which wrapped around the east, north, and most of the west and south sides. The Mercury Mission Control Center in Florida played a key role in the United States' early spaceflight program. Located at Cape Canaveral Air Force Station, the original part of the building was constructed between 1956 and 1958, with additions in 1959 and 1963. The facility officially was transferred to NASA on Dec. 26, 1963, and served as mission control during all the Project Mercury missions, as well as the first three flights of the Gemini Program, when it was renamed Mission Control Center. With its operational days behind, on June 1, 1967, the Mission Control Center became a stop on the public tour of NASA facilities until the mid-90s. In 1999, much of the equipment and furnishings from the Flight Control Area were moved to the Kennedy Space Center Visitor Complex where they became part of the exhibit there. The building was demolished in spring 2010. Photo credit: NASA
1963-02-13
CAPE CANAVERAL, Fla. - Between 1962 and 1963, the Mission Control Center was modified to handle the additional complexities of the Gemini Program. In 1962, Pan American World Airways Inc. was contracted to design an addition to the facility, which wrapped around the east, north, and most of the west and south sides. The Mercury Mission Control Center in Florida played a key role in the United States' early spaceflight program. Located at Cape Canaveral Air Force Station, the original part of the building was constructed between 1956 and 1958, with additions in 1959 and 1963. The facility officially was transferred to NASA on Dec. 26, 1963, and served as mission control during all the Project Mercury missions, as well as the first three flights of the Gemini Program, when it was renamed Mission Control Center. With its operational days behind, on June 1, 1967, the Mission Control Center became a stop on the public tour of NASA facilities until the mid-90s. In 1999, much of the equipment and furnishings from the Flight Control Area were moved to the Kennedy Space Center Visitor Complex where they became part of the exhibit there. The building was demolished in spring 2010. Photo credit: NASA
1963-03-01
CAPE CANAVERAL, Fla. - Between 1962 and 1963, the Mission Control Center was modified to handle the additional complexities of the Gemini Program. In 1962, Pan American World Airways Inc. was contracted to design an addition to the facility, which wrapped around the east, north, and most of the west and south sides. The Mercury Mission Control Center in Florida played a key role in the United States' early spaceflight program. Located at Cape Canaveral Air Force Station, the original part of the building was constructed between 1956 and 1958, with additions in 1959 and 1963. The facility officially was transferred to NASA on Dec. 26, 1963, and served as mission control during all the Project Mercury missions, as well as the first three flights of the Gemini Program, when it was renamed Mission Control Center. With its operational days behind, on June 1, 1967, the Mission Control Center became a stop on the public tour of NASA facilities until the mid-90s. In 1999, much of the equipment and furnishings from the Flight Control Area were moved to the Kennedy Space Center Visitor Complex where they became part of the exhibit there. The building was demolished in spring 2010. Photo credit: NASA
NASA Astrophysics Data System (ADS)
Maggs, William Ward
Calling the Department of Energy's management of the nation's crippled nuclear weapons production complex “a 35-year secret chemical war waged against people living near DOE's sites,” Representative Thomas Luken (D-OH) opened a congressional hearing on February 23 with an appeal to DOE Secretary-designate James Watkins to release secret health records of workers at the plants. In testimony that followed, Comptroller General Charles Bowsher told a subcommittee of the House Energy and Commerce Committee that President Bush's new budget does not go far enough on the long and costly road of cleaning up and modernizing the contaminated and aging facilities. The renovation is expected to cost up to $155 billion.By next month, 11 of the 17 installations that make up the DOE complex will be on the EPA's Superfund list of the nation's most contaminated waste sites. Some o f the DOE facilities, including the Rocky Flats plant in Denver, Colo., the Hanford Reservation in eastern Washington, and the Savannah River plant in South Carolina, are among the most polluted sites ever identified by EPA. The principal function of the facilities, the production of tritium and plutonium for nuclear weapons, has stopped, creating what DOE has characterized as a looming national security crisis.
National Wind Tunnel Complex (NWTC)
NASA Technical Reports Server (NTRS)
1996-01-01
The National Wind Tunnel Complex (NWTC) Final Report summarizes the work carried out by a unique Government/Industry partnership during the period of June 1994 through May 1996. The objective of this partnership was to plan, design, build and activate 'world class' wind tunnel facilities for the development of future-generation commercial and military aircraft. The basis of this effort was a set of performance goals defined by the National Facilities Study (NFS) Task Group on Aeronautical Research and Development Facilities which established two critical measures of improved wind tunnel performance; namely, higher Reynolds number capability and greater productivity. Initial activities focused upon two high-performance tunnels (low-speed and transonic). This effort was later descoped to a single multipurpose tunnel. Beginning in June 1994, the NWTC Project Office defined specific performance requirements, planned site evaluation activities, performed a series of technical/cost trade studies, and completed preliminary engineering to support a proposed conceptual design. Due to budget uncertainties within the Federal government, the NWTC project office was directed to conduct an orderly closure following the Systems Design Review in March 1996. This report provides a top-level status of the project at that time. Additional details of all work performed have been archived and are available for future reference.
NASA Astrophysics Data System (ADS)
Li, Shan-Shan; Zheng, Jie-Ning; Ma, Xiaohong; Hu, Yuan-Yuan; Wang, Ai-Jun; Chen, Jian-Rong; Feng, Jiu-Ju
2014-05-01
A simple and facile method is developed for one-pot preparation of hierarchical dendritic PtPd nanogarlands supported on reduced graphene oxide (PtPd/RGO) at room temperature, without using any seed, organic solvent, or complex apparatus. It is found that octylphenoxypolyethoxyethanol (NP-40) as a soft template and its amount are critical to the formation of PtPd garlands. The as-prepared nanocomposites are further applied to methanol and ethanol oxidation with significantly enhanced electrocatalytic activity and better stability in alkaline media.A simple and facile method is developed for one-pot preparation of hierarchical dendritic PtPd nanogarlands supported on reduced graphene oxide (PtPd/RGO) at room temperature, without using any seed, organic solvent, or complex apparatus. It is found that octylphenoxypolyethoxyethanol (NP-40) as a soft template and its amount are critical to the formation of PtPd garlands. The as-prepared nanocomposites are further applied to methanol and ethanol oxidation with significantly enhanced electrocatalytic activity and better stability in alkaline media. Electronic supplementary information (ESI) available: Experimental section, Fig. S1-S12 and Tables S1 and S2. See DOI: 10.1039/c3nr06808k
Automatic flexible endoscope reprocessors.
Muscarella, L F
2000-04-01
Reprocessing medical instruments is a complex and controversial discipline. If all instruments were constructed of materials not damaged by heat, pressure, and moisture, instrument reprocessing would be greatly simplified. As the number of novel and complex instruments entering the market continues to increase, periodic review of the health care facility's instrument reprocessing protocols to ensure their safety and effectiveness is important. This article reviews the advantages and the limitations of automatic flexible endoscope reprocessors.
2011-12-11
CAPE CANAVERAL, Fla. – The high-fidelity space shuttle model that was on display at the NASA Kennedy Space Center Visitor Complex in Florida travels along Schwartz Road on its way toward NASA Kennedy Space Center's Launch Complex 39 turn basin. It is standard procedure for large payloads and equipment to travel against the normal flow of traffic under the supervision of a move crew when being transported on or off center property. The Assembly and Refurbishment Facility, formerly used to process components of space shuttle solid rocket boosters, is in the background at right. The shuttle was part of a display at the visitor complex that also included an external tank and two solid rocket boosters that were used to show visitors the size of actual space shuttle components. The full-scale shuttle model is being transferred from Kennedy to Space Center Houston, NASA Johnson Space Center's visitor center. The model will stay at the turn basin for a few months until it is ready to be transported to Texas via barge. The move also helps clear the way for the Kennedy Space Center Visitor Complex to begin construction of a new facility next year to display space shuttle Atlantis in 2013. For more information about Space Center Houston, visit http://www.spacecenter.org. Photo credit: NASA/Dimitri Gerondidakis
Extraordinary Tools for Extraordinary Science: The Impact ofSciDAC on Accelerator Science&Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryne, Robert D.
2006-08-10
Particle accelerators are among the most complex and versatile instruments of scientific exploration. They have enabled remarkable scientific discoveries and important technological advances that span all programs within the DOE Office of Science (DOE/SC). The importance of accelerators to the DOE/SC mission is evident from an examination of the DOE document, ''Facilities for the Future of Science: A Twenty-Year Outlook''. Of the 28 facilities listed, 13 involve accelerators. Thanks to SciDAC, a powerful suite of parallel simulation tools has been developed that represent a paradigm shift in computational accelerator science. Simulations that used to take weeks or more now takemore » hours, and simulations that were once thought impossible are now performed routinely. These codes have been applied to many important projects of DOE/SC including existing facilities (the Tevatron complex, the Relativistic Heavy Ion Collider), facilities under construction (the Large Hadron Collider, the Spallation Neutron Source, the Linac Coherent Light Source), and to future facilities (the International Linear Collider, the Rare Isotope Accelerator). The new codes have also been used to explore innovative approaches to charged particle acceleration. These approaches, based on the extremely intense fields that can be present in lasers and plasmas, may one day provide a path to the outermost reaches of the energy frontier. Furthermore, they could lead to compact, high-gradient accelerators that would have huge consequences for US science and technology, industry, and medicine. In this talk I will describe the new accelerator modeling capabilities developed under SciDAC, the essential role of multi-disciplinary collaboration with applied mathematicians, computer scientists, and other IT experts in developing these capabilities, and provide examples of how the codes have been used to support DOE/SC accelerator projects.« less
NASA Astrophysics Data System (ADS)
Ryne, Robert D.
2006-09-01
Particle accelerators are among the most complex and versatile instruments of scientific exploration. They have enabled remarkable scientific discoveries and important technological advances that span all programs within the DOE Office of Science (DOE/SC). The importance of accelerators to the DOE/SC mission is evident from an examination of the DOE document, ''Facilities for the Future of Science: A Twenty-Year Outlook.'' Of the 28 facilities listed, 13 involve accelerators. Thanks to SciDAC, a powerful suite of parallel simulation tools has been developed that represent a paradigm shift in computational accelerator science. Simulations that used to take weeks or more now take hours, and simulations that were once thought impossible are now performed routinely. These codes have been applied to many important projects of DOE/SC including existing facilities (the Tevatron complex, the Relativistic Heavy Ion Collider), facilities under construction (the Large Hadron Collider, the Spallation Neutron Source, the Linac Coherent Light Source), and to future facilities (the International Linear Collider, the Rare Isotope Accelerator). The new codes have also been used to explore innovative approaches to charged particle acceleration. These approaches, based on the extremely intense fields that can be present in lasers and plasmas, may one day provide a path to the outermost reaches of the energy frontier. Furthermore, they could lead to compact, high-gradient accelerators that would have huge consequences for US science and technology, industry, and medicine. In this talk I will describe the new accelerator modeling capabilities developed under SciDAC, the essential role of multi-disciplinary collaboration with applied mathematicians, computer scientists, and other IT experts in developing these capabilities, and provide examples of how the codes have been used to support DOE/SC accelerator projects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-01-01
Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials. Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities. Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites inmore » the complex. Changes to the FFCA site treatment plans as a result of proposals in the EM 2006 cleanup plans and contractor integration analysis. Interstate waste and materials shipments. Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the quarter from October 1, 1997 through December 31, 1997, under the NGA project. The work accomplished by the NGA project team during the past four months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; and maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, DOE activities in the area of the Hazardous Waste Identification Rule, and DOE's proposed National Dialogue.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-04-01
Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials. Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities. Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites inmore » the complex. Changes to the FFCA site treatment plans as a result of proposals in DOE's Accelerating Cleanup: Paths to Closure strategy and contractor integration analysis. Interstate waste and materials shipments. Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the quarter from December 31, 1997 through April 30, 1998 under the NGA project. The work accomplished by the NGA project team during the past four months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; and provided ongoing support to state-DOE interactions in preparation for the March 30-31, 1998 NGA Federal Facilities Compliance Task Force Meeting with DOE. maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, DOE's Environmental Management Budget, and DOE's proposed Intersite Discussions.« less
Senator Doug Jones (D-AL) Tour of MSFC Facilities
2018-02-22
Senator Doug Jones (D-Al.) and wife Louise tour the Payload Crew Training Complex (PCTC) at Marshall Space Flight Center. The PCTC simulates International Space Station habitat modules and is interactive for different activities.
Multimodal Transportation Facility Resilience Index
DOT National Transportation Integrated Search
2017-03-21
A new paradigm for complex systems performance and maintenance decision making is developing in the form of resilience engineering. Depending on the subject area, different definitions of resilience exist. In this project, we adopt a definition appro...
2011-01-07
CAPE CANAVERAL, Fla. -- Workers hang artwork in the second-floor lobby of the Propellants North Administrative and Maintenance Facility at NASA's Kennedy Space Center in Florida. The artwork was produced by Greg Lee, a graphics specialist with Abacus Technology Corp., and features a silhouette of a shuttle, one of the most recognizable American icons, rolling out to Launch Complex 39. The environmentally friendly facility is slated to be NASA's second Platinum-rated by the U.S. Green Building Council's (USGBC) Leadership in Environmental and Energy Design (LEED) certification system. It will be the space agency's first net-zero facility, which means it will produce enough energy onsite from renewable sources to offset what it requires to operate. The facility consists of a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy, and a single-story shop to store cryogenic fuel transfer equipment. Photo credit: NASA/Frankie Martin
Overview of Engineering Design and Analysis at the NASA John C. Stennis Space Center
NASA Technical Reports Server (NTRS)
Ryan, Harry; Congiardo, Jared; Junell, Justin; Kirkpatrick, Richard
2007-01-01
A wide range of rocket propulsion test work occurs at the NASA John C. Stennis Space Center (SSC) including full-scale engine test activities at test facilities A-1, A-2, B-1 and B-2 as well as combustion device research and development activities at the E-Complex (E-1, E-2, E-3 and E-4) test facilities. The propulsion test engineer at NASA SSC faces many challenges associated with designing and operating a test facility due to the extreme operating conditions (e.g., cryogenic temperatures, high pressures) of the various system components and the uniqueness of many of the components and systems. The purpose of this paper is to briefly describe the NASA SSC Engineering Science Directorate s design and analysis processes, experience, and modeling techniques that are used to design and support the operation of unique rocket propulsion test facilities.
NASA Dryden flow visualization facility
NASA Technical Reports Server (NTRS)
Delfrate, John H.
1995-01-01
This report describes the Flow Visualization Facility at NASA Dryden Flight Research Center, Edwards, California. This water tunnel facility is used primarily for visualizing and analyzing vortical flows on aircraft models and other shapes at high-incidence angles. The tunnel is used extensively as a low-cost, diagnostic tool to help engineers understand complex flows over aircraft and other full-scale vehicles. The facility consists primarily of a closed-circuit water tunnel with a 16- x 24-in. vertical test section. Velocity of the flow through the test section can be varied from 0 to 10 in/sec; however, 3 in/sec provides optimum velocity for the majority of flow visualization applications. This velocity corresponds to a unit Reynolds number of 23,000/ft and a turbulence level over the majority of the test section below 0.5 percent. Flow visualization techniques described here include the dye tracer, laser light sheet, and shadowgraph. Limited correlation to full-scale flight data is shown.
Synthesis and Characterization of LaTiO2N
NASA Astrophysics Data System (ADS)
Rugen, Evan E.
Photocatalysts offer an excellent opportunity to shift the global energy landscape from a fossil fuel-dependent paradigm to sustainable and carbon-neutral solar fuels. Oxynitride materials such as LaTiO2N are potential photocatalysts for the water splitting reaction due to their high oxidative stability and their narrow band gaps, which are suitable for visible light absorption. However, facile synthetic routes to metal oxynitrides with controlled morphologies are rare, and the local structures of these materials are under-characterized. Ultrasonic spray synthesis (USS) offers a facile method toward complex metal oxides which can potentially be converted to oxynitrides with preservation of the microsphere structures that typify the products from such aerosol routes. Here, La-Ti-O microspheres were facilely produced by USS and converted by ammonolysis to LaTiO2N microspheres with porous shells and hollow interiors. This particle architecture is accounted for by coupling suitable combustion chemistry with the aerosol technique, producing precursor particles where the La3+ and Ti4+ are well-mixed at small length scales; this feature enables preservation of the microsphere morphology during nitridation despite the crystallographic changes that occur. The LaTiO2N microspheres are comparable oxygen evolving photocatalysts to samples produced by conventional solid state methods. Pair distribution function (PDF) analysis is a local probe designed to examine the structure of disordered crystalline materials, and is an ideal technique for characterizing the ordering of anions in oxynitrides. Preliminary studies using PDF analysis to determine the presence of anion ordering and local structure in LaTiO2N produced by solid state methods are presented here. Future experiments are proposed that will grant detailed insight into the factors driving the degree of anion ordering in these types of materials. These results demonstrate the utility of USS as a facile, potentially scalable route to complex photocatalytic materials and their precursors, and the feasibility of PDF analysis for the determination of local structures in complex oxynitrides.
Ma, Jing; Kannan, Kurunthachalam; Cheng, Jinping; Horii, Yuichi; Wu, Qian; Wang, Wenhua
2008-11-15
Environmental pollution arising from electronic waste (e-waste) disposal and recycling has received considerable attention in recent years. Treatment, at low temperatures, of e-wastes that contain polyvinylchloride and related polymers can release polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Although several studies have reported trace metals and polybrominated diphenyl ethers (PBDEs) released from e-waste recycling operations, environmental contamination and human exposure to PCDD/Fs from e-waste recycling operations are less well understood. In this study, electronic shredder waste and dust from e-waste facilities, and leaves and surface soil collected in the vicinity of a large scale e-waste recycling facility in Taizhou, Eastern China, were analyzed for total PCDD/ Fs including 2,3,7,8-substituted congeners. We also determined PCDD/Fs in surface agricultural soils from several provinces in China for comparison with soils from e-waste facilities. Concentrations of total PCDD/Fs were high in all of the matrices analyzed and ranged from 30.9 to 11400 pg/g for shredder waste, 3460 to 9820 pg/g dry weight for leaves, 2560 to 148000 pg/g dry weight for workshop-floor dust, and 854 to 10200 pg/g dry weight for soils. We also analyzed surface soils from a chemical industrial complex (a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant) in Shanghai. Concentrations of total PCDD/Fs in surface soil (44.5-531 pg/g dry wt) from the chemical industrial complex were lower than the concentrations found in soils from e-waste recycling plants, but higher than the concentrations found in agricultural soils. Agricultural soils from six cities in China contained low levels (3.44-33.8 pg/g dry wt) of total PCDD/Fs. Profiles of dioxin toxic equivalents (TEQs) of 2,3,7,8-PCDD/Fs in soils from e-waste facilities in Taizhou differed from the profiles found in agricultural soils. The estimated daily intakes of TEQs of PCDD/ Fs via soil/dust ingestion and dermal exposure (2.3 and 0.363 pg TEQ/kg bw/day for children and adults, respectively) were 2 orders of magnitude higher in people at e-waste recycling facilities than in people at the chemical industrial site (0.021 and 0.0053 pg TEQ/kg bw/day for children and adults, respectively), implying greater health risk for humans from dioxin exposures at e-waste recycling facilities. The calculated TEQ exposures for e-waste workers from dust and soil ingestion alone were 2-3 orders of magnitude greater than the exposures from soils in reference locations.
Introduction to the LaRC central scientific computing complex
NASA Technical Reports Server (NTRS)
Shoosmith, John N.
1993-01-01
The computers and associated equipment that make up the Central Scientific Computing Complex of the Langley Research Center are briefly described. The electronic networks that provide access to the various components of the complex and a number of areas that can be used by Langley and contractors staff for special applications (scientific visualization, image processing, software engineering, and grid generation) are also described. Flight simulation facilities that use the central computers are described. Management of the complex, procedures for its use, and available services and resources are discussed. This document is intended for new users of the complex, for current users who wish to keep appraised of changes, and for visitors who need to understand the role of central scientific computers at Langley.
Ma, Jing; Horii, Yuichi; Cheng, Jinping; Wang, Wenhua; Wu, Qian; Ohura, Takeshi; Kannan, Kurunthachalam
2009-02-01
Chlorinated polycyclic aromatic hydrocarbons (CIPAHs) are a class of halogenated contaminants found in the urban atmosphere; they have toxic potential similar to that of dioxins. Information on the sources of CIPAHs is limited. In this study, concentrations of 20 CIPAHs and 16 parent PAHs were measured in electronic wastes, workshop-floor dust, vegetation, and surface soil collected from the vicinity of an electronic waste (e-waste) recycling facility and in surface soil from a chemical industrial complex (comprising a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant), and agricultural areas in central and eastern China. High concentrations of SigmaCIPAHs were found in floor dust (mean, 103 ng/g dry wt), followed in order of decreasing concentration by leaves (87.5 ng/g drywt), electronic shredder waste (59.1 ng/g dry wt), and soil (26.8 ng/g dry wt) from an e-waste recycling facility in Taizhou. The mean concentration of SigmaCIPAHs in soil from the chemical industrial complex (88 ng/g dry wt) was approximately 3-fold higher than the concentration in soil from e-waste recycling facilities. The soils from e-waste sites and industrial areas contained mean concentrations of SigmaCIPAHs 2 to 3 orders of magnitude higher than the concentrations in agricultural soils (ND-0.76 ng/g), suggesting that e-waste recycling and chlorine-chemical industries are potential emission sources of CIPAHs. The profiles of CIPAHs in soil and dust were similar to a profile that has been reported previously for fly ash from municipal solid waste incinerators (6-CIBaP was the predominant compound), but the profiles in vegetation and electronic shredder waste were different from those found in fly ash. Concentrations of 16 parent PAHs were high (150-49,700 ng/g) in samples collected from the e-waste recycling facility. Significant correlation between SigmaCIPAH and SigmaPAH concentrations suggests that direct chlorination of parent PAHs is the major pathway of formation of CIPAHs during e-waste recycling operations. Dioxin-like toxic equivalency quotients (TEQs) for CIPAHs and PAHs in samples were calculated on the basis of relative potencies reported for CIPAHs and PAHs. The highest mean TEQ concentrations of CIPAHs (518 pg-TEQ/g) were found for workshop-floor dust, followed by leaves (361 pg-TEQ/g), electronic shredder waste (308 pg-TEQ/g), soil from the chemical industrial complex (146 pg-TEQ/g), and soil from the sites of the e-waste recycling facility (92.3 pg-TEQ/g). With one exception, the floor dust samples, the TEQ concentrations of CIPAHs found in multiple environmental matrices in this study were higher than the TEQ concentrations of PCDD/Fs in the same samples reported in our earlier study.
2003-06-06
KENNEDY SPACE CENTER, FLA. - The container with the Japanese Experiment Module (JEM)’s pressurized module is inside the Space Station Processing Facility. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.
2003-06-04
KENNEDY SPACE CENTER, FLA. - The truck transporting the Pressurized Module of the Japanese Experiment Module (JEM) to KSC’s Space Station Processing Facility arrives on Center. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.
Content of system design descriptions
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
A System Design Description (SDD) describes the requirements and features of a system. This standard provides guidance on the expected technical content of SDDs. The need for such a standard was recognized during efforts to develop SDDs for safety systems at DOE Hazard Category 2 nonreactor nuclear facilities. Existing guidance related to the corresponding documents in other industries is generally not suitable to meet the needs of DOE nuclear facilities. Across the DOE complex, different contractors have guidance documents, but they vary widely from site to site. While such guidance documents are valuable, no single guidance document has all themore » attributes that DOE considers important, including a reasonable degree of consistency or standardization. This standard is a consolidation of the best of the existing guidance. This standard has been developed with a technical content and level of detail intended to be most applicable to safety systems at DOE Hazard Category 2 nonreactor nuclear facilities. Notwithstanding that primary intent, this standard is recommended for other systems at such facilities, especially those that are important to achieving the programmatic mission of the facility. In addition, application of this standard should be considered for systems at other facilities, including non-nuclear facilities, on the basis that SDDs may be beneficial and cost-effective.« less
Innovation characteristics and intention to adopt sustainable facilities management practices.
Lee, So Young; Kang, Mihyun
2013-01-01
Sustainable facilities management (SFM) is important because typical buildings consume more resources and energy than necessary, negatively impact the environment and generate lots of waste (US Department of Energy, 2003, Green Buildings). This study examined innovation characteristics that relate to facility managers' intention to adopt SFM practices. Based on the diffusion of innovations theory (Rogers 1962, 1995, Diffusion of Innovations. 4th ed. New York: The Free Press), an SFM innovation and adoption model was proposed. A survey was conducted with a convenience sample of 240 public facilities managers in 25 facilities management divisions in Seoul, Korea, and its metropolitan areas. Structural equation modelling was employed to analyse the data. The results showed that economic advantage and human comfort aspects are predictors for the intention of SFM adoption. Observability is positively relevant to the intention of SFM adoption. Complexity, however, is not a significant predictor for the intention of SFM adoption. Practical implications for sustainable products and systems and the built environment are suggested. To incorporate an innovation like sustainable practices, it is required to meet the needs of potential adopters. Innovation characteristics that influence facility managers' intention to adopt sustainable facilities management were examined. A survey was conducted. Economic advantage, human comfort and observability are predictors for the intention of adoption of sustainable practice.
Szymanski, Jacek; Wilson, David L; Zhang, Guo-Qiang
2009-10-01
The rapid expansion of biomedical research has brought substantial scientific and administrative data management challenges to modern core facilities. Scientifically, a core facility must be able to manage experimental workflow and the corresponding set of large and complex scientific data. It must also disseminate experimental data to relevant researchers in a secure and expedient manner that facilitates collaboration and provides support for data interpretation and analysis. Administratively, a core facility must be able to manage the scheduling of its equipment and to maintain a flexible and effective billing system to track material, resource, and personnel costs and charge for services to sustain its operation. It must also have the ability to regularly monitor the usage and performance of its equipment and to provide summary statistics on resources spent on different categories of research. To address these informatics challenges, we introduce a comprehensive system called MIMI (multimodality, multiresource, information integration environment) that integrates the administrative and scientific support of a core facility into a single web-based environment. We report the design, development, and deployment experience of a baseline MIMI system at an imaging core facility and discuss the general applicability of such a system in other types of core facilities. These initial results suggest that MIMI will be a unique, cost-effective approach to addressing the informatics infrastructure needs of core facilities and similar research laboratories.
9. Photocopy of engineering drawing. LC17 LOX STORAGE TANK PAD: ...
9. Photocopy of engineering drawing. LC-17 LOX STORAGE TANK PAD: ELECTRICAL, OCTOBER 1966. - Cape Canaveral Air Station, Launch Complex 17, Facility 28405, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL
13. Elevations, 233S, U.S. Atomic Energy Commission, Hanford Works, General ...
13. Elevations, 233-S, U.S. Atomic Energy Commission, Hanford Works, General Electric Company, Dwg. No. H-2-7203, 1956. - Reduction-Oxidation Complex, Plutonium Concentration Facility, 200 West Area, Richland, Benton County, WA
SECTION BB, FLOOR PLAN Dyess Air Force Base, Atlas ...
SECTION B-B, FLOOR PLAN - Dyess Air Force Base, Atlas F Missle Site S-8, Launch Facility, Approximately 3 miles east of Winters, 500 feet southwest of Highway 1770, center of complex, Winters, Runnels County, TX
26. DETAIL OF CONCRETE PIPE SUPPORTS LEADING TO NEW LIQUID ...
26. DETAIL OF CONCRETE PIPE SUPPORTS LEADING TO NEW LIQUID HYDROGEN TANK FARM; VIEW TO WEST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28402, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL
9. Photocopy of engineering drawing. SECURITY UPGRADES, SLC17: PLANS, SECTIONS, ...
9. Photocopy of engineering drawing. SECURITY UPGRADES, SLC17: PLANS, SECTIONS, AND DETAILS, JANUARY 1993. - Cape Canaveral Air Station, Launch Complex 17, Facility 28425, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL
8. Photocopy of engineering drawing. SECURITY UPGRADES, SLC17: ELEVATIONS AND ...
8. Photocopy of engineering drawing. SECURITY UPGRADES, SLC17: ELEVATIONS AND BUILDING SECTION, JULY 1992. - Cape Canaveral Air Station, Launch Complex 17, Facility 28425, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL
Operational performance management of priced facilities
DOT National Transportation Integrated Search
2011-03-01
The Texas Department of Transportation and its agency partners have implemented various forms of lane management and pricing over the past three decades, including HOV lanes, managed lanes, and toll roads. As more of these complex transportation faci...
5. GENERAL VIEW OF LAUNCHER BUILDING 28402 SHOWING LAUNCH DECK ...
5. GENERAL VIEW OF LAUNCHER BUILDING 28402 SHOWING LAUNCH DECK AT RIGHT; VIEW TO NORTHEAST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28402, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL