Sample records for facility hfef complex

  1. An improved out-cell to in-cell rapid transfer system at the HFEF-south

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacca, J.P.; Sherman, E.K.

    1990-01-01

    The Argonne National Laboratory (ANL) Hot Fuel Examination Facility-South (HFEF-S), located at the ANL-West site of the Idaho National Engineering Laboratory, is currently undergoing extensive refurbishment and modifications in preparation for its use, beginning in 1991, in demonstrating remote recycling of fast reactor, metal-alloy fuel as part of the US Department of Energy liquid-metal reactor, Integral Fast Reactor (IFR) program. Included in these improvements to HFEF-S is a new, small-item, rapid transfer system (RTS). When installed, this system will enable the rapid transfer of small items from the hot-cell exterior into the argon cell (argon-gas atmosphere) of the facility withoutmore » necessitating the use of time-consuming and laborious procedures. The new RTS will also provide another important function associated with HFEF-S hot-cell operation in the IFR Fuel Recycle Program; namely, the rapid insertion of clean, radioactive contamination-measuring smear paper specimens into the hot cells for area surveys, and the expedited removal of these contaminated (including alpha as well as beta/gamma contamination) smears from the argon cell for transfer to an adjacent health physics field laboratory in the facility for nuclear contamination/radiation counting.« less

  2. Posttest examination of Sodium Loop Safety Facility experiments. [LMFBR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holland, J.W.

    In-reactor, safety experiments performed in the Sodium Loop Safety Facility (SLSF) rely on comprehensive posttest examinations (PTE) to characterize the postirradiation condition of the cladding, fuel, and other test-subassembly components. PTE information and on-line instrumentation data, are analyzed to identify the sequence of events and the severity of the accident for each experiment. Following in-reactor experimentation, the SLSF loop and test assembly are transported to the Hot Fuel Examination Facility (HFEF) for initial disassembly. Goals of the HFEF-phase of the PTE are to retrieve the fuel bundle by dismantling the loop and withdrawing the test assembly, to assess the macro-conditionmore » of the fuel bundle by nondestructive examination techniques, and to prepare the fuel bundle for shipment to the Alpha-Gamma Hot Cell Facility (AGHCF) at Argonne National Laboratory.« less

  3. Construction continues on the RLV complex at the Shuttle Landing Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At the construction site of the Reusable Launch Vehicle (RLV) complex at KSC, a worker takes a measurement. Located near the Shuttle Landing Facility, the complex will include facilities for related ground support equipment and administrative/ technical support. It will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000.

  4. Construction continues on the RLV complex at the Shuttle Landing Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Construction is under way for the X-33/X-34 hangar complex near the Shuttle Landing Facility at KSC. The Reusable Launch Vehicle (RLV) complex will include facilities for related ground support equipment and administrative/ technical support. It will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000.

  5. Construction continues on the RLV complex at the Shuttle Landing Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At the construction site of the Reusable Launch Vehicle (RLV) complex at KSC, workers take measurements for one of the buildings. Located near the Shuttle Landing Facility, the complex will include facilities for related ground support equipment and administrative/ technical support. It will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000.

  6. 7. Historic aerial photo of rocket engine test facility complex, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Historic aerial photo of rocket engine test facility complex, June 1962. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-60674. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  7. 9. Historic aerial photo of rocket engine test facility complex, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Historic aerial photo of rocket engine test facility complex, June 11, 1965. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-65-1270. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  8. 8. Historic aerial photo of rocket engine test facility complex, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Historic aerial photo of rocket engine test facility complex, June 11, 1965. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-65-1271. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  9. The design and implementation of the Technical Facilities Controller (TFC) for the Goldstone deep space communications complex

    NASA Technical Reports Server (NTRS)

    Killian, D. A.; Menninger, F. J.; Gorman, T.; Glenn, P.

    1988-01-01

    The Technical Facilities Controller is a microprocessor-based energy management system that is to be implemented in the Deep Space Network facilities. This system is used in conjunction with facilities equipment at each of the complexes in the operation and maintenance of air-conditioning equipment, power generation equipment, power distribution equipment, and other primary facilities equipment. The implementation of the Technical Facilities Controller was completed at the Goldstone Deep Space Communications Complex and is now operational. The installation completed at the Goldstone Complex is described and the utilization of the Technical Facilities Controller is evaluated. The findings will be used in the decision to implement a similar system at the overseas complexes at Canberra, Australia, and Madrid, Spain.

  10. Langley Aerothermodynamic Facilities Complex: Enhancements and Testing Capabilities

    NASA Technical Reports Server (NTRS)

    Micol, J. R.

    1998-01-01

    Description, capabilities, recent upgrades, and utilization of the NASA Langley Research Center (LaRC) Aerothermodynamic Facilities Complex (AFC) are presented. The AFC consists of five hypersonic, blow-down-to-vacuum wind tunnels that collectively provide a range of Mach number from 6 to 20, unit Reynolds number from 0.04 to 22 million per foot and, most importantly for blunt configurations, normal shock density ratio from 4 to 12. These wide ranges of hypersonic simulation parameters are due, in part, to the use of three different test gases (air, helium, and tetrafluoromethane), thereby making several of the facilities unique. The Complex represents nearly three-fourths of the conventional (as opposed to impulse)-type hypersonic wind tunnels operational in this country. AFC facilities are used to assess and optimize the hypersonic aerodynamic performance and aeroheating characteristics of aerospace vehicle concepts and to provide benchmark aerodynamic/aeroheating data fr generating the flight aerodynamic databook and final design of the thermal protection system (TPS) (e.g., establishment of flight limitations not to exceed TPS design limits). Modifications and enhancements of AFC hardware components and instrumentation have been pursued to increase capability, reliability, and productivity in support of programmatic goals. Examples illustrating facility utilization in recent years to generate essentially all of the experimental hypersonic aerodynamic and aeroheating information for high-priority, fast-paced Agency programs are presented. These programs include Phase I of the Reusable Launch Vehicle (RLV) Advanced Technology Demonstrator, X-33 program, PHase II of the X-33 program, X-34 program, the Hyper-X program ( a Mach 5,7, and 10 airbreathing propulsion flight experiment), and the X-38 program (Experimental Crew Return Vehicle, X-CRV). Current upgrades/enchancements and future plans for the AFC are discussed.

  11. Description and operational status of the National Transonic Facility computer complex

    NASA Technical Reports Server (NTRS)

    Boyles, G. B., Jr.

    1986-01-01

    This paper describes the National Transonic Facility (NTF) computer complex and its support of tunnel operations. The capabilities of the research data acquisition and reduction are discussed along with the types of data that can be acquired and presented. Pretest, test, and posttest capabilities are also outlined along with a discussion of the computer complex to monitor the tunnel control processes and provide the tunnel operators with information needed to control the tunnel. Planned enhancements to the computer complex for support of future testing are presented.

  12. International Microgravity Plasma Facility IMPF: A Multi-User Modular Research Facility for Complex Plasma Research on ISS

    NASA Astrophysics Data System (ADS)

    Seurig, R.; Burfeindt, J.; Castegini, R.; Griethe, W.; Hofmann, P.

    2002-01-01

    On March 03, 2001, the PKE-Nefedov plasma experiment was successfully put into operation on board ISS. This complex plasma experiment is the predecessor for the semi-autonomous multi-user facility IMPF (International Microgravity Plasma Facility) to be flown in 2006 with an expected operational lifetime of 10 years. IMPF is envisioned to be an international research facility for investigators in the field of multi-component plasmas containing ions, electrons, and charged microparticles. This research filed is often referred to as "complex plasmas". The actual location of IMPF on ISS is not decided yet; potential infrastructure under consideration are EXPRESS Rack, Standard Interface Rack SIR, European Drawer Rack EDR, or a to be designed custom rack infrastructure on the Russian Segment. The actual development status of the DLR funded Pre-phase B Study for IMPF will be presented. For this phase, IMPF was assumed to be integrated in an EXPRESS Rack requiring four middeck lockers with two 4-PU ISIS drawers for accommodation. Technical and operational challenges, like a 240 Mbytes/sec continuous experimental data stream for 60 minutes, will be addressed. The project was funded by the German Space Agency (DLR) and was performed in close cooperation with scientists from the Max-Planck-Institute for Extraterrestical Physics in Munich, Germany.

  13. US RERTR FUEL DEVELOPMENT POST IRRADIATION EXAMINATION RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. B. Robinson; D. M. Wachs; D. E. Burkes

    2008-10-01

    Post irradiation examinations of irradiated RERTR plate type fuel at the Idaho National Laboratory have led to in depth characterization of fuel behavior and performance. Both destructive and non-destructive examination capabilities at the Hot Fuels Examination Facility (HFEF) as well as recent results obtained are discussed herein. New equipment as well as more advanced techniques are also being developed to further advance the investigation into the performance of the high density U-Mo fuel.

  14. Hanford Facility Dangerous Waste Permit Application for T Plant Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BARNES, B.M.

    2002-09-01

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, operating treatment, storage, and/or disposal units, such as the T Plant Complex (this document, DOE/RL-95-36). Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the content of the Part B permit application guidance prepared by the Washington State Department of Ecology (Ecology 1996) and the U.S. Environmental Protection Agencymore » (40 Code of Federal Regulations 270), with additional information needs defined by the Hazardous and Solid Waste Amendments and revisions of Washington Administrative Code 173-303. For ease of reference, the Washington State Department of Ecology alpha-numeric section identifiers from the permit application guidance documentation (Ecology 1996) follow, in brackets, the chapter headings and subheadings. A checklist indicating where information is contained in the T Plant Complex permit application documentation, in relation to the Washington State Department of Ecology guidance, is located in the Contents Section. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Wherever appropriate, the T Plant Complex permit application documentation makes cross-reference to the General Information Portion, rather than duplicating text.« less

  15. Real-Gas Flow Properties for NASA Langley Research Center Aerothermodynamic Facilities Complex Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.

    1996-01-01

    A computational algorithm has been developed which can be employed to determine the flow properties of an arbitrary real (virial) gas in a wind tunnel. A multiple-coefficient virial gas equation of state and the assumption of isentropic flow are used to model the gas and to compute flow properties throughout the wind tunnel. This algorithm has been used to calculate flow properties for the wind tunnels of the Aerothermodynamics Facilities Complex at the NASA Langley Research Center, in which air, CF4. He, and N2 are employed as test gases. The algorithm is detailed in this paper and sample results are presented for each of the Aerothermodynamic Facilities Complex wind tunnels.

  16. Evaluation of pharmacotherapy complexity in residents of long-term care facilities: a cross-sectional descriptive study.

    PubMed

    Alves-Conceição, Vanessa; Silva, Daniel Tenório da; Santana, Vanessa Lima de; Santos, Edileide Guimarães Dos; Santos, Lincoln Marques Cavalcante; Lyra, Divaldo Pereira de

    2017-07-25

    Polypharmacy is a reality in long-term care facilities. However, number of medications used by the patient should not be the only predictor of a complex pharmacotherapy. Although the level of complexity of pharmacotherapy is considered an important factor that may lead to side effects, there are few studies in this field. The aim of this study was to evaluate the complexity of pharmacotherapy in residents of three long-term care facilities. A cross-sectional study was performed to evaluate the complexity of pharmacotherapy using the protocols laid out in the Medication Regimen Complexity Index instrument in three long-term care facilities in northeastern Brazil. As a secondary result, potential drug interactions, potentially inappropriate medications, medication duplication, and polypharmacy were evaluated. After the assessment, the association among these variables and the Medication Regimen Complexity Index was performed. In this study, there was a higher prevalence of women (64.4%) with a high mean age among the study population of 81.8 (±9.7) years. The complexity of pharmacotherapy obtained a mean of 15.1 points (±9.8), with a minimum of 2 and a maximum of 59. The highest levels of complexity were associated with dose frequency, with a mean of 5.5 (±3.6), followed by additional instructions of use averaging 4.9 (±3.7) and by the dosage forms averaging 4.6 (±3.0). The present study evaluated some factors that complicate the pharmacotherapy of geriatric patients. Although polypharmacy was implicated as a factor directly related to complexity, other indicators such as drug interactions, potentially inappropriate medications, and therapeutic duplication can also make the use of pharmacotherapy in such patients more difficult.

  17. Facilities Condition and Hazards Assessment for Materials and Fuel Complex Facilities MFC-799, 799A, and 770C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gary Mecham; Don Konoyer

    2009-11-01

    The Materials & Fuel Complex (MFC) facilities 799 Sodium Processing Facility (a single building consisting of two areas: the Sodium Process Area (SPA) and the Carbonate Process Area (CPA), 799A Caustic Storage Area, and 770C Nuclear Calibration Laboratory have been declared excess to future Department of Energy mission requirements. Transfer of these facilities from Nuclear Energy to Environmental Management, and an associated schedule for doing so, have been agreed upon by the two offices. The prerequisites for this transfer to occur are the removal of nonexcess materials and chemical inventory, deinventory of the calibration source in MFC-770C, and the reroutingmore » and/or isolation of utility and service systems. This report provides a description of the current physical condition and any hazards (material, chemical, nuclear or occupational) that may be associated with past operations of these facilities. This information will document conditions at time of transfer of the facilities from Nuclear Energy to Environmental Management and serve as the basis for disposition planning. The process used in obtaining this information included document searches, interviews and facility walk-downs. A copy of the facility walk-down checklist is included in this report as Appendix A. MFC-799/799A/770C are all structurally sound and associated hazardous or potentially hazardous conditions are well defined and well understood. All installed equipment items (tanks, filters, etc.) used to process hazardous materials remain in place and appear to have maintained their integrity. There is no evidence of leakage and all openings are properly sealed or closed off and connections are sound. The pits appear clean with no evidence of cracking or deterioration that could lead to migration of contamination. Based upon the available information/documentation reviewed and the overall conditions observed during the facilities walk-down, it is concluded that these facilities may be

  18. Data reduction complex analog-to-digital data processing requirements for onsite test facilities

    NASA Technical Reports Server (NTRS)

    Debbrecht, J. D.

    1976-01-01

    The analog to digital processing requirements of onsite test facilities are described. The source and medium of all input data to the Data Reduction Complex (DRC) and the destination and medium of all output products of the analog-to-digital processing are identified. Additionally, preliminary input and output data formats are presented along with the planned use of the output products.

  19. Evaluation of Isotopic Data Mismatches on DOE-STD-1027 Facility Categorization Inventories for the K-1065 Complex and the Above Grade Storage Facility (AGSF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McHugh, M.G.; Coleman, G.H.

    2006-07-01

    The contents of a safety basis (SB) are based upon the facility's purpose of operation, radiological inventory, and safety systems in place to mitigate any releases to the employees, general public and environment. Specifically, the radiological inventory is used for facility categorizations (e.g., Category 2, Category 3) and determining the material at risk used in the associated nuclear safety analysis calculations. Radiological inventory discrepancies, referred to as 'mismatches', have the potential to adversely impact the SB. This paper summarizes a process developed to: 1) identify these 'mismatches' based on a facility's radiological inventory, 2) categorize these 'mismatches' according to availablemore » data, and then 3) determine if these 'mismatches' yield either trivial or significant cumulative impacts on credited assumptions associated with a particular facility's SB. The two facilities evaluated for 'mismatches' were the K-1065 Complex and the Above Grade Storage Facility (AGSF). The randomly selected containers from each facility were obtained along with screening the radiological inventories found in the Waste Information Tracking System (WITS) database and the Request for Disposal (RFD) forms. Ideally, the radiological inventory, which is comprised of isotopic data for each container, is maintained in the WITS database. However, the RFD is the official repository record for isotopic data for each container. Historically, neither WITS nor the RFDs were required to contain isotopic data. Based on the WITS and RFD data, the containers were then categorized into five (5) separate conditions: Condition 1) Isotopic data in the RFD matches the isotopic data in WITS; Condition 2) Isotopic data in the RFD does not match the isotopic data in WITS; Condition 3) Isotopic data are in the RFD, but are not in WITS; Condition 4) No isotopic data in the RFD, but isotopic data are found in WITS; Condition 5) No isotopic data found in either the RFD or WITS. The

  20. Research and test facilities

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A description is given of each of the following Langley research and test facilities: 0.3-Meter Transonic Cryogenic Tunnel, 7-by 10-Foot High Speed Tunnel, 8-Foot Transonic Pressure Tunnel, 13-Inch Magnetic Suspension & Balance System, 14-by 22-Foot Subsonic Tunnel, 16-Foot Transonic Tunnel, 16-by 24-Inch Water Tunnel, 20-Foot Vertical Spin Tunnel, 30-by 60-Foot Wind Tunnel, Advanced Civil Transport Simulator (ACTS), Advanced Technology Research Laboratory, Aerospace Controls Research Laboratory (ACRL), Aerothermal Loads Complex, Aircraft Landing Dynamics Facility (ALDF), Avionics Integration Research Laboratory, Basic Aerodynamics Research Tunnel (BART), Compact Range Test Facility, Differential Maneuvering Simulator (DMS), Enhanced/Synthetic Vision & Spatial Displays Laboratory, Experimental Test Range (ETR) Flight Research Facility, General Aviation Simulator (GAS), High Intensity Radiated Fields Facility, Human Engineering Methods Laboratory, Hypersonic Facilities Complex, Impact Dynamics Research Facility, Jet Noise Laboratory & Anechoic Jet Facility, Light Alloy Laboratory, Low Frequency Antenna Test Facility, Low Turbulence Pressure Tunnel, Mechanics of Metals Laboratory, National Transonic Facility (NTF), NDE Research Laboratory, Polymers & Composites Laboratory, Pyrotechnic Test Facility, Quiet Flow Facility, Robotics Facilities, Scientific Visualization System, Scramjet Test Complex, Space Materials Research Laboratory, Space Simulation & Environmental Test Complex, Structural Dynamics Research Laboratory, Structural Dynamics Test Beds, Structures & Materials Research Laboratory, Supersonic Low Disturbance Pilot Tunnel, Thermal Acoustic Fatigue Apparatus (TAFA), Transonic Dynamics Tunnel (TDT), Transport Systems Research Vehicle, Unitary Plan Wind Tunnel, and the Visual Motion Simulator (VMS).

  1. Combined analysis of modeled and monitored SO2 concentrations at a complex smelting facility.

    PubMed

    Rehbein, Peter J G; Kennedy, Michael G; Cotsman, David J; Campeau, Madonna A; Greenfield, Monika M; Annett, Melissa A; Lepage, Mike F

    2014-03-01

    Vale Canada Limited owns and operates a large nickel smelting facility located in Sudbury, Ontario. This is a complex facility with many sources of SO2 emissions, including a mix of source types ranging from passive building roof vents to North America's tallest stack. In addition, as this facility performs batch operations, there is significant variability in the emission rates depending on the operations that are occurring. Although SO2 emission rates for many of the sources have been measured by source testing, the reliability of these emission rates has not been tested from a dispersion modeling perspective. This facility is a significant source of SO2 in the local region, making it critical that when modeling the emissions from this facility for regulatory or other purposes, that the resulting concentrations are representative of what would actually be measured or otherwise observed. To assess the accuracy of the modeling, a detailed analysis of modeled and monitored data for SO2 at the facility was performed. A mobile SO2 monitor sampled at five locations downwind of different source groups for different wind directions resulting in a total of 168 hr of valid data that could be used for the modeled to monitored results comparison. The facility was modeled in AERMOD (American Meteorological Society/U.S. Environmental Protection Agency Regulatory Model) using site-specific meteorological data such that the modeled periods coincided with the same times as the monitored events. In addition, great effort was invested into estimating the actual SO2 emission rates that would likely be occurring during each of the monitoring events. SO2 concentrations were modeled for receptors around each monitoring location so that the modeled data could be directly compared with the monitored data. The modeled and monitored concentrations were compared and showed that there were no systematic biases in the modeled concentrations. This paper is a case study of a Combined Analysis

  2. Hazardous Materials Verification and Limited Characterization Report on Sodium and Caustic Residuals in Materials and Fuel Complex Facilities MFC-799/799A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gary Mecham

    2010-08-01

    This report is a companion to the Facilities Condition and Hazard Assessment for Materials and Fuel Complex Sodium Processing Facilities MFC-799/799A and Nuclear Calibration Laboratory MFC-770C (referred to as the Facilities Condition and Hazards Assessment). This report specifically responds to the requirement of Section 9.2, Item 6, of the Facilities Condition and Hazards Assessment to provide an updated assessment and verification of the residual hazardous materials remaining in the Sodium Processing Facilities processing system. The hazardous materials of concern are sodium and sodium hydroxide (caustic). The information supplied in this report supports the end-point objectives identified in the Transition Planmore » for Multiple Facilities at the Materials and Fuels Complex, Advanced Test Reactor, Central Facilities Area, and Power Burst Facility, as well as the deactivation and decommissioning critical decision milestone 1, as specified in U.S. Department of Energy Guide 413.3-8, “Environmental Management Cleanup Projects.” Using a tailored approach and based on information obtained through a combination of process knowledge, emergency management hazardous assessment documentation, and visual inspection, this report provides sufficient detail regarding the quantity of hazardous materials for the purposes of facility transfer; it also provides that further characterization/verification of these materials is unnecessary.« less

  3. Bioregenerative Planetary Life Support Systems Test Complex (BIO-Plex): NASA's Next Human-Rated Testing Facility

    NASA Technical Reports Server (NTRS)

    Tri, Terry O.

    1999-01-01

    As a key component in its ground test bed capability, NASA's Advanced Life Support Program has been developing a large-scale advanced life support test facility capable of supporting long-duration evaluations of integrated bioregenerative life support systems with human test crews. This facility-targeted for evaluation of hypogravity compatible life support systems to be developed for use on planetary surfaces such as Mars or the Moon-is called the Bioregenerative Planetary Life Support Systems Test Complex (BIO-Plex) and is currently under development at the Johnson Space Center. This test bed is comprised of a set of interconnected chambers with a sealed internal environment which are outfitted with systems capable of supporting test crews of four individuals for periods exceeding one year. The advanced technology systems to be tested will consist of both biological and physicochemical components and will perform all required crew life support functions. This presentation provides a description of the proposed test "missions" to be supported by the BIO-Plex and the planned development strategy for the facility.

  4. End State Condition Report for Materials and Fuels Complex Facilities MFC-799, 799A, and 770C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gary Mecham

    2010-10-01

    The Materials and Fuels Complex (MFC) facilities MFC-799, “Sodium Processing Facility” (a single building consisting of two areas: the Sodium Process Area and the Carbonate Process Area); MFC-799A, “Caustic Storage Area;” and MFC-770C, “Nuclear Calibration Laboratory,” have been declared excess to future Department of Energy (DOE) Office of Nuclear Energy(NE) mission requirements. Transfer of these facilities from NE to the DOE Office of Environmental Management (EM), and an associated schedule for doing so, have been agreed upon by the two offices. This report documents the completion of pre-transfer stabilization actions, as identified in DOE Guide 430.1-5, “Transition Implementation Guide,” formore » buildings MFC-799/799A and 770C, and indicates that these facilities are ready for transfer from NE to EM. The facilities are in a known, safe condition and information is provided to support efficient decommissioning and demolition (D&D) planning while minimizing the possibility of encountering unforeseen circumstances during the D&D activities.« less

  5. Strategy for introduction of rainwater management facility considering rainfall event applied on new apartment complex

    NASA Astrophysics Data System (ADS)

    KIM, H.; Lee, D. K.; Yoo, S.

    2014-12-01

    As regional torrential rains become frequent due to climate change, urban flooding happens very often. That is why it is necessary to prepare for integrated measures against a wide range of rainfall. This study proposes introduction of effective rainwater management facilities to maximize the rainwater runoff reductions and recover natural water circulation for unpredictable extreme rainfall in apartment complex scale. The study site is new apartment complex in Hanam located in east of Seoul, Korea. It has an area of 7.28ha and is analysed using the EPA-SWMM and STORM model. First, it is analyzed that green infrastructure(GI) had efficiency of flood reduction at the various rainfall events and soil characteristics, and then the most effective value of variables are derived. In case of rainfall event, Last 10 years data of 15 minutes were used for analysis. A comparison between A(686mm rainfall during 22days) and B(661mm/4days) knew that soil infiltration of A is 17.08% and B is 5.48% of the rainfall. Reduction of runoff after introduction of the GI of A is 24.76% and B is 6.56%. These results mean that GI is effective to small rainfall intensity, and artificial rainwater retarding reservoir is needed at extreme rainfall. Second, set of target year is conducted for the recovery of hydrological cycle at the predevelopment. And an amount of infiltration, evaporation, surface runoff of the target year and now is analysed on the basis of land coverage, and an arrangement of LID facilities. Third, rainwater management scenarios are established and simulated by the SWMM-LID. Rainwater management facilities include GI(green roof, porous pavement, vegetative swale, ecological pond, and raingarden), and artificial rainwater. Design scenarios are categorized five type: 1)no GI, 2)conventional GI design(current design), 3)intensive GI design, 4)GI design+rainwater retarding reservoir 5)maximized rainwater retarding reservoir. Intensive GI design is to have attribute value to

  6. Prioritization methodology for the decommissioning of nuclear facilities: a study case on the Iraq former nuclear complex.

    PubMed

    Jarjies, Adnan; Abbas, Mohammed; Monken Fernandes, Horst; Wong, Melanie; Coates, Roger

    2013-05-01

    There are a number of sites in Iraq which have been used for nuclear activities and which contain potentially significant amounts of radioactive waste. The principal nuclear site being Al-Tuwaitha. Many of these sites suffered substantial physical damage during the Gulf Wars and have been subjected to subsequent looting. All require decommissioning in order to ensure both radiological and non-radiological safety. However, it is not possible to undertake the decommissioning of all sites and facilities at the same time. Therefore, a prioritization methodology has been developed in order to aid the decision-making process. The methodology comprises three principal stages of assessment: i) a quantitative surrogate risk assessment ii) a range of sensitivity analyses and iii) the inclusion of qualitative modifying factors. A group of Tuwaitha facilities presented the highest risk among the evaluated ones, followed by a middle ranking grouping of Tuwaitha facilities and some other sites, and a relatively large group of lower risk facilities and sites. The initial order of priority is changed when modifying factors are taken into account. It has to be considered the Iraq's isolation from the international nuclear community over the last two decades and the lack of experienced personnel. Therefore it is appropriate to initiate decommissioning operations on selected low risk facilities at Tuwaitha in order to build capacity and prepare for work to be carried out in more complex and potentially high hazard facilities. In addition it is appropriate to initiate some prudent precautionary actions relating to some of the higher risk facilities. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Waste Sampling & Characterization Facility (WSCF) Complex Safety Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MELOY, R.T.

    2002-04-01

    This document was prepared to analyze the Waste Sampling and Characterization Facility for safety consequences by: Determining radionuclide and highly hazardous chemical inventories; Comparing these inventories to the appropriate regulatory limits; Documenting the compliance status with respect to these limits; and Identifying the administrative controls necessary to maintain this status. The primary purpose of the Waste Sampling and Characterization Facility (WSCF) is to perform low-level radiological and chemical analyses on various types of samples taken from the Hanford Site. These analyses will support the fulfillment of federal, Washington State, and Department of Energy requirements.

  8. 30 CFR 285.651 - When may I construct complex or significant OCS facilities on my limited lease or any facilities...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Plans and Information... facilities on my limited lease or any facilities on my project easement proposed under my GAP? 285.651... facilities on my limited lease or any facilities on my project easement proposed under my GAP? If you are...

  9. High-pressure water facility

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA Test Operations Group employees, from left, Todd Pearson, Tim Delcuze and Rodney Wilkinson maintain a water pump in Stennis Space Center's high-pressure water facility. The three were part of a group of employees who rode out Hurricane Katrina at the facility and helped protect NASA's rocket engine test complex.

  10. High-pressure water facility

    NASA Image and Video Library

    2006-02-15

    NASA Test Operations Group employees, from left, Todd Pearson, Tim Delcuze and Rodney Wilkinson maintain a water pump in Stennis Space Center's high-pressure water facility. The three were part of a group of employees who rode out Hurricane Katrina at the facility and helped protect NASA's rocket engine test complex.

  11. Thermal evaluation of alternative shipping cask for irradiated experiments

    DOE PAGES

    Guillen, Donna Post

    2015-06-01

    Results of a thermal evaluation are provided for a new shipping cask under consideration for transporting irradiated experiments between the test reactor and post-irradiation examination (PIE) facilities. Most of the experiments will be irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL), then later shipped to the Hot Fuel Examination Facility (HFEF) located at the Materials and Fuels Complex for PIE. To date, the General Electric (GE)-2000 cask has been used to transport experiment payloads between these facilities. However, the availability of the GE-2000 cask to support future experiment shipping is uncertain. In addition, the internal cavitymore » of the GE-2000 cask is too short to accommodate shipping the larger payloads. Therefore, an alternate shipping capability is being pursued. The Battelle Energy Alliance, LLC, Research Reactor (BRR) cask has been determined to be the best alternative to the GE-2000 cask. An evaluation of the thermal performance of the BRR cask is necessary before proceeding with fabrication of the newly designed cask hardware and the development of handling, shipping and transport procedures. This paper presents the results of the thermal evaluation of the BRR cask loaded with a representative set of fueled and non-fueled payloads. When analyzed with identical payloads, experiment temperatures were found to be lower with the BRR cask than with the GE-2000 cask. Furthermore, from a thermal standpoint, the BRR cask was found to be a suitable alternate to the GE-2000 cask for shipping irradiated experiment payloads.« less

  12. Laboratory Animal Facilities. Laboratory Design Notes.

    ERIC Educational Resources Information Center

    Jonas, Albert M.

    1965-01-01

    Design of laboratory animal facilities must be functional. Accordingly, the designer should be aware of the complex nature of animal research and specifically the type of animal research which will be conducted in a new facility. The building of animal-care facilities in research institutions requires special knowledge in laboratory animal…

  13. Kauai Test Facility hazards assessment document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swihart, A

    1995-05-01

    The Department of Energy Order 55003A requires facility-specific hazards assessment be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Kauai Test Facility, Barking Sands, Kauai, Hawaii. The Kauai Test Facility`s chemical and radiological inventories were screened according to potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distance to themore » Early Severe Health Effects threshold is 4.2 kilometers. The highest emergency classification is a General Emergency at the {open_quotes}Main Complex{close_quotes} and a Site Area Emergency at the Kokole Point Launch Site. The Emergency Planning Zone for the {open_quotes}Main Complex{close_quotes} is 5 kilometers. The Emergency Planning Zone for the Kokole Point Launch Site is the Pacific Missile Range Facility`s site boundary.« less

  14. Four-point Bend Testing of Irradiated Monolithic U-10Mo Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabin, B. H.; Lloyd, W. R.; Schulthess, J. L.

    2015-03-01

    This paper presents results of recently completed studies aimed at characterizing the mechanical properties of irradiated U-10Mo fuel in support of monolithic base fuel qualification. Mechanical properties were evaluated in four-point bending. Specimens were taken from fuel plates irradiated in the RERTR-12 and AFIP-6 Mk. II irradiation campaigns, and tests were conducted in the Hot Fuel Examination Facility (HFEF) at Idaho National Laboratory (INL). The monolithic fuel plates consist of a U-10Mo fuel meat covered with a Zr diffusion barrier layer fabricated by co-rolling, clad in 6061 Al using a hot isostatic press (HIP) bonding process. Specimens exhibited nominal (fresh)more » fuel meat thickness ranging from 0.25 mm to 0.64 mm, and fuel plate average burnup ranged from approximately 0.4 x 1021 fissions/cm 3 to 6.0 x 1021 fissions/cm 3. After sectioning the fuel plates, the 6061 Al cladding was removed by dissolution in concentrated NaOH. Pre- and post-dissolution dimensional inspections were conducted on test specimens to facilitate accurate analysis of bend test results. Four-point bend testing was conducted on the HFEF Remote Load Frame at a crosshead speed of 0.1 mm/min using custom-designed test fixtures and calibrated load cells. All specimens exhibited substantially linear elastic behavior and failed in a brittle manner. The influence of burnup on the observed slope of the stress-strain curve and the calculated fracture strength is discussed.« less

  15. Thermo Physics Facilities Branch Brochure ARC Jet Complex Fact Sheets, Hypervelocity Free-Flight Aerodynamic Facility Fact Sheets, Ames Vertical Gun Range Fact Sheets

    NASA Technical Reports Server (NTRS)

    Fretter, E. F. (Editor); Kuhns, Jay (Editor); Nuez, Jay (Editor)

    2003-01-01

    The Ames Arc Jet Complex has a rich heritage of over 40 years in Thermal Protection System (TPS) development for every NASA Space Transportation and Planetary program, including Apollo, Space Shuttle, Viking, Pioneer-Venus, Galileo, Mars Pathfinder,Stardust, NASP,X-33,X-34,SHARP-B1 and B2,X-37 and Mars Exploration Rovers. With this early TPS history came a long heritage in the development of the arc jet facilities. These are used to simulate the aerodynamic heating that occurs on the nose cap, wing leading edges and on other areas of the spacecraft requiring thermal protection. TPS samples have been run in the arc jets from a few minutes to over an hour,from one exposure to multiple exposures of the same sample, in order t o understand the TPS materials response to a hot gas flow environment (representative of real hyperthermal environments experienced in flight). The Ames Arc l e t Complex is a key enabler for customers involved in the three major areas of TPS development: selection, validation, and qualification. The arc jet data are critical for validating TPS thermal models, heat shield designs and repairs, and ultimately for flight qualification.

  16. 30 CFR 285.651 - When may I construct complex or significant OCS facilities on my limited lease or any facilities...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... facilities on my limited lease or any facilities on my project easement proposed under my GAP? 285.651 Section 285.651 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER...

  17. 30 CFR 585.651 - When may I construct complex or significant OCS facilities on my limited lease or any facilities...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... facilities on my limited lease or any facilities on my project easement proposed under my GAP? 585.651 Section 585.651 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Plans and...

  18. 30 CFR 585.651 - When may I construct complex or significant OCS facilities on my limited lease or any facilities...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... facilities on my limited lease or any facilities on my project easement proposed under my GAP? 585.651 Section 585.651 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Plans and...

  19. 30 CFR 585.651 - When may I construct complex or significant OCS facilities on my limited lease or any facilities...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... facilities on my limited lease or any facilities on my project easement proposed under my GAP? 585.651 Section 585.651 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Plans and...

  20. Materials and Fuels Complex Tour

    ScienceCinema

    Miley, Don

    2017-12-11

    The Materials and Fuels Complex at Idaho National Laboratory is home to several facilities used for the research and development of nuclear fuels. Stops include the Fuel Conditioning Facility, the Hot Fuel Examination Facility (post-irradiation examination), and the Space and Security Power System Facility, where radioisotope thermoelectric generators (RTGs) are assembled for deep space missions.

  1. A rapid, efficient, and facile solution for dental hypersensitivity: The tannin–iron complex

    PubMed Central

    Oh, Dongyeop X.; Prajatelistia, Ekavianty; Ju, Sung-Won; Jeong Kim, Hyo; Baek, Soo-Jin; Joon Cha, Hyung; Ho Jun, Sang; Ahn, Jin-Soo; Soo Hwang, Dong

    2015-01-01

    Dental hypersensitivity due to exposure of dentinal tubules under the enamel layer to saliva is a very popular and highly elusive technology priority in dentistry. Blocking water flow within exposed dentinal tubules is a key principle for curing dental hypersensitivity. Some salts used in “at home” solutions remineralize the tubules inside by concentrating saliva ingredients. An “in-office” option of applying dense resin sealants on the tubule entrance has only localized effects on well-defined sore spots. We report a self-assembled film that was formed by facile, rapid (4 min), and efficient (approximately 0.5 g/L concentration) dip-coating of teeth in an aqueous solution containing a tannic acid–iron(III) complex. It quickly and effectively occluded the dentinal tubules of human teeth. It withstood intense tooth brushing and induced hydroxyapatite remineralisation within the dentinal tubules. This strategy holds great promise for future applications as an effective and user-friendly desensitizer for managing dental hypersensitivity. PMID:26039461

  2. A rapid, efficient, and facile solution for dental hypersensitivity: The tannin-iron complex.

    PubMed

    Oh, Dongyeop X; Prajatelistia, Ekavianty; Ju, Sung-Won; Jeong Kim, Hyo; Baek, Soo-Jin; Joon Cha, Hyung; Ho Jun, Sang; Ahn, Jin-Soo; Soo Hwang, Dong

    2015-06-03

    Dental hypersensitivity due to exposure of dentinal tubules under the enamel layer to saliva is a very popular and highly elusive technology priority in dentistry. Blocking water flow within exposed dentinal tubules is a key principle for curing dental hypersensitivity. Some salts used in "at home" solutions remineralize the tubules inside by concentrating saliva ingredients. An "in-office" option of applying dense resin sealants on the tubule entrance has only localized effects on well-defined sore spots. We report a self-assembled film that was formed by facile, rapid (4 min), and efficient (approximately 0.5 g/L concentration) dip-coating of teeth in an aqueous solution containing a tannic acid-iron(III) complex. It quickly and effectively occluded the dentinal tubules of human teeth. It withstood intense tooth brushing and induced hydroxyapatite remineralisation within the dentinal tubules. This strategy holds great promise for future applications as an effective and user-friendly desensitizer for managing dental hypersensitivity.

  3. ICD Complex Operations and Maintenance Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibson, P. L.

    2007-06-25

    This Operations and Maintenance (O&M) Plan describes how the Idaho National Laboratory (INL) conducts operations, winterization, and startup of the Idaho CERCLA Disposal Facility (ICDF) Complex. The ICDF Complex is the centralized INL facility responsible for the receipt, storage, treatment (as necessary), and disposal of INL Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation waste.

  4. Facile O-atom insertion into CC and CH bonds by a trinuclear copper complex designed to harness a singlet oxene

    PubMed Central

    Chen, Peter P.-Y.; Yang, Richard B.-G.; Lee, Jason C.-M.; Chan, Sunney I.

    2007-01-01

    Two trinuclear copper [CuICuICuI(L)]1+ complexes have been prepared with the multidentate ligands (L) 3,3′-(1,4-diazepane-1,4-diyl)bis(1-((2-(dimethylamino)ethyl)(methyl)amino)propan-2-ol) (7-Me) and (3,3′-(1,4-diazepane-1,4-diyl)bis(1-((2-(diethylamino) ethyl)(ethyl) amino)propan-2-ol) (7-Et) as models for the active site of the particulate methane monooxygenase (pMMO). The ligands were designed to form the proper spatial and electronic geometry to harness a “singlet oxene,” according to the mechanism previously suggested by our laboratory. Consistent with the design strategy, both [CuICuICuI(L)]1+ reacted with dioxygen to form a putative bis(μ3-oxo)CuIICuIICuIII species, capable of facile O-atom insertion across the central CC bond of benzil and 2,3-butanedione at ambient temperature and pressure. These complexes also catalyze facile O-atom transfer to the CH bond of CH3CN to form glycolonitrile. These results, together with our recent biochemical studies on pMMO, provide support for our hypothesis that the hydroxylation site of pMMO contains a trinuclear copper cluster that mediates CH bond activation by a singlet oxene mechanism. PMID:17804786

  5. Preliminary definition of a lunar landing and launch facility (Complex 39L)

    NASA Technical Reports Server (NTRS)

    Matthews, H. Dennis; Jenson, Eric B.; Linsley, Jerald N.

    1992-01-01

    A preliminary definition of a lunar landing and launch facility has been formulated. A permanently manned lunar base and a baseline lunar module are assumed. The major features of the facility are specified and major design areas are described.

  6. PERT Planning for Physical Educational Facilities.

    ERIC Educational Resources Information Center

    Moriarty, R. J.

    1973-01-01

    Because of the high degree of interest in education and physical education in Canada, there has been a phenomenal growth in physical education facilities. Physical educators must become facility specialists in order to contribute to the planning, procurement, and utilization of the new complexes that are being developed. Among the most difficult…

  7. Construction bidding cost of KSC's space shuttle facilities

    NASA Technical Reports Server (NTRS)

    Brown, Joseph Andrew

    1977-01-01

    The bidding cost of the major Space Transportation System facilities constructed under the responsibility of the John F. Kennedy Space Center (KSC) is described and listed. These facilities and Ground Support Equipment (GSE) are necessary for the receiving, assembly, testing, and checkout of the Space Shuttle for launch and landing missions at KSC. The Shuttle launch configuration consists of the Orbiter, the External Tank, and the Solid Rocket Boosters (SRB). The reusable Orbiter and SRB's is the major factor in the program that will result in lowering space travel costs. The new facilities are the Landing Facility; Orbiter Processing Facility; Orbiter Approach and Landing Test Facility (Dryden Test Center, California); Orbiter Mating Devices; Sound Suppression Water System; and Emergency Power System for LC-39. Also, a major factor was to use as much Apollo facilities and hardware as possible to reduce the facilities cost. The alterations to existing Apollo facilities are the VAB modifications; Mobile Launcher Platforms; Launch Complex 39 Pads A and B (which includes a new concept - the Rotary Service Structure), which was featured in ENR, 3 Feb. 1977, 'Hinged Space Truss will Support Shuttle Cargo Room'; Launch Control Center mods; External Tank and SRB Processing and Storage; Fluid Test Complex mods; O&C Spacelab mods; Shuttle mods for Parachute Facility; SRB Recovery and Disassembly Facility at Hangar 'AF'; and an interesting GSE item - the SRB Dewatering Nozzle Plug Sets (Remote Controlled Submarine System) used to inspect and acquire for reuse of SRB's.

  8. Facile synthesis of a mesoporous Co3O4 network for Li-storage via thermal decomposition of an amorphous metal complex.

    PubMed

    Wen, Wei; Wu, Jin-Ming; Cao, Min-Hua

    2014-11-07

    A facile strategy is developed for mass fabrication of porous Co3O4 networks via the thermal decomposition of an amorphous cobalt-based complex. At a low mass loading, the achieved porous Co3O4 network exhibits excellent performance for lithium storage, which has a high capacity of 587 mA h g(-1) after 500 cycles at a current density of 1000 mA g(-1).

  9. Softball Complex

    ERIC Educational Resources Information Center

    Ellis, Jim

    1977-01-01

    The Parks and Recreation Department of Montgomery, Alabama, has developed a five-field softball complex as part of a growing community park with facilities for camping, golf, aquatics, tennis, and picnicking. (MJB)

  10. Experimental Fuels Facility Re-categorization Based on Facility Segmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiss, Troy P.; Andrus, Jason

    The Experimental Fuels Facility (EFF) (MFC-794) at the Materials and Fuels Complex (MFC) located on the Idaho National Laboratory (INL) Site was originally constructed to provide controlled-access, indoor storage for radiological contaminated equipment. Use of the facility was expanded to provide a controlled environment for repairing contaminated equipment and characterizing, repackaging, and treating waste. The EFF facility is also used for research and development services, including fuel fabrication. EFF was originally categorized as a LTHC-3 radiological facility based on facility operations and facility radiological inventories. Newly planned program activities identified the need to receive quantities of fissionable materials in excessmore » of the single parameter subcritical limit in ANSI/ANS-8.1, “Nuclear Criticality Safety in Operations with Fissionable Materials Outside Reactors” (identified as “criticality list” quantities in DOE-STD-1027-92, “Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports,” Attachment 1, Table A.1). Since the proposed inventory of fissionable materials inside EFF may be greater than the single parameter sub-critical limit of 700 g of U-235 equivalent, the initial re-categorization is Hazard Category (HC) 2 based upon a potential criticality hazard. This paper details the facility hazard categorization performed for the EFF. The categorization was necessary to determine (a) the need for further safety analysis in accordance with LWP-10802, “INL Facility Categorization,” and (b) compliance with 10 Code of Federal Regulations (CFR) 830, Subpart B, “Safety Basis Requirements.” Based on the segmentation argument presented in this paper, the final hazard categorization for the facility is LTHC-3. Department of Energy Idaho (DOE-ID) approval of the final hazard categorization determined by this hazard assessment document (HAD) was required

  11. Shielding and Radiation Protection in Ion Beam Therapy Facilities

    NASA Astrophysics Data System (ADS)

    Wroe, Andrew J.; Rightnar, Steven

    Radiation protection is a key aspect of any radiotherapy (RT) department and is made even more complex in ion beam therapy (IBT) by the large facility size, secondary particle spectra and intricate installation of these centers. In IBT, large and complex radiation producing devices are used and made available to the public for treatment. It is thus the responsibility of the facility to put in place measures to protect not only the patient but also the general public, occupationally and nonoccupationally exposed personnel working within the facility, and electronics installed within the department to ensure maximum safety while delivering maximum up-time.

  12. Dramatic Arts Facilities.

    ERIC Educational Resources Information Center

    Ontario Dept. of Education, Toronto. School Planning and Building Research Section.

    This booklet begins by explaining the function, the common planning errors, some location specifications, and the general requirements for any dramatic arts area. Facilities for (1) a single classroom, (2) a double classroom, (3) a specifically designed studio, and (4) a specifically designed studio complex are then described and illustrated.…

  13. The Granite Mountain Atmospheric Sciences Testbed (GMAST): A Facility for Long Term Complex Terrain Airflow Studies

    NASA Astrophysics Data System (ADS)

    Zajic, D.; Pace, J. C.; Whiteman, C. D.; Hoch, S.

    2011-12-01

    This presentation describes a new facility at Dugway Proving Ground (DPG), Utah that can be used to study airflow over complex terrain, and to evaluate how airflow over a mountain barrier affects wind patterns over adjacent flatter terrain. DPG's primary mission is to conduct testing, training, and operational assessments of chemical and biological weapon systems. These operations require very precise weather forecasts. Most test operations at DPG are conducted on fairly flat test ranges having uniform surface cover, where airflow patterns are generally well-understood. However, the DPG test ranges are located alongside large, isolated mountains, most notably Granite Mountain, Camelback Mountain, and the Cedar Mountains. Airflows generated over, or influenced by, these mountains can affect wind patterns on the test ranges. The new facility, the Granite Mountain Atmospheric Sciences Testbed, or GMAST, is designed to facilitate studies of airflow interactions with topography. This facility will benefit DPG by improving understanding of how mountain airflows interact with the test range conditions. A core infrastructure of weather sensors around and on Granite Mountain has been developed including instrumented towers and remote sensors, along with automated data collection and archival systems. GMAST is expected to be in operation for a number of years and will provide a reference domain for mountain meteorology studies, with data useful for analysts, modelers and theoreticians. Visiting scientists are encouraged to collaborate with DPG personnel to utilize this valuable scientific resource and to add further equipment and scientific designs for both short-term and long-term atmospheric studies. Several of the upcoming MATERHORN (MountAin TERrain atmospHeric mOdeling and obseRvatioNs) project field tests will be conducted at DPG, giving an example of GMAST utilization and collaboration between DPG and visiting scientists.

  14. Improving the recognition of fingerprint biometric system using enhanced image fusion

    NASA Astrophysics Data System (ADS)

    Alsharif, Salim; El-Saba, Aed; Stripathi, Reshma

    2010-04-01

    Fingerprints recognition systems have been widely used by financial institutions, law enforcement, border control, visa issuing, just to mention few. Biometric identifiers can be counterfeited, but considered more reliable and secure compared to traditional ID cards or personal passwords methods. Fingerprint pattern fusion improves the performance of a fingerprint recognition system in terms of accuracy and security. This paper presents digital enhancement and fusion approaches that improve the biometric of the fingerprint recognition system. It is a two-step approach. In the first step raw fingerprint images are enhanced using high-frequency-emphasis filtering (HFEF). The second step is a simple linear fusion process between the raw images and the HFEF ones. It is shown that the proposed approach increases the verification and identification of the fingerprint biometric recognition system, where any improvement is justified using the correlation performance metrics of the matching algorithm.

  15. Chlorinated and parent polycyclic aromatic hydrocarbons in environmental samples from an electronic waste recycling facility and a chemical industrial complex in China.

    PubMed

    Ma, Jing; Horii, Yuichi; Cheng, Jinping; Wang, Wenhua; Wu, Qian; Ohura, Takeshi; Kannan, Kurunthachalam

    2009-02-01

    Chlorinated polycyclic aromatic hydrocarbons (CIPAHs) are a class of halogenated contaminants found in the urban atmosphere; they have toxic potential similar to that of dioxins. Information on the sources of CIPAHs is limited. In this study, concentrations of 20 CIPAHs and 16 parent PAHs were measured in electronic wastes, workshop-floor dust, vegetation, and surface soil collected from the vicinity of an electronic waste (e-waste) recycling facility and in surface soil from a chemical industrial complex (comprising a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant), and agricultural areas in central and eastern China. High concentrations of SigmaCIPAHs were found in floor dust (mean, 103 ng/g dry wt), followed in order of decreasing concentration by leaves (87.5 ng/g drywt), electronic shredder waste (59.1 ng/g dry wt), and soil (26.8 ng/g dry wt) from an e-waste recycling facility in Taizhou. The mean concentration of SigmaCIPAHs in soil from the chemical industrial complex (88 ng/g dry wt) was approximately 3-fold higher than the concentration in soil from e-waste recycling facilities. The soils from e-waste sites and industrial areas contained mean concentrations of SigmaCIPAHs 2 to 3 orders of magnitude higher than the concentrations in agricultural soils (ND-0.76 ng/g), suggesting that e-waste recycling and chlorine-chemical industries are potential emission sources of CIPAHs. The profiles of CIPAHs in soil and dust were similar to a profile that has been reported previously for fly ash from municipal solid waste incinerators (6-CIBaP was the predominant compound), but the profiles in vegetation and electronic shredder waste were different from those found in fly ash. Concentrations of 16 parent PAHs were high (150-49,700 ng/g) in samples collected from the e-waste recycling facility. Significant correlation between SigmaCIPAH and SigmaPAH concentrations suggests that direct chlorination of parent PAHs is the major pathway of formation of

  16. Nuclear thermal propulsion test facility requirements and development strategy

    NASA Technical Reports Server (NTRS)

    Allen, George C.; Warren, John; Clark, J. S.

    1991-01-01

    The Nuclear Thermal Propulsion (NTP) subpanel of the Space Nuclear Propulsion Test Facilities Panel evaluated facility requirements and strategies for nuclear thermal propulsion systems development. High pressure, solid core concepts were considered as the baseline for the evaluation, with low pressure concepts an alternative. The work of the NTP subpanel revealed that a wealth of facilities already exists to support NTP development, and that only a few new facilities must be constructed. Some modifications to existing facilities will be required. Present funding emphasis should be on long-lead-time items for the major new ground test facility complex and on facilities supporting nuclear fuel development, hot hydrogen flow test facilities, and low power critical facilities.

  17. Aeropropulsion facilities configuration control: Procedures manual

    NASA Technical Reports Server (NTRS)

    Lavelle, James J.

    1990-01-01

    Lewis Research Center senior management directed that the aeropropulsion facilities be put under configuration control. A Configuration Management (CM) program was established by the Facilities Management Branch of the Aeropropulsion Facilities and Experiments Division. Under the CM program, a support service contractor was engaged to staff and implement the program. The Aeronautics Directorate has over 30 facilities at Lewis of various sizes and complexities. Under the program, a Facility Baseline List (FBL) was established for each facility, listing which systems and their documents were to be placed under configuration control. A Change Control System (CCS) was established requiring that any proposed changes to FBL systems or their documents were to be processed as per the CCS. Limited access control of the FBL master drawings was implemented and an audit system established to ensure all facility changes are properly processed. This procedures manual sets forth the policy and responsibilities to ensure all key documents constituting a facilities configuration are kept current, modified as needed, and verified to reflect any proposed change. This is the essence of the CM program.

  18. Concentrations, profiles, and estimated human exposures for polychlorinated dibenzo-p-dioxins and dibenzofurans from electronic waste recycling facilities and a chemical industrial complex in Eastern China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, J.; Kannan, K.; Cheng, J.

    2008-11-15

    Electronic shredder waste and dust from e-waste facilities, and leaves and surface soil collected in the vicinity of a large scale e-waste recycling facility in Taizhou, Eastern China, were analyzed for total dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) including 2,3,7,8-substituted congeners. We also determined PCDD/Fs in surface agricultural soils from several provinces in China for comparison with soils from e-waste facilities. Concentrations of total PCDD/Fs were high in all of the matrices analyzed and ranged from 30.9 to 11,400 pg/g for shredder waste, 3460 to 9820 pg/g dry weight for leaves, 2560 to 148,000 pg/g dry weight for workshop-floor dust, and 854more » to 10200 pg/g dry weight for soils. We also analyzed surface soils from a chemical industrial complex (a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant) in Shanghai. Concentrations of total PCDD/Fs in surface soil from the chemical industrial complex were lower than the concentrations found in soils from e-waste recycling plants, but higher than the concentrations found in agricultural soils. Agricultural soils from six cities in China contained low levels of total PCDD/Fs. Profiles of dioxin toxic equivalents (TEQs) of 2,3,7,8-PCDD/Fs in soils from e-waste facilities in Taizhou differed from the profiles found in agricultural soils. The estimated daily intakes of TEQs of PCDD/Fs via soil/dust ingestion and dermal exposure were 2 orders of magnitude higher in people at e-waste recycling facilities than in people at the chemical industrial site, implying greater health risk for humans from dioxin exposures at e-waste recycling facilities. The calculated TEQ exposures for e-waste workers from dust and soil ingestion alone were 2-3 orders of magnitude greater than the exposures from soils in reference locations. 37 refs., 1 fig., 2 tabs.« less

  19. FACILITY LAYOUT OF FUEL STORAGE BUILDING (CPP603) SHOWING STORAGE BASINS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY LAYOUT OF FUEL STORAGE BUILDING (CPP-603) SHOWING STORAGE BASINS, FUEL ELEMENT CUTTING FACILITY, AND DRY GRAPHITE STORAGE FACILITY. INL DRAWING NUMBER 200-0603-00-030-056329. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  20. National facilities study. Volume 2A: Facility Study Office on the National Wind Tunnel Complex

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Facility Study Office (FSO) has completed its assigned activities. The results of the FSO efforts, studies, and assessments are documented. An overview of the FSO activities as well as a general comparison of all concepts considered are provided. Detailed information is also provided for the selected concept, Concept D-Option 5. Only findings are presented. The FSO developed recommendations only as a consequence of assumptions for cost and schedule assessments.

  1. Investigation of the Feasibility of Utilizing Gamma Emission Computed Tomography in Evaluating Fission Product Migration in Irradiated TRISO Fuel Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jason M. Harp; Paul A. Demkowicz

    2014-10-01

    In the High Temperature Gas-Cooled Reactor (HTGR) the TRISO particle fuel serves as the primary fission product containment. However the large number of TRISO particles present in proposed HTGRs dictates that there will be a small fraction (~10 -4 to 10 -5) of as manufactured and in-pile particle failures that will lead to some fission product release. The matrix material surrounding the TRISO particles in fuel compacts and the structural graphite holding the TRISO particles in place can also serve as sinks for containing any released fission products. However data on the migration of solid fission products through these materialsmore » is lacking. One of the primary goals of the AGR-3/4 experiment is to study fission product migration from failed TRISO particles in prototypic HTGR components such as structural graphite and compact matrix material. In this work, the potential for a Gamma Emission Computed Tomography (GECT) technique to non-destructively examine the fission product distribution in AGR-3/4 components and other irradiation experiments is explored. Specifically, the feasibility of using the Idaho National Laboratory (INL) Hot Fuels Examination Facility (HFEF) Precision Gamma Scanner (PGS) system for this GECT application is considered. To test the feasibility, the response of the PGS system to idealized fission product distributions has been simulated using Monte Carlo radiation transport simulations. Previous work that applied similar techniques during the AGR-1 experiment will also be discussed as well as planned uses for the GECT technique during the post irradiation examination of the AGR-2 experiment. The GECT technique has also been applied to other irradiated nuclear fuel systems that were currently available in the HFEF hot cell including oxide fuel pins, metallic fuel pins, and monolithic plate fuel.« less

  2. Advanced Hypervelocity Aerophysics Facility Workshop

    NASA Technical Reports Server (NTRS)

    Witcofski, Robert D. (Compiler); Scallion, William I. (Compiler)

    1989-01-01

    The primary objective of the workshop was to obtain a critical assessment of a concept for a large, advanced hypervelocity ballistic range test facility powered by an electromagnetic launcher, which was proposed by the Langley Research Center. It was concluded that the subject large-scale facility was feasible and would provide the required ground-based capability for performing tests at entry flight conditions (velocity and density) on large, complex, instrumented models. It was also concluded that advances in remote measurement techniques and particularly onboard model instrumentation, light-weight model construction techniques, and model electromagnetic launcher (EML) systems must be made before any commitment for the construction of such a facility can be made.

  3. TAN HOT SHOP AND SUPPORT FACILITY UTILIZATION STUDY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Ken Crawforth

    2001-11-01

    Impacts to the U.S. Department of Energy (DOE) complex caused by early closure (prior to 2018) and Demolition and Dismantlement (D&D) of the Test Area North (TAN) hot shop and its support facilities are explored in this report. Various possible conditions, such as Standby, Safe Store and Lay-up, that the facility may be placed in prior to eventually being turned over to D&D are addressed. The requirements, impacts, and implications to the facility and to the DOE Complex are discussed for each condition presented in the report. Some details of the report reference the Idaho National Engineering and Environmental Laboratorymore » (INEEL) Spent Nuclear Fuel Life Cycle Baseline Plan, the INEEL 2000 Infrastructure Long Range Plan, and other internal INEEL reports.« less

  4. TAN Hot Shop and Support Facility Utilization Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Picker, B.A.

    2001-11-16

    Impacts to the U.S. Department of Energy (DOE) complex caused by early closure (prior to 2018) and Demolition and Dismantlement (D and D) of the Test Area North (TAN) hot shop and its support facilities are explored in this report. Various possible conditions, such as Standby, Safe Store and Lay-up, that the facility may be placed in prior to eventually being turned over to D and D are addressed. The requirements, impacts, and implications to the facility and to the DOE Complex are discussed for each condition presented in the report. Some details of the report reference the Idaho Nationalmore » Engineering and Environmental Laboratory (INEEL) Spent Nuclear Fuel Life Cycle Baseline Plan, the INEEL 2000 Infrastructure Long Range Plan, and other internal INEEL reports.« less

  5. Proton facility economics: the importance of "simple" treatments.

    PubMed

    Johnstone, Peter A S; Kerstiens, John; Richard, Helsper

    2012-08-01

    Given the cost and debt incurred to build a modern proton facility, impetus exists to minimize treatment of patients with complex setups because of their slower throughput. The aim of this study was to determine how many "simple" cases are necessary given different patient loads simply to recoup construction costs and debt service, without beginning to cover salaries, utilities, beam costs, and so on. Simple cases are ones that can be performed quickly because of an easy setup for the patient or because the patient is to receive treatment to just one or two fields. A "standard" construction cost and debt for 1, 3, and 4 gantry facilities were calculated from public documents of facilities built in the United States, with 100% of the construction funded through standard 15-year financing at 5% interest. Clinical best case (that each room was completely scheduled with patients over a 14-hour workday) was assumed, and a statistical analysis was modeled with debt, case mix, and payer mix moving independently. Treatment times and reimbursement data from the investigators' facility for varying complexities of patients were extrapolated for varying numbers treated daily. Revenue assumptions of $X per treatment were assumed both for pediatric cases (a mix of Medicaid and private payer) and state Medicare simple case rates. Private payer reimbursement averages $1.75X per treatment. The number of simple patients required daily to cover construction and debt service costs was then derived. A single gantry treating only complex or pediatric patients would need to apply 85% of its treatment slots simply to service debt. However, that same room could cover its debt treating 4 hours of simple patients, thus opening more slots for complex and pediatric patients. A 3-gantry facility treating only complex and pediatric cases would not have enough treatment slots to recoup construction and debt service costs at all. For a 4-gantry center, focusing on complex and pediatric cases alone

  6. 8. Photocopy of engineering drawing. AETR DIGS FACILITY THEODOLITE AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Photocopy of engineering drawing. AETR DIGS FACILITY THEODOLITE AND PRISM SHELTER: SECTIONS AND DETAILS, 1971. - Cape Canaveral Air Station, Launch Complex 17, Facility 28413, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  7. Science and Technology Facilities

    ERIC Educational Resources Information Center

    Moonen, Jean-Marie; Buono, Nicolas; Handfield, Suzanne

    2004-01-01

    These four articles relate to science and technology infrastructure for secondary and tertiary institutions. The first article presents a view on approaches to teaching science in school and illustrates ideal science facilities for secondary education. The second piece reports on work underway to improve the Science Complex at the "Universite…

  8. 7. Photocopy of engineering drawing. AETR DIGS FACILITY THEODOLITE AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Photocopy of engineering drawing. AETR DIGS FACILITY THEODOLITE AND PRISM SHELTER: ELEVATIONS, FLOOR AND FOUNDATION PLANS, 1971. - Cape Canaveral Air Station, Launch Complex 17, Facility 28413, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  9. Juno at the Vertical Integration Facility

    NASA Image and Video Library

    2011-08-03

    At Space Launch Complex 41, the Juno spacecraft, enclosed in an Atlas payload fairing, was transferred into the Vertical Integration Facility where it was positioned on top of the Atlas rocket stacked inside.

  10. Space technology test facilities at the NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R.; Rodrigues, Annette T.

    1990-01-01

    The major space research and technology test facilities at the NASA Ames Research Center are divided into five categories: General Purpose, Life Support, Computer-Based Simulation, High Energy, and the Space Exploraton Test Facilities. The paper discusses selected facilities within each of the five categories and discusses some of the major programs in which these facilities have been involved. Special attention is given to the 20-G Man-Rated Centrifuge, the Human Research Facility, the Plant Crop Growth Facility, the Numerical Aerodynamic Simulation Facility, the Arc-Jet Complex and Hypersonic Test Facility, the Infrared Detector and Cryogenic Test Facility, and the Mars Wind Tunnel. Each facility is described along with its objectives, test parameter ranges, and major current programs and applications.

  11. Engine component instrumentation development facility at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.; Buggele, Alvin E.; Lepicovsky, Jan

    1992-01-01

    The Engine Components Instrumentation Development Facility at NASA Lewis is a unique aeronautics facility dedicated to the development of innovative instrumentation for turbine engine component testing. Containing two separate wind tunnels, the facility is capable of simulating many flow conditions found in most turbine engine components. This facility's broad range of capabilities as well as its versatility provide an excellent location for the development of novel testing techniques. These capabilities thus allow a more efficient use of larger and more complex engine component test facilities.

  12. Environmental Projects. Volume 9: Construction of hazardous materials storage facilities

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Activities at the Goldstone Deep Space Communications Complex (GDSCC) are carried out in support of seven parabolic dish antennas. These activities may give rise to environmental hazards. This report is one in a series of reports describing environmental projects at GDSCC. The construction of two hazardous materials and wastes storage facilities and an acid-wash facility is described. An overview of the Goldstone complex is also presented along with a description of the environmental aspects of the GDSCC site.

  13. Unmanned launch vehicle impacts on existing major facilities : V23

    DOT National Transportation Integrated Search

    1984-10-18

    This study measures the impact on the existing major facilities of Space Launch Complex (SLC-6) to accommodate the launching of an Unmanned Launch Vehicle (ULV). Modifications to the existing facilities were determined for two basic vehicle concepts,...

  14. Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report November 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soelberg, Renae

    2014-11-01

    Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report November 2014 Highlights Rory Kennedy and Sarah Robertson attended the American Nuclear Society Winter Meeting and Nuclear Technology Expo in Anaheim, California, Nov. 10-13. ATR NSUF exhibited at the technology expo where hundreds of meeting participants had an opportunity to learn more about ATR NSUF. Dr. Kennedy briefed the Nuclear Engineering Department Heads Organization (NEDHO) on the workings of the ATR NSUF. • Rory Kennedy, James Cole and Dan Ogden participated in a reactor instrumentation discussion with Jean-Francois Villard and Christopher Destouches of CEA and several members of themore » INL staff. • ATR NSUF received approval from the NE-20 office to start planning the annual Users Meeting. The meeting will be held at INL, June 22-25. • Mike Worley, director of the Office of Innovative Nuclear Research (NE-42), visited INL Nov. 4-5. Milestones Completed • Recommendations for the Summer Rapid Turnaround Experiment awards were submitted to DOE-HQ Nov. 12 (Level 2 milestone due Nov. 30). Major Accomplishments/Activities • The University of California, Santa Barbara 2 experiment was unloaded from the GE-2000 at HFEF. The experiment specimen packs will be removed and shipped to ORNL for PIE. • The Terrani experiment, one of three FY 2014 new awards, was completed utilizing the Advanced Photon Source MRCAT beamline. The experiment investigated the chemical state of Ag and Pd in SiC shell of irradiated TRISO particles via X-ray Absorption Fine Structure (XAFS) spectroscopy. Upcoming Meetings/Events • The ATR NSUF program review meeting will be held Dec. 9-10 at L’Enfant Plaza. In addition to NSUF staff and users, NE-4, NE-5 and NE-7 representatives will attend the meeting. Awarded Research Projects Boise State University Rapid Turnaround Experiments (14-485 and 14-486) Nanoindentation and TEM work on the T91, HT9, HCM12A and 9Cr ODS specimens has been

  15. 6. Photocopy of engineering drawing. AETR DIGS FACILITY THEODOLITE AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Photocopy of engineering drawing. AETR DIGS FACILITY THEODOLITE AND PRISM SHELTER: MONUMENT LOCATION AND LINE-OF-SIGHT PLAN, 1972. - Cape Canaveral Air Station, Launch Complex 17, Facility 28413, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  16. 10. Historic photo of rendering of rocket engine test facility ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Historic photo of rendering of rocket engine test facility complex, April 28, 1964. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-69472. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  17. Facile regio- and stereoselective hydrometalation of alkynes with a combination of carboxylic acids and group 10 transition metal complexes: selective hydrogenation of alkynes with formic acid.

    PubMed

    Shen, Ruwei; Chen, Tieqiao; Zhao, Yalei; Qiu, Renhua; Zhou, Yongbo; Yin, Shuangfeng; Wang, Xiangbo; Goto, Midori; Han, Li-Biao

    2011-10-26

    A facile, highly stereo- and regioselective hydrometalation of alkynes generating alkenylmetal complex is disclosed for the first time from a reaction of alkyne, carboxylic acid, and a zerovalent group 10 transition metal complex M(PEt(3))(4) (M = Ni, Pd, Pt). A mechanistic study showed that the hydrometalation does not proceed via the reaction of alkyne with a hydridometal generated by the protonation of a carboxylic acid with Pt(PEt(3))(4), but proceeds via a reaction of an alkyne coordinate metal complex with the acid. This finding clarifies the long proposed reaction mechanism that operates via the generation of an alkenylpalladium intermediate and subsequent transformation of this complex in a variety of reactions catalyzed by a combination of Brϕnsted acid and Pd(0) complex. This finding also leads to the disclosure of an unprecedented reduction of alkynes with formic acid that can selectively produce cis-, trans-alkenes and alkanes by slightly tuning the conditions.

  18. Aerial views of construction on the RLV hangar at the Shuttle Landing Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Looking southwest, this view shows ongoing construction of a multi-purpose hangar, which is part of the $8 million Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. Edging the construction is Sharkey Road, which parallels the landing strip of the Shuttle Landing Facility nearby. The RLV complex will include facilities for related ground support equipment and administrative/ technical support. It will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000.

  19. Skylab materials processing facility experiment developer's report

    NASA Technical Reports Server (NTRS)

    Parks, P. G.

    1975-01-01

    The development of the Skylab M512 Materials Processing Facility is traced from the design of a portable, self-contained electron beam welding system for terrestrial applications to the highly complex experiment system ultimately developed for three Skylab missions. The M512 experiment facility was designed to support six in-space experiments intended to explore the advantages of manufacturing materials in the near-zero-gravity environment of Earth orbit. Detailed descriptions of the M512 facility and related experiment hardware are provided, with discussions of hardware verification and man-machine interfaces included. An analysis of the operation of the facility and experiments during the three Skylab missions is presented, including discussions of the hardware performance, anomalies, and data returned to earth.

  20. Robot Serviced Space Facility

    NASA Technical Reports Server (NTRS)

    Purves, Lloyd R. (Inventor)

    1992-01-01

    A robot serviced space facility includes multiple modules which are identical in physical structure, but selectively differing in function. and purpose. Each module includes multiple like attachment points which are identically placed on each module so as to permit interconnection with immediately adjacent modules. Connection is made through like outwardly extending flange assemblies having identical male and female configurations for interconnecting to and locking to a complementary side of another flange. Multiple rows of interconnected modules permit force, fluid, data and power transfer to be accomplished by redundant circuit paths. Redundant modules of critical subsystems are included. Redundancy of modules and of interconnections results in a space complex with any module being removable upon demand, either for module replacement or facility reconfiguration. without eliminating any vital functions of the complex. Module replacement and facility assembly or reconfiguration are accomplished by a computer controlled articulated walker type robotic manipulator arm assembly having two identical end-effectors in the form of male configurations which are identical to those on module flanges and which interconnect to female configurations on other flanges. The robotic arm assembly moves along a connected set or modules by successively disconnecting, moving and reconnecting alternate ends of itself to a succession of flanges in a walking type maneuver. To transport a module, the robot keeps the transported module attached to one of its end-effectors and uses another flange male configuration of the attached module as a substitute end-effector during walking.

  1. 6. Historic photo of rocket engine test facility Building 202 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Historic photo of rocket engine test facility Building 202 complex in operation at night, September 12, 1957. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-45924. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  2. ENGINEERED NEAR SURFACE DISPOSAL FACILITY OF THE INDUSTRIAL COMPLEX FOR SOLID RADWASTE MANAGEMENT AT CHERNOBYL NUCLEAR POWER PLANT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziehm, Ronny; Pichurin, Sergey Grigorevich

    2003-02-27

    As a part of the turnkey project ''Industrial Complex for Solid Radwaste Management (ICSRM) at the Chernobyl Nuclear Power Plant (ChNPP)'' an Engineered Near Surface Disposal Facility (ENSDF, LOT 3) will be built on the VEKTOR site within the 30 km Exclusion Zone of the ChNPP. This will be performed by RWE NUKEM GmbH, Germany, and it governs the design, licensing support, fabrication, assembly, testing, inspection, delivery, erection, installation and commissioning of the ENSDF. The ENSDF will receive low to intermediate level, short lived, processed/conditioned wastes from the ICSRM Solid Waste Processing Facility (SWPF, LOT 2), the ChNPP Liquid Radwastemore » Treatment Plant (LRTP) and the ChNPP Interim Storage Facility for RBMK Fuel Assemblies (ISF). The ENSDF has a capacity of 55,000 m{sup 3}. The primary functions of the ENSDF are: to receive, monitor and record waste packages, to load the waste packages into concrete disposal units, to enable capping and closure of the disposal unit s, to allow monitoring following closure. The ENSDF comprises the turnkey installation of a near surface repository in the form of an engineered facility for the final disposal of LILW-SL conditioned in the ICSRM SWPF and other sources of Chernobyl waste. The project has to deal with the challenges of the Chernobyl environment, the fulfillment of both Western and Ukrainian standards, and the installation and coordination of an international project team. It will be shown that proven technologies and processes can be assembled into a unique Management Concept dealing with all the necessary demands and requirements of a turnkey project. The paper emphasizes the proposed concepts for the ENSDF and their integration into existing infrastructure and installations of the VEKTOR site. Further, the paper will consider the integration of Western and Ukrainian Organizations into a cohesive project team and the requirement to guarantee the fulfillment of both Western standards and

  3. Capsule review of the DOE research and development and field facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1980-09-01

    A description is given of the roles of DOE's headquarters, field offices, major multiprogram laboratories, Energy Technology and Mining Technology Centers, and other government-owned, contractor-operated facilities, which are located in all regions of the US. Descriptions of DOE facilities are given for multiprogram laboratories (12); program-dedicated facilities (biomedical and environmental facilities-12, fossil energy facilities-7, fusion energy facility-1, nuclear development facilities-3, physical research facilities-4, safeguards facility-1, and solar facilities-2); and Production, Testing, and Fabrication Facilities (nuclear materials production facilities-5, weapon testing and fabrication complex-8). Three appendices list DOE field and project offices; DOE field facilities by state or territory, names, addresses,more » and telephone numbers; DOE R and D field facilities by type, contractor names, and names of directors. (MCW)« less

  4. Lessons Learned from the 200 West Pump and Treatment Facility Construction Project at the US DOE Hanford Site - A Leadership for Energy and Environmental Design (LEED) Gold-Certified Facility - 13113

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorr, Kent A.; Freeman-Pollard, Jhivaun R.; Ostrom, Michael J.

    CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energy's (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built to an accelerated schedule with American Recovery and Reinvestment Act (ARRA) funds. There were many contractual, technical, configuration management, quality, safety, and Leadership in Energy and Environmental Design (LEED) challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility tomore » meet DOE's mission objective of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012. The project team's successful integration of the project's core values and green energy technology throughout design, procurement, construction, and start-up of this complex, first-of-its-kind Bio Process facility resulted in successful achievement of DOE's mission objective, as well as attainment of LEED GOLD certification (Figure 1), which makes this Bio Process facility the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award. (authors)« less

  5. Adaptive algorithm of selecting optimal variant of errors detection system for digital means of automation facility of oil and gas complex

    NASA Astrophysics Data System (ADS)

    Poluyan, A. Y.; Fugarov, D. D.; Purchina, O. A.; Nesterchuk, V. V.; Smirnova, O. V.; Petrenkova, S. B.

    2018-05-01

    To date, the problems associated with the detection of errors in digital equipment (DE) systems for the automation of explosive objects of the oil and gas complex are extremely actual. Especially this problem is actual for facilities where a violation of the accuracy of the DE will inevitably lead to man-made disasters and essential material damage, at such facilities, the diagnostics of the accuracy of the DE operation is one of the main elements of the industrial safety management system. In the work, the solution of the problem of selecting the optimal variant of the errors detection system of errors detection by a validation criterion. Known methods for solving these problems have an exponential valuation of labor intensity. Thus, with a view to reduce time for solving the problem, a validation criterion is compiled as an adaptive bionic algorithm. Bionic algorithms (BA) have proven effective in solving optimization problems. The advantages of bionic search include adaptability, learning ability, parallelism, the ability to build hybrid systems based on combining. [1].

  6. Lessons Learned from Radioactive Waste Storage and Disposal Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esh, David W.; Bradford, Anna H.

    2008-01-15

    The safety of radioactive waste disposal facilities and the decommissioning of complex sites may be predicated on the performance of engineered and natural barriers. For assessing the safety of a waste disposal facility or a decommissioned site, a performance assessment or similar analysis is often completed. The analysis is typically based on a site conceptual model that is developed from site characterization information, observations, and, in many cases, expert judgment. Because waste disposal facilities are sited, constructed, monitored, and maintained, a fair amount of data has been generated at a variety of sites in a variety of natural systems. Thismore » paper provides select examples of lessons learned from the observations developed from the monitoring of various radioactive waste facilities (storage and disposal), and discusses the implications for modeling of future waste disposal facilities that are yet to be constructed or for the development of dose assessments for the release of decommissioning sites. Monitoring has been and continues to be performed at a variety of different facilities for the disposal of radioactive waste. These include facilities for the disposal of commercial low-level waste (LLW), reprocessing wastes, and uranium mill tailings. Many of the lessons learned and problems encountered provide a unique opportunity to improve future designs of waste disposal facilities, to improve dose modeling for decommissioning sites, and to be proactive in identifying future problems. Typically, an initial conceptual model was developed and the siting and design of the disposal facility was based on the conceptual model. After facility construction and operation, monitoring data was collected and evaluated. In many cases the monitoring data did not comport with the original site conceptual model, leading to additional investigation and changes to the site conceptual model and modifications to the design of the facility. The following cases are

  7. A Space Station tethered orbital refueling facility

    NASA Technical Reports Server (NTRS)

    Fester, D. A.; Rudolph, L. K.; Kiefel, E. R.

    1985-01-01

    A planned function of the Space Station is to refurbish and refuel an advanced space-based LO2/LH2 orbit transfer vehicle. An alternative to propellant storage at the station is to use a remote facility tied to the station with a long tether. Preliminary design of such a facility is described with emphasis on fluid transfer and storage requirements. Using tether lengths of at least 300 ft, gravity gradient forces will dominate surface tension in such a system. Although gravity driven transfer is difficult because of line pressure drops, fluid settling over the tank outlet greatly alleviates acquisition concerns and will facilitate vented tank fills. The major concern with a tethered orbital refueling facility is its considerable operational complexity including transport of the OTV to and from the facility.

  8. 1. West facade of Plutonium Concentration Facility (Building 233S), ReductionOxidation ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. West facade of Plutonium Concentration Facility (Building 233-S), Reduction-Oxidation Building (REDOX-202-S) to the right. Looking east. - Reduction-Oxidation Complex, Plutonium Concentration Facility, 200 West Area, Richland, Benton County, WA

  9. Nuclotron-Based Ion Collider Facility (nica)

    NASA Astrophysics Data System (ADS)

    Meshkov, I.; Sissakian, A.; Sorin, A.

    2008-09-01

    The project of an ion collider accelerator complex NICA that is under development at JINR is presented. The article is based on the Conceptual Design Report (CDR)1 of the NICA project delivered in January 2008. The article contains NICA facility scheme, the facility operation scenario, its elements parameters, the proposed methods of intense ion beam acceleration and achievement of the required luminosity of the collider. The symmetric mode of the collider operation is considered here and most attention is concentrated on the luminosity provision in collisions of uranium ions (nuclei).

  10. Users Guide for the National Transonic Facility Research Data System

    NASA Technical Reports Server (NTRS)

    Foster, Jean M.; Adcock, Jerry B.

    1996-01-01

    The National Transonic Facility is a complex cryogenic wind tunnel facility. This report briefly describes the facility, the data systems, and the instrumentation used to acquire research data. The computational methods and equations are discussed in detail and many references are listed for those who need additional technical information. This report is intended to be a user's guide, not a programmer's guide; therefore, the data reduction code itself is not documented. The purpose of this report is to assist personnel involved in conducting a test in the National Transonic Facility.

  11. Adaptive management: a paradigm for remediation of public facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janecky, David R; Whicker, Jeffrey J; Doerr, Ted B

    2009-01-01

    Public facility restoration planning traditionally focused on response to natural disasters and hazardous materials accidental releases. These plans now need to integrate response to terrorist actions. Therefore, plans must address a wide range of potential vulnerabilities. Similar types of broad remediation planning are needed for restoration of waste and hazardous material handling areas and facilities. There are strong similarities in damage results and remediation activities between unintentional and terrorist actions; however, the uncertainties associated with terrorist actions result in a re-evaluation of approaches to planning. Restoration of public facilities following a release of a hazardous material is inherently far moremore » complex than in confined industrial settings and has many unique technical, economic, social, and political challenges. Therefore, they arguably involve a superset of drivers, concerns and public agencies compared to other restoration efforts. This superset of conditions increases complexity of interactions, reduces our knowledge of the initial conditions, and even condenses the timeline for restoration response. Therefore, evaluations of alternative restoration management approaches developed for responding to terrorist actions provide useful knowledge for large, complex waste management projects. Whereas present planning documents have substantial linearity in their organization, the 'adaptive management' paradigm provides a constructive parallel operations paradigm for restoration of facilities that anticipates and plans for uncertainty, multiple/simUltaneous public agency actions, and stakeholder participation. Adaptive management grew out of the need to manage and restore natural resources in highly complex and changing environments with limited knowledge about causal relationships and responses to restoration actions. Similarities between natural resource management and restoration of a facility and surrounding area

  12. Cytarabine Lipid Complex Injection

    MedlinePlus

    Cytarabine lipid complex comes as a liquid to be injected intrathecally (into the fluid-filled space of the spinal canal) over 1 to 5 minutes by a doctor or nurse in a medical facility. At first, cytarabine lipid ...

  13. A Design for an Orbital Assembly Facility for Complex Missions

    NASA Astrophysics Data System (ADS)

    Feast, S.; Bond, A.

    A design is presented for an Operations Base Station (OBS) in low earth orbit that will function as an integral part of a space transportation system, enabling assembly and maintenance of a Cis-Lunar transportation infrastructure and integration of vehicles for other high energy space missions to be carried out. Construction of the OBS assumes the use of the SKYLON Single-Stage-to-Orbit (SSTO) spaceplane, which imposes design and assembly constraints due to its payload mass limits and payload bay dimensions. It is assumed that the space transport infrastructure and high mission energy vehicles would also make use of SKYLON to deploy standard transport equipment and stages bound by these same constraints. The OBS is therefore a highly modular arrangement, incorporating some of these other vehicle system elements in its layout design. Architecturally, the facilities of the OBS are centred around the Assembly Dock which is in the form of a large cylindrical spaceframe structure with two large doors on either end incorporating a skin of aluminised Mylar to enclose the dock. Longitudinal rails provide internal tether attachments to anchor vehicles and components while manipulators are used for the handling and assembling of vehicle structures. The exterior of the OBS houses the habitation modules for workforce and vehicle crews along with propellant farms and other operational facilities.

  14. Life-Cycle Assessments of Selected NASA Ground-Based Test Facilities

    NASA Technical Reports Server (NTRS)

    Sydnor, George Honeycutt

    2012-01-01

    In the past two years, two separate facility-specific life cycle assessments (LCAs) have been performed as summer student projects. The first project focused on 13 facilities managed by NASA s Aeronautics Test Program (ATP), an organization responsible for large, high-energy ground test facilities that accomplish the nation s most advanced aerospace research. A facility inventory was created for each facility, and the operational-phase carbon footprint and environmental impact were calculated. The largest impacts stemmed from electricity and natural gas used directly at the facility and to generate support processes such as compressed air and steam. However, in specialized facilities that use unique inputs like R-134a, R-14, jet fuels, or nitrogen gas, these sometimes had a considerable effect on the facility s overall environmental impact. The second LCA project was conducted on the NASA Ames Arc Jet Complex and also involved creating a facility inventory and calculating the carbon footprint and environmental impact. In addition, operational alternatives were analyzed for their effectiveness at reducing impact. Overall, the Arc Jet Complex impact is dominated by the natural-gas fired boiler producing steam on-site, but alternatives were provided that could reduce the impact of the boiler operation, some of which are already being implemented. The data and results provided by these LCA projects are beneficial to both the individual facilities and NASA as a whole; the results have already been used in a proposal to reduce carbon footprint at Ames Research Center. To help future life cycle projects, several lessons learned have been recommended as simple and effective infrastructure improvements to NASA, including better utility metering and data recording and standardization of modeling choices and methods. These studies also increased sensitivity to and appreciation for quantifying the impact of NASA s activities.

  15. Blue Origin Facility - Construction Progress

    NASA Image and Video Library

    2017-03-21

    Construction is progressing on Blue Origin's 750,000-square-foot facility being built at Exploration Park on NASA Kennedy Space Center property in Florida. Blue Origin will use the factory to manufacture its two-stage super-heavy-lift New Glenn launch vehicle and launch the vehicles from Space Launch Complex 46 at Cape Canaveral Air Force Station.

  16. Peculiarities of organizing the construction of nuclear medicine facilities and the transportation of radionuclide

    NASA Astrophysics Data System (ADS)

    Telichenko, Valeriy; Malykha, Galina; Dorogan, Igor

    2017-10-01

    The article is devoted to the organization of construction of nuclear medicine facilities in Russia. The article describes the main methods of nuclear medical diagnostics, as well as the peculiarities of nuclear medicine facilities that determine the need for application of specific methods for organizing and managing the construction, methods of requirements management in the organization of construction of nuclear medicine facilities. Sustainable development of the transport of radioactive isotopes from the place of production to places of consumption is very important for the safety of the population. The requirements management system is an important and necessary component in organizing the construction of complex facilities, such as nuclear medicine facilities. The author developed and proposed a requirements management system for the design, construction and operation of a nuclear medicine facility, which provides for a cyclic sequence of actions. This system allows reducing the consumption of resources including material and energy during construction and operation of complex objects.

  17. NASA Dryden flow visualization facility

    NASA Technical Reports Server (NTRS)

    Delfrate, John H.

    1995-01-01

    This report describes the Flow Visualization Facility at NASA Dryden Flight Research Center, Edwards, California. This water tunnel facility is used primarily for visualizing and analyzing vortical flows on aircraft models and other shapes at high-incidence angles. The tunnel is used extensively as a low-cost, diagnostic tool to help engineers understand complex flows over aircraft and other full-scale vehicles. The facility consists primarily of a closed-circuit water tunnel with a 16- x 24-in. vertical test section. Velocity of the flow through the test section can be varied from 0 to 10 in/sec; however, 3 in/sec provides optimum velocity for the majority of flow visualization applications. This velocity corresponds to a unit Reynolds number of 23,000/ft and a turbulence level over the majority of the test section below 0.5 percent. Flow visualization techniques described here include the dye tracer, laser light sheet, and shadowgraph. Limited correlation to full-scale flight data is shown.

  18. Concentrations, profiles, and estimated human exposures for polychlorinated dibenzo-p-dioxins and dibenzofurans from electronic waste recycling facilities and a chemical industrial complex in Eastern China.

    PubMed

    Ma, Jing; Kannan, Kurunthachalam; Cheng, Jinping; Horii, Yuichi; Wu, Qian; Wang, Wenhua

    2008-11-15

    Environmental pollution arising from electronic waste (e-waste) disposal and recycling has received considerable attention in recent years. Treatment, at low temperatures, of e-wastes that contain polyvinylchloride and related polymers can release polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Although several studies have reported trace metals and polybrominated diphenyl ethers (PBDEs) released from e-waste recycling operations, environmental contamination and human exposure to PCDD/Fs from e-waste recycling operations are less well understood. In this study, electronic shredder waste and dust from e-waste facilities, and leaves and surface soil collected in the vicinity of a large scale e-waste recycling facility in Taizhou, Eastern China, were analyzed for total PCDD/ Fs including 2,3,7,8-substituted congeners. We also determined PCDD/Fs in surface agricultural soils from several provinces in China for comparison with soils from e-waste facilities. Concentrations of total PCDD/Fs were high in all of the matrices analyzed and ranged from 30.9 to 11400 pg/g for shredder waste, 3460 to 9820 pg/g dry weight for leaves, 2560 to 148000 pg/g dry weight for workshop-floor dust, and 854 to 10200 pg/g dry weight for soils. We also analyzed surface soils from a chemical industrial complex (a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant) in Shanghai. Concentrations of total PCDD/Fs in surface soil (44.5-531 pg/g dry wt) from the chemical industrial complex were lower than the concentrations found in soils from e-waste recycling plants, but higher than the concentrations found in agricultural soils. Agricultural soils from six cities in China contained low levels (3.44-33.8 pg/g dry wt) of total PCDD/Fs. Profiles of dioxin toxic equivalents (TEQs) of 2,3,7,8-PCDD/Fs in soils from e-waste facilities in Taizhou differed from the profiles found in agricultural soils. The estimated daily intakes of TEQs of PCDD/ Fs via soil/dust ingestion

  19. Cape Canaveral Air Force Station, Launch Complex 39, Solid Rocket ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Cape Canaveral Air Force Station, Launch Complex 39, Solid Rocket Booster Disassembly & Refurbishment Complex, Thrust Vector Control Deservicing Facility, Hangar Road, Cape Canaveral, Brevard County, FL

  20. Polybrominated dibenzo-p-dioxins/dibenzofurans and polybrominated diphenyl ethers in soil, vegetation, workshop-floor dust, and electronic shredder residue from an electronic waste recycling facility and in soils from a chemical industrial complex in eastern China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing Ma; Rudolf Addink; Sehun Yun

    2009-10-01

    In this study, 11 2,3,7,8-substituted PBDD/Fs and 10 polybrominated diphenyl ether (PBDE) congeners were determined in electronic shredder waste, workshop-floor dust, soil, and leaves (of plants on the grounds of the facility) from a large-scale electronic wastes (e-waste) recycling facility and in surface soil from a chemical-industrial complex (comprising a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant) as well as agricultural areas in eastern China. Total PBDD/F concentrations in environmental samples were in the range of 113-818 pg/g dry wt (dw) for leaves, 392-18,500 pg/g dw for electronic shredder residues, 716-80,0000 pg/g dw for soil samples, andmore » 89,600-14,3000 pg/g dw for workshop-floor dust from the e-waste recycling facility and in a range from nondetect (ND) to 427 pg/g dw in soil from the chemical-industrial complex. The highest mean concentrations of total PBDD/Fs were found in soil samples and workshop-floor dust from the e-waste recycling facility. The dioxin-like toxic equivalent (measured as TEQ) concentrations of PBDD/Fs were greater than the TEQs of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) reported in our previous study for the same set of samples. The concentrations of PBDFs were several orders of magnitude higher than the concentrations of PBDDs in samples from the e-waste facility or from soil from the chemical-industrial complex. A significant correlation was found between the concentrations of {Sigma}PBDD/Fs and {Sigma}PBDEs (r = 0.769, p < 0.01) and between SPBDD/Fs and the previously reported SPCDD/F concentrations (r = 0.805, p < 0.01). The estimated daily human intakes of TEQs contributed by PBDD/Fs via soil/dust ingestion and dermal exposures in e-waste recycling facilities were higher than the intakes of TEQs contributed by PCDD/Fs, calculated in our previous study. 45 refs., 2 figs., 2 tabs.« less

  1. 2 CFR 200.468 - Specialized service facilities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... OFFICE OF MANAGEMENT AND BUDGET GUIDANCE Reserved UNIFORM ADMINISTRATIVE REQUIREMENTS, COST PRINCIPLES, AND AUDIT REQUIREMENTS FOR FEDERAL AWARDS Cost Principles General Provisions for Selected Items of Cost § 200.468 Specialized service facilities. (a) The costs of services provided by highly complex or...

  2. Predictive Analytics to Support Real-Time Management in Pathology Facilities.

    PubMed

    Lessard, Lysanne; Michalowski, Wojtek; Chen Li, Wei; Amyot, Daniel; Halwani, Fawaz; Banerjee, Diponkar

    2016-01-01

    Predictive analytics can provide valuable support to the effective management of pathology facilities. The introduction of new tests and technologies in anatomical pathology will increase the volume of specimens to be processed, as well as the complexity of pathology processes. In order for predictive analytics to address managerial challenges associated with the volume and complexity increases, it is important to pinpoint the areas where pathology managers would most benefit from predictive capabilities. We illustrate common issues in managing pathology facilities with an analysis of the surgical specimen process at the Department of Pathology and Laboratory Medicine (DPLM) at The Ottawa Hospital, which processes all surgical specimens for the Eastern Ontario Regional Laboratory Association. We then show how predictive analytics could be used to support management. Our proposed approach can be generalized beyond the DPLM, contributing to a more effective management of pathology facilities and in turn to quicker clinical diagnoses.

  3. Polybrominated dibenzo-p-dioxins/ dibenzofurans and polybrominated diphenyl ethers in soil, vegetation, workshop-floor dust, and electronic shredder residue from an electronic waste recycling facility and in soils from a chemical industrial complex in eastern China.

    PubMed

    Ma, Jing; Addink, Rudolf; Yun, Sehun; Cheng, Jinping; Wang, Wenhua; Kannan, Kurunthachalam

    2009-10-01

    The formation and release of polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs) from the incineration of electronic wastes (e-waste) that contain brominated flame retardants (BFRs) are a concern. However, studies on the determination of PBDD/Fs in environmental samples collected from e-waste recycling facilities are scarce. In this study, 11 2,3,7,8-substituted PBDD/Fs and 10 polybrominated diphenyl ether (PBDE) congeners were determined in electronic shredder waste, workshop-floor dust soil, and leaves (of plants on the grounds of the facility) from a large-scale e-waste recycling facility and in surface soil from a chemical-industrial complex (comprising a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant) as well as agricultural areas in eastern China. Total PBDD/F concentrations in environmental samples were in the range of 113-818 pg/g dry wt (dw) for leaves, 392-18500 pg/g dw for electronic shredder residues, 716-800000 pg/g dw for soil samples, and 89600-pg/g dw for workshop-floor dust from the e-waste recycling facility and in a range from nondetect (ND) to 427 pg/g dw in soil from the chemical-industrial complex. The highest mean concentrations of total PBDD/Fs were found in soil samples and workshop-floor dust from the e-waste recycling facility. The dioxin-like toxic equivalent (measured as TEQ) concentrations of PBDD/Fs were greater than the TEQs of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) reported in our previous study for the same set of samples. The concentrations of PBDFs were several orders of magnitude higher than the concentrations of PBDDs in samples from the e-waste facility or from soil from the chemical-industrial complex. A significant correlation was found between the concentrations of sigmaPBDD/Fs and sigmaPBDEs (r = 0.769, p < 0.01) and between sigmaPBDD/Fs and the previously reported sigmaPCDD/F concentrations (r = 0.805, p < 0.01). The estimated daily human intakes of TEQs contributed by

  4. Library Facility Siting and Location Handbook. The Greenwood Library Management Collection.

    ERIC Educational Resources Information Center

    Koontz, Christine M.

    This handbook is a guide to the complex process of library facility siting and location. It includes relevant research and professionals' siting experiences, as well as actual case studies of closures, openings, mergers, and relocations of library facilities. While the bulk of the volume provides practical information, the work also presents an…

  5. Master Planning School District Facility Needs

    ERIC Educational Resources Information Center

    Prager, Gary; Matschulat, Robert

    2010-01-01

    Most educational entities confront any number of facility issues. Upgrading the physical infrastructure to meet current and future demands can be intimidating. The quantity and magnitude of capital issues in a changing environment can be overwhelming. How can all this complexity be made coherent to assure that decisions are sound and limited…

  6. Water facilities in retrospect and prospect: An illuminating tool for vehicle design

    NASA Technical Reports Server (NTRS)

    Erickson, G. E.; Peak, D. J.; Delfrate, J.; Skow, A. M.; Malcolm, G. N.

    1986-01-01

    Water facilities play a fundamental role in the design of air, ground, and marine vehicles by providing a qualitative, and sometimes quantitative, description of complex flow phenomena. Water tunnels, channels, and tow tanks used as flow-diagnostic tools have experienced a renaissance in recent years in response to the increased complexity of designs suitable for advanced technology vehicles. These vehicles are frequently characterized by large regions of steady and unsteady three-dimensional flow separation and ensuing vortical flows. The visualization and interpretation of the complicated fluid motions about isolated vehicle components and complete configurations in a time and cost effective manner in hydrodynamic test facilities is a key element in the development of flow control concepts, and, hence, improved vehicle designs. A historical perspective of the role of water facilities in the vehicle design process is presented. The application of water facilities to specific aerodynamic and hydrodynamic flow problems is discussed, and the strengths and limitations of these important experimental tools are emphasized.

  7. National Institutes of Health-Sponsored Clinical Islet Transplantation Consortium Phase 3 Trial: Manufacture of a Complex Cellular Product at Eight Processing Facilities.

    PubMed

    Ricordi, Camillo; Goldstein, Julia S; Balamurugan, A N; Szot, Gregory L; Kin, Tatsuya; Liu, Chengyang; Czarniecki, Christine W; Barbaro, Barbara; Bridges, Nancy D; Cano, Jose; Clarke, William R; Eggerman, Thomas L; Hunsicker, Lawrence G; Kaufman, Dixon B; Khan, Aisha; Lafontant, David-Erick; Linetsky, Elina; Luo, Xunrong; Markmann, James F; Naji, Ali; Korsgren, Olle; Oberholzer, Jose; Turgeon, Nicole A; Brandhorst, Daniel; Chen, Xiaojuan; Friberg, Andrew S; Lei, Ji; Wang, Ling-Jia; Wilhelm, Joshua J; Willits, Jamie; Zhang, Xiaomin; Hering, Bernhard J; Posselt, Andrew M; Stock, Peter G; Shapiro, A M James; Chen, Xiaojuan

    2016-11-01

    Eight manufacturing facilities participating in the National Institutes of Health-sponsored Clinical Islet Transplantation (CIT) Consortium jointly developed and implemented a harmonized process for the manufacture of allogeneic purified human pancreatic islet (PHPI) product evaluated in a phase 3 trial in subjects with type 1 diabetes. Manufacturing was controlled by a common master production batch record, standard operating procedures that included acceptance criteria for deceased donor organ pancreata and critical raw materials, PHPI product specifications, certificate of analysis, and test methods. The process was compliant with Current Good Manufacturing Practices and Current Good Tissue Practices. This report describes the manufacturing process for 75 PHPI clinical lots and summarizes the results, including lot release. The results demonstrate the feasibility of implementing a harmonized process at multiple facilities for the manufacture of a complex cellular product. The quality systems and regulatory and operational strategies developed by the CIT Consortium yielded product lots that met the prespecified characteristics of safety, purity, potency, and identity and were successfully transplanted into 48 subjects. No adverse events attributable to the product and no cases of primary nonfunction were observed. © 2016 by the American Diabetes Association.

  8. National Institutes of Health–Sponsored Clinical Islet Transplantation Consortium Phase 3 Trial: Manufacture of a Complex Cellular Product at Eight Processing Facilities

    PubMed Central

    Balamurugan, A.N.; Szot, Gregory L.; Kin, Tatsuya; Liu, Chengyang; Czarniecki, Christine W.; Barbaro, Barbara; Bridges, Nancy D.; Cano, Jose; Clarke, William R.; Eggerman, Thomas L.; Hunsicker, Lawrence G.; Kaufman, Dixon B.; Khan, Aisha; Lafontant, David-Erick; Linetsky, Elina; Luo, Xunrong; Markmann, James F.; Naji, Ali; Korsgren, Olle; Oberholzer, Jose; Turgeon, Nicole A.; Brandhorst, Daniel; Chen, Xiaojuan; Friberg, Andrew S.; Lei, Ji; Wang, Ling-jia; Wilhelm, Joshua J.; Willits, Jamie; Zhang, Xiaomin; Hering, Bernhard J.; Posselt, Andrew M.; Stock, Peter G.; Shapiro, A.M. James

    2016-01-01

    Eight manufacturing facilities participating in the National Institutes of Health–sponsored Clinical Islet Transplantation (CIT) Consortium jointly developed and implemented a harmonized process for the manufacture of allogeneic purified human pancreatic islet (PHPI) product evaluated in a phase 3 trial in subjects with type 1 diabetes. Manufacturing was controlled by a common master production batch record, standard operating procedures that included acceptance criteria for deceased donor organ pancreata and critical raw materials, PHPI product specifications, certificate of analysis, and test methods. The process was compliant with Current Good Manufacturing Practices and Current Good Tissue Practices. This report describes the manufacturing process for 75 PHPI clinical lots and summarizes the results, including lot release. The results demonstrate the feasibility of implementing a harmonized process at multiple facilities for the manufacture of a complex cellular product. The quality systems and regulatory and operational strategies developed by the CIT Consortium yielded product lots that met the prespecified characteristics of safety, purity, potency, and identity and were successfully transplanted into 48 subjects. No adverse events attributable to the product and no cases of primary nonfunction were observed. PMID:27465220

  9. Predictive Analytics to Support Real-Time Management in Pathology Facilities

    PubMed Central

    Lessard, Lysanne; Michalowski, Wojtek; Chen Li, Wei; Amyot, Daniel; Halwani, Fawaz; Banerjee, Diponkar

    2016-01-01

    Predictive analytics can provide valuable support to the effective management of pathology facilities. The introduction of new tests and technologies in anatomical pathology will increase the volume of specimens to be processed, as well as the complexity of pathology processes. In order for predictive analytics to address managerial challenges associated with the volume and complexity increases, it is important to pinpoint the areas where pathology managers would most benefit from predictive capabilities. We illustrate common issues in managing pathology facilities with an analysis of the surgical specimen process at the Department of Pathology and Laboratory Medicine (DPLM) at The Ottawa Hospital, which processes all surgical specimens for the Eastern Ontario Regional Laboratory Association. We then show how predictive analytics could be used to support management. Our proposed approach can be generalized beyond the DPLM, contributing to a more effective management of pathology facilities and in turn to quicker clinical diagnoses. PMID:28269873

  10. Commissioning for the European XFEL facility

    NASA Astrophysics Data System (ADS)

    Nölle, D.

    2017-06-01

    The European XFEL is a 4th generation light source based on the Self Amplified Spontaneous Emission (SASE) FreeElectron-Laser concept. It is currently being commissioned in North- Germany. The core installation is a 17.5 GeV superconducting accelerator driving 3 SASE lines with photon energies from 1 to beyond 20 keV range with a maximum of 27.000 pulses per second. The international facility is organized as a limited liability company with shareholders from the contributing countries. DESY has taken over the leadership of the accelerator construction consortium, and will be in charge of the operation of the accelerator complex. The facility was set up with contributions from the 11 shareholder countries, either being hardware systems and/or staff or cash contributions. The construction is almost complete, and the commissioning phase has started by the end of 2015. This contribution will report the status of the accelerator complex with emphasis on the commissioning of the accelerator and an outlook to the commissioning of the SASE 1 FEL line.

  11. Dialysis Facility Safety: Processes and Opportunities.

    PubMed

    Garrick, Renee; Morey, Rishikesh

    2015-01-01

    Unintentional human errors are the source of most safety breaches in complex, high-risk environments. The environment of dialysis care is extremely complex. Dialysis patients have unique and changing physiology, and the processes required for their routine care involve numerous open-ended interfaces between providers and an assortment of technologically advanced equipment. Communication errors, both within the dialysis facility and during care transitions, and lapses in compliance with policies and procedures are frequent areas of safety risk. Some events, such as air emboli and needle dislodgments occur infrequently, but are serious risks. Other adverse events include medication errors, patient falls, catheter and access-related infections, access infiltrations and prolonged bleeding. A robust safety system should evaluate how multiple, sequential errors might align to cause harm. Systems of care can be improved by sharing the results of root cause analyses, and "good catches." Failure mode effects and analyses can be used to proactively identify and mitigate areas of highest risk, and methods drawn from cognitive psychology, simulation training, and human factor engineering can be used to advance facility safety. © 2015 Wiley Periodicals, Inc.

  12. Discriminative facility and its role in the perceived quality of interactional experiences.

    PubMed

    Cheng, C; Chiu, C Y; Hong, Y Y; Cheung, J S

    2001-10-01

    Discriminative facility refers to an individual's sensitivity to subtle cues about the psychological meaning of a situation. This research aimed at examining (a) the conceptual distinctiveness of discriminative facility, (b) the situation-appropriate aspect of this construct, and (c) the relationship between discriminative facility and interpersonal experiences. Discriminative facility was assessed by a new measure of situation-appropriate behaviors across a variety of novel stressful situations. Results from study 1 showed that discriminative facility had weak positive relationships with cognitive complexity and nonsignificant relationships with self-monitoring and social desirability, indicating that discriminative facility is a unique construct. Results from Study 2 revealed that higher levels of discriminative facility were associated with higher levels of perceived social support and a greater number of pleasant interpersonal events experienced, thus providing support for the theoretical proposition that discriminative facility is an aspect of social intelligence.

  13. FRACTURING FLUID CHARACTERIZATION FACILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subhash Shah

    2000-08-01

    Hydraulic fracturing technology has been successfully applied for well stimulation of low and high permeability reservoirs for numerous years. Treatment optimization and improved economics have always been the key to the success and it is more so when the reservoirs under consideration are marginal. Fluids are widely used for the stimulation of wells. The Fracturing Fluid Characterization Facility (FFCF) has been established to provide the accurate prediction of the behavior of complex fracturing fluids under downhole conditions. The primary focus of the facility is to provide valuable insight into the various mechanisms that govern the flow of fracturing fluids andmore » slurries through hydraulically created fractures. During the time between September 30, 1992, and March 31, 2000, the research efforts were devoted to the areas of fluid rheology, proppant transport, proppant flowback, dynamic fluid loss, perforation pressure losses, and frictional pressure losses. In this regard, a unique above-the-ground fracture simulator was designed and constructed at the FFCF, labeled ''The High Pressure Simulator'' (HPS). The FFCF is now available to industry for characterizing and understanding the behavior of complex fluid systems. To better reflect and encompass the broad spectrum of the petroleum industry, the FFCF now operates under a new name of ''The Well Construction Technology Center'' (WCTC). This report documents the summary of the activities performed during 1992-2000 at the FFCF.« less

  14. Refining the W1 and SE1 Facilities

    NASA Technical Reports Server (NTRS)

    Chambers, Rodney D.

    2004-01-01

    The Engine Research Building (ERB) houses more than 60 test rigs that study all aspects of engine development. By working with Mary Gibson in the SE1 and W1A Turbine Facilities, I became aware of her responsibilities and better acquainted with the inner workings of the ERB. The SE1 Supersonic/Subsonic Wind Tunnel Facility contains 2 small wind tunnels. The first tunnel uses an atmospheric inlet, while the second uses treated 40-psig air. Both of the tunnels are capable of subsonic and supersonic operation. An auxiliary air supply and exhaust piping providing both test sections with suction, blowing, and crossfire capabilities. The current configuration of SE1 consists of a curved diffuser that studies the blockage along the endwalls. The W1A Low Speed Compressor Facility provides insight for the complex flow phenomena within its 4-stage axial compressor, sand the data obtained from W 1A is used to develop advanced models for fluid dynamic assessment. W1A is based off of a low speed research compressor developed by GE in the 1950's. This compressor has a removable casing treatment under rotor 1, which allows for various tip treatment studies. The increased size and low speed allows instrumentation to be located in the compressor s complex flow paths. Air enters the facility through a filtered roof vent, conditioned for temperature and turbulence, and then passed through the compressor W1A is described as a dynamic facility with many projects taking place simultaneously. This current environment makes it challenging to follow the various affairs that are taking place within the area. During my first 4 weeks at the NASA Glenn Research Center, I have assisted Mary Gibson in multiple tasks such as facility documents, record keeping, maintenance and upgrades. The facility has lube systems for its gearbox and compressor. These systems are critical in the successful operation of the facility. I was assigned the task of creating a facility estimate list, which included the

  15. Heritage Park Facilities PV Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hobaica, Mark

    Project Objective: To procure a photovoltaic array (PV) system which will generate approximately 256kW of power to be used for the operations of the Aquatic Complex and the adjacent Senior Facility at the Heritage Park. This project complies with the EERE’s work and objectives by promoting the development and deployment of an energy system that will provide current and future generations with clean, efficient, affordable, and reliable energy.

  16. Decision support tool to assess importance of transportation facilities.

    DOT National Transportation Integrated Search

    2008-01-01

    Assessing the importance of transportation facilities is an increasingly growing topic of interest to federal and state transportation agencies. This work proposes an optimization based model that uses concepts and techniques of complex networks scie...

  17. 2016 Annual Report - Argonne Leadership Computing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, Jim; Papka, Michael E.; Cerny, Beth A.

    The Argonne Leadership Computing Facility (ALCF) helps researchers solve some of the world’s largest and most complex problems, while also advancing the nation’s efforts to develop future exascale computing systems. This report presents some of the ALCF’s notable achievements in key strategic areas over the past year.

  18. Safe, Cost Effective Management of Inactive Facilities at the Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Austin, W. E.; Yannitell, D. M.; Freeman, D. W.

    The Savannah River Site is part of the U.S. Department of Energy complex. It was constructed during the early 1950s to produce basic materials (such as plutonium-239 and tritium) used in the production of nuclear weapons. The 310-square-mile site is located in South Carolina, about 12 miles south of Aiken, South Carolina, and about 15 miles southeast of Augusta, Georgia. Savannah River Site (SRS) has approximately 200 facilities identified as inactive. These facilities range in size and complexity from large nuclear reactors to small storage buildings. These facilities are located throughout the site including three reactor areas, the heavy watermore » plant area, the manufacturing area, and other research and support areas. Unlike DOE Closure Sites such as Hanford and Rocky Flats, SRS is a Project Completion Site with continuing missions. As facilities complete their defined mission, they are shutdown and transferred from operations to the facility disposition program. At the SRS, Facilities Decontamination and Decommissioning (FDD) personnel manage the disposition phase of a inactive facility's life cycle in a manner that minimizes life cycle cost without compromising (1) the health or safety of workers and the public or (2) the quality of the environment. The disposition phase begins upon completion of operations shutdown and extends through establishing the final end-state. FDD has developed innovative programs to manage their responsibilities within a constrained budget.« less

  19. Data management integration for biomedical core facilities

    NASA Astrophysics Data System (ADS)

    Zhang, Guo-Qiang; Szymanski, Jacek; Wilson, David

    2007-03-01

    We present the design, development, and pilot-deployment experiences of MIMI, a web-based, Multi-modality Multi-Resource Information Integration environment for biomedical core facilities. This is an easily customizable, web-based software tool that integrates scientific and administrative support for a biomedical core facility involving a common set of entities: researchers; projects; equipments and devices; support staff; services; samples and materials; experimental workflow; large and complex data. With this software, one can: register users; manage projects; schedule resources; bill services; perform site-wide search; archive, back-up, and share data. With its customizable, expandable, and scalable characteristics, MIMI not only provides a cost-effective solution to the overarching data management problem of biomedical core facilities unavailable in the market place, but also lays a foundation for data federation to facilitate and support discovery-driven research.

  20. 22. V2 GANTRY, LAUNCH COMPLEX 33: GENERAL VIEW, LOOKING WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. V-2 GANTRY, LAUNCH COMPLEX 33: GENERAL VIEW, LOOKING WEST AND UPWARD FROM APRON OF BLAST PIT, 20,000 POUND MOTOR TEST AND LAUNCH FACILITY - White Sands Missile Range, V-2 Rocket Facilities, Near Headquarters Area, White Sands, Dona Ana County, NM

  1. 21. V2 GANTRY, LAUNCH COMPLEX 33: VIEW OF CRANE WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. V-2 GANTRY, LAUNCH COMPLEX 33: VIEW OF CRANE WITH BLAST PIT OF 20,000 POUND MOTOR TEST AND LAUNCH FACILITY, IN FOREGROUND, LOOKING WEST - White Sands Missile Range, V-2 Rocket Facilities, Near Headquarters Area, White Sands, Dona Ana County, NM

  2. Downgrading Nuclear Facilities to Radiological Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarry, Jeffrey F.; Farr, Jesse Oscar; Duran, Leroy

    2015-08-01

    Based on inventory reductions and the use of alternate storage facilities, the Sandia National Laboratories (SNL) downgraded 4 SNL Hazard Category 3 (HC-3) nuclear facilities to less-than-HC-3 radiological facilities. SNL’s Waste Management and Pollution Prevention Department (WMPPD) managed the HC-3 nuclear facilities and implemented the downgrade. This paper will examine the downgrade process,

  3. Facilities for microgravity combustion research

    NASA Technical Reports Server (NTRS)

    Sacksteder, Kurt R.

    1988-01-01

    Combustion science and applications have benefited in unforeseen ways from experimental research performed in the low-gravity environment. The capability to control for the first time the influence of gravitational buoyancy has provided some insight into soot formation in droplet combustion, the nature of flammability limits in premixed gases, and the relationship between normal-gravity and low-gravity material flammability that may influence how materials are best selected for routine use in habitable spacecraft. The opportunity to learn about these complex phenomena is derived from the control of the ambient body-force field and, perhaps as importantly, the simplified boundary conditions that can be established in well designed low-gravity combustion experiments. A description of the test facilities and typical experimental apparatus are provided; and conceptual plans for a Space Station Freedom capability, the Modular Combustion Facility, are described.

  4. Fire hazard analysis for Plutonium Finishing Plant complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MCKINNIS, D.L.

    1999-02-23

    A fire hazards analysis (FHA) was performed for the Plutonium Finishing Plant (PFP) Complex at the Department of Energy (DOE) Hanford site. The scope of the FHA focuses on the nuclear facilities/structures in the Complex. The analysis was conducted in accordance with RLID 5480.7, [DOE Directive RLID 5480.7, 1/17/94] and DOE Order 5480.7A, ''Fire Protection'' [DOE Order 5480.7A, 2/17/93] and addresses each of the sixteen principle elements outlined in paragraph 9.a(3) of the Order. The elements are addressed in terms of the fire protection objectives stated in paragraph 4 of DOE 5480.7A. In addition, the FHA also complies with WHC-CM-4-41,more » Fire Protection Program Manual, Section 3.4 [1994] and WHC-SD-GN-FHA-30001, Rev. 0 [WHC, 1994]. Objectives of the FHA are to determine: (1) the fire hazards that expose the PFP facilities, or that are inherent in the building operations, (2) the adequacy of the fire safety features currently located in the PFP Complex, and (3) the degree of compliance of the facility with specific fire safety provisions in DOE orders, related engineering codes, and standards.« less

  5. Aerial photo shows RLV complex at KSC

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This closeup photo shows the Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. At right is a multi- purpose hangar and to the left is a building for related ground support equipment and administrative/ technical support. The complex is situated at the Shuttle Landing Facility. The RLV complex will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC.

  6. 22. Photocopy of engineering drawing. MODIFICATION TO LAUNCH COMPLEX 17 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Photocopy of engineering drawing. MODIFICATION TO LAUNCH COMPLEX 17 MOBILE SERVICE TOWER 'A'-MECHANICAL, PROPULSION DRIVE TRUCKS AND KEY PLAN, MARCH 1967. - Cape Canaveral Air Station, Launch Complex 17, Facility 28416, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  7. Academic status does not affect outcome following complex hepato-pancreato-biliary procedures.

    PubMed

    Altieri, Maria S; Yang, Jie; Groves, Donald; Yin, Donglei; Cagino, Kristen; Talamini, Mark; Pryor, Aurora

    2018-05-01

    There is a growing debate regarding outcomes following complex hepato-pancreato-biliary (HPB) procedures. The purpose of our study is to examine if facility type has any impact on complications, readmission rates, emergency department (ED) visit rates, and length of stay (LOS) for patients undergoing HPB surgery. The SPARCS administrative database was used to identify patients undergoing complex HPB procedures between 2012 and 2014 in New York. Univariate generalized linear mixed models were fit to estimate the marginal association between outcomes such as overall/severe complication rates, 30-day and 1-year readmission rates, 30-day and 1-year ED-visit rates, and potential risk factors. Univariate linear mixed models were used to estimate the marginal association between possible risk factors and LOS. Facility type, as well as any variables found to be significant in our univariate analysis (p = 0.05), was further included in the multivariable regression models. There were 4122 complex HPB procedures performed. Academic facilities were more likely to have a higher hospital volume (p < 0001). Surgery at academic facilities were less likely to have coexisting comorbidities; however, they were more likely to have metastatic cancer and/or liver disease (p = 0.0114, < 0. 0001, and = 0.0299, respectively). Postoperatively, patients at non-academic facilities experienced higher overall complication rates, and higher severe complication rates, when compared to those at academic facilities (p < 0.0001 and = 0.0018, respectively). Further analysis via adjustment for possible confounding factors, however, revealed no significant difference in the risk of severe complications between the two facility types. Such adjustment also demonstrated higher 30-day readmission risk in patients who underwent their surgery at an academic facility. No significant difference was found when comparing the outcomes of academic and non-academic facilities, after adjusting

  8. Estimation of Stormwater Interception Rate for various LID Facilities

    NASA Astrophysics Data System (ADS)

    Kim, S.; Lee, O.; Choi, J.

    2017-12-01

    In this study, the stormwater interception rate is proposed to apply in the design of LID facilities. For this purpose, EPA-SWMM is built with some areas of Noksan National Industrial Complex where long-term observed stormwater data were monitored and stormwater interception rates for various design capacities of various LID facilities are estimated. While the sensitivity of stormwater interception rate according to design specifications of bio-retention and infiltration trench facilities is not large, the sensitivity of stormwater interception rate according to local rainfall characteristics is relatively big. As a result of comparing the present rainfall interception rate estimation method which is officially operated in Korea with the one proposed in this study, it will be presented that the present method is highly likely to overestimate the performance of the bio-retention and infiltration trench facilities. Finally, a new stormwater interception rate formulas for the bio-retention and infiltration trench LID facilities will be proposed. Acknowledgement This research was supported by a grant (2016000200002) from Public Welfare Technology Development Program funded by Ministry of Environment of Korean government.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ingham, J.G.

    The IDENT 1578 container, which is a 110-in. long 5.5-in. OD tube, is designed for shipping FFTF fuel elements in T-3 casks between HEDL, HFEF, and other laboratories. The thermal analysis was conducted to evaluate whether or not the container satisfies its thermal design criteria (handle a decay heat load of 600 watts, max fuel pin cladding temperature not exceeding 800/sup 0/F).

  10. Aerial view of Launch Complex 39

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In this aerial view looking south can be seen Launch Complex (LC) 39 area, where assembly, checkout and launch of the Space Shuttle Orbiter and its External Tank and twin Solid Rocket Boosters take place. Central to the complex is the tallest building at the center, the Vehicle Assembly Building (VAB). To the immediate left, from top to bottom, are the Orbiter Processing Facility (OPF) High Bay 3 and new engine shop (north side), OPF Modular Office Building, Thermal Protection System Facility, and a crawler-transporter (to its left). In front of the VAB are OPF 1 and OPF 2. At right is the Processing Control Center. West of OPF 3 is the Mobile Launch Platform. In the upper left corner is Launch Pad B; at the far right is the turn basin, with the Press Site located just below it to the right.

  11. Concept definition study for an extremely large aerophysics range facility

    NASA Technical Reports Server (NTRS)

    Swift, H.; Witcofski, R.

    1992-01-01

    The development of a large aerophysical ballistic range facility is considered to study large-scale hypersonic flows at high Reynolds numbers for complex shapes. A two-stage light gas gun is considered for the hypervelocity launcher, and the extensive range tankage is discussed with respect to blast suppression, model disposition, and the sabot impact tank. A layout is given for the large aerophysics facility, and illustrations are provided for key elements such as the guide rail. The paper shows that such a facility could be used to launch models with diameters approaching 250 mm at velocities of 6.5 km/s with peak achievable accelerations of not more than 85.0 kgs. The envisioned range would provide gas-flow facilities capable of controlling the modeled quiescent atmospheric conditions. The facility is argued to be a feasible and important step in the investigation and experiment of such hypersonic vehicles as the National Aerospace Plane.

  12. Silver Complexes of Dihalogen Molecules.

    PubMed

    Malinowski, Przemysław J; Himmel, Daniel; Krossing, Ingo

    2016-08-01

    The perfluorohexane-soluble and donor-free silver compound Ag(A) (A=Al(OR(F) )4 ; R(F) =C(CF3 )3 ) prepared using a facile novel route has unprecedented capabilities to form unusual and weakly bound complexes. Here, we report on the three dihalogen-silver complexes Ag(Cl2 )A, Ag(Br2 )A, and Ag(I2 )A derived from the soluble silver compound Ag(A) (characterized by single-crystal/powder XRD, Raman spectra, and quantum-mechanical calculations). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Safety analysis report for the Waste Storage Facility. Revision 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bengston, S.J.

    1994-05-01

    This safety analysis report outlines the safety concerns associated with the Waste Storage Facility located in the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The three main objectives of the report are: define and document a safety basis for the Waste Storage Facility activities; demonstrate how the activities will be carried out to adequately protect the workers, public, and environment; and provide a basis for review and acceptance of the identified risk that the managers, operators, and owners will assume.

  14. Indoor Lighting Facilities

    NASA Astrophysics Data System (ADS)

    Matsushima, Koji; Saito, Yoshinori; Ichikawa, Shigenori; Kawauchi, Takao; Tanaka, Tsuneo; Hirano, Rika; Tazuke, Fuyuki

    According to the statistics by the Ministry of Land, Infrastructure and Transport, the total floor space of all building construction started was 188.87 million m2 (1.5% increase y/y), marking the fourth straight year of increase. Many large-scale buildings under construction in central Tokyo become fully occupied by tenants before completion. As for office buildings, it is required to develop comfortable and functional office spaces as working styles are becoming more and more diversified, and lighting is also an element of such functionalities. The total floor space of construction started for exhibition pavilions, multipurpose halls, conference halls and religious architectures decreased 11.1% against the previous year. This marked a decline for 10 consecutive years and the downward trend continues. In exhibition pavilions, the light radiation is measured and adjusted throughout the year so as not to damage the artworks by lighting. Hospitals, while providing higher quality medical services and enhancing the dwelling environment of patients, are expected to meet various restrictions and requirements, including the respect for privacy. Meanwhile, lighting designs for school classrooms tend to be homogeneous, yet new ideas are being promoted to strike a balance between the economical and functional aspects. The severe economic environment continues to be hampering the growth of theaters and halls in both the private and public sectors. Contrary to the downsizing trend of such facilities, additional installations of lighting equipment were conspicuous, and the adoption of high efficacy lighting appliances and intelligent function control circuits are becoming popular. In the category of stores/commercial facilities, the construction of complex facilities is a continuing trend. Indirect lighting, high luminance discharge lamps with excellent color rendition and LEDs are being effectively used in these facilities, together with the introduction of lighting designs

  15. 21. Photocopy of engineering drawing. COMPLEX 17A AND B: SERVICE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Photocopy of engineering drawing. COMPLEX 17A AND B: SERVICE STRUCTURE SPACECRAFT AREA-MECHANICAL, ELEVATIONS, SHEET 4, DECEMBER 1965. - Cape Canaveral Air Station, Launch Complex 17, Facility 28417, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  16. Transmetallation from CCC-NHC pincer Zr complexes in the synthesis of air-stable CCC-NHC pincer Co(iii) complexes and initial hydroboration trials.

    PubMed

    Reilly, Sean W; Webster, Charles Edwin; Hollis, T Keith; Valle, Henry U

    2016-02-21

    Development of CCC-NHC pincer Co complexes via transmetalation from Zr is reported. Formation of these air-stable Co(iii) complexes was achieved through use of a CoCl2 or Co(acac)3in situ or with a discrete CCC-NHC pincer Zr transmetallating agent. Preliminary activity in the hydroboration of styrene is reported. This facile methodology will further the development of CCC-NHC pincer first-row transition metal complexes.

  17. VIEW OF FLIGHT CREW SYSTEMS, FLIGHT KITS FACILITY, ROOM NO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF FLIGHT CREW SYSTEMS, FLIGHT KITS FACILITY, ROOM NO. 1N12, FACING NORTH - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  18. VIEW OF FLIGHT CREW SYSTEMS, FLIGHT KITS FACILITY, ROOM NO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF FLIGHT CREW SYSTEMS, FLIGHT KITS FACILITY, ROOM NO. 1N12, FACING SOUTH - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  19. Solid waste management complex site development plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greager, T.M.

    1994-09-30

    The main purpose of this Solid Waste Management Complex Site Development Plan is to optimize the location of future solid waste treatment and storage facilities and the infrastructure required to support them. An overall site plan is recommended. Further, a series of layouts are included that depict site conditions as facilities are constructed at the SWMC site. In this respect the report serves not only as the siting basis for future projects, but provides siting guidance for Project W-112, as well. The plan is intended to function as a template for expected growth of the site over the next 30more » years so that future facilities and infrastructure will be properly integrated.« less

  20. B Plant Complex preclosure work plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ADLER, J.G.

    1999-02-02

    This preclosure work plan describes the condition of the dangerous waste treatment storage, and/or disposal (TSD) unit after completion of the B Plant Complex decommissioning Transition Phase preclosure activities. This description includes waste characteristics, waste types, locations, and associated hazards. The goal to be met by the Transition Phase preclosure activities is to place the TSD unit into a safe and environmentally secure condition for the long-term Surveillance and Maintenance (S&M) Phase of the facility decommissioning process. This preclosure work plan has been prepared in accordance with Section 8.0 of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement)more » (Ecology et al. 1996). The preclosure work plan is one of three critical Transition Phase documents, the other two being: B Plant End Points Document (WHC-SD-WM-TPP-054) and B Plant S&M plan. These documents are prepared by the U.S. Department of Energy, Richland Operations Office (DOE-RL) and its contractors with the involvement of Washington State Department of Ecology (Ecology). The tanks and vessels addressed by this preclosure work plan are limited to those tanks end vessels included on the B Plant Complex Part A, Form 3, Permit Application (DOE/RL-88-21). The criteria for determining which tanks or vessels are in the Part A, Form 3, are discussed in the following. The closure plan for the TSD unit will not be prepared until the Disposition Phase of the facility decommissioning process is initiated, which follows the long-term S&M Phase. Final closure will occur during the Disposition Phase of the facility decommissioning process. The Waste Encapsulation Storage Facility (WESF) is excluded from the scope of this preclosure work plan.« less

  1. Aerial photo shows RLV complex at KSC

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the foreground of this aerial photo is the Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. At right is a multi-purpose hangar and to its left is a building for related ground support equipment and administrative/ technical support. The complex is situated at the Shuttle Landing Facility (center). At the upper left is the runway. The RLV complex will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC.

  2. 19. Photocopy of engineering drawing. COMPLEX 17A AND B: SERVICE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Photocopy of engineering drawing. COMPLEX 17A AND B: SERVICE STRUCTURE SPACECRAFT AREA A/C-MECHANICAL, ELEVATIONS, SHEET 3, DECEMBER 1965. - Cape Canaveral Air Station, Launch Complex 17, Facility 28416, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  3. DETAIL VIEW OF ELECTRONICS TEST AREA, FLIGHT KITS FACILITY, ROOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF ELECTRONICS TEST AREA, FLIGHT KITS FACILITY, ROOM NO. 1N12, FACING WEST - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  4. Nonproliferation Test and Evaluation Complex - NPTEC

    ScienceCinema

    None

    2018-01-16

    The Nonproliferation Test and Evaluation Complex, or NPTEC, is the world's largest facility for open air testing of hazardous toxic materials and biological simulants. NPTEC is used for testing, experimentation, and training for technologies that require the release of toxic chemicals or biological simulants into the environment.

  5. Specialized Environmental Chamber Test Complex: User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Montz, Michael E.

    2011-01-01

    Test process, milestones and inputs are unknowns to first-time users of the Specialized Environmental Test Complex. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  6. INTERIOR PHOTO OF THE REMOTE ANALYTICAL FACILITY OF SHIELDED GLOVE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR PHOTO OF THE REMOTE ANALYTICAL FACILITY OF SHIELDED GLOVE BOXES IN OPERATING CORRIDOR (CPP-627). INL PHOTO NUMBER NRTS-55-1524. Unknown Photographer, 1955 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  7. Reliable Facility Location Problem with Facility Protection

    PubMed Central

    Tang, Luohao; Zhu, Cheng; Lin, Zaili; Shi, Jianmai; Zhang, Weiming

    2016-01-01

    This paper studies a reliable facility location problem with facility protection that aims to hedge against random facility disruptions by both strategically protecting some facilities and using backup facilities for the demands. An Integer Programming model is proposed for this problem, in which the failure probabilities of facilities are site-specific. A solution approach combining Lagrangian Relaxation and local search is proposed and is demonstrated to be both effective and efficient based on computational experiments on random numerical examples with 49, 88, 150 and 263 nodes in the network. A real case study for a 100-city network in Hunan province, China, is presented, based on which the properties of the model are discussed and some managerial insights are analyzed. PMID:27583542

  8. The Fluids and Combustion Facility

    NASA Technical Reports Server (NTRS)

    Kundu, Sampa

    2004-01-01

    Microgravity is an environment with very weak gravitational effects. The Fluids and Combustion Facility (FCF) on the International Space Station (ISS) will support the study of fluid physics and combustion science in a long-duration microgravity environment. The Fluid Combustion Facility's design will permit both independent and remote control operations from the Telescience Support Center. The crew of the International Space Station will continue to insert and remove the experiment module, store and reload removable data storage and media data tapes, and reconfigure diagnostics on either side of the optics benches. Upon completion of the Fluids Combustion Facility, about ten experiments will be conducted within a ten-year period. Several different areas of fluid physics will be studied in the Fluids Combustion Facility. These areas include complex fluids, interfacial phenomena, dynamics and instabilities, and multiphase flows and phase change. Recently, emphasis has been placed in areas that relate directly to NASA missions including life support, power, propulsion, and thermal control systems. By 2006 or 2007, a Fluids Integrated Rack (FIR) and a Combustion Integrated Rack (CIR) will be installed inside the International Space Station. The Fluids Integrated Rack will contain all the hardware and software necessary to perform experiments in fluid physics. A wide range of experiments that meet the requirements of the international space station, including research from other specialties, will be considered. Experiments will be contained in subsystems such as the international standard payload rack, the active rack isolation system, the optics bench, environmental subsystem, electrical power control unit, the gas interface subsystem, and the command and data management subsystem. In conclusion, the Fluids and Combustion Facility will allow researchers to study fluid physics and combustion science in a long-duration microgravity environment. Additional information is

  9. A feasibility study of a hypersonic real-gas facility

    NASA Technical Reports Server (NTRS)

    Gully, J. H.; Driga, M. D.; Weldon, W. F.

    1987-01-01

    A four month feasibility study of a hypersonic real-gas free flight test facility for NASA Langley Research Center (LARC) was performed. The feasibility of using a high-energy electromagnetic launcher (EML) to accelerate complex models (lifting and nonlifting) in the hypersonic, real-gas facility was examined. Issues addressed include: design and performance of the accelerator; design and performance of the power supply; design and operation of the sabot and payload during acceleration and separation; effects of high current, magnetic fields, temperature, and stress on the sabot and payload; and survivability of payload instrumentation during acceleration, flight, and soft catch.

  10. CONSTRUCTION PROGRESS PHOTO OF REMOTE ANALYTICAL FACILITY (CPP627). INL PHOTO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION PROGRESS PHOTO OF REMOTE ANALYTICAL FACILITY (CPP-627). INL PHOTO NUMBER NRTS-54-12124. Unknown Photographer, 9/21/1954 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  11. A modern depleted uranium manufacturing facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zagula, T.A.

    1995-07-01

    The Specific Manufacturing Capabilities (SMC) Project located at the Idaho National Engineering Laboratory (INEL) and operated by Lockheed Martin Idaho Technologies Co. (LMIT) for the Department of Energy (DOE) manufactures depleted uranium for use in the U.S. Army MIA2 Abrams Heavy Tank Armor Program. Since 1986, SMC has fabricated more than 12 million pounds of depleted uranium (DU) products in a multitude of shapes and sizes with varying metallurgical properties while maintaining security, environmental, health and safety requirements. During initial facility design in the early 1980`s, emphasis on employee safety, radiation control and environmental consciousness was gaining momentum throughout themore » DOE complex. This fact coupled with security and production requirements forced design efforts to focus on incorporating automation, local containment and computerized material accountability at all work stations. The result was a fully automated production facility engineered to manufacture DU armor packages with virtually no human contact while maintaining security, traceability and quality requirements. This hands off approach to handling depleted uranium resulted in minimal radiation exposures and employee injuries. Construction of the manufacturing facility was complete in early 1986 with the first armor package certified in October 1986. Rolling facility construction was completed in 1987 with the first certified plate produced in the fall of 1988. Since 1988 the rolling and manufacturing facilities have delivered more than 2600 armor packages on schedule with 100% final product quality acceptance. During this period there was an annual average of only 2.2 lost time incidents and a single individual maximum radiation exposure of 150 mrem. SMC is an example of designing and operating a facility that meets regulatory requirements with respect to national security, radiation control and personnel safety while achieving production schedules and product

  12. DETAILS OF REMOTE ANALYTICAL FACILITY (CPP627). INL DRAWING NUMBER 200062700098105071. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAILS OF REMOTE ANALYTICAL FACILITY (CPP-627). INL DRAWING NUMBER 200-0627-00-098-105071. ALTERNATE ID NUMBER 4272-14-108. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  13. Use of Information Technology for Management of U.S. Postal Service Facilities.

    DTIC Science & Technology

    1996-05-01

    change closeout status, request for proposal log) Projected income and expenses of a U.S. Postal Service facility Direct capitalization model Tax...Unclassified 19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified 15. NUMBER OF PAGES 107 16. PRICE CODE 20. LIMITATION OF ABSTRACT UL NSN 7540-01...time and at the right price is a huge and complex job. In any one year, the USPS Facilities organization may acquire more than 100 sites, plan

  14. CONSTRUCTION PROGRESS PHOTO OF REMOTE ANALYTICAL FACILITY (CPP627). INL PHOTO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION PROGRESS PHOTO OF REMOTE ANALYTICAL FACILITY (CPP-627). INL PHOTO NUMBER NRTS-54-12573. R.G. Larsen, Photographer, 10/20/1954 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  15. Air-flow distortion and turbulence statistics near an animal facility

    NASA Astrophysics Data System (ADS)

    Prueger, J. H.; Eichinger, W. E.; Hipps, L. E.; Hatfield, J. L.; Cooper, D. I.

    The emission and dispersion of particulates and gases from concentrated animal feeding operations (CAFO) at local to regional scales is a current issue in science and society. The transport of particulates, odors and toxic chemical species from the source into the local and eventually regional atmosphere is largely determined by turbulence. Any models that attempt to simulate the dispersion of particles must either specify or assume various statistical properties of the turbulence field. Statistical properties of turbulence are well documented for idealized boundary layers above uniform surfaces. However, an animal production facility is a complex surface with structures that act as bluff bodies that distort the turbulence intensity near the buildings. As a result, the initial release and subsequent dispersion of effluents in the region near a facility will be affected by the complex nature of the surface. Previous Lidar studies of plume dispersion over the facility used in this study indicated that plumes move in complex yet organized patterns that would not be explained by the properties of turbulence generally assumed in models. The objective of this study was to characterize the near-surface turbulence statistics in the flow field around an array of animal confinement buildings. Eddy covariance towers were erected in the upwind, within the building array and downwind regions of the flow field. Substantial changes in turbulence intensity statistics and turbulence-kinetic energy (TKE) were observed as the mean wind flow encountered the building structures. Spectra analysis demonstrated unique distribution of the spectral energy in the vertical profile above the buildings.

  16. Bacterial formate hydrogenlyase complex.

    PubMed

    McDowall, Jennifer S; Murphy, Bonnie J; Haumann, Michael; Palmer, Tracy; Armstrong, Fraser A; Sargent, Frank

    2014-09-23

    Under anaerobic conditions, Escherichia coli can carry out a mixed-acid fermentation that ultimately produces molecular hydrogen. The enzyme directly responsible for hydrogen production is the membrane-bound formate hydrogenlyase (FHL) complex, which links formate oxidation to proton reduction and has evolutionary links to Complex I, the NADH:quinone oxidoreductase. Although the genetics, maturation, and some biochemistry of FHL are understood, the protein complex has never been isolated in an intact form to allow biochemical analysis. In this work, genetic tools are reported that allow the facile isolation of FHL in a single chromatographic step. The core complex is shown to comprise HycE (a [NiFe] hydrogenase component termed Hyd-3), FdhF (the molybdenum-dependent formate dehydrogenase-H), and three iron-sulfur proteins: HycB, HycF, and HycG. A proportion of this core complex remains associated with HycC and HycD, which are polytopic integral membrane proteins believed to anchor the core complex to the cytoplasmic side of the membrane. As isolated, the FHL complex retains formate hydrogenlyase activity in vitro. Protein film electrochemistry experiments on Hyd-3 demonstrate that it has a unique ability among [NiFe] hydrogenases to catalyze production of H2 even at high partial pressures of H2. Understanding and harnessing the activity of the FHL complex is critical to advancing future biohydrogen research efforts.

  17. Safety analysis in test facility design

    NASA Astrophysics Data System (ADS)

    Valk, A.; Jonker, R. J.

    1990-09-01

    The application of safety analysis techniques as developed in, for example nuclear and petrochemical industry, can be very beneficial in coping with the increasing complexity of modern test facility installations and their operations. To illustrate the various techniques available and their phasing in a project, an overview of the most commonly used techniques is presented. Two case studies are described: the hazard and operability study techniques and safety zoning in relation to the possible presence of asphyxiating atmospheres.

  18. Assessment and Mitigation of Radiation, EMP, Debris & Shrapnel Impacts at Megajoule-Class Laser Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eder, D C; Anderson, R W; Bailey, D S

    2009-10-05

    The generation of neutron/gamma radiation, electromagnetic pulses (EMP), debris and shrapnel at mega-Joule class laser facilities (NIF and LMJ) impacts experiments conducted at these facilities. The complex 3D numerical codes used to assess these impacts range from an established code that required minor modifications (MCNP - calculates neutron and gamma radiation levels in complex geometries), through a code that required significant modifications to treat new phenomena (EMSolve - calculates EMP from electrons escaping from laser targets), to a new code, ALE-AMR, that is being developed through a joint collaboration between LLNL, CEA, and UC (UCSD, UCLA, and LBL) for debrismore » and shrapnel modelling.« less

  19. SOUTH ELEVATION OF IRRADIATED FUEL STORAGE FACILITY LOCATED IN FUEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SOUTH ELEVATION OF IRRADIATED FUEL STORAGE FACILITY LOCATED IN FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORTH. INL PHOTO NUMBER HD-54-15-2. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  20. NORTH ELEVATION OF IRRADIATED FUEL STORAGE FACILITY LOCATED IN FUEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTH ELEVATION OF IRRADIATED FUEL STORAGE FACILITY LOCATED IN FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING SOUTH. INL PHOTO NUMBER HD-54-16-1. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  1. MISCELLANEOUS ARCHITECTURAL DETAILS OF REMOTE ANALYTICAL FACILITY (CPP627). INL DRAWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MISCELLANEOUS ARCHITECTURAL DETAILS OF REMOTE ANALYTICAL FACILITY (CPP-627). INL DRAWING NUMBER 200-0627-00-098-105631. ALTERNATE ID NUMBER 4272-814-134. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  2. CONSTRUCTION PROGRESS PHOTO OF REMOTE ANALYTICAL FACILITY (CPP627) SHOWING INITIAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION PROGRESS PHOTO OF REMOTE ANALYTICAL FACILITY (CPP-627) SHOWING INITIAL EXCAVATION. INL PHOTO NUMBER NRTS-54-10703. Unknown Photographer, 5/21/1954 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  3. Analysis of rehabilitation activities within skilled nursing and inpatient rehabilitation facilities after hip replacement for acute hip fracture.

    PubMed

    Munin, Michael C; Putman, Koen; Hsieh, Ching-Hui; Smout, Randall J; Tian, Wenqiang; DeJong, Gerben; Horn, Susan D

    2010-07-01

    To characterize rehabilitation services in two types of postacute facilities in patients who underwent hip replacement following a hip fracture. Multisite prospective observational cohort from 6 freestanding skilled nursing facilities and 11 inpatient rehabilitation facilities. Patients (n = 218) with hip fracture who had either hemiarthroplasty or total hip arthroplasty followed by rehabilitation at skilled nursing facilities or inpatient rehabilitation facilities were enrolled. Using a point-of-care methodology, we recorded data from actual physical therapy and occupational therapy sessions completed including functional outcomes during the postacute admission. Onset time from surgical repair to rehabilitation admission was not significantly different between sites. Average skilled nursing facilities length of stay was 24.7 +/- 13.6 days, whereas inpatient rehabilitation facilities was 13.0 +/- 5.7 days (P < 0.01). Total hours of physical therapy and occupational therapy services per patient day were 1.2 in skilled nursing facilities and 2.0 in inpatient rehabilitation facilities. For weekdays only, these data changed to 1.6 in skilled nursing facilities and 2.6 hrs per patient in inpatient rehabilitation facilities (P < 0.01). Patients in inpatient rehabilitation facilities accrued more time for gait training and exercise in physical therapy, which was found to be 48% and 40% greater, respectively, through day 8. In occupational therapy, patients of inpatient rehabilitation facilities had more time allocated to lower body dressing and transfers. Significant differences in rehabilitation activities were observed, and intensity was notably different within the first 8 therapy days even though baseline demographics and medical complexity were comparable across facility types. Our data suggest that after more complex hip replacement surgery, hip fracture patients can tolerate more intensive therapy earlier within the rehabilitation program.

  4. NORTH AND SOUTH SECTIONS OF REMOTE ANALYTICAL FACILITY (CPP627). INL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTH AND SOUTH SECTIONS OF REMOTE ANALYTICAL FACILITY (CPP-627). INL DRAWING NUMBER 200-0627-00-098-105068. ALTERNATE ID NUMBER 4272-14-105. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  5. EAST AND WEST ELEVATIONS OF REMOTE ANALYTICAL FACILITY (CPP627). INL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST AND WEST ELEVATIONS OF REMOTE ANALYTICAL FACILITY (CPP-627). INL DRAWING NUMBER 200-0627-00-098-105067. ALTERNATE ID NUMBER 4272-14-104. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  6. CONSTRUCTION PROGRESS PHOTO OF REMOTE ANALYTICAL FACILITY (CPP627) SHOWING PLACEMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION PROGRESS PHOTO OF REMOTE ANALYTICAL FACILITY (CPP-627) SHOWING PLACEMENT OF PIERS. INL PHOTO NUMBER NRTS-54-11716. Unknown Photographer, 8/20/1954 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  7. Keys to Success: School Facilities Primer, Questions & Answers 101.

    ERIC Educational Resources Information Center

    Brady, Jim

    This publication provides answers to basic questions to help school board members more fully address the complexities of the planning, design, and construction process in order to maximize the goal of student success. The 101 questions and answers are in the areas of: facility planning; learning environment; information technology; safe schools;…

  8. Canadian Innovations in Siting Hazardous Waste Management Facilities

    PubMed

    Kuhn; Ballard

    1998-07-01

    / Siting hazardous waste facilities is an extremely complex and difficult endeavor. Public aversion to the construction of these facilities in or near their community often results in concerted opposition, referred to as the NIMBY syndrome. For the most part, siting processes do not fail because of inadequate environmental or technical considerations, but because of the adversarial decision-making strategies employed by the proponents. Innovative siting processes used in the provinces of Alberta and Manitoba offer tangible evidence of the successful application of an innovative siting approach based on the principles of decentralization of decision-making authority and full and meaningful public involvement. The purpose of this paper is to evaluate four Canadian siting processes from the perspective of public participation and access to decision-making authority. Examples of siting processes related to hazardous waste management facilities are provided from the provinces of Alberta, Manitoba, British Columbia, and Ontario. Siting has evolved from approaches dominated by top-down decision making to increasing decentralized and pluralistic approaches. Focusing on social and political concerns of potentially affected communities and on the process of decision making itself are fundamental to achieving siting success. In Alberta initially, and later in Manitoba, this new "open approach" to siting has resulted in the construction of the first two comprehensive hazardous waste treatment facilities in Canada.KEY WORDS: Hazardous waste facilities; Siting methodologies; Public participation

  9. MIMI: multimodality, multiresource, information integration environment for biomedical core facilities.

    PubMed

    Szymanski, Jacek; Wilson, David L; Zhang, Guo-Qiang

    2009-10-01

    The rapid expansion of biomedical research has brought substantial scientific and administrative data management challenges to modern core facilities. Scientifically, a core facility must be able to manage experimental workflow and the corresponding set of large and complex scientific data. It must also disseminate experimental data to relevant researchers in a secure and expedient manner that facilitates collaboration and provides support for data interpretation and analysis. Administratively, a core facility must be able to manage the scheduling of its equipment and to maintain a flexible and effective billing system to track material, resource, and personnel costs and charge for services to sustain its operation. It must also have the ability to regularly monitor the usage and performance of its equipment and to provide summary statistics on resources spent on different categories of research. To address these informatics challenges, we introduce a comprehensive system called MIMI (multimodality, multiresource, information integration environment) that integrates the administrative and scientific support of a core facility into a single web-based environment. We report the design, development, and deployment experience of a baseline MIMI system at an imaging core facility and discuss the general applicability of such a system in other types of core facilities. These initial results suggest that MIMI will be a unique, cost-effective approach to addressing the informatics infrastructure needs of core facilities and similar research laboratories.

  10. Performance Predictions for Proposed ILS Facilities at St. Louis Municipal Airport

    DOT National Transportation Integrated Search

    1978-01-01

    The results of computer simulations of performance of proposed ILS facilities on Runway 12L/30R at St. Louis Municipal Airport (Lambert Field) are reported. These simulations indicate that an existing industrial complex located near the runway is com...

  11. MISCELLANEOUS ARCHITECTURAL DETAILS AND SECTIONS OF REMOTE ANALYTICAL FACILITY (CPP627). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MISCELLANEOUS ARCHITECTURAL DETAILS AND SECTIONS OF REMOTE ANALYTICAL FACILITY (CPP-627). INL DRAWING NUMBER 200-0627-00-098-105632. ALTERNATE ID NUMBER 4272-814-135. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  12. CONSTRUCTION PROGRESS PHOTO REMOTE ANALYTICAL FACILITY (CPP627) SHOWING EMPLACEMENT OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION PROGRESS PHOTO REMOTE ANALYTICAL FACILITY (CPP-627) SHOWING EMPLACEMENT OF ROOF SLABS. INL PHOTO NUMBER NRTS-54-13463. R.G. Larsen, Photographer, 12/20/1954 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  13. Innovation characteristics and intention to adopt sustainable facilities management practices.

    PubMed

    Lee, So Young; Kang, Mihyun

    2013-01-01

    Sustainable facilities management (SFM) is important because typical buildings consume more resources and energy than necessary, negatively impact the environment and generate lots of waste (US Department of Energy, 2003, Green Buildings). This study examined innovation characteristics that relate to facility managers' intention to adopt SFM practices. Based on the diffusion of innovations theory (Rogers 1962, 1995, Diffusion of Innovations. 4th ed. New York: The Free Press), an SFM innovation and adoption model was proposed. A survey was conducted with a convenience sample of 240 public facilities managers in 25 facilities management divisions in Seoul, Korea, and its metropolitan areas. Structural equation modelling was employed to analyse the data. The results showed that economic advantage and human comfort aspects are predictors for the intention of SFM adoption. Observability is positively relevant to the intention of SFM adoption. Complexity, however, is not a significant predictor for the intention of SFM adoption. Practical implications for sustainable products and systems and the built environment are suggested. To incorporate an innovation like sustainable practices, it is required to meet the needs of potential adopters. Innovation characteristics that influence facility managers' intention to adopt sustainable facilities management were examined. A survey was conducted. Economic advantage, human comfort and observability are predictors for the intention of adoption of sustainable practice.

  14. National facilities study. Volume 4: Space operations facilities task group

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The principal objectives of the National Facilities Study (NFS) were to: (1) determine where U.S. facilities do not meet national aerospace needs; (2) define new facilities required to make U.S. capabilities 'world class' where such improvements are in the national interest; (3) define where consolidation and phase-out of existing facilities is appropriate; and (4) develop a long-term national plan for world-class facility acquisition and shared usage. The Space Operations Facilities Task Group defined discrete tasks to accomplish the above objectives within the scope of the study. An assessment of national space operations facilities was conducted to determine the nation's capability to meet the requirements of space operations during the next 30 years. The mission model used in the study to define facility requirements is described in Volume 3. Based on this model, the major focus of the Task Group was to identify any substantive overlap or underutilization of space operations facilities and to identify any facility shortfalls that would necessitate facility upgrades or new facilities. The focus of this initial study was directed toward facility recommendations related to consolidations, closures, enhancements, and upgrades considered necessary to efficiently and effectively support the baseline requirements model. Activities related to identifying facility needs or recommendations for enhancing U.S. international competitiveness and achieving world-class capability, where appropriate, were deferred to a subsequent study phase.

  15. Modelling Pedestrian Travel Time and the Design of Facilities: A Queuing Approach

    PubMed Central

    Rahman, Khalidur; Abdul Ghani, Noraida; Abdulbasah Kamil, Anton; Mustafa, Adli; Kabir Chowdhury, Md. Ahmed

    2013-01-01

    Pedestrian movements are the consequence of several complex and stochastic facts. The modelling of pedestrian movements and the ability to predict the travel time are useful for evaluating the performance of a pedestrian facility. However, only a few studies can be found that incorporate the design of the facility, local pedestrian body dimensions, the delay experienced by the pedestrians, and level of service to the pedestrian movements. In this paper, a queuing based analytical model is developed as a function of relevant determinants and functional factors to predict the travel time on pedestrian facilities. The model can be used to assess the overall serving rate or performance of a facility layout and correlate it to the level of service that is possible to provide the pedestrians. It has also the ability to provide a clear suggestion on the designing and sizing of pedestrian facilities. The model is empirically validated and is found to be a robust tool to understand how well a particular walking facility makes possible comfort and convenient pedestrian movements. The sensitivity analysis is also performed to see the impact of some crucial parameters of the developed model on the performance of pedestrian facilities. PMID:23691055

  16. Dance Facilities.

    ERIC Educational Resources Information Center

    Ashton, Dudley, Ed.; Irey, Charlotte, Ed.

    This booklet represents an effort to assist teachers and administrators in the professional planning of dance facilities and equipment. Three chapters present the history of dance facilities, provide recommended dance facilities and equipment, and offer some adaptations of dance facilities and equipment, for elementary, secondary and college level…

  17. 19. CONSTRUCTION PROGRESS PHOTO SHOWING (TYPICALLY COMPLEX) WASTE HOLDING CELL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. CONSTRUCTION PROGRESS PHOTO SHOWING (TYPICALLY COMPLEX) WASTE HOLDING CELL PIPING. INEEL PHOTO NUMBER NRTS-59-3212. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID

  18. Optimal control of hydroelectric facilities

    NASA Astrophysics Data System (ADS)

    Zhao, Guangzhi

    challenging problem of optimizing a sequence of two hydro dams sharing the same river system. The complexity of this problem is magnified and we just scratch its surface here. The thesis concludes with suggestions for future work in this fertile area. Keywords: dynamic programming, hydroelectric facility, optimization, optimal control, switching cost, turbine efficiency.

  19. WEST ELEVATION OF REMOTE ANALYTICAL FACILITY (CPP627) AND HOT PILOT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WEST ELEVATION OF REMOTE ANALYTICAL FACILITY (CPP-627) AND HOT PILOT PLANT (CPP-640) LOOKING NORTHEAST. INL PHOTO NUMBER HD-22-2-1. Mike Crane, Photographer, 11/1998 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  20. Medical Image Analysis Facility

    NASA Technical Reports Server (NTRS)

    1978-01-01

    To improve the quality of photos sent to Earth by unmanned spacecraft. NASA's Jet Propulsion Laboratory (JPL) developed a computerized image enhancement process that brings out detail not visible in the basic photo. JPL is now applying this technology to biomedical research in its Medical lrnage Analysis Facility, which employs computer enhancement techniques to analyze x-ray films of internal organs, such as the heart and lung. A major objective is study of the effects of I stress on persons with heart disease. In animal tests, computerized image processing is being used to study coronary artery lesions and the degree to which they reduce arterial blood flow when stress is applied. The photos illustrate the enhancement process. The upper picture is an x-ray photo in which the artery (dotted line) is barely discernible; in the post-enhancement photo at right, the whole artery and the lesions along its wall are clearly visible. The Medical lrnage Analysis Facility offers a faster means of studying the effects of complex coronary lesions in humans, and the research now being conducted on animals is expected to have important application to diagnosis and treatment of human coronary disease. Other uses of the facility's image processing capability include analysis of muscle biopsy and pap smear specimens, and study of the microscopic structure of fibroprotein in the human lung. Working with JPL on experiments are NASA's Ames Research Center, the University of Southern California School of Medicine, and Rancho Los Amigos Hospital, Downey, California.

  1. The Urban Complex in Cattolica, Italy.

    ERIC Educational Resources Information Center

    PEB Exchange, 2003

    2003-01-01

    The Italian city of Cattolica has developed an urban complex, the Piazza della Repubblica, that offers a wide range of public services. In renovated facilities it provides a modern architectural setting based on the idea of a traditional town square. It houses a primary school, cultural center (including a library), and theater, and it is an…

  2. Mathematical Models of IABG Thermal-Vacuum Facilities

    NASA Astrophysics Data System (ADS)

    Doring, Daniel; Ulfers, Hendrik

    2014-06-01

    IABG in Ottobrunn, Germany, operates thermal-vacuum facilities of different sizes and complexities as a service for space-testing of satellites and components. One aspect of these tests is the qualification of the thermal control system that keeps all onboard components within their save operating temperature band. As not all possible operation / mission states can be simulated within a sensible test time, usually a subset of important and extreme states is tested at TV facilities to validate the thermal model of the satellite, which is then used to model all other possible mission states. With advances in the precision of customer thermal models, simple assumptions of the test environment (e.g. everything black & cold, one solar constant of light from this side) are no longer sufficient, as real space simulation chambers do deviate from this ideal. For example the mechanical adapters which support the spacecraft are usually not actively cooled. To enable IABG to provide a model that is sufficiently detailed and realistic for current system tests, Munich engineering company CASE developed ESATAN models for the two larger chambers. CASE has many years of experience in thermal analysis for space-flight systems and ESATAN. The two models represent the rather simple (and therefore very homogeneous) 3m-TVA and the extremely complex space simulation test facility and its solar simulator. The cooperation of IABG and CASE built up extensive knowledge of the facilities thermal behaviour. This is the key to optimally support customers with their test campaigns in the future. The ESARAD part of the models contains all relevant information with regard to geometry (CAD data), surface properties (optical measurements) and solar irradiation for the sun simulator. The temperature of the actively cooled thermal shrouds is measured and mapped to the thermal mesh to create the temperature field in the ESATAN part as boundary conditions. Both models comprise switches to easily

  3. Improvement Plans of Fermilab’s Proton Accelerator Complex

    NASA Astrophysics Data System (ADS)

    Shiltsev, Vladimir

    2017-09-01

    The flagship of Fermilab’s long term research program is the Deep Underground Neutrino Experiment (DUNE), located Sanford Underground Research Facility (SURF) in Lead, South Dakota, which will study neutrino oscillations with a baseline of 1300 km. The neutrinos will be produced in the Long Baseline Neutrino Facility (LBNF), a proposed new beam line from Fermilab’s Main Injector. The physics goals of the DUNE require a proton beam with a power of some 2.4 MW at 120 GeV, which is roughly four times the current maximum power. Here I discuss current performance of the Fermilab proton accelerator complex, our plans for construction of the SRF proton linac as key part of the Proton Improvement Plan-II (PIP-II), outline the main challenges toward multi-MW beam power operation of the Fermilab accelerator complex and the staged plan to achieve the required performance over the next 15 years.

  4. Facile CO Cleavage by a Multimetallic CsU2 Nitride Complex.

    PubMed

    Falcone, Marta; Kefalidis, Christos E; Scopelliti, Rosario; Maron, Laurent; Mazzanti, Marinella

    2016-09-26

    Uranium nitrides are important materials with potential for application as fuels for nuclear power generation, and as highly active catalysts. Molecular nitride compounds could provide important insight into the nature of the uranium-nitride bond, but currently little is known about their reactivity. In this study, we found that a complex containing a nitride bridging two uranium centers and a cesium cation readily cleaved the C≡O bond (one of the strongest bonds in nature) under ambient conditions. The product formed has a [CsU2 (μ-CN)(μ-O)] core, thus indicating that the three cations cooperate to cleave CO. Moreover, the addition of MeOTf to the nitride complex led to an exceptional valence disproportionation of the CsU(IV) -N-U(IV) core to yield CsU(III) (OTf) and [MeN=U(V) ] fragments. The important role of multimetallic cooperativity in both reactions is illustrated by the computed reaction mechanisms. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Cape Canaveral Air Force Station, Launch Complex 39, The Solid ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Cape Canaveral Air Force Station, Launch Complex 39, The Solid Rocket Booster Assembly and Refurbishment Facility Manufacturing Building, Southeast corner of Schwartz Road and Contractors Road, Cape Canaveral, Brevard County, FL

  6. 12. SOUTHWEST VIEW OF BUILDING 25C (SUBSONIC AERODYNAMICS TEST FACILITY) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. SOUTHWEST VIEW OF BUILDING 25C (SUBSONIC AERODYNAMICS TEST FACILITY) (1992). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH

  7. Instrumentation complex for Langley Research Center's National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Russell, C. H.; Bryant, C. S.

    1977-01-01

    The instrumentation discussed in the present paper was developed to ensure reliable operation for a 2.5-meter cryogenic high-Reynolds-number fan-driven transonic wind tunnel. It will incorporate four CPU's and associated analog and digital input/output equipment, necessary for acquiring research data, controlling the tunnel parameters, and monitoring the process conditions. Connected in a multipoint distributed network, the CPU's will support data base management and processing; research measurement data acquisition and display; process monitoring; and communication control. The design will allow essential processes to continue, in the case of major hardware failures, by switching input/output equipment to alternate CPU's and by eliminating nonessential functions. It will also permit software modularization by CPU activity and thereby reduce complexity and development time.

  8. Complex Plasmas under free fall conditions aboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Konopka, Uwe; Thomas, Edward, Jr.; Funk, Dylan; Doyle, Brandon; Williams, Jeremiah; Knapek, Christina; Thomas, Hubertus

    2017-10-01

    Complex Plasmas are dynamically dominated by massive, highly negatively charged, micron-sized particles. They are usually strongly coupled and as a result can show fluid-like behavior or undergo phase transitions to form crystalline structures. The dynamical time scale of these systems is easily accessible in experiments because of the relatively high mass/inertia of the particles. However, the high mass also leads to sedimentation effects and as a result prevents the conduction of large scale, fully three dimensional experiments that are necessary to utilize complex plasmas as model systems in the transition to continuous media. To reduce sedimentation influences it becomes necessary to perform experiments in a free-fall (``microgravity'') environment, such as the ISS based experiment facility ``Plasma-Kristall-4'' (``PK-4''). In our paper we will present our recently started research activities to investigate the basic properties of complex plasmas by utilizing the PK-4 experiment facility aboard the ISS. We further give an overview of developments towards the next generation experiment facility ``Ekoplasma'' (formerly named ``PlasmaLab'') and discuss potential additional small-scale space-based experiment scenarios. This work was supported by the JPL/NASA (JPL-RSA 1571699), the US Dept. of Energy (DE-SC0016330) and the NSF (PHY-1613087).

  9. Safety Practices Followed in ISRO Launch Complex- An Overview

    NASA Astrophysics Data System (ADS)

    Krishnamurty, V.; Srivastava, V. K.; Ramesh, M.

    2005-12-01

    The spaceport of India, Satish Dhawan Space Centre (SDSC) SHAR of Indian Space Research Organisation (ISRO), is located at Sriharikota, a spindle shaped island on the east coast of southern India.SDSC SHAR has a unique combination of facilities, such as a solid propellant production plant, a rocket motor static test facility, launch complexes for different types of rockets, telemetry, telecommand, tracking, data acquisition and processing facilities and other support services.The Solid Propellant Space Booster Plant (SPROB) located at SDSC SHAR produces composite solid propellant for rocket motors of ISRO. The main ingredients of the propellant produced here are ammonium perchlorate (oxidizer), fine aluminium powder (fuel) and hydroxyl terminated polybutadiene (binder).SDSC SHAR has facilities for testing solid rocket motors, both at ambient conditions and at simulated high altitude conditions. Other test facilities for the environmental testing of rocket motors and their subsystems include Vibration, Shock, Constant Acceleration and Thermal / Humidity.SDSC SHAR has the necessary infrastructure for launching satellites into low earth orbit, polar orbit and geo-stationary transfer orbit. The launch complexes provide complete support for vehicle assembly, fuelling with both earth storable and cryogenic propellants, checkout and launch operations. Apart from these, it has facilities for launching sounding rockets for studying the Earth's upper atmosphere and for controlled reentry and recovery of ISRO's space capsule reentry missions.Safety plays a major role at SDSC SHAR right from the mission / facility design phase to post launch operations. This paper presents briefly the infrastructure available at SDSC SHAR of ISRO for launching sounding rockets, satellite launch vehicles, controlled reentry missions and the built in safety systems. The range safety methodology followed as a part of the real time mission monitoring is presented. The built in safety systems

  10. NORTH AND WEST ELEVATIONS OF REMOTE ANALYTICAL FACILITY (CPP627) LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTH AND WEST ELEVATIONS OF REMOTE ANALYTICAL FACILITY (CPP-627) LOOKING SOUTHEAST. HEADEND PLANT (CPP-640) APPEARS IN THE BACKGROUND. INL PHOTO NUMBER HD-22-1-4. Mike Crane, Photographer, 11/1998 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  11. IMPACTS OF DIOXIN EMISSIONS FROM THE SHINKAMPO INCINERATOR TO THE U.S. NAVAL AIR FACILITY AT ATSUGI, JAPAN

    EPA Science Inventory

    The United States Naval Air Facility at Atsugi, Japan (NAF Atsugi) is located in the Kanto Plain area on the island of Honshu, Japan. Directly to the south of the facility, in the Tade River Valley, was the Shinkampo Incinerator Complex (SIC). The Incinerator is no longer in op...

  12. Facilities Performance Indicators Report 2013-14: Tracking Your Facilities Vital Signs

    ERIC Educational Resources Information Center

    APPA: Association of Higher Education Facilities Officers, 2015

    2015-01-01

    This paper features an expanded Web-based "Facilities Performance Indicators (FPI) Report." The purpose of APPA: Association of Higher Education Facilities Officers (APPA's) Facilities Performance Indicators is to provide a representative set of statistics about facilities in educational institutions. "The Facilities Performance…

  13. Energy Savings and Sustainability Opportunities at US Army Corps of Engineers Facilities: A Guide to Identify, Prioritize, and Estimate Projects at Complexes That Have Not Conducted a Facility-Level Energy and Water Evaluation

    DTIC Science & Technology

    2012-06-16

    Engineers to help identify and develop energy and water conservation projects in the facilities for which they are responsible. DISCLAIMER: The...and water throughout their facility. To identify energy and water conservation measures (ECMs), an energy manager would generally start by performing...an Energy and Water Conservation Assessment, essentially a facility-level evaluation of the en- ergy and water consuming equipment and systems that

  14. Factors Associated With Missed and Cancelled Colonoscopy Appointments at Veterans Health Administration Facilities.

    PubMed

    Partin, Melissa R; Gravely, Amy; Gellad, Ziad F; Nugent, Sean; Burgess, James F; Shaukat, Aasma; Nelson, David B

    2016-02-01

    Cancelled and missed colonoscopy appointments waste resources, increase colonoscopy delays, and can adversely affect patient outcomes. We examined individual and organizational factors associated with missed and cancelled colonoscopy appointments in Veteran Health Administration facilities. From 69 facilities meeting inclusion criteria, we identified 27,994 patients with colonoscopy appointments scheduled for follow-up, on the basis of positive fecal occult blood test results, between August 16, 2009 and September 30, 2011. We identified factors associated with colonoscopy appointment status (completed, cancelled, or missed) by using hierarchical multinomial regression. Individual factors examined included age, race, sex, marital status, residence, drive time to nearest specialty care facility, limited life expectancy, comorbidities, colonoscopy in the past decade, referring facility type, referral month, and appointment lead time. Organizational factors included facility region, complexity, appointment reminders, scheduling, and prep education practices. Missed appointments were associated with limited life expectancy (odds ratio [OR], 2.74; P = .0004), no personal history of polyps (OR, 2.74; P < .0001), high facility complexity (OR, 2.69; P = .007), dual diagnosis of psychiatric disorders and substance abuse (OR, 1.82; P < .0001), and opt-out scheduling (OR, 1.57; P = .02). Cancelled appointments were associated with age (OR, 1.61; P = .0005 for 85 years or older and OR, 1.44; P < .0001 for 65-84 years old), no history of polyps (OR, 1.51; P < .0001), and opt-out scheduling (OR, 1.26; P = .04). Additional predictors of both outcomes included race, marital status, and lead time. Several factors within Veterans Health Administration clinic control can be targeted to reduce missed and cancelled colonoscopy appointments. Specifically, developing systems to minimize referrals for patients with limited life expectancy could reduce missed appointments, and use of opt

  15. FIRST FLOOR PLAN OF REMOTE ANALYTICAL FACILITY (CPP627) SHOWING REMOTE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FIRST FLOOR PLAN OF REMOTE ANALYTICAL FACILITY (CPP-627) SHOWING REMOTE ANALYTICAL LABORATORY, DECONTAMINATION ROOM, AND MULTICURIE CELL ROOM. INL DRAWING NUMBER 200-0627-00-008-105065. ALTERNATE ID NUMBER 4272-14-102. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  16. AERIAL SHOWING COMPLETED REMOTE ANALYTICAL FACILITY (CPP627) ADJOINING FUEL PROCESSING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AERIAL SHOWING COMPLETED REMOTE ANALYTICAL FACILITY (CPP-627) ADJOINING FUEL PROCESSING BUILDING AND EXCAVATION FOR HOT PILOT PLANT TO RIGHT (CPP-640). INL PHOTO NUMBER NRTS-60-1221. J. Anderson, Photographer, 3/22/1960 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  17. Centaur Rocket in Space Propulsion Research Facility (B-2)

    NASA Image and Video Library

    1969-07-21

    A Centaur second-stage rocket in the Space Propulsion Research Facility, better known as B‒2, operating at NASA’s Plum Brook Station in Sandusky, Ohio. Centaur was designed to be used with an Atlas booster to send the Surveyor spacecraft to the moon in the mid-1960s. After those missions, the rocket was modified to launch a series of astronomical observation satellites into orbit and send space probes to other planets. Researchers conducted a series of systems tests at the Plum Brook test stands to improve the Centaur fuel pumping system. Follow up full-scale tests in the B-2 facility led to the eventual removal of the boost pumps from the design. This reduced the system’s complexity and significantly reduced the cost of a Centaur rocket. The Centaur tests were the first use of the new B-2 facility. B‒2 was the world's only high altitude test facility capable of full-scale rocket engine and launch vehicle system level tests. It was created to test rocket propulsion systems with up to 100,000 pounds of thrust in a simulated space environment. The facility has the unique ability to maintain a vacuum at the rocket’s nozzle while the engine is firing. The rocket fires into a 120-foot deep spray chamber which cools the exhaust before it is ejected outside the facility. B‒2 simulated space using giant diffusion pumps to reduce chamber pressure 10-6 torr, nitrogen-filled cold walls create cryogenic temperatures, and quartz lamps replicate the radiation of the sun.

  18. Facilities maintenance handbook

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This handbook is a guide for facilities maintenance managers. Its objective is to set minimum facilities maintenance standards. It also provides recommendations on how to meet the standards to ensure that NASA maintains its facilities in a manner that protects and preserves its investment in the facilities in a cost-effective manner while safely and efficiently performing its mission. This handbook implements NMI 8831.1, which states NASA facilities maintenance policy and assigns organizational responsibilities for the management of facilities maintenance activities on all properties under NASA jurisdiction. It is a reference for facilities maintenance managers, not a step-by-step procedural manual. Because of the differences in NASA Field Installation organizations, this handbook does not assume or recommend a typical facilities maintenance organization. Instead, it uses a systems approach to describe the functions that should be included in any facilities maintenance management system, regardless of its organizational structure. For documents referenced in the handbook, the most recent version of the documents is applicable. This handbook is divided into three parts: Part 1 specifies common definitions and facilities maintenance requirements and amplifies the policy requirements contained in NMI 8831. 1; Part 2 provides guidance on how to meet the requirements of Part 1, containing recommendations only; Part 3 contains general facilities maintenance information. One objective of this handbook is to fix commonality of facilities maintenance definitions among the Centers. This will permit the application of uniform measures of facilities conditions, of the relationship between current replacement value and maintenance resources required, and of the backlog of deferred facilities maintenance. The utilization of facilities maintenance system functions will allow the Centers to quantitatively define maintenance objectives in common terms, prepare work plans, and

  19. Using Workflow Diagrams to Address Hand Hygiene in Pediatric Long-Term Care Facilities1

    PubMed Central

    Carter, Eileen J.; Cohen, Bevin; Murray, Meghan T.; Saiman, Lisa; Larson, Elaine L.

    2015-01-01

    Hand hygiene (HH) in pediatric long-term care settings has been found to be sub-optimal. Multidisciplinary teams at three pediatric long-term care facilities developed step-by-step workflow diagrams of commonly performed tasks highlighting HH opportunities. Diagrams were validated through observation of tasks and concurrent diagram assessment. Facility teams developed six workflow diagrams that underwent 22 validation observations. Four main themes emerged: 1) diagram specificity, 2) wording and layout, 3) timing of HH indications, and 4) environmental hygiene. The development of workflow diagrams is an opportunity to identify and address the complexity of HH in pediatric long-term care facilities. PMID:25773517

  20. Plasmakristall-4: A microgravity complex plasma facility on the way to launch

    NASA Astrophysics Data System (ADS)

    Pustylnik, Mikhail; Thomas, Hubertus; Fortov, Vladimir; Thoma, Markus; Lipaev, Andrey; Morfill, Gregor; Molotkov, Vladimir; Usachev, Alexander; Zobnin, Andrey; Tarantik, Karl; Albrecht, Sebastian; Deysenroth, Christian; Rau, Christian; Mitic, Slobodan; Nosenko, Vladimir; Fink, Martin; Prof

    Complex plasmas, a special case of dusty plasmas, are one of the most interesting physical objects to be studied under microgravity conditions. A way from dusty plasmas to complex plasmas was revealed when strong coupling phenomena in the dust subsystem were first theoretically predicted and then observed under ground laboratory conditions. Complex plasmas are, therefore, dusty plasmas, which are prepared intentionally to study generic phenomena of condensed matter physics. Complex plasmas have several advantages in this respect: Real-time, virtually undamped dynamics of the system can be resolved on the kinetic level, i.e. on the level of single microparticles. Under ground laboratory conditions the microparticles are strongly affected by the gravitational force, which has to be compensated by strong electrostatic forces. Therefore, the volume occupied by the microparticles is limited to sheath region. This makes formation of uniform 3D structures under ground condition almost impossible. Microgravity is therefore essential for studying 3D complex plasma systems. The next lab for complex plasma research under mug-conditions will be PK-4, a joint Russian-European project. The special feature of PK-4 (with respect to its predecessor PK-3 Plus on the ISS) is that it will allow to study the fluid phenomena. Geometry of the plasma chamber (a glass tube with the working part of about 200 mm long and 30 mm diameter) implies presence of micropaticle flows along its axis. A custom-made power supply will create either a DC or polarity-switched discharge inside the chamber filled with either neon or argon. In the DC mode the negatively-charged microparticles will drift opposite to the electric field. Polarity switching can be done with up to several kHz frequency, which will allow the discharge to change polarity, whereas heavy microparticles will be insensitive to such fast variations of the electric field. In this way, microparticles will be trapped inside the plasma

  1. A user's guide to the Langley 16-foot transonic tunnel complex. Revision 1

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The operational characteristics and equipment associated with the Langley 16-foot transonic tunnel complex which is located in buildings 1146 and 1234 at the Langley Research Center are described in detail. This complex consists of the 16-foot transonic wind tunnel, the static test facility, and the 16- by 24-inch water tunnel research facilities. The 16-foot transonic tunnel is a single-return atmospheric wind tunnel with a 15.5 foot diameter test section and a Mach number capability from 0.20 to 1.30. The emphasis for research conducted in this research complex is on the integration of the propulsion system into advanced aircraft concepts. In the past, the primary focus has been on the integration of nozzles and empennage into the afterbody of fighter aircraft. During the last several years this experimental research has been expanded to include developing the fundamental data base necessary to verify new theoretical concepts, inlet integration into fighter aircraft, nozzle integration for supersonic and hypersonic transports, nacelle/pylon/wing integration for subsonic transport configurations, and the study of vortical flows (in the 16- by 24-inch water tunnel). The purpose here is to provide a comprehensive description of the operational characteristics of the research facilities of the 16-foot transonic tunnel complex and their associated systems and equipments.

  2. Organization Complexity and Primary Care Providers' Perceptions of Quality Improvement Culture Within the Veterans Health Administration.

    PubMed

    Korom-Djakovic, Danijela; Canamucio, Anne; Lempa, Michele; Yano, Elizabeth M; Long, Judith A

    2016-01-01

    This study examined how aspects of quality improvement (QI) culture changed during the introduction of the Veterans Health Administration (VHA) patient-centered medical home initiative and how they were influenced by existing organizational factors, including VHA facility complexity and practice location. A voluntary survey, measuring primary care providers' (PCPs') perspectives on QI culture at their primary care clinics, was administered in 2010 and 2012. Participants were 320 PCPs from hospital- and community-based primary care practices in Pennsylvania, West Virginia, Delaware, New Jersey, New York, and Ohio. PCPs in community-based outpatient clinics reported an improvement in established processes for QI, and communication and cooperation from 2010 to 2012. However, their peers in hospital-based clinics did not report any significant improvements in QI culture. In both years, compared with high-complexity facilities, medium- and low-complexity facilities had better scores on the scales assessing established processes for QI, and communication and cooperation. © The Author(s) 2014.

  3. Facilities Performance Indicators Report, 2004-05. Facilities Core Data Survey

    ERIC Educational Resources Information Center

    Glazner, Steve, Ed.

    2006-01-01

    The purpose of "Facilities Performance Indicators" is to provide a representative set of statistics about facilities in educational institutions. The second iteration of the web-based Facilities Core Data Survey was posted and available to facilities professionals at more than 3,000 institutions in the Fall of 2005. The website offered a printed…

  4. SECOND FLOOR PLAN OF REMOTE ANALYTICAL FACILITY (CPP627) WARM LABORATORY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SECOND FLOOR PLAN OF REMOTE ANALYTICAL FACILITY (CPP-627) WARM LABORATORY ROOM, DECONTAMINATION ROOM, HOT CHEMISTRY LABORATORY, AND MULTICURIE CELL ROOM. INL DRAWING NUMBER 200-0627-00-098-105066. ALTERNATE ID NUMBER 4272-14-103. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  5. Planning for the scientific use of the international Space Station complex

    NASA Technical Reports Server (NTRS)

    Halpern, R. E.

    1988-01-01

    Plans for the development of an international Space Station complex in cooperation with Japan, Canada, and the European Space Agency are reviewed. The discussion covers the planned uses of the Space Station, the principal research facilities, allocation of the resources available to the research facilities, and tactical and strategic planning related to the Space Station project. Particular attention is given to problems related to microgravity sciences and approaches to the solutions of these problems.

  6. Aerial view of a new site at KSC's Visitor Complex

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Seen from above, construction of a new site at KSC's Visitor Complex, The Early Space Exploration and Conference Center, is nearly finished. It is expected to be open to the public by mid- November. The space exploration facility will feature Mercury and Gemini capsules and the recently relocated Mission Control Center. Attached to it is a state-of-the-art conference center. Built by Delaware North Park Services, the facility is located between the Rock Garden and the Center for Space Education.

  7. Development of cloud-operating platform for detention facility design

    NASA Astrophysics Data System (ADS)

    Tun Lee, Kwan; Hung, Meng-Chiu; Tseng, Wei-Fan; Chan, Yi-Ping

    2017-04-01

    In the past 20 years, the population of Taiwan has accumulated in urban areas. The land development has changed the hydrological environment and resulted in the increase of surface runoff and shortened the time to peak discharge. The change of runoff characteristics increases the flood risk and reduces resilient ability of the city during flood. Considering that engineering measures may not be easy to implement in populated cities, detention facilities set on building basements have been proposed to compromise the increase of surface runoff resulting from development activities. In this study, a web-based operational platform has been developed to integrate the GIS technologies, hydrological analyses, as well as relevant regulations for the design of detention facilities. The design procedure embedded in the system includes a prior selection of type and size of the detention facility, integrated hydrological analysis for the developing site, and inspection of relevant regulations. After login the platform, designers can access the system database to retrieve road maps, land use coverages, and storm sewer information. Once the type, size, inlet, and outlet of the detention facility are assigned, the system can acquire the rainfall intensity-duration-frequency information from adjacent rain gauges to perform hydrological analyses for the developing site. The increase of the runoff volume due to the development and the reduction of the outflow peak through the construction of the detention facility can be estimated. The outflow peak at the target site is then checked with relevant regulations to confirm the suitability of the detention facility design. The proposed web-based platform can provide a concise layout of the detention facility and the drainageway of the developing site on a graphical interface. The design information can also be delivered directly through a web link to authorities for inspecting to simplify the complex administrative procedures.

  8. The Nature of Scatter at the DARHT Facility and Suggestions for Improved Modeling of DARHT Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morneau, Rachel Anne; Klasky, Marc Louis

    The U.S. Stockpile Stewardship Program [1] is designed to sustain and evaluate the nuclear weapons stockpile while foregoing underground nuclear tests. The maintenance of a smaller, aging U.S. nuclear weapons stockpile without underground testing requires complex computer calculations [14]. These calculations in turn need to be verified and benchmarked [14]. A wide range of research facilities have been used to test and evaluate nuclear weapons while respecting the Comprehensive Nuclear Test-Ban Treaty (CTBT) [2]. Some of these facilities include the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory, the Z machine at Sandia National Laboratories, and the Dual Axismore » Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory. This research will focus largely on DARHT (although some information from Cygnus and the Los Alamos Microtron may be used in this research) by modeling it and comparing to experimental data. DARHT is an electron accelerator that employs high-energy flash x-ray sources for imaging hydro-tests. This research proposes to address some of the issues crucial to understanding DARHT Axis II and the analysis of the radiographic images produced. Primarily, the nature of scatter at DARHT will be modeled and verified with experimental data. It will then be shown that certain design decisions can be made to optimize the scatter field for hydrotest experiments. Spectral effects will be briefly explored to determine if there is any considerable effect on the density reconstruction caused by changes in the energy spectrum caused by target changes. Finally, a generalized scatter model will be made using results from MCNP that can be convolved with the direct transmission of an object to simulate the scatter of that object at the detector plane. The region in which with this scatter model is appropriate will be explored.« less

  9. NASA Wallops Flight Facility Air-Sea Interaction Research Facility

    NASA Technical Reports Server (NTRS)

    Long, Steven R.

    1992-01-01

    This publication serves as an introduction to the Air-Sea Interaction Research Facility at NASA/GSFC/Wallops Flight Facility. The purpose of this publication is to provide background information on the research facility itself, including capabilities, available instrumentation, the types of experiments already done, ongoing experiments, and future plans.

  10. Concept Of Revitalization Of Selected Military Facilities Of Dragoons Barracks In Olsztyn

    NASA Astrophysics Data System (ADS)

    Zagroba, Marek

    2015-12-01

    Revitalization is a complex program to restore the functioning of the neglected urban areas in terms of spatial, economic and social. Revitalization activities on post-military facilities are stopping negative phenomena, such as degradation of space, social pathology or lack of proper functioning of the area, adapted to modern needs. The object of the work is to present some aspects with the revitalization of former military facilities in the area of the Artyleryjska Street in Olsztyn. The presented design concept aims to revitalize a neglected area of the barracks, which will enable the activation site and include it in the city urban space. The method adopted in this work is the architectural project of adapting selected post-military facilities for new functions, affecting the economic development and social integration of people.

  11. Recent "Ground Testing" Experiences in the National Full-Scale Aerodynamics Complex

    NASA Technical Reports Server (NTRS)

    Zell, Peter; Stich, Phil; Sverdrup, Jacobs; George, M. W. (Technical Monitor)

    2002-01-01

    The large test sections of the National Full-scale Aerodynamics Complex (NFAC) wind tunnels provide ideal controlled wind environments to test ground-based objects and vehicles. Though this facility was designed and provisioned primarily for aeronautical testing requirements, several experiments have been designed to utilize existing model mount structures to support "non-flying" systems. This presentation will discuss some of the ground-based testing capabilities of the facility and provide examples of groundbased tests conducted in the facility to date. It will also address some future work envisioned and solicit input from the SATA membership on ways to improve the service that NASA makes available to customers.

  12. Large-Scale Cryogen Systems and Test Facilities

    NASA Technical Reports Server (NTRS)

    Johnson, R. G.; Sass, J. P.; Hatfield, W. H.

    2007-01-01

    NASA has completed initial construction and verification testing of the Integrated Systems Test Facility (ISTF) Cryogenic Testbed. The ISTF is located at Complex 20 at Cape Canaveral Air Force Station, Florida. The remote and secure location is ideally suited for the following functions: (1) development testing of advanced cryogenic component technologies, (2) development testing of concepts and processes for entire ground support systems designed for servicing large launch vehicles, and (3) commercial sector testing of cryogenic- and energy-related products and systems. The ISTF Cryogenic Testbed consists of modular fluid distribution piping and storage tanks for liquid oxygen/nitrogen (56,000 gal) and liquid hydrogen (66,000 gal). Storage tanks for liquid methane (41,000 gal) and Rocket Propellant 1 (37,000 gal) are also specified for the facility. A state-of-the-art blast proof test command and control center provides capability for remote operation, video surveillance, and data recording for all test areas.

  13. Construction continues on RLV Support Complex at SLF

    NASA Technical Reports Server (NTRS)

    1999-01-01

    An aerial view reveals (foreground) the ongoing construction of an $8 million Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. At left is a multi-purpose hangar and at right a building for related ground support equipment and administrative/ technical support. In the background is the Vehicle Assembly Building. The road at right is the tow-way. The RLV complex will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000.

  14. Facilities Performance Indicators Report 2012-13: Tracking Your Facilities Vital Signs

    ERIC Educational Resources Information Center

    APPA: Association of Higher Education Facilities Officers, 2014

    2014-01-01

    This paper features an expanded Web-based "Facilities Performance Indicators (FPI) Report." The purpose of APPA's Facilities Performance Indicators is to provide a representative set of statistics about facilities in educational institutions. "The Facilities Performance Indicators Report" is designed for survey…

  15. Enthalpy By Energy Balance for Aerodynamic Heating Facility at NASA Ames Research Center Arc Jet Complex

    NASA Technical Reports Server (NTRS)

    Hightower, T. Mark; MacDonald, Christine L.; Martinez, Edward R.; Balboni, John A.; Anderson, Karl F.; Arnold, Jim O. (Technical Monitor)

    2002-01-01

    The NASA Ames Research Center (ARC) Arc Jet Facilities' Aerodynamic Heating Facility (AHF) has been instrumented for the Enthalpy By Energy Balance (EB2) method. Diagnostic EB2 data is routinely taken for all AHF runs. This paper provides an overview of the EB2 method implemented in the AHF. The chief advantage of the AHF implementation over earlier versions is the non-intrusiveness of the instruments used. For example, to measure the change in cooling water temperature, thin film 1000 ohm Resistance Temperature Detectors (RTDs) are used with an Anderson Current Loop (ACL) as the signal conditioner. The ACL with 1000 ohm RTDs allows for very sensitive measurement of the increase in temperature (Delta T) of the cooling water to the arc heater, which is a critical element of the EB2 method. Cooling water flow rates are measured with non-intrusive ultrasonic flow meters.

  16. Planning and Designing Facilities. Facility Design and Development--Part 1

    ERIC Educational Resources Information Center

    Hypes, Michael G.

    2006-01-01

    Before one begins the planning process for a new facility, it is important to determine if there is a need for a new facility. The demand for a new facility can be drawn from increases in the number of users, the type of users, and the type of events to be conducted in the facility. A feasibility study should be conducted to analyze the legal…

  17. 18. Topside facility, interior of facility manager's room, view towards ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Topside facility, interior of facility manager's room, view towards west. Lyon - Whiteman Air Force Base, Oscar O-1 Minuteman Missile Alert Facility, Southeast corner of Twelfth & Vendenberg Avenues, Knob Noster, Johnson County, MO

  18. View east from western edge of complex. Collapsed overhead conveyor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View east from western edge of complex. Collapsed overhead conveyor in foreground carried ganister down to the brickyard from crushing and grinding facility on the mountain. - Harbison-Walker Refractories Company, West end of Shirley Street, Mount Union, Huntingdon County, PA

  19. Hanford Facility dangerous waste permit application, liquid effluent retention facility and 200 area effluent treatment facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coenenberg, J.G.

    1997-08-15

    The Hanford Facility Dangerous Waste Permit Application is considered to 10 be a single application organized into a General Information Portion (document 11 number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the 12 Unit-Specific Portion is limited to Part B permit application documentation 13 submitted for individual, `operating` treatment, storage, and/or disposal 14 units, such as the Liquid Effluent Retention Facility and 200 Area Effluent 15 Treatment Facility (this document, DOE/RL-97-03). 16 17 Both the General Information and Unit-Specific portions of the Hanford 18 Facility Dangerous Waste Permit Application address the content of the Part B 19 permit applicationmore » guidance prepared by the Washington State Department of 20 Ecology (Ecology 1987 and 1996) and the U.S. Environmental Protection Agency 21 (40 Code of Federal Regulations 270), with additional information needs 22 defined by the Hazardous and Solid Waste Amendments and revisions of 23 Washington Administrative Code 173-303. For ease of reference, the Washington 24 State Department of Ecology alpha-numeric section identifiers from the permit 25 application guidance documentation (Ecology 1996) follow, in brackets, the 26 chapter headings and subheadings. A checklist indicating where information is 27 contained in the Liquid Effluent Retention Facility and 200 Area Effluent 28 Treatment Facility permit application documentation, in relation to the 29 Washington State Department of Ecology guidance, is located in the Contents 30 Section. 31 32 Documentation contained in the General Information Portion is broader in 33 nature and could be used by multiple treatment, storage, and/or disposal units 34 (e.g., the glossary provided in the General Information Portion). Wherever 35 appropriate, the Liquid Effluent Retention Facility and 200 Area Effluent 36 Treatment Facility permit application documentation makes cross-reference to 37 the General Information Portion, rather than

  20. Enhancing resiliency for elderly populations : Shelter-in-place planning and training at facilities serving elderly populations through the Rhode Island Senior Resiliency Project.

    PubMed

    Smith, Richard; Mozzer, Michael; Albanese, Joseph; Paturas, James; Gold, Julia

    2017-06-01

    Elderly populations are disproportionately affected by disasters. In part, this is true because for many older adults, special assistance is needed to mitigate the consequences of disasters on their health and wellbeing. In addition, many older adults may reside in diverse living complexes such as long-term care facilities, assisted living facilities and independent-living senior housing complexes. Planning for each type of facility is different and the unique features of these facilities must be considered to develop readiness to deal with disasters. Based on this, the Rhode Island Department of Health established the Senior Resiliency Project to bolster the level of resiliency for the types of living facilities housing older adults. The project involves performing onsite assessments of energy resources, developing site-specific sheltering-inplace and energy resiliency plans, and educating and training facility employees and residents on these plans and steps they can take to be better prepared. Based on the feasibility of conducting these activities within a variety of facilities housing older adults, the project is segmented into three phases. This paper describes survey findings, outcomes of interventions, challenges and recommendations for bridging gaps observed in phases 1 and 2 of the project.

  1. Introduction to the LaRC central scientific computing complex

    NASA Technical Reports Server (NTRS)

    Shoosmith, John N.

    1993-01-01

    The computers and associated equipment that make up the Central Scientific Computing Complex of the Langley Research Center are briefly described. The electronic networks that provide access to the various components of the complex and a number of areas that can be used by Langley and contractors staff for special applications (scientific visualization, image processing, software engineering, and grid generation) are also described. Flight simulation facilities that use the central computers are described. Management of the complex, procedures for its use, and available services and resources are discussed. This document is intended for new users of the complex, for current users who wish to keep appraised of changes, and for visitors who need to understand the role of central scientific computers at Langley.

  2. New recreational facilities for the young and the old in Los Angeles: policy and programming implications.

    PubMed

    Cohen, Deborah A; Sehgal, Amber; Williamson, Stephanie; Marsh, Terry; Golinelli, Daniela; McKenzie, Thomas L

    2009-01-01

    It is assumed that higher quality recreation facilities promote physical activity and serve communities better. We tested this assumption by comparing changes in the use of an expanded and renovated skate park (a facility for skateboarding) and a modernized senior citizen's center to two similar facilities that were not refurbished. The skate park was nearly tripled in size, and the senior center was remodeled and received new exercise equipment, a courtyard garden, and modern architectural features. We assessed use of these facilities through direct observation and surveyed both facility users and residents living within 2 miles of each facility. We found that making improvements to facilities alone will not always guarantee increased use. Although there was a 510% increase in use of the expanded skate park compared to a 77% increase in the comparison skate park, the senior center had substantially fewer users and provided fewer hours of exercise classes and other programmed activities after the facility was renovated. The implication of our study is that use results from a complex equation that includes not only higher quality recreation facilities but also progamming, staffing, fees, hours of operation, marketing, outreach, and perhaps a host of other human factors.

  3. 76 FR 80385 - Draft Environmental Impact Statement and Proposed Maricopa Sun Solar Complex Multi-Species...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-23

    ...-FXES11120800000F2-123] Draft Environmental Impact Statement and Proposed Maricopa Sun Solar Complex Multi-Species... National Environmental Policy Act for the proposed Maricopa Sun Solar Complex Habitat Conservation Plan... construction, operation, and decommissioning of a 700 megawatt photo-voltaic power generating facility and...

  4. [Anesthesia practice in Catalan hospitals and other health care facilities].

    PubMed

    Villalonga, Antonio; Sabaté, Sergi; Campos, Juan Manuel; Fornaguera, Joan; Hernández, Carmen; Sistac, José María

    2006-05-24

    training programs. The numbers of postoperative admissions to critical care units and of specialized analgesic techniques performed were higher in ICS hospitals, in facilities with over 500 beds, and in teaching hospitals. The complexity of both anesthesia and surgical practice and the severity of patient condition increased with hospital size and public funding status.

  5. FACILITY 846, SOUTHEAST END ON LEFT, WITH FACILITY 845 ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 846, SOUTHEAST END ON LEFT, WITH FACILITY 845 ON RIGHT AND FACILITY 847 IN CENTER BACKGROUND, QUADRANGLE J, VIEW FACING NORTH. - Schofield Barracks Military Reservation, Quadrangles I & J Barracks Type, Between Wright-Smith & Capron Avenues near Williston Avenue, Wahiawa, Honolulu County, HI

  6. Journey to the Nevada Test Site Radioactive Waste Management Complex

    ScienceCinema

    None

    2018-01-16

    Journey to the Nevada Test Site Radioactive Waste Management Complex begins with a global to regional perspective regarding the location of low-level and mixed low-level waste disposal at the Nevada Test Site. For decades, the Nevada National Security Site (NNSS) has served as a vital disposal resource in the nation-wide cleanup of former nuclear research and testing facilities. State-of-the-art waste management sites at the NNSS offer a safe, permanent disposal option for U.S. Department of Energy/U.S. Department of Defense facilities generating cleanup-related radioactive waste.

  7. NSF Lower Atmospheric Observing Facilities (LAOF) in support of science and education

    NASA Astrophysics Data System (ADS)

    Baeuerle, B.; Rockwell, A.

    2012-12-01

    Researchers, students and teachers who want to understand and describe the Earth System require high quality observations of the atmosphere, ocean, and biosphere. Making these observations requires state-of-the-art instruments and systems, often carried on highly capable research platforms. To support this need of the geosciences community, the National Science Foundation's (NSF) Division of Atmospheric and Geospace Sciences (AGS) provides multi-user national facilities through its Lower Atmospheric Observing Facilities (LAOF) Program at no cost to the investigator. These facilities, which include research aircraft, radars, lidars, and surface and sounding systems, receive NSF financial support and are eligible for deployment funding. The facilities are managed and operated by five LAOF partner organizations: the National Center for Atmospheric Research (NCAR); Colorado State University (CSU); the University of Wyoming (UWY); the Center for Severe Weather Research (CSWR); and the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS). These observational facilities are available on a competitive basis to all qualified researchers from US universities, requiring the platforms and associated services to carry out various research objectives. The deployment of all facilities is driven by scientific merit, capabilities of a specific facility to carry out the proposed observations, and scheduling for the requested time. The process for considering requests and setting priorities is determined on the basis of the complexity of a field campaign. The poster will describe available observing facilities and associated services, and explain the request process researchers have to follow to secure access to these platforms for scientific as well as educational deployments. NSF/NCAR GV Aircraft

  8. Electrostatically Accelerated Encounter and Folding for Facile Recognition of Intrinsically Disordered Proteins

    PubMed Central

    Ganguly, Debabani; Zhang, Weihong; Chen, Jianhan

    2013-01-01

    Achieving facile specific recognition is essential for intrinsically disordered proteins (IDPs) that are involved in cellular signaling and regulation. Consideration of the physical time scales of protein folding and diffusion-limited protein-protein encounter has suggested that the frequent requirement of protein folding for specific IDP recognition could lead to kinetic bottlenecks. How IDPs overcome such potential kinetic bottlenecks to viably function in signaling and regulation in general is poorly understood. Our recent computational and experimental study of cell-cycle regulator p27 (Ganguly et al., J. Mol. Biol. (2012)) demonstrated that long-range electrostatic forces exerted on enriched charges of IDPs could accelerate protein-protein encounter via “electrostatic steering” and at the same time promote “folding-competent” encounter topologies to enhance the efficiency of IDP folding upon encounter. Here, we further investigated the coupled binding and folding mechanisms and the roles of electrostatic forces in the formation of three IDP complexes with more complex folded topologies. The surface electrostatic potentials of these complexes lack prominent features like those observed for the p27/Cdk2/cyclin A complex to directly suggest the ability of electrostatic forces to facilitate folding upon encounter. Nonetheless, similar electrostatically accelerated encounter and folding mechanisms were consistently predicted for all three complexes using topology-based coarse-grained simulations. Together with our previous analysis of charge distributions in known IDP complexes, our results support a prevalent role of electrostatic interactions in promoting efficient coupled binding and folding for facile specific recognition. These results also suggest that there is likely a co-evolution of IDP folded topology, charge characteristics, and coupled binding and folding mechanisms, driven at least partially by the need to achieve fast association kinetics for

  9. Reliability Standards of Complex Engineering Systems

    NASA Astrophysics Data System (ADS)

    Galperin, E. M.; Zayko, V. A.; Gorshkalev, P. A.

    2017-11-01

    Production and manufacture play an important role in today’s modern society. Industrial production is nowadays characterized by increased and complex communications between its parts. The problem of preventing accidents in a large industrial enterprise becomes especially relevant. In these circumstances, the reliability of enterprise functioning is of particular importance. Potential damage caused by an accident at such enterprise may lead to substantial material losses and, in some cases, can even cause a loss of human lives. That is why industrial enterprise functioning reliability is immensely important. In terms of their reliability, industrial facilities (objects) are divided into simple and complex. Simple objects are characterized by only two conditions: operable and non-operable. A complex object exists in more than two conditions. The main characteristic here is the stability of its operation. This paper develops the reliability indicator combining the set theory methodology and a state space method. Both are widely used to analyze dynamically developing probability processes. The research also introduces a set of reliability indicators for complex technical systems.

  10. Facilities | Bioenergy | NREL

    Science.gov Websites

    Facilities Facilities At NREL's state-of-the-art bioenergy research facilities, researchers design options. Photo of interior of industrial, two-story building with high-bay, piping, and large processing

  11. EPA Facility Registry Service (FRS): Facility Interests Dataset

    EPA Pesticide Factsheets

    This web feature service consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are available in the FRS individual feature layers. The layers comprise the FRS major program databases, including:Assessment Cleanup and Redevelopment Exchange System (ACRES) : brownfields sites ; Air Facility System (AFS) : stationary sources of air pollution ; Air Quality System (AQS) : ambient air pollution data from monitoring stations; Bureau of Indian Affairs (BIA) : schools data on Indian land; Base Realignment and Closure (BRAC) facilities; Clean Air Markets Division Business System (CAMDBS) : market-based air pollution control programs; Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS) : hazardous waste sites; Integrated Compliance Information System (ICIS) : integrated enforcement and compliance information; National Compliance Database (NCDB) : Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Toxic Substances Control Act (TSCA); National Pollutant Discharge Elimination System (NPDES) module of ICIS : NPDES surface water permits; Radiation Information Database (RADINFO) : radiation and radioactivity facilities; RACT/BACT/LAER Clearinghouse (RBLC) : best available air pollution technology requirements; Resource Conservation and Recovery Act Information System (RCRAInfo) : tracks generators, transporters, treaters, storers, and disposers of haz

  12. National Wind Tunnel Complex (NWTC)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The National Wind Tunnel Complex (NWTC) Final Report summarizes the work carried out by a unique Government/Industry partnership during the period of June 1994 through May 1996. The objective of this partnership was to plan, design, build and activate 'world class' wind tunnel facilities for the development of future-generation commercial and military aircraft. The basis of this effort was a set of performance goals defined by the National Facilities Study (NFS) Task Group on Aeronautical Research and Development Facilities which established two critical measures of improved wind tunnel performance; namely, higher Reynolds number capability and greater productivity. Initial activities focused upon two high-performance tunnels (low-speed and transonic). This effort was later descoped to a single multipurpose tunnel. Beginning in June 1994, the NWTC Project Office defined specific performance requirements, planned site evaluation activities, performed a series of technical/cost trade studies, and completed preliminary engineering to support a proposed conceptual design. Due to budget uncertainties within the Federal government, the NWTC project office was directed to conduct an orderly closure following the Systems Design Review in March 1996. This report provides a top-level status of the project at that time. Additional details of all work performed have been archived and are available for future reference.

  13. Fact Sheet: Range Complex

    NASA Technical Reports Server (NTRS)

    Cornelson, C.; Fretter, E.

    2004-01-01

    NASA Ames has a long tradition in leadership with the use of ballistic ranges and shock tubes for the purpose of studying the physics and phenomena associated with hypervelocity flight. Cutting-edge areas of research run the gamut from aerodynamics, to impact physics, to flow-field structure and chemistry. This legacy of testing began in the NACA era of the 1940's with the Supersonic Free Flight Tunnel, and evolved dramatically up through the late 1950s with the pioneering work in the Ames Hypersonic Ballistic Range. The tradition continued in the mid-60s with the commissioning of the three newest facilities: the Ames Vertical Gun Range (AVGR) in 1964, the Hypervelocity Free Flight Facility (HFFF) in 1965 and the Electric Arc Shock Tube (EAST) in 1966. Today the Range Complex continues to provide unique and critical testing in support of the Nation's programs for planetary geology and geophysics; exobiology; solar system origins; earth atmospheric entry, planetary entry, and aerobraking vehicles; and various configurations for supersonic and hypersonic aircraft.

  14. A national facility for biological cryo-electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saibil, Helen R., E-mail: h.saibil@mail.cryst.bbk.ac.uk; Grünewald, Kay; Stuart, David I.

    2015-01-01

    This review provides a brief update on the use of cryo-electron microscopy for integrated structural biology, along with an overview of the plans for the UK national facility for electron microscopy being built at the Diamond synchrotron. Three-dimensional electron microscopy is an enormously powerful tool for structural biologists. It is now able to provide an understanding of the molecular machinery of cells, disease processes and the actions of pathogenic organisms from atomic detail through to the cellular context. However, cutting-edge research in this field requires very substantial resources for equipment, infrastructure and expertise. Here, a brief overview is provided ofmore » the plans for a UK national three-dimensional electron-microscopy facility for integrated structural biology to enable internationally leading research on the machinery of life. State-of-the-art equipment operated with expert support will be provided, optimized for both atomic-level single-particle analysis of purified macromolecules and complexes and for tomography of cell sections. The access to and organization of the facility will be modelled on the highly successful macromolecular crystallography (MX) synchrotron beamlines, and will be embedded at the Diamond Light Source, facilitating the development of user-friendly workflows providing near-real-time experimental feedback.« less

  15. 30 CFR 71.400 - Bathing facilities; change rooms; sanitary flush toilet facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... WORK AREAS OF UNDERGROUND COAL MINES Surface Bathing Facilities, Change Rooms, and Sanitary Flush Toilet Facilities at Surface Coal Mines § 71.400 Bathing facilities; change rooms; sanitary flush toilet... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Bathing facilities; change rooms; sanitary...

  16. 30 CFR 71.400 - Bathing facilities; change rooms; sanitary flush toilet facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... WORK AREAS OF UNDERGROUND COAL MINES Surface Bathing Facilities, Change Rooms, and Sanitary Flush Toilet Facilities at Surface Coal Mines § 71.400 Bathing facilities; change rooms; sanitary flush toilet... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Bathing facilities; change rooms; sanitary...

  17. 30 CFR 71.400 - Bathing facilities; change rooms; sanitary flush toilet facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... WORK AREAS OF UNDERGROUND COAL MINES Surface Bathing Facilities, Change Rooms, and Sanitary Flush Toilet Facilities at Surface Coal Mines § 71.400 Bathing facilities; change rooms; sanitary flush toilet... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Bathing facilities; change rooms; sanitary...

  18. 30 CFR 71.400 - Bathing facilities; change rooms; sanitary flush toilet facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... WORK AREAS OF UNDERGROUND COAL MINES Surface Bathing Facilities, Change Rooms, and Sanitary Flush Toilet Facilities at Surface Coal Mines § 71.400 Bathing facilities; change rooms; sanitary flush toilet... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Bathing facilities; change rooms; sanitary...

  19. Improved understanding of protein complex offers insight into DNA

    Science.gov Websites

    replication - through its crystal structure offers new insight into fundamental mechanisms of DNA replication Advanced Photon Source (APS), a U.S. Department of Energy User Facility based at Argonne National Laboratory, to obtain the first atomic-level resolution picture of this complex. The structure shows that

  20. Air-kerma evaluation at the maze entrance of HDR brachytherapy facilities.

    PubMed

    Pujades, M C; Granero, D; Vijande, J; Ballester, F; Perez-Calatayud, J; Papagiannis, P; Siebert, F A

    2014-12-01

    In the absence of procedures for evaluating the design of brachytherapy (BT) facilities for radiation protection purposes, the methodology used for external beam radiotherapy facilities is often adapted. The purpose of this study is to adapt the NCRP 151 methodology for estimating the air-kerma rate at the door in BT facilities. Such methodology was checked against Monte Carlo (MC) techniques using the code Geant4. Five different facility designs were studied for (192)Ir and (60)Co HDR applications to account for several different bunker layouts.For the estimation of the lead thickness needed at the door, the use of transmission data for the real spectra at the door instead of the ones emitted by (192)Ir and (60)Co will reduce the lead thickness by a factor of five for (192)Ir and ten for (60)Co. This will significantly lighten the door and hence simplify construction and operating requirements for all bunkers.The adaptation proposed in this study to estimate the air-kerma rate at the door depends on the complexity of the maze: it provides good results for bunkers with a maze (i.e. similar to those used for linacs for which the NCRP 151 methodology was developed) but fails for less conventional designs. For those facilities, a specific Monte Carlo study is in order for reasons of safety and cost-effectiveness.

  1. Test Facilities and Experience on Space Nuclear System Developments at the Kurchatov Institute

    NASA Astrophysics Data System (ADS)

    Ponomarev-Stepnoi, Nikolai N.; Garin, Vladimir P.; Glushkov, Evgeny S.; Kompaniets, George V.; Kukharkin, Nikolai E.; Madeev, Vicktor G.; Papin, Vladimir K.; Polyakov, Dmitry N.; Stepennov, Boris S.; Tchuniyaev, Yevgeny I.; Tikhonov, Lev Ya.; Uksusov, Yevgeny I.

    2004-02-01

    The complexity of space fission systems and rigidity of requirement on minimization of weight and dimension characteristics along with the wish to decrease expenditures on their development demand implementation of experimental works which results shall be used in designing, safety substantiation, and licensing procedures. Experimental facilities are intended to solve the following tasks: obtainment of benchmark data for computer code validations, substantiation of design solutions when computational efforts are too expensive, quality control in a production process, and ``iron'' substantiation of criticality safety design solutions for licensing and public relations. The NARCISS and ISKRA critical facilities and unique ORM facility on shielding investigations at the operating OR nuclear research reactor were created in the Kurchatov Institute to solve the mentioned tasks. The range of activities performed at these facilities within the implementation of the previous Russian nuclear power system programs is briefly described in the paper. This experience shall be analyzed in terms of methodological approach to development of future space nuclear systems (this analysis is beyond this paper). Because of the availability of these facilities for experiments, the brief description of their critical assemblies and characteristics is given in this paper.

  2. 1. CONTEXT VIEW OF GARAGE COMPLEX AT SOUTHEAST END OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. CONTEXT VIEW OF GARAGE COMPLEX AT SOUTHEAST END OF OPERATOR'S CAMP SHOWING MECHANIC'S GARAGE AT RIGHT, 4-CAR GARAGE AT CENTER, AND 3-CAR GARAGE AT LEFT. VIEW TO SOUTHEAST. - Holter Hydroelectric Facility, End of Holter Dam Road, Wolf Creek, Lewis and Clark County, MT

  3. 2. CONTEXT VIEW OF GARAGE COMPLEX AT SOUTHEAST END OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. CONTEXT VIEW OF GARAGE COMPLEX AT SOUTHEAST END OF OPERATOR'S CAMP SHOWING MECHANIC'S GARAGE AT RIGHT, 4-CAR GARAGE AT CENTER, AND 3-CAR GARAGE AT LEFT. VIEW TO SOUTHWEST. - Holter Hydroelectric Facility, End of Holter Dam Road, Wolf Creek, Lewis and Clark County, MT

  4. The Penn State ``Cyber Wind Facility''

    NASA Astrophysics Data System (ADS)

    Brasseur, James; Vijayakumar, Ganesh; Lavely, Adam; Nandi, Tarak; Jayaraman, Balaji; Jha, Pankaj; Dunbar, Alex; Motta-Mena, Javier; Haupt, Sue; Craven, Brent; Campbell, Robert; Schmitz, Sven; Paterson, Eric

    2012-11-01

    We describe development and results from a first generation Penn State ``Cyber Wind Facility'' (CWF). The aim of the CWF program is to develop and validate a computational ``facility'' that, in the most powerful HPC environments, will be basis for the design and implementation of cyber ``experiments'' at a level of complexity, fidelity and resolution to be treated similarly to field experiments on wind turbines operating in true atmospheric environments. We see cyber experiments as complimentary to field experiments in the sense that, whereas field data can record over ranges of events not representable in the cyber environment, with sufficient resolution, numerical accuracy, and HPC power, it is theoretically possible to collect cyber data from more true, albeit canonical, atmospheric environments can produce data from extraordinary numbers of sensors impossible to obtain in the field. I will describe our first generation CWF, from which we have quantified and analyzed useful details of the interactions between atmospheric turbulence and wind turbine loadings for an infinitely stiff commercial-scale turbine rotor in a canonical convective daytime atmospheric boundary layer over horizontally homogeneous rough flat terrain. Supported by the DOE Offshore Initiative and the National Science Foundation.

  5. Complex mixtures, complex responses: Assessing pharmaceutical mixtures using field and laboratory approaches

    USGS Publications Warehouse

    Schoenfuss, Heiko L.; Furlong, Edward T.; Phillips, Patrick J.; Scott, Tia-Marie; Kolpin, Dana W.; Cetkovic-Cvrlje, Marina; Lesteberg, Kelsey E.; Rearick, Daniel C.

    2016-01-01

    Pharmaceuticals are present in low concentrations (<100 ng/L) in most municipal wastewater effluents but may be elevated locally because of factors such as input from pharmaceutical formulation facilities. Using existing concentration data, the authors assessed pharmaceuticals in laboratory exposures of fathead minnows (Pimephales promelas) and added environmental complexity through effluent exposures. In the laboratory, larval and mature minnows were exposed to a simple opioid mixture (hydrocodone, methadone, and oxycodone), an opioid agonist (tramadol), a muscle relaxant (methocarbamol), a simple antidepressant mixture (fluoxetine, paroxetine, venlafaxine), a sleep aid (temazepam), or a complex mixture of all compounds. Larval minnow response to effluent exposure was not consistent. The 2010 exposures resulted in shorter exposed minnow larvae, whereas the larvae exposed in 2012 exhibited altered escape behavior. Mature minnows exhibited altered hepatosomatic indices, with the strongest effects in females and in mixture exposures. In addition, laboratory-exposed, mature male minnows exposed to all pharmaceuticals (except the selective serotonin reuptake inhibitor mixture) defended nest sites less rigorously than fish in the control group. Tramadol or antidepressant mixture exposure resulted in increased splenic T lymphocytes. Only male minnows exposed to whole effluent responded with increased plasma vitellogenin concentrations. Female minnows exposed to pharmaceuticals (except the opioid mixture) had larger livers, likely as a compensatory result of greater prominence of vacuoles in liver hepatocytes. The observed alteration of apical endpoints central to sustaining fish populations confirms that effluents containing waste streams from pharmaceutical formulation facilities can adversely impact fish populations but that the effects may not be temporally consistent. The present study highlights the importance of including diverse biological endpoints spanning

  6. 86. VIEW OF LIQUID NITROGEN STORAGE FACILITY LOCATED DIRECTLY WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    86. VIEW OF LIQUID NITROGEN STORAGE FACILITY LOCATED DIRECTLY WEST OF THE SLC-3W FUEL APRON. NOTE HEAT EXCHANGER IN BACKGROUND. CAMERA TOWER LOCATED DIRECTLY IN FRONT OF LIQUID NITROGEN STORAGE TANK. NITROGEN AND HELIUM GAS STORAGE TANKS AT SOUTH END OF FUEL APRON IN LOWER RIGHT CORNER. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  7. A national facility for biological cryo-electron microscopy

    PubMed Central

    Saibil, Helen R.; Grünewald, Kay; Stuart, David I.

    2015-01-01

    Three-dimensional electron microscopy is an enormously powerful tool for structural biologists. It is now able to provide an understanding of the molecular machinery of cells, disease processes and the actions of pathogenic organisms from atomic detail through to the cellular context. However, cutting-edge research in this field requires very substantial resources for equipment, infrastructure and expertise. Here, a brief overview is provided of the plans for a UK national three-dimensional electron-microscopy facility for integrated structural biology to enable internationally leading research on the machinery of life. State-of-the-art equipment operated with expert support will be provided, optimized for both atomic-level single-particle analysis of purified macromolecules and complexes and for tomography of cell sections. The access to and organization of the facility will be modelled on the highly successful macromolecular crystallography (MX) synchrotron beamlines, and will be embedded at the Diamond Light Source, facilitating the development of user-friendly workflows providing near-real-time experimental feedback. PMID:25615867

  8. Indoor Athletic Facilities.

    ERIC Educational Resources Information Center

    Fleming, E. Scott

    2000-01-01

    Examines the concept of shared-use facilities to help financially support and meet the demand for athletic facilities. Shared-use considerations are explored including cost sharing of ongoing operations, aesthetics, locker rooms, support facilities, parking and site access, and building access and security. (GR)

  9. Aircraft Landing Dynamics Facility - A unique facility with new capabilities

    NASA Technical Reports Server (NTRS)

    Davis, P. A.; Stubbs, S. M.; Tanner, J. A.

    1985-01-01

    The Aircraft Landing Dynamics Facility (ALDF), formerly called the Landing Loads Track, is described. The paper gives a historical overview of the original NASA Langley Research Center Landing Loads Track and discusses the unique features of this national test facility. Comparisons are made between the original track characteristics and the new capabilities of the Aircraft Landing Dynamics Facility following the recently completed facility update. Details of the new propulsion and arresting gear systems are presented along with the novel features of the new high-speed carriage. The data acquisition system is described and the paper concludes with a review of future test programs.

  10. Thermionic system evaluated test (TSET) facility description

    NASA Astrophysics Data System (ADS)

    Fairchild, Jerry F.; Koonmen, James P.; Thome, Frank V.

    1992-01-01

    A consortium of US agencies are involved in the Thermionic System Evaluation Test (TSET) which is being supported by the Strategic Defense Initiative Organization (SDIO). The project is a ground test of an unfueled Soviet TOPAZ-II in-core thermionic space reactor powered by electrical heat. It is part of the United States' national thermionic space nuclear power program. It will be tested in Albuquerque, New Mexico at the New Mexico Engineering Research Institute complex by the Phillips Laboratoty, Sandia National Laboratories, Los Alamos National Laboratory, and the University of New Mexico. One of TSET's many objectives is to demonstrate that the US can operate and test a complete space nuclear power system, in the electrical heater configuration, at a low cost. Great efforts have been made to help reduce facility costs during the first phase of this project. These costs include structural, mechanical, and electrical modifications to the existing facility as well as the installation of additional emergency systems to mitigate the effects of utility power losses and alkali metal fires.

  11. Radiation streaming and skyshine evaluation for a proposed low-level radioactive waste assured isolation facility.

    PubMed

    Arno, Matthew; Hamilton, Ian S

    2003-10-01

    Texas is investigating the idea of building a long term waste storage facility, also known as an Assured Isolation Facility. This is an above-ground, retrievable low-level radioactive waste storage facility. A preliminary, scoping-level analysis has been extended to consider more complex scenarios of radiation streaming and skyshine by using MCNP to model the facility in greater detail. Using bounding source term assumptions, the radiation doses and dose rates are found to exceed applicable limits by an order of magnitude. By altering the facility design to fill in the hollow cores of the prefabricated concrete slabs used in the roof over the "high-gamma" rooms where the waste with greatest gamma radiation intensity is stored, dose rates outside the facility decrease by an order of magnitude. With the modified design, the annual dose at the site fenceline is less than the 1 mSv annual limit for exposure of the public. Within the site perimeter, modifying the roof results in an order of magnitude drop in the dose rate for personnel outside the facility and on the facility roof, as well as a significant drop inside the facility. Radiation streaming inside the facility can be lowered almost two orders of magnitude by placing operational restrictions to keep at least two rows of waste containers in front of the high-gamma room to cut down on the size of the path for streaming.

  12. EPA Facility Registry Service (FRS): Facility Interests Dataset Download

    EPA Pesticide Factsheets

    This downloadable data package consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are available in the FRS individual feature layers. The layers comprise the FRS major program databases, including:Assessment Cleanup and Redevelopment Exchange System (ACRES) : brownfields sites ; Air Facility System (AFS) : stationary sources of air pollution ; Air Quality System (AQS) : ambient air pollution data from monitoring stations; Bureau of Indian Affairs (BIA) : schools data on Indian land; Base Realignment and Closure (BRAC) facilities; Clean Air Markets Division Business System (CAMDBS) : market-based air pollution control programs; Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS) : hazardous waste sites; Integrated Compliance Information System (ICIS) : integrated enforcement and compliance information; National Compliance Database (NCDB) : Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Toxic Substances Control Act (TSCA); National Pollutant Discharge Elimination System (NPDES) module of ICIS : NPDES surface water permits; Radiation Information Database (RADINFO) : radiation and radioactivity facilities; RACT/BACT/LAER Clearinghouse (RBLC) : best available air pollution technology requirements; Resource Conservation and Recovery Act Information System (RCRAInfo) : tracks generators, transporters, treaters, storers, and disposers

  13. Health Facilities

    MedlinePlus

    Health facilities are places that provide health care. They include hospitals, clinics, outpatient care centers, and specialized care centers, ... psychiatric care centers. When you choose a health facility, you might want to consider How close it ...

  14. Aeronautical facilities assessment

    NASA Technical Reports Server (NTRS)

    Penaranda, F. E. (Compiler)

    1985-01-01

    A survey of the free world's aeronautical facilities was undertaken and an evaluation made on where the relative strengths and weaknesses exist. Special emphasis is given to NASA's own capabilities and needs. The types of facilities surveyed are: Wind Tunnels; Airbreathing Propulsion Facilities; and Flight Simulators

  15. 3. CONTEXT VIEW OF GARAGE COMPLEX AT SOUTHEAST END OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. CONTEXT VIEW OF GARAGE COMPLEX AT SOUTHEAST END OF OPERATOR' CAMP SHOWING MECHANIC'S GARAGE NO. 48 AT LEFT, 4-CAR GARAGE AT CENTER, AND 3-CAR GARAGE AT RIGHT. VIEW TO NORTH-NORTHWEST - Holter Hydroelectric Facility, End of Holter Dam Road, Wolf Creek, Lewis and Clark County, MT

  16. Patient Care Staffing Levels and Facility Characteristics in U.S. Hemodialysis Facilities

    PubMed Central

    Yoder, Laura A. G.; Xin, Wenjun; Norris, Keith C.; Yan, Guofen

    2013-01-01

    Background Higher numbers of registered nurses per patient have been associated with improved patient outcomes in acute care facilities. Variation and associations of patient-care staffing levels and hemodialysis facility characteristics have not been previously examined. Study Design Cross-sectional study using Poisson regression to examine associations betwee patient-care staffing levels and hemodialysis facility characteristics. Setting & Participants 4,800 U.S. hemodialysis facilities in the 2009 CMS ESRD Annual Facility Survey (CMS-2744), USRDS. Predictors Facility characteristics, including profit status, freestanding status, chain affiliatio and geographic region, adjusted for facility size, capacity, functional type, and urbanicity. Outcomes Patient care staffing levels, including ratios of Registered Nurses (RN), Licensed Practical Nurses (LPN), Patient Care Technicians (PCT), composite staff (RN+LPN+PCT), Social Workers, and Dietitians to in-center hemodialysis patients. Results After adjusting for background facility characteristics, the ratios of RNs and LPNs to patients were 35% (p<0.001) and 42% (p<0.001) lower, but the PCT-to-patient ratio was 16% (p<0.001) higher in for-profit facilities than those in nonprofit facilities (Rate ratio, 0.65, 95%CI, 0.63–0.68; 0.58, 0.51–0.65; 1.16, 1.12–1.19; respectively). Regionally, compared to the Northeast, the adjusted RN-to-patient ratio was 14% (p< 0.001) lower in the Midwest, 25% (p< 0.001) lower in the South, and 18% (p< 0.001) lower in the West. Even after additional adjustments, the large for-profit chains had significantly lower RN and LPN ratios than the largest nonprofit chain, but a significantly higher PCT-to-patient ratio. The overall composite staffing levels were also lower in for-profit and chain-affiliated facilities. The patterns hold when the hospital-based units were excluded. Limitations Nursing hours were not available. Conclusions The significant variation in patient-care staffing

  17. Garden greenery and the health of older people in residential care facilities: a multi-level cross-sectional study.

    PubMed

    Dahlkvist, Eva; Hartig, Terry; Nilsson, Annika; Högberg, Hans; Skovdahl, Kirsti; Engström, Maria

    2016-09-01

    To test the relationship between greenery in gardens at residential facilities for older people and the self-perceived health of residents, mediated by experiences of being away and fascination when in the garden and the frequency of visitation there. To examine how these indirect effects vary with the number of physical barriers to visiting the garden. Many older people in residential facilities suffer from complex health problems. Access to a green outdoor environment may enable psychological distance, engage effortless attention, encourage more frequent visitation and promote resident health. A multi-level, cross-sectional, correlational design. Questionnaires were administered June-August, 2011 to convenience samples of residents at 72 facilities for older people with complex healthcare needs. One to 10 eligible residents were sampled during self-motivated garden visits at each facility (n = 290). They reported on their garden experiences and health. Facility staff reported on objective garden characteristics and barriers to access. A serial mediation model was tested with multiple linear regression analysis. The total indirect effect of greenery on self-perceived health was positive and significant. Garden greenery appears to affect health by enhancing a sense of being away, affording possibilities to experience the outdoor environment as interesting and encouraging visitation. Among residents in homes with multiple barriers, only fascination mediated the relationship between greenery and self-perceived health. Ample greenery in outdoor space at residential facilities for older people appears to promote experiences of being away and fascination, more frequent visitation and better health. © 2016 The Authors. Journal of Advanced Nursing Published by John Wiley & Sons Ltd.

  18. Refurbishment and Automation of the Thermal/Vacuum Facilities at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Donohue, John T.; Johnson, Chris; Ogden, Rick; Sushon, Janet

    1998-01-01

    The thermal/vacuum facilities located at the Goddard Space Flight Center (GSFC) have supported both manned and unmanned space flight since the 1960s. Of the 11 facilities, currently 10 of the systems are scheduled for refurbishment and/or replacement as part of a 5-year implementation. Expected return on investment includes the reduction in test schedules, improvements in the safety of facility operations, reduction in the complexity of a test and the reduction in personnel support required for a test. Additionally, GSFC will become a global resource renowned for expertise in thermal engineering, mechanical engineering and for the automation of thermal/vacuum facilities and thermal/vacuum tests. Automation of the thermal/vacuum facilities includes the utilization of Programmable Logic Controllers (PLCs) and the use of Supervisory Control and Data Acquisition (SCADA) systems. These components allow the computer control and automation of mechanical components such as valves and pumps. In some cases, the chamber and chamber shroud require complete replacement while others require only mechanical component retrofit or replacement. The project of refurbishment and automation began in 1996 and has resulted in the computer control of one Facility (Facility #225) and the integration of electronically controlled devices and PLCs within several other facilities. Facility 225 has been successfully controlled by PLC and SCADA for over one year. Insignificant anomalies have occurred and were resolved with minimal impact to testing and operations. The amount of work remaining to be performed will occur over the next four to five years. Fiscal year 1998 includes the complete refurbishment of one facility, computer control of the thermal systems in two facilities, implementation of SCADA and PLC systems to support multiple facilities and the implementation of a Database server to allow efficient test management and data analysis.

  19. Take a Tour of Our Facility | Energy Systems Integration Facility | NREL

    Science.gov Websites

    Take a Tour of Our Facility Take a Tour of Our Facility The Energy Systems Integration Facility Optical Characterization Laboratory System Performance Laboratory Power Systems Integration Laboratory Control Room Energy Storage Laboratory Outdoor Testing Areas Outdoor Testing Areas Energy Systems

  20. Development of an integrated set of research facilities for the support of research flight test

    NASA Technical Reports Server (NTRS)

    Moore, Archie L.; Harney, Constance D.

    1988-01-01

    The Ames-Dryden Flight Research Facility (DFRF) serves as the site for high-risk flight research on many one-of-a-kind test vehicles like the X-29A advanced technology demonstrator, F-16 advanced fighter technology integration (AFTI), AFTI F-111 mission adaptive wing, and F-18 high-alpha research vehicle (HARV). Ames-Dryden is on a section of the historic Muroc Range. The facility is oriented toward the testing of high-performance aircraft, as shown by its part in the development of the X-series aircraft. Given the cost of research flight tests and the complexity of today's systems-driven aircraft, an integrated set of ground support experimental facilities is a necessity. In support of the research flight test of highly advanced test beds, the DFRF is developing a network of facilities to expedite the acquisition and distribution of flight research data to the researcher. The network consists of an array of experimental ground-based facilities and systems as nodes and the necessary telecommunications paths to pass research data and information between these facilities. This paper presents the status of the current network, an overview of current developments, and a prospectus on future major enhancements.

  1. Integrated Disposal Facility FY2011 Glass Testing Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, Eric M.; Bacon, Diana H.; Kerisit, Sebastien N.

    2011-09-29

    Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility (e.g., source term). Vitrifying the low-activity waste at Hanford is expected to generate over 1.6 x 10{sup 5} m{sup 3} of glass (Certa and Wells 2010). The volume of immobilized low-activity waste (ILAW) at Hanford is the largest in the DOE complex and is one of the largest inventories (approximately 8.9 x 10{sup 14} Bq total activity) of long-lived radionuclides, principally {sup 99}Tc (t{sub 1/2} = 2.1 x 10{sup 5}), plannedmore » for disposal in a low-level waste (LLW) facility. Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program PNNL is implementing a strategy, consisting of experimentation and modeling, in order to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. The purpose of this report is to summarize the progress made in fiscal year (FY) 2011 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of low-activity waste glasses.« less

  2. Facilities | Argonne National Laboratory

    Science.gov Websites

    Skip to main content Argonne National Laboratory Toggle Navigation Toggle Search Research Facilities Advanced Powertrain Research Facility Center for Transportation Research Distributed Energy Research Center Engine Research Facility Heat Transfer Laboratory Materials Engineering Research Facility

  3. Feasibility study of a cyclotron complex for hadron therapy

    NASA Astrophysics Data System (ADS)

    Smirnov, V.; Vorozhtsov, S.

    2018-04-01

    An accelerator complex for hadron therapy based on a chain of cyclotrons is under development at JINR (Dubna, Russia), and the corresponding conceptual design is under preparation. The complex mainly consists of two superconducting cyclotrons. The first accelerator is a compact cyclotron used as an injector to the main accelerator, which is a six-fold separated sector machine. The facility is intended for generation of protons and carbon beams. The H2+ and 12C6+ ions from the corresponding ECR ion sources are accelerated in the injector-cyclotron up to the output energy of 70 MeV/u. Then, the H2+ ions are extracted from the injector by a stripping foil, and the resulting proton beam with the energy of 70 MeV is used for medical purposes. After acceleration in the main cyclotron, the carbon beam can be either used directly for therapy or introduced to the main cyclotron for obtaining the final energy of 400 MeV/u. The basic requirements to the project are the following: compliance to medical requirements, compact size, feasible design, and high reliability of all systems of the complex. The advantages of the dual cyclotron design can help reaching these goals. The initial calculations show that this design is technically feasible with acceptable beam dynamics. The accelerator complex with a relatively compact size can be a good solution for medical applications. The basic parameters of the facility and detailed investigation of the magnetic system and beam dynamics are described.

  4. EPA Facility Registry Service (FRS): Facility Interests Dataset - Intranet

    EPA Pesticide Factsheets

    This web feature service consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are available in the FRS individual feature layers. The layers comprise the FRS major program databases, including:Assessment Cleanup and Redevelopment Exchange System (ACRES) : brownfields sites ; Air Facility System (AFS) : stationary sources of air pollution ; Air Quality System (AQS) : ambient air pollution data from monitoring stations; Bureau of Indian Affairs (BIA) : schools data on Indian land; Base Realignment and Closure (BRAC) facilities; Clean Air Markets Division Business System (CAMDBS) : market-based air pollution control programs; Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS) : hazardous waste sites; Integrated Compliance Information System (ICIS) : integrated enforcement and compliance information; National Compliance Database (NCDB) : Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Toxic Substances Control Act (TSCA); National Pollutant Discharge Elimination System (NPDES) module of ICIS : NPDES surface water permits; Radiation Information Database (RADINFO) : radiation and radioactivity facilities; RACT/BACT/LAER Clearinghouse (RBLC) : best available air pollution technology requirements; Resource Conservation and Recovery Act Information System (RCRAInfo) : tracks generators, transporters, treaters, storers, and disposers of haz

  5. Association of U.S. Dialysis Facility Neighborhood Characteristics with Facility-Level Kidney Transplantation

    PubMed Central

    Plantinga, Laura; Pastan, Stephen; Kramer, Michael; McClellan, Ann; Krisher, Jenna; Patzer, Rachel E.

    2014-01-01

    Background Improving access to optimal healthcare may depend on attributes of neighborhoods where patients receive healthcare services. We investigated whether characteristics of dialysis facility neighborhoods—where most patients with end-stage renal disease are treated—were associated with facility-level kidney transplantation. Methods We examined the association between census tract (neighborhood)-level sociodemographic factors and facility-level kidney transplantation rate in 3,983 U.S. dialysis facilities with reported kidney transplantation rates. Number of kidney transplants and total person-years contributed at the facility level in 2007-2010 were obtained from the Dialysis Facility Report and linked to census tract data on sociodemographic characteristics from the American Community Survey 2006-2010 by dialysis facility location. We used multivariable Poisson models with generalized estimating equations to estimate associations between neighborhood characteristics and transplant incidence. Results U.S. dialysis facilities were located in neighborhoods with substantially greater proportions of black and poor residents, relative to the national average. Most facility neighborhood characteristics were associated with transplant, with incidence rate ratios (95% CI) for standardized increments (in percentage) of neighborhood exposures of: living in poverty, 0.88 (0.84-0.92), black race, 0.83 (0.78-0.89); high school graduates, 1.22 (1.17-1.26); and unemployed, 0.90 (0.85-0.95). Conclusion Dialysis facility neighborhood characteristics may be modestly associated with facility rates of kidney transplantation. The success of dialysis facility interventions to improve access to kidney transplantation may partially depend on reducing neighborhood-level barriers. PMID:25196018

  6. Facilities Performance Indicators Report 2011-12: Tracking Your Facilities Vital Signs

    ERIC Educational Resources Information Center

    APPA: Association of Higher Education Facilities Officers, 2013

    2013-01-01

    This paper provides an expanded Web-based "Facilities Performance Indicators (FPI) Report." The purpose of APPA's Facilities Performance Indicators is to provide a representative set of statistics about facilities in educational institutions. APPA's Information and Research Committee's goal for this year was to enhance the…

  7. Experimental Validation: Subscale Aircraft Ground Facilities and Integrated Test Capability

    NASA Technical Reports Server (NTRS)

    Bailey, Roger M.; Hostetler, Robert W., Jr.; Barnes, Kevin N.; Belcastro, Celeste M.; Belcastro, Christine M.

    2005-01-01

    Experimental testing is an important aspect of validating complex integrated safety critical aircraft technologies. The Airborne Subscale Transport Aircraft Research (AirSTAR) Testbed is being developed at NASA Langley to validate technologies under conditions that cannot be flight validated with full-scale vehicles. The AirSTAR capability comprises a series of flying sub-scale models, associated ground-support equipment, and a base research station at NASA Langley. The subscale model capability utilizes a generic 5.5% scaled transport class vehicle known as the Generic Transport Model (GTM). The AirSTAR Ground Facilities encompass the hardware and software infrastructure necessary to provide comprehensive support services for the GTM testbed. The ground facilities support remote piloting of the GTM aircraft, and include all subsystems required for data/video telemetry, experimental flight control algorithm implementation and evaluation, GTM simulation, data recording/archiving, and audio communications. The ground facilities include a self-contained, motorized vehicle serving as a mobile research command/operations center, capable of deployment to remote sites when conducting GTM flight experiments. The ground facilities also include a laboratory based at NASA LaRC providing near identical capabilities as the mobile command/operations center, as well as the capability to receive data/video/audio from, and send data/audio to the mobile command/operations center during GTM flight experiments.

  8. Centrifuge Facility Conceptual System Study. Volume 1: Facility overview and habitats

    NASA Technical Reports Server (NTRS)

    Synnestvedt, Robert (Editor)

    1990-01-01

    The results are presented for a NASA Phase 1 study conducted from mid 1987 through mid 1989 at Ames Research Center. The Centrifuge Facility is the major element of the biological research facility for the implementation of NASA's Life Science Research Program on Space Station Freedom using non-human specimens (such as small primates, rodents, plants, insects, cell tissues). Five systems are described which comprise the Facility: habitats, holding units, centrifuge, glovebox, and service unit. Volume 1 presents a facility overview and describes the habitats - modular units which house living specimens.

  9. The new postirradiation examination facility of the Atomic Energy Corporation of South Africa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walt, P.L. van der; Aspeling, J.C.; Jonker, W.D.

    1992-01-01

    The Pelindaba Hot Cell Complex (HCC) forms an important part of the infrastructure and support services of the Atomic Energy Corporation (AEC) of South Africa. It is a comprehensive, one-stop facility designed to make South Africa self-sufficient in the fields of spent-fuel qualification and verification, reactor pressure vessel surveillance program testing, ad hoc failure analyses for the nuclear power industry, and research and development studies in conjunction with the Safari I material test reactor (MTR) and irradiation rigs. Local technology and expertise was used for the design and construction of the HCC, which start up in 1980. The facility wasmore » commissioned in 1990.« less

  10. 47 CFR 4.5 - Definitions of outage, special offices and facilities, and 911 special facilities.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... facilities, and 911 special facilities. 4.5 Section 4.5 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... Definitions of outage, special offices and facilities, and 911 special facilities. (a) Outage is defined as a... government facilities.” 911 special facilities are addressed separately in paragraph (e) of this section. (c...

  11. Surface-complexation synthesis of silica-supported high-loading well-dispersed reducible nano-Co3O4 catalysts using CoIII ammine hydroxo complexes

    NASA Astrophysics Data System (ADS)

    Zhang, Weidong; Pan, Feng; Li, Jinjun; Wang, Zhen; Ding, Wei; Qin, Yi; Wu, Feng

    2018-06-01

    Silica-supported highly dispersed cobalt oxides prepared by adsorption are likely to be poorly reducible Co-phyllosilicates or CoO species. Here we report the synthesis of silica-supported monodispersed spinel nano-Co3O4 catalysts by inner-sphere complexation using CoIII ammine hydroxo complexes as precursors. The precursors were facilely prepared by stirring ammoniacal CoII solutions exposed to air. The cobalt loadings (up to 188 mg/g) and particle sizes (3-10 nm) were tailored by successive complexation-calcination cycles. Such catalysts showed significantly superior reducibility and catalytic activity in complete propane oxidation in comparison to supported Co-phyllosilicates and CoO. A further development of this synthesis process may provide a variety of cobalt-based catalysts for important catalytic applications.

  12. Energy Systems Integration Facility (ESIF) Facility Stewardship Plan: Revision 2.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torres, Juan; Anderson, Art

    The U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), has established the Energy Systems Integration Facility (ESIF) on the campus of the National Renewable Energy Laboratory (NREL) and has designated it as a DOE user facility. This 182,500-ft2 research facility provides state-of-the-art laboratory and support infrastructure to optimize the design and performance of electrical, thermal, fuel, and information technologies and systems at scale. This Facility Stewardship Plan provides DOE and other decision makers with information about the existing and expected capabilities of the ESIF and the expected performance metrics to be applied to ESIF operations.more » This plan is a living document that will be updated and refined throughout the lifetime of the facility.« less

  13. Association Between Treatment at High-Volume Facilities and Improved Overall Survival in Soft Tissue Sarcomas.

    PubMed

    Venigalla, Sriram; Nead, Kevin T; Sebro, Ronnie; Guttmann, David M; Sharma, Sonam; Simone, Charles B; Levin, William P; Wilson, Robert J; Weber, Kristy L; Shabason, Jacob E

    2018-03-15

    Soft tissue sarcomas (STS) are rare malignancies that require complex multidisciplinary management. Therefore, facilities with high sarcoma case volume may demonstrate superior outcomes. We hypothesized that STS treatment at high-volume (HV) facilities would be associated with improved overall survival (OS). Patients aged ≥18 years with nonmetastatic STS treated with surgery and radiation therapy at a single facility from 2004 through 2013 were identified from the National Cancer Database. Facilities were dichotomized into HV and low-volume (LV) cohorts based on total case volume over the study period. OS was assessed using multivariable Cox regression with propensity score-matching. Patterns of care were assessed using multivariable logistic regression analysis. Of 9025 total patients, 1578 (17%) and 7447 (83%) were treated at HV and LV facilities, respectively. On multivariable analysis, high educational attainment, larger tumor size, higher grade, and negative surgical margins were statistically significantly associated with treatment at HV facilities; conversely, black race and non-metropolitan residence were negative predictors of treatment at HV facilities. On propensity score-matched multivariable analysis, treatment at HV facilities versus LV facilities was associated with improved OS (hazard ratio, 0.87, 95% confidence interval, 0.80-0.95; P = .001). Older age, lack of insurance, greater comorbidity, larger tumor size, higher tumor grade, and positive surgical margins were associated with statistically significantly worse OS. In this observational cohort study using the National Cancer Database, receipt of surgery and radiation therapy at HV facilities was associated with improved OS in patients with STS. Potential sociodemographic disparities limit access to care at HV facilities for certain populations. Our findings highlight the importance of receipt of care at HV facilities for patients with STS and warrant further study into improving access to

  14. Using a complex adaptive system lens to understand family caregiving experiences navigating the stroke rehabilitation system.

    PubMed

    Ghazzawi, Andrea; Kuziemsky, Craig; O'Sullivan, Tracey

    2016-10-01

    Family caregivers provide the stroke survivor with social support and continuity during the transition home from a rehabilitation facility. In this exploratory study we examined family caregivers' perceptions and experiences navigating the stroke rehabilitation system. The theories of continuity of care and complex adaptive systems were integrated to examine the transition from a stroke rehabilitation facility to the patient's home. This study provides an understanding of the interacting complexities at the macro and micro levels. A convenient sample of family caregivers (n = 14) who provide care for a stroke survivor were recruited 4-12 weeks following the patient's discharge from a stroke rehabilitation facility in Ontario, Canada. Interviews were conducted with family caregivers to examine their perceptions and experiences navigating the stroke rehabilitation system. Directed and inductive content analysis and the theory of Complex Adaptive Systems were used to interpret the perceptions of family caregivers. Health system policies and procedures at the macro-level determined the types and timing of information being provided to caregivers, and impacted continuity of care and access to supports and services at the micro-level. Supports and services in the community, such as outpatient physiotherapy services, were limited or did not meet the specific needs of the stroke survivors or family caregivers. Relationships with health providers, informational support, and continuity in case management all influence the family caregiving experience and ultimately the quality of care for the stroke survivor, during the transition home from a rehabilitation facility.

  15. Care needs of residents in community-based long-term care facilities in Taiwan.

    PubMed

    Li, I-Chuan; Yin, Teresa Jeo-Chen

    2005-07-01

    The purpose of this study is to gain an understanding both of the characteristics of residents who receive the services of nursing assistants and the service intensity (service tasks, service time and cost) of nursing assistants as a means of developing a patient classification based upon resource consumption. Most people in Taiwan send their disabled older family members to community-based long-term care facilities instead of nursing homes because they are much cheaper, and because they are generally closer to their homes, making visits more convenient. Nursing assistants make up the largest group of personnel in long-term care facilities. To determine resource use, both the service time and the actual activities performed for a resident by nursing assistants need to be assessed and this will help to develop a patient classification system to predict resource use and patient outcomes. A descriptive survey method was used to identify the tasks performed by nursing assistants in community-based long-term care facilities in Taiwan. Nursing assistants were recruited from 10 long-term care facilities in the Shihlin and Peitou Districts of Taipei City. Thirty-four nursing assistants and 112 residents participated in this study. Findings showed that each nursing assistant spent 5.05 hours per day doing direct service care, which is much higher than the 2.08 hours for nursing assistants in the United States. Among service tasks provided by nursing assistants, personal care consumed 35.1% of their time. Non-complex treatments were second (33.3%). Skilled nursing and medical services were third (31.6%). The service intensity required of nursing assistants was strongly related to the residents' activities of daily living and their needs. Complex nursing procedures are normally provided by Registered Nurses in nursing homes and consumed almost as much of the nursing assistants' time as did personal care activities in this study. It is suggested that a training program for

  16. C-N bond cleavage of anilines by a (salen)ruthenium(VI) nitrido complex.

    PubMed

    Man, Wai-Lun; Xie, Jianhui; Pan, Yi; Lam, William W Y; Kwong, Hoi-Ki; Ip, Kwok-Wa; Yiu, Shek-Man; Lau, Kai-Chung; Lau, Tai-Chu

    2013-04-17

    We report experimental and computational studies of the facile oxidative C-N bond cleavage of anilines by a (salen)ruthenium(VI) nitrido complex. We provide evidence that the initial step involves nucleophilic attack of aniline at the nitrido ligand of the ruthenium complex, which is followed by proton and electron transfer to afford a (salen)ruthenium(II) diazonium intermediate. This intermediate then undergoes unimolecular decomposition to generate benzene and N2.

  17. Survey of Aerothermodynamics Facilities Useful for the Design of Hypersonic Vehicles Using Air-Breathing Propulsion

    NASA Technical Reports Server (NTRS)

    Arnold, James O.; Deiwert, George S.

    1997-01-01

    This paper surveys the use of aerothermodynamic facilities which have been useful in the study of external flows and propulsion aspects of hypersonic, air-breathing vehicles. While the paper is not a survey of all facilities, it covers the utility of shock tunnels and conventional hypersonic blow-down facilities which have been used for hypersonic air-breather studies. The problems confronting researchers in the field of aerothermodynamics are outlined. Results from the T5 GALCIT tunnel for the shock-on lip problem are outlined. Experiments on combustors and short expansion nozzles using the semi-free jet method have been conducted in large shock tunnels. An example which employed the NASA Ames 16-Inch shock tunnel is outlined, and the philosophy of the test technique is described. Conventional blow-down hypersonic wind tunnels are quite useful in hypersonic air-breathing studies. Results from an expansion ramp experiment, simulating the nozzle on a hypersonic air-breather from the NASA Ames 3.5 Foot Hypersonic wind tunnel are summarized. Similar work on expansion nozzles conducted in the NASA Langley hypersonic wind tunnel complex is cited. Free-jet air-frame propulsion integration and configuration stability experiments conducted at Langley in the hypersonic wind tunnel complex on a small generic model are also summarized.

  18. EPA Facility Registry Service (FRS): Facility Interests Dataset - Intranet Download

    EPA Pesticide Factsheets

    This downloadable data package consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are available in the FRS individual feature layers. The layers comprise the FRS major program databases, including:Assessment Cleanup and Redevelopment Exchange System (ACRES) : brownfields sites ; Air Facility System (AFS) : stationary sources of air pollution ; Air Quality System (AQS) : ambient air pollution data from monitoring stations; Bureau of Indian Affairs (BIA) : schools data on Indian land; Base Realignment and Closure (BRAC) facilities; Clean Air Markets Division Business System (CAMDBS) : market-based air pollution control programs; Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS) : hazardous waste sites; Integrated Compliance Information System (ICIS) : integrated enforcement and compliance information; National Compliance Database (NCDB) : Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Toxic Substances Control Act (TSCA); National Pollutant Discharge Elimination System (NPDES) module of ICIS : NPDES surface water permits; Radiation Information Database (RADINFO) : radiation and radioactivity facilities; RACT/BACT/LAER Clearinghouse (RBLC) : best available air pollution technology requirements; Resource Conservation and Recovery Act Information System (RCRAInfo) : tracks generators, transporters, treaters, storers, and disposers

  19. Structured analysis and modeling of complex systems

    NASA Technical Reports Server (NTRS)

    Strome, David R.; Dalrymple, Mathieu A.

    1992-01-01

    The Aircrew Evaluation Sustained Operations Performance (AESOP) facility at Brooks AFB, Texas, combines the realism of an operational environment with the control of a research laboratory. In recent studies we collected extensive data from the Airborne Warning and Control Systems (AWACS) Weapons Directors subjected to high and low workload Defensive Counter Air Scenarios. A critical and complex task in this environment involves committing a friendly fighter against a hostile fighter. Structured Analysis and Design techniques and computer modeling systems were applied to this task as tools for analyzing subject performance and workload. This technology is being transferred to the Man-Systems Division of NASA Johnson Space Center for application to complex mission related tasks, such as manipulating the Shuttle grappler arm.

  20. The Automation of the Transonic Experimental Facility (TEF) and the Aerodynamic Experimental Facility (AEF)

    DTIC Science & Technology

    2015-10-01

    ARL-TR-7506 ● OCT 2015 US Army Research Laboratory The Automation of the Transonic Experimental Facility (TEF) and the...Laboratory The Automation of the Transonic Experimental Facility (TEF) and the Aerodynamic Experimental Facility (AEF) by Charith R Ranawake Weapons...To) 05/2015–08/2015 4. TITLE AND SUBTITLE The Automation of the Transonic Experimental Facility (TEF) and the Aerodynamic Experimental Facility

  1. EFFECTS OF A COASTAL GOLF COMPLEX ON WATER QUALITY, PERIPHYTON, AND SEAGRASS.

    EPA Science Inventory

    The objective of this study was to determine the effects of a golf course complex on water quality, colonized periphyton and seagrass meadows in adjacent freshwater, near-coastal and wetland areas. The environmental impact of the recreational facility, which uses spray wastewater...

  2. Engineering directorate technical facilities catalog

    NASA Technical Reports Server (NTRS)

    Maloy, Joseph E.

    1993-01-01

    The Engineering Directorate Technical Facilities Catalog is designed to provide an overview of the technical facilities available within the Engineering Directorate at the National Aeronautics and Space Administration (NASA), Lyndon B. Johnson Space Center (JSC) in Houston, Texas. The combined capabilities of these engineering facilities are essential elements of overall JSC capabilities required to manage and perform major NASA engineering programs. The facilities are grouped in the text by chapter according to the JSC division responsible for operation of the facility. This catalog updates the facility descriptions for the JSC Engineering Directorate Technical Facilities Catalog, JSC 19295 (August 1989), and supersedes the Engineering Directorate, Principle test and Development Facilities, JSC, 19962 (November 1984).

  3. A program-level management system for the life cycle environmental and economic assessment of complex building projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Chan-Joong; Kim, Jimin; Hong, Taehoon

    Climate change has become one of the most significant environmental issues, of which about 40% come from the building sector. In particular, complex building projects with various functions have increased, which should be managed from a program-level perspective. Therefore, this study aimed to develop a program-level management system for the life-cycle environmental and economic assessment of complex building projects. The developed system consists of three parts: (i) input part: database server and input data; (ii) analysis part: life cycle assessment and life cycle cost; and (iii) result part: microscopic analysis and macroscopic analysis. To analyze the applicability of the developedmore » system, this study selected ‘U’ University, a complex building project consisting of research facility and residential facility. Through value engineering with experts, a total of 137 design alternatives were established. Based on these alternatives, the macroscopic analysis results were as follows: (i) at the program-level, the life-cycle environmental and economic cost in ‘U’ University were reduced by 6.22% and 2.11%, respectively; (ii) at the project-level, the life-cycle environmental and economic cost in research facility were reduced 6.01% and 1.87%, respectively; and those in residential facility, 12.01% and 3.83%, respective; and (iii) for the mechanical work at the work-type-level, the initial cost was increased 2.9%; but the operation and maintenance phase was reduced by 20.0%. As a result, the developed system can allow the facility managers to establish the operation and maintenance strategies for the environmental and economic aspects from a program-level perspective. - Highlights: • A program-level management system for complex building projects was developed. • Life-cycle environmental and economic assessment can be conducted using the system. • The design alternatives can be analyzed from the microscopic perspective. • The system can be used

  4. View of Facility 222 (on right) and Facility 221 through ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Facility 222 (on right) and Facility 221 through trees (parapet of latter above trees) from the parade ground. - U.S. Naval Base, Pearl Harbor, Gymnasium & Theater, Neville Way, Pearl City, Honolulu County, HI

  5. R2 REGULATED FACILITIES

    EPA Science Inventory

    The Facility Registry System (FRS) is a centrally managed database that identifies facilities, sites or places subject to environmental regulations or of environmental interest. FRS creates high-quality, accurate, and authoritative facility identification records through rigorous...

  6. Planetary and Space Simulation Facilities PSI at DLR for Astrobiology

    NASA Astrophysics Data System (ADS)

    Rabbow, E.; Rettberg, P.; Panitz, C.; Reitz, G.

    2008-09-01

    Ground based experiments, conducted in the controlled planetary and space environment simulation facilities PSI at DLR, are used to investigate astrobiological questions and to complement the corresponding experiments in LEO, for example on free flying satellites or on space exposure platforms on the ISS. In-orbit exposure facilities can only accommodate a limited number of experiments for exposure to space parameters like high vacuum, intense radiation of galactic and solar origin and microgravity, sometimes also technically adapted to simulate extraterrestrial planetary conditions like those on Mars. Ground based experiments in carefully equipped and monitored simulation facilities allow the investigation of the effects of simulated single environmental parameters and selected combinations on a much wider variety of samples. In PSI at DLR, international science consortia performed astrobiological investigations and space experiment preparations, exposing organic compounds and a wide range of microorganisms, reaching from bacterial spores to complex microbial communities, lichens and even animals like tardigrades to simulated planetary or space environment parameters in pursuit of exobiological questions on the resistance to extreme environments and the origin and distribution of life. The Planetary and Space Simulation Facilities PSI of the Institute of Aerospace Medicine at DLR in Köln, Germany, providing high vacuum of controlled residual composition, ionizing radiation of a X-ray tube, polychromatic UV radiation in the range of 170-400 nm, VIS and IR or individual monochromatic UV wavelengths, and temperature regulation from -20°C to +80°C at the sample size individually or in selected combinations in 9 modular facilities of varying sizes are presented with selected experiments performed within.

  7. FACILITY 316. EXTERIOR OBLIQUE OF FRONT AS SEEN FROM FACILITY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 316. EXTERIOR OBLIQUE OF FRONT AS SEEN FROM FACILITY 362. VIEW FACING SOUTH. - U.S. Naval Base, Pearl Harbor, Naval Housing Area Hospital Point, Pharmacist's Quarters Type, 13-16 First Street, Pearl City, Honolulu County, HI

  8. Gas-Grain Simulation Facility (GGSF). Volume 1: Stage 1 facility definition studies

    NASA Technical Reports Server (NTRS)

    Gat, Nahum

    1993-01-01

    The Gas-Grain Simulation Facility (GGSF) is a facility-type payload to be included in the Space Station Freedom (SSF). The GGSF is a multidisciplinary facility that will accommodate several classes of experiments, including exobiology, planetary science, atmospheric science, and astrophysics. The physical mechanisms envisioned to be investigated include crystal growth, aggregation, nucleation, coagulation, condensation, collisions, fractal growth, cycles of freezing and evaporation, scavenging, longevity of bacteria, and more. TRW performed a Phase A study that included analyses of the science and technical (S&T) requirements, the development of facility functional requirements, and a conceptual design of the facility. The work that was performed under Stage 1 of the Phase A study and the results to date are summarized. In this stage, facility definition studies were conducted in sufficient detail to establish the technical feasibility of the candidate strawman experiments. The studies identified technical difficulties, identified required facility subsystems, surveyed existing technology studies and established preliminary facility weight, volume, power consumption, data systems, interface definition, and crew time requirements. The results of this study served as the basis for Stage 2 of the Phase A study in which a conceptual design and a reference design were performed. The results also served as a basis for a related study for a Gas-Grain Simulation Experiment Module (GGSEM), which is an apparatus intended to perform a subset of the GGSF experiments on board a low-Earth-orbiting platform.

  9. EPA Facility Registry Service (FRS): OIL

    EPA Pesticide Factsheets

    This dataset contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of facilities that link to the Oil database. The Oil database contains information on Spill Prevention, Control, and Countermeasure (SPCC) and Facility Response Plan (FRP) subject facilities to prevent and respond to oil spills. FRP facilities are referred to as substantial harm facilities due to the quantities of oil stored and facility characteristics. FRS identifies and geospatially locates facilities, sites or places subject to environmental regulations or of environmental interest. Using vigorous verification and data management procedures, FRS integrates facility data from EPA's national program systems, other federal agencies, and State and tribal master facility records and provides EPA with a centrally managed, single source of comprehensive and authoritative information on facilities. This data set contains the subset of FRS integrated facilities that link to Oil facilities once the Oil data has been integrated into the FRS database. Additional information on FRS is available at the EPA website https://www.epa.gov/enviro/facility-registry-service-frs.

  10. 40. CALCINER CELL SECTIONS. TOGETHER WITH HAER ID33C37 ILLUSTRATES COMPLEXITY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. CALCINER CELL SECTIONS. TOGETHER WITH HAER ID-33-C-37 ILLUSTRATES COMPLEXITY OF PIPING. INEEL DRAWING NUMBER 200-0633-00-287-106446. FLUOR NUMBER 5775-CPP-P-51. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID

  11. 10 CFR 70.64 - Requirements for new facilities or new processes at existing facilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... behavior of items relied on for safety. (b) Facility and system design and facility layout must be based on... existing facilities. (a) Baseline design criteria. Each prospective applicant or licensee shall address the following baseline design criteria in the design of new facilities. Each existing licensee shall address the...

  12. 10 CFR 70.64 - Requirements for new facilities or new processes at existing facilities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... behavior of items relied on for safety. (b) Facility and system design and facility layout must be based on... existing facilities. (a) Baseline design criteria. Each prospective applicant or licensee shall address the following baseline design criteria in the design of new facilities. Each existing licensee shall address the...

  13. 10 CFR 70.64 - Requirements for new facilities or new processes at existing facilities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... behavior of items relied on for safety. (b) Facility and system design and facility layout must be based on... existing facilities. (a) Baseline design criteria. Each prospective applicant or licensee shall address the following baseline design criteria in the design of new facilities. Each existing licensee shall address the...

  14. 10 CFR 70.64 - Requirements for new facilities or new processes at existing facilities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... behavior of items relied on for safety. (b) Facility and system design and facility layout must be based on... existing facilities. (a) Baseline design criteria. Each prospective applicant or licensee shall address the following baseline design criteria in the design of new facilities. Each existing licensee shall address the...

  15. FACILITY 317. EXTERIOR OF FRONT SIDE, WITH FACILITY 316 BEYOND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 317. EXTERIOR OF FRONT SIDE, WITH FACILITY 316 BEYOND ON THE LEFT. VIEW FACING NORTH. - U.S. Naval Base, Pearl Harbor, Naval Housing Area Hospital Point, Pharmacist's Quarters Type, 13-16 First Street, Pearl City, Honolulu County, HI

  16. Transition metal-chelating surfactant micelle templates for facile synthesis of mesoporous silica nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hye Sun; Department of Materials Science and Engineering, Yonsei University, Seoul 120-749; Kim, Won Hee

    2012-01-15

    Highly ordered mesoporous silica nanoparticles with tunable morphology and pore-size are prepared by the use of a transition metal-chelating surfactant micelle complex using Co{sup 2+}, Ni{sup 2+}, Cu{sup 2+}, and Zn{sup 2+} ions. These metal ions formed a metal-P123 micelle complex in an aqueous solution, while the metal ions are chelated to the hydrophilic domain such as the poly(ethylene oxide) group of a P123 surfactant. The different complexation abilities of the utilized transition metal ions play an important role in determining the formation of nano-sized ordered MSNs due to the different stabilization constant of the metal-P123 complex. Consequently, from amore » particle length of 1700 nm in the original mesoporous silica materials, the particle length of ordered MSNs through the metal-chelating P123 micelle templates can be reduced to a range of 180-800 nm. Furthermore, the variation of pore size shows a slight change from 8.8 to 6.6 nm. In particular, the Cu{sup 2+}-chelated MSNs show only decreased particle size to 180 nm. The stability constants for the metal-P123 complex are calculated on the basis of molar conductance measurements in order to elucidate the formation mechanism of MSNs by the metal-chelating P123 complex templates. In addition, solid-state {sup 29}Si, {sup 13}C-NMR and ICP-OES measurements are used for quantitative characterization reveal that the utilized metal ions affect only the formation of a metal-P123 complex in a micelle as a template. - Graphical abstract: Metal-chelating surfactant micelle templates support a simple and facile preparations of size-tunable ordered MSNs. Black-Small-Square Highlights: Black-Right-Pointing-Pointer Facile preparation of mesoporous silica nanoparticles (MSNs) was achieved by metal-chelating surfactant micelle complex using Co{sup 2+}, Ni{sup 2+}, Cu{sup 2+}, and Zn{sup 2+} ions. Black-Right-Pointing-Pointer Different complexation of metal ions plays an important role in determining the

  17. Facility safety study

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The safety of NASA's in house microelectronics facility is addressed. Industrial health standards, facility emission control requirements, operation and safety checklists, and the disposal of epitaxial vent gas are considered.

  18. The National Ignition Facility: Transition to a User Facility

    NASA Astrophysics Data System (ADS)

    Moses, E. I.; Atherton, J.; Lagin, L.; Larson, D.; Keane, C.; MacGowan, B.; Patterson, R.; Spaeth, M.; Van Wonterghem, B.; Wegner, P.; Kauffman, R.

    2016-03-01

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) has been operational since March 2009 and has been transitioning to a user facility supporting ignition science, high energy density science (HEDS), national security applications, and fundamental science. The facility has achieved its design goal of 1.8 MJ and 500 TW of 3ω light on target, and has performed target experiments with 1.9 MJ at peak powers of 410 TW. The facility is on track to perform over 200 target shots this year in support of all of its user communities. The facility has nearly 60 diagnostic systems operational and has shown flexibility in laser pulse shape and performance to meet the requirements of its multiple users. Progress continues on its goal of demonstrating thermonuclear burn in the laboratory. It has performed over 40 indirect-drive experiments with cryogenic-layered capsules. New platforms are being developed for HEDS and fundamental science. Equation-of-state and material strength experiments have been done on a number of materials with pressures of over 50 MBars obtained in diamond, conditions never previously encountered in the laboratory and similar to those found in planetary interiors. Experiments are also in progress investigating radiation transport, hydrodynamic instabilities, and direct drive implosions. NIF continues to develop as an experimental facility. Advanced Radiographic Capability (ARC) is now being installed on NIF for producing high-energy radiographs of the imploded cores of ignition targets and for short pulse laser-plasma interaction experiments. One NIF beam is planned for conversion to two picosecond beams in 2014. Other new diagnostics such as x-ray Thomson scattering, low energy neutron spectrometer, and multi-layer reflecting x-ray optics are also planned. Incremental improvements in laser performance such as improved optics damage performance, beam balance, and back reflection control are being pursued.

  19. VIEW TO NORTHWEST, SHOWING FACILITY NO. 525 AND HOSPITAL (FACILITY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW TO NORTHWEST, SHOWING FACILITY NO. 525 AND HOSPITAL (FACILITY No. 515) BEYOND. See CA-2398-CP-8 for detail of the stairway in the distance - Hamilton Field, Amphitheater, North Oakland Drive near East Hospital Drive, Novato, Marin County, CA

  20. Facile synthesis of covalent probes to capture enzymatic intermediates during E1 enzyme catalysis.

    PubMed

    An, Heeseon; Statsyuk, Alexander V

    2016-02-11

    We report a facile synthetic strategy to prepare UBL-AMP electrophilic probes that form a covalent bond with the catalytic cysteine of cognate E1s, mimicking the tetrahedral intermediate of the E1-UBL-AMP complex. These probes enable the structural and biochemical study of both canonical- and non-canonical E1s.

  1. The Planetary and Space Simulation Facilities at DLR Cologne

    NASA Astrophysics Data System (ADS)

    Rabbow, Elke; Parpart, André; Reitz, Günther

    2016-06-01

    Astrobiology strives to increase our knowledge on the origin, evolution and distribution of life, on Earth and beyond. In the past centuries, life has been found on Earth in environments with extreme conditions that were expected to be uninhabitable. Scientific investigations of the underlying metabolic mechanisms and strategies that lead to the high adaptability of these extremophile organisms increase our understanding of evolution and distribution of life on Earth. Life as we know it depends on the availability of liquid water. Exposure of organisms to defined and complex extreme environmental conditions, in particular those that limit the water availability, allows the investigation of the survival mechanisms as well as an estimation of the possibility of the distribution to and survivability on other celestial bodies of selected organisms. Space missions in low Earth orbit (LEO) provide access for experiments to complex environmental conditions not available on Earth, but studies on the molecular and cellular mechanisms of adaption to these hostile conditions and on the limits of life cannot be performed exclusively in space experiments. Experimental space is limited and allows only the investigation of selected endpoints. An additional intensive ground based program is required, with easy to access facilities capable to simulate space and planetary environments, in particular with focus on temperature, pressure, atmospheric composition and short wavelength solar ultraviolet radiation (UV). DLR Cologne operates a number of Planetary and Space Simulation facilities (PSI) where microorganisms from extreme terrestrial environments or known for their high adaptability are exposed for mechanistic studies. Space or planetary parameters are simulated individually or in combination in temperature controlled vacuum facilities equipped with a variety of defined and calibrated irradiation sources. The PSI support basic research and were recurrently used for pre

  2. Surviving the storms: Emergency preparedness in Texas nursing facilities and assisted living facilities.

    PubMed

    Castro, Carmen; Persson, Diane; Bergstrom, Nancy; Cron, Stanley

    2008-08-01

    This study assesses the preparedness of long-term care facilities in Texas responding to Hurricanes Katrina and Rita. A 41-item questionnaire was mailed to facilities; the response rate was 42%. Among responding facilities, 4513 residents were evacuated, and 6% of respondents reported resident death. Financial losses were reported by 8% of nursing facilities and 45% of assisted living facilities due to transportation and staff overtime. Respondents indicated the need for improved disaster preparednesstraining, better coordination, and transportation. Changes in policy and practice will lead to better trained staff who will provide the care residents need for improved health outcomes during future public health disasters.

  3. Comprehensive facilities plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-09-01

    The Ernest Orlando Lawrence Berkeley National Laboratory`s Comprehensive Facilities Plan (CFP) document provides analysis and policy guidance for the effective use and orderly future development of land and capital assets at the Berkeley Lab site. The CFP directly supports Berkeley Lab`s role as a multiprogram national laboratory operated by the University of California (UC) for the Department of Energy (DOE). The CFP is revised annually on Berkeley Lab`s Facilities Planning Website. Major revisions are consistent with DOE policy and review guidance. Facilities planing is motivated by the need to develop facilities for DOE programmatic needs; to maintain, replace and rehabilitatemore » existing obsolete facilities; to identify sites for anticipated programmatic growth; and to establish a planning framework in recognition of site amenities and the surrounding community. The CFP presents a concise expression of the policy for the future physical development of the Laboratory, based upon anticipated operational needs of research programs and the environmental setting. It is a product of the ongoing planning processes and is a dynamic information source.« less

  4. Laboratory simulations of the atmospheric mixed-layer in flow over complex topography

    EPA Science Inventory

    A laboratory study of the influence of complex terrain on the interface between a well-mixed boundary layer and an elevated stratified layer was conducted in the towing-tank facility of the U.S. Environmental Protection Agency. The height of the mixed layer in the daytime boundar...

  5. The National Scientific Balloon Facility. [balloon launching capabilities of ground facility

    NASA Technical Reports Server (NTRS)

    Kubara, R. S.

    1974-01-01

    The establishment and operation of the National Scientific Balloon Facility are discussed. The balloon launching capabilities are described. The ground support systems, communication facilities, and meteorological services are analyzed.

  6. Integration of the White Sands Complex into a Wide Area Network

    NASA Technical Reports Server (NTRS)

    Boucher, Phillip Larry; Horan, Sheila, B.

    1996-01-01

    The NASA White Sands Complex (WSC) satellite communications facility consists of two main ground stations, an auxiliary ground station, a technical support facility, and a power plant building located on White Sands Missile Range. When constructed, terrestrial communication access to these facilities was limited to copper telephone circuits. There was no local or wide area communications network capability. This project incorporated a baseband local area network (LAN) topology at WSC and connected it to NASA's wide area network using the Program Support Communications Network-Internet (PSCN-I). A campus-style LAN is configured in conformance with the International Standards Organization (ISO) Open Systems Interconnect (ISO) model. Ethernet provides the physical and data link layers. Transmission Control Protocol and Internet Protocol (TCP/IP) are used for the network and transport layers. The session, presentation, and application layers employ commercial software packages. Copper-based Ethernet collision domains are constructed in each of the primary facilities and these are interconnected by routers over optical fiber links. The network and each of its collision domains are shown to meet IEEE technical configuration guidelines. The optical fiber links are analyzed for the optical power budget and bandwidth allocation and are found to provide sufficient margin for this application. Personal computers and work stations attached to the LAN communicate with and apply a wide variety of local and remote administrative software tools. The Internet connection provides wide area network (WAN) electronic access to other NASA centers and the world wide web (WWW). The WSC network reduces and simplifies the administrative workload while providing enhanced and advanced inter-communications capabilities among White Sands Complex departments and with other NASA centers.

  7. Substance Abuse Treatment in Adult and Juvenile Correctional Facilities: Findings from the Uniform Facility Data Set 1997 Survey of Correctional Facilities.

    ERIC Educational Resources Information Center

    Marsden, Mary Ellen, Ed.; Straw, Richard S., Ed.

    This report presents methodology and findings from the Uniform Facility Data Set (UFDS) 1997 Survey of Correctional Facilities, which surveyed about 7,600 adult and juvenile correctional facilities to identify those that provide on-site substance abuse treatment to their inmates or residents. The survey assesses substance abuse treatment provided…

  8. Wayfinding in Healthcare Facilities: Contributions from Environmental Psychology

    PubMed Central

    Devlin, Ann Sloan

    2014-01-01

    The ability to successfully navigate in healthcare facilities is an important goal for patients, visitors, and staff. Despite the fundamental nature of such behavior, it is not infrequent for planners to consider wayfinding only after the fact, once the building or building complex is complete. This review argues that more recognition is needed for the pivotal role of wayfinding in healthcare facilities. First, to provide context, the review presents a brief overview of the relationship between environmental psychology and healthcare facility design. Then, the core of the article covers advances in wayfinding research with an emphasis on healthcare environments, including the roles of plan configuration and manifest cues, technology, and user characteristics. Plan configuration and manifest cues, which appeared early on in wayfinding research, continue to play a role in wayfinding success and should inform design decisions. Such considerations are joined by emerging technologies (e.g., mobile applications, virtual reality, and computational models of wayfinding) as a way to both enhance our theoretical knowledge of wayfinding and advance its applications for users. Among the users discussed here are those with cognitive and/or visual challenges (e.g., Down syndrome, age-related decrements such as dementia, and limitations of vision). In addition, research on the role of cross-cultural comprehension and the effort to develop a system of universal healthcare symbols is included. The article concludes with a summary of the status of these advances and directions for future research. PMID:25431446

  9. 39. CALCINER CELL PLANS. TOGETHER WITH HAER ID33C37 ILLUSTRATES COMPLEXITY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. CALCINER CELL PLANS. TOGETHER WITH HAER ID-33-C-37 ILLUSTRATES COMPLEXITY OF PIPING. INEEL DRAWING NUMBER 200-0633-00-287-106445. FLUOR NUMBER 5775-CPP-633-P-50 - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID

  10. Facilities Engineering in NASA

    NASA Technical Reports Server (NTRS)

    Pagluiso, M. A.

    1970-01-01

    An overview of NASA facilities is given outlining some of the more interesting and unique aspects of engineering and facilities associated with the space program. Outlined are some of the policies under which the Office of Facilities conducts its business. Included are environmental quality control measures.

  11. Setting up and running an advanced light microscopy and imaging facility.

    PubMed

    Sánchez, Carlos; Muñoz, Ma Ángeles; Villalba, Maite; Labrador, Verónica; Díez-Guerra, F Javier

    2011-07-01

    During the last twenty years, interest in light microscopy and imaging techniques has grown in various fields, such as molecular and cellular biology, developmental biology, and neurobiology. In addition, the number of scientific articles and journals using these techniques is rapidly increasing. Nowadays, most research institutions require sophisticated microscopy systems to cover their investigation demands. In general, such instruments are too expensive and complex to be purchased and managed by a single laboratory or research group, so they have to be shared with other groups and supervised by specialized personnel. This is the reason why microscopy and imaging facilities are becoming so important at research institutions nowadays. In this unit, we have gathered and presented a number of issues and considerations from our own experience that we hope will be helpful when planning or setting up a new facility.

  12. 10. AERIAL VIEW LOOKING NORTHWEST AT THE 400AREA COMPLEX. THIS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. AERIAL VIEW LOOKING NORTHWEST AT THE 400-AREA COMPLEX. THIS AREA OF THE PLANT MANUFACTURED NON-PLUTONIUM WEAPONS COMPONENTS FROM BERYLLIUM, DEPLETED URANIUM, AND STAINLESS STEEL. THE 400 - AREA ALSO INCLUDED A FACILITY FOR THE MODIFICATION OF SAFE SECURE TRANSPORT VEHICLES FOR SPECIAL NUCLEAR MATERIALS BEING SHIPPED TO AND FROM THE SITE. BUILDING 444, IN THE UPPER RIGHT EDGE OF THE PHOTOGRAPH, WAS THE ORIGINAL PLANT A. THE LARGE BUILDING IN THE TOP OF THE PHOTOGRAPH IS BUILDING 460, BUILT AS A STATE-OF-THE-ART STAINLESS STEEL MANUFACTURING FACILITY (6/27/95). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  13. Florida Educational Facilities, 1996.

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee. Office of Educational Facilities.

    This document contains information, photographs, and floor plans of many of Florida's new elementary through high school facilities occupied in 1996. Each entry lists the facility's type, building size, student capacity, and general structural information. Also provided is information on the facility's total construction cost; the architects and…

  14. Florida Educational Facilities, 1997.

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee. Office of Educational Facilities.

    This document contains information, photographs, and floor plans of many of Florida's new elementary through high school facilities occupied in 1997. Each entry lists the facility's type, building size, student capacity, and general structural information. Also provided is information on the facility's total construction cost; the architects and…

  15. Florida Educational Facilities, 1998.

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee. Office of Educational Facilities.

    This document contains information, photographs, and floor plans of many of Florida's new elementary through high school facilities occupied in 1998. Each entry lists the facility's type, building size, student capacity, and general structural information. Also provided is information on the facility's total construction cost; the architects and…

  16. The Upgrade Programme for the Structural Biology beamlines at the European Synchrotron Radiation Facility - High throughput sample evaluation and automation

    NASA Astrophysics Data System (ADS)

    Theveneau, P.; Baker, R.; Barrett, R.; Beteva, A.; Bowler, M. W.; Carpentier, P.; Caserotto, H.; de Sanctis, D.; Dobias, F.; Flot, D.; Guijarro, M.; Giraud, T.; Lentini, M.; Leonard, G. A.; Mattenet, M.; McCarthy, A. A.; McSweeney, S. M.; Morawe, C.; Nanao, M.; Nurizzo, D.; Ohlsson, S.; Pernot, P.; Popov, A. N.; Round, A.; Royant, A.; Schmid, W.; Snigirev, A.; Surr, J.; Mueller-Dieckmann, C.

    2013-03-01

    Automation and advances in technology are the key elements in addressing the steadily increasing complexity of Macromolecular Crystallography (MX) experiments. Much of this complexity is due to the inter-and intra-crystal heterogeneity in diffraction quality often observed for crystals of multi-component macromolecular assemblies or membrane proteins. Such heterogeneity makes high-throughput sample evaluation an important and necessary tool for increasing the chances of a successful structure determination. The introduction at the ESRF of automatic sample changers in 2005 dramatically increased the number of samples that were tested for diffraction quality. This "first generation" of automation, coupled with advances in software aimed at optimising data collection strategies in MX, resulted in a three-fold increase in the number of crystal structures elucidated per year using data collected at the ESRF. In addition, sample evaluation can be further complemented using small angle scattering experiments on the newly constructed bioSAXS facility on BM29 and the micro-spectroscopy facility (ID29S). The construction of a second generation of automated facilities on the MASSIF (Massively Automated Sample Screening Integrated Facility) beam lines will build on these advances and should provide a paradigm shift in how MX experiments are carried out which will benefit the entire Structural Biology community.

  17. Making It Count: Strategies for Improving Mathematics Instruction for Students in Short-Term Facilities. Strategy Guide

    ERIC Educational Resources Information Center

    Leone, Peter; Wilson, Michael; Mulcahy, Candace

    2010-01-01

    This guide is designed to support the development of mathematics proficiency for youth in short-term juvenile correctional facilities. Mathematics proficiency includes mastery and fluency in foundational numeracy; an understanding of complex, grade-appropriate concepts and procedures; and application of those competencies to solve relevant,…

  18. Considerations for Planning a Monitoring Campaign at Petrochemical Complexes: Lessons Learned

    NASA Astrophysics Data System (ADS)

    Cuclis, A.

    2010-12-01

    An air quality monitoring campaign was developed for the late spring of 2009 near Houston area petrochemical facilities. The focus of the field campaign was to measure free radicals that contribute to the formation of ozone, however refinery and chemical plants monitored are also emitters of many different volatile organic compounds (vocs) and hazardous air pollutants (haps). The Houston area is home to the largest aggregation of petrochemical facilities in the U.S. Three specific geographical areas with industrial facilities were considered: Mont Belvieu, the Houston Ship Channel and the Texas City Industrial Complex. Previous experiences with field campaigns in the area led to the presumption that there would be little if any access inside the facilities. Considerations for which areas to focus on included: how close could the facility be approached, what were the directions of the prevailing winds, what kind of barriers to measurement existed (e.g. trees, buildings, highways, privately owned land, etc.), and what were the possible chemical interferences from other sources near the measurement sites? Close communications with the plant security, the local police, the Federal Bureau of Investigations (FBI), Homeland Security, the Federal Aviation Administration (FAA), and the Texas Commission on Environmental Quality (TCEQ) were required. Substantial delays can occur due to local concerns regarding homeland security and plant safety. Also, a system of communications is essential to coordinate the participating scientists operating stationary analyzers with the scientists who have analyzers mounted in ground vehicles and in aircraft. The researchers were provided with information regarding plant operations, types of equipment and potential pollutants. A wide variety of stationery and mobile ambient air monitoring techniques were used to measure formaldehyde and other volatile organic compounds. In order to identify likely formaldehyde sources the self

  19. INTEGRITY - Integrated Human Exploration Mission Simulation Facility

    NASA Technical Reports Server (NTRS)

    Henninger, Donald L.

    2002-01-01

    It is proposed to develop a high-fidelity ground facility to carry out long-duration human exploration mission simulations. These would not be merely computer simulations - they would in fact comprise a series of actual missions that just happen to stay on earth. These missions would include all elements of an actual mission, using actual technologies that would be used for the real mission. These missions would also include such elements as extravehicular activities, robotic systems, telepresence and teleoperation, surface drilling technology-all using a simulated planetary landscape. A sequence of missions would be defined that get progressively longer and more robust, perhaps a series of five or six missions over a span of 10 to 15 years ranging in duration from 180 days up to 1000 days. This high-fidelity ground facility would operate hand-in-hand with a host of other terrestrial analog sites such as the Antarctic, Haughton Crater, and the Arizona desert. Of course, all of these analog mission simulations will be conducted here on earth in 1-g, and NASA will still need the Shuttle and ISS to carry out all the microgravity and hypogravity science experiments and technology validations. The proposed missions would have sufficient definition such that definitive requirements could be derived from them to serve as direction for all the program elements of the mission. Additionally, specific milestones would be established for the "launch" date of each mission so that R&D programs would have both good requirements and solid milestones from which to .build their implementation plans. Mission aspects that could not be directly incorporated into the ground facility would be simulated via software. New management techniques would be developed for evaluation in this ground test facility program. These new techniques would have embedded metrics which would allow them to be continuously evaluated and adjusted so that by the time the sequence of missions is completed, the

  20. National Facilities study

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This study provides a set of recommendations for improving the effectiveness of our nation's aeronautics and space facilities. The study plan considers current and future government and commercial needs as well as DOD and NASA mission requirements through the year 2023. It addresses shortfalls in existing capabilities, new facility requirements, upgrades, consolidations, and phase-out of existing facilities. If the recommendations are implemented, they will provide world-class capability where it is vital to our country's needs and make us more efficient in meeting future needs.

  1. Moderator Demonstration Facility Design and Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClanahan, Tucker C.; Gallmeier, Franz X.; Iverson, Erik B.

    2017-02-01

    The Spallation Neutron Source (SNS) facility at Oak Ridge National Laboratory (ORNL) is implementing a Moderator Demonstration Facility (MDF) to demonstrate the performance characteristics of advanced moderators central to the Second Target Station (STS) for SNS. The MDF will use the "spare" front-end installation within the SNS accelerator support complex – an ion source, radio-frequency quadrupole (RFQ) accelerator, and medium-energy beam transport (MEBT) chopper - to provide a 2.5 MeV proton beam of peak current 50 mA and maximum pulse length of less than 10 s at a repetition rate of no more than 60 Hz to a suitable neutron-producingmore » target to demonstrate those aspects of moderator performance necessary to meet the goals of the STS design e ort. The accelerator beam parameters are not open to variation beyond that described above - they are fixed by the nature of the spare front-end installation (the Integrated Test Stand Facility; ITSF). Accordingly, there are some neutronic challenges in developing prototypic moderator illumination from a very non-prototypic primary neutron source; the spallation source we are attempting to mimic has an extended neutron source volume approximately 40 cm long (in the direction of the proton beam), approximately 10 cm wide (horizontally transverse to the proton beam) and approximately 5 cm high (vertically transverse to the proton beam), and an isotropic evaporation energy spectrum with mean energy above 1 MeV. In contrast, the primary neutron source available from the 7Li(p,n) reaction (the most prolific at 2.5 MeV proton energy by more than an order of magnitude) is strongly anisotropic, with an energy spectrum that is both strongly dependent on emission angle and kinematically limited to less than 700 keV, and the interaction zone between the incident protons and any target material (neutron-producing or not) is intrinsically limited to a few tens of microns. The MDF will be unique and innovative amongst the world

  2. Facility effluent monitoring plan for the plutonium uranium extraction facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiegand, D.L.

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of themore » effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years.« less

  3. View east northeast at Test Stand 'A' complex from road, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View east northeast at Test Stand 'A' complex from road, showing Test Stand 'C' test tower in left background (Building 4217/E-18). Curved I-beam labeled '3-ton' is for small traveling hoist. Fuel tanks, propellant lines, and control panels have been removed from tower. - Jet Propulsion Laboratory Edwards Facility, Test Stand A, Edwards Air Force Base, Boron, Kern County, CA

  4. 9 CFR 351.10 - Facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Facilities. 351.10 Section 351.10... CERTIFICATION CERTIFICATION OF TECHNICAL ANIMAL FATS FOR EXPORT Facilities and Operations § 351.10 Facilities. (a) Facilities for the preparation, identification, and storage of the technical animal fat to be...

  5. End-of-life care policies and practices in pediatric skilled nursing facilities.

    PubMed

    Friedman, Sandra L; Helm, David T; Woodman, Ashley C

    2014-11-01

    Although most children with intellectual and developmental disabilities reside in the community, a subset of children with severe intellectual disability and complex medical needs reside in pediatric skilled nursing facilities. These children have elevated mortality with end-of-life care (EOLC) routinely provided. The present study explored policies and practice in such settings by surveying administrators, nursing directors, and medical directors in facilities across the United States. In addition to EOLC policies and practices, staff reported on their understanding of definitions of do-not-resuscitate orders, family involvement in EOLC planning, and the availability of in-service training. The presence of an official EOLC policy was associated with higher ratings of perception of effectiveness among staff. Staff felt more prepared and comfortable providing EOLC when in-service training was provided. © The Author(s) 2013.

  6. Facilities Utilization Program Implementation Handbook

    NASA Technical Reports Server (NTRS)

    1987-01-01

    This Facilities Utilization Program Implementation Handbook (FUPIH) prescribes procedures for the review and the reporting on the utilization of NASA facilities. The Directors of NASA Field Installations should designate an Installation Official responsible for coordinating the assignment of buildings space and implementing the facilities utilization reviews and annual report preparation. The individual designated shall be known as the 'Facilities Utilization Officer (FUO).' Functional responsibilities of the FUO are detailed in NASA Management Instruction (NMI) 7234.1. It is recognized that titles used in the implementation of the Facilities Utilization Program may vary between field installations. The Facilities Utilization Program (FUP) is designed to provide a uniform and orderly process for meeting or addressing the following objectives: the establishment of sound facilities requirements to meet NASA's programmatic and institutional needs; the optimum allocation of available facilities and related resources to meet these requirements; and the early identification and request for required additional facilities resources. The detailed review and reporting system enacted by NMI 7234.1 should encourage more comprehensive utilization planning for all NASA facilities and ensure, to the maximum extent practicable, that all such facilities are put to their highest and best use consistent with NASA programmatic and institutional priorities. A principal purpose of the FUP is the early identification of NASA facilities which may be or may become underutilized or excess to NASA needs and to provide a timely reference point from which corrective actions (i.e., consolidation, elimination of duplication, improved utilization of disposal) may be taken. Because the supply of this handbook is limited, distribution should be controlled at the field installation level.

  7. The National Ignition Facility (NIF) as a User Facility

    NASA Astrophysics Data System (ADS)

    Keane, Christopher; NIF Team

    2013-10-01

    The National Ignition Facility (NIF) has made significant progress towards operation as a user facility. Through June 2013, NIF conducted over 1200 experiments in support of ICF, HED science, and development of facility capabilities. The NIF laser has met or achieved all specifications and a wide variety of diagnostic and target fabrication capabilities are in place. A NIF User Group and associated Executive Board have been formed. Two User Group meetings have been conducted since formation of the User Group. NIF experiments in fundamental science have provided important new results. NIF ramp compression experiments have been conducted using diamond and iron, with EOS results obtained at pressures up to approximately 50 Mbar and 8 Mbar, respectively. Initial experiments in supernova hydrodynamics, the fundamental physics of the Rayleigh-Taylor instability, and equation of state in the Gbar pressure regime have also been conducted. This presentation will discuss the fundamental science program at NIF, including the proposal solicitation and scientific review processes and other aspects of user facility operation. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  8. Challenges for proteomics core facilities.

    PubMed

    Lilley, Kathryn S; Deery, Michael J; Gatto, Laurent

    2011-03-01

    Many analytical techniques have been executed by core facilities established within academic, pharmaceutical and other industrial institutions. The centralization of such facilities ensures a level of expertise and hardware which often cannot be supported by individual laboratories. The establishment of a core facility thus makes the technology available for multiple researchers in the same institution. Often, the services within the core facility are also opened out to researchers from other institutions, frequently with a fee being levied for the service provided. In the 1990s, with the onset of the age of genomics, there was an abundance of DNA analysis facilities, many of which have since disappeared from institutions and are now available through commercial sources. Ten years on, as proteomics was beginning to be utilized by many researchers, this technology found itself an ideal candidate for being placed within a core facility. We discuss what in our view are the daily challenges of proteomics core facilities. We also examine the potential unmet needs of the proteomics core facility that may also be applicable to proteomics laboratories which do not function as core facilities. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. SD46 Facilities and Capabilities

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The displays for the Materials Conference presents some of the facilities and capabilities in SD46 that can be useful to a prospective researcher from University, Academia or other government labs. Several of these already have associated personnel as principal and co-investigators on NASA peer reviewed science investigations. 1. SCN purification facility 2. ESL facility 3. Static and Dynamic magnetic field facility 4. Microanalysis facility 5. MSG Investigation - PFMI 6. Thermo physical Properties Measurement Capabilities.

  10. Considerations on Facilities Planning

    ERIC Educational Resources Information Center

    Baule, Steven

    2007-01-01

    Most facilities renovation projects occur because someone at the executive or board level has lobbied successfully for them. Often in public schools, the voters have agreed to the project as well via a building referendum. Therefore, facilities projects are highly visible to the community. Unlike many other issues in schools, facilities projects…

  11. National facilities study. Volume 5: Space research and development facilities task group

    NASA Technical Reports Server (NTRS)

    1994-01-01

    With the beginnings of the U.S. space program, there was a pressing need to develop facilities that could support the technology research and development, testing, and operations of evolving space systems. Redundancy in facilities that was once and advantage in providing flexibility and schedule accommodation is instead fast becoming a burden on scarce resources. As a result, there is a clear perception in many sectors that the U.S. has many space R&D facilities that are under-utilized and which are no longer cost-effective to maintain. At the same time, it is clear that the U.S. continues to possess many space R&D facilities which are the best -- or among the best -- in the world. In order to remain world class in key areas, careful assessment of current capabilities and planning for new facilities is needed. The National Facility Study (NFS) was initiated in 1992 to develop a comprehensive and integrated long-term plan for future aerospace facilities that meets current and projected government and commercial needs. In order to assess the nation's capability to support space research and development (R&D), a Space R&D Task Group was formed. The Task Group was co-chaired by NASA and DOD. The Task Group formed four major, technologically- and functionally- oriented working groups: Human and Machine Operations; Information and Communications; Propulsion and Power; and Materials, Structures, and Flight Dynamics. In addition to these groups, three supporting working groups were formed: Systems Engineering and Requirements; Strategy and Policy; and Costing Analysis. The Space R&D Task Group examined several hundred facilities against the template of a baseline mission and requirements model (developed in common with the Space Operations Task Group) and a set of excursions from the baseline. The model and excursions are described in Volume 3 of the NFS final report. In addition, as a part of the effort, the group examined key strategic issues associated with space R

  12. Brief Survey of TSC Computing Facilities

    DOT National Transportation Integrated Search

    1972-05-01

    The Transportation Systems Center (TSC) has four, essentially separate, in-house computing facilities. We shall call them Honeywell Facility, the Hybrid Facility, the Multimode Simulation Facility, and the Central Facility. In addition to these four,...

  13. Wind Energy Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurie, Carol

    2017-02-01

    This book takes readers inside the places where daily discoveries shape the next generation of wind power systems. Energy Department laboratory facilities span the United States and offer wind research capabilities to meet industry needs. The facilities described in this book make it possible for industry players to increase reliability, improve efficiency, and reduce the cost of wind energy -- one discovery at a time. Whether you require blade testing or resource characterization, grid integration or high-performance computing, Department of Energy laboratory facilities offer a variety of capabilities to meet your wind research needs.

  14. Wind Energy Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Office of Energy Efficiency and Renewable Energy

    This book takes readers inside the places where daily discoveries shape the next generation of wind power systems. Energy Department laboratory facilities span the United States and offer wind research capabilities to meet industry needs. The facilities described in this book make it possible for industry players to increase reliability, improve efficiency, and reduce the cost of wind energy -- one discovery at a time. Whether you require blade testing or resource characterization, grid integration or high-performance computing, Department of Energy laboratory facilities offer a variety of capabilities to meet your wind research needs.

  15. INCINERATION RESEARCH FACILITY

    EPA Science Inventory

    The Cincinnati-based Risk Reduction Engineering Laboratory, ORD, U.S. EPA operates the Incineration Research Facility *IRF) in Jefferson, Arkansas. This facility's pilot-scale experimental incineration systems include a Rotary Kiln System and a Liquid Injection System. Each syste...

  16. The automatic control system and stand-by facilities of the TDMA-40 equipment

    NASA Astrophysics Data System (ADS)

    Gudenko, D. V.; Pankov, G. Kh.; Pauk, A. G.; Tsirlin, V. M.

    1980-10-01

    When a controlling station in a satellite communications system is out of order, a complex algorithm must be carried out for automatic operation of the stand-by equipment. A processor has been developed to perform this algorithm, as well as operations involving the stand-by facilities of the receiving-transmitting equipment of the station. The design principles and solutions to problems in developing the equipment for the monitoring and controlling systems are described. These systems are based on multistation access using time division multiplexing. Algorithms are presented for the operation of the synchronizing processor and the control processor of the equipment. The automatic control system and stand-by facilities make it possible to reduce the service personnel and to design an unattended station.

  17. HITRAP: A Facility for Experiments with Trapped Highly Charged Ions

    NASA Astrophysics Data System (ADS)

    Quint, W.; Dilling, J.; Djekic, S.; Häffner, H.; Hermanspahn, N.; Kluge, H.-J.; Marx, G.; Moore, R.; Rodriguez, D.; Schönfelder, J.; Sikler, G.; Valenzuela, T.; Verdú, J.; Weber, C.; Werth, G.

    2001-01-01

    HITRAP is a planned ion trap facility for capturing and cooling of highly charged ions produced at GSI in the heavy-ion complex of the UNILAC-SIS accelerators and the ESR storage ring. In this facility heavy highly charged ions up to uranium will be available as bare nuclei, hydrogen-like ions or few-electron systems at low temperatures. The trap for receiving and studying these ions is designed for operation at extremely high vacuum by cooling to cryogenic temperatures. The stored highly charged ions can be investigated in the trap itself or can be extracted from the trap at energies up to about 10 keV/q. The proposed physics experiments are collision studies with highly charged ions at well-defined low energies (eV/u), high-accuracy measurements to determine the g-factor of the electron bound in a hydrogen-like heavy ion and the atomic binding energies of few-electron systems, laser spectroscopy of HFS transitions and X-ray spectroscopy.

  18. Picatinny Arsenal 3000 Area Laboratory Complex Energy Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Daryl R.; Goddard, James K.

    2010-05-01

    In response to a request by Picatinny Arsenal, the Pacific Northwest National Laboratory (PNNL) was asked by the Army to conduct an energy audit of the Arsenal’s 3000 Area Laboratory Complex. The objective of the audit was to identify life-cycle cost-effective measures that the Arsenal could implement to reduce energy costs. A “walk-through” audit of the facilities was conducted on December 7-8, 2009. Findings and recommendations are included in this document.

  19. Facile One-Pot Synthesis of Tellurium Nanorods as Antioxidant and Anticancer Agents.

    PubMed

    Huang, Wei; Wu, Hualian; Li, Xiaoling; Chen, Tianfeng

    2016-08-19

    Nanorods have been utilized in targeted therapy, controlled release, molecular diagnosis, and molecule imaging owing to their large surface area and optical, magnetic, electronic, and structural properties. However, low stability and complex synthetic methods have substantially limited the application of tellurium nanorods for use as antioxidant and anticancer agents. Herein, a facile one-pot synthesis of functionalized tellurium nanorods (PTNRs) by using a hydrothermal synthetic system with a polysaccharide-protein complex (PTR), which was extracted from Pleurotus tuber-regium, as a capping agent is described. PTNRs remained stable in water and in phosphate-buffered saline and exhibited high hemocompatibility. Interestingly, these nanorods possessed strong antioxidant activity for scavenging 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid radical cation (ABTS(.+) ) and 2,2-diphenyl-1-picrylhydrazylhydrate (DPPH) free radicals and demonstrated novel anticancer activities. However, these nanorods exhibited low cytotoxicity toward normal human cells. In addition, the PTNRs effectively induced a decrease in the mitochondrial membrane potential in a dose-dependent manner, which indicated that mitochondrial dysfunction might play an important role in PTNR-induced apoptosis. Therefore, this study provides a one-pot strategy for the facile synthesis of tellurium nanorods with novel antioxidant and anticancer application potentials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Alleviation of Facility/Engine Interactions in an Open-Jet Scramjet Test Facility

    NASA Technical Reports Server (NTRS)

    Albertson, Cindy W.; Emami, Saied

    2001-01-01

    Results of a series of shakedown tests to eliminate facility/engine interactions in an open-jet scramjet test facility are presented. The tests were conducted with the NASA DFX (Dual-Fuel eXperimental scramjet) engine in the NASA Langley Combustion Heated Scramjet Test Facility (CHSTF) in support of the Hyper-X program, The majority of the tests were conducted at a total enthalpy and pressure corresponding to Mach 5 flight at a dynamic pressure of 734 psf. The DFX is the largest engine ever tested in the CHSTF. Blockage, in terms of the projected engine area relative to the nozzle exit area, is 81% with the engine forebody leading edge aligned with the upper edge of the facility nozzle such that it ingests the nozzle boundary layer. The blockage increases to 95% with the engine forebody leading edge positioned 2 in. down in the core flow. Previous engines successfully tested in the CHSTF have had blockages of no more than 51%. Oil flow studies along with facility and engine pressure measurements were used to define flow behavior. These results guided modifications to existing aeroappliances and the design of new aeroappliances. These changes allowed fueled tests to be conducted without facility interaction effects in the data with the engine forebody leading edge positioned to ingest the facility nozzle boundary layer. Interaction effects were also reduced for tests with the engine forebody leading edge positioned 2 in. into the core flow, however some interaction effects were still evident in the engine data. A new shroud and diffuser have been designed with the goal of allowing fueled tests to be conducted with the engine forebody leading edge positioned in the core without facility interaction effects in the data. Evaluation tests of the new shroud and diffuser will be conducted once ongoing fueled engine tests have been completed.

  1. 42 CFR 440.140 - Inpatient hospital services, nursing facility services, and intermediate care facility services...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 4 2012-10-01 2012-10-01 false Inpatient hospital services, nursing facility... Definitions § 440.140 Inpatient hospital services, nursing facility services, and intermediate care facility... under section 1903(i)(4) of the Act and subpart H of part 456 of this chapter. (b) Nursing facility...

  2. 42 CFR 440.140 - Inpatient hospital services, nursing facility services, and intermediate care facility services...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 4 2011-10-01 2011-10-01 false Inpatient hospital services, nursing facility... Definitions § 440.140 Inpatient hospital services, nursing facility services, and intermediate care facility... section 1903(i)(4) of the Act and subpart H of part 456 of this chapter. (b) Nursing facility services...

  3. 42 CFR 440.140 - Inpatient hospital services, nursing facility services, and intermediate care facility services...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 4 2014-10-01 2014-10-01 false Inpatient hospital services, nursing facility... Definitions § 440.140 Inpatient hospital services, nursing facility services, and intermediate care facility... under section 1903(i)(4) of the Act and subpart H of part 456 of this chapter. (b) Nursing facility...

  4. 42 CFR 440.140 - Inpatient hospital services, nursing facility services, and intermediate care facility services...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Inpatient hospital services, nursing facility... Definitions § 440.140 Inpatient hospital services, nursing facility services, and intermediate care facility... section 1903(i)(4) of the Act and subpart H of part 456 of this chapter. (b) Nursing facility services...

  5. 42 CFR 440.140 - Inpatient hospital services, nursing facility services, and intermediate care facility services...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 4 2013-10-01 2013-10-01 false Inpatient hospital services, nursing facility... Definitions § 440.140 Inpatient hospital services, nursing facility services, and intermediate care facility... under section 1903(i)(4) of the Act and subpart H of part 456 of this chapter. (b) Nursing facility...

  6. ROYAL PALMLINED WALK TO FACILITY 1041 (QUARTERS J) WITH FACILITY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ROYAL PALM-LINED WALK TO FACILITY 1041 (QUARTERS J) WITH FACILITY 1040 (QUARTERS 1) TO LEFT. TAKEN AT CORNER OF HALE ALII AVENUE AND EIGHTH STREET. VIEW FACING EAST. - U.S. Naval Base, Pearl Harbor, Naval Housing Area Hale Alii, Hale Alii Avenue, Eighth Street, & Avenue D, Pearl City, Honolulu County, HI

  7. Wake Shield Facility Modal Survey Test in Vibration Acoustic Test Facility

    NASA Image and Video Library

    1991-10-09

    Astronaut Ronald M. Sega stands beside the University of Houston's Wake Shield Facility before it undergoes a Modal Survey Test in the Vibration and Acoustic Test Facility Building 49, prior to being flown on space shuttle mission STS-60.

  8. 48 CFR 1830.7002 - Facilities capital employed for facilities under construction.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false Facilities capital employed for facilities under construction. 1830.7002 Section 1830.7002 Federal Acquisition Regulations System NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GENERAL CONTRACTING REQUIREMENTS COST ACCOUNTING...

  9. EPA Facility Registry System (FRS): NEPT

    EPA Pesticide Factsheets

    This web feature service contains location and facility identification information from EPA's Facility Registry System (FRS) for the subset of facilities that link to the National Environmental Performance Track (NEPT) Program dataset. FRS identifies and geospatially locates facilities, sites or places subject to environmental regulations or of environmental interest. Using vigorous verification and data management procedures, FRS integrates facility data from EPA's national program systems, other federal agencies, and State and tribal master facility records and provides EPA with a centrally managed, single source of comprehensive and authoritative information on facilities. Additional information on FRS is available at the EPA website https://www.epa.gov/enviro/facility-registry-service-frs

  10. EPA Facility Registry Service (FRS): NEI

    EPA Pesticide Factsheets

    This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of facilities that link to the National Emissions Inventory (NEI) Program dataset. FRS identifies and geospatially locates facilities, sites or places subject to environmental regulations or of environmental interest. Using vigorous verification and data management procedures, FRS integrates facility data from EPA's national program systems, other federal agencies, and State and tribal master facility records and provides EPA with a centrally managed, single source of comprehensive and authoritative information on facilities. Additional information on FRS is available at the EPA website https://www.epa.gov/enviro/facility-registry-service-frs

  11. The Aged Residential Care Healthcare Utilization Study (ARCHUS): a multidisciplinary, cluster randomized controlled trial designed to reduce acute avoidable hospitalizations from long-term care facilities.

    PubMed

    Connolly, Martin J; Boyd, Michal; Broad, Joanna B; Kerse, Ngaire; Lumley, Thomas; Whitehead, Noeline; Foster, Susan

    2015-01-01

    To assess effect of a complex, multidisciplinary intervention aimed at reducing avoidable acute hospitalization of residents of residential aged care (RAC) facilities. Cluster randomized controlled trial. RAC facilities with higher than expected hospitalizations in Auckland, New Zealand, were recruited and randomized to intervention or control. A total of 1998 residents of 18 intervention facilities and 18 control facilities. A facility-based complex intervention of 9 months' duration. The intervention comprised gerontology nurse specialist (GNS)-led staff education, facility bench-marking, GNS resident review, and multidisciplinary (geriatrician, primary-care physician, pharmacist, GNS, and facility nurse) discussion of residents selected using standard criteria. Primary end point was avoidable hospitalizations. Secondary end points were all acute admissions, mortality, and acute bed-days. Follow-up was for a total of 14 months. The intervention did not affect main study end points: number of acute avoidable hospital admissions (RR 1.07; 95% CI 0.85-1.36; P = .59) or mortality (RR 1.11; 95% CI 0.76-1.61; P = .62). This multidisciplinary intervention, packaging selected case review, and staff education had no overall impact on acute hospital admissions or mortality. This may have considerable implications for resourcing in the acute and RAC sectors in the face of population aging. Australian and New Zealand Clinical Trials Registry (ACTRN12611000187943). Copyright © 2015 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  12. Biotechnology Facility: An ISS Microgravity Research Facility

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Tsao, Yow-Min

    2000-01-01

    The International Space Station (ISS) will support several facilities dedicated to scientific research. One such facility, the Biotechnology Facility (BTF), is sponsored by the Microgravity Sciences and Applications Division (MSAD) and developed at NASA's Johnson Space Center. The BTF is scheduled for delivery to the ISS via Space Shuttle in April 2005. The purpose of the BTF is to provide: (1) the support structure and integration capabilities for the individual modules in which biotechnology experiments will be performed, (2) the capability for human-tended, repetitive, long-duration biotechnology experiments, and (3) opportunities to perform repetitive experiments in a short period by allowing continuous access to microgravity. The MSAD has identified cell culture and tissue engineering, protein crystal growth, and fundamentals of biotechnology as areas that contain promising opportunities for significant advancements through low-gravity experiments. The focus of this coordinated ground- and space-based research program is the use of the low-gravity environment of space to conduct fundamental investigations leading to major advances in the understanding of basic and applied biotechnology. Results from planned investigations can be used in applications ranging from rational drug design and testing, cancer diagnosis and treatments and tissue engineering leading to replacement tissues.

  13. 48 CFR 1830.7001 - Facilities capital employed for facilities in use.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false Facilities capital employed for facilities in use. 1830.7001 Section 1830.7001 Federal Acquisition Regulations System NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GENERAL CONTRACTING REQUIREMENTS COST ACCOUNTING STANDARDS ADMINISTRATION...

  14. Complexity Science and the Dynamics of Climate and Communication: Reducing Nursing Home Turnover

    ERIC Educational Resources Information Center

    Anderson, Ruth A.; Corazzini, Kirsten N.; McDaniel, Reuben R., Jr.

    2004-01-01

    Purpose: Turnover in nursing homes is a widespread problem adversely affecting care quality. Using complexity theory, we tested the effect of administrative climate, communication patterns, and the interaction between the two on turnover, controlling for facility context. Design and Methods: Perceptions of administrative climate and communication…

  15. The accomplishments of lithium target and test facility validation activities in the IFMIF/EVEDA phase

    NASA Astrophysics Data System (ADS)

    Arbeiter, Frederik; Baluc, Nadine; Favuzza, Paolo; Gröschel, Friedrich; Heidinger, Roland; Ibarra, Angel; Knaster, Juan; Kanemura, Takuji; Kondo, Hiroo; Massaut, Vincent; Saverio Nitti, Francesco; Miccichè, Gioacchino; O'hira, Shigeru; Rapisarda, David; Sugimoto, Masayoshi; Wakai, Eiichi; Yokomine, Takehiko

    2018-01-01

    As part of the engineering validation and engineering design activities (EVEDA) phase for the international fusion materials irradiation facility IFMIF, major elements of a lithium target facility and the test facility were designed, prototyped and validated. For the lithium target facility, the EVEDA lithium test loop was built at JAEA and used to test the stability (waves and long term) of the lithium flow in the target, work out the startup procedures, and test lithium purification and analysis. It was confirmed by experiments in the Lifus 6 plant at ENEA that lithium corrosion on ferritic martensitic steels is acceptably low. Furthermore, complex remote handling procedures for the remote maintenance of the target in the test cell environment were successfully practiced. For the test facility, two variants of a high flux test module were prototyped and tested in helium loops, demonstrating their good capabilities of maintaining the material specimens at the desired temperature with a low temperature spread. Irradiation tests were performed for heated specimen capsules and irradiation instrumentation in the BR2 reactor at SCK-CEN. The small specimen test technique, essential for obtaining material test results with limited irradiation volume, was advanced by evaluating specimen shape and test technique influences.

  16. Associations between Moderate-to-Vigorous Physical Activity and Neighbourhood Recreational Facilities: The Features of the Facilities Matter

    PubMed Central

    Lee, Ka Yiu; Lee, Paul H.; Macfarlane, Duncan

    2014-01-01

    Objectives: To examine the associations between objectively-assessed moderate-to-vigorous physical activity (MVPA) and perceived/objective measures of neighbourhood recreational facilities categorized into indoor or outdoor, public, residential or commercial facilities. The associations between facility perceptions and objectively-assessed numbers of recreational facilities were also examined. Method: A questionnaire was used on 480 adults to measure local facility perceptions, with 154 participants wearing ActiGraph accelerometers for ≥4 days. The objectively-assessed number of neighbourhood recreational facilities were examined using direct observations and Geographical Information System data. Results: Both positive and negative associations were found between MVPA and perceived/objective measures of recreational facilities. Some associations depended on whether the recreational facilities were indoor or outdoor, public or residential facilities. The objectively-assessed number of most public recreational facilities was associated with the corresponding facility perceptions, but the size of effect was generally lower than for residential recreational facilities. Conclusions: The objectively-assessed number of residential outdoor table tennis courts and public indoor swimming pools, the objectively-assessed presence of tennis courts and swimming pools, and the perceived presence of bike lanes and swimming pools were positive determinants of MVPA. It is suggested to categorize the recreational facilities into smaller divisions in order to identify unique associations with MVPA. PMID:25485980

  17. 33 CFR 125.07 - Waterfront facility.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Waterfront facility. 125.07...) WATERFRONT FACILITIES IDENTIFICATION CREDENTIALS FOR PERSONS REQUIRING ACCESS TO WATERFRONT FACILITIES OR VESSELS § 125.07 Waterfront facility. The term waterfront facility as used in this subchapter, means all...

  18. Investigating walking environments in and around assisted living facilities: a facility visit study.

    PubMed

    Lu, Zhipeng

    2010-01-01

    This study explores assisted living residents' walking behaviors, locations where residents prefer to walk, and walking environments in and around assisted living facilities. Regular walking is beneficial to older adults' physical and psychological health. Yet frail older residents in assisted living are usually too sedentary to achieve these benefits. The physical environment plays an important role in promoting physical activity. However, there is little research exploring this relationship in assisted living settings. The researcher visited 34 assisted living facilities in a major Texas city. Methods included walk-through observation with the Assisted Living Facility Walking Environment Checklist, and interviews with administrators by open- and close-ended questions. The data from 26 facilities were analyzed using descriptive statistics (for quantitative data) and content analysis (for qualitative data). The results indicate that (a) residents were walking both indoors and outdoors for exercise or other purposes (e.g., going to destinations); (b) assisted living facility planning and design details-such as neighborhood sidewalk conditions, facility site selection, availability of seating, walking path configuration (e.g., looped/nonlooped path), amount of shading along the path, presence of handrails, existence of signage, etc.-may influence residents' walking behaviors; and (c) current assisted living facilities need improvement in all aspects to make their environments more walkable for residents. Findings of the study provide recommendations for assisted living facilities to improve the walkability of environments and to create environmental interventions to promote regular walking among their residents. This study also implies several directions for future research.

  19. Guide of good practices for occupational radiological protection in plutonium facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-06-01

    This Technical Standard (TS) does not contain any new requirements. Its purpose is to provide guides to good practice, update existing reference material, and discuss practical lessons learned relevant to the safe handling of plutonium. the technical rationale is given to allow US Department of Energy (DOE) health physicists to adapt the recommendations to similar situations throughout the DOE complex. Generally, DOE contractor health physicists will be responsible to implement radiation protection activities at DOE facilities and DOE health physicists will be responsible for oversight of those activities. This guidance is meant to be useful for both efforts. This TSmore » replaces PNL-6534, Health Physics Manual of Good Practices for Plutonium Facilities, by providing more complete and current information and by emphasizing the situations that are typical of DOE`s current plutonium operations; safe storage, decontamination, and decommissioning (environmental restoration); and weapons disassembly.« less

  20. Water oxidation by Ruthenium complexes incorporating multifunctional biipyridyl diphosphonate ligands

    DOE PAGES

    Xie, Yan; Shaffer, David W.; Lewandowska-Andralojc, Anna; ...

    2016-05-11

    Here, we describe herein the synthesis and characterization of ruthenium complexes with multifunctional bipyridyl diphosphonate ligands as well as initial water oxidation studies. In these complexes, the phosphonate groups provide redox-potential leveling through charge compensation and σ donation to allow facile access to high oxidation states. These complexes display unique pH-dependent electrochemistry associated with deprotonation of the phosphonic acid groups. The position of these groups allows them to shuttle protons in and out of the catalytic site and reduce activation barriers. A mechanism for water oxidation by these catalysts is proposed on the basis of experimental results and DFT calculations.more » The unprecedented attack of water at a neutral six-coordinate [Ru IV] center to yield an anionic seven-coordinate [Ru IV–OH] – intermediate is one of the key steps of a single-site mechanism in which all species are anionic or neutral. These complexes are among the fastest single-site catalysts reported to date.« less

  1. Integrated approach to oral health in aged care facilities using oral health practitioners and teledentistry in rural Queensland.

    PubMed

    Tynan, Anna; Deeth, Lisa; McKenzie, Debra; Bourke, Carolyn; Stenhouse, Shayne; Pitt, Jacinta; Linneman, Helen

    2018-04-16

    Residents of residential aged care facilities are at very high risk of developing complex oral diseases and dental problems. Key barriers exist in delivering oral health services to residential aged care facilities, particularly in regional and rural areas. A quality improvement study incorporating pre- and post chart audits and pre- and post consultation with key stakeholders, including staff and residents, expert opinion on cost estimates and field notes were used. One regional and three rural residential aged care facilities situated in a non-metropolitan hospital and health service in Queensland. Number of appointments avoided at an oral health facility Feedback on program experience by staff and residents Compliance with oral health care plan implementation Observations of costs involved to deliver new service. The model developed incorporated a visit by an oral health therapist for screening, education, simple intervention and referral for a teledentistry session if required. Results showed an improvement in implementation of oral health care plans and a minimisation of need for residents to attend an oral health care facility. Potential financial and social cost savings for residents and the facilities were also noted. Screening via the oral health therapist and teledentistry appointment minimises the need for a visit to an oral health facility and subsequent disruption to residents in residential aged care facilities. © 2018 National Rural Health Alliance Ltd.

  2. Redox-Controlled Olefin (Co)Polymerization Catalyzed by Ferrocene-Bridged Phosphine-Sulfonate Palladium Complexes.

    PubMed

    Chen, Min; Yang, Bangpei; Chen, Changle

    2015-12-14

    The facile and reversible interconversion between neutral and oxidized forms of palladium complexes containing ferrocene-bridged phosphine sulfonate ligands was demonstrated. The activity of these palladium complexes could be controlled using redox reagents during ethylene homopolymerization, ethylene/methyl acrylate copolymerization, and norbornene oligomerization. Specifically in norbornene oligomerization, the neutral complexes were not active at all whereas the oxidized counterparts showed appreciable activity. In situ switching between the neutral and oxidized forms resulted in an interesting "off" and "on" behavior in norbornene oligomerization. This work provides a new strategy to control the olefin polymerization process. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. 33 CFR 154.1216 - Facility classification.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Facility classification. 154.1216... Vegetable Oils Facilities § 154.1216 Facility classification. (a) The Coast Guard classifies facilities that... classification of a facility that handles, stores, or transports animal fats or vegetable oils. The COTP may...

  4. 33 CFR 154.1216 - Facility classification.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Facility classification. 154.1216... Vegetable Oils Facilities § 154.1216 Facility classification. (a) The Coast Guard classifies facilities that... classification of a facility that handles, stores, or transports animal fats or vegetable oils. The COTP may...

  5. 33 CFR 154.1216 - Facility classification.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Facility classification. 154.1216... Vegetable Oils Facilities § 154.1216 Facility classification. (a) The Coast Guard classifies facilities that... classification of a facility that handles, stores, or transports animal fats or vegetable oils. The COTP may...

  6. 10 CFR 611.206 - Existing facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Existing facilities. 611.206 Section 611.206 Energy... PROGRAM Facility/Funding Awards § 611.206 Existing facilities. The Secretary shall, in making awards to those manufacturers that have existing facilities, give priority to those facilities that are oldest or...

  7. 33 CFR 154.1216 - Facility classification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Vegetable Oils Facilities § 154.1216 Facility classification. (a) The Coast Guard classifies facilities that handle, store, or transport animal fats or vegetable oils as “substantial harm” facilities because they... classification of a facility that handles, stores, or transports animal fats or vegetable oils. The COTP may...

  8. 33 CFR 154.1216 - Facility classification.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Vegetable Oils Facilities § 154.1216 Facility classification. (a) The Coast Guard classifies facilities that handle, store, or transport animal fats or vegetable oils as “substantial harm” facilities because they... classification of a facility that handles, stores, or transports animal fats or vegetable oils. The COTP may...

  9. 9 CFR 3.51 - Facilities, indoor.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Facilities, indoor. 3.51 Section 3.51... Facilities and Operating Standards § 3.51 Facilities, indoor. (a) Heating. Indoor housing facilities for rabbits need not be heated. (b) Ventilation. Indoor housing facilities for rabbits shall be adequately...

  10. 18 CFR 1317.410 - Comparable facilities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Comparable facilities... facilities. A recipient may provide separate toilet, locker room, and shower facilities on the basis of sex, but such facilities provided for students of one sex shall be comparable to such facilities provided...

  11. The Development of the Multi-Center Traffic Management Advisor (MCTMA): Traffic Flow Management Research in a Multi-Facility Environment

    NASA Technical Reports Server (NTRS)

    Lee, Katharine K.; Davis, Thomas J.; Levin, Kerry M.; Rowe, Dennis W.

    2001-01-01

    The Traffic Management Advisor (TMA) is a decision-support tool for traffic managers and air traffic controllers that provides traffic flow visualization and other flow management tools. TMA creates an efficiently sequenced and safely spaced schedule for arrival traffic that meets but does not exceed specified airspace system constraints. TMA is being deployed at selected facilities throughout the National Airspace System in the US as part of the FAA's Free Flight Phase 1 program. TMA development and testing, and its current deployment, focuses on managing the arrival capacity for single major airports within single terminal areas and single en route centers. The next phase of development for this technology is the expansion of the TMA capability to complex facilities in which a terminal area or airport is fed by multiple en route centers, thus creating a multicenter TMA functionality. The focus of the multi-center TMA (McTMA) development is on the busy facilities in the Northeast comdor of the US. This paper describes the planning and development of McTMA and the challenges associated with adapting a successful traffic flow management tool for a very complex airspace.

  12. Service quality in contracted facilities.

    PubMed

    Rabbani, Fauziah; Pradhan, Nousheen Akber; Zaidi, Shehla; Azam, Syed Iqbal; Yousuf, Farheen

    2015-01-01

    The purpose of this paper is to explore the readiness of contracted and non-contracted first-level healthcare facilities in Pakistan to deliver quality maternal and neonatal health (MNH) care. A balanced scorecard (BSC) was used as the assessment framework. Using a cross-sectional study design, two rural health centers (RHCs) contracted out to Aga Khan Health Service, Pakistan were compared with four government managed RHCs. A BSC was designed to assess RHC readiness to deliver good quality MNH care. In total 20 indicators were developed, representing five BSC domains: health facility functionality, service provision, staff capacity, staff and patient satisfaction. Validated data collection tools were used to collect information. Pearson χ2, Fisher's Exact and the Mann-Whitney tests were applied as appropriate to detect significant service quality differences among the two facilities. Contracted facilities were generally found to be better than non-contracted facilities in all five BSC domains. Patients' inclination for facility-based delivery at contracted facilities was, however, significantly higher than non-contracted facilities (80 percent contracted vs 43 percent non-contracted, p=0.006). The study shows that contracting out initiatives have the potential to improve MNH care. This is the first study to compare MNH service delivery quality across contracted and non-contracted facilities using BSC as the assessment framework.

  13. Europlanet Research Infrastructure: Planetary Sample Analysis Facilities

    NASA Astrophysics Data System (ADS)

    Cloquet, C.; Mason, N. J.; Davies, G. R.; Marty, B.

    2008-09-01

    study of long (e.g. Rb- Sr, Sm-Nd…) and short-lived radioisotope (e.g. Mg- Al, Hf-W..), including also Os isotopes, stable and non traditional stable isotope facilities (e.g. Fe, Pb, Zn…). The facility comprises three multicollector Thermal ionization mass spectrometers (TIMS) and two multi-collector ICP-MS one of which is fitted with 193 nm laser for in situ work. In addition these instruments are fully supported by sample preparation labs (crushing, mineral separation/picking), a clean lab and geochemical support (XRF; ICP; ICP-MS etc). Data that can be obtained on samples containing sub nano gram to nanogram amounts. Organic matter analysis at OU Leco Pegasus IV GCxGC-TOFMS - mass spectrometric complete characterisation of very complex mixtures of organic materials. The Pegasus EPSC Abstracts, Vol. 3, EPSC2008-A-00437, 2008 European Planetary Science Congress, Author(s) 2008 4D GCxGC-TOFMS system, from Leco, provides the analyst with four dimensions of analytical resolution for significantly more complete sample analysis compared to conventional GC-Mass Spectrometry. The main advantages include: 1) The significantly increased sensitivity over the whole mass range (5- 1000 amu); 2)The separation of compounds that coelute on standard gas chromatograph systems; 3) Separation of analytes by volatility and polarity enables traditionally unresolved mixtures to be examined in detail, and vastly increases the number of compounds identified; 4) Greatly increased signal to noise ratio, due to compounds being separated from the column bleed of the first column on the second GC column and an enormous increase in the Spectral Generation Rate. A number of different pyrolysis and injection sample introduction facilities are available and access to off-line data processing and reference libraries. This is the only instrument of this type in a European laboratory with a significant focus on extraterrestrial materials. Thermo MAT 253 GC-IRMS -isotopic measurements of H, C or N on

  14. EPA Facility Registry Service (FRS): TRI

    EPA Pesticide Factsheets

    This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of facilities that link to the Toxic Release Inventory (TRI) System. TRI is a publicly available EPA database reported annually by certain covered industry groups, as well as federal facilities. It contains information about more than 650 toxic chemicals that are being used, manufactured, treated, transported, or released into the environment, and includes information about waste management and pollution prevention activities. FRS identifies and geospatially locates facilities, sites or places subject to environmental regulations or of environmental interest. Using vigorous verification and data management procedures, FRS integrates facility data from EPA's national program systems, other federal agencies, and State and tribal master facility records and provides EPA with a centrally managed, single source of comprehensive and authoritative information on facilities. This data set contains the subset of FRS integrated facilities that link to TRI facilities once the TRI data has been integrated into the FRS database. Additional information on FRS is available at the EPA website https://www.epa.gov/enviro/facility-registry-service-frs.

  15. Implementing a province-wide mandatory vaccinate-or-mask policy at healthcare facilities in British Columbia, Canada.

    PubMed

    Nunn, Alexandra; Campbell, Audrey C; Naus, Monika; Kwong, Jeffrey C; Puddicombe, David; Quach, Susan; Henry, Bonnie

    2018-01-08

    In 2012, British Columbia (BC) became the first Canadian province to implement an influenza prevention policy requiring healthcare workers (HCW) to either be vaccinated annually against influenza or wear a mask in patient care areas during the influenza season. This study describes an evaluation of influenza policy implementation processes and identifies supports and challenges related to successful policy implementation at the level of healthcare facilities, during the second policy year (2013/14). Implementation leaders from 262 long-term care (LTC) and acute care facilities, mostly in three of BC's five regional Health Authorities, were invited to participate in an online survey following the 2013/14 influenza season. Descriptive quantitative and qualitative analyses identified common and effective strategies for improving vaccination coverage and policy compliance. A total of 127 respondents completed the survey on behalf of 33 acute care and 99 LTC facilities, representing 36% of acute care and 27% of LTC facilities in BC. Respondents agreed that the policy was successfully implemented at 89% of facilities, and implementation was reported to be easy at 52% of facilities. The findings elaborate on communication and leadership strategies, campaign logistics and enforcement approaches involved in policy implementation. Implementation of a vaccinate-or-mask influenza policy is complex. This study provides insight for other jurisdictions considering implementing such a policy and offers practical recommendations for facilities and health authorities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Development of a standardized transfusion ratio as a metric for evaluating dialysis facility anemia management practices.

    PubMed

    Liu, Jiannong; Li, Suying; Gilbertson, David T; Monda, Keri L; Bradbury, Brian D; Collins, Allan J

    2014-10-01

    Because transfusion avoidance has been the cornerstone of anemia treatment for patients with kidney disease, direct measurement of red blood cell transfusion use to assess dialysis facility anemia management performance is reasonable. We aimed to explore methods for estimating facility-level standardized transfusion ratios (STfRs) to assess provider anemia treatment practices. Retrospective cohort study. Point prevalent US hemodialysis patients on January 1, 2009, with Medicare as primary payer and dialysis duration of 90 days or longer were included (n = 223,901). All dialysis facilities with eligible patients were included (n = 5,345). Dialysis facility assignment. Receiving a red blood cell transfusion in the inpatient or outpatient setting. We evaluated 3 approaches for estimating STfR: ratio of observed to expected numbers of transfusions (STfR(obs)), a Bayesian approach (STfR(Bayes)), and a modified version of the Bayesian approach (STfR(modBayes)). The overall national transfusion rate in 2009 was 23.2 per 100 patient-years. Our model for predicting the expected number of transfusions performed well. For large facilities, all 3 STfRs worked well. However, for small facilities, while the STfR(modBayes) worked well, STfR(obs) values demonstrated instability and the STfR(Bayes) may produce more bias. Administration of transfusions to dialysis patients reflects medical practice both within and outside the dialysis unit. Some transfusions may be deemed unavoidable and transfusion practices are subject to considerable regional variation. Development of an STfR metric is feasible and reasonable for assessing anemia treatment at dialysis facilities. The STfR(obs) is simple to calculate and works well for larger dialysis facilities. The STfR(modBayes) is more analytically complex, but facilitates comparisons across all dialysis facilities, including small facilities. Copyright © 2014 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  17. Facility Design Considerations.

    ERIC Educational Resources Information Center

    Chase, William W.

    1967-01-01

    Increasing need for vocational education under the impetus of federal aid is generating a demand for vocational teaching facilities. Factors to be considered in planning these facilities inclued--(1) site development, (2) program needs, (3) administrative considerations, (4) environmental controls. (5) mechanical systems, and (6) area and space…

  18. Payload Crew Training Complex (PCTC) utilization and training plan

    NASA Technical Reports Server (NTRS)

    Self, M. R.

    1980-01-01

    The physical facilities that comprise the payload crew training complex (PCTC) are described including the host simulator; experiment simulators; Spacelab aft flight deck, experiment pallet, and experiment rack mockups; the simulation director's console; payload operations control center; classrooms; and supporting soft- and hardware. The parameters of a training philosophy for payload crew training at the PCTC are established. Finally the development of the training plan is addressed including discussions of preassessment, and evaluation options.

  19. The Paul A. Elsner Library and High Technology Complex--A Place for Learning.

    ERIC Educational Resources Information Center

    Moore, Chas. T., Jr.; Sugiyama, Kaoru K.

    2001-01-01

    Discusses the new Paul A. Elsner Library and High Technology Complex at Mesa Community College in Mesa, Arizona. Describes six planning goals for the facility, including access, integration of services, academic linkages, college services, district-wide services, and linkages with the community. Reports that the library offers faculty support…

  20. EPA Facility Registry Service (FRS): CAMDBS

    EPA Pesticide Factsheets

    This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of facilities that link to the Clean Air Markets Division Business System (CAMDBS). Administered by the EPA Clean Air Markets Division, within the Office of Air and Radiation, CAMDBS supports the implementation of market-based air pollution control programs, including the Acid Rain Program and regional programs designed to reduce the transport of ozone. FRS identifies and geospatially locates facilities, sites or places subject to environmental regulations or of environmental interest. Using vigorous verification and data management procedures, FRS integrates facility data from EPA's national program systems, other federal agencies, and State and tribal master facility records and provides EPA with a centrally managed, single source of comprehensive and authoritative information on facilities. This data set contains the subset of FRS integrated facilities that link to CAMDBS facilities once the CAMDBS data has been integrated into the FRS database. Additional information on FRS is available at the EPA website https://www.epa.gov/enviro/facility-registry-service-frs.

  1. EPA Facility Registry Service (FRS): RCRA

    EPA Pesticide Factsheets

    This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of hazardous waste facilities that link to the Resource Conservation and Recovery Act Information System (RCRAInfo). EPA's comprehensive information system in support of the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984, RCRAInfo tracks many types of information about generators, transporters, treaters, storers, and disposers of hazardous waste. FRS identifies and geospatially locates facilities, sites or places subject to environmental regulations or of environmental interest. Using vigorous verification and data management procedures, FRS integrates facility data from EPA's national program systems, other federal agencies, and State and tribal master facility records and provides EPA with a centrally managed, single source of comprehensive and authoritative information on facilities. This data set contains the subset of FRS integrated facilities that link to RCRAInfo hazardous waste facilities once the RCRAInfo data has been integrated into the FRS database. Additional information on FRS is available at the EPA website https://www.epa.gov/enviro/facility-registry-service-frs

  2. Variation Across U.S. Assisted Living Facilities: Admissions, Resident Care Needs, and Staffing.

    PubMed

    Han, Kihye; Trinkoff, Alison M; Storr, Carla L; Lerner, Nancy; Yang, Bo Kyum

    2017-01-01

    Though more people in the United States currently reside in assisted living facilities (ALFs) than nursing homes, little is known about ALF admission policies, resident care needs, and staffing characteristics. We therefore conducted this study using a nationwide sample of ALFs to examine these factors, along with comparison of ALFs by size. Cross-sectional secondary data analysis using data from the 2010 National Survey of Residential Care Facilities. Measures included nine admission policy items, seven items on the proportion of residents with selected conditions or care needs, and six items on staffing characteristics (e.g., access to licensed nurse, aide training). Facilities (n = 2,301) were divided into three categories by size: small, 4 to 10 beds; medium, 11 to 25 beds; and large, 26 or more beds. Analyses took complex sampling design effects into account to project national U.S. estimates. More than half of ALFs admitted residents with considerable healthcare needs and served populations that required nursing care, such as for transfers, medications, and eating or dressing. Staffing was largely composed of patient care aides, and fewer than half of ALFs had licensed care provider (registered nurse, licensed practical nurse) hours. Smaller facilities tended to have more inclusive admission policies and residents with more complex care needs (more mobility, eating and medication assistance required, short-term memory issues, p < .01) and less access to licensed nurses than larger ALFs (p < .01). This study suggests ALFs are caring for and admitting residents with considerable care needs, indicating potential overlap with nursing home populations. Despite this finding, ALF regulations lag far behind those in effect for nursing homes. In addition, measurement of care outcomes is critically needed to ensure appropriate ALF care quality. As more people choose ALFs, outcome measures for ALFs, which are now unavailable, should be developed to allow for oversight

  3. 9 CFR 3.27 - Facilities, outdoor.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Pigs and Hamsters Facilities and Operating Standards § 3.27 Facilities, outdoor. (a) Hamsters shall not be housed in outdoor facilities. (b) Guinea pigs shall not be housed in outdoor facilities unless...

  4. 9 CFR 3.27 - Facilities, outdoor.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Pigs and Hamsters Facilities and Operating Standards § 3.27 Facilities, outdoor. (a) Hamsters shall not be housed in outdoor facilities. (b) Guinea pigs shall not be housed in outdoor facilities unless...

  5. 9 CFR 3.27 - Facilities, outdoor.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Pigs and Hamsters Facilities and Operating Standards § 3.27 Facilities, outdoor. (a) Hamsters shall not be housed in outdoor facilities. (b) Guinea pigs shall not be housed in outdoor facilities unless...

  6. 9 CFR 3.27 - Facilities, outdoor.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Pigs and Hamsters Facilities and Operating Standards § 3.27 Facilities, outdoor. (a) Hamsters shall not be housed in outdoor facilities. (b) Guinea pigs shall not be housed in outdoor facilities unless...

  7. Science Facilities Bibliography.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC.

    A bibliographic collection on science buildings and facilities is cited with many different reference sources for those concerned with the design, planning, and layout of science facilities. References are given covering a broad scope of information on--(1) physical plant planning, (2) management and safety, (3) building type studies, (4) design…

  8. Mir training Facility view

    NASA Image and Video Library

    1995-02-22

    S95-04319 (22 Feb 1995) --- The neutral buoyancy facility at the Gagarin Cosmonaut Training Center in Star City, Russia, is used for underwater training for missions aboard the Russian Mir Space Station. The facility is similar to NASA's Weightless Environment Training Facility (WET-F) at the Johnson Space Center (JSC) in Houston, Texas, and the Neutral Buoyancy Simulator (NBS) at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama.

  9. NASA GRC's High Pressure Burner Rig Facility and Materials Test Capabilities

    NASA Technical Reports Server (NTRS)

    Robinson, R. Craig

    1999-01-01

    The High Pressure Burner Rig (HPBR) at NASA Glenn Research Center is a high-velocity. pressurized combustion test rig used for high-temperature environmental durability studies of advanced materials and components. The facility burns jet fuel and air in controlled ratios, simulating combustion gas chemistries and temperatures that are realistic to those in gas turbine engines. In addition, the test section is capable of simulating the pressures and gas velocities representative of today's aircraft. The HPBR provides a relatively inexpensive. yet sophisticated means for researchers to study the high-temperature oxidation of advanced materials. The facility has the unique capability of operating under both fuel-lean and fuel-rich gas mixtures. using a fume incinerator to eliminate any harmful byproduct emissions (CO, H2S) of rich-burn operation. Test samples are easily accessible for ongoing inspection and documentation of weight change, thickness, cracking, and other metrics. Temperature measurement is available in the form of both thermocouples and optical pyrometery. and the facility is equipped with quartz windows for observation and video taping. Operating conditions include: (1) 1.0 kg/sec (2.0 lbm/sec) combustion and secondary cooling airflow capability: (2) Equivalence ratios of 0.5- 1.0 (lean) to 1.5-2.0 (rich), with typically 10% H2O vapor pressure: (3) Gas temperatures ranging 700-1650 C (1300-3000 F): (4) Test pressures ranging 4-12 atmospheres: (5) Gas flow velocities ranging 10-30 m/s (50-100) ft/sec.: and (6) Cyclic and steady-state exposure capabilities. The facility has historically been used to test coupon-size materials. including metals and ceramics. However complex-shaped components have also been tested including cylinders, airfoils, and film-cooled end walls. The facility has also been used to develop thin-film temperature measurement sensors.

  10. NASA Data Acquisition System Software Development for Rocket Propulsion Test Facilities

    NASA Technical Reports Server (NTRS)

    Herbert, Phillip W., Sr.; Elliot, Alex C.; Graves, Andrew R.

    2015-01-01

    Current NASA propulsion test facilities include Stennis Space Center in Mississippi, Marshall Space Flight Center in Alabama, Plum Brook Station in Ohio, and White Sands Test Facility in New Mexico. Within and across these centers, a diverse set of data acquisition systems exist with different hardware and software platforms. The NASA Data Acquisition System (NDAS) is a software suite designed to operate and control many critical aspects of rocket engine testing. The software suite combines real-time data visualization, data recording to a variety formats, short-term and long-term acquisition system calibration capabilities, test stand configuration control, and a variety of data post-processing capabilities. Additionally, data stream conversion functions exist to translate test facility data streams to and from downstream systems, including engine customer systems. The primary design goals for NDAS are flexibility, extensibility, and modularity. Providing a common user interface for a variety of hardware platforms helps drive consistency and error reduction during testing. In addition, with an understanding that test facilities have different requirements and setups, the software is designed to be modular. One engine program may require real-time displays and data recording; others may require more complex data stream conversion, measurement filtering, or test stand configuration management. The NDAS suite allows test facilities to choose which components to use based on their specific needs. The NDAS code is primarily written in LabVIEW, a graphical, data-flow driven language. Although LabVIEW is a general-purpose programming language; large-scale software development in the language is relatively rare compared to more commonly used languages. The NDAS software suite also makes extensive use of a new, advanced development framework called the Actor Framework. The Actor Framework provides a level of code reuse and extensibility that has previously been difficult

  11. PIV Uncertainty Methodologies for CFD Code Validation at the MIR Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabharwall, Piyush; Skifton, Richard; Stoots, Carl

    2013-12-01

    Currently, computational fluid dynamics (CFD) is widely used in the nuclear thermal hydraulics field for design and safety analyses. To validate CFD codes, high quality multi dimensional flow field data are essential. The Matched Index of Refraction (MIR) Flow Facility at Idaho National Laboratory has a unique capability to contribute to the development of validated CFD codes through the use of Particle Image Velocimetry (PIV). The significance of the MIR facility is that it permits non intrusive velocity measurement techniques, such as PIV, through complex models without requiring probes and other instrumentation that disturb the flow. At the heart ofmore » any PIV calculation is the cross-correlation, which is used to estimate the displacement of particles in some small part of the image over the time span between two images. This image displacement is indicated by the location of the largest peak. In the MIR facility, uncertainty quantification is a challenging task due to the use of optical measurement techniques. Currently, this study is developing a reliable method to analyze uncertainty and sensitivity of the measured data and develop a computer code to automatically analyze the uncertainty/sensitivity of the measured data. The main objective of this study is to develop a well established uncertainty quantification method for the MIR Flow Facility, which consists of many complicated uncertainty factors. In this study, the uncertainty sources are resolved in depth by categorizing them into uncertainties from the MIR flow loop and PIV system (including particle motion, image distortion, and data processing). Then, each uncertainty source is mathematically modeled or adequately defined. Finally, this study will provide a method and procedure to quantify the experimental uncertainty in the MIR Flow Facility with sample test results.« less

  12. Detection of facilities in satellite imagery using semi-supervised image classification and auxiliary contextual observables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, Neal R; Ruggiero, Christy E; Pawley, Norma H

    2009-01-01

    Detecting complex targets, such as facilities, in commercially available satellite imagery is a difficult problem that human analysts try to solve by applying world knowledge. Often there are known observables that can be extracted by pixel-level feature detectors that can assist in the facility detection process. Individually, each of these observables is not sufficient for an accurate and reliable detection, but in combination, these auxiliary observables may provide sufficient context for detection by a machine learning algorithm. We describe an approach for automatic detection of facilities that uses an automated feature extraction algorithm to extract auxiliary observables, and a semi-supervisedmore » assisted target recognition algorithm to then identify facilities of interest. We illustrate the approach using an example of finding schools in Quickbird image data of Albuquerque, New Mexico. We use Los Alamos National Laboratory's Genie Pro automated feature extraction algorithm to find a set of auxiliary features that should be useful in the search for schools, such as parking lots, large buildings, sports fields and residential areas and then combine these features using Genie Pro's assisted target recognition algorithm to learn a classifier that finds schools in the image data.« less

  13. Integrated approach to modeling long-term durability of concrete engineered barriers in LLRW disposal facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J.H.; Roy, D.M.; Mann, B.

    1995-12-31

    This paper describes an integrated approach to developing a predictive computer model for long-term performance of concrete engineered barriers utilized in LLRW and ILRW disposal facilities. The model development concept consists of three major modeling schemes: hydration modeling of the binder phase, pore solution speciation, and transport modeling in the concrete barrier and service environment. Although still in its inception, the model development approach demonstrated that the chemical and physical properties of complex cementitious materials and their interactions with service environments can be described quantitatively. Applying the integrated model development approach to modeling alkali (Na and K) leaching from amore » concrete pad barrier in an above-grade tumulus disposal unit, it is predicted that, in a near-surface land disposal facility where water infiltration through the facility is normally minimal, the alkalis control the pore solution pH of the concrete barriers for much longer than most previous concrete barrier degradation studies assumed. The results also imply that a highly alkaline condition created by the alkali leaching will result in alteration of the soil mineralogy in the vicinity of the disposal facility.« less

  14. Making Research Results Relevant and Useable: Presenting Complex Organizational Context Data to Nonresearch Stakeholders in the Nursing Home Setting.

    PubMed

    Estabrooks, Carole A; Knopp-Sihota, Jennifer A; Cummings, Greta G; Norton, Peter G

    2016-08-01

    The success of evidence-based practice depends on clearly and effectively communicating often complex data to stakeholders. In our program of research, Translating Research in Elder Care (TREC), we focus on improving the quality and safety of care delivered to nursing home residents in western Canada. More specifically, we investigate associations among organizational context, the use of best practices and resident outcomes. Our data are complex and we have been challenged with presenting these data in a way that is not only intuitive, but also useful for our stakeholders. To illustrate a technique of organizing and presenting complex data to nonresearch stakeholders. Using observational data previously collected within the TREC study, we used k-means cluster analysis to categorize nursing home resident care units or facilities within our sample into two distinct groups-those with more favorable contexts (work environment) and those with less favorable contexts. We then produced scatter plots to illustrate group differences between context and various quality indicators among resident care units or facilities. Care aides working on units with more favorable context reported higher use of best practices. When aggregated at the nursing home facility level, facilities with low rates of both urinary tract infections and indwelling catheter use are higher in organizational context. When feeding back these results to stakeholders, we identify their units so that they are able to visually assess their units, both relative to each other and relative to all other units and facilities both within and among provinces. Although we have not formally evaluated this method, we have used it extensively as part of the feedback we provide to stakeholders. As we are examining modifiable aspects of context, the stakeholder can then identify areas for improvement and thus implement a focused plan. © 2016 Sigma Theta Tau International.

  15. An inventory of aeronautical ground research facilities. Volume 4: Engineering flight simulation facilities

    NASA Technical Reports Server (NTRS)

    Pirrello, C. J.; Hardin, R. D.; Capelluro, L. P.; Harrison, W. D.

    1971-01-01

    The general purpose capabilities of government and industry in the area of real time engineering flight simulation are discussed. The information covers computer equipment, visual systems, crew stations, and motion systems, along with brief statements of facility capabilities. Facility construction and typical operational costs are included where available. The facilities provide for economical and safe solutions to vehicle design, performance, control, and flying qualities problems of manned and unmanned flight systems.

  16. Contamination Sources Effects Analysis (CSEA) - A Tool to Balance Cost/Schedule While Managing Facility Availability

    NASA Technical Reports Server (NTRS)

    Wilcox, Margaret

    2008-01-01

    A CSEA is similar to a Failure Modes Effects Analysis (FMEA). A CSEA tracks risk, deterrence, and occurrence of sources of contamination and their mitigation plans. Documentation is provided spanning mechanical and electrical assembly, precision cleaning, thermal vacuum bake-out, and thermal vacuum testing. These facilities all may play a role in contamination budgeting and reduction ultimately affecting test and flight. With a CSEA, visibility can be given to availability of these facilities, test sequencing and trade-offs. A cross-functional team including specialty engineering, contamination control, electrostatic dissipation, manufacturing, testing, and material engineering participate in an exercise that identifies contaminants and minimizes the complexity of scheduling these facilities considering their volatile schedules. Care can be taken in an efficient manner to insure correct cleaning processes are employed. The result is reduction in cycle time ("schedule hits"), reduced cost due to rework, reduced risk and improved communication and quality while achieving adherence to the Contamination Control Plan.

  17. Complex traumatic posterior urethral strictures.

    PubMed

    Turner-Warwick, R

    1976-01-01

    A distinction between simple and complex posterior urethral strictures is proposed. The development of a complex stricture, requiring an extensive transpubic repair, must be regarded as a less than admirable result of the initial treatment, even if it is occasionally inevitable. However, it is particularly important that our endeavors to improve the end result of the relatively rare severe urethral injuries should not result in over-management of the relatively minor injuries, since this could increase the stricture potential of many. Therefore, we must keep our over-all concepts of the initial management of urethral injuries under careful review. Posterior urethroplasty should be regarded as a specialist procedure. It can be made to appear beguilingly simple but it cannot be recommended for occasional or general use. Even the relatively simple free patch graft technique is inadvisable for use in the sphincter area for surgeons who do not have considerable experience of it in the relatively forgiving bulbourethral area. The results of repair of posterior urethral strictures, even the complex ones, by anastomotic procedures can be excellent but real competence depends upon a particular aptitude of the surgeon for the minutiae of reconstructive techniques, appropriate training in a specializing department, a real ongoing numerical experience and special instrumentation with facilities for detailed urodynamic evaluation of this sphincter active area of the urethra.

  18. 20 CFR 416.1023 - Facilities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Facilities. 416.1023 Section 416.1023... Facilities. (a) Space, equipment, supplies, and other services. Subject to appropriate Federal funding, the... and prompt disability determinations. (b) Location of facilities. Subject to appropriate Federal...

  19. Hardware-in-the-loop environment facility to address pilot-vehicle-interface issues of a fighter aircraft

    NASA Astrophysics Data System (ADS)

    Pandurangareddy, Meenige

    2002-07-01

    The evolution of Pilot-Vehicle-Interface (PVI) of a fighter aircraft is a complex task. The PVI design involves both static and dynamic issues. Static issues involve the study of reach of controls and switches, ejection path clearance, readability of indicators and display symbols, etc. Dynamic issues involve the study of the effect of aircraft motion on display symbols, pilot emergency handling, situation awareness, weapon aiming, etc. This paper describes a method of addressing the above issues by building a facility with cockpit, which is ergonomically similar to the fighter cockpit. The cockpit is also fitted with actual displays, controls and switches. The cockpit is interfaced with various simulation models of aircraft and outside-window-image generators. The architecture of the facility is designed to represent the latencies of the aircraft and facilitates replacement of simulation models with actual units. A parameter injection facility could be used to induce faults in a comprehensive manner. Pilots could use the facility right from familiarising themselves with procedures to start the engine, take-off, navigate, aim the weapons, handling of emergencies and landing. This approach is being followed and further being enhanced on Cockpit-Environment-Facility (CEF) at Aeronautical Development Agency (ADA), Bangalore, India.

  20. Facilities for US Radioastronomy.

    ERIC Educational Resources Information Center

    Thaddeus, Patrick

    1982-01-01

    Discusses major developments in radioastronomy since 1945. Topics include proposed facilities, very-long-baseline interferometric array, millimeter-wave telescope, submillimeter-wave telescope, and funding for radioastronomy facilities and projects. (JN)

  1. Sanford Underground Research Facility - The United State's Deep Underground Research Facility

    NASA Astrophysics Data System (ADS)

    Vardiman, D.

    2012-12-01

    The 2.5 km deep Sanford Underground Research Facility (SURF) is managed by the South Dakota Science and Technology Authority (SDSTA) at the former Homestake Mine site in Lead, South Dakota. The US Department of Energy currently supports the development of the facility using a phased approach for underground deployment of experiments as they obtain an advanced design stage. The geology of the Sanford Laboratory site has been studied during the 125 years of operations at the Homestake Mine and more recently as part of the preliminary geotechnical site investigations for the NSF's Deep Underground Science and Engineering Laboratory project. The overall geology at DUSEL is a well-defined stratigraphic sequence of schist and phyllites. The three major Proterozoic units encountered in the underground consist of interbedded schist, metasediments, and amphibolite schist which are crosscut by Tertiary rhyolite dikes. Preliminary geotechnical site investigations included drift mapping, borehole drilling, borehole televiewing, in-situ stress analysis, laboratory analysis of core, mapping and laser scanning of new excavations, modeling and analysis of all geotechnical information. The investigation was focused upon the determination if the proposed site rock mass could support the world's largest (66 meter diameter) deep underground excavation. While the DUSEL project has subsequently been significantly modified, these data are still available to provide a baseline of the ground conditions which may be judiciously extrapolated throughout the entire Proterozoic rock assemblage for future excavations. Recommendations for facility instrumentation and monitoring were included in the preliminary design of the DUSEL project design and include; single and multiple point extensometers, tape extensometers and convergence measurements (pins), load cells and pressure cells, smart cables, inclinometers/Tiltmeters, Piezometers, thermistors, seismographs and accelerometers, scanners (laser

  2. EPA Facility Registry System (FRS): NCES

    EPA Pesticide Factsheets

    This web feature service contains location and facility identification information from EPA's Facility Registry System (FRS) for the subset of facilities that link to the National Center for Education Statistics (NCES). The primary federal database for collecting and analyzing data related to education in the United States and other Nations, NCES is located in the U.S. Department of Education, within the Institute of Education Sciences. FRS identifies and geospatially locates facilities, sites or places subject to environmental regulations or of environmental interest. Using vigorous verification and data management procedures, FRS integrates facility data from EPA00e2??s national program systems, other federal agencies, and State and tribal master facility records and provides EPA with a centrally managed, single source of comprehensive and authoritative information on facilities. This data set contains the subset of FRS integrated facilities that link to NCES school facilities once the NCES data has been integrated into the FRS database. Additional information on FRS is available at the EPA website http://www.epa.gov/enviro/html/fii/index.html.

  3. Capital Ideas for Facilities Management.

    ERIC Educational Resources Information Center

    Golding, Stephen T.; Gordon, Janet; Gravina, Arthur

    2001-01-01

    Asserting that just like chief financial officers, higher education facilities specialists must maximize the long-term performance of assets under their care, describes strategies for strategic facilities management. Discusses three main approaches to facilities management (insourcing, cosourcing, and outsourcing) and where boards of trustees fit…

  4. 9 CFR 351.10 - Facilities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... CERTIFICATION CERTIFICATION OF TECHNICAL ANIMAL FATS FOR EXPORT Facilities and Operations § 351.10 Facilities. (a) Facilities for the preparation, identification, and storage of the technical animal fat to be... maintain the identity of certified technical animal fats and materials used in their preparation, and...

  5. 9 CFR 351.10 - Facilities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... CERTIFICATION CERTIFICATION OF TECHNICAL ANIMAL FATS FOR EXPORT Facilities and Operations § 351.10 Facilities. (a) Facilities for the preparation, identification, and storage of the technical animal fat to be... maintain the identity of certified technical animal fats and materials used in their preparation, and...

  6. 9 CFR 351.10 - Facilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... CERTIFICATION CERTIFICATION OF TECHNICAL ANIMAL FATS FOR EXPORT Facilities and Operations § 351.10 Facilities. (a) Facilities for the preparation, identification, and storage of the technical animal fat to be... maintain the identity of certified technical animal fats and materials used in their preparation, and...

  7. 9 CFR 351.10 - Facilities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... CERTIFICATION CERTIFICATION OF TECHNICAL ANIMAL FATS FOR EXPORT Facilities and Operations § 351.10 Facilities. (a) Facilities for the preparation, identification, and storage of the technical animal fat to be... maintain the identity of certified technical animal fats and materials used in their preparation, and...

  8. 20 CFR 404.1623 - Facilities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Facilities. 404.1623 Section 404.1623...- ) Determinations of Disability Administrative Responsibilities and Requirements § 404.1623 Facilities. (a) Space... determinations. (b) Location of facilities. Subject to appropriate Federal funding, the State will determine the...

  9. Thomas Jefferson National Accelerator Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grames, Joseph; Higinbotham, Douglas; Montgomery, Hugh

    The Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Virginia, USA, is one of ten national laboratories under the aegis of the Office of Science of the U.S. Department of Energy (DOE). It is managed and operated by Jefferson Science Associates, LLC. The primary facility at Jefferson Lab is the Continuous Electron Beam Accelerator Facility (CEBAF) as shown in an aerial photograph in Figure 1. Jefferson Lab was created in 1984 as CEBAF and started operations for physics in 1995. The accelerator uses superconducting radio-frequency (srf) techniques to generate high-quality beams of electrons with high-intensity, well-controlled polarization. Themore » technology has enabled ancillary facilities to be created. The CEBAF facility is used by an international user community of more than 1200 physicists for a program of exploration and study of nuclear, hadronic matter, the strong interaction and quantum chromodynamics. Additionally, the exceptional quality of the beams facilitates studies of the fundamental symmetries of nature, which complement those of atomic physics on the one hand and of high-energy particle physics on the other. The facility is in the midst of a project to double the energy of the facility and to enhance and expand its experimental facilities. Studies are also pursued with a Free-Electron Laser produced by an energy-recovering linear accelerator.« less

  10. National facilities study. Volume 2: Task group on aeronautical research and development facilities report

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Task Group on Aeronautics R&D Facilities examined the status and requirements for aeronautics facilities against the competitive need. Emphasis was placed on ground-based facilities for subsonic, supersonic and hypersonic aerodynamics, and propulsion. Subsonic and transonic wind tunnels were judged to be most critical and of highest priority. Results of the study are presented.

  11. ETR AND MTR COMPLEXES IN CONTEXT. CAMERA FACING NORTHERLY. FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR AND MTR COMPLEXES IN CONTEXT. CAMERA FACING NORTHERLY. FROM BOTTOM TO TOP: ETR COOLING TOWER, ELECTRICAL BUILDING AND LOW-BAY SECTION OF ETR BUILDING, HEAT EXCHANGER BUILDING (WITH U SHAPED YARD), COMPRESSOR BUILDING. MTR REACTOR SERVICES BUILDING IS ATTACHED TO SOUTH WALL OF MTR. WING A IS ATTACHED TO BALCONY FLOOR OF MTR. NEAR UPPER RIGHT CORNER OF VIEW IS MTR PROCESS WATER BUILDING. WING B IS AT FAR WEST END OF COMPLEX. NEAR MAIN GATE IS GAMMA FACILITY, WITH "COLD" BUILDINGS BEYOND: RAW WATER STORAGE TANKS, STEAM PLANT, MTR COOLING TOWER PUMP HOUSE AND COOLING TOWER. INL NEGATIVE NO. 56-4101. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  12. FEDERAL FACILITIES IN EPA REGION 6

    EPA Science Inventory

    Locations of federal facilities in EPA Region 6. Facilities from the Corps of Engineers, Veterans Administration, Army, Navy, Air National Guard, etc. are included. This is not a complete set of facilities. The facilities included are only those with value added locations used in...

  13. 9 CFR 3.27 - Facilities, outdoor.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... WELFARE STANDARDS Specifications for the Humane Handling, Care, Treatment, and Transportation of Guinea Pigs and Hamsters Facilities and Operating Standards § 3.27 Facilities, outdoor. (a) Hamsters shall not be housed in outdoor facilities. (b) Guinea pigs shall not be housed in outdoor facilities unless...

  14. European Microgravity Facilities for ZEOLITE Experiments on the International Space Station

    NASA Astrophysics Data System (ADS)

    Pletser, V.; Minster, O.; Kremer, S.; Kirschhock, C.; Martens, J.; Jacobs, P.

    2002-01-01

    Synthetic zeolites are complex porous silicates. Zeolites are applied as catalysts, adsorbents and sensors. Whereas the traditional applications are situated in the petrochemical area, zeolite catalysis and related zeolite-based technologies have a growing impact on the economics and sustainability of products and processes in a growing number of industrial sectors, including environmental protection and nanotechnology. A Sounding Rocket microgravity experiment led to significant insight in the physical aggregation patterns of zeolitic nanoscopic particles and the occurrence of self-organisation phenomena when undisturbed by convection. The opportunity of performing longer microgravity duration experiments on zeolite structures was recently offered in the frame of a Taxi-Flight to the ISS in November 2002 organized by Belgium and ESA. Two facilities are currently under development for this flight. One of them will use the Microgravity Science Glovebox (MSG) in the US Lab. Destiny to achieve thermal induced self-organization of different types of Zeosil nanoslabs by heating and cooling. The other facility will be flown on the ISS Russian segment and will allow to form Zeogrids at ambient temperature. On the other hand, the European Space Agency (ESA) is studying the possibility of developing a dedicated insert for zeolite experiments to be used with the optical and diagnostic platform of the Protein Crystallisation Diagnostic Facility (PCDF), that will fly integrated in the European Drawer Rack on the Columbus Laboratory starting in 2004. This paper will present the approach followed by ESA to prepare and support zeolite investigations in microgravity and will present the design concept of these three facilities.

  15. Fourth-generation plasma immersion ion implantation and deposition facility for hybrid surface modification layer fabrication.

    PubMed

    Wang, Langping; Huang, Lei; Xie, Zhiwen; Wang, Xiaofeng; Tang, Baoyin

    2008-02-01

    The fourth-generation plasma immersion ion implantation and deposition (PIIID) facility for hybrid and batch treatment was built in our laboratory recently. Comparing with our previous PIIID facilities, several novel designs are utilized. Two multicathode pulsed cathodic arc plasma sources are fixed on the chamber wall symmetrically, which can increase the steady working time from 6 h (the single cathode source in our previous facilities) to about 18 h. Meanwhile, the inner diameter of the pulsed cathodic arc plasma source is increased from the previous 80 to 209 mm, thus, large area metal plasma can be obtained by the source. Instead of the simple sample holder in our previous facility, a complex revolution-rotation sample holder composed of 24 shafts, which can rotate around its axis and adjust its position through revolving around the center axis of the vacuum chamber, is fixed in the center of the vacuum chamber. In addition, one magnetron sputtering source is set on the chamber wall instead of the top cover in the previous facility. Because of the above characteristic, the PIIID hybrid process involving ion implantation, vacuum arc, and magnetron sputtering deposition can be acquired without breaking vacuum. In addition, the PIIID batch treatment of cylinderlike components can be finished by installing these components on the rotating shafts on the sample holder.

  16. Spacelab Data Processing Facility

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The capabilities of the Spacelab Data Processing Facility (SPDPF) are highlighted. The capturing, quality monitoring, processing, accounting, and forwarding of vital Spacelab data to various user facilities around the world are described.

  17. Plant Habitat Facility Clean

    NASA Image and Video Library

    2018-03-12

    iss055e001931 (Mar. 12, 2018) --- Dwarf wheat plants during routine cleaning in the Advanced Plant Habitat Facility, a facility to conduct plant bioscience research on the International Space Stations (ISS).

  18. 7 CFR 51.57 - Facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Facilities. 51.57 Section 51.57 Agriculture... Requirements for Plants Operating Under Continuous Inspection on A Contract Basis § 51.57 Facilities. Each packing plant shall be equipped with adequate sanitary facilities and accommodations, including but not...

  19. Disease and disaster: Optimal deployment of epidemic control facilities in a spatially heterogeneous population with changing behaviour.

    PubMed

    Gaythorpe, Katy; Adams, Ben

    2016-05-21

    Epidemics of water-borne infections often follow natural disasters and extreme weather events that disrupt water management processes. The impact of such epidemics may be reduced by deployment of transmission control facilities such as clinics or decontamination plants. Here we use a relatively simple mathematical model to examine how demographic and environmental heterogeneities, population behaviour, and behavioural change in response to the provision of facilities, combine to determine the optimal configurations of limited numbers of facilities to reduce epidemic size, and endemic prevalence. We show that, if the presence of control facilities does not affect behaviour, a good general rule for responsive deployment to minimise epidemic size is to place them in exactly the locations where they will directly benefit the most people. However, if infected people change their behaviour to seek out treatment then the deployment of facilities offering treatment can lead to complex effects that are difficult to foresee. So careful mathematical analysis is the only way to get a handle on the optimal deployment. Behavioural changes in response to control facilities can also lead to critical facility numbers at which there is a radical change in the optimal configuration. So sequential improvement of a control strategy by adding facilities to an existing optimal configuration does not always produce another optimal configuration. We also show that the pre-emptive deployment of control facilities has conflicting effects. The configurations that minimise endemic prevalence are very different to those that minimise epidemic size. So cost-benefit analysis of strategies to manage endemic prevalence must factor in the frequency of extreme weather events and natural disasters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. 10 CFR 55.46 - Simulation facilities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Simulation facilities. 55.46 Section 55.46 Energy NUCLEAR... Simulation facilities. (a) General. This section addresses the use of a simulation facility for the... applicants for operator and senior operator licenses. (b) Commission-approved simulation facilities and...

  1. 10 CFR 55.46 - Simulation facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Simulation facilities. 55.46 Section 55.46 Energy NUCLEAR... Simulation facilities. (a) General. This section addresses the use of a simulation facility for the... applicants for operator and senior operator licenses. (b) Commission-approved simulation facilities and...

  2. 10 CFR 55.46 - Simulation facilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Simulation facilities. 55.46 Section 55.46 Energy NUCLEAR... Simulation facilities. (a) General. This section addresses the use of a simulation facility for the... applicants for operator and senior operator licenses. (b) Commission-approved simulation facilities and...

  3. 10 CFR 55.46 - Simulation facilities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Simulation facilities. 55.46 Section 55.46 Energy NUCLEAR... Simulation facilities. (a) General. This section addresses the use of a simulation facility for the... applicants for operator and senior operator licenses. (b) Commission-approved simulation facilities and...

  4. 10 CFR 55.46 - Simulation facilities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Simulation facilities. 55.46 Section 55.46 Energy NUCLEAR... Simulation facilities. (a) General. This section addresses the use of a simulation facility for the... applicants for operator and senior operator licenses. (b) Commission-approved simulation facilities and...

  5. Facilities Performance Indicators Report, 2008-09

    ERIC Educational Resources Information Center

    Hills, Christina, Ed.

    2010-01-01

    This paper features another expanded Web-based Facilities Performance Indicators Report (FPI). The purpose of APPA's Facilities Performance Indicators is to provide a representative set of statistics about facilities in educational institutions. The 2008-09 iteration of the Web-based Facilities Performance Indicators Survey was posted and…

  6. 44 CFR 331.5 - Production facilities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Production facilities. 331.5... AND FACILITIES IN LABOR SURPLUS AREAS § 331.5 Production facilities. All Federal departments and... production facilities, including expansion, to the extent that such selection is consistent with existing law...

  7. 28 CFR 54.410 - Comparable facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Comparable facilities. 54.410 Section 54... in Education Programs or Activities Prohibited § 54.410 Comparable facilities. A recipient may provide separate toilet, locker room, and shower facilities on the basis of sex, but such facilities...

  8. Facility Management's Role in Organizational Sustainability

    ERIC Educational Resources Information Center

    Adams, Gregory K.

    2013-01-01

    Facility managers have questions about sustainability. How do an organization's physical facilities--its built environment--and the management of them, influence the sustainability of the organization or institution as a whole? How important is Facility Management (FM) to the overall sustainability profile of an organization? Facility managers…

  9. Optimal capacity design of LID facility for conserving natural water cycle and its sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Lee, O.; Choi, J.; Lee, J.; Kim, S.

    2017-12-01

    Since the 20th century, urbanization has resulted in increased impermeable land surface and reduced infiltration capacity in catchment scale. Especially, when agriculture area or forest area would be developed into urban area, it can cause more runoff in the same climate condition. Such urbanization causes problems such as changes in hydrological cycle and ecosystem disturbance. Various methods have been proposed worldwide to reduce the impact of such urbanization. Among the various strategies, the low-impact development is a development strategy that aims to return to pre-development state by minimizing the change of the hydrological cycle due to urbanization. In this strategy, the infiltration and/or surface storage of stormwater runoff can be increased through the installation of various facilities. In this study, a facility capacity design strategy is proposed to return into the natural water cycle through the installation of various LID facilities. This is accomplished by determining the optimal LID facility design capacity through which flow duration curves remain the same before and after urban development. For this purpose, EPA-SWMM is constructed with a part of Busan Metropolitan City Noksan Industrial Complex as a virtual processing area. Under the various land-use scenarios, the optimum design capacity of various LID facilities capable of retaining the flow duration curve before and after development is determined. In addition, the sensitivity of the optimal design capacity of LID facilities is analyzed according to the design specifications of various LID facilities, the local rainfall characteristics, and the size of the treatment area. Acknowledgement This research was supported by a grant (2016000200002) from Public Welfare Technology Development Program funded by Ministry of Environment of Korean government.

  10. Wheelchair cleaning and disinfection in Canadian health care facilities: "That's wheelie gross!".

    PubMed

    Gardner, Paula; Muller, Matthew P; Prior, Betty; So, Ken; Tooze, Jane; Eum, Linda; Kachur, Oksana

    2014-11-01

    Wheelchairs are complex equipment that come in close contact with individuals at increased risk of transmitting and acquiring antibiotic-resistant organisms and health care-associated infection. The purpose of this study was to determine the status of wheelchair cleaning and disinfection in Canadian health care facilities. Acute care hospitals (ACHs), chronic care hospitals (CCHs), and long-term care facilities (LTCFs) were contacted and the individual responsible for oversight of wheelchair cleaning and disinfection was identified. A structured interview was conducted that focused on current practices and concerns, barriers to effective wheelchair cleaning and disinfection, and potential solutions. Interviews were completed at 48 of the 54 facilities contacted (89%), including 18 ACHs, 16 CCHs, and 14 LTCFs. Most (n = 24) facilities had 50-200 in-house wheelchairs. Respondents were very concerned about wheelchair cleaning as an infection control issue. Specific concerns included the lack of reliable systems for tracking and identifying dirty and clean wheelchairs (71%, 34/48), failure to clean and disinfect wheelchairs between patients (52%, 25/48), difficulty cleaning cushions (42%, 20/48), lack of guidelines (35%, 27/48), continued use of visibly soiled wheelchairs (29%, 14/48) and lack of resources (25%, 12/48). Our results suggest that wheelchair cleaning and disinfection is not optimally performed at many Canadian hospitals and LTCFs. Specific guidance on wheelchair cleaning and disinfection is necessary. Copyright © 2014 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  11. Improved performance of a large pig complex after sequential nursery depopulation.

    PubMed

    Dee, S A; Joo, H S; Polson, D D

    1996-01-13

    An attempt was made to compare the productivity and financial benefits of nursery depopulation on five large pig farms which were all part of one complex. Each farm had been experiencing poor post weaning performance for 12 months, and had previously been infected with porcine reproductive and respiratory syndrome virus (PRRSV). A plan to depopulate each nursery sequentially was established, and the pigs were moved to fattening facilities on one of the farms (farm 3) where space was available. Over a four week period, the nurseries of farms 1, 2, 4 and 5 were emptied, cleaned and disinfected, and any changes in nursery performance, mortality and the seroprevalence of antibodies to PRRSV were then assessed for one year. The financial benefit to the entire farm complex was analysed by using partial budget methods. During the year a net benefit of $1,708,431 was assessed to the farm complex owing to the increased numbers of marketable pigs and the reduced antibiotic costs. There were highly significant improvements in nursery growth rate and decreases in mortality on farms 1, 2, 4 and 5, and antibodies to PRRSV were detected on farms 3 and 4 but not on farms 1, 2 and 5. The inability to empty the farm 3 fattening facility, which housed the pigs from the other sites, may have led to the maintenance of its PRRSV positive status and could have served as the source of virus for farm 4.

  12. Designing Facilities for Collaborative Operations

    NASA Technical Reports Server (NTRS)

    Norris, Jeffrey; Powell, Mark; Backes, Paul; Steinke, Robert; Tso, Kam; Wales, Roxana

    2003-01-01

    A methodology for designing operational facilities for collaboration by multiple experts has begun to take shape as an outgrowth of a project to design such facilities for scientific operations of the planned 2003 Mars Exploration Rover (MER) mission. The methodology could also be applicable to the design of military "situation rooms" and other facilities for terrestrial missions. It was recognized in this project that modern mission operations depend heavily upon the collaborative use of computers. It was further recognized that tests have shown that layout of a facility exerts a dramatic effect on the efficiency and endurance of the operations staff. The facility designs (for example, see figure) and the methodology developed during the project reflect this recognition. One element of the methodology is a metric, called effective capacity, that was created for use in evaluating proposed MER operational facilities and may also be useful for evaluating other collaboration spaces, including meeting rooms and military situation rooms. The effective capacity of a facility is defined as the number of people in the facility who can be meaningfully engaged in its operations. A person is considered to be meaningfully engaged if the person can (1) see, hear, and communicate with everyone else present; (2) see the material under discussion (typically data on a piece of paper, computer monitor, or projection screen); and (3) provide input to the product under development by the group. The effective capacity of a facility is less than the number of people that can physically fit in the facility. For example, a typical office that contains a desktop computer has an effective capacity of .4, while a small conference room that contains a projection screen has an effective capacity of around 10. Little or no benefit would be derived from allowing the number of persons in an operational facility to exceed its effective capacity: At best, the operations staff would be underutilized

  13. 21 CFR 606.40 - Facilities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Facilities. 606.40 Section 606.40 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) BIOLOGICS CURRENT GOOD MANUFACTURING PRACTICE FOR BLOOD AND BLOOD COMPONENTS Plant and Facilities § 606.40 Facilities...

  14. Systematic Planning for Educational Facilities.

    ERIC Educational Resources Information Center

    McGuffey, Carroll W.

    This monograph provides a systematic approach to the problem of planning educational facilities. It first presents a conceptual framework for a general facilities planning and management system called Facilities Resource Allocation Management Evaluation System (FRAMES). The main components of FRAMES are identified as: (1) needs assessment, (2)…

  15. 14 CFR 142.15 - Facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Facilities. 142.15 Section 142.15... OTHER CERTIFICATED AGENCIES TRAINING CENTERS General § 142.15 Facilities. (a) An applicant for, or..., sanitation, and health codes; and (2) The facilities used for instruction are not routinely subject to...

  16. 21 CFR 606.40 - Facilities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Facilities. 606.40 Section 606.40 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) BIOLOGICS CURRENT GOOD MANUFACTURING PRACTICE FOR BLOOD AND BLOOD COMPONENTS Plant and Facilities § 606.40 Facilities...

  17. Grid Facilities | Grid Modernization | NREL

    Science.gov Websites

    groundbreaking innovations and collaboration in grid research. Photo of the Energy Systems Integration Facility Energy Systems Integration Facility The Energy Systems Integration Facility is the nation's premier user Located in Boulder, Colorado, the National Wind Technology Center (NWTC) offers similar integration

  18. Patient-driven resource planning of a health care facility evacuation.

    PubMed

    Petinaux, Bruno; Yadav, Kabir

    2013-04-01

    The evacuation of a health care facility is a complex undertaking, especially if done in an immediate fashion, ie, within minutes. Patient factors, such as continuous medical care needs, mobility, and comprehension, will affect the efficiency of the evacuation and translate into evacuation resource needs. Prior evacuation resource estimates are 30 years old. Utilizing a cross-sectional survey of charge nurses of the clinical units in an urban, academic, adult trauma health care facility (HCF), the evacuation needs of hospitalized patients were assessed periodically over a two-year period. Survey data were collected on 2,050 patients. Units with patients having low continuous medical care needs during an emergency evacuation were the postpartum, psychiatry, rehabilitation medicine, surgical, and preoperative anesthesia care units, the Emergency Department, and Labor and Delivery Department (with the exception of patients in Stage II labor). Units with patients having high continuous medical care needs during an evacuation included the neonatal and adult intensive care units, special procedures unit, and operating and post-anesthesia care units. With the exception of the neonate group, 908 (47%) of the patients would be able to walk out of the facility, 492 (25.5%) would require a wheelchair, and 530 (27.5%) would require a stretcher to exit the HCF. A total of 1,639 patients (84.9%) were deemed able to comprehend the need to evacuate and to follow directions; the remainder were sedated, blind, or deaf. The charge nurses also determined that 17 (6.9%) of the 248 adult intensive care unit patients were too ill to survive an evacuation, and that in 10 (16.4%) of the 61 ongoing surgery cases, stopping the case was not considered to be safe. Heath care facilities can utilize the results of this study to model their anticipated resource requirements for an emergency evacuation. This will permit the Incident Management Team to mobilize the necessary resources both within

  19. Plasmakristall-4: New complex (dusty) plasma laboratory on board the International Space Station

    NASA Astrophysics Data System (ADS)

    Pustylnik, M. Y.; Fink, M. A.; Nosenko, V.; Antonova, T.; Hagl, T.; Thomas, H. M.; Zobnin, A. V.; Lipaev, A. M.; Usachev, A. D.; Molotkov, V. I.; Petrov, O. F.; Fortov, V. E.; Rau, C.; Deysenroth, C.; Albrecht, S.; Kretschmer, M.; Thoma, M. H.; Morfill, G. E.; Seurig, R.; Stettner, A.; Alyamovskaya, V. A.; Orr, A.; Kufner, E.; Lavrenko, E. G.; Padalka, G. I.; Serova, E. O.; Samokutyayev, A. M.; Christoforetti, S.

    2016-09-01

    New complex-plasma facility, Plasmakristall-4 (PK-4), has been recently commissioned on board the International Space Station. In complex plasmas, the subsystem of μm-sized microparticles immersed in low-pressure weakly ionized gas-discharge plasmas becomes strongly coupled due to the high (103-104 e) electric charge on the microparticle surface. The microparticle subsystem of complex plasmas is available for the observation at the kinetic level, which makes complex plasmas appropriate for particle-resolved modeling of classical condensed matter phenomena. The main purpose of PK-4 is the investigation of flowing complex plasmas. To generate plasma, PK-4 makes use of a classical dc discharge in a glass tube, whose polarity can be switched with the frequency of the order of 100 Hz. This frequency is high enough not to be felt by the relatively heavy microparticles. The duty cycle of the polarity switching can be also varied allowing to vary the drift velocity of the microparticles and (when necessary) to trap them. The facility is equipped with two videocameras and illumination laser for the microparticle imaging, kaleidoscopic plasma glow observation system and minispectrometer for plasma diagnostics and various microparticle manipulation devices (e.g., powerful manipulation laser). Scientific experiments are programmed in the form of scripts written with the help of specially developed C scripting language libraries. PK-4 is mainly operated from the ground (control center CADMOS in Toulouse, France) with the support of the space station crew. Data recorded during the experiments are later on delivered to the ground on the removable hard disk drives and distributed to participating scientists for the detailed analysis.

  20. Plasmakristall-4: New complex (dusty) plasma laboratory on board the International Space Station.

    PubMed

    Pustylnik, M Y; Fink, M A; Nosenko, V; Antonova, T; Hagl, T; Thomas, H M; Zobnin, A V; Lipaev, A M; Usachev, A D; Molotkov, V I; Petrov, O F; Fortov, V E; Rau, C; Deysenroth, C; Albrecht, S; Kretschmer, M; Thoma, M H; Morfill, G E; Seurig, R; Stettner, A; Alyamovskaya, V A; Orr, A; Kufner, E; Lavrenko, E G; Padalka, G I; Serova, E O; Samokutyayev, A M; Christoforetti, S

    2016-09-01

    New complex-plasma facility, Plasmakristall-4 (PK-4), has been recently commissioned on board the International Space Station. In complex plasmas, the subsystem of μm-sized microparticles immersed in low-pressure weakly ionized gas-discharge plasmas becomes strongly coupled due to the high (10 3 -10 4 e) electric charge on the microparticle surface. The microparticle subsystem of complex plasmas is available for the observation at the kinetic level, which makes complex plasmas appropriate for particle-resolved modeling of classical condensed matter phenomena. The main purpose of PK-4 is the investigation of flowing complex plasmas. To generate plasma, PK-4 makes use of a classical dc discharge in a glass tube, whose polarity can be switched with the frequency of the order of 100 Hz. This frequency is high enough not to be felt by the relatively heavy microparticles. The duty cycle of the polarity switching can be also varied allowing to vary the drift velocity of the microparticles and (when necessary) to trap them. The facility is equipped with two videocameras and illumination laser for the microparticle imaging, kaleidoscopic plasma glow observation system and minispectrometer for plasma diagnostics and various microparticle manipulation devices (e.g., powerful manipulation laser). Scientific experiments are programmed in the form of scripts written with the help of specially developed C scripting language libraries. PK-4 is mainly operated from the ground (control center CADMOS in Toulouse, France) with the support of the space station crew. Data recorded during the experiments are later on delivered to the ground on the removable hard disk drives and distributed to participating scientists for the detailed analysis.

  1. INTESPACE's new thermal-vacuum test facility: SIMMER

    NASA Technical Reports Server (NTRS)

    Duprat, Raymond; Mouton, Andre

    1992-01-01

    The development of an European satellite market over the last 10 years, the industrialization of space applications, and the new requirements from satellite prime contractors have led INTESPACE to increase the test center's environmental testing capacities through the addition of a new thermal-vacuum test facility of impressive dimensions referred to as the SIMMER. The SIMMER is a simulator specifically created for the purpose of conducting acceptance tests of satellites and of large structures of the double launching ARIANE IV or half ARIANE V classes. The chamber is 8.3 meters long with a diameter of 10 meters. The conceptual design of a chamber in the horizontal plane and at floor level is in a view to simplify test preparation and to permit final electrical checks of the spacecraft in its actual test configuration prior to the closing of the chamber. The characteristics of the SIMMER complies with the requirements being currently defined in terms of thermal-vacuum tests: (1) thermal regulation (temperatures cycling between 100 K and 360 K); (2) clean vacuum (10(exp -6) mbar); (3) 600 measurement channels; and (4) 100 000 cleanliness class. The SIMMER is located in INTESPACE's space vehicle test complex in which a large variety of environmental test facilities are made available for having a whole test program completed under one and a same roof.

  2. Electroactive crown ester-Cu2+ complex with in-situ modification at molecular beacon probe serving as a facile electrochemical DNA biosensor for the detection of CaMV 35s.

    PubMed

    Zhan, Fengping; Liao, Xiaolei; Gao, Feng; Qiu, Weiwei; Wang, Qingxiang

    2017-06-15

    A novel electrochemical DNA biosensor has been facilely constructed by in-situ assembly of electroactive 4'-aminobenzo-18-crown-6-copper(II) complex (AbC-Cu 2+ ) on the free terminal of the hairpin-structured molecule beacon. The 3'-SH modified molecule beacon probe was first immobilized on the gold electrode (AuE) surface through self-assembly chemistry of Au-S bond. Then the crow ester of AbC was covalently coupled with 5'-COOH on the molecule beacon, and served as a platform to attach the Cu 2+ by coordination with ether bond (-O-) of the crown cycle. Thus, an electroactive molecule beacon-based biosensing interface was constructed. In comparison with conventional methods for preparation of electroactive molecule beacon, the approach presented in this work is much simpler, reagent- and labor-saving. Selectivity study shows that the in-situ fabricated electroactive molecule beacon remains excellent recognition ability of pristine molecule beacon probe to well differentiate various DNA fragments. The target DNA can be quantatively determined over the range from 0.10pM to 0.50nM. The detection limit of 0.060pM was estimated based on signal-to-noise ratio of 3. When the biosensor was applied for the detection cauliflower mosaic virus 35s (CaMV 35s) in soybean extraction samples, satisfactory results are achieved. This work opens a new strategy for facilely fabricating electrochemical sensing interface, which also shows great potential in aptasensor and immurosensor fabrication. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Accelerator Facilities for Radiation Research

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    1999-01-01

    HSRP Goals in Accelerator Use and Development are: 1.Need for ground-based heavy ion and proton facility to understand space radiation effects discussed most recently by NAS/NRC Report (1996). 2. Strategic Program Goals in facility usage and development: -(1) operation of AGS for approximately 600 beam hours/year; (2) operation of Loma Linda University (LLU) proton facility for approximately 400 beam hours/year; (3) construction of BAF facility; and (4) collaborative research at HIMAC in Japan and with other existing or potential international facilities. 3. MOA with LLU has been established to provide proton beams with energies of 40-250 important for trapped protons and solar proton events. 4. Limited number of beam hours available at Brookhaven National Laboratory's (BNL) Alternating Gradient Synchrotron (AGS).

  4. 49 CFR 25.410 - Comparable facilities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 1 2011-10-01 2011-10-01 false Comparable facilities. 25.410 Section 25.410... Education Programs or Activities Prohibited § 25.410 Comparable facilities. A recipient may provide separate toilet, locker room, and shower facilities on the basis of sex, but such facilities provided for students...

  5. 42 CFR 136.110 - Facilities construction.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Facilities construction. 136.110 Section 136.110... Facilities and Services § 136.110 Facilities construction. In addition to other requirements of this subpart..., clinic, health station or quarters for housing personnel associated with such facilities, must in its...

  6. Facilities Guidelines. North Carolina Public Schools.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Public Instruction, Raleigh.

    The 1986 North Carolina Public School Facilities Standards were legislated in 1996 to become Facility Guidelines. A Public School Facilities Task Force was appointed to review and make revisions. These 1997 guidelines define and describe minimum facilities to ensure educational program appropriateness and long-term cost efficiency. They were…

  7. 30 CFR 57.20008 - Toilet facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Toilet facilities. 57.20008 Section 57.20008....20008 Toilet facilities. (a) Toilet facilities shall be provided at locations that are compatible with the mine operations and that are readily accessible to mine personnel. (b) The facilities shall be...

  8. 36 CFR 13.166 - Temporary facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Temporary facilities. 13.166... facilities. A temporary facility or structure directly and necessarily related to the taking of subsistence... facilities which shall be published annually in accordance with § 1.7 of this chapter. ...

  9. Ames Hybrid Combustion Facility

    NASA Technical Reports Server (NTRS)

    Zilliac, Greg; Karabeyoglu, Mustafa A.; Cantwell, Brian; Hunt, Rusty; DeZilwa, Shane; Shoffstall, Mike; Soderman, Paul T.; Bencze, Daniel P. (Technical Monitor)

    2003-01-01

    The report summarizes the design, fabrication, safety features, environmental impact, and operation of the Ames Hybrid-Fuel Combustion Facility (HCF). The facility is used in conducting research into the scalability and combustion processes of advanced paraffin-based hybrid fuels for the purpose of assessing their applicability to practical rocket systems. The facility was designed to deliver gaseous oxygen at rates between 0.5 and 16.0 kg/sec to a combustion chamber operating at pressures ranging from 300 to 900. The required run times were of the order of 10 to 20 sec. The facility proved to be robust and reliable and has been used to generate a database of regression-rate measurements of paraffin at oxygen mass flux levels comparable to those of moderate-sized hybrid rocket motors.

  10. Novel and facile method, dynamic self-assemble, to prepare SnO₂/rGO droplet aerogel with complex morphologies and their application in supercapacitors.

    PubMed

    Chen, Mingxi; Wang, Huan; Li, Lingzhi; Zhang, Zhe; Wang, Cong; Liu, Yu; Wang, Wei; Gao, Jianping

    2014-08-27

    A facile and novel method to prepare SnO2/reduced graphene oxide (rGO) droplet aerogels with complex morphologies had been developed. This method has been named dynamic self-assemble. Aerogels with both "egg-tart" and "mushroom" shapes were obtained by this method. The changes in the graphene oxide (GO) droplet morphologies during the dynamic process of a GO droplet falling into a SnCl2 target solution were monitored using a high speed camera. The formed SnO2/rGO aerogels were then characterized by Raman spectroscopy, thermogravimetric analysis, X-ray diffraction analysis, and X-ray photoelectron spectroscopy. The microstructures of the SnO2/rGO aerogels were observed with scanning electron microscopy and transmission electron microscopy. Finally, the SnO2/rGO droplet aerogels were used as the electrode material in a symmetrical two-electrode supercapacitor and the electrochemical performance of the supercapacitor was investigated using cyclic voltammetry and galvanostatic charge/discharge methods. The SnO2/rGO electrodes demonstrated excellent electrochemical performance and stability. At a scan rate of 5 mV/s, their highest gravimetric and volumetric specific capacitances were 310 F/g and 180 F/cm(3), respectively, and their energy and power densities were as high as 30 Wh·kg(-1) and 8.3 kW·kg(-1), respectively.

  11. School Nutrition Facility Planning Guide.

    ERIC Educational Resources Information Center

    Pannell, Dorothy VanEgmond

    This publication is designed to help superintendents, local facilities coordinators, and food-service directors in planning the remodeling of an outdated food-service facility or the building of a new one. The introduction describes the roles of the local facility coordinator, the local child-nutrition director, the architect, the food-service…

  12. 44 CFR 19.410 - Comparable facilities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Comparable facilities. 19.410... Activities Prohibited § 19.410 Comparable facilities. A recipient may provide separate toilet, locker room, and shower facilities on the basis of sex, but such facilities provided for students of one sex shall...

  13. 15 CFR 716.6 - Facility agreements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 2 2011-01-01 2011-01-01 false Facility agreements. 716.6 Section 716... ROUTINE INSPECTIONS OF DECLARED FACILITIES § 716.6 Facility agreements. (a) Description and requirements. A facility agreement is a site-specific agreement between the U.S. Government and the OPCW. Its...

  14. 15 CFR 716.6 - Facility agreements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 2 2013-01-01 2013-01-01 false Facility agreements. 716.6 Section 716... ROUTINE INSPECTIONS OF DECLARED FACILITIES § 716.6 Facility agreements. (a) Description and requirements. A facility agreement is a site-specific agreement between the U.S. Government and the OPCW. Its...

  15. 32 CFR 196.410 - Comparable facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Comparable facilities. 196.410 Section 196.410....410 Comparable facilities. A recipient may provide separate toilet, locker room, and shower facilities on the basis of sex, but such facilities provided for students of one sex shall be comparable to such...

  16. 30 CFR 56.20008 - Toilet facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Toilet facilities. 56.20008 Section 56.20008... Toilet facilities. (a) Toilet facilities shall be provided at locations that are compatible with the mine operations and that are readily accessible to mine personnel. (b) The facilities shall be kept clean and...

  17. 33 CFR 154.120 - Facility examinations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Facility examinations. 154.120...) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK General § 154.120 Facility examinations. (a) The facility operator shall allow the Coast Guard, at any time, to make any examination and shall...

  18. 10 CFR 4.127 - Existing facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Existing facilities. 4.127 Section 4.127 Energy NUCLEAR... 1973, as Amended Discriminatory Practices § 4.127 Existing facilities. (a) Accessibility. A recipient... make each of its existing facilities or every part of an existing facility accessible to and usable by...

  19. 10 CFR 1042.410 - Comparable facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Comparable facilities. 1042.410 Section 1042.410 Energy... Activities Prohibited § 1042.410 Comparable facilities. A recipient may provide separate toilet, locker room, and shower facilities on the basis of sex, but such facilities provided for students of one sex shall...

  20. 10 CFR 1040.72 - Existing facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Existing facilities. 1040.72 Section 1040.72 Energy... § 1040.72 Existing facilities. (a) Accessibility. A recipient shall operate any program or activity to... facilities or every part of a facility accessible to and useable by handicapped persons. (b) Methods. A...

  1. 36 CFR 1211.410 - Comparable facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Comparable facilities. 1211... § 1211.410 Comparable facilities. A recipient may provide separate toilet, locker room, and shower facilities on the basis of sex, but such facilities provided for students of one sex shall be comparable to...

  2. 44 CFR 19.410 - Comparable facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Comparable facilities. 19.410... Activities Prohibited § 19.410 Comparable facilities. A recipient may provide separate toilet, locker room, and shower facilities on the basis of sex, but such facilities provided for students of one sex shall...

  3. Developing the Rehabilitation Facility Personnel Manual.

    ERIC Educational Resources Information Center

    Gilbertson, Alan D.

    This guide is intended to provide rehabilitation facilities with assistance in developing or improving their facility personnel manual, along with examples of what some rehabilitation facilities are including within their personnel manuals. The introduction to the guide discusses how a facility can begin the formulation of its personnel manual.…

  4. A Policy Framework for Joint Use: Enabling and Supporting Community Use of K-12 Public School Facilities

    ERIC Educational Resources Information Center

    Filardo, Mary; Vincent, Jeffrey M.

    2014-01-01

    Joint use of public school facilities is a complex but manageable approach to efficiently enhancing the services and programs available to students and supporting the community use of public schools. Building upon on our 2010 paper titled "Joint Use of Public Schools: A Framework for a New Social Contract," this paper identifies the…

  5. Centrifuge facility conceptual system study. Volume 2: Facility systems and study summary

    NASA Technical Reports Server (NTRS)

    Synnestvedt, Robert (Editor); Blair, Patricia; Cartledge, Alan; Garces-Porcile, Jorge; Garin, Vladimir; Guerrero, Mike; Haddeland, Peter; Horkachuck, Mike; Kuebler, Ulrich; Nguyen, Frank

    1991-01-01

    The Centrifuge Facility is a major element of the biological research facility for the implementation of NASA's Life Science Research Program on Space Station Freedom using nonhuman species (small primates, rodents, plants, insects, cell tissues, etc.). The Centrifuge Facility consists of a variable gravity Centrifuge to provide artificial gravity up to 2 earth G's' a Holding System to maintain specimens at microgravity levels, a Glovebox, and a Service Unit for servicing specimen chambers. The following subject areas are covered: (1) Holding System; (2) Centrifuge System; (3) Glovebox System; (4) Service System; and (5) system study summary.

  6. Trauma facilities in Denmark - a nationwide cross-sectional benchmark study of facilities and trauma care organisation.

    PubMed

    Weile, Jesper; Nielsen, Klaus; Primdahl, Stine C; Frederiksen, Christian A; Laursen, Christian B; Sloth, Erik; Mølgaard, Ole; Knudsen, Lars; Kirkegaard, Hans

    2018-03-27

    Trauma is a leading cause of death among adults aged < 44 years, and optimal care is a challenge. Evidence supports the centralization of trauma facilities and the use multidisciplinary trauma teams. Because knowledge is sparse on the existing distribution of trauma facilities and the organisation of trauma care in Denmark, the aim of this study was to identify all Danish facilities that care for traumatized patients and to investigate the diversity in organization of trauma management. We conducted a systematic observational cross-sectional study. First, all hospitals in Denmark were identified via online services and clarifying phone calls to each facility. Second, all trauma care manuals on all facilities that receive traumatized patients were gathered. Third, anesthesiologists and orthopedic surgeons on call at all trauma facilities were contacted via telephone for structured interviews. A total of 22 facilities in Denmark were found to receive traumatized patients. All facilities used a trauma care manual and all had a multidisciplinary trauma team. The study found three different trauma team activation criteria and nine different compositions of teams who participate in trauma care. Training was heterogeneous and, beyond the major trauma centers, databases were only maintained in a few facilities. The study established an inventory of the existing Danish facilities that receive traumatized patients. The trauma team activation criteria and the trauma teams were heterogeneous in both size and composition. A national database for traumatized patients, research on nationwide trauma team activation criteria, and team composition guidelines are all called for.

  7. Patient-, health worker-, and health facility-level determinants of correct malaria case management at publicly funded health facilities in Malawi: results from a nationally representative health facility survey.

    PubMed

    Steinhardt, Laura C; Chinkhumba, Jobiba; Wolkon, Adam; Luka, Madalitso; Luhanga, Misheck; Sande, John; Oyugi, Jessica; Ali, Doreen; Mathanga, Don; Skarbinski, Jacek

    2014-02-20

    Prompt and effective case management is needed to reduce malaria morbidity and mortality. However, malaria diagnosis and treatment is a multistep process that remains problematic in many settings, resulting in missed opportunities for effective treatment as well as overtreatment of patients without malaria. Prior to the widespread roll-out of malaria rapid diagnostic tests (RDTs) in late 2011, a national, cross-sectional, complex-sample, health facility survey was conducted in Malawi to assess patient-, health worker-, and health facility-level factors associated with malaria case management quality using multivariate Poisson regression models. Among the 2,019 patients surveyed, 34% had confirmed malaria defined as presence of fever and parasitaemia on a reference blood smear. Sixty-seven per cent of patients with confirmed malaria were correctly prescribed the first-line anti-malarial, with most cases of incorrect treatment due to missed diagnosis; 31% of patients without confirmed malaria were overtreated with an anti-malarial. More than one-quarter of patients were not assessed for fever or history of fever by health workers. The most important determinants of correct malaria case management were patient-level clinical symptoms, such as spontaneous complaint of fever to health workers, which increased both correct treatment and overtreatment by 72 and 210%, respectively (p<0.0001). Complaint of cough was associated with a 27% decreased likelihood of correct malaria treatment (p=0.001). Lower-level cadres of health workers were more likely to prescribe anti-malarials for patients, increasing the likelihood of both correct treatment and overtreatment, but no other health worker or health facility-level factors were significantly associated with case management quality. Introduction of RDTs holds potential to improve malaria case management in Malawi, but health workers must systematically assess all patients for fever, and then test and treat accordingly

  8. Risk Management Technique for design and operation of facilities and equipment

    NASA Technical Reports Server (NTRS)

    Fedor, O. H.; Parsons, W. N.; Coutinho, J. De S.

    1975-01-01

    The Risk Management System collects information from engineering, operating, and management personnel to identify potentially hazardous conditions. This information is used in risk analysis, problem resolution, and contingency planning. The resulting hazard accountability system enables management to monitor all identified hazards. Data from this system are examined in project reviews so that management can decide to eliminate or accept these risks. This technique is particularly effective in improving the management of risks in large, complex, high-energy facilities. These improvements are needed for increased cooperation among industry, regulatory agencies, and the public.

  9. Making of the NSTX Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. Neumeyer; M. Ono; S.M. Kaye

    1999-11-01

    The NSTX (National Spherical Torus Experiment) facility located at Princeton Plasma Physics Laboratory is the newest national fusion science experimental facility for the restructured US Fusion Energy Science Program. The NSTX project was approved in FY 97 as the first proof-of-principle national fusion facility dedicated to the spherical torus research. On Feb. 15, 1999, the first plasma was achieved 10 weeks ahead of schedule. The project was completed on budget and with an outstanding safety record. This paper gives an overview of the NSTX facility construction and the initial plasma operations.

  10. Facilities for animal research in space

    NASA Technical Reports Server (NTRS)

    Bonting, Sjoerd L.; Kishiyama, Jenny S.; Arno, Roger D.

    1991-01-01

    The animal facilities used aboard or designed for various spacecraft research missions are described. Consideration is given to the configurations used in Cosmos-1514 (1983) and Cosmos-1887 (1987) missions; the reusable Biosatellite capsule flown three times by NASA between 1966 and 1969; the NASA's Lifesat spacecraft that is being currently designed; the Animal Enclosure Module flown on Shuttle missions in 1983 and 1984; the Research Animal Holding Facility developed for Shuttle-Spacelab missions; the Rhesus Research Facility developed for a Spacelab mission; and the Japanese Animal Holding Facility for the Space Station Freedom. Special attention is given to the designs of NASA's animal facilities developed for Space Station Freedom and the details of various subsystems of these facilities. The main characteristics of the rodent and the primate habitats provided by these various facilities are discussed.

  11. Facility-Level Characteristics Associated with Serious Suicide Attempts and Deaths from Suicide in Juvenile Justice Residential Facilities

    ERIC Educational Resources Information Center

    Gallagher, Catherine A.; Dobrin, Adam

    2006-01-01

    Little is known about how facility-level characteristics affect the risk of suicide and suicide attempts in juvenile justice residential facilities. This leaves facility administrators and mental health providers without evidence-based guidance on how the facility itself affects risks. The current study uses data from two recently developed…

  12. 43 CFR 17.217 - Existing facilities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Existing facilities. 17.217 Section 17.217... facilities. (a) Accessibility. A recipient shall operate each program or activity so that when each part is... not require a recipient to make each of its existing facilities or every part of a facility accessible...

  13. 25 CFR 502.23 - Facility license.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 2 2010-04-01 2010-04-01 false Facility license. 502.23 Section 502.23 Indians NATIONAL....23 Facility license. Facility license means a separate license issued by a tribe to each place, facility, or location on Indian lands where the tribe elects to allow class II or III gaming. [73 FR 6029...

  14. 10 CFR 5.410 - Comparable facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Comparable facilities. 5.410 Section 5.410 Energy NUCLEAR... Prohibited § 5.410 Comparable facilities. A recipient may provide separate toilet, locker room, and shower facilities on the basis of sex, but such facilities provided for students of one sex shall be comparable to...

  15. 30 CFR 71.400 - Bathing facilities; change rooms; sanitary flush toilet facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... flush toilet facilities. 71.400 Section 71.400 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-SURFACE COAL MINES AND SURFACE... installations and at the surface worksites of such mine. (Note: Sanitary facilities at surface work areas of...

  16. GRC Ground Support Facilities

    NASA Technical Reports Server (NTRS)

    SaintOnge, Thomas H.

    2010-01-01

    The ISS Program is conducting an "ISS Research Academy' at JSC the first week of August 2010. This Academy will be a tutorial for new Users of the International Space Station, focused primarily on the new ISS National Laboratory and its members including Non-Profit Organizations, other government agencies and commercial users. Presentations on the on-orbit research facilities accommodations and capabilities will be made, as well as ground based hardware development, integration and test facilities and capabilities. This presentation describes the GRC Hardware development, test and laboratory facilities.

  17. Research Facilities | Wind | NREL

    Science.gov Websites

    wearing hard hats in front of a wind turbine drivetrain inside a drivetrain test facility. Dynamometer Research Facilities Photo of five men in hard hards observing the end of a turbine blade while it's being

  18. Peer Conflict Explanations in Children, Adolescents, and Adults: Examining the Development of Complex Syntax

    ERIC Educational Resources Information Center

    Nippold, Marilyn A.; Mansfield, Tracy C.; Billow, Jesse L.

    2007-01-01

    Purpose: Expository discourse, the use of language to convey information, requires facility with complex syntax. Although expository discourse is often employed in school and work settings, little is known about its development in children, adolescents, and adults. Hence, it is difficult to evaluate this genre in students who have language…

  19. DOE High Performance Computing Operational Review (HPCOR): Enabling Data-Driven Scientific Discovery at HPC Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerber, Richard; Allcock, William; Beggio, Chris

    2014-10-17

    U.S. Department of Energy (DOE) High Performance Computing (HPC) facilities are on the verge of a paradigm shift in the way they deliver systems and services to science and engineering teams. Research projects are producing a wide variety of data at unprecedented scale and level of complexity, with community-specific services that are part of the data collection and analysis workflow. On June 18-19, 2014 representatives from six DOE HPC centers met in Oakland, CA at the DOE High Performance Operational Review (HPCOR) to discuss how they can best provide facilities and services to enable large-scale data-driven scientific discovery at themore » DOE national laboratories. The report contains findings from that review.« less

  20. 30 CFR 75.1712-1 - Availability of surface bathing facilities; change rooms; and sanitary facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...; change rooms; and sanitary facilities. 75.1712-1 Section 75.1712-1 Mineral Resources MINE SAFETY AND...-UNDERGROUND COAL MINES Miscellaneous § 75.1712-1 Availability of surface bathing facilities; change rooms; and sanitary facilities. Except where a waiver has been granted pursuant to the provisions of § 75.1712-4, each...

  1. 30 CFR 75.1712-1 - Availability of surface bathing facilities; change rooms; and sanitary facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...; change rooms; and sanitary facilities. 75.1712-1 Section 75.1712-1 Mineral Resources MINE SAFETY AND...-UNDERGROUND COAL MINES Miscellaneous § 75.1712-1 Availability of surface bathing facilities; change rooms; and sanitary facilities. Except where a waiver has been granted pursuant to the provisions of § 75.1712-4, each...

  2. 30 CFR 75.1712-1 - Availability of surface bathing facilities; change rooms; and sanitary facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...; change rooms; and sanitary facilities. 75.1712-1 Section 75.1712-1 Mineral Resources MINE SAFETY AND...-UNDERGROUND COAL MINES Miscellaneous § 75.1712-1 Availability of surface bathing facilities; change rooms; and sanitary facilities. Except where a waiver has been granted pursuant to the provisions of § 75.1712-4, each...

  3. 30 CFR 75.1712-1 - Availability of surface bathing facilities; change rooms; and sanitary facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...; change rooms; and sanitary facilities. 75.1712-1 Section 75.1712-1 Mineral Resources MINE SAFETY AND...-UNDERGROUND COAL MINES Miscellaneous § 75.1712-1 Availability of surface bathing facilities; change rooms; and sanitary facilities. Except where a waiver has been granted pursuant to the provisions of § 75.1712-4, each...

  4. 30 CFR 75.1712-1 - Availability of surface bathing facilities; change rooms; and sanitary facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...; change rooms; and sanitary facilities. 75.1712-1 Section 75.1712-1 Mineral Resources MINE SAFETY AND...-UNDERGROUND COAL MINES Miscellaneous § 75.1712-1 Availability of surface bathing facilities; change rooms; and sanitary facilities. Except where a waiver has been granted pursuant to the provisions of § 75.1712-4, each...

  5. The MICE facility - a new tool to study plant-soil C cycling with a holistic approach.

    PubMed

    Studer, Mirjam S; Künzli, Roland; Maier, Reto; Schmidt, Michael W I; Siegwolf, Rolf T W; Woodhatch, Ivan; Abiven, Samuel

    2017-06-01

    Plant-soil interactions are recognized to play a crucial role in the ecosystem response to climate change. We developed a facility to disentangle the complex interactions behind the plant-soil C feedback mechanisms. The MICE ('Multi-Isotope labelling in a Controlled Environment') facility consists of two climate chambers with independent control of the atmospheric conditions (light, CO 2 , temperature, humidity) and the soil environment (temperature, moisture). Each chamber holds 15 plant-soil systems with hermetical separation of the shared above ground (shoots) from the individual belowground compartments (roots, rhizosphere, soil). Stable isotopes (e.g. 13 C, 15 N, 2 H, 18 O) can be added to either compartment and traced within the whole system. The soil CO 2 efflux rate is monitored, and plant material, leached soil water and gas samples are taken frequently. The facility is a powerful tool to improve our mechanistic understanding of plant-soil interactions that drive the C cycle feedback to climate change.

  6. 48 CFR 970.3770 - Facilities management.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Facilities management. 970... REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Facilities Management Contracting 970.3770 Facilities management. ...

  7. 48 CFR 970.3770 - Facilities management.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Facilities management. 970... REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Facilities Management Contracting 970.3770 Facilities management. ...

  8. 48 CFR 970.3770 - Facilities management.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Facilities management. 970... REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Facilities Management Contracting 970.3770 Facilities management. ...

  9. 48 CFR 970.3770 - Facilities management.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Facilities management. 970... REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Facilities Management Contracting 970.3770 Facilities management. ...

  10. 48 CFR 970.3770 - Facilities management.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Facilities management. 970... REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Facilities Management Contracting 970.3770 Facilities management. ...

  11. The facile synthesis of a chitosan Cu(II) complex by solution plasma process and evaluation of their antioxidant activities.

    PubMed

    Ma, Fengming; Li, Pu; Zhang, Baiqing; Wang, Zhenyu

    2017-10-01

    Synthesis of chitosan-Cu(II) complex by solution plasma process (SPP) irradiation was investigated. The effects of the distance between the electrodes, initial Cu(II) concentration, and initial pH on the Cu(II) adsorption capacity were evaluated. The results showed that narrower distance between the electrodes, higher initial Cu(II) concentration and higher initial pH (at pH<6) were favourable for the adsorption capacity of Cu(II). Characterization of the chitosan-Cu(II) complex by ultraviolet-visible (UV-vis), fourier transform infrared (FT-IR) and electron spin resonance (ESR) spectroscopy revealed that the main structure of chitosan was not changed after irradiation. Thermogravimetry (TG) analysis indicated that Cu(II) ions were well incorporated into the chitosan. The antioxidant activity of the chitosan-Cu(II) complex was evaluated by DPPH, ABTS, and reducing power assays. The chitosan-Cu(II) complex exhibited greater antioxidant activity than the original chitosan. Thus, SPP could be used for preparation of chitosan-Cu(II) complexes. Copyright © 2017. Published by Elsevier B.V.

  12. 9 CFR 3.25 - Facilities, general.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Pigs and Hamsters Facilities and Operating Standards § 3.25 Facilities, general. (a) Structural strength. Indoor and outdoor housing facilities for guinea pigs or hamsters shall be structurally sound and...

  13. 9 CFR 3.25 - Facilities, general.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Pigs and Hamsters Facilities and Operating Standards § 3.25 Facilities, general. (a) Structural strength. Indoor and outdoor housing facilities for guinea pigs or hamsters shall be structurally sound and...

  14. 9 CFR 3.25 - Facilities, general.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Pigs and Hamsters Facilities and Operating Standards § 3.25 Facilities, general. (a) Structural strength. Indoor and outdoor housing facilities for guinea pigs or hamsters shall be structurally sound and...

  15. 9 CFR 3.25 - Facilities, general.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Pigs and Hamsters Facilities and Operating Standards § 3.25 Facilities, general. (a) Structural strength. Indoor and outdoor housing facilities for guinea pigs or hamsters shall be structurally sound and...

  16. Toward the framework and implementation for clearance of materials from regulated facilities.

    PubMed

    Chen, S Y; Moeller, D W; Dornsife, W P; Meyer, H R; Lamastra, A; Lubenau, J O; Strom, D J; Yusko, J G

    2005-08-01

    The disposition of solid materials from nuclear facilities has been a subject of public debate for several decades. The primary concern has been the potential health effects resulting from exposure to residual radioactive materials to be released for unrestricted use. These debates have intensified in the last decade as many regulated facilities are seeking viable management decisions on the disposition of the large amounts of materials potentially containing very low levels of residual radioactivity. Such facilities include the nuclear weapons complex sites managed by the U.S. Department of Energy, commercial power plants licensed by the U.S. Nuclear Regulatory Commission (NRC), and other materials licensees regulated by the NRC or the Agreement States. Other facilities that generate radioactive material containing naturally occurring radioactive materials (NORM) or technologically enhanced NORM (TENORM) are also seeking to dispose of similar materials that may be radioactively contaminated. In contrast to the facilities operated by the DOE and the nuclear power plants licensed by the U.S. Nuclear Regulatory Commission, NORM and TENORM facilities are regulated by the individual states. Current federal laws and regulations do not specify criteria for releasing these materials that may contain residual radioactivity of either man-made or natural origin from regulatory controls. In fact, the current regulatory scheme offers no explicit provision to permit materials being released as "non-radioactive," including those that are essentially free of contamination. The only method used to date with limited success has been case-by-case evaluation and approval. In addition, there is a poorly defined and inconsistent regulatory framework for regulating NORM and TENORM. Some years ago, the International Atomic Energy Agency introduced the concept of clearance, that is, controlling releases of any such materials within the regulatory domain. This paper aims to clarify

  17. NASA Plum Brook's B-2 Test Facility: Thermal Vacuum and Propellant Test Facility

    NASA Technical Reports Server (NTRS)

    Kudlac, Maureen T.; Weaver, Harold F.; Cmar, Mark D.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) Plum Brook Station (PBS) Spacecraft Propulsion Research Facility, commonly referred to as B-2, is NASA's third largest thermal vacuum facility. It is the largest designed to store and transfer large quantities of liquid hydrogen and liquid oxygen, and is perfectly suited to support developmental testing of upper stage chemical propulsion systems as well as fully integrated stages. The facility is also capable of providing thermal-vacuum simulation services to support testing of large lightweight structures, Cryogenic Fluid Management (CFM) systems, electric propulsion test programs, and other In-Space propulsion programs. A recently completed integrated system test demonstrated the refurbished thermal vacuum capabilities of the facility. The test used the modernized data acquisition and control system to monitor the facility. The heat sink provided a uniform temperature environment of approximately 77 K. The modernized infrared lamp array produced a nominal heat flux of 1.4 kW/sq m. With the lamp array and heat sink operating simultaneously, the thermal systems produced a heat flux pattern simulating radiation to space on one surface and solar exposure on the other surface.

  18. 30 CFR 71.401 - Location of facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Bathing Facilities, Change Rooms, and Sanitary Flush Toilet Facilities at Surface Coal Mines § 71.401 Location of facilities. Bathhouses, change rooms, and sanitary flush toilet facilities shall be in a... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Location of facilities. 71.401 Section 71.401...

  19. 30 CFR 71.401 - Location of facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Bathing Facilities, Change Rooms, and Sanitary Flush Toilet Facilities at Surface Coal Mines § 71.401 Location of facilities. Bathhouses, change rooms, and sanitary flush toilet facilities shall be in a... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Location of facilities. 71.401 Section 71.401...

  20. 30 CFR 71.401 - Location of facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Bathing Facilities, Change Rooms, and Sanitary Flush Toilet Facilities at Surface Coal Mines § 71.401 Location of facilities. Bathhouses, change rooms, and sanitary flush toilet facilities shall be in a... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Location of facilities. 71.401 Section 71.401...