Demonstration of Standard HVAC Single-Loop Digital Control Systems
1993-01-01
AD-A265 372 T N FEAP-TR-FE-93/05 REPORT January 1993 FACILITIES ENGINEERING APPLICATIONS PROGRAM Demonstration of Standard HVAC Single-Loop Digital...AND DATES COVERED January 1993 Final 4. TITLE AND SUBTITLE [5. FUNDING NUMBERS Demonstration of Standard HVAC Single-Loop Digital Control Systems FEAP...conditioning ( HVAC ) control systems provide guidance on designing and specifying standard HVAC control systems that use single-loop digital controllers
[Air quality control systems: heating, ventilating, and air conditioning (HVAC)].
Bellucci Sessa, R; Riccio, G
2004-01-01
After a brief illustration of the principal layout schemes of Heating, Ventilating, and Air Conditioning (HVAC), the first part of this paper summarizes the standards, both voluntary and compulsory, regulating HVAC facilities design and installation with regard to the question of Indoor Air Quality (IAQ). The paper then examines the problem of ventilation systems maintenance and the essential hygienistic requirements in whose absence HVAC facilities may become a risk factor for people working or living in the building. Lastly, the paper deals with HVAC design strategies and methods, which aim not only to satisfy comfort and air quality requirements, but also to ensure easy and effective maintenance procedures.
9 CFR 93.412 - Ruminant quarantine facilities.
Code of Federal Regulations, 2014 CFR
2014-01-01
... (HVAC) system capable of controlling and maintaining the ambient temperature, air quality, moisture, and... to lot-holding areas must not be recirculated or reused for other ventilation needs. HVAC systems for... at a time, each lot-holding area must have its own separate HVAC system that is designed to prevent...
Energy-Smart Choices for Schools. An HVAC Comparison Tool. [CD-ROM].
ERIC Educational Resources Information Center
Geothermal Heat Pump Consortium, Inc., Washington, DC.
A CD ROM program provides comparison construction cost capabilities for heating, ventilation, and air conditioning (HVAC) systems in educational facilities. The program combines multiple types of systems with square footage data on low and high construction cost and school size to automatically calculate HVAC comparative construction costs. (GR)
ERIC Educational Resources Information Center
Wheeler, Arthur E.; Kunz, Walter S., Jr.
Although poor air quality in a school can have multiple causes, the heating, ventilating, and air-conditioning (HVAC) system plays a major role. Suggestions that architects, facilities managers, school board members, and administrators can use in selecting HVAC systems are discussed. Focus is on the performance criteria for classroom systems, and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurnik, Charles W.; Romberger, Jeff
The HVAC Controls Evaluation Protocol is designed to address evaluation issues for direct digital controls/energy management systems/building automation systems (DDC/EMS/BAS) that are installed to control heating, ventilation, and air-conditioning (HVAC) equipment in commercial and institutional buildings. (This chapter refers to the DDC/EMS/BAS measure as HVAC controls.) This protocol may also be applicable to industrial facilities such as clean rooms and labs, which have either significant HVAC equipment or spaces requiring special environmental conditions.
A preliminary analysis of recent HVAC energy projects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaddy, P.J.; Haake, C.F.
A typical Government HVAC design over the last 30 years consisted of two oversized (equal tonnage) electric chillers, two oversized (equal NBTU ratings) boilers, an air economizer cycle, a constant air volume system and a central station pneumatic control system. This typical basic layout for plant design has certain advantages such as simplicity and ease to construct throughout the country. The cookie cutter design/build approach suited federal facilities, when utility costs were not a major consideration, in-house maintenance and operations personnel were plentiful and energy conservation was a moral priority and not an economic concern. Those days are history asmore » energy costs have escalated and operating budgets continue to shrink leaving fewer personnel to maintain the same buildings. Advances in HVAC technology and the reduction in costs for energy efficient systems have finally started affecting the Federal Government`s HVAC replacement and new construction designs. This paper is a brief description of three HVAC projects that go outside the traditional government HVAC design parameters. GSA`s Pacific Rim Region, covering the states of Hawaii, California, Nevada, and Arizona, has implemented three HVAC projects utilizing different technologies not normally found in GSA Federal facilities.« less
1988-09-01
Unfortunately, although current construction practices can produce functional HVAC systems that provide adequate heating and cooling , they do not guarantee...developed by interviewing heating, ventilating, and air-conditioning ( HVAC ) profes- sionals, reviewing technical literature, and consolidating these...for recording this information. A glossary of possibly unfamiliar HVAC terms is included. An informal evaluation of the procedure showed that
Demonstration Program for Low-Cost, High-Energy-Saving Dynamic Windows
2014-09-01
Design The scope of this project was to demonstrate the impact of dynamic windows via energy savings and HVAC peak-load reduction; to validate the...temperature and glare. While the installed dynamic window system does not directly control the HVAC or lighting of the facility, those systems are designed ...optimize energy efficiency and HVAC load management. The conversion to inoperable windows caused an unforeseen reluctance to accept the design and
Industrial energy systems and assessment opportunities
NASA Astrophysics Data System (ADS)
Barringer, Frank Leonard, III
Industrial energy assessments are performed primarily to increase energy system efficiency and reduce energy costs in industrial facilities. The most common energy systems are lighting, compressed air, steam, process heating, HVAC, pumping, and fan systems, and these systems are described in this document. ASME has produced energy assessment standards for four energy systems, and these systems include compressed air, steam, process heating, and pumping systems. ASHRAE has produced an energy assessment standard for HVAC systems. Software tools for energy systems were developed for the DOE, and there are software tools for almost all of the most common energy systems. The software tools are AIRMaster+ and LogTool for compressed air systems, SSAT and 3E Plus for steam systems, PHAST and 3E Plus for process heating systems, eQUEST for HVAC systems, PSAT for pumping systems, and FSAT for fan systems. The recommended assessment procedures described in this thesis are used to set up an energy assessment for an industrial facility, collect energy system data, and analyze the energy system data. The assessment recommendations (ARs) are opportunities to increase efficiency and reduce energy consumption for energy systems. A set of recommended assessment procedures and recommended assessment opportunities are presented for each of the most common energy systems. There are many assessment opportunities for industrial facilities, and this thesis describes forty-three ARs for the seven different energy systems. There are seven ARs for lighting systems, ten ARs for compressed air systems, eight ARs for boiler and steam systems, four ARs for process heating systems, six ARs for HVAC systems, and four ARs for both pumping and fan systems. Based on a history of past assessments, average potential energy savings and typical implementation costs are shared in this thesis for most ARs. Implementing these ARs will increase efficiency and reduce energy consumption for energy systems in industrial facilities. This thesis does not explain all energy saving ARs that are available, but does describe the most common ARs.
42 CFR 9.4 - Physical facility policies and design.
Code of Federal Regulations, 2012 CFR
2012-10-01
... conditioning (HVAC); food preparation area; and animal waste treatment. (2) A housing system shall include... STANDARDS OF CARE FOR CHIMPANZEES HELD IN THE FEDERALLY SUPPORTED SANCTUARY SYSTEM § 9.4 Physical facility...
42 CFR 9.4 - Physical facility policies and design.
Code of Federal Regulations, 2014 CFR
2014-10-01
... conditioning (HVAC); food preparation area; and animal waste treatment. (2) A housing system shall include... STANDARDS OF CARE FOR CHIMPANZEES HELD IN THE FEDERALLY SUPPORTED SANCTUARY SYSTEM § 9.4 Physical facility...
42 CFR 9.4 - Physical facility policies and design.
Code of Federal Regulations, 2013 CFR
2013-10-01
... conditioning (HVAC); food preparation area; and animal waste treatment. (2) A housing system shall include... STANDARDS OF CARE FOR CHIMPANZEES HELD IN THE FEDERALLY SUPPORTED SANCTUARY SYSTEM § 9.4 Physical facility...
42 CFR 9.4 - Physical facility policies and design.
Code of Federal Regulations, 2011 CFR
2011-10-01
... conditioning (HVAC); food preparation area; and animal waste treatment. (2) A housing system shall include... STANDARDS OF CARE FOR CHIMPANZEES HELD IN THE FEDERALLY SUPPORTED SANCTUARY SYSTEM § 9.4 Physical facility...
36 CFR 1234.10 - What are the facility requirements for all records storage facilities?
Code of Federal Regulations, 2014 CFR
2014-07-01
... the HVAC systems, fire alarm and fire protection systems. Manual switching between sources of service... elements are protected by a properly installed, properly maintained wet-pipe automatic sprinkler system, as... must provide documentation that the facility has a fire suppression system specifically designed to...
Cutting the cost of hospital HVAC.
Ruddell, Steve
2011-09-01
Steve Ruddell, head of global marketing, Motors & Generators, at ABB, emphasises the importance of a good motor management and maintenance policy in getting the best performance from, and reducing the energy consumption of, hospitals' HVAC systems, also explaining why investing in energy-efficient, low voltage drives, and high efficiency electric motors, to control such equipment, can pay major dividends for estates and facilities teams.
An indoor air quality study of an alligator (Alligator mississippiensis) holding facility.
Wilson, S C; Holder, H W; Martin, J M; Brasel, T L; Andriychuk, L A; Wu, C; Straus, D C; Aguilar, R
2006-06-01
An environmental microbiologic investigation was conducted in an alligator (Alligator mississippiensis) holding facility in a zoo in the southeastern U.S. The facility had housed five alligators between March 1999 and February 2005. In the exhibit, one alligator died and all experienced poor health. It was hypothesized that environmental microbial contamination was associated with these issues. Samples were collected for fungal identification and quantification, microcystin analysis, and airborne mycotoxins. Analyses of air and water were conducted and an examination of the heating, ventilation, and air-conditioning system (HVAC) for design, maintenance, and operating issues was made. Two control sites, a facility for false gharials (Tomistoma schlegelii) and an off-site alligator breeding facility, were also tested. Morbidity and mortality records were examined for all sites. Results showed that, compared to the control sites, the test alligator facility and its HVAC system were extensively contaminated with a range of fungi. Nearly all sampled surfaces featured fungal growth. There were also significantly higher counts of Penicillium/Aspergillus-like and Chrysosporium-like spores in the air (P < 0.004). The design, maintenance, and operation of the HVAC system were all inadequate, resulting in poorly conditioned and mold-contaminated air being introduced to the facility. Morbidity records revealed solitary pulmonary disorders over time in three alligators, with one dying as a result. The other two alligators suffered from general malaise and a range of nonspecific symptoms. The control facilities had no morbidity or mortality issues. In conclusion, although no causal links could be demonstrated because of the nature of the morbidity data, environmental mold contamination appeared to be associated with the history of morbidity and mortality in the alligator exhibit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Liping; Hong, Tianzhen
Almost half of the total energy used in the U.S. buildings is consumed by heating, ventilation and air conditionings (HVAC) according to EIA statistics. Among various driving factors to energy performance of building, operations and maintenance play a significant role. Many researches have been done to look at design efficiencies and operational controls for improving energy performance of buildings, but very few study the impacts of HVAC systems maintenance. Different practices of HVAC system maintenance can result in substantial differences in building energy use. If a piece of HVAC equipment is not well maintained, its performance will degrade. If sensorsmore » used for control purpose are not calibrated, not only building energy usage could be dramatically increased, but also mechanical systems may not be able to satisfy indoor thermal comfort. Properly maintained HVAC systems can operate efficiently, improve occupant comfort, and prolong equipment service life. In the paper, maintenance practices for HVAC systems are presented based on literature reviews and discussions with HVAC engineers, building operators, facility managers, and commissioning agents. We categorize the maintenance practices into three levels depending on the maintenance effort and coverage: 1) proactive, performance-monitored maintenance; 2) preventive, scheduled maintenance; and 3) reactive, unplanned or no maintenance. A sampled list of maintenance issues, including cooling tower fouling, boiler/chiller fouling, refrigerant over or under charge, temperature sensor offset, outdoor air damper leakage, outdoor air screen blockage, outdoor air damper stuck at fully open position, and dirty filters are investigated in this study using field survey data and detailed simulation models. The energy impacts of both individual maintenance issue and combined scenarios for an office building with central VAV systems and central plant were evaluated by EnergyPlus simulations using three approaches: 1) direct modeling with EnergyPlus, 2) using the energy management system feature of EnergyPlus, and 3) modifying EnergyPlus source code. The results demonstrated the importance of maintenance for HVAC systems on energy performance of buildings. The research is intended to provide a guideline to help practitioners and building operators to gain the knowledge of maintaining HVAC systems in efficient operations, and prioritize HVAC maintenance work plan. The paper also discusses challenges of modeling building maintenance issues using energy simulation programs.« less
Yu, Kuo-Pin; Lee, Grace Whei-May; Huang, Wei-Ming; Wu, Chih-Cheng; Lou, Chia-ling; Yang, Shinhao
2006-05-01
Nowadays, the heating, ventilation, and air conditioning (HVAC) system has been an important facility for maintaining indoor air quality. However, the primary function of typical HVAC systems is to control the temperature and humidity of the supply air. Most indoor air pollutants, such as volatile organic compounds (VOCs), cannot be removed by typical HVAC systems. Thus, some air handling units for removing VOCs should be added in typical HVAC systems. Among all of the air cleaning techniques used to remove indoor VOCs, photocatalytic oxidation is an attractive alternative technique for indoor air purification and deodorization. The objective of this research is to investigate the VOC removal efficiency of the photocatalytic filter in a HVAC system. Toluene and formaldehyde were chosen as the target pollutants. The experiments were conducted in a stainless steel chamber equipped with a simplified HVAC system. A mechanical filter coated with Degussa P25 titania photocatalyst and two commercial photocatalytic filters were used as the photocatalytic filters in this simplified HVAC system. The total air change rates were controlled at 0.5, 0.75, 1, 1.25, and 1.5 hr(-1), and the relative humidity (RH) was controlled at 30%, 50%, and 70%. The ultraviolet lamp used was a 4-W, ultraviolet-C (central wavelength at 254 nm) strip light bulb. The first-order decay constant of toluene and formaldehyde found in this study ranged from 0.381 to 1.01 hr(-1) under different total air change rates, from 0.34 to 0.433 hr(-1) under different RH, and from 0.381 to 0.433 hr(-1) for different photocatalytic filters.
47 CFR 27.1164 - The cost-sharing formula.
Code of Federal Regulations, 2011 CFR
2011-10-01
... control equipment; engineering costs (design/path survey); installation; systems testing; FCC filing costs... plant upgrade (if required); electrical grounding systems; Heating Ventilation and Air Conditioning (HVAC) (if required); alternate transport equipment; and leased facilities. Increased recurring costs...
47 CFR 27.1164 - The cost-sharing formula.
Code of Federal Regulations, 2012 CFR
2012-10-01
... control equipment; engineering costs (design/path survey); installation; systems testing; FCC filing costs... plant upgrade (if required); electrical grounding systems; Heating Ventilation and Air Conditioning (HVAC) (if required); alternate transport equipment; and leased facilities. Increased recurring costs...
Code of Federal Regulations, 2010 CFR
2010-07-01
... utility systems, such as heating and air conditioning systems or building features, such as roof... Americans with Disabilities Act; building systems and utilities (e.g., electrical; heating, ventilation, and air conditioning (HVAC); boiler; medical gasses; roof; elevators); clinical-support facilities (e.g...
Code of Federal Regulations, 2011 CFR
2011-07-01
... utility systems, such as heating and air conditioning systems or building features, such as roof... Americans with Disabilities Act; building systems and utilities (e.g., electrical; heating, ventilation, and air conditioning (HVAC); boiler; medical gasses; roof; elevators); clinical-support facilities (e.g...
47 CFR 24.243 - The cost-sharing formula.
Code of Federal Regulations, 2014 CFR
2014-10-01
...; monitoring or control equipment; engineering costs (design/path survey); installation; systems testing; FCC... control; power plant upgrade (if required); electrical grounding systems; Heating Ventilation and Air Conditioning (HVAC) (if required); alternate transport equipment; and leased facilities. C also includes...
47 CFR 24.243 - The cost-sharing formula.
Code of Federal Regulations, 2013 CFR
2013-10-01
...; monitoring or control equipment; engineering costs (design/path survey); installation; systems testing; FCC... control; power plant upgrade (if required); electrical grounding systems; Heating Ventilation and Air Conditioning (HVAC) (if required); alternate transport equipment; and leased facilities. C also includes...
47 CFR 24.243 - The cost-sharing formula.
Code of Federal Regulations, 2012 CFR
2012-10-01
...; monitoring or control equipment; engineering costs (design/path survey); installation; systems testing; FCC... control; power plant upgrade (if required); electrical grounding systems; Heating Ventilation and Air Conditioning (HVAC) (if required); alternate transport equipment; and leased facilities. C also includes...
47 CFR 24.243 - The cost-sharing formula.
Code of Federal Regulations, 2011 CFR
2011-10-01
...; monitoring or control equipment; engineering costs (design/path survey); installation; systems testing; FCC... control; power plant upgrade (if required); electrical grounding systems; Heating Ventilation and Air Conditioning (HVAC) (if required); alternate transport equipment; and leased facilities. C also includes...
47 CFR 27.1164 - The cost-sharing formula.
Code of Federal Regulations, 2013 CFR
2013-10-01
...); installation; systems testing; FCC filing costs; site acquisition and civil works; zoning costs; training... upgrades for interference control; power plant upgrade (if required); electrical grounding systems; Heating Ventilation and Air Conditioning (HVAC) (if required); alternate transport equipment; and leased facilities...
38 CFR Appendix A to Part 200 - Categorical Exclusions
Code of Federal Regulations, 2014 CFR
2014-07-01
... of equipment or components in AFRH-controlled facilities without change in location, e.g., HVAC, electrical distribution systems, windows, doors or roof. A.3(e) Disposal or other disposition of claimed or...
38 CFR Appendix A to Part 200 - Categorical Exclusions
Code of Federal Regulations, 2012 CFR
2012-07-01
... of equipment or components in AFRH-controlled facilities without change in location, e.g., HVAC, electrical distribution systems, windows, doors or roof. A.3(e) Disposal or other disposition of claimed or...
38 CFR Appendix A to Part 200 - Categorical Exclusions
Code of Federal Regulations, 2013 CFR
2013-07-01
... of equipment or components in AFRH-controlled facilities without change in location, e.g., HVAC, electrical distribution systems, windows, doors or roof. A.3(e) Disposal or other disposition of claimed or...
38 CFR Appendix A to Part 200 - Categorical Exclusions
Code of Federal Regulations, 2011 CFR
2011-07-01
... of equipment or components in AFRH-controlled facilities without change in location, e.g., HVAC, electrical distribution systems, windows, doors or roof. A.3(e) Disposal or other disposition of claimed or...
NASA Astrophysics Data System (ADS)
Oswiecinska, A.; Hibbs, J.; Zajic, I.; Burnham, K. J.
2015-11-01
This paper presents conceptual control solution for reliable and energy efficient operation of heating, ventilation and air conditioning (HVAC) systems used in large volume building applications, e.g. warehouse facilities or exhibition centres. Advanced two-level scalable control solution, designed to extend capabilities of the existing low-level control strategies via remote internet connection, is presented. The high-level, supervisory controller is based on Model Predictive Control (MPC) architecture, which is the state-of-the-art for indoor climate control systems. The innovative approach benefits from using passive heating and cooling control strategies for reducing the HVAC system operational costs, while ensuring that required environmental conditions are met.
High-Performance Computing Data Center Power Usage Effectiveness |
Power Usage Effectiveness When the Energy Systems Integration Facility (ESIF) was conceived, NREL set an , ventilation, and air conditioning (HVAC), which captures fan walls, fan coils that support the data center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biancardi, F.R.; Michels, H.H.; Sienel, T.H.
1996-10-01
The purpose of this program was to conduct experimental and analytical efforts to determine lubricant circulation characteristics of new HFC/POE pairs and HFC/mineral oil pairs in a representative central residential HVAC system and to compare their behavior with the traditional HCFC-22/mineral oil (refrigerant/lubricant) pair. A dynamic test facility was designed and built to conduct the experimental efforts. This facility provided a unique capability to visually and physically measure oil circulation rates, on-line, in operating systems. A unique on-line ultraviolet-based measurement device was used to obtain detailed data on the rate and level of lubricant oil circulated within the operating heatmore » pump system. The experimental and analytical data developed during the program are presented as a function of vapor velocity, refrigerant/lubricant viscosity, system features and equipment. Both visual observations and instrumentation were used to understand ``worst case`` oil circulation situations. This report is presented in two volumes. Volume 1 contains a complete description of the program scope, objective, test results summary, conclusions, description of test facility and recommendations for future effort. Volume 2 contains all of the program test data essentially as taken from the laboratory dynamic test facility during the sequence of runs.« less
Sparn Photo of Bethany Sparn Bethany Sparn Researcher IV-Systems Engineering Bethany.Sparn@nrel.gov , residential HVAC equipment, heat pump water heaters, automated home energy management devices, and whole-house Energy Systems Integration Facility which provides a test bed for evaluating home energy management
[Analysis and research on cleaning points of HVAC systems in public places].
Yang, Jiaolan; Han, Xu; Chen, Dongqing; Jin, Xin; Dai, Zizhu
2010-03-01
To analyze cleaning points of HVAC systems, and to provides scientific base for regulating the cleaning of HVAC systems. Based on the survey results on the cleaning situation of HVAC systems around China for the past three years, we analyzes the cleaning points of HVAC systems from various aspects, such as the major health risk factors of HVAC systems, the formulation strategy of the cleaning of HVAC systems, cleaning methods and acceptance points of the air ducts and the parts of HVAC systems, the onsite protection and individual protection, the waste treatment and the cleaning of the removed equipment, inspection of the cleaning results, video record, and the final acceptance of the cleaning. The analysis of the major health risk factors of HVAC systems and the formulation strategy of the cleaning of HVAC systems is given. The specific methods for cleaning the air ducts, machine units, air ports, coil pipes and the water cooling towers of HVAC systems, the acceptance points of HVAC systems and the requirements of the report on the final acceptance of the cleaning of HVAC systems are proposed. By the analysis of the points of the cleaning of HVAC systems and proposal of corresponding measures, this study provides the base for the scientific and regular launch of the cleaning of HVAC systems, a novel technology service, and lays a foundation for the revision of the existing cleaning regulations, which may generate technical and social benefits to some extent.
Technical Report from Grant Recipient - City of Redlands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giorgianni, Kathleen Margaret
2016-05-26
The goals and objectives of the HVAC upgrades are to replace equipment as old as twenty-three (23) years in five different facilities. The project will upgrade some facilities from SEER ratings of 9 to SEER ratings of 14 at a savings of 556 kilowatt hours per ton (savings depends on specific size of the system).
Code of Federal Regulations, 2013 CFR
2013-01-01
... or cooling system, or both, or for a hot water system. Carpool means the sharing of a ride by two or... or other entity named in the notice of grant award as the recipient. HVAC means heating, ventilating... equipment or facility which is used in connection with, or as part of, any process or system for industrial...
Code of Federal Regulations, 2012 CFR
2012-01-01
... or cooling system, or both, or for a hot water system. Carpool means the sharing of a ride by two or... or other entity named in the notice of grant award as the recipient. HVAC means heating, ventilating... equipment or facility which is used in connection with, or as part of, any process or system for industrial...
Code of Federal Regulations, 2014 CFR
2014-01-01
... or cooling system, or both, or for a hot water system. Carpool means the sharing of a ride by two or... or other entity named in the notice of grant award as the recipient. HVAC means heating, ventilating... equipment or facility which is used in connection with, or as part of, any process or system for industrial...
Fixed Equipment in the Energy Systems Integration Facility | Energy Systems
dynamic simulation of future energy systems. Photo of a robot used to test hydrogen coupling hardware. At test chambers (rated up to 60°C) for testing HVAC systems under simulated loading conditions Two bench performance Test stand for measuring performance of receiver tubes for concentrating solar power applications
Solving the energy dilemma at Seven Bridges Ice Arena
DOE Office of Scientific and Technical Information (OSTI.GOV)
Louria, D.
1996-08-01
Seven Bridges Ice Arena with three ice skating rinks is among the largest ice skating facilities in the US. A complete fitness center, pro shop, second level observation gallery, restaurant, aerobics room, dance studio and children`s play room round out the 120,000 ft{sup 2} (11,215 m{sup 2}) world class facility. The Olympic Hockey League ice rink has seating for 800 spectators; and the National Hockey League ice rink has 1,200 spectator seats. The collegiate ice sheet has participant seating only. When building the one-year-old facility, the management initially solicited HVAC design/build system plans based on the usual Package Roof Topmore » (RTU) heat/cool units or split system parameters. Such a plan could have been a disaster because high energy costs have contributed directly to the closing of 20 rinks in the Chicago area. This article describes a HVAC system that would take advantage of every Energy Conservation Opportunities (ECO) possible to ensure the economic well being of this property. This included a plan that uses the refrigeration for both cooling and heating, which eliminated the need for commercial packaged units.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-09
... equity trading system. The Exchange ceased operation of the technology used to operate XLE on October 24... cleaning, HVAC and general maintenance. All other floor members would be assessed the Floor Facility Fee of...
1991-07-01
integrate -into the existing -structure and HVAC system. Costs-for a eutectic salt system are shown in Table 5 to compare with the DIS cooling systems. The... eutectic salt system is not an ice storage system, but is a phase change system that stores energy iniits heat of fusion and changes phase at 47 ’F
ERIC Educational Resources Information Center
Johnson, Robert L.
2005-01-01
High-performance schools are facilities that improve the learning environment while saving energy, resources and money. Creating a high-performance school requires an integrated design approach. Key systems--including lighting, HVAC, electrical and plumbing--must be considered from the beginning of the design process. According to William H.…
Resolution of sick building syndrome in a high-security facility.
Hiipakka, D W; Buffington, J R
2000-08-01
The main objective of this article is to serve as a case study for other industrial hygiene (IH) professionals' review as a "real world" effort in responding to a facility perceived as "sick" by its occupants. As many industrial hygienists do not have extensive backgrounds in evaluating microbial air contaminants or the mechanical function of building HVAC units, the overall intent is to provide "lessons learned" to IH generalists who may be asked to participate in indoor environmental quality (IEQ) surveys. In September 1994, a suspected case of "sick building syndrome" was investigated (with significant airborne fungal loads confirmed) at a communications center after numerous occupants reported upper respiratory disease and/or allergy-type symptoms. The setting was a two-story structure approximately 30 years old, with a normal occupancy load of 350 to 400 persons. In addition to continual structural modifications, the central HVAC air conditioning systems had poor maintenance histories. Inspection of HVAC components revealed visible fungal growth on air filters and air ducts and in cooling fan condensate drip pans. Fungal air samples were collected with an Anderson N6 air sampler and Sabouraund dextrose agar media. Over a study period of 23 months, three rounds of 26 air samples were collected for 5 minutes each at 28.3 liters/minute airflow. Cultures exhibited fungi such as Aspergillus, Penicillium, Alternaria, and Cladosporium. Certain strains of these fungi produce mycotoxins that may cause a variety of deleterious health effects such as those described by occupants. Initial 1994 airborne fungal concentrations ranged from 85 to 6157 colony forming units (CFUs) per cubic meter of sampled air (CFU/m3). Some investigators have reported fungal concentrations as low as 245 CFU/m3 associated with complaint sites in other buildings. Remediation efforts involved hiring a dedicated mechanic to implement a HVAC preventive maintenance program (including regular replacement of all HVAC air filters and cleaning of accessible components with water/bleach solution). Post-abatement January 1996 re-sampling revealed a significant drop in airborne fungal colonies up to 97 percent (range = 21 to 1092 CFUs/m3)--which also coincided with physicians at the local hospital sensing a qualitative reduction in patient visits from facility workers. To address seasonal bias, a final August 1996 air sample round revealed a range of 14 to 500 CFUs/m3. Of the 21 workspaces sampled in all three rounds, nine continued to show a decline in CFUs/m3 from September 1994 baseline counts. These results demonstrate the critical role of an ongoing HVAC maintenance program for reducing potential reservoirs of fungal organisms in indoor work environments. Building renovations (especially those involving major changes to building layout and usage) can adversely affect IEQ if plans do not include coordinated updates and regular preventive maintenance of HVAC systems. Eventual negative outcomes can be reduced occupant productivity and deleterious health effects.
Study of lubricant circulation in HVAC systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biancardi, F.; Sienel, T.; Pandy, D.
1997-02-01
This program was aimed at understanding refrigerant/lubricant circulation issues, developing test data and approximate models that can predict operating regimes where good oil management can be assured. A dynamic test facility was constructed and used to examine oil return under varying system operating conditions. The development of industry guidelines for system reliability in using the new refrigerant blends was a goal of this program. To validate the guidelines, techniques and predictions, this dynamic test facility was used to obtain data to compare to the analytical predictions. The overall program approach undertaken to meet this objective was: (1) to identify poormore » oil return scenarios and, therefore, the worst case oil return parameters for conventional residential HVAC systems using HCFC-22 and mineral oils, in terms of compressor, suction and exhaust line vapor velocity, and refrigerant viscosity requirements; (2) design and instrument a test apparatus that simulates such conditions, as well as those that might be achieved with HFC and POE mixtures and HFCs and mineral oils; (3) conduct tests with the range of baseline refrigerants and lubricant mixtures to provide experimental data; and (4) prepare, present and interpret the test data to provide an expanded understanding of the phenomena required for good oil circulation in split-system heat pump systems. To convert this general approach into the program specifics, three major tasks were defined and pursued. These are described briefly here and in greater detail in the report body as Task 1, Task 2, and Task 3. The report prepared for ARTI as part of the MCLR Project Number 665-53100 is described in Volumes 1 and 2, ``Study of Lubricant Circulation in the HVAC Systems,`` October 1996, from the same authors as this publication. This record consists of the overheads used in the presentation.« less
Military Housing Inspection-Camp Buehring, Kuwait
2016-09-30
General DPW Director Public Works FAS Fire Alarm System HVAC Heating, Ventilation, and Air Conditioning IAW In Accordance With ITM Inspection...safety policies and standards regarding electrical and fire protection systems . Findings We found significant deficiencies in electrical and fire...protection systems during the physical inspections of the U.S. military-occupied facilities at Camp Buehring. We identified a total of 538
ERIC Educational Resources Information Center
Wilson, Scott
2001-01-01
Highlights the different design approaches that may be taken and the HVAC systems that result depending on the type of educational facility involved, be it an elementary, secondary, or postsecondary institution. Explores school indoor air quality issues and highlights the roles and responsibilities of IAQ project participants. A case study…
10 CFR 434.520 - Speculative buildings.
Code of Federal Regulations, 2014 CFR
2014-01-01
... assumed lighting power allowance. 520.5 HVAC Systems and Equipment. If the HVAC system is not completely... construction of future HVAC systems and equipment. These assumptions shall be documented so that future HVAC... calculate the Design Energy Consumption must be documented so that the future installed lighting systems may...
10 CFR 434.520 - Speculative buildings.
Code of Federal Regulations, 2010 CFR
2010-01-01
... assumed lighting power allowance. 520.5HVAC Systems and Equipment. If the HVAC system is not completely... construction of future HVAC systems and equipment. These assumptions shall be documented so that future HVAC... calculate the Design Energy Consumption must be documented so that the future installed lighting systems may...
10 CFR 434.520 - Speculative buildings.
Code of Federal Regulations, 2011 CFR
2011-01-01
... assumed lighting power allowance. 520.5HVAC Systems and Equipment. If the HVAC system is not completely... construction of future HVAC systems and equipment. These assumptions shall be documented so that future HVAC... calculate the Design Energy Consumption must be documented so that the future installed lighting systems may...
10 CFR 434.520 - Speculative buildings.
Code of Federal Regulations, 2013 CFR
2013-01-01
... assumed lighting power allowance. 520.5HVAC Systems and Equipment. If the HVAC system is not completely... construction of future HVAC systems and equipment. These assumptions shall be documented so that future HVAC... calculate the Design Energy Consumption must be documented so that the future installed lighting systems may...
10 CFR 434.520 - Speculative buildings.
Code of Federal Regulations, 2012 CFR
2012-01-01
... assumed lighting power allowance. 520.5HVAC Systems and Equipment. If the HVAC system is not completely... construction of future HVAC systems and equipment. These assumptions shall be documented so that future HVAC... calculate the Design Energy Consumption must be documented so that the future installed lighting systems may...
3. NORTH ELEVATION OF THE HOT BAY, SHOWING RAILROAD TRACKS ...
3. NORTH ELEVATION OF THE HOT BAY, SHOWING RAILROAD TRACKS LEADING TO THE MASSIVE STEEL-LINED CONCRETE ENTRANCE DOOR. PART OF THE INTRICATE HVAC SYSTEM IS WEST (RIGHT) OF THE DOOR. - Nevada Test Site, Engine Maintenance Assembly & Disassembly Facility, Area 25, Jackass Flats, Mercury, Nye County, NV
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-15
... compatible and adaptable to the space restrictions created by the existing facility. DATES: June 15, 2011... space for HVAC equipment and the associated accessories. The project requires a very high-efficiency... USDA's knowledge, there is no HVAC equipment manufactured in the United States that meets the County's...
Improved Planning and Programming for Energy Efficient New Army Facilities
1988-10-01
setpoints to occupant comfort must be considered carefully. Cutting off the HVAC system to the bedrooms during the day produced only small savings...functions of a building and minimizing the energy usage through optimization . It includes thermostats, time switches, programmable con- trollers...microprocessor systems, computers, and sensing devices that are linked with control and power components to manage energy use. This system optimizes load
1996 Olympic Stadium/Braves Baseball Park: Adaptive pre-use
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cambron, C.R.
1996-02-01
Converting an Olympic stadium back into a baseball park proved challenging from an HVAC standpoint because both configurations` HVAC needs were different. At first glance the HVAC requirements for an open air stadium may seem slight. Surprisingly, however, the stadium boasts nearly 300,000 sq ft of conditioned space, handled by two chillers, 22 air handling units, 37 cooking exhausts, over 150 exhaust fans, over 3 miles of ductwork, and several electric heat pumps. The approach -- design for second use, adapt for first use, and reconfigure facility to its original design. Because the designated after-use is baseball, the design mustmore » start with a first-class baseball stadium that can be expanded to meet the needs of the Olympics. After 1996, the facility can be reconfigured for its intended lifetime usage.« less
NASA Astrophysics Data System (ADS)
Xu, Jun
Topic 1. An Optimization-Based Approach for Facility Energy Management with Uncertainties. Effective energy management for facilities is becoming increasingly important in view of the rising energy costs, the government mandate on the reduction of energy consumption, and the human comfort requirements. This part of dissertation presents a daily energy management formulation and the corresponding solution methodology for HVAC systems. The problem is to minimize the energy and demand costs through the control of HVAC units while satisfying human comfort, system dynamics, load limit constraints, and other requirements. The problem is difficult in view of the fact that the system is nonlinear, time-varying, building-dependent, and uncertain; and that the direct control of a large number of HVAC components is difficult. In this work, HVAC setpoints are the control variables developed on top of a Direct Digital Control (DDC) system. A method that combines Lagrangian relaxation, neural networks, stochastic dynamic programming, and heuristics is developed to predict the system dynamics and uncontrollable load, and to optimize the setpoints. Numerical testing and prototype implementation results show that our method can effectively reduce total costs, manage uncertainties, and shed the load, is computationally efficient. Furthermore, it is significantly better than existing methods. Topic 2. Power Portfolio Optimization in Deregulated Electricity Markets with Risk Management. In a deregulated electric power system, multiple markets of different time scales exist with various power supply instruments. A load serving entity (LSE) has multiple choices from these instruments to meet its load obligations. In view of the large amount of power involved, the complex market structure, risks in such volatile markets, stringent constraints to be satisfied, and the long time horizon, a power portfolio optimization problem is of critical importance but difficulty for an LSE to serve the load, maximize its profit, and manage risks. In this topic, a mid-term power portfolio optimization problem with risk management is presented. Key instruments are considered, risk terms based on semi-variances of spot market transactions are introduced, and penalties on load obligation violations are added to the objective function to improve algorithm convergence and constraint satisfaction. To overcome the inseparability of the resulting problem, a surrogate optimization framework is developed enabling a decomposition and coordination approach. Numerical testing results show that our method effectively provides decisions for various instruments to maximize profit, manage risks, and is computationally efficient.
Strategy Guideline: HVAC Equipment Sizing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burdick, A.
The heating, ventilation, and air conditioning (HVAC) system is arguably the most complex system installed in a house and is a substantial component of the total house energy use. A right-sized HVAC system will provide the desired occupant comfort and will run efficiently. This Strategy Guideline discusses the information needed to initially select the equipment for a properly designed HVAC system. Right-sizing of an HVAC system involves the selection of equipment and the design of the air distribution system to meet the accurate predicted heating and cooling loads of the house. Right-sizing the HVAC system begins with an accurate understandingmore » of the heating and cooling loads on a space; however, a full HVAC design involves more than just the load estimate calculation - the load calculation is the first step of the iterative HVAC design procedure. This guide describes the equipment selection of a split system air conditioner and furnace for an example house in Chicago, IL as well as a heat pump system for an example house in Orlando, Florida. The required heating and cooling load information for the two example houses was developed in the Department of Energy Building America Strategy Guideline: Accurate Heating and Cooling Load Calculations.« less
Validation and Improvement of Reliability Methods for Air Force Building Systems
focusing primarily on HVAC systems . This research used contingency analysis to assess the performance of each model for HVAC systems at six Air Force...probabilistic model produced inflated reliability calculations for HVAC systems . In light of these findings, this research employed a stochastic method, a...Nonhomogeneous Poisson Process (NHPP), in an attempt to produce accurate HVAC system reliability calculations. This effort ultimately concluded that
Demonstration and Validation of a Waste-to-Energy Conversion System for Fixed DoD Installations
2013-09-01
hydrocarbon HVAC heating, ventilation , and air conditioning HX heat exchanger I/O input/output ISO International Organization for Standardization...DEMONSTRATION In 2011, renewable energy accounted for just 9% of total energy consumption in the United States, and just 5% (or 0.45% overall) of that (477...operations and facilities.3 Facility energy costs accounted for ~21% ($4.1 billion). DoD has made great progress in reducing its energy consumption for
EEAP lighting survey study at the Red River Army Depot, Texarkana, Texas. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The purpose of the study was to perform a limited site survey of specific buildings at the facility, identify specific Energy Conservation Opportunities (ECOs) that exist, and then evaluate these ECOs for technical and economic feasibility. These ECOs were limited to building interior lighting and it`s effects on the heating, ventilating and air conditioning (HVAC) systems. This survey was conducted with the assistance of many individuals at the facility.
Garrison, R A; Robertson, L D; Koehn, R D; Wynn, S R
1993-12-01
Commercial air duct sanitation services are advertised to the public as being effective in reducing indoor aeroallergen levels despite the absence of published supporting data. Eight residential heat-ventilation-air conditioning (HVAC) systems in six homes and seven HVAC systems in five homes in winter and summer, respectively, were sampled to determine fungal colony forming units (CFUs) prior to and after an HVAC sanitation procedure was performed by a local company. Two houses in which no sanitation procedure was performed served as controls in each study phase. Two sample sets were obtained at each HVAC system prior to cleaning in order to determine baseline CFU levels. The test HVAC systems were then cleaned, and the HVAC systems allowed to operate as desired by the residents. Posttreatment sampling was performed 48 hours and then weekly after cleaning for 8 weeks. The HVAC systems were analyzed by exposing sterile 2% malt extract media plates at a 90-degree angle to the air flow at the air supply and air return vents. The baseline CFUs were similar in the control and study houses. Eight weeks after sanitation, the study houses demonstrated an overall CFU reduction of 92% during winter and 84% during summer. No reduction in CFU values was observed over the 8-week study period for the houses selected as controls. Further, HVAC sanitation appeared to reduce the number of fungal colonies entering and leaving the HVAC system, suggesting that the HVAC contained a significant percentage of the total fungal load in these homes. These data suggest that HVAC sanitation may be an effective tool in reducing airborne fungal populations in residential environments.
ERIC Educational Resources Information Center
Wheeler, Arthur E.
To help maintain good indoor air quality (IAQ) in schools, guidance for the development and implementation of an effective program for maintenance and operation of heating, ventilating, and air-conditioning (HVAC) systems are discussed. Frequently, a building's occupants will complain about IAQ when the temperature or humidity are at uncomfortable…
Ackelsberg, Joel; Leykam, Frederic M; Hazi, Yair; Madsen, Larry C; West, Todd H; Faltesek, Anthony; Henderson, Gavin D; Henderson, Christopher L; Leighton, Terrance
2011-09-01
Native air sampling (NAS) is distinguished from dedicated air sampling (DAS) devices (eg, BioWatch) that are deployed to detect aerosol disseminations of biological threat agents. NAS uses filter samples from heating, ventilation, and air conditioning (HVAC) systems in commercial properties for environmental sampling after DAS detection of biological threat agent incidents. It represents an untapped, scientifically sound, efficient, widely distributed, and comparably inexpensive resource for postevent environmental sampling. Calculations predict that postevent NAS would be more efficient than environmental surface sampling by orders of magnitude. HVAC filter samples could be collected from pre-identified surrounding NAS facilities to corroborate the DAS alarm and delineate the path taken by the bioaerosol plume. The New York City (NYC) Native Air Sampling Pilot Project explored whether native air sampling would be acceptable to private sector stakeholders and could be implemented successfully in NYC. Building trade associations facilitated outreach to and discussions with property owners and managers, who expedited contact with building managers of candidate NAS properties that they managed or owned. Nominal NAS building requirements were determined; procedures to identify and evaluate candidate NAS facilities were developed; data collection tools and other resources were designed and used to expedite candidate NAS building selection and evaluation in Manhattan; and exemplar environmental sampling playbooks for emergency responders were completed. In this sample, modern buildings with single or few corporate tenants were the best NAS candidate facilities. The Pilot Project successfully demonstrated that in one urban setting a native air sampling strategy could be implemented with effective public-private collaboration.
1989-05-01
Typical ranges are from 50 to 70 OF. If a chiller is dedicated to serving water-cooled electronic equipment, the chilled water temperature setpoint can...can be satisfied with 50 OF chilled water. The COP of the dedicated chiller is improved by raising the chilled water setpoint , and the total life-cycle...USACERL TECHNICAL REPORT E-89/10 May 1989 Studies in Optimizing HVAC Hardware for C31 Facilities US Army Corps of Engineers Construction Engineering
Chlorofluorocarbon (CFC) Limitation in Heating, Ventilating and Air Conditioning (HVAC) Systems
1991-08-21
SMLEF 1 ALEXANDRIA, VA 22332-2300 GUNTER AFB, AL 36114-3643 CMDR, ATLANTIC DIVISION/CODE 04A4 1 AFRCE-SAC/DEE INAVAL FACILITIES ENGINEERING COMMAND... SCIENCES USAF RGN CIVIL ENGR - WESTERN 1201 L STREET NW, SUITE 400 REGION/RO 1 WASHINGTON, DC 20005 630 SANSOME ST, ROOM 1316 SAN FRANCISCO, CA 94111-7
Lower HVAC Costs | Efficient Windows Collaborative
system. Smaller HVAC systems cost less and as such can offset some of the cost of the efficient windows dehumidification. First cost savings - Smaller HVAC units cost less. If, for example, down-sizing the HVAC system by half a ton saves $275, the cost premium of energy-efficient windows does not present as big an up
City of Raleigh, Wilders Grove Service Center, Solid Waste Services Facility. Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert Cox; Bill Black; Battle, Fred
Final Report for DOE Grant EE0002808. Grant award was for technology demonstration of geothermal energy systems. One of the major objectives identified for the demonstration portion of the grant was to prove the viability of Ground Source Heat Pump (GSHP) systems in significantly reducing energy usage of HVAC and domestic water heating systems compared to traditional systems. Data were monitored and conclusions drawn, including estimating payback timeframes and documenting lessons learned.
Bennett, D H; Fisk, W; Apte, M G; Wu, X; Trout, A; Faulkner, D; Sullivan, D
2012-08-01
This field study of 37 small and medium commercial buildings throughout California obtained information on ventilation rate, temperature, and heating, ventilating, and air-conditioning (HVAC) system characteristics. The study included seven retail establishments; five restaurants; eight offices; two each of gas stations, hair salons, healthcare facilities, grocery stores, dental offices, and fitness centers; and five other buildings. Fourteen (38%) of the buildings either could not or did not provide outdoor air through the HVAC system. The air exchange rate averaged 1.6 (s.d. = 1.7) exchanges per hour and was similar between buildings with and without outdoor air supplied through the HVAC system, indicating that some buildings have significant leakage or ventilation through open windows and doors. Not all buildings had sufficient air exchange to meet ASHRAE 62.1 Standards, including buildings used for fitness centers, hair salons, offices, and retail establishments. The majority of the time, buildings were within the ASHRAE temperature comfort range. Offices were frequently overcooled in the summer. All of the buildings had filters, but over half the buildings had a filter with a minimum efficiency reporting value rating of 4 or lower, which are not very effective for removing fine particles. Most U.S. commercial buildings (96%) are small- to medium-sized, using nearly 18% of the country's energy, and sheltering a large population daily. Little is known about the ventilation systems in these buildings. This study found a wide variety of ventilation conditions, with many buildings failing to meet relevant ventilation standards. Regulators may want to consider implementing more complete building inspections at commissioning and point of sale. © 2012 John Wiley & Sons A/S.
The Lister Hill National Center for Biomedical Communications.
Smith, K A
1994-09-01
On August 3, 1968, the Joint Resolution of the Congress established the program and construction of the Lister Hill National Center for Biomedical Communications. The facility dedicated in 1980 contains the latest in computer and communications technologies. The history, program requirements, construction management, and general planning are discussed including technical issues regarding cabling, systems functions, heating, ventilation, and air conditioning system (HVAC), fire suppression, research and development laboratories, among others.
Thermal storage HVAC system retrofit provides economical air conditioning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, S.F.
1993-03-01
This article describes an EMS-controlled HVAC system that meets the ventilation and cooling needs of an 18,000-seat indoor ice hockey arena. The Buffalo Memorial Auditorium (affectionately referred to as the Aud) was built in 1937 under the Works Project Administration of the federal government. Its original configuration included a 12,000-seat arena with an ice skating rink. By the late 1980s, the city was unsuccessfully attempting to attract events and tenants to the auditorium, which lacked air conditioning and other modern amenities. Thus, it was decided to renovate the facility to make it marketable. The first phase of the renovation includedmore » installing an air-conditioning system in the arena and repairing the existing building systems that were inoperable because of deferred maintenance. After considering the existing conditions (such as size of the space, intermittent usage, construction restrictions, operating budgets and the limited operations staff), the engineering team designed an innovative HVAC system. The system's features include: a carbon dioxide monitoring device that controls the intake of outside air; an ice storage system that provides chilled water and shifts electrical demand to off-peak hours; and a design that uses the building mass as a heat sink. A new energy management system (EMS) determines building cooling needs based on the type of event, ambient conditions and projected audience size. Then, it selects the most economical method to obtain the desired arena temperature.« less
10 CFR 434.403 - Building mechanical systems and equipment.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Insulation. All supply and return air ducts and plenums installed as part of an HVAC air distribution system... maintenance shall be provided. (d) HVAC controls systems maintenance and calibration information, including... HVAC systems be balanced in accordance with the industry accepted procedures (such as National...
HVAC SYSTEMS IN THE CURRENT STOCK OF US K-12 SCHOOLS
The report summarizes information on heating, ventilating, an air- conditioning (HVAC) systems commonly found in U. S. school buildings and the effect that operating these systems has on indoor radon levels. The report describes the ability of various HVAC systems to pressurize a...
HVAC SYSTEMS IN THE CURRENT STOCK OF U.S. K-12 SCHOOLS
The report summarizes information on heating, ventilating, an air- conditioning (HVAC) systems commonly found in U. S. school buildings and the effect that operating these systems has on indoor radon levels. The report describes the ability of various HVAC systems to pressurize a...
10 CFR 434.403 - Building mechanical systems and equipment.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Insulation. All supply and return air ducts and plenums installed as part of an HVAC air distribution system... maintenance shall be provided. (d) HVAC controls systems maintenance and calibration information, including... HVAC systems be balanced in accordance with the industry accepted procedures (such as National...
10 CFR 434.403 - Building mechanical systems and equipment.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Insulation. All supply and return air ducts and plenums installed as part of an HVAC air distribution system... maintenance shall be provided. (d) HVAC controls systems maintenance and calibration information, including... HVAC systems be balanced in accordance with the industry accepted procedures (such as National...
Memarzadeh, Farhad; Olmsted, Russell N; Bartley, Judene M
2010-06-01
This review evaluates the applicability and relative contribution of ultraviolet germicidal irradiation (UVGI) to disinfection of air in health care facilities. A section addressing the use of UVGI for environmental surfaces is also included. The germicidal susceptibility of biologic agents is addressed, but with emphasis on application in health care facilities. The balance of scientific evidence indicates that UVGI should be considered as a disinfection application in a health care setting only in conjunction with other well-established elements, such as appropriate heating, ventilating, and air-conditioning (HVAC) systems; dynamic removal of contaminants from the air; and preventive maintenance in combination with through cleaning of the care environment. We conclude that although UVGI is microbiocidal, it is not "ready for prime time" as a primary intervention to kill or inactivate infectious microorganisms; rather, it should be considered an adjunct. Other factors, such as careful design of the built environment, installation and effective operation of the HVAC system, and a high level of attention to traditional cleaning and disinfection, must be assessed before a health care facility can decide to rely solely on UVGI to meet indoor air quality requirements for health care facilities. More targeted and multiparameter studies are needed to evaluate the efficacy, safety, and incremental benefit of UVGI for mitigating reservoirs of microorganisms and ultimately preventing cross-transmission of pathogens that lead to health care-associated infections. (c) 2010 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.
34 CFR 222.174 - What prohibitions apply to these funds?
Code of Federal Regulations, 2014 CFR
2014-07-01
..., and air conditioning (HVAC) system. The LEA has not made any commitments for the HVAC system because... would not be supplanting if the LEA received an emergency grant under this program to pay for the HVAC system. (Authority: 20 U.S.C. 7707(b)) ...
34 CFR 222.174 - What prohibitions apply to these funds?
Code of Federal Regulations, 2012 CFR
2012-07-01
..., and air conditioning (HVAC) system. The LEA has not made any commitments for the HVAC system because... would not be supplanting if the LEA received an emergency grant under this program to pay for the HVAC system. (Authority: 20 U.S.C. 7707(b)) ...
34 CFR 222.174 - What prohibitions apply to these funds?
Code of Federal Regulations, 2010 CFR
2010-07-01
..., and air conditioning (HVAC) system. The LEA has not made any commitments for the HVAC system because... would not be supplanting if the LEA received an emergency grant under this program to pay for the HVAC system. (Authority: 20 U.S.C. 7707(b)) ...
34 CFR 222.174 - What prohibitions apply to these funds?
Code of Federal Regulations, 2011 CFR
2011-07-01
..., and air conditioning (HVAC) system. The LEA has not made any commitments for the HVAC system because... would not be supplanting if the LEA received an emergency grant under this program to pay for the HVAC system. (Authority: 20 U.S.C. 7707(b)) ...
34 CFR 222.174 - What prohibitions apply to these funds?
Code of Federal Regulations, 2013 CFR
2013-07-01
..., and air conditioning (HVAC) system. The LEA has not made any commitments for the HVAC system because... would not be supplanting if the LEA received an emergency grant under this program to pay for the HVAC system. (Authority: 20 U.S.C. 7707(b)) ...
The first part of this two-part paper discusses radon entry into schools, radon mitigation approaches for schools, and school characteristics (e.g., heating, ventilation, and air conditioing -- HVAC-- system design and operationg) that influence radon entry and mitigation system ...
HVAC System Automatic Controls and Indoor Air Quality in Schools. Technical Bulletin.
ERIC Educational Resources Information Center
Wheeler, Arthur E.
Fans, motors, coils, and other control components enable a heating, ventilating, and air-conditioning (HVAC) system to function smoothly. An explanation of these control components and how they make school HVAC systems work is provided. Different systems may be compared by counting the number of controlled devices that are required. Control…
Modeling Hybrid Nuclear Systems With Chilled-Water Storage
Misenheimer, Corey T.; Terry, Stephen D.
2016-06-27
Air-conditioning loads during the warmer months of the year are large contributors to an increase in the daily peak electrical demand. Traditionally, utility companies boost output to meet daily cooling load spikes, often using expensive and polluting fossil fuel plants to match the demand. Likewise, heating, ventilation, and air conditioning (HVAC) system components must be sized to meet these peak cooling loads. However, the use of a properly sized stratified chilled-water storage system in conjunction with conventional HVAC system components can shift daily energy peaks from cooling loads to off-peak hours. This process is examined in light of the recentmore » development of small modular nuclear reactors (SMRs). In this paper, primary components of an air-conditioning system with a stratified chilled-water storage tank were modeled in FORTRAN 95. A basic chiller operation criterion was employed. Simulation results confirmed earlier work that the air-conditioning system with thermal energy storage (TES) capabilities not only reduced daily peaks in energy demand due to facility cooling loads but also shifted the energy demand from on-peak to off-peak hours, thereby creating a more flattened total electricity demand profile. Thus, coupling chilled-water storage-supplemented HVAC systems to SMRs is appealing because of the decrease in necessary reactor power cycling, and subsequently reduced associated thermal stresses in reactor system materials, to meet daily fluctuations in cooling demand. Finally and also, such a system can be used as a thermal sink during reactor transients or a buffer due to renewable intermittency in a nuclear hybrid energy system (NHES).« less
Modeling Hybrid Nuclear Systems With Chilled-Water Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Misenheimer, Corey T.; Terry, Stephen D.
Air-conditioning loads during the warmer months of the year are large contributors to an increase in the daily peak electrical demand. Traditionally, utility companies boost output to meet daily cooling load spikes, often using expensive and polluting fossil fuel plants to match the demand. Likewise, heating, ventilation, and air conditioning (HVAC) system components must be sized to meet these peak cooling loads. However, the use of a properly sized stratified chilled-water storage system in conjunction with conventional HVAC system components can shift daily energy peaks from cooling loads to off-peak hours. This process is examined in light of the recentmore » development of small modular nuclear reactors (SMRs). In this paper, primary components of an air-conditioning system with a stratified chilled-water storage tank were modeled in FORTRAN 95. A basic chiller operation criterion was employed. Simulation results confirmed earlier work that the air-conditioning system with thermal energy storage (TES) capabilities not only reduced daily peaks in energy demand due to facility cooling loads but also shifted the energy demand from on-peak to off-peak hours, thereby creating a more flattened total electricity demand profile. Thus, coupling chilled-water storage-supplemented HVAC systems to SMRs is appealing because of the decrease in necessary reactor power cycling, and subsequently reduced associated thermal stresses in reactor system materials, to meet daily fluctuations in cooling demand. Finally and also, such a system can be used as a thermal sink during reactor transients or a buffer due to renewable intermittency in a nuclear hybrid energy system (NHES).« less
HVAC SYSTEMS AS A TOOL IN CONTROLLING INDOOR AIR QUALITY: A LITERATURE REVIEW
The report gives results of a review of literature on the use of heating, ventilating, and air-conditioning (HVAC) systems to control indoor air quality (IAQ). Although significant progress has been made in reducing the energy consumption of HVAC systems, their effect on indoor a...
Breathing Easier: HVAC Specifications for Schools.
ERIC Educational Resources Information Center
Trent, C. Curtis; Trent, Warren C.
1996-01-01
A major source of indoor air contamination in schools originates within the heating, ventilating, and air-conditioning systems (HVAC), with draw-through systems being the worst offenders. Lists provisions for designing an HVAC system and a set of criteria to adhere to when planning new construction or renovations. (nine references) (MLF)
A Wireless Platform for Energy Efficient Building Control Retrofits
2012-07-01
operate /tune the proposed controller and maintain WSN after reasonable training Feedback from CERL facility staff/ managemen t on ease of operation and...26 4.2 FACILITY/SITE LOCATION AND OPERATIONS ...HVAC RETROFITS ...................................................................................................... 36 5.4 OPERATIONAL TESTING
Rooftop package unit diagnostician
Chassin, David P [Pasco, WA; Pratt, Robert G [Kennewick, WA; Reid, Larry Dean [Benton City, WA
2004-08-17
A diagnostic system for an HVAC system includes a number of sensors used to measure the operation of the HVAC system. Sensor readings are measured by timing the delay between when a strobe signal is sent to a sensor and when an interrupt signal from the sensor is received. A device driver used to measure the sensor readings stores the sensor readings in pseudo-character device files, which are universally accessible by different subsystems of the diagnostic system. Based on the readings from these sensors, this diagnostic system is able to determine the operational status of the HVAC system and if an economizer in the HVAC system is operating properly.
HVAC SYSTEMS AS EMISSION SOURCES AFFECTING INDOOR AIR QUALITY: A CRITICAL REVIEW
The study evaluates heating, ventilating, and air-conditioning (HVAC) systems as contaminant emission sources that affect indoor air quality (IAQ). Various literature sources and methods for characterizing HVAC emission sources are reviewed. Available methods include in situ test...
State-of-the-art sports facility's HVAC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horton, M.K.
This article describes the HVAC systems design to keep Cleveland's new Gateway sports and entertainment complex comfortable. This magnificent new facility embraces the 42,000-seat Jacobs Field, with its natural grass playing surface, and the 21,000-seat Arena at Gateway (the official name will be announced at its August 1 opening). The Arena is the new home of the Cleveland Cavaliers NBA basketball team and the Lumberjacks IHL ice hockey team. Other events that will be held here include arena football, circuses, ice shows, and concerts. It is anticipated that the Arena will be in use in excess of 200 days amore » year for these and other functions. The ballpark and the arena are separated by Gateway Plaza, a large illuminated public space that also will be the site of various entertainment events. An air conditioned pedestrian bridge, approximately 0.7 miles in length, connects the Arena with the Regional Transit Authority's downtown rapid transit station. Other enclosed walkways connect the Arena with two parking garages (3,158 vehicles total) and the larger garage with Jacobs Field.« less
The first part of this two-part paper discusses radon entry into schools, radon mitigation approaches for schools, and school characteristics (e.g., heating, ventilation, and air conditioing -- HVAC-- system design and operationg) that influence radon entry and mitigation system ...
Considerations to Prevent Growth and Spread of Legionella in HVAC Systems.
ERIC Educational Resources Information Center
Coleman, Jeff
1998-01-01
Discusses the threat posed by the Legionnaire's Disease bacterium and the germ's ability to thrive in heating, ventilating, and air conditioning (HVAC) systems, especially in standing water. Describes ways to minimize disease risk through HVAC system design (such as locating cooling towers away from air intakes) and ways to maintain a clean…
Air Cleaning Devices for HVAC Supply Systems in Schools. Technical Bulletin.
ERIC Educational Resources Information Center
Wheeler, Arthur E.
Guidelines for maintaining indoor air quality in schools with HVAC air cleaning systems are provided in this document. Information is offered on the importance of air cleaning, sources of air contaminants and indoor pollutants, types of air cleaners and particulate filters used in central HVAC systems, vapor and gas removal, and performance…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-02
... electrically-powered devices used in central HVAC systems for the purposes of circulating air through ductwork...- powered device used in a central HVAC system for the purpose of circulating air through ductwork. DOE... included single-phase, electrically-powered devices that circulate air through ductwork in HVAC systems...
Heat Recovery at Army Materiel Command (AMC) Facilities
1988-06-01
industrial complexes and somewhat smaller commercial/ HVAC ** systems, a portion of this waste heat can be recovered, improving energy efficiency. Heat...devices are used in sequence. Other shell-and-tube applications include heat transfer from process liquids, condensates, and cooling water. Two...pipe consists of a sealed element involving an annular capillary wick con- tained inside the full length of the tube, with an appropriate entrained
Defense Energy Support Center Fact Book FY 2007
2008-03-21
3 M 21 years Fort Monmouth, NJ Lighting Upgrade, HVAC Renovation , UESC Implementation, GHP, Cogeneration System Site Preparation/Feasibility Ameresco...behalf of Navy Installations in the Sicily, Sardinia and Campania regions of Italy . Awards were made to two companies, ENEL Energia and Energia y...funded $333 million for SRM projects to maintain and renovate military Services owned fuels facilities worldwide . This amount was nearly double the
HVAC SYSTEMS AS EMISSION SOURCES AFFECTING INDOOR AIR QUALITY: A CRITICAL REVIEW
The paper discusses results of an evaluation of literature on heating, ventilating, and air-conditioning (HVAC) systems as contaminant emission sources that affect indoor air quality (IAQ). The various literature sources and methods for characterizing HVAC emission sources are re...
A Systematic Classification for HVAC Systems and Components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Han; Chen, Yan; Zhang, Jian
Depending on the application, the complexity of an HVAC system can range from a small fan coil unit to a large centralized air conditioning system with primary and secondary distribution loops, and central plant components. Currently, the taxonomy of HVAC systems and the components has various aspects, which can get quite complex because of the various components and system configurations. For example, based on cooling and heating medium delivered to terminal units, systems can be classified as either air systems, water systems or air-water systems. In addition, some of the system names might be commonly used in a confusing manner,more » such as “unitary system” vs. “packaged system.” Without a systematic classification, these components and system terminology can be confusing to understand or differentiate from each other, and it creates ambiguity in communication, interpretation, and documentation. It is valuable to organize and classify HVAC systems and components so that they can be easily understood and used in a consistent manner. This paper aims to develop a systematic classification of HVAC systems and components. First, we summarize the HVAC component information and definitions based on published literature, such as ASHRAE handbooks, regulations, and rating standards. Then, we identify common HVAC system types and map them to the collected components in a meaningful way. Classification charts are generated and described based on the component information. Six main categories are identified for the HVAC components and equipment, i.e., heating and cooling production, heat extraction and rejection, air handling process, distribution system, terminal use, and stand-alone system. Components for each main category are further analyzed and classified in detail. More than fifty system names are identified and grouped based on their characteristics. The result from this paper will be helpful for education, communication, and systems and component documentation.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-21
... ENERGY STAR's HVAC Quality Installation program, sponsors promote the installation of HVAC systems in new... Energy Raters), and the Heating, Ventilation, and Cooling (HVAC) contractor. These organizations complete... (5900-08) Partnership Agreement for HVAC QI Sponsor (5900-183) Partnership Agreement for Home...
NASA Astrophysics Data System (ADS)
Barlow, Steven J.
1986-09-01
The Air Force needs a better method of designing new and retrofit heating, ventilating and air conditioning (HVAC) control systems. Air Force engineers currently use manual design/predict/verify procedures taught at the Air Force Institute of Technology, School of Civil Engineering, HVAC Control Systems course. These existing manual procedures are iterative and time-consuming. The objectives of this research were to: (1) Locate and, if necessary, modify an existing computer-based method for designing and analyzing HVAC control systems that is compatible with the HVAC Control Systems manual procedures, or (2) Develop a new computer-based method of designing and analyzing HVAC control systems that is compatible with the existing manual procedures. Five existing computer packages were investigated in accordance with the first objective: MODSIM (for modular simulation), HVACSIM (for HVAC simulation), TRNSYS (for transient system simulation), BLAST (for building load and system thermodynamics) and Elite Building Energy Analysis Program. None were found to be compatible or adaptable to the existing manual procedures, and consequently, a prototype of a new computer method was developed in accordance with the second research objective.
Centrifugal fans: Similarity, scaling laws, and fan performance
NASA Astrophysics Data System (ADS)
Sardar, Asad Mohammad
Centrifugal fans are rotodynamic machines used for moving air continuously against moderate pressures through ventilation and air conditioning systems. There are five major topics presented in this thesis: (1) analysis of the fan scaling laws and consequences of dynamic similarity on modelling; (2) detailed flow visualization studies (in water) covering the flow path starting at the fan blade exit to the evaporator core of an actual HVAC fan scroll-diffuser module; (3) mean velocity and turbulence intensity measurements (flow field studies) at the inlet and outlet of large scale blower; (4) fan installation effects on overall fan performance and evaluation of fan testing methods; (5) two point coherence and spectral measurements conducted on an actual HVAC fan module for flow structure identification of possible aeroacoustic noise sources. A major objective of the study was to identity flow structures within the HVAC module that are responsible for noise and in particular "rumble noise" generation. Possible mechanisms for the generation of flow induced noise in the automotive HVAC fan module are also investigated. It is demonstrated that different modes of HVAC operation represent very different internal flow characteristics. This has implications on both fan HVAC airflow performance and noise characteristics. It is demonstrated from principles of complete dynamic similarity that fan scaling laws require that Reynolds, number matching is a necessary condition for developing scale model fans or fan test facilities. The physical basis for the fan scaling laws derived was established from both pure dimensional analysis and also from the fundamental equations of fluid motion. Fan performance was measured in a three times scale model (large scale blower) in air of an actual forward curved automotive HVAC blower. Different fan testing methods (based on AMCA fan test codes) were compared on the basis of static pressure measurements. Also, the flow through an actual HVAC fan-impeller/diffuser section in water was observed with a flow visualization technique using a shear-thickening dye (in addition to a conventional dye). Full dynamic similarity was maintained between RVAC operation in water as when operated in air. Recommendations are provided both for further investigation of critical flow regions with more sophisticated measurement methods and for improved fan-scroll design to reduce possible aeroacoustic noise with improved aerodynamic performance.
Kemp, P C; Neumeister-Kemp, H G; Esposito, B; Lysek, G; Murray, F
2003-01-01
Little is known about the changes in occurrence and distribution of airborne fungi as they are transported in the airstream from the outdoor air through the heating, ventilation, and air conditioning (HVAC) system to the indoor air. To better understand this, airborne fungi were analyzed in the HVAC systems of two large office buildings in different climate zones. Fungal samples were taken in each of the walk-in chambers of the HVAC systems using a six-stage Andersen Sampler with malt extract agar. Results showed that fungal species changed with different locations in the HVAC systems. The outdoor air intake produced the greatest filtration effect for both the counts and species of outdoor air fungi. The colony forming unit (CFU) counts and species diversity was further reduced in the air directly after the filters. The cooling coils also had a substantial filtration effect. However, in room air the CFU counts were double and the mixture of fungal species was different from the air leaving the HVAC system at the supply air outlet in most locations. Diffusion of outdoor air fungi to the indoors did not explain the changes in the mixture of airborne fungi from the outdoor air to the indoor air, and some of the fungi present in the indoor air did not appear to be transported indoors by the HVAC systems.
Design Concepts for Optimum Energy Use in HVAC Systems.
ERIC Educational Resources Information Center
Electric Energy Association, New York, NY.
Much of the innovative work in the design and application of heating, ventilating, and air conditioning (HVAC) systems is concentrated on improving the cost effectiveness of such systems through optimizing energy use. One approach to the problem is to reduce a building's HVAC energy demands by designing it for lower heat gains and losses in the…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-12
... criteria specified for this HVAC system. II. Non-Availability Finding The Secretary has determined that... HVAC systems manufactured in the United States that are available at this time to meet the County's... team and architects supports the County's claim that a suitable HVAC system which meets the County's...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-12
... the installation of a heating, ventilation, and air conditioning (HVAC) system at the City of La Ca... EE0000905, for the installation of a heating, ventilation, and air conditioning (HVAC) system at the at the... efforts and MEP's scouting process, it was determined that if the described HVAC system was manufactured...
10 CFR 434.517 - HVAC systems and equipment.
Code of Federal Regulations, 2010 CFR
2010-01-01
... simulation, except that excess capacity provided to meet process loads need not be modeled unless the process... Reference Buildings. The zones in the simulation shall correspond to the zones provided by the controls in... simulation. Table 517.4.1—HVAC System Description for Prototype and Reference Buildings 1,2 HVAC component...
Monitoring of Microscopic Filamentous Fungi in Indoor Air of Transplant Unit.
Holý, Ondřej; Matoušková, Ivanka; Kubátová, Alena; Hamal, Petr; Svobodová, Lucie; Jurásková, Eva; Raida, Luděk
2015-12-01
The aim of the study was to control the microbial contamination of indoor air monitored monthly at the Transplant Unit of the University Hospital Olomouc from August 2010 to July 2011. The unit is equipped with a three-stage air filtration system with HEPA filters. The MAS-100 air sampler (Merck, GER) was used. Twenty locations were singled out for the purposes of collecting a total of 720 samplings of the indoor air. Swabs of the HVAC diffusers at the sampling locations were always carried out after the sampling of the indoor air. In total, 480 samples of the indoor air were taken for Sabouraud chloramphenicol agar. In 11 cases (2.29%) the cultivation verified the presence of microscopic filamentous fungi. Only two cases involved the sanitary facilities of a patient isolation box; the other positive findings were from the facilities. The most frequent established genus was Aspergillus spp. (4x), followed by Trichoderma spp. (2x) and Penicillium spp. (2x), Paecilomyces spp., Eurotium spp., and Chrysonilia spp. (1x each). In 2 cases the cultivation established sterile aerial mycelium, unfortunately no further identification was possible. A total of 726 swabs of HVAC diffusers were collected (2 positive-0.28%). The study results demonstrated the efficacy of the HVAC equipment. With the continuing increase in the number of severely immunocompromised patients, hospitals are faced with the growing problem of invasive aspergillosis and other opportunistic infections. Preventive monitoring of microbial air contaminants is of major importance for the control of invasive aspergillosis. Copyright© by the National Institute of Public Health, Prague 2015.
NASA Astrophysics Data System (ADS)
Schleibinger, Hans; Rüden, Henning
The emission of volatile organic compounds (VOC) from air filters of HVAC systems was to be evaluated. In a first study carbonyl compounds (14 aldehydes and two ketones) were measured by reacting them with 2,4-dinitrophenylhydrazine (DNPH). Analysis was done by HPLC and UV detection. In laboratory experiments pieces of used and unused HVAC filters were incubated in test chambers. Filters to be investigated were taken from a filter bank of a large HVAC system in the centre of Berlin. First results show that - among those compounds - formaldehyde and acetone were found in higher concentrations in the test chambers filled with used filters in comparison to those with unused filters. Parallel field measurements were carried out at the prefilter and main filter banks of the two HVAC systems. Here measurements were carried out simultaneously before and after the filters to investigate whether those aldehydes or ketones arise from the filter material on site. Formaldehyde and acetone significantly increased in concentration after the filters of one HVAC system. In parallel experiments microorganisms were proved to be able to survive on air filters. Therefore, a possible source of formaldehyde and acetone might be microbes.
1980-08-01
orientation, and HVAC systems have on three Army buildings in five different climatic regions. f Optimization of EnerV Usage in Military Facilities...The clinic’s environment is maintained by a multizone air-handling unit served by its own boiler and chiller . The building was modeled with 30... setpoints for the space temperature. This type of throttling range allows the heating system to control around a throttling range of 67 to 69oF (19 to 200
1989-09-01
Maintenance Evaluation Team ( MEMET ), stated, in his booklet To Aspire For Excellence, the need for emphasis on product- oriented performance (3:17). Existing...JOAGE - Job Order/Facility Age JOSF - Job Order/Facility Square Feet LSD - Least Significant Difference MEMET - Mechanical Equipment Maintenance
1986-10-01
opeational test and evaluation (OT&R). The OT&B Is comprised of Initial operational test and evaluation ( IOT &R) and follow-on test and evaluation (FOT&R). OT&I...BP HYL FVAC beating, ventilation and air conditioning am. ICBM Intercntinental ballistic missile an. IOT &R Initial operational test and *valuation so...and maintenance vehicles (stop- B pod, engine idle-exterior), facility equipment utility rooms, heating, ventilation and air conditioning ( HVAC
Extreme winds and tornadoes: design and evaluation of buildings and structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, J.R.
1985-01-01
The general provisions of ANSI A58.1-1982 are explained in detail. As mentioned above, these procedures may be used to determine design wind loads on structures from extreme winds, hurricane and tornado winds. Treatment of atmospheric pressure change loads are discussed, including recommendations for venting a building, if necessary, and the effects of rate of pressure change on HVAC systems. Finally, techniques for evaluating existing facilities are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1986-06-01
The HVAC system is a subsystem within the Mechanical Services Group (MSG). The HVAC system for the 4 x 350 MW(t) Modular HTGR Plant presently consists of ten, nonsafety-related subsystems located in the Nuclear Island (NI) and Energy Conversion Area (ECA) of the plant.
18. Interior view of HVAC room in Components Test Laboratory ...
18. Interior view of HVAC room in Components Test Laboratory (T-27), showing northwest corner. Photograph shows upgraded instrumentation, piping, and technological modifications for HVAC system installed in 1997-99 to accommodate component testing requirements for the Atlas V missile. - Air Force Plant PJKS, Systems Integration Laboratory, Components Test Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
19. Interior view of HVAC room in Components Test Laboratory ...
19. Interior view of HVAC room in Components Test Laboratory (T-27), looking toward east wall. Photograph shows upgraded instrumentation, machinery, and technological modifications for HVAC system installed in 1997-99 to accommodate component testing requirements for the Atlas V missile. - Air Force Plant PJKS, Systems Integration Laboratory, Components Test Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
Soares, Kevin C; Baltodano, Pablo A; Hicks, Caitlin W; Cooney, Carisa M; Olorundare, Israel O; Cornell, Peter; Burce, Karen; Eckhauser, Frederic E
2015-02-01
Prophylactic incisional negative-pressure wound therapy use after ventral hernia repairs (VHRs) remains controversial. We assessed the impact of a modified negative-pressure wound therapy system (hybrid-VAC or HVAC) on outcomes of open VHR. A 5-year retrospective analysis of all VHRs performed by a single surgeon at a single institution compared outcomes after HVAC versus standard wound dressings. Multivariable logistic regression compared surgical site infections, surgical site occurrences, morbidity, and reoperation rates. We evaluated 199 patients (115 HVAC vs 84 standard wound dressing patients). Mean follow-up was 9 months. The HVAC cohort had lower surgical site infections (9% vs 32%, P < .001) and surgical site occurrences (17% vs 42%, P = .001) rates. Rates of major morbidity (19% vs 31%, P = .04) and 90-day reoperation (5% vs 14%, P = .02) were lower in the HVAC cohort. The HVAC system is associated with optimized outcomes following open VHR. Prospective studies should validate these findings and define the economic implications of this intervention. Copyright © 2015 Elsevier Inc. All rights reserved.
1991-05-01
Building Component Maintenance and Repair Data Base: Heating, Ventilating, and Air Conditioning (HVAC) Systems by Edgar S. Neely Robert D. Neathammer...Repair Data Base: Heating, Ventilating, and Air Conditioning (HVAC) Systems RDTE dated 1980EIMB 1984 - 1989 6. AUTHOR(S) Edgar S. Neely, Robert D...Laboratory (USACERL). The Principal Investigators were Dr. Edgar Neely and Mr. Robert Neathammer (USACERL-FS). The primary contractor for much of the
Anti-Idling Battery for Truck Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keith Kelly
2011-09-30
In accordance to the Assistance Agreement DE-EE0001036, the objective of this project was to develop an advanced high voltage lithium-ion battery for use in an all-electric HVAC system for Class-7-8 heavy duty trucks. This system will help heavy duty truck drivers meet the tough new anti-idling laws being implemented by over 23 states. Quallion will be partnering with a major OEM supplier of HVAC systems to develop this system. The major OEM supplier will provide Quallion the necessary interface requirements and HVAC hardware to ensure successful testing of the all-electric system. At the end of the program, Quallion will delivermore » test data on three (3) batteries as well as test data for the prototype HVAC system. The objectives of the program are: (1) Battery Development - Objective 1 - Define battery and electronics specifications in preparation for building the prototype module. (Completed - summary included in report) and Objective 2 - Establish a functional prototype battery and characterize three batteries in-house. (Completed - photos and data included in report); (2) HVAC Development - Objective 1 - Collaborate with manufacturers to define HVAC components, layout, and electronics in preparation for establishing the prototype system. (Completed - photos and data included in report) and Objective 2 - Acquire components for three functional prototypes for use by Quallion. (Completed - photos and data included in report).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Betts, Daniel; Ally, Moonis Raza; Mudiraj, Shyam
Be Power Tech is commercializing BeCool, the first integrated electricity-producing heating, ventilation, and air conditioning (HVAC) system using a non-vapor compression cycle (VCC), packaged rooftop HVAC unit that also produces base-load electricity, heating, ventilation, and air conditioning. BeCool is a distributed energy resource with energy storage that eliminates the tremendous peak electricity demand associated with commonly used electricity-powered vapor compression air conditioning systems.
NASA Technical Reports Server (NTRS)
Mougin, L. J.
1983-01-01
The best HVAC (heating, ventilating and air conditioning) subsystem to interface with the Engelhard fuel cell system for application in commercial buildings was determined. To accomplish this objective, the effects of several system and site specific parameters on the economic feasibility of fuel cell/HVAC systems were investigated. An energy flow diagram of a fuel cell/HVAC system is shown. The fuel cell system provides electricity for an electric water chiller and for domestic electric needs. Supplemental electricity is purchased from the utility if needed. An excess of electricity generated by the fuel cell system can be sold to the utility. The fuel cell system also provides thermal energy which can be used for absorption cooling, space heating and domestic hot water. Thermal storage can be incorporated into the system. Thermal energy is also provided by an auxiliary boiler if needed to supplement the fuel cell system output. Fuel cell/HVAC systems were analyzed with the TRACE computer program.
DKIST facility management system integration
NASA Astrophysics Data System (ADS)
White, Charles R.; Phelps, LeEllen
2016-07-01
The Daniel K. Inouye Solar Telescope (DKIST) Observatory is under construction at Haleakalā, Maui, Hawai'i. When complete, the DKIST will be the largest solar telescope in the world. The Facility Management System (FMS) is a subsystem of the high-level Facility Control System (FCS) and directly controls the Facility Thermal System (FTS). The FMS receives operational mode information from the FCS while making process data available to the FCS and includes hardware and software to integrate and control all aspects of the FTS including the Carousel Cooling System, the Telescope Chamber Environmental Control Systems, and the Temperature Monitoring System. In addition it will integrate the Power Energy Management System and several service systems such as heating, ventilation, and air conditioning (HVAC), the Domestic Water Distribution System, and the Vacuum System. All of these subsystems must operate in coordination to provide the best possible observing conditions and overall building management. Further, the FMS must actively react to varying weather conditions and observational requirements. The physical impact of the facility must not interfere with neighboring installations while operating in a very environmentally and culturally sensitive area. The FMS system will be comprised of five Programmable Automation Controllers (PACs). We present a pre-build overview of the functional plan to integrate all of the FMS subsystems.
Farnsworth, James E; Goyal, Sagar M; Kim, Seung Won; Kuehn, Thomas H; Raynor, Peter C; Ramakrishnan, M A; Anantharaman, Senthilvelan; Tang, Weihua
2006-10-01
The aim of the work presented here is to study the effectiveness of building air handling units (AHUs) in serving as high volume sampling devices for airborne bacteria and viruses. An HVAC test facility constructed according to ASHRAE Standard 52.2-1999 was used for the controlled loading of HVAC filter media with aerosolized bacteria and virus. Nonpathogenic Bacillus subtilis var. niger was chosen as a surrogate for Bacillus anthracis. Three animal viruses; transmissible gastroenteritis virus (TGEV), avian pneumovirus (APV), and fowlpox virus were chosen as surrogates for three human viruses; SARS coronavirus, respiratory syncytial virus, and smallpox virus; respectively. These bacteria and viruses were nebulized in separate tests and injected into the test duct of the test facility upstream of a MERV 14 filter. SKC Biosamplers upstream and downstream of the test filter served as reference samplers. The collection efficiency of the filter media was calculated to be 96.5 +/- 1.5% for B. subtilis, however no collection efficiency was measured for the viruses as no live virus was ever recovered from the downstream samplers. Filter samples were cut from the test filter and eluted by hand-shaking. An extraction efficiency of 105 +/- 19% was calculated for B. subtilis. The viruses were extracted at much lower efficiencies (0.7-20%). Our results indicate that the airborne concentration of spore-forming bacteria in building AHUs may be determined by analyzing the material collected on HVAC filter media, however culture-based analytical techniques are impractical for virus recovery. Molecular-based identification techniques such as PCR could be used.
Control systems for heating, ventilating, and air conditioning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haines, R.W.
1977-01-01
Hundreds of ideas for designing and controlling sophisticated heating, ventilating and air conditioning (HVAC) systems are presented. Information is included on enthalpy control, energy conservation in HVAC systems, on solar heating, cooling and refrigeration systems, and on a self-draining water collector and heater. Computerized control systems and the economics of supervisory systems are discussed. Information is presented on computer system components, software, relevant terminology, and computerized security and fire reporting systems. Benefits of computer systems are explained, along with optimization techniques, data management, maintenance schedules, and energy consumption. A bibliography, glossaries of HVAC terminology, abbreviations, symbols, and a subject indexmore » are provided. (LCL)« less
Estimating the HVAC energy consumption of plug-in electric vehicles
NASA Astrophysics Data System (ADS)
Kambly, Kiran R.; Bradley, Thomas H.
2014-08-01
Plug in electric vehicles are vehicles that use energy from the electric grid to provide tractive and accessory power to the vehicle. Due to the limited specific energy of energy storage systems, the energy requirements of heating, ventilation, and air conditioning (HVAC) systems for cabin conditioning can significantly reduce their range between charges. Factors such as local ambient temperature, local solar radiation, local humidity, length of the trip and thermal soak have been identified as primary drivers of cabin conditioning loads and therefore of vehicle range. The objective of this paper is to develop a detailed systems-level approach to connect HVAC technologies and usage conditions to consumer-centric metrics of vehicle performance including energy consumption and range. This includes consideration of stochastic and transient inputs to the HVAC energy consumption model including local weather, solar loads, driving behavior, charging behavior, and regional passenger fleet population. The resulting engineering toolset is used to determine the summation of and geographical distribution of energy consumption by HVAC systems in electric vehicles, and to identify regions of US where the distributions of electric vehicle range are particularly sensitive to climate.
2012-05-17
a visitation center, a water treatment plant, and vocational buildings where detainees can learn carpentry and culinary skills. The facility also...room not connected MHU PPI 69 DCID HVAC unit is inoperable Ml DAB PPI has o rdered p arts and w ill fix w hen it arrives 70 Access broken to VCD
The Impact of Uncertain Physical Parameters on HVAC Demand Response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yannan; Elizondo, Marcelo A.; Lu, Shuai
HVAC units are currently one of the major resources providing demand response (DR) in residential buildings. Models of HVAC with DR function can improve understanding of its impact on power system operations and facilitate the deployment of DR technologies. This paper investigates the importance of various physical parameters and their distributions to the HVAC response to DR signals, which is a key step to the construction of HVAC models for a population of units with insufficient data. These parameters include the size of floors, insulation efficiency, the amount of solid mass in the house, and efficiency of the HVAC units.more » These parameters are usually assumed to follow Gaussian or Uniform distributions. We study the effect of uncertainty in the chosen parameter distributions on the aggregate HVAC response to DR signals, during transient phase and in steady state. We use a quasi-Monte Carlo sampling method with linear regression and Prony analysis to evaluate sensitivity of DR output to the uncertainty in the distribution parameters. The significance ranking on the uncertainty sources is given for future guidance in the modeling of HVAC demand response.« less
Bonetta, Sa; Bonetta, Si; Mosso, S; Sampò, S; Carraro, E
2010-02-01
The purpose of this study was to evaluate the level and composition of bacteria and fungi in the indoor air of an Italian office building equipped with a heating, ventilation and air conditioning (HVAC) system. Airborne bacteria and fungi were collected in three open-space offices during different seasons. The microbial levels in the outdoor air, supply air diffusers, fan coil air flow and air treatment unit humidification water tank were used to evaluate the influence of the HVAC system on indoor air quality (IAQ). A medium-low level of bacterial contamination (50-500 CFU/m(3)) was found in indoor air. Staphylococcus and Micrococcus were the most commonly found genera, probably due to human presence. A high fungal concentration was measured due to a flood that occurred during the winter. The indoor seasonal distribution of fungal genera was related to the fungal outdoor distribution. Significant seasonal and daily variation in airborne microorganisms was found, underlining a relationship with the frequency of HVAC system switching on/off. The results of this monitoring highlight the role of the HVAC system on IAQ and could be useful to better characterise bacterial and fungal population in the indoor air of office buildings.
Energy Savings Potential and RD&D Opportunities for Commercial Building HVAC Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goetzler, William; Shandross, Richard; Young, Jim
The Building Technologies Office (BTO) commissioned this characterization and technology assessment of heating, ventilation, and air-conditioning (HVAC) systems for commercial buildings. The main objectives of this study: Identify a wide range of technology options in varying stages of development that could reduce commercial HVAC energy consumption; Characterize these technology options based on their technical energy-savings potential, development status, non-energy benefits, and other factors affecting end-user acceptance and the ability to compete with conventional HVAC technologies; Make specific recommendations to DOE and other stakeholders on potential research, development, and demonstration (RD&D) activities that would support further development of the most promisingmore » technology options.« less
Information on the characteristics of the heating, ventilation, and air conditioning (HVAC) system(s) in the entire BASE building including types of ventilation, equipment configurations, and operation and maintenance issues
ACHP | News | ACHP Issues Program Comment for GSA on Select Repairs and
to windows, lighting, roofing, and heating, ventilating, and air-conditioning (HVAC) systems within Upgrades Windows Lighting Roofing Heating, Ventilation, and Air Conditioning (HVAC) Systems Updated March
Building Integrated Photovoltaic (BIPV) Roofs for Sustainability and Energy Efficiency
2013-09-10
roofs that utilize a-Si PV modules, like the ones in this study , experienced a significantly lower price reduction, which makes them less cost...facility did not matter, a roof in need of replacement was a better use of the funds. As for Site III, since one of the objectives was to study the...at Site II (NAS Patuxent River) and Site III (MCAS Yuma). Equipment regarding the study of the load on the HVAC system, including measuring the
NASA Astrophysics Data System (ADS)
Hittle, D. C.; Johnson, D. L.
1985-01-01
This report is one of a series on the development of heating, ventilating, and air-conditioning (HVAC) control systems that are simple, efficient, reliable, maintainable, and well-documented. This report identifies major problems associated with three currently used HVAC control systems. It also describes the development of a retrofit control system applicable to military buildings that will allow easy identification of component failures, facilitate repair, and minimize system failures. Evaluation of currently used controls showed that pneumatic temperature control equipment requires a very clean source of supply air and is also not very accurate. Pneumatic, rather than electronic, actuators should be used because they are cheaper and require less maintenance. Thermistor temperature detectors should not be used for HVAC applications because they require frequent calibration. It was found that enthalpy economy cycles cannot be used for control because the humidity sensors required for their use are prone to rapid drift, inaccurate, and hard to calibrate in the field. Performance of control systems greatly affects HVAC operating costs. Significant savings can be achieved if proportional-plus-integral control schemes are used. Use of the retrofit prototype control panel developed in this study on variable-air-volume systems should provide significant energy cost savings, improve comfort and reliability, and reduce maintenance costs.
2006-10-01
of BG spores in the Heating, Ventilation, and Air Conditioning ( HVAC ) system; (3) the effect of deposition and re-suspension of BG spores not being... spores re-entering the study area through the HVAC system not being accounted for in the simulation. The time histories of concentration at the...The HVAC system was turned on for about 15 minutes until the flow reaches a pseudo-steady state condition, after which the BG spores were released
An Evaluation of the HVAC Load Potential for Providing Load Balancing Service
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Ning
This paper investigates the potential of providing aggregated intra-hour load balancing services using heating, ventilating, and air-conditioning (HVAC) systems. A direct-load control algorithm is presented. A temperature-priority-list method is used to dispatch the HVAC loads optimally to maintain consumer-desired indoor temperatures and load diversity. Realistic intra-hour load balancing signals were used to evaluate the operational characteristics of the HVAC load under different outdoor temperature profiles and different indoor temperature settings. The number of HVAC units needed is also investigated. Modeling results suggest that the number of HVACs needed to provide a {+-}1-MW load balancing service 24 hours a day variesmore » significantly with baseline settings, high and low temperature settings, and the outdoor temperatures. The results demonstrate that the intra-hour load balancing service provided by HVAC loads meet the performance requirements and can become a major source of revenue for load-serving entities where the smart grid infrastructure enables direct load control over the HAVC loads.« less
D0 General Support: The Use of Programmable Logic Controllers (PLCS) at D0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hance, R.; /Fermilab
With the exception of control of heating, ventilation, and air conditioning (HVAC) ventilation fans, and their shutdown in the case of smoke in the ducts, all implementations of Programmable Logic Controllers (PLCs) in Dzero have been made within the fundamental premise that no uncertified PLC apparatus shall be entrusted with the safety of equipment or personnel. Thus although PLCs are used to control and monitor all manner of intricate equipment, simple hardware interlocks and relief devices provide basic protection against component failure, control failure, or inappropriate control operation. Nevertheless, this report includes two observations as follows: (1) It may bemore » prudent to reconfigure the link between the Pyrotronics system and the HVAC system such that the Pyrotronics system provides interlocks to the ventilation fans instead of control inputs to the uncertified HVAC PLCs. Although the Pyrotronics system is certified and maintained to life safety standards, the HVAC system is not. A hardware or software failure of the HVAC system probably should not be allowed to result in the situation where the ventilation fans in a smoke filled duct continue to operate. Dan Markley is investigating this matter. (2) It may also be prudent to examine the network security of those systems connected to the Fermilab WAN (HVAC, Cryo, and Solenoid Controls). Even though the impact of a successful hack might only be to operations, it might nevertheless be disruptive and could be expensive. The risks should perhaps be analyzed. One of the most attractive features of these systems, from a user's viewpoint, is their unlimited networking. The unlimited networking that makes the systems so convenient to legitimate access also makes them vulnerable to illegitimate access.« less
The report summarizes information on how bilding systems -- especially the heating, ventilating, and air-conditioning (HVAC) system -- inclurence radon entry into large buildings and can be used to mitigate radon problems. It addresses the fundamentals of large building HVAC syst...
75 FR 45148 - Buy American Exceptions Under the American Recovery and Reinvestment Act of 2009
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-02
... Homes and mini-split ductless Heating, Ventilation and Air Conditioning (HVAC) systems at the Mary... that the relevant manufactured goods (tankless water heaters and mini-split ductless HVAC systems) are...
HVAC--the importance of clean intake section and dry air filter in cold climate.
Hanssen, S O
2004-01-01
HVAC systems, if properly designed, installed, operated and maintained, will improve thermal conditions and air quality indoors. However, the success strongly depends on the design of the system and the quality of the components we use in our HVAC installations. Regrettably, several investigations have revealed that many HVAC installations have a lot of operational and maintenance problems, especially related to moisture, rain and snow entrainment. In short, it seems that too little attention is placed on the design of the intake section, despite the fact that there exists a large number of national and international guidelines and recommendations. This is a serious problem because the air intake is the initial component of the ventilation plant and as such the first line of defense against debris and other outdoor air pollutants. Unfortunately, the design is often an argued compromise between the architect, the civil engineer and the HVAC engineer. In the future, the technical, hygienic and microbiological feature of air intakes must be better ensured in order to avoid the air intake becoming a risk component as regards contamination and indoor air quality. Further, it seems that the magnitude of the problem is not well known, or recognized, by the building designers, engineers and professionals involved in the construction and operation of buildings. This fact needs to be addressed more seriously, because obviously there is a big difference between the idealistic architectonic design, engineering intentions and the real life situation. Several practical recommendations for design and operation of HVAC systems are presented. Following the recommendations will result in less pollution from the HVAC-system and increased indoor environmental quality.
ERIC Educational Resources Information Center
Strickland, Gary
2001-01-01
Explains how changes in school design in the last 10 years have caused heating, ventilation, and cooling system (HVAC) designers to reexamine their choice of classroom unit ventilators (UV). The influence of indoor lighting systems, insulation, indoor air quality, energy code compliance, and HVAC system design on UV decision making are also…
An expert system for the design of heating, ventilating, and air-conditioning systems
NASA Astrophysics Data System (ADS)
Camejo, Pedro Jose
1989-12-01
Expert systems are computer programs that seek to mimic human reason. An expert system shelf, a software program commonly used for developing expert systems in a relatively short time, was used to develop a prototypical expert system for the design of heating, ventilating, and air-conditioning (HVAC) systems in buildings. Because HVAC design involves several related knowledge domains, developing an expert system for HVAC design requires the integration of several smaller expert systems known as knowledge bases. A menu program and several auxiliary programs for gathering data, completing calculations, printing project reports, and passing data between the knowledge bases are needed and have been developed to join the separate knowledge bases into one simple-to-use program unit.
Building America Top Innovations 2014 Profile: HVAC Cabinet Air Leakage Test Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
This 2014 Top Innovation profile describes Building America-funded research by teams and national laboratories that resulted in the development of an ASHRAE standard and a standardized testing method for testing the air leakage of HVAC air handlers and furnace cabinets and has spurred equipment manufacturers to tighten the cabinets they use for residential HVAC systems.
Bio-Defense Now: 56 Suggestions for Immediate Improvements
2005-05-01
Air Education and Training Command HVAC Heating, Ventilation and Air Conditioning ICAM Improved Chemical Agent Monitor ICD-9-CM Internal...conditioning ( HVAC ) system capabilities, making a big difference in removal of many BW agents. High Efficiency Particulate Air (HEPA) filters are also...agents. This program has developed biological sensor-activated heating, ventilation, and air conditioning ( HVAC ) control sys- tems, high efficiency
75 FR 61163 - Buy American Exceptions Under the American Recovery and Reinvestment Act of 2009
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-04
... Refrigerant Volume Heating, Ventilation and Air Conditioning (VRV HVAC) system for the Paquin Tower project... exception was granted by HUD on the basis that the relevant manufactured goods (a VRV HVAC system) is not...
76 FR 71593 - Buy American Exceptions Under the American Recovery and Reinvestment Act of 2009
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-18
..., Ventilation and Air Conditioning (HVAC) system for the Plymouth Hall Apartments project, and to the... on the basis that the relevant manufactured goods (split HVAC systems) are not produced in the U.S...
Simmons, R B; Crow, S A
1995-01-01
New and used cellulosic air filters for HVAC systems including those treated with antimicrobials were suspended in vessels with a range of relative humidities (55-99%) and containing non-sterile potting soil which stimulates fungal growth. Most filters yielded fungi prior to suspension in the chambers but only two of 14 nontreated filters demonstrated fungal colonization following use in HVAC systems. Filters treated with antimicrobials, particularly a phosphated amine complex, demonstrated markedly less fungal colonization than nontreated filters. In comparison with nontreated cellulosic filters, fungal colonization of antimicrobial-treated cellulosic filters was selective and delayed.
Code of Federal Regulations, 2010 CFR
2010-04-01
... water, electrical system, elevators, emergency power, fire protection, HVAC, and sanitary system. Each..., call-for-aid, ceiling, doors, electrical systems, floors, hot water heater, HVAC (where individual... HOUSING ASSESSMENT SYSTEM PHAS Indicator #1: Physical Condition § 902.23 Physical condition standards for...
Code of Federal Regulations, 2010 CFR
2010-04-01
... domestic water, electrical system, elevators, emergency power, fire protection, HVAC, and sanitary system... applicable), ceiling, doors, electrical systems, floors, hot water heater, HVAC (where individual units are... standards address the major areas of the HUD housing: the site; the building exterior; the building systems...
75 FR 39168 - Special Regulations; Areas of the National Park System
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-08
... his death in 1972. During the closure, we completed four projects: installation of a new HVAC system... to either bulge or crack. The existing HVAC system installed in 1985 failed to maintain a stable...; Areas of the National Park System AGENCY: National Park Service. ACTION: Final Rule. SUMMARY: The...
Code of Federal Regulations, 2012 CFR
2012-04-01
... domestic water, electrical system, elevators, emergency power, fire protection, HVAC, and sanitary system... applicable), ceiling, doors, electrical systems, floors, hot water heater, HVAC (where individual units are... standards address the major areas of the HUD housing: the site; the building exterior; the building systems...
Code of Federal Regulations, 2014 CFR
2014-04-01
... domestic water, electrical system, elevators, emergency power, fire protection, HVAC, and sanitary system... applicable), ceiling, doors, electrical systems, floors, hot water heater, HVAC (where individual units are... standards address the major areas of the HUD housing: the site; the building exterior; the building systems...
Code of Federal Regulations, 2013 CFR
2013-04-01
... domestic water, electrical system, elevators, emergency power, fire protection, HVAC, and sanitary system... applicable), ceiling, doors, electrical systems, floors, hot water heater, HVAC (where individual units are... standards address the major areas of the HUD housing: the site; the building exterior; the building systems...
Potential of HVAC and solar technologies for hospital retrofit to reduce heating energy consumption
NASA Astrophysics Data System (ADS)
Pop, Octavian G.; Abrudan, Ancuta C.; Adace, Dan S.; Pocola, Adrian G.; Balan, Mugur C.
2018-02-01
The study presents a combination of several energy efficient technologies together with their potential to reduce the energy consumption and to increase the comfort through the retrofit of a hospital building. The existing situation is characterized by an old and inefficient heating system, by the complete missing of any ventilation and by no cooling. The retrofit proposal includes thermal insulation and a distributed HVAC system consisting of several units that includes air to air heat exchangers and air to air heat pumps. A condensing boiler was also considered for heating. A solar thermal system for preparing domestic hot water and a solar photovoltaic system to assist the HVAC units are also proposed. Heat transfer principles are used for modelling the thermal response of the building to the environmental parameters and thermodynamic principles are used for modelling the behaviour of HVAC, solar thermal system and photovoltaic system. All the components of the heating loads were determined for one year period. The study reveals the capacity of the proposed systems to provide ventilation and thermal comfort with a global reduction of energy consumption of 71.6 %.
residential HVAC systems, residential dehumidification control, energy modeling tools, and BEopt development software used by HVAC manufacturers. Education Ph.D. Mechanical Engineering, University of Maryland B.S
Expert system for the design of heating, ventilating, and air-conditioning systems. Master's thesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Camejo, P.J.
1989-12-01
Expert systems are computer programs that seek to mimic human reason. An expert system shelf, a software program commonly used for developing expert systems in a relatively short time, was used to develop a prototypical expert system for the design of heating, ventilating, and air-conditioning (HVAC) systems in buildings. Because HVAC design involves several related knowledge domains, developing an expert system for HVAC design requires the integration of several smaller expert systems known as knowledge bases. A menu program and several auxiliary programs for gathering data, completing calculations, printing project reports, and passing data between the knowledge bases are neededmore » and have been developed to join the separate knowledge bases into one simple-to-use program unit.« less
A page to register to view the May 17, 2018, webinar in the IAQ Knowledge-to-Action Professional Training Webinar Series: Clean Air in the Classroom: Improve Air Quality, Extend HVAC System Life with Preventive Maintenance
ERIC Educational Resources Information Center
Garibay, Pat
2007-01-01
Educators and administrators are looking for new ways to boost student performance and eliminate barriers to learning. When working to improve the classroom environment, facility managers typically target the physical structure, temperature controls, humidity levels and ventilation. Many heating, ventilating and air conditioning (HVAC) consultants…
Using Sensor-based Demand Controlled Ventilation to Realize Energy Savings in Laboratories
2014-03-27
is warranted. The results show that a DCV system is life-cycle cost effective for many different HVAC system total pressure and square footage ...Name and Description of System Sensors ......................................................... 44 Table 5. BEL Laboratory HVAC Zones, Square Footage ...Intensity ............................................................................. 74 Table 9. Range of USAF Laboratory Square Footage and Occupancy
Noise in the Classroom: Understanding the Problem.
ERIC Educational Resources Information Center
Lilly, Jerry G.
2000-01-01
Presents guidelines for designing classroom HVAC systems that will be able to achieve lower background noise levels that conform to the NC-30 background noise rating level. Guidelines for both central and dedicated systems are offered revealing that the use of conventional HVAC system components can be used to achieve sound levels comparable to…
How To Achieve Good Library Acoustics.
ERIC Educational Resources Information Center
Wiens, Janet
2003-01-01
Discusses how to create a good acoustical environment for college libraries, focusing on requirements related to the HVAC system and lighting, and noting the importance of good maintenance. A sidebar looks at how to design and achieve the most appropriate HVAC and lighting systems for optimum library acoustics. (SM)
Guide for Indoor Air Quality Surveys
1992-05-01
investigations, but is most useful as a tool for the Heating, Ventilating, and Air-Conditioning ( HVAC ) experts. The standard describes two procedures for...providing acceptable air quality and includes design criteria for HVAC systems. Perhaps the most important contribution from ASHRAE 62-1989 is its...Selected Selected Cause Subcauses Subrates(%) Overall Rate(%) A. Inadequate Design or Maintenance of HVAC 70 (32/46) Al. Mold 47 (15/32) 33 (15/46) A2
18. INTERIOR VIEW TO THE WEST OF ROOM 141, THE ...
18. INTERIOR VIEW TO THE WEST OF ROOM 141, THE HVAC EQUIPMENT ROOM FOR COOLING AND HEATING OF THE BUILDING. - Nevada Test Site, Reactor Maintenance Assembly & Dissassembly Facility, Area 25, Jackass Flats, Junction of Roads F & G, Mercury, Nye County, NV
Review of Residential Low-Load HVAC Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Scott A.; Thornton, Brian A.; Widder, Sarah H.
In support of the U.S. Department of Energy’s (DOE’s) Building America Program, Pacific Northwest National Laboratory (PNNL) conducted an investigation to inventory commercially available HVAC technologies that are being installed in low-load homes. The first step in this investigation was to conduct a review of published literature to identify low-load HVAC technologies available in the United States and abroad, and document the findings of existing case studies that have evaluated the performance of the identified technologies. This report presents the findings of the literature review, identifies gaps in the literature or technical understanding that must be addressed before low-load HVACmore » technologies can be fully evaluated, and introduces PNNL’s planned research and analysis for this project to address identified gaps and potential future work on residential low-load HVAC systems.« less
Measurements of duty cycle , the fraction of time the heating and cooling (HVAC) system was operating, were made in each participant's home during the spring season of the RTP Particulate Matter Panel Study. A miniature temperature sensor/data logger combination placed on the ...
The article gives results of an evaluation of the potential efficacy of an antimicrobial-containing sealant on fibrous-glass duct liner (FGDL) and galvanized steel (GS) as used in heating, ventilating, and air-conditioning (HVAC) systems. HVAC systems become dirty to various degr...
Computer Review Can Cut HVAC Energy Use
ERIC Educational Resources Information Center
McClure, Charles J. R.
1974-01-01
A computerized review of construction bidding documents, usually done by a consulting engineer, can reveal how much money it will cost to operate various alternative types of HVAC equipment over a school's lifetime. The review should include a computerized load calculation, energy systems flow diagram, control system analysis, and a computerized…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apte, Michael G.; Buchanan, Ian S.; Faulkner, David
The primary goals of this research effort are to develop, evaluate, and demonstrate a very practical HVAC system for classrooms that consistently provides classrooms with the quantity of ventilation in current minimum standards, while saving energy, and reducing HVAC-related noise levels. This research is motivated by the public benefits of energy efficiency, evidence that many classrooms are under-ventilated, and public concerns about indoor environmental quality in classrooms. This report presents an interim status update and preliminary findings from energy and indoor environmental quality (IEQ) measurements in sixteen relocatable classrooms in California. The field study includes measurements of HVAC energy use,more » ventilation rates, and IEQ conditions. Ten of the classrooms were equipped with a new HVAC technology and six control classrooms were equipped with a standard HVAC system. Energy use and many IEQ parameters have been monitored continuously, while unoccupied acoustic measurements were measured in one of four planned seasonal measurement campaigns. Continuously monitored data are remotely accessed via a LonWorks{reg_sign} network and stored in a relational database at LBNL. Preliminary results are presented here.« less
Initial Business Case Analysis of Two Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baxter, Van D
2006-11-01
The long range strategic goal of the Department of Energy's Building Technologies (DOE/BT) Program is to create, by 2020, technologies and design approaches that enable the construction of net-zero energy homes at low incremental cost (DOE/BT 2005). A net zero energy home (NZEH) is a residential building with greatly reduced needs for energy through efficiency gains, with the balance of energy needs supplied by renewable technologies. While initially focused on new construction, these technologies and design approaches are intended to have application to buildings constructed before 2020 as well resulting in substantial reduction in energy use for all building typesmore » and ages. DOE/BT's Emerging Technologies (ET) team is working to support this strategic goal by identifying and developing advanced heating, ventilating, air-conditioning, and water heating (HVAC/WH) technology options applicable to NZEHs. Although the energy efficiency of heating, ventilating, and air-conditioning (HVAC) equipment has increased substantially in recent years, new approaches are needed to continue this trend. Dramatic efficiency improvements are necessary to enable progress toward the NZEH goals, and will require a radical rethinking of opportunities to improve system performance. The large reductions in HVAC energy consumption necessary to support the NZEH goals require a systems-oriented analysis approach that characterizes each element of energy consumption, identifies alternatives, and determines the most cost-effective combination of options. In particular, HVAC equipment must be developed that addresses the range of special needs of NZEH applications in the areas of reduced HVAC and water heating energy use, humidity control, ventilation, uniform comfort, and ease of zoning. In FY05 ORNL conducted an initial Stage 1 (Applied Research) scoping assessment of HVAC/WH systems options for future NZEHs to help DOE/BT identify and prioritize alternative approaches for further development. Eleven system concepts with central air distribution ducting and nine multi-zone systems were selected and their annual and peak demand performance estimated for five locations: Atlanta (mixed-humid), Houston (hot-humid), Phoenix (hot-dry), San Francisco (marine), and Chicago (cold). Performance was estimated by simulating the systems using the TRNSYS simulation engine (Solar Energy Laboratory et al. 2006) in two 1800-ft{sup 2} houses--a Building America (BA) benchmark house and a prototype NZEH taken from BEopt results at the take-off (or crossover) point (i.e., a house incorporating those design features such that further progress towards ZEH is through the addition of photovoltaic power sources, as determined by current BEopt analyses conducted by NREL). Results were summarized in a project report, 'HVAC Equipment Design options for Near-Zero-Energy Homes--A Stage 2 Scoping Assessment,' ORNL/TM-2005/194 (Baxter 2005). The 2005 study report describes the HVAC options considered, the ranking criteria used, and the system rankings by priority. Table 1 summarizes the energy savings potential of the highest scoring options from the 2005 study for all five locations.« less
10 CFR 434.516 - Building exterior envelope.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Prototype and Reference Buildings, the infiltration assumptions in subsection 516.2.1 shall be prescribed.... Infiltration shall impact perimeter zones only. 516.2.1When the HVAC system is switched “on,” no infiltration shall be assumed. When the HVAC system is switched “off,” the infiltration rate for buildings with or...
10 CFR 434.516 - Building exterior envelope.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Prototype and Reference Buildings, the infiltration assumptions in subsection 516.2.1 shall be prescribed.... Infiltration shall impact perimeter zones only. 516.2.1When the HVAC system is switched “on,” no infiltration shall be assumed. When the HVAC system is switched “off,” the infiltration rate for buildings with or...
10 CFR 434.516 - Building exterior envelope.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Prototype and Reference Buildings, the infiltration assumptions in subsection 516.2.1 shall be prescribed.... Infiltration shall impact perimeter zones only. 516.2.1When the HVAC system is switched “on,” no infiltration shall be assumed. When the HVAC system is switched “off,” the infiltration rate for buildings with or...
10 CFR 434.516 - Building exterior envelope.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Prototype and Reference Buildings, the infiltration assumptions in subsection 516.2.1 shall be prescribed.... Infiltration shall impact perimeter zones only. 516.2.1When the HVAC system is switched “on,” no infiltration shall be assumed. When the HVAC system is switched “off,” the infiltration rate for buildings with or...
NRMRL-RTP-P- 530a Foarde, K.K., VanOsdell, D.W., and Menetrez*, M.Y. Investigation of the Potential Antimicrobial Efficacy of Sealants Used in HVAC Systems. Published in: Journal of Air and Waste Management Association 51 (8):1219-1226 (2001). 07/06/2000 The paper gives result...
75 FR 12775 - Buy American Exceptions Under the American Recovery and Reinvestment Act of 2009
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-17
... manufactured goods (ductless split HVAC systems) are not produced in the U.S. in sufficient and reasonably... Valley Housing Authority for the installation of a ductless split system during the LaCreole Manor Heating, Ventilation and Air Conditioning (HVAC) and Water Distribution Replacement Project. FOR FURTHER...
Active noise control: A tutorial for HVAC designers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gelin, L.J.
1997-08-01
This article will identify the capabilities and limitations of ANC in its application to HVAC noise control. ANC can be used in ducted HVAC systems to cancel ductborne, low-frequency fan noise by injecting sound waves of equal amplitude and opposite phase into an air duct, as close as possible to the source of the unwanted noise. Destructive interference of the fan noise and injected noise results in sound cancellation. The noise problems that it solves are typically described as rumble, roar or throb, all of which are difficult to address using traditional noise control methods. This article will also contrastmore » the use of active against passive noise control techniques. The main differences between the two noise control measures are acoustic performance, energy consumption, and design flexibility. The article will first present the fundamentals and basic physics of ANC. The application to real HVAC systems will follow.« less
Fault Diagnosis in HVAC Chillers
NASA Technical Reports Server (NTRS)
Choi, Kihoon; Namuru, Setu M.; Azam, Mohammad S.; Luo, Jianhui; Pattipati, Krishna R.; Patterson-Hine, Ann
2005-01-01
Modern buildings are being equipped with increasingly sophisticated power and control systems with substantial capabilities for monitoring and controlling the amenities. Operational problems associated with heating, ventilation, and air-conditioning (HVAC) systems plague many commercial buildings, often the result of degraded equipment, failed sensors, improper installation, poor maintenance, and improperly implemented controls. Most existing HVAC fault-diagnostic schemes are based on analytical models and knowledge bases. These schemes are adequate for generic systems. However, real-world systems significantly differ from the generic ones and necessitate modifications of the models and/or customization of the standard knowledge bases, which can be labor intensive. Data-driven techniques for fault detection and isolation (FDI) have a close relationship with pattern recognition, wherein one seeks to categorize the input-output data into normal or faulty classes. Owing to the simplicity and adaptability, customization of a data-driven FDI approach does not require in-depth knowledge of the HVAC system. It enables the building system operators to improve energy efficiency and maintain the desired comfort level at a reduced cost. In this article, we consider a data-driven approach for FDI of chillers in HVAC systems. To diagnose the faults of interest in the chiller, we employ multiway dynamic principal component analysis (MPCA), multiway partial least squares (MPLS), and support vector machines (SVMs). The simulation of a chiller under various fault conditions is conducted using a standard chiller simulator from the American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE). We validated our FDI scheme using experimental data obtained from different types of chiller faults.
HVAC (heating, ventilation, air conditioning) literature in Japan: A critical review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hane, G.J.
1988-02-01
Japanese businessmen in the heating, ventilation, air conditioning, and refrigeration (HVACandR) industry consider the monitoring of technical and market developments in the United States to be a normal part of their business. In contrast, efforts by US businessmen to monitor Japanese HVAC and R developments are poorly developed. To begin to redress this imbalance, this report establishes the groundwork for a more effective system for use in monitoring Japanese HVAC and R literature. Discussions of a review of the principal HVAC and R publications in Japan and descriptions of the type of information contained in each of those publications aremore » included in this report. Since the Japanese HVAC and R literature is abundant, this report also provides practical suggestions on how a researcher or research manager can limit the monitoring effort to the publications and type of information that would most likely be of greatest value.« less
Study of active noise control system for a commercial HVAC unit
NASA Astrophysics Data System (ADS)
Devineni, Naga
Acoustic noise is a common problem in everyday life. If the appliances that are present in the work and living areas generate noise then it's a serious problem. One such appliance is the Heating, Ventilation and Air-conditioning system (HVAC) in which blower fan and compressor units are housed together. Operation of a HVAC system creates two kinds of noise. One is the noise due to the air flow and the other is the result of the compressor. Both of them exhibit different signal properties and need different strategies to control them. There has been previous efforts in designing noise control systems that can control noise from the HVAC system. These include passive methods which use sound absorption materials to attenuate noise and active methods which cancel noise by generating anti-noise. Passive methods are effective in limiting the high frequency noise, but are inefficient in controlling low frequency noise from the compressor. Compressor noise is one of the strong low frequency components that propagate through the walls, therefore there is need for deploying active signal processing methods that consider the signal properties into consideration to cancel the noise acoustically. The quasi periodic nature of the compressor noise is exploited in noise modeling which aids in implementing an adaptive linear prediction filter in estimating the anti noise [12]. In this thesis, a multi channel architecture has been studied for a specific HVAC system in order to improve noise cancellation by creating larger quiet zone. In addition to the multi-channel architecture, a real time narrow band Active Noise Control (ANC) was employed to cancel noise under practical conditions.
Systems and methods for controlling energy use in a building management system using energy budgets
Wenzel, Michael J; Drees, Kirk H
2014-09-23
Systems and methods for limiting power consumption by a heating, ventilation, and air conditioning (HVAC) subsystem of a building are shown and described. A feedback controller is used to generate a manipulated variable based on an energy use setpoint and a measured energy use. The manipulated variable may be used for adjusting the operation of an HVAC device.
Wang, Mingyu; Kadle, Prasad S.; Ghosh, Debashis; Zima, Mark J.; Wolfe, IV, Edward; Craig, Timothy D
2016-10-04
A heating, ventilation, and air conditioning (HVAC) system and a method of controlling a HVAC system that is configured to provide a perceived comfortable ambient environment to an occupant seated in a vehicle cabin. The system includes a nozzle configured to direct an air stream from the HVAC system to the location of a thermally sensitive portion of the body of the occupant. The system also includes a controller configured to determine an air stream temperature and an air stream flow rate necessary to establish the desired heat supply rate for the sensitive portion and provide a comfortable thermal environment by thermally isolating the occupant from the ambient vehicle cabin temperature. The system may include a sensor to determine the location of the sensitive portion. The nozzle may include a thermoelectric device to heat or cool the air stream.
A Case Study in Market Transformation for Residential Energy Efficiency Programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Building Technologies Office
This case study describes how the Midwest Energy Efficiency Alliance (MEEA) partnered with gas and electric utilities in Iowa to establish the Iowa residential heating, ventilation, and air conditioning System Adjustment and Verified Efficiency (HVAC SAVE) program, taking it to scale improving the performance and energy efficiency of HVAC systems, growing businesses, and gaining consumer trust.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramachandran, Thiagarajan; Kundu, Soumya; Chen, Yan
This paper develops and utilizes an optimization based framework to investigate the maximal energy efficiency potentially attainable by HVAC system operation in a non-predictive context. Performance is evaluated relative to the existing state of the art set point reset strategies. The expected efficiency increase driven by operation constraints relaxations is evaluated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramachandran, Thiagarajan; Kundu, Soumya; Chen, Yan
This paper develops and utilizes an optimization based framework to investigate the maximal energy efficiency potentially attainable by HVAC system operation in a non-predictive context. Performance is evaluated relative to the existing state of the art set-point reset strategies. The expected efficiency increase driven by operation constraints relaxations is evaluated.
Control strategy optimization of HVAC plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Facci, Andrea Luigi; Zanfardino, Antonella; Martini, Fabrizio
In this paper we present a methodology to optimize the operating conditions of heating, ventilation and air conditioning (HVAC) plants to achieve a higher energy efficiency in use. Semi-empiric numerical models of the plant components are used to predict their performances as a function of their set-point and the environmental and occupied space conditions. The optimization is performed through a graph-based algorithm that finds the set-points of the system components that minimize energy consumption and/or energy costs, while matching the user energy demands. The resulting model can be used with systems of almost any complexity, featuring both HVAC components andmore » energy systems, and is sufficiently fast to make it applicable to real-time setting.« less
ERIC Educational Resources Information Center
Sobieski, Jeff
2010-01-01
Education facilities managers are faced with a daunting set of challenges: They must find new ways to reduce energy consumption and carry out greener energy policies. HVAC typically accounts for more than 30% of a building's electricity costs, so there is a clear incentive to eliminate unnecessary heating and cooling of unoccupied rooms. With more…
Experimental Measurements of the Water Evaporation Rate of a Physical Model
NASA Astrophysics Data System (ADS)
Turza, Róbert; Füri, Belo B.
2017-03-01
As the number of indoor swimming pools and wellness centers are currently growing, it is necessary to concentrate on the parameters of indoor environments. These parameters are necessary for the design of the HVAC systems that operate these premises. In indoor swimming-pool facilities, the energy demand is large due to ventilation losses from exhaust air. Since water evaporates from a pool's surface, exhaust air has a high water content and specific enthalpy. In this paper the results of the water evaporation rate measured from swimming pool surfaces at higher thermal water temperatures are described.
Particle loading rates for HVAC filters, heat exchangers, and ducts.
Waring, M S; Siegel, J A
2008-06-01
The rate at which airborne particulate matter deposits onto heating, ventilation, and air-conditioning (HVAC) components is important from both indoor air quality (IAQ) and energy perspectives. This modeling study predicts size-resolved particle mass loading rates for residential and commercial filters, heat exchangers (i.e. coils), and supply and return ducts. A parametric analysis evaluated the impact of different outdoor particle distributions, indoor emission sources, HVAC airflows, filtration efficiencies, coils, and duct system complexities. The median predicted residential and commercial loading rates were 2.97 and 130 g/m(2) month for the filter loading rates, 0.756 and 4.35 g/m(2) month for the coil loading rates, 0.0051 and 1.00 g/month for the supply duct loading rates, and 0.262 g/month for the commercial return duct loading rates. Loading rates are more dependent on outdoor particle distributions, indoor sources, HVAC operation strategy, and filtration than other considered parameters. The results presented herein, once validated, can be used to estimate filter changing and coil cleaning schedules, energy implications of filter and coil loading, and IAQ impacts associated with deposited particles. The results in this paper suggest important factors that lead to particle deposition on HVAC components in residential and commercial buildings. This knowledge informs the development and comparison of control strategies to limit particle deposition. The predicted mass loading rates allow for the assessment of pressure drop and indoor air quality consequences that result from particle mass loading onto HVAC system components.
Single High Fidelity Geometric Data Sets for LCM - Model Requirements
2006-11-01
are extensive single 3D CAD data models incorporating hull structure, propulsion, steering, piping , electrical, HVAC and other systems, which make...single 3D CAD data models incorporating hull structure, propulsion, steering, piping , electrical, HVAC and other systems. During this same period...be sufficiently flexible to accommodate the diverse requirements of various types of structural analyses. Section Properties & Material Data
Building Assessment Survey and Evaluation Study Summarized Data - HVAC Characteristics
In the Building Assessment Survey and Evaluation (BASE) Study Information on the characteristics of the heating, ventilation, and air conditioning (HVAC) system(s) in the entire BASE building including types of ventilation, equipment configurations, and operation and maintenance issues was acquired by examining the building plans, conducting a building walk-through, and speaking with the building owner, manager, and/or operator.
Systems and methods for controlling energy use during a demand limiting period
Wenzel, Michael J.; Drees, Kirk H.
2016-04-26
Systems and methods for limiting power consumption by a heating, ventilation, and air conditioning (HVAC) subsystem of a building are shown and described. A feedback controller is used to generate a manipulated variable based on an energy use setpoint and a measured energy use. The manipulated variable may be used for adjusting the operation of an HVAC device.
Low-Load Space Conditioning Needs Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puttagunta, Srikanth
Heating, ventilating, and air-conditioning (HVAC) equipment must be right-sized to ensure energy performance and comfort. With limited low-load options in the HVAC market, many new-construction housing units are being fitted with oversized equipment that creates system efficiency, comfort, and cost penalties. To bridge the gap between currently available HVAC equipment that is oversized or inefficient and the rising demand for low-load HVAC equipment in the marketplace, HVAC equipment manufacturers need to be fully aware of the needs of the multifamily building and attached single-family (duplex and townhouse) home market. Over the past decade, Steven Winter Associates, Inc. (SWA) has providedmore » certification and consulting services for hundreds of housing projects and has accrued a large pool of data that describe multifamily and attached single-family home characteristics. The U.S. Department of Energy’s Building America research team Consortium for Advanced Residential Buildings (CARB) compiled and analyzed these data to outline the characteristics of low-load dwellings such as the heating and cooling design loads.« less
Environmental assessment of the CIESOL solar building after two years operation.
Batlles, Francisco J; Rosiek, Sabina; Muñoz, Ivan; Fernández-Alba, Amadeo R
2010-05-01
Life cycle assessment is applied to assess the environmental benefits and trade-offs of a solar-assisted heating, ventilating, and air-conditioning (HVAC) system installed in the CIESOL building in Almeria (southeastern Spain). The environmental performance of this system is compared to that of a conventional HVAC system using a heat pump. The study evaluates these systems from cradle to grave, and the impact assessment includes, in addition to the CML2001 method, an impact category dealing with impacts on freshwater resources. The results show that the solar-assisted HVAC involves lower impacts in many impact categories, achieving, as an example, a reduction of 80% in greenhouse-gas emissions. On the other hand, key weak points of this system are the production of capital goods, but specially water use for cooling, due to its high impact on freshwater resources. Minimization of water requirements should be a priority for further development of this promising technology.
Increasing EDV Range through Intelligent Cabin Air Handling Strategies: Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leighton, Daniel; Rugh, John
Computational fluid dynamics (CFD) simulations of a Ford Focus Electric demonstrated that a split flow heating, ventilating and air conditioning (HVAC) system with rear recirculation ducts can reduce cabin heating loads by up to 57.4% relative to full fresh air usage under some conditions (steady state, four passengers, ambient temperature of -5 deg C). Simulations also showed that implementing a continuous recirculation fraction control system into the original equipment manufacturer (OEM) HVAC system can reduce cabin heating loads by up to 50.0% relative to full fresh air usage under some conditions (steady state, four passengers, ambient temperature of -5 degmore » C). Identified that continuous fractional recirculation control of the OEM system can provide significant energy savings for EVs at minimal additional cost, while a split flow HVAC system with rear recirculation ducts only provides minimal additional improvement at significant additional cost.« less
Transactive Control of Commercial Buildings for Demand Response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao, He; Corbin, Charles D.; Kalsi, Karanjit
Transactive control is a type of distributed control strategy that uses market mechanism to engage self-interested responsive loads to achieve power balance in the electrical power grid. In this paper, we propose a transactive control approach of commercial building Heating, Ventilation, and Air- Conditioning (HVAC) systems for demand response. We first describe the system models, and identify their model parameters using data collected from Systems Engineering Building (SEB) located on our Pacific Northwest National Laboratory (PNNL) campus. We next present a transactive control market structure for commercial building HVAC system, and describe its agent bidding and market clearing strategies. Severalmore » case studies are performed in a simulation environment using Building Control Virtual Test Bed (BCVTB) and calibrated SEB EnergyPlus model. We show that the proposed transactive control approach is very effective at peak clipping, load shifting, and strategic conservation for commercial building HVAC systems.« less
Energy Optimization Assessment at U.S. Army Installations: Fort Bliss, TX
2008-09-01
that if implemented would reduce Fort Bliss’s annual energy use by up to 65 MWH/yr electric and 170,023 MMBtu/yr thermal savings (mostly natural gas...solar heating for domestic hot water at selected buildings 0 0 $— 6040 $— $— $— $— 0.0 HVAC #3 Replace warm air heating system in vehicle...HVAC #6* Replace existing boilers with high- efficiency boilers 0 0 0 4,591 41,708 4,250 45,958 267,781 5.8 HVAC #7* Replace existing heating and
Energy Savings Potential and RD&D Opportunities for Non-Vapor-Compression HVAC Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
While vapor-compression technologies have served heating, ventilation, and air-conditioning (HVAC) needs very effectively, and have been the dominant HVAC technology for close to 100 years, the conventional refrigerants used in vapor-compression equipment contribute to global climate change when released to the atmosphere. This Building Technologies Office report: --Identifies alternatives to vapor-compression technology in residential and commercial HVAC applications --Characterizes these technologies based on their technical energy savings potential, development status, non-energy benefits, and other factors affecting end-user acceptance and their ability to compete with conventional vapor-compression systems --Makes specific research, development, and deployment (RD&D) recommendations to support further development ofmore » these technologies, should DOE choose to support non-vapor-compression technology further.« less
INFLUENCE OF RESIDENTIAL HVAC DUTY CYCLE ON INDOOR AIR QUALITY
Measurements of duty cycle, the fraction of time the heating and cooling (HVAC) system was operating, were made in homes during the spring season of the RTP Particulate Matter Panel Study and the Tampa Asthmatic Children's Study. A temperature sensor/logger placed on an outlet...
The necessity of HVAC system for the registered architectural cultural heritage building
NASA Astrophysics Data System (ADS)
Popovici, Cătălin George; Hudişteanu, Sebastian Valeriu; Cherecheş, Nelu-Cristian
2018-02-01
This study is intended to highlight the role of the ventilation and air conditioning system for a theatre. It was chosen as a case study the "Vasile Alecsandri" National Theatre of Jassy. The paper also sought to make a comparison in three distinct scenarios for HVAC Main Hall system - ventilation and air conditioning system of the Main Hall doesn't work; only the ventilation system of the Main Hall works and ventilation and air conditioning system of the Main Hall works. For analysing the comfort parameters, the ANSYS-Fluent software was used to build a 2D model of the building and simulation of HVAC system functionality during winter season, in all three scenarios. For the studied scenarios, the external conditions of Jassy and the indoor conditions of the theatre, when the entire spectacle hall is occupied were considered. The main aspects evaluated for each case were the air temperature, air velocity and relative humidity. The results are presented comparatively as plots and spectra of the interest parameters.
Systems and methods for controlling energy use in a building management system using energy budgets
Wenzel, Michael J.
2012-06-17
Systems and methods for limiting power consumption by a heating, ventilation, and air conditioning (HVAC) subsystem of a building are shown and described. A mathematical linear operator is found that transforms the unused or deferred cooling power usage of the HVAC system based on pre-determined temperature settings to a target cooling power usage. The mathematical operator is applied to the temperature settings to create a temperature setpoint trajectory expected to provide the target cooling power usage.
Zuo, Wangda; Wetter, Michael; Tian, Wei; ...
2015-07-13
Here, this paper describes a coupled dynamic simulation of an indoor environment with heating, ventilation, and air conditioning (HVAC) systems, controls and building envelope heat transfer. The coupled simulation can be used for the design and control of ventilation systems with stratified air distributions. Those systems are commonly used to reduce building energy consumption while improving the indoor environment quality. The indoor environment was simulated using the fast fluid dynamics (FFD) simulation programme. The building fabric heat transfer, HVAC and control system were modelled using the Modelica Buildings library. After presenting the concept, the mathematical algorithm and the implementation ofmore » the coupled simulation were introduced. The coupled FFD–Modelica simulation was then evaluated using three examples of room ventilation with complex flow distributions with and without feedback control. Lastly, further research and development needs were also discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuo, Wangda; Wetter, Michael; Tian, Wei
Here, this paper describes a coupled dynamic simulation of an indoor environment with heating, ventilation, and air conditioning (HVAC) systems, controls and building envelope heat transfer. The coupled simulation can be used for the design and control of ventilation systems with stratified air distributions. Those systems are commonly used to reduce building energy consumption while improving the indoor environment quality. The indoor environment was simulated using the fast fluid dynamics (FFD) simulation programme. The building fabric heat transfer, HVAC and control system were modelled using the Modelica Buildings library. After presenting the concept, the mathematical algorithm and the implementation ofmore » the coupled simulation were introduced. The coupled FFD–Modelica simulation was then evaluated using three examples of room ventilation with complex flow distributions with and without feedback control. Lastly, further research and development needs were also discussed.« less
Free-cooling: A total HVAC design concept
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janeke, C.E.
1982-01-01
This paper discusses a total ''free cooling'' HVAC design concept in which mechanical refrigeration is practically obviated via the refined application of existing technological strategies and a new diffuser terminal. The principles being applied are as follows; Thermal Swing: This is the active contribution of programmed heat storage to overall HVAC system performance. Reverse Diffuser: This is a new air terminal design that facilitates manifesting the thermal storage gains. Developing the thermal storage equation system into a generalized simulation model, optimizing the thermal storage and operating strategies with a computer program and developing related algorithms are subsequently illustrated. Luminair Aspiration:more » This feature provides for exhausting all luminair heat totally out of the building envelope, via an exhaust duct system and insulated boots. Two/Three-Stage Evaporative Cooling: This concept comprises a system of air conditioning that entails a combination of closed and open loop evaporative cooling with standby refrigeration only.« less
This draft notice provides guidance to registrants of EPA-registered antimicrobial products whose labels bear general directions related to hard, non-porous or porous surfaces, but which are not but which are not specifically registered for HVAC uses.
Biyeyeme Bi Mve, Marie-Jeanne; Cloutier, Yves; Lacombe, Nancy; Lavoie, Jacques; Debia, Maximilien; Marchand, Geneviève
2016-12-01
Heating, ventilation, and air-conditioning (HVAC) systems contain dust that can be contaminated with fungal spores (molds), which may have harmful effects on the respiratory health of the occupants of a building. HVAC cleaning is often based on visual inspection of the quantity of dust, without taking the mold content into account. The purpose of this study is to propose a method to estimate fungal contamination of dust in HVAC systems. Comparisons of different analytical methods were carried out on dust deposited in a controlled-atmosphere exposure chamber. Sixty samples were analyzed using four methods: culture, direct microscopic spore count (DMSC), β-N-acetylhexosaminidase (NAHA) dosing and qPCR. For each method, the limit of detection, replicability, and repeatability were assessed. The Pearson correlation coefficients between the methods were also evaluated. Depending on the analytical method, mean spore concentrations per 100 cm 2 of dust ranged from 10,000 to 682,000. Limits of detection varied from 120 to 217,000 spores/100 cm 2 . Replicability and repeatability were between 1 and 15%. Pearson correlation coefficients varied from -0.217 to 0.83. The 18S qPCR showed the best sensitivity and precision, as well as the best correlation with the culture method. PCR targets only molds, and a total count of fungal DNA is obtained. Among the methods, mold DNA amplification by qPCR is the method suggested for estimating the fungal content found in dust of HVAC systems.
[Sick building syndrome and HVAC system: MVOC from air filters].
Schleibinger, H W; Wurm, D; Möritz, M; Böck, R; Rüden, H
1997-08-01
Growth and emissions of volatile metabolites of microorganisms on air filters are suspected to contribute to health complaints in ventilated rooms. To prove the microbiological production of volatile organic compounds (MVOC), concentrations of aldehydes and ketones were determined in two large HVAC systems. The in situ derivated aldehydes and ketones (as 2,4-dinitrophenyl-hydrazones) were analysed by HPLC and UV detection. The detection limit of each compound was 1 ppb (margin of error < 10%). Field measurements were carried out before and after the prefilters and the main filters, respectively, to investigate whether aldehydes and ketones increase in concentration after filters of HVAC systems. First results show that the compounds formaldehyde, acetaldehyde and acetone could be detected before and after the filters. The concentrations of these VOC after the filters were significantly increased--as a mean over twenty measurements--, especially as far as filters made of glass fibre are concerned. However the found concentrations were low and mostly comparable to outdoor findings. In simultaneous laboratory experiments pieces of used filter material of one HVAC system and unused filter pieces (for blank values) were examined in small incubation chambers to investigate the possible production of MVOC. For the incubation a temperature of 20 degrees C and a relative humidity of 95% was chosen. In these experiments an almost identical spectrum of compounds (formaldehyde and acetone) was found as in the field measurements. The concentrations of these compounds were higher in the chambers with the used filter pieces. The concentration of acetone ranged up to almost 12 mg/m3.--As our field experiments correspond with our laboratory experiments, we assume that the microbial production of volatile organic compounds in HVAC systems under operating conditions is possible.
NASA Astrophysics Data System (ADS)
Ueda, Haruka; Dazai, Ryota; Kaseda, Chosei; Ikaga, Toshiharu; Kato, Akihiro
Demand among large office buildings for the energy-saving benefits of the HVAC (Heating, Ventilating and Air-Conditioning) System are increasing as more and more people become concerned with global environmental issues. However, immoderate measures taken in the interest of energy conservation may encroach on the thermal comfort and productivity level of office workers. Building management should satisfy both indoor thermal comfort and energy conservation while adapting to the many regulatory, social, climate, and other changes that occur during the lifespan of the building. This paper demonstrates how optimal control of the HVAC system, based on data modeling and the multi-objective optimal method, achieves an efficient equilibrium between thermal comfort and energy conservation.
NASA Astrophysics Data System (ADS)
Spasis, Georgios
The increasing demand for air conditioning in commercial buildings imposes a serious threat to Europe's CO2 reduction targets. Architects and engineers are therefore in a key position to help reduce the impact of buildings on the environment by taking appropriate decisions concerning the design of the building and the associated heating, ventilation and air conditioning (HVAC) system. The thesis studies the effect of a number of building and HVAC system related design factors on the energy performance of a notional air-conditioned office building employing either a variable air volume (VAV) system with terminal re-heaters, or a four-pipe fan coil unit (FCU) system with fresh air supply from a central plant, using mainly a dynamic simulation tool and the response surface methodology. The evaluation of the energy performance of the HVAC systems is for two types of climate, using typical weather data for London (UK) and Athens (Greece). It has been found that the design variables associated with the solar radiation through the transparent building elements and the internal heat gains should be the main concern of the building designer. On the other hand, the HVAC system engineer should give emphasis to the parameters associated with the plant performance and operation, as well as the temperature control set-points. It has been shown that it is possible to reduce the carbon emissions of the base case scenario by up to 88% depending on the HVAC system and the climate for which it is simulated. The carbon savings, however, are reduced by up to 22% where humidification is provided. This reduction differs depending on the HVAC system and the climatic conditions. The VAV system is more energy efficient than the FCU system, mainly due to the exploitation of the free cooling capacity of the outdoor air. The difference in carbon emissions between the two systems drops when both of them are simulated for the Athens as opposed to the London typical weather conditions. It has been found that it is possible to turn the carbon scales in favour of the FCU system when humidification to a high RH set-point is provided throughout the year, since the adjustment of the RH of the air is particularly energy wasteful for the VAV system.
Möritz, M; Peters, H; Nipko, B; Rüden, H
2001-07-01
The capability of air filters (filterclass: F6, F7) to retain airborne outdoor microorganisms was examined in field experiments in two heating, ventilating and air conditioning (HVAC) systems. At the beginning of the 15-month investigation period, the first filter stages of both HVAC systems were equipped with new unused air filters. The number of airborne bacteria and molds before and behind the filters were determined simultaneously in 14 days-intervals using 6-stage Andersen cascade impactors. Under relatively dry (< 80% R. H.) and warm (> 12 degrees C) outdoor air conditions air filters led to a marked reduction of airborne microorganism concentrations (bacteria by approximately 70% and molds by > 80%). However, during long periods of high relative humidity (> 80% R. H.) a proliferation of bacteria on air filters with subsequent release into the filtered air occurred. These microorganisms were mainly smaller than 1.1 microns therefore being part of the respirable fraction. The results showed furthermore that one possibility to avoid microbial proliferation is to limit the relative humidity in the area of the air filters to 80% R. H. (mean of 3 days), e.g. by using preheaters in front of air filters in HVAC-systems.
Airside HVAC BESTEST: HVAC Air-Distribution System Model Test Cases for ASHRAE Standard 140
DOE Office of Scientific and Technical Information (OSTI.GOV)
Judkoff, Ronald; Neymark, Joel; Kennedy, Mike D.
This paper summarizes recent work to develop new airside HVAC equipment model analytical verification test cases for ANSI/ASHRAE Standard 140, Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs. The analytical verification test method allows comparison of simulation results from a wide variety of building energy simulation programs with quasi-analytical solutions, further described below. Standard 140 is widely cited for evaluating software for use with performance-path energy efficiency analysis, in conjunction with well-known energy-efficiency standards including ASHRAE Standard 90.1, the International Energy Conservation Code, and other international standards. Airside HVAC Equipment is a common area ofmore » modelling not previously explicitly tested by Standard 140. Integration of the completed test suite into Standard 140 is in progress.« less
SBIR Phase II Final Report - Multi-Protocol Energy Management Gateway for Home-Area Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanna, Jason
Significant amounts of electricity, natural gas, and heating oil are wasted by homeowners due to inefficient operation and inadequate maintenance of heating, ventilation, and air conditioning (HVAC) equipment. Coincident’s work under this award reduces energy waste, saves consumers money, and reduces carbon emissions. It does so in three ways: First, Coincident’s approach replaces the traditional thermostat with a wireless network of sensors and controllers that measure temperature, humidity and occupancy in multiple rooms in the house. The “Internet of Things” is a technology trend holding the promise of ubiquitous inexpensive sensors. The reality, however, is that energy and HVAC monitoringmore » and management is a patchwork of incompatible protocols and expensive proprietary technologies. Coincident’s multi-protocol architecture, developed in part under this award tackles this problem and brings low cost interoperable sensor and control devices to market. Second, the Coincident system eliminates hard-to-program and rigid thermostat schedules and instead provides automatic operation of heating and cooling by combining individual temperature and comfort preferences with energy-saving targets, real-time utility use information, weather data, and room utilization patterns. Energy efficiency technology must be appealing to consumers otherwise it will not be used. The Coincident user interface has engaging features such as remote control from any smart phone or web browser and per-room performance breakdowns. Expected energy savings resulting from more efficient operation of heating and air conditioning equipment are in the range of 10-20%. Third, the Coincident system provides heating and air-conditioning contractors with fine-grained performance data for every residence they support (subject to customer privacy controls). This data is integrated from diverse networks within the residence and includes HVAC performance and fuel use data. This information allows the partner to validate energy savings and identify potential system faults (whether from installation problems or maintenance issues). When combined with professional installation as part of high-efficiency HVAC upgrade, energy savings levels of 20-30% can be achieved. Economic feasibility of energy efficiency technology is one of the key challenges addressed in this award. The Coincident system is engineered to be delivered at a disruptive price point, making the system financially feasible for new and retrofit homes of all types and sizes. The Coincident system is intended to be sold through the HVAC professional—the industry most capable of improving HVAC efficiency. Providing HVAC contractors with detailed home performance data motivates them to sell the product, provides them with maintenance and upgrade revenue opportunities, and therefore delivers customer savings and environmental benefits. Having demonstrated technical and financial feasibility, Coincident has won additional grants and awards, participated in pilot projects, started partnership discussions with several HVAC equipment vendors, and has lined up several large channel partners ready to participate in large pilot rollouts.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-18
...). Replacement of heating, ventilation and air conditioning (HVAC) equipment with Energy Star qualified heating, HVAC equipment. (3 points). Replacement of windows and doors with Energy Star qualified windows and... the third-party program's rating and verification systems. (2 points). Dated: August 11, 2011. Robert...
78 FR 45918 - Application for Presidential Permit; Soule River Hydroelectric Project
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-30
... Hydro. Soule Hydro proposes to construct and operate a high-voltage alternating current (HVAC... 8-mile long, 138 kilovolt (kV) HVAC 3-phase submarine cable that would be laid on the floor of... whether the proposed project would adversely affect the operation of the U.S. electric power supply system...
ERIC Educational Resources Information Center
Associated General Contractors of America, Washington, DC.
This module on introductory heating, ventilating, and air conditioning (HVAC) is one of a series of modules designed to teach basic skills necessary for entry-level employment in this field. The module contains four instructional units that cover the following topics: (1) HVAC materials; (2) HVAC tools; (3) HVAC layout; and (4) HVAC basic skills.…
CASI Work Plan: Calendar Year 2013
2013-02-15
reducing energy consumption in existing Army barracks using innovative heating, ventilating , and air-conditioning (HVAC) and building envelope...to enhance the effective “R-value” of insulation, thus reducing energy transfer through walls while maintaining comfortable temperatures for... consumption below ASHRAE’s goal for new facilities. This project will determine how effective the daylighting strategies are in providing adequate
Construction of a Solid State Research Facility, Building 3150. Environmental Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-07-01
The Department of Energy (DOE) proposes to construct a new facility to house the Materials Synthesis Group (MSG) and the Semiconductor Physics Group (SPG) of the Solid State Division, Oak Ridge National Laboratory (ORNL). The location of the proposed action is Roane County, Tennessee. MSG is involved in the study of crystal growth and the preparation and characterization of advanced materials, such as high-temperature superconductors, while SPG is involved in semiconductor physics research. All MSG and a major pardon of SPG research activities are now conducted in Building 2000, a deteriorating structure constructed in the 1940. The physical deterioration ofmore » the roof; the heating, ventilation, and air conditioning (HVAC) system; and the plumbing make this building inadequate for supporting research activities. The proposed project is needed to provide laboratory and office space for MSG and SPG and to ensure that research activities can continue without interruption due to deficiencies in the building and its associated utility systems.« less
Filtration effectiveness of HVAC systems at near-roadway schools.
McCarthy, M C; Ludwig, J F; Brown, S G; Vaughn, D L; Roberts, P T
2013-06-01
Concern for the exposure of children attending schools located near busy roadways to toxic, traffic-related air pollutants has raised questions regarding the environmental benefits of advanced heating, ventilation, and air-conditioning (HVAC) filtration systems for near-road pollution. Levels of black carbon and gaseous pollutants were measured at three indoor classroom sites and at seven outdoor monitoring sites at Las Vegas schools. Initial HVAC filtration systems effected a 31-66% reduction in black carbon particle concentrations inside three schools compared with ambient air concentrations. After improved filtration systems were installed, black carbon particle concentrations were reduced by 74-97% inside three classrooms relative to ambient air concentrations. Average black carbon particle concentrations inside the schools with improved filtration systems were lower than typical ambient Las Vegas concentrations by 49-96%. Gaseous pollutants were higher indoors than outdoors. The higher indoor concentrations most likely originated at least partially from indoor sources, which were not targeted as part of this intervention. Recent literature has demonstrated adverse health effects in subjects exposed to ambient air near major roadways. Current smart growth planning and infill development often require that buildings such as schools are built near major roadways. Improving the filtration systems of a school's HVAC system was shown to decrease children's exposure to near-roadway diesel particulate matter. However, reducing exposure to the gas-phase air toxics, which primarily originated from indoor sources, may require multiple filter passes on recirculated air. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.
Neural network based optimal control of HVAC&R systems
NASA Astrophysics Data System (ADS)
Ning, Min
Heating, Ventilation, Air-Conditioning and Refrigeration (HVAC&R) systems have wide applications in providing a desired indoor environment for different types of buildings. It is well acknowledged that 30%-40% of the total energy generated is consumed by buildings and HVAC&R systems alone account for more than 50% of the building energy consumption. Low operational efficiency especially under partial load conditions and poor control are part of reasons for such high energy consumption. To improve energy efficiency, HVAC&R systems should be properly operated to maintain a comfortable and healthy indoor environment under dynamic ambient and indoor conditions with the least energy consumption. This research focuses on the optimal operation of HVAC&R systems. The optimization problem is formulated and solved to find the optimal set points for the chilled water supply temperature, discharge air temperature and AHU (air handling unit) fan static pressure such that the indoor environment is maintained with the least chiller and fan energy consumption. To achieve this objective, a dynamic system model is developed first to simulate the system behavior under different control schemes and operating conditions. The system model is modular in structure, which includes a water-cooled vapor compression chiller model and a two-zone VAV system model. A fuzzy-set based extended transformation approach is then applied to investigate the uncertainties of this model caused by uncertain parameters and the sensitivities of the control inputs with respect to the interested model outputs. A multi-layer feed forward neural network is constructed and trained in unsupervised mode to minimize the cost function which is comprised of overall energy cost and penalty cost when one or more constraints are violated. After training, the network is implemented as a supervisory controller to compute the optimal settings for the system. In order to implement the optimal set points predicted by the supervisory controller, a set of five adaptive PI (proportional-integral) controllers are designed for each of the five local control loops of the HVAC&R system. The five controllers are used to track optimal set points and zone air temperature set points. Parameters of these PI controllers are tuned online to reduce tracking errors. The updating rules are derived from Lyapunov stability analysis. Simulation results show that compared to the conventional night reset operation scheme, the optimal operation scheme saves around 10% energy under full load condition and 19% energy under partial load conditions.
High Efficiency Variable Speed Versatile Power Air Conditioning System
2013-08-08
Design concept applicable for wide range of HVAC and refrigeration systems • One TXV size can be used for a wide range of cooling capacity...versatility, can run from AC and DC sources Cooling load adaptive, variable Speed Fully operable up to 140 degrees Fahrenheit 15. SUBJECT TERMS 16. SECURITY...ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 High Efficiency HVAC &R Technology
Ryan, R M; Wilding, G E; Wynn, R J; Welliver, R C; Holm, B A; Leach, C L
2011-09-01
The objective of this study was to test the hypothesis that enhanced ultraviolet germicidal irradiation (eUVGI) installed in our neonatal intensive care unit (NICU) heating ventilation and air conditioning system (HVAC) would decrease HVAC and NICU environment microbes, tracheal colonization and ventilator-associated pneumonia (VAP). The study was designed as a prospective interventional pre- and post-single-center study. University-affiliated Regional Perinatal Center NICU. Intubated patients in the NICU were evaluated for colonization, and a high-risk sub-population of infants <30 weeks gestation ventilated for ≥ 14 days was studied for VAP. eUVGI was installed in the NICU's remote HVACs. The HVACs, NICU environment and intubated patients' tracheas were cultured pre- and post-eUVGI for 12 months. The high-risk patients were studied for VAP (positive bacterial tracheal culture, increased ventilator support, worsening chest radiograph and ≥ 7 days of antibiotics). Pseudomonas, Klebsiella, Serratia, Acinetobacter, Staphylococcus aureus and Coagulase-negative Staphylococcus species were cultured from all sites. eUVGI significantly decreased HVAC organisms (baseline 500,000 CFU cm(-2); P=0.015) and NICU environmental microbes (P<0.0001). Tracheal microbial loads decreased 45% (P=0.004), and fewer patients became colonized. VAP in the high-risk cohort fell from 74% (n=31) to 39% (n=18), P=0.04. VAP episodes per patient decreased (Control: 1.2 to eUVGI: 0.4; P=0.004), and antibiotic usage was 62% less (P=0.013). eUVGI decreased HVAC microbial colonization and was associated with reduced NICU environment and tracheal microbial colonization. Significant reductions in VAP and antibiotic use were also associated with eUVGI in this single-center study. Large randomized multicenter trials are needed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Zhiming; Abdelaziz, Omar; LaClair, Tim L.
A refrigerant charge meter and a method for determining the actual refrigerant charge in HVAC systems are described. The meter includes means for determining an optimum refrigerant charge from system subcooling and system component parameters. The meter also includes means for determining the ratio of the actual refrigerant charge to the optimum refrigerant charge. Finally, the meter includes means for determining the actual refrigerant charge from the optimum refrigerant charge and the ratio of the actual refrigerant charge to the optimum refrigerant charge.
Assessment of auditory impression of the coolness and warmness of automotive HVAC noise.
Nakagawa, Seiji; Hotehama, Takuya; Kamiya, Masaru
2017-07-01
Noise induced by a heating, ventilation and air conditioning (HVAC) system in a vehicle is an important factor that affects the comfort of the interior of a car cabin. Much effort has been devoted to reduce noise levels, however, there is a need for a new sound design that addresses the noise problem from a different point of view. In this study, focusing on the auditory impression of automotive HVAC noise concerning coolness and warmness, psychoacoustical listening tests were performed using a paired comparison technique under various conditions of room temperature. Five stimuli were synthesized by stretching the spectral envelopes of recorded automotive HVAC noise to assess the effect of the spectral centroid, and were presented to normal-hearing subjects. Results show that the spectral centroid significantly affects the auditory impression concerning coolness and warmness; a higher spectral centroid induces a cooler auditory impression regardless of the room temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baxter, Van D
2006-12-01
The long range strategic goal of the Department of Energy's Building Technologies (DOE/BT) Program is to create, by 2020, technologies and design approaches that enable the construction of net-zero energy homes at low incremental cost (DOE/BT 2005). A net zero energy home (NZEH) is a residential building with greatly reduced needs for energy through efficiency gains, with the balance of energy needs supplied by renewable technologies. While initially focused on new construction, these technologies and design approaches are intended to have application to buildings constructed before 2020 as well resulting in substantial reduction in energy use for all building typesmore » and ages. DOE/BT's Emerging Technologies (ET) team is working to support this strategic goal by identifying and developing advanced heating, ventilating, air-conditioning, and water heating (HVAC/WH) technology options applicable to NZEHs. Although the energy efficiency of heating, ventilating, and air-conditioning (HVAC) equipment has increased substantially in recent years, new approaches are needed to continue this trend. Dramatic efficiency improvements are necessary to enable progress toward the NZEH goals, and will require a radical rethinking of opportunities to improve system performance. The large reductions in HVAC energy consumption necessary to support the NZEH goals require a systems-oriented analysis approach that characterizes each element of energy consumption, identifies alternatives, and determines the most cost-effective combination of options. In particular, HVAC equipment must be developed that addresses the range of special needs of NZEH applications in the areas of reduced HVAC and water heating energy use, humidity control, ventilation, uniform comfort, and ease of zoning. In FY05 ORNL conducted an initial Stage 1 (Applied Research) scoping assessment of HVAC/WH systems options for future NZEHs to help DOE/BT identify and prioritize alternative approaches for further development. Eleven system concepts with central air distribution ducting and nine multi-zone systems were selected and their annual and peak demand performance estimated for five locations: Atlanta (mixed-humid), Houston (hot-humid), Phoenix (hot-dry), San Francisco (marine), and Chicago (cold). Performance was estimated by simulating the systems using the TRNSYS simulation engine (Solar Energy Laboratory et al. 2006) in two 1800-ft{sup 2} houses--a Building America (BA) benchmark house and a prototype NZEH taken from BEopt results at the take-off (or crossover) point (i.e., a house incorporating those design features such that further progress towards ZEH is through the addition of photovoltaic power sources, as determined by current BEopt analyses conducted by NREL). Results were summarized in a project report, HVAC Equipment Design options for Near-Zero-Energy Homes--A Stage 2 Scoping Assessment, ORNL/TM-2005/194 (Baxter 2005). The 2005 study report describes the HVAC options considered, the ranking criteria used, and the system rankings by priority. In 2006, the two top-ranked options from the 2005 study, air-source and ground-source versions of an integrated heat pump (IHP) system, were subjected to an initial business case study. The IHPs were subjected to a more rigorous hourly-based assessment of their performance potential compared to a baseline suite of equipment of legally minimum efficiency that provided the same heating, cooling, water heating, demand dehumidification, and ventilation services as the IHPs. Results were summarized in a project report, Initial Business Case Analysis of Two Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes, ORNL/TM-2006/130 (Baxter 2006). The present report is an update to that document. Its primary purpose is to summarize results of an analysis of the potential of adding an outdoor air economizer operating mode to the IHPs to take advantage of free cooling (using outdoor air to cool the house) whenever possible. In addition it provides some additional detail for an alternative winter water heating/space heating (WH/SH) control strategy briefly described in the original report and corrects some minor errors.« less
Measure Guideline: Optimizing the Configuration of Flexible Duct Junction Boxes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beach, R.; Burdick, A.
2014-03-01
This measure guideline offers additional recommendations to heating, ventilation, and air conditioning (HVAC) system designers for optimizing flexible duct, constant-volume HVAC systems using junction boxes within Air Conditioning Contractors of America (ACCA) Manual D guidance. IBACOS used computational fluid dynamics software to explore and develop guidance to better control the airflow effects of factors that may impact pressure losses within junction boxes among various design configurations. These recommendations can help to ensure that a system aligns more closely with the design and the occupants' comfort expectations. Specifically, the recommendations described herein show how to configure a rectangular box with fourmore » outlets, a triangular box with three outlets, metal wyes with two outlets, and multiple configurations for more than four outlets. Designers of HVAC systems, contractors who are fabricating junction boxes on site, and anyone using the ACCA Manual D process for sizing duct runs will find this measure guideline invaluable for more accurately minimizing pressure losses when using junction boxes with flexible ducts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daling, P.M.; Marler, J.E.; Vo, T.V.
This study evaluates the values (benefits) and impacts (costs) associated with potential resolutions to Generic Issue 143, ``Availability of HVAC and Chilled Water Systems.`` The study identifies vulnerabilities related to failures of HVAC, chilled water, and room cooling systems; develops estimates of room heatup rates and safety-related equipment vulnerabilities following losses of HVAC/room cooler systems; develops estimates of the core damage frequencies and public risks associated with failures of these systems; develops three proposed resolution strategies to this generic issue; and performs a value/impact analysis of the proposed resolutions. Existing probabilistic risk assessments for four representative plants, including one plantmore » from each vendor, form the basis for the core damage frequency and public risk calculations. Both internal and external events were considered. It was concluded that all three proposed resolution strategies exceed the $1,000/person-rem cost-effectiveness ratio. Additional evaluations were performed to develop ``generic`` insights on potential design-related and configuration-related vulnerabilities and potential high-frequency ({approximately}1E-04/RY) accident sequences that involve failures of HVAC/room cooling functions. It was concluded that, although high-frequency accident sequences may exist at some plants, these high-frequency sequences are plant-specific in nature or have been resolved through hardware and/or operational changes. The plant-specific Individual Plant Examinations are an effective vehicle for identification and resolution of these plant-specific anomalies and hardware configurations.« less
Preziosi, P; Czernichow, S; Gehanno, P; Hercberg, S
2004-10-01
To assess the relationship between type of ventilation in the workplace, health services attendance, and sickness absence among middle-aged women. In a national sample of 920 professionally active women aged 49-65 yr from the SU.VI.MAX cohort, recruited from the general population in France, health services attendance and sickness absence were assessed prospectively during 1999. Being exposed to heating, ventilation, and air-conditioning (HVAC) systems in the workplace proved to be a risk factor for attendance at global and several specialist medical services. The adjusted odds ratio for otorhinolaryngologist attendance was 2.33 (95% CI = 1.35-4.04) in the HVAC group compared with the natural ventilation group, and 1.70 (1.13-2.58) for sickness absence. Dermatologist and global medical services attendance rates may also be higher in this group (P = 0.06 in both cases). Exposure to HVAC systems was a strong and significant risk factor for otorhinolaryngologist attendance and sickness absence. HVAC systems are prevalent in recent office buildings and have been shown to be associated with several adverse health effects in terms of morbidity and mortality. From a public-health perspective, our results outline the need for a quantitative assessment of the health impact of ventilation systems, taking into account the possible loss of production that exists in addition to the direct costs of medical services use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao, He; Lian, Jianming; Kalsi, Karanjit
The HVAC (Heating, Ventilation, and Air- Conditioning) system of commercial buildings is a complex system with a large number of dynamically interacting components. In particular, the thermal dynamics of each zone are coupled with those of the neighboring zones. In this paper, we study a multi-agent based approach to model and control commercial building HVAC system for providing grid services. In the multi-agent system (MAS), individual zones are modeled as agents that can communicate, interact, and negotiate with one another to achieve a common objective. We first propose a distributed characterization method on the aggregated airflow (and thus fan power)more » flexibility that the HVAC system can provide to the ancillary service market. Then, we propose a Nash-bargaining based airflow allocation strategy to track a dispatch signal (that is within the offered flexibility limit) while respecting the preference and flexibility of individual zones. Moreover, we devise a distributed algorithm to obtain the Nash bargaining solution via dual decomposition and average consensus. Numerical simulations illustrate that the proposed distributed protocols are much more scalable than the centralized approaches especially when the system becomes larger and more complex.« less
14. BUILDING NO. 445, PHYSICS LAB (FORMERLY GUN BAG LOADING), ...
14. BUILDING NO. 445, PHYSICS LAB (FORMERLY GUN BAG LOADING), LOOKING EAST AT SOUTHWEST END OF BUILDING. HVAC EQUIPMENT LOCATED OUTDOORS IN FOREGROUND. DUCTS CONDUCT HOT OR COLD AIR INDOORS. ROUND PIPES ARE INSULATED STEAM LINES. BUILDING NO. 448, ORDNANCE FACILITY, IN BACKGROUND. - Picatinny Arsenal, 400 Area, Gun Bag Loading District, State Route 15 near I-80, Dover, Morris County, NJ
Solid oxide fuel cell/gas turbine trigeneration system for marine applications
NASA Astrophysics Data System (ADS)
Tse, Lawrence Kar Chung; Wilkins, Steven; McGlashan, Niall; Urban, Bernhard; Martinez-Botas, Ricardo
2011-03-01
Shipping contributes 4.5% to global CO2 emissions and is not covered by the Kyoto Agreement. One method of reducing CO2 emissions on land is combined cooling heating and power (CCHP) or trigeneration, with typical combined thermal efficiencies of over 80%. Large luxury yachts are seen as an ideal entry point to the off-shore market for this developing technology considering its current high cost. This paper investigates the feasibility of combining a SOFC-GT system and an absorption heat pump (AHP) in a trigeneration system to drive the heating ventilation and air conditioning (HVAC) and electrical base-load systems. A thermodynamic model is used to simulate the system, with various configurations and cooling loads. Measurement of actual yacht performance data forms the basis of this system simulation. It is found that for the optimum configuration using a double effect absorption chiller in Ship 1, the net electric power increases by 47% relative to the electrical power available for a conventional SOFC-GT-HVAC system. This is due to more air cooled to a lower temperature by absorption cooling; hence less electrical cooling by the conventional HVAC unit is required. The overall efficiency is 12.1% for the conventional system, 34.9% for the system with BROAD single effect absorption chiller, 43.2% for the system with double effect absorption chiller. This shows that the overall efficiency of a trigeneration system is far higher when waste heat recovery happens. The desiccant wheel hardly reduces moisture from the outdoor air due to a relative low mass flow rate of fuel cell exhaust available to dehumidify a very large mass flow rate of HVAC air, Hence, desiccant wheel is not recommended for this application.
Predictions of Energy Savings in HVAC Systems by Lumped Models (Preprint)
2010-04-14
various control devices into a simulated HVAC system. Con- trols contain a setpoint of 26.7oC. The adjustable damper, variable chiller work input, and variable fanspeed contain values of αP of -1.0, 0.1, and 1.0, respectively. 25 ...Villanova, PA 19085 bCode 985, Naval System Warfare Center, Carderock Division, Philadelphia, PA 19112 Abstract An approach to optimizing the energy...suggest an order of mag- nitude greater energy savings using a variable chiller power control approach compared to control damper and variable-drive
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rainer, Leo I.; Hoeschele, Marc A.; Apte, Michael G.
This report addresses the results of detailed monitoring completed under Program Element 6 of Lawrence Berkeley National Laboratory's High Performance Commercial Building Systems (HPCBS) PIER program. The purpose of the Energy Simulations and Projected State-Wide Energy Savings project is to develop reasonable energy performance and cost models for high performance relocatable classrooms (RCs) across California climates. A key objective of the energy monitoring was to validate DOE2 simulations for comparison to initial DOE2 performance projections. The validated DOE2 model was then used to develop statewide savings projections by modeling base case and high performance RC operation in the 16 Californiamore » climate zones. The primary objective of this phase of work was to utilize detailed field monitoring data to modify DOE2 inputs and generate performance projections based on a validated simulation model. Additional objectives include the following: (1) Obtain comparative performance data on base case and high performance HVAC systems to determine how they are operated, how they perform, and how the occupants respond to the advanced systems. This was accomplished by installing both HVAC systems side-by-side (i.e., one per module of a standard two module, 24 ft by 40 ft RC) on the study RCs and switching HVAC operating modes on a weekly basis. (2) Develop projected statewide energy and demand impacts based on the validated DOE2 model. (3) Develop cost effectiveness projections for the high performance HVAC system in the 16 California climate zones.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Wei; Sevilla, Thomas Alonso; Zuo, Wangda
Historically, multizone models are widely used in building airflow and energy performance simulations due to their fast computing speed. However, multizone models assume that the air in a room is well mixed, consequently limiting their application. In specific rooms where this assumption fails, the use of computational fluid dynamics (CFD) models may be an alternative option. Previous research has mainly focused on coupling CFD models and multizone models to study airflow in large spaces. While significant, most of these analyses did not consider the coupled simulation of the building airflow with the building's Heating, Ventilation, and Air-Conditioning (HVAC) systems. Thismore » paper tries to fill the gap by integrating the models for HVAC systems with coupled multizone and CFD simulations for airflows, using the Modelica simul ation platform. To improve the computational efficiency, we incorporated a simplified CFD model named fast fluid dynamics (FFD). We first introduce the data synchronization strategy and implementation in Modelica. Then, we verify the implementation using two case studies involving an isothermal and a non-isothermal flow by comparing model simulations to experiment data. Afterward, we study another three cases that are deemed more realistic. This is done by attaching a variable air volume (VAV) terminal box and a VAV system to previous flows to assess the capability of the models in studying the dynamic control of HVAC systems. Finally, we discuss further research needs on the coupled simulation using the models.« less
Naito, Yuji; Yamaguchi, Shinnichi; Mori, Yasuhiro; Nakajima, Kouji; Hashimoto, Sanshiro; Tomaru, Masakazu; Satoh, Yoshihiko; Hitomi, Yuji; Karita, Masakazu; Hiwatashi, Tomoaki; Kawahito, Yutaka; Yoshikawa, Toshikazu
2013-01-01
Static electric field therapy by high voltage alternating current (EF-HVAC) is a traditional complementary Japanese medicine used for headache, shoulder stiffness, chronic constipation and insomnia. Open-label studies and clinical experience in Japan have suggested that this electric field therapy is safe and effective in treating chronic arthritis. We evaluated the efficacy of EF-HVAC therapy in a randomized, double-blinded, sham-controlled trial in patients with active rheumatoid arthritis (RA) in community-based general physician centers. Thirty patients fulfilling American College of Rheumatology (ACR) criteria for RA were treated with EF-HVAC therapy with the LEGACIS PLUS System (COCOROCA Corp., Tokyo, Japan) or sham therapy for 12 weeks and followed for 4 weeks without treatment. The disease activity score 28 (DAS28-CRP), visual analogue scale for pain (VAS), modified health assessment questionnaire (MHAQ), and inflammatory parameters were used as the outcome variable. Twenty four patients (n = 12 in each group) were analyzed by a per protocol analysis. Although a significant reduction in DAS28-CRP was observed in EF-HVAC group at 8 and 12 weeks compared to before treatment, there were no significant differences in DAS28-CRP scores during treatment between two groups. The scale of VAS was also significantly decreased by the treatment with EF-HVAC compared to before treatment, in addition, the scale of VAS in EF-HVAC group was significantly lower than sham group at 8 and 12 weeks. Changes in another parameters including MHAQ were not significant between before and after treatment, or by all comparative study between two groups. There were no adverse events related the treatment. In conclusion, the EF-HVAC therapy has a beneficial effect on the improvement to subjective pain of RA. PMID:23874073
Naito, Yuji; Yamaguchi, Shinnichi; Mori, Yasuhiro; Nakajima, Kouji; Hashimoto, Sanshiro; Tomaru, Masakazu; Satoh, Yoshihiko; Hitomi, Yuji; Karita, Masakazu; Hiwatashi, Tomoaki; Kawahito, Yutaka; Yoshikawa, Toshikazu
2013-07-01
Static electric field therapy by high voltage alternating current (EF-HVAC) is a traditional complementary Japanese medicine used for headache, shoulder stiffness, chronic constipation and insomnia. Open-label studies and clinical experience in Japan have suggested that this electric field therapy is safe and effective in treating chronic arthritis. We evaluated the efficacy of EF-HVAC therapy in a randomized, double-blinded, sham-controlled trial in patients with active rheumatoid arthritis (RA) in community-based general physician centers. Thirty patients fulfilling American College of Rheumatology (ACR) criteria for RA were treated with EF-HVAC therapy with the LEGACIS PLUS System (COCOROCA Corp., Tokyo, Japan) or sham therapy for 12 weeks and followed for 4 weeks without treatment. The disease activity score 28 (DAS28-CRP), visual analogue scale for pain (VAS), modified health assessment questionnaire (MHAQ), and inflammatory parameters were used as the outcome variable. Twenty four patients (n = 12 in each group) were analyzed by a per protocol analysis. Although a significant reduction in DAS28-CRP was observed in EF-HVAC group at 8 and 12 weeks compared to before treatment, there were no significant differences in DAS28-CRP scores during treatment between two groups. The scale of VAS was also significantly decreased by the treatment with EF-HVAC compared to before treatment, in addition, the scale of VAS in EF-HVAC group was significantly lower than sham group at 8 and 12 weeks. Changes in another parameters including MHAQ were not significant between before and after treatment, or by all comparative study between two groups. There were no adverse events related the treatment. In conclusion, the EF-HVAC therapy has a beneficial effect on the improvement to subjective pain of RA.
Wu, Wei; Skye, Harrison M; Domanski, Piotr A
2018-02-15
HVAC is responsible for the largest share of energy use in residential buildings and plays an important role in broader implementation of net-zero energy building (NZEB). This study investigated the energy, comfort and economic performance of commercially-available HVAC technologies for a residential NZEB. An experimentally-validated model was used to evaluate ventilation, dehumidification, and heat pump options for the NZEB in the mixed-humid climate zone. Ventilation options were compared to mechanical ventilation without recovery; a heat recovery ventilator (HRV) and energy recovery ventilator (ERV) respectively reduced the HVAC energy by 13.5 % and 17.4 % and reduced the building energy by 7.5 % and 9.7 %. There was no significant difference in thermal comfort between the ventilation options. Dehumidification options were compared to an air-source heat pump (ASHP) with a separate dehumidifier; the ASHP with dedicated dehumidification reduced the HVAC energy by 7.3 % and the building energy by 3.9 %. The ASHP-only option (without dedicated dehumidification) reduced the initial investment but provided the worst comfort due to high humidity levels. Finally, ground-source heat pump (GSHP) alternatives were compared to the ASHP; the GSHP with two and three boreholes reduced the HVAC energy by 26.0 % and 29.2 % and the building energy by 13.1 % and 14.7 %. The economics of each HVAC configuration was analyzed using installation cost data and two electricity price structures. The GSHPs with the ERV and dedicated dehumidification provided the highest energy savings and good comfort, but were the most expensive. The ASHP with dedicated dehumidification and the ERV (or HRV) provided reasonable payback periods.
In-vehicle carbon dioxide concentration in commuting cars in Bangkok, Thailand.
Luangprasert, Maytat; Vasithamrong, Chainarin; Pongratananukul, Suphasit; Chantranuwathana, Sunhapos; Pumrin, Suree; De Silva, I P D
2017-05-01
It is known that in-vehicle carbon dioxide (CO 2 ) concentration tends to increase due to occupant exhalation when the HVAC (heating, ventilation, and air conditioning) air is in recirculation mode. Field experiments were conducted to measure CO 2 concentration during typical commute in Bangkok, Thailand. The measured concentrations agreed with the concentration predicted using first-order mass balance equation, in both recirculating and outside air modes. The long-term transient decay of the concentration when the vehicle was parked and the HVAC system was turned off was also studied. This decay was found to follow Fickian diffusion process. The paper also provides useful operational details of the automotive HVAC system and fresh air ventilation exchange between cabin interior and exterior. Drivers in tropical Asian countries typically use HVAC recirculation mode in their automobiles. This behavior leads to excessive buildup of cabin CO 2 concentration levels. The paper describes the CO 2 buildup in a typical commute in Bangkok, Thailand. Auto manufacturers can potentially take measures to alleviate such high concentration levels. The paper also discusses the diffusion of CO 2 through the vehicle envelope, an area that has never been investigated before.
Real-time performance assessment and adaptive control for a water chiller unit in an HVAC system
NASA Astrophysics Data System (ADS)
Bai, Jianbo; Li, Yang; Chen, Jianhao
2018-02-01
The paper proposes an adaptive control method for a water chiller unit in a HVAC system. Based on the minimum variance evaluation, the adaptive control method was used to realize better control of the water chiller unit. To verify the performance of the adaptive control method, the proposed method was compared with an a conventional PID controller, the simulation results showed that adaptive control method had superior control performance to that of the conventional PID controller.
Performance Monitoring of Chilled-Water Distribution Systems Using HVAC-Cx
Ferretti, Natascha Milesi; Galler, Michael A.; Bushby, Steven T.
2017-01-01
In this research we develop, test, and demonstrate the newest extension of the software HVAC-Cx (NIST and CSTB 2014), an automated commissioning tool for detecting common mechanical faults and control errors in chilled-water distribution systems (loops). The commissioning process can improve occupant comfort, ensure the persistence of correct system operation, and reduce energy consumption. Automated tools support the process by decreasing the time and the skill level required to carry out necessary quality assurance measures, and as a result they enable more thorough testing of building heating, ventilating, and air-conditioning (HVAC) systems. This paper describes the algorithm, developed by National Institute of Standards and Technology (NIST), to analyze chilled-water loops and presents the results of a passive monitoring investigation using field data obtained from BACnet® (ASHRAE 2016) controllers and presents field validation of the findings. The tool was successful in detecting faults in system operation in its first field implementation supporting the investigation phase through performance monitoring. Its findings led to a full energy retrocommissioning of the field site. PMID:29167584
Performance Monitoring of Chilled-Water Distribution Systems Using HVAC-Cx.
Ferretti, Natascha Milesi; Galler, Michael A; Bushby, Steven T
2017-01-01
In this research we develop, test, and demonstrate the newest extension of the software HVAC-Cx (NIST and CSTB 2014), an automated commissioning tool for detecting common mechanical faults and control errors in chilled-water distribution systems (loops). The commissioning process can improve occupant comfort, ensure the persistence of correct system operation, and reduce energy consumption. Automated tools support the process by decreasing the time and the skill level required to carry out necessary quality assurance measures, and as a result they enable more thorough testing of building heating, ventilating, and air-conditioning (HVAC) systems. This paper describes the algorithm, developed by National Institute of Standards and Technology (NIST), to analyze chilled-water loops and presents the results of a passive monitoring investigation using field data obtained from BACnet ® (ASHRAE 2016) controllers and presents field validation of the findings. The tool was successful in detecting faults in system operation in its first field implementation supporting the investigation phase through performance monitoring. Its findings led to a full energy retrocommissioning of the field site.
Improvement of Vivarium Biodecontamination through Data-acquisition Systems and Automation.
Devan, Shakthi Rk; Vasu, Suresh; Mallikarjuna, Yogesha; Ponraj, Ramkumar; Kamath, Gireesh; Poosala, Suresh
2018-03-01
Biodecontamination is important for eliminating pathogens at research animal facilities, thereby preventing contamination within barrier systems. We enhanced our facility's standard biodecontamination method to replace the traditional foggers, and the new system was used effectively after creating bypass ducts in HVAC units so that individual rooms could be isolated. The entire system was controlled by inhouse-developed supervisory control and data-acquisition software that supported multiple cycles of decontamination by equipment, which had different decontamination capacities, operated in parallel, and used different agents, including H2O2 vapor and ClO2 gas. The process was validated according to facility mapping, and effectiveness was assessed by using biologic (Geobacillus stearothermophilus) and chemical indicator strips, which were positioned before decontamination, and by sampling contact plates after the completion of each cycle. The results of biologic indicators showed 6-log reduction in microbial counts after successful decontamination cycles for both agents and found to be compatible with clean-room panels including commonly used materials in vivarium such as racks, cages, trolleys, cage changing stations, biosafety cabinets, refrigerators and other equipment in both procedure and animal rooms. In conclusion, the automated process enabled users to perform effective decontamination through multiple cycles with realtime documentation and provided additional capability to deal with potential outbreaks. Enabling software integration of automation improved quality-control systems in our vivarium.
Research and Development Opportunities for Joining Technologies in HVAC&R
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goetzler, William; Guernsey, Matt; Young, Jim
The Building Technologies Office (BTO) works with researchers and industry partners to develop and deploy technologies that can substantially reduce energy consumption and greenhouse gas (GHG) emissions in residential and commercial buildings. This opportunity assessment aims to advance BTO’s energy savings, GHG reduction, and other program goals by identifying research and development (R&D) initiatives for joining technologies in heating, ventilation, air-conditioning, and refrigeration (HVAC&R) systems. Improving joining technologies for HVAC&R equipment has the potential to increase lifetime equipment operating efficiency, decrease equipment and project cost, and most importantly reduce hydroflourocarbon (HFC) refrigerant leakage to support HFC phasedown and GHG reductionmore » goals.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisk, William J.; Destaillats, H.; Apte, M.G.
Heating, ventilating, and cooling classrooms in California consume substantial electrical energy. Indoor air quality (IAQ) in classrooms affects studenthealth and performance. In addition to airborne pollutants that are emitted directly by indoor sources and those generated outdoors, secondary pollutants can be formed indoors by chemical reaction of ozone with other chemicals and materials. Filters are used in nearly all classroom heating, ventilation and air?conditioning (HVAC) systems to maintain energy-efficient HVAC performance and improve indoor air quality; however, recent evidence indicates that ozone reactions with filters may, in fact, be a source of secondary pollutants. This project quantitatively evaluated ozone depositionmore » in HVAC filters and byproduct formation, and provided a preliminary assessment of the extent towhich filter systems are degrading indoor air quality. The preliminary information obtained will contribute to the design of subsequent research efforts and the identification of energy efficient solutions that improve indoor air quality in classrooms and the health and performance of students.« less
HVAC; Heating, Ventilation, Air Conditioning - Aerosol Duct Sealant
2016-09-01
material was applied. Annual energy and cost savings were predicted based on a typical weather year for each site. The installation of the duct...Balance reports; Visible dust streaks on duct work, ceilings near supply diffusers, or electrical boxes; Comfort complaints Specific Leakage...energy consumption , depending on the HVAC system type and the location of the ducts that were sealed. The cost effectiveness of the technology is
Integrated high efficiency blower apparatus for HVAC systems
Liu, Xiaoyue; Weigman, Herman; Wang, Shixiao
2007-07-24
An integrated centrifugal blower wheel for a heating, ventilation and air conditioning (HVAC) blower unit includes a first blade support, a second blade support, and a plurality of S-shaped blades disposed between the first and second blade supports, wherein each of the S-shaped blades has a trailing edge bent in a forward direction with respect to a defined direction of rotation of the wheel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2014-10-01
In this project, Building America team IBACOS performed field testing in a new construction unoccupied test house in Pittsburgh, Pennsylvania to evaluate heating, ventilating, and air conditioning (HVAC) distribution systems during heating, cooling, and midseason conditions. Four air-based HVAC distribution systems were assessed:-a typical airflow ducted system to the bedrooms, a low airflow ducted system to the bedrooms, a system with transfer fans to the bedrooms, and a system with no ductwork to the bedrooms. The relative ability of each system was considered with respect to relevant Air Conditioning Contractors of America and ASHRAE standards for house temperature uniformity andmore » stability, respectively.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendell, M.J.; Lei-Gomez, Q.; Mirer, A.
2006-10-01
Nonspecific building-related symptoms among occupants of modern office buildings worldwide are common and may be associated with important reductions in work performance, but their etiology remains uncertain. Characteristics of heating, ventilating, and air-conditioning (HVAC) systems in office buildings that increase risk of indoor contaminants or reduce effectiveness of ventilation may cause adverse exposures and subsequent increase in these symptoms among occupants. We analyzed data collected by the U.S. EPA from a representative sample of 100 large U.S. office buildings--the Building Assessment and Survey Evaluation (BASE) study--using multivariate logistic regression models with generalized estimating equations adjusted for potential personal and buildingmore » confounders. We estimated odds ratios (ORs) and 95% confidence intervals (CIs) for associations between seven building-related symptom outcomes and selected HVAC system characteristics. Among factors of HVAC design or configuration: Outdoor air intakes less than 60 m above the ground were associated with approximately doubled odds of most symptoms assessed. Sealed (non-operable) windows were associated with increases in skin and eye symptoms (ORs= 1.9, 1.3, respectively). Outdoor air intake without an intake fan was associated with an increase in eye symptoms (OR=1.7). Local cooling coils were associated with increased headache (OR=1.5). Among factors of HVAC condition, maintenance, or operation: the presence of humidification systems in good condition was associated with an increase in headache (OR=1.4), whereas the presence of humidification systems in poor condition was associated with increases in fatigue/difficulty concentrating, as well as upper respiratory symptoms (ORs=1.8, 1.5). No regularly scheduled inspections for HVAC components was associated with increased eye symptoms, cough and upper respiratory symptoms (ORs=2.2, 1.6, 1.5). Less frequent cleaning of cooling coils or drip pans was associated with increased headache (OR=1.6). Fair or poor condition of duct liner was associated with increased upper respiratory symptoms (OR=1.4). Most of the many potential risk factors assessed here had not been investigated previously, and associations found with single symptoms may have been by chance, including several associations that were the reverse of expected. Risk factors newly identified in these analyses that deserve attention include outdoor air intakes less than 60 m above the ground, lack of operable windows, poorly maintained humidification systems, and lack of scheduled inspection for HVAC systems. Infrequent cleaning of cooling coils and drain pans were associated with increases in several symptoms in these as well as prior analyses of BASE data. Replication of these findings is needed, using more objective measurements of both exposure and health response. Confirmation of the specific HVAC factors responsible for increased symptoms in buildings, and development of prevention strategies could have major public health and economic benefits worldwide.« less
System solution to improve energy efficiency of HVAC systems
NASA Astrophysics Data System (ADS)
Chretien, L.; Becerra, R.; Salts, N. P.; Groll, E. A.
2017-08-01
According to recent surveys, heating and air conditioning systems account for over 45% of the total energy usage in US households. Three main types of HVAC systems are available to homeowners: (1) fixed-speed systems, where the compressor cycles on and off to match the cooling load; (2) multi-speed (typically, two-speed) systems, where the compressor can operate at multiple cooling capacities, leading to reduced cycling; and (3) variable-speed systems, where the compressor speed is adjusted to match the cooling load of the household, thereby providing higher efficiency and comfort levels through better temperature and humidity control. While energy consumption could reduce significantly by adopting variable-speed compressor systems, the market penetration has been limited to less than 10% of the total HVAC units and a vast majority of systems installed in new construction remains single speed. A few reasons may explain this phenomenon such as the complexity of the electronic circuitry required to vary compressor speed as well as the associated system cost. This paper outlines a system solution to boost the Seasonal Energy Efficiency Rating (SEER) of a traditional single-speed unit through using a low power electronic converter that allows the compressor to operate at multiple low capacity settings and is disabled at high compressor speeds.
Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes - Business Case Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baxter, Van D
2007-05-01
The long range strategic goal of the Department of Energy's Building Technologies (DOE/BT) Program is to create, by 2020, technologies and design approaches that enable the construction of net-zero energy homes at low incremental cost (DOE/BT 2005). A net zero energy home (NZEH) is a residential building with greatly reduced needs for energy through efficiency gains, with the balance of energy needs supplied by renewable technologies. While initially focused on new construction, these technologies and design approaches are intended to have application to buildings constructed before 2020 as well resulting in substantial reduction in energy use for all building typesmore » and ages. DOE/BT's Emerging Technologies (ET) team is working to support this strategic goal by identifying and developing advanced heating, ventilating, air-conditioning, and water heating (HVAC/WH) technology options applicable to NZEHs. Although the energy efficiency of heating, ventilating, and air-conditioning (HVAC) equipment has increased substantially in recent years, new approaches are needed to continue this trend. Dramatic efficiency improvements are necessary to enable progress toward the NZEH goals, and will require a radical rethinking of opportunities to improve system performance. The large reductions in HVAC energy consumption necessary to support the NZEH goals require a systems-oriented analysis approach that characterizes each element of energy consumption, identifies alternatives, and determines the most cost-effective combination of options. In particular, HVAC equipment must be developed that addresses the range of special needs of NZEH applications in the areas of reduced HVAC and water heating energy use, humidity control, ventilation, uniform comfort, and ease of zoning. In FY05 ORNL conducted an initial Stage 1 (Applied Research) scoping assessment of HVAC/WH systems options for future NZEHs to help DOE/BT identify and prioritize alternative approaches for further development. Eleven system concepts with central air distribution ducting and nine multi-zone systems were selected and their annual and peak demand performance estimated for five locations: Atlanta (mixed-humid), Houston (hot-humid), Phoenix (hot-dry), San Francisco (marine), and Chicago (cold). Performance was estimated by simulating the systems using the TRNSYS simulation engine (Solar Energy Laboratory et al. 2006) in two 1800-ft{sup 2} houses--a Building America (BA) benchmark house and a prototype NZEH taken from BEopt results at the take-off (or crossover) point (i.e., a house incorporating those design features such that further progress towards ZEH is through the addition of photovoltaic power sources, as determined by current BEopt analyses conducted by NREL). Results were summarized in a project report, 'HVAC Equipment Design options for Near-Zero-Energy Homes--A Stage 2 Scoping Assessment', ORNL/TM-2005/194 (Baxter 2005). The 2005 study report describes the HVAC options considered, the ranking criteria used, and the system rankings by priority. Table 1 summarizes the energy savings potential of the highest scoring options from the 2005 study for all five locations. All system options were scored by the ORNL building equipment research team and by William Goetzler of Navigant Consulting. These scores were reviewed by DOE/BT's Residential Integration program leaders and Building America team members. Based on these results, the two centrally ducted integrated heat pump (IHP) systems (air source and ground source versions) were selected for advancement to Stage 2 (Exploratory Development) business case assessments in FY06. This report describes results of these business case assessments. It is a compilation of three separate reports describing the initial business case study (Baxter 2006a), an update to evaluate the impact of an economizer cooling option (Baxter 2006b), and a second update to evaluate the impact of a winter humidification option (Baxter 2007). In addition it reports some corrections made subsequent to release of the first two reports to correct some errors in the TRNSYS building model for Atlanta and in the refrigerant pressure drop calculation in the water-to-refrigerant evaporator module of the ORNL Heat Pump Design Model (HPDM) used for the IHP analyses. These changes resulted in some minor differences between IHP performance as reported in Baxter (2006a, b) and in this report.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Im, Piljae; Bhandari, Mahabir S.; New, Joshua Ryan
This document describes the Oak Ridge National Laboratory (ORNL) multiyear experimental plan for validation and uncertainty characterization of whole-building energy simulation for a multi-zone research facility using a traditional rooftop unit (RTU) as a baseline heating, ventilating, and air conditioning (HVAC) system. The project’s overarching objective is to increase the accuracy of energy simulation tools by enabling empirical validation of key inputs and algorithms. Doing so is required to inform the design of increasingly integrated building systems and to enable accountability for performance gaps between design and operation of a building. The project will produce documented data sets that canmore » be used to validate key functionality in different energy simulation tools and to identify errors and inadequate assumptions in simulation engines so that developers can correct them. ASHRAE Standard 140, Method of Test for the Evaluation of Building Energy Analysis Computer Programs (ASHRAE 2004), currently consists primarily of tests to compare different simulation programs with one another. This project will generate sets of measured data to enable empirical validation, incorporate these test data sets in an extended version of Standard 140, and apply these tests to the Department of Energy’s (DOE) EnergyPlus software (EnergyPlus 2016) to initiate the correction of any significant deficiencies. The fitness-for-purpose of the key algorithms in EnergyPlus will be established and demonstrated, and vendors of other simulation programs will be able to demonstrate the validity of their products. The data set will be equally applicable to validation of other simulation engines as well.« less
Clinical Issues-November 2017.
Johnstone, Esther M
2017-11-01
Heating, ventilation, and air-conditioning (HVAC) systems in the OR Key words: airborne contaminants, HVAC system, air pressure, air quality, temperature and humidity. Air changes and positive pressure Key words: air changes, positive pressure airflow, unidirectional airflow, outdoor air, recirculated air. Product selection Key word: product evaluation, product selection, selection committee. Entry into practice Key words: associate degree in nursing, bachelor of science in nursing, entry-level position, advanced education, BSN-prepared RNs. Mentoring in perioperative nursing Key words: mentor, novice, practice improvement, nursing workforce. Copyright © 2017 AORN, Inc. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
ARBI
2014-09-01
The Stockton house retrofit is a two-story tudor style single family deep retrofit in the hot-dry climate of Stockton, CA. The home is representative of a deep retrofit option of the scaled home energy upgrade packages offered to targeted neighborhoods under the pilot Large-Scale Retrofit Program (LSRP) administered by the Alliance for Residential Building Innovation (ARBI). Deep retrofit packages expand on the standard package by adding HVAC, water heater and window upgrades to the ducting, attic and floor insulation, domestic hot water insulation, envelope sealing, lighting and ventilation upgrades. Site energy savings with the deep retrofit were 23% compared tomore » the pre-retrofit case, and 15% higher than the savings estimated for the standard retrofit package. Energy savings were largely a result of the water heater upgrade, and a combination of the envelope sealing, insulation and HVAC upgrade. The HVAC system was of higher efficiency than the building code standard. Overall the financed retrofit would have been more cost effective had a less expensive HVAC system been selected and barriers to wall insulation remedied. The homeowner experienced improved comfort throughout the monitored period and was satisfied with the resulting utility bill savings.« less
Determining Off-Cycle Fuel Economy Benefits of 2-Layer HVAC Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, Eric W; Moniot, Matthew; Jehlik, Forrest
This work presents a methodology to determine the off-cycle fuel economy benefit of a 2-Layer HVAC system which reduces ventilation and heat rejection losses of the heater core versus a vehicle using a standard system. Experimental dynamometer tests using EPA drive cycles over a broad range of ambient temperatures were conducted on a highly instrumented 2016 Lexus RX350 (3.5L, 8 speed automatic). These tests were conducted to measure differences in engine efficiency caused by changes in engine warmup due to the 2-Layer HVAC technology in use versus the technology being disabled (disabled equals fresh air-considered as the standard technology baseline).more » These experimental datasets were used to develop simplified response surface and lumped capacitance vehicle thermal models predictive of vehicle efficiency as a function of thermal state. These vehicle models were integrated into a database of measured on road testing and coupled with U.S. typical meteorological data to simulate vehicle efficiency across seasonal thermal and operational conditions for hundreds of thousands of drive cycles. Fuel economy benefits utilizing the 2-Layer HVAC technology are presented in addition to goodness of fit statistics of the modeling approach relative to the experimental test data.« less
Causes of Indoor Air Quality Problems in Schools: Summary of Scientific Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayer, C.W.
2001-02-22
In the modern urban setting, most individuals spend about 80% of their time indoors and are therefore exposed to the indoor environment to a much greater extent than to the outdoors (Lebowitz 1992). Concomitant with this increased habitation in urban buildings, there have been numerous reports of adverse health effects related to indoor air quality (IAQ) (sick buildings). Most of these buildings were built in the last two decades and were constructed to be energy-efficient. The quality of air in the indoor environment can be altered by a number of factors: release of volatile compounds from furnishings, floor and wallmore » coverings, and other finishing materials or machinery; inadequate ventilation; poor temperature and humidity control; re-entrainment of outdoor volatile organic compounds (VOCs); and the contamination of the indoor environment by microbes (particularly fungi). Armstrong Laboratory (1992) found that the three most frequent causes of IAQ are (1) inadequate design and/or maintenance of the heating, ventilation, and air-conditioning (HVAC) system, (2) a shortage of fresh air, and (3) lack of humidity control. A similar study by the National Institute for Occupational Safety and Health (NIOSH 1989) recognized inadequate ventilation as the most frequent source of IAQ problems in the work environment (52% of the time). Poor IAQ due to microbial contamination can be the result of the complex interactions of physical, chemical, and biological factors. Harmful fungal populations, once established in the HVAC system or occupied space of a modern building, may episodically produce or intensify what is known as sick building syndrome (SBS) (Cummings and Withers 1998). Indeed, SBS caused by fungi may be more enduring and recalcitrant to treatment than SBS from multiple chemical exposures (Andrae 1988). An understanding of the microbial ecology of the indoor environment is crucial to ultimately resolving many IAQ problems. The incidence of SBS related to multiple chemical sensitivity versus bioaerosols (aerosolized microbes), or the contribution of the microorganisms to the chemical sensitivities, is not yet understood. If the inhabitants of a building exhibit similar symptoms of a clearly defined disease with a nature and time of onset that can be related to building occupancy, the disease is generally referred to as ''building-related illness.'' Once the SBS has been allowed to elevate to this level, buildings are typically evacuated and the costs associated with disruption of the building occupants, identification of the source of the problem, and eventual remediation can be significant. Understanding the primary causes of IAQ problems and how controllable factors--proper HVAC system design, allocation of adequate outdoor air, proper filtration, effective humidity control, and routine maintenance--can avert the problems may help all building owners, operators, and occupants to be more productive (Arens and Baughman 1996). This paper provides a comprehensive summary of IAQ research that has been conducted in various types of facilities. However, it focuses primarily on school facilities because, for numerous reasons that will become evident, they are far more susceptible to developing IAQ problems than most other types of facilities; and the occupants, children, are more significantly affected than adults (EPA 1998).« less
Airflow Measurement of the Car HVAC Unit Using Hot-wire Anemometry
NASA Astrophysics Data System (ADS)
Fojtlín, Miloš; Planka, Michal; Fišer, Jan; Pokorný, Jan; Jícha, Miroslav
2016-03-01
Thermal environment in a vehicular cabin significantly influence drivers' fatigue and passengers' thermal comfort. This environment is traditionally managed by HVAC cabin system that distributes air and modifies its properties. In order to simulate cabin thermal behaviour, amount of the air led through car vents must be determined. The aim of this study was to develop methodology to measure airflow from the vents, and consequently calculate corresponding air distribution coefficients. Three climatic cases were selected to match European winter, summer, and spring / fall conditions. Experiments were conducted on a test vehicle in a climatic chamber. The car HVAC system was set to automatic control mode, and the measurements were executed after the system stabilisation—each case was independently measured three times. To be able to evaluate precision of the method, the airflow was determined at the system inlet (HVAC suction) and outlet (each vent), and the total airflow values were compared. The airflow was calculated by determining a mean value of the air velocity multiplied by an area of inlet / outlet cross-section. Hot-wire anemometry was involved to measure the air velocity. Regarding the summer case, total airflow entering the cabin was around 57 l s-1 with 60 % of the air entering the cabin through dashboard vents; no air was supplied to the feet compartment. The remaining cases had the same total airflow of around 42 l s-1, and the air distribution was focused mainly on feet and windows. The inlet and outlet airflow values show a good match with a maximum mass differential of 8.3 %.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nutaro, James J
The purpose of this model was to facilitate the design of a control system that uses fine grained control of residential and small commercial HVAC loads to counterbalance voltage swings caused by intermittent solar power sources (e.g., rooftop panels) installed in that distribution circuit. Included is the source code and pre-compiled 64 bit dll for adding building HVAC loads to an OpenDSS distribution circuit. As written, the Makefile assumes you are using the Microsoft C++ development tools.
An Experimental Study of Energy Consumption in Buildings Providing Ancillary Services
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Yashen; Afshari, Sina; Wolfe, John
Heating, ventilation, and air conditioning (HVAC) systems in commercial buildings can provide ancillary services (AS) to the power grid, but by providing AS their energy consumption may increase. This inefficiency is evaluated using round-trip efficiency (RTE), which is defined as the ratio between the decrease and the increase in the HVAC system's energy consumption compared to the baseline consumption as a result of providing AS. This paper evaluates the RTE of a 30,000 m2 commercial building providing AS. We propose two methods to estimate the HVAC system's settling time after an AS event based on temperature and the air flowmore » measurements from the building. Experimental data gathered over a 4-month period are used to calculate the RTE for AS signals of various waveforms, magnitudes, durations, and polarities. The results indicate that the settling time estimation algorithm based on the air flow measurements obtains more accurate results compared to the temperature-based algorithm. Further, we study the impact of the AS signal shape parameters on the RTE and discuss the practical implications of our findings.« less
Huang, R; Agranovski, I; Pyankov, O; Grinshpun, S
2008-04-01
Continuous emission of unipolar ions has been shown to improve the performance of respirators and stationary filters challenged with non-biological particles. In this study, we investigated the ion-induced enhancement effect while challenging a low-efficiency heating, ventilation and air-conditioning (HVAC) filter with viable bacterial cells, bacterial and fungal spores, and viruses. The aerosol concentration was measured in real time. Samples were also collected with a bioaerosol sampler for viable microbial analysis. The removal efficiency of the filter was determined, respectively, with and without an ion emitter. The ionization was found to significantly enhance the filter efficiency in removing viable biological particles from the airflow. For example, when challenged with viable bacteria, the filter efficiency increased as much as four- to fivefold. For viable fungal spores, the ion-induced enhancement improved the efficiency by a factor of approximately 2. When testing with virus-carrying liquid droplets, the original removal efficiency provided by the filter was rather low: 9.09 +/- 4.84%. While the ion emission increased collection about fourfold, the efficiency did not reach 75-100% observed with bacteria and fungi. These findings, together with our previously published results for non-biological particles, demonstrate the feasibility of a new approach for reducing aerosol particles in HVAC systems used for indoor air quality control. Recirculated air in HVAC systems used for indoor air quality control in buildings often contains considerable number of viable bioaerosol particles because of limited efficiency of the filters installed in these systems. In the present study, we investigated - using aerosolized bacterial cells, bacterial and fungal spores, and virus-carrying particles - a novel idea of enhancing the performance of a low-efficiency HVAC filter utilizing continuous emission of unipolar ions in the filter vicinity. The findings described in this paper, together with our previously published results for non-biological particles, demonstrate the feasibility of the newly developed approach.
Development of Design Guidance for K-12 Schools: From 30% to 50% Energy Savings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pless, S.; Torcellini, P.; Long, N.
2008-01-01
This paper describes the development of energy efficiency recommendations for achieving 30% whole-building energy savings in K-12 Schools over levels achieved by following the ANSI/ASHRAE/IESNA Standard 90.1, Energy Standard for Buildings Except Low-Rise Residential Buildings (1999 and 2004 versions). Exhaustive simulations were run to create packages of energy design solutions available over a wide range of K-12 schools and climates. These design recommendations look at building envelope, fenestration, lighting systems (including electrical lights and daylighting), HVAC systems, building automation and controls, outside air treatment, and service water heating. We document and discuss the energy modeling performed to demonstrate that themore » recommendations will result in at least 30% energy savings over ASHRAE 90.1-1999 and ASHRAE 90.1-2004. Recommendations are evaluated based on the availability of daylighting for the school and by the type of HVAC system. Compared to the ASHRAE 90.1-1999 baseline, the recommendations result in more than 30% savings in all climate zones for both daylit and nondaylit elementary, middle, and high schools with a range of HVAC system types. These recommendations have been included in the Advanced Energy Design Guide for K-12 School Buildings. Compared to the more stringent ASHRAE 90.1-2004 baseline, the recommendations result in more than 30% savings in all climate zones, for only the daylit elementary, middle, and high schools, with a range of HVAC system types. To inform the future development of recommendations for higher level of energy savings, we analyzed a subset of recommendations to understand which energy efficiency technologies would be needed to achieve 50% energy savings.« less
Buildings operations and ETS exposure.
Spengler, J D
1999-01-01
Mechanical systems are used in buildings to provide conditioned air, dissipate thermal loads, dilute contaminants, and maintain pressure differences. The characteristics of these systems and their operations h implications for the exposures of workers to environmental tobacco smoke (ETS) and for the control of these exposures. This review describes the general features of building ventilation systems and the efficacy of ventilation for controlling contaminant concentrations. Ventilation can reduce the concentration of ETS through dilution, but central heating, ventilating, and air conditioning (HVAC) can also move air throughout a building that has been contaminated by ETS. An understanding of HVAC systems is needed to develop models for exposures of workers to ETS. Images Figure 1 Figure 2 Figure 3 PMID:10375293
ERIC Educational Resources Information Center
Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.
This instructor's guide contains the materials required to teach a competency-based introductory course in heating, ventilating, and air conditioning (HVAC) to students who have chosen to explore careers in construction. It contains three units: HVAC materials, HVAC tools, and applied skills. Each instructional unit includes some or all of the…
Learning Based Bidding Strategy for HVAC Systems in Double Auction Retail Energy Markets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yannan; Somani, Abhishek; Carroll, Thomas E.
In this paper, a bidding strategy is proposed using reinforcement learning for HVAC systems in a double auction market. The bidding strategy does not require a specific model-based representation of behavior, i.e., a functional form to translate indoor house temperatures into bid prices. The results from reinforcement learning based approach are compared with the HVAC bidding approach used in the AEP gridSMART® smart grid demonstration project and it is shown that the model-free (learning based) approach tracks well the results from the model-based behavior. Successful use of model-free approaches to represent device-level economic behavior may help develop similar approaches tomore » represent behavior of more complex devices or groups of diverse devices, such as in a building. Distributed control requires an understanding of decision making processes of intelligent agents so that appropriate mechanisms may be developed to control and coordinate their responses, and model-free approaches to represent behavior will be extremely useful in that quest.« less
Modeling and Measurement Constraints in Fault Diagnostics for HVAC Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Najafi, Massieh; Auslander, David M.; Bartlett, Peter L.
2010-05-30
Many studies have shown that energy savings of five to fifteen percent are achievable in commercial buildings by detecting and correcting building faults, and optimizing building control systems. However, in spite of good progress in developing tools for determining HVAC diagnostics, methods to detect faults in HVAC systems are still generally undeveloped. Most approaches use numerical filtering or parameter estimation methods to compare data from energy meters and building sensors to predictions from mathematical or statistical models. They are effective when models are relatively accurate and data contain few errors. In this paper, we address the case where models aremore » imperfect and data are variable, uncertain, and can contain error. We apply a Bayesian updating approach that is systematic in managing and accounting for most forms of model and data errors. The proposed method uses both knowledge of first principle modeling and empirical results to analyze the system performance within the boundaries defined by practical constraints. We demonstrate the approach by detecting faults in commercial building air handling units. We find that the limitations that exist in air handling unit diagnostics due to practical constraints can generally be effectively addressed through the proposed approach.« less
Energy management system saves $250,000 + fuel -with 4-mo payback
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massey, C.L.; Robe, K.
1980-09-01
Innovations made at Hershey Chocolate Company's Oakdale, California plant eliminated simultaneous cool-reheat-cycles by incorporating dead band controls into existing HVAC systems. Calculated savings of the project are about 90% of former heating and cooling energy usage for HVAC operation. Electric power savings amount to about $75,000/y, and natural gas savings about $185,000/y, using 1980 fuel costs, with an approximate 4-month payback. Because of the reduced demand for chilled water, a smaller water chiller carries full plant load for 4 to 5 months of the year without operating two existing 500-ton units.
Aldred, J R; Darling, E; Morrison, G; Siegel, J; Corsi, R L
2016-06-01
This study involved the development of a model for evaluating the potential costs and benefits of ozone control by activated carbon filtration in single-family homes. The modeling effort included the prediction of indoor ozone with and without activated carbon filtration in the HVAC system. As one application, the model was used to predict benefit-to-cost ratios for single-family homes in 12 American cities in five different climate zones. Health benefits were evaluated using disability-adjusted life-years and included city-specific age demographics for each simulation. Costs of commercially available activated carbon filters included capital cost differences when compared to conventional HVAC filters of similar particle removal efficiency, energy penalties due to additional pressure drop, and regional utility rates. The average indoor ozone removal effectiveness ranged from 4 to 20% across the 12 target cities and was largely limited by HVAC system operation time. For the parameters selected in this study, the mean predicted benefit-to-cost ratios for 1-inch filters were >1.0 in 10 of the 12 cities. The benefits of residential activated carbon filters were greatest in cities with high seasonal ozone and HVAC usage, suggesting the importance of targeting such conditions for activated carbon filter applications. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Energy savings modelling of re-tuning energy conservation measures in large office buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandez, Nick; Katipamula, Srinivas; Wang, Weimin
Today, many large commercial buildings use sophisticated building automation systems (BASs) to manage a wide range of building equipment. While the capabilities of BASs have increased over time, many buildings still do not fully use the BAS’s capabilities and are not properly commissioned, operated or maintained, which leads to inefficient operation, increased energy use, and reduced lifetimes of the equipment. This paper investigates the energy savings potential of several common HVAC system re-tuning measures on a typical large office building, using the Department of Energy’s building energy modeling software, EnergyPlus. The baseline prototype model uses roughly as much energy asmore » an average large office building in existing building stock, but does not utilize any re-tuning measures. Individual re-tuning measures simulated against this baseline include automatic schedule adjustments, damper minimum flow adjustments, thermostat adjustments, as well as dynamic resets (set points that change continuously with building and/or outdoor conditions) to static pressure, supply-air temperature, condenser water temperature, chilled and hot water temperature, and chilled and hot water differential pressure set points. Six combinations of these individual measures have been formulated – each designed to conform to limitations to implementation of certain individual measures that might exist in typical buildings. All the individual measures and combinations were simulated in 16 climate locations representative of specific U.S. climate zones. The modeling results suggest that the most effective energy savings measures are those that affect the demand-side of the building (air-systems and schedules). Many of the demand-side individual measures were capable of reducing annual total HVAC system energy consumption by over 20% in most cities that were modeled. Supply side measures affecting HVAC plant conditions were only modestly successful (less than 5% annual HVAC energy savings for most cities for all measures). Combining many of the re-tuning measures revealed deep savings potential. Some of the more aggressive combinations revealed 35-75% reductions in annual HVAC energy consumption, depending on climate and building vintage.« less
Wall System Saves Initial HVAC Costs
ERIC Educational Resources Information Center
Modern Schools, 1976
1976-01-01
The superior insulating characteristics of an exterior wall system has enabled a Massachusetts school district to realize a savings on electric heating, ventilating, and air-conditioning systems. (Author/MLF)
Measure Guideline: Optimizing the Configuration of Flexible Duct Junction Boxes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beach, R.; Burdick, A.
2014-03-01
This measure guideline offers additional recommendations to heating, ventilation, and air conditioning (HVAC) system designers for optimizing flexible duct, constant-volume HVAC systems using junction boxes within Air Conditioning Contractors of America (ACCA) Manual D guidance (Rutkowski, H. Manual D -- Residential Duct Systems, 3rd edition, Version 1.00. Arlington, VA: Air Conditioning Contractors of America, 2009.). IBACOS used computational fluid dynamics software to explore and develop guidance to better control the airflow effects of factors that may impact pressure losses within junction boxes among various design configurations (Beach, R., Prahl, D., and Lange, R. CFD Analysis of Flexible Duct Junction Boxmore » Design. Golden, CO: National Renewable Energy Laboratory, submitted for publication 2013). These recommendations can help to ensure that a system aligns more closely with the design and the occupants' comfort expectations. Specifically, the recommendations described herein show how to configure a rectangular box with four outlets, a triangular box with three outlets, metal wyes with two outlets, and multiple configurations for more than four outlets. Designers of HVAC systems, contractors who are fabricating junction boxes on site, and anyone using the ACCA Manual D process for sizing duct runs will find this measure guideline invaluable for more accurately minimizing pressure losses when using junction boxes with flexible ducts.« less
Near-Complete Genome Sequence of a Novel Single-Stranded RNA Virus Discovered in Indoor Air
2018-01-01
ABSTRACT Viral metagenomic analysis of heating, ventilation, and air conditioning (HVAC) filters recovered the near-complete genome sequence of a novel virus, named HVAC-associated RNA virus 1 (HVAC-RV1). The HVAC-RV1 genome is most similar to those of picorna-like viruses identified in arthropods but encodes a small domain observed only in negative-sense single-stranded RNA viruses. PMID:29567746
Külpmann, Rüdiger; Christiansen, Bärbel; Kramer, Axel; Lüderitz, Peter; Pitten, Frank-Albert; Wille, Frank; Zastrow, Klaus-Dieter; Lemm, Friederike; Sommer, Regina; Halabi, Milo
2016-01-01
Since the publication of the first "Hospital Hygiene Guideline for the implementation and operation of air conditioning systems (HVAC systems) in hospitals" (http://www.krankenhaushygiene.de/informationen/fachinformationen/leitlinien/12) in 2002, it was necessary due to the increase in knowledge, new regulations, improved air-conditioning systems and advanced test methods to revise the guideline. Based on the description of the basic features of ventilation concepts, its hygienic test and the usage-based requirements for ventilation, the DGKH section "Ventilation and air conditioning technology" attempts to provide answers for the major air quality issues in the planning, design and the hygienically safe operation of HVAC systems in rooms of health care.
NASA Astrophysics Data System (ADS)
Redfern, Andrew; Koplow, Michael; Wright, Paul
2007-01-01
Most residential heating, ventilating, and air-conditioning (HVAC) systems utilize a single zone for conditioning air throughout the entire house. While inexpensive, these systems lead to wide temperature distributions and inefficient cooling due to the difference in thermal loads in different rooms. The end result is additional cost to the end user because the house is over conditioned. To reduce the total amount of energy used in a home and to increase occupant comfort there is a need for a better control system using multiple temperature zones. Typical multi-zone systems are costly and require extensive infrastructure to function. Recent advances in wireless sensor networks (WSNs) have enabled a low cost drop-in wireless vent register control system. The register control system is controlled by a master controller unit, which collects sensor data from a distributed wireless sensor network. Each sensor node samples local settings (occupancy, light, humidity and temperature) and reports the data back to the master control unit. The master control unit compiles the incoming data and then actuates the vent resisters to control the airflow throughout the house. The control system also utilizes a smart thermostat with a movable set point to enable the user to define their given comfort levels. The new system can reduce the run time of the HVAC system and thus decreasing the amount of energy used and increasing the comfort of the home occupations.
Building environment analysis based on temperature and humidity for smart energy systems.
Yun, Jaeseok; Won, Kwang-Ho
2012-10-01
In this paper, we propose a new HVAC (heating, ventilation, and air conditioning) control strategy as part of the smart energy system that can balance occupant comfort against building energy consumption using ubiquitous sensing and machine learning technology. We have developed ZigBee-based wireless sensor nodes and collected realistic temperature and humidity data during one month from a laboratory environment. With the collected data, we have established a building environment model using machine learning algorithms, which can be used to assess occupant comfort level. We expect the proposed HVAC control strategy will be able to provide occupants with a consistently comfortable working or home environment.
Energy efficient model based algorithm for control of building HVAC systems.
Kirubakaran, V; Sahu, Chinmay; Radhakrishnan, T K; Sivakumaran, N
2015-11-01
Energy efficient designs are receiving increasing attention in various fields of engineering. Heating ventilation and air conditioning (HVAC) control system designs involve improved energy usage with an acceptable relaxation in thermal comfort. In this paper, real time data from a building HVAC system provided by BuildingLAB is considered. A resistor-capacitor (RC) framework for representing thermal dynamics of the building is estimated using particle swarm optimization (PSO) algorithm. With objective costs as thermal comfort (deviation of room temperature from required temperature) and energy measure (Ecm) explicit MPC design for this building model is executed based on its state space representation of the supply water temperature (input)/room temperature (output) dynamics. The controllers are subjected to servo tracking and external disturbance (ambient temperature) is provided from the real time data during closed loop control. The control strategies are ported on a PIC32mx series microcontroller platform. The building model is implemented in MATLAB and hardware in loop (HIL) testing of the strategies is executed over a USB port. Results indicate that compared to traditional proportional integral (PI) controllers, the explicit MPC's improve both energy efficiency and thermal comfort significantly. Copyright © 2015 Elsevier Inc. All rights reserved.
Code of Federal Regulations, 2014 CFR
2014-01-01
... stage when the energy efficiency and sustainability details (such as insulation levels, HVAC systems, water-using systems, etc.) are either explicitly determined or implicitly included in a project cost...
Energy Retrofits Can Ease the Budget Squeeze.
ERIC Educational Resources Information Center
Nordeen, Howard
1983-01-01
Computer-based building management systems can cut the energy costs of heating, ventilating, and air conditioning (HVAC) systems in school buildings. Administrators are advised on how to choose the best system. (MLF)
Spatial distributions of heating, cooling, and industrial degree-days in Turkey
NASA Astrophysics Data System (ADS)
Yildiz, I.; Sosaoglu, B.
2007-11-01
The degree-day method is commonly used to estimate energy consumption for heating and cooling in residential, commercial and industrial buildings, as well as in greenhouses, livestock facilities, storage facilities and warehouses. This article presents monthly and yearly averages and spatial distributions of heating, cooling, and industrial degree-days at the base temperatures of 18 °C and 20 °C, 18 °C and 24 °C, and 7 °C and 13 °C, respectively; as well as the corresponding number of days in Turkey. The findings presented here will facilitate the estimation of heating and cooling energy consumption for any residential, commercial and industrial buildings in Turkey, for any period of time (monthly, seasonal, etc.). From this analysis it will also be possible to compare and design alternative building systems in terms of energy efficiencies. If one prefers to use set point temperatures to indicate the resumption of the heating season would also be possible using the provided information in this article. In addition, utility companies and manufacturing/marketing companies of HVAC systems would be able to easily determine the demand, marketing strategies and policies based on the findings in this study.
Integration& Operation of a Microgrid at Santa Rita Jail
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chevron Energy Solutions; Alameda County; DeForest, Nicholas
2011-05-01
Santa Rita Jail is a 4,500 inmate facility located in Dublin CA, approximately 40 miles (65 km) east of San Francisco. Over the past decade, a series of Distributed Energy Resources (DER) installations and efficiency measures have been undertaken to transform the 3MW facility into a"Green Jail". These include a 1.2MW rated rooftop PV system installed in 2002, a 1MW molten carbonate fuel cell with CHP, and retrofits to lighting and HVAC systems to reduce peak loads. With the upcoming installation of a large-scale battery and fast static disconnect switch, Santa Rita Jail will become a true microgrid, with fullmore » CERTS Microgrid functionality. Consequently, the jail will be able to seamlessly disconnect from the grid and operate as an island in the event of a disturbance, reconnecting again once the disturbance has dissipated. The extent to which that jail is capable of islanding is principally dependant on the energy capacity of the battery-one focus of this investigation. Also presented here are overviews of the DER currently installed at the jail, as well as the value it provides by offsetting the purchase of electricity under the current Pacific Gas& Electric (PG&E) tariff.« less
Modeling occupancy distribution in large spaces with multi-feature classification algorithm
Wang, Wei; Chen, Jiayu; Hong, Tianzhen
2018-04-07
We present that occupancy information enables robust and flexible control of heating, ventilation, and air-conditioning (HVAC) systems in buildings. In large spaces, multiple HVAC terminals are typically installed to provide cooperative services for different thermal zones, and the occupancy information determines the cooperation among terminals. However, a person count at room-level does not adequately optimize HVAC system operation due to the movement of occupants within the room that creates uneven load distribution. Without accurate knowledge of the occupants’ spatial distribution, the uneven distribution of occupants often results in under-cooling/heating or over-cooling/heating in some thermal zones. Therefore, the lack of high-resolutionmore » occupancy distribution is often perceived as a bottleneck for future improvements to HVAC operation efficiency. To fill this gap, this study proposes a multi-feature k-Nearest-Neighbors (k-NN) classification algorithm to extract occupancy distribution through reliable, low-cost Bluetooth Low Energy (BLE) networks. An on-site experiment was conducted in a typical office of an institutional building to demonstrate the proposed methods, and the experiment outcomes of three case studies were examined to validate detection accuracy. One method based on City Block Distance (CBD) was used to measure the distance between detected occupancy distribution and ground truth and assess the results of occupancy distribution. Finally, the results show the accuracy when CBD = 1 is over 71.4% and the accuracy when CBD = 2 can reach up to 92.9%.« less
Modeling occupancy distribution in large spaces with multi-feature classification algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wei; Chen, Jiayu; Hong, Tianzhen
We present that occupancy information enables robust and flexible control of heating, ventilation, and air-conditioning (HVAC) systems in buildings. In large spaces, multiple HVAC terminals are typically installed to provide cooperative services for different thermal zones, and the occupancy information determines the cooperation among terminals. However, a person count at room-level does not adequately optimize HVAC system operation due to the movement of occupants within the room that creates uneven load distribution. Without accurate knowledge of the occupants’ spatial distribution, the uneven distribution of occupants often results in under-cooling/heating or over-cooling/heating in some thermal zones. Therefore, the lack of high-resolutionmore » occupancy distribution is often perceived as a bottleneck for future improvements to HVAC operation efficiency. To fill this gap, this study proposes a multi-feature k-Nearest-Neighbors (k-NN) classification algorithm to extract occupancy distribution through reliable, low-cost Bluetooth Low Energy (BLE) networks. An on-site experiment was conducted in a typical office of an institutional building to demonstrate the proposed methods, and the experiment outcomes of three case studies were examined to validate detection accuracy. One method based on City Block Distance (CBD) was used to measure the distance between detected occupancy distribution and ground truth and assess the results of occupancy distribution. Finally, the results show the accuracy when CBD = 1 is over 71.4% and the accuracy when CBD = 2 can reach up to 92.9%.« less
Smart HVAC Control in IoT: Energy Consumption Minimization with User Comfort Constraints
Verikoukis, Christos
2014-01-01
Smart grid is one of the main applications of the Internet of Things (IoT) paradigm. Within this context, this paper addresses the efficient energy consumption management of heating, ventilation, and air conditioning (HVAC) systems in smart grids with variable energy price. To that end, first, we propose an energy scheduling method that minimizes the energy consumption cost for a particular time interval, taking into account the energy price and a set of comfort constraints, that is, a range of temperatures according to user's preferences for a given room. Then, we propose an energy scheduler where the user may select to relax the temperature constraints to save more energy. Moreover, thanks to the IoT paradigm, the user may interact remotely with the HVAC control system. In particular, the user may decide remotely the temperature of comfort, while the temperature and energy consumption information is sent through Internet and displayed at the end user's device. The proposed algorithms have been implemented in a real testbed, highlighting the potential gains that can be achieved in terms of both energy and cost. PMID:25054163
Smart HVAC control in IoT: energy consumption minimization with user comfort constraints.
Serra, Jordi; Pubill, David; Antonopoulos, Angelos; Verikoukis, Christos
2014-01-01
Smart grid is one of the main applications of the Internet of Things (IoT) paradigm. Within this context, this paper addresses the efficient energy consumption management of heating, ventilation, and air conditioning (HVAC) systems in smart grids with variable energy price. To that end, first, we propose an energy scheduling method that minimizes the energy consumption cost for a particular time interval, taking into account the energy price and a set of comfort constraints, that is, a range of temperatures according to user's preferences for a given room. Then, we propose an energy scheduler where the user may select to relax the temperature constraints to save more energy. Moreover, thanks to the IoT paradigm, the user may interact remotely with the HVAC control system. In particular, the user may decide remotely the temperature of comfort, while the temperature and energy consumption information is sent through Internet and displayed at the end user's device. The proposed algorithms have been implemented in a real testbed, highlighting the potential gains that can be achieved in terms of both energy and cost.
Near-Complete Genome Sequence of a Novel Single-Stranded RNA Virus Discovered in Indoor Air.
Rosario, Karyna; Fierer, Noah; Breitbart, Mya
2018-03-22
Viral metagenomic analysis of heating, ventilation, and air conditioning (HVAC) filters recovered the near-complete genome sequence of a novel virus, named HVAC-associated R NA v irus 1 (HVAC-RV1). The HVAC-RV1 genome is most similar to those of picorna-like viruses identified in arthropods but encodes a small domain observed only in negative-sense single-stranded RNA viruses. Copyright © 2018 Rosario et al.
NASA Astrophysics Data System (ADS)
Pałaszyńska, Katarzyna; Bandurski, Karol; Porowski, Mieczysław
2017-11-01
Thermally Activated Building Systems (TABS) are a way to use building structure as a thermal energy storage. As a result, renewable energy sources may be used more efficiently. The paper presents numerical analysis of a HVAC system with TABS energy demand and indoor thermal comfort of a representative room in a non-residential building (governmental, commercial, educational). The purpose of analysis is to investigate the influence of a user profile on system performance. The time span of the analysis is one year - a typical meteorological year. The model was prepared using a generally accepted simulation tool - TRNSYS 17. The results help to better understand the interaction of a user profile with TABS. Therefore they are important for the development of optimal control algorithms for energy efficient buildings equipped with such systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatterton, Mike
The Recovery Act: Districtwide Geothermal Heating Conversion project performed by the Blaine County School District was part of a larger effort by the District to reduce operating costs, address deferred maintenance items, and to improve the learning environment of the students. This project evaluated three options for the ground source which were Open-Loop Extraction/Re-injection wells, Closed-Loop Vertical Boreholes, and Closed-Loop Horizontal Slinky approaches. In the end the Closed-Loop Horizontal Slinky approach had the lowest total cost of ownership but the majority of the sites associated with this project did not have enough available ground area to install the system somore » the second lowest option was used (Open-Loop). In addition to the ground source, this project looked at ways to retrofit existing HVAC systems with new high efficiency systems. The end result was the installation of distributed waterto- air heat pumps with water-to-water heat pumps installed to act as boilers/chillers for areas with a high ventilation demand such as they gymnasiums. A number of options were evaluated and the lowest total cost of ownership approach was implemented in the majority of the facilities. The facilities where the lowest total cost of ownership approaches was not selected were done to maintain consistency of the systems from facility to facility. This project had a number of other benefits to the Blaine County public. The project utilizes guaranteed energy savings to justify the levy funds expended. The project also developed an educational dashboard that can be used in the classrooms and to educate the community on the project and its performance. In addition, the majority of the installation work was performed by contractors local to Blaine County which acted as an economic stimulus to the area during a period of recession.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-31
... Energy Conservation Program: Certification of Commercial and Industrial HVAC, Refrigeration and Water... provisions for commercial refrigeration equipment; commercial heating, ventilating, air-conditioning (HVAC..., the Department extended the compliance date for certification of commercial refrigeration equipment...
NASA Astrophysics Data System (ADS)
Balaji, Bharathan
Commercial buildings consume 19% of energy in the US as of 2010, and traditionally, their energy use has been optimized through improved equipment efficiency and retrofits. Beyond improved hardware and infrastructure, there exists a tremendous potential in reducing energy use through better monitoring and operation. We present several applications that we developed and deployed to support our thesis that building energy use can be reduced through sensing, monitoring and optimization software that modulates use of building subsystems including HVAC. We focus on HVAC systems as these constitute 48-55% of building energy use. Specifically, in case of sensing, we describe an energy apportionment system that enables us to estimate real-time zonal HVAC power consumption by analyzing existing sensor information. With this energy breakdown, we can measure effectiveness of optimization solutions and identify inefficiencies. Central to energy efficiency improvement is determination of human occupancy in buildings. But this information is often unavailable or expensive to obtain using wide scale sensor deployment. We present our system that infers room level occupancy inexpensively by leveraging existing WiFi infrastructure. Occupancy information can be used not only to directly control HVAC but also to infer state of the building for predictive control. Building energy use is strongly influenced by human behaviors, and timely feedback mechanisms can encourage energy saving behavior. Occupants interact with HVAC using thermostats which has shown to be inadequate for thermal comfort. Building managers are responsible for incorporating energy efficiency measures, but our interviews reveal that they struggle to maintain efficiency due to lack of analytical tools and contextual information. We present our software services that provide energy feedback to occupants and building managers, improves comfort with personalized control and identifies energy wasting faults. For wide scale deployment of such energy saving software, they need to be portable across multiple buildings. However, buildings consist of heterogeneous equipment and use inconsistent naming schema, and developers need extensive domain knowledge to map sensor information to a standard format. To enable portability, we present an active learning algorithm that automates mapping building sensor metadata to a standard naming schema.
Negative-Pressure Wound Therapy in the Management of High-Grade Ventral Hernia Repairs.
Rodriguez-Unda, Nelson; Soares, Kevin C; Azoury, Saïd C; Baltodano, Pablo A; Hicks, Caitlin W; Burce, Karen K; Cornell, Peter; Cooney, Carisa M; Eckhauser, Frederic E
2015-11-01
Despite improved operative techniques, open ventral hernia repair (VHR) surgery in high-risk, potentially contaminated patients remains challenging. As previously reported by our group, the use of a modified negative-pressure wound therapy system (hybrid-VAC or HVAC) in patients with grade 2 hernias is associated with lower surgical site occurrence (SSO) and surgical site infection (SSI) rates. Accordingly, the authors aim to evaluate whether the HVAC would similarly improve surgical site outcomes following VHR in patients with grade 3 hernias. A 4-year retrospective review (2011-2014) was conducted of all consecutive, modified ventral hernia working group (VHWG) grade 3 hernia repairs with HVAC closure performed by a single surgeon (FEE) at a single institution. Operative data and 90-day outcomes were evaluated. Overall outcomes (e.g., recurrence, reoperation, mortality) were reviewed for the study group. A total of 117 patients with an average age of 56.7 ± 11.9 years were classified as grade 3 hernias and underwent open VHR with subsequent HVAC closure. Fifty patients were male (42.7 %), the mean BMI was 35.2 (±9.5), and 60.7 % had a history of prior hernia repair. The average fascial defect size was 201.5 (±167.3) cm(2) and the mean length of stay was 14.2 (±9.3) days. Ninety-day outcomes showed an SSO rate of 20.7 % and an SSI rate of 5.2 %. The overall hernia recurrence rate was 4.2 % (n=6) with a mean follow-up of 11 ± 7.3 months. Modified VHWG grade 3 ventral hernias are associated with significant morbidity. In our series utilizing the HVAC system after VHR, the observed rate of SSO and SSI compared favorably to reported series. Further prospective cost-effective studies are warranted to validate these findings.
Long-term outcomes of sandwich ventral hernia repair paired with hybrid vacuum-assisted closure.
Hicks, Caitlin W; Poruk, Katherine E; Baltodano, Pablo A; Soares, Kevin C; Azoury, Said C; Cooney, Carisa M; Cornell, Peter; Eckhauser, Frederic E
2016-08-01
Sandwich ventral hernia repair (SVHR) may reduce ventral hernia recurrence rates, although with an increased risk of surgical site occurrences (SSOs) and surgical site infections (SSIs). Previously, we found that a modified negative pressure wound therapy (hybrid vacuum-assisted closure [HVAC]) system reduced SSOs and SSIs after ventral hernia repair. We aimed to describe our outcomes after SVHR paired with HVAC closure. We conducted a 4-y retrospective review of all complex SVHRs (biologic mesh underlay and synthetic mesh overlay) with HVAC closure performed at our institution by a single surgeon. All patients had fascial defects that could not be reapproximated primarily using anterior component separation. Descriptive statistics were used to report the incidence of postoperative complications and hernia recurrence. A total of 60 patients (59.3 ± 11.4 y, 58.3% male, 75% American Society of Anesthesiologists class ≥3) with complex ventral hernias being underwent sandwich repair with HVAC closure. Major postoperative morbidity (Dindo-Clavien class ≥3) occurred in 14 (23.3%) patients, but incidence of SSO (n = 13, 21.7%) and SSI (n = 4, 6.7%) was low compared with historical reports. Median follow-up time for all patients was 12 mo (interquartile range 5.8-26.5 mo). Hernia recurrence occurred in eight patients (13.3%) after a median time of 20.6 months (interquartile range 16.4- 25.4 months). Use of a dual layer sandwich repair for complex abdominal wall reconstruction is associated with low rates of hernia recurrence at 1 year postoperatively. The addition of the HVAC closure system may reduce the risk of SSOs and SSIs previously reported with this technique and deserves consideration in future prospective studies assessing optimization of ventral hernia repair approaches. Copyright © 2016 Elsevier Inc. All rights reserved.
Non-Intrusive Load Monitoring of HVAC Components using Signal Unmixing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahimpour, Alireza; Qi, Hairong; Fugate, David L
Heating, Ventilating and Air Conditioning units (HVAC) are a major electrical energy consumer in buildings. Monitoring of the operation and energy consumption of HVAC would increase the awareness of building owners and maintenance service providers of the condition and quality of performance of these units, enabling conditioned-based maintenance which would help achieving higher energy efficiency. In this paper, a novel non-intrusive load monitoring method based on group constrained non-negative matrix factorization is proposed for monitoring the different components of HVAC unit by only measuring the whole building aggregated power signal. At the first level of this hierarchical approach, power consumptionmore » of the building is decomposed to energy consumption of the HVAC unit and all the other electrical devices operating in the building such as lighting and plug loads. Then, the estimated power signal of the HVAC is used for estimating the power consumption profile of the HVAC major electrical loads such as compressors, condenser fans and indoor blower. Experiments conducted on real data collected from a building testbed maintained at the Oak Ridge National Laboratory (ORNL) demonstrate high accuracy on the disaggregation task.« less
RECOMMENDED HVAC STANDARD OF THE FLORIDA RADON RESEARCH PROGRAM
The report contains the recommended language for the heating, ventilation, and air conditioning (HVAC) section of the "Florida Code for Radon-resistant Construction and Mitigation." t deals with elements of construction that relate to the HVAC of houses. ts primary intent is to p...
NASA Technical Reports Server (NTRS)
Hirshberg, A. S.
1975-01-01
The following topics are discussed: (1) Assignment of population to microclimatic zones; (2) specifications of the mix of buildings in the SCE territory; (3) specification of four typical buildings for thermal analysis and market penetration studies; (4) identification of the materials and energy conserving characteristics of these typical buildings; (5) specifications of the HVAC functions used in each typical building, and determination of the HVAC systems used in each building; and (6) identification of the type of fuel used in each building.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canfield, K.J.
1984-05-01
An EMCS (Energy Monitoring and Control System) can be described as a system that automatically takes care of routine operation of equipment and provides centralized reporting and override capabilities. Equipment controlled by an EMCS would be heating, ventilating, and air conditioning (HVAC) equipment, air compressors, and small package boiler units. The EMCS would obtain raw information (data) from sensors associated with the equipment and massage the data into useful information. The information obtained from the sensors plus additional information available to the EMCS would be used to control the equipment. The information would also be available to the operator inmore » the form of reports or in response to operator commands for specific information. EMCS are computerized systems that control and monitor energy consuming and producing equipment at Naval facilities. The larger systems have been installed with color-graphics cathode ray tube operator consoles to provide better information to the personnel operating these systems. This report summarizes the work done on defining an adequate operator console and recommends changes to the existing EMCS Guide Specifications.« less
Building Environment Analysis based on Temperature and Humidity for Smart Energy Systems
Yun, Jaeseok; Won, Kwang-Ho
2012-01-01
In this paper, we propose a new HVAC (heating, ventilation, and air conditioning) control strategy as part of the smart energy system that can balance occupant comfort against building energy consumption using ubiquitous sensing and machine learning technology. We have developed ZigBee-based wireless sensor nodes and collected realistic temperature and humidity data during one month from a laboratory environment. With the collected data, we have established a building environment model using machine learning algorithms, which can be used to assess occupant comfort level. We expect the proposed HVAC control strategy will be able to provide occupants with a consistently comfortable working or home environment. PMID:23202004
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-06
... Commercial and Industrial HVAC, Refrigeration and Water Heating Equipment AGENCY: Office of Energy Efficiency... extension to the compliance date for the certification provisions of commercial refrigeration equipment... refrigeration equipment; commercial HVAC equipment; commercial WH equipment; and walk-in coolers and freezers...
ERIC Educational Resources Information Center
Strang, Lynn; Todd, CeCe
2013-01-01
This article presents trends in the heating, ventilation, air conditioning and refrigeration (HVAC/R) industry, with an emphasis on the importance of technician training programs as exemplified at the East Valley Institute of Technology (EVIT) in Mesa, Arizona. The article states that HVAC workers are increasingly helping their consumers "go…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burdick, A.
This report outlines findings resulting from a U.S. Department of Energy Building America expert meeting to determine how HVAC companies can transition from a traditional contractor status to a service provider for whole house energy upgrade contracting. IBACOS has embarked upon a research effort under the Building America Program to understand business impacts and change management strategies for HVAC companies. HVAC companies can implement these strategies in order to quickly transition from a 'traditional' heating and cooling contractor to a service provider for whole house energy upgrade contracting. Due to HVAC service contracts, which allow repeat interaction with homeowners, HVACmore » companies are ideally positioned in the marketplace to resolve homeowner comfort issues through whole house energy upgrades. There are essentially two primary ways to define the routes of transition for an HVAC contractor taking on whole house performance contracting: (1) Sub-contracting out the shell repair/upgrade work; and (2) Integrating the shell repair/upgrade work into their existing business. IBACOS held an Expert Meeting on the topic of Transitioning Traditional HVAC Contractors to Whole House Performance Contractors on March 29, 2011 in San Francisco, CA. The major objectives of the meeting were to: Review and validate the general business models for traditional HVAC companies and whole house energy upgrade companies Review preliminary findings on the differences between the structure of traditional HVAC Companies and whole house energy upgrade companies Seek industry input on how to structure information so it is relevant and useful for traditional HVAC contractors who are transitioning to becoming whole house energy upgrade contractors Seven industry experts identified by IBACOS participated in the session along with one representative from the National Renewable Energy Laboratory (NREL). The objective of the meeting was to validate the general operational profile of an integrated whole house performance contracting company and identify the most significant challenges facing a traditional HVAC contractor looking to transition to a whole house performance contractor. To facilitate the discussion, IBACOS divided the business operations profile of a typical integrated whole house performance contracting company (one that performs both HVAC and shell repair/upgrade work) into seven Operational Areas with more detailed Business Functions and Work Activities falling under each high-level Operational Area. The expert panel was asked to review the operational profile or 'map' of the Business Functions. The specific Work Activities within the Business Functions identified as potential transition barriers were rated by the group relative to the value in IBACOS creating guidance ensuring a successful transition and the relative difficulty in executing.« less
Xu, Y; Liang, Y; Urquidi, J R; Siegel, J A
2015-02-01
Retail stores contain a wide range of products that can emit a variety of indoor pollutants. Among these chemicals, phthalate esters and polybrominated diphenyl ethers (PBDEs) are two important categories of semi-volatile organic compounds (SVOCs). Filters in heating, ventilation, and air-conditioning (HVAC) system collect particles from large volumes of air and thus potentially provide spatially and temporally integrated SVOC concentrations. This study measured six phthalate and 14 PBDE compounds in HVAC filter dust in 14 retail stores in Texas and Pennsylvania, United States. Phthalates and PBDEs were widely found in the HVAC filter dust in retail environment, indicating that they are ubiquitous indoor pollutants. The potential co-occurrence of phthalates and PBDEs was not strong, suggesting that their indoor sources are diverse. The levels of phthalates and PBDEs measured in HVAC filter dust are comparable to concentrations found in previous investigations of settled dust in residential buildings. Significant correlations between indoor air and filter dust concentrations were found for diethyl phthalate, di-n-butyl phthalate, and benzyl butyl phthalate. Reasonable agreement between measurements and an equilibrium model to describe SVOC partitioning between dust and gas-phase is achieved. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
development and testing of novel HVAC systems, building performance simulations, performance metrics for | 303-384-7503 Dr. Deru joined NREL in 2000 and manages the Systems Performance section in the
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-13
... Federal Advisory Committee: Notice of Open Meeting for the Commercial HVAC, WH, and Refrigeration..., Ventilation, and Air-conditioning (HVAC), Water Heating (WH), and Refrigeration Certification Working Group... requirements for commercial HVAC, WH, and refrigeration equipment, as authorized by the Energy Policy and...
Foarde, Karin K; Menetrez, M Y
2002-07-01
Current recommendations for remediation of fiberglass duct materials contaminated with fungi specify complete removal, which can be extremely expensive, but in-place duct cleaning may not provide adequate protection from regrowth of fungal contamination. Therefore, a common practice in the duct-cleaning industry is the postcleaning use of antifungal surface coatings with the implication that they may contain or limit regrowth. However, even the proper use of these products has generally been discouraged because little research has been conducted on the effectiveness of most products as used in heating, ventilating, and air-conditioning (HVAC) systems. Three different coatings were evaluated on fiberglass duct liner (FGDL). Two of the three coatings were able to limit growth in the 3-month study; the third did not. One of the coatings that was able to limit growth was further evaluated in a comparison of FGDL or galvanized steel (GS) under conditions that mimicked their use in HVAC systems. The results showed that both moderately soiled and heavily soiled uncoated FGDL and GS duct material can support fungal growth, but that GS duct material was more readily cleaned. The use of an antifungal coating helped limit, but did not fully contain, regrowth on FGDL. No regrowth was detected on the coated GS.
Particulate matter in animal rooms housing mice in microisolation caging.
Langham, Gregory L; Hoyt, Robert F; Johnson, Thomas E
2006-11-01
Reactions to allergens created by laboratory animals are among the most frequently encountered occupational illnesses associated with research animals. Personnel are exposed to these allergens through airborne particulate matter. Although the use of microisolation caging systems can reduce particulate matter concentrations in rooms housing mice, the operating parameters of ventilated caging systems vary extensively. We compared room air in mouse rooms containing 5 different types of caging: 1) individually ventilated caging under positive pressure with filtered intake air and exhaust air returned to the room (VCR+), 2) individually ventilated caging under negative pressure with exhaust air returned to the room (VCR-), 3) individually ventilated caging under positive pressure with exhaust air returned to the heating, ventilation, and air-conditioning (HVAC) system, 4) individually ventilated caging under negative pressure with exhaust air returned to the HVAC system, and 5) static microisolation cages. We found that rooms under VCR conditions had fewer large particles than did those under other conditions, but the numbers of 0.3 microm particles did not differ significantly among systems. Static, positive or negative pressure applied to caging units as well as route of air exhaust were found to have little influence on the total number of particles in the atmosphere. Therefore, considering the heat load, odor, and overall particulate concentration in the room, placing individually ventilated caging under negative pressure with exhaust air returned to the HVAC system appears to be the optimal overall choice when using microisolation housing for rodents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pieper, C.A.; Luckett, T.
This energy conservation study was performed by Huitt-Zollars Inc, for the U.S. Army Engineer District (USAED), Fort Worth, under contract number DACAC63-94-D-00l5. The study was conducted at Red River Army Depot (RRAD) in Texarkana, Texas, between October 17, 1994 and April 14, 1995. The site survey and data collection were performed by C.A. Pieper, P.E. and Tom Luckett, Lighting Designer. The purpose of the study was to perform a limited site survey of specific buildings at the facility, identify Conservation Opportunities (ECOs) that exist, and then evaluate these ECOs for technical and economic feasibility. These ECOs were limited to buildingmore » interior lighting and it`s effects on the heating, ventilating and air conditioning (HVAC) systems.« less
NASA Astrophysics Data System (ADS)
Nikitin, Pavel Viktorovich
2002-01-01
A typical HVAC duct system is a network of interconnected hollow metal pipes which can serve as waveguides and carry electromagnetic waves. This work presents an analysis of this system as a radio frequency communication channel. Two main parts of the analysis include channel modelling and antenna design. The propagation modelling approach used here is based on the waveguide mode theory and employs the transfer matrix method to describe propagation through various cascaded HVAC elements. This allows one to model the channel response in the frequency domain. Impulse response characteristics of the ducts are also analyzed in this work. The approximate transfer matrices of cylindrical straight sections, bends, and tapers are derived analytically. The transforming properties of cylindrical T-junctions are analyzed experimentally. Antenna designs in waveguides and free-space are different. In waveguides, mode excitation characteristics are important as well as the impedance match. The criteria for antenna design in waveguides are presented here. Antennas analyzed in this work are monopole antennas, dipole antennas, and antenna arrays. The developed model can predict both channel response and antenna characteristics for a given geometry and dimensions of the duct system and the antennas. The model is computationally efficient and can potentially be applied to duct systems of multiple story buildings. The accuracy of the model has been validated with extensive experimental measurements on real HVAC ducts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, J.
2015-03-01
Supermarkets are energy-intensive buildings that consume the greatest amount of electricity per square foot of building of any building type in the United States and represent 5% of total U.S. commercial building primary energy use (EIA 2005). Refrigeration and heating, ventilation, and air-conditioning (HVAC) systems are responsible for a large proportion of supermarkets’ total energy use. These two systems sometimes work together and sometimes compete, but the performance of one system always affects the performance of the other. To better understand these challenges and opportunities, the Commercial Buildings team at the National Renewable Energy Laboratory investigated several of the mostmore » promising strategies for providing energy-efficient HVAC for supermarkets and quantified the resulting energy use and costs using detailed simulations. This research effort was conducted on behalf of the U.S. Department of Energy (DOE) Commercial Building Partnerships (CBP) (Baechler et al. 2012; Parrish et al. 2013; Antonopoulos et al. 2014; Hirsch et al. 2014). The goal of CBP was to reduce energy use in the commercial building sector by creating, testing, and validating design concepts on the pathway to net zero energy commercial buildings. Several CBP partners owned or operated buildings containing supermarkets and were interested in optimizing the energy efficiency of supermarket HVAC systems in hot-humid climates. These partners included Walmart, Target, Whole Foods Market, SUPERVALU, and the Defense Commissary Agency.« less
76 FR 34192 - Commercial and Industrial Pumps
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-13
... 1999. The ADL analysis, ``Energy Consumption Characteristics of Commercial Building HVAC Systems... report for the United Nations (``Motor System Efficiency Supply Curves UNIDO,'' Dec. 2010),\\3\\ also used..., A. and A. Hasanbeigi, ``Motor Systems Efficiency Supply Curves,'' United Nations Industrial...
NASA Astrophysics Data System (ADS)
Pokorný, Jan; Kopečková, Barbora; Fišer, Jan; JÍcha, Miroslav
2018-06-01
The aim of the paper is to assemble a simulator for evaluation of thermal comfort in car cabins in order to give a feedback to the HVAC (heating, ventilation and air conditioning) system. The HW (hardware) part of simulator is formed by thermal manikin Newton and RH (relative humidity), velocity and temperature probes. The SW (software) part consists of the Thermal Comfort Analyser (using ISO 14505-2) and Virtual Testing Stand of Car Cabin defining the heat loads of car cabin. Simulator can provide recommendation for the climate control how to improve thermal comfort in cabin by distribution and directing of air flow, and also by amount of ventilation power to keep optimal temperature inside a cabin. The methods of evaluation of thermal comfort were verified by tests with 10 test subjects for summer (summer clothing, ambient air temperature 30 °C, HVAC setup: +24 °C auto) and winter conditions (winter clothing, ambient air temperature -5 °C, HVAC setup: +18 °C auto). The tests confirmed the validity of the thermal comfort evaluation using the thermal manikin and ISO 14505-2.
Fuzzy Linguistic Knowledge Based Behavior Extraction for Building Energy Management Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumidu Wijayasekara; Milos Manic
2013-08-01
Significant portion of world energy production is consumed by building Heating, Ventilation and Air Conditioning (HVAC) units. Thus along with occupant comfort, energy efficiency is also an important factor in HVAC control. Modern buildings use advanced Multiple Input Multiple Output (MIMO) control schemes to realize these goals. However, since the performance of HVAC units is dependent on many criteria including uncertainties in weather, number of occupants, and thermal state, the performance of current state of the art systems are sub-optimal. Furthermore, because of the large number of sensors in buildings, and the high frequency of data collection, large amount ofmore » information is available. Therefore, important behavior of buildings that compromise energy efficiency or occupant comfort is difficult to identify. This paper presents an easy to use and understandable framework for identifying such behavior. The presented framework uses human understandable knowledge-base to extract important behavior of buildings and present it to users via a graphical user interface. The presented framework was tested on a building in the Pacific Northwest and was shown to be able to identify important behavior that relates to energy efficiency and occupant comfort.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, Yasin; Mathur, Jyotirmay; Bhandari, Mahabir S
2016-01-01
The paper describes a case study of an information technology office building with a radiant cooling system and a conventional variable air volume (VAV) system installed side by side so that performancecan be compared. First, a 3D model of the building involving architecture, occupancy, and HVAC operation was developed in EnergyPlus, a simulation tool. Second, a different calibration methodology was applied to develop the base case for assessing the energy saving potential. This paper details the calibration of the whole building energy model to the component level, including lighting, equipment, and HVAC components such as chillers, pumps, cooling towers, fans,more » etc. Also a new methodology for the systematic selection of influence parameter has been developed for the calibration of a simulated model which requires large time for the execution. The error at the whole building level [measured in mean bias error (MBE)] is 0.2%, and the coefficient of variation of root mean square error (CvRMSE) is 3.2%. The total errors in HVAC at the hourly are MBE = 8.7% and CvRMSE = 23.9%, which meet the criteria of ASHRAE 14 (2002) for hourly calibration. Different suggestions have been pointed out to generalize the energy saving of radiant cooling system through the existing building system. So a base case model was developed by using the calibrated model for quantifying the energy saving potential of the radiant cooling system. It was found that a base case radiant cooling system integrated with DOAS can save 28% energy compared with the conventional VAV system.« less
Kim, Dongsu; Cox, Sam J.; Cho, Heejin; ...
2017-05-22
Variable refrigerant flow (VRF) systems are known for their high energy performance and thus can improve energy efficiency both in residential and commercial buildings. The energy savings potential of this system has been demonstrated in several studies by comparing the system performance with conventional HVAC systems such as rooftop variable air volume systems (RTU-VAV) and central chiller and boiler systems. This paper evaluates the performance of VRF and RTU-VAV systems in a simulation environment using widely-accepted whole building energy modeling software, EnergyPlus. A medium office prototype building model, developed by the U.S. Department of Energy (DOE), is used to assessmore » the performance of VRF and RTU-VAV systems. Each system is placed in 16 different locations, representing all U.S. climate zones, to evaluate the performance variations. Both models are compliant with the minimum energy code requirements prescribed in ASHRAE standard 90.1-2010 — energy standard for buildings except low-rise residential buildings. Finally, a comparison study between the simulation results of VRF and RTU-VAV models is made to demonstrate energy savings potential of VRF systems. The simulation results show that the VRF systems would save around 15–42% and 18–33% for HVAC site and source energy uses compared to the RTU-VAV systems. In addition, calculated results for annual HVAC cost savings point out that hot and mild climates show higher percentage cost savings for the VRF systems than cold climates mainly due to the differences in electricity and gas use for heating sources.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Dongsu; Cox, Sam J.; Cho, Heejin
Variable refrigerant flow (VRF) systems are known for their high energy performance and thus can improve energy efficiency both in residential and commercial buildings. The energy savings potential of this system has been demonstrated in several studies by comparing the system performance with conventional HVAC systems such as rooftop variable air volume systems (RTU-VAV) and central chiller and boiler systems. This paper evaluates the performance of VRF and RTU-VAV systems in a simulation environment using widely-accepted whole building energy modeling software, EnergyPlus. A medium office prototype building model, developed by the U.S. Department of Energy (DOE), is used to assessmore » the performance of VRF and RTU-VAV systems. Each system is placed in 16 different locations, representing all U.S. climate zones, to evaluate the performance variations. Both models are compliant with the minimum energy code requirements prescribed in ASHRAE standard 90.1-2010 — energy standard for buildings except low-rise residential buildings. Finally, a comparison study between the simulation results of VRF and RTU-VAV models is made to demonstrate energy savings potential of VRF systems. The simulation results show that the VRF systems would save around 15–42% and 18–33% for HVAC site and source energy uses compared to the RTU-VAV systems. In addition, calculated results for annual HVAC cost savings point out that hot and mild climates show higher percentage cost savings for the VRF systems than cold climates mainly due to the differences in electricity and gas use for heating sources.« less
NASA Astrophysics Data System (ADS)
Avci, Mesut
A practical cost and energy efficient model predictive control (MPC) strategy is proposed for HVAC load control under dynamic real-time electricity pricing. The MPC strategy is built based on a proposed model that jointly minimizes the total energy consumption and hence, cost of electricity for the user, and the deviation of the inside temperature from the consumer's preference. An algorithm that assigns temperature set-points (reference temperatures) to price ranges based on the consumer's discomfort tolerance index is developed. A practical parameter prediction model is also designed for mapping between the HVAC load and the inside temperature. The prediction model and the produced temperature set-points are integrated as inputs into the MPC controller, which is then used to generate signal actions for the AC unit. To investigate and demonstrate the effectiveness of the proposed approach, a simulation based experimental analysis is presented using real-life pricing data. An actual prototype for the proposed HVAC load control strategy is then built and a series of prototype experiments are conducted similar to the simulation studies. The experiments reveal that the MPC strategy can lead to significant reductions in overall energy consumption and cost savings for the consumer. Results suggest that by providing an efficient response strategy for the consumers, the proposed MPC strategy can enable the utility providers to adopt efficient demand management policies using real-time pricing. Finally, a cost-benefit analysis is performed to display the economic feasibility of implementing such a controller as part of a building energy management system, and the payback period is identified considering cost of prototype build and cost savings to help the adoption of this controller in the building HVAC control industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deru, Michael
According to the U.S. Energy Information Administration, HVAC accounts for approximately 38 percent of U.S. commercial buildings' primary energy consumption and a slightly higher percentage of their greenhouse-gas emissions. We have seen incredible gains made with lighting, going from incandescent and T12 fluorescent bulbs to high-efficiency LEDS, but there are even greater advances to be made with HVAC. Gains of 20 percent to 30 percent easily can be made by replacing older degraded equipment with new high-efficiency equipment. Even more savings are possible with an integrated engineering approach yielding optimized system designs combined with highly efficient controls.
Development of air conditioning technologies to reduce CO2 emissions in the commercial sector
Yoshida, Yukiko
2006-01-01
Background Architectural methods that take into account global environmental conservation generally concentrate on mitigating the heat load of buildings. Here, we evaluate the reduction of carbon dioxide (CO2) emissions that can be achieved by improving heating, ventilating, and air conditioning (HVAC) technologies. Results The Climate Change Research Hall (CCRH) of the National Institute for Environmental Studies (NIES) is used as a case study. CCRH was built in line with the "Green Government Buildings" program of the Government Buildings Department at the Ministry of Land, Infrastructure and Transport in Japan. We have assessed the technology used in this building, and found that there is a possibility to reduce energy consumption in the HVAC system by 30%. Conclusion Saving energy reduces CO2 emissions in the commercial sector, although emission factors depend on the country or region. Consequently, energy savings potential may serve as a criterion in selecting HVAC technologies with respect to emission reduction targets. PMID:17062161
Avoiding low frequency noise in packaged HVAC equipment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebbing, C.E.; Blazier, W.E.Jr.
1993-06-01
The purpose of this article is to help those involved in the design and commissioning of packaged HVAC systems to understand the root causes of low frequency noise problems and how to avoid many of them at the design stage. In the 1980's, two things happened to dramatically change the types of noise problems encountered in typical new construction. The first was the introduction of new energy regulations that favored variable air volume (VAV) distribution systems over constant volume air distribution systems. A by-product of VAV design is that mid- and high frequency sound pressure levels produced by current airmore » terminal devices and diffusers in many applications are significantly lower than in the past. The second factor was a trend away from the use of built-up central station fan equipment in favor of packaged, floor-by-floor air handlers or rooftop units. As a result, today's HVAC system noise problems are not confined to just the roar and hiss of the past, but now include intense low frequency rumble and time modulation. Indeed, most current noise problems in modern buildings occur in the frequency range well below 250 Hz. A large fraction of these are a result of the dominant sound pressure levels in the 12 to 40 Hz region. These factors, combined with a substantial increase in the level of low frequency sound from the rest of the system, can produce a non-neutral, time modulated, rumbly sounding background noise that many people find objectionable.« less
Tools for Evaluating Fault Detection and Diagnostic Methods for HVAC Secondary Systems
NASA Astrophysics Data System (ADS)
Pourarian, Shokouh
Although modern buildings are using increasingly sophisticated energy management and control systems that have tremendous control and monitoring capabilities, building systems routinely fail to perform as designed. More advanced building control, operation, and automated fault detection and diagnosis (AFDD) technologies are needed to achieve the goal of net-zero energy commercial buildings. Much effort has been devoted to develop such technologies for primary heating ventilating and air conditioning (HVAC) systems, and some secondary systems. However, secondary systems, such as fan coil units and dual duct systems, although widely used in commercial, industrial, and multifamily residential buildings, have received very little attention. This research study aims at developing tools that could provide simulation capabilities to develop and evaluate advanced control, operation, and AFDD technologies for these less studied secondary systems. In this study, HVACSIM+ is selected as the simulation environment. Besides developing dynamic models for the above-mentioned secondary systems, two other issues related to the HVACSIM+ environment are also investigated. One issue is the nonlinear equation solver used in HVACSIM+ (Powell's Hybrid method in subroutine SNSQ). It has been found from several previous research projects (ASRHAE RP 825 and 1312) that SNSQ is especially unstable at the beginning of a simulation and sometimes unable to converge to a solution. Another issue is related to the zone model in the HVACSIM+ library of components. Dynamic simulation of secondary HVAC systems unavoidably requires an interacting zone model which is systematically and dynamically interacting with building surrounding. Therefore, the accuracy and reliability of the building zone model affects operational data generated by the developed dynamic tool to predict HVAC secondary systems function. The available model does not simulate the impact of direct solar radiation that enters a zone through glazing and the study of zone model is conducted in this direction to modify the existing zone model. In this research project, the following tasks are completed and summarized in this report: 1. Develop dynamic simulation models in the HVACSIM+ environment for common fan coil unit and dual duct system configurations. The developed simulation models are able to produce both fault-free and faulty operational data under a wide variety of faults and severity levels for advanced control, operation, and AFDD technology development and evaluation purposes; 2. Develop a model structure, which includes the grouping of blocks and superblocks, treatment of state variables, initial and boundary conditions, and selection of equation solver, that can simulate a dual duct system efficiently with satisfactory stability; 3. Design and conduct a comprehensive and systematic validation procedure using collected experimental data to validate the developed simulation models under both fault-free and faulty operational conditions; 4. Conduct a numerical study to compare two solution techniques: Powell's Hybrid (PH) and Levenberg-Marquardt (LM) in terms of their robustness and accuracy. 5. Modification of the thermal state of the existing building zone model in HVACSIM+ library of component. This component is revised to consider the transmitted heat through glazing as a heat source for transient building zone load prediction In this report, literature, including existing HVAC dynamic modeling environment and models, HVAC model validation methodologies, and fault modeling and validation methodologies, are reviewed. The overall methodologies used for fault free and fault model development and validation are introduced. Detailed model development and validation results for the two secondary systems, i.e., fan coil unit and dual duct system are summarized. Experimental data mostly from the Iowa Energy Center Energy Resource Station are used to validate the models developed in this project. Satisfactory model performance in both fault free and fault simulation studies is observed for all studied systems.
GREENPLEX -- A SUSTAINABLE URBAN FORM FOR THE 21ST CENTURY
Outputs include images of architecture, space usage, social design, elevators, skybridges, ETFE envelope, structures, construction process, HVAC system, and water system. Outputs include performance metrics for the University Community Greenplex and traditional univer...
Code of Federal Regulations, 2012 CFR
2012-01-01
... and any equipment or interconnected system or subsystem of equipment that is used in the creation..., display, switching, interchange, transmission, or reception of data or information. For example, HVAC... following body systems: Neurological; musculoskeletal; special sense organs; respiratory, including speech...
Code of Federal Regulations, 2013 CFR
2013-01-01
... and any equipment or interconnected system or subsystem of equipment that is used in the creation..., display, switching, interchange, transmission, or reception of data or information. For example, HVAC... following body systems: Neurological; musculoskeletal; special sense organs; respiratory, including speech...
Code of Federal Regulations, 2014 CFR
2014-01-01
... and any equipment or interconnected system or subsystem of equipment that is used in the creation..., display, switching, interchange, transmission, or reception of data or information. For example, HVAC... following body systems: Neurological; musculoskeletal; special sense organs; respiratory, including speech...
Advanced control for ground source heat pump systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, Patrick; Gehl, Anthony C.; Liu, Xiaobing
Ground source heat pumps (GSHP), also known as geothermal heat pumps (GHP), are proven advanced HVAC systems that utilize clean and renewable geothermal energy, as well as the massive thermal storage capacity of the ground, to provide space conditioning and water heating for both residential and commercial buildings. GSHPs have higher energy efficiencies than conventional HVAC systems. It is estimated, if GSHPs achieve a 10% market share in the US, in each year, 0.6 Quad Btu primary energy consumption can be saved and 36 million tons carbon emissions can be avoided (Liu et al. 2017). However, the current market sharemore » of GSHPs is less than 1%. The foremost barrier preventing wider adoption of GSHPs is their high installation costs. To enable wider adoption of GSHPs, the costeffectiveness of GSHP applications must be improved.« less
New FEDS Software Helps You Design for Maximum Energy Efficiency, Minimum Cost
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbride, Theresa L.
2003-01-30
This article was written for the Partner Update a newsletter put out by Potomac Communications for DOE's Rebuild America program. The article describes the FEDS (Federal Energy Decision System) software, the official analytical tool of the Rebuild America program. This software, developed by PNNL with support from DOE, FEMP and Rebuild, helps government entities and contractors make informed decisions about which energy efficiency improvements are the most cost effective for their facilities. FEDS churns thru literally thousands of calculations accounting for energy uses, costs, and interactions from different types of HVAC systems, lighting types, insulation levels, building types, occupancy levelsmore » and times. FEDS crunchs the numbers so decision makers can get fast reliable answers on which alternatives are the best for their particular building. In this article, we're touting the improvements in the latest upgrade of FEDS, which is available free to Rebuild America partners. We tell partners what FEDS does, how to order it, and even where to get tech support and training.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neymark, J.; Kennedy, M.; Judkoff, R.
This report documents a set of diagnostic analytical verification cases for testing the ability of whole building simulation software to model the air distribution side of typical heating, ventilating and air conditioning (HVAC) equipment. These cases complement the unitary equipment cases included in American National Standards Institute (ANSI)/American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Standard 140, Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs, which test the ability to model the heat-transfer fluid side of HVAC equipment.
ANSI Standard: Complying with Background Noise Limits.
ERIC Educational Resources Information Center
Schaffer, Mark E.
2003-01-01
Discusses the new classroom acoustics standard, ANSI Standard S12.60, which specifies maximum sound level limits that are significantly lower than currently typical for classrooms. Addresses guidelines for unducted HVAC systems, ducted single-zone systems, and central VAV or multizone systems. (EV)
47 CFR 27.1164 - The cost-sharing formula.
Code of Federal Regulations, 2014 CFR
2014-10-01
... systems; Heating Ventilation and Air Conditioning (HVAC) (if required); alternate transport equipment; and.../path survey); installation; systems testing; FCC filing costs; site acquisition and civil works; zoning... defined as the actual costs associated with providing a replacement system, such as equipment and...
ERIC Educational Resources Information Center
Greim, Clifton W.; D'Angelo, David
1999-01-01
Explains how commissioning can help to ensure that all components in a new heating, ventilation, and air conditioning system will work together as designed. Bowdoin College's experience with commissioning is highlighted. (GR)
Practical Guide to HVAC for Schools.
ERIC Educational Resources Information Center
ASHRAE Journal, 1998
1998-01-01
Features six articles on heating, ventilation, and air-conditioning systems for schools. Examines how to avoid air temperature complaints when choosing a system; special system features; engineers, indoor air quality, and schools; mechanical systems noise in classrooms; operation and management issues related to design; and details on bids and…
Method, system and apparatus for monitoring and adjusting the quality of indoor air
Hartenstein, Steven D.; Tremblay, Paul L.; Fryer, Michael O.; Hohorst, Frederick A.
2004-03-23
A system, method and apparatus is provided for monitoring and adjusting the quality of indoor air. A sensor array senses an air sample from the indoor air and analyzes the air sample to obtain signatures representative of contaminants in the air sample. When the level or type of contaminant poses a threat or hazard to the occupants, the present invention takes corrective actions which may include introducing additional fresh air. The corrective actions taken are intended to promote overall health of personnel, prevent personnel from being overexposed to hazardous contaminants and minimize the cost of operating the HVAC system. The identification of the contaminants is performed by comparing the signatures provided by the sensor array with a database of known signatures. Upon identification, the system takes corrective actions based on the level of contaminant present. The present invention is capable of learning the identity of previously unknown contaminants, which increases its ability to identify contaminants in the future. Indoor air quality is assured by monitoring the contaminants not only in the indoor air, but also in the outdoor air and the air which is to be recirculated. The present invention is easily adaptable to new and existing HVAC systems. In sum, the present invention is able to monitor and adjust the quality of indoor air in real time by sensing the level and type of contaminants present in indoor air, outdoor and recirculated air, providing an intelligent decision about the quality of the air, and minimizing the cost of operating an HVAC system.
Meyer, K M; Calfee, M W; Wood, J P; Mickelsen, L; Attwood, B; Clayton, M; Touati, A; Delafield, R
2014-03-01
To evaluate hydrogen peroxide vapour (H2 O2 ) for its ability to inactivate Bacillus spores within a laboratory-scale heating, ventilation and air-conditioning (HVAC) duct system. Experiments were conducted in a closed-loop duct system, constructed of either internally lined or unlined galvanized metal. Bacterial spores were aerosol-deposited onto 18-mm-diameter test material coupons and strategically placed at several locations within the duct environment. Various concentrations of H2 O2 and exposure times were evaluated to determine the sporicidal efficacy and minimum exposure needed for decontamination. For the unlined duct, high variability was observed in the recovery of spores between sample locations, likely due to complex, unpredictable flow patterns within the ducts. In comparison, the lined duct exhibited a significant desorption of the H2 O2 following the fumigant dwell period and thus resulted in complete decontamination at all sampling locations. These findings suggest that decontamination of Bacillus spore-contaminated unlined HVAC ducts by hydrogen peroxide fumigation may require more stringent conditions (higher concentrations, longer dwell duration) than internally insulated ductwork. These data may help emergency responders when developing remediation plans during building decontamination. © 2013 The Society for Applied Microbiology This article has been contributed to by US Government employees and their work is in the public domain in the USA.
29 CFR 2205.103 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... and any equipment or interconnected system or subsystem of equipment that is used in the creation... data or information. For example, HVAC (heating, ventilation, and air conditioning) equipment such as... body systems: Neurological; musculoskeletal; special sense organs; respiratory, including speech organs...
Flexible HVAC System for Lab or Classroom.
ERIC Educational Resources Information Center
Friedan, Jonathan
2001-01-01
Discusses an effort to design a heating, ventilation, and air conditioning system flexible enough to accommodate an easy conversion of classrooms to laboratories and dry labs to wet labs. The design's energy efficiency and operations and maintenance are examined. (GR)
29 CFR 2205.103 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... and any equipment or interconnected system or subsystem of equipment that is used in the creation... data or information. For example, HVAC (heating, ventilation, and air conditioning) equipment such as... body systems: Neurological; musculoskeletal; special sense organs; respiratory, including speech organs...
49 CFR Appendix H to Part 229 - Static Noise Test Protocols-In-Cab Static
Code of Federal Regulations, 2014 CFR
2014-10-01
... normal operating temperature. (5) The heating, ventilation and air conditioning (HVAC) system or a dedicated heating or air conditioner system must be operating on high, and the vents must be open and...
49 CFR Appendix H to Part 229 - Static Noise Test Protocols-In-Cab Static
Code of Federal Regulations, 2013 CFR
2013-10-01
... normal operating temperature. (5) The heating, ventilation and air conditioning (HVAC) system or a dedicated heating or air conditioner system must be operating on high, and the vents must be open and...
49 CFR Appendix H to Part 229 - Static Noise Test Protocols-In-Cab Static
Code of Federal Regulations, 2012 CFR
2012-10-01
... normal operating temperature. (5) The heating, ventilation and air conditioning (HVAC) system or a dedicated heating or air conditioner system must be operating on high, and the vents must be open and...
29 CFR 2205.103 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... and any equipment or interconnected system or subsystem of equipment that is used in the creation... data or information. For example, HVAC (heating, ventilation, and air conditioning) equipment such as... body systems: Neurological; musculoskeletal; special sense organs; respiratory, including speech organs...
75 FR 14612 - Buy American Exceptions Under the American Recovery and Reinvestment Act of 2009
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-26
... refrigerant flow (VRF) split system for Heating, Ventilation, and Air Conditioning (HVAC) renovations at the... manufactured goods (ductless VRF split system) are not produced in the U.S. in sufficient and reasonably...
49 CFR Appendix H to Part 229 - Static Noise Test Protocols-In-Cab Static
Code of Federal Regulations, 2011 CFR
2011-10-01
... normal operating temperature. (5) The heating, ventilation and air conditioning (HVAC) system or a dedicated heating or air conditioner system must be operating on high, and the vents must be open and...
MOISTURE MOVEMENT (WICKING) WITHIN GYPSUM WALLBOARD
Gypsum wallboard with repeated or prolonged exposure to water or excess moisture can lose its structural integrity and provide a growth medium for biological contaminants. Poorly sealed buildings, leaking or failed plumbing systems, or improperly constructed HVAC systems can all ...
Code of Federal Regulations, 2011 CFR
2011-01-01
... innovative designs, materials, and equipment such as daylighting, passive solar heating, and heat recovery... select the fuel source for the HVAC systems, service hot water, and process loads from available...
Wang, Fang; Meng, Dan; Li, Xiuwei; Tan, Junjie
2016-08-01
Indoor and outdoor air PM2.5 concentrations in four residential dwellings characterized with different building envelope air tightness levels and HVAC-filter configurations in Yangtze River Delta (YRD) were measured during winter periods in 2014-2015. Steady-state models for indoor PM2.5 were developed for each of the tested dwellings, based on mass balance equation. The indoor air PM2.5 concentrations in the four tested apartments were significantly different. The lowest geometric mean values of indoor air PM2.5 concentrations, I/O ratios, and infiltration factor were observed in D3 with high air tightness and without HVAC-filter system (26.0 μg/m(3), 0.197, and 0.167, respectively), while the highest geometric mean values of indoor air PM2.5 concentrations, I/O ratios, and infiltration factor were observed in D1 (64.9 μg/m(3), 0.876, and 0.867, respectively). For apartment D1 with normal air tightness and without any HVAC-filter system, indoor air PM2.5 concentrations were significantly correlated with outdoor PM2.5 concentrations, especially in severe ambient pollution days, when closed windows can only play a very weak role on the decline of indoor PM2.5 concentrations. With the enhancement of building air tightness, the indoor air PM2.5 concentrations can be decreased effectively and don't vary as much in response to fluctuations in ambient concentrations. For buildings with normal air tightness, the use of HVAC-filter combinations will decrease the indoor PM2.5 significantly. However, for buildings with enhanced air tightness, the only use of fresh makeup air supply system with filter may increase the indoor PM2.5 concentrations. The improvement of filter efficiency for both fresh makeup air and indoor recirculated air are very important. However, purifiers for indoor recirculated air were highly recommended for all buildings. Copyright © 2016 Elsevier Ltd. All rights reserved.
2014-10-23
testing required once they are operational. • AGOR acoustic insulation, Tuff-Mass by Soundown, appears to be an unapproved MLV. A ship check of...start Armstrong 13 Sept 2013 Ride 3 September 2014 No2 Generator 4 Sally Ride 23 October 2014 No2 Generator • HVAC – The...pace is increasing but still far behind schedule. Armstrong Focsle Deck HVAC Room 4 November 2013 Ride Focsle Deck HVAC Room 23 October 2013
Expert Meeting Report: HVAC Fault Detection, Diagnosis, and Repair/Replacement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Springer, David
The concept for the expert meeting described in this report was to bring together most of the stakeholders in the area of FDD, including academic researchers, manufacturers, educators, program managers and implementers, representatives of standards organizations, utilities, HVAC contractors, and home performance contractors to identify the major gaps and to develop ideas about what can be done to capitalize on the residential HVAC efficiency resource.
Expert Meeting Report: HVAC Fault Detection, DIagnosis, and Repair/Replacement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Springer, David
The concept for the expert meeting described in this report was to bring together most of the stakeholders in the area of FDD, including academic researchers, manufacturers, educators, program managers and implementers, representatives of standards organizations, utilities, HVAC contractors, and home performance contractors to identify the major gaps and to develop ideas about what can be done to capitalize on the residential HVAC efficiency resource.
The main purposes of a Heating, Ventilation, and Air-Conditioning system are to help maintain good indoor air quality through adequate ventilation with filtration and provide thermal comfort. HVAC systems are among the largest energy consumers in schools.
75 FR 7556 - Energy Efficiency Standards for Manufactured Housing
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-22
... financial considerations and life cycle costs. (4) Statistics associated with HVAC system and equipment type... standards. Provide a system for enforcement in which ``[a]ny manufacturer of manufactured housing that... available for products, systems, equipment, and materials used in the construction of manufactured homes...
Fault Detection and Diagnosis System for the Air-conditioning
NASA Astrophysics Data System (ADS)
Nakahara, Nobuo
The fault detection and diagnosis system, the FDD system, for the HVAC was initiated around the middle of 1970s in Japan but it still remains at the elementary stage. The HVAC is really one of the most complicated and large scaled system for the FDD system. Besides, the maintenance engineering was never focussed as the target of the academic study since after the war, but the FDD system for some kinds of the components and subsystems has been developed for the sake of the practical industrial needs. Recently, international cooperative study in the IEA Annex 25 on the energy conservation for the building and community targetted on the BOFD, the building optimization, fault detection and diagnosis. Not a few academic peaple from various engineering field got interested and, moreover, some national projects seem to start in the European countries. The author has reviewed the state of the art of the FDD and BO as well based on the references and the experience at the IEA study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
2011-09-01
This report covers an assessment of 182 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. commercial buildings to identify and provide analysis on 17 priority technology options in various stages of development. The analyses include an estimation of technical energy-savings potential, description of technical maturity, description of non-energy benefits, description of current barriers for market adoption, and description of the technology’s applicability to different building or HVAC equipment types. From these technology descriptions, are suggestions for potential research, development and demonstration (RD&D) initiatives that would support further development of the priority technology options.
An innovative HVAC control system: Implementation and testing in a vehicular cabin.
Fojtlín, Miloš; Fišer, Jan; Pokorný, Jan; Povalač, Aleš; Urbanec, Tomáš; Jícha, Miroslav
2017-12-01
Personal vehicles undergo rapid development in every imaginable way. However, a concept of managing a cabin thermal environment remains unchanged for decades. The only major improvement has been an automatic HVAC controller with one user's input - temperature. In this case, the temperature is often deceiving because of thermally asymmetric and dynamic nature of the cabins. As a result, the effects of convection and radiation on passengers are not captured in detail what also reduces the potential to meet thermal comfort expectations. Advanced methodologies are available to assess the cabin environment in a fine resolution (e.g. ISO 14505:2006), but these are used mostly in laboratory conditions. The novel idea of this work is to integrate equivalent temperature sensors into a vehicular cabin in proximity of an occupant. Spatial distribution of the sensors is expected to provide detailed information about the local environment that can be used for personalised, comfort driven HVAC control. The focus of the work is to compare results given by the implemented system and a Newton type thermal manikin. Three different ambient settings were examined in a climate chamber. Finally, the results were compared and a good match of equivalent temperatures was found. Copyright © 2017 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-07-01
... technology. Any item, piece of equipment, or system, whether acquired commercially, modified, or customized... interconnected system or subsystem of equipment, that is used in the creation, conversion, or duplication of data..., display, switching, interchange, transmission, or reception of data or information. For example, HVAC...
Code of Federal Regulations, 2014 CFR
2014-07-01
... technology. Any item, piece of equipment, or system, whether acquired commercially, modified, or customized... interconnected system or subsystem of equipment, that is used in the creation, conversion, or duplication of data..., display, switching, interchange, transmission, or reception of data or information. For example, HVAC...
Code of Federal Regulations, 2011 CFR
2011-07-01
... technology. Any item, piece of equipment, or system, whether acquired commercially, modified, or customized... interconnected system or subsystem of equipment, that is used in the creation, conversion, or duplication of data..., display, switching, interchange, transmission, or reception of data or information. For example, HVAC...
36 CFR § 1194.4 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... description. Assistive technology. Any item, piece of equipment, or system, whether acquired commercially... equipment or interconnected system or subsystem of equipment, that is used in the creation, conversion, or... information. For example, HVAC (heating, ventilation, and air conditioning) equipment such as thermostats or...
UVC Sheds New Light on School Mold Problems.
ERIC Educational Resources Information Center
Freeman, James
2002-01-01
Describes how the LaPorte Independent School District in Texas turned to ultraviolent light devices installed within the HVAC system to combat mold and fungus after conventional approaches failed. Describes the additional benefits of energy savings from the system. (EV)
Code of Federal Regulations, 2012 CFR
2012-07-01
... technology. Any item, piece of equipment, or system, whether acquired commercially, modified, or customized... interconnected system or subsystem of equipment, that is used in the creation, conversion, or duplication of data..., display, switching, interchange, transmission, or reception of data or information. For example, HVAC...
12 CFR 1072.103 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... means information technology and any equipment or interconnected system or subsystem of equipment that... data or information. For example, HVAC (heating, ventilation, and air conditioning) equipment such as... of major bodily functions of the immune system, special sense organs and skin, normal cell growth...
12 CFR 1072.103 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... means information technology and any equipment or interconnected system or subsystem of equipment that... data or information. For example, HVAC (heating, ventilation, and air conditioning) equipment such as... of major bodily functions of the immune system, special sense organs and skin, normal cell growth...
Information on the characteristics of the heating, ventilation, and air conditioning (HVAC) system(s) in the entire BASE building including types of ventilation, equipment configurations, and operation and maintenance issues
Needed Now: The 85% Quick Fix in Bio-Defense
2004-09-01
That was about ten, twelve, fifteen years ago. Recently, Russian scientists have proclaimed success in developing a Bacillus anthracis strain...commanders to direct personnel to avoid exposure, for example by moving in-doors and turning off heating, ventilation, and air conditioning ( HVAC ...likely be clear of contamination while the air inside buildings may be contaminated because of HVAC operations.20 Therefore, if the HVAC was shut off
2014-11-06
Foc’sle Deck. Associated wiring, hvac and plumbing also going in. Minimal joiner work on other decks and pilot house. 6. Call-outs...TEST PROCEDURES ( MCCS Design Verification Test Procedure)(R/ASR) 173/0 AGOR27 A002 STD Report - DESIGN REVIEW AGENDAS AND MINUTES ( DR #17 DCI... HVAC Book 1 of 3)(DARC REV) 340/1 AGOR27 A055 TM Report - COMMERCIAL TECHNICAL MANUALS AND SUPPLEMENTAL DATA ( 512 Wilhelmsen HVAC Book 2 of 3
Operating and Maintaining Energy Smart Schools Action Plan Template - All Action Plans
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
2009-07-01
EnergySmart Schools action plan templates for benchmarking, lighting, HVAC, water heating, building envelope, transformer, plug loads, kitchen equipment, swimming pool, building automation system, other.
heating, ventilation and air conditioning (HVAC) systems, structural insulated panels to improve products and systems. NREL building engineers estimate the combination of advanced products and design Building America program manager George James. "All of the technologies and systems used in this house
Transactive Control of Commercial Building HVAC Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corbin, Charles D.; Makhmalbaf, Atefe; Huang, Sen
This document details the development and testing of market-based transactive controls for building heating, ventilating and air conditioning (HVAC) systems. These controls are intended to serve the purposes of reducing electricity use through conservation, reducing peak building electric demand, and providing demand flexibility to assist with power system operations. This report is the summary of the first year of work conducted under Phase 1 of the Clean Energy and Transactive Campus Project. The methods and techniques described here were first investigated in simulation, and then subsequently deployed to a physical testbed on the Pacific Northwest National Laboratory (PNNL) campus formore » validation. In this report, we describe the models and control algorithms we have developed, testing of the control algorithms in simulation, and deployment to a physical testbed. Results from physical experiments support previous simulation findings, and provide insights for further improvement.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yan; Treado, Stephen J.; Messner, John I.
Building control systems for Heating, Ventilation, and Air Conditioning (HVAC) play a key role in realizing the functionality and operation of building systems and components. Building Control Knowledge (BCK) is the logic and algorithms embedded throughout building control system. There are different methods to represent the BCK. These methods differ in the selection of BCK representing elements and the format of those elements. There is a lack of standard data schema, for storing, retrieving, and reusing structured BCK. In this study, a modular data schema is created for BCK representation. The data schema contains eleven representing elements, i.e., control modulemore » name, operation mode, system schematic, control flow diagram, data point, alarm, parameter, control sequence, function, and programming code. Each element is defined with specific attributes. This data schema is evaluated through a case study demonstration. The demonstration shows a new way to represent the BCK with standard formats.« less
Code of Federal Regulations, 2010 CFR
2010-01-01
... a conventional simulation tool, of the Proposed Design. A life cycle cost analysis shall be used to select the fuel source for the HVAC systems, service hot water, and process loads from available...
NASA Astrophysics Data System (ADS)
Su, Chuqi; Dong, Wenbin; Deng, Yadong; Wang, Yiping; Liu, Xun
2017-11-01
Heating, ventilating and air conditioning (HVAC) is the most significant auxiliary load in vehicles and largely increases extra emissions. Therefore, thermoelectric cooling automotive seat, a relatively new technology, is used in an attempt to reduce HVAC consumption and improve thermal comfort. In this study, three design schemes of the thermoelectric cooler (TEC) are proposed. Then the numerical simulation is used to analyze their heat transfer performance, and evaluate the improvement of the seat cooling in terms of the occupant back thermal comfort. Moreover, an experiment is conducted to validate the accuracy of the simulation results. The experimental results show that: (1) an average reduction in air temperature of 4°C in 60 s is obtained; (2) the temperature of the occupant's back drops from 33.5°C to 25.7°C in cooperation with the HVAC system; (3) back thermal comfort is greatly improved. As expected, the thermoelectric cooling automotive seat is able to provide an improvement in the occupant's thermal comfort at a reduced energy consumption rate, which makes it promising for vehicular application.
NASA Astrophysics Data System (ADS)
Su, Chuqi; Dong, Wenbin; Deng, Yadong; Wang, Yiping; Liu, Xun
2018-06-01
Heating, ventilating and air conditioning (HVAC) is the most significant auxiliary load in vehicles and largely increases extra emissions. Therefore, thermoelectric cooling automotive seat, a relatively new technology, is used in an attempt to reduce HVAC consumption and improve thermal comfort. In this study, three design schemes of the thermoelectric cooler (TEC) are proposed. Then the numerical simulation is used to analyze their heat transfer performance, and evaluate the improvement of the seat cooling in terms of the occupant back thermal comfort. Moreover, an experiment is conducted to validate the accuracy of the simulation results. The experimental results show that: (1) an average reduction in air temperature of 4°C in 60 s is obtained; (2) the temperature of the occupant's back drops from 33.5°C to 25.7°C in cooperation with the HVAC system; (3) back thermal comfort is greatly improved. As expected, the thermoelectric cooling automotive seat is able to provide an improvement in the occupant's thermal comfort at a reduced energy consumption rate, which makes it promising for vehicular application.
29 CFR 1615.103 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... system or subsystem of equipment that is used in the creation, conversion, or duplication of data or..., display, switching, interchange, transmission, or reception of data or information. For example, HVAC... condition, cosmetic disfigurement, or anatomical loss affecting one or more of the following body systems...
29 CFR 1615.103 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... system or subsystem of equipment that is used in the creation, conversion, or duplication of data or..., display, switching, interchange, transmission, or reception of data or information. For example, HVAC... condition, cosmetic disfigurement, or anatomical loss affecting one or more of the following body systems...
29 CFR 1615.103 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... system or subsystem of equipment that is used in the creation, conversion, or duplication of data or..., display, switching, interchange, transmission, or reception of data or information. For example, HVAC... condition, cosmetic disfigurement, or anatomical loss affecting one or more of the following body systems...
Microwave-Irradiation-Assisted HVAC Filtration for Inactivation of Viral Aerosols (Postprint)
2012-02-01
Baggiani, A. and Senesi, S. (2004). Effect of Microwave Radiation on Bacillus subtilis Spores . J. Appl. Microbiol. 97: 1220–1227. Damit, B., Lee, C.N...AFRL-RX-TY-TP-2012-0020 MICROWAVE-IRRADIATION-ASSISTED HVAC FILTRATION FOR INACTIVATION OF VIRAL AEROSOLS POSTPRINT Myung-Heui Woo and...12-APR-2011 -- 11-DEC-2011 Microwave Irradiation-Assisted HVAC Filtration for Inactivation of Viral Aerosols (POSTPRINT) FA8650-06-C-5913 0602102F
High Performance Building Facade Solutions - PIER Final Project Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Eleanor; Selkowitz, Stephen
2009-12-31
Building facades directly influence heating and cooling loads and indirectly influence lighting loads when daylighting is considered, and are therefore a major determinant of annual energy use and peak electric demand. Facades also significantly influence occupant comfort and satisfaction, making the design optimization challenge more complex than many other building systems.This work focused on addressing significant near-term opportunities to reduce energy use in California commercial building stock by a) targeting voluntary, design-based opportunities derived from the use of better design guidelines and tools, and b) developing and deploying more efficient glazings, shading systems, daylighting systems, facade systems and integrated controls.more » This two-year project, supported by the California Energy Commission PIER program and the US Department of Energy, initiated a collaborative effort between The Lawrence Berkeley National Laboratory (LBNL) and major stakeholders in the facades industry to develop, evaluate, and accelerate market deployment of emerging, high-performance, integrated facade solutions. The LBNL Windows Testbed Facility acted as the primary catalyst and mediator on both sides of the building industry supply-user business transaction by a) aiding component suppliers to create and optimize cost effective, integrated systems that work, and b) demonstrating and verifying to the owner, designer, and specifier community that these integrated systems reliably deliver required energy performance. An industry consortium was initiated amongst approximately seventy disparate stakeholders, who unlike the HVAC or lighting industry, has no single representative, multi-disciplinary body or organized means of communicating and collaborating. The consortium provided guidance on the project and more importantly, began to mutually work out and agree on the goals, criteria, and pathways needed to attain the ambitious net zero energy goals defined by California and the US.A collaborative test, monitoring, and reporting protocol was also formulated via the Windows Testbed Facility in collaboration with industry partners, transitioning industry to focus on the importance of expecting measured performance to consistently achieve design performance expectations. The facility enables accurate quantification of energy use, peak demand, and occupant comfort impacts of synergistic facade-lighting-HVAC systems on an apples-to-apples comparative basis and its data can be used to verify results from simulations. Emerging interior and exterior shading technologies were investigated as potential near-term, low-cost solutions with potential broad applicability in both new and retrofit construction. Commercially-available and prototype technologies were developed, tested, and evaluated. Full-scale, monitored field tests were conducted over solstice-to-solstice periods to thoroughly evaluate the technologies, uncover potential risks associated with an unknown, and quantify performance benefits. Exterior shading systems were found to yield net zero energy levels of performance in a sunny climate and significant reductions in summer peak demand. Automated interior shading systems were found to yield significant daylighting and comfort-related benefits.In support of an integrated design process, a PC-based commercial fenestration (COMFEN) software package, based on EnergyPlus, was developed that enables architects and engineers to quickly assess and compare the performance of innovative facade technologies in the early sketch or schematic design phase. This tool is publicly available for free and will continue to improve in terms of features and accuracy. Other work was conducted to develop simulation tools to model the performance of any arbitrary complex fenestration system such as common Venetian blinds, fabric roller shades as well as more exotic innovative facade systems such as optical louver systems.« less
Automated Postattack Damage Assessment System (APUDAS) for Sewage and Mission-Critical HVAC Systems
1990-10-01
immediately thickened and processed for disposal. Common methods of sludge processing include: digestion, vacuum filtration, and centrifugation . The most...Paddle TYDe Switches for ’Flow-No Flow’ DAetection f r PEiino Systems " and Up catalog. 20. Newark (Potter and Brumfield) Relays, Buzzers, Contactors
The first part of this two-part paper discusses radon entry into schools, radon mitigation approaches for schools, and school characteristics (e.g., heating, ventilation, and air-conditioning -- HVAC-- system design and operation) that influence radon entry and mitigation system ...
Code of Federal Regulations, 2013 CFR
2013-04-01
..., electrical system, elevators, emergency power, fire protection, heating/ventilation/air conditioning (HVAC... HOUSING ASSESSMENT SYSTEM Physical Condition Indicator § 902.21 Physical condition standards for public... the major physical areas of public housing: Site, building exterior, building systems, dwelling units...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-19
... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-63,818] Delphi Thermal Systems... 25, 2008, applicable to workers of Delphi Thermal Systems, Lockport Operations, Lockport, New York... workers are engaged in activities related to the production of automotive heat exchanger products and HVAC...
Code of Federal Regulations, 2014 CFR
2014-04-01
..., electrical system, elevators, emergency power, fire protection, heating/ventilation/air conditioning (HVAC... HOUSING ASSESSMENT SYSTEM Physical Condition Indicator § 902.21 Physical condition standards for public... the major physical areas of public housing: Site, building exterior, building systems, dwelling units...
System-Inspection Guidelines for Minnesota PK-12 School Construction Projects.
ERIC Educational Resources Information Center
Minnesota State Dept. of Children, Families, and Learning, St. Paul.
This document describes a 1998 commissioning statute passed by the Minnesota legislature requiring that mechanical HVAC systems undergo an inspection process to uncover and rectify problems before or shortly after a school building is occupied. The document presents the statute, describes the commissioning/system-inspection process and optional…
evaluations of innovative building envelopes, water heating, and HVAC systems. She also conducts laboratory barriers for emerging and advanced retrofit systems to be implemented on a broad basis, as well as field Monitoring (NILM) techniques, and control strategies to develop cost-effective systems that integrate
Code of Federal Regulations, 2011 CFR
2011-04-01
..., electrical system, elevators, emergency power, fire protection, heating/ventilation/air conditioning (HVAC... HOUSING ASSESSMENT SYSTEM Physical Condition Indicator § 902.21 Physical condition standards for public... the major physical areas of public housing: Site, building exterior, building systems, dwelling units...
Code of Federal Regulations, 2012 CFR
2012-04-01
..., electrical system, elevators, emergency power, fire protection, heating/ventilation/air conditioning (HVAC... HOUSING ASSESSMENT SYSTEM Physical Condition Indicator § 902.21 Physical condition standards for public... the major physical areas of public housing: Site, building exterior, building systems, dwelling units...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-25
... lead times. Architects, engineers and builders often select HVAC systems for such projects up to 9-12... through the Compliance, Certification Management System (``CCMS'') as part of annual certification... System (``CCMS'') as part of annual certification reporting requirements; and (ii) publish the...
The Energy Implications of Air-Side Fouling in Constant Air Volume HVAC Systems
NASA Astrophysics Data System (ADS)
Wilson, Eric J. H.
2011-12-01
This thesis examines the effect of air-side fouling on the energy consumption of constant air volume (CAV) heating, ventilating, and air conditioning (HVAC) systems in residential and small commercial buildings. There is a particular focus on evaluating the potential energy savings that may result from the remediation of such fouling from coils, filters, and other air system components. A computer model was constructed to simulate the behavior of a building and its duct system under various levels of fouling. The model was verified through laboratory and field testing and then used to run parametric simulations to examine the range of energy impacts for various climates and duct system characteristics. A sensitivity analysis was conducted to determine the impact of parameters like duct insulation, duct leakage, duct location, and duct design on savings potential. Duct system pressures, temperatures, and energy consumption for two houses were monitored for one month. The houses' duct systems, which were both in conditioned space, were given a full cleaning, and were then monitored for another month. The flow rates at the houses improved by 10% and 6%. The improvements were primarily due to installing a new filter, as both houses had only light coil fouling. The results indicate that there was negligible change in heating energy efficiency due to the system cleaning. The parametric simulation results are in agreement with the field experiment: for systems in all eight climates, with flowrates degraded by 20% or less, if ducts are located within the thermal zone, HVAC source energy savings from cleaning are negligible or even slightly negative. However, if ducts are outside the thermal zone, savings are in the 1 to 5% range. For systems with flowrates degraded by 40%, if ducts are within the thermal zone, savings from cleaning occurs only for air conditioning energy, up to 8% in climates like Miami, FL. If ducts are outside the thermal zone, savings occurs with both heating and cooling energy, and ranges from 7% in Los Angeles, CA to 13% in Fairbanks, AK. These results assume a leaky and uninsulated duct system. The potential for savings from cleaning decreases if duct insulation is in place or sealing has been performed. The potential for energy savings is directly related to the distribution system's thermal efficiency, with air conditioner performance also playing a minor role. Results for small commercial buildings with constant air volume HVAC systems and leaky and uninsulated duct systems span a wider range: from -12% in Miami, FL to 30% in Minneapolis, MN. However, for improved ducts or ducts in the conditioned space, small commercial HVAC source energy savings is always negative (down to -17%) for flowrates degradation in the 0--40% range. The sensitivity of these results to duct characteristics (location, leakage, and insulation) and the after-cleaning flowrate, as it varies from an ideal flowrate, was also evaluated. Energy savings can reach up to 80% for some scenarios where clean airflow is severely restricted down to 20% of ideal by poor duct layout or other obstructions not removable by cleaning. In addition, a simplified spreadsheet tool was developed for technicians to use in the field to estimate potential savings resulting from a system cleaning. Measuring the temperature rise across the furnace was found to give less uncertainty than measuring the pressure rise and assuming a fan curve. Despite the uncertainty, the tool can give a general idea of the range of savings possible under various conditions.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-23
...: Heating, ventilating, air-conditioning systems (HVAC), amplifiers, mainboards, gas control modules, hybrid airmeter electronics, hybrid ignition electronics, pressure sensors, transmission control modules, crash...
10 CFR 433.5 - Performance level determination.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Each Federal agency shall consider laboratory fume hoods and kitchen ventilation systems as part of the ASHRAE-covered HVAC loads subject to the 30 percent savings requirements, rather than as process loads. ...
10 CFR 433.5 - Performance level determination.
Code of Federal Regulations, 2014 CFR
2014-01-01
... loads). (b) Each Federal agency shall consider laboratory fume hoods and kitchen ventilation systems as part of the ASHRAE-covered HVAC loads subject to the 30 percent savings requirements, rather than as...
10 CFR 433.5 - Performance level determination.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) Each Federal agency shall consider laboratory fume hoods and kitchen ventilation systems as part of the ASHRAE-covered HVAC loads subject to the 30 percent savings requirements, rather than as process loads. ...
... U.S. Environmental Protection Agency (EPA) guide titled Mold Remediation in Schools and Commercial Buildings . Also available is ... Resources NIOSH Interim Recommendations for the Cleaning and Remediation of Flood-Contaminated HVAC Systems: A Guide for ...
Indoor Air Quality and Energy Efficiency
EPA completed an extensive modeling study to assess the compatibilities and trade-offs between energy, indoor air quality, and thermal comfort objectives for HVAC systems and to formulate strategies for superior performance across all areas.
40 CFR 52.2320 - Identification of plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
... dated February 5, 1985, HAFB AO for Paint Booth, HVAC Modification, Standby Generators, and Fuel Storage... implementation of the inspection of vehicle On-Board Diagnostic (OBD) systems starting January 1, 2002 in all...
40 CFR 52.2320 - Identification of plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
... dated February 5, 1985, HAFB AO for Paint Booth, HVAC Modification, Standby Generators, and Fuel Storage... implementation of the inspection of vehicle On-Board Diagnostic (OBD) systems starting January 1, 2002 in all...
40 CFR 52.2320 - Identification of plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
... dated February 5, 1985, HAFB AO for Paint Booth, HVAC Modification, Standby Generators, and Fuel Storage... implementation of the inspection of vehicle On-Board Diagnostic (OBD) systems starting January 1, 2002 in all...
HVAC Design Strategy for a Hot-Humid Production Builder, Houston, Texas (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
BSC worked directly with the David Weekley Homes - Houston division to redesign three floor plans in order to locate the HVAC system in conditioned space. The purpose of this project is to develop a cost effective design for moving the HVAC system into conditioned space. In addition, BSC conducted energy analysis to calculate the most economical strategy for increasing the energy performance of future production houses. This is in preparation for the upcoming code changes in 2015. The builder wishes to develop an upgrade package that will allow for a seamless transition to the new code mandate. The followingmore » research questions were addressed by this research project: 1. What is the most cost effective, best performing and most easily replicable method of locating ducts inside conditioned space for a hot-humid production home builder that constructs one and two story single family detached residences? 2. What is a cost effective and practical method of achieving 50% source energy savings vs. the 2006 International Energy Conservation Code for a hot-humid production builder? 3. How accurate are the pre-construction whole house cost estimates compared to confirmed post construction actual cost? BSC and the builder developed a duct design strategy that employs a system of dropped ceilings and attic coffers for moving the ductwork from the vented attic to conditioned space. The furnace has been moved to either a mechanical closet in the conditioned living space or a coffered space in the attic.« less
76 FR 48152 - Commercial Building Asset Rating Program
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-08
...: Occupancy schedule. HVAC system operation. Hot water use. Both the user-entered and the internally defined.... Technical Support Full documentation of the rating methodology would be available online for public review... welcome. Potential for Additional Supported Options While a national performance metric and rating system...
INVESTIGATION OF THE POTENTIAL ANTIMICROBIAL EFFICACY OF SEALANTS USED IN HVAC SYSTEMS
The paper gives results of an investigation of the potential antimicrobial efficacy of sealants used in heating, ventilation and air-conditioning systems. Recent experiments confirm field experience that duct cleaning alone may not provide adequate protection from regrowth of fu...
Code of Federal Regulations, 2014 CFR
2014-01-01
... serve the load. Eligible borrower means a utility system that has direct or indirect responsibility for... analysis of energy flows in a building, process, or system with the goal of identifying opportunities to... output. HVAC means heating, ventilation, and air conditioning. Load means the Power delivered to power...
Evaluating an Ice-Storage System in a Deregulated Environment.
ERIC Educational Resources Information Center
Staniewicz, Theodore J.; Watson, Joseph J.
2001-01-01
Examines the difficulties the electric industry's deregulation created for St. Joseph's University's (Philadelphia) development of a thermal ice-storage system as part of its HVAC design and the school's solution. A monthly equipment summary sheet with year-to-date figures is provided. (GR)
INFLUENCES OF HVAC DESIGN AND OPERATION ON RADON MITIGATION OF EXISTING SCHOOL BUILDINGS
The paper discusses various school building characteristics identified as influencing radon entry, the design and operation of installed mitigation systems in four Maryland schools, and the success of these systems in reducing school radon levels. Several public school buildings ...
Ground source heat pumps (GSHP) for heating and cooling in Greece
NASA Astrophysics Data System (ADS)
Dimera, Nikoletta
This report presents the results of a theoretical study about the feasibility of closed loop Ground Source Heat Pumps (GSHP) for heating and cooling in Greece in terms of their impact on the capital and running costs of the building services systems of the buildings. The main aim of carrying out this study was to investigate if the heating and cooling potential of the ground could be utilized cost efficiently to serve the buildings energy demand in the Greek region. At first, an existing implementation of a closed loop GSHP system in Greece is presented and its efficiency is discussed. The aim of doing so was to understand the way of sizing such systems and the efficiency of this technology in Greek climatic and ground conditions. In a separate part of this report, the impact of different user behaviour and of various ways of sizing a GSHP system is investigated in terms of the cost impact of the examined different options as well as of their effect on the internal health and comfort conditions. After the building simulation under different scenarios, it was concluded that the user behavior - the operation of windows mostly - can result in great savings on the annual energy bills. The conclusions of this first part of the report about the user behaviour and the way of sizing GSHP systems were utilized in the next part of it, where a GSHP system is proposed for a building currently under construction in central Greece. A simple 30-year cost analysis was used in order to estimate the performance of the proposed GSHP system in economic terms and to compare it with the conventional HVAC system commonly used in Greece. According to the results of the analysis, the capital cost of installing a GSHP system for heating and cooling in buildings in Greece appears higher than the cost of conventional HVAC systems. More specifically, the capital cost of an installation for heating including gas boilers and a cooling system based on air conditioning split units is about the half of installing a GSHP system for heating and cooling designed to serve the same loads. On the other hand, if the conventional HVAC system included cooling towers instead of A/C split units, the capital cost of such the installation raises up to double the price of the GSHP system for the same needs. However, after a 30-years period of continuous use of the systems, the money spent for installing and running the GSHP system are about the half of those that should be paid once a conventional HVAC system was preferred for the same energy demand.
Evaluation of Sampling Methods for Bacillus Spore ...
Journal Article Following a wide area release of biological materials, mapping the extent of contamination is essential for orderly response and decontamination operations. HVAC filters process large volumes of air and therefore collect highly representative particulate samples in buildings. HVAC filter extraction may have great utility in rapidly estimating the extent of building contamination following a large-scale incident. However, until now, no studies have been conducted comparing the two most appropriate sampling approaches for HVAC filter materials: direct extraction and vacuum-based sampling.
ERIC Educational Resources Information Center
Schneider, Christian M.
1990-01-01
The heating, ventilating, and air conditioning (HVAC) systems in older buildings often do not adequately handle air-borne contaminants. Outlines a three-stage Indoor Air Quality (IAQ) assessment and describes a case in point at a Pittsburgh, Pennsylvania, school. (MLF)
NEWS BRIEF: Keeping Cool with Carbon Capture Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
NETL scientists have created unique sorbents to capture indoor air pollutants. The sorbents are used in enVerid System’s new HLR modules. The modules can be incorporated into HVAC systems to scrub the air.
ERIC Educational Resources Information Center
Bevington, E. Milton
2002-01-01
Education institutions rely heavily on good HVAC systems. Maintaining these systems can be expensive and are a significant factor in operating costs. Energy conservation is a real resource that is often overlooked. This article addresses what causes energy waste, how schools can find sources of energy waste, and how schools can improve…
40 CFR 63.4181 - What definitions apply to this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... commercial or industrial HVAC systems. Manufacturer's formulation data means data on a material (such as a... capture system efficiency means the portion (expressed as a percentage) of the pollutants from an emission source that is delivered to an add-on control device. Capture system means one or more capture devices...
40 CFR 63.4181 - What definitions apply to this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... commercial or industrial HVAC systems. Manufacturer's formulation data means data on a material (such as a.... Capture efficiency or capture system efficiency means the portion (expressed as a percentage) of the pollutants from an emission source that is delivered to an add-on control device. Capture system means one or...
40 CFR 63.4181 - What definitions apply to this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... commercial or industrial HVAC systems. Manufacturer's formulation data means data on a material (such as a.... Capture efficiency or capture system efficiency means the portion (expressed as a percentage) of the pollutants from an emission source that is delivered to an add-on control device. Capture system means one or...
40 CFR 63.4181 - What definitions apply to this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... commercial or industrial HVAC systems. Manufacturer's formulation data means data on a material (such as a... capture system efficiency means the portion (expressed as a percentage) of the pollutants from an emission source that is delivered to an add-on control device. Capture system means one or more capture devices...
40 CFR 63.4181 - What definitions apply to this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... commercial or industrial HVAC systems. Manufacturer's formulation data means data on a material (such as a.... Capture efficiency or capture system efficiency means the portion (expressed as a percentage) of the pollutants from an emission source that is delivered to an add-on control device. Capture system means one or...
Controlling the Climate of Your Schools: Tips On Choosing an HVAC System.
ERIC Educational Resources Information Center
Phelan, John G.
1998-01-01
Provides tips on choosing a school heating/ventilation and air-conditioning system that meets a school's needs and budget. Discusses how to assess a school's needs and offers suggestions for making the final decision. Data tables are provided that compare various systems, including costs, maintenance, and life expectancy. (GR)
Ultrafine particle removal by residential heating, ventilating, and air-conditioning filters.
Stephens, B; Siegel, J A
2013-12-01
This work uses an in situ filter test method to measure the size-resolved removal efficiency of indoor-generated ultrafine particles (approximately 7-100 nm) for six new commercially available filters installed in a recirculating heating, ventilating, and air-conditioning (HVAC) system in an unoccupied test house. The fibrous HVAC filters were previously rated by the manufacturers according to ASHRAE Standard 52.2 and ranged from shallow (2.5 cm) fiberglass panel filters (MERV 4) to deep-bed (12.7 cm) electrostatically charged synthetic media filters (MERV 16). Measured removal efficiency ranged from 0 to 10% for most ultrafine particles (UFP) sizes with the lowest rated filters (MERV 4 and 6) to 60-80% for most UFP sizes with the highest rated filter (MERV 16). The deeper bed filters generally achieved higher removal efficiencies than the panel filters, while maintaining a low pressure drop and higher airflow rate in the operating HVAC system. Assuming constant efficiency, a modeling effort using these measured values for new filters and other inputs from real buildings shows that MERV 13-16 filters could reduce the indoor proportion of outdoor UFPs (in the absence of indoor sources) by as much as a factor of 2-3 in a typical single-family residence relative to the lowest efficiency filters, depending in part on particle size. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chevron Energy Solutions; Matt Rush; Scott Shulda
Colorado Northwestern Community College (CNCC) is working collaboratively with recipient vendor Chevron Energy Solutions, an energy services company (ESCO), to develop an innovative GHP project at the new CNCC Campus constructed in 2010/2011 in Craig, Colorado. The purpose of the CNCC Craig Campus Geothermal Program scope was to utilize an energy performance contracting approach to develop a geothermal system with a shared closed-loop field providing geothermal energy to each building's GHP mechanical system. Additional benefits to the project include promoting good jobs and clean energy while reducing operating costs for the college. The project has demonstrated that GHP technology ismore » viable for new construction using the energy performance contracting model. The project also enabled the project team to evaluate several options to give the College a best value proposition for not only the initial design and construction costs but build high performance facilities that will save the College for many years to come. The design involved comparing the economic feasibility of GHP by comparing its cost to that of traditional HVAC systems via energy model, financial life cycle cost analysis of energy savings and capital cost, and finally by evaluating the compatibility of the mechanical design for GHP compared to traditional HVAC design. The project shows that GHP system design can be incorporated into the design of new commercial buildings if the design teams, architect, contractor, and owner coordinate carefully during the early phases of design. The public also benefits because the new CNCC campus is a center of education for the much of Northwestern Colorado, and students in K-12 programs (Science Spree 2010) through the CNCC two-year degree programs are already integrating geothermal and GHP technology. One of the greatest challenges met during this program was coordination of multiple engineering and development stakeholders. The leadership of Principle Investigator Pres. John Boyd of CNCC met this challenge by showing clear leadership in setting common goals and resolving conflicts early in the program.« less
Strategy Guideline. Transitioning HVAC Companies to Whole House Performance Contractors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burdick, Arlan
2012-05-01
This report describes the findings from research IBACOS conducted related to heating, ventilation, and air conditioning (HVAC) companies who have made the decision to transition to whole house performance contracting (WHPC).
Lavoie, Jacques; Marchand, Geneviève; Cloutier, Yves; Lavoué, Jérôme
2011-08-01
Dust accumulation in the components of heating, ventilation, and air-conditioning (HVAC) systems is a potential source of contaminants. To date, very little information is available on recognized methods for assessing dust buildup in these systems. The few existing methods are either objective in nature, involving numerical values, or subjective in nature, based on experts' judgments. An earlier project aimed at assessing different methods of sampling dust in ducts was carried out in the laboratories of the Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST). This laboratory study showed that all the sampling methods were practicable, provided that a specific surface-dust cleaning initiation criterion was used for each method. However, these conclusions were reached on the basis of ideal conditions in a laboratory using a reference dust. The objective of this present study was to validate these laboratory results in the field. To this end, the laboratory sampling templates were replicated in real ducts and the three sampling methods (the IRSST method, the method of the U.S. organization National Air Duct Cleaner Association [NADCA] and that of the French organization Association pour la Prévention et l'Étude de la Contamination [ASPEC]) were used simultaneously in a statistically representative number of systems. The air return and supply ducts were also compared. Cleaning initiation criteria under real conditions were found to be 6.0 mg/100 cm(2) using the IRSST method, 2.0 mg/100 cm(2) using the NADCA method, and 23 mg/100 cm(2) using the ASPEC method. In the laboratory study, the criteria using the same methods were 6.0 for the IRSST method, 2.0 for the NADCA method, and 3.0 for the ASPEC method. The laboratory criteria for the IRSST and NADCA methods were therefore validated in the field. The ASPEC criterion was the only one to change. The ASPEC method therefore allows for the most accurate evaluation of dust accumulation in HVAC ductwork. We therefore recommend using the latter method to objectively assess dust accumulation levels in HVAC ductwork.
Raynor, P C; Kim, B G; Ramachandran, G; Strommen, M R; Horns, J H; Streifel, A J
2008-02-01
Synthetic filters made from fibers carrying electrostatic charges and fiberglass filters that do not carry electrostatic charges are both utilized commonly in heating, ventilating, and air-conditioning (HVAC) systems. The pressure drop and efficiency of a bank of fiberglass filters and a bank of electrostatically charged synthetic filters were measured repeatedly for 13 weeks in operating HVAC systems at a hospital. Additionally, the efficiency with which new and used fiberglass and synthetic filters collected culturable biological particles was measured in a test apparatus. Pressure drop measurements adjusted to equivalent flows indicated that the synthetic filters operated with a pressure drop less than half that of the fiberglass filters throughout the test. When measured using total ambient particles, synthetic filter efficiency decreased during the test period for all particle diameters. For particles 0.7-1.0 mum in diameter, efficiency decreased from 92% to 44%. It is hypothesized that this reduction in collection efficiency may be due to charge shielding. Efficiency did not change significantly for the fiberglass filters during the test period. However, when measured using culturable biological particles in the ambient air, efficiency was essentially the same for new filters and filters used for 13 weeks in the hospital for both the synthetic and fiberglass filters. It is hypothesized that the lack of efficiency reduction for culturable particles may be due to their having higher charge than non-biological particles, allowing them to overcome the effects of charge shielding. The type of particles requiring capture may be an important consideration when comparing the relative performance of electrostatically charged synthetic and fiberglass filters. Electrostatically charged synthetic filters with high initial efficiency can frequently replace traditional fiberglass filters with lower efficiency in HVAC systems because properly designed synthetic filters offer less resistance to air flow. Although the efficiency of charged synthetic filters at collecting non-biological particles declined substantially with use, the efficiency of these filters at collecting biological particles remained steady. These findings suggest that the merits of electrostatically charged synthetic HVAC filters relative to fiberglass filters may be more pronounced if collection of biological particles is of primary concern.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-21
... www.regulations.gov Web site is an ``anonymous access'' system, which means EPA will not know your... public docket that are available electronically. Once in the system, select ``search,'' then key in the... homes under Home Performance with ENERGY STAR and ENERGY STAR's HVAC Quality Installation program...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-04
..., Heating, and Air-Conditioning Contractors (NAICS code 238220), including Central air-conditioning system and commercial refrigeration installation; HVAC contractors. This list is not intended to be... selecting its highest ODP- weighted consumption year from among the years 1994 through 1997. [[Page 241...
What to Do until the Microprocesser Arrives.
ERIC Educational Resources Information Center
Barzilla, Frank
1983-01-01
Advises administrators how to develop an energy master plan and how to reduce the usage of heating, ventilating, and air conditioning (HVAC) systems by means of a time clock, thermostat, and a scheduled preventive maintenance program. (MLF)
The BACnet Campus Challenge - Part 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masica, Ken; Tom, Steve
Here, the BACnet protocol was designed to achieve interoperability among building automation vendors and evolve over time to include new functionality as well as support new communication technologies such as the Ethernet and IP protocols as they became prevalent and economical in the market place. For large multi-building, multi-vendor campus environments, standardizing on the BACnet protocol as an implementation strategy can be a key component in meeting the challenge of an interoperable, flexible, and scalable building automation system. The interoperability of BACnet is especially important when large campuses with legacy equipment have DDC upgrades to facilities performed over different timemore » frames and use different contractors that install equipment from different vendors under the guidance of different campus HVAC project managers. In these circumstances, BACnet can serve as a common foundation for interoperability when potential variability exists in approaches to the design-build process by numerous parties over time. Likewise, BACnet support for a range of networking protocols and technologies can be a key strategy for achieving flexible and scalable automation systems as campuses and enterprises expand networking infrastructures using standard interoperable protocols like IP and Ethernet.« less
The BACnet Campus Challenge - Part 1
Masica, Ken; Tom, Steve
2015-12-01
Here, the BACnet protocol was designed to achieve interoperability among building automation vendors and evolve over time to include new functionality as well as support new communication technologies such as the Ethernet and IP protocols as they became prevalent and economical in the market place. For large multi-building, multi-vendor campus environments, standardizing on the BACnet protocol as an implementation strategy can be a key component in meeting the challenge of an interoperable, flexible, and scalable building automation system. The interoperability of BACnet is especially important when large campuses with legacy equipment have DDC upgrades to facilities performed over different timemore » frames and use different contractors that install equipment from different vendors under the guidance of different campus HVAC project managers. In these circumstances, BACnet can serve as a common foundation for interoperability when potential variability exists in approaches to the design-build process by numerous parties over time. Likewise, BACnet support for a range of networking protocols and technologies can be a key strategy for achieving flexible and scalable automation systems as campuses and enterprises expand networking infrastructures using standard interoperable protocols like IP and Ethernet.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doebber, Ian; Deru, Michael; Trenbath, Kim
NREL worked with the Bonneville Power Administration's Technology Innovation Office to demonstrate a turnkey, retrofit technology that combines demand response (DR) and energy efficiency (EE) benefits for HVAC and lighting in retail buildings. As a secondary benefit, we also controlled various plug loads and electric hot water heaters (EHWH). The technology demonstrated was Transformative Wave's eIQ Building Management System (BMS) automatically responding to DR signals. The BMS controlled the HVAC rooftop units (RTU) using the CATALYST retrofit solution also developed by Transformative Wave. The non-HVAC loads were controlled using both hardwired and ZigBee wireless communication. The wireless controllers, manufactured bymore » Autani, were used when the building's electrical layout was too disorganized to leverage less expensive hardwired control. The six demonstration locations are within the Seattle metro area. Based on the assets curtailed by the BMS at each location, we projected the DR resource. We were targeting a 1.7 W/ft2 shed for the summer Day-Ahead events and a 0.7 W/ft2 shed for the winter events. While summarized in Table ES-1, only one summer DR event was conducted at Casino #2.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baxter, Van D
2007-02-01
The long range strategic goal of the Department of Energy's Building Technologies (DOE/BT) Program is to create, by 2020, technologies and design approaches that enable the construction of net-zero energy homes at low incremental cost (DOE/BT 2005). A net zero energy home (NZEH) is a residential building with greatly reduced needs for energy through efficiency gains, with the balance of energy needs supplied by renewable technologies. While initially focused on new construction, these technologies and design approaches are intended to have application to buildings constructed before 2020 as well resulting in substantial reduction in energy use for all building typesmore » and ages. DOE/BT's Emerging Technologies (ET) team is working to support this strategic goal by identifying and developing advanced heating, ventilating, air-conditioning, and water heating (HVAC/WH) technology options applicable to NZEHs. In FY05 ORNL conducted an initial Stage 1 (Applied Research) scoping assessment of HVAC/WH systems options for future NZEHs to help DOE/BT identify and prioritize alternative approaches for further development. Eleven system concepts with central air distribution ducting and nine multi-zone systems were selected and their annual and peak demand performance estimated for five locations: Atlanta (mixed-humid), Houston (hot-humid), Phoenix (hot-dry), San Francisco (marine), and Chicago (cold). Performance was estimated by simulating the systems using the TRNSYS simulation engine (Solar Energy Laboratory et al. 2006) in two 1800-ft{sup 2} houses--a Building America (BA) benchmark house and a prototype NZEH taken from BEopt results at the take-off (or crossover) point (i.e., a house incorporating those design features such that further progress towards ZEH is through the addition of photovoltaic power sources, as determined by current BEopt analyses conducted by NREL). Results were summarized in a project report, HVAC Equipment Design options for Near-Zero-Energy Homes--A Stage 2 Scoping Assessment, ORNL/TM-2005/194 (Baxter 2005). The 2005 study report describes the HVAC options considered, the ranking criteria used, and the system rankings by priority. In 2006, the two top-ranked options from the 2005 study, air-source and ground-source versions of a centrally ducted integrated heat pump (IHP) system, were subjected to an initial business case study. The IHPs were subjected to a more rigorous hourly-based assessment of their performance potential compared to a baseline suite of equipment of legally minimum efficiency that provided the same heating, cooling, water heating, demand dehumidification, and ventilation services as the IHPs. Results were summarized in a project report, Initial Business Case Analysis of Two Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes, ORNL/TM-2006/130 (Baxter 2006a). The present report is an update to that document which summarizes results of an analysis of the impact of adding a humidifier to the HVAC system to maintain minimum levels of space relative humidity (RH) in winter. The space RH in winter has direct impact on occupant comfort and on control of dust mites, many types of disease bacteria, and 'dry air' electric shocks. Chapter 8 in ASHRAE's 2005 Handbook of Fundamentals (HOF) suggests a 30% lower limit on RH for indoor temperatures in the range of {approx}68-69F based on comfort (ASHRAE 2005). Table 3 in chapter 9 of the same reference suggests a 30-55% RH range for winter as established by a Canadian study of exposure limits for residential indoor environments (EHD 1987). Harriman, et al (2001) note that for RH levels of 35% or higher, electrostatic shocks are minimized and that dust mites cannot live at RH levels below 40%. They also indicate that many disease bacteria life spans are minimized when space RH is held within a 30-60% range. From the foregoing it is reasonable to assume that a winter space RH range of 30-40% would be an acceptable compromise between comfort considerations and limitation of growth rates for dust mites and many bacteria. In addition it reports some corrections made to the simulation models used in order to correct some errors in the TRNSYS building model for Atlanta and in the refrigerant pressure drop calculation in the water-to-refrigerant evaporator module of the ORNL Heat Pump Design Model (HPDM) used for the IHP analyses. These changes resulted in some minor differences between IHP performance as reported in Baxter (2006) and in this report.« less
Low Global Warming Potential Refrigerants for Commercial Refrigeration Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fricke, Brian A.; Sharma, Vishaldeep; Abdelaziz, Omar
Supermarket refrigeration systems account for approximately 50% of supermarket energy use, placing this class of equipment among the highest energy consumers in the commercial building domain. In addition, the commonly used refrigeration system in supermarket applications is the multiplex direct expansion (DX) system, which is prone to refrigerant leaks due to its long lengths of refrigerant piping. This leakage reduces the efficiency of the system and increases the impact of the system on the environment. The high Global Warming Potential (GWP) of the hydrofluorocarbon (HFC) refrigerants commonly used in these systems, coupled with the large refrigerant charge and the highmore » refrigerant leakage rates leads to significant direct emissions of greenhouse gases into the atmosphere. Environmental concerns are driving regulations for the heating, ventilating, air-conditioning and refrigeration (HVAC&R) industry towards lower GWP alternatives to HFC refrigerants. Existing lower GWP refrigerant alternatives include hydrocarbons, such as propane (R-290) and isobutane (R-600a), as well as carbon dioxide (R-744), ammonia (R-717), and R-32. In addition, new lower GWP refrigerant alternatives are currently being developed by refrigerant manufacturers, including hydrofluoro-olefin (HFO) and unsaturated hydrochlorofluorocarbon (HCFO) refrigerants. The selection of an appropriate refrigerant for a given refrigeration application should be based on several factors, including the GWP of the refrigerant, the energy consumption of the refrigeration system over its operating lifetime, and leakage of refrigerant over the system lifetime. For example, focusing on energy efficiency alone may overlook the significant environmental impact of refrigerant leakage; while focusing on GWP alone might result in lower efficiency systems that result in higher indirect impact over the equipment lifetime. Thus, the objective of this Collaborative Research and Development Agreement (CRADA) between Honeywell and the Oak Ridge National Laboratory (ORNL) is to develop a Life Cycle Climate Performance (LCCP) modeling tool for optimally designing HVAC&R equipment with lower life cycle greenhouse gas emissions, and the selection of alternative working fluids that reduce the greenhouse gas emissions of HVAC&R equipment. In addition, an experimental evaluation program is used to measure the coefficient of performance (COP) and refrigerating capacity of various refrigerant candidates, which have differing GWP values, in commercial refrigeration equipment. Through a cooperative effort between industry and government, alternative working fluids will be chosen based on maximum reduction in greenhouse gases at minimal cost impact to the consumer. This project will ultimately result in advancing the goals of reducing greenhouse gas emissions through the use of low GWP working fluids and technologies for HVAC&R and appliance equipment, resulting in cost-competitive products and systems.« less
Choosing a Geothermal as an HVAC System.
ERIC Educational Resources Information Center
Lensenbigler, John D.
2002-01-01
Describes the process of selecting and installing geothermal water source heat pumps for new residence halls at Johnson Bible College in Knoxville, Tennessee, including choosing the type of geothermal design, contractors, and interior equipment, and cost and payback. (EV)
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-26
.... archery repair tools and equipment. Optimax Systems, Inc 6367 Dean Parkway, Ontario, 2/17/2010 Fabrication... 60609. fittings, plumbing equipment and supplies, HVAC/Hydronic Equipment and supplies, automated valves...
The effectiveness of stand alone air cleaners for shelter-in-place.
Ward, M; Siegel, J A; Corsi, R L
2005-04-01
Stand-alone air cleaners may be efficient for rapid removal of indoor fine particles and have potential use for shelter-in-place (SIP) strategies following acts of bioterrorism. A screening model was employed to ascertain the potential significance of size-resolved particle (0.1-2 microm) removal using portable high efficiency particle arresting (HEPA) air cleaners in residential buildings following an outdoor release of particles. The number of stand-alone air cleaners, air exchange rate, volumetric flow rate through the heating, ventilating and air-conditioning (HVAC) system, and size-resolved particle removal efficiency in the HVAC filter were varied. The effectiveness of air cleaners for SIP was evaluated in terms of the outdoor and the indoor particle concentration with air cleaner(s) relative to the indoor concentration without air cleaners. Through transient and steady-state analysis of the model it was determined that one to three portable HEPA air cleaners can be effective for SIP following outdoor bioaerosol releases, with maximum reductions in particle concentrations as high as 90% relative to conditions in which an air cleaner is not employed. The relative effectiveness of HEPA air cleaners vs. other removal mechanisms was predicted to decrease with increasing particle size, because of increasing competition by particle deposition with indoor surfaces and removal to HVAC filters. However, the effect of particle size was relatively small for most scenarios considered here. The results of a screening analysis suggest that stand-alone (portable) air cleaners that contain high efficiency particle arresting (HEPA) filters can be effective for reducing indoor fine particle concentrations in residential dwellings during outdoor releases of biological warfare agents. The relative effectiveness of stand-alone air cleaners for reducing occupants' exposure to particles of outdoor origin depends on several factors, including the type of heating, ventilating and air-conditioning (HVAC) filter, HVAC operation, building air exchange rate, particle size, and duration of elevated outdoor particle concentration. Maximum particle reductions, relative to no stand-alone air cleaners, of 90% are predicted when three stand-alone air cleaners are employed.
Center for the Built Environment: Research on Building HVAC Systems
, and lessons learned. Underfloor Air Distribution (UFAD) Cooling Airflow Design Tool Developing simplified design tools for optimization of underfloor systems. Underfloor Air Distribution (UFAD) Cost Near-ZNE Buildings Setpoint Energy Savings Calculator UFAD Case Studies UFAD Cooling Design Tool UFAD
The Air Pollution Control Technology Verification Center (APCT Center) is operated by RTI International (RTI), in cooperation with EPA's National Risk Management Research Laboratory. The APCT Center conducts verifications of technologies that clean air in ventilation systems, inc...
Energy Optimization Using a Case-Based Reasoning Strategy
Herrera-Viedma, Enrique
2018-01-01
At present, the domotization of homes and public buildings is becoming increasingly popular. Domotization is most commonly applied to the field of energy management, since it gives the possibility of managing the consumption of the devices connected to the electric network, the way in which the users interact with these devices, as well as other external factors that influence consumption. In buildings, Heating, Ventilation and Air Conditioning (HVAC) systems have the highest consumption rates. The systems proposed so far have not succeeded in optimizing the energy consumption associated with a HVAC system because they do not monitor all the variables involved in electricity consumption. For this reason, this article presents an agent approach that benefits from the advantages provided by a Multi-Agent architecture (MAS) deployed in a Cloud environment with a wireless sensor network (WSN) in order to achieve energy savings. The agents of the MAS learn social behavior thanks to the collection of data and the use of an artificial neural network (ANN). The proposed system has been assessed in an office building achieving an average energy savings of 41% in the experimental group offices. PMID:29543729
Energy Optimization Using a Case-Based Reasoning Strategy.
González-Briones, Alfonso; Prieto, Javier; De La Prieta, Fernando; Herrera-Viedma, Enrique; Corchado, Juan M
2018-03-15
At present, the domotization of homes and public buildings is becoming increasingly popular. Domotization is most commonly applied to the field of energy management, since it gives the possibility of managing the consumption of the devices connected to the electric network, the way in which the users interact with these devices, as well as other external factors that influence consumption. In buildings, Heating, Ventilation and Air Conditioning (HVAC) systems have the highest consumption rates. The systems proposed so far have not succeeded in optimizing the energy consumption associated with a HVAC system because they do not monitor all the variables involved in electricity consumption. For this reason, this article presents an agent approach that benefits from the advantages provided by a Multi-Agent architecture (MAS) deployed in a Cloud environment with a wireless sensor network (WSN) in order to achieve energy savings. The agents of the MAS learn social behavior thanks to the collection of data and the use of an artificial neural network (ANN). The proposed system has been assessed in an office building achieving an average energy savings of 41% in the experimental group offices.
Statistical Analysis of Solar PV Power Frequency Spectrum for Optimal Employment of Building Loads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olama, Mohammed M; Sharma, Isha; Kuruganti, Teja
In this paper, a statistical analysis of the frequency spectrum of solar photovoltaic (PV) power output is conducted. This analysis quantifies the frequency content that can be used for purposes such as developing optimal employment of building loads and distributed energy resources. One year of solar PV power output data was collected and analyzed using one-second resolution to find ideal bounds and levels for the different frequency components. The annual, seasonal, and monthly statistics of the PV frequency content are computed and illustrated in boxplot format. To examine the compatibility of building loads for PV consumption, a spectral analysis ofmore » building loads such as Heating, Ventilation and Air-Conditioning (HVAC) units and water heaters was performed. This defined the bandwidth over which these devices can operate. Results show that nearly all of the PV output (about 98%) is contained within frequencies lower than 1 mHz (equivalent to ~15 min), which is compatible for consumption with local building loads such as HVAC units and water heaters. Medium frequencies in the range of ~15 min to ~1 min are likely to be suitable for consumption by fan equipment of variable air volume HVAC systems that have time constants in the range of few seconds to few minutes. This study indicates that most of the PV generation can be consumed by building loads with the help of proper control strategies, thereby reducing impact on the grid and the size of storage systems.« less
EFFICACY OF UV IRRADIATION ON EIGHT SPECIES OF BACILLUS
Ultraviolet irradiation has been used in the indoor environment to eliminate or control infectious diseases. Heating, ventilating and air-conditioning (HVAC) system components such as duct liners, cooling coils, drip pans, interior insulation and areas subjected to high levels of...
Carpeting/Flooring: Revitalizing Carpets.
ERIC Educational Resources Information Center
Woolford, Alison; Hill, Michael
2003-01-01
With properly specified fiber and a comprehensive maintenance program, school carpets can retain their appearance longer. Discusses carpet characteristics; proper carpet installation; effective preventive-maintenance programs (keep outside areas clean, use soil barriers, protect desk areas, maintain HVAC systems, and specify eating, drinking, and…
UPDATE ON RADON MITIGATION RESEARCH IN SCHOOLS
The paper is an overview of research by EPA's Air and Energy Engineering Research Laboratory (AEERL) on radon mitigation in 47 schools since 1988. he structural and heating, ventilating, and air-conditioning (HVAC) system characteristics of the research schools are presented, alo...
ERIC Educational Resources Information Center
Rosenbaum, Mark
2002-01-01
Describes how techniques such as occupant control, careful sizing of the HVAC equipment, and using a direct digital control (DDC) system have helped the James L. and Evelena S. Oakes Hall at Vermont Law School to be environmentally friendly and save energy. (EV)
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-30
... commercial refrigeration equipment; commercial heating, ventilating, air- conditioning (HVAC) equipment..., manufacturers of commercial refrigeration equipment; commercial HVAC equipment; commercial WH equipment; walk-in... extension to the compliance date for the certification provisions for commercial refrigeration equipment...
Evaluation of High-Performance Rooftop HVAC Unit Naval Air Station Key West, Florida
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howett, Daniel H.; Desjarlais, Andre Omer; Cox, Daryl
This report documents performance of a high performance rooftop HVAC unit (RTU) at Naval Air Station Key West, FL. This report was sponsored by the Federal Energy Management Program as part of the "High Performance RTU Campaign".
Code of Federal Regulations, 2014 CFR
2014-07-01
... systems (collectively referred to as HVAC&R). Instead, two 90-day toxicity tests, one by the dermal route... causes treatment-related neurological effects in developing animals, following pre- or post-natal... individual test, including specific conditions, qualifications, or exceptions are listed in paragraph (h) of...
ERIC Educational Resources Information Center
Roark, Steven
2001-01-01
Presents the fifth installment examining the expansion and renovation project of Longview Community College's Liberal Arts Building in Kansas City (Missouri). Reviewed are the gaining of final approvals from administrators on project plans and the detailing of wall construction, structural systems, HVAC units, and finishes. (GR)
Ductless Mini-Split Heat Pump Comfort Evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roth, K.; Sehgal, N.; Akers, C.
2013-03-01
Field tests were conducted in two homes in Austin, TX, to evaluate the comfort performance of ductless minisplit heat pumps (DMSHPs), measuring temperature and relative humidity measurements in four rooms in each home before and after retrofitting a central HVAC system with DMSHPs.
Ductless Mini-Split Heat Pump Comfort Evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roth, K.; Sehgal, N.; Akers, C.
2013-03-01
Field tests were conducted in two homes in Austin, TX to evaluate the comfort performance of ductless mini-split heat pumps (DMSHPs), measuring temperature and relative humidity measurements in four rooms in each home before and after retrofitting a central HVAC system with DMSHPs.
Job Prospects in HVAC Engineering.
ERIC Educational Resources Information Center
Basta, Nicholas
1985-01-01
Although heating, ventilation, and air conditioning (HVAC) engineering degrees are not offered, there is a serious need for specialists and consultants in this area (since most have been trained as mechanical engineers). Opportunities exist for individuals possessing a customer-oriented attitude, with knowledge in computerized controls, innovative…
Schmidt, Michael G; Attaway, Hubert H; Terzieva, Silva; Marshall, Anna; Steed, Lisa L; Salzberg, Deborah; Hamoodi, Hameed A; Khan, Jamil A; Feigley, Charles E; Michels, Harold T
2012-08-01
Microbial growth in heating ventilation and air-conditioning (HVAC) systems with the subsequent contamination of indoor air is of increasing concern. Microbes and the subsequent biofilms grow easily within heat exchangers. A comparative study where heat exchangers fabricated from antimicrobial copper were evaluated for their ability to limit microbial growth was conducted using a full-scale HVAC system under conditions of normal flow rates using single-pass outside air. Resident bacterial and fungal populations were quantitatively assessed by removing triplicate sets of coupons from each exchanger commencing the fourth week after their installation for the next 30 weeks. The intrinsic biofilm associated with each coupon was extracted and characterized using selective and differential media. The predominant organisms isolated from aluminum exchangers were species of Methylobacterium of which at least three colony morphologies and 11 distinct PFGE patterns we found; of the few bacteria isolated from the copper exchangers, the majority were species of Bacillus. The concentrations and type of bacteria recovered from the control, aluminum, exchangers were found to be dependent on the type of plating media used and were 11,411-47,257 CFU cm(-2) per coupon surface. The concentration of fungi was found to average 378 CFU cm(-2). Significantly lower concentrations of bacteria, 3 CFU cm(-2), and fungi, 1 CFU cm(-2), were recovered from copper exchangers regardless of the plating media used. Commonly used aluminum heat exchangers developed stable, mixed, bacterial/fungal biofilms in excess of 47,000 organisms per cm(2) within 4 weeks of operation, whereas the antimicrobial properties of metallic copper were able to limit the microbial load affiliated with the copper heat exchangers to levels 99.97 % lower during the same time period.
Angelon-Gaetz, K A; Richardson, D B; Lipton, D M; Marshall, S W; Lamb, B; LoFrese, T
2015-12-01
Both high and low indoor relative humidity (RH) directly impact Indoor Air Quality (IAQ), an important school health concern. Prior school studies reported a high prevalence of mold, roaches, and water damage; however, few examined associations between modifiable classroom factors and RH, a quantitative indicator of dampness. We recorded RH longitudinally in 134 North Carolina classrooms (n = 9066 classroom-days) to quantify the relationships between modifiable classroom factors and average daily RH below, within, or above levels recommended to improve school IAQ (30-50% or 30-60% RH). The odds of having high RH (>60%) were 5.8 [95% Confidence Interval (CI): 2.9, 11.3] times higher in classrooms with annual compared to quarterly heating, ventilating, and air-conditioning (HVAC) system maintenance and 2.5 (95% CI: 1.5, 4.2) times higher in classrooms with HVAC economizers compared to those without economizers. Classrooms with direct-expansion split systems compared to chilled water systems had 2.7 (95% CI: 1.7, 4.4) times higher odds of low RH (<30%). When unoccupied, classrooms with thermostat setbacks had 3.7 (95% CI: 1.7, 8.3) times the odds of high RH (>60%) of those without setbacks. This research suggests actionable decision points for school design and maintenance to prevent high or low classroom RH. This study combines longitudinal measurements of classroom relative humidity with school inspection data from several schools to describe the problem of relative humidity control in schools. Our findings on how maintenance and mechanical factors affect classroom humidity provide suggestions on building operations policies and heating, ventilating, and air-conditioning (HVAC) design considerations that may improve classroom relative humidity control. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Mushtaha, Emad; Helmy, Omar
2017-11-01
The common system used for thermal regulation in mosques of United Arab Emirates (UAE) is the heating, ventilating and air-conditioning (HVAC) system. This system increases demands on energy consumption and increases CO2 emission. A passive design approach is one of the measures to reduce these problems. This study involved an analytical examination of building forms, followed by testing the impact of these forms on its thermal performance and indoor thermal comfort. The tests were conducted using energy simulations software packages. Passive parameters such as shading devices, thermal insulation and natural ventilation were applied in six cases, including the baseline case within each form. The obtained results showed a significant effect of mosque forms as well as passive design techniques on the thermal comfort within the structures. The findings confirmed that the use of passive design alone would not help achieve thermal comfort, but reduce the annual energy consumption by10%. By integrating a hybrid air-conditioning system as another supporting approach, the annual energy consumption could be reduced by 67.5%, which allows for the designing of a much smaller HVAC system.
NASA Astrophysics Data System (ADS)
Moreno, Paola
Buildings, especially in hot climates, consume a lot of energy when people want to be comfortable inside them, which translates to very expensive fees each month. The most innovative response to this problem is renewable energy, that is used, in this case, to run mechanical HVAC systems. Renewable energy is the solution for many problems, but to avoid urban heat islands when using excessive HVAC systems (powered by renewables), and to solve thermal comfort-related problems, there has to be other solution. The major challenge to find it would be to have a change of thinking process. If a building in a hot-arid region uses natural processes to emulate the functions of HVAC systems, and the proper passive strategies, then, it will provide thermal comfort to its users, diminishing the need of a mechanical system. This hypothesis will be carried out by extracting the natural processes found in a specific case in nature, applying them into a building's design, and then simulating its energy efficiency with the adequate software. There will be a comparison of the same proposed building without the natural processes, to have tangible numbers showing that these proposed strategies, in fact, work. With explanatory detailed diagrams and the energy analysis, the hypothesis could be proven correct or incorrect. The significance of this approach relies on the proximity to the natural processes that have been working in different aspects of life since the beginning of time. They have been there all the time, waiting until architects, engineers, and people in general use them, instead of making more new energy-using inventions. By having the numbers from a conventional building and the ones of the proposed building, and the right environmental diagrams, the experiment should be valid. In the near future, there should be more research focused on nature and its processes, in order to be able to reduce the use of mechanical systems, and with that, reduce the energy use and the carbon footprint.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Wei; Reddy, T. A.; Gurian, Patrick
2007-01-31
A companion paper to Jiang and Reddy that presents a general and computationally efficient methodology for dyanmic scheduling and optimal control of complex primary HVAC&R plants using a deterministic engineering optimization approach.
Residential and Light Commercial HVAC. Teacher Edition.
ERIC Educational Resources Information Center
Stephenson, David; Fulkerson, Dan, Ed.
This curriculum guide contains 18 units of instruction for a competency-based course in residential and light commercial heating, ventilating, and air conditioning (HVAC). Introductory materials include a competency profile and an instructional/task analysis that correlates job training with related information for this course. Each instructional…
Computer-Controlled HVAC -- at Low Cost
ERIC Educational Resources Information Center
American School and University, 1974
1974-01-01
By tying into a computerized building-automation network, Schaumburg High School, Illinois, slashed its energy consumption by one-third. The remotely connected computer controls the mechanical system for the high school as well as other buildings in the community, with the cost being shared by all. (Author)
Indoor Air Quality in Schools.
ERIC Educational Resources Information Center
Torres, Vincent M.
Asserting that the air quality inside schools is often worse than outdoor pollution, leading to various health complaints and loss of productivity, this paper details factors contributing to schools' indoor air quality. These include the design, operation, and maintenance of heating, ventilating, and air conditioning (HVAC) systems; building…
28. VIEW OF SOUTHWEST CORNER OF NORTH WING OF TECHWOOD ...
28. VIEW OF SOUTHWEST CORNER OF NORTH WING OF TECHWOOD DORMITORY. AIR CONDITIONING UNITS ARE VISIBLE IN THE WINDOWS OF SEVERAL ROOMS, APPARENTLY TO SUPPLEMENT THE BUILDING'S HVAC SYSTEM. - Techwood Homes, McDaniel Dormitory, 581-587 Techwood Drive, Atlanta, Fulton County, GA
ERIC Educational Resources Information Center
Crawford, Gary N.
1995-01-01
Planning new construction is an opportunity to recognize indoor environmental quality (IEQ) issues. Provides an overview of some common IEQ issues associated with construction projects. A building's heating, ventilating, and air-conditioning (HVAC) system is by far the single most common cause of IEQ problems and complaints. (MLF)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Im, Piljae; Liu, Xiaobing
High initial costs and lack of public awareness of ground-source heat pump (GSHP) technology are the two major barriers preventing rapid deployment of this energy-saving technology in the United States. Under the American Recovery and Reinvestment Act (ARRA), 26 GSHP projects have been competitively selected and carried out to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. This paper highlights the findings of a case study of one of the ARRA-funded GSHP demonstration projects, a ground-source variable refrigerant flow (GS-VRF) system installed at the Human Health Building at Oakland University in Rochester, Michigan.more » This case study is based on the analysis of measured performance data, maintenance records, construction costs, and simulations of the energy consumption of conventional central heating, ventilation, and air-conditioning (HVAC) systems providing the same level of space conditioning as the demonstrated GS-VRF system. The evaluated performance metrics include the energy efficiency of the heat pump equipment and the overall GS-VRF system, pumping performance, energy savings, carbon emission reductions, and cost-effectiveness of the GS-VRF system compared with conventional HVAC systems. This case study also identified opportunities for reducing uncertainties in the performance evaluation, improving the operational efficiency, and reducing the installed cost of similar GSHP systems in the future.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Iain S.; Wray, Craig P.; Guillot, Cyril
2003-08-01
In this report, we discuss the accuracy of flow hoods for residential applications, based on laboratory tests and field studies. The results indicate that commercially available hoods are often inadequate to measure flows in residential systems, and that there can be a wide range of performance between different flow hoods. The errors are due to poor calibrations, sensitivity of existing hoods to grille flow non-uniformities, and flow changes from added flow resistance. We also evaluated several simple techniques for measuring register airflows that could be adopted by the HVAC industry and homeowners as simple diagnostics that are often as accuratemore » as commercially available devices. Our test results also show that current calibration procedures for flow hoods do not account for field application problems. As a result, organizations such as ASHRAE or ASTM need to develop a new standard for flow hood calibration, along with a new measurement standard to address field use of flow hoods.« less
49 CFR 571.404 - Standard No. 404; Platform lift installations in motor vehicles.
Code of Federal Regulations, 2013 CFR
2013-10-01
... vehicle, with the vehicle's HVAC system turned off, for a minimum of 20 minutes, after which the engine is... Motor Vehicle Safety Standard No. 403, Lift Systems for Motor Vehicles (49 CFR 571.403). S4.1.2Lift... Safety Standard No. 403, Lift Systems for Motor Vehicles (49 CFR 571.403). S4.1.3Platform lifts must be...
49 CFR 571.404 - Standard No. 404; Platform lift installations in motor vehicles.
Code of Federal Regulations, 2014 CFR
2014-10-01
... vehicle, with the vehicle's HVAC system turned off, for a minimum of 20 minutes, after which the engine is... Motor Vehicle Safety Standard No. 403, Lift Systems for Motor Vehicles (49 CFR 571.403). S4.1.2Lift... Safety Standard No. 403, Lift Systems for Motor Vehicles (49 CFR 571.403). S4.1.3Platform lifts must be...
49 CFR 571.404 - Standard No. 404; Platform lift installations in motor vehicles.
Code of Federal Regulations, 2012 CFR
2012-10-01
... vehicle, with the vehicle's HVAC system turned off, for a minimum of 20 minutes, after which the engine is... Motor Vehicle Safety Standard No. 403, Lift Systems for Motor Vehicles (49 CFR 571.403). S4.1.2Lift... Safety Standard No. 403, Lift Systems for Motor Vehicles (49 CFR 571.403). S4.1.3Platform lifts must be...
A Process to Establish the Common Functions Performed by a Multi-Role Vessel
2010-09-01
25 5.9 EPF – Environmental Protection Functions...Functions WFO Offshore Warfighting Functions EPF Environmental Protection Functions EPF .1 Waste Treatment Functions DSTO-TR-2473 16 HSF...Mission Command Function CFV Vessel Command Function EPF Environmental Protection Functions HSF Hotel Services Functions HVAC HVAC Functions
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-21
... Rulemaking Federal Advisory Committee: Notice of Open Meetings for the Commercial HVAC, WH, and Refrigeration... Requirements for Commercial HVAC, WH, and Refrigeration Equipment AGENCY: Office of Energy Efficiency and... Heating (WH), and Refrigeration Certification Working Group (Commercial Certification Group). The purpose...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-16
... for the Commercial HVAC, WH, and Refrigeration Certification Working Group and Announcement of Working... Refrigeration Equipment AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION..., Ventilation, and Air-conditioning (HVAC), Water Heating (WH), and Refrigeration Certification Working Group...
Illinois Occupational Skill Standards: HVAC/R Technician Cluster.
ERIC Educational Resources Information Center
Illinois Occupational Skill Standards and Credentialing Council, Carbondale.
This document, which is intended to serve as a guide for work force preparation program providers, details the Illinois occupational skill standards for programs preparing students for employment in jobs in the heating, ventilation, air conditioning, and refrigeration (HVAC/R) industry. Agency partners involved in this project include: the…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-15
... Meetings for the Commercial HVAC, WH, and Refrigeration Certification Working Group and Announcement of... Refrigeration Equipment AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION..., Ventilation, and Air-conditioning (HVAC), Water Heating (WH), and Refrigeration Certification Working Group...
Maximize Benefits, Minimize Risk: Selecting the Right HVAC Firm.
ERIC Educational Resources Information Center
Golden, James T.
1993-01-01
An informal survey of 20 major urban school districts found that 40% were currently operating in a "break down" maintenance mode. A majority, 57.9%, also indicated they saw considerable benefits in contracting for heating, ventilating, and air conditioning (HVAC) maintenance services with outside firms. Offers guidelines in selecting…
Residential and Light Commercial HVAC. Teacher Edition and Student Edition. Second Edition.
ERIC Educational Resources Information Center
Stephenson, David
This package contains teacher and student editions of a residential and light commercial heating, ventilation, and air conditioning (HVAC) course of study. The teacher edition contains information on the following: using the publication; national competencies; competency profile; related academic and workplace skills list; tools, equipment, and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
This Building America Top Innovations profile describes Building America research showing how some energy-efficiency measure cost increases can balance against measures that reduce up-front costs: Advanced framing cuts lumber costs, right sizing can mean downsizing the HVAC, moving HVAC into conditioned space cuts installation costs, designing on a 2-foot grid reduces materials waste, etc.
Mendell, M J; Lei-Gomez, Q; Mirer, A G; Seppänen, O; Brunner, G
2008-08-01
Building-related symptoms in office workers worldwide are common, but of uncertain etiology. One cause may be contaminants related to characteristics of heating, ventilating, and air-conditioning (HVAC) systems. We analyzed data from 97 representative air-conditioned US office buildings in the Building Assessment and Survey Evaluation (BASE) study. Using logistic regression models with generalized estimating equations, we estimated odds ratios (OR) and 95% confidence intervals for associations between building-related symptom outcomes and HVAC characteristics. Outdoor air intakes less than 60 m above ground level were associated with significant increases in most symptoms: e.g. for upper respiratory symptoms, OR for intake heights 30 to 60 m, 0 to <30 m, and below ground level were 2.7, 2.0, and 2.1. Humidification systems with poor condition/maintenance were associated with significantly increased upper respiratory symptoms, eye symptoms, fatigue/difficulty concentrating, and skin symptoms, with OR = 1.5, 1.5, 1.7, and 1.6. Less frequent cleaning of cooling coils and drain pans was associated with significantly increased eye symptoms and headache, with OR = 1.7 and 1.6. Symptoms may be due to microbial exposures from poorly maintained ventilation systems and to greater levels of vehicular pollutants at air intakes nearer the ground level. Replication and explanation of these findings is needed. These findings support current beliefs that moisture-related HVAC components such as cooling coils and humidification systems, when poorly maintained, may be sources of contaminants that cause adverse health effects in occupants, even if we cannot yet identify or measure the causal exposures. While finding substantially elevated risks for poorly maintained humidification systems, relative to no humidification systems, the findings do not identify important (symptom) benefits from well-maintained humidification systems. Findings also provide an initial suggestion, needing corroboration, that outdoor air intakes lower than 18 stories in office buildings may be associated with substantial increases in many symptoms. If this is corroborated and linked to ground-level vehicle emissions, urban ventilation air intakes may need to be located as far above ground level as possible or to incorporate air cleaners that remove gaseous pollutants.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-05
... Commercial and Industrial commercial and industrial Refrigeration Equipment Manufacturing. refrigeration... commercial refrigeration installation; HVAC contractors. This table is not intended to be exhaustive, but... servicing of existing refrigeration and air-conditioning equipment), with a total phaseout in 2030. The...
The U.S. Environmental Protection Agency (EPA) has created the Environmental Technology Verification (ETV) Program to facilitate the deployment of innovative or improved environmental technologies through performance verification and dissemination of information. The goal of the...
Analysis of field test data on residential heating and cooling
NASA Astrophysics Data System (ADS)
Talbert, S. G.
1980-12-01
The computer program using field site data collected on 48 homes located in six cities in different climatic regions of the United States is discussed. In addition, a User's Guide was prepared for the computer program which is contained in a separate two-volume document entitled User's Guide for REAP: Residential Energy Analysis Program. Feasibility studies were conducted pertaining to potential improvements for REAP, including: the addition of an oil-furnace model; improving the infiltration subroutine; adding active and/or passive solar subroutines; incorporating a thermal energy storage model; and providing dual HVAC systems (e.g., heat pump-gas furnace). The purpose of REAP is to enable building designers and energy analysts to evaluate how such factors as building design, weather conditions, internal heat loads, and HVAC equipment performance, influence the energy requirements of residential buildings.
Stochastic Control of Energy Efficient Buildings: A Semidefinite Programming Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Xiao; Dong, Jin; Djouadi, Seddik M
2015-01-01
The key goal in energy efficient buildings is to reduce energy consumption of Heating, Ventilation, and Air- Conditioning (HVAC) systems while maintaining a comfortable temperature and humidity in the building. This paper proposes a novel stochastic control approach for achieving joint performance and power control of HVAC. We employ a constrained Stochastic Linear Quadratic Control (cSLQC) by minimizing a quadratic cost function with a disturbance assumed to be Gaussian. The problem is formulated to minimize the expected cost subject to a linear constraint and a probabilistic constraint. By using cSLQC, the problem is reduced to a semidefinite optimization problem, wheremore » the optimal control can be computed efficiently by Semidefinite programming (SDP). Simulation results are provided to demonstrate the effectiveness and power efficiency by utilizing the proposed control approach.« less
Analyzing industrial energy use through ordinary least squares regression models
NASA Astrophysics Data System (ADS)
Golden, Allyson Katherine
Extensive research has been performed using regression analysis and calibrated simulations to create baseline energy consumption models for residential buildings and commercial institutions. However, few attempts have been made to discuss the applicability of these methodologies to establish baseline energy consumption models for industrial manufacturing facilities. In the few studies of industrial facilities, the presented linear change-point and degree-day regression analyses illustrate ideal cases. It follows that there is a need in the established literature to discuss the methodologies and to determine their applicability for establishing baseline energy consumption models of industrial manufacturing facilities. The thesis determines the effectiveness of simple inverse linear statistical regression models when establishing baseline energy consumption models for industrial manufacturing facilities. Ordinary least squares change-point and degree-day regression methods are used to create baseline energy consumption models for nine different case studies of industrial manufacturing facilities located in the southeastern United States. The influence of ambient dry-bulb temperature and production on total facility energy consumption is observed. The energy consumption behavior of industrial manufacturing facilities is only sometimes sufficiently explained by temperature, production, or a combination of the two variables. This thesis also provides methods for generating baseline energy models that are straightforward and accessible to anyone in the industrial manufacturing community. The methods outlined in this thesis may be easily replicated by anyone that possesses basic spreadsheet software and general knowledge of the relationship between energy consumption and weather, production, or other influential variables. With the help of simple inverse linear regression models, industrial manufacturing facilities may better understand their energy consumption and production behavior, and identify opportunities for energy and cost savings. This thesis study also utilizes change-point and degree-day baseline energy models to disaggregate facility annual energy consumption into separate industrial end-user categories. The baseline energy model provides a suitable and economical alternative to sub-metering individual manufacturing equipment. One case study describes the conjoined use of baseline energy models and facility information gathered during a one-day onsite visit to perform an end-point energy analysis of an injection molding facility conducted by the Alabama Industrial Assessment Center. Applying baseline regression model results to the end-point energy analysis allowed the AIAC to better approximate the annual energy consumption of the facility's HVAC system.
1980-05-01
engineering ,ZteNo D R RPTE16 research w 9 laboratory COMPARISON OF BUILDING LOADS ANALYSIS AND SYSTEM THERMODYNAMICS (BLAST) AD 0 5 5,0 3COMPUTER PROGRAM...Building Loads Analysis and System Thermodynamics (BLAST) computer program. A dental clinic and a battalion headquarters and classroom building were...Building and HVAC System Data Computer Simulation Comparison of Actual and Simulated Results ANALYSIS AND FINDINGS
BETTER DUCT SYSTEMS FOR HOME HEATING AND COOLING.
DOE Office of Scientific and Technical Information (OSTI.GOV)
ANDREWS,J.
This is a series of six guides intended to provide a working knowledge of residential heating and cooling duct systems, an understanding of the major issues concerning efficiency, comfort, health, and safety, and practical tips on installation and repair of duct systems. These guides are intended for use by contractors, system designers, advanced technicians, and other HVAC professionals. The first two guides are also intended to be accessible to the general reader.
2017-03-21
for public release; distribution is unlimited 13. SUPPLEMENTARY NOTES None 14. ABSTRACT ESTCP project EW-201409 aimed at demonstrating the benefits ...of innovative software technology for building HV AC systems. These benefits included reduced system energy use and cost as wetl as improved...Control Approach March 2017 This document has been cleared for public release; Distribution Statement A
10 CFR 431.402 - Preemption of State regulations for commercial HVAC & WH products.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Preemption of State regulations for commercial HVAC & WH products. 431.402 Section 431.402 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM... regulation concerning the energy efficiency or energy use of that product, except as provided for in Section...
Reducing Building HVAC Costs with Site-Recovery Energy
ERIC Educational Resources Information Center
Pargeter, Stephen J.
2012-01-01
Building owners are caught between two powerful forces--the need to lower energy costs and the need to meet or exceed outdoor air ventilation regulations for occupant health and comfort. Large amounts of energy are wasted each day from commercial, institutional, and government building sites as heating, ventilation, and air conditioning (HVAC)…
Demonstration of Corrosion-Resistant Coatings for Air-Conditioning Coils and Fins
2015-06-01
of their respective owners. The findings of this report are not to be construed as an official Department of the Army position unless so designated by...13 Figure 9. HVAC condenser fins with Coating E after on-site exposure for 24 months...14 Figure 10. HVAC condenser fins with
Evaluation of sampling methods for Bacillus spore-contaminated HVAC filters
Calfee, M. Worth; Rose, Laura J.; Tufts, Jenia; Morse, Stephen; Clayton, Matt; Touati, Abderrahmane; Griffin-Gatchalian, Nicole; Slone, Christina; McSweeney, Neal
2016-01-01
The objective of this study was to compare an extraction-based sampling method to two vacuum-based sampling methods (vacuum sock and 37 mm cassette filter) with regards to their ability to recover Bacillus atrophaeus spores (surrogate for Bacillus anthracis) from pleated heating, ventilation, and air conditioning (HVAC) filters that are typically found in commercial and residential buildings. Electrostatic and mechanical HVAC filters were tested, both without and after loading with dust to 50% of their total holding capacity. The results were analyzed by one-way ANOVA across material types, presence or absence of dust, and sampling device. The extraction method gave higher relative recoveries than the two vacuum methods evaluated (p ≤ 0.001). On average, recoveries obtained by the vacuum methods were about 30% of those achieved by the extraction method. Relative recoveries between the two vacuum methods were not significantly different (p > 0.05). Although extraction methods yielded higher recoveries than vacuum methods, either HVAC filter sampling approach may provide a rapid and inexpensive mechanism for understanding the extent of contamination following a wide-area biological release incident. PMID:24184312
Evaluation of sampling methods for Bacillus spore-contaminated HVAC filters.
Calfee, M Worth; Rose, Laura J; Tufts, Jenia; Morse, Stephen; Clayton, Matt; Touati, Abderrahmane; Griffin-Gatchalian, Nicole; Slone, Christina; McSweeney, Neal
2014-01-01
The objective of this study was to compare an extraction-based sampling method to two vacuum-based sampling methods (vacuum sock and 37mm cassette filter) with regards to their ability to recover Bacillus atrophaeus spores (surrogate for Bacillus anthracis) from pleated heating, ventilation, and air conditioning (HVAC) filters that are typically found in commercial and residential buildings. Electrostatic and mechanical HVAC filters were tested, both without and after loading with dust to 50% of their total holding capacity. The results were analyzed by one-way ANOVA across material types, presence or absence of dust, and sampling device. The extraction method gave higher relative recoveries than the two vacuum methods evaluated (p≤0.001). On average, recoveries obtained by the vacuum methods were about 30% of those achieved by the extraction method. Relative recoveries between the two vacuum methods were not significantly different (p>0.05). Although extraction methods yielded higher recoveries than vacuum methods, either HVAC filter sampling approach may provide a rapid and inexpensive mechanism for understanding the extent of contamination following a wide-area biological release incident. Published by Elsevier B.V.
Center for the Built Environment: Research on Indoor Environmental Quality
Comfort System Speech Privacy Task Ambient Conditioning Team Space Design Study Thermal Comfort Automotive resulting from HVAC, building, and facade design decisions. Acoustical Analysis in Office Environments Using building energy. The Impact of Team Space Design on Collaboration Assessing individual and group worker
10 CFR 434.516 - Building exterior envelope.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Proposed Design, the envelope characteristics of the Proposed Design shall be used. 516.2 Infiltration. For Prototype and Reference Buildings, the infiltration assumptions in subsection 516.2.1 shall be prescribed.... Infiltration shall impact perimeter zones only. 516.2.1 When the HVAC system is switched “on,” no infiltration...
Current recommendations for remediation of fiberglass duct materials contaminated with fungi specify complete removal, which can be extremely expensive, but in-place duct cleaning may not provide adequate protection from regrowth of fungal contamination. Therefore, a common pract...
The Environmental Technology Verification report discusses the technology and performance of the AFP30 air filter for dust and bioaerosol filtration manufactured by Airflow Products. The pressure drop across the filter was 62 Pa clean and 247 Pa dust loaded. The filtration effici...
The Environmental Technology Verification report discusses the technology and performance of the Excel Filter, Model SBG24242898 air filter for dust and bioaerosol filtration manufactured by Glasfloss Industries, Inc. The pressure drop across the filter was 82 Pa clean and 348 Pa...
Case Study for the ARRA-funded GSHP Demonstration at University at Albany
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiaobing; Malhotra, Mini; Xiong, Zeyu
High initial costs and lack of public awareness of ground-source heat pump (GSHP) technology are the two major barriers preventing rapid deployment of this energy-saving technology in the United States. Under the American Recovery and Reinvestment Act (ARRA), 26 GSHP projects have been competitively selected and carried out to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. This report highlights the findings of a case study of one of the ARRA-funded GSHP demonstration projects—a distributed GSHP system at a new 500-bed apartment-style student residence hall at the University at Albany. This case studymore » is based on the analysis of detailed design documents, measured performance data, published catalog data of heat pump equipment, and actual construction costs. Simulations with a calibrated computer model are performed for both the demonstrated GSHP system and a baseline heating, ventilation, and airconditioning (HVAC) system to determine the energy savings and other related benefits achieved by the GSHP system. The evaluated performance metrics include the energy efficiency of the heat pump equipment and the overall GSHP system, as well as the pumping performance, energy savings, carbon emission reductions, and cost-effectiveness of the demonstrated GSHP system compared with the baseline HVAC system. This case study also identifies opportunities for improving the operational efficiency of the demonstrated GSHP system.« less
Intelligent building system for airport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ancevic, M.
1997-11-01
The Munich airport uses a state-of-the-art intelligent building management system to control systems such as HVAC, runway lights, baggage handling, etc. Planning the new Munich II international airport provided a unique opportunity to use the latest state-of-the-art technical systems, while integrating their control through a single intelligent building management system. Opened in 1992, the airport is Germany`s second-largest airport after Frankfurt. The airport is staffed by 16,000 employees and can handle 17 million passengers a year. The sprawling site encompasses more than 120 buildings. The airport`s distributed control system is specifically designed to optimize the complex`s unique range of functions,more » while providing a high degree of comfort, convenience and safety for airport visitors. With the capacity to control 200,000 points, this system controls more than 112,000 points and integrates 13 major subsystems from nine different vendors. It provides convenient, accessible control of everything including the complex`s power plant, HVAC Control, the terminal`s people-moving functions, interior lighting controls, runway lights, baggage forwarding systems, elevators, and boarding bridges. The airport was named 1993 intelligent building of the year by the Intelligent Buildings Institute Foundation. Its building management system is a striking example of the degree to which a building complex`s functions can be integrated for greater operational control and efficiency.« less
Preserving Envelope Efficiency in Performance Based Code Compliance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thornton, Brian A.; Sullivan, Greg P.; Rosenberg, Michael I.
2015-06-20
The City of Seattle 2012 Energy Code (Seattle 2014), one of the most progressive in the country, is under revision for its 2015 edition. Additionally, city personnel participate in the development of the next generation of the Washington State Energy Code and the International Energy Code. Seattle has pledged carbon neutrality by 2050 including buildings, transportation and other sectors. The United States Department of Energy (DOE), through Pacific Northwest National Laboratory (PNNL) provided technical assistance to Seattle in order to understand the implications of one potential direction for its code development, limiting trade-offs of long-lived building envelope components less stringentmore » than the prescriptive code envelope requirements by using better-than-code but shorter-lived lighting and heating, ventilation, and air-conditioning (HVAC) components through the total building performance modeled energy compliance path. Weaker building envelopes can permanently limit building energy performance even as lighting and HVAC components are upgraded over time, because retrofitting the envelope is less likely and more expensive. Weaker building envelopes may also increase the required size, cost and complexity of HVAC systems and may adversely affect occupant comfort. This report presents the results of this technical assistance. The use of modeled energy code compliance to trade-off envelope components with shorter-lived building components is not unique to Seattle and the lessons and possible solutions described in this report have implications for other jurisdictions and energy codes.« less
Development of Design Guidance for K-12 Schools from 30% to 50% Energy Savings: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pless, S.; Torcellini, P.; Long, N.
2008-07-01
This paper describes the development of energy efficiency recommendations for achieving 30% whole-building energy savings in K-12 schools over levels achieved by following the ANSI/ASHRAE/IESNA Standard 90.1. These design recommendations look at building envelope, fenestration, lighting systems (including electrical lights and daylighting), HVAC systems, building automation and controls, outside air treatment, and service water heating.
76 FR 44613 - Notice of Buy American Waiver Under the American Recovery and Reinvestment Act of 2009
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-26
... the bow thruster [75 FR 9256 (March 1, 2010)], anti-roll tank control system [76 FR 184 (January 3, 2011)], weather fax [76 FR 186 (January 3, 2011)], ultrasonic antifouling system [76 FR 35920 (June 20, 2011)], and HVAC generators [76 FR 35919 (June 20, 2011)]; all of which were in excess of this $10,000...
2017-03-21
Energy and Water Projects March 21, 2017 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of...included reduced system energy use and cost as well as improved performance driven by autonomous commissioning and optimized system control. In the end...improve system performance and reduce energy use and cost. However, implementing these solutions into the extremely heterogeneous and often
Low-Flow Liquid Desiccant Air-Conditioning: Demonstrated Performance and Cost Implications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozubal, E.; Herrmann, L.; Deru, M.
2014-09-01
Cooling loads must be dramatically reduced when designing net-zero energy buildings or other highly efficient facilities. Advances in this area have focused primarily on reducing a building's sensible cooling loads by improving the envelope, integrating properly sized daylighting systems, adding exterior solar shading devices, and reducing internal heat gains. As sensible loads decrease, however, latent loads remain relatively constant, and thus become a greater fraction of the overall cooling requirement in highly efficient building designs, particularly in humid climates. This shift toward latent cooling is a challenge for heating, ventilation, and air-conditioning (HVAC) systems. Traditional systems typically dehumidify by firstmore » overcooling air below the dew-point temperature and then reheating it to an appropriate supply temperature, which requires an excessive amount of energy. Another dehumidification strategy incorporates solid desiccant rotors that remove water from air more efficiently; however, these systems are large and increase fan energy consumption due to the increased airside pressure drop of solid desiccant rotors. A third dehumidification strategy involves high flow liquid desiccant systems. These systems require a high maintenance separator to protect the air distribution system from corrosive desiccant droplet carryover and so are more commonly used in industrial applications and rarely in commercial buildings. Both solid desiccant systems and most high-flow liquid desiccant systems (if not internally cooled) add sensible energy which must later be removed to the air stream during dehumidification, through the release of sensible heat during the sorption process.« less
A study of energy use for ventilation and air-conditioning systems in Hong Kong
NASA Astrophysics Data System (ADS)
Yu, Chung Hoi Philip
Most of the local modern buildings are high-rise with enclosed structure. Mechanical ventilation and air conditioning (MVAC) systems are installed for thermal comfort. Various types of MVAC systems found in Hong Kong were critically reviewed with comments on their characteristics in energy efficiency as well as application. The major design considerations were also discussed. Besides MVAC, other energy-consuming components in commercial buildings were also identified, such as lighting, lifts and escalators, office equipment, information technology facilities, etc. A practical approach has been adopted throughout this study in order that the end results will have pragmatic value to the heating, ventilating and air-conditioning (HVAC) industry in Hong Kong. Indoor Air Quality (IAQ) has become a major issue in commercial buildings worldwide including Hong Kong. Ventilation rate is no doubt a critical element in the design of HVAC systems, which can be realized more obviously in railway train compartments where the carbon dioxide level will be built up quickly when the compartments are crowded during rush hours. A study was carried out based on a simplified model using a train compartment that is equipped with an MVAC system. Overall Thermal Transfer Value (OTTV) is a single-value parameter for controlling building energy use and is relatively simple to implement legislatively. The local government has taken a first step in reacting to the worldwide concern of energy conservation and environmental protection since 1995. Different methods of OTTV calculation were studied and the computation results were compared. It gives a clear picture of the advantages and limitations for each method to the building designers. However, due to the limitations of using OTTV as the only parameter for building energy control, some new approaches to a total control of building energy use were discussed and they might be considered for future revision of the building energy codes in Hong Kong. A sample database of 20 existing commercial buildings was established for further analysis of building energy use. Heat gains through building envelopes were reviewed with reference to fundamental theory behind as well as the heat transfer equations presented in the literature. The prevailing methodologies of cooling load estimation and energy calculation were studied. Building energy auditing methods were discussed with reference to the local practice as well as international standards and guides. The common procedures of building energy auditing with three stages were outlined: historical data collection/analysis, preliminary site survey, and detailed energy consumption investigation. A typical commercial building was selected for detailed study of energy use by MVAC systems. (Abstract shortened by UMI.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wetter, Michael; Fuchs, Marcus; Nouidui, Thierry
This paper discusses design decisions for exporting Modelica thermofluid flow components as Functional Mockup Units. The purpose is to provide guidelines that will allow building energy simulation programs and HVAC equipment manufacturers to effectively use FMUs for modeling of HVAC components and systems. We provide an analysis for direct input-output dependencies of such components and discuss how these dependencies can lead to algebraic loops that are formed when connecting thermofluid flow components. Based on this analysis, we provide recommendations that increase the computing efficiency of such components and systems that are formed by connecting multiple components. We explain what codemore » optimizations are lost when providing thermofluid flow components as FMUs rather than Modelica code. We present an implementation of a package for FMU export of such components, explain the rationale for selecting the connector variables of the FMUs and finally provide computing benchmarks for different design choices. It turns out that selecting temperature rather than specific enthalpy as input and output signals does not lead to a measurable increase in computing time, but selecting nine small FMUs rather than a large FMU increases computing time by 70%.« less
Takuma, Takahiro; Okada, Kaoru; Yamagata, Akihiro; Shimono, Nobuyuki; Niki, Yoshihito
2011-02-01
We investigated mold colonization of air handling units (AHUs) of heating, ventilating, and air conditioning (HVAC) systems and its effects, including invasive pulmonary mycoses and febrile neutropenia, in patients with hematological malignancies. Sample collection with transparent adhesive tape and culture swabs revealed that AHUs were heavily colonized with molds, including thermotolerant, variously distributed Penicillium spp. Cases of nosocomial invasive pulmonary mycosis were not clustered in specific patient rooms but did occur frequently when the HVAC systems were not in use, prior to intervention (i.e., sealing and disuse of AHUs in private room), and during construction of a new hospital building. Multivariate logistic regression analysis of initial episodes of febrile neutropenia showed that the rate of febrile neutropenia was significantly associated with the duration of neutropenia (odds ratio [OR]: 1.16; 95% confidence interval [CI]: 1.07-1.27) and with sex (OR: 0.469; CI: 0.239-0.902). An evaluation of private rooms showed that female patients also had a lower rate of fever after intervention (OR: 0.0016; 95% CI: 0.000-0.209). The reduced rate of febrile neutropenia after intervention suggests that mold colonization of AHUs had adverse effects on patients with hematological malignancies.
Grant.Wheeler@nrel.gov | 303-275-4577 In November 2016, Grant joined NREL and works in the Commercial Buildings Research Group. His expertise is in commercial product development, as well as the vapor-compression cycle focused on developing residential HVAC systems for commercial sale. While at Texas A&M for his
Design curves for circular and annular duct silencers
NASA Technical Reports Server (NTRS)
Watson, Willie R.; Ramakrishnan, R.
1989-01-01
Conventional models of sound propagation between porous walls (Scott, 1946) are adapted in order to calculate design curves for the lined circular and annular-duct silencers used in HVAC systems. The derivation of the governing equations is outlined, and results for two typical cases are presented graphically. Good agreement with published experimental data is demonstrated.
The Environmental Technology Verification report discusses the technology and performance of the DriPak 90/95% air filter for dust and bioaerosol filtration manufactured by AAF International. The pressure drop across the filter was 104 Pa clean and 348 Pa dust loaded, and the fil...
Energy and Water: Conservation Suggestions for California's Elementary and Secondary Schools.
ERIC Educational Resources Information Center
California State Dept. of Education, Sacramento.
This publication contains conservation suggestions for schools in California to save water and energy. Contents include: (1) a list of sources of additional energy education assistance and materials; (2) a discussion of energy conservation in schools including HVAC system operations, lighting and building design; (3) a summary outline of actions…
The Environmental Technology Verification report discusses the technology and performance of the BioCel I (Type SH) air filter for dust and bioaerosol filtration manufactured by AAF International. The pressure drop across the filter was 236 Pa clean and 478 Pa dust loaded, and th...
Causes of Indoor Air Quality Problems in Schools: Summary of Scientific Research. Revised Edition.
ERIC Educational Resources Information Center
Bayer, Charlene W.; Crow, Sidney A.; Fischer, John
Understanding the primary causes of indoor air quality (IAQ) problems and how controllable factors--proper heating, ventilation and air-conditioning (HVAC) system design, allocation of adequate outdoor air, proper filtration, effective humidity control, and routine maintenance--can avert problems may help all building owners, operators, and…