Sample records for facility integrated computer

  1. High-Performance Computing Data Center | Energy Systems Integration

    Science.gov Websites

    Facility | NREL High-Performance Computing Data Center High-Performance Computing Data Center The Energy Systems Integration Facility's High-Performance Computing Data Center is home to Peregrine -the largest high-performance computing system in the world exclusively dedicated to advancing

  2. Facilities Management via Computer: Information at Your Fingertips.

    ERIC Educational Resources Information Center

    Hensey, Susan

    1996-01-01

    Computer-aided facilities management is a software program consisting of a relational database of facility information--such as occupancy, usage, student counts, etc.--attached to or merged with computerized floor plans. This program can integrate data with drawings, thereby allowing the development of "what if" scenarios. (MLF)

  3. High-Performance Computing User Facility | Computational Science | NREL

    Science.gov Websites

    User Facility High-Performance Computing User Facility The High-Performance Computing User Facility technologies. Photo of the Peregrine supercomputer The High Performance Computing (HPC) User Facility provides Gyrfalcon Mass Storage System. Access Our HPC User Facility Learn more about these systems and how to access

  4. Energy Systems Integration Facility Videos | Energy Systems Integration

    Science.gov Websites

    Facility | NREL Energy Systems Integration Facility Videos Energy Systems Integration Facility Integration Facility NREL + SolarCity: Maximizing Solar Power on Electrical Grids Redefining What's Possible for Renewable Energy: Grid Integration Robot-Powered Reliability Testing at NREL's ESIF Microgrid

  5. INTEGRATION OF FACILITY MODELING CAPABILITIES FOR NUCLEAR NONPROLIFERATION ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorensek, M.; Hamm, L.; Garcia, H.

    2011-07-18

    Developing automated methods for data collection and analysis that can facilitate nuclear nonproliferation assessment is an important research area with significant consequences for the effective global deployment of nuclear energy. Facility modeling that can integrate and interpret observations collected from monitored facilities in order to ascertain their functional details will be a critical element of these methods. Although improvements are continually sought, existing facility modeling tools can characterize all aspects of reactor operations and the majority of nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. Assessing nonproliferation status is challenging because observations can come frommore » many sources, including local and remote sensors that monitor facility operations, as well as open sources that provide specific business information about the monitored facilities, and can be of many different types. Although many current facility models are capable of analyzing large amounts of information, they have not been integrated in an analyst-friendly manner. This paper addresses some of these facility modeling capabilities and illustrates how they could be integrated and utilized for nonproliferation analysis. The inverse problem of inferring facility conditions based on collected observations is described, along with a proposed architecture and computer framework for utilizing facility modeling tools. After considering a representative sampling of key facility modeling capabilities, the proposed integration framework is illustrated with several examples.« less

  6. Energy Systems Integration Facility (ESIF): Golden, CO - Energy Integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheppy, Michael; VanGeet, Otto; Pless, Shanti

    2015-03-01

    At NREL's Energy Systems Integration Facility (ESIF) in Golden, Colo., scientists and engineers work to overcome challenges related to how the nation generates, delivers and uses energy by modernizing the interplay between energy sources, infrastructure, and data. Test facilities include a megawatt-scale ac electric grid, photovoltaic simulators and a load bank. Additionally, a high performance computing data center (HPCDC) is dedicated to advancing renewable energy and energy efficient technologies. A key design strategy is to use waste heat from the HPCDC to heat parts of the building. The ESIF boasts an annual EUI of 168.3 kBtu/ft2. This article describes themore » building's procurement, design and first year of performance.« less

  7. Integrating Computational Chemistry into the Physical Chemistry Curriculum

    ERIC Educational Resources Information Center

    Johnson, Lewis E.; Engel, Thomas

    2011-01-01

    Relatively few undergraduate physical chemistry programs integrate molecular modeling into their quantum mechanics curriculum owing to concerns about limited access to computational facilities, the cost of software, and concerns about increasing the course material. However, modeling exercises can be integrated into an undergraduate course at a…

  8. Redirecting Under-Utilised Computer Laboratories into Cluster Computing Facilities

    ERIC Educational Resources Information Center

    Atkinson, John S.; Spenneman, Dirk H. R.; Cornforth, David

    2005-01-01

    Purpose: To provide administrators at an Australian university with data on the feasibility of redirecting under-utilised computer laboratories facilities into a distributed high performance computing facility. Design/methodology/approach: The individual log-in records for each computer located in the computer laboratories at the university were…

  9. Computer-Aided Facilities Management Systems (CAFM).

    ERIC Educational Resources Information Center

    Cyros, Kreon L.

    Computer-aided facilities management (CAFM) refers to a collection of software used with increasing frequency by facilities managers. The six major CAFM components are discussed with respect to their usefulness and popularity in facilities management applications: (1) computer-aided design; (2) computer-aided engineering; (3) decision support…

  10. Computational Tools and Facilities for the Next-Generation Analysis and Design Environment

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)

    1997-01-01

    This document contains presentations from the joint UVA/NASA Workshop on Computational Tools and Facilities for the Next-Generation Analysis and Design Environment held at the Virginia Consortium of Engineering and Science Universities in Hampton, Virginia on September 17-18, 1996. The presentations focused on the computational tools and facilities for analysis and design of engineering systems, including, real-time simulations, immersive systems, collaborative engineering environment, Web-based tools and interactive media for technical training. Workshop attendees represented NASA, commercial software developers, the aerospace industry, government labs, and academia. The workshop objectives were to assess the level of maturity of a number of computational tools and facilities and their potential for application to the next-generation integrated design environment.

  11. Integration of High-Performance Computing into Cloud Computing Services

    NASA Astrophysics Data System (ADS)

    Vouk, Mladen A.; Sills, Eric; Dreher, Patrick

    High-Performance Computing (HPC) projects span a spectrum of computer hardware implementations ranging from peta-flop supercomputers, high-end tera-flop facilities running a variety of operating systems and applications, to mid-range and smaller computational clusters used for HPC application development, pilot runs and prototype staging clusters. What they all have in common is that they operate as a stand-alone system rather than a scalable and shared user re-configurable resource. The advent of cloud computing has changed the traditional HPC implementation. In this article, we will discuss a very successful production-level architecture and policy framework for supporting HPC services within a more general cloud computing infrastructure. This integrated environment, called Virtual Computing Lab (VCL), has been operating at NC State since fall 2004. Nearly 8,500,000 HPC CPU-Hrs were delivered by this environment to NC State faculty and students during 2009. In addition, we present and discuss operational data that show that integration of HPC and non-HPC (or general VCL) services in a cloud can substantially reduce the cost of delivering cloud services (down to cents per CPU hour).

  12. Integrated Test Facility (ITF)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The NASA-Dryden Integrated Test Facility (ITF), also known as the Walter C. Williams Research Aircraft Integration Facility (RAIF), provides an environment for conducting efficient and thorough testing of advanced, highly integrated research aircraft. Flight test confidence is greatly enhanced by the ability to qualify interactive aircraft systems in a controlled environment. In the ITF, each element of a flight vehicle can be regulated and monitored in real time as it interacts with the rest of the aircraft systems. Testing in the ITF is accomplished through automated techniques in which the research aircraft is interfaced to a high-fidelity real-time simulation. Electric and hydraulic power are also supplied, allowing all systems except the engines to function as if in flight. The testing process is controlled by an engineering workstation that sets up initial conditions for a test, initiates the test run, monitors its progress, and archives the data generated. The workstation is also capable of analyzing results of individual tests, comparing results of multiple tests, and producing reports. The computers used in the automated aircraft testing process are also capable of operating in a stand-alone mode with a simulation cockpit, complete with its own instruments and controls. Control law development and modification, aerodynamic, propulsion, guidance model qualification, and flight planning -- functions traditionally associated with real-time simulation -- can all be performed in this manner. The Remotely Augmented Vehicles (RAV) function, now located in the ITF, is a mainstay in the research techniques employed at Dryden. This function is used for tests that are too dangerous for direct human involvement or for which computational capacity does not exist onboard a research aircraft. RAV provides the researcher with a ground-based computer that is radio linked to the test aircraft during actual flight. The Ground Vibration Testing (GVT) system, formerly housed

  13. Integrated Test Facility (ITF)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The NASA-Dryden Integrated Test Facility (ITF), also known as the Walter C. Williams Research Aircraft Integration Facility (RAIF), provides an environment for conducting efficient and thorough testing of advanced, highly integrated research aircraft. Flight test confidence is greatly enhanced by the ability to qualify interactive aircraft systems in a controlled environment. In the ITF, each element of a flight vehicle can be regulated and monitored in real time as it interacts with the rest of the aircraft systems. Testing in the ITF is accomplished through automated techniques in which the research aircraft is interfaced to a high-fidelity real-time simulation. Electric and hydraulic power are also supplied, allowing all systems except the engines to function as if in flight. The testing process is controlled by an engineering workstation that sets up initial conditions for a test, initiates the test run, monitors its progress, and archives the data generated. The workstation is also capable of analyzing results of individual tests, comparing results of multiple tests, and producing reports. The computers used in the automated aircraft testing process are also capable of operating in a stand-alone mode with a simulation cockpit, complete with its own instruments and controls. Control law development and modification, aerodynamic, propulsion, guidance model qualification, and flight planning -- functions traditionally associated with real-time simulation -- can all be performed in this manner. The Remotely Augmented Vehicles (RAV) function, now located in the ITF, is a mainstay in the research techniques employed at Dryden. This function is used for tests that are too dangerous for direct human involvement or for which computational capacity does not exist onboard a research aircraft. RAV provides the researcher with a ground-based computer that is radio linked to the test aircraft during actual flight. The Ground Vibration Testing (GVT) system, formerly housed

  14. Energy Systems Integration Facility Control Room | Energy Systems

    Science.gov Websites

    Integration Facility | NREL Energy Systems Integration Facility Control Room Energy Systems Integration Facility Control Room The Energy Systems Integration Facility control room allows system engineers as the monitoring point for the facility's integrated safety and control systems. Photo of employees

  15. Brief Survey of TSC Computing Facilities

    DOT National Transportation Integrated Search

    1972-05-01

    The Transportation Systems Center (TSC) has four, essentially separate, in-house computing facilities. We shall call them Honeywell Facility, the Hybrid Facility, the Multimode Simulation Facility, and the Central Facility. In addition to these four,...

  16. Take a Tour of Our Facility | Energy Systems Integration Facility | NREL

    Science.gov Websites

    Take a Tour of Our Facility Take a Tour of Our Facility The Energy Systems Integration Facility Optical Characterization Laboratory System Performance Laboratory Power Systems Integration Laboratory Control Room Energy Storage Laboratory Outdoor Testing Areas Outdoor Testing Areas Energy Systems

  17. Energy Systems Integration Facility Overview

    ScienceCinema

    Arvizu, Dan; Chistensen, Dana; Hannegan, Bryan; Garret, Bobi; Kroposki, Ben; Symko-Davies, Martha; Post, David; Hammond, Steve; Kutscher, Chuck; Wipke, Keith

    2018-01-16

    The U.S. Department of Energy's Energy Systems Integration Facility (ESIF) is located at the National Renewable Energy Laboratory is the right tool, at the right time... a first-of-its-kind facility that addresses the challenges of large-scale integration of clean energy technologies into the energy systems that power the nation.

  18. Energy System Integration Facility Secure Data Center | Energy Systems

    Science.gov Websites

    Integration Facility | NREL Energy System Integration Facility Secure Data Center Energy System Integration Facility Secure Data Center The Energy Systems Integration Facility's Secure Data Center provides

  19. A large-scale computer facility for computational aerodynamics

    NASA Technical Reports Server (NTRS)

    Bailey, F. R.; Ballhaus, W. F., Jr.

    1985-01-01

    As a result of advances related to the combination of computer system technology and numerical modeling, computational aerodynamics has emerged as an essential element in aerospace vehicle design methodology. NASA has, therefore, initiated the Numerical Aerodynamic Simulation (NAS) Program with the objective to provide a basis for further advances in the modeling of aerodynamic flowfields. The Program is concerned with the development of a leading-edge, large-scale computer facility. This facility is to be made available to Government agencies, industry, and universities as a necessary element in ensuring continuing leadership in computational aerodynamics and related disciplines. Attention is given to the requirements for computational aerodynamics, the principal specific goals of the NAS Program, the high-speed processor subsystem, the workstation subsystem, the support processing subsystem, the graphics subsystem, the mass storage subsystem, the long-haul communication subsystem, the high-speed data-network subsystem, and software.

  20. Facilities | Integrated Energy Solutions | NREL

    Science.gov Websites

    strategies needed to optimize our entire energy system. A photo of the high-performance computer at NREL . High-Performance Computing Data Center High-performance computing facilities at NREL provide high-speed

  1. Computational Science at the Argonne Leadership Computing Facility

    NASA Astrophysics Data System (ADS)

    Romero, Nichols

    2014-03-01

    The goal of the Argonne Leadership Computing Facility (ALCF) is to extend the frontiers of science by solving problems that require innovative approaches and the largest-scale computing systems. ALCF's most powerful computer - Mira, an IBM Blue Gene/Q system - has nearly one million cores. How does one program such systems? What software tools are available? Which scientific and engineering applications are able to utilize such levels of parallelism? This talk will address these questions and describe a sampling of projects that are using ALCF systems in their research, including ones in nanoscience, materials science, and chemistry. Finally, the ways to gain access to ALCF resources will be presented. This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-06CH11357.

  2. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov Websites

    NREL News Energy Systems Integration News A monthly recap of the latest happenings at the Energy Systems Integration Facility and developments in energy systems integration (ESI) research at NREL ; said Vahan Gevorgian, chief engineer with NREL's Power Systems Engineering Center. "Results of

  3. Life science payloads planning study integration facility survey results

    NASA Technical Reports Server (NTRS)

    Wells, G. W.; Brown, N. E.; Nelson, W. G.

    1976-01-01

    The integration facility survey effort described is structured to examine the facility resources needed to conduct life science payload (LSP) integration checkout activities at NASA-JSC. The LSP integration facility operations and functions are defined along with the LSP requirements for facility design. A description of available JSC life science facilities is presented and a comparison of accommodations versus requirements is reported.

  4. Central Computational Facility CCF communications subsystem options

    NASA Technical Reports Server (NTRS)

    Hennigan, K. B.

    1979-01-01

    A MITRE study which investigated the communication options available to support both the remaining Central Computational Facility (CCF) computer systems and the proposed U1108 replacements is presented. The facilities utilized to link the remote user terminals with the CCF were analyzed and guidelines to provide more efficient communications were established.

  5. Integrated Component-based Data Acquisition Systems for Aerospace Test Facilities

    NASA Technical Reports Server (NTRS)

    Ross, Richard W.

    2001-01-01

    The Multi-Instrument Integrated Data Acquisition System (MIIDAS), developed by the NASA Langley Research Center, uses commercial off the shelf (COTS) products, integrated with custom software, to provide a broad range of capabilities at a low cost throughout the system s entire life cycle. MIIDAS combines data acquisition capabilities with online and post-test data reduction computations. COTS products lower purchase and maintenance costs by reducing the level of effort required to meet system requirements. Object-oriented methods are used to enhance modularity, encourage reusability, and to promote adaptability, reducing software development costs. Using only COTS products and custom software supported on multiple platforms reduces the cost of porting the system to other platforms. The post-test data reduction capabilities of MIIDAS have been installed at four aerospace testing facilities at NASA Langley Research Center. The systems installed at these facilities provide a common user interface, reducing the training time required for personnel that work across multiple facilities. The techniques employed by MIIDAS enable NASA to build a system with a lower initial purchase price and reduced sustaining maintenance costs. With MIIDAS, NASA has built a highly flexible next generation data acquisition and reduction system for aerospace test facilities that meets customer expectations.

  6. DKIST facility management system integration

    NASA Astrophysics Data System (ADS)

    White, Charles R.; Phelps, LeEllen

    2016-07-01

    The Daniel K. Inouye Solar Telescope (DKIST) Observatory is under construction at Haleakalā, Maui, Hawai'i. When complete, the DKIST will be the largest solar telescope in the world. The Facility Management System (FMS) is a subsystem of the high-level Facility Control System (FCS) and directly controls the Facility Thermal System (FTS). The FMS receives operational mode information from the FCS while making process data available to the FCS and includes hardware and software to integrate and control all aspects of the FTS including the Carousel Cooling System, the Telescope Chamber Environmental Control Systems, and the Temperature Monitoring System. In addition it will integrate the Power Energy Management System and several service systems such as heating, ventilation, and air conditioning (HVAC), the Domestic Water Distribution System, and the Vacuum System. All of these subsystems must operate in coordination to provide the best possible observing conditions and overall building management. Further, the FMS must actively react to varying weather conditions and observational requirements. The physical impact of the facility must not interfere with neighboring installations while operating in a very environmentally and culturally sensitive area. The FMS system will be comprised of five Programmable Automation Controllers (PACs). We present a pre-build overview of the functional plan to integrate all of the FMS subsystems.

  7. Integrated Facilities and Infrastructure Plan.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reisz Westlund, Jennifer Jill

    Our facilities and infrastructure are a key element of our capability-based science and engineering foundation. The focus of the Integrated Facilities and Infrastructure Plan is the development and implementation of a comprehensive plan to sustain the capabilities necessary to meet national research, design, and fabrication needs for Sandia National Laboratories’ (Sandia’s) comprehensive national security missions both now and into the future. A number of Sandia’s facilities have reached the end of their useful lives and many others are not suitable for today’s mission needs. Due to the continued aging and surge in utilization of Sandia’s facilities, deferred maintenance has continuedmore » to increase. As part of our planning focus, Sandia is committed to halting the growth of deferred maintenance across its sites through demolition, replacement, and dedicated funding to reduce the backlog of maintenance needs. Sandia will become more agile in adapting existing space and changing how space is utilized in response to the changing requirements. This Integrated Facilities & Infrastructure (F&I) Plan supports the Sandia Strategic Plan’s strategic objectives, specifically Strategic Objective 2: Strengthen our Laboratories’ foundation to maximize mission impact, and Strategic Objective 3: Advance an exceptional work environment that enables and inspires our people in service to our nation. The Integrated F&I Plan is developed through a planning process model to understand the F&I needs, analyze solution options, plan the actions and funding, and then execute projects.« less

  8. Apollo experience report: Real-time auxiliary computing facility development

    NASA Technical Reports Server (NTRS)

    Allday, C. E.

    1972-01-01

    The Apollo real time auxiliary computing function and facility were an extension of the facility used during the Gemini Program. The facility was expanded to include support of all areas of flight control, and computer programs were developed for mission and mission-simulation support. The scope of the function was expanded to include prime mission support functions in addition to engineering evaluations, and the facility became a mandatory mission support facility. The facility functioned as a full scale mission support activity until after the first manned lunar landing mission. After the Apollo 11 mission, the function and facility gradually reverted to a nonmandatory, offline, on-call operation because the real time program flexibility was increased and verified sufficiently to eliminate the need for redundant computations. The evaluation of the facility and function and recommendations for future programs are discussed in this report.

  9. Facility and Laboratory Equipment | Energy Systems Integration Facility |

    Science.gov Websites

    Energy Systems Integration Facility is its infrastructure. In addition to extensive fixed laboratory . Photo of researchers testing building loads and power networks in the Systems Performance Laboratory

  10. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov Websites

    -matter experts to develop cyber-physical systems security testing methodologies and resilience best the Energy Systems Integration Facility as part of NREL's work with SolarCity and the Hawaiian Electric Companies. Photo by Amy Glickson, NREL Welcome to Energy Systems Integration News, NREL's monthly

  11. Thermal Distribution System | Energy Systems Integration Facility | NREL

    Science.gov Websites

    Thermal Distribution System Thermal Distribution System The Energy Systems Integration Facility's integrated thermal distribution system consists of a thermal water loop connected to a research boiler and . Photo of the roof of the Energy Systems Integration Facility. The thermal distribution bus allows

  12. Integrated computer-aided design using minicomputers

    NASA Technical Reports Server (NTRS)

    Storaasli, O. O.

    1980-01-01

    Computer-Aided Design/Computer-Aided Manufacturing (CAD/CAM), a highly interactive software, has been implemented on minicomputers at the NASA Langley Research Center. CAD/CAM software integrates many formerly fragmented programs and procedures into one cohesive system; it also includes finite element modeling and analysis, and has been interfaced via a computer network to a relational data base management system and offline plotting devices on mainframe computers. The CAD/CAM software system requires interactive graphics terminals operating at a minimum of 4800 bits/sec transfer rate to a computer. The system is portable and introduces 'interactive graphics', which permits the creation and modification of models interactively. The CAD/CAM system has already produced designs for a large area space platform, a national transonic facility fan blade, and a laminar flow control wind tunnel model. Besides the design/drafting element analysis capability, CAD/CAM provides options to produce an automatic program tooling code to drive a numerically controlled (N/C) machine. Reductions in time for design, engineering, drawing, finite element modeling, and N/C machining will benefit productivity through reduced costs, fewer errors, and a wider range of configuration.

  13. ASCR Cybersecurity for Scientific Computing Integrity - Research Pathways and Ideas Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peisert, Sean; Potok, Thomas E.; Jones, Todd

    At the request of the U.S. Department of Energy's (DOE) Office of Science (SC) Advanced Scientific Computing Research (ASCR) program office, a workshop was held June 2-3, 2015, in Gaithersburg, MD, to identify potential long term (10 to +20 year) cybersecurity fundamental basic research and development challenges, strategies and roadmap facing future high performance computing (HPC), networks, data centers, and extreme-scale scientific user facilities. This workshop was a follow-on to the workshop held January 7-9, 2015, in Rockville, MD, that examined higher level ideas about scientific computing integrity specific to the mission of the DOE Office of Science. Issues includedmore » research computation and simulation that takes place on ASCR computing facilities and networks, as well as network-connected scientific instruments, such as those run by various DOE Office of Science programs. Workshop participants included researchers and operational staff from DOE national laboratories, as well as academic researchers and industry experts. Participants were selected based on the submission of abstracts relating to the topics discussed in the previous workshop report [1] and also from other ASCR reports, including "Abstract Machine Models and Proxy Architectures for Exascale Computing" [27], the DOE "Preliminary Conceptual Design for an Exascale Computing Initiative" [28], and the January 2015 machine learning workshop [29]. The workshop was also attended by several observers from DOE and other government agencies. The workshop was divided into three topic areas: (1) Trustworthy Supercomputing, (2) Extreme-Scale Data, Knowledge, and Analytics for Understanding and Improving Cybersecurity, and (3) Trust within High-end Networking and Data Centers. Participants were divided into three corresponding teams based on the category of their abstracts. The workshop began with a series of talks from the program manager and workshop chair, followed by the leaders for each of the

  14. Walter C. Williams Research Aircraft Integration Facility (RAIF)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The NASA-Dryden Integrated Test Facility (ITF), also known as the Walter C. Williams Research Aircraft Integration Facility (RAIF), provides an environment for conducting efficient and thorough testing of advanced, highly integrated research aircraft. Flight test confidence is greatly enhanced by the ability to qualify interactive aircraft systems in a controlled environment. In the ITF, each element of a flight vehicle can be regulated and monitored in real time as it interacts with the rest of the aircraft systems. Testing in the ITF is accomplished through automated techniques in which the research aircraft is interfaced to a high-fidelity real-time simulation. Electric and hydraulic power are also supplied, allowing all systems except the engines to function as if in flight. The testing process is controlled by an engineering workstation that sets up initial conditions for a test, initiates the test run, monitors its progress, and archives the data generated. The workstation is also capable of analyzing results of individual tests, comparing results of multiple tests, and producing reports. The computers used in the automated aircraft testing process are also capable of operating in a stand-alone mode with a simulation cockpit, complete with its own instruments and controls. Control law development and modification, aerodynamic, propulsion, guidance model qualification, and flight planning -- functions traditionally associated with real-time simulation -- can all be performed in this manner. The Remotely Augmented Vehicles (RAV) function, now located in the ITF, is a mainstay in the research techniques employed at Dryden. This function is used for tests that are too dangerous for direct human involvement or for which computational capacity does not exist onboard a research aircraft. RAV provides the researcher with a ground-based computer that is radio linked to the test aircraft during actual flight. The Ground Vibration Testing (GVT) system, formerly housed

  15. Computer usage among nurses in rural health-care facilities in South Africa: obstacles and challenges.

    PubMed

    Asah, Flora

    2013-04-01

    This study discusses factors inhibiting computer usage for work-related tasks among computer-literate professional nurses within rural healthcare facilities in South Africa. In the past two decades computer literacy courses have not been part of the nursing curricula. Computer courses are offered by the State Information Technology Agency. Despite this, there seems to be limited use of computers by professional nurses in the rural context. Focus group interviews held with 40 professional nurses from three government hospitals in northern KwaZulu-Natal. Contributing factors were found to be lack of information technology infrastructure, restricted access to computers and deficits in regard to the technical and nursing management support. The physical location of computers within the health-care facilities and lack of relevant software emerged as specific obstacles to usage. Provision of continuous and active support from nursing management could positively influence computer usage among professional nurses. A closer integration of information technology and computer literacy skills into existing nursing curricula would foster a positive attitude towards computer usage through early exposure. Responses indicated that change of mindset may be needed on the part of nursing management so that they begin to actively promote ready access to computers as a means of creating greater professionalism and collegiality. © 2011 Blackwell Publishing Ltd.

  16. Multi-objective reverse logistics model for integrated computer waste management.

    PubMed

    Ahluwalia, Poonam Khanijo; Nema, Arvind K

    2006-12-01

    This study aimed to address the issues involved in the planning and design of a computer waste management system in an integrated manner. A decision-support tool is presented for selecting an optimum configuration of computer waste management facilities (segregation, storage, treatment/processing, reuse/recycle and disposal) and allocation of waste to these facilities. The model is based on an integer linear programming method with the objectives of minimizing environmental risk as well as cost. The issue of uncertainty in the estimated waste quantities from multiple sources is addressed using the Monte Carlo simulation technique. An illustrated example of computer waste management in Delhi, India is presented to demonstrate the usefulness of the proposed model and to study tradeoffs between cost and risk. The results of the example problem show that it is possible to reduce the environmental risk significantly by a marginal increase in the available cost. The proposed model can serve as a powerful tool to address the environmental problems associated with exponentially growing quantities of computer waste which are presently being managed using rudimentary methods of reuse, recovery and disposal by various small-scale vendors.

  17. Configuration and Management of a Cluster Computing Facility in Undergraduate Student Computer Laboratories

    ERIC Educational Resources Information Center

    Cornforth, David; Atkinson, John; Spennemann, Dirk H. R.

    2006-01-01

    Purpose: Many researchers require access to computer facilities beyond those offered by desktop workstations. Traditionally, these are offered either through partnerships, to share the cost of supercomputing facilities, or through purpose-built cluster facilities. However, funds are not always available to satisfy either of these options, and…

  18. Energy Systems Integration Facility Insight Center | Energy Systems

    Science.gov Websites

    simulation data. Photo of researchers studying data on a 3-D power system profile depicting the interaction of renewable energy resources on the grid. Capabilities The Insight Center offers the following Integration Facility Insight Center Located adjacent to the Energy System Integration Facility's High

  19. NREL's Building-Integrated Supercomputer Provides Heating and Efficient Computing (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2014-09-01

    NREL's Energy Systems Integration Facility (ESIF) is meant to investigate new ways to integrate energy sources so they work together efficiently, and one of the key tools to that investigation, a new supercomputer, is itself a prime example of energy systems integration. NREL teamed with Hewlett-Packard (HP) and Intel to develop the innovative warm-water, liquid-cooled Peregrine supercomputer, which not only operates efficiently but also serves as the primary source of building heat for ESIF offices and laboratories. This innovative high-performance computer (HPC) can perform more than a quadrillion calculations per second as part of the world's most energy-efficient HPC datamore » center.« less

  20. Integrating multiple scientific computing needs via a Private Cloud infrastructure

    NASA Astrophysics Data System (ADS)

    Bagnasco, S.; Berzano, D.; Brunetti, R.; Lusso, S.; Vallero, S.

    2014-06-01

    In a typical scientific computing centre, diverse applications coexist and share a single physical infrastructure. An underlying Private Cloud facility eases the management and maintenance of heterogeneous use cases such as multipurpose or application-specific batch farms, Grid sites catering to different communities, parallel interactive data analysis facilities and others. It allows to dynamically and efficiently allocate resources to any application and to tailor the virtual machines according to the applications' requirements. Furthermore, the maintenance of large deployments of complex and rapidly evolving middleware and application software is eased by the use of virtual images and contextualization techniques; for example, rolling updates can be performed easily and minimizing the downtime. In this contribution we describe the Private Cloud infrastructure at the INFN-Torino Computer Centre, that hosts a full-fledged WLCG Tier-2 site and a dynamically expandable PROOF-based Interactive Analysis Facility for the ALICE experiment at the CERN LHC and several smaller scientific computing applications. The Private Cloud building blocks include the OpenNebula software stack, the GlusterFS filesystem (used in two different configurations for worker- and service-class hypervisors) and the OpenWRT Linux distribution (used for network virtualization). A future integration into a federated higher-level infrastructure is made possible by exposing commonly used APIs like EC2 and by using mainstream contextualization tools like CloudInit.

  1. 2016 Annual Report - Argonne Leadership Computing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, Jim; Papka, Michael E.; Cerny, Beth A.

    The Argonne Leadership Computing Facility (ALCF) helps researchers solve some of the world’s largest and most complex problems, while also advancing the nation’s efforts to develop future exascale computing systems. This report presents some of the ALCF’s notable achievements in key strategic areas over the past year.

  2. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov Websites

    for its novel approach to energy reduction. The ultra-efficient ESIF data center features a chiller "chips to bricks" approach to sustainability integrates the data center into the facility systems, rather than trying to optimize each in isolation. Key to the approach was collaboration with

  3. Energy Systems Integration Facility (ESIF) Facility Stewardship Plan: Revision 2.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torres, Juan; Anderson, Art

    The U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), has established the Energy Systems Integration Facility (ESIF) on the campus of the National Renewable Energy Laboratory (NREL) and has designated it as a DOE user facility. This 182,500-ft2 research facility provides state-of-the-art laboratory and support infrastructure to optimize the design and performance of electrical, thermal, fuel, and information technologies and systems at scale. This Facility Stewardship Plan provides DOE and other decision makers with information about the existing and expected capabilities of the ESIF and the expected performance metrics to be applied to ESIF operations.more » This plan is a living document that will be updated and refined throughout the lifetime of the facility.« less

  4. Academic Computing Facilities and Services in Higher Education--A Survey.

    ERIC Educational Resources Information Center

    Warlick, Charles H.

    1986-01-01

    Presents statistics about academic computing facilities based on data collected over the past six years from 1,753 institutions in the United States, Canada, Mexico, and Puerto Rico for the "Directory of Computing Facilities in Higher Education." Organizational, functional, and financial characteristics are examined as well as types of…

  5. 2014 Annual Report - Argonne Leadership Computing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, James R.; Papka, Michael E.; Cerny, Beth A.

    The Argonne Leadership Computing Facility provides supercomputing capabilities to the scientific and engineering community to advance fundamental discovery and understanding in a broad range of disciplines.

  6. 2015 Annual Report - Argonne Leadership Computing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, James R.; Papka, Michael E.; Cerny, Beth A.

    The Argonne Leadership Computing Facility provides supercomputing capabilities to the scientific and engineering community to advance fundamental discovery and understanding in a broad range of disciplines.

  7. Data management integration for biomedical core facilities

    NASA Astrophysics Data System (ADS)

    Zhang, Guo-Qiang; Szymanski, Jacek; Wilson, David

    2007-03-01

    We present the design, development, and pilot-deployment experiences of MIMI, a web-based, Multi-modality Multi-Resource Information Integration environment for biomedical core facilities. This is an easily customizable, web-based software tool that integrates scientific and administrative support for a biomedical core facility involving a common set of entities: researchers; projects; equipments and devices; support staff; services; samples and materials; experimental workflow; large and complex data. With this software, one can: register users; manage projects; schedule resources; bill services; perform site-wide search; archive, back-up, and share data. With its customizable, expandable, and scalable characteristics, MIMI not only provides a cost-effective solution to the overarching data management problem of biomedical core facilities unavailable in the market place, but also lays a foundation for data federation to facilitate and support discovery-driven research.

  8. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov Websites

    , consider the tangible benefits it can bring to utilities and the developer community, and discuss the Energy Systems Integration Facility on July 13 and 14, 2016, to discuss current and future R&D to researching this topic from a technology, business process, and policy perspective. This workshop is an

  9. Juno at the Vertical Integration Facility

    NASA Image and Video Library

    2011-08-03

    At Space Launch Complex 41, the Juno spacecraft, enclosed in an Atlas payload fairing, was transferred into the Vertical Integration Facility where it was positioned on top of the Atlas rocket stacked inside.

  10. High Performance Computing Facility Operational Assessment 2015: Oak Ridge Leadership Computing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barker, Ashley D.; Bernholdt, David E.; Bland, Arthur S.

    Oak Ridge National Laboratory’s (ORNL’s) Leadership Computing Facility (OLCF) continues to surpass its operational target goals: supporting users; delivering fast, reliable systems; creating innovative solutions for high-performance computing (HPC) needs; and managing risks, safety, and security aspects associated with operating one of the most powerful computers in the world. The results can be seen in the cutting-edge science delivered by users and the praise from the research community. Calendar year (CY) 2015 was filled with outstanding operational results and accomplishments: a very high rating from users on overall satisfaction that ties the highest-ever mark set in CY 2014; the greatestmore » number of core-hours delivered to research projects; the largest percentage of capability usage since the OLCF began tracking the metric in 2009; and success in delivering on the allocation of 60, 30, and 10% of core hours offered for the INCITE (Innovative and Novel Computational Impact on Theory and Experiment), ALCC (Advanced Scientific Computing Research Leadership Computing Challenge), and Director’s Discretionary programs, respectively. These accomplishments, coupled with the extremely high utilization rate, represent the fulfillment of the promise of Titan: maximum use by maximum-size simulations. The impact of all of these successes and more is reflected in the accomplishments of OLCF users, with publications this year in notable journals Nature, Nature Materials, Nature Chemistry, Nature Physics, Nature Climate Change, ACS Nano, Journal of the American Chemical Society, and Physical Review Letters, as well as many others. The achievements included in the 2015 OLCF Operational Assessment Report reflect first-ever or largest simulations in their communities; for example Titan enabled engineers in Los Angeles and the surrounding region to design and begin building improved critical infrastructure by enabling the highest-resolution Cybershake map for

  11. Integrated approach to modeling long-term durability of concrete engineered barriers in LLRW disposal facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J.H.; Roy, D.M.; Mann, B.

    1995-12-31

    This paper describes an integrated approach to developing a predictive computer model for long-term performance of concrete engineered barriers utilized in LLRW and ILRW disposal facilities. The model development concept consists of three major modeling schemes: hydration modeling of the binder phase, pore solution speciation, and transport modeling in the concrete barrier and service environment. Although still in its inception, the model development approach demonstrated that the chemical and physical properties of complex cementitious materials and their interactions with service environments can be described quantitatively. Applying the integrated model development approach to modeling alkali (Na and K) leaching from amore » concrete pad barrier in an above-grade tumulus disposal unit, it is predicted that, in a near-surface land disposal facility where water infiltration through the facility is normally minimal, the alkalis control the pore solution pH of the concrete barriers for much longer than most previous concrete barrier degradation studies assumed. The results also imply that a highly alkaline condition created by the alkali leaching will result in alteration of the soil mineralogy in the vicinity of the disposal facility.« less

  12. Multiloop Integral System Test (MIST): MIST Facility Functional Specification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habib, T F; Koksal, C G; Moskal, T E

    1991-04-01

    The Multiloop Integral System Test (MIST) is part of a multiphase program started in 1983 to address small-break loss-of-coolant accidents (SBLOCAs) specific to Babcock and Wilcox designed plants. MIST is sponsored by the US Nuclear Regulatory Commission, the Babcock Wilcox Owners Group, the Electric Power Research Institute, and Babcock and Wilcox. The unique features of the Babcock and Wilcox design, specifically the hot leg U-bends and steam generators, prevented the use of existing integral system data or existing integral facilities to address the thermal-hydraulic SBLOCA questions. MIST was specifically designed and constructed for this program, and an existing facility --more » the Once Through Integral System (OTIS) -- was also used. Data from MIST and OTIS are used to benchmark the adequacy of system codes, such as RELAP5 and TRAC, for predicting abnormal plant transients. The MIST Functional Specification documents as-built design features, dimensions, instrumentation, and test approach. It also presents the scaling basis for the facility and serves to define the scope of work for the facility design and construction. 13 refs., 112 figs., 38 tabs.« less

  13. Integrated instrumentation & computation environment for GRACE

    NASA Astrophysics Data System (ADS)

    Dhekne, P. S.

    2002-03-01

    The project GRACE (Gamma Ray Astrophysics with Coordinated Experiments) aims at setting up a state of the art Gamma Ray Observatory at Mt. Abu, Rajasthan for undertaking comprehensive scientific exploration over a wide spectral window (10's keV - 100's TeV) from a single location through 4 coordinated experiments. The cumulative data collection rate of all the telescopes is expected to be about 1 GB/hr, necessitating innovations in the data management environment. As real-time data acquisition and control as well as off-line data processing, analysis and visualization environment of these systems is based on the us cutting edge and affordable technologies in the field of computers, communications and Internet. We propose to provide a single, unified environment by seamless integration of instrumentation and computations by taking advantage of the recent advancements in Web based technologies. This new environment will allow researchers better acces to facilities, improve resource utilization and enhance collaborations by having identical environments for online as well as offline usage of this facility from any location. We present here a proposed implementation strategy for a platform independent web-based system that supplements automated functions with video-guided interactive and collaborative remote viewing, remote control through virtual instrumentation console, remote acquisition of telescope data, data analysis, data visualization and active imaging system. This end-to-end web-based solution will enhance collaboration among researchers at the national and international level for undertaking scientific studies, using the telescope systems of the GRACE project.

  14. Fuel Distribution Systems | Energy Systems Integration Facility | NREL

    Science.gov Websites

    Fuel Distribution Systems Fuel Distribution Systems The Energy Systems Integration Facility's integrated fuel distribution systems provide natural gas, hydrogen, and diesel throughout its laboratories in two laboratories: the Power Systems Integration Laboratory and the Energy Storage Laboratory. Each

  15. An integrated lean-methods approach to hospital facilities redesign.

    PubMed

    Nicholas, John

    2012-01-01

    Lean production methods for eliminating waste and improving processes in manufacturing are now being applied in healthcare. As the author shows, the methods are appropriate for redesigning hospital facilities. When used in an integrated manner and employing teams of mostly clinicians, the methods produce facility designs that are custom-fit to patient needs and caregiver work processes, and reduce operational costs. The author reviews lean methods and an approach for integrating them in the redesign of hospital facilities. A case example of the redesign of an emergency department shows the feasibility and benefits of the approach.

  16. Integration Process for Payloads in the Fluids and Combustion Facility

    NASA Technical Reports Server (NTRS)

    Free, James M.; Nall, Marsha M.

    2001-01-01

    The Fluids and Combustion Facility (FCF) is an ISS research facility located in the United States Laboratory (US Lab), Destiny. The FCF is a multi-discipline facility that performs microgravity research primarily in fluids physics science and combustion science. This facility remains on-orbit and provides accommodations to multi-user and Principal investigator (PI) unique hardware. The FCF is designed to accommodate 15 PI's per year. In order to allow for this number of payloads per year, the FCF has developed an end-to-end analytical and physical integration process. The process includes provision of integration tools, products and interface management throughout the life of the payload. The payload is provided with a single point of contact from the facility and works with that interface from PI selection through post flight processing. The process utilizes electronic tools for creation of interface documents/agreements, storage of payload data and rollup for facility submittals to ISS. Additionally, the process provides integration to and testing with flight-like simulators prior to payload delivery to KSC. These simulators allow the payload to test in the flight configuration and perform final facility interface and science verifications. The process also provides for support to the payload from the FCF through the Payload Safety Review Panel (PSRP). Finally, the process includes support in the development of operational products and the operation of the payload on-orbit.

  17. Partners | Energy Systems Integration Facility | NREL

    Science.gov Websites

    Renewable Electricity to Grid Integration Evaluation of New Technology IGBT Industry Asetek High Performance Energy Commission High Performance Computing & Visualization Real-Time Data Collection for Institute/Schneider Electric Renewable Electricity to Grid Integration End-to-End Communication and Control

  18. NREL's Energy Systems Integration Supporting Facilities - Continuum

    Science.gov Websites

    Integration Facility opened in December, 2012. Photo by Dennis Schroeder, NREL NREL's Energy Systems capabilities. Photo by Dennis Schroeder, NREL This research electrical distribution bus (REDB) works as a power

  19. Achieving production-level use of HEP software at the Argonne Leadership Computing Facility

    NASA Astrophysics Data System (ADS)

    Uram, T. D.; Childers, J. T.; LeCompte, T. J.; Papka, M. E.; Benjamin, D.

    2015-12-01

    HEP's demand for computing resources has grown beyond the capacity of the Grid, and these demands will accelerate with the higher energy and luminosity planned for Run II. Mira, the ten petaFLOPs supercomputer at the Argonne Leadership Computing Facility, is a potentially significant compute resource for HEP research. Through an award of fifty million hours on Mira, we have delivered millions of events to LHC experiments by establishing the means of marshaling jobs through serial stages on local clusters, and parallel stages on Mira. We are running several HEP applications, including Alpgen, Pythia, Sherpa, and Geant4. Event generators, such as Sherpa, typically have a split workload: a small scale integration phase, and a second, more scalable, event-generation phase. To accommodate this workload on Mira we have developed two Python-based Django applications, Balsam and ARGO. Balsam is a generalized scheduler interface which uses a plugin system for interacting with scheduler software such as HTCondor, Cobalt, and TORQUE. ARGO is a workflow manager that submits jobs to instances of Balsam. Through these mechanisms, the serial and parallel tasks within jobs are executed on the appropriate resources. This approach and its integration with the PanDA production system will be discussed.

  20. High-Performance Computing and Visualization | Energy Systems Integration

    Science.gov Websites

    Facility | NREL High-Performance Computing and Visualization High-Performance Computing and Visualization High-performance computing (HPC) and visualization at NREL propel technology innovation as a . Capabilities High-Performance Computing NREL is home to Peregrine-the largest high-performance computing system

  1. Expanding the Scope of High-Performance Computing Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uram, Thomas D.; Papka, Michael E.

    The high-performance computing centers of the future will expand their roles as service providers, and as the machines scale up, so should the sizes of the communities they serve. National facilities must cultivate their users as much as they focus on operating machines reliably. The authors present five interrelated topic areas that are essential to expanding the value provided to those performing computational science.

  2. ASCR Cybersecurity for Scientific Computing Integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piesert, Sean

    The Department of Energy (DOE) has the responsibility to address the energy, environmental, and nuclear security challenges that face our nation. Much of DOE’s enterprise involves distributed, collaborative teams; a signi¬cant fraction involves “open science,” which depends on multi-institutional, often international collaborations that must access or share signi¬cant amounts of information between institutions and over networks around the world. The mission of the Office of Science is the delivery of scienti¬c discoveries and major scienti¬c tools to transform our understanding of nature and to advance the energy, economic, and national security of the United States. The ability of DOE tomore » execute its responsibilities depends critically on its ability to assure the integrity and availability of scienti¬c facilities and computer systems, and of the scienti¬c, engineering, and operational software and data that support its mission.« less

  3. Desktop Computing Integration Project

    NASA Technical Reports Server (NTRS)

    Tureman, Robert L., Jr.

    1992-01-01

    The Desktop Computing Integration Project for the Human Resources Management Division (HRMD) of LaRC was designed to help division personnel use personal computing resources to perform job tasks. The three goals of the project were to involve HRMD personnel in desktop computing, link mainframe data to desktop capabilities, and to estimate training needs for the division. The project resulted in increased usage of personal computers by Awards specialists, an increased awareness of LaRC resources to help perform tasks, and personal computer output that was used in presentation of information to center personnel. In addition, the necessary skills for HRMD personal computer users were identified. The Awards Office was chosen for the project because of the consistency of their data requests and the desire of employees in that area to use the personal computer.

  4. Influence of computational fluid dynamics on experimental aerospace facilities: A fifteen year projection

    NASA Technical Reports Server (NTRS)

    1983-01-01

    An assessment was made of the impact of developments in computational fluid dynamics (CFD) on the traditional role of aerospace ground test facilities over the next fifteen years. With improvements in CFD and more powerful scientific computers projected over this period it is expected to have the capability to compute the flow over a complete aircraft at a unit cost three orders of magnitude lower than presently possible. Over the same period improvements in ground test facilities will progress by application of computational techniques including CFD to data acquisition, facility operational efficiency, and simulation of the light envelope; however, no dramatic change in unit cost is expected as greater efficiency will be countered by higher energy and labor costs.

  5. Experiment/facility requirements document for the Space Station Furnace Facility. Section 1: Integrated configuration

    NASA Astrophysics Data System (ADS)

    1992-05-01

    The function of the Space Station Furnace Facility (SSFF) is to support materials research into the crystal growth and solidification processes of electronic and photonic materials, metals and alloys, and glasses and ceramics. To support this broad base of research requirements, the SSFF will employ a variety of furnace modules which will be operated, regulated, and supported by a core of common subsystems. Furnace modules may be reconfigured or specifically developed to provide unique solidification conditions for each set of experiments. The SSFF modular approach permits the addition of new or scaled-up furnace modules to support the evolution of the facility as new science requirements are identified. The SSFF Core is of modular design to permit augmentation for enhanced capabilities. The fully integrated configuration of the SSFF will consist of three racks with the capability of supporting up to two furnace modules per rack. The initial configuration of the SSFF will consist of two of the three racks and one furnace module. This Experiment/Facility Requirements Document (E/FRD) describes the integrated facility requirements for the Space Station Freedom (SSF) Integrated Configuration-1 (IC1) mission. The IC1 SSFF will consist of two racks: the Core Rack, with the centralized subsystem equipment; and the Experiment Rack-1, with Furnace Module-1 and the distributed subsystem equipment to support the furnace. The SSFF support functions are provided by the following Core subsystems: power conditioning and distribution subsystem (SSFF PCDS); data management subsystem (SSFF DMS); thermal control Subsystem (SSFF TCS); gas distribution subsystem (SSFF GDS); and mechanical structures subsystem (SSFF MSS).

  6. Experiment/facility requirements document for the Space Station Furnace Facility. Section 1: Integrated configuration

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The function of the Space Station Furnace Facility (SSFF) is to support materials research into the crystal growth and solidification processes of electronic and photonic materials, metals and alloys, and glasses and ceramics. To support this broad base of research requirements, the SSFF will employ a variety of furnace modules which will be operated, regulated, and supported by a core of common subsystems. Furnace modules may be reconfigured or specifically developed to provide unique solidification conditions for each set of experiments. The SSFF modular approach permits the addition of new or scaled-up furnace modules to support the evolution of the facility as new science requirements are identified. The SSFF Core is of modular design to permit augmentation for enhanced capabilities. The fully integrated configuration of the SSFF will consist of three racks with the capability of supporting up to two furnace modules per rack. The initial configuration of the SSFF will consist of two of the three racks and one furnace module. This Experiment/Facility Requirements Document (E/FRD) describes the integrated facility requirements for the Space Station Freedom (SSF) Integrated Configuration-1 (IC1) mission. The IC1 SSFF will consist of two racks: the Core Rack, with the centralized subsystem equipment; and the Experiment Rack-1, with Furnace Module-1 and the distributed subsystem equipment to support the furnace. The SSFF support functions are provided by the following Core subsystems: power conditioning and distribution subsystem (SSFF PCDS); data management subsystem (SSFF DMS); thermal control Subsystem (SSFF TCS); gas distribution subsystem (SSFF GDS); and mechanical structures subsystem (SSFF MSS).

  7. Materials Characterization Laboratory | Energy Systems Integration Facility

    Science.gov Websites

    | NREL Materials Characterization Laboratory Materials Characterization Laboratory The Energy Systems Integration Facility's Materials Characterization Laboratory supports the physical and photo -electrochemical characterization of novel materials. Photo of an NREL researcher preparing samples for a gas

  8. Manufacturing Laboratory | Energy Systems Integration Facility | NREL

    Science.gov Websites

    Manufacturing Laboratory Manufacturing Laboratory Researchers in the Energy Systems Integration Facility's Manufacturing Laboratory develop methods and technologies to scale up renewable energy technology manufacturing capabilities. Photo of researchers and equipment in the Manufacturing Laboratory. Capability Hubs

  9. User Facilities

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  10. Australian national networked tele-test facility for integrated systems

    NASA Astrophysics Data System (ADS)

    Eshraghian, Kamran; Lachowicz, Stefan W.; Eshraghian, Sholeh

    2001-11-01

    The Australian Commonwealth government recently announced a grant of 4.75 million as part of a 13.5 million program to establish a world class networked IC tele-test facility in Australia. The facility will be based on a state-of-the-art semiconductor tester located at Edith Cowan University in Perth that will operate as a virtual centre spanning Australia. Satellite nodes will be located at the University of Western Australia, Griffith University, Macquarie University, Victoria University and the University of Adelaide. The facility will provide vital equipment to take Australia to the frontier of critically important and expanding fields in microelectronics research and development. The tele-test network will provide state of the art environment for the electronics and microelectronics research and the industry community around Australia to test and prototype Very Large Scale Integrated (VLSI) circuits and other System On a Chip (SOC) devices, prior to moving to the manufacturing stage. Such testing is absolutely essential to ensure that the device performs to specification. This paper presents the current context in which the testing facility is being established, the methodologies behind the integration of design and test strategies and the target shape of the tele-testing Facility.

  11. The OSG Open Facility: an on-ramp for opportunistic scientific computing

    NASA Astrophysics Data System (ADS)

    Jayatilaka, B.; Levshina, T.; Sehgal, C.; Gardner, R.; Rynge, M.; Würthwein, F.

    2017-10-01

    The Open Science Grid (OSG) is a large, robust computing grid that started primarily as a collection of sites associated with large HEP experiments such as ATLAS, CDF, CMS, and DZero, but has evolved in recent years to a much larger user and resource platform. In addition to meeting the US LHC community’s computational needs, the OSG continues to be one of the largest providers of distributed high-throughput computing (DHTC) to researchers from a wide variety of disciplines via the OSG Open Facility. The Open Facility consists of OSG resources that are available opportunistically to users other than resource owners and their collaborators. In the past two years, the Open Facility has doubled its annual throughput to over 200 million wall hours. More than half of these resources are used by over 100 individual researchers from over 60 institutions in fields such as biology, medicine, math, economics, and many others. Over 10% of these individual users utilized in excess of 1 million computational hours each in the past year. The largest source of these cycles is temporary unused capacity at institutions affiliated with US LHC computational sites. An increasing fraction, however, comes from university HPC clusters and large national infrastructure supercomputers offering unused capacity. Such expansions have allowed the OSG to provide ample computational resources to both individual researchers and small groups as well as sizable international science collaborations such as LIGO, AMS, IceCube, and sPHENIX. Opening up access to the Fermilab FabrIc for Frontier Experiments (FIFE) project has also allowed experiments such as mu2e and NOvA to make substantial use of Open Facility resources, the former with over 40 million wall hours in a year. We present how this expansion was accomplished as well as future plans for keeping the OSG Open Facility at the forefront of enabling scientific research by way of DHTC.

  12. The OSG Open Facility: An On-Ramp for Opportunistic Scientific Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayatilaka, B.; Levshina, T.; Sehgal, C.

    The Open Science Grid (OSG) is a large, robust computing grid that started primarily as a collection of sites associated with large HEP experiments such as ATLAS, CDF, CMS, and DZero, but has evolved in recent years to a much larger user and resource platform. In addition to meeting the US LHC community’s computational needs, the OSG continues to be one of the largest providers of distributed high-throughput computing (DHTC) to researchers from a wide variety of disciplines via the OSG Open Facility. The Open Facility consists of OSG resources that are available opportunistically to users other than resource ownersmore » and their collaborators. In the past two years, the Open Facility has doubled its annual throughput to over 200 million wall hours. More than half of these resources are used by over 100 individual researchers from over 60 institutions in fields such as biology, medicine, math, economics, and many others. Over 10% of these individual users utilized in excess of 1 million computational hours each in the past year. The largest source of these cycles is temporary unused capacity at institutions affiliated with US LHC computational sites. An increasing fraction, however, comes from university HPC clusters and large national infrastructure supercomputers offering unused capacity. Such expansions have allowed the OSG to provide ample computational resources to both individual researchers and small groups as well as sizable international science collaborations such as LIGO, AMS, IceCube, and sPHENIX. Opening up access to the Fermilab FabrIc for Frontier Experiments (FIFE) project has also allowed experiments such as mu2e and NOvA to make substantial use of Open Facility resources, the former with over 40 million wall hours in a year. We present how this expansion was accomplished as well as future plans for keeping the OSG Open Facility at the forefront of enabling scientific research by way of DHTC.« less

  13. Computer-Assisted School Facility Planning with ONPASS.

    ERIC Educational Resources Information Center

    Urban Decision Systems, Inc., Los Angeles, CA.

    The analytical capabilities of ONPASS, an on-line computer-aided school facility planning system, are described by its developers. This report describes how, using the Canoga Park-Winnetka-Woodland Hills Planning Area as a test case, the Department of City Planning of the city of Los Angeles employed ONPASS to demonstrate how an on-line system can…

  14. Experience with a UNIX based batch computing facility for H1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerhards, R.; Kruener-Marquis, U.; Szkutnik, Z.

    1994-12-31

    A UNIX based batch computing facility for the H1 experiment at DESY is described. The ultimate goal is to replace the DESY IBM mainframe by a multiprocessor SGI Challenge series computer, using the UNIX operating system, for most of the computing tasks in H1.

  15. Wind Energy Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurie, Carol

    2017-02-01

    This book takes readers inside the places where daily discoveries shape the next generation of wind power systems. Energy Department laboratory facilities span the United States and offer wind research capabilities to meet industry needs. The facilities described in this book make it possible for industry players to increase reliability, improve efficiency, and reduce the cost of wind energy -- one discovery at a time. Whether you require blade testing or resource characterization, grid integration or high-performance computing, Department of Energy laboratory facilities offer a variety of capabilities to meet your wind research needs.

  16. Wind Energy Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Office of Energy Efficiency and Renewable Energy

    This book takes readers inside the places where daily discoveries shape the next generation of wind power systems. Energy Department laboratory facilities span the United States and offer wind research capabilities to meet industry needs. The facilities described in this book make it possible for industry players to increase reliability, improve efficiency, and reduce the cost of wind energy -- one discovery at a time. Whether you require blade testing or resource characterization, grid integration or high-performance computing, Department of Energy laboratory facilities offer a variety of capabilities to meet your wind research needs.

  17. Integrating Computers into the Problem-Solving Process.

    ERIC Educational Resources Information Center

    Lowther, Deborah L.; Morrison, Gary R.

    2003-01-01

    Asserts that within the context of problem-based learning environments, professors can encourage students to use computers as problem-solving tools. The ten-step Integrating Technology for InQuiry (NteQ) model guides professors through the process of integrating computers into problem-based learning activities. (SWM)

  18. INTEGRITY - Integrated Human Exploration Mission Simulation Facility

    NASA Technical Reports Server (NTRS)

    Henninger, Donald L.

    2002-01-01

    It is proposed to develop a high-fidelity ground facility to carry out long-duration human exploration mission simulations. These would not be merely computer simulations - they would in fact comprise a series of actual missions that just happen to stay on earth. These missions would include all elements of an actual mission, using actual technologies that would be used for the real mission. These missions would also include such elements as extravehicular activities, robotic systems, telepresence and teleoperation, surface drilling technology-all using a simulated planetary landscape. A sequence of missions would be defined that get progressively longer and more robust, perhaps a series of five or six missions over a span of 10 to 15 years ranging in duration from 180 days up to 1000 days. This high-fidelity ground facility would operate hand-in-hand with a host of other terrestrial analog sites such as the Antarctic, Haughton Crater, and the Arizona desert. Of course, all of these analog mission simulations will be conducted here on earth in 1-g, and NASA will still need the Shuttle and ISS to carry out all the microgravity and hypogravity science experiments and technology validations. The proposed missions would have sufficient definition such that definitive requirements could be derived from them to serve as direction for all the program elements of the mission. Additionally, specific milestones would be established for the "launch" date of each mission so that R&D programs would have both good requirements and solid milestones from which to .build their implementation plans. Mission aspects that could not be directly incorporated into the ground facility would be simulated via software. New management techniques would be developed for evaluation in this ground test facility program. These new techniques would have embedded metrics which would allow them to be continuously evaluated and adjusted so that by the time the sequence of missions is completed, the

  19. MIMI: multimodality, multiresource, information integration environment for biomedical core facilities.

    PubMed

    Szymanski, Jacek; Wilson, David L; Zhang, Guo-Qiang

    2009-10-01

    The rapid expansion of biomedical research has brought substantial scientific and administrative data management challenges to modern core facilities. Scientifically, a core facility must be able to manage experimental workflow and the corresponding set of large and complex scientific data. It must also disseminate experimental data to relevant researchers in a secure and expedient manner that facilitates collaboration and provides support for data interpretation and analysis. Administratively, a core facility must be able to manage the scheduling of its equipment and to maintain a flexible and effective billing system to track material, resource, and personnel costs and charge for services to sustain its operation. It must also have the ability to regularly monitor the usage and performance of its equipment and to provide summary statistics on resources spent on different categories of research. To address these informatics challenges, we introduce a comprehensive system called MIMI (multimodality, multiresource, information integration environment) that integrates the administrative and scientific support of a core facility into a single web-based environment. We report the design, development, and deployment experience of a baseline MIMI system at an imaging core facility and discuss the general applicability of such a system in other types of core facilities. These initial results suggest that MIMI will be a unique, cost-effective approach to addressing the informatics infrastructure needs of core facilities and similar research laboratories.

  20. The grand challenge of managing the petascale facility.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aiken, R. J.; Mathematics and Computer Science

    2007-02-28

    This report is the result of a study of networks and how they may need to evolve to support petascale leadership computing and science. As Dr. Ray Orbach, director of the Department of Energy's Office of Science, says in the spring 2006 issue of SciDAC Review, 'One remarkable example of growth in unexpected directions has been in high-end computation'. In the same article Dr. Michael Strayer states, 'Moore's law suggests that before the end of the next cycle of SciDAC, we shall see petaflop computers'. Given the Office of Science's strong leadership and support for petascale computing and facilities, wemore » should expect to see petaflop computers in operation in support of science before the end of the decade, and DOE/SC Advanced Scientific Computing Research programs are focused on making this a reality. This study took its lead from this strong focus on petascale computing and the networks required to support such facilities, but it grew to include almost all aspects of the DOE/SC petascale computational and experimental science facilities, all of which will face daunting challenges in managing and analyzing the voluminous amounts of data expected. In addition, trends indicate the increased coupling of unique experimental facilities with computational facilities, along with the integration of multidisciplinary datasets and high-end computing with data-intensive computing; and we can expect these trends to continue at the petascale level and beyond. Coupled with recent technology trends, they clearly indicate the need for including capability petascale storage, networks, and experiments, as well as collaboration tools and programming environments, as integral components of the Office of Science's petascale capability metafacility. The objective of this report is to recommend a new cross-cutting program to support the management of petascale science and infrastructure. The appendices of the report document current and projected DOE computation facilities

  1. Integrated Payment and Delivery Models Offer Opportunities and Challenges for Residential Care Facilities

    PubMed Central

    Grabowski, David C.; Caudry, Daryl J.; Dean, Katie M.; Stevenson, David G.

    2016-01-01

    Under health care reform, a series of new financing and delivery models are being piloted to integrate health and long-term care services for older adults. To date, these programs have not encompassed residential care facilities, with most programs focusing on long-term care recipients in the community or the nursing home. Our analyses indicate that individuals living in residential care facilities have similarly high rates of chronic illness and Medicare utilization when compared with similar populations in the community and nursing home. These results suggest the residential care facility population could benefit greatly from models that coordinate health and long-term care. However, few providers have invested in integrated delivery models. Several challenges exist toward greater integration including the private payment of residential care facility services and the fact that residential care facilities do not share in any Medicare savings due to improved coordination of care. PMID:26438740

  2. Strategic interaction among hospitals and nursing facilities: the efficiency effects of payment systems and vertical integration.

    PubMed

    Banks, D; Parker, E; Wendel, J

    2001-03-01

    Rising post-acute care expenditures for Medicare transfer patients and increasing vertical integration between hospitals and nursing facilities raise questions about the links between payment system structure, the incentive for vertical integration and the impact on efficiency. In the United States, policy-makers are responding to these concerns by initiating prospective payments to nursing facilities, and are exploring the bundling of payments to hospitals. This paper develops a static profit-maximization model of the strategic interaction between the transferring hospital and a receiving nursing facility. This model suggests that the post-1984 system of prospective payment for hospital care, coupled with nursing facility payments that reimburse for services performed, induces inefficient under-provision of hospital services and encourages vertical integration. It further indicates that the extension of prospective payment to nursing facilities will not eliminate the incentive to vertically integrate, and will not result in efficient production unless such integration takes place. Bundling prospective payments for hospitals and nursing facilities will neither remove the incentive for vertical integration nor induce production efficiency without such vertical integration. However, bundled payment will induce efficient production, with or without vertical integration, if nursing facilities are reimbursed for services performed. Copyright 2001 John Wiley & Sons, Ltd.

  3. LBNL Computational Research and Theory Facility Groundbreaking. February 1st, 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yelick, Kathy

    2012-02-02

    Energy Secretary Steven Chu, along with Berkeley Lab and UC leaders, broke ground on the Lab's Computational Research and Theory (CRT) facility yesterday. The CRT will be at the forefront of high-performance supercomputing research and be DOE's most efficient facility of its kind. Joining Secretary Chu as speakers were Lab Director Paul Alivisatos, UC President Mark Yudof, Office of Science Director Bill Brinkman, and UC Berkeley Chancellor Robert Birgeneau. The festivities were emceed by Associate Lab Director for Computing Sciences, Kathy Yelick, and Berkeley Mayor Tom Bates joined in the shovel ceremony.

  4. LBNL Computational Research and Theory Facility Groundbreaking. February 1st, 2012

    ScienceCinema

    Yelick, Kathy

    2017-12-09

    Energy Secretary Steven Chu, along with Berkeley Lab and UC leaders, broke ground on the Lab's Computational Research and Theory (CRT) facility yesterday. The CRT will be at the forefront of high-performance supercomputing research and be DOE's most efficient facility of its kind. Joining Secretary Chu as speakers were Lab Director Paul Alivisatos, UC President Mark Yudof, Office of Science Director Bill Brinkman, and UC Berkeley Chancellor Robert Birgeneau. The festivities were emceed by Associate Lab Director for Computing Sciences, Kathy Yelick, and Berkeley Mayor Tom Bates joined in the shovel ceremony.

  5. Evaluating Computer Technology Integration in a Centralized School System

    ERIC Educational Resources Information Center

    Eteokleous, N.

    2008-01-01

    The study evaluated the current situation in Cyprus elementary classrooms regarding computer technology integration in an attempt to identify ways of expanding teachers' and students' experiences with computer technology. It examined how Cypriot elementary teachers use computers, and the factors that influence computer integration in their…

  6. The NASA integrated test facility and its impact on flight research

    NASA Technical Reports Server (NTRS)

    Mackall, D. A.; Pickett, M. D.; Schilling, L. J.; Wagner, C. A.

    1988-01-01

    The Integrated Test Facility (ITF), being built at NASA Ames-Dryden Flight Research Facility, will provide new test capabilities for emerging research aircraft. An overview of the ITF and the challenges being addressed by this unique facility are outlined. The current ITF capabilities, being developed with the X-29 Forward Swept Wing Program, are discussed along with future ITF activities.

  7. Integrated Computer System of Management in Logistics

    NASA Astrophysics Data System (ADS)

    Chwesiuk, Krzysztof

    2011-06-01

    This paper aims at presenting a concept of an integrated computer system of management in logistics, particularly in supply and distribution chains. Consequently, the paper includes the basic idea of the concept of computer-based management in logistics and components of the system, such as CAM and CIM systems in production processes, and management systems for storage, materials flow, and for managing transport, forwarding and logistics companies. The platform which integrates computer-aided management systems is that of electronic data interchange.

  8. Planning and Designing School Computer Facilities. Interim Report.

    ERIC Educational Resources Information Center

    Alberta Dept. of Education, Edmonton. Finance and Administration Div.

    This publication provides suggestions and considerations that may be useful for school jurisdictions developing facilities for computers in schools. An interim report for both use and review, it is intended to assist school system planners in clarifying the specifications needed by the architects, other design consultants, and purchasers involved.…

  9. MIP models for connected facility location: A theoretical and computational study☆

    PubMed Central

    Gollowitzer, Stefan; Ljubić, Ivana

    2011-01-01

    This article comprises the first theoretical and computational study on mixed integer programming (MIP) models for the connected facility location problem (ConFL). ConFL combines facility location and Steiner trees: given a set of customers, a set of potential facility locations and some inter-connection nodes, ConFL searches for the minimum-cost way of assigning each customer to exactly one open facility, and connecting the open facilities via a Steiner tree. The costs needed for building the Steiner tree, facility opening costs and the assignment costs need to be minimized. We model ConFL using seven compact and three mixed integer programming formulations of exponential size. We also show how to transform ConFL into the Steiner arborescence problem. A full hierarchy between the models is provided. For two exponential size models we develop a branch-and-cut algorithm. An extensive computational study is based on two benchmark sets of randomly generated instances with up to 1300 nodes and 115,000 edges. We empirically compare the presented models with respect to the quality of obtained bounds and the corresponding running time. We report optimal values for all but 16 instances for which the obtained gaps are below 0.6%. PMID:25009366

  10. Thermal Storage Materials Laboratory | Energy Systems Integration Facility

    Science.gov Websites

    | NREL Materials Laboratory Thermal Storage Materials Laboratory In the Energy Systems Integration Facility's Thermal Storage Materials Laboratory, researchers investigate materials that can be used as high-temperature heat transfer fluids or thermal energy storage media in concentrating solar

  11. Integration of analytical instruments with computer scripting.

    PubMed

    Carvalho, Matheus C

    2013-08-01

    Automation of laboratory routines aided by computer software enables high productivity and is the norm nowadays. However, the integration of different instruments made by different suppliers is still difficult, because to accomplish it, the user must have knowledge of electronics and/or low-level programming. An alternative approach is to control different instruments without an electronic connection between them, relying only on their software interface on a computer. This can be achieved through scripting, which is the emulation of user operations (mouse clicks and keyboard inputs) on the computer. The main advantages of this approach are its simplicity, which enables people with minimal knowledge of computer programming to employ it, and its universality, which enables the integration of instruments made by different suppliers, meaning that the user is totally free to choose the devices to be integrated. Therefore, scripting can be a useful, accessible, and economic solution for laboratory automation.

  12. A Bioinformatics Facility for NASA

    NASA Technical Reports Server (NTRS)

    Schweighofer, Karl; Pohorille, Andrew

    2006-01-01

    Building on an existing prototype, we have fielded a facility with bioinformatics technologies that will help NASA meet its unique requirements for biological research. This facility consists of a cluster of computers capable of performing computationally intensive tasks, software tools, databases and knowledge management systems. Novel computational technologies for analyzing and integrating new biological data and already existing knowledge have been developed. With continued development and support, the facility will fulfill strategic NASA s bioinformatics needs in astrobiology and space exploration. . As a demonstration of these capabilities, we will present a detailed analysis of how spaceflight factors impact gene expression in the liver and kidney for mice flown aboard shuttle flight STS-108. We have found that many genes involved in signal transduction, cell cycle, and development respond to changes in microgravity, but that most metabolic pathways appear unchanged.

  13. An integrated computational tool for precipitation simulation

    NASA Astrophysics Data System (ADS)

    Cao, W.; Zhang, F.; Chen, S.-L.; Zhang, C.; Chang, Y. A.

    2011-07-01

    Computer aided materials design is of increasing interest because the conventional approach solely relying on experimentation is no longer viable within the constraint of available resources. Modeling of microstructure and mechanical properties during precipitation plays a critical role in understanding the behavior of materials and thus accelerating the development of materials. Nevertheless, an integrated computational tool coupling reliable thermodynamic calculation, kinetic simulation, and property prediction of multi-component systems for industrial applications is rarely available. In this regard, we are developing a software package, PanPrecipitation, under the framework of integrated computational materials engineering to simulate precipitation kinetics. It is seamlessly integrated with the thermodynamic calculation engine, PanEngine, to obtain accurate thermodynamic properties and atomic mobility data necessary for precipitation simulation.

  14. Energy Systems Sensor Laboratory | Energy Systems Integration Facility |

    Science.gov Websites

    NREL Sensor Laboratory Energy Systems Sensor Laboratory The Energy Systems Integration Facility's Energy Systems Sensor Laboratory is designed to support research, development, testing, and evaluation of advanced hydrogen sensor technologies to support the needs of the emerging hydrogen

  15. Integration of Ausubelian Learning Theory and Educational Computing.

    ERIC Educational Resources Information Center

    Heinze-Fry, Jane A.; And Others

    1984-01-01

    Examines possible benefits when Ausubelian learning approaches are integrated into computer-assisted instruction, presenting an example of this integration in a computer program dealing with introductory ecology concepts. The four program parts (tutorial, interactive concept mapping, simulations, and vee-mapping) are described. (JN)

  16. ICAT: Integrating data infrastructure for facilities based science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flannery, Damian; Matthews, Brian; Griffin, Tom

    2009-12-21

    ICAT: Integrating data infrastructure for facilities based science Damian Flannery, Brian Matthews, Tom Griffin, Juan Bicarregui, Michael Gleaves, Laurent Lerusse, Roger Downing, Alun Ashton, Shoaib Sufi, Glen Drinkwater, Kerstin Kleese Abstract— Scientific facilities, in particular large-scale photon and neutron sources, have demanding requirements to manage the increasing quantities of experimental data they generate in a systematic and secure way. In this paper, we describe the ICAT infrastructure for cataloguing facility generated experimental data which has been in development within STFC and DLS for several years. We consider the factors which have influenced its design and describe its architecture and metadatamore » model, a key tool in the management of data. We go on to give an outline of its current implementation and use, with plans for its future development.« less

  17. Supporting NASA Facilities Through GIS

    NASA Technical Reports Server (NTRS)

    Ingham, Mary E.

    2000-01-01

    The NASA GIS Team supports NASA facilities and partners in the analysis of spatial data. Geographic Information System (G[S) is an integration of computer hardware, software, and personnel linking topographic, demographic, utility, facility, image, and other geo-referenced data. The system provides a graphic interface to relational databases and supports decision making processes such as planning, design, maintenance and repair, and emergency response.

  18. Laboratories | Energy Systems Integration Facility | NREL

    Science.gov Websites

    laboratories to be safely divided into multiple test stand locations (or "capability hubs") to enable Fabrication Laboratory Energy Systems High-Pressure Test Laboratory Energy Systems Integration Laboratory Energy Systems Sensor Laboratory Fuel Cell Development and Test Laboratory High-Performance Computing

  19. Research Electrical Distribution Bus | Energy Systems Integration Facility

    Science.gov Websites

    | NREL Research Electrical Distribution Bus Research Electrical Distribution Bus The research electrical distribution bus (REDB) is the heart of the Energy Systems Integration Facility electrical system throughout the laboratories. Photo of a technician performing maintenance on the Research Electrical

  20. 78 FR 7334 - Port Authority Access to Facility Vulnerability Assessments and the Integration of Security Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ... to Facility Vulnerability Assessments and the Integration of Security Systems AGENCY: Coast Guard...-sharing measures. Security System Integration Alternatives Require each MTSA-regulated facility owner or... other forms of security system integration. Information Requested 1. We request comments on the...

  1. Common Utilities in the Energy Systems Integration Facility | Energy

    Science.gov Websites

    Systems Integration Facility. Common utilities include: Power: Three-phase 480/277 VAC, 208/120 VAC, 240 split-phase VAC, and 120 single-phase VAC Water: Process heating and cooling and research cooling

  2. Probabilistic data integration and computational complexity

    NASA Astrophysics Data System (ADS)

    Hansen, T. M.; Cordua, K. S.; Mosegaard, K.

    2016-12-01

    Inverse problems in Earth Sciences typically refer to the problem of inferring information about properties of the Earth from observations of geophysical data (the result of nature's solution to the `forward' problem). This problem can be formulated more generally as a problem of `integration of information'. A probabilistic formulation of data integration is in principle simple: If all information available (from e.g. geology, geophysics, remote sensing, chemistry…) can be quantified probabilistically, then different algorithms exist that allow solving the data integration problem either through an analytical description of the combined probability function, or sampling the probability function. In practice however, probabilistic based data integration may not be easy to apply successfully. This may be related to the use of sampling methods, which are known to be computationally costly. But, another source of computational complexity is related to how the individual types of information are quantified. In one case a data integration problem is demonstrated where the goal is to determine the existence of buried channels in Denmark, based on multiple sources of geo-information. Due to one type of information being too informative (and hence conflicting), this leads to a difficult sampling problems with unrealistic uncertainty. Resolving this conflict prior to data integration, leads to an easy data integration problem, with no biases. In another case it is demonstrated how imperfections in the description of the geophysical forward model (related to solving the wave-equation) can lead to a difficult data integration problem, with severe bias in the results. If the modeling error is accounted for, the data integration problems becomes relatively easy, with no apparent biases. Both examples demonstrate that biased information can have a dramatic effect on the computational efficiency solving a data integration problem and lead to biased results, and under

  3. Public Computer Assisted Learning Facilities for Children with Visual Impairment: Universal Design for Inclusive Learning

    ERIC Educational Resources Information Center

    Siu, Kin Wai Michael; Lam, Mei Seung

    2012-01-01

    Although computer assisted learning (CAL) is becoming increasingly popular, people with visual impairment face greater difficulty in accessing computer-assisted learning facilities. This is primarily because most of the current CAL facilities are not visually impaired friendly. People with visual impairment also do not normally have access to…

  4. Have computers, will travel: providing on-site library instruction in rural health facilities using a portable computer lab.

    PubMed

    Neilson, Christine J

    2010-01-01

    The Saskatchewan Health Information Resources Partnership (SHIRP) provides library instruction to Saskatchewan's health care practitioners and students on placement in health care facilities as part of its mission to provide province-wide access to evidence-based health library resources. A portable computer lab was assembled in 2007 to provide hands-on training in rural health facilities that do not have computer labs of their own. Aside from some minor inconveniences, the introduction and operation of the portable lab has gone smoothly. The lab has been well received by SHIRP patrons and continues to be an essential part of SHIRP outreach.

  5. Implementing Computer Integrated Manufacturing Technician Program.

    ERIC Educational Resources Information Center

    Gibbons, Roger

    A computer-integrated manufacturing (CIM) technician program was developed to provide training and technical assistance to meet the needs of business and industry in the face of the demands of high technology. The Computer and Automated Systems Association (CASA) of the Society of Manufacturing Engineers provided the incentive and guidelines…

  6. Development and validation of the crew-station system-integration research facility

    NASA Technical Reports Server (NTRS)

    Nedell, B.; Hardy, G.; Lichtenstein, T.; Leong, G.; Thompson, D.

    1986-01-01

    The various issues associated with the use of integrated flight management systems in aircraft were discussed. To address these issues a fixed base integrated flight research (IFR) simulation of a helicopter was developed to support experiments that contribute to the understanding of design criteria for rotorcraft cockpits incorporating advanced integrated flight management systems. A validation experiment was conducted that demonstrates the main features of the facility and the capability to conduct crew/system integration research.

  7. Los Alamos Science Facilities

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  8. A resource facility for kinetic analysis: modeling using the SAAM computer programs.

    PubMed

    Foster, D M; Boston, R C; Jacquez, J A; Zech, L

    1989-01-01

    Kinetic analysis and integrated system modeling have contributed significantly to understanding the physiology and pathophysiology of metabolic systems in humans and animals. Many experimental biologists are aware of the usefulness of these techniques and recognize that kinetic modeling requires special expertise. The Resource Facility for Kinetic Analysis (RFKA) provides this expertise through: (1) development and application of modeling technology for biomedical problems, and (2) development of computer-based kinetic modeling methodologies concentrating on the computer program Simulation, Analysis, and Modeling (SAAM) and its conversational version, CONversational SAAM (CONSAM). The RFKA offers consultation to the biomedical community in the use of modeling to analyze kinetic data and trains individuals in using this technology for biomedical research. Early versions of SAAM were widely applied in solving dosimetry problems; many users, however, are not familiar with recent improvements to the software. The purpose of this paper is to acquaint biomedical researchers in the dosimetry field with RFKA, which, together with the joint National Cancer Institute-National Heart, Lung and Blood Institute project, is overseeing SAAM development and applications. In addition, RFKA provides many service activities to the SAAM user community that are relevant to solving dosimetry problems.

  9. An integrated approach for facilities planning by ELECTRE method

    NASA Astrophysics Data System (ADS)

    Elbishari, E. M. Y.; Hazza, M. H. F. Al; Adesta, E. Y. T.; Rahman, Nur Salihah Binti Abdul

    2018-01-01

    Facility planning is concerned with the design, layout, and accommodation of people, machines and activities of a system. Most of the researchers try to investigate the production area layout and the related facilities. However, few of them try to investigate the relationship between the production space and its relationship with service departments. The aim of this research to is to integrate different approaches in order to evaluate, analyse and select the best facilities planning method that able to explain the relationship between the production area and other supporting departments and its effect on human efforts. To achieve the objective of this research two different approaches have been integrated: Apple’s layout procedure as one of the effective tools in planning factories, ELECTRE method as one of the Multi Criteria Decision Making methods (MCDM) to minimize the risk of getting poor facilities planning. Dalia industries have been selected as a case study to implement our integration the factory have been divided two main different area: the whole facility (layout A), and the manufacturing area (layout B). This article will be concerned with the manufacturing area layout (Layout B). After analysing the data gathered, the manufacturing area was divided into 10 activities. There are five factors that the alternative were compared upon which are: Inter department satisfactory level, total distance travelled for workers, total distance travelled for the product, total time travelled for the workers, and total time travelled for the product. Three different layout alternatives have been developed in addition to the original layouts. Apple’s layout procedure was used to study and evaluate the different alternatives layouts, the study and evaluation of the layouts was done by calculating scores for each of the factors. After obtaining the scores from evaluating the layouts, ELECTRE method was used to compare the proposed alternatives with each other and with

  10. Integrated Payment And Delivery Models Offer Opportunities And Challenges For Residential Care Facilities.

    PubMed

    Grabowski, David C; Caudry, Daryl J; Dean, Katie M; Stevenson, David G

    2015-10-01

    Under health care reform, new financing and delivery models are being piloted to integrate health and long-term care services for older adults. Programs using these models generally have not included residential care facilities. Instead, most of them have focused on long-term care recipients in the community or the nursing home. Our analyses indicate that individuals living in residential care facilities have similarly high rates of chronic illness and Medicare utilization when compared with matched individuals in the community and nursing home, and rates of functional dependency that fall between those of their counterparts in the other two settings. These results suggest that the residential care facility population could benefit greatly from models that coordinated health and long-term care services. However, few providers have invested in the infrastructure needed to support integrated delivery models. Challenges to greater care integration include the private-pay basis for residential care facility services, which precludes shared savings from reduced Medicare costs, and residents' preference for living in a home-like, noninstitutional environment. Project HOPE—The People-to-People Health Foundation, Inc.

  11. Oak Ridge Leadership Computing Facility Position Paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oral, H Sarp; Hill, Jason J; Thach, Kevin G

    This paper discusses the business, administration, reliability, and usability aspects of storage systems at the Oak Ridge Leadership Computing Facility (OLCF). The OLCF has developed key competencies in architecting and administration of large-scale Lustre deployments as well as HPSS archival systems. Additionally as these systems are architected, deployed, and expanded over time reliability and availability factors are a primary driver. This paper focuses on the implementation of the Spider parallel Lustre file system as well as the implementation of the HPSS archive at the OLCF.

  12. Development of the advanced life support Systems Integration Research Facility at NASA's Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Tri, Terry O.; Thompson, Clifford D.

    1992-01-01

    Future NASA manned missions to the moon and Mars will require development of robust regenerative life support system technologies which offer high reliability and minimal resupply. To support the development of such systems, early ground-based test facilities will be required to demonstrate integrated, long-duration performance of candidate regenerative air revitalization, water recovery, and thermal management systems. The advanced life support Systems Integration Research Facility (SIRF) is one such test facility currently being developed at NASA's Johnson Space Center. The SIRF, when completed, will accommodate unmanned and subsequently manned integrated testing of advanced regenerative life support technologies at ambient and reduced atmospheric pressures. This paper provides an overview of the SIRF project, a top-level description of test facilities to support the project, conceptual illustrations of integrated test article configurations for each of the three SIRF systems, and a phased project schedule denoting projected activities and milestones through the next several years.

  13. Unveiling of sign for Walter C. Williams Research Aircraft Integration Facility

    NASA Technical Reports Server (NTRS)

    1995-01-01

    In a brief ceremony following a memorial service for the late Walter C. Williams on November 17, 1995, the Integrated Test Facility (ITF) at the NASA Dryden Flight Research Center at Edwards, California, was formally renamed the Walter C. Williams Research Aircraft Integration Facility. Shown is the family of Walt Williams: Helen, his widow, sons Charles and Howard, daughter Elizabeth Williams Powell, their spouses and children unveiling the new sign redesignating the Facility. The test facility provides state-of-the-art capabilities for thorough ground testing of advanced research aircraft. It allows researchers and technicians to integrate and test aircraft systems before each research flight, which greatly enhances the safety of each mission. In September 1946 Williams became engineer-in-charge of a team of five engineers who arrived at Muroc Army Air Base (now Edwards AFB) from the National Advisory Committee for Aeronautics's Langley Memorial Aeronautical Laboratory, Hampton, Virginia (now NASA's Langley Research Center), to prepare for supersonic research flights in a joint NACA-Army Air Forces program involving the rocket-powered X-1. This established the first permanent NACA presence at the Mojave Desert site although initially the five engineers and others who followed them were on temporary assignment. Over time, Walt continued to be in charge during the many name changes for the NACA-NASA organization, with Williams ending his stay as Chief of the NASA Flight Research Center in September 1959 (today NASA's Dryden Flight Research Center).

  14. The Argonne Leadership Computing Facility 2010 annual report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drugan, C.

    Researchers found more ways than ever to conduct transformative science at the Argonne Leadership Computing Facility (ALCF) in 2010. Both familiar initiatives and innovative new programs at the ALCF are now serving a growing, global user community with a wide range of computing needs. The Department of Energy's (DOE) INCITE Program remained vital in providing scientists with major allocations of leadership-class computing resources at the ALCF. For calendar year 2011, 35 projects were awarded 732 million supercomputer processor-hours for computationally intensive, large-scale research projects with the potential to significantly advance key areas in science and engineering. Argonne also continued tomore » provide Director's Discretionary allocations - 'start up' awards - for potential future INCITE projects. And DOE's new ASCR Leadership Computing (ALCC) Program allocated resources to 10 ALCF projects, with an emphasis on high-risk, high-payoff simulations directly related to the Department's energy mission, national emergencies, or for broadening the research community capable of using leadership computing resources. While delivering more science today, we've also been laying a solid foundation for high performance computing in the future. After a successful DOE Lehman review, a contract was signed to deliver Mira, the next-generation Blue Gene/Q system, to the ALCF in 2012. The ALCF is working with the 16 projects that were selected for the Early Science Program (ESP) to enable them to be productive as soon as Mira is operational. Preproduction access to Mira will enable ESP projects to adapt their codes to its architecture and collaborate with ALCF staff in shaking down the new system. We expect the 10-petaflops system to stoke economic growth and improve U.S. competitiveness in key areas such as advancing clean energy and addressing global climate change. Ultimately, we envision Mira as a stepping-stone to exascale-class computers that will be faster than

  15. High Performance Computing Facility Operational Assessment, FY 2011 Oak Ridge Leadership Computing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Ann E; Bland, Arthur S Buddy; Hack, James J

    Oak Ridge National Laboratory's Leadership Computing Facility (OLCF) continues to deliver the most powerful resources in the U.S. for open science. At 2.33 petaflops peak performance, the Cray XT Jaguar delivered more than 1.5 billion core hours in calendar year (CY) 2010 to researchers around the world for computational simulations relevant to national and energy security; advancing the frontiers of knowledge in physical sciences and areas of biological, medical, environmental, and computer sciences; and providing world-class research facilities for the nation's science enterprise. Scientific achievements by OLCF users range from collaboration with university experimentalists to produce a working supercapacitor thatmore » uses atom-thick sheets of carbon materials to finely determining the resolution requirements for simulations of coal gasifiers and their components, thus laying the foundation for development of commercial-scale gasifiers. OLCF users are pushing the boundaries with software applications sustaining more than one petaflop of performance in the quest to illuminate the fundamental nature of electronic devices. Other teams of researchers are working to resolve predictive capabilities of climate models, to refine and validate genome sequencing, and to explore the most fundamental materials in nature - quarks and gluons - and their unique properties. Details of these scientific endeavors - not possible without access to leadership-class computing resources - are detailed in Section 4 of this report and in the INCITE in Review. Effective operations of the OLCF play a key role in the scientific missions and accomplishments of its users. This Operational Assessment Report (OAR) will delineate the policies, procedures, and innovations implemented by the OLCF to continue delivering a petaflop-scale resource for cutting-edge research. The 2010 operational assessment of the OLCF yielded recommendations that have been addressed (Reference Section 1) and where

  16. LBNL Computational ResearchTheory Facility Groundbreaking - Full Press Conference. Feb 1st, 2012

    ScienceCinema

    Yelick, Kathy

    2018-01-24

    Energy Secretary Steven Chu, along with Berkeley Lab and UC leaders, broke ground on the Lab's Computational Research and Theory (CRT) facility yesterday. The CRT will be at the forefront of high-performance supercomputing research and be DOE's most efficient facility of its kind. Joining Secretary Chu as speakers were Lab Director Paul Alivisatos, UC President Mark Yudof, Office of Science Director Bill Brinkman, and UC Berkeley Chancellor Robert Birgeneau. The festivities were emceed by Associate Lab Director for Computing Sciences, Kathy Yelick, and Berkeley Mayor Tom Bates joined in the shovel ceremony.

  17. Data Integration in Computer Distributed Systems

    NASA Astrophysics Data System (ADS)

    Kwiecień, Błażej

    In this article the author analyze a problem of data integration in a computer distributed systems. Exchange of information between different levels in integrated pyramid of enterprise process is fundamental with regard to efficient enterprise work. Communication and data exchange between levels are not always the same cause of necessity of different network protocols usage, communication medium, system response time, etc.

  18. Description and operational status of the National Transonic Facility computer complex

    NASA Technical Reports Server (NTRS)

    Boyles, G. B., Jr.

    1986-01-01

    This paper describes the National Transonic Facility (NTF) computer complex and its support of tunnel operations. The capabilities of the research data acquisition and reduction are discussed along with the types of data that can be acquired and presented. Pretest, test, and posttest capabilities are also outlined along with a discussion of the computer complex to monitor the tunnel control processes and provide the tunnel operators with information needed to control the tunnel. Planned enhancements to the computer complex for support of future testing are presented.

  19. Integration of Russian Tier-1 Grid Center with High Performance Computers at NRC-KI for LHC experiments and beyond HENP

    NASA Astrophysics Data System (ADS)

    Belyaev, A.; Berezhnaya, A.; Betev, L.; Buncic, P.; De, K.; Drizhuk, D.; Klimentov, A.; Lazin, Y.; Lyalin, I.; Mashinistov, R.; Novikov, A.; Oleynik, D.; Polyakov, A.; Poyda, A.; Ryabinkin, E.; Teslyuk, A.; Tkachenko, I.; Yasnopolskiy, L.

    2015-12-01

    The LHC experiments are preparing for the precision measurements and further discoveries that will be made possible by higher LHC energies from April 2015 (LHC Run2). The need for simulation, data processing and analysis would overwhelm the expected capacity of grid infrastructure computing facilities deployed by the Worldwide LHC Computing Grid (WLCG). To meet this challenge the integration of the opportunistic resources into LHC computing model is highly important. The Tier-1 facility at Kurchatov Institute (NRC-KI) in Moscow is a part of WLCG and it will process, simulate and store up to 10% of total data obtained from ALICE, ATLAS and LHCb experiments. In addition Kurchatov Institute has supercomputers with peak performance 0.12 PFLOPS. The delegation of even a fraction of supercomputing resources to the LHC Computing will notably increase total capacity. In 2014 the development a portal combining a Tier-1 and a supercomputer in Kurchatov Institute was started to provide common interfaces and storage. The portal will be used not only for HENP experiments, but also by other data- and compute-intensive sciences like biology with genome sequencing analysis; astrophysics with cosmic rays analysis, antimatter and dark matter search, etc.

  20. Integration and use of Microgravity Research Facility: Lessons learned by the crystals by vapor transport experiment and Space Experiments Facility programs

    NASA Technical Reports Server (NTRS)

    Heizer, Barbara L.

    1992-01-01

    The Crystals by Vapor Transport Experiment (CVTE) and Space Experiments Facility (SEF) are materials processing facilities designed and built for use on the Space Shuttle mid deck. The CVTE was built as a commercial facility owned by the Boeing Company. The SEF was built under contract to the UAH Center for Commercial Development of Space (CCDS). Both facilities include up to three furnaces capable of reaching 850 C minimum, stand-alone electronics and software, and independent cooling control. In addition, the CVTE includes a dedicated stowage locker for cameras, a laptop computer, and other ancillary equipment. Both systems are designed to fly in a Middeck Accommodations Rack (MAR), though the SEF is currently being integrated into a Spacehab rack. The CVTE hardware includes two transparent furnaces capable of achieving temperatures in the 850 to 870 C range. The transparent feature allows scientists/astronauts to directly observe and affect crystal growth both on the ground and in space. Cameras mounted to the rack provide photodocumentation of the crystal growth. The basic design of the furnace allows for modification to accommodate techniques other than vapor crystal growth. Early in the CVTE program, the decision was made to assign a principal scientist to develop the experiment plan, affect the hardware/software design, run the ground and flight research effort, and interface with the scientific community. The principal scientist is responsible to the program manager and is a critical member of the engineering development team. As a result of this decision, the hardware/experiment requirements were established in such a way as to balance the engineering and science demands on the equipment. Program schedules for hardware development, experiment definition and material selection, flight operations development and crew training, both ground support and astronauts, were all planned and carried out with the understanding that the success of the program science

  1. Integration of design and inspection

    NASA Astrophysics Data System (ADS)

    Simmonds, William H.

    1990-08-01

    Developments in advanced computer integrated manufacturing technology, coupled with the emphasis on Total Quality Management, are exposing needs for new techniques to integrate all functions from design through to support of the delivered product. One critical functional area that must be integrated into design is that embracing the measurement, inspection and test activities necessary for validation of the delivered product. This area is being tackled by a collaborative project supported by the UK Government Department of Trade and Industry. The project is aimed at developing techniques for analysing validation needs and for planning validation methods. Within the project an experimental Computer Aided Validation Expert system (CAVE) is being constructed. This operates with a generalised model of the validation process and helps with all design stages: specification of product requirements; analysis of the assurance provided by a proposed design and method of manufacture; development of the inspection and test strategy; and analysis of feedback data. The kernel of the system is a knowledge base containing knowledge of the manufacturing process capabilities and of the available inspection and test facilities. The CAVE system is being integrated into a real life advanced computer integrated manufacturing facility for demonstration and evaluation.

  2. Computer Integrated Manufacturing Programs in Higher Education.

    ERIC Educational Resources Information Center

    International Business Machines Corp., Milford, CT. Academic Information Systems.

    This publication focuses on computer integrated manufacturing (CIM) programs at several higher education institutions which teach the use of computing in manufacturing. The document describes programs at the following institutions: University of Alabama (where researchers are investigating CIM techniques with a key focus on transferring their…

  3. Integrated Framework for Patient Safety and Energy Efficiency in Healthcare Facilities Retrofit Projects.

    PubMed

    Mohammadpour, Atefeh; Anumba, Chimay J; Messner, John I

    2016-07-01

    There is a growing focus on enhancing energy efficiency in healthcare facilities, many of which are decades old. Since replacement of all aging healthcare facilities is not economically feasible, the retrofitting of these facilities is an appropriate path, which also provides an opportunity to incorporate energy efficiency measures. In undertaking energy efficiency retrofits, it is vital that the safety of the patients in these facilities is maintained or enhanced. However, the interactions between patient safety and energy efficiency have not been adequately addressed to realize the full benefits of retrofitting healthcare facilities. To address this, an innovative integrated framework, the Patient Safety and Energy Efficiency (PATSiE) framework, was developed to simultaneously enhance patient safety and energy efficiency. The framework includes a step -: by -: step procedure for enhancing both patient safety and energy efficiency. It provides a structured overview of the different stages involved in retrofitting healthcare facilities and improves understanding of the intricacies associated with integrating patient safety improvements with energy efficiency enhancements. Evaluation of the PATSiE framework was conducted through focus groups with the key stakeholders in two case study healthcare facilities. The feedback from these stakeholders was generally positive, as they considered the framework useful and applicable to retrofit projects in the healthcare industry. © The Author(s) 2016.

  4. Integrated Disposal Facility FY2010 Glass Testing Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, Eric M.; Bacon, Diana H.; Kerisit, Sebastien N.

    2010-09-30

    Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility (e.g., source term). Vitrifying the low-activity waste at Hanford is expected to generate over 1.6 × 105 m3 of glass (Puigh 1999). The volume of immobilized low-activity waste (ILAW) at Hanford is the largest in the DOE complex and is one of the largest inventories (approximately 0.89 × 1018 Bq total activity) of long-lived radionuclides, principally 99Tc (t1/2 = 2.1 × 105), planned for disposal in a low-level waste (LLW) facility.more » Before the ILAW can be disposed, DOE must conduct a performance assessement (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program PNNL is implementing a strategy, consisting of experimentation and modeling, in order to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. The purpose of this report is to summarize the progress made in fiscal year (FY) 2010 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of low-activity waste glasses. The emphasis in FY2010 was the completing an evaluation of the most sensitive kinetic rate law parameters used to predict glass weathering, documented in Bacon and Pierce (2010), and transitioning from the use of the Subsurface Transport Over Reactive Multi-phases to Subsurface Transport Over Multiple Phases computer code for near-field calculations. The FY2010 activities also consisted of developing a Monte Carlo and Geochemical Modeling framework that links glass composition to alteration phase formation by 1) determining the structure of unreacted and reacted glasses for use as input information into Monte

  5. Computer-aided engineering of semiconductor integrated circuits

    NASA Astrophysics Data System (ADS)

    Meindl, J. D.; Dutton, R. W.; Gibbons, J. F.; Helms, C. R.; Plummer, J. D.; Tiller, W. A.; Ho, C. P.; Saraswat, K. C.; Deal, B. E.; Kamins, T. I.

    1980-07-01

    Economical procurement of small quantities of high performance custom integrated circuits for military systems is impeded by inadequate process, device and circuit models that handicap low cost computer aided design. The principal objective of this program is to formulate physical models of fabrication processes, devices and circuits to allow total computer-aided design of custom large-scale integrated circuits. The basic areas under investigation are (1) thermal oxidation, (2) ion implantation and diffusion, (3) chemical vapor deposition of silicon and refractory metal silicides, (4) device simulation and analytic measurements. This report discusses the fourth year of the program.

  6. National electronic medical records integration on cloud computing system.

    PubMed

    Mirza, Hebah; El-Masri, Samir

    2013-01-01

    Few Healthcare providers have an advanced level of Electronic Medical Record (EMR) adoption. Others have a low level and most have no EMR at all. Cloud computing technology is a new emerging technology that has been used in other industry and showed a great success. Despite the great features of Cloud computing, they haven't been utilized fairly yet in healthcare industry. This study presents an innovative Healthcare Cloud Computing system for Integrating Electronic Health Record (EHR). The proposed Cloud system applies the Cloud Computing technology on EHR system, to present a comprehensive EHR integrated environment.

  7. UTILIZATION OF COMPUTER FACILITIES IN THE MATHEMATICS AND BUSINESS CURRICULUM IN A LARGE SUBURBAN HIGH SCHOOL.

    ERIC Educational Resources Information Center

    RENO, MARTIN; AND OTHERS

    A STUDY WAS UNDERTAKEN TO EXPLORE IN A QUALITATIVE WAY THE POSSIBLE UTILIZATION OF COMPUTER AND DATA PROCESSING METHODS IN HIGH SCHOOL EDUCATION. OBJECTIVES WERE--(1) TO ESTABLISH A WORKING RELATIONSHIP WITH A COMPUTER FACILITY SO THAT ABLE STUDENTS AND THEIR TEACHERS WOULD HAVE ACCESS TO THE FACILITIES, (2) TO DEVELOP A UNIT FOR THE UTILIZATION…

  8. Integrating Computing across the Curriculum: The Impact of Internal Barriers and Training Intensity on Computer Integration in the Elementary School Classroom

    ERIC Educational Resources Information Center

    Coleman, LaToya O.; Gibson, Philip; Cotten, Shelia R.; Howell-Moroney, Michael; Stringer, Kristi

    2016-01-01

    This study examines the relationship between internal barriers, professional development, and computer integration outcomes among a sample of fourth- and fifth-grade teachers in an urban, low-income school district in the Southeastern United States. Specifically, we examine the impact of teachers' computer attitudes, computer anxiety, and computer…

  9. Designing integrated computational biology pipelines visually.

    PubMed

    Jamil, Hasan M

    2013-01-01

    The long-term cost of developing and maintaining a computational pipeline that depends upon data integration and sophisticated workflow logic is too high to even contemplate "what if" or ad hoc type queries. In this paper, we introduce a novel application building interface for computational biology research, called VizBuilder, by leveraging a recent query language called BioFlow for life sciences databases. Using VizBuilder, it is now possible to develop ad hoc complex computational biology applications at throw away costs. The underlying query language supports data integration and workflow construction almost transparently and fully automatically, using a best effort approach. Users express their application by drawing it with VizBuilder icons and connecting them in a meaningful way. Completed applications are compiled and translated as BioFlow queries for execution by the data management system LifeDB, for which VizBuilder serves as a front end. We discuss VizBuilder features and functionalities in the context of a real life application after we briefly introduce BioFlow. The architecture and design principles of VizBuilder are also discussed. Finally, we outline future extensions of VizBuilder. To our knowledge, VizBuilder is a unique system that allows visually designing computational biology pipelines involving distributed and heterogeneous resources in an ad hoc manner.

  10. Icing simulation: A survey of computer models and experimental facilities

    NASA Technical Reports Server (NTRS)

    Potapczuk, M. G.; Reinmann, J. J.

    1991-01-01

    A survey of the current methods for simulation of the response of an aircraft or aircraft subsystem to an icing encounter is presented. The topics discussed include a computer code modeling of aircraft icing and performance degradation, an evaluation of experimental facility simulation capabilities, and ice protection system evaluation tests in simulated icing conditions. Current research focussed on upgrading simulation fidelity of both experimental and computational methods is discussed. The need for increased understanding of the physical processes governing ice accretion, ice shedding, and iced airfoil aerodynamics is examined.

  11. Icing simulation: A survey of computer models and experimental facilities

    NASA Technical Reports Server (NTRS)

    Potapczuk, M. G.; Reinmann, J. J.

    1991-01-01

    A survey of the current methods for simulation of the response of an aircraft or aircraft subsystem to an icing encounter is presented. The topics discussed include a computer code modeling of aircraft icing and performance degradation, an evaluation of experimental facility simulation capabilities, and ice protection system evaluation tests in simulated icing conditions. Current research focused on upgrading simulation fidelity of both experimental and computational methods is discussed. The need for the increased understanding of the physical processes governing ice accretion, ice shedding, and iced aerodynamics is examined.

  12. Linking and integrating computers for maternity care.

    PubMed

    Lumb, M; Fawdry, R

    1990-12-01

    Functionally separate computer systems have been developed for many different areas relevant to maternity care, e.g. maternity data collection, pathology and imaging reports, staff rostering, personnel, accounting, audit, primary care etc. Using land lines, modems and network gateways, many such quite distinct computer programs or databases can be made accessible from a single terminal. If computer systems are to attain their full potential for the improvement of the maternity care, there will be a need not only for terminal emulation but also for more complex integration. Major obstacles must be overcome before such integration is widely achieved. Technical and conceptual progress towards overcoming these problems is discussed, with particular reference to the OSI (open systems interconnection) initiative, to the Read clinical classification and to the MUMMIES CBS (Common Basic Specification) Maternity Care Project. The issue of confidentiality is also briefly explored.

  13. The Smart Power Lab at the Energy Systems Integration Facility

    ScienceCinema

    Christensen, Dane; Sparn, Bethany; Hannegan, Brian

    2018-05-11

    Watch how NREL researchers are using the Smart Power Laboratory at the Energy Systems Integration Facility (ESIF) to develop technologies that will help the "smart homes" of the future perform efficiently and communicate effectively with the electricity grid while enhancing occupants' comfort and convenience.

  14. The Smart Power Lab at the Energy Systems Integration Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christensen, Dane; Sparn, Bethany; Hannegan, Brian

    Watch how NREL researchers are using the Smart Power Laboratory at the Energy Systems Integration Facility (ESIF) to develop technologies that will help the "smart homes" of the future perform efficiently and communicate effectively with the electricity grid while enhancing occupants' comfort and convenience.

  15. Integration of Cloud resources in the LHCb Distributed Computing

    NASA Astrophysics Data System (ADS)

    Úbeda García, Mario; Méndez Muñoz, Víctor; Stagni, Federico; Cabarrou, Baptiste; Rauschmayr, Nathalie; Charpentier, Philippe; Closier, Joel

    2014-06-01

    This contribution describes how Cloud resources have been integrated in the LHCb Distributed Computing. LHCb is using its specific Dirac extension (LHCbDirac) as an interware for its Distributed Computing. So far, it was seamlessly integrating Grid resources and Computer clusters. The cloud extension of DIRAC (VMDIRAC) allows the integration of Cloud computing infrastructures. It is able to interact with multiple types of infrastructures in commercial and institutional clouds, supported by multiple interfaces (Amazon EC2, OpenNebula, OpenStack and CloudStack) - instantiates, monitors and manages Virtual Machines running on this aggregation of Cloud resources. Moreover, specifications for institutional Cloud resources proposed by Worldwide LHC Computing Grid (WLCG), mainly by the High Energy Physics Unix Information Exchange (HEPiX) group, have been taken into account. Several initiatives and computing resource providers in the eScience environment have already deployed IaaS in production during 2013. Keeping this on mind, pros and cons of a cloud based infrasctructure have been studied in contrast with the current setup. As a result, this work addresses four different use cases which represent a major improvement on several levels of our infrastructure. We describe the solution implemented by LHCb for the contextualisation of the VMs based on the idea of Cloud Site. We report on operational experience of using in production several institutional Cloud resources that are thus becoming integral part of the LHCb Distributed Computing resources. Furthermore, we describe as well the gradual migration of our Service Infrastructure towards a fully distributed architecture following the Service as a Service (SaaS) model.

  16. Integrative approaches to computational biomedicine

    PubMed Central

    Coveney, Peter V.; Diaz-Zuccarini, Vanessa; Graf, Norbert; Hunter, Peter; Kohl, Peter; Tegner, Jesper; Viceconti, Marco

    2013-01-01

    The new discipline of computational biomedicine is concerned with the application of computer-based techniques and particularly modelling and simulation to human health. Since 2007, this discipline has been synonymous, in Europe, with the name given to the European Union's ambitious investment in integrating these techniques with the eventual aim of modelling the human body as a whole: the virtual physiological human. This programme and its successors are expected, over the next decades, to transform the study and practice of healthcare, moving it towards the priorities known as ‘4P's’: predictive, preventative, personalized and participatory medicine.

  17. UTEX: integrated ultraviolet and x-ray astronomy facility on spacelab, phase a study. Volume 2: facility definition. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1976-07-01

    The definition and feasibility study of an integrated ultraviolet and astronomy facility onboard Spacelab are presented. This is based on the scientific aims of different European countries. The accommodation of such a facility in the first and second Spacelab flights was also studied, taking into account external constraints of both flights and the possibility of future missions. Well identified possible work packages are outlined in view of future international cooperation.

  18. 78 FR 18353 - Guidance for Industry: Blood Establishment Computer System Validation in the User's Facility...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ...; (Formerly FDA-2007D-0393)] Guidance for Industry: Blood Establishment Computer System Validation in the User... Industry: Blood Establishment Computer System Validation in the User's Facility'' dated April 2013. The... document entitled ``Guidance for Industry: Blood Establishment Computer System Validation in the User's...

  19. Computer Simulations: An Integrating Tool.

    ERIC Educational Resources Information Center

    Bilan, Bohdan J.

    This introduction to computer simulations as an integrated learning experience reports on their use with students in grades 5 through 10 using commercial software packages such as SimCity, SimAnt, SimEarth, and Civilization. Students spent an average of 60 hours with the simulation games and reported their experiences each week in a personal log.…

  20. Fluids and Combustion Facility-Combustion Integrated Rack

    NASA Technical Reports Server (NTRS)

    Francisco, David R.

    1998-01-01

    This paper describes in detail the concept of performing Combustion microgravity experiments in the Combustion Integrated Rack (CIR) of the Fluids and Combustion Facility (FCF) on the International Space Station (ISS). The extended duration microgravity environment of the ISS will enable microgravity research to enter into a new era of increased scientific and technological data return. The FCF is designed to increase the amount and quality of scientific and technological data and decrease the development cost of an individual experiment relative to the era of Space Shuttle experiments. This paper also describes how the FCF will cost effectively accommodate these experiments.

  1. Computer-Integrated Manufacturing Technology. Tech Prep Competency Profile.

    ERIC Educational Resources Information Center

    Lakeland Tech Prep Consortium, Kirtland, OH.

    This tech prep competency profile for computer-integrated manufacturing technology begins with definitions for four occupations: manufacturing technician, quality technician, mechanical engineering technician, and computer-assisted design/drafting (CADD) technician. A chart lists competencies by unit and indicates whether entire or partial unit is…

  2. Integrating Computer-Mediated Communication Strategy Instruction

    ERIC Educational Resources Information Center

    McNeil, Levi

    2016-01-01

    Communication strategies (CSs) play important roles in resolving problematic second language interaction and facilitating language learning. While studies in face-to-face contexts demonstrate the benefits of communication strategy instruction (CSI), there have been few attempts to integrate computer-mediated communication and CSI. The study…

  3. 117. Back side technical facilities S.R. radar transmitter & computer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    117. Back side technical facilities S.R. radar transmitter & computer building no. 102, "building sections - sheet I" - architectural, AS-BLT AW 35-46-04, sheet 12, dated 23 January, 1961. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  4. 122. Back side technical facilities S.R. radar transmitter & computer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    122. Back side technical facilities S.R. radar transmitter & computer building no. 102, section II "elevations & details" - structural, AS-BLT AW 35-46-04, sheet 73, dated 23 January, 1961. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  5. 120. Back side technical facilities S.R. radar transmitter & computer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    120. Back side technical facilities S.R. radar transmitter & computer building no. 102, section II "foundation & first floor plan" - structural, AS-BLT AW 35-46-04, sheet 65, dated 23 January, 1961. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  6. 118. Back side technical facilities S.R. radar transmitter & computer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    118. Back side technical facilities S.R. radar transmitter & computer building no. 102, "building sections - sheet I" - architectural, AS-BLT AW 35-46-04, sheet 13, dated 23 January, 1961. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  7. 119. Back side technical facilities S.R. radar transmitter & computer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    119. Back side technical facilities S.R. radar transmitter & computer building no. 102, section I "tower plan, sections & details" - structural, AS-BLT AW 35-46-04, sheet 62, dated 23 January, 1961. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  8. 121. Back side technical facilities S.R. radar transmitter & computer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    121. Back side technical facilities S.R. radar transmitter & computer building no. 102, section II "sections & elevations" - structural, AS-BLT AW 35-46-04, sheet 72, dated 23 January, 1961. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  9. Annual Summary of the Integrated Disposal Facility Performance Assessment 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehman, L. L.

    2012-03-12

    An annual summary of the adequacy of the Hanford Immobilized Low-Activity Waste (ILAW) Performance Assessment (PA) is required each year (DOE O 435.1 Chg 1,1 DOE M 435.1-1 Chg 1,2 DOE/ORP-2000-013). The most recently approved PA is DOE/ORP-2000-24.4 The ILAW PA evaluated the adequacy of the ILAW disposal facility, now referred to as the Integrated Disposal Facility (IDF), for the safe disposal of vitrified Hanford Site tank waste. More recently, a preliminary evaluation for the disposal of offsite low-level waste and mixed low-level waste was considered in RPP-1583.

  10. Fluids and Combustion Facility: Combustion Integrated Rack Modal Model Correlation

    NASA Technical Reports Server (NTRS)

    McNelis, Mark E.; Suarez, Vicente J.; Sullivan, Timothy L.; Otten, Kim D.; Akers, James C.

    2005-01-01

    The Fluids and Combustion Facility (FCF) is a modular, multi-user, two-rack facility dedicated to combustion and fluids science in the US Laboratory Destiny on the International Space Station. FCF is a permanent facility that is capable of accommodating up to ten combustion and fluid science investigations per year. FCF research in combustion and fluid science supports NASA's Exploration of Space Initiative for on-orbit fire suppression, fire safety, and space system fluids management. The Combustion Integrated Rack (CIR) is one of two racks in the FCF. The CIR major structural elements include the International Standard Payload Rack (ISPR), Experiment Assembly (optics bench and combustion chamber), Air Thermal Control Unit (ATCU), Rack Door, and Lower Structure Assembly (Input/Output Processor and Electrical Power Control Unit). The load path through the rack structure is outlined. The CIR modal survey was conducted to validate the load path predicted by the CIR finite element model (FEM). The modal survey is done by experimentally measuring the CIR frequencies and mode shapes. The CIR model was test correlated by updating the model to represent the test mode shapes. The correlated CIR model delivery is required by NASA JSC at Launch-10.5 months. The test correlated CIR flight FEM is analytically integrated into the Shuttle for a coupled loads analysis of the launch configuration. The analysis frequency range of interest is 0-50 Hz. A coupled loads analysis is the analytical integration of the Shuttle with its cargo element, the Mini Payload Logistics Module (MPLM), in the Shuttle cargo bay. For each Shuttle launch configuration, a verification coupled loads analysis is performed to determine the loads in the cargo bay as part of the structural certification process.

  11. Designing Computer Learning Environments for Engineering and Computer Science: The Scaffolded Knowledge Integration Framework.

    ERIC Educational Resources Information Center

    Linn, Marcia C.

    1995-01-01

    Describes a framework called scaffolded knowledge integration and illustrates how it guided the design of two successful course enhancements in the field of computer science and engineering: the LISP Knowledge Integration Environment and the spatial reasoning environment. (101 references) (Author/MKR)

  12. Using a qualitative approach for understanding hospital-affiliated integrated clinical and fitness facilities: characteristics and members' experiences.

    PubMed

    Yang, Jingzhen; Kingsbury, Diana; Nichols, Matthew; Grimm, Kristin; Ding, Kele; Hallam, Jeffrey

    2015-06-19

    With health care shifting away from the traditional sick care model, many hospitals are integrating fitness facilities and programs into their clinical services in order to support health promotion and disease prevention at the community level. Through a series of focus groups, the present study assessed characteristics of hospital-affiliated integrated facilities located in Northeast Ohio, United States and members' experiences with respect to these facilities. Adult members were invited to participate in a focus group using a recruitment flyer. A total of 6 focus groups were conducted in 2013, each lasting one hour, ranging from 5 to 12 participants per group. The responses and discussions were recorded and transcribed verbatim, then analyzed independently by research team members. Major themes were identified after consensus was reached. The participants' average age was 57, with 56.8% currently under a doctor's care. Four major themes associated with integrated facilities and members' experiences emerged across the six focus groups: 1) facility/program, 2) social atmosphere, 3) provider, and 4) member. Within each theme, several sub-themes were also identified. A key feature of integrated facilities is the availability of clinical and fitness services "under one roof". Many participants remarked that they initially attended physical therapy, becoming members of the fitness facility afterwards, or vice versa. The participants had favorable views of and experiences with the superior physical environment and atmosphere, personal attention, tailored programs, and knowledgeable, friendly, and attentive staff. In particular, participants favored the emphasis on preventive care and the promotion of holistic health and wellness. These results support the integration of wellness promotion and programming with traditional medical care and call for the further evaluation of such a model with regard to participants' health outcomes.

  13. Integral equation methods for computing likelihoods and their derivatives in the stochastic integrate-and-fire model.

    PubMed

    Paninski, Liam; Haith, Adrian; Szirtes, Gabor

    2008-02-01

    We recently introduced likelihood-based methods for fitting stochastic integrate-and-fire models to spike train data. The key component of this method involves the likelihood that the model will emit a spike at a given time t. Computing this likelihood is equivalent to computing a Markov first passage time density (the probability that the model voltage crosses threshold for the first time at time t). Here we detail an improved method for computing this likelihood, based on solving a certain integral equation. This integral equation method has several advantages over the techniques discussed in our previous work: in particular, the new method has fewer free parameters and is easily differentiable (for gradient computations). The new method is also easily adaptable for the case in which the model conductance, not just the input current, is time-varying. Finally, we describe how to incorporate large deviations approximations to very small likelihoods.

  14. Facility Management as Part of an Integrated Design of Civil Engineering Structures

    NASA Astrophysics Data System (ADS)

    Hyben, Ivan; Podmanický, Peter

    2014-11-01

    The present article deals about facility management, as still relatively young component of an integrated planning and design of buildings. Attention is focused on the area of the proposal, which can greatly affect to amount of future operating costs. Operational efficiency has been divided into individual components and satisfaction with the solution of buildings already constructed was assessed by workers, who are actually dedicated facility management in these organizations. The results were then assessed and evaluated through regression analysis. The aim of this paper is to determine to what extent is desired update project documentation of new buildings from the perspective of facility management.

  15. Teaching Cardiovascular Integrations with Computer Laboratories.

    ERIC Educational Resources Information Center

    Peterson, Nils S.; Campbell, Kenneth B.

    1985-01-01

    Describes a computer-based instructional unit in cardiovascular physiology. The program (which employs simulated laboratory experimental techniques with a problem-solving format is designed to supplement an animal laboratory and to offer students an integrative approach to physiology through use of microcomputers. Also presents an overview of the…

  16. An integrated compact airborne multispectral imaging system using embedded computer

    NASA Astrophysics Data System (ADS)

    Zhang, Yuedong; Wang, Li; Zhang, Xuguo

    2015-08-01

    An integrated compact airborne multispectral imaging system using embedded computer based control system was developed for small aircraft multispectral imaging application. The multispectral imaging system integrates CMOS camera, filter wheel with eight filters, two-axis stabilized platform, miniature POS (position and orientation system) and embedded computer. The embedded computer has excellent universality and expansibility, and has advantages in volume and weight for airborne platform, so it can meet the requirements of control system of the integrated airborne multispectral imaging system. The embedded computer controls the camera parameters setting, filter wheel and stabilized platform working, image and POS data acquisition, and stores the image and data. The airborne multispectral imaging system can connect peripheral device use the ports of the embedded computer, so the system operation and the stored image data management are easy. This airborne multispectral imaging system has advantages of small volume, multi-function, and good expansibility. The imaging experiment results show that this system has potential for multispectral remote sensing in applications such as resource investigation and environmental monitoring.

  17. Computing Fourier integral operators with caustics

    NASA Astrophysics Data System (ADS)

    Caday, Peter

    2016-12-01

    Fourier integral operators (FIOs) have widespread applications in imaging, inverse problems, and PDEs. An implementation of a generic algorithm for computing FIOs associated with canonical graphs is presented, based on a recent paper of de Hoop et al. Given the canonical transformation and principal symbol of the operator, a preprocessing step reduces application of an FIO approximately to multiplications, pushforwards and forward and inverse discrete Fourier transforms, which can be computed in O({N}n+(n-1)/2{log}N) time for an n-dimensional FIO. The same preprocessed data also allows computation of the inverse and transpose of the FIO, with identical runtime. Examples demonstrate the algorithm’s output, and easily extendible MATLAB/C++ source code is available from the author.

  18. Enabling Extreme Scale Earth Science Applications at the Oak Ridge Leadership Computing Facility

    NASA Astrophysics Data System (ADS)

    Anantharaj, V. G.; Mozdzynski, G.; Hamrud, M.; Deconinck, W.; Smith, L.; Hack, J.

    2014-12-01

    The Oak Ridge Leadership Facility (OLCF), established at the Oak Ridge National Laboratory (ORNL) under the auspices of the U.S. Department of Energy (DOE), welcomes investigators from universities, government agencies, national laboratories and industry who are prepared to perform breakthrough research across a broad domain of scientific disciplines, including earth and space sciences. Titan, the OLCF flagship system, is currently listed as #2 in the Top500 list of supercomputers in the world, and the largest available for open science. The computational resources are allocated primarily via the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program, sponsored by the U.S. DOE Office of Science. In 2014, over 2.25 billion core hours on Titan were awarded via INCITE projects., including 14% of the allocation toward earth sciences. The INCITE competition is also open to research scientists based outside the USA. In fact, international research projects account for 12% of the INCITE awards in 2014. The INCITE scientific review panel also includes 20% participation from international experts. Recent accomplishments in earth sciences at OLCF include the world's first continuous simulation of 21,000 years of earth's climate history (2009); and an unprecedented simulation of a magnitude 8 earthquake over 125 sq. miles. One of the ongoing international projects involves scaling the ECMWF Integrated Forecasting System (IFS) model to over 200K cores of Titan. ECMWF is a partner in the EU funded Collaborative Research into Exascale Systemware, Tools and Applications (CRESTA) project. The significance of the research carried out within this project is the demonstration of techniques required to scale current generation Petascale capable simulation codes towards the performance levels required for running on future Exascale systems. One of the techniques pursued by ECMWF is to use Fortran2008 coarrays to overlap computations and communications and

  19. Integration of Computers in Education: A Curriculum Perspective.

    ERIC Educational Resources Information Center

    Plomp, Tjeerd

    This discussion of a major problem area in education--the curricular and implementation aspects of the application of the computer or new information technologies--focuses first on the use and integration of computers in existing courses or subjects in the curriculum, and defines some key terms. The next section considers issues in the…

  20. INTEGRITY -- Integrated Human Exploration Mission Simulation Facility

    NASA Astrophysics Data System (ADS)

    Henninger, D.; Tri, T.; Daues, K.

    It is proposed to develop a high -fidelity ground facil ity to carry out long-duration human exploration mission simulations. These would not be merely computer simulations - they would in fact comprise a series of actual missions that just happen to stay on earth. These missions would include all elements of an actual mission, using actual technologies that would be used for the real mission. These missions would also include such elements as extravehicular activities, robotic systems, telepresence and teleoperation, surface drilling technology--all using a simulated planetary landscape. A sequence of missions would be defined that get progressively longer and more robust, perhaps a series of five or six missions over a span of 10 to 15 years ranging in durat ion from 180 days up to 1000 days. This high-fidelity ground facility would operate hand-in-hand with a host of other terrestrial analog sites such as the Antarctic, Haughton Crater, and the Arizona desert. Of course, all of these analog mission simulations will be conducted here on earth in 1-g, and NASA will still need the Shuttle and ISS to carry out all the microgravity and hypogravity science experiments and technology validations. The proposed missions would have sufficient definition such that definitive requirements could be derived from them to serve as direction for all the program elements of the mission. Additionally, specific milestones would be established for the "launch" date of each mission so that R&D programs would have both good requirements and solid milestones from which to build their implementation plans. Mission aspects that could not be directly incorporated into the ground facility would be simulated via software. New management techniques would be developed for evaluation in this ground test facility program. These new techniques would have embedded metrics which would allow them to be continuously evaluated and adjusted so that by the time the sequence of missions is completed

  1. Advances in Integrated Computational Materials Engineering "ICME"

    NASA Astrophysics Data System (ADS)

    Hirsch, Jürgen

    The methods of Integrated Computational Materials Engineering that were developed and successfully applied for Aluminium have been constantly improved. The main aspects and recent advances of integrated material and process modeling are simulations of material properties like strength and forming properties and for the specific microstructure evolution during processing (rolling, extrusion, annealing) under the influence of material constitution and process variations through the production process down to the final application. Examples are discussed for the through-process simulation of microstructures and related properties of Aluminium sheet, including DC ingot casting, pre-heating and homogenization, hot and cold rolling, final annealing. New results are included of simulation solution annealing and age hardening of 6xxx alloys for automotive applications. Physically based quantitative descriptions and computer assisted evaluation methods are new ICME methods of integrating new simulation tools also for customer applications, like heat affected zones in welding of age hardening alloys. The aspects of estimating the effect of specific elements due to growing recycling volumes requested also for high end Aluminium products are also discussed, being of special interest in the Aluminium producing industries.

  2. Smart Homes and Buildings Research at the Energy Systems Integration Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christensen, Dane; Sparn, Bethany; Hannegan, Bryan

    Watch how NREL researchers are using the unique capabilities of the Energy Systems Integration Facility (ESIF) to develop technologies that will help the “smart” homes and buildings of the future perform efficiently and communicate effectively with the electricity grid while enhancing occupants' comfort and convenience.

  3. AGIS: Integration of new technologies used in ATLAS Distributed Computing

    NASA Astrophysics Data System (ADS)

    Anisenkov, Alexey; Di Girolamo, Alessandro; Alandes Pradillo, Maria

    2017-10-01

    The variety of the ATLAS Distributed Computing infrastructure requires a central information system to define the topology of computing resources and to store different parameters and configuration data which are needed by various ATLAS software components. The ATLAS Grid Information System (AGIS) is the system designed to integrate configuration and status information about resources, services and topology of the computing infrastructure used by ATLAS Distributed Computing applications and services. Being an intermediate middleware system between clients and external information sources (like central BDII, GOCDB, MyOSG), AGIS defines the relations between experiment specific used resources and physical distributed computing capabilities. Being in production during LHC Runl AGIS became the central information system for Distributed Computing in ATLAS and it is continuously evolving to fulfil new user requests, enable enhanced operations and follow the extension of the ATLAS Computing model. The ATLAS Computing model and data structures used by Distributed Computing applications and services are continuously evolving and trend to fit newer requirements from ADC community. In this note, we describe the evolution and the recent developments of AGIS functionalities, related to integration of new technologies recently become widely used in ATLAS Computing, like flexible computing utilization of opportunistic Cloud and HPC resources, ObjectStore services integration for Distributed Data Management (Rucio) and ATLAS workload management (PanDA) systems, unified storage protocols declaration required for PandDA Pilot site movers and others. The improvements of information model and general updates are also shown, in particular we explain how other collaborations outside ATLAS could benefit the system as a computing resources information catalogue. AGIS is evolving towards a common information system, not coupled to a specific experiment.

  4. Computational study of radiation doses at UNLV accelerator facility

    NASA Astrophysics Data System (ADS)

    Hodges, Matthew; Barzilov, Alexander; Chen, Yi-Tung; Lowe, Daniel

    2017-09-01

    A Varian K15 electron linear accelerator (linac) has been considered for installation at University of Nevada, Las Vegas (UNLV). Before experiments can be performed, it is necessary to evaluate the photon and neutron spectra as generated by the linac, as well as the resulting dose rates within the accelerator facility. A computational study using MCNPX was performed to characterize the source terms for the bremsstrahlung converter. The 15 MeV electron beam available in the linac is above the photoneutron threshold energy for several materials in the linac assembly, and as a result, neutrons must be accounted for. The angular and energy distributions for bremsstrahlung flux generated by the interaction of the 15 MeV electron beam with the linac target were determined. This source term was used in conjunction with the K15 collimators to determine the dose rates within the facility.

  5. Development of an integrated set of research facilities for the support of research flight test

    NASA Technical Reports Server (NTRS)

    Moore, Archie L.; Harney, Constance D.

    1988-01-01

    The Ames-Dryden Flight Research Facility (DFRF) serves as the site for high-risk flight research on many one-of-a-kind test vehicles like the X-29A advanced technology demonstrator, F-16 advanced fighter technology integration (AFTI), AFTI F-111 mission adaptive wing, and F-18 high-alpha research vehicle (HARV). Ames-Dryden is on a section of the historic Muroc Range. The facility is oriented toward the testing of high-performance aircraft, as shown by its part in the development of the X-series aircraft. Given the cost of research flight tests and the complexity of today's systems-driven aircraft, an integrated set of ground support experimental facilities is a necessity. In support of the research flight test of highly advanced test beds, the DFRF is developing a network of facilities to expedite the acquisition and distribution of flight research data to the researcher. The network consists of an array of experimental ground-based facilities and systems as nodes and the necessary telecommunications paths to pass research data and information between these facilities. This paper presents the status of the current network, an overview of current developments, and a prospectus on future major enhancements.

  6. An Integrated Assessment of Location-Dependent Scaling for Microalgae Biofuel Production Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, Andre M.; Abodeely, Jared; Skaggs, Richard

    Successful development of a large-scale microalgae-based biofuels industry requires comprehensive analysis and understanding of the feedstock supply chain—from facility siting/design through processing/upgrading of the feedstock to a fuel product. The evolution from pilot-scale production facilities to energy-scale operations presents many multi-disciplinary challenges, including a sustainable supply of water and nutrients, operational and infrastructure logistics, and economic competitiveness with petroleum-based fuels. These challenges are addressed in part by applying the Integrated Assessment Framework (IAF)—an integrated multi-scale modeling, analysis, and data management suite—to address key issues in developing and operating an open-pond facility by analyzing how variability and uncertainty in space andmore » time affect algal feedstock production rates, and determining the site-specific “optimum” facility scale to minimize capital and operational expenses. This approach explicitly and systematically assesses the interdependence of biofuel production potential, associated resource requirements, and production system design trade-offs. The IAF was applied to a set of sites previously identified as having the potential to cumulatively produce 5 billion-gallons/year in the southeastern U.S. and results indicate costs can be reduced by selecting the most effective processing technology pathway and scaling downstream processing capabilities to fit site-specific growing conditions, available resources, and algal strains.« less

  7. An integrated assessment of location-dependent scaling for microalgae biofuel production facilities

    DOE PAGES

    Coleman, André M.; Abodeely, Jared M.; Skaggs, Richard L.; ...

    2014-06-19

    Successful development of a large-scale microalgae-based biofuels industry requires comprehensive analysis and understanding of the feedstock supply chain—from facility siting and design through processing and upgrading of the feedstock to a fuel product. The evolution from pilot-scale production facilities to energy-scale operations presents many multi-disciplinary challenges, including a sustainable supply of water and nutrients, operational and infrastructure logistics, and economic competitiveness with petroleum-based fuels. These challenges are partially addressed by applying the Integrated Assessment Framework (IAF) – an integrated multi-scale modeling, analysis, and data management suite – to address key issues in developing and operating an open-pond microalgae production facility.more » This is done by analyzing how variability and uncertainty over space and through time affect feedstock production rates, and determining the site-specific “optimum” facility scale to minimize capital and operational expenses. This approach explicitly and systematically assesses the interdependence of biofuel production potential, associated resource requirements, and production system design trade-offs. To provide a baseline analysis, the IAF was applied in this paper to a set of sites in the southeastern U.S. with the potential to cumulatively produce 5 billion gallons per year. Finally, the results indicate costs can be reduced by scaling downstream processing capabilities to fit site-specific growing conditions, available and economically viable resources, and specific microalgal strains.« less

  8. Integrating Computational Thinking into Technology and Engineering Education

    ERIC Educational Resources Information Center

    Hacker, Michael

    2018-01-01

    Computational Thinking (CT) is being promoted as "a fundamental skill used by everyone in the world by the middle of the 21st Century" (Wing, 2006). CT has been effectively integrated into history, ELA, mathematics, art, and science courses (Settle, et al., 2012). However, there has been no analogous effort to integrate CT into…

  9. Integrating Cloud-Computing-Specific Model into Aircraft Design

    NASA Astrophysics Data System (ADS)

    Zhimin, Tian; Qi, Lin; Guangwen, Yang

    Cloud Computing is becoming increasingly relevant, as it will enable companies involved in spreading this technology to open the door to Web 3.0. In the paper, the new categories of services introduced will slowly replace many types of computational resources currently used. In this perspective, grid computing, the basic element for the large scale supply of cloud services, will play a fundamental role in defining how those services will be provided. The paper tries to integrate cloud computing specific model into aircraft design. This work has acquired good results in sharing licenses of large scale and expensive software, such as CFD (Computational Fluid Dynamics), UG, CATIA, and so on.

  10. Computation of Surface Integrals of Curl Vector Fields

    ERIC Educational Resources Information Center

    Hu, Chenglie

    2007-01-01

    This article presents a way of computing a surface integral when the vector field of the integrand is a curl field. Presented in some advanced calculus textbooks such as [1], the technique, as the author experienced, is simple and applicable. The computation is based on Stokes' theorem in 3-space calculus, and thus provides not only a means to…

  11. Integrating numerical computation into the undergraduate education physics curriculum using spreadsheet excel

    NASA Astrophysics Data System (ADS)

    Fauzi, Ahmad

    2017-11-01

    Numerical computation has many pedagogical advantages: it develops analytical skills and problem-solving skills, helps to learn through visualization, and enhances physics education. Unfortunately, numerical computation is not taught to undergraduate education physics students in Indonesia. Incorporate numerical computation into the undergraduate education physics curriculum presents many challenges. The main challenges are the dense curriculum that makes difficult to put new numerical computation course and most students have no programming experience. In this research, we used case study to review how to integrate numerical computation into undergraduate education physics curriculum. The participants of this research were 54 students of the fourth semester of physics education department. As a result, we concluded that numerical computation could be integrated into undergraduate education physics curriculum using spreadsheet excel combined with another course. The results of this research become complements of the study on how to integrate numerical computation in learning physics using spreadsheet excel.

  12. Smart Homes and Buildings Research at the Energy Systems Integration Facility

    ScienceCinema

    Christensen, Dane; Sparn, Bethany; Hannegan, Bryan

    2018-01-16

    Watch how NREL researchers are using the unique capabilities of the Energy Systems Integration Facility (ESIF) to develop technologies that will help the “smart” homes and buildings of the future perform efficiently and communicate effectively with the electricity grid while enhancing occupants' comfort and convenience.

  13. A facility for training Space Station astronauts

    NASA Technical Reports Server (NTRS)

    Hajare, Ankur R.; Schmidt, James R.

    1992-01-01

    The Space Station Training Facility (SSTF) will be the primary facility for training the Space Station Freedom astronauts and the Space Station Control Center ground support personnel. Conceptually, the SSTF will consist of two parts: a Student Environment and an Author Environment. The Student Environment will contain trainers, instructor stations, computers and other equipment necessary for training. The Author Environment will contain the systems that will be used to manage, develop, integrate, test and verify, operate and maintain the equipment and software in the Student Environment.

  14. Integration of the SSPM and STAGE with the MPACT Virtual Facility Distributed Test Bed.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cipiti, Benjamin B.; Shoman, Nathan

    The Material Protection Accounting and Control Technologies (MPACT) program within DOE NE is working toward a 2020 milestone to demonstrate a Virtual Facility Distributed Test Bed. The goal of the Virtual Test Bed is to link all MPACT modeling tools, technology development, and experimental work to create a Safeguards and Security by Design capability for fuel cycle facilities. The Separation and Safeguards Performance Model (SSPM) forms the core safeguards analysis tool, and the Scenario Toolkit and Generation Environment (STAGE) code forms the core physical security tool. These models are used to design and analyze safeguards and security systems and generatemore » performance metrics. Work over the past year has focused on how these models will integrate with the other capabilities in the MPACT program and specific model changes to enable more streamlined integration in the future. This report describes the model changes and plans for how the models will be used more collaboratively. The Virtual Facility is not designed to integrate all capabilities into one master code, but rather to maintain stand-alone capabilities that communicate results between codes more effectively.« less

  15. Bibliography for computer security, integrity, and safety

    NASA Technical Reports Server (NTRS)

    Bown, Rodney L.

    1991-01-01

    A bibliography of computer security, integrity, and safety issues is given. The bibliography is divided into the following sections: recent national publications; books; journal, magazine articles, and miscellaneous reports; conferences, proceedings, and tutorials; and government documents and contractor reports.

  16. Integrating Computational Science Tools into a Thermodynamics Course

    NASA Astrophysics Data System (ADS)

    Vieira, Camilo; Magana, Alejandra J.; García, R. Edwin; Jana, Aniruddha; Krafcik, Matthew

    2018-01-01

    Computational tools and methods have permeated multiple science and engineering disciplines, because they enable scientists and engineers to process large amounts of data, represent abstract phenomena, and to model and simulate complex concepts. In order to prepare future engineers with the ability to use computational tools in the context of their disciplines, some universities have started to integrate these tools within core courses. This paper evaluates the effect of introducing three computational modules within a thermodynamics course on student disciplinary learning and self-beliefs about computation. The results suggest that using worked examples paired to computer simulations to implement these modules have a positive effect on (1) student disciplinary learning, (2) student perceived ability to do scientific computing, and (3) student perceived ability to do computer programming. These effects were identified regardless of the students' prior experiences with computer programming.

  17. Refurbishment and Automation of Thermal Vacuum Facilities at NASA/GSFC

    NASA Technical Reports Server (NTRS)

    Dunn, Jamie; Gomez, Carlos; Donohue, John; Johnson, Chris; Palmer, John; Sushon, Janet

    1999-01-01

    The thermal vacuum facilities located at the Goddard Space Flight Center (GSFC) have supported both manned and unmanned space flight since the 1960s. Of the eleven facilities, currently ten of the systems are scheduled for refurbishment or replacement as part of a five-year implementation. Expected return on investment includes the reduction in test schedules, improvements in safety of facility operations, and reduction in the personnel support required for a test. Additionally, GSFC will become a global resource renowned for expertise in thermal engineering, mechanical engineering, and for the automation of thermal vacuum facilities and tests. Automation of the thermal vacuum facilities includes the utilization of Programmable Logic Controllers (PLCs), the use of Supervisory Control and Data Acquisition (SCADA) systems, and the development of a centralized Test Data Management System. These components allow the computer control and automation of mechanical components such as valves and pumps. The project of refurbishment and automation began in 1996 and has resulted in complete computer control of one facility (Facility 281), and the integration of electronically controlled devices and PLCs in multiple others.

  18. Refurbishment and Automation of Thermal Vacuum Facilities at NASA/GSFC

    NASA Technical Reports Server (NTRS)

    Dunn, Jamie; Gomez, Carlos; Donohue, John; Johnson, Chris; Palmer, John; Sushon, Janet

    1998-01-01

    The thermal vacuum facilities located at the Goddard Space Flight Center (GSFC) have supported both manned and unmanned space flight since the 1960s. Of the eleven facilities, currently ten of the systems are scheduled for refurbishment or replacement as part of a five-year implementation. Expected return on investment includes the reduction in test schedules, improvements in safety of facility operations, and reduction in the personnel support required for a test. Additionally, GSFC will become a global resource renowned for expertise in thermal engineering, mechanical engineering, and for the automation of thermal vacuum facilities and tests. Automation of the thermal vacuum facilities includes the utilization of Programmable Logic Controllers (PLCs), the use of Supervisory Control and Data Acquisition (SCADA) systems, and the development of a centralized Test Data Management System. These components allow the computer control and automation of mechanical components such as valves and pumps. The project of refurbishment and automation began in 1996 and has resulted in complete computer control of one facility (Facility 281), and the integration of electronically controlled devices and PLCs in multiple others.

  19. Integrating Computational Chemistry into a Course in Classical Thermodynamics

    ERIC Educational Resources Information Center

    Martini, Sheridan R.; Hartzell, Cynthia J.

    2015-01-01

    Computational chemistry is commonly addressed in the quantum mechanics course of undergraduate physical chemistry curricula. Since quantum mechanics traditionally follows the thermodynamics course, there is a lack of curricula relating computational chemistry to thermodynamics. A method integrating molecular modeling software into a semester long…

  20. Identifying Discriminating Variables between Teachers Who Fully Integrate Computers and Teachers with Limited Integration

    ERIC Educational Resources Information Center

    Mueller, Julie; Wood, Eileen; Willoughby, Teena; Ross, Craig; Specht, Jacqueline

    2008-01-01

    Given the prevalence of computers in education today, it is critical to understand teachers' perspectives regarding computer integration in their classrooms. The current study surveyed a random sample of a heterogeneous group of 185 elementary and 204 secondary teachers in order to provide a comprehensive summary of teacher characteristics and…

  1. Achieving Medical Currency via Selected Staff Integration in Civilian and Veterans Administration Medical Facilities

    DTIC Science & Technology

    2012-10-01

    medical license as long as care is delivered in a military facility.26 Hurdles—Liability Medical malpractice also presents a formidable challenge. In...AIR UNIVERSITY AIR WAR COLLEGE Achieving Medical Currency via Selected Staff Integration in Civilian and Veterans Administration... Medical Facilities THOMAS W. HARRELL Colonel, USAF, MC, SFS Air War College Maxwell Paper No. 68 Maxwell Air Force Base, Alabama

  2. The multi-modal Australian ScienceS Imaging and Visualization Environment (MASSIVE) high performance computing infrastructure: applications in neuroscience and neuroinformatics research

    PubMed Central

    Goscinski, Wojtek J.; McIntosh, Paul; Felzmann, Ulrich; Maksimenko, Anton; Hall, Christopher J.; Gureyev, Timur; Thompson, Darren; Janke, Andrew; Galloway, Graham; Killeen, Neil E. B.; Raniga, Parnesh; Kaluza, Owen; Ng, Amanda; Poudel, Govinda; Barnes, David G.; Nguyen, Toan; Bonnington, Paul; Egan, Gary F.

    2014-01-01

    The Multi-modal Australian ScienceS Imaging and Visualization Environment (MASSIVE) is a national imaging and visualization facility established by Monash University, the Australian Synchrotron, the Commonwealth Scientific Industrial Research Organization (CSIRO), and the Victorian Partnership for Advanced Computing (VPAC), with funding from the National Computational Infrastructure and the Victorian Government. The MASSIVE facility provides hardware, software, and expertise to drive research in the biomedical sciences, particularly advanced brain imaging research using synchrotron x-ray and infrared imaging, functional and structural magnetic resonance imaging (MRI), x-ray computer tomography (CT), electron microscopy and optical microscopy. The development of MASSIVE has been based on best practice in system integration methodologies, frameworks, and architectures. The facility has: (i) integrated multiple different neuroimaging analysis software components, (ii) enabled cross-platform and cross-modality integration of neuroinformatics tools, and (iii) brought together neuroimaging databases and analysis workflows. MASSIVE is now operational as a nationally distributed and integrated facility for neuroinfomatics and brain imaging research. PMID:24734019

  3. Integrated Disposal Facility FY2011 Glass Testing Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, Eric M.; Bacon, Diana H.; Kerisit, Sebastien N.

    2011-09-29

    Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility (e.g., source term). Vitrifying the low-activity waste at Hanford is expected to generate over 1.6 x 10{sup 5} m{sup 3} of glass (Certa and Wells 2010). The volume of immobilized low-activity waste (ILAW) at Hanford is the largest in the DOE complex and is one of the largest inventories (approximately 8.9 x 10{sup 14} Bq total activity) of long-lived radionuclides, principally {sup 99}Tc (t{sub 1/2} = 2.1 x 10{sup 5}), plannedmore » for disposal in a low-level waste (LLW) facility. Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program PNNL is implementing a strategy, consisting of experimentation and modeling, in order to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. The purpose of this report is to summarize the progress made in fiscal year (FY) 2011 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of low-activity waste glasses.« less

  4. A computational- And storage-cloud for integration of biodiversity collections

    USGS Publications Warehouse

    Matsunaga, A.; Thompson, A.; Figueiredo, R. J.; Germain-Aubrey, C.C; Collins, M.; Beeman, R.S; Macfadden, B.J.; Riccardi, G.; Soltis, P.S; Page, L. M.; Fortes, J.A.B

    2013-01-01

    A core mission of the Integrated Digitized Biocollections (iDigBio) project is the building and deployment of a cloud computing environment customized to support the digitization workflow and integration of data from all U.S. nonfederal biocollections. iDigBio chose to use cloud computing technologies to deliver a cyberinfrastructure that is flexible, agile, resilient, and scalable to meet the needs of the biodiversity community. In this context, this paper describes the integration of open source cloud middleware, applications, and third party services using standard formats, protocols, and services. In addition, this paper demonstrates the value of the digitized information from collections in a broader scenario involving multiple disciplines.

  5. A systematic and efficient method to compute multi-loop master integrals

    NASA Astrophysics Data System (ADS)

    Liu, Xiao; Ma, Yan-Qing; Wang, Chen-Yu

    2018-04-01

    We propose a novel method to compute multi-loop master integrals by constructing and numerically solving a system of ordinary differential equations, with almost trivial boundary conditions. Thus it can be systematically applied to problems with arbitrary kinematic configurations. Numerical tests show that our method can not only achieve results with high precision, but also be much faster than the only existing systematic method sector decomposition. As a by product, we find a new strategy to compute scalar one-loop integrals without reducing them to master integrals.

  6. HPC AND GRID COMPUTING FOR INTEGRATIVE BIOMEDICAL RESEARCH

    PubMed Central

    Kurc, Tahsin; Hastings, Shannon; Kumar, Vijay; Langella, Stephen; Sharma, Ashish; Pan, Tony; Oster, Scott; Ervin, David; Permar, Justin; Narayanan, Sivaramakrishnan; Gil, Yolanda; Deelman, Ewa; Hall, Mary; Saltz, Joel

    2010-01-01

    Integrative biomedical research projects query, analyze, and integrate many different data types and make use of datasets obtained from measurements or simulations of structure and function at multiple biological scales. With the increasing availability of high-throughput and high-resolution instruments, the integrative biomedical research imposes many challenging requirements on software middleware systems. In this paper, we look at some of these requirements using example research pattern templates. We then discuss how middleware systems, which incorporate Grid and high-performance computing, could be employed to address the requirements. PMID:20107625

  7. Integrating Mobile Robotics and Vision with Undergraduate Computer Science

    ERIC Educational Resources Information Center

    Cielniak, G.; Bellotto, N.; Duckett, T.

    2013-01-01

    This paper describes the integration of robotics education into an undergraduate Computer Science curriculum. The proposed approach delivers mobile robotics as well as covering the closely related field of Computer Vision and is directly linked to the research conducted at the authors' institution. The paper describes the most relevant details of…

  8. Computer integrated documentation

    NASA Technical Reports Server (NTRS)

    Boy, Guy

    1991-01-01

    The main technical issues of the Computer Integrated Documentation (CID) project are presented. The problem of automation of documents management and maintenance is analyzed both from an artificial intelligence viewpoint and from a human factors viewpoint. Possible technologies for CID are reviewed: conventional approaches to indexing and information retrieval; hypertext; and knowledge based systems. A particular effort was made to provide an appropriate representation for contextual knowledge. This representation is used to generate context on hypertext links. Thus, indexing in CID is context sensitive. The implementation of the current version of CID is described. It includes a hypertext data base, a knowledge based management and maintenance system, and a user interface. A series is also presented of theoretical considerations as navigation in hyperspace, acquisition of indexing knowledge, generation and maintenance of a large documentation, and relation to other work.

  9. DNET: A communications facility for distributed heterogeneous computing

    NASA Technical Reports Server (NTRS)

    Tole, John; Nagappan, S.; Clayton, J.; Ruotolo, P.; Williamson, C.; Solow, H.

    1989-01-01

    This document describes DNET, a heterogeneous data communications networking facility. DNET allows programs operating on hosts on dissimilar networks to communicate with one another without concern for computer hardware, network protocol, or operating system differences. The overall DNET network is defined as the collection of host machines/networks on which the DNET software is operating. Each underlying network is considered a DNET 'domain'. Data communications service is provided between any two processes on any two hosts on any of the networks (domains) that may be reached via DNET. DNET provides protocol transparent, reliable, streaming data transmission between hosts (restricted, initially to DECnet and TCP/IP networks). DNET also provides variable length datagram service with optional return receipts.

  10. Principled design for an integrated computational environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Disessa, A.A.

    Boxer is a computer language designed to be the base of an integrated computational environment providing a broad array of functionality -- from text editing to programming -- for naive and novice users. It stands in the line of Lisp inspired languages (Lisp, Logo, Scheme), but differs from these in achieving much of its understandability from pervasive use of a spatial metaphor reinforced through suitable graphics. This paper describes a set of learnability and understandability issues first and then uses them to motivate design decisions made concerning Boxer and the environment in which it is embedded.

  11. Automation of electromagnetic compatability (EMC) test facilities

    NASA Technical Reports Server (NTRS)

    Harrison, C. A.

    1986-01-01

    Efforts to automate electromagnetic compatibility (EMC) test facilities at Marshall Space Flight Center are discussed. The present facility is used to accomplish a battery of nine standard tests (with limited variations) deigned to certify EMC of Shuttle payload equipment. Prior to this project, some EMC tests were partially automated, but others were performed manually. Software was developed to integrate all testing by means of a desk-top computer-controller. Near real-time data reduction and onboard graphics capabilities permit immediate assessment of test results. Provisions for disk storage of test data permit computer production of the test engineer's certification report. Software flexibility permits variation in the tests procedure, the ability to examine more closely those frequency bands which indicate compatibility problems, and the capability to incorporate additional test procedures.

  12. A Formative and Summative Evaluation of Computer Integrated Instruction.

    ERIC Educational Resources Information Center

    Signer, Barbara

    The purpose of this study was to conduct formative and summative evaluation for Computer Integrated Instruction (CII), an alternative use of computer-assisted instruction (CAI). The non-equivalent control group, pretest-posttest design was implemented with the class as the unit of analysis. Several of the instruments were adopted from existing CAI…

  13. Providing security for automated process control systems at hydropower engineering facilities

    NASA Astrophysics Data System (ADS)

    Vasiliev, Y. S.; Zegzhda, P. D.; Zegzhda, D. P.

    2016-12-01

    This article suggests the concept of a cyberphysical system to manage computer security of automated process control systems at hydropower engineering facilities. According to the authors, this system consists of a set of information processing tools and computer-controlled physical devices. Examples of cyber attacks on power engineering facilities are provided, and a strategy of improving cybersecurity of hydropower engineering systems is suggested. The architecture of the multilevel protection of the automated process control system (APCS) of power engineering facilities is given, including security systems, control systems, access control, encryption, secure virtual private network of subsystems for monitoring and analysis of security events. The distinctive aspect of the approach is consideration of interrelations and cyber threats, arising when SCADA is integrated with the unified enterprise information system.

  14. Integrative Genomics and Computational Systems Medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDermott, Jason E.; Huang, Yufei; Zhang, Bing

    The exponential growth in generation of large amounts of genomic data from biological samples has driven the emerging field of systems medicine. This field is promising because it improves our understanding of disease processes at the systems level. However, the field is still in its young stage. There exists a great need for novel computational methods and approaches to effectively utilize and integrate various omics data.

  15. Integrating Xgrid into the HENP distributed computing model

    NASA Astrophysics Data System (ADS)

    Hajdu, L.; Kocoloski, A.; Lauret, J.; Miller, M.

    2008-07-01

    Modern Macintosh computers feature Xgrid, a distributed computing architecture built directly into Apple's OS X operating system. While the approach is radically different from those generally expected by the Unix based Grid infrastructures (Open Science Grid, TeraGrid, EGEE), opportunistic computing on Xgrid is nonetheless a tempting and novel way to assemble a computing cluster with a minimum of additional configuration. In fact, it requires only the default operating system and authentication to a central controller from each node. OS X also implements arbitrarily extensible metadata, allowing an instantly updated file catalog to be stored as part of the filesystem itself. The low barrier to entry allows an Xgrid cluster to grow quickly and organically. This paper and presentation will detail the steps that can be taken to make such a cluster a viable resource for HENP research computing. We will further show how to provide to users a unified job submission framework by integrating Xgrid through the STAR Unified Meta-Scheduler (SUMS), making tasks and jobs submission effortlessly at reach for those users already using the tool for traditional Grid or local cluster job submission. We will discuss additional steps that can be taken to make an Xgrid cluster a full partner in grid computing initiatives, focusing on Open Science Grid integration. MIT's Xgrid system currently supports the work of multiple research groups in the Laboratory for Nuclear Science, and has become an important tool for generating simulations and conducting data analyses at the Massachusetts Institute of Technology.

  16. Experimental Validation: Subscale Aircraft Ground Facilities and Integrated Test Capability

    NASA Technical Reports Server (NTRS)

    Bailey, Roger M.; Hostetler, Robert W., Jr.; Barnes, Kevin N.; Belcastro, Celeste M.; Belcastro, Christine M.

    2005-01-01

    Experimental testing is an important aspect of validating complex integrated safety critical aircraft technologies. The Airborne Subscale Transport Aircraft Research (AirSTAR) Testbed is being developed at NASA Langley to validate technologies under conditions that cannot be flight validated with full-scale vehicles. The AirSTAR capability comprises a series of flying sub-scale models, associated ground-support equipment, and a base research station at NASA Langley. The subscale model capability utilizes a generic 5.5% scaled transport class vehicle known as the Generic Transport Model (GTM). The AirSTAR Ground Facilities encompass the hardware and software infrastructure necessary to provide comprehensive support services for the GTM testbed. The ground facilities support remote piloting of the GTM aircraft, and include all subsystems required for data/video telemetry, experimental flight control algorithm implementation and evaluation, GTM simulation, data recording/archiving, and audio communications. The ground facilities include a self-contained, motorized vehicle serving as a mobile research command/operations center, capable of deployment to remote sites when conducting GTM flight experiments. The ground facilities also include a laboratory based at NASA LaRC providing near identical capabilities as the mobile command/operations center, as well as the capability to receive data/video/audio from, and send data/audio to the mobile command/operations center during GTM flight experiments.

  17. Computer Integrated Manufacturing. Florida Vocational Program Guide.

    ERIC Educational Resources Information Center

    University of South Florida, Tampa. Dept. of Adult and Vocational Education.

    This packet contains a program guide and Career Merit Achievement Plan (Career MAP) for the implementation of a computer-integrated manufacturing program in Florida secondary and postsecondary schools. The program guide describes the program content and structure, provides a program description, lists job titles under the program, and includes a…

  18. Advanced software integration: The case for ITV facilities

    NASA Technical Reports Server (NTRS)

    Garman, John R.

    1990-01-01

    The array of technologies and methodologies involved in the development and integration of avionics software has moved almost as rapidly as computer technology itself. Future avionics systems involve major advances and risks in the following areas: (1) Complexity; (2) Connectivity; (3) Security; (4) Duration; and (5) Software engineering. From an architectural standpoint, the systems will be much more distributed, involve session-based user interfaces, and have the layered architectures typified in the layers of abstraction concepts popular in networking. Typified in the NASA Space Station Freedom will be the highly distributed nature of software development itself. Systems composed of independent components developed in parallel must be bound by rigid standards and interfaces, the clean requirements and specifications. Avionics software provides a challenge in that it can not be flight tested until the first time it literally flies. It is the binding of requirements for such an integration environment into the advances and risks of future avionics systems that form the basis of the presented concept and the basic Integration, Test, and Verification concept within the development and integration life cycle of Space Station Mission and Avionics systems.

  19. Computational knowledge integration in biopharmaceutical research.

    PubMed

    Ficenec, David; Osborne, Mark; Pradines, Joel; Richards, Dan; Felciano, Ramon; Cho, Raymond J; Chen, Richard O; Liefeld, Ted; Owen, James; Ruttenberg, Alan; Reich, Christian; Horvath, Joseph; Clark, Tim

    2003-09-01

    An initiative to increase biopharmaceutical research productivity by capturing, sharing and computationally integrating proprietary scientific discoveries with public knowledge is described. This initiative involves both organisational process change and multiple interoperating software systems. The software components rely on mutually supporting integration techniques. These include a richly structured ontology, statistical analysis of experimental data against stored conclusions, natural language processing of public literature, secure document repositories with lightweight metadata, web services integration, enterprise web portals and relational databases. This approach has already begun to increase scientific productivity in our enterprise by creating an organisational memory (OM) of internal research findings, accessible on the web. Through bringing together these components it has also been possible to construct a very large and expanding repository of biological pathway information linked to this repository of findings which is extremely useful in analysis of DNA microarray data. This repository, in turn, enables our research paradigm to be shifted towards more comprehensive systems-based understandings of drug action.

  20. Money for Research, Not for Energy Bills: Finding Energy and Cost Savings in High Performance Computer Facility Designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drewmark Communications; Sartor, Dale; Wilson, Mark

    2010-07-01

    High-performance computing facilities in the United States consume an enormous amount of electricity, cutting into research budgets and challenging public- and private-sector efforts to reduce energy consumption and meet environmental goals. However, these facilities can greatly reduce their energy demand through energy-efficient design of the facility itself. Using a case study of a facility under design, this article discusses strategies and technologies that can be used to help achieve energy reductions.

  1. Data management and its role in delivering science at DOE BES user facilities - Past, Present, and Future

    NASA Astrophysics Data System (ADS)

    Miller, Stephen D.; Herwig, Kenneth W.; Ren, Shelly; Vazhkudai, Sudharshan S.; Jemian, Pete R.; Luitz, Steffen; Salnikov, Andrei A.; Gaponenko, Igor; Proffen, Thomas; Lewis, Paul; Green, Mark L.

    2009-07-01

    The primary mission of user facilities operated by Basic Energy Sciences under the Department of Energy is to produce data for users in support of open science and basic research [1]. We trace back almost 30 years of history across selected user facilities illustrating the evolution of facility data management practices and how these practices have related to performing scientific research. The facilities cover multiple techniques such as X-ray and neutron scattering, imaging and tomography sciences. Over time, detector and data acquisition technologies have dramatically increased the ability to produce prolific volumes of data challenging the traditional paradigm of users taking data home upon completion of their experiments to process and publish their results. During this time, computing capacity has also increased dramatically, though the size of the data has grown significantly faster than the capacity of one's laptop to manage and process this new facility produced data. Trends indicate that this will continue to be the case for yet some time. Thus users face a quandary for how to manage today's data complexity and size as these may exceed the computing resources users have available to themselves. This same quandary can also stifle collaboration and sharing. Realizing this, some facilities are already providing web portal access to data and computing thereby providing users access to resources they need [2]. Portal based computing is now driving researchers to think about how to use the data collected at multiple facilities in an integrated way to perform their research, and also how to collaborate and share data. In the future, inter-facility data management systems will enable next tier cross-instrument-cross facility scientific research fuelled by smart applications residing upon user computer resources. We can learn from the medical imaging community that has been working since the early 1990's to integrate data from across multiple modalities to achieve

  2. Integrated Disposal Facility FY 2012 Glass Testing Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, Eric M.; Kerisit, Sebastien N.; Krogstad, Eirik J.

    2013-03-29

    PNNL is conducting work to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility for Hanford immobilized low-activity waste (ILAW). Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program, PNNL is implementing a strategy, consisting of experimentation and modeling, to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. Keymore » activities in FY12 include upgrading the STOMP/eSTOMP codes to do near-field modeling, geochemical modeling of PCT tests to determine the reaction network to be used in the STOMP codes, conducting PUF tests on selected glasses to simulate and accelerate glass weathering, developing a Monte Carlo simulation tool to predict the characteristics of the weathered glass reaction layer as a function of glass composition, and characterizing glasses and soil samples exhumed from an 8-year lysimeter test. The purpose of this report is to summarize the progress made in fiscal year (FY) 2012 and the first quarter of FY 2013 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of LAW glasses.« less

  3. Computational attributes of the integral form of the equation of transfer

    NASA Technical Reports Server (NTRS)

    Frankel, J. I.

    1991-01-01

    Difficulties can arise in radiative and neutron transport calculations when a highly anisotropic scattering phase function is present. In the presence of anisotropy, currently used numerical solutions are based on the integro-differential form of the linearized Boltzmann transport equation. This paper, departs from classical thought and presents an alternative numerical approach based on application of the integral form of the transport equation. Use of the integral formalism facilitates the following steps: a reduction in dimensionality of the system prior to discretization, the use of symbolic manipulation to augment the computational procedure, and the direct determination of key physical quantities which are derivable through the various Legendre moments of the intensity. The approach is developed in the context of radiative heat transfer in a plane-parallel geometry, and results are presented and compared with existing benchmark solutions. Encouraging results are presented to illustrate the potential of the integral formalism for computation. The integral formalism appears to possess several computational attributes which are well-suited to radiative and neutron transport calculations.

  4. Grid Facilities | Grid Modernization | NREL

    Science.gov Websites

    groundbreaking innovations and collaboration in grid research. Photo of the Energy Systems Integration Facility Energy Systems Integration Facility The Energy Systems Integration Facility is the nation's premier user Located in Boulder, Colorado, the National Wind Technology Center (NWTC) offers similar integration

  5. Integration of the Chinese HPC Grid in ATLAS Distributed Computing

    NASA Astrophysics Data System (ADS)

    Filipčič, A.; ATLAS Collaboration

    2017-10-01

    Fifteen Chinese High-Performance Computing sites, many of them on the TOP500 list of most powerful supercomputers, are integrated into a common infrastructure providing coherent access to a user through an interface based on a RESTful interface called SCEAPI. These resources have been integrated into the ATLAS Grid production system using a bridge between ATLAS and SCEAPI which translates the authorization and job submission protocols between the two environments. The ARC Computing Element (ARC-CE) forms the bridge using an extended batch system interface to allow job submission to SCEAPI. The ARC-CE was setup at the Institute for High Energy Physics, Beijing, in order to be as close as possible to the SCEAPI front-end interface at the Computing Network Information Center, also in Beijing. This paper describes the technical details of the integration between ARC-CE and SCEAPI and presents results so far with two supercomputer centers, Tianhe-IA and ERA. These two centers have been the pilots for ATLAS Monte Carlo Simulation in SCEAPI and have been providing CPU power since fall 2015.

  6. The HEPCloud Facility: elastic computing for High Energy Physics - The NOvA Use Case

    NASA Astrophysics Data System (ADS)

    Fuess, S.; Garzoglio, G.; Holzman, B.; Kennedy, R.; Norman, A.; Timm, S.; Tiradani, A.

    2017-10-01

    The need for computing in the HEP community follows cycles of peaks and valleys mainly driven by conference dates, accelerator shutdown, holiday schedules, and other factors. Because of this, the classical method of provisioning these resources at providing facilities has drawbacks such as potential overprovisioning. As the appetite for computing increases, however, so does the need to maximize cost efficiency by developing a model for dynamically provisioning resources only when needed. To address this issue, the HEPCloud project was launched by the Fermilab Scientific Computing Division in June 2015. Its goal is to develop a facility that provides a common interface to a variety of resources, including local clusters, grids, high performance computers, and community and commercial Clouds. Initially targeted experiments include CMS and NOvA, as well as other Fermilab stakeholders. In its first phase, the project has demonstrated the use of the “elastic” provisioning model offered by commercial clouds, such as Amazon Web Services. In this model, resources are rented and provisioned automatically over the Internet upon request. In January 2016, the project demonstrated the ability to increase the total amount of global CMS resources by 58,000 cores from 150,000 cores - a 38 percent increase - in preparation for the Recontres de Moriond. In March 2016, the NOvA experiment has also demonstrated resource burst capabilities with an additional 7,300 cores, achieving a scale almost four times as large as the local allocated resources and utilizing the local AWS s3 storage to optimize data handling operations and costs. NOvA was using the same familiar services used for local computations, such as data handling and job submission, in preparation for the Neutrino 2016 conference. In both cases, the cost was contained by the use of the Amazon Spot Instance Market and the Decision Engine, a HEPCloud component that aims at minimizing cost and job interruption. This paper

  7. Integrating computational methods to retrofit enzymes to synthetic pathways.

    PubMed

    Brunk, Elizabeth; Neri, Marilisa; Tavernelli, Ivano; Hatzimanikatis, Vassily; Rothlisberger, Ursula

    2012-02-01

    Microbial production of desired compounds provides an efficient framework for the development of renewable energy resources. To be competitive to traditional chemistry, one requirement is to utilize the full capacity of the microorganism to produce target compounds with high yields and turnover rates. We use integrated computational methods to generate and quantify the performance of novel biosynthetic routes that contain highly optimized catalysts. Engineering a novel reaction pathway entails addressing feasibility on multiple levels, which involves handling the complexity of large-scale biochemical networks while respecting the critical chemical phenomena at the atomistic scale. To pursue this multi-layer challenge, our strategy merges knowledge-based metabolic engineering methods with computational chemistry methods. By bridging multiple disciplines, we provide an integral computational framework that could accelerate the discovery and implementation of novel biosynthetic production routes. Using this approach, we have identified and optimized a novel biosynthetic route for the production of 3HP from pyruvate. Copyright © 2011 Wiley Periodicals, Inc.

  8. Why Integrate Educational and Community Facilities?

    ERIC Educational Resources Information Center

    Fessas-Emmanouil, Helen D.

    1978-01-01

    Discusses coordination of educational and community facilities in order to encourage more rational investments and more efficient use of premises. Such coordination may reduce the economic burden imposed upon citizens for the provision of separate facilities for school and community. However, implementation of such a facility presupposes radical…

  9. Specialized computer architectures for computational aerodynamics

    NASA Technical Reports Server (NTRS)

    Stevenson, D. K.

    1978-01-01

    In recent years, computational fluid dynamics has made significant progress in modelling aerodynamic phenomena. Currently, one of the major barriers to future development lies in the compute-intensive nature of the numerical formulations and the relative high cost of performing these computations on commercially available general purpose computers, a cost high with respect to dollar expenditure and/or elapsed time. Today's computing technology will support a program designed to create specialized computing facilities to be dedicated to the important problems of computational aerodynamics. One of the still unresolved questions is the organization of the computing components in such a facility. The characteristics of fluid dynamic problems which will have significant impact on the choice of computer architecture for a specialized facility are reviewed.

  10. Double crystal monochromator controlled by integrated computing on BL07A in New SUBARU, Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okui, Masato, E-mail: okui@kohzu.co.jp; Laboratory of Advanced Science and Technology for Industry, University of Hyogo; Yato, Naoki

    2016-07-27

    The BL07A beamline in New SUBARU, University of Hyogo, has been used for many studies of new materials. A new double crystal monochromator controlled by integrated computing was designed and installed in the beamline in 2014. In this report we will discuss the unique features of this new monochromator, MKZ-7NS. This monochromator was not designed exclusively for use in BL07A; on the contrary, it was designed to be installed at low cost in various beamlines to facilitate the industrial applications of medium-scale synchrotron radiation facilities. Thus, the design of the monochromator utilized common packages that can satisfy the wide varietymore » of specifications required at different synchrotron radiation facilities. This monochromator can be easily optimized for any beamline due to the fact that a few control parameters can be suitably customized. The beam offset can be fixed precisely even if one of the two slave axes is omitted. This design reduces the convolution of mechanical errors. Moreover, the monochromator’s control mechanism is very compact, making it possible to reduce the size of the vacuum chamber can be made smaller.« less

  11. Statistical Methodologies to Integrate Experimental and Computational Research

    NASA Technical Reports Server (NTRS)

    Parker, P. A.; Johnson, R. T.; Montgomery, D. C.

    2008-01-01

    Development of advanced algorithms for simulating engine flow paths requires the integration of fundamental experiments with the validation of enhanced mathematical models. In this paper, we provide an overview of statistical methods to strategically and efficiently conduct experiments and computational model refinement. Moreover, the integration of experimental and computational research efforts is emphasized. With a statistical engineering perspective, scientific and engineering expertise is combined with statistical sciences to gain deeper insights into experimental phenomenon and code development performance; supporting the overall research objectives. The particular statistical methods discussed are design of experiments, response surface methodology, and uncertainty analysis and planning. Their application is illustrated with a coaxial free jet experiment and a turbulence model refinement investigation. Our goal is to provide an overview, focusing on concepts rather than practice, to demonstrate the benefits of using statistical methods in research and development, thereby encouraging their broader and more systematic application.

  12. Resilient and Robust High Performance Computing Platforms for Scientific Computing Integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Yier

    As technology advances, computer systems are subject to increasingly sophisticated cyber-attacks that compromise both their security and integrity. High performance computing platforms used in commercial and scientific applications involving sensitive, or even classified data, are frequently targeted by powerful adversaries. This situation is made worse by a lack of fundamental security solutions that both perform efficiently and are effective at preventing threats. Current security solutions fail to address the threat landscape and ensure the integrity of sensitive data. As challenges rise, both private and public sectors will require robust technologies to protect its computing infrastructure. The research outcomes from thismore » project try to address all these challenges. For example, we present LAZARUS, a novel technique to harden kernel Address Space Layout Randomization (KASLR) against paging-based side-channel attacks. In particular, our scheme allows for fine-grained protection of the virtual memory mappings that implement the randomization. We demonstrate the effectiveness of our approach by hardening a recent Linux kernel with LAZARUS, mitigating all of the previously presented side-channel attacks on KASLR. Our extensive evaluation shows that LAZARUS incurs only 0.943% overhead for standard benchmarks, and is therefore highly practical. We also introduced HA2lloc, a hardware-assisted allocator that is capable of leveraging an extended memory management unit to detect memory errors in the heap. We also perform testing using HA2lloc in a simulation environment and find that the approach is capable of preventing common memory vulnerabilities.« less

  13. Contribution of sublinear and supralinear dendritic integration to neuronal computations

    PubMed Central

    Tran-Van-Minh, Alexandra; Cazé, Romain D.; Abrahamsson, Therése; Cathala, Laurence; Gutkin, Boris S.; DiGregorio, David A.

    2015-01-01

    Nonlinear dendritic integration is thought to increase the computational ability of neurons. Most studies focus on how supralinear summation of excitatory synaptic responses arising from clustered inputs within single dendrites result in the enhancement of neuronal firing, enabling simple computations such as feature detection. Recent reports have shown that sublinear summation is also a prominent dendritic operation, extending the range of subthreshold input-output (sI/O) transformations conferred by dendrites. Like supralinear operations, sublinear dendritic operations also increase the repertoire of neuronal computations, but feature extraction requires different synaptic connectivity strategies for each of these operations. In this article we will review the experimental and theoretical findings describing the biophysical determinants of the three primary classes of dendritic operations: linear, sublinear, and supralinear. We then review a Boolean algebra-based analysis of simplified neuron models, which provides insight into how dendritic operations influence neuronal computations. We highlight how neuronal computations are critically dependent on the interplay of dendritic properties (morphology and voltage-gated channel expression), spiking threshold and distribution of synaptic inputs carrying particular sensory features. Finally, we describe how global (scattered) and local (clustered) integration strategies permit the implementation of similar classes of computations, one example being the object feature binding problem. PMID:25852470

  14. Fluids and Combustion Facility: Fluids Integrated Rack Modal Model Correlation

    NASA Technical Reports Server (NTRS)

    McNelis, Mark E.; Suarez, Vicente J.; Sullivan, Timothy L.; Otten, Kim D.; Akers, James C.

    2005-01-01

    The Fluids Integrated Rack (FIR) is one of two racks in the Fluids and Combustion Facility on the International Space Station. The FIR is dedicated to the scientific investigation of space system fluids management supporting NASA s Exploration of Space Initiative. The FIR hardware was modal tested and FIR finite element model updated to satisfy the International Space Station model correlation criteria. The final cross-orthogonality results between the correlated model and test mode shapes was greater than 90 percent for all primary target modes.

  15. Integrated Disposal Facility FY2011 Glass Testing Summary Report. Erratum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Gary L.

    2016-09-06

    This report refers to or contains K g values for glasses LAWA44, LAWB45 and LAWC22 affected by calculations errors as identified by Papathanassiu et al. (2011). The corrected K g values are reported in an erratum included in the revised version of the original report. The revised report can be referenced as follows: Pierce E. M. et al. (2004) Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment. PNNL-14805 Rev. 0 Erratum. Pacific Northwest National Laboratory, Richland, WA, USA.

  16. Integrated Disposal Facility FY 2012 Glass Testing Summary Report, Erratum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Gary L.

    2016-09-02

    This report refers to or contains K g values for glasses LAWA44, LAWB45 and LAWC22 affected by calculations errors as identified by Papathanassiu et al. (2011) The corrected K g values are reported in an erratum included in the revised version of the original report. The revised report can be referenced as follows: Pierce E. M. et al. (2004) Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment. PNNL-14805 Rev. 0 Erratum. Pacific Northwest National Laboratory, Richland, WA, USA.

  17. INFN-Pisa scientific computation environment (GRID, HPC and Interactive Analysis)

    NASA Astrophysics Data System (ADS)

    Arezzini, S.; Carboni, A.; Caruso, G.; Ciampa, A.; Coscetti, S.; Mazzoni, E.; Piras, S.

    2014-06-01

    The INFN-Pisa Tier2 infrastructure is described, optimized not only for GRID CPU and Storage access, but also for a more interactive use of the resources in order to provide good solutions for the final data analysis step. The Data Center, equipped with about 6700 production cores, permits the use of modern analysis techniques realized via advanced statistical tools (like RooFit and RooStat) implemented in multicore systems. In particular a POSIX file storage access integrated with standard SRM access is provided. Therefore the unified storage infrastructure is described, based on GPFS and Xrootd, used both for SRM data repository and interactive POSIX access. Such a common infrastructure allows a transparent access to the Tier2 data to the users for their interactive analysis. The organization of a specialized many cores CPU facility devoted to interactive analysis is also described along with the login mechanism integrated with the INFN-AAI (National INFN Infrastructure) to extend the site access and use to a geographical distributed community. Such infrastructure is used also for a national computing facility in use to the INFN theoretical community, it enables a synergic use of computing and storage resources. Our Center initially developed for the HEP community is now growing and includes also HPC resources fully integrated. In recent years has been installed and managed a cluster facility (1000 cores, parallel use via InfiniBand connection) and we are now updating this facility that will provide resources for all the intermediate level HPC computing needs of the INFN theoretical national community.

  18. EGI-EUDAT integration activity - Pair data and high-throughput computing resources together

    NASA Astrophysics Data System (ADS)

    Scardaci, Diego; Viljoen, Matthew; Vitlacil, Dejan; Fiameni, Giuseppe; Chen, Yin; sipos, Gergely; Ferrari, Tiziana

    2016-04-01

    relevant European Research infrastructure in the field of Earth Science (EPOS and ICOS), Bioinformatics (BBMRI and ELIXIR) and Space Physics (EISCAT-3D). The first outcome of this activity has been the definition of a generic use case that captures the typical user scenario with respect the integrated use of the EGI and EUDAT infrastructures. This generic use case allows a user to instantiate a set of Virtual Machine images on the EGI Federated Cloud to perform computational jobs that analyse data previously stored on EUDAT long-term storage systems. The results of such analysis can be staged back to EUDAT storages, and if needed, allocated with Permanent identifyers (PIDs) for future use. The implementation of this generic use case requires the following integration activities between EGI and EUDAT: (1) harmonisation of the user authentication and authorisation models, (2) implementing interface connectors between the relevant EGI and EUDAT services, particularly EGI Cloud compute facilities and EUDAT long-term storage and PID systems. In the presentation, the collected user requirements and the implementation status of the universal use case will be showed. Furthermore, how the universal use case is currently applied to satisfy EPOS and ICOS needs will be described.

  19. Integrating computer programs for engineering analysis and design

    NASA Technical Reports Server (NTRS)

    Wilhite, A. W.; Crisp, V. K.; Johnson, S. C.

    1983-01-01

    The design of a third-generation system for integrating computer programs for engineering and design has been developed for the Aerospace Vehicle Interactive Design (AVID) system. This system consists of an engineering data management system, program interface software, a user interface, and a geometry system. A relational information system (ARIS) was developed specifically for the computer-aided engineering system. It is used for a repository of design data that are communicated between analysis programs, for a dictionary that describes these design data, for a directory that describes the analysis programs, and for other system functions. A method is described for interfacing independent analysis programs into a loosely-coupled design system. This method emphasizes an interactive extension of analysis techniques and manipulation of design data. Also, integrity mechanisms exist to maintain database correctness for multidisciplinary design tasks by an individual or a team of specialists. Finally, a prototype user interface program has been developed to aid in system utilization.

  20. Computational investigations of low-emission burner facilities for char gas burning in a power boiler

    NASA Astrophysics Data System (ADS)

    Roslyakov, P. V.; Morozov, I. V.; Zaychenko, M. N.; Sidorkin, V. T.

    2016-04-01

    Various variants for the structure of low-emission burner facilities, which are meant for char gas burning in an operating TP-101 boiler of the Estonia power plant, are considered. The planned increase in volumes of shale reprocessing and, correspondingly, a rise in char gas volumes cause the necessity in their cocombustion. In this connection, there was a need to develop a burner facility with a given capacity, which yields effective char gas burning with the fulfillment of reliability and environmental requirements. For this purpose, the burner structure base was based on the staging burning of fuel with the gas recirculation. As a result of the preliminary analysis of possible structure variants, three types of early well-operated burner facilities were chosen: vortex burner with the supply of recirculation gases into the secondary air, vortex burner with the baffle supply of recirculation gases between flows of the primary and secondary air, and burner facility with the vortex pilot burner. Optimum structural characteristics and operation parameters were determined using numerical experiments. These experiments using ANSYS CFX bundled software of computational hydrodynamics were carried out with simulation of mixing, ignition, and burning of char gas. Numerical experiments determined the structural and operation parameters, which gave effective char gas burning and corresponded to required environmental standard on nitrogen oxide emission, for every type of the burner facility. The burner facility for char gas burning with the pilot diffusion burner in the central part was developed and made subject to computation results. Preliminary verification nature tests on the TP-101 boiler showed that the actual content of nitrogen oxides in burner flames of char gas did not exceed a claimed concentration of 150 ppm (200 mg/m3).

  1. Boutiques: a flexible framework to integrate command-line applications in computing platforms.

    PubMed

    Glatard, Tristan; Kiar, Gregory; Aumentado-Armstrong, Tristan; Beck, Natacha; Bellec, Pierre; Bernard, Rémi; Bonnet, Axel; Brown, Shawn T; Camarasu-Pop, Sorina; Cervenansky, Frédéric; Das, Samir; Ferreira da Silva, Rafael; Flandin, Guillaume; Girard, Pascal; Gorgolewski, Krzysztof J; Guttmann, Charles R G; Hayot-Sasson, Valérie; Quirion, Pierre-Olivier; Rioux, Pierre; Rousseau, Marc-Étienne; Evans, Alan C

    2018-05-01

    We present Boutiques, a system to automatically publish, integrate, and execute command-line applications across computational platforms. Boutiques applications are installed through software containers described in a rich and flexible JSON language. A set of core tools facilitates the construction, validation, import, execution, and publishing of applications. Boutiques is currently supported by several distinct virtual research platforms, and it has been used to describe dozens of applications in the neuroinformatics domain. We expect Boutiques to improve the quality of application integration in computational platforms, to reduce redundancy of effort, to contribute to computational reproducibility, and to foster Open Science.

  2. Boutiques: a flexible framework to integrate command-line applications in computing platforms

    PubMed Central

    Glatard, Tristan; Kiar, Gregory; Aumentado-Armstrong, Tristan; Beck, Natacha; Bellec, Pierre; Bernard, Rémi; Bonnet, Axel; Brown, Shawn T; Camarasu-Pop, Sorina; Cervenansky, Frédéric; Das, Samir; Ferreira da Silva, Rafael; Flandin, Guillaume; Girard, Pascal; Gorgolewski, Krzysztof J; Guttmann, Charles R G; Hayot-Sasson, Valérie; Quirion, Pierre-Olivier; Rioux, Pierre; Rousseau, Marc-Étienne; Evans, Alan C

    2018-01-01

    Abstract We present Boutiques, a system to automatically publish, integrate, and execute command-line applications across computational platforms. Boutiques applications are installed through software containers described in a rich and flexible JSON language. A set of core tools facilitates the construction, validation, import, execution, and publishing of applications. Boutiques is currently supported by several distinct virtual research platforms, and it has been used to describe dozens of applications in the neuroinformatics domain. We expect Boutiques to improve the quality of application integration in computational platforms, to reduce redundancy of effort, to contribute to computational reproducibility, and to foster Open Science. PMID:29718199

  3. Advanced Simulation and Computing Fiscal Year 2016 Implementation Plan, Version 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCoy, M.; Archer, B.; Hendrickson, B.

    2015-08-27

    The Stockpile Stewardship Program (SSP) is an integrated technical program for maintaining the safety, surety, and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational capabilities to support these programs. The purpose of this IP is to outline key work requirements to be performed and to control individualmore » work activities within the scope of work. Contractors may not deviate from this plan without a revised WA or subsequent IP.« less

  4. Teaching ergonomics to nursing facility managers using computer-based instruction.

    PubMed

    Harrington, Susan S; Walker, Bonnie L

    2006-01-01

    This study offers evidence that computer-based training is an effective tool for teaching nursing facility managers about ergonomics and increasing their awareness of potential problems. Study participants (N = 45) were randomly assigned into a treatment or control group. The treatment group completed the ergonomics training and a pre- and posttest. The control group completed the pre- and posttests without training. Treatment group participants improved significantly from 67% on the pretest to 91% on the posttest, a gain of 24%. Differences between mean scores for the control group were not significant for the total score or for any of the subtests.

  5. IOTA (Integrable Optics Test Accelerator): Facility and experimental beam physics program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antipov, Sergei; Broemmelsiek, Daniel; Bruhwiler, David

    The Integrable Optics Test Accelerator (IOTA) is a storage ring for advanced beam physics research currently being built and commissioned at Fermilab. It will operate with protons and electrons using injectors with momenta of 70 and 150 MeV/c, respectively. The research program includes the study of nonlinear focusing integrable optical beam lattices based on special magnets and electron lenses, beam dynamics of space-charge effects and their compensation, optical stochastic cooling, and several other experiments. In this article, we present the design and main parameters of the facility, outline progress to date and provide the timeline of the construction, commissioning andmore » research. Finally, the physical principles, design, and hardware implementation plans for the major IOTA experiments are also discussed.« less

  6. IOTA (Integrable Optics Test Accelerator): Facility and experimental beam physics program

    DOE PAGES

    Antipov, Sergei; Broemmelsiek, Daniel; Bruhwiler, David; ...

    2017-03-06

    The Integrable Optics Test Accelerator (IOTA) is a storage ring for advanced beam physics research currently being built and commissioned at Fermilab. It will operate with protons and electrons using injectors with momenta of 70 and 150 MeV/c, respectively. The research program includes the study of nonlinear focusing integrable optical beam lattices based on special magnets and electron lenses, beam dynamics of space-charge effects and their compensation, optical stochastic cooling, and several other experiments. In this article, we present the design and main parameters of the facility, outline progress to date and provide the timeline of the construction, commissioning andmore » research. Finally, the physical principles, design, and hardware implementation plans for the major IOTA experiments are also discussed.« less

  7. IOTA (Integrable Optics Test Accelerator): facility and experimental beam physics program

    NASA Astrophysics Data System (ADS)

    Antipov, S.; Broemmelsiek, D.; Bruhwiler, D.; Edstrom, D.; Harms, E.; Lebedev, V.; Leibfritz, J.; Nagaitsev, S.; Park, C. S.; Piekarz, H.; Piot, P.; Prebys, E.; Romanov, A.; Ruan, J.; Sen, T.; Stancari, G.; Thangaraj, C.; Thurman-Keup, R.; Valishev, A.; Shiltsev, V.

    2017-03-01

    The Integrable Optics Test Accelerator (IOTA) is a storage ring for advanced beam physics research currently being built and commissioned at Fermilab. It will operate with protons and electrons using injectors with momenta of 70 and 150 MeV/c, respectively. The research program includes the study of nonlinear focusing integrable optical beam lattices based on special magnets and electron lenses, beam dynamics of space-charge effects and their compensation, optical stochastic cooling, and several other experiments. In this article, we present the design and main parameters of the facility, outline progress to date and provide the timeline of the construction, commissioning and research. The physical principles, design, and hardware implementation plans for the major IOTA experiments are also discussed.

  8. Direction and Integration of Experimental Ground Test Capabilities and Computational Methods

    NASA Technical Reports Server (NTRS)

    Dunn, Steven C.

    2016-01-01

    This paper groups and summarizes the salient points and findings from two AIAA conference panels targeted at defining the direction, with associated key issues and recommendations, for the integration of experimental ground testing and computational methods. Each panel session utilized rapporteurs to capture comments from both the panel members and the audience. Additionally, a virtual panel of several experts were consulted between the two sessions and their comments were also captured. The information is organized into three time-based groupings, as well as by subject area. These panel sessions were designed to provide guidance to both researchers/developers and experimental/computational service providers in defining the future of ground testing, which will be inextricably integrated with the advancement of computational tools.

  9. NREL Vehicle Testing and Integration Facility (VTIF): Rotating Shadowband Radiometer (RSR); Golden, Colorado (Data)

    DOE Data Explorer

    Lustbader, J.; Andreas, A.

    2012-04-01

    This measurement station at NREL's Vehicle Testing and Integration Facility (VTIF) monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment.

  10. Uncertain behaviours of integrated circuits improve computational performance.

    PubMed

    Yoshimura, Chihiro; Yamaoka, Masanao; Hayashi, Masato; Okuyama, Takuya; Aoki, Hidetaka; Kawarabayashi, Ken-ichi; Mizuno, Hiroyuki

    2015-11-20

    Improvements to the performance of conventional computers have mainly been achieved through semiconductor scaling; however, scaling is reaching its limitations. Natural phenomena, such as quantum superposition and stochastic resonance, have been introduced into new computing paradigms to improve performance beyond these limitations. Here, we explain that the uncertain behaviours of devices due to semiconductor scaling can improve the performance of computers. We prototyped an integrated circuit by performing a ground-state search of the Ising model. The bit errors of memory cell devices holding the current state of search occur probabilistically by inserting fluctuations into dynamic device characteristics, which will be actualised in the future to the chip. As a result, we observed more improvements in solution accuracy than that without fluctuations. Although the uncertain behaviours of devices had been intended to be eliminated in conventional devices, we demonstrate that uncertain behaviours has become the key to improving computational performance.

  11. Investigation of Storage Options for Scientific Computing on Grid and Cloud Facilities

    NASA Astrophysics Data System (ADS)

    Garzoglio, Gabriele

    2012-12-01

    In recent years, several new storage technologies, such as Lustre, Hadoop, OrangeFS, and BlueArc, have emerged. While several groups have run benchmarks to characterize them under a variety of configurations, more work is needed to evaluate these technologies for the use cases of scientific computing on Grid clusters and Cloud facilities. This paper discusses our evaluation of the technologies as deployed on a test bed at FermiCloud, one of the Fermilab infrastructure-as-a-service Cloud facilities. The test bed consists of 4 server-class nodes with 40 TB of disk space and up to 50 virtual machine clients, some running on the storage server nodes themselves. With this configuration, the evaluation compares the performance of some of these technologies when deployed on virtual machines and on “bare metal” nodes. In addition to running standard benchmarks such as IOZone to check the sanity of our installation, we have run I/O intensive tests using physics-analysis applications. This paper presents how the storage solutions perform in a variety of realistic use cases of scientific computing. One interesting difference among the storage systems tested is found in a decrease in total read throughput with increasing number of client processes, which occurs in some implementations but not others.

  12. Investigation of storage options for scientific computing on Grid and Cloud facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garzoglio, Gabriele

    In recent years, several new storage technologies, such as Lustre, Hadoop, OrangeFS, and BlueArc, have emerged. While several groups have run benchmarks to characterize them under a variety of configurations, more work is needed to evaluate these technologies for the use cases of scientific computing on Grid clusters and Cloud facilities. This paper discusses our evaluation of the technologies as deployed on a test bed at FermiCloud, one of the Fermilab infrastructure-as-a-service Cloud facilities. The test bed consists of 4 server-class nodes with 40 TB of disk space and up to 50 virtual machine clients, some running on the storagemore » server nodes themselves. With this configuration, the evaluation compares the performance of some of these technologies when deployed on virtual machines and on bare metal nodes. In addition to running standard benchmarks such as IOZone to check the sanity of our installation, we have run I/O intensive tests using physics-analysis applications. This paper presents how the storage solutions perform in a variety of realistic use cases of scientific computing. One interesting difference among the storage systems tested is found in a decrease in total read throughput with increasing number of client processes, which occurs in some implementations but not others.« less

  13. The HEPCloud Facility: elastic computing for High Energy Physics – The NOvA Use Case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuess, S.; Garzoglio, G.; Holzman, B.

    The need for computing in the HEP community follows cycles of peaks and valleys mainly driven by conference dates, accelerator shutdown, holiday schedules, and other factors. Because of this, the classical method of provisioning these resources at providing facilities has drawbacks such as potential overprovisioning. As the appetite for computing increases, however, so does the need to maximize cost efficiency by developing a model for dynamically provisioning resources only when needed. To address this issue, the HEPCloud project was launched by the Fermilab Scientific Computing Division in June 2015. Its goal is to develop a facility that provides a commonmore » interface to a variety of resources, including local clusters, grids, high performance computers, and community and commercial Clouds. Initially targeted experiments include CMS and NOvA, as well as other Fermilab stakeholders. In its first phase, the project has demonstrated the use of the “elastic” provisioning model offered by commercial clouds, such as Amazon Web Services. In this model, resources are rented and provisioned automatically over the Internet upon request. In January 2016, the project demonstrated the ability to increase the total amount of global CMS resources by 58,000 cores from 150,000 cores - a 25 percent increase - in preparation for the Recontres de Moriond. In March 2016, the NOvA experiment has also demonstrated resource burst capabilities with an additional 7,300 cores, achieving a scale almost four times as large as the local allocated resources and utilizing the local AWS s3 storage to optimize data handling operations and costs. NOvA was using the same familiar services used for local computations, such as data handling and job submission, in preparation for the Neutrino 2016 conference. In both cases, the cost was contained by the use of the Amazon Spot Instance Market and the Decision Engine, a HEPCloud component that aims at minimizing cost and job interruption. This

  14. Astronaut Thomas Jones anchored to bunk facility while working on computer

    NASA Image and Video Library

    1994-04-14

    STS059-10-011 (9-20 April 1994) --- Astronaut Thomas D. Jones appears to have climbed out of bed right into his work in this onboard 35mm frame. Actually, Jones had anchored himself in the bunk facility while working on one of the onboard computers which transfered data to the ground via modem. The mission specialist was joined in space by five other NASA astronauts for a week and a half of support to the Space Radar Laboratory (SRL-1)/STS-59 mission.

  15. Rapid Prototyping of Computer-Based Presentations Using NEAT, Version 1.1.

    ERIC Educational Resources Information Center

    Muldner, Tomasz

    NEAT (iNtegrated Environment for Authoring in ToolBook) provides templates and various facilities for the rapid prototyping of computer-based presentations, a capability that is lacking in current authoring systems. NEAT is a specialized authoring system that can be used by authors who have a limited knowledge of computer systems and no…

  16. WebCT: integrating computer-mediated communication and resource delivery into a new problem-based curriculum.

    PubMed

    McLean, Michelle; Murrell, Kathy

    2002-03-01

    WebCT, front-end software for Internet-delivered material, became an integral part of a problem-based learning, student-centred curriculum introduced in January 2001 at the Nelson R. Mandela School of Medicine (South Africa). A template for six curriculum and two supplementary modules was developed. Organiser and Tool pages were added and files uploaded as each module progressed. This study provides feedback from students with regard to the value of WebCT in their curriculum, as well as discussing the value of WebCT for the delivery of digitized material (e.g., images, videos, PowerPoint presentations). In an anonymous survey following the completion of the first module, students, apparently irrespective of their level of computer literacy, responded positively to the communication facility between staff and students and amongst students, the resources and the URLs. Based on these preliminary responses, WebCT courses for all six modules were developed during 2001. With Faculty support, WebCT will probably be integrated into the rest of the MBChB programme. It will be particularly useful when students are off campus, undertaking electives and community service in the later years.

  17. Integrating Computer-Assisted Language Learning in Saudi Schools: A Change Model

    ERIC Educational Resources Information Center

    Alresheed, Saleh; Leask, Marilyn; Raiker, Andrea

    2015-01-01

    Computer-assisted language learning (CALL) technology and pedagogy have gained recognition globally for their success in supporting second language acquisition (SLA). In Saudi Arabia, the government aims to provide most educational institutions with computers and networking for integrating CALL into classrooms. However, the recognition of CALL's…

  18. MPL-A program for computations with iterated integrals on moduli spaces of curves of genus zero

    NASA Astrophysics Data System (ADS)

    Bogner, Christian

    2016-06-01

    We introduce the Maple program MPL for computations with multiple polylogarithms. The program is based on homotopy invariant iterated integrals on moduli spaces M0,n of curves of genus 0 with n ordered marked points. It includes the symbol map and procedures for the analytic computation of period integrals on M0,n. It supports the automated computation of a certain class of Feynman integrals.

  19. Teachers' Mindsets and the Integration of Computer Technology

    ERIC Educational Resources Information Center

    Subramaniam, Karthigeyan

    2007-01-01

    The paper addresses how the construct of zone of proximal development was used as an analytical lens to examine teachers' integration of computer technology for teaching. The research question "What are the teachers' psychological insights that serve to mediate student learning?" was the focus of the study. Six secondary school science teachers…

  20. Computer model to simulate testing at the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Mineck, Raymond E.; Owens, Lewis R., Jr.; Wahls, Richard A.; Hannon, Judith A.

    1995-01-01

    A computer model has been developed to simulate the processes involved in the operation of the National Transonic Facility (NTF), a large cryogenic wind tunnel at the Langley Research Center. The simulation was verified by comparing the simulated results with previously acquired data from three experimental wind tunnel test programs in the NTF. The comparisons suggest that the computer model simulates reasonably well the processes that determine the liquid nitrogen (LN2) consumption, electrical consumption, fan-on time, and the test time required to complete a test plan at the NTF. From these limited comparisons, it appears that the results from the simulation model are generally within about 10 percent of the actual NTF test results. The use of actual data acquisition times in the simulation produced better estimates of the LN2 usage, as expected. Additional comparisons are needed to refine the model constants. The model will typically produce optimistic results since the times and rates included in the model are typically the optimum values. Any deviation from the optimum values will lead to longer times or increased LN2 and electrical consumption for the proposed test plan. Computer code operating instructions and listings of sample input and output files have been included.

  1. Chemical Entity Semantic Specification: Knowledge representation for efficient semantic cheminformatics and facile data integration

    PubMed Central

    2011-01-01

    Background Over the past several centuries, chemistry has permeated virtually every facet of human lifestyle, enriching fields as diverse as medicine, agriculture, manufacturing, warfare, and electronics, among numerous others. Unfortunately, application-specific, incompatible chemical information formats and representation strategies have emerged as a result of such diverse adoption of chemistry. Although a number of efforts have been dedicated to unifying the computational representation of chemical information, disparities between the various chemical databases still persist and stand in the way of cross-domain, interdisciplinary investigations. Through a common syntax and formal semantics, Semantic Web technology offers the ability to accurately represent, integrate, reason about and query across diverse chemical information. Results Here we specify and implement the Chemical Entity Semantic Specification (CHESS) for the representation of polyatomic chemical entities, their substructures, bonds, atoms, and reactions using Semantic Web technologies. CHESS provides means to capture aspects of their corresponding chemical descriptors, connectivity, functional composition, and geometric structure while specifying mechanisms for data provenance. We demonstrate that using our readily extensible specification, it is possible to efficiently integrate multiple disparate chemical data sources, while retaining appropriate correspondence of chemical descriptors, with very little additional effort. We demonstrate the impact of some of our representational decisions on the performance of chemically-aware knowledgebase searching and rudimentary reaction candidate selection. Finally, we provide access to the tools necessary to carry out chemical entity encoding in CHESS, along with a sample knowledgebase. Conclusions By harnessing the power of Semantic Web technologies with CHESS, it is possible to provide a means of facile cross-domain chemical knowledge integration with full

  2. Chemical Entity Semantic Specification: Knowledge representation for efficient semantic cheminformatics and facile data integration.

    PubMed

    Chepelev, Leonid L; Dumontier, Michel

    2011-05-19

    Over the past several centuries, chemistry has permeated virtually every facet of human lifestyle, enriching fields as diverse as medicine, agriculture, manufacturing, warfare, and electronics, among numerous others. Unfortunately, application-specific, incompatible chemical information formats and representation strategies have emerged as a result of such diverse adoption of chemistry. Although a number of efforts have been dedicated to unifying the computational representation of chemical information, disparities between the various chemical databases still persist and stand in the way of cross-domain, interdisciplinary investigations. Through a common syntax and formal semantics, Semantic Web technology offers the ability to accurately represent, integrate, reason about and query across diverse chemical information. Here we specify and implement the Chemical Entity Semantic Specification (CHESS) for the representation of polyatomic chemical entities, their substructures, bonds, atoms, and reactions using Semantic Web technologies. CHESS provides means to capture aspects of their corresponding chemical descriptors, connectivity, functional composition, and geometric structure while specifying mechanisms for data provenance. We demonstrate that using our readily extensible specification, it is possible to efficiently integrate multiple disparate chemical data sources, while retaining appropriate correspondence of chemical descriptors, with very little additional effort. We demonstrate the impact of some of our representational decisions on the performance of chemically-aware knowledgebase searching and rudimentary reaction candidate selection. Finally, we provide access to the tools necessary to carry out chemical entity encoding in CHESS, along with a sample knowledgebase. By harnessing the power of Semantic Web technologies with CHESS, it is possible to provide a means of facile cross-domain chemical knowledge integration with full preservation of data

  3. The role of dedicated data computing centers in the age of cloud computing

    NASA Astrophysics Data System (ADS)

    Caramarcu, Costin; Hollowell, Christopher; Strecker-Kellogg, William; Wong, Antonio; Zaytsev, Alexandr

    2017-10-01

    Brookhaven National Laboratory (BNL) anticipates significant growth in scientific programs with large computing and data storage needs in the near future and has recently reorganized support for scientific computing to meet these needs. A key component is the enhanced role of the RHIC-ATLAS Computing Facility (RACF) in support of high-throughput and high-performance computing (HTC and HPC) at BNL. This presentation discusses the evolving role of the RACF at BNL, in light of its growing portfolio of responsibilities and its increasing integration with cloud (academic and for-profit) computing activities. We also discuss BNL’s plan to build a new computing center to support the new responsibilities of the RACF and present a summary of the cost benefit analysis done, including the types of computing activities that benefit most from a local data center vs. cloud computing. This analysis is partly based on an updated cost comparison of Amazon EC2 computing services and the RACF, which was originally conducted in 2012.

  4. Computational biomedicine: a challenge for the twenty-first century.

    PubMed

    Coveney, Peter V; Shublaq, Nour W

    2012-01-01

    With the relentless increase of computer power and the widespread availability of digital patient-specific medical data, we are now entering an era when it is becoming possible to develop predictive models of human disease and pathology, which can be used to support and enhance clinical decision-making. The approach amounts to a grand challenge to computational science insofar as we need to be able to provide seamless yet secure access to large scale heterogeneous personal healthcare data in a facile way, typically integrated into complex workflows-some parts of which may need to be run on high performance computers-in a facile way that is integrated into clinical decision support software. In this paper, we review the state of the art in terms of case studies drawn from neurovascular pathologies and HIV/AIDS. These studies are representative of a large number of projects currently being performed within the Virtual Physiological Human initiative. They make demands of information technology at many scales, from the desktop to national and international infrastructures for data storage and processing, linked by high performance networks.

  5. The 10 MWe solar thermal central receiver pilot plant solar facilities design integration, RADL item 1-10

    NASA Astrophysics Data System (ADS)

    1980-07-01

    Accomplishments are reported in the areas of: program management, system integration, the beam characterization system, receiver unit, thermal storage subsystems, master control system, plant support subsystem and engineering services. A solar facilities design integration program action items update is included. Work plan changes and cost underruns are discussed briefly. (LEW)

  6. High Performance Distributed Computing in a Supercomputer Environment: Computational Services and Applications Issues

    NASA Technical Reports Server (NTRS)

    Kramer, Williams T. C.; Simon, Horst D.

    1994-01-01

    This tutorial proposes to be a practical guide for the uninitiated to the main topics and themes of high-performance computing (HPC), with particular emphasis to distributed computing. The intent is first to provide some guidance and directions in the rapidly increasing field of scientific computing using both massively parallel and traditional supercomputers. Because of their considerable potential computational power, loosely or tightly coupled clusters of workstations are increasingly considered as a third alternative to both the more conventional supercomputers based on a small number of powerful vector processors, as well as high massively parallel processors. Even though many research issues concerning the effective use of workstation clusters and their integration into a large scale production facility are still unresolved, such clusters are already used for production computing. In this tutorial we will utilize the unique experience made at the NAS facility at NASA Ames Research Center. Over the last five years at NAS massively parallel supercomputers such as the Connection Machines CM-2 and CM-5 from Thinking Machines Corporation and the iPSC/860 (Touchstone Gamma Machine) and Paragon Machines from Intel were used in a production supercomputer center alongside with traditional vector supercomputers such as the Cray Y-MP and C90.

  7. Automated smear counting and data processing using a notebook computer in a biomedical research facility.

    PubMed

    Ogata, Y; Nishizawa, K

    1995-10-01

    An automated smear counting and data processing system for a life science laboratory was developed to facilitate routine surveys and eliminate human errors by using a notebook computer. This system was composed of a personal computer, a liquid scintillation counter and a well-type NaI(Tl) scintillation counter. The radioactivity of smear samples was automatically measured by these counters. The personal computer received raw signals from the counters through an interface of RS-232C. The software for the computer evaluated the surface density of each radioisotope and printed out that value along with other items as a report. The software was programmed in Pascal language. This system was successfully applied to routine surveys for contamination in our facility.

  8. Computer integration of engineering design and production: A national opportunity

    NASA Astrophysics Data System (ADS)

    1984-10-01

    The National Aeronautics and Space Administration (NASA), as a purchaser of a variety of manufactured products, including complex space vehicles and systems, clearly has a stake in the advantages of computer-integrated manufacturing (CIM). Two major NASA objectives are to launch a Manned Space Station by 1992 with a budget of $8 billion, and to be a leader in the development and application of productivity-enhancing technology. At the request of NASA, a National Research Council committee visited five companies that have been leaders in using CIM. Based on these case studies, technical, organizational, and financial issues that influence computer integration are described, guidelines for its implementation in industry are offered, and the use of CIM to manage the space station program is recommended.

  9. Computer integration of engineering design and production: A national opportunity

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The National Aeronautics and Space Administration (NASA), as a purchaser of a variety of manufactured products, including complex space vehicles and systems, clearly has a stake in the advantages of computer-integrated manufacturing (CIM). Two major NASA objectives are to launch a Manned Space Station by 1992 with a budget of $8 billion, and to be a leader in the development and application of productivity-enhancing technology. At the request of NASA, a National Research Council committee visited five companies that have been leaders in using CIM. Based on these case studies, technical, organizational, and financial issues that influence computer integration are described, guidelines for its implementation in industry are offered, and the use of CIM to manage the space station program is recommended.

  10. Integrating Micro-computers with a Centralized DBMS: ORACLE, SEED AND INGRES

    NASA Technical Reports Server (NTRS)

    Hoerger, J.

    1984-01-01

    Users of ADABAS, a relational-like data base management system (ADABAS) with its data base programming language (NATURAL) are acquiring microcomputers with hopes of solving their individual word processing, office automation, decision support, and simple data processing problems. As processor speeds, memory sizes, and disk storage capacities increase, individual departments begin to maintain "their own" data base on "their own" micro-computer. This situation can adversely affect several of the primary goals set for implementing a centralized DBMS. In order to avoid this potential problem, these micro-computers must be integrated with the centralized DBMS. An easy to use and flexible means for transferring logic data base files between the central data base machine and micro-computers must be provided. Some of the problems encounted in an effort to accomplish this integration and possible solutions are discussed.

  11. Handheld Computers in the Classroom: Integration Strategies for Social Studies Educators.

    ERIC Educational Resources Information Center

    Ray, Beverly

    Handheld computers have gone beyond the world of business and are now finding their way into the hands of social studies teachers and students. This paper discusses how social studies teachers can use handheld computers to aid anytime/ anywhere course management. The integration of handheld technology into the classroom provides social studies…

  12. Implementation of Grid Tier 2 and Tier 3 facilities on a Distributed OpenStack Cloud

    NASA Astrophysics Data System (ADS)

    Limosani, Antonio; Boland, Lucien; Coddington, Paul; Crosby, Sean; Huang, Joanna; Sevior, Martin; Wilson, Ross; Zhang, Shunde

    2014-06-01

    The Australian Government is making a AUD 100 million investment in Compute and Storage for the academic community. The Compute facilities are provided in the form of 30,000 CPU cores located at 8 nodes around Australia in a distributed virtualized Infrastructure as a Service facility based on OpenStack. The storage will eventually consist of over 100 petabytes located at 6 nodes. All will be linked via a 100 Gb/s network. This proceeding describes the development of a fully connected WLCG Tier-2 grid site as well as a general purpose Tier-3 computing cluster based on this architecture. The facility employs an extension to Torque to enable dynamic allocations of virtual machine instances. A base Scientific Linux virtual machine (VM) image is deployed in the OpenStack cloud and automatically configured as required using Puppet. Custom scripts are used to launch multiple VMs, integrate them into the dynamic Torque cluster and to mount remote file systems. We report on our experience in developing this nation-wide ATLAS and Belle II Tier 2 and Tier 3 computing infrastructure using the national Research Cloud and storage facilities.

  13. An integrated radiation physics computer code system.

    NASA Technical Reports Server (NTRS)

    Steyn, J. J.; Harris, D. W.

    1972-01-01

    An integrated computer code system for the semi-automatic and rapid analysis of experimental and analytic problems in gamma photon and fast neutron radiation physics is presented. Such problems as the design of optimum radiation shields and radioisotope power source configurations may be studied. The system codes allow for the unfolding of complex neutron and gamma photon experimental spectra. Monte Carlo and analytic techniques are used for the theoretical prediction of radiation transport. The system includes a multichannel pulse-height analyzer scintillation and semiconductor spectrometer coupled to an on-line digital computer with appropriate peripheral equipment. The system is geometry generalized as well as self-contained with respect to material nuclear cross sections and the determination of the spectrometer response functions. Input data may be either analytic or experimental.

  14. Integration of active pauses and pattern of muscular activity during computer work.

    PubMed

    St-Onge, Nancy; Samani, Afshin; Madeleine, Pascal

    2017-09-01

    Submaximal isometric muscle contractions have been reported to increase variability of muscle activation during computer work; however, other types of active contractions may be more beneficial. Our objective was to determine which type of active pause vs. rest is more efficient in changing muscle activity pattern during a computer task. Asymptomatic regular computer users performed a standardised 20-min computer task four times, integrating a different type of pause: sub-maximal isometric contraction, dynamic contraction, postural exercise and rest. Surface electromyographic (SEMG) activity was recorded bilaterally from five neck/shoulder muscles. Root-mean-square decreased with isometric pauses in the cervical paraspinals, upper trapezius and middle trapezius, whereas it increased with rest. Variability in the pattern of muscular activity was not affected by any type of pause. Overall, no detrimental effects on the level of SEMG during active pauses were found suggesting that they could be implemented without a cost on activation level or variability. Practitioner Summary: We aimed to determine which type of active pause vs. rest is best in changing muscle activity pattern during a computer task. Asymptomatic computer users performed a standardised computer task integrating different types of pauses. Muscle activation decreased with isometric pauses in neck/shoulder muscles, suggesting their implementation during computer work.

  15. MEASURE: An integrated data-analysis and model identification facility

    NASA Technical Reports Server (NTRS)

    Singh, Jaidip; Iyer, Ravi K.

    1990-01-01

    The first phase of the development of MEASURE, an integrated data analysis and model identification facility is described. The facility takes system activity data as input and produces as output representative behavioral models of the system in near real time. In addition a wide range of statistical characteristics of the measured system are also available. The usage of the system is illustrated on data collected via software instrumentation of a network of SUN workstations at the University of Illinois. Initially, statistical clustering is used to identify high density regions of resource-usage in a given environment. The identified regions form the states for building a state-transition model to evaluate system and program performance in real time. The model is then solved to obtain useful parameters such as the response-time distribution and the mean waiting time in each state. A graphical interface which displays the identified models and their characteristics (with real time updates) was also developed. The results provide an understanding of the resource-usage in the system under various workload conditions. This work is targeted for a testbed of UNIX workstations with the initial phase ported to SUN workstations on the NASA, Ames Research Center Advanced Automation Testbed.

  16. NASA Langley Research Center's Simulation-To-Flight Concept Accomplished through the Integration Laboratories of the Transport Research Facility

    NASA Technical Reports Server (NTRS)

    Martinez, Debbie; Davidson, Paul C.; Kenney, P. Sean; Hutchinson, Brian K.

    2004-01-01

    The Flight Simulation and Software Branch (FSSB) at NASA Langley Research Center (LaRC) maintains the unique national asset identified as the Transport Research Facility (TRF). The TRF is a group of facilities and integration laboratories utilized to support the LaRC's simulation-to-flight concept. This concept incorporates common software, hardware, and processes for both groundbased flight simulators and LaRC s B-757-200 flying laboratory identified as the Airborne Research Integrated Experiments System (ARIES). These assets provide Government, industry, and academia with an efficient way to develop and test new technology concepts to enhance the capacity, safety, and operational needs of the ever-changing national airspace system. The integration of the TRF enables a smooth continuous flow of the research from simulation to actual flight test.

  17. A framework for different levels of integration of computational models into web-based virtual patients.

    PubMed

    Kononowicz, Andrzej A; Narracott, Andrew J; Manini, Simone; Bayley, Martin J; Lawford, Patricia V; McCormack, Keith; Zary, Nabil

    2014-01-23

    Virtual patients are increasingly common tools used in health care education to foster learning of clinical reasoning skills. One potential way to expand their functionality is to augment virtual patients' interactivity by enriching them with computational models of physiological and pathological processes. The primary goal of this paper was to propose a conceptual framework for the integration of computational models within virtual patients, with particular focus on (1) characteristics to be addressed while preparing the integration, (2) the extent of the integration, (3) strategies to achieve integration, and (4) methods for evaluating the feasibility of integration. An additional goal was to pilot the first investigation of changing framework variables on altering perceptions of integration. The framework was constructed using an iterative process informed by Soft System Methodology. The Virtual Physiological Human (VPH) initiative has been used as a source of new computational models. The technical challenges associated with development of virtual patients enhanced by computational models are discussed from the perspectives of a number of different stakeholders. Concrete design and evaluation steps are discussed in the context of an exemplar virtual patient employing the results of the VPH ARCH project, as well as improvements for future iterations. The proposed framework consists of four main elements. The first element is a list of feasibility features characterizing the integration process from three perspectives: the computational modelling researcher, the health care educationalist, and the virtual patient system developer. The second element included three integration levels: basic, where a single set of simulation outcomes is generated for specific nodes in the activity graph; intermediate, involving pre-generation of simulation datasets over a range of input parameters; advanced, including dynamic solution of the model. The third element is the

  18. Integral flange design program. [procedure for computing stresses

    NASA Technical Reports Server (NTRS)

    Wilson, J. F.

    1974-01-01

    An automated interactive flange design program utilizing an electronic desk top calculator is presented. The program calculates the operating and seating stresses for circular flanges of the integral or optional type subjected to internal pressure. The required input information is documented. The program provides an automated procedure for computing stresses in selected flange geometries for comparison to the allowable code values.

  19. Computer Simulations as an Integral Part of Intermediate Macroeconomics.

    ERIC Educational Resources Information Center

    Millerd, Frank W.; Robertson, Alastair R.

    1987-01-01

    Describes the development of two interactive computer simulations which were fully integrated with other course materials. The simulations illustrate the effects of various real and monetary "demand shocks" on aggregate income, interest rates, and components of spending and economic output. Includes an evaluation of the simulations'…

  20. Teacher Perceptions of the Integration of Laptop Computers in Their High School Biology Classrooms

    NASA Astrophysics Data System (ADS)

    Gundy, Morag S.

    2011-12-01

    Studies indicate that teachers, and in particular science teachers in the senior high school grades, do not integrate laptop computers into their instruction to the extent anticipated by researchers. This technology has not spread easily to other teachers even with improved access to hardware and software, increased support, and a paradigm shift from teacher-centred to student-centred education. Although a number of studies have focused on the issues and problems related to the integration of laptops in classroom instruction, these studies, largely quantitative in nature, have tended to bypass the role teachers play in integrating laptop computers into their instruction. This thesis documents and describes the role of Ontario high school science teachers in the integration of laptop computers in the classroom. Ten teachers who have successfully integrated laptop computers into their biology courses participated in this descriptive study. Their perceptions of implementing laptops into their biology courses, key factors about the implementation process, and how the implementation was accomplished are examined. The study also identifies the conditions which they feel would allow this innovation to be implemented by other teachers. Key findings of the study indicate that teachers must initiate, implement and sustain an emergent and still evolving innovation; teacher perceptions change and continue to change with increased experience using laptops in the science classroom; changes in teaching approaches are significant as a result of the introduction of laptop technology; and, the teachers considered the acquisition and use of new teaching materials to be an important aspect of integrating laptop computers into instruction. Ongoing challenges for appropriate professional development, sharing of knowledge, skills and teaching materials are identified. The study provides a body of practical knowledge for biology teachers who are considering the integration of laptops into

  1. Designing computer learning environments for engineering and computer science: The scaffolded knowledge integration framework

    NASA Astrophysics Data System (ADS)

    Linn, Marcia C.

    1995-06-01

    Designing effective curricula for complex topics and incorporating technological tools is an evolving process. One important way to foster effective design is to synthesize successful practices. This paper describes a framework called scaffolded knowledge integration and illustrates how it guided the design of two successful course enhancements in the field of computer science and engineering. One course enhancement, the LISP Knowledge Integration Environment, improved learning and resulted in more gender-equitable outcomes. The second course enhancement, the spatial reasoning environment, addressed spatial reasoning in an introductory engineering course. This enhancement minimized the importance of prior knowledge of spatial reasoning and helped students develop a more comprehensive repertoire of spatial reasoning strategies. Taken together, the instructional research programs reinforce the value of the scaffolded knowledge integration framework and suggest directions for future curriculum reformers.

  2. Integration of a neuroimaging processing pipeline into a pan-canadian computing grid

    NASA Astrophysics Data System (ADS)

    Lavoie-Courchesne, S.; Rioux, P.; Chouinard-Decorte, F.; Sherif, T.; Rousseau, M.-E.; Das, S.; Adalat, R.; Doyon, J.; Craddock, C.; Margulies, D.; Chu, C.; Lyttelton, O.; Evans, A. C.; Bellec, P.

    2012-02-01

    The ethos of the neuroimaging field is quickly moving towards the open sharing of resources, including both imaging databases and processing tools. As a neuroimaging database represents a large volume of datasets and as neuroimaging processing pipelines are composed of heterogeneous, computationally intensive tools, such open sharing raises specific computational challenges. This motivates the design of novel dedicated computing infrastructures. This paper describes an interface between PSOM, a code-oriented pipeline development framework, and CBRAIN, a web-oriented platform for grid computing. This interface was used to integrate a PSOM-compliant pipeline for preprocessing of structural and functional magnetic resonance imaging into CBRAIN. We further tested the capacity of our infrastructure to handle a real large-scale project. A neuroimaging database including close to 1000 subjects was preprocessed using our interface and publicly released to help the participants of the ADHD-200 international competition. This successful experiment demonstrated that our integrated grid-computing platform is a powerful solution for high-throughput pipeline analysis in the field of neuroimaging.

  3. Integrating Free Computer Software in Chemistry and Biochemistry Instruction: An International Collaboration

    ERIC Educational Resources Information Center

    Cedeno, David L.; Jones, Marjorie A.; Friesen, Jon A.; Wirtz, Mark W.; Rios, Luz Amalia; Ocampo, Gonzalo Taborda

    2010-01-01

    At the Universidad de Caldas, Manizales, Colombia, we used their new computer facilities to introduce chemistry graduate students to biochemical database mining and quantum chemistry calculations using freeware. These hands-on workshops allowed the students a strong introduction to easily accessible software and how to use this software to begin…

  4. EPA Facility Registry Service (FRS): OIL

    EPA Pesticide Factsheets

    This dataset contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of facilities that link to the Oil database. The Oil database contains information on Spill Prevention, Control, and Countermeasure (SPCC) and Facility Response Plan (FRP) subject facilities to prevent and respond to oil spills. FRP facilities are referred to as substantial harm facilities due to the quantities of oil stored and facility characteristics. FRS identifies and geospatially locates facilities, sites or places subject to environmental regulations or of environmental interest. Using vigorous verification and data management procedures, FRS integrates facility data from EPA's national program systems, other federal agencies, and State and tribal master facility records and provides EPA with a centrally managed, single source of comprehensive and authoritative information on facilities. This data set contains the subset of FRS integrated facilities that link to Oil facilities once the Oil data has been integrated into the FRS database. Additional information on FRS is available at the EPA website https://www.epa.gov/enviro/facility-registry-service-frs.

  5. Integrating computation into the undergraduate curriculum: A vision and guidelines for future developments

    NASA Astrophysics Data System (ADS)

    Chonacky, Norman; Winch, David

    2008-04-01

    There is substantial evidence of a need to make computation an integral part of the undergraduate physics curriculum. This need is consistent with data from surveys in both the academy and the workplace, and has been reinforced by two years of exploratory efforts by a group of physics faculty for whom computation is a special interest. We have examined past and current efforts at reform and a variety of strategic, organizational, and institutional issues involved in any attempt to broadly transform existing practice. We propose a set of guidelines for development based on this past work and discuss our vision of computationally integrated physics.

  6. [The Computer Competency of Nurses in Long-Term Care Facilities and Related Factors].

    PubMed

    Chang, Ya-Ping; Kuo, Huai-Ting; Li, I-Chuan

    2016-12-01

    It is important for nurses who work in long-term care facilities (LTCFs) to have an adequate level of computer competency due to the multidisciplinary and comprehensive nature of long-term care services. Thus, it is important to understand the current computer competency of nursing staff in LTCFs and the factors that relate to this competency. To explore the computer competency of LTCF nurses and to identify the demographic and computer-usage characteristics that relate significantly to computer competency in the LTCF environment. A cross-sectional research design and a self-report questionnaire were used to collect data from 185 nurses working at LTCFs in Taipei. The results found that the variables of the frequency of computer use (β = .33), age (β = -.30), type(s) of the software used at work (β = .28), hours of on-the-job training (β = -.14), prior work experience at other LTCFs (β = -.14), and Internet use at home (β = .12) explain 58.0% of the variance in the computer competency of participants. The results of the present study suggest that the following measures may help increase the computer competency of LTCF nurses. (1) Nurses should be encouraged to use electronic nursing records rather than handwritten records. (2) On-the-job training programs should emphasize participant competency in the Excel software package in order to maintain efficient and good-quality of LTC services after implementing of the LTC insurance policy.

  7. Size effects on insect hovering aerodynamics: an integrated computational study.

    PubMed

    Liu, H; Aono, H

    2009-03-01

    Hovering is a miracle of insects that is observed for all sizes of flying insects. Sizing effect in insect hovering on flapping-wing aerodynamics is of interest to both the micro-air-vehicle (MAV) community and also of importance to comparative morphologists. In this study, we present an integrated computational study of such size effects on insect hovering aerodynamics, which is performed using a biology-inspired dynamic flight simulator that integrates the modelling of realistic wing-body morphology, the modelling of flapping-wing and body kinematics and an in-house Navier-Stokes solver. Results of four typical insect hovering flights including a hawkmoth, a honeybee, a fruit fly and a thrips, over a wide range of Reynolds numbers from O(10(4)) to O(10(1)) are presented, which demonstrate the feasibility of the present integrated computational methods in quantitatively modelling and evaluating the unsteady aerodynamics in insect flapping flight. Our results based on realistically modelling of insect hovering therefore offer an integrated understanding of the near-field vortex dynamics, the far-field wake and downwash structures, and their correlation with the force production in terms of sizing and Reynolds number as well as wing kinematics. Our results not only give an integrated interpretation on the similarity and discrepancy of the near- and far-field vortex structures in insect hovering but also demonstrate that our methods can be an effective tool in the MAVs design.

  8. Computer graphics application in the engineering design integration system

    NASA Technical Reports Server (NTRS)

    Glatt, C. R.; Abel, R. W.; Hirsch, G. N.; Alford, G. E.; Colquitt, W. N.; Stewart, W. A.

    1975-01-01

    The computer graphics aspect of the Engineering Design Integration (EDIN) system and its application to design problems were discussed. Three basic types of computer graphics may be used with the EDIN system for the evaluation of aerospace vehicles preliminary designs: offline graphics systems using vellum-inking or photographic processes, online graphics systems characterized by direct coupled low cost storage tube terminals with limited interactive capabilities, and a minicomputer based refresh terminal offering highly interactive capabilities. The offline line systems are characterized by high quality (resolution better than 0.254 mm) and slow turnaround (one to four days). The online systems are characterized by low cost, instant visualization of the computer results, slow line speed (300 BAUD), poor hard copy, and the early limitations on vector graphic input capabilities. The recent acquisition of the Adage 330 Graphic Display system has greatly enhanced the potential for interactive computer aided design.

  9. Solving a mathematical model integrating unequal-area facilities layout and part scheduling in a cellular manufacturing system by a genetic algorithm.

    PubMed

    Ebrahimi, Ahmad; Kia, Reza; Komijan, Alireza Rashidi

    2016-01-01

    In this article, a novel integrated mixed-integer nonlinear programming model is presented for designing a cellular manufacturing system (CMS) considering machine layout and part scheduling problems simultaneously as interrelated decisions. The integrated CMS model is formulated to incorporate several design features including part due date, material handling time, operation sequence, processing time, an intra-cell layout of unequal-area facilities, and part scheduling. The objective function is to minimize makespan, tardiness penalties, and material handling costs of inter-cell and intra-cell movements. Two numerical examples are solved by the Lingo software to illustrate the results obtained by the incorporated features. In order to assess the effects and importance of integration of machine layout and part scheduling in designing a CMS, two approaches, sequentially and concurrent are investigated and the improvement resulted from a concurrent approach is revealed. Also, due to the NP-hardness of the integrated model, an efficient genetic algorithm is designed. As a consequence, computational results of this study indicate that the best solutions found by GA are better than the solutions found by B&B in much less time for both sequential and concurrent approaches. Moreover, the comparisons between the objective function values (OFVs) obtained by sequential and concurrent approaches demonstrate that the OFV improvement is averagely around 17 % by GA and 14 % by B&B.

  10. An Integrated Framework for Improved Computer Science Education: Strategies, Implementations, and Results

    ERIC Educational Resources Information Center

    Soh, Leen-Kiat; Samal, Ashok; Nugent, Gwen

    2007-01-01

    This paper describes the Reinventing Computer Science Curriculum Project at the University of Nebraska-Lincoln. Motivated by rapid and significant changes in the information technology and computing areas, high diversity in student aptitudes, and high dropout rates, the project designed and implemented an integrated instructional/research…

  11. Integrating structure-based and ligand-based approaches for computational drug design.

    PubMed

    Wilson, Gregory L; Lill, Markus A

    2011-04-01

    Methods utilized in computer-aided drug design can be classified into two major categories: structure based and ligand based, using information on the structure of the protein or on the biological and physicochemical properties of bound ligands, respectively. In recent years there has been a trend towards integrating these two methods in order to enhance the reliability and efficiency of computer-aided drug-design approaches by combining information from both the ligand and the protein. This trend resulted in a variety of methods that include: pseudoreceptor methods, pharmacophore methods, fingerprint methods and approaches integrating docking with similarity-based methods. In this article, we will describe the concepts behind each method and selected applications.

  12. Computer simulation of thermal and fluid systems for MIUS integration and subsystems test /MIST/ laboratory. [Modular Integrated Utility System

    NASA Technical Reports Server (NTRS)

    Rochelle, W. C.; Liu, D. K.; Nunnery, W. J., Jr.; Brandli, A. E.

    1975-01-01

    This paper describes the application of the SINDA (systems improved numerical differencing analyzer) computer program to simulate the operation of the NASA/JSC MIUS integration and subsystems test (MIST) laboratory. The MIST laboratory is designed to test the integration capability of the following subsystems of a modular integrated utility system (MIUS): (1) electric power generation, (2) space heating and cooling, (3) solid waste disposal, (4) potable water supply, and (5) waste water treatment. The SINDA/MIST computer model is designed to simulate the response of these subsystems to externally impressed loads. The computer model determines the amount of recovered waste heat from the prime mover exhaust, water jacket and oil/aftercooler and from the incinerator. This recovered waste heat is used in the model to heat potable water, for space heating, absorption air conditioning, waste water sterilization, and to provide for thermal storage. The details of the thermal and fluid simulation of MIST including the system configuration, modes of operation modeled, SINDA model characteristics and the results of several analyses are described.

  13. Computer-Integrated Instruction Inservice Notebook: Secondary School Social Studies.

    ERIC Educational Resources Information Center

    Franklin, Sharon, Ed.; Strudler, Neal, Ed.

    The purpose of this notebook is to assist educators who are designing and implementing inservice education programs to facilitate the effective use of computer integrated instruction (CII) in schools. It is divided into the following five sections: (1) Effective Inservice (a brief summary of inservice literature focused on inservice dimensions and…

  14. An integrated prediction and optimization model of biogas production system at a wastewater treatment facility.

    PubMed

    Akbaş, Halil; Bilgen, Bilge; Turhan, Aykut Melih

    2015-11-01

    This study proposes an integrated prediction and optimization model by using multi-layer perceptron neural network and particle swarm optimization techniques. Three different objective functions are formulated. The first one is the maximization of methane percentage with single output. The second one is the maximization of biogas production with single output. The last one is the maximization of biogas quality and biogas production with two outputs. Methane percentage, carbon dioxide percentage, and other contents' percentage are used as the biogas quality criteria. Based on the formulated models and data from a wastewater treatment facility, optimal values of input variables and their corresponding maximum output values are found out for each model. It is expected that the application of the integrated prediction and optimization models increases the biogas production and biogas quality, and contributes to the quantity of electricity production at the wastewater treatment facility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Integrated computational model of the bioenergetics of isolated lung mitochondria

    PubMed Central

    Zhang, Xiao; Jacobs, Elizabeth R.; Camara, Amadou K. S.; Clough, Anne V.

    2018-01-01

    Integrated computational modeling provides a mechanistic and quantitative framework for describing lung mitochondrial bioenergetics. Thus, the objective of this study was to develop and validate a thermodynamically-constrained integrated computational model of the bioenergetics of isolated lung mitochondria. The model incorporates the major biochemical reactions and transport processes in lung mitochondria. A general framework was developed to model those biochemical reactions and transport processes. Intrinsic model parameters such as binding constants were estimated using previously published isolated enzymes and transporters kinetic data. Extrinsic model parameters such as maximal reaction and transport velocities were estimated by fitting the integrated bioenergetics model to published and new tricarboxylic acid cycle and respirometry data measured in isolated rat lung mitochondria. The integrated model was then validated by assessing its ability to predict experimental data not used for the estimation of the extrinsic model parameters. For example, the model was able to predict reasonably well the substrate and temperature dependency of mitochondrial oxygen consumption, kinetics of NADH redox status, and the kinetics of mitochondrial accumulation of the cationic dye rhodamine 123, driven by mitochondrial membrane potential, under different respiratory states. The latter required the coupling of the integrated bioenergetics model to a pharmacokinetic model for the mitochondrial uptake of rhodamine 123 from buffer. The integrated bioenergetics model provides a mechanistic and quantitative framework for 1) integrating experimental data from isolated lung mitochondria under diverse experimental conditions, and 2) assessing the impact of a change in one or more mitochondrial processes on overall lung mitochondrial bioenergetics. In addition, the model provides important insights into the bioenergetics and respiration of lung mitochondria and how they differ from

  16. Integrated computational model of the bioenergetics of isolated lung mitochondria.

    PubMed

    Zhang, Xiao; Dash, Ranjan K; Jacobs, Elizabeth R; Camara, Amadou K S; Clough, Anne V; Audi, Said H

    2018-01-01

    Integrated computational modeling provides a mechanistic and quantitative framework for describing lung mitochondrial bioenergetics. Thus, the objective of this study was to develop and validate a thermodynamically-constrained integrated computational model of the bioenergetics of isolated lung mitochondria. The model incorporates the major biochemical reactions and transport processes in lung mitochondria. A general framework was developed to model those biochemical reactions and transport processes. Intrinsic model parameters such as binding constants were estimated using previously published isolated enzymes and transporters kinetic data. Extrinsic model parameters such as maximal reaction and transport velocities were estimated by fitting the integrated bioenergetics model to published and new tricarboxylic acid cycle and respirometry data measured in isolated rat lung mitochondria. The integrated model was then validated by assessing its ability to predict experimental data not used for the estimation of the extrinsic model parameters. For example, the model was able to predict reasonably well the substrate and temperature dependency of mitochondrial oxygen consumption, kinetics of NADH redox status, and the kinetics of mitochondrial accumulation of the cationic dye rhodamine 123, driven by mitochondrial membrane potential, under different respiratory states. The latter required the coupling of the integrated bioenergetics model to a pharmacokinetic model for the mitochondrial uptake of rhodamine 123 from buffer. The integrated bioenergetics model provides a mechanistic and quantitative framework for 1) integrating experimental data from isolated lung mitochondria under diverse experimental conditions, and 2) assessing the impact of a change in one or more mitochondrial processes on overall lung mitochondrial bioenergetics. In addition, the model provides important insights into the bioenergetics and respiration of lung mitochondria and how they differ from

  17. A Framework for Different Levels of Integration of Computational Models Into Web-Based Virtual Patients

    PubMed Central

    Narracott, Andrew J; Manini, Simone; Bayley, Martin J; Lawford, Patricia V; McCormack, Keith; Zary, Nabil

    2014-01-01

    Background Virtual patients are increasingly common tools used in health care education to foster learning of clinical reasoning skills. One potential way to expand their functionality is to augment virtual patients’ interactivity by enriching them with computational models of physiological and pathological processes. Objective The primary goal of this paper was to propose a conceptual framework for the integration of computational models within virtual patients, with particular focus on (1) characteristics to be addressed while preparing the integration, (2) the extent of the integration, (3) strategies to achieve integration, and (4) methods for evaluating the feasibility of integration. An additional goal was to pilot the first investigation of changing framework variables on altering perceptions of integration. Methods The framework was constructed using an iterative process informed by Soft System Methodology. The Virtual Physiological Human (VPH) initiative has been used as a source of new computational models. The technical challenges associated with development of virtual patients enhanced by computational models are discussed from the perspectives of a number of different stakeholders. Concrete design and evaluation steps are discussed in the context of an exemplar virtual patient employing the results of the VPH ARCH project, as well as improvements for future iterations. Results The proposed framework consists of four main elements. The first element is a list of feasibility features characterizing the integration process from three perspectives: the computational modelling researcher, the health care educationalist, and the virtual patient system developer. The second element included three integration levels: basic, where a single set of simulation outcomes is generated for specific nodes in the activity graph; intermediate, involving pre-generation of simulation datasets over a range of input parameters; advanced, including dynamic solution of the

  18. A Case for Ubiquitous, Integrated Computing in Teacher Education

    ERIC Educational Resources Information Center

    Kay, Robin H.; Knaack, Liesel

    2005-01-01

    The purpose of this study was to evaluate the effect of an integrated, laptop-based approach on pre-service teachers' computer attitudes, ability and use. Pre-post program analysis revealed significant differences in behavioural attitudes and perceived control (self-efficacy), but not in affective and cognitive attitudes. In addition, there was a…

  19. Computer Technology Integration and Student Learning: Barriers and Promise

    ERIC Educational Resources Information Center

    Keengwe, Jared; Onchwari, Grace; Wachira, Patrick

    2008-01-01

    Political and institutional support has enabled many institutions of learning to spend millions of dollars to acquire educational computing tools (Ficklen and Muscara, "Am Educ" 25(3):22-29, 2001) that have not been effectively integrated into the curriculum. While access to educational technology tools has remarkably improved in most schools,…

  20. Reliable Facility Location Problem with Facility Protection

    PubMed Central

    Tang, Luohao; Zhu, Cheng; Lin, Zaili; Shi, Jianmai; Zhang, Weiming

    2016-01-01

    This paper studies a reliable facility location problem with facility protection that aims to hedge against random facility disruptions by both strategically protecting some facilities and using backup facilities for the demands. An Integer Programming model is proposed for this problem, in which the failure probabilities of facilities are site-specific. A solution approach combining Lagrangian Relaxation and local search is proposed and is demonstrated to be both effective and efficient based on computational experiments on random numerical examples with 49, 88, 150 and 263 nodes in the network. A real case study for a 100-city network in Hunan province, China, is presented, based on which the properties of the model are discussed and some managerial insights are analyzed. PMID:27583542

  1. Alpha LAMP Integration Facility

    NASA Technical Reports Server (NTRS)

    Oshiro, Richard; Sowers, Dennis; Gargiulo, Joe; Mcgahey, Mark

    1994-01-01

    This paper describes the activity recently completed to meet the simulated space environment requirements for the ground-based testing of an integrated Space Based Laser (SBL) system experiment. The need to maintain optical alignment in the challenging dynamic environment of the pressure recovery system required to simulate space dominated the design requirements. A robust system design was established which minimized the total program costs, most notably by reducing the cost of integrating the components of the experiment. The components of the experiment are integrated on an optical bench in a clean area adjacent to the vacuum chamber and moved on air bearings into the chamber for testing.

  2. ISS Expedition 18 Fluids and Combustion Facility (FCF) Combustion Integration Rack (CIR) Passive Rack Isolation System (

    NASA Image and Video Library

    2009-01-05

    ISS018-E-017796 (5 Jan. 2009) --- Astronaut Sandra Magnus, Expedition 18 flight engineer, works on the Fluids and Combustion Facility (FCF) Combustion Integration Rack (CIR) Passive Rack Isolation System (PaRIS) in the Destiny laboratory of the International Space Station.

  3. Evaluating Computer Integration in the Elementary School: A Step-by-Step Guide.

    ERIC Educational Resources Information Center

    Mowe, Richard

    This handbook was written to enable elementary school educators to conduct formative evaluations of their computer integrated instruction (CII) programs in minimum time. CII is defined as the use of computer software, such as word processing, database, and graphics programs, to help students solve problems or work more productively. The first…

  4. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov Websites

    Renewable Generation Integration Study (ERGIS), looks ahead to the year 2026 and examines how the Eastern accurately modeling the entire system at five-minute intervals for an entire year has never even been Integrated Network Testbed for Energy Grid Research and Technology Experimentation (INTEGRATE) project, up to

  5. Scope of Work for Integration Management and Installation Services of the National Ignition Facility Beampath Infrastructure System

    NASA Astrophysics Data System (ADS)

    Coyle, P. D.

    2000-03-01

    The goal of the National Ignition Facility (NIF) project is to provide an above ground experimental capability for maintaining nuclear competence and weapons effects simulation and to provide a facility capable of achieving fusion ignition using solid-state lasers as the energy driver. The facility will incorporate 192 laser beams, which will be focused onto a small target located at the center of a spherical target chamber-the energy from the laser beams will be deposited in a few billionths of a second. The target will then implode, forcing atomic nuclei to sufficiently high temperatures and densities necessary to achieve a miniature fusion reaction. The NIF is under construction, at Livermore, California, located approximately 50 miles southeast of San Francisco, California. The University of California, Lawrence Livermore National Laboratory (LLNL), operating under Prime Contract W-7405-ENG. 48 with the U.S. Department of Energy (DOE), shall subcontract for Integration Management and Installation (IMI) Services for the Beampath Infrastructure System (BIS). The BIS includes Beampath Hardware and Beampath Utilities. Conventional Facilities work for the NIF Laser and Target Area Building (LTAB) and Optics Assembly Building (OAB) is over 86 percent constructed. This Scope of Work is for Integration Management and Installation (IMI) Services corresponding to Management Services, Design Integration Services, Construction Services, and Commissioning Services for the NIB BIS. The BIS includes Beampath Hardware and Beampath Utilities. Beampath Hardware and Beampath Utilities include beampath vessels, enclosures, and beam tubes; auxiliary and utility systems; and support structures. A substantial amount of GFE will be provided by the University for installation as part of the infrastructure packages.

  6. iTools: a framework for classification, categorization and integration of computational biology resources.

    PubMed

    Dinov, Ivo D; Rubin, Daniel; Lorensen, William; Dugan, Jonathan; Ma, Jeff; Murphy, Shawn; Kirschner, Beth; Bug, William; Sherman, Michael; Floratos, Aris; Kennedy, David; Jagadish, H V; Schmidt, Jeanette; Athey, Brian; Califano, Andrea; Musen, Mark; Altman, Russ; Kikinis, Ron; Kohane, Isaac; Delp, Scott; Parker, D Stott; Toga, Arthur W

    2008-05-28

    The advancement of the computational biology field hinges on progress in three fundamental directions--the development of new computational algorithms, the availability of informatics resource management infrastructures and the capability of tools to interoperate and synergize. There is an explosion in algorithms and tools for computational biology, which makes it difficult for biologists to find, compare and integrate such resources. We describe a new infrastructure, iTools, for managing the query, traversal and comparison of diverse computational biology resources. Specifically, iTools stores information about three types of resources--data, software tools and web-services. The iTools design, implementation and resource meta-data content reflect the broad research, computational, applied and scientific expertise available at the seven National Centers for Biomedical Computing. iTools provides a system for classification, categorization and integration of different computational biology resources across space-and-time scales, biomedical problems, computational infrastructures and mathematical foundations. A large number of resources are already iTools-accessible to the community and this infrastructure is rapidly growing. iTools includes human and machine interfaces to its resource meta-data repository. Investigators or computer programs may utilize these interfaces to search, compare, expand, revise and mine meta-data descriptions of existent computational biology resources. We propose two ways to browse and display the iTools dynamic collection of resources. The first one is based on an ontology of computational biology resources, and the second one is derived from hyperbolic projections of manifolds or complex structures onto planar discs. iTools is an open source project both in terms of the source code development as well as its meta-data content. iTools employs a decentralized, portable, scalable and lightweight framework for long-term resource management

  7. iTools: A Framework for Classification, Categorization and Integration of Computational Biology Resources

    PubMed Central

    Dinov, Ivo D.; Rubin, Daniel; Lorensen, William; Dugan, Jonathan; Ma, Jeff; Murphy, Shawn; Kirschner, Beth; Bug, William; Sherman, Michael; Floratos, Aris; Kennedy, David; Jagadish, H. V.; Schmidt, Jeanette; Athey, Brian; Califano, Andrea; Musen, Mark; Altman, Russ; Kikinis, Ron; Kohane, Isaac; Delp, Scott; Parker, D. Stott; Toga, Arthur W.

    2008-01-01

    The advancement of the computational biology field hinges on progress in three fundamental directions – the development of new computational algorithms, the availability of informatics resource management infrastructures and the capability of tools to interoperate and synergize. There is an explosion in algorithms and tools for computational biology, which makes it difficult for biologists to find, compare and integrate such resources. We describe a new infrastructure, iTools, for managing the query, traversal and comparison of diverse computational biology resources. Specifically, iTools stores information about three types of resources–data, software tools and web-services. The iTools design, implementation and resource meta - data content reflect the broad research, computational, applied and scientific expertise available at the seven National Centers for Biomedical Computing. iTools provides a system for classification, categorization and integration of different computational biology resources across space-and-time scales, biomedical problems, computational infrastructures and mathematical foundations. A large number of resources are already iTools-accessible to the community and this infrastructure is rapidly growing. iTools includes human and machine interfaces to its resource meta-data repository. Investigators or computer programs may utilize these interfaces to search, compare, expand, revise and mine meta-data descriptions of existent computational biology resources. We propose two ways to browse and display the iTools dynamic collection of resources. The first one is based on an ontology of computational biology resources, and the second one is derived from hyperbolic projections of manifolds or complex structures onto planar discs. iTools is an open source project both in terms of the source code development as well as its meta-data content. iTools employs a decentralized, portable, scalable and lightweight framework for long-term resource

  8. Study of a computer-controlled integrated optical gas-concentration sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egorov, A A; Egorov, M A; Chekhlova, T K

    2008-08-31

    A computer-controlled integrated optical waveguide sensor based on an optical waveguide of the diffusion type with the low attenuation coefficient is developed and studied. It is shown that the response time of the sensor is {approx}0.15 s. According to tests and computer simulations, the sensor can detect gaseous ammonia in air with the limiting theoretical concentration of {approx}0.1 ppm for the signal-to-noise ratio no less than 20. (laser applications and other topics in quantum electronics)

  9. Integrated computational materials engineering: Tools, simulations and new applications

    DOE PAGES

    Madison, Jonathan D.

    2016-03-30

    Here, Integrated Computational Materials Engineering (ICME) is a relatively new methodology full of tremendous potential to revolutionize how science, engineering and manufacturing work together. ICME was motivated by the desire to derive greater understanding throughout each portion of the development life cycle of materials, while simultaneously reducing the time between discovery to implementation [1,2].

  10. Refurbishment and Automation of the Thermal/Vacuum Facilities at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Donohue, John T.; Johnson, Chris; Ogden, Rick; Sushon, Janet

    1998-01-01

    The thermal/vacuum facilities located at the Goddard Space Flight Center (GSFC) have supported both manned and unmanned space flight since the 1960s. Of the 11 facilities, currently 10 of the systems are scheduled for refurbishment and/or replacement as part of a 5-year implementation. Expected return on investment includes the reduction in test schedules, improvements in the safety of facility operations, reduction in the complexity of a test and the reduction in personnel support required for a test. Additionally, GSFC will become a global resource renowned for expertise in thermal engineering, mechanical engineering and for the automation of thermal/vacuum facilities and thermal/vacuum tests. Automation of the thermal/vacuum facilities includes the utilization of Programmable Logic Controllers (PLCs) and the use of Supervisory Control and Data Acquisition (SCADA) systems. These components allow the computer control and automation of mechanical components such as valves and pumps. In some cases, the chamber and chamber shroud require complete replacement while others require only mechanical component retrofit or replacement. The project of refurbishment and automation began in 1996 and has resulted in the computer control of one Facility (Facility #225) and the integration of electronically controlled devices and PLCs within several other facilities. Facility 225 has been successfully controlled by PLC and SCADA for over one year. Insignificant anomalies have occurred and were resolved with minimal impact to testing and operations. The amount of work remaining to be performed will occur over the next four to five years. Fiscal year 1998 includes the complete refurbishment of one facility, computer control of the thermal systems in two facilities, implementation of SCADA and PLC systems to support multiple facilities and the implementation of a Database server to allow efficient test management and data analysis.

  11. Performance analysis of three dimensional integral equation computations on a massively parallel computer. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Logan, Terry G.

    1994-01-01

    The purpose of this study is to investigate the performance of the integral equation computations using numerical source field-panel method in a massively parallel processing (MPP) environment. A comparative study of computational performance of the MPP CM-5 computer and conventional Cray-YMP supercomputer for a three-dimensional flow problem is made. A serial FORTRAN code is converted into a parallel CM-FORTRAN code. Some performance results are obtained on CM-5 with 32, 62, 128 nodes along with those on Cray-YMP with a single processor. The comparison of the performance indicates that the parallel CM-FORTRAN code near or out-performs the equivalent serial FORTRAN code for some cases.

  12. Operation of the 25kW NASA Lewis Research Center Solar Regenerative Fuel Cell Tested Facility

    NASA Technical Reports Server (NTRS)

    Moore, S. H.; Voecks, G. E.

    1997-01-01

    Assembly of the NASA Lewis Research Center(LeRC)Solar Regenerative Fuel Cell (RFC) Testbed Facility has been completed and system testing has proceeded. This facility includes the integration of two 25kW photovoltaic solar cell arrays, a 25kW proton exchange membrane (PEM) electrolysis unit, four 5kW PEM fuel cells, high pressure hydrogen and oxygen storage vessels, high purity water storage containers, and computer monitoring, control and data acquisition.

  13. AI/OR computational model for integrating qualitative and quantitative design methods

    NASA Technical Reports Server (NTRS)

    Agogino, Alice M.; Bradley, Stephen R.; Cagan, Jonathan; Jain, Pramod; Michelena, Nestor

    1990-01-01

    A theoretical framework for integrating qualitative and numerical computational methods for optimally-directed design is described. The theory is presented as a computational model and features of implementations are summarized where appropriate. To demonstrate the versatility of the methodology we focus on four seemingly disparate aspects of the design process and their interaction: (1) conceptual design, (2) qualitative optimal design, (3) design innovation, and (4) numerical global optimization.

  14. Application of Framework for Integrating Safety, Security and Safeguards (3Ss) into the Design Of Used Nuclear Fuel Storage Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badwan, Faris M.; Demuth, Scott F

    Department of Energy’s Office of Nuclear Energy, Fuel Cycle Research and Development develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development focused on used nuclear fuel recycling and waste management to meet U.S. needs. Used nuclear fuel is currently stored onsite in either wet pools or in dry storage systems, with disposal envisioned in interim storage facility and, ultimately, in a deep-mined geologic repository. The safe management and disposition of used nuclear fuel and/or nuclear waste is amore » fundamental aspect of any nuclear fuel cycle. Integrating safety, security, and safeguards (3Ss) fully in the early stages of the design process for a new nuclear facility has the potential to effectively minimize safety, proliferation, and security risks. The 3Ss integration framework could become the new national and international norm and the standard process for designing future nuclear facilities. The purpose of this report is to develop a framework for integrating the safety, security and safeguards concept into the design of Used Nuclear Fuel Storage Facility (UNFSF). The primary focus is on integration of safeguards and security into the UNFSF based on the existing Nuclear Regulatory Commission (NRC) approach to addressing the safety/security interface (10 CFR 73.58 and Regulatory Guide 5.73) for nuclear power plants. The methodology used for adaptation of the NRC safety/security interface will be used as the basis for development of the safeguards /security interface and later will be used as the basis for development of safety and safeguards interface. Then this will complete the integration cycle of safety, security, and safeguards. The overall methodology for integration of 3Ss will be proposed, but only the integration of safeguards and security will be applied to the design

  15. Integrated optical circuits for numerical computation

    NASA Technical Reports Server (NTRS)

    Verber, C. M.; Kenan, R. P.

    1983-01-01

    The development of integrated optical circuits (IOC) for numerical-computation applications is reviewed, with a focus on the use of systolic architectures. The basic architecture criteria for optical processors are shown to be the same as those proposed by Kung (1982) for VLSI design, and the advantages of IOCs over bulk techniques are indicated. The operation and fabrication of electrooptic grating structures are outlined, and the application of IOCs of this type to an existing 32-bit, 32-Mbit/sec digital correlator, a proposed matrix multiplier, and a proposed pipeline processor for polynomial evaluation is discussed. The problems arising from the inherent nonlinearity of electrooptic gratings are considered. Diagrams and drawings of the application concepts are provided.

  16. A Medical Decision Support System for the Space Station Health Maintenance Facility

    PubMed Central

    Ostler, David V.; Gardner, Reed M.; Logan, James S.

    1988-01-01

    NASA is developing a Health Maintenance Facility (HMF) to provide the equipment and supplies necessary to deliver medical care in the Space Station. An essential part of the Health Maintenance Facility is a computerized Medical Decision Support System (MDSS) that will enhance the ability of the medical officer (“paramedic” or “physician”) to maintain the crew's health, and to provide emergency medical care. The computer system has four major functions: 1) collect and integrate medical information into an electronic medical record from Space Station medical officers, HMF instrumentation, and exercise equipment; 2) provide an integrated medical record and medical reference information management system; 3) manage inventory for logistical support of supplies and secure pharmaceuticals; 4) supply audio and electronic mail communications between the medical officer and ground based flight surgeons. ImagesFigure 1

  17. Future Computer Requirements for Computational Aerodynamics

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Recent advances in computational aerodynamics are discussed as well as motivations for and potential benefits of a National Aerodynamic Simulation Facility having the capability to solve fluid dynamic equations at speeds two to three orders of magnitude faster than presently possible with general computers. Two contracted efforts to define processor architectures for such a facility are summarized.

  18. EPA Facility Registry Service (FRS): CAMDBS

    EPA Pesticide Factsheets

    This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of facilities that link to the Clean Air Markets Division Business System (CAMDBS). Administered by the EPA Clean Air Markets Division, within the Office of Air and Radiation, CAMDBS supports the implementation of market-based air pollution control programs, including the Acid Rain Program and regional programs designed to reduce the transport of ozone. FRS identifies and geospatially locates facilities, sites or places subject to environmental regulations or of environmental interest. Using vigorous verification and data management procedures, FRS integrates facility data from EPA's national program systems, other federal agencies, and State and tribal master facility records and provides EPA with a centrally managed, single source of comprehensive and authoritative information on facilities. This data set contains the subset of FRS integrated facilities that link to CAMDBS facilities once the CAMDBS data has been integrated into the FRS database. Additional information on FRS is available at the EPA website https://www.epa.gov/enviro/facility-registry-service-frs.

  19. EPA Facility Registry Service (FRS): RCRA

    EPA Pesticide Factsheets

    This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of hazardous waste facilities that link to the Resource Conservation and Recovery Act Information System (RCRAInfo). EPA's comprehensive information system in support of the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984, RCRAInfo tracks many types of information about generators, transporters, treaters, storers, and disposers of hazardous waste. FRS identifies and geospatially locates facilities, sites or places subject to environmental regulations or of environmental interest. Using vigorous verification and data management procedures, FRS integrates facility data from EPA's national program systems, other federal agencies, and State and tribal master facility records and provides EPA with a centrally managed, single source of comprehensive and authoritative information on facilities. This data set contains the subset of FRS integrated facilities that link to RCRAInfo hazardous waste facilities once the RCRAInfo data has been integrated into the FRS database. Additional information on FRS is available at the EPA website https://www.epa.gov/enviro/facility-registry-service-frs

  20. Computer-Aided Design Speeds Development of Safe, Affordable, and Efficient

    Science.gov Websites

    Systems Integration Facility's 3-D visualization room. Photo by Dennis Schroeder, NREL 41705 Computer from industry, academia, national laboratories, and other research institutions. Photo by Dennis Dennis Schroeder, NREL 41483 Bringing CAEBAT to the Next Level CAEBAT teams are now working to

  1. Towards a computational(ist) neurobiology of language: Correlational, integrated, and explanatory neurolinguistics*

    PubMed Central

    Poeppel, David

    2014-01-01

    We outline what an integrated approach to language research that connects experimental, theoretical, and neurobiological domains of inquiry would look like, and ask to what extent unification is possible across domains. At the center of the program is the idea that computational/representational (CR) theories of language must be used to investigate its neurobiological (NB) foundations. We consider different ways in which CR and NB might be connected. These are (1) A Correlational way, in which NB computation is correlated with the CR theory; (2) An Integrated way, in which NB data provide crucial evidence for choosing among CR theories; and (3) an Explanatory way, in which properties of NB explain why a CR theory is the way it is. We examine various questions concerning the prospects for Explanatory connections in particular, including to what extent it makes sense to say that NB could be specialized for particular computations. PMID:25914888

  2. Towards a computational(ist) neurobiology of language: Correlational, integrated, and explanatory neurolinguistics.

    PubMed

    Embick, David; Poeppel, David

    2015-05-01

    We outline what an integrated approach to language research that connects experimental, theoretical, and neurobiological domains of inquiry would look like, and ask to what extent unification is possible across domains. At the center of the program is the idea that computational/representational (CR) theories of language must be used to investigate its neurobiological (NB) foundations. We consider different ways in which CR and NB might be connected. These are (1) A Correlational way, in which NB computation is correlated with the CR theory; (2) An Integrated way, in which NB data provide crucial evidence for choosing among CR theories; and (3) an Explanatory way, in which properties of NB explain why a CR theory is the way it is. We examine various questions concerning the prospects for Explanatory connections in particular, including to what extent it makes sense to say that NB could be specialized for particular computations.

  3. Computational Simulations of the NASA Langley HyMETS Arc-Jet Facility

    NASA Technical Reports Server (NTRS)

    Brune, A. J.; Bruce, W. E., III; Glass, D. E.; Splinter, S. C.

    2017-01-01

    The Hypersonic Materials Environmental Test System (HyMETS) arc-jet facility located at the NASA Langley Research Center in Hampton, Virginia, is primarily used for the research, development, and evaluation of high-temperature thermal protection systems for hypersonic vehicles and reentry systems. In order to improve testing capabilities and knowledge of the test article environment, an effort is underway to computationally simulate the flow-field using computational fluid dynamics (CFD). A detailed three-dimensional model of the arc-jet nozzle and free-jet portion of the flow-field has been developed and compared to calibration probe Pitot pressure and stagnation-point heat flux for three test conditions at low, medium, and high enthalpy. The CFD model takes into account uniform pressure and non-uniform enthalpy profiles at the nozzle inlet as well as catalytic recombination efficiency effects at the probe surface. Comparing the CFD results and test data indicates an effectively fully-catalytic copper surface on the heat flux probe of about 10% efficiency and a 2-3 kpa pressure drop from the arc heater bore, where the pressure is measured, to the plenum section, prior to the nozzle. With these assumptions, the CFD results are well within the uncertainty of the stagnation pressure and heat flux measurements. The conditions at the nozzle exit were also compared with radial and axial velocimetry. This simulation capability will be used to evaluate various three-dimensional models that are tested in the HyMETS facility. An end-to-end aerothermal and thermal simulation of HyMETS test articles will follow this work to provide a better understanding of the test environment, test results, and to aid in test planning. Additional flow-field diagnostic measurements will also be considered to improve the modeling capability.

  4. An Approach to Integrate a Space-Time GIS Data Model with High Performance Computers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dali; Zhao, Ziliang; Shaw, Shih-Lung

    2011-01-01

    In this paper, we describe an approach to integrate a Space-Time GIS data model on a high performance computing platform. The Space-Time GIS data model has been developed on a desktop computing environment. We use the Space-Time GIS data model to generate GIS module, which organizes a series of remote sensing data. We are in the process of porting the GIS module into an HPC environment, in which the GIS modules handle large dataset directly via parallel file system. Although it is an ongoing project, authors hope this effort can inspire further discussions on the integration of GIS on highmore » performance computing platforms.« less

  5. ESIF Call for High-Impact Integrated Projects | Energy Systems Integration

    Science.gov Websites

    Integrated Projects As a U.S. Department of Energy user facility, the Energy Systems Integration Facility concepts, tools, and technologies needed to measure, analyze, predict, protect, and control the grid of the Facility | NREL ESIF Call for High-Impact Integrated Projects ESIF Call for High-Impact

  6. Integrating publicly-available data to generate computationally ...

    EPA Pesticide Factsheets

    The adverse outcome pathway (AOP) framework provides a way of organizing knowledge related to the key biological events that result in a particular health outcome. For the majority of environmental chemicals, the availability of curated pathways characterizing potential toxicity is limited. Methods are needed to assimilate large amounts of available molecular data and quickly generate putative AOPs for further testing and use in hazard assessment. A graph-based workflow was used to facilitate the integration of multiple data types to generate computationally-predicted (cp) AOPs. Edges between graph entities were identified through direct experimental or literature information or computationally inferred using frequent itemset mining. Data from the TG-GATEs and ToxCast programs were used to channel large-scale toxicogenomics information into a cpAOP network (cpAOPnet) of over 20,000 relationships describing connections between chemical treatments, phenotypes, and perturbed pathways measured by differential gene expression and high-throughput screening targets. Sub-networks of cpAOPs for a reference chemical (carbon tetrachloride, CCl4) and outcome (hepatic steatosis) were extracted using the network topology. Comparison of the cpAOP subnetworks to published mechanistic descriptions for both CCl4 toxicity and hepatic steatosis demonstrate that computational approaches can be used to replicate manually curated AOPs and identify pathway targets that lack genomic mar

  7. Computer Integrated Manufacturing: Physical Modelling Systems Design. A Personal View.

    ERIC Educational Resources Information Center

    Baker, Richard

    A computer-integrated manufacturing (CIM) Physical Modeling Systems Design project was undertaken in a time of rapid change in the industrial, business, technological, training, and educational areas in Australia. A specification of a manufacturing physical modeling system was drawn up. Physical modeling provides a flexibility and configurability…

  8. EPA Facility Registry Service (FRS): Facility Interests Dataset Download

    EPA Pesticide Factsheets

    This downloadable data package consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are available in the FRS individual feature layers. The layers comprise the FRS major program databases, including:Assessment Cleanup and Redevelopment Exchange System (ACRES) : brownfields sites ; Air Facility System (AFS) : stationary sources of air pollution ; Air Quality System (AQS) : ambient air pollution data from monitoring stations; Bureau of Indian Affairs (BIA) : schools data on Indian land; Base Realignment and Closure (BRAC) facilities; Clean Air Markets Division Business System (CAMDBS) : market-based air pollution control programs; Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS) : hazardous waste sites; Integrated Compliance Information System (ICIS) : integrated enforcement and compliance information; National Compliance Database (NCDB) : Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Toxic Substances Control Act (TSCA); National Pollutant Discharge Elimination System (NPDES) module of ICIS : NPDES surface water permits; Radiation Information Database (RADINFO) : radiation and radioactivity facilities; RACT/BACT/LAER Clearinghouse (RBLC) : best available air pollution technology requirements; Resource Conservation and Recovery Act Information System (RCRAInfo) : tracks generators, transporters, treaters, storers, and disposers

  9. EPA Facility Registry Service (FRS): Facility Interests Dataset

    EPA Pesticide Factsheets

    This web feature service consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are available in the FRS individual feature layers. The layers comprise the FRS major program databases, including:Assessment Cleanup and Redevelopment Exchange System (ACRES) : brownfields sites ; Air Facility System (AFS) : stationary sources of air pollution ; Air Quality System (AQS) : ambient air pollution data from monitoring stations; Bureau of Indian Affairs (BIA) : schools data on Indian land; Base Realignment and Closure (BRAC) facilities; Clean Air Markets Division Business System (CAMDBS) : market-based air pollution control programs; Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS) : hazardous waste sites; Integrated Compliance Information System (ICIS) : integrated enforcement and compliance information; National Compliance Database (NCDB) : Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Toxic Substances Control Act (TSCA); National Pollutant Discharge Elimination System (NPDES) module of ICIS : NPDES surface water permits; Radiation Information Database (RADINFO) : radiation and radioactivity facilities; RACT/BACT/LAER Clearinghouse (RBLC) : best available air pollution technology requirements; Resource Conservation and Recovery Act Information System (RCRAInfo) : tracks generators, transporters, treaters, storers, and disposers of haz

  10. What Is Energy Systems Integration? | Energy Systems Integration Facility |

    Science.gov Websites

    NREL What Is Energy Systems Integration? What Is Energy Systems Integration? Energy systems integration (ESI) is an approach to solving big energy challenges that explores ways for energy systems to Research Community NREL is a founding member of the International Institute for Energy Systems Integration

  11. Contamination control and cleanliness level integrity for the Space Shuttle Orbiter PLB, payloads and facilities at KSC

    NASA Technical Reports Server (NTRS)

    Bartelson, D.

    1984-01-01

    The PLB, its cargo, and payload canister must satisfy the cleanliness requirements of visual clean (VC) level 1, 2, 3, or special as stated in NASA document SN-C-0005A. The specific level of cleanliness is chosen by the payload bay customer for their mission. During orbiter turnaround processing at KSC, the payload bay is exposed to the environments of the Orbiter Processing Facility (OPF) and the Payload Changeout Room (PCR). In supportive response to the orbiter payload bay/facility interface, it is necessary that the facility environment be controlled and monitored to protect the cleanliness/environmental integrity of the payload bay and its cargo. Techniques used to meet environmental requirements during orbiter processing are introduced.

  12. EPA Facility Registry Service (FRS): TRI

    EPA Pesticide Factsheets

    This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of facilities that link to the Toxic Release Inventory (TRI) System. TRI is a publicly available EPA database reported annually by certain covered industry groups, as well as federal facilities. It contains information about more than 650 toxic chemicals that are being used, manufactured, treated, transported, or released into the environment, and includes information about waste management and pollution prevention activities. FRS identifies and geospatially locates facilities, sites or places subject to environmental regulations or of environmental interest. Using vigorous verification and data management procedures, FRS integrates facility data from EPA's national program systems, other federal agencies, and State and tribal master facility records and provides EPA with a centrally managed, single source of comprehensive and authoritative information on facilities. This data set contains the subset of FRS integrated facilities that link to TRI facilities once the TRI data has been integrated into the FRS database. Additional information on FRS is available at the EPA website https://www.epa.gov/enviro/facility-registry-service-frs.

  13. Challenges in scaling NLO generators to leadership computers

    NASA Astrophysics Data System (ADS)

    Benjamin, D.; Childers, JT; Hoeche, S.; LeCompte, T.; Uram, T.

    2017-10-01

    Exascale computing resources are roughly a decade away and will be capable of 100 times more computing than current supercomputers. In the last year, Energy Frontier experiments crossed a milestone of 100 million core-hours used at the Argonne Leadership Computing Facility, Oak Ridge Leadership Computing Facility, and NERSC. The Fortran-based leading-order parton generator called Alpgen was successfully scaled to millions of threads to achieve this level of usage on Mira. Sherpa and MadGraph are next-to-leading order generators used heavily by LHC experiments for simulation. Integration times for high-multiplicity or rare processes can take a week or more on standard Grid machines, even using all 16-cores. We will describe our ongoing work to scale the Sherpa generator to thousands of threads on leadership-class machines and reduce run-times to less than a day. This work allows the experiments to leverage large-scale parallel supercomputers for event generation today, freeing tens of millions of grid hours for other work, and paving the way for future applications (simulation, reconstruction) on these and future supercomputers.

  14. Health workers' knowledge of and attitudes towards computer applications in rural African health facilities.

    PubMed

    Sukums, Felix; Mensah, Nathan; Mpembeni, Rose; Kaltschmidt, Jens; Haefeli, Walter E; Blank, Antje

    2014-01-01

    The QUALMAT (Quality of Maternal and Prenatal Care: Bridging the Know-do Gap) project has introduced an electronic clinical decision support system (CDSS) for pre-natal and maternal care services in rural primary health facilities in Burkina Faso, Ghana, and Tanzania. To report an assessment of health providers' computer knowledge, experience, and attitudes prior to the implementation of the QUALMAT electronic CDSS. A cross-sectional study was conducted with providers in 24 QUALMAT project sites. Information was collected using structured questionnaires. Chi-squared tests and one-way ANOVA describe the association between computer knowledge, attitudes, and other factors. Semi-structured interviews and focus groups were conducted to gain further insights. A total of 108 providers responded, 63% were from Tanzania and 37% from Ghana. The mean age was 37.6 years, and 79% were female. Only 40% had ever used computers, and 29% had prior computer training. About 80% were computer illiterate or beginners. Educational level, age, and years of work experience were significantly associated with computer knowledge (p<0.01). Most (95.3%) had positive attitudes towards computers - average score (±SD) of 37.2 (±4.9). Females had significantly lower scores than males. Interviews and group discussions showed that although most were lacking computer knowledge and experience, they were optimistic about overcoming challenges associated with the introduction of computers in their workplace. Given the low levels of computer knowledge among rural health workers in Africa, it is important to provide adequate training and support to ensure the successful uptake of electronic CDSSs in these settings. The positive attitudes to computers found in this study underscore that also rural care providers are ready to use such technology.

  15. An Integrated Computer Modeling Environment for Regional Land Use, Air Quality, and Transportation Planning

    DOT National Transportation Integrated Search

    1997-04-01

    The Land Use, Air Quality, and Transportation Integrated Modeling Environment (LATIME) represents an integrated approach to computer modeling and simulation of land use allocation, travel demand, and mobile source emissions for the Albuquerque, New M...

  16. EPA Facility Registry System (FRS): NCES

    EPA Pesticide Factsheets

    This web feature service contains location and facility identification information from EPA's Facility Registry System (FRS) for the subset of facilities that link to the National Center for Education Statistics (NCES). The primary federal database for collecting and analyzing data related to education in the United States and other Nations, NCES is located in the U.S. Department of Education, within the Institute of Education Sciences. FRS identifies and geospatially locates facilities, sites or places subject to environmental regulations or of environmental interest. Using vigorous verification and data management procedures, FRS integrates facility data from EPA00e2??s national program systems, other federal agencies, and State and tribal master facility records and provides EPA with a centrally managed, single source of comprehensive and authoritative information on facilities. This data set contains the subset of FRS integrated facilities that link to NCES school facilities once the NCES data has been integrated into the FRS database. Additional information on FRS is available at the EPA website http://www.epa.gov/enviro/html/fii/index.html.

  17. Tavaxy: Integrating Taverna and Galaxy workflows with cloud computing support

    PubMed Central

    2012-01-01

    Background Over the past decade the workflow system paradigm has evolved as an efficient and user-friendly approach for developing complex bioinformatics applications. Two popular workflow systems that have gained acceptance by the bioinformatics community are Taverna and Galaxy. Each system has a large user-base and supports an ever-growing repository of application workflows. However, workflows developed for one system cannot be imported and executed easily on the other. The lack of interoperability is due to differences in the models of computation, workflow languages, and architectures of both systems. This lack of interoperability limits sharing of workflows between the user communities and leads to duplication of development efforts. Results In this paper, we present Tavaxy, a stand-alone system for creating and executing workflows based on using an extensible set of re-usable workflow patterns. Tavaxy offers a set of new features that simplify and enhance the development of sequence analysis applications: It allows the integration of existing Taverna and Galaxy workflows in a single environment, and supports the use of cloud computing capabilities. The integration of existing Taverna and Galaxy workflows is supported seamlessly at both run-time and design-time levels, based on the concepts of hierarchical workflows and workflow patterns. The use of cloud computing in Tavaxy is flexible, where the users can either instantiate the whole system on the cloud, or delegate the execution of certain sub-workflows to the cloud infrastructure. Conclusions Tavaxy reduces the workflow development cycle by introducing the use of workflow patterns to simplify workflow creation. It enables the re-use and integration of existing (sub-) workflows from Taverna and Galaxy, and allows the creation of hybrid workflows. Its additional features exploit recent advances in high performance cloud computing to cope with the increasing data size and complexity of analysis. The system

  18. Tavaxy: integrating Taverna and Galaxy workflows with cloud computing support.

    PubMed

    Abouelhoda, Mohamed; Issa, Shadi Alaa; Ghanem, Moustafa

    2012-05-04

    Over the past decade the workflow system paradigm has evolved as an efficient and user-friendly approach for developing complex bioinformatics applications. Two popular workflow systems that have gained acceptance by the bioinformatics community are Taverna and Galaxy. Each system has a large user-base and supports an ever-growing repository of application workflows. However, workflows developed for one system cannot be imported and executed easily on the other. The lack of interoperability is due to differences in the models of computation, workflow languages, and architectures of both systems. This lack of interoperability limits sharing of workflows between the user communities and leads to duplication of development efforts. In this paper, we present Tavaxy, a stand-alone system for creating and executing workflows based on using an extensible set of re-usable workflow patterns. Tavaxy offers a set of new features that simplify and enhance the development of sequence analysis applications: It allows the integration of existing Taverna and Galaxy workflows in a single environment, and supports the use of cloud computing capabilities. The integration of existing Taverna and Galaxy workflows is supported seamlessly at both run-time and design-time levels, based on the concepts of hierarchical workflows and workflow patterns. The use of cloud computing in Tavaxy is flexible, where the users can either instantiate the whole system on the cloud, or delegate the execution of certain sub-workflows to the cloud infrastructure. Tavaxy reduces the workflow development cycle by introducing the use of workflow patterns to simplify workflow creation. It enables the re-use and integration of existing (sub-) workflows from Taverna and Galaxy, and allows the creation of hybrid workflows. Its additional features exploit recent advances in high performance cloud computing to cope with the increasing data size and complexity of analysis.The system can be accessed either through a

  19. An integrated computer-based procedure for teamwork in digital nuclear power plants.

    PubMed

    Gao, Qin; Yu, Wenzhu; Jiang, Xiang; Song, Fei; Pan, Jiajie; Li, Zhizhong

    2015-01-01

    Computer-based procedures (CBPs) are expected to improve operator performance in nuclear power plants (NPPs), but they may reduce the openness of interaction between team members and harm teamwork consequently. To support teamwork in the main control room of an NPP, this study proposed a team-level integrated CBP that presents team members' operation status and execution histories to one another. Through a laboratory experiment, we compared the new integrated design and the existing individual CBP design. Sixty participants, randomly divided into twenty teams of three people each, were assigned to the two conditions to perform simulated emergency operating procedures. The results showed that compared with the existing CBP design, the integrated CBP reduced the effort of team communication and improved team transparency. The results suggest that this novel design is effective to optim team process, but its impact on the behavioural outcomes may be moderated by more factors, such as task duration. The study proposed and evaluated a team-level integrated computer-based procedure, which present team members' operation status and execution history to one another. The experimental results show that compared with the traditional procedure design, the integrated design reduces the effort of team communication and improves team transparency.

  20. Network-based drug discovery by integrating systems biology and computational technologies

    PubMed Central

    Leung, Elaine L.; Cao, Zhi-Wei; Jiang, Zhi-Hong; Zhou, Hua

    2013-01-01

    Network-based intervention has been a trend of curing systemic diseases, but it relies on regimen optimization and valid multi-target actions of the drugs. The complex multi-component nature of medicinal herbs may serve as valuable resources for network-based multi-target drug discovery due to its potential treatment effects by synergy. Recently, robustness of multiple systems biology platforms shows powerful to uncover molecular mechanisms and connections between the drugs and their targeting dynamic network. However, optimization methods of drug combination are insufficient, owning to lacking of tighter integration across multiple ‘-omics’ databases. The newly developed algorithm- or network-based computational models can tightly integrate ‘-omics’ databases and optimize combinational regimens of drug development, which encourage using medicinal herbs to develop into new wave of network-based multi-target drugs. However, challenges on further integration across the databases of medicinal herbs with multiple system biology platforms for multi-target drug optimization remain to the uncertain reliability of individual data sets, width and depth and degree of standardization of herbal medicine. Standardization of the methodology and terminology of multiple system biology and herbal database would facilitate the integration. Enhance public accessible databases and the number of research using system biology platform on herbal medicine would be helpful. Further integration across various ‘-omics’ platforms and computational tools would accelerate development of network-based drug discovery and network medicine. PMID:22877768

  1. The MELISSA pilot plant facility as as integration test-bed for advanced life support systems

    NASA Technical Reports Server (NTRS)

    Godia, F.; Albiol, J.; Perez, J.; Creus, N.; Cabello, F.; Montras, A.; Masot, A.; Lasseur, Ch

    2004-01-01

    The different advances in the Micro Ecological Life Support System Alternative project (MELISSA), fostered and coordinated by the European Space Agency, as well as in other associated technologies, are integrated and demonstrated in the MELISSA Pilot Plant laboratory. During the first period of operation, the definition of the different compartments at an individual basis has been achieved, and the complete facility is being re-designed to face a new period of integration of all these compartments. The final objective is to demonstrate the potentiality of biological systems such as MELISSA as life support systems. The facility will also serve as a test bed to study the robustness and stability of the continuous operation of a complex biological system. This includes testing of the associated instrumentation and control for a safe operation, characterization of the chemical and microbial safety of the system, as well as tracking the genetic stability of the microbial strains used. The new period is envisaged as a contribution to the further development of more complete biological life support systems for long-term manned missions, that should be better defined from the knowledge to be gained from this integration phase. This contribution summarizes the current status of the Pilot Plant and the planned steps for the new period. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  2. DOE High Performance Computing Operational Review (HPCOR): Enabling Data-Driven Scientific Discovery at HPC Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerber, Richard; Allcock, William; Beggio, Chris

    2014-10-17

    U.S. Department of Energy (DOE) High Performance Computing (HPC) facilities are on the verge of a paradigm shift in the way they deliver systems and services to science and engineering teams. Research projects are producing a wide variety of data at unprecedented scale and level of complexity, with community-specific services that are part of the data collection and analysis workflow. On June 18-19, 2014 representatives from six DOE HPC centers met in Oakland, CA at the DOE High Performance Operational Review (HPCOR) to discuss how they can best provide facilities and services to enable large-scale data-driven scientific discovery at themore » DOE national laboratories. The report contains findings from that review.« less

  3. Integration of Traditional Birth Attendants into Prevention of Mother-to-Child Transmission at Primary Health Facilities in Kaduna, North-West Nigeria.

    PubMed

    Nsirim, Reward O; Iyongo, Joseph A; Adekugbe, Olayinka; Ugochuku, Maureen

    2015-03-31

    One of the fundamental challenges to implementing successful prevention of mother-to-child transmission (PMTCT) programs in Nigeria is the uptake of PMTCT services at health facilities. Several issues usually discourage many pregnant women from receiving antenatal care services at designated health facilities within their communities. The CRS Nigeria PMTCT Project funded by the Global Fund in its Round 9 Phase 1 in Nigeria, sought to increase demand for HIV counseling and testing services for pregnant women at 25 supported primary health centers (PHCs) in Kaduna State, North-West Nigeria by integrating traditional birth attendants (TBAs) across the communities where the PHCs were located into the project. Community dialogues were held with the TBAs, community leaders and women groups. These dialogues focused on modes of mother to child transmission of HIV and the need for TBAs to refer their clients to PHCs for testing. Subsequently, data on number of pregnant women who were counseled, tested and received results was collected on a monthly basis from the 25 facilities using the national HIV/AIDS tools. Prior to this integration, the average number of pregnant women that were counseled, tested and received results was 200 pregnant women across all the 25 health facilities monthly. After the integration of TBAs into the program, the number of pregnant women that were counseled, tested and received results kept increasing month after month up to an average of 1500 pregnant women per month across the 25 health facilities. TBAs can thus play a key role in improving service uptake and utilization for pregnant women at primary health centers in the community - especially in the context of HIV/AIDS. They thus need to be integrated, rather than alienated, from primary healthcare service delivery.

  4. An electric propulsion long term test facility

    NASA Technical Reports Server (NTRS)

    Trump, G.; James, E.; Vetrone, R.; Bechtel, R.

    1979-01-01

    An existing test facility was modified to provide for extended testing of multiple electric propulsion thruster subsystems. A program to document thruster subsystem characteristics as a function of time is currently in progress. The facility is capable of simultaneously operating three 2.7-kW, 30-cm mercury ion thrusters and their power processing units. Each thruster is installed via a separate air lock so that it can be extended into the 7m x 10m main chamber without violating vacuum integrity. The thrusters exhaust into a 3m x 5m frozen mercury target. An array of cryopanels collect sputtered target material. Power processor units are tested in an adjacent 1.5m x 2m vacuum chamber or accompanying forced convection enclosure. The thruster subsystems and the test facility are designed for automatic unattended operation with thruster operation computer controlled. Test data are recorded by a central data collection system scanning 200 channels of data a second every two minutes. Results of the Systems Demonstration Test, a short shakedown test of 500 hours, and facility performance during the first year of testing are presented.

  5. Development of Onboard Computer Complex for Russian Segment of ISS

    NASA Technical Reports Server (NTRS)

    Branets, V.; Brand, G.; Vlasov, R.; Graf, I.; Clubb, J.; Mikrin, E.; Samitov, R.

    1998-01-01

    Report present a description of the Onboard Computer Complex (CC) that was developed during the period of 1994-1998 for the Russian Segment of ISS. The system was developed in co-operation with NASA and ESA. ESA developed a new computation system under the RSC Energia Technical Assignment, called DMS-R. The CC also includes elements developed by Russian experts and organizations. A general architecture of the computer system and the characteristics of primary elements of this system are described. The system was integrated at RSC Energia with the participation of American and European specialists. The report contains information on software simulators, verification and de-bugging facilities witch were been developed for both stand-alone and integrated tests and verification. This CC serves as the basis for the Russian Segment Onboard Control Complex on ISS.

  6. Upgrades at the NASA Langley Research Center National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Paryz, Roman W.

    2012-01-01

    Several projects have been completed or are nearing completion at the NASA Langley Research Center (LaRC) National Transonic Facility (NTF). The addition of a Model Flow-Control/Propulsion Simulation test capability to the NTF provides a unique, transonic, high-Reynolds number test capability that is well suited for research in propulsion airframe integration studies, circulation control high-lift concepts, powered lift, and cruise separation flow control. A 1992 vintage Facility Automation System (FAS) that performs the control functions for tunnel pressure, temperature, Mach number, model position, safety interlock and supervisory controls was replaced using current, commercially available components. This FAS upgrade also involved a design study for the replacement of the facility Mach measurement system and the development of a software-based simulation model of NTF processes and control systems. The FAS upgrades were validated by a post upgrade verification wind tunnel test. The data acquisition system (DAS) upgrade project involves the design, purchase, build, integration, installation and verification of a new DAS by replacing several early 1990's vintage computer systems with state of the art hardware/software. This paper provides an update on the progress made in these efforts. See reference 1.

  7. High Performance Computing Operations Review Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cupps, Kimberly C.

    2013-12-19

    The High Performance Computing Operations Review (HPCOR) meeting—requested by the ASC and ASCR program headquarters at DOE—was held November 5 and 6, 2013, at the Marriott Hotel in San Francisco, CA. The purpose of the review was to discuss the processes and practices for HPC integration and its related software and facilities. Experiences and lessons learned from the most recent systems deployed were covered in order to benefit the deployment of new systems.

  8. Health workers’ knowledge of and attitudes towards computer applications in rural African health facilities

    PubMed Central

    Sukums, Felix; Mensah, Nathan; Mpembeni, Rose; Kaltschmidt, Jens; Haefeli, Walter E.; Blank, Antje

    2014-01-01

    Background The QUALMAT (Quality of Maternal and Prenatal Care: Bridging the Know-do Gap) project has introduced an electronic clinical decision support system (CDSS) for pre-natal and maternal care services in rural primary health facilities in Burkina Faso, Ghana, and Tanzania. Objective To report an assessment of health providers’ computer knowledge, experience, and attitudes prior to the implementation of the QUALMAT electronic CDSS. Design A cross-sectional study was conducted with providers in 24 QUALMAT project sites. Information was collected using structured questionnaires. Chi-squared tests and one-way ANOVA describe the association between computer knowledge, attitudes, and other factors. Semi-structured interviews and focus groups were conducted to gain further insights. Results A total of 108 providers responded, 63% were from Tanzania and 37% from Ghana. The mean age was 37.6 years, and 79% were female. Only 40% had ever used computers, and 29% had prior computer training. About 80% were computer illiterate or beginners. Educational level, age, and years of work experience were significantly associated with computer knowledge (p<0.01). Most (95.3%) had positive attitudes towards computers – average score (±SD) of 37.2 (±4.9). Females had significantly lower scores than males. Interviews and group discussions showed that although most were lacking computer knowledge and experience, they were optimistic about overcoming challenges associated with the introduction of computers in their workplace. Conclusions Given the low levels of computer knowledge among rural health workers in Africa, it is important to provide adequate training and support to ensure the successful uptake of electronic CDSSs in these settings. The positive attitudes to computers found in this study underscore that also rural care providers are ready to use such technology. PMID:25361721

  9. A Performance Measurement and Implementation Methodology in a Department of Defense CIM (Computer Integrated Manufacturing) Environment

    DTIC Science & Technology

    1988-01-24

    vanes.-The new facility is currently being called the Engine Blade/ Vape Facility (EB/VF). There are three primary goals in automating this proc..e...earlier, the search led primarily into the areas of CIM Justification, Automation Strategies , Performance Measurement, and Integration issues. Of...of living, has been steadily eroding. One dangerous trend that has developed in keenly competitive world markets , says Rohan [33], has been for U.S

  10. Integrated Computational Materials Engineering for Magnesium in Automotive Body Applications

    NASA Astrophysics Data System (ADS)

    Allison, John E.; Liu, Baicheng; Boyle, Kevin P.; Hector, Lou; McCune, Robert

    This paper provides an overview and progress report for an international collaborative project which aims to develop an ICME infrastructure for magnesium for use in automotive body applications. Quantitative processing-micro structure-property relationships are being developed for extruded Mg alloys, sheet-formed Mg alloys and high pressure die cast Mg alloys. These relationships are captured in computational models which are then linked with manufacturing process simulation and used to provide constitutive models for component performance analysis. The long term goal is to capture this information in efficient computational models and in a web-centered knowledge base. The work is being conducted at leading universities, national labs and industrial research facilities in the US, China and Canada. This project is sponsored by the U.S. Department of Energy, the U.S. Automotive Materials Partnership (USAMP), Chinese Ministry of Science and Technology (MOST) and Natural Resources Canada (NRCan).

  11. Use of agents to implement an integrated computing environment

    NASA Technical Reports Server (NTRS)

    Hale, Mark A.; Craig, James I.

    1995-01-01

    Integrated Product and Process Development (IPPD) embodies the simultaneous application to both system and quality engineering methods throughout an iterative design process. The use of IPPD results in the time-conscious, cost-saving development of engineering systems. To implement IPPD, a Decision-Based Design perspective is encapsulated in an approach that focuses on the role of the human designer in product development. The approach has two parts and is outlined in this paper. First, an architecture, called DREAMS, is being developed that facilitates design from a decision-based perspective. Second, a supporting computing infrastructure, called IMAGE, is being designed. Agents are used to implement the overall infrastructure on the computer. Successful agent utilization requires that they be made of three components: the resource, the model, and the wrap. Current work is focused on the development of generalized agent schemes and associated demonstration projects. When in place, the technology independent computing infrastructure will aid the designer in systematically generating knowledge used to facilitate decision-making.

  12. Path Integral Computation of Quantum Free Energy Differences Due to Alchemical Transformations Involving Mass and Potential.

    PubMed

    Pérez, Alejandro; von Lilienfeld, O Anatole

    2011-08-09

    Thermodynamic integration, perturbation theory, and λ-dynamics methods were applied to path integral molecular dynamics calculations to investigate free energy differences due to "alchemical" transformations. Several estimators were formulated to compute free energy differences in solvable model systems undergoing changes in mass and/or potential. Linear and nonlinear alchemical interpolations were used for the thermodynamic integration. We find improved convergence for the virial estimators, as well as for the thermodynamic integration over nonlinear interpolation paths. Numerical results for the perturbative treatment of changes in mass and electric field strength in model systems are presented. We used thermodynamic integration in ab initio path integral molecular dynamics to compute the quantum free energy difference of the isotope transformation in the Zundel cation. The performance of different free energy methods is discussed.

  13. EPA Facility Registry Service (FRS): Facility Interests Dataset - Intranet Download

    EPA Pesticide Factsheets

    This downloadable data package consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are available in the FRS individual feature layers. The layers comprise the FRS major program databases, including:Assessment Cleanup and Redevelopment Exchange System (ACRES) : brownfields sites ; Air Facility System (AFS) : stationary sources of air pollution ; Air Quality System (AQS) : ambient air pollution data from monitoring stations; Bureau of Indian Affairs (BIA) : schools data on Indian land; Base Realignment and Closure (BRAC) facilities; Clean Air Markets Division Business System (CAMDBS) : market-based air pollution control programs; Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS) : hazardous waste sites; Integrated Compliance Information System (ICIS) : integrated enforcement and compliance information; National Compliance Database (NCDB) : Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Toxic Substances Control Act (TSCA); National Pollutant Discharge Elimination System (NPDES) module of ICIS : NPDES surface water permits; Radiation Information Database (RADINFO) : radiation and radioactivity facilities; RACT/BACT/LAER Clearinghouse (RBLC) : best available air pollution technology requirements; Resource Conservation and Recovery Act Information System (RCRAInfo) : tracks generators, transporters, treaters, storers, and disposers

  14. CXBN-2 CubeSat Integration Team in the Morehead State University Spacecraft Integration and Assembly Facility

    NASA Image and Video Library

    2016-11-09

    CXBN-2 Integration Team in the Morehead State University Spacecraft Integration and Assembly Facility. Left to right: Kein Dant, Yevgeniy Byleborodov, and Nate Richard. The Cosmic X-Ray Background NanoSat-2 (CXBN-2) CubeSat Mission developed by Morehead State University and its partners the Keldysh Institute (Moscow, Russia), the Maysville Community and Technical College (Morehead, KY) and KYSpace LLC (Lexington, KY) will increase the precision of measurements of the Cosmic X-Ray Background in the 30-50 keV range to a precision of <5%, thereby constraining models that attempt to explain the relative contribution of proposed sources lending insight into the underlying physics of the early universe. The mission addresses a fundamental science question that is central to our understanding of the structure, origin, and evolution of the universe by potentially lending insight into both the high-energy background radiation and into the evolution of primordial galaxies. Launched by NASA’s CubeSat Launch Initiative NET April 18, 2017 ELaNa XVII mission on the seventh Orbital-ATK Cygnus Commercial Resupply Services (OA-7) to the International Space Station and deployed on tbd.

  15. Development of Parallel Computing Framework to Enhance Radiation Transport Code Capabilities for Rare Isotope Beam Facility Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kostin, Mikhail; Mokhov, Nikolai; Niita, Koji

    A parallel computing framework has been developed to use with general-purpose radiation transport codes. The framework was implemented as a C++ module that uses MPI for message passing. It is intended to be used with older radiation transport codes implemented in Fortran77, Fortran 90 or C. The module is significantly independent of radiation transport codes it can be used with, and is connected to the codes by means of a number of interface functions. The framework was developed and tested in conjunction with the MARS15 code. It is possible to use it with other codes such as PHITS, FLUKA andmore » MCNP after certain adjustments. Besides the parallel computing functionality, the framework offers a checkpoint facility that allows restarting calculations with a saved checkpoint file. The checkpoint facility can be used in single process calculations as well as in the parallel regime. The framework corrects some of the known problems with the scheduling and load balancing found in the original implementations of the parallel computing functionality in MARS15 and PHITS. The framework can be used efficiently on homogeneous systems and networks of workstations, where the interference from the other users is possible.« less

  16. EPA Facility Registry Service (FRS): Facility Interests Dataset - Intranet

    EPA Pesticide Factsheets

    This web feature service consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are available in the FRS individual feature layers. The layers comprise the FRS major program databases, including:Assessment Cleanup and Redevelopment Exchange System (ACRES) : brownfields sites ; Air Facility System (AFS) : stationary sources of air pollution ; Air Quality System (AQS) : ambient air pollution data from monitoring stations; Bureau of Indian Affairs (BIA) : schools data on Indian land; Base Realignment and Closure (BRAC) facilities; Clean Air Markets Division Business System (CAMDBS) : market-based air pollution control programs; Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS) : hazardous waste sites; Integrated Compliance Information System (ICIS) : integrated enforcement and compliance information; National Compliance Database (NCDB) : Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Toxic Substances Control Act (TSCA); National Pollutant Discharge Elimination System (NPDES) module of ICIS : NPDES surface water permits; Radiation Information Database (RADINFO) : radiation and radioactivity facilities; RACT/BACT/LAER Clearinghouse (RBLC) : best available air pollution technology requirements; Resource Conservation and Recovery Act Information System (RCRAInfo) : tracks generators, transporters, treaters, storers, and disposers of haz

  17. CMS Distributed Computing Integration in the LHC sustained operations era

    NASA Astrophysics Data System (ADS)

    Grandi, C.; Bockelman, B.; Bonacorsi, D.; Fisk, I.; González Caballero, I.; Farina, F.; Hernández, J. M.; Padhi, S.; Sarkar, S.; Sciabà, A.; Sfiligoi, I.; Spiga, F.; Úbeda García, M.; Van Der Ster, D. C.; Zvada, M.

    2011-12-01

    After many years of preparation the CMS computing system has reached a situation where stability in operations limits the possibility to introduce innovative features. Nevertheless it is the same need of stability and smooth operations that requires the introduction of features that were considered not strategic in the previous phases. Examples are: adequate authorization to control and prioritize the access to storage and computing resources; improved monitoring to investigate problems and identify bottlenecks on the infrastructure; increased automation to reduce the manpower needed for operations; effective process to deploy in production new releases of the software tools. We present the work of the CMS Distributed Computing Integration Activity that is responsible for providing a liaison between the CMS distributed computing infrastructure and the software providers, both internal and external to CMS. In particular we describe the introduction of new middleware features during the last 18 months as well as the requirements to Grid and Cloud software developers for the future.

  18. The Nuclear Energy Advanced Modeling and Simulation Enabling Computational Technologies FY09 Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diachin, L F; Garaizar, F X; Henson, V E

    2009-10-12

    In this document we report on the status of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Enabling Computational Technologies (ECT) effort. In particular, we provide the context for ECT In the broader NEAMS program and describe the three pillars of the ECT effort, namely, (1) tools and libraries, (2) software quality assurance, and (3) computational facility (computers, storage, etc) needs. We report on our FY09 deliverables to determine the needs of the integrated performance and safety codes (IPSCs) in these three areas and lay out the general plan for software quality assurance to meet the requirements of DOE andmore » the DOE Advanced Fuel Cycle Initiative (AFCI). We conclude with a brief description of our interactions with the Idaho National Laboratory computer center to determine what is needed to expand their role as a NEAMS user facility.« less

  19. Facilities | Computational Science | NREL

    Science.gov Websites

    technology innovation by providing scientists and engineers the ability to tackle energy challenges that scientists and engineers to take full advantage of advanced computing hardware and software resources

  20. Waste Form Release Calculations for the 2005 Integrated Disposal Facility Performance Assessment. Erratum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Gary L.

    2016-09-06

    This report refers to or contains K g values for glasses LAWA44, LAWB45 and LAWC22 affected by calculations errors as identified by Papathanassiu et al. (2011). The corrected K g values are reported in an erratum included in the revised version of the original report. The revised report can be referenced as follows: Pierce E. M. et al. (2004) Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment. PNNL-14805 Rev. 0 Erratum. Pacific Northwest National Laboratory, Richland, WA, USA.

  1. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov Websites

    facility. "We try to scope out some technical work that is based on the fundamental problem that technical or market problem that they're trying to solve, and then we'll scope out work with them based on that visit. "The second step is to begin to break that scope of work into what I call three

  2. Integral Images: Efficient Algorithms for Their Computation and Storage in Resource-Constrained Embedded Vision Systems

    PubMed Central

    Ehsan, Shoaib; Clark, Adrian F.; ur Rehman, Naveed; McDonald-Maier, Klaus D.

    2015-01-01

    The integral image, an intermediate image representation, has found extensive use in multi-scale local feature detection algorithms, such as Speeded-Up Robust Features (SURF), allowing fast computation of rectangular features at constant speed, independent of filter size. For resource-constrained real-time embedded vision systems, computation and storage of integral image presents several design challenges due to strict timing and hardware limitations. Although calculation of the integral image only consists of simple addition operations, the total number of operations is large owing to the generally large size of image data. Recursive equations allow substantial decrease in the number of operations but require calculation in a serial fashion. This paper presents two new hardware algorithms that are based on the decomposition of these recursive equations, allowing calculation of up to four integral image values in a row-parallel way without significantly increasing the number of operations. An efficient design strategy is also proposed for a parallel integral image computation unit to reduce the size of the required internal memory (nearly 35% for common HD video). Addressing the storage problem of integral image in embedded vision systems, the paper presents two algorithms which allow substantial decrease (at least 44.44%) in the memory requirements. Finally, the paper provides a case study that highlights the utility of the proposed architectures in embedded vision systems. PMID:26184211

  3. Integral Images: Efficient Algorithms for Their Computation and Storage in Resource-Constrained Embedded Vision Systems.

    PubMed

    Ehsan, Shoaib; Clark, Adrian F; Naveed ur Rehman; McDonald-Maier, Klaus D

    2015-07-10

    The integral image, an intermediate image representation, has found extensive use in multi-scale local feature detection algorithms, such as Speeded-Up Robust Features (SURF), allowing fast computation of rectangular features at constant speed, independent of filter size. For resource-constrained real-time embedded vision systems, computation and storage of integral image presents several design challenges due to strict timing and hardware limitations. Although calculation of the integral image only consists of simple addition operations, the total number of operations is large owing to the generally large size of image data. Recursive equations allow substantial decrease in the number of operations but require calculation in a serial fashion. This paper presents two new hardware algorithms that are based on the decomposition of these recursive equations, allowing calculation of up to four integral image values in a row-parallel way without significantly increasing the number of operations. An efficient design strategy is also proposed for a parallel integral image computation unit to reduce the size of the required internal memory (nearly 35% for common HD video). Addressing the storage problem of integral image in embedded vision systems, the paper presents two algorithms which allow substantial decrease (at least 44.44%) in the memory requirements. Finally, the paper provides a case study that highlights the utility of the proposed architectures in embedded vision systems.

  4. Langley Ground Facilities and Testing in the 21st Century

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Kegelman, Jerome T.; Kilgore, William A.

    2010-01-01

    A strategic approach for retaining and more efficiently operating the essential Langley Ground Testing Facilities in the 21st Century is presented. This effort takes advantage of the previously completed and ongoing studies at the Agency and National levels. This integrated approach takes into consideration the overall decline in test business base within the nation and reduced utilization in each of the Langley facilities with capabilities to test in the subsonic, transonic, supersonic, and hypersonic speed regimes. The strategy accounts for capability needs to meet the Agency programmatic requirements and strategic goals and to execute test activities in the most efficient and flexible facility operating structure. The structure currently being implemented at Langley offers agility to right-size our capability and capacity from a national perspective, to accommodate the dynamic nature of the testing needs, and will address the influence of existing and emerging analytical tools for design. The paradigm for testing in the retained facilities is to efficiently and reliably provide more accurate and high-quality test results at an affordable cost to support design information needs for flight regimes where the computational capability is not adequate and to verify and validate the existing and emerging computational tools. Each of the above goals are planned to be achieved, keeping in mind the increasing small industry customer base engaged in developing unpiloted aerial vehicles and commercial space transportation systems.

  5. Integration of the Execution Support System for the Computer-Aided Prototyping System (CAPS)

    DTIC Science & Technology

    1990-09-01

    SUPPORT SYSTEM FOR THE COMPUTER -AIDED PROTOTYPING SYSTEM (CAPS) by Frank V. Palazzo September 1990 Thesis Advisor: Luq± Approved for public release...ZATON REPOR ,,.VBE (, 6a NAME OF PERPORMING ORGAN ZAT7ON 6b OFF:CE SYVBOL 7a NAME OF MONITORINC O0-CA’Za- ON Computer Science Department (if applicable...Include Security Classification) Integration of the Execution Support System for the Computer -Aided Prototyping System (C S) 12 PERSONAL AUTHOR(S) Frank V

  6. EPA Facility Registry Service (FRS): PCS_NPDES

    EPA Pesticide Factsheets

    This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of facilities that link to the Permit Compliance System (PCS) or the National Pollutant Discharge Elimination System (NPDES) module of the Integrated Compliance Information System (ICIS). PCS tracks NPDES surface water permits issued under the Clean Water Act. This system is being incrementally replaced by the NPDES module of ICIS. Under NPDES, all facilities that discharge pollutants from any point source into waters of the United States are required to obtain a permit. The permit will likely contain limits on what can be discharged, impose monitoring and reporting requirements, and include other provisions to ensure that the discharge does not adversely affect water quality. FRS identifies and geospatially locates facilities, sites or places subject to environmental regulations or of environmental interest. Using vigorous verification and data management procedures, FRS integrates facility data from EPA's national program systems, other federal agencies, and State and tribal master facility records and provides EPA with a centrally managed, single source of comprehensive and authoritative information on facilities. This data set contains the subset of FRS integrated facilities that link to NPDES facilities once the PCS or ICIS-NPDES data has been integrated into the FRS database. Additional information on FRS is available

  7. BelleII@home: Integrate volunteer computing resources into DIRAC in a secure way

    NASA Astrophysics Data System (ADS)

    Wu, Wenjing; Hara, Takanori; Miyake, Hideki; Ueda, Ikuo; Kan, Wenxiao; Urquijo, Phillip

    2017-10-01

    The exploitation of volunteer computing resources has become a popular practice in the HEP computing community as the huge amount of potential computing power it provides. In the recent HEP experiments, the grid middleware has been used to organize the services and the resources, however it relies heavily on the X.509 authentication, which is contradictory to the untrusted feature of volunteer computing resources, therefore one big challenge to utilize the volunteer computing resources is how to integrate them into the grid middleware in a secure way. The DIRAC interware which is commonly used as the major component of the grid computing infrastructure for several HEP experiments proposes an even bigger challenge to this paradox as its pilot is more closely coupled with operations requiring the X.509 authentication compared to the implementations of pilot in its peer grid interware. The Belle II experiment is a B-factory experiment at KEK, and it uses DIRAC for its distributed computing. In the project of BelleII@home, in order to integrate the volunteer computing resources into the Belle II distributed computing platform in a secure way, we adopted a new approach which detaches the payload running from the Belle II DIRAC pilot which is a customized pilot pulling and processing jobs from the Belle II distributed computing platform, so that the payload can run on volunteer computers without requiring any X.509 authentication. In this approach we developed a gateway service running on a trusted server which handles all the operations requiring the X.509 authentication. So far, we have developed and deployed the prototype of BelleII@home, and tested its full workflow which proves the feasibility of this approach. This approach can also be applied on HPC systems whose work nodes do not have outbound connectivity to interact with the DIRAC system in general.

  8. Applications integration in a hybrid cloud computing environment: modelling and platform

    NASA Astrophysics Data System (ADS)

    Li, Qing; Wang, Ze-yuan; Li, Wei-hua; Li, Jun; Wang, Cheng; Du, Rui-yang

    2013-08-01

    With the development of application services providers and cloud computing, more and more small- and medium-sized business enterprises use software services and even infrastructure services provided by professional information service companies to replace all or part of their information systems (ISs). These information service companies provide applications, such as data storage, computing processes, document sharing and even management information system services as public resources to support the business process management of their customers. However, no cloud computing service vendor can satisfy the full functional IS requirements of an enterprise. As a result, enterprises often have to simultaneously use systems distributed in different clouds and their intra enterprise ISs. Thus, this article presents a framework to integrate applications deployed in public clouds and intra ISs. A run-time platform is developed and a cross-computing environment process modelling technique is also developed to improve the feasibility of ISs under hybrid cloud computing environments.

  9. BIPV: a real-time building performance study for a roof-integrated facility

    NASA Astrophysics Data System (ADS)

    Aaditya, Gayathri; Mani, Monto

    2018-03-01

    Building integrated photovoltaic system (BIPV) is a photovoltaic (PV) integration that generates energy and serves as a building envelope. A building element (e.g. roof and wall) is based on its functional performance, which could include structure, durability, maintenance, weathering, thermal insulation, acoustics, and so on. The present paper discusses the suitability of PV as a building element in terms of thermal performance based on a case study of a 5.25 kWp roof-integrated BIPV system in tropical regions. Performance of PV has been compared with conventional construction materials and various scenarios have been simulated to understand the impact on occupant comfort levels. In the current case study, PV as a roofing material has been shown to cause significant thermal discomfort to the occupants. The study has been based on real-time data monitoring supported by computer-based building simulation model.

  10. Integrated multimodal human-computer interface and augmented reality for interactive display applications

    NASA Astrophysics Data System (ADS)

    Vassiliou, Marius S.; Sundareswaran, Venkataraman; Chen, S.; Behringer, Reinhold; Tam, Clement K.; Chan, M.; Bangayan, Phil T.; McGee, Joshua H.

    2000-08-01

    We describe new systems for improved integrated multimodal human-computer interaction and augmented reality for a diverse array of applications, including future advanced cockpits, tactical operations centers, and others. We have developed an integrated display system featuring: speech recognition of multiple concurrent users equipped with both standard air- coupled microphones and novel throat-coupled sensors (developed at Army Research Labs for increased noise immunity); lip reading for improving speech recognition accuracy in noisy environments, three-dimensional spatialized audio for improved display of warnings, alerts, and other information; wireless, coordinated handheld-PC control of a large display; real-time display of data and inferences from wireless integrated networked sensors with on-board signal processing and discrimination; gesture control with disambiguated point-and-speak capability; head- and eye- tracking coupled with speech recognition for 'look-and-speak' interaction; and integrated tetherless augmented reality on a wearable computer. The various interaction modalities (speech recognition, 3D audio, eyetracking, etc.) are implemented a 'modality servers' in an Internet-based client-server architecture. Each modality server encapsulates and exposes commercial and research software packages, presenting a socket network interface that is abstracted to a high-level interface, minimizing both vendor dependencies and required changes on the client side as the server's technology improves.

  11. The explicit computation of integration algorithms and first integrals for ordinary differential equations with polynomials coefficients using trees

    NASA Technical Reports Server (NTRS)

    Crouch, P. E.; Grossman, Robert

    1992-01-01

    This note is concerned with the explicit symbolic computation of expressions involving differential operators and their actions on functions. The derivation of specialized numerical algorithms, the explicit symbolic computation of integrals of motion, and the explicit computation of normal forms for nonlinear systems all require such computations. More precisely, if R = k(x(sub 1),...,x(sub N)), where k = R or C, F denotes a differential operator with coefficients from R, and g member of R, we describe data structures and algorithms for efficiently computing g. The basic idea is to impose a multiplicative structure on the vector space with basis the set of finite rooted trees and whose nodes are labeled with the coefficients of the differential operators. Cancellations of two trees with r + 1 nodes translates into cancellation of O(N(exp r)) expressions involving the coefficient functions and their derivatives.

  12. Overview of ICE Project: Integration of Computational Fluid Dynamics and Experiments

    NASA Technical Reports Server (NTRS)

    Stegeman, James D.; Blech, Richard A.; Babrauckas, Theresa L.; Jones, William H.

    2001-01-01

    Researchers at the NASA Glenn Research Center have developed a prototype integrated environment for interactively exploring, analyzing, and validating information from computational fluid dynamics (CFD) computations and experiments. The Integrated CFD and Experiments (ICE) project is a first attempt at providing a researcher with a common user interface for control, manipulation, analysis, and data storage for both experiments and simulation. ICE can be used as a live, on-tine system that displays and archives data as they are gathered; as a postprocessing system for dataset manipulation and analysis; and as a control interface or "steering mechanism" for simulation codes while visualizing the results. Although the full capabilities of ICE have not been completely demonstrated, this report documents the current system. Various applications of ICE are discussed: a low-speed compressor, a supersonic inlet, real-time data visualization, and a parallel-processing simulation code interface. A detailed data model for the compressor application is included in the appendix.

  13. Using computer assisted learning for clinical skills education in nursing: integrative review.

    PubMed

    Bloomfield, Jacqueline G; While, Alison E; Roberts, Julia D

    2008-08-01

    This paper is a report of an integrative review of research investigating computer assisted learning for clinical skills education in nursing, the ways in which it has been studied and the general findings. Clinical skills are an essential aspect of nursing practice and there is international debate about the most effective ways in which these can be taught. Computer assisted learning has been used as an alternative to conventional teaching methods, and robust research to evaluate its effectiveness is essential. The CINAHL, Medline, BNI, PsycInfo and ERIC electronic databases were searched for the period 1997-2006 for research-based papers published in English. Electronic citation tracking and hand searching of reference lists and relevant journals was also undertaken. Twelve studies met the inclusion criteria. An integrative review was conducted and each paper was explored in relation to: design, aims, sample, outcome measures and findings. Many of the study samples were small and there were weaknesses in designs. There is limited empirical evidence addressing the use of computer assisted learning for clinical skills education in nursing. Computer assisted learning has been used to teach a limited range of clinical skills in a variety of settings. The paucity of evaluative studies indicates the need for more rigorous research to investigate the effect of computer assisted learning for this purpose. Areas that need to be addressed in future studies include: sample size, range of skills, longitudinal follow-up and control of confounding variables.

  14. Accelerating Technology Development through Integrated Computation and Experimentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shekhawat, Dushyant; Srivastava, Rameshwar D.; Ciferno, Jared

    2013-08-15

    This special section of Energy & Fuels comprises a selection of papers presented at the topical conference “Accelerating Technology Development through Integrated Computation and Experimentation”, sponsored and organized by the United States Department of Energy’s National Energy Technology Laboratory (NETL) as part of the 2012 American Institute of Chemical Engineers (AIChE) Annual Meeting held in Pittsburgh, PA, Oct 28-Nov 2, 2012. That topical conference focused on the latest research and development efforts in five main areas related to fossil energy, with each area focusing on the utilization of both experimental and computational approaches: (1) gas separations (membranes, sorbents, and solventsmore » for CO{sub 2}, H{sub 2}, and O{sub 2} production), (2) CO{sub 2} utilization (enhanced oil recovery, chemical production, mineralization, etc.), (3) carbon sequestration (flow in natural systems), (4) advanced power cycles (oxy-combustion, chemical looping, gasification, etc.), and (5) fuel processing (H{sub 2} production for fuel cells).« less

  15. The Effect of Using Computer Skills on Teachers' Perceived Self-Efficacy Beliefs towards Technology Integration, Attitudes and Performance

    ERIC Educational Resources Information Center

    EL-Daou, Badrie Mohammad Nour

    2016-01-01

    The current study analyzes the relationship between the apparent teacher's self-efficacy and attitudes towards integrating technology into classroom teaching, self-evaluation reports and computer performance results. Pre-post measurement of the Computer Technology Integration Survey (CTIS) (Wang et al, 2004) was used to determine the confidence…

  16. Integrated Geo Hazard Management System in Cloud Computing Technology

    NASA Astrophysics Data System (ADS)

    Hanifah, M. I. M.; Omar, R. C.; Khalid, N. H. N.; Ismail, A.; Mustapha, I. S.; Baharuddin, I. N. Z.; Roslan, R.; Zalam, W. M. Z.

    2016-11-01

    Geo hazard can result in reducing of environmental health and huge economic losses especially in mountainous area. In order to mitigate geo-hazard effectively, cloud computer technology are introduce for managing geo hazard database. Cloud computing technology and it services capable to provide stakeholder's with geo hazards information in near to real time for an effective environmental management and decision-making. UNITEN Integrated Geo Hazard Management System consist of the network management and operation to monitor geo-hazard disaster especially landslide in our study area at Kelantan River Basin and boundary between Hulu Kelantan and Hulu Terengganu. The system will provide easily manage flexible measuring system with data management operates autonomously and can be controlled by commands to collects and controls remotely by using “cloud” system computing. This paper aims to document the above relationship by identifying the special features and needs associated with effective geohazard database management using “cloud system”. This system later will use as part of the development activities and result in minimizing the frequency of the geo-hazard and risk at that research area.

  17. Are X-rays the key to integrated computational materials engineering?

    DOE PAGES

    Ice, Gene E.

    2015-11-01

    The ultimate dream of materials science is to predict materials behavior from composition and processing history. Owing to the growing power of computers, this long-time dream has recently found expression through worldwide excitement in a number of computation-based thrusts: integrated computational materials engineering, materials by design, computational materials design, three-dimensional materials physics and mesoscale physics. However, real materials have important crystallographic structures at multiple length scales, which evolve during processing and in service. Moreover, real materials properties can depend on the extreme tails in their structural and chemical distributions. This makes it critical to map structural distributions with sufficient resolutionmore » to resolve small structures and with sufficient statistics to capture the tails of distributions. For two-dimensional materials, there are high-resolution nondestructive probes of surface and near-surface structures with atomic or near-atomic resolution that can provide detailed structural, chemical and functional distributions over important length scales. Furthermore, there are no nondestructive three-dimensional probes with atomic resolution over the multiple length scales needed to understand most materials.« less

  18. Designing Facilities for Collaborative Operations

    NASA Technical Reports Server (NTRS)

    Norris, Jeffrey; Powell, Mark; Backes, Paul; Steinke, Robert; Tso, Kam; Wales, Roxana

    2003-01-01

    A methodology for designing operational facilities for collaboration by multiple experts has begun to take shape as an outgrowth of a project to design such facilities for scientific operations of the planned 2003 Mars Exploration Rover (MER) mission. The methodology could also be applicable to the design of military "situation rooms" and other facilities for terrestrial missions. It was recognized in this project that modern mission operations depend heavily upon the collaborative use of computers. It was further recognized that tests have shown that layout of a facility exerts a dramatic effect on the efficiency and endurance of the operations staff. The facility designs (for example, see figure) and the methodology developed during the project reflect this recognition. One element of the methodology is a metric, called effective capacity, that was created for use in evaluating proposed MER operational facilities and may also be useful for evaluating other collaboration spaces, including meeting rooms and military situation rooms. The effective capacity of a facility is defined as the number of people in the facility who can be meaningfully engaged in its operations. A person is considered to be meaningfully engaged if the person can (1) see, hear, and communicate with everyone else present; (2) see the material under discussion (typically data on a piece of paper, computer monitor, or projection screen); and (3) provide input to the product under development by the group. The effective capacity of a facility is less than the number of people that can physically fit in the facility. For example, a typical office that contains a desktop computer has an effective capacity of .4, while a small conference room that contains a projection screen has an effective capacity of around 10. Little or no benefit would be derived from allowing the number of persons in an operational facility to exceed its effective capacity: At best, the operations staff would be underutilized

  19. Integrated Biorefinery Research Facility | Bioenergy | NREL

    Science.gov Websites

    industrial, two-story building with high-bay, piping, and large processing equipment. Three workers in hard intellectual property and helping industrial partners commercialize technologies. Testing Facilities and

  20. Advanced Simulation and Computing Fiscal Year 14 Implementation Plan, Rev. 0.5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meisner, Robert; McCoy, Michel; Archer, Bill

    2013-09-11

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities andmore » computational resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is now focused on increasing predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (sufficient resolution, dimensionality, and scientific details), quantify critical margins and uncertainties, and resolve increasingly difficult analyses needed for the SSP. Moreover, ASC’s business model is integrated and focused on requirements-driven products that address long-standing technical questions related to enhanced predictive

  1. Integration of Biosafety into Core Facility Management

    PubMed Central

    Fontes, Benjamin

    2013-01-01

    This presentation will discuss the implementation of biosafety policies for small, medium and large core laboratories with primary shared objectives of ensuring the control of biohazards to protect core facility operators and assure conformity with applicable state and federal policies, standards and guidelines. Of paramount importance is the educational process to inform core laboratories of biosafety principles and policies and to illustrate the technology and process pathways of the core laboratory for biosafety professionals. Elevating awareness of biohazards and the biosafety regulatory landscape among core facility operators is essential for the establishment of a framework for both project and material risk assessment. The goal of the biohazard risk assessment process is to identify the biohazard risk management parameters to conduct the procedure safely and in compliance with applicable regulations. An evaluation of the containment, protective equipment and work practices for the procedure for the level of risk identified is facilitated by the establishment of a core facility registration form for work with biohazards and other biological materials with potential risk. The final step in the biocontainment process is the assumption of Principal Investigator role with full responsibility for the structure of the site-specific biosafety program plan by core facility leadership. The presentation will provide example biohazard protocol reviews and accompanying containment measures for core laboratories at Yale University.

  2. Understanding principles of integration and segregation using whole-brain computational connectomics: implications for neuropsychiatric disorders

    PubMed Central

    Lord, Louis-David; Stevner, Angus B.; Kringelbach, Morten L.

    2017-01-01

    To survive in an ever-changing environment, the brain must seamlessly integrate a rich stream of incoming information into coherent internal representations that can then be used to efficiently plan for action. The brain must, however, balance its ability to integrate information from various sources with a complementary capacity to segregate information into modules which perform specialized computations in local circuits. Importantly, evidence suggests that imbalances in the brain's ability to bind together and/or segregate information over both space and time is a common feature of several neuropsychiatric disorders. Most studies have, however, until recently strictly attempted to characterize the principles of integration and segregation in static (i.e. time-invariant) representations of human brain networks, hence disregarding the complex spatio-temporal nature of these processes. In the present Review, we describe how the emerging discipline of whole-brain computational connectomics may be used to study the causal mechanisms of the integration and segregation of information on behaviourally relevant timescales. We emphasize how novel methods from network science and whole-brain computational modelling can expand beyond traditional neuroimaging paradigms and help to uncover the neurobiological determinants of the abnormal integration and segregation of information in neuropsychiatric disorders. This article is part of the themed issue ‘Mathematical methods in medicine: neuroscience, cardiology and pathology’. PMID:28507228

  3. STARS: An Integrated, Multidisciplinary, Finite-Element, Structural, Fluids, Aeroelastic, and Aeroservoelastic Analysis Computer Program

    NASA Technical Reports Server (NTRS)

    Gupta, K. K.

    1997-01-01

    A multidisciplinary, finite element-based, highly graphics-oriented, linear and nonlinear analysis capability that includes such disciplines as structures, heat transfer, linear aerodynamics, computational fluid dynamics, and controls engineering has been achieved by integrating several new modules in the original STARS (STructural Analysis RoutineS) computer program. Each individual analysis module is general-purpose in nature and is effectively integrated to yield aeroelastic and aeroservoelastic solutions of complex engineering problems. Examples of advanced NASA Dryden Flight Research Center projects analyzed by the code in recent years include the X-29A, F-18 High Alpha Research Vehicle/Thrust Vectoring Control System, B-52/Pegasus Generic Hypersonics, National AeroSpace Plane (NASP), SR-71/Hypersonic Launch Vehicle, and High Speed Civil Transport (HSCT) projects. Extensive graphics capabilities exist for convenient model development and postprocessing of analysis results. The program is written in modular form in standard FORTRAN language to run on a variety of computers, such as the IBM RISC/6000, SGI, DEC, Cray, and personal computer; associated graphics codes use OpenGL and IBM/graPHIGS language for color depiction. This program is available from COSMIC, the NASA agency for distribution of computer programs.

  4. Compact VLSI neural computer integrated with active pixel sensor for real-time ATR applications

    NASA Astrophysics Data System (ADS)

    Fang, Wai-Chi; Udomkesmalee, Gabriel; Alkalai, Leon

    1997-04-01

    A compact VLSI neural computer integrated with an active pixel sensor has been under development to mimic what is inherent in biological vision systems. This electronic eye- brain computer is targeted for real-time machine vision applications which require both high-bandwidth communication and high-performance computing for data sensing, synergy of multiple types of sensory information, feature extraction, target detection, target recognition, and control functions. The neural computer is based on a composite structure which combines Annealing Cellular Neural Network (ACNN) and Hierarchical Self-Organization Neural Network (HSONN). The ACNN architecture is a programmable and scalable multi- dimensional array of annealing neurons which are locally connected with their local neurons. Meanwhile, the HSONN adopts a hierarchical structure with nonlinear basis functions. The ACNN+HSONN neural computer is effectively designed to perform programmable functions for machine vision processing in all levels with its embedded host processor. It provides a two order-of-magnitude increase in computation power over the state-of-the-art microcomputer and DSP microelectronics. A compact current-mode VLSI design feasibility of the ACNN+HSONN neural computer is demonstrated by a 3D 16X8X9-cube neural processor chip design in a 2-micrometers CMOS technology. Integration of this neural computer as one slice of a 4'X4' multichip module into the 3D MCM based avionics architecture for NASA's New Millennium Program is also described.

  5. A computational modeling of semantic knowledge in reading comprehension: Integrating the landscape model with latent semantic analysis.

    PubMed

    Yeari, Menahem; van den Broek, Paul

    2016-09-01

    It is a well-accepted view that the prior semantic (general) knowledge that readers possess plays a central role in reading comprehension. Nevertheless, computational models of reading comprehension have not integrated the simulation of semantic knowledge and online comprehension processes under a unified mathematical algorithm. The present article introduces a computational model that integrates the landscape model of comprehension processes with latent semantic analysis representation of semantic knowledge. In three sets of simulations of previous behavioral findings, the integrated model successfully simulated the activation and attenuation of predictive and bridging inferences during reading, as well as centrality estimations and recall of textual information after reading. Analyses of the computational results revealed new theoretical insights regarding the underlying mechanisms of the various comprehension phenomena.

  6. EPA Facility Registry Service (FRS): ICIS

    EPA Pesticide Factsheets

    This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of facilities that link to the Integrated Compliance Information System (ICIS). When complete, ICIS will provide a database that will contain integrated enforcement and compliance information across most of EPA's programs. The vision for ICIS is to replace EPA's independent databases that contain enforcement data with a single repository for that information. Currently, ICIS contains all Federal Administrative and Judicial enforcement actions and a subset of the Permit Compliance System (PCS), which supports the National Pollutant Discharge Elimination System (NPDES). ICIS exchanges non-sensitive enforcement/compliance activities, non-sensitive formal enforcement actions and NPDES information with FRS. This web feature service contains the enforcement/compliance activities and formal enforcement action related facilities; the NPDES facilities are contained in the PCS_NPDES web feature service. FRS identifies and geospatially locates facilities, sites or places subject to environmental regulations or of environmental interest. Using vigorous verification and data management procedures, FRS integrates facility data from EPA's national program systems, other federal agencies, and State and tribal master facility records and provides EPA with a centrally managed, single source of comprehensive and authoritative information on f

  7. Optimizing the interventional cardiology facility: services integration in routine workflow.

    PubMed

    Gortzis, Lefteris; Kalogeropoulos, A; Alexopoulos, D; Nikiforidis, G

    2007-01-01

    Integration of administrative and clinical data, imaging, and expert services, although challenging,is a key requirement in contemporary interventional cardiology facilities (ICF). We propose a workflow-oriented hybrid system to support the ICF and investigate its feasibility and effectiveness ina referral medical center. We have developed a Java-powered hybrid system (NetCARDIO), able to support over web synchronous and asynchronous data management, realtime multimedia data telemonitoring and continuous telementoring. Data regarding procedural rates, treatment planning and radiation exposure were collected over a two-year period of routine NetCARDIO implementation(July 2002 to June 2004) and compared with data from an immediately preceding period of equal duration (January 2000 to December 2001). During the NetCARDIO period, 163 +/- 17 coronary procedures per month were performed vs.77 +/- 15 during the control period (p <0.001). Percutaneous coronary intervention was delivered 'ad hoc' in 88% of eligible patients vs. 45% (p <0.001). Mean fluoroscopy time per coronary lesion treated decreased from 594 +/- 82 s to 540 +/- 94 s(p < 0.001). Annual radiation exposure of expert interventionists was decreased by 22%. Electronic storage significantly reduced archiving costs. Real-time multimodal services sharing combined with powerful database capabilities is feasible through a web-based structure, significantly enhancing performance and cost-effectiveness of ICF. Further research is needed to promote integration of additional data sources and services.

  8. Chip-scale integrated optical interconnects: a key enabler for future high-performance computing

    NASA Astrophysics Data System (ADS)

    Haney, Michael; Nair, Rohit; Gu, Tian

    2012-01-01

    High Performance Computing (HPC) systems are putting ever-increasing demands on the throughput efficiency of their interconnection fabrics. In this paper, the limits of conventional metal trace-based inter-chip interconnect fabrics are examined in the context of state-of-the-art HPC systems, which currently operate near the 1 GFLOPS/W level. The analysis suggests that conventional metal trace interconnects will limit performance to approximately 6 GFLOPS/W in larger HPC systems that require many computer chips to be interconnected in parallel processing architectures. As the HPC communications bottlenecks push closer to the processing chips, integrated Optical Interconnect (OI) technology may provide the ultra-high bandwidths needed at the inter- and intra-chip levels. With inter-chip photonic link energies projected to be less than 1 pJ/bit, integrated OI is projected to enable HPC architecture scaling to the 50 GFLOPS/W level and beyond - providing a path to Peta-FLOPS-level HPC within a single rack, and potentially even Exa-FLOPSlevel HPC for large systems. A new hybrid integrated chip-scale OI approach is described and evaluated. The concept integrates a high-density polymer waveguide fabric directly on top of a multiple quantum well (MQW) modulator array that is area-bonded to the Silicon computing chip. Grayscale lithography is used to fabricate 5 μm x 5 μm polymer waveguides and associated novel small-footprint total internal reflection-based vertical input/output couplers directly onto a layer containing an array of GaAs MQW devices configured to be either absorption modulators or photodetectors. An external continuous wave optical "power supply" is coupled into the waveguide links. Contrast ratios were measured using a test rider chip in place of a Silicon processing chip. The results suggest that sub-pJ/b chip-scale communication is achievable with this concept. When integrated into high-density integrated optical interconnect fabrics, it could provide

  9. A comparison of queueing, cluster and distributed computing systems

    NASA Technical Reports Server (NTRS)

    Kaplan, Joseph A.; Nelson, Michael L.

    1993-01-01

    Using workstation clusters for distributed computing has become popular with the proliferation of inexpensive, powerful workstations. Workstation clusters offer both a cost effective alternative to batch processing and an easy entry into parallel computing. However, a number of workstations on a network does not constitute a cluster. Cluster management software is necessary to harness the collective computing power. A variety of cluster management and queuing systems are compared: Distributed Queueing Systems (DQS), Condor, Load Leveler, Load Balancer, Load Sharing Facility (LSF - formerly Utopia), Distributed Job Manager (DJM), Computing in Distributed Networked Environments (CODINE), and NQS/Exec. The systems differ in their design philosophy and implementation. Based on published reports on the different systems and conversations with the system's developers and vendors, a comparison of the systems are made on the integral issues of clustered computing.

  10. IMAT (Integrated Multidisciplinary Analysis Tool) user's guide for the VAX/VMS computer

    NASA Technical Reports Server (NTRS)

    Meissner, Frances T. (Editor)

    1988-01-01

    The Integrated Multidisciplinary Analysis Tool (IMAT) is a computer software system for the VAX/VMS computer developed at the Langley Research Center. IMAT provides researchers and analysts with an efficient capability to analyze satellite control systems influenced by structural dynamics. Using a menu-driven executive system, IMAT leads the user through the program options. IMAT links a relational database manager to commercial and in-house structural and controls analysis codes. This paper describes the IMAT software system and how to use it.

  11. The Gap between Expectations and Reality: Integrating Computers into Mathematics Classrooms

    ERIC Educational Resources Information Center

    Guven, Bulent; Cakiroglu, Unal; Akkan, Yasar

    2009-01-01

    As a result of dramatic changes in mathematics education around the world, in Turkey both elementary and secondary school mathematics curriculums have changed in the light of new demands since 2005. In order to perform the expected change in newly developed curriculum, computer should be integrated into learning and teaching process. Teachers'…

  12. Advanced Technology Airfoil Research, volume 1, part 1. [conference on development of computational codes and test facilities

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A comprehensive review of all NASA airfoil research, conducted both in-house and under grant and contract, as well as a broad spectrum of airfoil research outside of NASA is presented. Emphasis is placed on the development of computational aerodynamic codes for airfoil analysis and design, the development of experimental facilities and test techniques, and all types of airfoil applications.

  13. Integration of a Computer Application in a First Year Accounting Curriculum: An Evaluation of Student Attitudes

    ERIC Educational Resources Information Center

    Laing, Gregory Kenneth; Perrin, Ronald William

    2012-01-01

    This paper presents the findings of a field study conducted to ascertain the perceptions of first year accounting students concerning the integration of computer applications in the accounting curriculum. The results indicate that both student cohorts perceived the computer as a valuable educational tool. The use of computers to enhance the…

  14. High-Performance Computing in Neuroscience for Data-Driven Discovery, Integration, and Dissemination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouchard, Kristofer E.; Aimone, James B.; Chun, Miyoung

    A lack of coherent plans to analyze, manage, and understand data threatens the various opportunities offered by new neuro-technologies. High-performance computing will allow exploratory analysis of massive datasets stored in standardized formats, hosted in open repositories, and integrated with simulations.

  15. High-Performance Computing in Neuroscience for Data-Driven Discovery, Integration, and Dissemination

    DOE PAGES

    Bouchard, Kristofer E.; Aimone, James B.; Chun, Miyoung; ...

    2016-11-01

    A lack of coherent plans to analyze, manage, and understand data threatens the various opportunities offered by new neuro-technologies. High-performance computing will allow exploratory analysis of massive datasets stored in standardized formats, hosted in open repositories, and integrated with simulations.

  16. Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment. Erratum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Gary L.

    2016-09-06

    This report refers to or contains K g values for glasses LAWA44, LAWB45 and LAWC22 affected by calculations errors as identified by Papathanassiu et al. (2011). The corrected K g values are reported in an erratum included in the revised version of the original report. The revised report can be referenced as follows: Pierce E. M. et al. (2004) Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment. PNNL-14805 Rev. 0 Erratum. Pacific Northwest National Laboratory, Richland, WA, USA.

  17. Functional requirements for the man-vehicle systems research facility. [identifying and correcting human errors during flight simulation

    NASA Technical Reports Server (NTRS)

    Clement, W. F.; Allen, R. W.; Heffley, R. K.; Jewell, W. F.; Jex, H. R.; Mcruer, D. T.; Schulman, T. M.; Stapleford, R. L.

    1980-01-01

    The NASA Ames Research Center proposed a man-vehicle systems research facility to support flight simulation studies which are needed for identifying and correcting the sources of human error associated with current and future air carrier operations. The organization of research facility is reviewed and functional requirements and related priorities for the facility are recommended based on a review of potentially critical operational scenarios. Requirements are included for the experimenter's simulation control and data acquisition functions, as well as for the visual field, motion, sound, computation, crew station, and intercommunications subsystems. The related issues of functional fidelity and level of simulation are addressed, and specific criteria for quantitative assessment of various aspects of fidelity are offered. Recommendations for facility integration, checkout, and staffing are included.

  18. An Integrated Teaching Method of Gross Anatomy and Computed Tomography Radiology

    ERIC Educational Resources Information Center

    Murakami, Tohru; Tajika, Yuki; Ueno, Hitoshi; Awata, Sachiko; Hirasawa, Satoshi; Sugimoto, Maki; Kominato, Yoshihiko; Tsushima, Yoshito; Endo, Keigo; Yorifuji, Hiroshi

    2014-01-01

    It is essential for medical students to learn and comprehend human anatomy in three dimensions (3D). With this in mind, a new system was designed in order to integrate anatomical dissections with diagnostic computed tomography (CT) radiology. Cadavers were scanned by CT scanners, and students then consulted the postmortem CT images during cadaver…

  19. Workflow Management Systems for Molecular Dynamics on Leadership Computers

    NASA Astrophysics Data System (ADS)

    Wells, Jack; Panitkin, Sergey; Oleynik, Danila; Jha, Shantenu

    Molecular Dynamics (MD) simulations play an important role in a range of disciplines from Material Science to Biophysical systems and account for a large fraction of cycles consumed on computing resources. Increasingly science problems require the successful execution of ''many'' MD simulations as opposed to a single MD simulation. There is a need to provide scalable and flexible approaches to the execution of the workload. We present preliminary results on the Titan computer at the Oak Ridge Leadership Computing Facility that demonstrate a general capability to manage workload execution agnostic of a specific MD simulation kernel or execution pattern, and in a manner that integrates disparate grid-based and supercomputing resources. Our results build upon our extensive experience of distributed workload management in the high-energy physics ATLAS project using PanDA (Production and Distributed Analysis System), coupled with recent conceptual advances in our understanding of workload management on heterogeneous resources. We will discuss how we will generalize these initial capabilities towards a more production level service on DOE leadership resources. This research is sponsored by US DOE/ASCR and used resources of the OLCF computing facility.

  20. A cortical edge-integration model of object-based lightness computation that explains effects of spatial context and individual differences

    PubMed Central

    Rudd, Michael E.

    2014-01-01

    Previous work has demonstrated that perceived surface reflectance (lightness) can be modeled in simple contexts in a quantitatively exact way by assuming that the visual system first extracts information about local, directed steps in log luminance, then spatially integrates these steps along paths through the image to compute lightness (Rudd and Zemach, 2004, 2005, 2007). This method of computing lightness is called edge integration. Recent evidence (Rudd, 2013) suggests that human vision employs a default strategy to integrate luminance steps only along paths from a common background region to the targets whose lightness is computed. This implies a role for gestalt grouping in edge-based lightness computation. Rudd (2010) further showed the perceptual weights applied to edges in lightness computation can be influenced by the observer's interpretation of luminance steps as resulting from either spatial variation in surface reflectance or illumination. This implies a role for top-down factors in any edge-based model of lightness (Rudd and Zemach, 2005). Here, I show how the separate influences of grouping and attention on lightness can be modeled in tandem by a cortical mechanism that first employs top-down signals to spatially select regions of interest for lightness computation. An object-based network computation, involving neurons that code for border-ownership, then automatically sets the neural gains applied to edge signals surviving the earlier spatial selection stage. Only the borders that survive both processing stages are spatially integrated to compute lightness. The model assumptions are consistent with those of the cortical lightness model presented earlier by Rudd (2010, 2013), and with neurophysiological data indicating extraction of local edge information in V1, network computations to establish figure-ground relations and border ownership in V2, and edge integration to encode lightness and darkness signals in V4. PMID:25202253

  1. A cortical edge-integration model of object-based lightness computation that explains effects of spatial context and individual differences.

    PubMed

    Rudd, Michael E

    2014-01-01

    Previous work has demonstrated that perceived surface reflectance (lightness) can be modeled in simple contexts in a quantitatively exact way by assuming that the visual system first extracts information about local, directed steps in log luminance, then spatially integrates these steps along paths through the image to compute lightness (Rudd and Zemach, 2004, 2005, 2007). This method of computing lightness is called edge integration. Recent evidence (Rudd, 2013) suggests that human vision employs a default strategy to integrate luminance steps only along paths from a common background region to the targets whose lightness is computed. This implies a role for gestalt grouping in edge-based lightness computation. Rudd (2010) further showed the perceptual weights applied to edges in lightness computation can be influenced by the observer's interpretation of luminance steps as resulting from either spatial variation in surface reflectance or illumination. This implies a role for top-down factors in any edge-based model of lightness (Rudd and Zemach, 2005). Here, I show how the separate influences of grouping and attention on lightness can be modeled in tandem by a cortical mechanism that first employs top-down signals to spatially select regions of interest for lightness computation. An object-based network computation, involving neurons that code for border-ownership, then automatically sets the neural gains applied to edge signals surviving the earlier spatial selection stage. Only the borders that survive both processing stages are spatially integrated to compute lightness. The model assumptions are consistent with those of the cortical lightness model presented earlier by Rudd (2010, 2013), and with neurophysiological data indicating extraction of local edge information in V1, network computations to establish figure-ground relations and border ownership in V2, and edge integration to encode lightness and darkness signals in V4.

  2. Using Amazon's Elastic Compute Cloud to dynamically scale CMS computational resources

    NASA Astrophysics Data System (ADS)

    Evans, D.; Fisk, I.; Holzman, B.; Melo, A.; Metson, S.; Pordes, R.; Sheldon, P.; Tiradani, A.

    2011-12-01

    Large international scientific collaborations such as the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider have traditionally addressed their data reduction and analysis needs by building and maintaining dedicated computational infrastructure. Emerging cloud computing services such as Amazon's Elastic Compute Cloud (EC2) offer short-term CPU and storage resources with costs based on usage. These services allow experiments to purchase computing resources as needed, without significant prior planning and without long term investments in facilities and their management. We have demonstrated that services such as EC2 can successfully be integrated into the production-computing model of CMS, and find that they work very well as worker nodes. The cost-structure and transient nature of EC2 services makes them inappropriate for some CMS production services and functions. We also found that the resources are not truely "on-demand" as limits and caps on usage are imposed. Our trial workflows allow us to make a cost comparison between EC2 resources and dedicated CMS resources at a University, and conclude that it is most cost effective to purchase dedicated resources for the "base-line" needs of experiments such as CMS. However, if the ability to use cloud computing resources is built into an experiment's software framework before demand requires their use, cloud computing resources make sense for bursting during times when spikes in usage are required.

  3. Integral Equations in Computational Electromagnetics: Formulations, Properties and Isogeometric Analysis

    NASA Astrophysics Data System (ADS)

    Lovell, Amy Elizabeth

    Computational electromagnetics (CEM) provides numerical methods to simulate electromagnetic waves interacting with its environment. Boundary integral equation (BIE) based methods, that solve the Maxwell's equations in the homogeneous or piecewise homogeneous medium, are both efficient and accurate, especially for scattering and radiation problems. Development and analysis electromagnetic BIEs has been a very active topic in CEM research. Indeed, there are still many open problems that need to be addressed or further studied. A short and important list includes (1) closed-form or quasi-analytical solutions to time-domain integral equations, (2) catastrophic cancellations at low frequencies, (3) ill-conditioning due to high mesh density, multi-scale discretization, and growing electrical size, and (4) lack of flexibility due to re-meshing when increasing number of forward numerical simulations are involved in the electromagnetic design process. This dissertation will address those several aspects of boundary integral equations in computational electromagnetics. The first contribution of the dissertation is to construct quasi-analytical solutions to time-dependent boundary integral equations using a direct approach. Direct inverse Fourier transform of the time-harmonic solutions is not stable due to the non-existence of the inverse Fourier transform of spherical Hankel functions. Using new addition theorems for the time-domain Green's function and dyadic Green's functions, time-domain integral equations governing transient scattering problems of spherical objects are solved directly and stably for the first time. Additional, the direct time-dependent solutions, together with the newly proposed time-domain dyadic Green's functions, can enrich the time-domain spherical multipole theory. The second contribution is to create a novel method of moments (MoM) framework to solve electromagnetic boundary integral equation on subdivision surfaces. The aim is to avoid the

  4. Material Protection, Accounting, and Control Technologies (MPACT) Advanced Integration Roadmap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Mike; Cipiti, Ben; Demuth, Scott Francis

    2017-01-30

    The development of sustainable advanced nuclear fuel cycles is a long-term goal of the Office of Nuclear Energy’s (DOE-NE) Fuel Cycle Technologies program. The Material Protection, Accounting, and Control Technologies (MPACT) campaign is supporting research and development (R&D) of advanced instrumentation, analysis tools, and integration methodologies to meet this goal (Miller, 2015). This advanced R&D is intended to facilitate safeguards and security by design of fuel cycle facilities. The lab-scale demonstration of a virtual facility, distributed test bed, that connects the individual tools being developed at National Laboratories and university research establishments, is a key program milestone for 2020. Thesemore » tools will consist of instrumentation and devices as well as computer software for modeling, simulation and integration.« less

  5. Material Protection, Accounting, and Control Technologies (MPACT) Advanced Integration Roadmap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durkee, Joe W.; Cipiti, Ben; Demuth, Scott Francis

    The development of sustainable advanced nuclear fuel cycles is a long-term goal of the Office of Nuclear Energy’s (DOE-NE) Fuel Cycle Technologies program. The Material Protection, Accounting, and Control Technologies (MPACT) campaign is supporting research and development (R&D) of advanced instrumentation, analysis tools, and integration methodologies to meet this goal (Miller, 2015). This advanced R&D is intended to facilitate safeguards and security by design of fuel cycle facilities. The lab-scale demonstration of a virtual facility, distributed test bed, that connects the individual tools being developed at National Laboratories and university research establishments, is a key program milestone for 2020. Thesemore » tools will consist of instrumentation and devices as well as computer software for modeling, simulation and integration.« less

  6. Secondary Waste Cementitious Waste Form Data Package for the Integrated Disposal Facility Performance Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cantrell, Kirk J.; Westsik, Joseph H.; Serne, R Jeffrey

    A review of the most up-to-date and relevant data currently available was conducted to develop a set of recommended values for use in the Integrated Disposal Facility (IDF) performance assessment (PA) to model contaminant release from a cementitious waste form for aqueous wastes treated at the Hanford Effluent Treatment Facility (ETF). This data package relies primarily upon recent data collected on Cast Stone formulations fabricated with simulants of low-activity waste (LAW) and liquid secondary wastes expected to be produced at Hanford. These data were supplemented, when necessary, with data developed for saltstone (a similar grout waste form used at themore » Savannah River Site). Work is currently underway to collect data on cementitious waste forms that are similar to Cast Stone and saltstone but are tailored to the characteristics of ETF-treated liquid secondary wastes. Recommended values for key parameters to conduct PA modeling of contaminant release from ETF-treated liquid waste are provided.« less

  7. Doing Your Own Time: Peer Integration, Aggression and Mental Health in Dutch Male Detainment Facilities

    PubMed Central

    Kreager, Derek A.; Palmen, Hanneke; Dirkzwager, Anja J.E.; Nieuwbeerta, Paul

    2016-01-01

    Background Prior research demonstrates a strong positive association between social integration (e.g., strong social ties) and individual health. However, researchers also emphasize that this correlation may vary by context and potentially reverse direction under certain conditions. In this study, we draw on competing criminological theories of peer relations to examine if social integration, measured by trust in peers, is positively or negatively associated with violence and mental health of men detained in pre-trial confinement facilities. Methods We test our hypotheses with peer network and health data from 502 Dutch male pre-trial detainees. Results Results suggest that peer trust has no direct association with reported rates of peer aggression while detained and low peer trust is generally protective for mental health. Conclusions Our study thus adds to a small body of literature finding that social integration within certain correctional settings may not operate in the same way that it does in the general population and may actually contribute to adverse mental health outcomes. PMID:26794247

  8. Program for integrating multizonal photographs of the Earth, taken by MKF-6 camera, in a computer

    NASA Technical Reports Server (NTRS)

    Agapov, A. V.; Mosin, S. T.

    1980-01-01

    An algorithm and program are described, for integrating up to 6 simultaneously exposed photographs in different spectral ranges of the surface of the Earth, taken by MKF-6 cameras aboard Soyuz-22. Three of the reference marks are identified on 1 photograph and then are used to integrate the other photographs with the first. The program was compiled for the ES-1040 computer, as a standard subprogram in a system for computer processing of data of study of the Earth from space.

  9. Advanced Simulation & Computing FY15 Implementation Plan Volume 2, Rev. 0.5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCoy, Michel; Archer, Bill; Matzen, M. Keith

    2014-09-16

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities andmore » computational resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balance of resource, including technical staff, hardware, simulation software, and computer science solutions. As the program approaches the end of its second decade, ASC is intently focused on increasing predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (sufficient resolution, dimensionality, and scientific details), quantify critical margins and uncertainties, and resolve increasingly difficult analyses needed for the SSP. Where possible, the program also enables the use of high-performance simulation and computing tools to address broader national security needs, such as foreign nuclear weapon assessments and counternuclear terrorism.« less

  10. Enhancements in medicine by integrating content based image retrieval in computer-aided diagnosis

    NASA Astrophysics Data System (ADS)

    Aggarwal, Preeti; Sardana, H. K.

    2010-02-01

    Computer-aided diagnosis (CAD) has become one of the major research subjects in medical imaging and diagnostic radiology. With cad, radiologists use the computer output as a "second opinion" and make the final decisions. Retrieving images is a useful tool to help radiologist to check medical image and diagnosis. The impact of contentbased access to medical images is frequently reported but existing systems are designed for only a particular context of diagnosis. The challenge in medical informatics is to develop tools for analyzing the content of medical images and to represent them in a way that can be efficiently searched and compared by the physicians. CAD is a concept established by taking into account equally the roles of physicians and computers. To build a successful computer aided diagnostic system, all the relevant technologies, especially retrieval need to be integrated in such a manner that should provide effective and efficient pre-diagnosed cases with proven pathology for the current case at the right time. In this paper, it is suggested that integration of content-based image retrieval (CBIR) in cad can bring enormous results in medicine especially in diagnosis. This approach is also compared with other approaches by highlighting its advantages over those approaches.

  11. The Effect of Using in Computer Skills on Teachers' Perceived Self-Efficacy Beliefs towards Technology Integration, Attitudes and Performance

    ERIC Educational Resources Information Center

    EL-Daou, Badrie Mohammad Nour

    2016-01-01

    The current study analyzes the relationship between the apparent teacher's self-efficacy and attitudes towards integrating technology into classroom teaching, self-evaluation reports and computer performance results. Pre-post measurement of the Computer Technology Integration Survey (CTIS) (Wang et al, 2004) was used to determine the confidence…

  12. Computer aided design of monolithic microwave and millimeter wave integrated circuits and subsystems

    NASA Astrophysics Data System (ADS)

    Ku, Walter H.

    1989-05-01

    The objectives of this research are to develop analytical and computer aided design techniques for monolithic microwave and millimeter wave integrated circuits (MMIC and MIMIC) and subsystems and to design and fabricate those ICs. Emphasis was placed on heterojunction-based devices, especially the High Electron Mobility Transition (HEMT), for both low noise and medium power microwave and millimeter wave applications. Circuits to be considered include monolithic low noise amplifiers, power amplifiers, and distributed and feedback amplifiers. Interactive computer aided design programs were developed, which include large signal models of InP MISFETs and InGaAs HEMTs. Further, a new unconstrained optimization algorithm POSM was developed and implemented in the general Analysis and Design program for Integrated Circuit (ADIC) for assistance in the design of largesignal nonlinear circuits.

  13. Learning Consequences of Mobile-Computing Technologies: Differential Impacts on Integrative Learning and Skill-Focused Learning

    ERIC Educational Resources Information Center

    Kumi, Richard; Reychav, Iris; Sabherwal, Rajiv

    2016-01-01

    Many educational institutions are integrating mobile-computing technologies (MCT) into the classroom to improve learning outcomes. There is also a growing interest in research to understand how MCT influence learning outcomes. The diversity of results in prior research indicates that computer-mediated learning has different effects on various…

  14. Computer integrated manufacturing/processing in the HPI. [Hydrocarbon Processing Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshimura, J.S.

    1993-05-01

    Hydrocarbon Processing and Systemhouse Inc., developed a comprehensive survey on the status of computer integrated manufacturing/processing (CIM/CIP) targeted specifically to the unique requirements of the hydrocarbon processing industry. These types of surveys and other benchmarking techniques can be invaluable in assisting companies to maximize business benefits from technology investments. The survey was organized into 5 major areas: CIM/CIP planning, management perspective, functional applications, integration and technology infrastructure and trends. The CIM/CIP planning area dealt with the use and type of planning methods to plan, justify implement information technology projects. The management perspective section addressed management priorities, expenditure levels and implementationmore » barriers. The functional application area covered virtually all functional areas of organization and focused on the specific solutions and benefits in each of the functional areas. The integration section addressed the needs and integration status of the organization's functional areas. Finally, the technology infrastructure and trends section dealt with specific technologies in use as well as trends over the next three years. In February 1993, summary areas from preliminary results were presented at the 2nd International Conference on Productivity and Quality in the Hydrocarbon Processing Industry.« less

  15. Trends in Facility Management Technology: The Emergence of the Internet, GIS, and Facility Assessment Decision Support.

    ERIC Educational Resources Information Center

    Teicholz, Eric

    1997-01-01

    Reports research on trends in computer-aided facilities management using the Internet and geographic information system (GIS) technology for space utilization research. Proposes that facility assessment software holds promise for supporting facility management decision making, and outlines four areas for its use: inventory; evaluation; reporting;…

  16. Accuracy of unmodified Stokes' integration in the R-C-R procedure for geoid computation

    NASA Astrophysics Data System (ADS)

    Ismail, Zahra; Jamet, Olivier

    2015-06-01

    Geoid determinations by the Remove-Compute-­Restore (R-C-R) technique involves the application of Stokes' integral on reduced gravity anomalies. Numerical Stokes' integration produces an error depending on the choice of the integration radius, grid resolution and Stokes' kernel function. In this work, we aim to evaluate the accuracy of Stokes' integral through a study on synthetic gravitational signals derived from EGM2008 on three different landscape areas with respect to the size of the integration domain and the resolution of the anomaly grid. The influence of the integration radius was studied earlier by several authors. Using real data, they found that the choice of relatively small radii (less than 1°) enables to reach an optimal accuracy. We observe a general behaviour coherent with these earlier studies. On the other hand, we notice that increasing the integration radius up to 2° or 2.5° might bring significantly better results. We note that, unlike the smallest radius corresponding to a local minimum of the error curve, the optimal radius in the range 0° to 6° depends on the terrain characteristics. We also find that the high frequencies, from degree 600, improve continuously with the integration radius in both semi-­mountainous and mountain areas. Finally, we note that the relative error of the computed geoid heights depends weakly on the anomaly spherical harmonic degree in the range from degree 200 to 2000. It remains greater than 10 % for any integration radii up to 6°. This result tends to prove that a one centimetre accuracy cannot be reached in semi-mountainous and mountainous regions with the unmodified Stokes' kernel.

  17. The ICCB Computer Based Facilities Inventory & Utilization Management Information Subsystem.

    ERIC Educational Resources Information Center

    Lach, Ivan J.

    The Illinois Community College Board (ICCB) Facilities Inventory and Utilization subsystem, a part of the ICCB management information system, was designed to provide decision makers with needed information to better manage the facility resources of Illinois community colleges. This subsystem, dependent upon facilities inventory data and course…

  18. Maintaining Pedagogical Integrity of a Computer Mediated Course Delivery in Social Foundations

    ERIC Educational Resources Information Center

    Stewart, Shelley; Cobb-Roberts, Deirdre; Shircliffe, Barbara J.

    2013-01-01

    Transforming a face to face course to a computer mediated format in social foundations (interdisciplinary field in education), while maintaining pedagogical integrity, involves strategic collaboration between instructional technologists and content area experts. This type of planned partnership requires open dialogue and a mutual respect for prior…

  19. Computing thermal Wigner densities with the phase integration method.

    PubMed

    Beutier, J; Borgis, D; Vuilleumier, R; Bonella, S

    2014-08-28

    We discuss how the Phase Integration Method (PIM), recently developed to compute symmetrized time correlation functions [M. Monteferrante, S. Bonella, and G. Ciccotti, Mol. Phys. 109, 3015 (2011)], can be adapted to sampling/generating the thermal Wigner density, a key ingredient, for example, in many approximate schemes for simulating quantum time dependent properties. PIM combines a path integral representation of the density with a cumulant expansion to represent the Wigner function in a form calculable via existing Monte Carlo algorithms for sampling noisy probability densities. The method is able to capture highly non-classical effects such as correlation among the momenta and coordinates parts of the density, or correlations among the momenta themselves. By using alternatives to cumulants, it can also indicate the presence of negative parts of the Wigner density. Both properties are demonstrated by comparing PIM results to those of reference quantum calculations on a set of model problems.

  20. Delivering The Benefits of Chemical-Biological Integration in Computational Toxicology at the EPA (ACS Fall meeting)

    EPA Science Inventory

    Abstract: Researchers at the EPA’s National Center for Computational Toxicology integrate advances in biology, chemistry, and computer science to examine the toxicity of chemicals and help prioritize chemicals for further research based on potential human health risks. The intent...

  1. Analysis of Flow Behavior Within An Integrated Computer-Communication Network,

    DTIC Science & Technology

    1979-05-01

    Howard. Plan today for tomorrows data/voice nets. Data Communications 7, 9 (Sep. 1978), 51-62. 24. F-ark, Howard, and Gitman , Israel. Inteqrated DoD...computer networks. NTC-74, San Diego, CA., (Dec. 2-4, 1974), 1032-1037. 31. Gitman , I., Frank, H., Occhiogrosso, B., and Hsieh, W. Issues in integrated...switched networks agree on standard interface. Data Communications, (May/June 1978), 25)-39. 36. Hsieh, W., Gitman , I., and Occhiogrosso, B. Design of

  2. National remote computational flight research facility

    NASA Technical Reports Server (NTRS)

    Rediess, Herman A.

    1989-01-01

    The extension of the NASA Ames-Dryden remotely augmented vehicle (RAV) facility to accommodate flight testing of a hypersonic aircraft utilizing the continental United States as a test range is investigated. The development and demonstration of an automated flight test management system (ATMS) that uses expert system technology for flight test planning, scheduling, and execution is documented.

  3. A computer program for anisotropic shallow-shell finite elements using symbolic integration

    NASA Technical Reports Server (NTRS)

    Andersen, C. M.; Bowen, J. T.

    1976-01-01

    A FORTRAN computer program for anisotropic shallow-shell finite elements with variable curvature is described. A listing of the program is presented together with printed output for a sample case. Computation times and central memory requirements are given for several different elements. The program is based on a stiffness (displacement) finite-element model in which the fundamental unknowns consist of both the displacement and the rotation components of the reference surface of the shell. Two triangular and four quadrilateral elements are implemented in the program. The triangular elements have 6 or 10 nodes, and the quadrilateral elements have 4 or 8 nodes. Two of the quadrilateral elements have internal degrees of freedom associated with displacement modes which vanish along the edges of the elements (bubble modes). The triangular elements and the remaining two quadrilateral elements do not have bubble modes. The output from the program consists of arrays corresponding to the stiffness, the geometric stiffness, the consistent mass, and the consistent load matrices for individual elements. The integrals required for the generation of these arrays are evaluated by using symbolic (or analytic) integration in conjunction with certain group-theoretic techniques. The analytic expressions for the integrals are exact and were developed using the symbolic and algebraic manipulation language.

  4. The FOSS GIS Workbench on the GFZ Load Sharing Facility compute cluster

    NASA Astrophysics Data System (ADS)

    Löwe, P.; Klump, J.; Thaler, J.

    2012-04-01

    Compute clusters can be used as GIS workbenches, their wealth of resources allow us to take on geocomputation tasks which exceed the limitations of smaller systems. To harness these capabilities requires a Geographic Information System (GIS), able to utilize the available cluster configuration/architecture and a sufficient degree of user friendliness to allow for wide application. In this paper we report on the first successful porting of GRASS GIS, the oldest and largest Free Open Source (FOSS) GIS project, onto a compute cluster using Platform Computing's Load Sharing Facility (LSF). In 2008, GRASS6.3 was installed on the GFZ compute cluster, which at that time comprised 32 nodes. The interaction with the GIS was limited to the command line interface, which required further development to encapsulate the GRASS GIS business layer to facilitate its use by users not familiar with GRASS GIS. During the summer of 2011, multiple versions of GRASS GIS (v 6.4, 6.5 and 7.0) were installed on the upgraded GFZ compute cluster, now consisting of 234 nodes with 480 CPUs providing 3084 cores. The GFZ compute cluster currently offers 19 different processing queues with varying hardware capabilities and priorities, allowing for fine-grained scheduling and load balancing. After successful testing of core GIS functionalities, including the graphical user interface, mechanisms were developed to deploy scripted geocomputation tasks onto dedicated processing queues. The mechanisms are based on earlier work by NETELER et al. (2008). A first application of the new GIS functionality was the generation of maps of simulated tsunamis in the Mediterranean Sea for the Tsunami Atlas of the FP-7 TRIDEC Project (www.tridec-online.eu). For this, up to 500 processing nodes were used in parallel. Further trials included the processing of geometrically complex problems, requiring significant amounts of processing time. The GIS cluster successfully completed all these tasks, with processing times

  5. An integrated system for land resources supervision based on the IoT and cloud computing

    NASA Astrophysics Data System (ADS)

    Fang, Shifeng; Zhu, Yunqiang; Xu, Lida; Zhang, Jinqu; Zhou, Peiji; Luo, Kan; Yang, Jie

    2017-01-01

    Integrated information systems are important safeguards for the utilisation and development of land resources. Information technologies, including the Internet of Things (IoT) and cloud computing, are inevitable requirements for the quality and efficiency of land resources supervision tasks. In this study, an economical and highly efficient supervision system for land resources has been established based on IoT and cloud computing technologies; a novel online and offline integrated system with synchronised internal and field data that includes the entire process of 'discovering breaches, analysing problems, verifying fieldwork and investigating cases' was constructed. The system integrates key technologies, such as the automatic extraction of high-precision information based on remote sensing, semantic ontology-based technology to excavate and discriminate public sentiment on the Internet that is related to illegal incidents, high-performance parallel computing based on MapReduce, uniform storing and compressing (bitwise) technology, global positioning system data communication and data synchronisation mode, intelligent recognition and four-level ('device, transfer, system and data') safety control technology. The integrated system based on a 'One Map' platform has been officially implemented by the Department of Land and Resources of Guizhou Province, China, and was found to significantly increase the efficiency and level of land resources supervision. The system promoted the overall development of informatisation in fields related to land resource management.

  6. An inventory of aeronautical ground research facilities. Volume 4: Engineering flight simulation facilities

    NASA Technical Reports Server (NTRS)

    Pirrello, C. J.; Hardin, R. D.; Capelluro, L. P.; Harrison, W. D.

    1971-01-01

    The general purpose capabilities of government and industry in the area of real time engineering flight simulation are discussed. The information covers computer equipment, visual systems, crew stations, and motion systems, along with brief statements of facility capabilities. Facility construction and typical operational costs are included where available. The facilities provide for economical and safe solutions to vehicle design, performance, control, and flying qualities problems of manned and unmanned flight systems.

  7. Barriers to the Integration of Computers in Early Childhood Settings: Teachers' Perceptions

    ERIC Educational Resources Information Center

    Nikolopoulou, Kleopatra; Gialamas, Vasilis

    2015-01-01

    This study investigated teachers' perceptions of barriers to using - integrating computers in early childhood settings. A 26-item questionnaire was administered to 134 early childhood teachers in Greece. Lack of funding, lack of technical and administrative support, as well as inadequate training opportunities were among the major perceived…

  8. Computer aided design of monolithic microwave and millimeter wave integrated circuits and subsystems

    NASA Astrophysics Data System (ADS)

    Ku, Walter H.; Gang, Guan-Wan; He, J. Q.; Ichitsubo, I.

    1988-05-01

    This final technical report presents results on the computer aided design of monolithic microwave and millimeter wave integrated circuits and subsystems. New results include analytical and computer aided device models of GaAs MESFETs and HEMTs or MODFETs, new synthesis techniques for monolithic feedback and distributed amplifiers and a new nonlinear CAD program for MIMIC called CADNON. This program incorporates the new MESFET and HEMT model and has been successfully applied to the design of monolithic millimeter-wave mixers.

  9. Innovation and Integration: Case Studies of Effective Teacher Practices in the Use of Handheld Computers

    ERIC Educational Resources Information Center

    Chavez, Raymond Anthony

    2010-01-01

    Previous research conducted on the use of handheld computers in K-12 education has focused on how handheld computer use affects student motivation, engagement, and productivity. These four case studies sought to identify effective teacher practices in the integration of handhelds into the curriculum and the factors that affect those practices. The…

  10. Development of a model forecasting Dermanyssus gallinae's population dynamics for advancing Integrated Pest Management in laying hen facilities.

    PubMed

    Mul, Monique F; van Riel, Johan W; Roy, Lise; Zoons, Johan; André, Geert; George, David R; Meerburg, Bastiaan G; Dicke, Marcel; van Mourik, Simon; Groot Koerkamp, Peter W G

    2017-10-15

    The poultry red mite, Dermanyssus gallinae, is the most significant pest of egg laying hens in many parts of the world. Control of D. gallinae could be greatly improved with advanced Integrated Pest Management (IPM) for D. gallinae in laying hen facilities. The development of a model forecasting the pests' population dynamics in laying hen facilities without and post-treatment will contribute to this advanced IPM and could consequently improve implementation of IPM by farmers. The current work describes the development and demonstration of a model which can follow and forecast the population dynamics of D. gallinae in laying hen facilities given the variation of the population growth of D. gallinae within and between flocks. This high variation could partly be explained by house temperature, flock age, treatment, and hen house. The total population growth variation within and between flocks, however, was in part explained by temporal variation. For a substantial part this variation was unexplained. A dynamic adaptive model (DAP) was consequently developed, as models of this type are able to handle such temporal variations. The developed DAP model can forecast the population dynamics of D. gallinae, requiring only current flock population monitoring data, temperature data and information of the dates of any D. gallinae treatment. Importantly, the DAP model forecasted treatment effects, while compensating for location and time specific interactions, handling the variability of these parameters. The characteristics of this DAP model, and its compatibility with different mite monitoring methods, represent progression from existing approaches for forecasting D. gallinae that could contribute to advancing improved Integrated Pest Management (IPM) for D. gallinae in laying hen facilities. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. New Parallel computing framework for radiation transport codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kostin, M.A.; /Michigan State U., NSCL; Mokhov, N.V.

    A new parallel computing framework has been developed to use with general-purpose radiation transport codes. The framework was implemented as a C++ module that uses MPI for message passing. The module is significantly independent of radiation transport codes it can be used with, and is connected to the codes by means of a number of interface functions. The framework was integrated with the MARS15 code, and an effort is under way to deploy it in PHITS. Besides the parallel computing functionality, the framework offers a checkpoint facility that allows restarting calculations with a saved checkpoint file. The checkpoint facility canmore » be used in single process calculations as well as in the parallel regime. Several checkpoint files can be merged into one thus combining results of several calculations. The framework also corrects some of the known problems with the scheduling and load balancing found in the original implementations of the parallel computing functionality in MARS15 and PHITS. The framework can be used efficiently on homogeneous systems and networks of workstations, where the interference from the other users is possible.« less

  12. Integration of Geographical Information Systems and Geophysical Applications with Distributed Computing Technologies.

    NASA Astrophysics Data System (ADS)

    Pierce, M. E.; Aktas, M. S.; Aydin, G.; Fox, G. C.; Gadgil, H.; Sayar, A.

    2005-12-01

    We examine the application of Web Service Architectures and Grid-based distributed computing technologies to geophysics and geo-informatics. We are particularly interested in the integration of Geographical Information System (GIS) services with distributed data mining applications. GIS services provide the general purpose framework for building archival data services, real time streaming data services, and map-based visualization services that may be integrated with data mining and other applications through the use of distributed messaging systems and Web Service orchestration tools. Building upon on our previous work in these areas, we present our current research efforts. These include fundamental investigations into increasing XML-based Web service performance, supporting real time data streams, and integrating GIS mapping tools with audio/video collaboration systems for shared display and annotation.

  13. Instrument Systems Analysis and Verification Facility (ISAVF) users guide

    NASA Technical Reports Server (NTRS)

    Davis, J. F.; Thomason, J. O.; Wolfgang, J. L.

    1985-01-01

    The ISAVF facility is primarily an interconnected system of computers, special purpose real time hardware, and associated generalized software systems, which will permit the Instrument System Analysts, Design Engineers and Instrument Scientists, to perform trade off studies, specification development, instrument modeling, and verification of the instrument, hardware performance. It is not the intent of the ISAVF to duplicate or replace existing special purpose facilities such as the Code 710 Optical Laboratories or the Code 750 Test and Evaluation facilities. The ISAVF will provide data acquisition and control services for these facilities, as needed, using remote computer stations attached to the main ISAVF computers via dedicated communication lines.

  14. Computer Technology-Integrated Projects Should Not Supplant Craft Projects in Science Education

    ERIC Educational Resources Information Center

    Klopp, Tabatha J.; Rule, Audrey C.; Schneider, Jean Suchsland; Boody, Robert M.

    2014-01-01

    The current emphasis on computer technology integration and narrowing of the curriculum has displaced arts and crafts. However, the hands-on, concrete nature of craft work in science modeling enables students to understand difficult concepts and to be engaged and motivated while learning spatial, logical, and sequential thinking skills. Analogy…

  15. Computing thermal Wigner densities with the phase integration method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beutier, J.; Borgis, D.; Vuilleumier, R.

    2014-08-28

    We discuss how the Phase Integration Method (PIM), recently developed to compute symmetrized time correlation functions [M. Monteferrante, S. Bonella, and G. Ciccotti, Mol. Phys. 109, 3015 (2011)], can be adapted to sampling/generating the thermal Wigner density, a key ingredient, for example, in many approximate schemes for simulating quantum time dependent properties. PIM combines a path integral representation of the density with a cumulant expansion to represent the Wigner function in a form calculable via existing Monte Carlo algorithms for sampling noisy probability densities. The method is able to capture highly non-classical effects such as correlation among the momenta andmore » coordinates parts of the density, or correlations among the momenta themselves. By using alternatives to cumulants, it can also indicate the presence of negative parts of the Wigner density. Both properties are demonstrated by comparing PIM results to those of reference quantum calculations on a set of model problems.« less

  16. Multi-Purpose Thermal Hydraulic Loop: Advanced Reactor Technology Integral System Test (ARTIST) Facility for Support of Advanced Reactor Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James E. O'Brien; Piyush Sabharwall; SuJong Yoon

    2001-11-01

    Effective and robust high temperature heat transfer systems are fundamental to the successful deployment of advanced reactors for both power generation and non-electric applications. Plant designs often include an intermediate heat transfer loop (IHTL) with heat exchangers at either end to deliver thermal energy to the application while providing isolation of the primary reactor system. In order to address technical feasibility concerns and challenges a new high-temperature multi-fluid, multi-loop test facility “Advanced Reactor Technology Integral System Test facility” (ARTIST) is under development at the Idaho National Laboratory. The facility will include three flow loops: high-temperature helium, molten salt, and steam/water.more » Details of some of the design aspects and challenges of this facility, which is currently in the conceptual design phase, are discussed« less

  17. The application of generalized, cyclic, and modified numerical integration algorithms to problems of satellite orbit computation

    NASA Technical Reports Server (NTRS)

    Chesler, L.; Pierce, S.

    1971-01-01

    Generalized, cyclic, and modified multistep numerical integration methods are developed and evaluated for application to problems of satellite orbit computation. Generalized methods are compared with the presently utilized Cowell methods; new cyclic methods are developed for special second-order differential equations; and several modified methods are developed and applied to orbit computation problems. Special computer programs were written to generate coefficients for these methods, and subroutines were written which allow use of these methods with NASA's GEOSTAR computer program.

  18. Facilities | Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    integration research. Photo of the Hydrogen Infrastructure Testing and Research Facility building, with hydrogen fueling station and fuel cell vehicles. Hydrogen Infrastructure Testing and Research Facility The Hydrogen Infrastructure Testing and Research Facility (HITRF) at the ESIF combines electrolyzers, a

  19. An Integrated Spin-Labeling/Computational-Modeling Approach for Mapping Global Structures of Nucleic Acids.

    PubMed

    Tangprasertchai, Narin S; Zhang, Xiaojun; Ding, Yuan; Tham, Kenneth; Rohs, Remo; Haworth, Ian S; Qin, Peter Z

    2015-01-01

    The technique of site-directed spin labeling (SDSL) provides unique information on biomolecules by monitoring the behavior of a stable radical tag (i.e., spin label) using electron paramagnetic resonance (EPR) spectroscopy. In this chapter, we describe an approach in which SDSL is integrated with computational modeling to map conformations of nucleic acids. This approach builds upon a SDSL tool kit previously developed and validated, which includes three components: (i) a nucleotide-independent nitroxide probe, designated as R5, which can be efficiently attached at defined sites within arbitrary nucleic acid sequences; (ii) inter-R5 distances in the nanometer range, measured via pulsed EPR; and (iii) an efficient program, called NASNOX, that computes inter-R5 distances on given nucleic acid structures. Following a general framework of data mining, our approach uses multiple sets of measured inter-R5 distances to retrieve "correct" all-atom models from a large ensemble of models. The pool of models can be generated independently without relying on the inter-R5 distances, thus allowing a large degree of flexibility in integrating the SDSL-measured distances with a modeling approach best suited for the specific system under investigation. As such, the integrative experimental/computational approach described here represents a hybrid method for determining all-atom models based on experimentally-derived distance measurements. © 2015 Elsevier Inc. All rights reserved.

  20. An Integrated Spin-Labeling/Computational-Modeling Approach for Mapping Global Structures of Nucleic Acids

    PubMed Central

    Tangprasertchai, Narin S.; Zhang, Xiaojun; Ding, Yuan; Tham, Kenneth; Rohs, Remo; Haworth, Ian S.; Qin, Peter Z.

    2015-01-01

    The technique of site-directed spin labeling (SDSL) provides unique information on biomolecules by monitoring the behavior of a stable radical tag (i.e., spin label) using electron paramagnetic resonance (EPR) spectroscopy. In this chapter, we describe an approach in which SDSL is integrated with computational modeling to map conformations of nucleic acids. This approach builds upon a SDSL tool kit previously developed and validated, which includes three components: (i) a nucleotide-independent nitroxide probe, designated as R5, which can be efficiently attached at defined sites within arbitrary nucleic acid sequences; (ii) inter-R5 distances in the nanometer range, measured via pulsed EPR; and (iii) an efficient program, called NASNOX, that computes inter-R5 distances on given nucleic acid structures. Following a general framework of data mining, our approach uses multiple sets of measured inter-R5 distances to retrieve “correct” all-atom models from a large ensemble of models. The pool of models can be generated independently without relying on the inter-R5 distances, thus allowing a large degree of flexibility in integrating the SDSL-measured distances with a modeling approach best suited for the specific system under investigation. As such, the integrative experimental/computational approach described here represents a hybrid method for determining all-atom models based on experimentally-derived distance measurements. PMID:26477260

  1. Logic integration of mRNA signals by an RNAi-based molecular computer.

    PubMed

    Xie, Zhen; Liu, Siyuan John; Bleris, Leonidas; Benenson, Yaakov

    2010-05-01

    Synthetic in vivo molecular 'computers' could rewire biological processes by establishing programmable, non-native pathways between molecular signals and biological responses. Multiple molecular computer prototypes have been shown to work in simple buffered solutions. Many of those prototypes were made of DNA strands and performed computations using cycles of annealing-digestion or strand displacement. We have previously introduced RNA interference (RNAi)-based computing as a way of implementing complex molecular logic in vivo. Because it also relies on nucleic acids for its operation, RNAi computing could benefit from the tools developed for DNA systems. However, these tools must be harnessed to produce bioactive components and be adapted for harsh operating environments that reflect in vivo conditions. In a step toward this goal, we report the construction and implementation of biosensors that 'transduce' mRNA levels into bioactive, small interfering RNA molecules via RNA strand exchange in a cell-free Drosophila embryo lysate, a step beyond simple buffered environments. We further integrate the sensors with our RNAi 'computational' module to evaluate two-input logic functions on mRNA concentrations. Our results show how RNA strand exchange can expand the utility of RNAi computing and point toward the possibility of using strand exchange in a native biological setting.

  2. Integrated command, control, communication and computation system design study. Summary of tasks performed

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A summary of tasks performed on an integrated command, control, communication, and computation system design study is given. The Tracking and Data Relay Satellite System command and control system study, an automated real-time operations study, and image processing work are discussed.

  3. Integrated Computational Solution for Predicting Skin Sensitization Potential of Molecules

    PubMed Central

    Desai, Aarti; Singh, Vivek K.; Jere, Abhay

    2016-01-01

    Introduction Skin sensitization forms a major toxicological endpoint for dermatology and cosmetic products. Recent ban on animal testing for cosmetics demands for alternative methods. We developed an integrated computational solution (SkinSense) that offers a robust solution and addresses the limitations of existing computational tools i.e. high false positive rate and/or limited coverage. Results The key components of our solution include: QSAR models selected from a combinatorial set, similarity information and literature-derived sub-structure patterns of known skin protein reactive groups. Its prediction performance on a challenge set of molecules showed accuracy = 75.32%, CCR = 74.36%, sensitivity = 70.00% and specificity = 78.72%, which is better than several existing tools including VEGA (accuracy = 45.00% and CCR = 54.17% with ‘High’ reliability scoring), DEREK (accuracy = 72.73% and CCR = 71.44%) and TOPKAT (accuracy = 60.00% and CCR = 61.67%). Although, TIMES-SS showed higher predictive power (accuracy = 90.00% and CCR = 92.86%), the coverage was very low (only 10 out of 77 molecules were predicted reliably). Conclusions Owing to improved prediction performance and coverage, our solution can serve as a useful expert system towards Integrated Approaches to Testing and Assessment for skin sensitization. It would be invaluable to cosmetic/ dermatology industry for pre-screening their molecules, and reducing time, cost and animal testing. PMID:27271321

  4. An Integrative and Collaborative Approach to Creating a Diverse and Computationally Competent Geoscience Workforce

    NASA Astrophysics Data System (ADS)

    Moore, S. L.; Kar, A.; Gomez, R.

    2015-12-01

    A partnership between Fort Valley State University (FVSU), the Jackson School of Geosciences at The University of Texas (UT) at Austin, and the Texas Advanced Computing Center (TACC) is engaging computational geoscience faculty and researchers with academically talented underrepresented minority (URM) students, training them to solve grand challenges . These next generation computational geoscientists are being trained to solve some of the world's most challenging geoscience grand challenges requiring data intensive large scale modeling and simulation on high performance computers . UT Austin's geoscience outreach program GeoFORCE, recently awarded the Presidential Award in Excellence in Science, Mathematics and Engineering Mentoring, contributes to the collaborative best practices in engaging researchers with URM students. Collaborative efforts over the past decade are providing data demonstrating that integrative pipeline programs with mentoring and paid internship opportunities, multi-year scholarships, computational training, and communication skills development are having an impact on URMs developing middle skills for geoscience careers. Since 1997, the Cooperative Developmental Energy Program at FVSU and its collaborating universities have graduated 87 engineers, 33 geoscientists, and eight health physicists. Recruited as early as high school, students enroll for three years at FVSU majoring in mathematics, chemistry or biology, and then transfer to UT Austin or other partner institutions to complete a second STEM degree, including geosciences. A partnership with the Integrative Computational Education and Research Traineeship (ICERT), a National Science Foundation (NSF) Research Experience for Undergraduates (REU) Site at TACC provides students with a 10-week summer research experience at UT Austin. Mentored by TACC researchers, students with no previous background in computational science learn to use some of the world's most powerful high performance

  5. Knowledge Management tools integration within DLR's concurrent engineering facility

    NASA Astrophysics Data System (ADS)

    Lopez, R. P.; Soragavi, G.; Deshmukh, M.; Ludtke, D.

    The complexity of space endeavors has increased the need for Knowledge Management (KM) tools. The concept of KM involves not only the electronic storage of knowledge, but also the process of making this knowledge available, reusable and traceable. Establishing a KM concept within the Concurrent Engineering Facility (CEF) has been a research topic of the German Aerospace Centre (DLR). This paper presents the current KM tools of the CEF: the Software Platform for Organizing and Capturing Knowledge (S.P.O.C.K.), the data model Virtual Satellite (VirSat), and the Simulation Model Library (SimMoLib), and how their usage improved the Concurrent Engineering (CE) process. This paper also exposes the lessons learned from the introduction of KM practices into the CEF and elaborates a roadmap for the further development of KM in CE activities at DLR. The results of the application of the Knowledge Management tools have shown the potential of merging the three software platforms with their functionalities, as the next step towards the fully integration of KM practices into the CE process. VirSat will stay as the main software platform used within a CE study, and S.P.O.C.K. and SimMoLib will be integrated into VirSat. These tools will support the data model as a reference and documentation source, and as an access to simulation and calculation models. The use of KM tools in the CEF aims to become a basic practice during the CE process. The settlement of this practice will result in a much more extended knowledge and experience exchange within the Concurrent Engineering environment and, consequently, the outcome of the studies will comprise higher quality in the design of space systems.

  6. Computer Operating System Maintenance.

    DTIC Science & Technology

    1982-06-01

    FACILITY The Computer Management Information Facility ( CMIF ) system was developed by Rapp Systems to fulfill the need at the CRF to record and report on...computer center resource usage and utilization. The foundation of the CMIF system is a System 2000 data base (CRFMGMT) which stores and permits access

  7. Marcus canonical integral for non-Gaussian processes and its computation: pathwise simulation and tau-leaping algorithm.

    PubMed

    Li, Tiejun; Min, Bin; Wang, Zhiming

    2013-03-14

    The stochastic integral ensuring the Newton-Leibnitz chain rule is essential in stochastic energetics. Marcus canonical integral has this property and can be understood as the Wong-Zakai type smoothing limit when the driving process is non-Gaussian. However, this important concept seems not well-known for physicists. In this paper, we discuss Marcus integral for non-Gaussian processes and its computation in the context of stochastic energetics. We give a comprehensive introduction to Marcus integral and compare three equivalent definitions in the literature. We introduce the exact pathwise simulation algorithm and give the error analysis. We show how to compute the thermodynamic quantities based on the pathwise simulation algorithm. We highlight the information hidden in the Marcus mapping, which plays the key role in determining thermodynamic quantities. We further propose the tau-leaping algorithm, which advance the process with deterministic time steps when tau-leaping condition is satisfied. The numerical experiments and its efficiency analysis show that it is very promising.

  8. Use of Continuous Integration Tools for Application Performance Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vergara Larrea, Veronica G; Joubert, Wayne; Fuson, Christopher B

    High performance computing systems are becom- ing increasingly complex, both in node architecture and in the multiple layers of software stack required to compile and run applications. As a consequence, the likelihood is increasing for application performance regressions to occur as a result of routine upgrades of system software components which interact in complex ways. The purpose of this study is to evaluate the effectiveness of continuous integration tools for application performance monitoring on HPC systems. In addition, this paper also describes a prototype system for application perfor- mance monitoring based on Jenkins, a Java-based continuous integration tool. The monitoringmore » system described leverages several features in Jenkins to track application performance results over time. Preliminary results and lessons learned from monitoring applications on Cray systems at the Oak Ridge Leadership Computing Facility are presented.« less

  9. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov Websites

    DOE-funded research projects that are integrating cybersecurity controls with power systems principles Management, a hardware and software system that mimics the communications, power systems, and cybersecurity

  10. Test and User Facilities | NREL

    Science.gov Websites

    | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z B Battery Thermal and Life Test Facility High-Flux Solar Furnace I Integrated Biorefinery Research Facility L Large Payload Solar Tracker M

  11. Earth integrated design: office dormitory facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shapira, H. B.; Barnes, P. R.

    1980-01-01

    The generation process of the design of the Joint Institute for Heavy Ion Research is described. Architectural and energy considerations are discussed. The facility will contain living quarters for guest scientists who come to Oak Ridge to conduct short experiments and sleeping alcoves for local researchers on long experimental shifts as well as office space. (MHR)

  12. Energy Systems Integration Newsletter | Energy Systems Integration Facility

    Science.gov Websites

    simulated sequences based on a model network. The competitive procurement process provided comparative , procurement help, design reviews, and now construction support. Miramar project support is part of integrated

  13. Two-Level Verification of Data Integrity for Data Storage in Cloud Computing

    NASA Astrophysics Data System (ADS)

    Xu, Guangwei; Chen, Chunlin; Wang, Hongya; Zang, Zhuping; Pang, Mugen; Jiang, Ping

    Data storage in cloud computing can save capital expenditure and relive burden of storage management for users. As the lose or corruption of files stored may happen, many researchers focus on the verification of data integrity. However, massive users often bring large numbers of verifying tasks for the auditor. Moreover, users also need to pay extra fee for these verifying tasks beyond storage fee. Therefore, we propose a two-level verification of data integrity to alleviate these problems. The key idea is to routinely verify the data integrity by users and arbitrate the challenge between the user and cloud provider by the auditor according to the MACs and ϕ values. The extensive performance simulations show that the proposed scheme obviously decreases auditor's verifying tasks and the ratio of wrong arbitration.

  14. NASA Plum Brook's B-2 Test Facility: Thermal Vacuum and Propellant Test Facility

    NASA Technical Reports Server (NTRS)

    Kudlac, Maureen T.; Weaver, Harold F.; Cmar, Mark D.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) Plum Brook Station (PBS) Spacecraft Propulsion Research Facility, commonly referred to as B-2, is NASA's third largest thermal vacuum facility. It is the largest designed to store and transfer large quantities of liquid hydrogen and liquid oxygen, and is perfectly suited to support developmental testing of upper stage chemical propulsion systems as well as fully integrated stages. The facility is also capable of providing thermal-vacuum simulation services to support testing of large lightweight structures, Cryogenic Fluid Management (CFM) systems, electric propulsion test programs, and other In-Space propulsion programs. A recently completed integrated system test demonstrated the refurbished thermal vacuum capabilities of the facility. The test used the modernized data acquisition and control system to monitor the facility. The heat sink provided a uniform temperature environment of approximately 77 K. The modernized infrared lamp array produced a nominal heat flux of 1.4 kW/sq m. With the lamp array and heat sink operating simultaneously, the thermal systems produced a heat flux pattern simulating radiation to space on one surface and solar exposure on the other surface.

  15. On the design of computer-based models for integrated environmental science.

    PubMed

    McIntosh, Brian S; Jeffrey, Paul; Lemon, Mark; Winder, Nick

    2005-06-01

    The current research agenda in environmental science is dominated by calls to integrate science and policy to better understand and manage links between social (human) and natural (nonhuman) processes. Freshwater resource management is one area where such calls can be heard. Designing computer-based models for integrated environmental science poses special challenges to the research community. At present it is not clear whether such tools, or their outputs, receive much practical policy or planning application. It is argued that this is a result of (1) a lack of appreciation within the research modeling community of the characteristics of different decision-making processes including policy, planning, and (2) participation, (3) a lack of appreciation of the characteristics of different decision-making contexts, (4) the technical difficulties in implementing the necessary support tool functionality, and (5) the socio-technical demands of designing tools to be of practical use. This article presents a critical synthesis of ideas from each of these areas and interprets them in terms of design requirements for computer-based models being developed to provide scientific information support for policy and planning. Illustrative examples are given from the field of freshwater resources management. Although computer-based diagramming and modeling tools can facilitate processes of dialogue, they lack adequate simulation capabilities. Component-based models and modeling frameworks provide such functionality and may be suited to supporting problematic or messy decision contexts. However, significant technical (implementation) and socio-technical (use) challenges need to be addressed before such ambition can be realized.

  16. Computer-aided operations engineering with integrated models of systems and operations

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Ryan, Dan; Fleming, Land

    1994-01-01

    CONFIG 3 is a prototype software tool that supports integrated conceptual design evaluation from early in the product life cycle, by supporting isolated or integrated modeling, simulation, and analysis of the function, structure, behavior, failures and operation of system designs. Integration and reuse of models is supported in an object-oriented environment providing capabilities for graph analysis and discrete event simulation. Integration is supported among diverse modeling approaches (component view, configuration or flow path view, and procedure view) and diverse simulation and analysis approaches. Support is provided for integrated engineering in diverse design domains, including mechanical and electro-mechanical systems, distributed computer systems, and chemical processing and transport systems. CONFIG supports abstracted qualitative and symbolic modeling, for early conceptual design. System models are component structure models with operating modes, with embedded time-related behavior models. CONFIG supports failure modeling and modeling of state or configuration changes that result in dynamic changes in dependencies among components. Operations and procedure models are activity structure models that interact with system models. CONFIG is designed to support evaluation of system operability, diagnosability and fault tolerance, and analysis of the development of system effects of problems over time, including faults, failures, and procedural or environmental difficulties.

  17. DITTY - a computer program for calculating population dose integrated over ten thousand years

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Napier, B.A.; Peloquin, R.A.; Strenge, D.L.

    The computer program DITTY (Dose Integrated Over Ten Thousand Years) was developed to determine the collective dose from long term nuclear waste disposal sites resulting from the ground-water pathways. DITTY estimates the time integral of collective dose over a ten-thousand-year period for time-variant radionuclide releases to surface waters, wells, or the atmosphere. This document includes the following information on DITTY: a description of the mathematical models, program designs, data file requirements, input preparation, output interpretations, sample problems, and program-generated diagnostic messages.

  18. Integrated Facilities Management and Fixed Asset Accounting.

    ERIC Educational Resources Information Center

    Golz, W. C., Jr.

    1984-01-01

    A record of a school district's assets--land, buildings, machinery, and equipment--can be a useful management tool that meets accounting requirements and provides appropriate information for budgeting, forecasting, and facilities management. (MLF)

  19. Integrity-Based Budgeting

    ERIC Educational Resources Information Center

    Kaleba, Frank

    2008-01-01

    The central problem for the facility manager of large portfolios is not the accuracy of data, but rather data integrity. Data integrity means that it's (1) acceptable to the users; (2) based upon an objective source; (3) reproducible; and (4) internally consistent. Manns and Katsinas, in their January/February 2006 Facilities Manager article…

  20. Facilitating Integration of Electron Beam Lithography Devices with Interactive Videodisc, Computer-Based Simulation and Job Aids.

    ERIC Educational Resources Information Center

    Von Der Linn, Robert Christopher

    A needs assessment of the Grumman E-Beam Systems Group identified the requirement for additional skill mastery for the engineers who assemble, integrate, and maintain devices used to manufacture integrated circuits. Further analysis of the tasks involved led to the decision to develop interactive videodisc, computer-based job aids to enable…

  1. Plant model of KIPT neutron source facility simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Yan; Wei, Thomas Y.; Grelle, Austin L.

    2016-02-01

    Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine are collaborating on constructing a neutron source facility at KIPT, Kharkov, Ukraine. The facility has 100-kW electron beam driving a subcritical assembly (SCA). The electron beam interacts with a natural uranium target or a tungsten target to generate neutrons, and deposits its power in the target zone. The total fission power generated in SCA is about 300 kW. Two primary cooling loops are designed to remove 100-kW and 300-kW from the target zone and the SCA, respectively. A secondary cooling system ismore » coupled with the primary cooling system to dispose of the generated heat outside the facility buildings to the atmosphere. In addition, the electron accelerator has a low efficiency for generating the electron beam, which uses another secondary cooling loop to remove the generated heat from the accelerator primary cooling loop. One of the main functions the KIPT neutron source facility is to train young nuclear specialists; therefore, ANL has developed the KIPT Neutron Source Facility Simulator for this function. In this simulator, a Plant Control System and a Plant Protection System were developed to perform proper control and to provide automatic protection against unsafe and improper operation of the facility during the steady-state and the transient states using a facility plant model. This report focuses on describing the physics of the plant model and provides several test cases to demonstrate its capabilities. The plant facility model uses the PYTHON script language. It is consistent with the computer language of the plant control system. It is easy to integrate with the simulator without an additional interface, and it is able to simulate the transients of the cooling systems with system control variables changing on real-time.« less

  2. Integrating Computers into Michigan Education.

    ERIC Educational Resources Information Center

    Lentz, Linda P.

    Computer use in Michigan schools has evolved in three stages over the past decade. In the first, computers were new and few, and professional development was typically self-initiated. The Michigan Association of Computer Users in Learning (MACUL) was formed at this time to provide resources to local districts which they were unable to provide…

  3. Multilevel examination of facility characteristics, social integration, and health for older adults living in nursing homes.

    PubMed

    Leedahl, Skye N; Chapin, Rosemary K; Little, Todd D

    2015-01-01

    Testing a model based on past research and theory, this study assessed relationships between facility characteristics (i.e., culture change efforts, social workers) and residents' social networks and social support across nursing homes; and examined relationships between multiple aspects of social integration (i.e., social networks, social capital, social engagement, social support) and mental and functional health for older adults in nursing homes. Data were collected at nursing homes using a planned missing data design with random sampling techniques. Data collection occurred at the individual-level through in-person structured interviews with older adult nursing home residents (N = 140) and at the facility-level (N = 30) with nursing home staff. The best fitting multilevel structural equation model indicated that the culture change subscale for relationships significantly predicted differences in residents' social networks. Additionally, social networks had a positive indirect relationship with mental and functional health among residents primarily via social engagement. Social capital had a positive direct relationship with both health outcomes. To predict better social integration and mental and functional health outcomes for nursing homes residents, study findings support prioritizing that close relationships exist among staff, residents, and the community as well as increased resident social engagement and social trust. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Total quality through computer integrated manufacturing in the pharmaceutical industry.

    PubMed

    Ufret, C M

    1995-01-01

    The role of Computer Integrated Manufacturing (CIM) in the pursue of total quality in pharmaceutical manufacturing is assessed. CIM key objectives, design criteria, and performance measurements, in addition to its scope and implementation in a hierarchical structure, are explored in detail. Key elements for the success of each phase in a CIM project and a brief status of current CIM implementations in the pharmaceutical industry are presented. The role of World Class Manufacturing performance standards and other key issues to achieve full CIM benefits are also addressed.

  5. Microcosm to Cosmos: The Growth of a Divisional Computer Network

    PubMed Central

    Johannes, R.S.; Kahane, Stephen N.

    1987-01-01

    In 1982, we reported the deployment of a network of microcomputers in the Division of Gastroenterology[1]. This network was based upon Corvus Systems Omninet®. Corvus was one of the very first firms to offer networking products for PC's. This PC development occurred coincident with the planning phase of the Johns Hopkins Hospital's multisegment ethernet project. A rich communications infra-structure is now in place at the Johns Hopkins Medical Institutions[2,3]. Shortly after the hospital development under the direction of the Operational and Clinical Systems Division (OCS) development began, the Johns Hopkins School of Medicine began an Integrated Academic Information Management Systems (IAIMS) planning effort. We now present a model that uses aspects of all three planning efforts (PC networks, Hospital Information Systems & IAIMS) to build a divisional computing facility. This facility is viewed as a terminal leaf on then institutional network diagram. Nevertheless, it is noteworthy that this leaf, the divisional resource in the Division of Gastroenterology (GASNET), has a rich substructure and functionality of its own, perhaps revealing the recursive nature of network architecture. The current status, design and function of the GASNET computational facility is discussed. Among the major positive aspects of this design are the sharing and centralization of MS-DOS software, the high-speed DOS/Unix link that makes available most of the our institution's computing resources.

  6. Argonne Leadership Computing Facility 2011 annual report : Shaping future supercomputing.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papka, M.; Messina, P.; Coffey, R.

    The ALCF's Early Science Program aims to prepare key applications for the architecture and scale of Mira and to solidify libraries and infrastructure that will pave the way for other future production applications. Two billion core-hours have been allocated to 16 Early Science projects on Mira. The projects, in addition to promising delivery of exciting new science, are all based on state-of-the-art, petascale, parallel applications. The project teams, in collaboration with ALCF staff and IBM, have undertaken intensive efforts to adapt their software to take advantage of Mira's Blue Gene/Q architecture, which, in a number of ways, is a precursormore » to future high-performance-computing architecture. The Argonne Leadership Computing Facility (ALCF) enables transformative science that solves some of the most difficult challenges in biology, chemistry, energy, climate, materials, physics, and other scientific realms. Users partnering with ALCF staff have reached research milestones previously unattainable, due to the ALCF's world-class supercomputing resources and expertise in computation science. In 2011, the ALCF's commitment to providing outstanding science and leadership-class resources was honored with several prestigious awards. Research on multiscale brain blood flow simulations was named a Gordon Bell Prize finalist. Intrepid, the ALCF's BG/P system, ranked No. 1 on the Graph 500 list for the second consecutive year. The next-generation BG/Q prototype again topped the Green500 list. Skilled experts at the ALCF enable researchers to conduct breakthrough science on the Blue Gene system in key ways. The Catalyst Team matches project PIs with experienced computational scientists to maximize and accelerate research in their specific scientific domains. The Performance Engineering Team facilitates the effective use of applications on the Blue Gene system by assessing and improving the algorithms used by applications and the techniques used to implement those

  7. e-Infrastructures for Astronomy: An Integrated View

    NASA Astrophysics Data System (ADS)

    Pasian, F.; Longo, G.

    2010-12-01

    As for other disciplines, the capability of performing “Big Science” in astrophysics requires the availability of large facilities. In the field of ICT, computational resources (e.g. HPC) are important, but are far from being enough for the community: as a matter of fact, the whole set of e-infrastructures (network, computing nodes, data repositories, applications) need to work in an interoperable way. This implies the development of common (or at least compatible) user interfaces to computing resources, transparent access to observations and numerical simulations through the Virtual Observatory, integrated data processing pipelines, data mining and semantic web applications. Achieving this interoperability goal is a must to build a real “Knowledge Infrastructure” in the astrophysical domain. Also, the emergence of new professional profiles (e.g. the “astro-informatician”) is necessary to allow defining and implementing properly this conceptual schema.

  8. Development of Articulated Competency-Based Curriculum in Computer Integrated Manufacturing Technology. Final Report.

    ERIC Educational Resources Information Center

    Luzerne County Community Coll., Nanticoke, PA.

    A project was conducted at the Community College of Luzerne County (Pennsylvania) to develop, in cooperation with area vocational-technical schools, the first year of a competency-based curriculum in computer-integrated manufacturing. Existing programs were reviewed and private sector input was sought in developing the curriculum and identifying…

  9. The Multi-User Droplet Combustion Apparatus: the Development and Integration Concept for Droplet Combustion Payloads in the Fluids and Combustion Facility Combustion Integrated Rack

    NASA Astrophysics Data System (ADS)

    Myhre, C. A.

    2002-01-01

    The Multi-user Droplet Combustion Apparatus (MDCA) is a multi-user facility designed to accommodate four different droplet combustion science experiments. The MDCA will conduct experiments using the Combustion Integrated Rack (CIR) of the NASA Glenn Research Center's Fluids and Combustion Facility (FCF). The payload is planned for the International Space Station. The MDCA, in conjunction with the CIR, will allow for cost effective extended access to the microgravity environment, not possible on previous space flights. It is currently in the Engineering Model build phase with a planned flight launch with CIR in 2004. This paper provides an overview of the capabilities and development status of the MDCA. The MDCA contains the hardware and software required to conduct unique droplet combustion experiments in space. It consists of a Chamber Insert Assembly, an Avionics Package, and a multiple array of diagnostics. Its modular approach permits on-orbit changes for accommodating different fuels, fuel flow rates, soot sampling mechanisms, and varying droplet support and translation mechanisms to accommodate multiple investigations. Unique diagnostic measurement capabilities for each investigation are also provided. Additional hardware provided by the CIR facility includes the structural support, a combustion chamber, utilities for the avionics and diagnostic packages, and the fuel mixing capability for PI specific combustion chamber environments. Common diagnostics provided by the CIR will also be utilized by the MDCA. Single combustible fuel droplets of varying sizes, freely deployed or supported by a tether are planned for study using the MDCA. Such research supports how liquid-fuel-droplets ignite, spread, and extinguish under quiescent microgravity conditions. This understanding will help us develop more efficient energy production and propulsion systems on Earth and in space, deal better with combustion generated pollution, and address fire hazards associated with

  10. Combustion Integration Rack (CIR) Testing

    NASA Image and Video Library

    2015-02-18

    Fluids and Combustion Facility (FCF), Combustion Integration Rack (CIR) during testing in the Structural Dynamics Laboratory (SDL). The Fluids and Combustion Facility (FCF) is a set of two International Space Station (ISS) research facilities designed to support physical and biological experiments in support of technology development and validation in space. The FCF consists of two modular, reconfigurable racks called the Combustion Integration Rack (CIR) and the Fluids Integration Rack (FIR). The CIR and FIR were developed at NASAʼs Glenn Research Center.

  11. EPA Facility Registry System (FRS): NEPT

    EPA Pesticide Factsheets

    This web feature service contains location and facility identification information from EPA's Facility Registry System (FRS) for the subset of facilities that link to the National Environmental Performance Track (NEPT) Program dataset. FRS identifies and geospatially locates facilities, sites or places subject to environmental regulations or of environmental interest. Using vigorous verification and data management procedures, FRS integrates facility data from EPA's national program systems, other federal agencies, and State and tribal master facility records and provides EPA with a centrally managed, single source of comprehensive and authoritative information on facilities. Additional information on FRS is available at the EPA website https://www.epa.gov/enviro/facility-registry-service-frs

  12. EPA Facility Registry Service (FRS): NEI

    EPA Pesticide Factsheets

    This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of facilities that link to the National Emissions Inventory (NEI) Program dataset. FRS identifies and geospatially locates facilities, sites or places subject to environmental regulations or of environmental interest. Using vigorous verification and data management procedures, FRS integrates facility data from EPA's national program systems, other federal agencies, and State and tribal master facility records and provides EPA with a centrally managed, single source of comprehensive and authoritative information on facilities. Additional information on FRS is available at the EPA website https://www.epa.gov/enviro/facility-registry-service-frs

  13. Integration of Openstack cloud resources in BES III computing cluster

    NASA Astrophysics Data System (ADS)

    Li, Haibo; Cheng, Yaodong; Huang, Qiulan; Cheng, Zhenjing; Shi, Jingyan

    2017-10-01

    Cloud computing provides a new technical means for data processing of high energy physics experiment. However, the resource of each queue is fixed and the usage of the resource is static in traditional job management system. In order to make it simple and transparent for physicist to use, we developed a virtual cluster system (vpmanager) to integrate IHEPCloud and different batch systems such as Torque and HTCondor. Vpmanager provides dynamic virtual machines scheduling according to the job queue. The BES III use case results show that resource efficiency is greatly improved.

  14. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov Websites

    technologies and business models help utilities and tech companies address integrate distributed energy invaders: Disruptive technologies crowding the utility space" at the Utilities in a Time of Change and Franyutti, Vice-President, Energy Business Group, Mexichem

  15. Three-dimensional integration of nanotechnologies for computing and data storage on a single chip.

    PubMed

    Shulaker, Max M; Hills, Gage; Park, Rebecca S; Howe, Roger T; Saraswat, Krishna; Wong, H-S Philip; Mitra, Subhasish

    2017-07-05

    The computing demands of future data-intensive applications will greatly exceed the capabilities of current electronics, and are unlikely to be met by isolated improvements in transistors, data storage technologies or integrated circuit architectures alone. Instead, transformative nanosystems, which use new nanotechnologies to simultaneously realize improved devices and new integrated circuit architectures, are required. Here we present a prototype of such a transformative nanosystem. It consists of more than one million resistive random-access memory cells and more than two million carbon-nanotube field-effect transistors-promising new nanotechnologies for use in energy-efficient digital logic circuits and for dense data storage-fabricated on vertically stacked layers in a single chip. Unlike conventional integrated circuit architectures, the layered fabrication realizes a three-dimensional integrated circuit architecture with fine-grained and dense vertical connectivity between layers of computing, data storage, and input and output (in this instance, sensing). As a result, our nanosystem can capture massive amounts of data every second, store it directly on-chip, perform in situ processing of the captured data, and produce 'highly processed' information. As a working prototype, our nanosystem senses and classifies ambient gases. Furthermore, because the layers are fabricated on top of silicon logic circuitry, our nanosystem is compatible with existing infrastructure for silicon-based technologies. Such complex nano-electronic systems will be essential for future high-performance and highly energy-efficient electronic systems.

  16. Three-dimensional integration of nanotechnologies for computing and data storage on a single chip

    NASA Astrophysics Data System (ADS)

    Shulaker, Max M.; Hills, Gage; Park, Rebecca S.; Howe, Roger T.; Saraswat, Krishna; Wong, H.-S. Philip; Mitra, Subhasish

    2017-07-01

    The computing demands of future data-intensive applications will greatly exceed the capabilities of current electronics, and are unlikely to be met by isolated improvements in transistors, data storage technologies or integrated circuit architectures alone. Instead, transformative nanosystems, which use new nanotechnologies to simultaneously realize improved devices and new integrated circuit architectures, are required. Here we present a prototype of such a transformative nanosystem. It consists of more than one million resistive random-access memory cells and more than two million carbon-nanotube field-effect transistors—promising new nanotechnologies for use in energy-efficient digital logic circuits and for dense data storage—fabricated on vertically stacked layers in a single chip. Unlike conventional integrated circuit architectures, the layered fabrication realizes a three-dimensional integrated circuit architecture with fine-grained and dense vertical connectivity between layers of computing, data storage, and input and output (in this instance, sensing). As a result, our nanosystem can capture massive amounts of data every second, store it directly on-chip, perform in situ processing of the captured data, and produce ‘highly processed’ information. As a working prototype, our nanosystem senses and classifies ambient gases. Furthermore, because the layers are fabricated on top of silicon logic circuitry, our nanosystem is compatible with existing infrastructure for silicon-based technologies. Such complex nano-electronic systems will be essential for future high-performance and highly energy-efficient electronic systems.

  17. Yahoo! Compute Coop (YCC). A Next-Generation Passive Cooling Design for Data Centers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robison, AD; Page, Christina; Lytle, Bob

    The purpose of the Yahoo! Compute Coop (YCC) project is to research, design, build and implement a greenfield "efficient data factory" and to specifically demonstrate that the YCC concept is feasible for large facilities housing tens of thousands of heat-producing computing servers. The project scope for the Yahoo! Compute Coop technology includes: - Analyzing and implementing ways in which to drastically decrease energy consumption and waste output. - Analyzing the laws of thermodynamics and implementing naturally occurring environmental effects in order to maximize the "free-cooling" for large data center facilities. "Free cooling" is the direct usage of outside air tomore » cool the servers vs. traditional "mechanical cooling" which is supplied by chillers or other Dx units. - Redesigning and simplifying building materials and methods. - Shortening and simplifying build-to-operate schedules while at the same time reducing initial build and operating costs. Selected for its favorable climate, the greenfield project site is located in Lockport, NY. Construction on the 9.0 MW critical load data center facility began in May 2009, with the fully operational facility deployed in September 2010. The relatively low initial build cost, compatibility with current server and network models, and the efficient use of power and water are all key features that make it a highly compatible and globally implementable design innovation for the data center industry. Yahoo! Compute Coop technology is designed to achieve 99.98% uptime availability. This integrated building design allows for free cooling 99% of the year via the building's unique shape and orientation, as well as server physical configuration.« less

  18. Highly integrated digital engine control system on an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Haering, E. A., Jr.

    1984-01-01

    The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrated engine-airframe control systems. This system is being used on the F-15 airplane at the Dryden Flight Research Facility of NASA Ames Research Center. An integrated flightpath management mode and an integrated adaptive engine stall margin mode are being implemented into the system. The adaptive stall margin mode is a highly integrated mode in which the airplane flight conditions, the resulting inlet distortion, and the engine stall margin are continuously computed; the excess stall margin is used to uptrim the engine for more thrust. The integrated flightpath management mode optimizes the flightpath and throttle setting to reach a desired flight condition. The increase in thrust and the improvement in airplane performance is discussed in this paper.

  19. Computational fluid dynamics for propulsion technology: Geometric grid visualization in CFD-based propulsion technology research

    NASA Technical Reports Server (NTRS)

    Ziebarth, John P.; Meyer, Doug

    1992-01-01

    The coordination is examined of necessary resources, facilities, and special personnel to provide technical integration activities in the area of computational fluid dynamics applied to propulsion technology. Involved is the coordination of CFD activities between government, industry, and universities. Current geometry modeling, grid generation, and graphical methods are established to use in the analysis of CFD design methodologies.

  20. Project Integration Architecture (PIA) and Computational Analysis Programming Interface (CAPRI) for Accessing Geometry Data from CAD Files

    NASA Technical Reports Server (NTRS)

    Benyo, Theresa L.

    2002-01-01

    Integration of a supersonic inlet simulation with a computer aided design (CAD) system is demonstrated. The integration is performed using the Project Integration Architecture (PIA). PIA provides a common environment for wrapping many types of applications. Accessing geometry data from CAD files is accomplished by incorporating appropriate function calls from the Computational Analysis Programming Interface (CAPRI). CAPRI is a CAD vendor neutral programming interface that aids in acquiring geometry data directly from CAD files. The benefits of wrapping a supersonic inlet simulation into PIA using CAPRI are; direct access of geometry data, accurate capture of geometry data, automatic conversion of data units, CAD vendor neutral operation, and on-line interactive history capture. This paper describes the PIA and the CAPRI wrapper and details the supersonic inlet simulation demonstration.

  1. Transterm—extended search facilities and improved integration with other databases

    PubMed Central

    Jacobs, Grant H.; Stockwell, Peter A.; Tate, Warren P.; Brown, Chris M.

    2006-01-01

    Transterm has now been publicly available for >10 years. Major changes have been made since its last description in this database issue in 2002. The current database provides data for key regions of mRNA sequences, a curated database of mRNA motifs and tools to allow users to investigate their own motifs or mRNA sequences. The key mRNA regions database is derived computationally from Genbank. It contains 3′ and 5′ flanking regions, the initiation and termination signal context and coding sequence for annotated CDS features from Genbank and RefSeq. The database is non-redundant, enabling summary files and statistics to be prepared for each species. Advances include providing extended search facilities, the database may now be searched by BLAST in addition to regular expressions (patterns) allowing users to search for motifs such as known miRNA sequences, and the inclusion of RefSeq data. The database contains >40 motifs or structural patterns important for translational control. In this release, patterns from UTRsite and Rfam are also incorporated with cross-referencing. Users may search their sequence data with Transterm or user-defined patterns. The system is accessible at . PMID:16381889

  2. Identifying Challenges to the Integration of Computer-Based Surveillance Information Systems in a Large City Health Department: A Case Study.

    PubMed

    Jennings, Jacky M; Stover, Jeffrey A; Bair-Merritt, Megan H; Fichtenberg, Caroline; Munoz, Mary Grace; Maziad, Rafiq; Ketemepi, Sherry Johnson; Zenilman, Jonathan

    2009-01-01

    Integrated infectious disease surveillance information systems have the potential to provide important new surveillance capacities and business efficiencies for local health departments. We conducted a case study at a large city health department of the primary computer-based infectious disease surveillance information systems during a 10-year period to identify the major challenges for information integration across the systems. The assessment included key informant interviews and evaluations of the computer-based surveillance information systems used for acute communicable diseases, human immunodeficiency virus/acquired immunodeficiency syndrome, sexually transmitted diseases, and tuberculosis. Assessments were conducted in 1998 with a follow-up in 2008. Assessments specifically identified and described the primary computer-based surveillance information system, any duplicative information systems, and selected variables collected. Persistent challenges to information integration across the information systems included the existence of duplicative data systems, differences in the variables used to collect similar information, and differences in basic architecture. The assessments identified a number of challenges for information integration across the infectious disease surveillance information systems at this city health department. The results suggest that local disease control programs use computer-based surveillance information systems that were not designed for data integration. To the extent that integration provides important new surveillance capacities and business efficiencies, we recommend that patient-centric information systems be designed that provide all the epidemiologic, clinical, and research needs in one system. In addition, the systems should include a standard system of elements and fields across similar surveillance systems.

  3. Space Station Furnace Facility. Experiment/Facility Requirements Document (E/FRD), volume 2, appendix 5

    NASA Technical Reports Server (NTRS)

    Kephart, Nancy

    1992-01-01

    The function of the Space Station Furnace Facility (SSFF) is to support materials research into the crystal growth and solidification processes of electronic and photonic materials, metals and alloys, and glasses and ceramics. To support this broad base of research requirements, the SSFF will employ a variety of furnace modules operated, regulated, and supported by a core of common subsystems. Furnace modules may be reconfigured or specifically developed to provide unique solidifcation conditions for each set of experiments. The SSFF modular approach permits the addition of new or scaled-up furnace modules to support the evolution of the facility as new science requirements are identified. The SSFF Core is of modular design to permit augmentation for enhanced capabilities. The fully integrated configuration of the SSFF will consist of three racks with the capability of supporting up to two furnace modules per rack. The initial configuration of the SSFF will consist of two of the three racks and one furnace module. This Experiment/Facility Requirements Document (E/FRD) describes the integrated facility requirements for the Space Station Freedom (SSF) Integrated Configuration-1 (IC1) mission. The IC1 SSFF will consist of two racks: the Core Rack, with the centralized subsystem equipment, and the Experiment Rack-1, with Furnace Module-1 and the distributed subsystem equipment to support the furnace.

  4. Development and Demonstration of a Computational Tool for the Analysis of Particle Vitiation Effects in Hypersonic Propulsion Test Facilities

    NASA Technical Reports Server (NTRS)

    Perkins, Hugh Douglas

    2010-01-01

    In order to improve the understanding of particle vitiation effects in hypersonic propulsion test facilities, a quasi-one dimensional numerical tool was developed to efficiently model reacting particle-gas flows over a wide range of conditions. Features of this code include gas-phase finite-rate kinetics, a global porous-particle combustion model, mass, momentum and energy interactions between phases, and subsonic and supersonic particle drag and heat transfer models. The basic capabilities of this tool were validated against available data or other validated codes. To demonstrate the capabilities of the code a series of computations were performed for a model hypersonic propulsion test facility and scramjet. Parameters studied were simulated flight Mach number, particle size, particle mass fraction and particle material.

  5. Integrated exhaust gas analysis system for aircraft turbine engine component testing

    NASA Technical Reports Server (NTRS)

    Summers, R. L.; Anderson, R. C.

    1985-01-01

    An integrated exhaust gas analysis system was designed and installed in the hot-section facility at the Lewis Research Center. The system is designed to operate either manually or automatically and also to be operated from a remote station. The system measures oxygen, water vapor, total hydrocarbons, carbon monoxide, carbon dioxide, and oxides of nitrogen. Two microprocessors control the system and the analyzers, collect data and process them into engineering units, and present the data to the facility computers and the system operator. Within the design of this system there are innovative concepts and procedures that are of general interest and application to other gas analysis tasks.

  6. Development of computer informational system of diagnostics integrated optical materials, elements, and devices

    NASA Astrophysics Data System (ADS)

    Volosovitch, Anatoly E.; Konopaltseva, Lyudmila I.

    1995-11-01

    Well-known methods of optical diagnostics, database for their storage, as well as expert system (ES) for their development are analyzed. A computer informational system is developed, which is based on a hybrid ES built on modern DBMS. As an example, the structural and constructive circuits of the hybrid integrated-optical devices based on laser diodes, diffusion waveguides, geodetic lenses, package-free linear photodiode arrays, etc. are presented. The features of methods and test results as well as the advanced directions of works related to the hybrid integrated-optical devices in the field of metrology are discussed.

  7. Infrastructures for Distributed Computing: the case of BESIII

    NASA Astrophysics Data System (ADS)

    Pellegrino, J.

    2018-05-01

    The BESIII is an electron-positron collision experiment hosted at BEPCII in Beijing and aimed to investigate Tau-Charm physics. Now BESIII has been running for several years and gathered more than 1PB raw data. In order to analyze these data and perform massive Monte Carlo simulations, a large amount of computing and storage resources is needed. The distributed computing system is based up on DIRAC and it is in production since 2012. It integrates computing and storage resources from different institutes and a variety of resource types such as cluster, grid, cloud or volunteer computing. About 15 sites from BESIII Collaboration from all over the world joined this distributed computing infrastructure, giving a significant contribution to the IHEP computing facility. Nowadays cloud computing is playing a key role in the HEP computing field, due to its scalability and elasticity. Cloud infrastructures take advantages of several tools, such as VMDirac, to manage virtual machines through cloud managers according to the job requirements. With the virtually unlimited resources from commercial clouds, the computing capacity could scale accordingly in order to deal with any burst demands. General computing models have been discussed in the talk and are addressed herewith, with particular focus on the BESIII infrastructure. Moreover new computing tools and upcoming infrastructures will be addressed.

  8. Fast and accurate computation of system matrix for area integral model-based algebraic reconstruction technique

    NASA Astrophysics Data System (ADS)

    Zhang, Shunli; Zhang, Dinghua; Gong, Hao; Ghasemalizadeh, Omid; Wang, Ge; Cao, Guohua

    2014-11-01

    Iterative algorithms, such as the algebraic reconstruction technique (ART), are popular for image reconstruction. For iterative reconstruction, the area integral model (AIM) is more accurate for better reconstruction quality than the line integral model (LIM). However, the computation of the system matrix for AIM is more complex and time-consuming than that for LIM. Here, we propose a fast and accurate method to compute the system matrix for AIM. First, we calculate the intersection of each boundary line of a narrow fan-beam with pixels in a recursive and efficient manner. Then, by grouping the beam-pixel intersection area into six types according to the slopes of the two boundary lines, we analytically compute the intersection area of the narrow fan-beam with the pixels in a simple algebraic fashion. Overall, experimental results show that our method is about three times faster than the Siddon algorithm and about two times faster than the distance-driven model (DDM) in computation of the system matrix. The reconstruction speed of our AIM-based ART is also faster than the LIM-based ART that uses the Siddon algorithm and DDM-based ART, for one iteration. The fast reconstruction speed of our method was accomplished without compromising the image quality.

  9. GRC Ground Support Facilities

    NASA Technical Reports Server (NTRS)

    SaintOnge, Thomas H.

    2010-01-01

    The ISS Program is conducting an "ISS Research Academy' at JSC the first week of August 2010. This Academy will be a tutorial for new Users of the International Space Station, focused primarily on the new ISS National Laboratory and its members including Non-Profit Organizations, other government agencies and commercial users. Presentations on the on-orbit research facilities accommodations and capabilities will be made, as well as ground based hardware development, integration and test facilities and capabilities. This presentation describes the GRC Hardware development, test and laboratory facilities.

  10. Logic integration of mRNA signals by an RNAi-based molecular computer

    PubMed Central

    Xie, Zhen; Liu, Siyuan John; Bleris, Leonidas; Benenson, Yaakov

    2010-01-01

    Synthetic in vivo molecular ‘computers’ could rewire biological processes by establishing programmable, non-native pathways between molecular signals and biological responses. Multiple molecular computer prototypes have been shown to work in simple buffered solutions. Many of those prototypes were made of DNA strands and performed computations using cycles of annealing-digestion or strand displacement. We have previously introduced RNA interference (RNAi)-based computing as a way of implementing complex molecular logic in vivo. Because it also relies on nucleic acids for its operation, RNAi computing could benefit from the tools developed for DNA systems. However, these tools must be harnessed to produce bioactive components and be adapted for harsh operating environments that reflect in vivo conditions. In a step toward this goal, we report the construction and implementation of biosensors that ‘transduce’ mRNA levels into bioactive, small interfering RNA molecules via RNA strand exchange in a cell-free Drosophila embryo lysate, a step beyond simple buffered environments. We further integrate the sensors with our RNAi ‘computational’ module to evaluate two-input logic functions on mRNA concentrations. Our results show how RNA strand exchange can expand the utility of RNAi computing and point toward the possibility of using strand exchange in a native biological setting. PMID:20194121

  11. Fast computation of close-coupling exchange integrals using polynomials in a tree representation

    NASA Astrophysics Data System (ADS)

    Wallerberger, Markus; Igenbergs, Katharina; Schweinzer, Josef; Aumayr, Friedrich

    2011-03-01

    The semi-classical atomic-orbital close-coupling method is a well-known approach for the calculation of cross sections in ion-atom collisions. It strongly relies on the fast and stable computation of exchange integrals. We present an upgrade to earlier implementations of the Fourier-transform method. For this purpose, we implement an extensive library for symbolic storage of polynomials, relying on sophisticated tree structures to allow fast manipulation and numerically stable evaluation. Using this library, we considerably speed up creation and computation of exchange integrals. This enables us to compute cross sections for more complex collision systems. Program summaryProgram title: TXINT Catalogue identifier: AEHS_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHS_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 12 332 No. of bytes in distributed program, including test data, etc.: 157 086 Distribution format: tar.gz Programming language: Fortran 95 Computer: All with a Fortran 95 compiler Operating system: All with a Fortran 95 compiler RAM: Depends heavily on input, usually less than 100 MiB Classification: 16.10 Nature of problem: Analytical calculation of one- and two-center exchange matrix elements for the close-coupling method in the impact parameter model. Solution method: Similar to the code of Hansen and Dubois [1], we use the Fourier-transform method suggested by Shakeshaft [2] to compute the integrals. However, we heavily speed up the calculation using a library for symbolic manipulation of polynomials. Restrictions: We restrict ourselves to a defined collision system in the impact parameter model. Unusual features: A library for symbolic manipulation of polynomials, where polynomials are stored in a space-saving left-child right

  12. Development and application of computational aerothermodynamics flowfield computer codes

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj

    1994-01-01

    Research was performed in the area of computational modeling and application of hypersonic, high-enthalpy, thermo-chemical nonequilibrium flow (Aerothermodynamics) problems. A number of computational fluid dynamic (CFD) codes were developed and applied to simulate high altitude rocket-plume, the Aeroassist Flight Experiment (AFE), hypersonic base flow for planetary probes, the single expansion ramp model (SERN) connected with the National Aerospace Plane, hypersonic drag devices, hypersonic ramp flows, ballistic range models, shock tunnel facility nozzles, transient and steady flows in the shock tunnel facility, arc-jet flows, thermochemical nonequilibrium flows around simple and complex bodies, axisymmetric ionized flows of interest to re-entry, unsteady shock induced combustion phenomena, high enthalpy pulsed facility simulations, and unsteady shock boundary layer interactions in shock tunnels. Computational modeling involved developing appropriate numerical schemes for the flows on interest and developing, applying, and validating appropriate thermochemical processes. As part of improving the accuracy of the numerical predictions, adaptive grid algorithms were explored, and a user-friendly, self-adaptive code (SAGE) was developed. Aerothermodynamic flows of interest included energy transfer due to strong radiation, and a significant level of effort was spent in developing computational codes for calculating radiation and radiation modeling. In addition, computational tools were developed and applied to predict the radiative heat flux and spectra that reach the model surface.

  13. Monitoring SLAC High Performance UNIX Computing Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lettsome, Annette K.; /Bethune-Cookman Coll. /SLAC

    2005-12-15

    Knowledge of the effectiveness and efficiency of computers is important when working with high performance systems. The monitoring of such systems is advantageous in order to foresee possible misfortunes or system failures. Ganglia is a software system designed for high performance computing systems to retrieve specific monitoring information. An alternative storage facility for Ganglia's collected data is needed since its default storage system, the round-robin database (RRD), struggles with data integrity. The creation of a script-driven MySQL database solves this dilemma. This paper describes the process took in the creation and implementation of the MySQL database for use by Ganglia.more » Comparisons between data storage by both databases are made using gnuplot and Ganglia's real-time graphical user interface.« less

  14. I-123 iomazenil single photon emission computed tomography for detecting loss of neuronal integrity in patients with traumatic brain injury.

    PubMed

    Abiko, Kagari; Ikoma, Katsunori; Shiga, Tohru; Katoh, Chietsugu; Hirata, Kenji; Kuge, Yuji; Kobayashi, Kentaro; Tamaki, Nagara

    2017-12-01

    Traumatic brain injury (TBI) causes brain dysfunction in many patients. Using C-11 flumazenil (FMZ) positron emission tomography (PET), we have detected and reported the loss of neuronal integrity, leading to brain dysfunction in TBI patients. Similarly to FMZ PET, I-123 iomazenil (IMZ) single photon emission computed tomography (SPECT) is widely used to determine the distribution of the benzodiazepine receptor (BZR) in the brain cortex. The purpose of this study is to examine whether IMZ SPECT is as useful as FMZ PET for evaluating the loss of neuronal integrity in TBI patients. The subjects of this study were seven patients who suffered from neurobehavioral disability. They underwent IMZ SPECT and FMZ PET. Nondisplaceable binding potential (BP ND ) was calculated from FMZ PET images. The uptake of IMZ was evaluated on the basis of lesion-to-pons ratio (LPR). The locations of low uptake levels were visually evaluated both in IMZ SPECT and FMZ PET images. We compared FMZ BP ND and (LPR-1) of IMZ SPECT. In the visual assessment, FMZ BP ND decreased in 11 regions. In IMZ SPECT, low uptake levels were observed in eight of the 11 regions. The rate of concordance between FMZ PET and IMZ SPECT was 72.7%. The mean values IMZ (LPR-1) (1.95 ± 1.01) was significantly lower than that of FMZ BP ND (2.95 ± 0.80 mL/mL). There was good correlation between FMZ BP ND and IMZ (LPR-1) (r = 0.80). IMZ SPECT findings were almost the same as FMZ PET findings in TBI patients. The results indicated that IMZ SPECT is useful for evaluating the loss of neuronal integrity. Because IMZ SPECT can be performed in various facilities, IMZ SPECT may become widely adopted for evaluating the loss of neuronal integrity.

  15. Propulsion/flight control integration technology (PROFIT) software system definition

    NASA Technical Reports Server (NTRS)

    Carlin, C. M.; Hastings, W. J.

    1978-01-01

    The Propulsion Flight Control Integration Technology (PROFIT) program is designed to develop a flying testbed dedicated to controls research. The control software for PROFIT is defined. Maximum flexibility, needed for long term use of the flight facility, is achieved through a modular design. The Host program, processes inputs from the telemetry uplink, aircraft central computer, cockpit computer control and plant sensors to form an input data base for use by the control algorithms. The control algorithms, programmed as application modules, process the input data to generate an output data base. The Host program formats the data for output to the telemetry downlink, the cockpit computer control, and the control effectors. Two applications modules are defined - the bill of materials F-100 engine control and the bill of materials F-15 inlet control.

  16. Modeling Early-Stage Processes of U-10 Wt.%Mo Alloy Using Integrated Computational Materials Engineering Concepts

    NASA Astrophysics Data System (ADS)

    Wang, Xiaowo; Xu, Zhijie; Soulami, Ayoub; Hu, Xiaohua; Lavender, Curt; Joshi, Vineet

    2017-12-01

    Low-enriched uranium alloyed with 10 wt.% molybdenum (U-10Mo) has been identified as a promising alternative to high-enriched uranium. Manufacturing U-10Mo alloy involves multiple complex thermomechanical processes that pose challenges for computational modeling. This paper describes the application of integrated computational materials engineering (ICME) concepts to integrate three individual modeling components, viz. homogenization, microstructure-based finite element method for hot rolling, and carbide particle distribution, to simulate the early-stage processes of U-10Mo alloy manufacture. The resulting integrated model enables information to be passed between different model components and leads to improved understanding of the evolution of the microstructure. This ICME approach is then used to predict the variation in the thickness of the Zircaloy-2 barrier as a function of the degree of homogenization and to analyze the carbide distribution, which can affect the recrystallization, hardness, and fracture properties of U-10Mo in subsequent processes.

  17. Grid Integration Webinars | Energy Systems Integration Facility | NREL

    Science.gov Websites

    Vision Future. The study used detailed nodal simulations of the Western Interconnection system with greater than 35% wind energy, based on scenarios from the DOE Wind Vision study to assess the operability Renewable Energy Integration in California April 14, 2016 Greg Brinkman discussed the Low Carbon Grid Study

  18. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov Websites

    power grid modeling scenarios Study Shows Eastern U.S. Power Grid Can Support Upwards of 30% Wind and newly released Eastern Renewable Energy Integration Study (ERGIS) shows that the power grid of the -based study of four potential wind and PV futures and associated operational impacts in the Eastern

  19. 45 CFR 84.22 - Existing facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., welfare, or other social services at alternate accessible sites, alteration of existing facilities and... to make structural changes in existing facilities where other methods are effective in achieving... handicapped persons in the most integrated setting appropriate. (c) Small health, welfare, or other social...

  20. 45 CFR 84.22 - Existing facilities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., welfare, or other social services at alternate accessible sites, alteration of existing facilities and... to make structural changes in existing facilities where other methods are effective in achieving... handicapped persons in the most integrated setting appropriate. (c) Small health, welfare, or other social...

  1. A user view of office automation or the integrated workstation

    NASA Technical Reports Server (NTRS)

    Schmerling, E. R.

    1984-01-01

    Central data bases are useful only if they are kept up to date and easily accessible in an interactive (query) mode rather than in monthly reports that may be out of date and must be searched by hand. The concepts of automatic data capture, data base management and query languages require good communications and readily available work stations to be useful. The minimal necessary work station is a personal computer which can be an important office tool if connected into other office machines and properly integrated into an office system. It has a great deal of flexibility and can often be tailored to suit the tastes, work habits and requirements of the user. Unlike dumb terminals, there is less tendency to saturate a central computer, since its free standing capabilities are available after down loading a selection of data. The PC also permits the sharing of many other facilities, like larger computing power, sophisticated graphics programs, laser printers and communications. It can provide rapid access to common data bases able to provide more up to date information than printed reports. Portable computers can access the same familiar office facilities from anywhere in the world where a telephone connection can be made.

  2. Complementary and Integrative Healthcare in a Long-term Care Facility: A Pilot Project.

    PubMed

    Evans, Roni; Vihstadt, Corrie; Westrom, Kristine; Baldwin, Lori

    2015-01-01

    The world's population is aging quickly, leading to increased challenges of how to care for individuals who can no longer independently care for themselves. With global social and economic pressures leading to declines in family support, increased reliance is being placed on community- and government-based facilities to provide long-term care (LTC) for many of society's older citizens. Complementary and integrative healthcare (CIH) is commonly used by older adults and may offer an opportunity to enhance LTC residents' wellbeing. Little work has been done, however, rigorously examining the safety and effectiveness of CIH for LTC residents. The goal of this work is to describe a pilot project to develop and evaluate one model of CIH in an LTC facility in the Midwestern United States. A prospective, mixed-methods pilot project was conducted in two main phases: (1) preparation and (2) implementation and evaluation. The preparation phase entailed assessment, CIH model design and development, and training. A CIH model including acupuncture, chiropractic, and massage therapy, guided by principles of collaborative integration, evidence informed practice, and sustainability, was applied in the implementation and evaluation phase. CIH services were provided for 16 months in the LTC facility. Quantitative data collection included pain, quality of life, and adverse events. Qualitative interviews of LTC residents, their family members, and LTC staff members queried perceptions of CIH services. A total of 46 LTC residents received CIH care, most commonly for musculoskeletal pain (61%). Participants were predominantly female (85%) and over the age of 80 years (67%). The median number of CIH treatments was 13, with a range of 1 to 92. Residents who were able to provide self-report data demonstrated, on average, a 15% decline in pain and a 4% improvement in quality of life. No serious adverse events related to treatment were documented; the most common mild and expected side effect

  3. Development of highly accurate approximate scheme for computing the charge transfer integral

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pershin, Anton; Szalay, Péter G.

    The charge transfer integral is a key parameter required by various theoretical models to describe charge transport properties, e.g., in organic semiconductors. The accuracy of this important property depends on several factors, which include the level of electronic structure theory and internal simplifications of the applied formalism. The goal of this paper is to identify the performance of various approximate approaches of the latter category, while using the high level equation-of-motion coupled cluster theory for the electronic structure. The calculations have been performed on the ethylene dimer as one of the simplest model systems. By studying different spatial perturbations, itmore » was shown that while both energy split in dimer and fragment charge difference methods are equivalent with the exact formulation for symmetrical displacements, they are less efficient when describing transfer integral along the asymmetric alteration coordinate. Since the “exact” scheme was found computationally expensive, we examine the possibility to obtain the asymmetric fluctuation of the transfer integral by a Taylor expansion along the coordinate space. By exploring the efficiency of this novel approach, we show that the Taylor expansion scheme represents an attractive alternative to the “exact” calculations due to a substantial reduction of computational costs, when a considerably large region of the potential energy surface is of interest. Moreover, we show that the Taylor expansion scheme, irrespective of the dimer symmetry, is very accurate for the entire range of geometry fluctuations that cover the space the molecule accesses at room temperature.« less

  4. Integration of rocket turbine design and analysis through computer graphics

    NASA Technical Reports Server (NTRS)

    Hsu, Wayne; Boynton, Jim

    1988-01-01

    An interactive approach with engineering computer graphics is used to integrate the design and analysis processes of a rocket engine turbine into a progressive and iterative design procedure. The processes are interconnected through pre- and postprocessors. The graphics are used to generate the blade profiles, their stacking, finite element generation, and analysis presentation through color graphics. Steps of the design process discussed include pitch-line design, axisymmetric hub-to-tip meridional design, and quasi-three-dimensional analysis. The viscous two- and three-dimensional analysis codes are executed after acceptable designs are achieved and estimates of initial losses are confirmed.

  5. Variables that Affect Math Teacher Candidates' Intentions to Integrate Computer-Assisted Mathematics Education (CAME)

    ERIC Educational Resources Information Center

    Erdogan, Ahmet

    2010-01-01

    Based on Social Cognitive Carier Theory (SCCT) (Lent, Brown, & Hackett, 1994, 2002), this study tested the effects of mathematics teacher candidates' self-efficacy in, outcome expectations from, and interest in CAME on their intentions to integrate Computer-Assisted Mathematics Education (CAME). While mathematics teacher candidates' outcome…

  6. Computational framework to support integration of biomolecular and clinical data within a translational approach.

    PubMed

    Miyoshi, Newton Shydeo Brandão; Pinheiro, Daniel Guariz; Silva, Wilson Araújo; Felipe, Joaquim Cezar

    2013-06-06

    The use of the knowledge produced by sciences to promote human health is the main goal of translational medicine. To make it feasible we need computational methods to handle the large amount of information that arises from bench to bedside and to deal with its heterogeneity. A computational challenge that must be faced is to promote the integration of clinical, socio-demographic and biological data. In this effort, ontologies play an essential role as a powerful artifact for knowledge representation. Chado is a modular ontology-oriented database model that gained popularity due to its robustness and flexibility as a generic platform to store biological data; however it lacks supporting representation of clinical and socio-demographic information. We have implemented an extension of Chado - the Clinical Module - to allow the representation of this kind of information. Our approach consists of a framework for data integration through the use of a common reference ontology. The design of this framework has four levels: data level, to store the data; semantic level, to integrate and standardize the data by the use of ontologies; application level, to manage clinical databases, ontologies and data integration process; and web interface level, to allow interaction between the user and the system. The clinical module was built based on the Entity-Attribute-Value (EAV) model. We also proposed a methodology to migrate data from legacy clinical databases to the integrative framework. A Chado instance was initialized using a relational database management system. The Clinical Module was implemented and the framework was loaded using data from a factual clinical research database. Clinical and demographic data as well as biomaterial data were obtained from patients with tumors of head and neck. We implemented the IPTrans tool that is a complete environment for data migration, which comprises: the construction of a model to describe the legacy clinical data, based on an

  7. Computational integration of nanoscale physical biomarkers and cognitive assessments for Alzheimer’s disease diagnosis and prognosis

    PubMed Central

    Yue, Tao; Jia, Xinghua; Petrosino, Jennifer; Sun, Leming; Fan, Zhen; Fine, Jesse; Davis, Rebecca; Galster, Scott; Kuret, Jeff; Scharre, Douglas W.; Zhang, Mingjun

    2017-01-01

    With the increasing prevalence of Alzheimer’s disease (AD), significant efforts have been directed toward developing novel diagnostics and biomarkers that can enhance AD detection and management. AD affects the cognition, behavior, function, and physiology of patients through mechanisms that are still being elucidated. Current AD diagnosis is contingent on evaluating which symptoms and signs a patient does or does not display. Concerns have been raised that AD diagnosis may be affected by how those measurements are analyzed. Unbiased means of diagnosing AD using computational algorithms that integrate multidisciplinary inputs, ranging from nanoscale biomarkers to cognitive assessments, and integrating both biochemical and physical changes may provide solutions to these limitations due to lack of understanding for the dynamic progress of the disease coupled with multiple symptoms in multiscale. We show that nanoscale physical properties of protein aggregates from the cerebral spinal fluid and blood of patients are altered during AD pathogenesis and that these properties can be used as a new class of “physical biomarkers.” Using a computational algorithm, developed to integrate these biomarkers and cognitive assessments, we demonstrate an approach to impartially diagnose AD and predict its progression. Real-time diagnostic updates of progression could be made on the basis of the changes in the physical biomarkers and the cognitive assessment scores of patients over time. Additionally, the Nyquist-Shannon sampling theorem was used to determine the minimum number of necessary patient checkups to effectively predict disease progression. This integrated computational approach can generate patient-specific, personalized signatures for AD diagnosis and prognosis. PMID:28782028

  8. Structural characterisation of medically relevant protein assemblies by integrating mass spectrometry with computational modelling.

    PubMed

    Politis, Argyris; Schmidt, Carla

    2018-03-20

    Structural mass spectrometry with its various techniques is a powerful tool for the structural elucidation of medically relevant protein assemblies. It delivers information on the composition, stoichiometries, interactions and topologies of these assemblies. Most importantly it can deal with heterogeneous mixtures and assemblies which makes it universal among the conventional structural techniques. In this review we summarise recent advances and challenges in structural mass spectrometric techniques. We describe how the combination of the different mass spectrometry-based methods with computational strategies enable structural models at molecular levels of resolution. These models hold significant potential for helping us in characterizing the function of protein assemblies related to human health and disease. In this review we summarise the techniques of structural mass spectrometry often applied when studying protein-ligand complexes. We exemplify these techniques through recent examples from literature that helped in the understanding of medically relevant protein assemblies. We further provide a detailed introduction into various computational approaches that can be integrated with these mass spectrometric techniques. Last but not least we discuss case studies that integrated mass spectrometry and computational modelling approaches and yielded models of medically important protein assembly states such as fibrils and amyloids. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  9. Facility Registry Service (FRS)

    EPA Pesticide Factsheets

    This is a centrally managed database that identifies facilities either subject to environmental regulations or of environmental interest, providing an integrated source of air, water, and waste environmental data.

  10. Measuring and Supporting Pre-Service Teachers' Self-Efficacy towards Computers, Teaching, and Technology Integration

    ERIC Educational Resources Information Center

    Killi, Carita; Kauppinen, Merja; Coiro, Julie; Utriainen, Jukka

    2016-01-01

    This paper reports on two studies designed to examine pre-service teachers' self-efficacy beliefs. Study I investigated the measurement properties of a self-efficacy beliefs questionnaire comprising scales for computer self-efficacy, teacher self-efficacy, and self-efficacy towards technology integration. In Study I, 200 pre-service teachers…

  11. Challenges in Integrating a Complex Systems Computer Simulation in Class: An Educational Design Research

    ERIC Educational Resources Information Center

    Loke, Swee-Kin; Al-Sallami, Hesham S.; Wright, Daniel F. B.; McDonald, Jenny; Jadhav, Sheetal; Duffull, Stephen B.

    2012-01-01

    Complex systems are typically difficult for students to understand and computer simulations offer a promising way forward. However, integrating such simulations into conventional classes presents numerous challenges. Framed within an educational design research, we studied the use of an in-house built simulation of the coagulation network in four…

  12. Review of integrated digital systems: evolution and adoption

    NASA Astrophysics Data System (ADS)

    Fritz, Lawrence W.

    The factors that are influencing the evolution of photogrammetric and remote sensing technology to transition into fully integrated digital systems are reviewed. These factors include societal pressures for new, more timely digital products from the Spatial Information Sciencesand the adoption of rapid technological advancements in digital processing hardware and software. Current major developments in leading government mapping agencies of the USA, such as the Digital Production System (DPS) modernization programme at the Defense Mapping Agency, and the Automated Nautical Charting System II (ANCS-II) programme and Integrated Digital Photogrammetric Facility (IDPF) at NOAA/National Ocean Service, illustrate the significant benefits to be realized. These programmes are examples of different levels of integrated systems that have been designed to produce digital products. They provide insights to the management complexities to be considered for very large integrated digital systems. In recognition of computer industry trends, a knowledge-based architecture for managing the complexity of the very large spatial information systems of the future is proposed.

  13. Control and Information Systems for the National Ignition Facility

    DOE PAGES

    Brunton, Gordon; Casey, Allan; Christensen, Marvin; ...

    2017-03-23

    Orchestration of every National Ignition Facility (NIF) shot cycle is managed by the Integrated Computer Control System (ICCS), which uses a scalable software architecture running code on more than 1950 front-end processors, embedded controllers, and supervisory servers. The ICCS operates laser and industrial control hardware containing 66 000 control and monitor points to ensure that all of NIF’s laser beams arrive at the target within 30 ps of each other and are aligned to a pointing accuracy of less than 50 μm root-mean-square, while ensuring that a host of diagnostic instruments record data in a few billionths of a second.more » NIF’s automated control subsystems are built from a common object-oriented software framework that distributes the software across the computer network and achieves interoperation between different software languages and target architectures. A large suite of business and scientific software tools supports experimental planning, experimental setup, facility configuration, and post-shot analysis. Standard business services using open-source software, commercial workflow tools, and database and messaging technologies have been developed. An information technology infrastructure consisting of servers, network devices, and storage provides the foundation for these systems. Thus, this work is an overview of the control and information systems used to support a wide variety of experiments during the National Ignition Campaign.« less

  14. Control and Information Systems for the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunton, Gordon; Casey, Allan; Christensen, Marvin

    Orchestration of every National Ignition Facility (NIF) shot cycle is managed by the Integrated Computer Control System (ICCS), which uses a scalable software architecture running code on more than 1950 front-end processors, embedded controllers, and supervisory servers. The ICCS operates laser and industrial control hardware containing 66 000 control and monitor points to ensure that all of NIF’s laser beams arrive at the target within 30 ps of each other and are aligned to a pointing accuracy of less than 50 μm root-mean-square, while ensuring that a host of diagnostic instruments record data in a few billionths of a second.more » NIF’s automated control subsystems are built from a common object-oriented software framework that distributes the software across the computer network and achieves interoperation between different software languages and target architectures. A large suite of business and scientific software tools supports experimental planning, experimental setup, facility configuration, and post-shot analysis. Standard business services using open-source software, commercial workflow tools, and database and messaging technologies have been developed. An information technology infrastructure consisting of servers, network devices, and storage provides the foundation for these systems. Thus, this work is an overview of the control and information systems used to support a wide variety of experiments during the National Ignition Campaign.« less

  15. Getting seamless care right from the beginning - integrating computers into the human interaction.

    PubMed

    Pearce, Christopher; Kumarpeli, Pushpa; de Lusignan, Simon

    2010-01-01

    The digital age is coming to the health space, behind many other fields of society. In part this is because health remains heavily reliant on human interaction. The doctor-patient relationship remains a significant factor in determining patient outcomes. Whilst there are many benefits to E-Health, there are also significant risks if computers are not adequately integrated into this interaction and accurate data are consequently not available on the patient's journey through the health system. Video analysis of routine clinical consultations in Australian and UK primary care. We analyzed 308 consultations (141+167 respectively) from these systems, with an emphasis on how the consultation starts. Australian consultations have a mean duration of 12.7 mins, UK 11.8 mins. In both countries around 7% of consultations are computer initiated. Where doctors engaged with computer use the patient observed the computer screen much more and better records were produced. However, there was suboptimal engagement and poor records and no coding in around 20% of consultations. How the computer is used at the start of the consultation can set the scene for an effective interaction or reflect disengagement from technology and creation of poor records.

  16. Next Generation Workload Management System For Big Data on Heterogeneous Distributed Computing

    DOE PAGES

    Klimentov, A.; Buncic, P.; De, K.; ...

    2015-05-22

    The Large Hadron Collider (LHC), operating at the international CERN Laboratory in Geneva, Switzerland, is leading Big Data driven scientific explorations. Experiments at the LHC explore the fundamental nature of matter and the basic forces that shape our universe, and were recently credited for the discovery of a Higgs boson. ATLAS and ALICE are the largest collaborations ever assembled in the sciences and are at the forefront of research at the LHC. To address an unprecedented multi-petabyte data processing challenge, both experiments rely on a heterogeneous distributed computational infrastructure. The ATLAS experiment uses PanDA (Production and Data Analysis) Workload Managementmore » System (WMS) for managing the workflow for all data processing on hundreds of data centers. Through PanDA, ATLAS physicists see a single computing facility that enables rapid scientific breakthroughs for the experiment, even though the data centers are physically scattered all over the world. The scale is demonstrated by the following numbers: PanDA manages O(10 2) sites, O(10 5) cores, O(10 8) jobs per year, O(10 3) users, and ATLAS data volume is O(10 17) bytes. In 2013 we started an ambitious program to expand PanDA to all available computing resources, including opportunistic use of commercial and academic clouds and Leadership Computing Facilities (LCF). The project titled 'Next Generation Workload Management and Analysis System for Big Data' (BigPanDA) is funded by DOE ASCR and HEP. Extending PanDA to clouds and LCF presents new challenges in managing heterogeneity and supporting workflow. The BigPanDA project is underway to setup and tailor PanDA at the Oak Ridge Leadership Computing Facility (OLCF) and at the National Research Center "Kurchatov Institute" together with ALICE distributed computing and ORNL computing professionals. Our approach to integration of HPC platforms at the OLCF and elsewhere is to reuse, as much as possible, existing components of the Pan

  17. Next Generation Workload Management System For Big Data on Heterogeneous Distributed Computing

    NASA Astrophysics Data System (ADS)

    Klimentov, A.; Buncic, P.; De, K.; Jha, S.; Maeno, T.; Mount, R.; Nilsson, P.; Oleynik, D.; Panitkin, S.; Petrosyan, A.; Porter, R. J.; Read, K. F.; Vaniachine, A.; Wells, J. C.; Wenaus, T.

    2015-05-01

    The Large Hadron Collider (LHC), operating at the international CERN Laboratory in Geneva, Switzerland, is leading Big Data driven scientific explorations. Experiments at the LHC explore the fundamental nature of matter and the basic forces that shape our universe, and were recently credited for the discovery of a Higgs boson. ATLAS and ALICE are the largest collaborations ever assembled in the sciences and are at the forefront of research at the LHC. To address an unprecedented multi-petabyte data processing challenge, both experiments rely on a heterogeneous distributed computational infrastructure. The ATLAS experiment uses PanDA (Production and Data Analysis) Workload Management System (WMS) for managing the workflow for all data processing on hundreds of data centers. Through PanDA, ATLAS physicists see a single computing facility that enables rapid scientific breakthroughs for the experiment, even though the data centers are physically scattered all over the world. The scale is demonstrated by the following numbers: PanDA manages O(102) sites, O(105) cores, O(108) jobs per year, O(103) users, and ATLAS data volume is O(1017) bytes. In 2013 we started an ambitious program to expand PanDA to all available computing resources, including opportunistic use of commercial and academic clouds and Leadership Computing Facilities (LCF). The project titled ‘Next Generation Workload Management and Analysis System for Big Data’ (BigPanDA) is funded by DOE ASCR and HEP. Extending PanDA to clouds and LCF presents new challenges in managing heterogeneity and supporting workflow. The BigPanDA project is underway to setup and tailor PanDA at the Oak Ridge Leadership Computing Facility (OLCF) and at the National Research Center "Kurchatov Institute" together with ALICE distributed computing and ORNL computing professionals. Our approach to integration of HPC platforms at the OLCF and elsewhere is to reuse, as much as possible, existing components of the PanDA system. We

  18. Next Generation Workload Management System For Big Data on Heterogeneous Distributed Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klimentov, A.; Buncic, P.; De, K.

    The Large Hadron Collider (LHC), operating at the international CERN Laboratory in Geneva, Switzerland, is leading Big Data driven scientific explorations. Experiments at the LHC explore the fundamental nature of matter and the basic forces that shape our universe, and were recently credited for the discovery of a Higgs boson. ATLAS and ALICE are the largest collaborations ever assembled in the sciences and are at the forefront of research at the LHC. To address an unprecedented multi-petabyte data processing challenge, both experiments rely on a heterogeneous distributed computational infrastructure. The ATLAS experiment uses PanDA (Production and Data Analysis) Workload Managementmore » System (WMS) for managing the workflow for all data processing on hundreds of data centers. Through PanDA, ATLAS physicists see a single computing facility that enables rapid scientific breakthroughs for the experiment, even though the data centers are physically scattered all over the world. The scale is demonstrated by the following numbers: PanDA manages O(10 2) sites, O(10 5) cores, O(10 8) jobs per year, O(10 3) users, and ATLAS data volume is O(10 17) bytes. In 2013 we started an ambitious program to expand PanDA to all available computing resources, including opportunistic use of commercial and academic clouds and Leadership Computing Facilities (LCF). The project titled 'Next Generation Workload Management and Analysis System for Big Data' (BigPanDA) is funded by DOE ASCR and HEP. Extending PanDA to clouds and LCF presents new challenges in managing heterogeneity and supporting workflow. The BigPanDA project is underway to setup and tailor PanDA at the Oak Ridge Leadership Computing Facility (OLCF) and at the National Research Center "Kurchatov Institute" together with ALICE distributed computing and ORNL computing professionals. Our approach to integration of HPC platforms at the OLCF and elsewhere is to reuse, as much as possible, existing components of the Pan

  19. Addressing capability computing challenges of high-resolution global climate modelling at the Oak Ridge Leadership Computing Facility

    NASA Astrophysics Data System (ADS)

    Anantharaj, Valentine; Norman, Matthew; Evans, Katherine; Taylor, Mark; Worley, Patrick; Hack, James; Mayer, Benjamin

    2014-05-01

    During 2013, high-resolution climate model simulations accounted for over 100 million "core hours" using Titan at the Oak Ridge Leadership Computing Facility (OLCF). The suite of climate modeling experiments, primarily using the Community Earth System Model (CESM) at nearly 0.25 degree horizontal resolution, generated over a petabyte of data and nearly 100,000 files, ranging in sizes from 20 MB to over 100 GB. Effective utilization of leadership class resources requires careful planning and preparation. The application software, such as CESM, need to be ported, optimized and benchmarked for the target platform in order to meet the computational readiness requirements. The model configuration needs to be "tuned and balanced" for the experiments. This can be a complicated and resource intensive process, especially for high-resolution configurations using complex physics. The volume of I/O also increases with resolution; and new strategies may be required to manage I/O especially for large checkpoint and restart files that may require more frequent output for resiliency. It is also essential to monitor the application performance during the course of the simulation exercises. Finally, the large volume of data needs to be analyzed to derive the scientific results; and appropriate data and information delivered to the stakeholders. Titan is currently the largest supercomputer available for open science. The computational resources, in terms of "titan core hours" are allocated primarily via the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) and ASCR Leadership Computing Challenge (ALCC) programs, both sponsored by the U.S. Department of Energy (DOE) Office of Science. Titan is a Cray XK7 system, capable of a theoretical peak performance of over 27 PFlop/s, consists of 18,688 compute nodes, with a NVIDIA Kepler K20 GPU and a 16-core AMD Opteron CPU in every node, for a total of 299,008 Opteron cores and 18,688 GPUs offering a cumulative 560

  20. An Automated DAKOTA and VULCAN-CFD Framework with Application to Supersonic Facility Nozzle Flowpath Optimization

    NASA Technical Reports Server (NTRS)

    Axdahl, Erik L.

    2015-01-01

    Removing human interaction from design processes by using automation may lead to gains in both productivity and design precision. This memorandum describes efforts to incorporate high fidelity numerical analysis tools into an automated framework and applying that framework to applications of practical interest. The purpose of this effort was to integrate VULCAN-CFD into an automated, DAKOTA-enabled framework with a proof-of-concept application being the optimization of supersonic test facility nozzles. It was shown that the optimization framework could be deployed on a high performance computing cluster with the flow of information handled effectively to guide the optimization process. Furthermore, the application of the framework to supersonic test facility nozzle flowpath design and optimization was demonstrated using multiple optimization algorithms.