Sample records for facility ldef experiment

  1. The Long Duration Exposure Facility (LDEF). Mission 1 Experiments.

    ERIC Educational Resources Information Center

    Clark, Lenwood G., Ed.; And Others

    The Long Duration Exposure Facility (LDEF) has been designed to take advantage of the two-way transportation capability of the space shuttle by providing a large number of economical opportunities for science and technology experiments that require modest electrical power and data processing while in space and which benefit from postflight…

  2. Long Duration Exposure Facility (LDEF) attitude measurements of the Interplanetary Dust Experiment

    NASA Technical Reports Server (NTRS)

    Kassel, Philip C., Jr.; Motley, William R., III; Singer, S. Fred; Mulholland, J. Derral; Oliver, John P.; Weinberg, Jerry L.; Cooke, William J.; Wortman, Jim J.

    1993-01-01

    Analysis of the data from the Long Duration Exposure Facility (LDEF) Interplanetary Dust Experiment (IDE) sun sensors has allowed a confirmation of the attitude of LDEF during its first year in orbit. Eight observations of the yaw angle at specific times were made and are tabulated in this paper. These values range from 4.3 to 12.4 deg with maximum uncertainty of plus or minus 2.0 deg and an average of 7.9 deg. No specific measurements of pitch or roll were made but the data indicates that LDEF had an average pitch down attitude of less than 0.7 deg.

  3. Long Duration Exposure Facility (LDEF) attitude measurements of the interplanetary dust experiment

    NASA Technical Reports Server (NTRS)

    Kassel, Philip C., Jr.; Singer, S. Fred; Mulholland, J. Derral; Oliver, John P.; Weinberg, Jerry L.; Cooke, William J.; Wortman, Jim J.; Motley, William R., III

    1992-01-01

    The Long Duration Exposure Facility (LDEF) Interplanetary Dust Experiment (IDE) was unique in providing a time history of impacts of micron-sized particles on six orthogonal faces of LDEF during the first year in orbit. The value of this time resolved data depended on and was enhanced by the proper operation of some basic LDEF systems. Thus, the value of the data is greatly enhanced when the location and orientation of LDEF is known for each time of impact. The location and velocity of LDEF as a function of time can be calculated from the 'two-line elements' published by GSFC during the first year of the LDEF mission. The attitude of LDEF was passively stabilized in a gravity-gradient mode and a magnetically anchored viscous damper was used to dissipate roll, pitch, and yaw motions. Finally, the IDE used a standard LDEF Experiment Power and Data System (EPDS) to collect and store data and also to provide a crystal derived clock pulse (1 count every 13.1072 seconds) for all IDE time measurements. All that remained for the IDE was to provide a system to calibrate the clock, eliminating accumulative errors, and also verify the attitude of LDEF. The IDE used solar cells on six orthogonal faces to observe the LDEF sunrise and provide data about the LDEF attitude. The data was recorded by the EPDS about 10 times per day for the first 345 days of the LDEF mission. This data consist of the number of IDE counts since the last LDEF sunrise and the status of the six solar cells (light or dark) at the time of the last IDE count. The EPDS determined the time that data was recorded and includes, with each record, the master EPDS clock counter (1 count every 1.6384 seconds) that provided the range and resolution for time measurements. The IDE solar cells provided data for an excellent clock calibration, meeting their primary purpose, and the time resolved LDEF attitude measurements that can be gleaned from this data are presented.

  4. The LDEF benefits. [planned experiments

    NASA Technical Reports Server (NTRS)

    Kinard, W. H.

    1982-01-01

    The Long Duration Exposure Facility (LDEF) is described, and experiments planned for the first LDEF mission are discussed. Four of the eight involve scientific studies of interstellar gas, micrometeoroids, cosmic rays, and crystal growth in zero gravity, and four involve technology studies of the space environmental effects on solar cells, composite materials, thermal coatings, fiber optics, and electronic instruments. For each experiment, the objectives and methods are discussed.

  5. Long Duration Exposure Facility (LDEF)

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The Long Duration Exposure Facility (LDEF) was designed by the Marshall Space Flight Center (MSFC) to test the performance of spacecraft materials, components, and systems that have been exposed to the environment of micrometeoroids and space debris for an extended period of time. The LDEF proved invaluable to the development of future spacecraft and the International Space Station (ISS). The LDEF carried 57 science and technology experiments, the work of more than 200 investigators. MSFC`s experiments included: Trapped Proton Energy Determination to determine protons trapped in the Earth's magnetic field and the impact of radiation particles; Linear Energy Transfer Spectrum Measurement Experiment which measures the linear energy transfer spectrum behind different shielding configurations; Atomic oxygen-Simulated Out-gassing, an experiment that exposes thermal control surfaces to atomic oxygen to measure the damaging out-gassed products; Thermal Control Surfaces Experiment to determine the effects of the near-Earth orbital environment and the shuttle induced environment on spacecraft thermal control surfaces; Transverse Flat-Plate Heat Pipe Experiment, to evaluate the zero-gravity performance of a number of transverse flat plate heat pipe modules and their ability to transport large quantities of heat; Solar Array Materials Passive LDEF Experiment to examine the effects of space on mechanical, electrical, and optical properties of lightweight solar array materials; and the Effects of Solar Radiation on Glasses. Launched aboard the Space Shuttle Orbiter Challenger's STS-41C mission April 6, 1984, the LDEF remained in orbit for five years until January 1990 when it was retrieved by the Space Shuttle Orbiter Columbia STS-32 mission and brought back to Earth for close examination and analysis.

  6. The LDEF ultra heavy cosmic ray experiment

    NASA Technical Reports Server (NTRS)

    Osullivan, D.; Thompson, A.; Bosch, J.; Keegan, R.; Wenzel, K.-P.; Smit, A.; Domingo, C.

    1991-01-01

    The Long Duration Exposure Facility (LDEF) Ultra Heavy Cosmic Ray Experiment (UHCRE) used 16 side viewing LDEF trays giving a total geometry factor for high energy cosmic rays of 30 sq m sr. The total exposure factor was 170 sq m sr y. The experiment is based on a modular array of 192 solid state nuclear track detector stacks, mounted in sets of 4 pressure vessels (3 experiment tray). The extended duration of the LDEF mission has resulted in a greatly enhanced potential scientific yield from the UHCRE. Initial scanning results indicate that at least 2000 cosmic ray nuclei with Z greater than 65 were collected, including the world's first statistically significant sample of actinides. Postflight work to date and the current status of the experiment are reviewed. Provisional results from analysis of preflight and postflight calibrations are presented.

  7. Long Duration Exposure Facility (LDEF) low-temperature heat pipe experiment package power system results

    NASA Technical Reports Server (NTRS)

    Tiller, Smith E.; Sullivan, David

    1992-01-01

    An overview of a self-contained Direct Energy Transfer Power System which was developed to provide power to the Long Duration Exposure Facility (LDEF) Low-Temperature Heat Pipe Experiment Package is presented. The power system operated successfully for the entire mission. Data recorded by the onboard recorder shows that the system operated within design specifications. Other than unanticipated overcharging of the battery, the power system operated as expected for nearly 32,000 low earth orbit cycles, and was still operational when tested after the LDEF recovery. Some physical damage was sustained by the solar array panels due to micrometeoroid hits, but there were not electrical failures.

  8. Summary of solar cell data from the Long Duration Exposure Facility (LDEF)

    NASA Technical Reports Server (NTRS)

    Hill, David C.; Rose, M. Frank

    1994-01-01

    The Long Duration Exposure Facility (LDEF) was composed of many separate experiments, some of which contained solar cells. These solar cells were distributed at various positions on the LDEF and, therefore, were exposed to the space environment with an orientational dependence. This report will address the space environmental effects on solar cells and solar cell assemblies (SCA's), including electrical interconnects and associated insulation blankets where flown in conjunction with solar cells.

  9. LDEF mechanical systems

    NASA Technical Reports Server (NTRS)

    Spear, Steve; Dursch, Harry

    1991-01-01

    Following the Long Duration Exposure Facility (LDEF), the Systems Special Investigation Group (SIG) was involved in a considerable amount of testing of mechanical hardware flown on the LDEF. The primary objectives were to determine the effects of the long term exposure on: (1) mechanisms employed both on the LDEF or as part of individual experiments; (2) structural components; and (3) fasteners. Results of testing the following LDEF hardware are presented: LDEF structure, fasteners, trunnions, end support beam, environment exposure control cannisters, motors, and lubricants. A limited discussion of PI test results is included. The lessons learned are discussed along with the future activities of the System SIG.

  10. Long Duration Exposure Facility (LDEF) optical systems SIG summary and database

    NASA Technical Reports Server (NTRS)

    Bohnhoff-Hlavacek, Gail

    1992-01-01

    The main objectives of the Long Duration Exposure Facility (LDEF) Optical Systems Special Investigative Group (SIG) Discipline are to develop a database of experimental findings on LDEF optical systems and elements hardware, and provide an optical system overview. Unlike the electrical and mechanical disciplines, the optics effort relies primarily on the testing of hardware at the various principal investigator's laboratories, since minimal testing of optical hardware was done at Boeing. This is because all space-exposed optics hardware are part of other individual experiments. At this time, all optical systems and elements testing by experiment investigator teams is not complete, and in some cases has hardly begun. Most experiment results to date, document observations and measurements that 'show what happened'. Still to come from many principal investigators is a critical analysis to explain 'why it happened' and future design implications. The original optical system related concerns and the lessons learned at a preliminary stage in the Optical Systems Investigations are summarized. The design of the Optical Experiments Database and how to acquire and use the database to review the LDEF results are described.

  11. Long Duration Exposure Facility (LDEF) optical systems SIG summary and database

    NASA Astrophysics Data System (ADS)

    Bohnhoff-Hlavacek, Gail

    1992-09-01

    The main objectives of the Long Duration Exposure Facility (LDEF) Optical Systems Special Investigative Group (SIG) Discipline are to develop a database of experimental findings on LDEF optical systems and elements hardware, and provide an optical system overview. Unlike the electrical and mechanical disciplines, the optics effort relies primarily on the testing of hardware at the various principal investigator's laboratories, since minimal testing of optical hardware was done at Boeing. This is because all space-exposed optics hardware are part of other individual experiments. At this time, all optical systems and elements testing by experiment investigator teams is not complete, and in some cases has hardly begun. Most experiment results to date, document observations and measurements that 'show what happened'. Still to come from many principal investigators is a critical analysis to explain 'why it happened' and future design implications. The original optical system related concerns and the lessons learned at a preliminary stage in the Optical Systems Investigations are summarized. The design of the Optical Experiments Database and how to acquire and use the database to review the LDEF results are described.

  12. Long Duration Exposure Facility (LDEF) structural verification test report

    NASA Technical Reports Server (NTRS)

    Jones, T. C.; Lucy, M. H.; Shearer, R. L.

    1983-01-01

    Structural load tests on the Long Duration Exposure Facility's (LDEF) primary structure were conducted. These tests had three purposes: (1) demonstrate structural adequacy of the assembled LDEF primary structure when subjected to anticipated flight loads; (2) verify analytical models and methods used in loads and stress analysis; and (3) perform tests to comply with the Space Transportation System (STS) requirements. Test loads were based on predicted limit loads which consider all flight events. Good agreement is shown between predicted and observed load, strain, and deflection data. Test data show that the LDEF structure was subjected to 1.2 times limit load to meet the STS requirements. The structural adequacy of the LDEF is demonstrated.

  13. The preliminary Long Duration Exposure Facility (LDEF) materials data base

    NASA Technical Reports Server (NTRS)

    Funk, Joan G.; Strickland, John W.; Davis, John M.

    1992-01-01

    A preliminary Long Duration Exposure Facility (LDEF) Materials Data Base was developed by the LDEF Materials Special Investigation Group (MSIG). The LDEF Materials Data Base is envisioned to eventually contain the wide variety and vast quantity of materials data generated for LDEF. The data is searchable by optical, thermal, and mechanical properties, exposure parameters (such as atomic oxygen flux), and author(s) or principal investigator(s). The LDEF Materials Data Base was incorporated into the Materials and Processes Technical Information System (MAPTIS). MAPTIS is a collection of materials data which was computerized and is available to engineers, designers, and researchers in the aerospace community involved in the design and development of spacecraft and related hardware. This paper describes the LDEF Materials Data Base and includes step-by-step example searches using the data base. Information on how to become an authorized user of the system is included.

  14. LDEF Interplanetary Dust Experiment (IDE) results

    NASA Technical Reports Server (NTRS)

    Oliver, John P.; Singer, S. F.; Weinberg, J. L.; Simon, C. G.; Cooke, W. J.; Kassel, P. C.; Kinard, W. H.; Mulholland, J. D.; Wortman, J. J.

    1995-01-01

    The Interplanetary Dust Experiment (IDE) provided high time resolution detection of microparticle impacts on the Long Duration Exposure Facility satellite. Particles, in the diameter range from 0.2 microns to several hundred microns, were detected impacting on six orthogonal surfaces of the gravity-gradient stabilized LDEF spacecraft. The total sensitive surface area was about one square meter, distributed between LDEF rows 3 (Wake or West), 6 (South), 9 (Ram or East), 12 (North), as well as the Space and Earth ends of LDEF. The time of each impact is known to an accuracy that corresponds to better than one degree in orbital longitude. Because LDEF was gravity-gradient stabilized and magnetically damped, the direction of the normal to each detector panel is precisely known for each impact. The 11 1/2 month tape-recorded data set represents the most extensive record gathered of the number, orbital location, and incidence direction for microparticle impacts in low Earth orbit. Perhaps the most striking result from IDE was the discovery that microparticle impacts, especially on the Ram, South, and North surfaces, were highly episodic. Most such impacts occurred in localized regions of the orbit for dozens or even hundreds of orbits in what we have termed Multiple Orbit Event Sequences (MOES). In addition, more than a dozen intense and short-lived 'spikes' were seen in which impact fluxes exceeded the background by several orders of magnitude. These events were distributed in a highly non-uniform fashion in time and terrestrial longitude and latitude.

  15. Impact of LDEF photovoltaic experiment findings upon spacecraft solar array design and development requirements

    NASA Technical Reports Server (NTRS)

    Young, Leighton E.

    1993-01-01

    Photovoltaic cells (solar cells) and other solar array materials were flown in a variety of locations on the Long Duration Exposure Facility (LDEF). With respect to the predicted leading edge, solar array experiments were located at 0 degrees (row 9), 30 degrees (row 8) and 180 degrees (row 3). Postflight estimates of location of the experiments with respect to the velocity vector add 8.1 degrees to these values. Experiments were also located on the Earth end of the LDEF longitudinal axis. Types and magnitudes of detrimental effects differ between the locations with some commonality. Postflight evaluation of the solar array experiments reveal that some components/materials are very resistant to the environment to which they were exposed while others need protection, modification, or replacement. Interaction of materials with atomic oxygen (AO), as an area of major importance, was dramatically demonstrated by LDEF results. Information gained from the LDEF flight allows array developers to set new requirements for on-going and future technology and flight component development.

  16. Closeup of LDEF experiment trays documented during STS-32 photo survey

    NASA Image and Video Library

    1990-01-20

    Closeup of Long Duration Exposure Facility (LDEF) experiment trays is documented during STS-32 retrieval activity and photo survey conducted by crewmembers onboard Columbia, Orbiter Vehicle (OV) 102. Partially visible is the Polymer Matrix Composite Materials Experiment. In the background is the surface of the Earth.

  17. Ionizing radiation exposure of LDEF

    NASA Technical Reports Server (NTRS)

    Benton, E. V. (Editor); Heinrich, W. (Editor)

    1990-01-01

    The Long Duration Exposure Facility (LDEF) was launched into orbit by the Space Shuttle 'Challenger' mission 41C on 6 April 1984 and was deployed on 8 April 1984. The original altitude of the circular orbit was 258.5 nautical miles (479 km) with the orbital inclination being 28.5 degrees. The 21,500 lb NASA Langley Research Center satellite, having dimensions of some 30x14 ft was one of the largest payloads ever deployed by the Space Shuttle. LDEF carried 57 major experiments and remained in orbit five years and nine months (completing 32,422 orbits). It was retrieved by the Shuttle 'Columbia' on January 11, 1990. By that time, the LDEF orbit had decayed to the altitude of 175 nm (324 km). The experiments were mounted around the periphery of the LDEF on 86 trays and involved the representation of more than 200 investigators, 33 private companies, 21 universities, seven NASA centers, nine Department of Defense laboratories and eight foreign countries. The experiments covered a wide range of disciplines including basic science, electronics, optics, materials, structures, power and propulsion. The data contained in the LDEF mission represents an invaluable asset and one which is not likely to be duplicated in the foreseeable future. The data and the subsequent knowledge which will evolve from the analysis of the LDEF experiments will have a very important bearing on the design and construction of the Space Station Freedom and indeed on other long-term, near-earth orbital space missions. A list of the LDEF experiments according to experiment category and sponsor is given, as well as a list of experiments containing radiation detectors on LDEF including the LDEF experiment number, the title of the experiment, the principal investigator, and the type of radiation detectors carried by the specific experiment.

  18. Follow up on the crystal growth experiments of the LDEF

    NASA Technical Reports Server (NTRS)

    Nielsen, K. F.; Lind, M. D.

    1993-01-01

    The results of the 4 solution growth experiments on the LDEF have been published elsewhere. Both the crystals of CaCO3, which were large and well shaped, and the much smaller TTF-TCNQ crystals showed unusual morphological behavior. The follow up on these experiments was begun in 1981, when ESA initiated a 'Concept Definition Study' on a large, 150 kg, Solution Growth Facility (SGF) to be included in the payload of EURECA-1, the European Retrievable Carrier. This carrier was a continuation of the European Spacelab and at that time planned for launch in 1987. The long delay of the LDEF retrieval and of subsequent missions brought about reflections both on the concept of crystal growth in space and on the choice of crystallization materials that had been made for the LDEF. Already before the LDEF retrieval, research on TTF-TCNQ had been stopped, and a planned growth experiment with TTF-TCNQ on the SGF/EURECA had been cancelled. The target of the SGF investigation is now more fundamental in nature. None of the crystals to be grown here are, like TTF-TCNQ, in particular demand by science or industry, and the crystals only serve the purpose of model crystals. The real purpose of the investigation is to study the growth behavior. One of the experiments, the Soret Coefficient Measurement experiment is not growing crystals at all, but has it as its sole purpose to obtain accurate information on thermal diffusion, a process of importance in crystal growth from solution.

  19. Third LDEF Post-Retrieval Symposium Abstracts

    NASA Technical Reports Server (NTRS)

    Levine, Arlene S. (Compiler)

    1993-01-01

    This volume is a compilation of abstracts submitted to the Third Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium. The abstracts represent the data analysis of the 57 experiments flown on the LDEF. The experiments include materials, coatings, thermal systems, power and propulsion, science (cosmic ray, interstellar gas, heavy ions, micrometeoroid, etc.), electronics, optics, and life science.

  20. Polymer matrix composites on LDEF experiments M0003-9 and M0003-10

    NASA Technical Reports Server (NTRS)

    Steckel, Gary L.; Cookson, Thomas; Blair, Christopher

    1992-01-01

    Over 250 polymer matrix composites were exposed to the natural space environment on Long Duration Exposure Facility (LDEF) experiments M0003-9 and 10. The experiments included a wide variety of epoxy, thermoplastic, polyimide, and bismalimide matrix composites reinforced with graphite, glass, or organic fibers. A review of the significant observations and test results obtained to date is presented. Estimated recession depths from atomic oxygen exposure are reported and the resulting surface morphologies are discussed. The effects of the LDEF exposure on the flexural strength and modulus, short beam shear strength, and coefficient of thermal expansion of several classes of bare and coated composites are reviewed. Lap shear data are presented for composite-to-composite and composite-to-aluminum alloy samples that were prepared using different bonding techniques and subsequently flown on LDEF.

  1. The LDEF ultra heavy cosmic ray experiment

    NASA Technical Reports Server (NTRS)

    Osullivan, D.; Thompson, A.; Bosch, J.; Keegan, R.; Wenzel, K.-P.; Smit, A.; Domingo, C.

    1992-01-01

    The LDEF Ultra Heavy Cosmic Ray Experiment (UHCRE) used 16 side viewing LDEF trays giving a total geometry factor for high energy cosmic rays of 30 sq m sr. The total exposure factor was 170 sq m sr y. The experiment is based on a modular array of 192 solid state nuclear track detector stacks, mounted in sets of four in 48 pressure vessels. The extended duration of the LDEF mission has resulted in a greatly enhanced potential scientific yield from the UHCRE. Initial scanning results indicate that at least 1800 cosmic ray nuclei with Z greater than 65 were collected, including the world's first statistically significant sample of actinides. Post flight work to date and the current status of the experiment are reviewed.

  2. Data bases for LDEF results

    NASA Technical Reports Server (NTRS)

    Bohnhoff-Hlavacek, Gail

    1993-01-01

    The Long Duration Exposure Facility (LDEF) carried 57 experiments and 10,000 specimens for some 200 LDEF experiment investigators. The external surface of LDEF had a large variety of materials exposed to the space environment which were tested preflight, during flight, and post flight. Thermal blankets, optical materials, thermal control paints, aluminum, and composites are among the materials flown. The investigations have produced an abundance of analysis results. One of the responsibilities of the Boeing Support Contract, Materials and Systems Special Investigation Group, is to collate and compile that information into an organized fashion. The databases developed at Boeing to accomplish this task is described.

  3. Manual for LDEF tensile tests

    NASA Technical Reports Server (NTRS)

    Witte, W. G., Jr.

    1985-01-01

    One of the experiments aboard the NASA Long Duration Exposure Facility (LDEF) consists of a tray of approximately one hundred tensile specimens of several candidate space structure composite materials. During the LDEF flight the materials will be subjected to the space environment and to possible contamination during launch and recovery. Tensile tests of representative samples were made before the LDEF flight to obtain baseline data. Similar tests will be made on control specimens stored on earth for the length of the LDEF flight and on recovered flight specimens. This manual codifies the details of testing, data acquisition, and handling used in obtaining the baseline data so that the same procedures and equipment will be used on the subsequent tests.

  4. The Long Duration Exposure Facility (LDEF) annotated bibliography

    NASA Technical Reports Server (NTRS)

    Levine, Arlene S.

    1995-01-01

    A major objective of the Space Act of 1958 which led to the establishment of the National Aeronautics and Space Administration (NASA) was the dissemination of science and technology. Today, under NASA administrator Daniel Goldin and the White House, there is a reemphasis on the dissemination and transfer of NASA science and technology to U.S. industry: both aerospace and non aerospace. The goal of this transfer of science and technology is to aid U.S. industries, making them more competitive in the global economy. After 69 months in space, LDEF provided new and important information on the space environment and how this hostile environment impacts spacecraft materials and systems. The space environment investigated by the LDEF researchers included: ionizing radiation, ultraviolet radiation, meteoroid and debris, atomic oxygen, thermal cycling, vacuum, microgravity, induced contamination and various synergistic effects. The materials used as part of LDEF and its experiments include polymers, metals, glass, paints and coatings. Fiber optic, mechanical, electrical, and optical systems were also used on LDEF. As part of the effort to disseminate and transfer LDEF science and technology, an annotated bibliographic database is being developed. This bibliography will be available electronically, as well as in hard copy. All LDEF domestic and foreign publications in the open literature, including scientific journals, the NASA LDEF Symposia volumes, books, technical reports and unrestricted contractor reports will be included in this database. The hard copy, as well as the electronic database, will be categorized by section in the scientific and technical discipline.

  5. LDEF transverse flat plate heat pipe experiment /S1005/. [Long Duration Exposure Facility

    NASA Technical Reports Server (NTRS)

    Robinson, G. A., Jr.

    1979-01-01

    The paper describes the Transverse Flat Plate Heat Pipe Experiment. A transverse flat plate heat pipe is a thermal control device that serves the dual function of temperature control and mounting base for electronic equipment. In its ultimate application, the pipe would be a lightweight structure member that could be configured in a platform or enclosure and provide temperature control for large space structures, flight experiments, equipment, etc. The objective of the LDEF flight experiment is to evaluate the zero-g performance of a number of transverse flat plate heat pipe modules. Performance will include: (1) the pipes transport capability, (2) temperature drop, and (3) ability to maintain temperature over varying duty cycles and environments. Performance degradation, if any, will be monitored over the length of the LDEF mission. This information is necessary if heat pipes are to be considered for system designs where they offer benefits not available with other thermal control techniques, such as minimum weight penalty, long-life heat pipe/structural members.

  6. Passive exposure of Earth radiation budget experiment components LDEF experiment AO-147: Post-flight examinations and tests

    NASA Technical Reports Server (NTRS)

    Hickey, John R.

    1991-01-01

    The Passive Exposure of Earth Radiation Budget Experiment Components (PEERBEC) experiment of the Long Duration Exposure Facility (LDEF) mission was composed of sensors and components associated with the measurement of the earth radiation budget (ERB) from satellites. These components included the flight spare sensors from the ERB experiment which operated on Nimbus 6 and 7 satellites. The experiment components and materials as well as the pertinent background and ancillary information necessary for the understanding of the intended mission and the results are described. The extent and timing of the LDEF mission brought the exposure from solar minimum between cycles 21 and 22 through the solar maximum of cycle 22. The orbital decay, coupled with the events of solar maximum, caused the LDEF to be exposed to a broader range of space environmental effects than were anticipated. The mission spanned almost six years concurrent with the 12 year (to date) Nimbus 7 operations. Preliminary information is presented on the following: (1) the changes in transmittance experienced by the interference filters; (2) the results of retesting of the thermopile sensors, which appear to be relatively unaffected by the exposure; and (3) the results of the recalibration of the APEX cavity radiometer. The degradation and recovery of the filters of the Nimbus 7 ERB are also discussed relative to the apparent atomic oxygen cleaning which also applies to the LDEF.

  7. Second LDEF Post-Retrieval Symposium interim results of experiment A0034

    NASA Technical Reports Server (NTRS)

    Linton, Roger C.; Kamenetzky, Rachel R.

    1993-01-01

    Thermal control coatings and contaminant collector mirrors were exposed on the leading and trailing edge modules of Long Duration Exposure Facility (LDEF) experiment A0034 to provide a basis of comparison for investigating the role of atomic oxygen in the stimulation of volatile outgassing products. The exposure of identical thermal coatings on both the leading and trailing edges of the LDEF and the additional modified exposure of identical coatings under glass windows and metallic covers in each of the flight modules provided multiple combinations of space environmental exposure to the coatings and the contaminant collector mirrors. Investigations were made to evaluate the effects of the natural space and the induced environments on the thermal coatings and the collector mirrors to differentiate the sources of observed material degradation. Two identical flight units were fabricated for the LDEF mission, each of which included twenty-five thermal control coatings mounted in isolated compartments, each with an adjacent contaminant collector mirror mounted on the wall. The covers of the flight units included apertures for each compartment, exposing the thermal coatings directly to the space environment. Six of these compartments were sealed with ultraviolet-grade transmitting quartz windows and four other compartments were sealed with aluminum covers. One module of this passive LDEF experiment, occupying one-sixth of a full tray, was mounted in Tray C9 (leading edge), while the other identical module was mounted in Tray C3 (trailing edge).

  8. Summary of materials and hardware performance on LDEF

    NASA Technical Reports Server (NTRS)

    Dursch, Harry; Pippin, Gary; Teichman, Lou

    1993-01-01

    A wide variety of materials and experiment support hardware were flown on the Long Duration Exposure Facility (LDEF). Postflight testing has determined the effects of the almost 6 years of low-earth orbit (LEO) exposure on this hardware. An overview of the results are presented. Hardware discussed includes adhesives, fasteners, lubricants, data storage systems, solar cells, seals, and the LDEF structure. Lessons learned from the testing and analysis of LDEF hardware is also presented.

  9. The Long Duration Exposure Facility (LDEF) photographic survey special publication

    NASA Technical Reports Server (NTRS)

    Oneal, Robert L.; Levine, Arlene S.; Kiser, Carol C.

    1995-01-01

    During the construction, integration, launch, retrieval and deintegration of the Long Duration Exposure Facility (LDEF), photographic surveys were made. Approximately 10,000 photographs were taken during the various phases of the LDEF project. These surveys are of technical and scientific importance because they revealed the pre and post flight conditions of the experiment trays as well as the spacecraft. Visual inspection of the photographs reveal valuable data such as space environment's effects and the earth atmosphere's effects post-retrieval. Careful files and records have been kept of these photographs. Each photograph has a Kennedy Space Center photo number or a Johnson Spaceflight Center photo number as well as a Langley Research Center photo number. The tray number, row number, and experiment number are also noted. Out of the 10,000 photographs taken, approximately 700 selected photographs were chosen for publication in a NASA Special Publication (SP) because they reveal the effects of space exposure to the viewer. These photographs will give researchers and spacecraft designers visual images of the effects of the space environment on specific materials, systems and spacecraft in general. One can visually see the degradation of thermal blankets, meteoroid craters, outgassing discoloration, atomic oxygen erosion, etc.

  10. Partial analysis of LDEF experiment A-0114

    NASA Technical Reports Server (NTRS)

    Gregory, John C.

    1991-01-01

    During the contract period, work concentrated on four main components. Data from the UAH silver pin hole camera was analyzed for determination of the mean Long Duration Exposure Facility (LDEF) satellite attitude and stability in orbit, to include pitch and yaw. Chemical testing performed on the AO-114 hot plate determined the form and locus of absorption of cosmogenic beryllium-7. Reaction rates of atomic oxygen with Kapton and other polymeric solids integrated over the whole LDEF orbital lifetime were analyzed. These rates were compared with the JSC estimated values for Space Station exposures. Metal and polymer films exposed on A0114 (C-9 and C-3 plates) were also analyzed.

  11. LDEF materials overview

    NASA Technical Reports Server (NTRS)

    Stein, Bland A.

    1993-01-01

    The flight and retrieval of the National Aeronautics and Space Administration's Long Duration Exposure Facility (LDEF) provided an opportunity for the study of the low-Earth orbit (LEO) environment and long-duration space environmental effects (SEE) on materials that is unparalleled in the history of the U.S. Space Program. The 5-year, 9-month flight of LDEF greatly enhanced the potential value of all materials on LDEF to the international SEE community, compared to that of the original 1-year flight plan. The remarkable flight attitude stability of LDEF enables specific analyses of individual and combined effects of LEO environmental parameters on identical materials on the same space vehicle. NASA recognized this potential by forming the LDEF Space Environmental Effects on Materials Special Investigation Group (MSIG) to address the greatly expanded materials and LEO space environment analysis opportunities available in the LDEF structure, experiment trays, and corollary measurements so that the combined value of all LDEF materials data to current and future space missions will be addressed and documented. An overview of the interim LDEF materials findings of the principal investigators and the Materials Special Investigation Group is provided. These revelations are based on observations of LEO environmental effects on materials made in space during LDEF retrieval and during LDEF tray deintegration at the Kennedy Space Center, and on findings of approximately 1.5 years of laboratory analyses of LDEF materials by the LDEF materials scientists. These findings were extensively reviewed and discussed at the MSIG-sponsored LDEF Materials Workshop '91. The results are presented in a format that categorizes the revelations as 'clear findings' or 'obscure preliminary findings' (and progress toward their resolution), plus resultant needs for new space materials developments and ground simulation testing/analytical modeling, in seven categories: materials

  12. M and D SIG progress report: Laboratory simulations of LDEF impact features

    NASA Technical Reports Server (NTRS)

    Horz, Friedrich; Bernhard, R. P.; See, Thomas H.; Atkinson, Dale R.; Allbrooks, Martha K.

    1991-01-01

    Reported here are impact simulations into pure Teflon and aluminum targets. These experiments will allow first order interpretations of impact features on the Long Duration Exposure Facility (LDEF), and they will serve as guides for dedicated experiments that employ the real LDEF blankets, both unexposed and exposed, for a refined understanding of the Long Duration Exposure Facility's collisional environment.

  13. Preliminary analysis of LDEF instrument A0187-1: Chemistry of Micrometeoroids Experiment

    NASA Technical Reports Server (NTRS)

    Hoerz, Friedrich; Bernhard, Ronald P.; Warren, Jack; See, Thomas H.; Brownlee, Donald E.; Laurance, Mark R.; Messenger, Scott; Peterson, Robert B.

    1992-01-01

    The Chemistry of Micrometeoroids Experiment (CME) exposed approximately 0.8 sq. m of gold on the Long Duration Exposure Facility's (LDEF's) trailing edge (location A03) and approximately 1.1 sq. m of aluminum in the forward-facing A11 location. The most significant results to date relate to the discovery of unmelted pyroxene and olivine fragments associated with natural cosmic dust impacts. The latter are sufficiently large for detailed phase studies, and they serve to demonstrate that recovery of unmelted dust fragments is a realistic prospect for further dust experiments that will employ more advanced collector media. We also discovered that man-made debris impacts occur on the LDEF's trailing edge with substantially higher frequency than expected, suggesting that orbital debris in highly elliptical orbits may have been somewhat underestimated.

  14. Exposure of LDEF materials to atomic oxygen: Results of EOIM 3

    NASA Technical Reports Server (NTRS)

    Jaggers, C. H.; Meshishnek, M. J.

    1995-01-01

    The third Effects of Oxygen Atom Interaction with Materials (EOIM 3) experiment flew on STS-46 from July 31 to August 8, 1992. The EOIM-3 sample tray was exposed to the low-earth orbit space environment for 58.55 hours at an altitude of 124 nautical miles resulting in a calculated total atomic oxygen (AO) fluence of 1.99 x 10(exp 20) atoms/sq cm. Five samples previously flown on the Long Duration Exposure Facility (LDEF) Experiment M0003 were included on the Aerospace EOIM 3 experimental tray: (1) Chemglaze A276 white thermal control paint from the LDEF trailing edge (TE); (2) S13GLO white thermal control paint from the LDEF TE; (3) S13GLO from the LDEF leading edge (LE) with a visible contamination layer from the LDEF mission; (4) Z306 black thermal control paint from the LDEF TE with a contamination layer from the LDEF mission; and (5) anodized aluminum from the LDEF TE with a contamination layer from the LDEF mission. The purpose of this experiment was twofold: (l) investigate the response of trailing edge LDEF materials to atomic oxygen exposure, thereby simulating LDEF leading edge phenomena; (2) investigate the response of contaminated LDEF samples to atomic oxygen in attempts to understand LDEF contamination-atomic oxygen interactions. This paper describes the response of these materials to atomic oxygen exposure, and compares the results of the EOIM 3 experiment to the LDEF mission and to ground-based atomic oxygen exposure studies.

  15. Summary of solar cell data from the Long Duration Exposure Facility (LDEF)

    NASA Technical Reports Server (NTRS)

    Hill, David C.; Rose, M. Frank

    1994-01-01

    The contractor has obtained and reviewed data relating solar cells assemblies (SCA's) flown as part of the following LDEF experiments: the Advanced Photovoltaic Experiment (S0014); the Solar Array Materials Passive LDEF Experiment (A0171); the Advanced Solar Cell and Coverglass Analysis Experiment (M0003-4); the LDEF Heat Pipe Experiment (S1001); the Evaluation of Thermal Control Coatings Y Solar Cells Experiment (S1002); and the Space Plasma-High Voltage Drainage Experiment (A0054). Where possible, electrical data have been tabulated and correlated with various environmental effects, including meteoroid and debris impacts, radiation exposure, atomic oxygen exposure, contamination, UV radiation exposure, and thermal cycling. The type, configuration, and location of all SCA's are documented here. By gathering all data and results together, a comparison of the survivability of the various types and configurations can be made.

  16. LDEF: 69 Months in Space. Part 3: Second Post-Retrieval Symposium

    NASA Technical Reports Server (NTRS)

    Levine, Arlene S. (Editor)

    1993-01-01

    Papers presented at the Second Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium are included. The papers represent the data analysis of the 57 experiments flown on the LDEF. The experiments include materials, coatings, thermal systems, power and propulsion, science (cosmic ray, interstellar gas, heavy ions, micrometeoroid, etc.), electronics, optics, and life science.

  17. LDEF: A bibliography with abstracts

    NASA Technical Reports Server (NTRS)

    Gouger, H. Garland (Editor)

    1992-01-01

    The Long Duration Exposure Facility (LDEF) was a free-flying cylindrical structure that housed self-contained experiments in trays mounted on the exterior of the structure. Launched into orbit from the Space Shuttle Challenger in 1984, the LDEF spent almost six years in space before being recovered in 1990. The 57 experiments investigated the effects of the low earth orbit environment on materials, coatings, electronics, thermal systems, seeds, and optics. It also carried experiments that measured crystals growth, cosmic radiation, and micrometeoroids. This bibliography contains 435 selected records from the NASA aerospace database covering the years 1973 through June of 1992. The citations are arranged within subject categories by author and date of publication.

  18. Radioactivities of Long Duration Exposure Facility (LDEF) materials: Baggage and bonanzas

    NASA Technical Reports Server (NTRS)

    Smith, Alan R.; Hurley, Donna L.

    1992-01-01

    Radioactivities in materials onboard the returned Long Duration Exposure Facility (LDEF) satellite were studied by a variety of techniques. Among the most powerful is low-background Ge-semiconductor detector gamma-ray spectrometry, illustrated here by results obtained at the Lawrence Berkeley Laboratory's (LBL) Low Background Facilities. The observed radioactivities are of two origins: those radionuclides produced by nuclear reactions with the radiation field in orbit, and radionuclides present initially as 'contaminants' in materials used for construction of the spacecraft and experimental assemblies. In the first category are experiment-related monitor foils and tomato seeds, and such spacecraft materials as aluminum, stainless steel, and titanium. In the second category are aluminum, beryllium, titanium, vanadium, and some special glasses.

  19. LDEF mechanical systems

    NASA Technical Reports Server (NTRS)

    Spear, W. Steve; Dursch, Harry W.

    1992-01-01

    Following LDEF retrieval, a number of studies were made of mechanical hardware and structure flown on the LDEF. The primary objectives are to determine the effects of long term space exposure on (1) mechanisms either used on LDEF or as part of individual experiments; (2) LDEF structural components; and (3) fasteners. Results from examination and testing of LDEF structure, fasteners, LDEF end support beam, environment exposure control canisters, experiment tray clamps, LDEF grapple fixtures, and viscous damper are presented. The most significant finding is the absence of space exposure related cold welding. The instances of seizure or removal difficulties initially attributed to cold welding were shown to have resulted from installation galling damage or improper removal techniques. Widespread difficulties encountered with removal of stainless steel fasteners underscore the need for effective thread lubrication schemes to ensure successful application of proposed orbital replacement units onboard Space Station Freedom.

  20. Ionizing radiation exposure of LDEF (pre-recovery estimates)

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Heinrich, W.; Parnell, T. A.; Armstrong, T. W.; Derrickson, J. H.; Fishman, G. J.; Frank, A. L.; Watts, J. W. Jr; Wiegel, B.

    1992-01-01

    The long duration exposure facility (LDEF), launched into a 258 nautical mile orbit with an inclination of 28.5 degrees, remained in space for nearly 6 yr. The 21,500 lb NASA satellite was one of the largest payloads ever deployed by the Space Shuttle. LDEF completed 32,422 orbits and carried 57 major experiments representing more than 200 investigators from 33 private companies, 21 universities and nine countries. The experiments covered a wide range of disciplines including basic science, electronics, optics, materials, structures and power and propulsion. A number of the experiments were specifically designed to measure the radiation environment. These experiments are of specific interest, since the LDEF orbit is essentially the same as that of the Space Station Freedom. Consequently, the radiation measurements on LDEF will play a significant role in the design of radiation shielding of the space station. The contributions of the various authors presented here attempt to predict the major aspects of the radiation exposure received by the various LDEF experiments and therefore should be helpful to investigators who are in the process of analyzing experiments which may have been affected by exposure to ionizing radiation. The paper discusses the various types and sources of ionizing radiation including cosmic rays, trapped particles (both protons and electrons) and secondary particles (including neutrons, spallation products and high-LET recoils), as well as doses and LET spectra as a function of shielding. Projections of the induced radioactivity of LDEF are also discussed.

  1. LDEF: 69 Months in Space. Part 4: Second Post-Retrieval Symposium

    NASA Technical Reports Server (NTRS)

    Levine, Arlene S. (Editor)

    1993-01-01

    A compilation of papers presented at the Second Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium are presented. The papers represent the data analysis of the 57 experiments flown on the LDEF. The experiments include materials, coatings, thermal systems, power and propulsion, science (cosmic ray, interstellar gas, heavy ions, micrometeoroid, etc.), electronics, optics, and life sciences.

  2. LDEF: 69 Months in Space. Part 1: Second Post-Retrieval Symposium

    NASA Technical Reports Server (NTRS)

    Levine, Arlene S. (Editor)

    1993-01-01

    A compilation of papers presented at the Second Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium is included. The papers represent the data analysis of the 57 experiments flown on the LDEF. The experiments include materials, coatings, thermal systems, power and propulsion, science (cosmic ray, interstellar gas, heavy ions, micrometeoroid, etc.), electronics, optics, and life sciences.

  3. LDEF: 69 Months in Space. Second Post-Retrieval Symposium, part 2

    NASA Technical Reports Server (NTRS)

    Levine, Arlene S. (Editor)

    1993-01-01

    This document is a compilation of papers presented at the Second Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium. The papers represent the data analysis of the 57 experiments flown on the LDEF. The experiments include materials, coatings, thermal systems, power and propulsion, science (cosmic ray, interstellar gas, heavy ions, micrometeoroid, etc.), electronics, optics, and life science.

  4. LDEF: 69 Months in Space. First Post-Retrieval Symposium, part 3

    NASA Technical Reports Server (NTRS)

    Levine, Arlene S. (Editor)

    1992-01-01

    A compilation of papers presented at the First Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium is presented. The papers represent the preliminary data analysis of the 57 experiments flown on the LDEF. The experiments include materials, coatings, thermal systems, power and propulsion, science (cosmic ray, interstellar gas, heavy ions, and micrometeoroid), electronics, optics, and life sciences.

  5. A photon phreak digs the LDEF happening

    NASA Technical Reports Server (NTRS)

    Smith, Alan R.; Hurley, Donna L.

    1993-01-01

    A year ago at the First Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium, detailed measurements on trunnion sections, as well as results from 'intentional' samples (Co, Ni, In, Ta, and V) and spacecraft parts were reported. For this year's Symposium, some of these findings are re-evaluated in combination with more recent results, to cast a longer perspective on the LDEF experience, and to sketch some promising avenues toward more effective participation in future missions. The LDEF analysis effort has been a superb training exercise, from which lessons learned need to be applied to future missions - right back to the early phases of mission planning.

  6. LDEF Materials/Contamination

    NASA Technical Reports Server (NTRS)

    Pippin, Gary

    1997-01-01

    This pictorial presentation reviews the post-flight analysis results from two type of hardware (tray clamp bolt heads and uhcre flight experiment tray walls) from the Long Duration Exposure Facility (LDEF). It will also discuss flight hardware for one upcoming (Effects of the Space Environment on Materials (ESEM) flight experiment), and two current flight experiments evaluating the performance of materials in space (Passive Optical Sample Assembly (POSA) 1&2 flight experiments. These flight experiments also are concerned with contamination effects which will also be discussed.

  7. LET spectra measurements of charged particles in the P0006 experiment on LDEF

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Csige, I.; Oda, K.; Henke, R. P.; Frank, A. L.; Benton, E. R.; Frigo, L. A.; Parnell, T. A.; Watts, J. W., Jr.; Derrickson, J. H.

    1993-01-01

    Measurements are under way of the charged particle radiation environment of the Long Duration Exposure Facility (LDEF) satellite using stacks of plastic nuclear track detectors (PNTD's) placed in different locations of the satellite. In the initial work the charge, energy, and linear energy transfer (LET) spectra of charged particles were measured with CR-39 double layer PNTD's located on the west side of the satellite (Experiment P0006). Primary and secondary stopping heavy ions were measured separately from the more energetic particles. Both trapped and galactic cosmic ray (GCR) particles are included, with the latter component being dominated by relativistic iron particles. The results from the P0006 experiment will be compared with similar measurements in other locations on LDEF with different orientation and shielding conditions. The remarkably detailed investigation of the charged particle radiation environment of the LDEF satellite will lead to a better understanding of the radiation environment of the Space Station Freedom. It will enable more accurate prediction of single event upsets (SEU's) in microelectronics and, especially, more accurate assessment of the risk - contributed by different components of the radiation field (GCR's, trapped protons, secondaries and heavy recoils, etc.) - to the health and safety of crew members.

  8. Proceedings of the LDEF Materials Data Analysis Workshop

    NASA Technical Reports Server (NTRS)

    Stein, Bland A. (Compiler); Young, Philip R. (Compiler)

    1990-01-01

    The 5-year, 10-month flight of the Long Duration Exposure Facility (LDEF) greatly enhanced the potential value of most LDEF materials, compared to the original 1-year flight plan. NASA recognized this potential by forming the LDEF Space Environmental Effects on Materials Special Investigation Group in early 1989 to address the expanded opportunities available in the LDEF structure and on experimental trays, so that the value of all LDEF materials to current and future space missions would be assessed and documented. The LDEF Materials Data Analysis Workshop served as one step toward the realization of that responsibility and ran concurrently with activities surrounding the successful return of the spacecraft to the NASA Kennedy Space Center. A compilation of visual aids utilized by speakers at the workshop is presented. Session 1 summarized current information on analysis responsibilities and plans and was aimed at updating the workshop attendees: the LDEF Advisory Committee, Principle Investigators, Special Investigation Group Members, and others involved in LDEF analyses or management. Sessions 2 and 3 addressed materials data analysis methodology, specimen preparation, shipment and archival, and initial plans for the LDEF Materials Data Base. A complementary objective of the workshop was to stimulate interest and awareness of opportunities to vastly expand the overall data base by considering the entire spacecraft as a materials experiment.

  9. LDEF post-retrieval evaluation of exobiology interests

    NASA Technical Reports Server (NTRS)

    Bunch, T. E.; Radicatldibrozolo, F.; Fitzgerald, Ray

    1991-01-01

    Cursory examination of the Long Duration Exposure Facility (LDEF) shows the existence of thousands of impact craters of which less than 1/3 exceed 0.3 mm in diameter; the largest crater is 5.5 mm. Few craters show oblique impact morphology and, surprisingly, only a low number of craters have recognizable impact debris. Study of this debris could be of interest to exobiology in terms of C content and carbonaceous materials. All craters greater that 0.3 mm have been imaged and recorded into a data base by the preliminary examination team. Various portions of the LDEF surfaces are contaminated by outgassed materials from experimenters trays, in addition to the LDEF autocontamination and impact with orbital debris not of extraterrestrial origin. Because interplanetary dust particles (IDP's) nominally impacted the LDEF at velocities greater than 3 km/s, the potential for intact survival of carbonaceous compounds is mostly unknown for hypervelocity impacts. Calculations show that for solid phthalic acid (a test impactor), molecular dissociation would not necessarily occur below 3 km/s, if all of the impact energy was directed at breaking molecular bonds, which is not the case. Hypervelocity impact experiments (LDEF analogs) were performed using the Ames Vertical Gun Facility. Grains of phthalic acid and the Murchison meteorite (grain diameter = 0.2 for both) were fired into an Al plate at 2.1 and 4.1 km/s respectively. The results of the study are presented, and it is concluded that meaningful biogenic elemental and compound information can be obtained from IDP impacts on the LDEF.

  10. LDEF: Dosimetric measurement results (AO 138-7 experiment)

    NASA Technical Reports Server (NTRS)

    Bourrieau, J.

    1993-01-01

    One of the objectives of the AO 138-7 experiment on board the Long Duration Exposure Facility (LDEF) was a total dose measurement with Thermo Luminescent Detectors (TLD 100). Two identical packages, both of them including five TLD's inside various aluminum shields, are exposed to the space environment in order to obtain the absorbed dose profile. Radiation fluence received during the total mission length was computed, taking into account the trapped particles (AE8 and AP8 models during solar maximum and minimum periods) and the cosmic rays; due to the magnetospheric shielding the solar proton fluences are negligible on the LDEF orbit. The total dose induced by these radiations inside a semi infinite plane shield of aluminum are computed with the radiation transport codes available at DERTS. The dose profile obtained is in good agreement with the evaluation by E.V. Benton. TLD readings are performed after flight; due to the mission duration increase a post flight calibration was necessary in order to cover the range of the in flight induced dose. The results obtained, similar (plus or minus 30 percent) for both packages, are compared with the dose profile computation. For thick shields it seems that the measurements exceed the forecast (about 40 percent). That can be due to a cosmic ray and trapped proton contributions coming from the backside (assumed as perfectly shielded by the LDEF structure in the computation), or to an underestimate of the proton or cosmic ray fluences. A fine structural shielding analysis should be necessary in order to determine the origin of this slight discrepancy between forecast and in flight measurements. For the less shielded dosimeters, mainly exposed to the trapped electron flux, a slight overestimation of the dose (less than 40 percent) appears. Due to the dispersion of the TLD's response, this cannot be confirmed. In practice these results obtained on board LDEF, with less than a factor 1.4 between measurements and forecast

  11. LDEF: Dosimetric measurement results (AO 138-7 experiment)

    NASA Astrophysics Data System (ADS)

    Bourrieau, J.

    1993-04-01

    One of the objectives of the AO 138-7 experiment on board the Long Duration Exposure Facility (LDEF) was a total dose measurement with Thermo Luminescent Detectors (TLD 100). Two identical packages, both of them including five TLD's inside various aluminum shields, are exposed to the space environment in order to obtain the absorbed dose profile. Radiation fluence received during the total mission length was computed, taking into account the trapped particles (AE8 and AP8 models during solar maximum and minimum periods) and the cosmic rays; due to the magnetospheric shielding the solar proton fluences are negligible on the LDEF orbit. The total dose induced by these radiations inside a semi infinite plane shield of aluminum are computed with the radiation transport codes available at DERTS. The dose profile obtained is in good agreement with the evaluation by E.V. Benton. TLD readings are performed after flight; due to the mission duration increase a post flight calibration was necessary in order to cover the range of the in flight induced dose. The results obtained, similar (plus or minus 30 percent) for both packages, are compared with the dose profile computation. For thick shields it seems that the measurements exceed the forecast (about 40 percent). That can be due to a cosmic ray and trapped proton contributions coming from the backside (assumed as perfectly shielded by the LDEF structure in the computation), or to an underestimate of the proton or cosmic ray fluences. A fine structural shielding analysis should be necessary in order to determine the origin of this slight discrepancy between forecast and in flight measurements. For the less shielded dosimeters, mainly exposed to the trapped electron flux, a slight overestimation of the dose (less than 40 percent) appears. Due to the dispersion of the TLD's response, this cannot be confirmed. In practice these results obtained on board LDEF, with less than a factor 1.4 between measurements and forecast

  12. Micrometeoroids and debris on LDEF

    NASA Technical Reports Server (NTRS)

    Mandeville, Jean-Claude

    1993-01-01

    Two experiments within the French Cooperative Payload (FRECOPA) and devoted to the detection of cosmic dust were flown on the Long Duration Exposure Facility (LDEF). A variety of sensors and collecting devices have made possible the study of impact processes on dedicated sensors and on materials of technological interest. Examination of hypervelocity impact features on these experiments gives valuable information on the size distribution and nature of interplanetary dust particles in low-Earth orbit (LEO), within the 0.5-300 micrometer size range. However no crater smaller than 1.5 microns has been observed, thus suggesting a cut-off in the near Earth particle distribution. Chemical investigation of craters by EDX clearly shows evidence of elements (Na, Mg, Si, S, Ca, and Fe) consistent with cosmic origin. However, remnants of orbital debris have been found in a few craters; this can be the result of particles in eccentric orbits about the Earth and of the 8 deg offset in the orientation of LDEF. Crater size distribution is compared with results from other dust experiments flown on LDEF and with current models. Possible origin and orbital evolution of micrometeoroids is discussed. Use of thin foil detectors for the chemical study of particle remnants looks promising for future experiments.

  13. LDEF: 69 Months in Space. Third Post-Retrieval Symposium, part 3

    NASA Technical Reports Server (NTRS)

    Levine, Arlene S. (Editor)

    1995-01-01

    This volume is a compilation of papers presented at the Third Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium. The papers represent the data analysis of the 57 experiments flown on the LDEF. The experiments include materials, coatings, thermal systems, power and propulsion, science (cosmic ray, interstellar gas, heavy ions, micrometeoroid, etc.), electronics, optics, and life science. In addition, papers on preliminary data analysis of EURECA, EOIM-3, and other spacecraft are included.

  14. LDEF materials data bases

    NASA Technical Reports Server (NTRS)

    Funk, Joan G.; Strickland, John W.; Davis, John M.

    1993-01-01

    The Long Duration Exposure Facility (LDEF) and the accompanying experiments were composed of and contained a wide variety of materials representing the largest collection of materials flown in low Earth orbit (LEO) and retrieved for ground based analysis to date. The results and implications of the mechanical, thermal, optical, and electrical data from these materials are the foundation on which future LEO space missions will be built. The LDEF Materials Special Investigation Group (MSIG) has been charged with establishing and developing data bases to document these materials and their performance to assure not only that the data are archived for future generations but also that the data are available to the spacecraft user community in an easily accessed, user-friendly form. This paper discusses the format and content of the three data bases developed or being developed to accomplish this task. The hardware and software requirements for each of these three data bases are discussed along with current availability of the data bases. This paper also serves as a user's guide to the MAPTIS LDEF Materials Data Base.

  15. First LDEF Post-Retrieval Symposium abstracts

    NASA Technical Reports Server (NTRS)

    Levine, Arlene S. (Compiler)

    1991-01-01

    The LDE facility was designed to better understand the environments of space and the effects of prolonged exposure in these environments on future spacecraft. The symposium abstracts presented here are organized according to the symposium agenda into five sessions. The first session provides an overview of the LDEF, the experiments, the mission, and the natural and induced environments the spacecraft and experiments encountered during the mission. The second session presents results to date from studies to better define the environments of near-Earth space. The third session addresses studies of the effects of the space environments on spacecraft materials. The fourth session addresses studies of the effects of the space environments on spacecraft systems. And the fifth session addresses other subjects such as results of the LDEF life science and crystal growth experiments.

  16. LDEF Experiment P0006 Linear Energy Transfer Spectrum Measurement (LETSME) quick look report

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A preliminary analysis of the various passive radiation detector materials included in the P0006 LETSME experiment flown on LDEF (Long Duration Exposure Facility) is presented. It consists of four tasks: (1) readout and analysis of thermoluminescent detectors (TLD); (2) readout and analysis of fission foil/mica detectors; (3) readout and analysis of (6)LiF/CR-39 detectors; and (4) preliminary processing and readout of CR-39 and polycarbonate plastic nuclear track detectors (PNTD).

  17. LDEF: 69 Months in Space. Third Post-Retrieval Symposium, part 1

    NASA Technical Reports Server (NTRS)

    Levine, Arlene S. (Editor)

    1995-01-01

    This volume (Part 1 of 3) is a compilation of papers presented at the Third Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium. The papers represent the data analysis of the 57 experiments flown on the LDEF. The experiments include materials, coatings, thermal systems, power and propulsion, science (cosmic ray, interstellar gas, heavy ions, micrometeoroid, etc.), electronics, optics, and life science. In addition, papers on preliminary data analysis of EURECA, EOIM-3, and other spacecraft are included.

  18. Geometry and mass model of ionizing radiation experiments on the LDEF satellite

    NASA Technical Reports Server (NTRS)

    Colborn, B. L.; Armstrong, T. W.

    1992-01-01

    Extensive measurements related to ionizing radiation environments and effects were made on the LDEF satellite during its mission lifetime of almost 6 years. These data, together with the opportunity they provide for evaluating predictive models and analysis methods, should allow more accurate assessments of the space radiation environment and related effects for future missions in low Earth orbit. The LDEF radiation dosimetry data is influenced to varying degrees by material shielding effects due to the dosimeter itself, nearby components and experiments, and the spacecraft structure. A geometry and mass model is generated of LDEF, incorporating sufficient detail that it can be applied in determining the influence of material shielding on ionizing radiation measurements and predictions. This model can be used as an aid in data interpretation by unfolding shielding effects from the LDEF radiation dosimeter responses. Use of the LDEF geometry/mass model, in conjunction with predictions and comparisons with LDEF dosimetry data currently underway, will also allow more definitive evaluations of current radiation models for future mission applications.

  19. Induced radioactivity in LDEF components

    NASA Technical Reports Server (NTRS)

    Harmon, B. A.; Fishman, G. J.; Parnell, T. A.; Laird, C. E.

    1991-01-01

    The systematics of induced radioactivity on the Long Duration Exposure Facility (LDEF) were studied in a wide range of materials using low level background facilities for detection of gamma rays. Approx. 400 samples of materials processed from structural parts of the spacecraft, as well as materials from onboard experiments, were analyzed at national facilities. These measurements show the variety of radioisotopes that are produced with half-lives greater than 2 wks, most of which are characteristic of proton induced reactions above 20 MeV. For the higher activity, long lived isotopes, it was possible to map the depth and directional dependences of the activity. Due to the stabilized configuration of the LDEF, the induced radioactivity data clearly show contributions from the anisotropic trapped proton flux in the South Atlantic Anomaly. This effect is discussed, along with evidence for activation by galactic protons and thermal neutrons. The discovery of Be-7 was made on leading side parts of the spacecraft, although this was though not to be related to the in situ production of radioisotopes from external particle fluxes.

  20. LDEF: 69 Months in Space. Third Post-Retrieval Symposium, part 2

    NASA Technical Reports Server (NTRS)

    Levine, Arlene S. (Editor)

    1995-01-01

    This volume is a compilation of papers presented at the Third Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium. The papers represent the data analysis of the 57 experiments flown on the LDEF. The experiments include materials, coatings, thermal systems, power and propulsion, science (cosmic ray, interstellar gas, heavy ions, micrometeoroid, etc.), electronics, optics, and life science. In addition, papers on preliminary data analysis of EURECA, EOIM-3, and other spacecraft are included. This second of three parts covers spacecraft construction materials.

  1. An overview of the on-orbit contamination of the Long Duration Exposure Facility (LDEF)

    NASA Technical Reports Server (NTRS)

    Stuckey, W. K.

    1993-01-01

    Contamination that leads to degradation of critical surfaces becomes a vital design issue for many spacecraft programs. One of the processes that must be considered is the on-orbit accumulation of contaminants. The Long Duration Exposure Facility (LDEF) has presented an opportunity to examine the deposits on surfaces returned from orbit in order to help in understanding the deposition processes and the current models used to predict spacecraft contamination levels. The results from various investigators on the contamination of LDEF have implications for material selection, contamination models, and contamination control plans for the design of future spacecraft.

  2. Selected results for LDEF thermal control coatings

    NASA Technical Reports Server (NTRS)

    Golden, Johnny L.

    1993-01-01

    Several different thermal control coatings were analyzed as part of the Long Duration Exposure Facility (LDEF) Materials Special Investigation Group activity and as part of the Space Environment Effects on Spacecraft Materials Experiment M0003. A brief discussion of the results obtained for these materials is presented.

  3. Mechanisms flown on LDEF

    NASA Technical Reports Server (NTRS)

    Dursch, Harry; Spear, Steve

    1992-01-01

    A wide variety of mechanisms were flown on the Long Duration Exposure Facility (LDEF). These include canisters, valves, gears, drive train assemblies, and motors. This report will provide the status of the Systems SIG effort into documenting, integrating, and developing 'lessons learned' for the variety of mechanisms flown on the LDEF. Results will include both testing data developed by the various experimenters and data acquired by testing of hardware at Boeing.

  4. Thermal control paints on LDEF: Results of M0003 sub-experiment 18

    NASA Technical Reports Server (NTRS)

    Jaggers, C. H.; Meshishnek, M. J.; Coggi, J. M.

    1993-01-01

    Several thermal control paints were flown on the Long Duration Exposure Facility (LDEF), including the white paints Chemglaze A276, S13GLO, and YB-71, and the black paint D-111. The effects of low earth orbit, which includes those induced by UV radiation and atomic oxygen, varied significantly with each paint and its location on LDEF. For example, samples of Chemglaze A276 located on the trailing edge of LDEF darkened significantly due to UV-induced degradation of the paint's binder, while leading edge samples remained white but exhibited severe atomic oxygen erosion of the binder. Although the response of S13GLO to low earth orbit is much more complicated, it also exhibited greater darkening on trailing edge samples as compared to leading edge samples. In contrast, YB-71 and D-111 remained relatively stable and showed minimal degradation. The performance of these paints as determined by changes in their optical and physical properties, including solar absorptance as well as surface chemical changes and changes in surface morphology is examined. It will also provide a correlation of these optical and physical property changes to the physical phenomena that occurred in these materials during the LDEF mission.

  5. Sixty-nine months in space: A history of the first LDEF (Long Duration Exposure Facility)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The LDEF project is summarized from its conception, through its deployment, to the return of the experiments. A LDEF chronology and a fact sheet is included. The experiments carried more than 10,000 specimens to gather scientific data and to test the effects of long term space exposure on spacecraft materials, components, and systems. Results will be invaluable for the design of future spacecraft such as Space Station Freedom.

  6. A measurement of the radiation dose to LDEF by passive dosimetry

    NASA Technical Reports Server (NTRS)

    Blake, J. B.; Imamoto, S. S.

    1993-01-01

    The results from a pair of thermoluminescent dosimeter experiments flown aboard the Long Duration Exposure Facility (LDEF) show an integrated dose several times smaller than that predicted by the NASA environmental models for shielding thicknesses much greater than 0.10 gm/sq cm aluminum. For thicknesses between 0.01 and 0.1 gm/sq cm, the measured dose was in agreement with predictions. The Space and Environment Technology Center of The Aerospace Corporation fielded two related experiments on LDEF to measure the energetic radiation dose by means of passive dosimetry. The sensors were LiF thermoluminescent dosimeters mounted behind various thicknesses of shielding. The details of the experiment are described first, followed by the results of the observations. A comparison is made with the predictions based upon the NASA environmental models and the actual mission profile flown by LDEF; conclusions follow.

  7. Migration and generation of contaminants from launch through recovery: LDEF case history

    NASA Technical Reports Server (NTRS)

    Crutcher, E. R.; Nishimura, L. S.; Warner, K. J.; Wascher, W. W.

    1992-01-01

    It is possible to recreate the contamination history of the Long Duration Exposure Facility (LDEF) through an analysis of its contaminants and selective samples that were collected from surfaces with better documented exposure histories. This data was then used to compare estimates based on monitoring methods that were selected for the purpose of tracking LDEF's exposure to contaminants. The LDEF experienced much more contamination than would have been assumed based on the monitors. Work is still in progress but much of what was learned so far is already being used in the selection of materials and in the design of systems for space. Now experiments are being prepared for flight to resolve questions created by the discoveries on the LDEF. A summary of what was learned about LDEF contaminants over the first year since recovery and deintegration is presented. Over 35 specific conclusions in 5 contamination related categories are listed.

  8. Atomic oxygen exposure of LDEF experiment trays

    NASA Technical Reports Server (NTRS)

    Bourassa, R. J.; Gillis, J. R.

    1992-01-01

    Atomic oxygen exposures were determined analytically for rows, longerons, and end bays of the Long Duration Exposure Facility (LDEF). The calculations are based on an analytical model that accounts for the effects of thermal molecular velocity, atmospheric temperature, number density, spacecraft velocity, incidence angle, and atmospheric rotation on atomic oxygen flux. Results incorporate variations in solar activity, geomagnetic index, and orbital parameters occurring over the 6-year flight of the spacecraft. To facilitate use of the data, both detailed tabulations and summary charts for atomic oxygen fluences are presented.

  9. LDEF: Dosimetric measurement results (AO 138-7 experiment)

    NASA Technical Reports Server (NTRS)

    Bourrieau, J.

    1992-01-01

    One of the objectives of the AO 138-7 experiment on board the LDEF was a total dose measurement with Thermo Luminescent Detectors (TLD 100). Two identical cases, both including 5 TLDs inside various aluminum shields, are exposed to the space environment in order to obtain the absorbed dose profile induced. Radiation fluence received during the total mission length was computed, taking into account the trapped particles (solar maximum and solar minimum periods) and the cosmic rays; due to the magnetospheric shielding, the solar proton fluences are negligible on the LDEF orbit. The total dose induced by these radiations inside a semi-infinite plane shield of Al are computed with radiation transport codes. TLD reading are performed after flight; due to the mission duration increase, a post-flight calibration was necessary in order to cover the range of the flight induced dose. The results obtained, similar (+ or - 30 pct.) in both cases, are compared with the dose profile computation. In practice, these LDEF results, with less than a factor 1.4 between measurements and forecasts, reinforce the validity of the computation methods and models used for the long term evaluation of space radiation intensity on low inclination Earth orbits.

  10. LDEF materials: An overview of the interim findings

    NASA Technical Reports Server (NTRS)

    Stein, Bland A.

    1992-01-01

    The flight and retrieval of the National Aeronautics and Space Administration's Long Duration Exposure Facility (LDEF) provided an opportunity for the study of the low-Earth orbit (LEO) environment and long-duration space environmental effect (SEE) on materials that are unparalleled in the history of the U.S. space program. The 5.8-year flight of LDEF greatly enhanced the potential value of materials data from LDEF to the international SEE community, compared to that of the original 1-year flight plan. The remarkable flight attitude stability of LDEF enables specific analyses of various individual and combined effects of LEO environmental parameters on identical materials of the same space vehicle. NASA recognized the potential by forming the LDEF Space Environmental Effects on Materials Special Investigation Group (MSIG) to address the greatly expanded materials and LEO space environment parameter analysis opportunities available in the LDEF structure, experiment trays, and corollary measurements, so that the combined value of all LDEF materials data to current and future space missions will be assessed and documented. This paper provides an overview of the interim LDEF materials findings of the Principal Investigators and the Materials Special Investigation Group. These revelations are based on observations of LEO environmental effects on materials made in-space during LDEF retrieval and during LDEF tray deintegration at the Kennedy Space Center, and on findings of approximately 1.5 years of laboratory analyses of LDEF materials by the LDEF materials scientists. These findings were extensively reviewed and discussed at the MSIG-sponsored LDEF Materials Workshop '91. The results are presented in a format which categorizes the revelations as 'clear findings' or 'confusing/unexplained findings' and resultant needs for new space materials developments and ground simulation testing/analytical modeling in seven categories: environmental parameters and data bases; LDEF

  11. What LDEF means for development and testing of materials

    NASA Technical Reports Server (NTRS)

    Whitaker, Ann F.; Stuckey, Wayne K.; Stein, Bland A.

    1993-01-01

    The Long Duration Exposure Facility (LDEF) served as the ultimate laboratory to provide combined space environmental effects on materials. The LDEF structure and its 57 experiments contained an estimated 12,000 to 14,000 specimens of materials and materials processes. It not only provided information about the resistance of these materials to the space environment but gives us direction into future needs for spacecraft materials development and testing. This paper provides an overview of the materials effects observed on the satellite and suggests recommendations for the future work in space-qualified materials development and space environmental simulation.

  12. Results from the testing and analysis of LDEF batteries

    NASA Technical Reports Server (NTRS)

    Spear, Steve; Dursch, Harry; Johnson, Chris

    1992-01-01

    Batteries were used on the Long Duration Exposure Facility (LDEF) to provide power to both the active experiments and the experiment support equipment such as the Experiment Initiative System, Experiment Power and Data System (data acquisition system), and the Environment Exposure Control Canisters. Three different types of batteries were used: lithium sulfur dioxide (LiSO2), lithium carbon monofluoride (LiCF), and nickel cadmium (NiCd). A total of 92 LiSO2, 10 LiCF, and 1 NiCd batteries were flown on the LDEF. In addition, approximately 20 LiSO2 batteries were kept in cold storage at NASA LaRC. The various investigations and post-flight analyses of the flight and control batteries are reviewed. The primary objectives of these studies was to identify degradation modes (if any) of the batteries and to provide information useful to future spacecraft missions. Systems SIG involvement in the post-flight evaluation of LDEF batteries was two-fold: (1) to fund SAFT (original manufacturer of the LiSO2 batteries) to perform characterization of 13 LiSO2 batteries (10 flight and 3 control batteries); and (2) to integrate investigator results.

  13. An interim overview of LDEF materials findings

    NASA Technical Reports Server (NTRS)

    Stein, Brad A.

    1992-01-01

    The flight and retrieval of the National Aeronautics and Space Administration's Long Duration Exposure Facility (LDEF) provided an opportunity for the study of the low-Earth orbit (LEO) environment and long-duration space environmental effects (SEE) on materials that is unparalleled in the history of the U.S. Space Program. The remarkable flight attitude stability of LDEF enables specific analyses of various individual and combined effects of LEO environmental parameters on identical materials on the same space vehicle. This paper provides an overview of the interim LDEF materials findings of the Principal Investigators and the Materials Special Investigation Group. In general, the LDEF data is remarkably consistent; LDEF will provide a 'benchmark' for materials design data bases for satellites in low-Earth orbit. Some materials were identified to be encouragingly resistant to LEO SEE for 5.8 years; other 'space qualified' materials displayed significant environmental degradation. Molecular contamination was widespread; LDEF offers an unprecedented opportunity to provide a unified perspective of unmanned LEO spacecraft contamination mechanisms. New material development requirements for long-term LEO missions have been identified and current ground simulation testing methods/data for new, durable materials concepts can be validated with LDEF results. LDEF findings are already being integrated into the design of Space Station Freedom.

  14. Induced activation study of LDEF

    NASA Technical Reports Server (NTRS)

    Harmon, B. A.; Fishman, G. J.; Parnell, T. A.; Laird, C. E.

    1993-01-01

    Analysis of the induced radioactivity of the Long Duration Exposure Facility (LDEF) is continuing with extraction of specific activities for various spacecraft materials. Data and results of activation measurements from eight facilities are being collected for interpretation at Eastern Kentucky University and NASA/Marshall Space Flight Center. The major activation mechanism in LDEF components is the proton flux in the South Atlantic Anomaly (SAA). This flux is highly anisotropic, and could be sampled by taking advantage of the gravity-gradient stabilization of the LDEF. The directionally-dependent activation due to these protons was clearly observed in the data from aluminum experiment tray clamps (reaction product Na-22), steel trunnions (reaction product Mn-54 and others) and is also indicated by the presence of a variety of nuclides in other materials. A secondary production mechanism, thermal neutron capture, was observed in cobalt, indium, and tantalum, which are known to have large capture cross sections. Experiments containing samples of these metals and significant amounts of thermalizing low atomic number (Z) material showed clear evidence of enhanced activation of Co-60, In-114m, and Ta-182. Other mechanisms which activate spacecraft material that are not as easily separable from SAA proton activation, such as galactic proton bombardment and secondary production by fast neutrons, are being investigated by comparison to radiation environmental calculations. Deviations from one-dimensional radiation models indicate that these mechanisms are more important at greater shielding depths. The current status of the induced radioactivity measurements as of mid-year 1992 are reviewed. Specific activities for a number of materials which show SAA effects and thermal neutron capture are presented. The results for consistency by combining data from the participating institutions is also examined.

  15. Vacuum Ultraviolet (VUV) radiation-induced degradation of Fluorinated Ethylene Propylene (FEP) Teflon aboard the Long Duration Exposure Facility (LDEF)

    NASA Technical Reports Server (NTRS)

    Brinza, David E.; Stiegman, A. E.; Staszak, Paul R.; Laue, Eric G.; Liang, Ranty H.

    1992-01-01

    Examination of fluorinated ethylene propylene (FEP) copolymer specimens recovered from the Long Duration Exposure Facility (LDEF) provides evidence for degradation attributed to extended solar vacuum ultraviolet (VUV) irradiation. Scanning electron microscope (SEM) images of sheared FEP film edges reveal the presence of a highly embrittled layer on the exposed surface of specimens obtained from the trailing edge of the LDEF. Similar images obtained for leading edge and control FEP films do not exhibit evidence for such an embrittled layer. Laboratory VUV irradiation of FEP films is found to produce a damage layer similar to that witnessed in the LDEF trailing edge films. Spectroscopic analyses of irradiated films provide data to advance a photochemical mechanism for degradation.

  16. Space environmental effect on solar cells: LDEF and other flight tests

    NASA Technical Reports Server (NTRS)

    Gruenbaum, Peter; Dursch, Harry

    1995-01-01

    This paper summarizes results of several experiments flown on the Long Duration Exposure Facility (LDEF) to examine the effects of the space environment on materials and technologies to be used in solar arrays. The various LDEF experiments are compared to each other as well as to other solar cell flight data published in the literature. Data on environmental effects such as atomic oxygen, ultraviolet light, micrometeoroids and debris, and charged particles are discussed in detail. The results from the LDEF experiments allow us to draw several conclusions. Atomic oxygen erodes unprotected silver interconnects, unprotected Kapton, and polymer cell covers, but certain dielectric coatings can protect both silver and Kapton. Cells that had wrap-around silver contacts sometimes showed erosion at the edges, but more recently developed wrap-through cells are not expected to have these problems. Micrometeoroid and debris damage is limited to the area close to the impact, and microsheet covers provide the cells with some protection. Damage from charged particles was as predicted, and the cell covers provided adequate protection. In general, silicon cells with microsheet covers showed very little degradation, and solar modules showed less than 3 percent degradation, except when mechanically damaged. The solar cell choices for the Space Station solar array are supported by the data from LDEF.

  17. M and D SIG progress report: Laboratory simulations of LDEF impact features

    NASA Technical Reports Server (NTRS)

    Horz, Friedrich; Bernhard, R. P.; See, T. H.; Atkinson, D.; Allbrooks, M.

    1992-01-01

    Laboratory impact experiments are needed to understand the relationship between a measured penetration hole diameter and associated projectile dimension in the thermal blankets of experiment A0178, which occupied some 16 sq. m. These blankets are composed of 125 micron thick Teflon that has an Ag/enconel second mirror surface, backed by organic binder and Chemglaze paint for a total thickness of some 170 microns. While dedicated experiments are required to understand the penetration behavior of this compound target in detail, we report here on impact simulations sponsored by other projects into pure Teflon and aluminum targets. These experiments will allow first order interpretations of impact features on the Long Duration Exposure Facility (LDEF), and they will serve as guides for dedicated experiments that employ the real LDEF blankets, both exposed and unexposed, for a refined understanding of the LDEF's collisional environment. We employed a light gas gun to launch soda-lime glass spheres from 50 to 3200 microns in diameter that impacted targets of variable thickness. Penetration measurements are given.

  18. Surface characterization of LDEF materials

    NASA Astrophysics Data System (ADS)

    Wightman, J. P.; Grammer, Holly Little

    1993-10-01

    The NASA Long Duration Exposure Facility (LDEF), a passive experimental satellite, was placed into low-Earth orbit by the Shuttle Challenger in Apr. 1984. The LDEF spent an unprecedented 69 months in space. The flight and recovery of the LDEF provided a wealth of information on the longterm space environmental effects of a variety of materials exposed to the low-Earth orbit environment. Surface characterization of LDEF materials included polymers, composites, thermal control paints, and aluminum. X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), scanning electron microscopy (SEM), and contact angle analysis were used to document changes in both the surface composition and surface chemistry of these materials. Detailed XPS analysis of the polymer systems, such as Kapton, polyimide polysiloxane copolymers, and fluorinated ethylene propylene thermal blankets on the backside of the LDEF revealed significant changes in both the surface composition and surface chemistry as a result of exposure to the low-Earth orbit environment. Polymer systems such as Kapton, polyimide polysiloxane copolymers, and polysulfone showed a common trend of decreasing carbon content and increasing oxygen content with respect to the control sample. Carbon 1s curve fit XPS analysis of the composite samples, in conjunction with SEM photomicrographs, revealed significant ablation of the polymer matrix resin to expose the carbon fibers of the composite during exposure to the space environment. Surface characterization of anodized aluminum tray clamps, which were located at regular intervals over the entire LDEF frame, provided the first results to evaluate the extent of contamination with respect to position on the LDEF. The XPS results clearly showed that the amount and state of both silicon and fluorine contamination were directly dependent upon the position of the tray clamp on the LDEF.

  19. Surface characterization of LDEF materials

    NASA Technical Reports Server (NTRS)

    Wightman, J. P.; Grammer, Holly Little

    1993-01-01

    The NASA Long Duration Exposure Facility (LDEF), a passive experimental satellite, was placed into low-Earth orbit by the Shuttle Challenger in Apr. 1984. The LDEF spent an unprecedented 69 months in space. The flight and recovery of the LDEF provided a wealth of information on the longterm space environmental effects of a variety of materials exposed to the low-Earth orbit environment. Surface characterization of LDEF materials included polymers, composites, thermal control paints, and aluminum. X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), scanning electron microscopy (SEM), and contact angle analysis were used to document changes in both the surface composition and surface chemistry of these materials. Detailed XPS analysis of the polymer systems, such as Kapton, polyimide polysiloxane copolymers, and fluorinated ethylene propylene thermal blankets on the backside of the LDEF revealed significant changes in both the surface composition and surface chemistry as a result of exposure to the low-Earth orbit environment. Polymer systems such as Kapton, polyimide polysiloxane copolymers, and polysulfone showed a common trend of decreasing carbon content and increasing oxygen content with respect to the control sample. Carbon 1s curve fit XPS analysis of the composite samples, in conjunction with SEM photomicrographs, revealed significant ablation of the polymer matrix resin to expose the carbon fibers of the composite during exposure to the space environment. Surface characterization of anodized aluminum tray clamps, which were located at regular intervals over the entire LDEF frame, provided the first results to evaluate the extent of contamination with respect to position on the LDEF. The XPS results clearly showed that the amount and state of both silicon and fluorine contamination were directly dependent upon the position of the tray clamp on the LDEF.

  20. LDEF Satellite Radiation Analyses

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.

    1996-01-01

    Model calculations and analyses have been carried out to compare with several sets of data (dose, induced radioactivity in various experiment samples and spacecraft components, fission foil measurements, and LET spectra) from passive radiation dosimetry on the Long Duration Exposure Facility (LDEF) satellite, which was recovered after almost six years in space. The calculations and data comparisons are used to estimate the accuracy of current models and methods for predicting the ionizing radiation environment in low earth orbit. The emphasis is on checking the accuracy of trapped proton flux and anisotropy models.

  1. LDEF: 69 Months in Space. First Post-Retrieval Symposium, part 1

    NASA Technical Reports Server (NTRS)

    Levine, Arlene S. (Editor)

    1992-01-01

    A compilation of papers from the symposium is presented. The papers represent the preliminary data analysis of the 57 experiments flown on the Long Duration Exposure Facility (LDEF). The experiments include materials, coatings, thermal systems, power and propulsion, science (cosmic ray, interstellar gas, heavy ions, and micrometeoroids), electronics, optics, and life sciences.

  2. Long Duration Exposure Facility (LDEF). Mission 1 Experiments

    NASA Technical Reports Server (NTRS)

    Clark, L. G. (Editor); Kinard, W. H. (Editor); Carter, D. L., Jr. (Editor); Jones, J. L., Jr. (Editor)

    1984-01-01

    Spaceborne experiments using the space shuttle payload known as the Long Duration Exposure Facility are described. Experiments in the fields of materials, coatings, thermal systems, power and propulsion, electronic, and optics are discussed.

  3. Thermal control surfaces on the MSFC LDEF experiments

    NASA Technical Reports Server (NTRS)

    Wilkes, Donald R.; Whitaker, Ann F.; Zwiener, James M.; Linton, Roger C.; Shular, David; Peters, Palmer N.; Gregory, John C.

    1992-01-01

    There were five Marshall Space Flight Center (MSFC) experiments on the LDEF. Each of those experiments carried thermal control surfaces either as test samples or as operational surfaces. These materials experienced varying degrees of mechanical and optical damage. Some materials were virtually unchanged by the extended exposure while others suffered extensive degradation. The synergistic effects due to the constituents of the space environment are evident in the diversity of these material changes. The sample complement for the MSFC experiments is described along with results of the continuing analyses efforts.

  4. LDEF materials results for spacecraft applications: Executive summary

    NASA Astrophysics Data System (ADS)

    Whitaker, A. F.; Dooling, D.

    1995-03-01

    To address the challenges of space environmental effects, NASA designed the Long Duration Exposure Facility (LDEF) for an 18-month mission to expose thousands of samples of candidate materials that might be used on a space station or other orbital spacecraft. LDEF was launched in April 1984 and was to have been returned to Earth in 1985. Changes in mission schedules postponed retrieval until January 1990, after 69 months in orbit. Analyses of the samples recovered from LDEF have provided spacecraft designers and managers with the most extensive data base on space materials phenomena. Many LDEF samples were greatly changed by extended space exposure. Among even the most radially altered samples, NASA and its science teams are finding a wealth of surprising conclusions and tantalizing clues about the effects of space on materials. Many were discussed at the first two LDEF results conferences and subsequent professional papers. The LDEF Materials Results for Spacecraft Applications Conference was convened in Huntsville to discuss implications for spacecraft design. Already, paint and thermal blanket selections for space station and other spacecraft have been affected by LDEF data. This volume synopsizes those results.

  5. LDEF materials results for spacecraft applications: Executive summary

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F. (Compiler); Dooling, D. (Compiler)

    1995-01-01

    To address the challenges of space environmental effects, NASA designed the Long Duration Exposure Facility (LDEF) for an 18-month mission to expose thousands of samples of candidate materials that might be used on a space station or other orbital spacecraft. LDEF was launched in April 1984 and was to have been returned to Earth in 1985. Changes in mission schedules postponed retrieval until January 1990, after 69 months in orbit. Analyses of the samples recovered from LDEF have provided spacecraft designers and managers with the most extensive data base on space materials phenomena. Many LDEF samples were greatly changed by extended space exposure. Among even the most radially altered samples, NASA and its science teams are finding a wealth of surprising conclusions and tantalizing clues about the effects of space on materials. Many were discussed at the first two LDEF results conferences and subsequent professional papers. The LDEF Materials Results for Spacecraft Applications Conference was convened in Huntsville to discuss implications for spacecraft design. Already, paint and thermal blanket selections for space station and other spacecraft have been affected by LDEF data. This volume synopsizes those results.

  6. Radiation and temperature effects on LDEF fiber optic samples

    NASA Technical Reports Server (NTRS)

    Johnston, A. R.; Hartmayer, R.; Bergman, L. A.

    1993-01-01

    Results obtained from the JPL Fiber Optics Long Duration Exposure Facility (LDEF) Experiment since the June 1991 Experimenters' Workshop are addressed. Radiation darkening of laboratory control samples and the subsequent annealing was measured in the laboratory for the control samples. The long-time residual loss was compared to the LDEF flight samples and found to be in agreement. The results of laboratory temperature tests on the flight samples, extending over a period of about nine years, including the pre-flight and post-flight analysis periods, are described. The temperature response of the different cable samples varies widely, and appears in two samples to be affected by polymer aging. Conclusions to date are summarized.

  7. Anodized aluminum on LDEF

    NASA Technical Reports Server (NTRS)

    Golden, Johnny L.

    1993-01-01

    A compilation of reported analyses and results obtained for anodized aluminum flown on the Long Duration Exposure Facility (LDEF) was prepared. Chromic acid, sulfuric acid, and dyed sulfuric acid anodized surfaces were exposed to the space environment. The vast majority of the anodized surface on LDEF was chromic acid anodize because of its selection as a thermal control coating for use on the spacecraft primary structure, trays, tray clamps, and space end thermal covers. Reports indicate that the chromic acid anodize was stable in solar absorptance and thermal emittance, but that contamination effects caused increases in absorptance on surfaces exposed to low atomic oxygen fluences. There were some discrepancies, however, in that some chromic acid anodized specimens exhibited significant increases in absorptance. Sulfuric acid anodized surfaces also appeared stable, although very little surface area was available for evaluation. One type of dyed sulfuric acid anodize was assessed as an optical baffle coating and was observed to have improved infrared absorptance characteristics with exposure on LDEF.

  8. Radioactivities of Long Duration Exposure Facility (LDEF) materials: Baggage and bonanzas

    NASA Astrophysics Data System (ADS)

    Smith, Alan R.; Hurley, Donna L.

    1991-06-01

    Radioactivities in materials onboard the returned Long Duration Exposure Facility (LDEF) satellite were studied by a variety of techniques. Among the most powerful is low background Ge semiconductor detector gamma ray spectrometry. The observed radioactivities are of two origins: those radionuclides produced by nuclear reactions with the radiation field in orbit and radionuclides present initially as contaminants in materials used for construction of the spacecraft and experimental assemblies. In the first category are experiment related monitor foils and tomato seeds, and such spacecraft materials as Al, stainless steel, and Ti. In the second category are Al, Be, Ti, Va, and some special glasses. Consider that measured peak-area count rates from both categories range from a high value of about 1 count per minute down to less than 0.001 count per minute. Successful measurement of count rates toward the low end of this range can be achieved only through low background techniques, such as used to obtain the results presented here.

  9. Radioactivities of Long Duration Exposure Facility (LDEF) materials: Baggage and bonanzas

    NASA Technical Reports Server (NTRS)

    Smith, Alan R.; Hurley, Donna L.

    1991-01-01

    Radioactivities in materials onboard the returned Long Duration Exposure Facility (LDEF) satellite were studied by a variety of techniques. Among the most powerful is low background Ge semiconductor detector gamma ray spectrometry. The observed radioactivities are of two origins: those radionuclides produced by nuclear reactions with the radiation field in orbit and radionuclides present initially as contaminants in materials used for construction of the spacecraft and experimental assemblies. In the first category are experiment related monitor foils and tomato seeds, and such spacecraft materials as Al, stainless steel, and Ti. In the second category are Al, Be, Ti, Va, and some special glasses. Consider that measured peak-area count rates from both categories range from a high value of about 1 count per minute down to less than 0.001 count per minute. Successful measurement of count rates toward the low end of this range can be achieved only through low background techniques, such as used to obtain the results presented here.

  10. Performance of selected polymeric materials on LDEF

    NASA Technical Reports Server (NTRS)

    Young, Philip R.; Slemp, Wayne S.; Stein, Bland A.

    1993-01-01

    The NASA Long Duration Exposure Facility (LDEF) provided a unique environmental exposure of a wide variety of materials for potential advanced spacecraft application. This paper examines the molecular level response of selected polymeric materials which flew onboard this vehicle. Polymers include epolyimide, polysulfone, and polystyrene film and polyimide, polysulfone, and epoxy matrix resin/graphite fiber reinforced composites. Several promising experimental films were also studied. Most specimens received 5.8 years of low Earth orbital (LEO) exposure on LDEF. Several samples received on 10 months of exposure. Chemical characterization techniques included ultraviolet-visible and infrared spectroscopy, thermal analysis, x-ray photoelectron spectroscopy, and selected solution property measurements. Results suggest that many molecular level effects present during the first 10 months of exposure were not present after 5.8 years of exposure for specimens on or near Row 9. Increased AO fluence near the end of the mission likely eroded away much environmentally induced surface phenomena. The objective of this work is to provide fundamental information for use in improving the performance of polymeric materials for LEO application. A secondary objective is to gain an appreciation for the constraints and limitations of results from LDEF polymeric materials experiments.

  11. The ionizing radiation environment of LDEF prerecovery predictions

    NASA Technical Reports Server (NTRS)

    Watts, John W., Jr.; Derrickson, James H.; Parnell, T. A.; Fishman, G. J.; Harmon, A.; Benton, E. V.; Frank, A. L.; Heinrich, Wolfgang

    1991-01-01

    The Long Duration Exposure Facility (LDEF) was exposed to several sources of ionizing radiation while in orbit. The principal ones were trapped belt protons and electrons, galactic cosmic rays, and albedo particles (protons and neutrons) from the atmosphere. Large solar flares in 1989 may have caused a small contribution. Prior to the recovery of the spacecraft, a number of calculations and estimates were made to predict the radiation exposure of the spacecraft and experiments. These were made to assess whether measurable radiation effects might exist, and to plan the analysis of the large number of radiation measurements available on the LDEF. Calculations and estimates of total dose, particle fluences, linear energy transfer spectra, and induced radioactivity were made. The principal sources of radiation is described, and the preflight predictions are summarized.

  12. Spacecraft contamination issues from LDEF: Issues for design

    NASA Technical Reports Server (NTRS)

    Pippin, Gary; Crutcher, Russ

    1993-01-01

    Many contamination sources have been identified on the Long Duration Exposure Facility (LDEF). Effects of contamination from these sources are being quantified and have been reported on in several papers. For a designer, the essential question is how much contamination from all sources can be tolerated without causing a given spacecraft system to degrade below a critical performance level, or fail altogether. Even a rudimentary knowledge of the mechanisms by which molecular and particulate contamination can occur will allow simple design options to be chosen to circumvent potential contamination problems and reduce contamination levels. Because of the varied nature and condition of hardware used on LDEF experiments, examples of many types of contamination were seen and these provide a useful guide to expected performance of many types of materials in space environments.

  13. Future directions for LDEF ionizing radiation modeling and assessments

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.

    1993-01-01

    A calculational program utilizing data from radiation dosimetry measurements aboard the Long Duration Exposure Facility (LDEF) satellite to reduce the uncertainties in current models defining the ionizing radiation environment is in progress. Most of the effort to date has been on using LDEF radiation dose measurements to evaluate models defining the geomagnetically trapped radiation, which has provided results applicable to radiation design assessments being performed for Space Station Freedom. Plans for future data comparisons, model evaluations, and assessments using additional LDEF data sets (LET spectra, induced radioactivity, and particle spectra) are discussed.

  14. LDEF materials data analysis: Representative examples

    NASA Technical Reports Server (NTRS)

    Pippin, Gary; Crutcher, Russ

    1993-01-01

    Part of the philosophy which guided the examination of hardware from the Long Duration Exposure Facility (LDEF) was that materials present at multiple locations should have fairly high priority for investigation. Properties of such materials were characterized as a function of exposure conditions to obtain as much data as possible for predicting performance lifetimes. Results from examination of several materials from interior locations of LDEF, selected measurements on silverized teflon blanket specimens, and detailed measurements on the copper grounding strap from tray D11 are summarized. Visual observations of interior locations of LDEF made during deintegration at KSC showed apparent changes in particular specimens. This inspection lead to testing of selected nylon clamps, fiberglass shims, and heat shrink tubing from wire harness clamps, and visually discolored silver coated hex nuts.

  15. Contamination on LDEF: Sources, distribution, and history

    NASA Technical Reports Server (NTRS)

    Pippin, Gary; Crutcher, Russ

    1993-01-01

    An introduction to contamination effects observed on the Long Duration Exposure Facility (LDEF) is presented. The activities reported are part of Boeing's obligation to the LDEF Materials Special Investigation Group. The contamination films and particles had minimal influence on the thermal performance of the LDEF. Some specific areas did have large changes in optical properties. Films also interfered with recession rate determination by reacting with the oxygen or physically shielding underlying material. Generally, contaminant films lessen the measured recession rate relative to 'clean' surfaces. On orbit generation of particles may be an issue for sensitive optics. Deposition on lenses may lead to artifacts on photographic images or cause sensors to respond inappropriately. Particles in the line of sight of sensors can cause stray light to be scattered into sensors. Particles also represent a hazard for mechanisms in that they can physically block and/or increase friction or wear on moving surfaces. LDEF carried a rather complex mixture of samples and support hardware into orbit. The experiments were assembled under a variety of conditions and time constraints and stored for up to five years before launch. The structure itself was so large that it could not be baked after the interior was painted with chemglaze Z-306 polyurethane based black paint. Any analysis of the effects of molecular and particulate contamination must account for a complex array of sources, wide variation in processes over time, and extreme variation in environment from ground to launch to flight. Surface conditions at certain locations on LDEF were established by outgassing of molecular species from particular materials onto adjacent surfaces, followed by alteration of those species due to exposure to atomic oxygen and/or solar radiation.

  16. Experimental impacts into Teflon targets and LDEF thermal blankets

    NASA Astrophysics Data System (ADS)

    Hoerz, F.; Cintala, M. J.; Zolensky, M. E.; Bernhard, R. P.; See, T. H.

    1994-03-01

    The Long Duration Exposure Facility (LDEF) exposed approximately 20 sq m of identical thermal protective blankets, predominantly on the Ultra-Heavy Cosmic Ray Experiment (UHCRE). Approximately 700 penetration holes greater than 300 micron in diameter were individually documented, while thousands of smaller penetrations and craters occurred in these blankets. As a result of their 5.7 year exposure and because they pointed into a variety of different directions relative to the orbital motion of the nonspinning LDEF platform, these blankets can reveal important dynamic aspects of the hypervelocity particle environment in near-earth orbit. The blankets were composed of an outer teflon layer (approximately 125 micron thick), followed by a vapor-deposited rear mirror of silver (less than 1000 A thick) that was backed with an organic binder and a thermal protective paint (approximately 50 to 75 micron thick), resulting in a cumulative thickness (T) of approximately 175 to 200 microns for the entire blanket. Many penetrations resulted in highly variable delaminations of the teflon/metal or metal/organic binder interfaces that manifest themselves as 'dark' halos or rings, because of subsequent oxidation of the exposed silver mirror. The variety of these dark albedo features is bewildering, ranging from totally absent, to broad halos, to sharp single or multiple rings. Over the past year experiments were conducted over a wide range of velocities (i.e., 1 to 7 km/s) to address velocity dependent aspects of cratering and penetrations of teflon targets. In addition, experiments were performed with real LDEF thermal blankets to duplicate the LDEF delaminations and to investigate a possible relationship of initial impact conditions on the wide variety of dark halo and ring features.

  17. Space environment durability of beta cloth in LDEF thermal blankets

    NASA Technical Reports Server (NTRS)

    Linton, Roger C.; Whitaker, Ann F.; Finckenor, Miria M.

    1993-01-01

    Beta cloth performance for use on long-term space vehicles such as Space Station Freedom (S.S. Freedom) requires resistance to the degrading effects of the space environment. The major issues are retention of thermal insulating properties through maintaining optical properties, preserving mechanical integrity, and generating minimal particulates for contamination-sensitive spacecraft surfaces and payloads. The longest in-flight test of beta cloth's durability was on the Long Duration Exposure Facility (LDEF), where it was exposed to the space environment for 68 months. The LDEF contained 57 experiments which further defined the space environment and its effects on spacecraft materials. It was deployed into low-Earth orbit (LEO) in Apr. 1984 and retrieved Jan. 1990 by the space shuttle. Among the 10,000 plus material constituents and samples onboard were thermal control blankets of multilayer insulation with a beta cloth outer cover and Velcro attachments. These blankets were exposed to hard vacuum, thermal cycling, charged particles, meteoroid/debris impacts, ultraviolet (UV) radiation, and atomic oxygen (AO). Of these space environmental exposure elements, AO appears to have had the greatest effect on the beta cloth. The beta cloth analyzed in this report came from the MSFC Experiment S1005 (Transverse Flat-Plate Heat Pipe) tray oriented approximately 22 deg from the leading edge vector of the LDEF satellite. The location of the tray on LDEF and the placement of the beta cloth thermal blankets are shown. The specific space environment exposure conditions for this material are listed.

  18. LDEF meteoroid and debris database

    NASA Technical Reports Server (NTRS)

    Dardano, C. B.; See, Thomas H.; Zolensky, Michael E.

    1994-01-01

    The Long Duration Exposure Facility (LDEF) Meteoroid and Debris Special Investigation Group (M&D SIG) database is maintained at the Johnson Space Center (JSC), Houston, Texas, and consists of five data tables containing information about individual features, digitized images of selected features, and LDEF hardware (i.e., approximately 950 samples) archived at JSC. About 4000 penetrations (greater than 300 micron in diameter) and craters (greater than 500 micron in diameter) were identified and photodocumented during the disassembly of LDEF at the Kennedy Space Center (KSC), while an additional 4500 or so have subsequently been characterized at JSC. The database also contains some data that have been submitted by various PI's, yet the amount of such data is extremely limited in its extent, and investigators are encouraged to submit any and all M&D-type data to JSC for inclusion within the M&D database. Digitized stereo-image pairs are available for approximately 4500 features through the database.

  19. Evaluation of seals, lubricants, and adhesives used on LDEF

    NASA Technical Reports Server (NTRS)

    Dursch, Harry; Keough, Bruce; Pippin, Gary

    1993-01-01

    A wide variety of seals, lubricants, and adhesives were used on the Long Duration Exposure Facility (LDEF). The results, to date, of the Systems Special Investigation Group (SIG) and the Materials SIG investigation into the effect of the long term low Earth orbit (LEO) exposure on these materials is discussed. Results of this investigation show that if the material was shielded from exposure to LDEF's external environment, the 69 month exposure to LEO had minimal effect on the material. However, if the material was on LDEF's exterior surface, a variety of events occurred ranging from no material change, to changes in mechanical or physical properties, to complete disappearance of the material. The results are from the following sources: (1) visual examinations and/or testing of materials performed by various LDEF experimenters, (2) testing done at Boeing in support of the Materials or Systems SIG investigations, (3) testing done at Boeing on Boeing hardware flown on LDEF.

  20. Materials And Processes Technical Information System (MAPTIS) LDEF materials data base

    NASA Technical Reports Server (NTRS)

    Funk, Joan G.; Strickland, John W.; Davis, John M.

    1993-01-01

    A preliminary Long Duration Exposure Facility (LDEF) Materials Data Base was developed by the LDEF Materials Special Investigation Group (MSIG). The LDEF Materials Data Base is envisioned to eventually contain the wide variety and vast quantity of materials data generated from LDEF. The data is searchable by optical, thermal, and mechanical properties, exposure parameters (such as atomic oxygen flux) and author(s) or principal investigator(s). Tne LDEF Materials Data Base was incorporated into the Materials and Processes Technical Information System (MAPTIS). MAPTIS is a collection of materials data which has been computerized and is available to engineers, designers, and researchers in the aerospace community involved in the design and development of spacecraft and related hardware. The LDEF Materials Data Base is described and step-by-step example searches using the data base are included. Information on how to become an authorized user of the system is included.

  1. Induced radioactivity in LDEF components

    NASA Technical Reports Server (NTRS)

    Harmon, B. A.; Fishman, G. J.; Parnell, T. A.; Laird, C. E.

    1992-01-01

    A systematic study of the induced radioactivity of the Long Duration Exposure Facility (LDEF) is being carried out in order to gather information about the low earth orbit radiation environment and its effects on materials. The large mass of the LDEF spacecraft, its stabilized configuration, and long mission duration have presented an opportunity to determine space radiation-induced radioactivities with a precision not possible before. Data presented include preliminary activities for steel and aluminum structural samples, and activation subexperiment foils. Effects seen in the data show a clear indication of the trapped proton anisotropy in the South Atlantic Anomaly and suggest contributions from different sources of external radiation fluxes.

  2. The performance of thermal control coatings on LDEF and implications to future spacecraft

    NASA Technical Reports Server (NTRS)

    Wilkes, Donald R.; Miller, Edgar R.; Mell, Richard J.; Lemaster, Paul S.; Zwiener, James M.

    1993-01-01

    The stability of thermal control coatings over the lifetime of a satellite or space platform is crucial to the success of the mission. With the increasing size, complexity, and duration of future missions, the stability of these materials becomes even more important. The Long Duration Exposure Facility (LDEF) offered an excellent testbed to study the stability and interaction of thermal control coatings in the low-Earth orbit (LEO) space environment. Several experiments on LDEF exposed thermal control coatings to the space environment. This paper provides an overview of the different materials flown and their stability during the extended LDEF mission. The exposure conditions, exposure environment, and measurements of materials properties (both in-space and postflight) are described. The relevance of the results and the implications to the design and operation of future space vehicles are also discussed.

  3. Radiation sensitivity of quartz crystal oscillators experiment for the Long Duration Exposure Facility (LDEF)

    NASA Technical Reports Server (NTRS)

    Ahearn, J. S.; Venables, J. D.

    1992-01-01

    Factors determining the radiation sensitivity of quartz crystal oscillators were studied on NASA's LDEF. Quartz materials were examined in the transmission electron microscope (TEM) and classified as to their sensitivity to radiation damage by establishing the rate of damage caused by the electron beam in the microscope. Two types of materials, i.e., swept premium Q quartz and natural quartz were chosen because clear differences were observed in their response to the electron beam in the TEM studies. Quartz resonators were then fabricated from them, tested for frequency stability over a greater than 6 mo. period and flown on the LDEF satellite. After retrieval (more than 7 yrs in space) the stability of the resonators was again determined. All of the space exposed resonators fabricated with swept premium Q material exhibited a frequency shift above that of the control resonators: none of the resonators fabricated from the natural quartz materials exhibited such a shift. The significant differences observed between the two types of materials in both the ground-based TEM studies and the space radiation induced frequency changes suggest that there may be a correlation between the two observations.

  4. Gamma radiation survey of the LDEF spacecraft

    NASA Astrophysics Data System (ADS)

    Phillips, G. W.; King, S. E.; August, R. A.; Ritter, J. C.; Cutchin, J. H.; Haskins, P. S.; McKisson, J. E.; Ely, D. W.; Weisenberger, A. G.; Piercey, R. B.

    1991-06-01

    The retrieval of the Long Duration Exposure Facility (LDEF) spacecraft after nearly 6 years in orbit offered a unique opportunity to study the long term buildup of induced radioactivity in the variety of materials on board. The first complete gamma ray survey was conducted of a large spacecraft on LDEF shortly after its return to Earth. A surprising observation was the large Be-7 activity which was seen primarily on the leading edge of the satellite, implying that it was picked up by LDEF in orbit. This is the first known evidence for accretion of a radioactive isotope onto an orbiting spacecraft. Other isotopes seen during the survey, the strongest being Na-22 and Mn-54, are all attributed to activation of spacecraft components in orbit. Be-7 is a spallation product of cosmic rays on nitrogen and oxygen in the upper atmosphere. However, the observed density is much greater than expected due to cosmic ray production in situ. This implies transport of Be-7 from much lower altitudes up to the LDEF orbit.

  5. Analysis of systems hardware flown on LDEF. Results of the systems special investigation group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dursch, H.W.; Spear, W.S.; Miller, E.A.

    1992-04-01

    The Long Duration Exposure Facility (LDEF) was retrieved after spending 69 months in low Earth orbit (LEO). LDEF carried a remarkable variety of mechanical, electrical, thermal, and optical systems, subsystems, and components. The Systems Special Investigation Group (Systems SIG) was formed to investigate the effects of the long duration exposure to LEO on systems related hardware and to coordinate and collate all systems analysis of LDEF hardware. Discussed here is the status of the LDEF Systems SIG investigation through the end of 1991.

  6. Analysis of systems hardware flown on LDEF. Results of the systems special investigation group

    NASA Technical Reports Server (NTRS)

    Dursch, Harry W.; Spear, W. Steve; Miller, Emmett A.; Bohnhoff-Hlavacek, Gail L.; Edelman, Joel

    1992-01-01

    The Long Duration Exposure Facility (LDEF) was retrieved after spending 69 months in low Earth orbit (LEO). LDEF carried a remarkable variety of mechanical, electrical, thermal, and optical systems, subsystems, and components. The Systems Special Investigation Group (Systems SIG) was formed to investigate the effects of the long duration exposure to LEO on systems related hardware and to coordinate and collate all systems analysis of LDEF hardware. Discussed here is the status of the LDEF Systems SIG investigation through the end of 1991.

  7. Radiation model predictions and validation using LDEF satellite data

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.

    1993-01-01

    Predictions and comparisons with the radiation dose measurements on Long Duration Exposure Facility (LDEF) by thermoluminescent dosimeters were made to evaluate the accuracy of models currently used in defining the ionizing radiation environment for low Earth orbit missions. The calculations include a detailed simulation of the radiation exposure (altitude and solar cycle variations, directional dependence) and shielding effects (three-dimensional LDEF geometry model) so that differences in the predicted and observed doses can be attributed to environment model uncertainties. The LDEF dose data are utilized to assess the accuracy of models describing the trapped proton flux, the trapped proton directionality, and the trapped electron flux.

  8. Micrometeoroids and debris on LDEF

    NASA Technical Reports Server (NTRS)

    Mandeville, Jean-Claude

    1992-01-01

    Part of the LDEF tray allocated to French Experiments (FRECOPA) was devoted to the study of dust particles. The tray was located on the face of LDEF directly opposed to the velocity vector. Two passive experiments were flown: a set of glass and metallic samples; and multilayer thin foil detectors. Crater size distribution made possible the evaluation of the incident microparticle flux in the near environment. Comparisons are made with measurements obtained on the other faces of LDEF and with results from similar experiments on the MIR. Of interest was the study of impact features on stacked thin foil detectors. The top foil acted as a shield, fragmenting the projectiles and spreading the fragments over the surface of the thick plate located underneath. EDS analysis has provided evidence of impactor fragments. Detectors consisting of a thin shield and thick bottom plate appear to offer a significantly higher return of data concerning chemical analysis of impactor residues than single plate detectors. The samples of various materials offer a unique opportunity for the study of the many processes involved upon hypervelocity impact phenomena.

  9. Some results of the oxidation investigation of copper and silver samples flown on LDEF

    NASA Technical Reports Server (NTRS)

    Derooij, A.

    1992-01-01

    The Long Duration Exposure Facility (LDEF) Mission provides a unique opportunity to study the long term effects of the space environment on materials. The LDEF has been deployed in orbit on 7 April 1984 by the shuttle Challenger in an almost circular orbit with a mean altitude of 477 km and an inclination of 28.5 degrees. It was retrieved from its decayed orbit of 335 km by the shuttle Columbia on 12 January 1990 after almost 6 years in space. The LDEF is a 12-sided, 4.267 m diameter, and 9.144 m long structure. The experiments, placed on trays, are attached to the twelve sides and the two ends of the spacecraft. The LDEF was passively stabilized with one end of the spacecraft always pointing towards the earth center and one of the sides (row 9) always facing the flight direction. The materials investigated originate from the Ultra-Heavy Cosmic Ray Experiment (UHCRE). The main objective is a detailed study of the charge spectra of ultraheavy cosmic-ray nuclei from zinc to uranium and beyond, using solid-state track detectors. Besides the aluminium alloy used for the experiment, UHCRE comprises several other materials. The results of space exposure for two of them, the copper grounding strips and the thermal covers (FEP Teflon/Ag/Inconel) painted black on the inner side (Chemglaze Z306), are presented.

  10. LDEF systems special investigation group overview

    NASA Technical Reports Server (NTRS)

    Mason, Jim; Dursch, Harry

    1995-01-01

    The Systems Special Investigation Group (Systems SIG), formed by the LDEF Project Office to perform post-flight analysis of LDEF systems hardware, was chartered to investigate the effects of the extended LDEF mission on both satellite and experiment systems and to coordinate and integrate all systems related analyses performed during post-flight investigations. The Systems SIG published a summary report in April, 1992 titled 'Analysis of Systems Hardware Flown on LDEF - Results of the Systems Special Investigation Group' that described findings through the end of 1991. The Systems SIG, unfunded in FY 92 and FY93, has been funded in FY 94 to update this report with all new systems related findings. This paper provides a brief summary of the highlights of earlier Systems SIG accomplishments and describes tasks the Systems SIG has been funded to accomplish in FY 94.

  11. Preliminary findings of the LDEF Materials Special Investigation Group

    NASA Technical Reports Server (NTRS)

    Stein, Bland A.; Pippin, H. Gary

    1992-01-01

    The retrieval of NASA's LDEF from low Earth orbit provided an opportunity for the study of long duration space environmental effects on materials. The five year, nine month flight of the LDEF greatly enhanced the potential value of most LDEF materials. NASA recognized this potential by forming the LDEF Space Environmental Effects on Materials Special Investigation Group (MSIG). Its goal is to explore the expanded materials analysis opportunities available in the LDEF structure and on experiment trays. The charter and scope of MSIG activities is presented, followed by an overview of the preliminary MSIG observations. These observations of low Earth orbit environmental effects on materials were made in-space during LDEF retrieval and during LDEF tray disintegration. Also presented are initial findings of lab analyses of LDEF materials. Included are effects of individual environmental parameters: atomic oxygen, ultraviolet radiation, meteoroid and debris impacts, thermal cycling, vacuum, and contamination, plus combined effects of these parameters. Materials considered include anodized aluminum, polymer matrix composites, polymer films, silvered Teflon thermal blankets, and a white thermal control paint.

  12. Ionizing radiation measurements on LDEF: A0015 Free flyer biostack experiment

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Frank, A. L.; Benton, E. R.; Csige, I.; Frigo, L. A.

    1995-01-01

    This report covers the analysis of passive radiation detectors flown as part of the A0015 Free Flyer Biostack on LDEF (Long Duration Exposure Facility). LET (linear energy transfer) spectra and track density measurements were made with CR-39 and Polycarbonate plastic nuclear track detectors. Measurements of total absorbed dose were carried out using Thermoluminescent Detectors. Thermal and resonance neutron dose equivalents were measured with LiF/CR-39 detectors. High energy neutron and proton dose equivalents were measured with fission foil/CR-39 detectors.

  13. Long Duration Exposure Facility (LDEF) preliminary findings: LEO space effects on the space plasma-voltage drainage experiment

    NASA Technical Reports Server (NTRS)

    Blakkolb, Brian K.; Yaung, James Y.; Henderson, Kelly A.; Taylor, William W.; Ryan, Lorraine E.

    1992-01-01

    The Space Plasma-High Voltage Drainage Experiment (SP-HVDE) provided a unique opportunity to study long term space environmental effects on materials because it was comprised of two identical experimental trays; one tray located on the ram facing side (D-10), and the other on the wake facing side (B-4) of the LDEF. This configuration allows for the comparison of identical materials exposed to two distinctly different environments. The purpose of this work is to document an assessment of the effects of five and three quarters years of low Earth orbital space exposure on materials comprising the SP-HVDE (experiment no. A0054). The findings of the materials investigation reported focus on atomic oxygen effects, micrometeor and debris impact site documentation, thermal property measurements, and environmentally induced contamination.

  14. Holographic data storage crystals for the LDEF. [long duration exposure facility

    NASA Technical Reports Server (NTRS)

    Callen, W. Russell; Gaylord, Thomas K.

    1992-01-01

    Lithium niobate is a significant electro-optic material, with potential applications in ultra high capacity storage and processing systems. Lithium niobate is the material of choice for many integrated optical devices and holographic mass memory systems. For crystals of lithium niobate were passively exposed to the space environment of the Long Duration Exposure Facility (LDEF). Three of these crystals contained volume holograms. Although the crystals suffered the surface damage characteristics of most of the other optical components on the Georgia Tech tray, the crystals were recovered intact. The holograms were severely degraded because of the lengthy exposure, but the bulk properties are being investigated to determine the spaceworthiness for space data storage and retrieval systems.

  15. LDEF data: Comparisons with existing models

    NASA Technical Reports Server (NTRS)

    Coombs, Cassandra R.; Watts, Alan J.; Wagner, John D.; Atkinson, Dale R.

    1993-01-01

    The relationship between the observed cratering impact damage on the Long Duration Exposure Facility (LDEF) versus the existing models for both the natural environment of micrometeoroids and the man-made debris was investigated. Experimental data was provided by several LDEF Principal Investigators, Meteoroid and Debris Special Investigation Group (M&D SIG) members, and by the Kennedy Space Center Analysis Team (KSC A-Team) members. These data were collected from various aluminum materials around the LDEF satellite. A PC (personal computer) computer program, SPENV, was written which incorporates the existing models of the Low Earth Orbit (LEO) environment. This program calculates the expected number of impacts per unit area as functions of altitude, orbital inclination, time in orbit, and direction of the spacecraft surface relative to the velocity vector, for both micrometeoroids and man-made debris. Since both particle models are couched in terms of impact fluxes versus impactor particle size, and much of the LDEF data is in the form of crater production rates, scaling laws have been used to relate the two. Also many hydrodynamic impact computer simulations were conducted, using CTH, of various impact events, that identified certain modes of response, including simple metallic target cratering, perforations and delamination effects of coatings.

  16. LDEF data: Comparisons with existing models

    NASA Astrophysics Data System (ADS)

    Coombs, Cassandra R.; Watts, Alan J.; Wagner, John D.; Atkinson, Dale R.

    1993-04-01

    The relationship between the observed cratering impact damage on the Long Duration Exposure Facility (LDEF) versus the existing models for both the natural environment of micrometeoroids and the man-made debris was investigated. Experimental data was provided by several LDEF Principal Investigators, Meteoroid and Debris Special Investigation Group (M&D SIG) members, and by the Kennedy Space Center Analysis Team (KSC A-Team) members. These data were collected from various aluminum materials around the LDEF satellite. A PC (personal computer) computer program, SPENV, was written which incorporates the existing models of the Low Earth Orbit (LEO) environment. This program calculates the expected number of impacts per unit area as functions of altitude, orbital inclination, time in orbit, and direction of the spacecraft surface relative to the velocity vector, for both micrometeoroids and man-made debris. Since both particle models are couched in terms of impact fluxes versus impactor particle size, and much of the LDEF data is in the form of crater production rates, scaling laws have been used to relate the two. Also many hydrodynamic impact computer simulations were conducted, using CTH, of various impact events, that identified certain modes of response, including simple metallic target cratering, perforations and delamination effects of coatings.

  17. Projectile compositions and modal frequencies on the chemistry of micrometeoroids LDEF experiment

    NASA Technical Reports Server (NTRS)

    Bernhard, Ronald P.; See, Thomas H.; Hoerz, Friedrich

    1993-01-01

    The Chemistry of Micrometeoroids Experiment (LDEF instrument A0187-1) exposed witness plates of high-purity gold (greater than 99.99 percent Au) and commercial aluminum (greater than 99 percent Al) with the objective of analyzing the residues of cosmic-dust and orbital-debris particles associated with hypervelocity impact craters. The gold substrates were located approximately 8 deg off LDEF's trailing edge (Bay A03), while the aluminum surfaces resided in Bay A11, approximately 52 deg from LDEF's leading edge. SEM-EDX techniques were employed to analyze the residues associated with 199 impacts on the gold and 415 impacts on the aluminum surfaces. The residues that could be analyzed represent natural or man-made materials. The natural particles dominate at all particle sizes less than 5 micron. It is possible to subdivide both particle populations into subclasses. Chondritic compositions dominate the natural impactors (71 percent), followed by monomineralic, mafic-silicate compositions (26 percent), and by Fe-Ni rich sulfides (approximately 3 percent). Approximately 30 percent of all craters on the gold collectors were caused by man-made debris such as aluminum, paint flakes, and other disintegrated, structural and electronic components. Equations-of-state and associated calculations of shock stresses for typical LDEF impacts into the gold and aluminum substrates suggest that substantial vaporization may have occurred during many of the impacts and is the reason why approximately 50 percent of all craters did not contain sufficient residue to permit analysis by the SEM-EDX technique. After converting the crater diameters into projectile sizes using encounter speeds typical for the trailing-edge and forward-facing (Row 11) directions, and accounting for normalized exposure conditions of the CME collectors, we derived the absolute and relative fluxes of specific projectile classes. The natural impactors encounter all LDEF pointing directions with comparable, modal

  18. Cosmogenic radionuclides on LDEF: An unexpected Be-10 result

    NASA Technical Reports Server (NTRS)

    Gregory, J. C.; Albrecht, A.; Herzog, G.; Klein, J.; Middleton, R.; Dezfouly-Arjomandy, B.; Harmon, B. A.

    1993-01-01

    Following the discovery of the atmospheric derived cosmogenic radionuclide Be-7 on the Long Duration Exposure Facility (LDEF), a search began for other known nuclides produced by similar mechanisms. None of the others have the narrow gamma-ray line emission of Be-7 decay which enabled its rapid detection and quantification. A search for Be-10 atoms on LDEF clamp plates using accelerator mass spectrometry is described. An unexpected result was obtained.

  19. Long Duration Exposure Facility (LDEF) experiment M0003 meteoroid and debris survey

    NASA Technical Reports Server (NTRS)

    Meshishnek, M. J.; Gyetvay, S. R.; Paschen, K. W.; Coggi, J. M.

    1993-01-01

    A survey of the meteoroid and space debris impacts on LDEF experiment M0003 was performed. The purpose of this survey was to document significant impact phenomenology and to obtain impact crater data for comparison to current space debris and micrometeoroid models. The survey consists of the following: photomicrographs of significant impacts in a variety of material types; accurate measurements of impact crater coordinates and dimensions for selected experiment surfaces; and databasing of the crater data for reduction, manipulation, and comparison to models. Large area surfaces that were studied include the experiment power and data system (EPDS) sunshields, environment exposure control canister (EECC) sunshields, and the M0003 signal conditioning unit (SCU) covers. Crater diameters down to 25 microns were measured and cataloged. Both leading (D8) and trailing (D4) edge surfaces were studied and compared. The EPDS sunshields are aluminum panels painted with Chemglaze A-276 white thermal control paint, the EECC sunshields are chromic acid-anodized aluminum, and the SCU covers are aluminum painted with S13GLO white thermal control paint. Typical materials that have documented impacts are metals, glasses and ceramics, composites, polymers, electronic materials, and paints. The results of this survey demonstrate the different response of materials to hypervelocity impacts. Comparison of the survey data to curves derived from the Kessler debris model and the Cour-Palais micrometeoroid model indicates that these models overpredict small impacts (less than 100 micron) and may underpredict large impacts (greater than 1000 micron) while having fair to good agreement for the intermediate impacts. Comparison of the impact distributions among the various surfaces indicates significant variations, which may be a function of material response effects, or in some cases surface roughness. Representative photographs and summary graphs of the impact data are presented.

  20. Development and application of a 3-D geometry/mass model for LDEF satellite ionizing radiation assessments

    NASA Technical Reports Server (NTRS)

    Colborn, B. L.; Armstong, T. W.

    1993-01-01

    A three-dimensional geometry and mass model of the Long Duration Exposure Facility (LDEF) spacecraft and experiment trays was developed for use in predictions and data interpretation related to ionizing radiation measurements. The modeling approach, level of detail incorporated, example models for specific experiments and radiation dosimeters, and example applications of the model are described.

  1. Passive exposure of Earth radiation budget experiment components. LDEF experiment AO-147: Post-flight examinations and tests

    NASA Technical Reports Server (NTRS)

    Hickey, John R.

    1992-01-01

    The flight spare sensors of the Earth Radiation Budget (ERB) experiment of the Nimbus 6 and 7 missions were flown aboard the LDEF. The preliminary post retrieval examination and test results are presented here for the sensor windows and filters, the thermopile sensors and a cavity radiometer.

  2. LDEF's map experiment foil perforations yield hypervelocity impact penetration parameters

    NASA Technical Reports Server (NTRS)

    Mcdonnell, J. A. M.

    1992-01-01

    The space exposure of LDEF for 5.75 years, forming a host target in low earth orbit (LEO) orbit to a wide distribution of hypervelocity particulates of varying dimensions and different impact velocities, has yielded a multiplicity of impact features. Although the projectile parameters are generally unknown and, in fact not identical for any two impacts on a target, the great number of impacts provides statistically meaningful basis for the valid comparison of the response of different targets. Given sufficient impacts for example, a comparison of impact features (even without knowledge of the project parameters) is possible between: (1) differing material types (for the same incident projectile distribution); (2) differing target configurations (e.g., thick and thin targets for the same material projectiles; and (3) different velocities (using LDEF's different faces). A comparison between different materials is presented for infinite targets of aluminum, Teflon, and brass in the same pointing direction; the maximum finite-target penetration (ballistic limit) is also compared to that of the penetration of similar materials comprising of a semi-infinite target. For comparison of impacts on similar materials at different velocities, use is made of the pointing direction relative to LDEF's orbital motion. First, however, care must be exercised to separate the effect of spatial flux anisotropies from those resulting from the spacecraft velocity through a geocentrically referenced dust distribution. Data comprising thick and thin target impacts, impacts on different materials, and in different pointing directions is presented; hypervelocity impact parameters are derived. Results are also shown for flux modeling codes developed to decode the relative fluxes of Earth orbital and unbound interplanetary components intercepting LDEF. Modeling shows the west and space pointing faces are dominated by interplanetary particles and yields a mean velocity of 23.5 km/s at LDEF

  3. Scoping estimates of the LDEF satellite induced radioactivity

    NASA Technical Reports Server (NTRS)

    Armstrong, Tony W.; Colborn, B. L.

    1990-01-01

    The Long Duration Exposure Facility (LDEF) satellite was recovered after almost six years in space. It was well-instrumented with ionizing radiation dosimeters, including thermoluminescent dosimeters, plastic nuclear track detectors, and a variety of metal foil samples for measuring nuclear activation products. The extensive LDEF radiation measurements provide the type of radiation environments and effects data needed to evaluate and help resolve uncertainties in present radiation models and calculational methods. A calculational program was established to aid in LDEF data interpretation and to utilize LDEF data for assessing the accuracy of current models. A summary of the calculational approach is presented. The purpose of the reported calculations is to obtain a general indication of: (1) the importance of different space radiation sources (trapped, galactic, and albedo protons, and albedo neutrons); (2) the importance of secondary particles; and (3) the spatial dependence of the radiation environments and effects expected within the spacecraft. The calculational method uses the High Energy Transport Code (HETC) to estimate the importance of different sources and secondary particles in terms of fluence, absorbed dose in tissue and silicon, and induced radioactivity as a function of depth in aluminum.

  4. LDEF data correlation to existing NASA debris environment models

    NASA Technical Reports Server (NTRS)

    Atkinson, Dale R.; Allbrooks, Martha K.; Watts, Alan J.

    1992-01-01

    The Long Duration Exposure Facility (LDEF) was recovered in January 1990, following 5.75 years exposure of about 130 sq. m to low-Earth orbit. About 25 sq. m of this surface area was aluminum 6061 T-6 exposed in every direction. In addition, about 17 sq. m of Scheldahl G411500 silver-Teflon thermal control blankets were exposed in 9 of the 12 directions. Since the LDEF was gravity gradient stabilized and did not rotate, the directional dependence of the flux can be easily distinguished. During the disintegration of the LDEF, all impact features larger than 0.5 mm into aluminum were documented for diameters and locations. In addition, the diameters and locations of all impact features larger than 0.3 mm into Scheldahl G411500 thermal control blankets were also documented. This data, along with additional information collected from LDEF materials will be compared with current meteoroid and debris models. This comparison will provide a validation of the models and will identify discrepancies between the models and the data.

  5. Syncom 4 deploy, LDEF retrieval highlight 10-day Columbia flight

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The objectives of Space Shuttle Mission STS-32 are described along with major flight activities, prelaunch and launch operations, trajectory sequence of events, and landing and post-landing operations. The primary objectives of STS-32 are the deployment of a Navy synchronous communications satellite (Syncom 4) and the retrieval of the Long Duration Exposure Facility (LDEF) launched from the Challenger in April 1984. Secondary STS-32 payloads include a protein crystal growth experiment, the Fluids Experiment Apparatus (FEA) for the investigation of microgravity materials processing, the Mesoscale Lighting Experiment, the Latitude-Longitude Locator Experiment, the Americal Flight Echocardiograph, and an experiment to investigate neurospora circadian rhythms in a microgravity environment.

  6. Collection and review of metals data obtained from LDEF experiment specimens and support hardware

    NASA Technical Reports Server (NTRS)

    Bourassa, Roger; Pippin, H. Gary

    1995-01-01

    LDEF greatly extended the range of data available for metals exposed to the low-Earth-orbital environment. The effects of low-Earth-orbital exposure on metals include meteoroid and debris impacts, solar ultraviolet radiation, thermal cycling, cosmic rays, solar particles, and surface oxidation and contamination. This paper is limited to changes in surface composition and texture caused by oxidation and contamination. Surface property changes afford a means to study the environments (oxidation and contamination) as well as in-space stability of metal surfaces. We compare thermal-optical properties for bare aluminum and anodized aluminum clamps flown on LDEF. We also show that the silicon observed on the LDEF tray clamps and tray clamp bolt heads is not necessarily evidence of silicon contamination of LDEF from the shuttle. The paper concludes with a listing of LDEF reports that have been published thus far that contain significant findings concerning metals.

  7. Surface Analysis of LDEF Materials

    NASA Technical Reports Server (NTRS)

    Wightman, J. P. (Principal Investigator)

    1996-01-01

    The abstract to the M.S. thesis included as appendix to this report contains the details of the research performed under this grant. Presentations and publications resulting from the research are listed as the main content of the report itself. The thesis describes the surface characterization procedures and analysis of materials flown in the NASA Long Duration Exposure Facility (LDEF).

  8. A Comparison of Results from NASA's Meteoroid Engineering Model to the LDEF Cratering Record

    NASA Technical Reports Server (NTRS)

    Ehlert, S.; Moorhead, A; Cooke, W. J.

    2017-01-01

    NASA's Long Duration Exposure Facility (LDEF) has provided an extensive record of the meteoroid environment in low Earth orbit. LDEF's combination of fixed orientation, large collecting area, and long lifetime imposes constraints on the absolute flux of potentially hazardous meteoroids. The relative impact rate on each of LDEF's fourteen surfaces arises from the underlying velocity distribution and directionality of the meteoroid environment. For the first time, we model the meteoroid environment encountered by LDEF over its operational lifetime using NASA's Meteoroid Engineering Model Release 2 (MEMR2) and compare the model results with the observed craters of potentially hazardous meteoroids (i.e. crater diameters larger than approximately 0.75 mm). We discuss the extent to which the observations and model agree and how the impact rates across all of the LDEF surfaces may be utilized to help calibrate future versions of MEM.

  9. Induced radioactivity of LDEF materials and structural components

    NASA Technical Reports Server (NTRS)

    Harmon, B. A.; Laird, C. E.; Fishman, G. J.; Parnell, T. A.; Camp, D. C.; Frederick, C. E.; Hurley, D. L.; Lindstrom, D. J.; Moss, C. E.; Reedy, R. C.; hide

    1996-01-01

    We present an overview of the Long Duration Exposure Facility (LDEF) induced activation measurements. The LDEF, which was gravity-gradient stabilized, was exposed to the low Earth orbit (LEO) radiation environment over a 5.8 year period. Retrieved activation samples and structural components from the spacecraft were analyzed with low and ultra-low background HPGe gamma spectrometry at several national facilities. This allowed a very sensitive measurement of long-lived radionuclides produced by proton- and neutron-induced reactions in the time-dependent, non-isotropic LEO environment. A summary of major findings from this study is given that consists of directionally dependent activation, depth profiles, thermal neutron activation, and surface beryllium-7 deposition from the upper atmosphere. We also describe a database of these measurements that has been prepared for use in testing radiation environmental models and spacecraft design.

  10. Predicted and observed directional dependence of meteoroid/debris impacts on LDEF thermal blankets

    NASA Astrophysics Data System (ADS)

    Drolshagen, Gerhard

    1992-06-01

    The number of impacts from meteoroids and space debris particles to the various Long Duration Exposure Facility (LDEF) rows is calculated using ESABASE/DEBRIS, a 3-D numerical analysis tool. It is based on the latest environment flux models and includes geometrical and directional effects. A detailed comparison of model predictions and actual observations is made for impacts on the thermal blankets which covered the USCR experiment. Impact features on these blankets were studied intensively in European laboratories and hypervelocity impacts for calibration were performed. The thermal blankets were located on all LDEF rows, except 3, 9, and 12. Because of their uniform composition and thickness, these blankets allow a direct analysis of the directional dependence of impacts and provide a unique test case for the latest meteoroid and debris flux models.

  11. A Comparison of Results From NASA's Meteoroid Engineering Model to the LDEF Cratering Record

    NASA Technical Reports Server (NTRS)

    Ehlert, S.; Moorhead, A.; Cooke, W. J.

    2017-01-01

    NASA's Long Duration Exposure Facility (LDEF) has provided an extensive record of the meteoroid environment in Low Earth Orbit. LDEF's combination of fixed orientation, large collecting area, and long lifetime imposes constraints on the absolute flux of potentially hazardous meteoroids. The relative impact rate on each of LDEF's fourteen surfaces arises from the underlying velocity distribution and directionality of the meteoroid environment. For the first time, we model the meteoroid environment encountered by LDEF over its operational lifetime using NASA's Meteoroid Engineering Model Release 2 (MEMR2) and compare the model results with the observed craters of potentially hazardous meteoroids (i.e. crater diameters larger than approximately 0.6 mm). We discuss the extent to which the observations and model agree and how the impact rates across all of the LDEF surfaces may suggest improvements to the underlying assumptions that go into future versions of MEM.

  12. Summary of ionizing radiation analysis on the Long Duration Exposure Facility

    NASA Technical Reports Server (NTRS)

    Parnell, T. A.

    1991-01-01

    The Ionizing Radiation Special Investigation Group (IRSIG) for the Long Duration Exposure Facility (LDEF) was established to perform radiation measurements and analysis not planned in the original experiments, and to assure availability of LDEF analysis results in a form useful to future missions. The IRSIG has organized extensive induced radioactivity measurements throughout LDEF, and a comprehensive program to compare the LDEF radiation measurements to values calculated using environment models. The activities and present status of the Group is described. The ionizing radiation results presented is summarized.

  13. An introduction to shuttle/LDEF retrieval operations: The R-bar approach option. [orbital mechanics and braking schedule

    NASA Technical Reports Server (NTRS)

    Hall, W. M.

    1978-01-01

    Simulated orbiter direct approaches during long duration exposure facility (LDEF) retrieval operations reveal that the resultant orbiter jet plume fields can significantly disturb LDEF. An alternate approach technique which utilizes orbital mechanics forces in lieu of jets to brake the final orbiter/LDEF relative motion during the final approach, is described. Topics discussed include: rendezvous operations from the terminal phase initiation burn through braking at some standoff distance from LDEF, pilot and copilot activities, the cockpit instrumentation employed, and a convenient coordinate frame for studying the relative motion between two orbiting bodies. The basic equations of motion for operating on the LDEF radius vector are introduced. Practical considerations of implementing an R-bar approach, namely, orbiter/LDEF relative state uncertainties and orbiter control system limitations are explored. A possible R-bar approach strategy is developed and demonstrated.

  14. Status of LDEF ionizing radiation measurements and analysis

    NASA Technical Reports Server (NTRS)

    Parnell, Thomas A.

    1993-01-01

    At this symposium significant new data and analyses were reported in cosmic ray research, radiation dosimetry, induced radioactivity, and radiation environment modeling. Measurements of induced radioactivity and absorbed dose are nearly complete, but much analysis and modeling remains. Measurements and analyses of passive nuclear track detectors (PNTD), used to derive the cosmic ray composition and spectra, and linear energy transfer (LET) spectra, are only a few percent complete, but important results have already emerged. As one might expect at this stage of the research, some of the new information has produced questions rather than answers. Low-energy heavy nuclei detected by two experiments are not compatible with known solar or cosmic components. Various data sets on absorbed dose are not consistent, and a new trapped proton environment model does not match the absorbed dose data. A search for cosmogenic nuclei other than Be-7 on Long Duration Exposure Facility (LDEF) surfaces has produced an unexpected result, and some activation data relating to neutrons is not yet understood. Most of these issues will be resolved by the analysis of further experiment data, calibrations, or the application of the large LDEF data set that offers alternate data or analysis techniques bearing on the same problem. The scope of the papers at this symposium defy a compact technical summary. I have attempted to group the new information that I noted into the following groups: induced radioactivity; absorbed dose measurements; LET spectra and heavy ion dosimetry; environment modeling and three dimensional shielding effects; cosmogenic nuclei; and cosmic rays and other heavy ions. The papers generally are expository and have excellent illustrations, and I refer to their figures rather than reproduce them here. The general program and objectives of ionizing radiation measurements and analyses on LDEF has been described previously.

  15. Micrometeoroids and debris on LDEF comparison with MIR data

    NASA Technical Reports Server (NTRS)

    Mandeville, Jean-Claude; Berthoud, Lucinda

    1995-01-01

    Part of the LDEF tray allocated to French experiments (FRECOPA) has been devoted to the study of dust particles. The tray was located on the face of LDEF directly opposed to the velocity vector. Crater size distributions have made possible the evaluation of the incident microparticle flux in the near-Earth environment. Comparisons are made with measurements obtained on the other faces of LDEF (tray clamps), on the leading edge (MAP) and with results of a similar experiment flown on the MIR space station. The geometry of impact craters, depth in particular, provides useful information on the nature of impacting particles and the correlation of geometry with the chemical analysis of projectile remnants inside craters make possible a discrimination between meteoroids and orbital debris. Emphasis has been laid on the size distribution of small craters in order to assess a cut-off in the distribution of particles in LEO. Special attention has been paid to the phenomenon of secondary impacts. A comparison of flight data with current models of meteoroids and space debris shows a fair agreement for LDEF, except for the smaller particles: the possible contribution of orbital debris in GTO orbits to the LDEF trailing edge flux is discussed. For MIR, flight results show differences with current modeling: the possible enhancement of orbital debris could be due to the contaminating presence of a permanently manned space station.

  16. Second LDEF Post-Retrieval Symposium Abstracts

    NASA Technical Reports Server (NTRS)

    Levine, Arlene S. (Compiler)

    1992-01-01

    These abstracts from the symposium represent the data analysis of the 57 experiments flown on the LDEF. The experiments include materials, coatings, thermal systems, power and propulsion, science, (cosmic ray, interstellar gas, heavy ions, micrometeoroids, etc.), electronics, optics, and life science.

  17. Analysis of systems hardware flown on LDEF: New findings and comparison to other retrieved spacecraft hardware

    NASA Astrophysics Data System (ADS)

    Dursch, Harry; Bohnhoff-Hlavacek, Gail; Blue, Donald; Hansen, Patricia

    1995-09-01

    The Long Duration Exposure Facility (LDEF) was retrieved in 1990 after spending 69 months in low-earth-orbit (LEO). A wide variety of mechanical, electrical, thermal, and optical systems, subsystems, and components were flown on LDEF. The Systems Special Investigation Group (Systems SIG) was formed by NASA to investigate the effects of the 69 month exposure on systems related hardware and to coordinate and collate all systems analysis of LDEF hardware. This report is the Systems SIG final report which updates earlier findings and compares LDEF systems findings to results from other retrieved spacecraft hardware such as Hubble Space Telescope. Also included are sections titled (1) Effects of Long Duration Space Exposure on Optical Scatter, (2) Contamination Survey of LDEF, and (3) Degradation of Optical Materials in Space.

  18. Analysis of systems hardware flown on LDEF: New findings and comparison to other retrieved spacecraft hardware

    NASA Technical Reports Server (NTRS)

    Dursch, Harry; Bohnhoff-Hlavacek, Gail; Blue, Donald; Hansen, Patricia

    1995-01-01

    The Long Duration Exposure Facility (LDEF) was retrieved in 1990 after spending 69 months in low-earth-orbit (LEO). A wide variety of mechanical, electrical, thermal, and optical systems, subsystems, and components were flown on LDEF. The Systems Special Investigation Group (Systems SIG) was formed by NASA to investigate the effects of the 69 month exposure on systems related hardware and to coordinate and collate all systems analysis of LDEF hardware. This report is the Systems SIG final report which updates earlier findings and compares LDEF systems findings to results from other retrieved spacecraft hardware such as Hubble Space Telescope. Also included are sections titled (1) Effects of Long Duration Space Exposure on Optical Scatter, (2) Contamination Survey of LDEF, and (3) Degradation of Optical Materials in Space.

  19. Chemical characterization of selected LDEF polymeric materials

    NASA Technical Reports Server (NTRS)

    Young, Philip R.; Slemp, Wayne S.

    1991-01-01

    Chemical characterization of selected polymeric materials which received exposure on the Long Duration Exposure Facility (LDEF) is reported. The specimens examined include silvered fluorinated ethylene propylene Teflon thermal blanket material, polysulfone, epoxy, polyimide matrix resin/graphite fiber reinforced composites, and several high performance polymer films. These specimens came from numerous LDEF locations, and thus received different environmental exposures. The results to date show no significant change at the molecular level in the polymer that survived exposure. Scanning electron and scanning tunneling microscopes show resin loss and a texturing of some specimens which resulted in a change in optical properties. The potential effect of a silicon-containing molecular contamination on these materials is addressed. The possibility of continued post-exposure degradation of some polymeric films is also proposed.

  20. LDEF grappled by remote manipulator system (RMS) during STS-32 retrieval

    NASA Image and Video Library

    1990-01-20

    This view taken through overhead window W7 on Columbia's, Orbiter Vehicle (OV) 102's, aft flight deck shows the Long Duration Exposure Facility (LDEF) in the grasp of the remote manipulator system (RMS) during STS-32 retrieval activities. Other cameras at eye level were documenting the bus-sized spacecraft at various angles as the RMS manipulated LDEF for a lengthy photo survey. The glaring celestial body in the upper left is the sun with the Earth's surface visible below.

  1. Monte Carlo modeling of atomic oxygen attack of polymers with protective coatings on LDEF

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Degroh, Kim K.; Auer, Bruce M.; Gebauer, Linda; Edwards, Jonathan L.

    1993-01-01

    Characterization of the behavior of atomic oxygen interaction with materials on the Long Duration Exposure Facility (LDEF) assists in understanding of the mechanisms involved. Thus the reliability of predicting in-space durability of materials based on ground laboratory testing should be improved. A computational model which simulates atomic oxygen interaction with protected polymers was developed using Monte Carlo techniques. Through the use of an assumed mechanistic behavior of atomic oxygen interaction based on in-space atomic oxygen erosion of unprotected polymers and ground laboratory atomic oxygen interaction with protected polymers, prediction of atomic oxygen interaction with protected polymers on LDEF was accomplished. However, the results of these predictions are not consistent with the observed LDEF results at defect sites in protected polymers. Improved agreement between observed LDEF results and predicted Monte Carlo modeling can be achieved by modifying of the atomic oxygen interactive assumptions used in the model. LDEF atomic oxygen undercutting results, modeling assumptions, and implications are presented.

  2. Derivation of particulate directional information from analysis of elliptical impact craters on LDEF

    NASA Technical Reports Server (NTRS)

    Newman, P. J.; Mackay, N.; Deshpande, S. P.; Green, S. F.; Mcdonnell, J. A. M.

    1993-01-01

    The Long Duration Exposure Facility provided a gravity gradient stabilized platform which allowed limited directional information to be derived from particle impact experiments. The morphology of impact craters on semi-infinite materials contains information which may be used to determine the direction of impact much more accurately. We demonstrate the applicability of this technique and present preliminary results of measurements from LDEF and modelling of interplanetary dust and space debris.

  3. Study of activation of metal samples from LDEF-1 and Spacelab-2

    NASA Technical Reports Server (NTRS)

    Laird, C. E.

    1991-01-01

    The activation of metal samples and other material orbited onboard the Long Duration Exposure Facility (LDEF) and Spacelab-2 were studied. Measurements of the radioactivities of spacecraft materials were made, and corrections for self-absorption and efficiency were calculated. Activation cross sections for specific metal samples were updated while cross sections for other materials were tabulated from the scientific literature. Activation cross sections for 200 MeV neutrons were experimentally determined. Linear absorption coefficients, half lives, branching ratios and other pertinent technical data needed for LDEF sample analyses were tabulated. The status of the sample counting at low background facilities at national laboratories is reported.

  4. LDEF electronic systems: Successes, failures, and lessons

    NASA Technical Reports Server (NTRS)

    Miller, Emmett; Porter, Dave; Smith, Dave; Brooks, Larry; Levorsen, Joe; Mulkey, Owen

    1991-01-01

    Following the Long Duration Exposure Facility (LDEF) retrieval, the Systems Special Investigation Group (SIG) participated in an extensive series of tests of various electronic systems, including the NASA provided data and initiate systems, and some experiment systems. Overall, these were found to have performed remarkably well, even though most were designed and tested under limited budgets and used at least some nonspace qualified components. However, several anomalies were observed, including a few which resulted in some loss of data. The postflight test program objectives, observations, and lessons learned from these examinations are discussed. All analyses are not yet complete, but observations to date will be summarized, including the Boeing experiment component studies and failure analysis results related to the Interstellar Gas Experiment. Based upon these observations, suggestions for avoiding similar problems on future programs are presented.

  5. Radioactivities induced in some LDEF samples

    NASA Technical Reports Server (NTRS)

    Reedy, Robert C.; Moss, Calvin E.; Bobias, S. George; Masarik, Jozef

    1993-01-01

    Radioactivities induced in several Long Duration Exposure Facilities (LDEF) samples were measured by low-level counting at Los Alamos and elsewhere. These radionuclides have activities similar to those observed in meteorites and lunar samples. Some trends were observed in these measurements in terms of profiles in trunnion layers and as a function of radionuclide half-life. Several existing computer codes were used to model the production by the protons trapped in the Earth's radiation belts and by the galactic cosmic rays of some of these radionuclides, Mn-54 and Co-57 in steel, Sc-46 in titanium, and Na-22 in alloys of titanium and aluminum. Production rates were also calculated for radionuclides possibly implanted in LDEF, Be-7, Be-10, and C-14. Enhanced concentrations of induced isotopes in the surfaces of trunnion sections relative to their concentrations in the center are caused by the lower-energy protons in the trapped radiation. Secondary neutrons made by high-energy trapped protons and by galactic cosmic rays produce much of the observed radioactivities, especially deep in an object. Comparisons of the observed to calculated activities of several radionuclides with different half-lives indicate that the flux of trapped protons at LDEF decreased significantly at the end of the mission.

  6. LDEF Materials Results for Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    Whitaker, Ann F. (Compiler); Gregory, John (Compiler)

    1993-01-01

    These proceedings describe the application of LDEF data to spacecraft and payload design, and emphasize where space environmental effects on materials research and development is needed as defined by LDEF data. The LDEF six years of exposure of materials has proven to be by far the most comprehensive source of information ever obtained on the long-term performance of materials in the space environment. The conference provided a forum for materials scientists and engineers to review and critically assess the LDEF results from the standpoint of their relevance, significance, and impact on spacecraft design practice. The impact of the LDEF findings on materials selection and qualification, and the needs and plans for further study, were addressed from several perspectives. Many timely and needed changes and modifications in external spacecraft materials selection have occurred as a result of LDEF investigations.

  7. Collection, analysis, and archival of LDEF activation data

    NASA Technical Reports Server (NTRS)

    Laird, C. E.; Harmon, B. A.; Fishman, G. J.; Parnell, T. A.

    1993-01-01

    The study of the induced radioactivity of samples intentionally placed aboard the Long Duration Exposure Facility (LDEF) and samples obtained from the LDEF structure is reviewed. The eight laboratories involved in the gamma-ray counting are listed and the scientists and the associated counting facilities are described. Presently, most of the gamma-ray counting has been completed and the spectra are being analyzed and corrected for efficiency and self absorption. The acquired spectra are being collected at Eastern Kentucky University for future reference. The results of these analyses are being compiled and reviewed for possible inconsistencies as well as for comparison with model calculations. These model calculations are being revised to include the changes in trapped-proton flux caused by the onset of the period of maximum solar activity and the rapidly decreasing spacecraft orbit. Tentative plans are given for the storage of the approximately 1000 gamma-ray spectra acquired in this study and the related experimental data.

  8. Revised prediction of LDEF exposure to trapped protons

    NASA Technical Reports Server (NTRS)

    Watts, John W.; Armstrong, T. W.; Colborn, B. L.

    1993-01-01

    The Long Duration Exposure Facility (LDEF) spacecraft flew in a 28.5 deg inclination circular orbit with an altitude in the range from 319.4 to 478.7 km. For this orbital altitude and inclination, two components contribute most of the penetrating charge particle radiation encountered - the galactic cosmic rays and the geomagnetically trapped Van Allen protons. Where shielding is less than 1.0 g/sq cm geomagnetically trapped electrons make a significant contribution. The 'Vette' models together with the associated magnetic field models and the solar conditions were used to obtain the trapped electron and proton omnidirectional fluences reported previously. Results for directional proton spectra using the MSFC anisotropy model for solar minimum and 463 km altitude (representative for the LDEF mission) were also reported. The directional trapped proton flux as a function of mission time is presented considering altitude and solar activity variation during the mission. These additional results represent an extension of previous calculations to provide a more definitive description of the LDEF trapped proton exposure.

  9. Holographic data storage crystals for the LDEF

    NASA Technical Reports Server (NTRS)

    Callen, W. Russell; Gaylord, Thomas K.

    1993-01-01

    Crystals of lithium niobate were passively exposed to the space environment of the Long Duration Exposure Facility (LDEF). Three of the four crystals contained volume holograms. Although the crystals suffered the surface damage characteristic of that suffered by other components on the Georgia Tech tray, the crystals remained suitable for the formation of volume holograms.

  10. Study of cosmic dust particles on board LDEF: The FRECOPA experiments AO138-1 and AO138-2

    NASA Technical Reports Server (NTRS)

    Mandeville, J. C.; Borg, Janet

    1992-01-01

    Two experiments, within the French Cooperative Payload (FRECOPA) and devoted to the detection of cosmic dust, were flown on the LDEF. A variety of sensors and collecting devices have made possible the study of impact processes on materials of technological interest. Preliminary examination of hypervelocity impact features gives valuable data on size distribution and nature of interplanetary dust particles in low earth orbit, within the 0.5 to 300 micrometer size range. Most of the events detected on the trailing face of LDEF are expected to be the result of impacts of meteoritic particles only. So far, chemical analysis of craters by EDS clearly shows evidence of elements (Na, Mg, Si, S, Ca, and Fe) consistent with cosmic origin. Systematic occurrence of C and O in crater residues is an important result, to be compared with the existence of CHON particles detected in P-Halley comet nucleus. Crater size distribution is in good agreement with results from other dust experiments flown on LDEF. However, no crater smaller than 1.5 micron was observed, thus suggesting a cutoff in the near earth particle distribution. Possible origin and orbital evolution of micrometeoroids is discussed.

  11. Space Station WP-2 application of LDEF MLI results

    NASA Technical Reports Server (NTRS)

    Smith, Charles A.; Hasegawa, Mark M.; Jones, Cherie A.

    1993-01-01

    The Cascaded Variable Conductance Heat Pipe Experiment, which was developed by Michael Grote of McDonnell Douglas Electronic Systems Company, was located in Tray F-9 of the Long Duration Exposure Facility (LDEF), where it received atomic oxygen almost normal to its surface. The majority of the tray was covered by aluminized Kapton polyimide multilayer insulation (MLI), which showed substantial changes from atomic oxygen erosion. Most of the outermost Kapton layer of the MLI and the polyester scrim cloth under it were lost, and there was evidence of contaminant deposition which discolored the edges of the MLI blanket. Micrometeoroid and orbital debris (MM/OD) hits caused small rips in the MLI layers, and in some cases left cloudy areas where the vapor plume caused by a hit condensed on the next layer. The MLI was bent gradually through 90 deg at the edges to enclose the experiment, and the Kapton that survived along the curved portion showed the effects of atomic oxygen erosion at oblique angles. In spite of space environment effects over the period of the LDEF mission, the MLI blanket remained functional. The results of the analysis of LDEF MLI were used in developing the standard MLI blanket for Space Station Work Package-2 (WP-2). This blanket is expected to last 30 years when exposed to the low Earth orbit (LEO) environment constituents of atomic oxygen and MM/OD, which are the most damaging to MLI materials. The WP-2 standard blanket consists of an outer cover made from Beta-cloth glass fiber fabric which is aluminized on the interior surface, and an inner cover of 0.076-mm (0.003-in) double-side-aluminized perforated Kapton. The inner reflector layers are 0.0076-mm (0.0003-in) double-side aluminized, perforated Kapton separated by layers of Dacron polyester fabric. The outer cover was selected to be resistant to the LEO environment and durable enough to survive in orbit for 30 years. This paper describes the analyses of the LDEF MLI results, and how these

  12. Long term microparticle impact fluxes on LDEF determined from optical survey of Interplanetary Dust Experiment (IDE) sensors

    NASA Technical Reports Server (NTRS)

    Simon, C. G.; Oliver, J. P.; Cooke, W. J.; Downey, K. I.; Kassel, P. C.

    1995-01-01

    Many of the IDE metal-oxide-silicon (MOS) capacitor-discharge impact sensors remained active during the entire Long Duration Exposure Facility (LDEF) mission. An optical survey of impact sites on the active surfaces of these sensors has been extended to include all sensors from the low-flux sides of LDEF (i.e. the west or trailing side, the earth end, and the space end) and 5-7 active sensors from each LDEF's high-flux sides (i.e. the east or leading side, the south side, and the north side). This survey was facilitated by the presence of a relatively large (greater than 50 micron diameter) optical signature associated with each impact site on the active sensor surfaces. Of the approximately 4700 impacts in the optical survey data set, 84% were from particles in the 0.5 to 3 micron size range. An estimate of the total number of hypervelocity impacts on LDEF from particles greater than 0.5 micron diameter yields a value of approximately 7 x 10(exp 6). Impact feature dimensions for several dozen large craters on MOS sensors and germanium witness plates are also presented. Impact fluxes calculated from the IDE survey data closely matched surveys of similar size impacts (greater than or equal to 3 micron diameter craters in Al, or marginal penetrations of a 2.4 micron thick Al foil) by other LDEF investigators. Since the first year IDE data were electronically recorded, the flux data could be divided into three long term time periods: the first year, the entire 5.8 year mission, and the intervening 4.8 years (by difference). The IDE data show that there was an order of magnitude decrease in the long term microparticle impact flux on the trailing side of LDEF, from 1.01 to 0.098 x 10(exp -4) m(exp 2)/s, from the first year in orbit compared to years 2-6. The long term flux on the leading edge showed an increase from 8.6 to 11.2 x 10(exp -4) m(exp -2)/s over this same time period. (Short term flux increases up to 10,000 times the background rate were recorded on the

  13. Low-Earth orbit effects on organic composite materials flown on LDEF

    NASA Technical Reports Server (NTRS)

    George, Pete E.; Dursch, Harry W.

    1993-01-01

    Over 35 different types of organic matrix composites were flown as part of 11 different experiments onboard the NASA Long Duration Exposure Facility (LDEF) satellite. This materials and systems experiment satellite flew in low-earth orbit (LEO) for 69 months. For that period, the experiments were subjected to the LEO environment including atomic oxygen (AO), ultraviolet (UV) radiation, thermal cycling, microvacuum, meteoroid and space debris (M&D), and particle radiation. Since retrieval of the satellite in January of 1990, the principal experiment investigators have been deintegrating, examining, and testing the materials specimens flown. The most detrimental environmental effect on all organic matrix composites was material loss due to AO erosion. AO erosion of uncoated organic matrix composites (OMC) facing the satellite ram direction was responsible for significant mechanical property degradations. Also, thermal cycling-induced microcracking was observed in some nonunidirectional reinforced OMC's. Thermal cycling and outgassing caused significant but predictable dimensional changes as measured in situ on one experiment. Some metal and metal oxide-based coatings were found to be very effective at preventing AO erosion of OMC's. However, M&D impacts and coating fractures which compromised these coatings allowed AO erosion of the underlying OMC substrates. The findings for organic matrix composites flown on the LDEF are summarized and the LEO environmental factors, their effects, and the influence on space hardware design factors for LEO applications are identified.

  14. Monte Carlo modeling of atomic oxygen attack of polymers with protective coatings on LDEF

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Degroh, Kim K.; Sechkar, Edward A.

    1992-01-01

    Characterization of the behavior of atomic oxygen interaction with materials on the Long Duration Exposure Facility (LDEF) will assist in understanding the mechanisms involved, and will lead to improved reliability in predicting in-space durability of materials based on ground laboratory testing. A computational simulation of atomic oxygen interaction with protected polymers was developed using Monte Carlo techniques. Through the use of assumed mechanistic behavior of atomic oxygen and results of both ground laboratory and LDEF data, a predictive Monte Carlo model was developed which simulates the oxidation processes that occur on polymers with applied protective coatings that have defects. The use of high atomic oxygen fluence-directed ram LDEF results has enabled mechanistic implications to be made by adjusting Monte Carlo modeling assumptions to match observed results based on scanning electron microscopy. Modeling assumptions, implications, and predictions are presented, along with comparison of observed ground laboratory and LDEF results.

  15. Effects of long-term exposure on LDEF fastener assemblies

    NASA Technical Reports Server (NTRS)

    Spear, Steve; Dursch, Harry

    1992-01-01

    This presentation summarizes the Systems Special Investigations Group (SIG) findings from testing and analysis of fastener assemblies used on the Long Duration Exposure Facility (LDEF) structure, the tray mounting clamps, and by the various experimenters. The LDEF deintegration team and several experimenters noted severe fastener damage and hardware removal difficulties during post-flight activities. The System SIG has investigated all reported instances, and in all cases examined to date, the difficulties were attributed to galling during installation or post-flight removal. To date, no evidence of coldwelding was found. Correct selection of materials and lubricants as well as proper mechanical procedures is essential to ensure successful on-orbit or post-flight installation and removal of hardware.

  16. Effects of long-term exposure on LDEF fastener assemblies

    NASA Astrophysics Data System (ADS)

    Spear, Steve; Dursch, Harry

    1992-09-01

    This presentation summarizes the Systems Special Investigations Group (SIG) findings from testing and analysis of fastener assemblies used on the Long Duration Exposure Facility (LDEF) structure, the tray mounting clamps, and by the various experimenters. The LDEF deintegration team and several experimenters noted severe fastener damage and hardware removal difficulties during post-flight activities. The System SIG has investigated all reported instances, and in all cases examined to date, the difficulties were attributed to galling during installation or post-flight removal. To date, no evidence of coldwelding was found. Correct selection of materials and lubricants as well as proper mechanical procedures is essential to ensure successful on-orbit or post-flight installation and removal of hardware.

  17. Results of the examination of LDEF polyurethane thermal control coatings

    NASA Technical Reports Server (NTRS)

    Golden, Johnny L.

    1994-01-01

    This report summarizes the condition of polyurethane thermal control coatings subjected to 69 months of low earth orbit (LEO) exposure on the Long Duration Exposure Facility (LDEF) mission. Specimens representing all environmental aspects obtainable by LDEF were analyzed. Widely varying changes in the thermo-optical and mechanical properties of these materials were observed, depending on atomic oxygen and ultraviolet radiation fluences. High atomic oxygen fluences, regardless of ultraviolet radiation exposure levels, resulted in near original optical properties for these coatings but with a degradation in their mechanical condition. A trend in solar absorptance increase with ultraviolet radiation fluence was observed. Contamination, though observed, exhibited minimal effects.

  18. Status of LDEF radiation modeling

    NASA Technical Reports Server (NTRS)

    Watts, John W.; Armstrong, T. W.; Colborn, B. L.

    1995-01-01

    The current status of model prediction and comparison with LDEF radiation dosimetry measurements is summarized with emphasis on major results obtained in evaluating the uncertainties of present radiation environment model. The consistency of results and conclusions obtained from model comparison with different sets of LDEF radiation data (dose, activation, fluence, LET spectra) is discussed. Examples where LDEF radiation data and modeling results can be utilized to provide improved radiation assessments for planned LEO missions (e.g., Space Station) are given.

  19. Photographic Survey of the LDEF Mission

    NASA Technical Reports Server (NTRS)

    ONeal, Robert L.; Levine, Arlene S.; Kiser, Carol C.

    1996-01-01

    This publication documents a selected number of pre-flight, in-flight, and postflight photographs of the LDEF and experiments. Changes in condition of the experiments caused by space exposure are discussed. Accompanying this black and white publication it a CD-ROM that contains the color version of the photographs as well as the text.

  20. Duplication and analysis of meteoroid damage on LDEF and advanced spacecraft materials

    NASA Technical Reports Server (NTRS)

    Hill, David C.; Rose, M. Frank

    1995-01-01

    The analysis of exposed surfaces on LDEF since its retrieval in 1990 has revealed a wide range of meteoroid and debris (M&D) impact features in the sub-micron to millimeter size range, ranging from quasi-infinite target cratering in LDEF metallic structural members (e.g. inter-costals, tray clamps, etc.) to non-marginal perforations in metallic experimental surfaces (e.g. thin foil detectors, etc.). Approximately 34,000 impact features are estimated to exist on the exposed surfaces of LDEF. The vast majority of impact craters in metal substrates exhibit circular footprints, with approximately 50 percent retaining impactor residues in varying states of shock processing. The fundamental goals of this project were to duplicate and analyze meteoroid impact damage on spacecraft metallic materials with a view to quantifying the residue retention and oblique impact morphology characteristics. Using the hypervelocity impact test facility established at Auburn University a series of impact tests (normal and oblique incidence) were executed producing consistently high (11-12 km/s) peak impact velocities, the results of which were subsequently analyzed using Scanning Electron Microscope (SEM) and Energy Dispersive X-ray Spectroscopy (EDXS) facilities at Auburn University.

  1. Analysis of space environment damage to solar cell assemblies from LDEF experiment A0171-GSFC test plate

    NASA Technical Reports Server (NTRS)

    Hill, David C.; Rose, M. Frank

    1994-01-01

    The results of the postflight analysis of the solar cell assemblies from the LDEF (Long Duration Exposure facility) experiment A0171 is provided in this NASA sponsored research project. The following data on this research are provided as follows: (1) solar cell description, including, substrate composition and thickness, crystal orientation, anti-reflective coating composition and thickness; (2) preflight characteristics of the solar cell assemblies with respect to current and voltage; and (3) post-flight characteristics of the solar cell assemblies with respect to voltage and current. These solar cell assemblies are part of the Goddard Space Flight Center test plate which was designed to test the space environment effects (radiation, atomic oxygen, thermal cycling, meteoroid and debris) on conductively coated solar cell coversheets, various electrical bond materials, solar cell performance, and other material properties where feasible.

  2. LDEF materials special investigation group's data bases

    NASA Technical Reports Server (NTRS)

    Strickland, John W.; Funk, Joan G.; Davis, John M.

    1993-01-01

    The Long Duration Exposure Facility (LDEF) was composed of and contained a wide array of materials, representing the largest collection of materials flown for space exposure and returned for ground-based analyses to date. The results and implications of the data from these materials are the foundation on which future space missions will be built. The LDEF Materials Special Investigation Group (MSIG) has been tasked with establishing and developing data bases to document these materials and their performance to assure not only that the data are archived for future generations but also that the data are available to the space user community in an easily accessed, user-friendly form. The format and content of the data bases developed or being developed to accomplish this task are discussed. The hardware and software requirements for each of the three data bases are discussed along with current availability of the data bases.

  3. Status of LDEF ionizing radiation measurements and analysis

    NASA Technical Reports Server (NTRS)

    Parnell, T. A.

    1992-01-01

    The LDEF-1 results from the particle astrophysics, radiation environments, and dosimetry measurements on LDEF-1 are summarized, including highlights from presentations at the 2nd symposium. Progress in using LDEF data to improve radiation environment models and calculation methods is reviewed. Radiation effects, or the lack thereof are discussed. Future plans of the LDEF Ionizing Radiation Special Investigation Group are presented.

  4. SIMS chemical analysis of extended impacts on the leading and trailing edges of LDEF experiment AO187-2

    NASA Technical Reports Server (NTRS)

    Amari, S.; Foote, J.; Simon, Charles G.; Swan, P.; Walker, R. M.; Zinner, E.; Jessberger, E. K.; Lange, G.; Stadermann, F.

    1992-01-01

    The Long Duration Exposure Facility (LDEF) Experiment AO187-2 consisted of 237 capture cells, 120 on the leading edge and 117 on the trailing edge. Each cell was made of polished Ge plates covered with 2.5 micron thick mylar foil at 200 microns from the Ge. Although all leading edge cells and 105 trailing edge cells had lost their plastic covers during flight, optical and electron microscope examination revealed extended impacts in bare cells from either edge that apparently were produced by high velocity projectiles while the plastic foils were still in place. Detailed optical scanning yielded 53 extended impacts on 100 bare cells from the trailing edge that were selected for SIMS chemical analysis. Lateral multi-element ion probe profiles were obtained on 40 of these impacts. Material that can be attributed to the incoming projectiles was found in all analyzed extended compact features and most seem to be associated with cosmic dust particles. However, LDEF deposits are systematically enriched in the refractory elements Al, Ca, and Ti relative to Mg and Fe when compared to IDP's collected in the stratosphere and to chondritic compositions. These differences are most likely due to elemental fractionation effects during the high velocity impact but real differences between interplanetary particles captured on LDEF and stratospheric IDP's cannot be excluded. Recently we extended our studies to cells from the leading edge and the covered cells from the trailing edge. The 12 covered cells contain 20 extended impact candidates. Ion probe analysis of 3 yielded results similar to those obtained for impacts on the bare cells from the trailing edge. Optical scanning of the bare leading edge cell also reveals many extended impacts (42 on 22 cells scanned to date), demonstrating that the cover foils remained intact at least for some time. However, SIMS analysis showed elements that can reasonably be attributed to micrometeoroids in only 2 out of 11 impacts. Eight impacts

  5. LDEF meteoroid and debris special investigation group investigations and activities at the Johnson Space Center

    NASA Technical Reports Server (NTRS)

    See, Thomas H.; Warren, Jack L.; Zolensky, Michael E.; Sapp, Clyde A.; Bernhard, Ronald P.; Dardano, Claire B.

    1995-01-01

    Since the return of the Long Duration Exposure Facility (LDEF) in January, 1990, members of the Meteoroid and Debris Special Investigation Group (M&D SIG) at the Johnson Space Center (JSC) in Houston, Texas have been examining LDEF hardware in an effort to expand the knowledge base regarding the low-Earth orbit (LEO) particulate environment. In addition to the various investigative activities, JSC is also the location of the general Meteoroid & Debris database. This publicly accessible database contains information obtained from the various M&D SIG investigations, as well as limited data obtained by individual LDEF Principal Investigators. LDEF exposed approximately 130 m(exp 2) of surface area to the LEO particulate environment, approximately 15.4 m(exp 2) of which was occupied by structural frame components (i.e., longerons and intercoastals) of the spacecraft. The data reported here was obtained as a result of detailed scans of LDEF intercoastals, 68 of which reside at JSC. The limited amount of data presently available on the A0178 thermal control blankets was reported last year and will not be reiterated here. The data presented here are limited to measurements of crater diameters and their frequency of occurrence (i.e., flux).

  6. LDEF meteoroid and debris special investigation group investigations and activities at the Johnson Space Center

    NASA Astrophysics Data System (ADS)

    See, Thomas H.; Warren, Jack L.; Zolensky, Michael E.; Sapp, Clyde A.; Bernhard, Ronald P.; Dardano, Claire B.

    1995-02-01

    Since the return of the Long Duration Exposure Facility (LDEF) in January, 1990, members of the Meteoroid and Debris Special Investigation Group (M&D SIG) at the Johnson Space Center (JSC) in Houston, Texas have been examining LDEF hardware in an effort to expand the knowledge base regarding the low-Earth orbit (LEO) particulate environment. In addition to the various investigative activities, JSC is also the location of the general Meteoroid & Debris database. This publicly accessible database contains information obtained from the various M&D SIG investigations, as well as limited data obtained by individual LDEF Principal Investigators. LDEF exposed approximately 130 m(exp 2) of surface area to the LEO particulate environment, approximately 15.4 m(exp 2) of which was occupied by structural frame components (i.e., longerons and intercoastals) of the spacecraft. The data reported here was obtained as a result of detailed scans of LDEF intercoastals, 68 of which reside at JSC. The limited amount of data presently available on the A0178 thermal control blankets was reported last year and will not be reiterated here. The data presented here are limited to measurements of crater diameters and their frequency of occurrence (i.e., flux).

  7. Prediction of LDEF ionizing radiation environment

    NASA Astrophysics Data System (ADS)

    Watts, John W.; Parnell, T. A.; Derrickson, James H.; Armstrong, T. W.; Benton, E. V.

    1992-01-01

    The Long Duration Exposure Facility (LDEF) spacecraft flew in a 28.5 deg inclination circular orbit with an altitude in the range from 172 to 258.5 nautical miles. For this orbital altitude and inclination two components contribute most of the penetrating charge particle radiation encountered - the galactic cosmic rays and the geomagnetically trapped Van Allen protons. Where shielding is less than 1.0 g/sq cm geomagnetically trapped electrons make a significant contribution. The 'Vette' models together with the associated magnetic filed models were used to obtain the trapped electron and proton fluences. The mission proton doses were obtained from the fluence using the Burrell proton dose program. For the electron and bremsstrahlung dose we used the Marshall Space Flight Center (MSFC) electron dose program. The predicted doses were in general agreement with those measured with on-board thermoluminescent detector (TLD) dosimeters. The NRL package of programs, Cosmic Ray Effects on MicroElectronics (CREME), was used to calculate the linear energy transfer (LET) spectrum due to galactic cosmic rays (GCR) and trapped protons for comparison with LDEF measurements.

  8. Meteoroid, and debris special investigation group preliminary results: Size-frequency distribution and spatial density of large impact features on LDEF

    NASA Technical Reports Server (NTRS)

    See, Thomas H.; Hoerz, Friedrich; Zolensky, Michael E.; Allbrooks, Martha K.; Atkinson, Dale R.; Simon, Charles G.

    1992-01-01

    All craters greater than or equal to 500 microns and penetration holes greater than or equal to 300 microns in diameter on the entire Long Duration Exposure Facility (LDEF) were documented. Summarized here are the observations on the LDEF frame, which exposed aluminum 6061-T6 in 26 specific directions relative to LDEF's velocity vector. In addition, the opportunity arose to characterize the penetration holes in the A0178 thermal blankets, which pointed in nine directions. For each of the 26 directions, LDEF provided time-area products that approach those afforded by all previous space-retrieved materials combined. The objective here is to provide a factual database pertaining to the largest collisional events on the entire LDEF spacecraft with a minimum of interpretation. This database may serve to encourage and guide more interpretative efforts and modeling attempts.

  9. Long Duration Exposure Facility experiment M0003 deintegration observation data base

    NASA Technical Reports Server (NTRS)

    Gyetvay, S. R.; Coggi, J. M.; Meshishnek, M. J.

    1993-01-01

    The four trays (2 leading edge and 2 trailing edge) of the M0003 materials experiment on the Long Duration Exposure Facility (LDEF) contained 1274 samples from 20 subexperiments. The complete sample complement represented a broad range of materials, including thin film optical coatings, paints, polymer sheets and tapes, adhesives, and composites, for use in various spacecraft applications, including thermal control, structures, optics, and solar power. Most subexperiments contained sets of samples exposed on both the leading and trailing edge trays of LDEF. Each individual sample was examined by high resolution optical microscope during the deintegration of the subexperiments from the M0003 trays. Observations of the post-flight condition of the samples made during this examination were recorded in a computer data base. The deintegration observation data base is available to requesters on floppy disk in 4th Dimension for the Macintosh format. Over 3,000 color macrographs and photomicrographs were shot to complement the observation records and to document the condition of the individual samples and of the M0003 trays. The photographs provide a visual comparison of the response of materials in leading and trailing edge LDEF environments. The Aerospace Corporate Archives is distributing photographs of the samples and hard copies of the database records to the general public upon request. Information on obtaining copies of the data base disks and for ordering photographs and records of specific samples or materials are given.

  10. Predictions of LDEF radioactivity and comparison with measurements

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.; Harmon, B. A.; Laird, C. E.

    1995-01-01

    As part of the program to utilize LDEF data for evaluation and improvement of current ionizing radiation environmental models and related predictive methods for future LEO missions, calculations have been carried out to compare with the induced radioactivity measured in metal samples placed on LDEF. The predicted activation is about a factor of two lower than observed, which is attributed to deficiencies in the AP8 trapped proton model. It is shown that this finding based on activation sample data is consistent with comparisons made with other LDEF activation and dose data. Plans for confirming these results utilizing additional LDEF data sets, and plans for model modifications to improve the agreement with LDEF data, are discussed.

  11. Results from testing and analysis of solar cells flown on LDEF

    NASA Technical Reports Server (NTRS)

    Dursch, Harry

    1992-01-01

    A brief discussion of the solar cell experiments flown on the Long Duration Exposure Facility (LDEF) is provided. The information presented is a collation of results published by the various experimenters. This process of collation and documentation is an ongoing Systems Special Investigation Group (SIG) effort. There are four LEO environments, operating individually and/or synergistically, that cause performance loss in solar cells: meteoroid and space debris, atomic oxygen, ultraviolet radiation, and charged particle radiation. In addition, the effects of contamination caused by outgassing of materials used on the specific spacecraft play a role in decreasing the light being transmitted through the coverglass and adhesive to the solar cell. From the results presented on the solar cells aboard LDEF, the most extensive degradation of the solar cells came from impacts and the resulting cratering. The extent of the damage to the solar cells was largely dependent upon the size and energy of the meteoroids or space debris. The other cause of degradation was reduced light reaching the solar cell. This was caused by contamination, UV degradation of coverglass adhesive, and/or atomic oxygen/UV degradation of antireflection coatings.

  12. Databases for LDEF results

    NASA Technical Reports Server (NTRS)

    Bohnhoff-Hlavacek, Gail

    1992-01-01

    One of the objectives of the team supporting the LDEF Systems and Materials Special Investigative Groups is to develop databases of experimental findings. These databases identify the hardware flown, summarize results and conclusions, and provide a system for acknowledging investigators, tracing sources of data, and future design suggestions. To date, databases covering the optical experiments, and thermal control materials (chromic acid anodized aluminum, silverized Teflon blankets, and paints) have been developed at Boeing. We used the Filemaker Pro software, the database manager for the Macintosh computer produced by the Claris Corporation. It is a flat, text-retrievable database that provides access to the data via an intuitive user interface, without tedious programming. Though this software is available only for the Macintosh computer at this time, copies of the databases can be saved to a format that is readable on a personal computer as well. Further, the data can be exported to more powerful relational databases, capabilities, and use of the LDEF databases and describe how to get copies of the database for your own research.

  13. Compositional analysis and classification of projectile residues in LDEF impact craters

    NASA Technical Reports Server (NTRS)

    Horz, Friedrich; Bernhard, Ronald P.

    1992-01-01

    This catalog contains preliminary analyses of residues of hypervelocity projectiles that encountered gold substrates exposed by instrument A0187-1 on the Long Duration Exposure Facility (LDEF). This instrument was on LDEF's trailing edge where relative encounter speeds should be lowest for any non-spinning platform in low Earth orbit (LEO). Approximately 0.6 m(exp 2) of Au substrates yielded 198 impact craters greater than 20 micrometers in diameter. Some 30 percent of the craters were made by natural cosmic dust particles and some 15 percent by man-made objects. Some 50 percent of all features, however, have residues, if any, that are beyond the detection threshold of the SEM-EDXA method used. The purpose of this catalog is to provide detailed evidence and criteria that may be used to arrive at specific particle types on a case-by-case basis and to group such particles into compositional classes. Clearly this is a somewhat interpretative undertaking. For that reason, we encourage and solicit critique and comments from those interested in the systematic analysis of all impact features on LDEF.

  14. Fullerenes in an impact crater on the LDEF spacecraft

    NASA Technical Reports Server (NTRS)

    Radicati di Brozolo, F.; Bunch, T. E.; Fleming, R. H.; Macklin, J.

    1994-01-01

    The fullerenes C60 and C70 have been found to occur naturally on Earth and have also been invoked to explain features in the absorption spectra of interstellar clouds. But no definitive spectroscopic evidence exists for fullerenes in space and attempts to find fullerenes in carbonaceous chondrites have been unsuccessful. Here we report the observation of fullerenes associated with carbonaceous impact residue in a crater on the Long Duration Exposure Facility (LDEF) spacecraft. Laser ionization mass spectrometry and Raman spectroscopy indicate the presence of fullerenes in the crater and in adjacent ejecta. Man-made fullerenes survive experimental hypervelocity (approximately 6.1 km s-1) impacts into aluminium targets, suggesting that space fullerenes contained in a carbonaceous micrometeorite could have survived the LDEF impact at velocities towards the lower end of the natural particle encounter range (<13 km s-1). We also demonstrate that the fullerenes were unlikely to have formed as instrumental artefacts, nor are they present as contaminants. Although we cannot specify the origin of the fullerenes with certainty, the most plausible source is the chondritic impactor. If, alternatively, the impact produced the fullerenes in situ on LDEF, then this suggests a viable mechanism for fullerene production in space.

  15. Future directions for LDEF ionizing radiation modeling and assessments

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.

    1992-01-01

    Data from the ionizing radiation dosimetry aboard LDEF provide a unique opportunity for assessing the accuracy of current space radiation models and in identifying needed improvements for future mission applications. Details are given of the LDEF data available for radiation model evaluations. The status is given of model comparisons with LDEF data, along with future directions of planned modeling efforts and data comparison assessments. The methodology is outlined which is related to modeling being used to help insure that the LDEF ionizing radiation results can be used to address ionizing radiation issues for future missions. In general, the LDEF radiation modeling has emphasized quick-look predictions using simplified methods to make comparisons with absorbed dose measurements and induced radioactivity measurements of emissions. Modeling and LDEF data comparisons related to linear energy transfer spectra are of importance for several reasons which are outlined. The planned modeling and LDEF data comparisons for LET spectra is discussed, including components of the LET spectra due to different environment sources, contribution from different production mechanisms, and spectra in plastic detectors vs silicon.

  16. Identification and evaluation of lubricants, adhesives, and seals used on LDEF

    NASA Technical Reports Server (NTRS)

    Keough, Bruce

    1992-01-01

    A variety of lubricants, adhesives, and seals were flown on Long Duration Exposure Facility (LDEF). They were used in the fabrication and assembly of the experiments similar to other spacecraft applications. Typically, these materials were not exposed to U.V. radiation or atomic oxygen, except possibly around the perimeter of the joints. Most of these materials were of secondary interest and were only investigated by visual examination and a 'Did they fall?' criteria. Because of this role, most applications had only a few specimens, not enough for statistical data generation. Often, no control samples were kept, and documentation of what was used was occasionally sketchy.

  17. Scanning electron microscope/energy dispersive x ray analysis of impact residues on LDEF tray clamps

    NASA Technical Reports Server (NTRS)

    Bernhard, Ronald P.; Durin, Christian; Zolensky, Michael E.

    1992-01-01

    To better understand the nature of particulates in low-Earth orbit (LEO), and their effects on spacecraft hardware, we are analyzing residues found in impacts on the Long Duration Exposure Facility (LDEF) tray clamps. LDEF experiment trays were held in place by 6 to 8 chromic-anodized aluminum (6061-T6) clamps that were fastened to the spacecraft frame using three stainless steel hex bolts. Each clamp exposed an area of approximately 58 sq cm (4.8 cm x 12.7 cm x .45 cm, minus the bolt coverage). Some 337 out of 774 LDEF tray clamps were archived at JSC and are available through the Meteoroid & Debris Special Investigation Group (M&D SIG). Optical scanning of clamps, starting with Bay/Row A01 and working toward H25, is being conducted at JSC to locate and document impacts as small as 40 microns. These impacts are then inspected by Scanning Electron Microscopy/Energy Dispersive X-ray Analysis (SEM/EDXA) to select those features which contain appreciable impact residue material. Based upon the composition of projectile remnants, and using criteria developed at JSC, we have made a preliminary discrimination between micrometeoroid and space debris residue-containing impact features. Presently, 13 impacts containing significant amounts of unmelted and semi-melted micrometeoritic residues were forwarded to Centre National d'Etudes Spatiales (CNES) in France. At the CNES facilities, the upgraded impacts were analyzed using a JEOL T330A SEM equipped with a NORAN Instruments, Voyager X-ray Analyzer. All residues were quantitatively characterized by composition (including oxygen and carbon) to help understand interplanetary dust as possibly being derived from comets and asteroids.

  18. Thermal expansion behavior of LDEF metal matrix composites

    NASA Technical Reports Server (NTRS)

    Le, Tuyen D.; Steckel, Gary L.

    1993-01-01

    The thermal expansion behavior of Long Duration Exposure Facility (LDEF) metal matrix composite materials was studied by (1) analyzing the flight data that was recorded on orbit to determine the effects of orbital time and heating/cooling rates on the performance of the composite materials, and (2) characterizing and comparing the thermal expansion behavior of post-flight LDEF and lab-control samples. The flight data revealed that structures in space are subjected to nonuniform temperature distributions, and thermal conductivity of a material is an important factor in establishing a uniform temperature distribution and avoiding thermal distortion. The flight and laboratory data showed that both Gr/Al and Gr/Mg composites were stabilized after prolonged thermal cycling on orbit. However, Gr/Al composites showed more stable thermal expansion behavior than Gr/Mg composites and offer advantages for space structures particularly where very tight thermal stability requirements in addition to high material performance must be met.

  19. Ionizing radiation calculations and comparisons with LDEF data

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.; Watts, J. W., Jr.

    1992-01-01

    In conjunction with the analysis of LDEF ionizing radiation dosimetry data, a calculational program is in progress to aid in data interpretation and to assess the accuracy of current radiation models for future mission applications. To estimate the ionizing radiation environment at the LDEF dosimeter locations, scoping calculations for a simplified (one dimensional) LDEF mass model were made of the primary and secondary radiations produced as a function of shielding thickness due to trapped proton, galactic proton, and atmospheric (neutron and proton cosmic ray albedo) exposures. Preliminary comparisons of predictions with LDEF induced radioactivity and dose measurements were made to test a recently developed model of trapped proton anisotropy.

  20. Thermal control surfaces experiment: Initial flight data analysis

    NASA Technical Reports Server (NTRS)

    Wilkes, Donald R.; Hummer, Leigh L.

    1991-01-01

    The behavior of materials in the space environment continues to be a limiting technology for spacecraft and experiments. The thermal control surfaces experiment (TCSE) aboard the Long Duration Exposure Facility (LDEF) is the most comprehensive experiment flown to study the effects of the space environment on thermal control surfaces. Selected thermal control surfaces were exposed to the LDEF orbital environment and the effects of this exposure were measured. The TCSE combined in-space orbital measurements with pre and post-flight analyses of flight materials to determine the effects of long term space exposure. The TCSE experiment objective, method, and measurements are described along with the results of the initial materials analysis. The TCSE flight system and its excellent performance on the LDEF mission is described. A few operational anomalies were encountered and are discussed.

  1. Analysis of LDEF micrometeoroid/debris data and damage to composite materials

    NASA Technical Reports Server (NTRS)

    Tennyson, R. C.; Manuelpillai, G.

    1993-01-01

    This report presented published LDEF micrometeoroid/debris impact data in a nomogram format useful for estimating the total number of hits that could be expected on a space structure as a function of time in orbit, angular location relative to ram, and exposed surface area. Correction factors accounting for different altitudes are given. These are normalized to the average LDEF altitude. Examples on how to use the nomograph are also included. In addition, impact data and damage areas observed on composite laminates (experiment AO 180) are discussed.

  2. LDEF satellite radiation study

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.

    1994-01-01

    Some early results are summarized from a program under way to utilize LDEF satellite data for evaluating and improving current models of the space radiation environment in low earth orbit. Reported here are predictions and comparisons with some of the LDEF dose and induced radioactivity data, which are used to check the accuracy of current models describing the magnitude and directionality of the trapped proton environment. Preliminary findings are that the environment models underestimate both dose and activation from trapped protons by a factor of about two, and the observed anisotropy is higher than predicted.

  3. LDEF Materials Workshop 1991, part 2

    NASA Technical Reports Server (NTRS)

    Stein, Bland A. (Compiler); Young, Philip R. (Compiler)

    1992-01-01

    The LDEF Materials Workshop 1991 was a follow-on to the Materials Sessions at the First LDEF Post-Retrieval Symposium held in Kissimmee, Florida, June 1991. The workshop comprised a series of technical sessions on materials themes, followed by theme panel meetings. Themes included materials, environmental parameters, and data bases; contamination; thermal control and protective coating and surface treatments; polymers and films; polymer matrix composites; metals, ceramics, and optical materials; lubricants adhesives, seals, fasteners, solar cells, and batteries. This document continues the LDEF Space Environmental Effects on Materials Special Investigation Group (MSIG) pursuit to investigate the effects of LEO exposure on materials which were not originally planned to be test specimens. Papers from the technical sessions are presented.

  4. LDEF materials data analysis: Representative examples

    NASA Technical Reports Server (NTRS)

    Pippin, H. Gary; Crutcher, E. R.

    1992-01-01

    Results of measurements on silverized teflon, heat shrink tubing and nylon tie downs on the wire harness clamps, silvered hex nuts, and contamination deposits are presented. We interpret the results in terms of our microenvironments exposure model and locations on the Long Duration Exposure Facility (LDEF). Distinct changes in the surface properties of FEP were observed as a function of UV exposure. Significant differences in outgassing characteristics were detected for hardware on the interior row 3 relative to identical hardware on the interior row 3 relative to identical hardware on nearby rows. The implications for in service performance are reviewed.

  5. LDEF's contribution to the selection of thermal control coatings for the Space Station

    NASA Technical Reports Server (NTRS)

    Babel, Henry W.

    1995-01-01

    The design of the Space Station presented new challenges in the selection and qualification of thermal control materials that would survive in low Earth orbit for a duration of up to 30 years. Prior to LDEF, flight data were obtained from Orbiting Solar Observatory (OSO) satellites, a number of Orbiter flights, and limited ground tests. The excellent data obtained from the OSO satellites were based on calorimetry and temperature measurements which were transmitted to Earth; these satellites were not recovered. For some of these flight experiments it was difficult to distinguish between changes due to contamination, atomic oxygen (AO), ultraviolet radiation (UV), particle radiation and the synergistic effects between them. The data from Shuttle flights were primarily focused on developing a better understanding of atomic oxygen (AO) effects. Although UV and AO were present, the relatively short duration of the Orbiter flights, about one week, was viewed as too short to show the effects from UV or possible synergistic interactions with AO and contamination. At the beginning of the program in 1989 there was no established design data base for AO resistant thermal control coatings for the Space Station. Then came the Long Duration Exposure Facility (LDEF). It provided the first long life data for materials exposed and recovered from space with a characterized environment. Post flight analysis proved data on the effects of contamination on optical properties in the ram (velocity) and wake directions and the erosion of Teflon and multilayer insulation (MLI) covers. The results from LDEF confirmed and, in some cases, modified the approach used for the Space Station, as well as helped to focus our development activities. These development activities resulted in a number of new technical solutions which are applicable to many spacecraft surfaces and missions. LDEF also showed the detrimental effects that could occur from silicone contamination, an issue that has not been

  6. Analysis of LDEF experiment AO187-2 chemical and isotopic measurements of micrometeoroids by secondary ion mass spectrometry

    NASA Technical Reports Server (NTRS)

    Zinner, Ernst

    1995-01-01

    #Experiment AO187-2, that was flown on board the Long Duration Exposure Facility(LDEF), was designed to measure the chemical and isotopic compositions of interplanetary dust impinging on the spacecraft from outer space. Information on the nature and composition of orbital debris was also anticipated. The spacecraft maintained a constant orientation with respect to its velocity vector thereby defining leading and trailing edges that faced respectively into and away from the direction of motion. Arrays of individual capture cells each 80.8 sq cm in size and totaling 237 in number were exposed on both the leading and trailing edges of LDEF. Each cell consisted of a pure Ge target surface slightly separated from a thin (2.5 micrometers) metallized plastic 'entrance foil.' The basic concept was that incoming projectiles would penetrate the foil, strike the Ge target plate at high velocity producing a vapor-liquid cloud that would re-deposit material on the underside of the plastic foil. This material would then be analyzed using the sensitive surface analysis technique of Secondary Ion Mass Spectrometry (SIMS). In practice, most of the plastic entrance foils failed during the extended period of orbital exposure probably due to a combination of UV embrittlement, large densities of impact events and (for the leading edge) the effects of atomic oxygen erosion in orbit. However the foils failed gradually and most remained in place on the capture cells for a significant fraction of the duration of the flight . Because most of the impactors were small (less than 10 micrometers) they were heated and dispersed in traversing the entrance foils producing clouds of molten droplets and vapor that produced easily identifiable 'extended impacts' on the Ge target plates. Fortunately, it proved possible to make ion probe measurements of projectile compositions from material deposited on the Ge in the extended impact structures.

  7. Surface contamination on LDEF exposed materials

    NASA Technical Reports Server (NTRS)

    Hemminger, Carol S.

    1992-01-01

    X-ray photoelectron spectroscopy (XPS) has been used to study the surface composition and chemistry of Long Duration Exposure Facility (LDEF) exposed materials including silvered Teflon (Ag/FEP), Kapton, S13GLO paint, quartz crystal monitors (QCM's), carbon fiber/organic matrix composites, and carbon fiber/Al Alloy composites. In each set of samples, silicones were the major contributors to the molecular film accumulated on the LDEF exposed surfaces. All surfaces analyzed have been contaminated with Si, O, and C; most have low levels (less than 1 atom percent) of N, S, and F. Occasionally observed contaminants included Cl, Na, K, P, and various metals. Orange/brown discoloration observed near vent slots in some Ag/FEP blankets were higher in carbon, sulfur, and nitrogen relative to other contamination types. The source of contamination has not been identified, but amine/amide functionalities were detected. It is probable that this same source of contamination account for the low levels of sulfur and nitrogen observed on most LDEF exposed surfaces. XPS, which probes 50 to 100 A in depth, detected the major sample components underneath the contaminant film in every analysis. This probably indicates that the contaminant overlayer is patchy, with significant areas covered by less that 100 A of molecular film. Energy dispersive x-ray spectroscopy (EDS) of LDEF exposed surfaces during secondary electron microscopy (SEM) of the samples confirmed contamination of the surfaces with Si and O. In general, particulates were not observed to develop from the contaminant overlayer on the exposed LDEF material surfaces. However, many SiO2 submicron particles were seen on a masked edge of an Ag/FEP blanket. In some cases such as the carbon fiber/organic matrix composites, interpretation of the contamination data was hindered by the lack of good laboratory controls. Examination of laboratory controls for the carbon fiber/Al alloy composites showed that preflight contamination was

  8. Calculated values of atomic oxygen fluences and solar exposure on selected surfaces of LDEF

    NASA Technical Reports Server (NTRS)

    Gillis, J. R.; Pippin, H. G.; Bourassa, R. J.; Gruenbaum, P. E.

    1995-01-01

    Atomic oxygen (AO) fluences and solar exposure have been modeled for selected hardware from the Long Duration Exposure Facility (LDEF). The atomic oxygen exposure was modeled using the microenvironment modeling code SHADOWV2. The solar exposure was modeled using the microenvironment modeling code SOLSHAD version 1.0.

  9. Holographic data storage crystals for LDEF (A0044)

    NASA Technical Reports Server (NTRS)

    Callen, W. R.; Gaylord, T. K.

    1984-01-01

    Electro-optic holographic recording systems were developed. The spaceworthiness of electro-optic crystals for use in ultrahigh capacity space data storage and retrieval systems are examined. The crystals for this experiment are included with the various electro-optical components of LDEF experiment. The effects of long-duration exposure on active optical system components is investigated. The concept of data storage in an optical-phase holographic memory is illustrated.

  10. Seeds in space experiment. [long duration exposure facility

    NASA Technical Reports Server (NTRS)

    Alston, Jim A.

    1992-01-01

    Two million seeds of 120 different varieties representing 106 species, 97 genera, and 55 plant families were flown aboard the Long Duration Exposure Facility (LDEF). The seeds were housed in one sealed canister and in two small vented canisters. After being returned to earth, the seeds were germinated and the germination rates and development of the resulting plants were compared to the performance of the control seeds that stayed in the Park Seed's seed storage facility. There was a better survival rate in the sealed canister in space than at the storage facility at Park Seed. At least some of the seeds in each of the vented canisters survived the exposure to vacuum for almost six years. The number of observed apparent mutations was very low.

  11. LDEF: 69 Months in Space. First Post-Retrieval Symposium, part 2

    NASA Technical Reports Server (NTRS)

    Levine, Arlene S. (Editor)

    1992-01-01

    A compilation of papers from the symposium is presented. The preliminary data analysis is presented of the 57 experiments flown on the LDEF. The experiments include materials, coatings, thermal systems, power and propulsion, science (cosmic ray, interstellar gas, heavy ions, and micrometeoroid), electronics, optics, and life science.

  12. Overview of the systems special investigation. [long duration exposure facility

    NASA Technical Reports Server (NTRS)

    Mason, James B.; Dursch, Harry; Edelman, Joel

    1992-01-01

    The Systems Special Investigation Group (SIG), formed by the Long Duration Exposure Facility (LDEF) Project Office to perform post flight analysis of systems hardware, was chartered to investigate the effects of the extended LDEF mission on both satellite and experiment systems and to coordinate and integrate all systems analysis performed in post flight investigations. Almost all of the top level functional testing of the active experiments has been completed, but many components are still under investigation by either the Systems SIG or individual experimenters. Results reported to date have been collected and integrated by the Systems SIG and an overview of the current results and the status of the Systems Investigation are presented in this paper.

  13. Effects of low Earth orbit environment on the Long Duration Exposure Facility thermal control coatings

    NASA Technical Reports Server (NTRS)

    Sampair, Thomas R.; Berrios, William M.

    1992-01-01

    One of the benefits of the Long Duration Exposure Facility (LDEF) was the opportunity to study the before and after effects of low earth orbit space environment on the spacecraft thermal control coatings. Since the LDEF's thermal control was totally passive by design, the selection of the external surface absorptivity to emissivity ratio (alpha/epsilon) and the ability for the coating to retain the alpha/epsilon over time was an important consideration in the thermal design of the LDEF. The primary surface coating chosen for the LDEF structure was clear chromic anodized aluminum with an average design alpha/epsilon of 0.32/0.16. External surface absorptivity (alpha) and emissivity (epsilon) were measured on all intercostals, longerons, tray mounting flanges, thermal control panels, and a limited number of experiment surface coatings after the experiment trays were removed from the LDEF structure. All surface alpha/epsilon measurements were made using portable hand held infrared and solar spectrum reflectometers. The absorptivity measurements were taken with a Devices and Services SSR-ER version 5.0 solar spectra reflectometer which has a stated uncertainty of +/- 0.01, and all normal emissivity measurements were made using the Gier Dunkle DB-100 infrared reflectometer also with a stated uncertainty of +/- 0.01. Both instruments were calibrated in the laboratory by LaRC instrumentation personnel before being used in the field at KSC. A combined total of 733 measurements were taken on the anodized aluminum hardware which included the structure (intercostals, longerons, and center ring), earth and space end thermal control panels, and experiment tray mounting flanges. The facility thermal control coatings measured in this survey cover 33 percent of the total exposed LDEF surface area. To correlate low earth orbit environmental effects on the anodized coatings, measurements were taken in both exposed and unexposed surfaces and compared to quality assurance (QA

  14. Surface characterization of selected LDEF tray clamps

    NASA Technical Reports Server (NTRS)

    Cromer, T. F.; Grammer, H. L.; Wightman, J. P.; Young, Philip R.; Slemp, Wayne S.

    1993-01-01

    The surface characterization of chromic acid anodized 6061-T6 aluminum alloy tray clamps has shown differences in surface chemistry depending upon the position on the Long Duration Exposure Facility (LDEF). Water contact angle results showed no changes in wettability of the tray clamps. The overall surface topography of the control, trailing edge(E3) and leading edge(D9) samples was similar. The thickness of the aluminum oxide layer for all samples determined by Auger depth profiling was less than one micron. X-ray photoelectron spectroscopy (XPS) analysis of the tray clamps showed significant differences in the surface composition. Carbon and silicon containing compounds were the primary contaminants detected.

  15. Long duration exposure facility post-flight thermal analysis: Orbital/thermal environment data package

    NASA Technical Reports Server (NTRS)

    Berrios, William M.

    1990-01-01

    A post flight mission thermal environment for the Long Duration Exposure Facility was created as part of the thermal analysis data reduction effort. The data included herein is the thermal parameter data used in the calculation of boundary temperatures. This boundary temperature data is to be released in the near future for use by the LDEF principal investigators in the final analysis of their particular experiment temperatures. Also included is the flight temperature data as recorded by the LDEF Thermal Measurements System (THERM) for the first 90 days of flight.

  16. LDEF Retrieval over the Namib Desert, Namibia, Africa

    NASA Image and Video Library

    1990-01-20

    STS032-85-029 (12 Jan. 1990) --- (ORIENT PHOTO WITH COLUMBIA'S CARGO BAY IN LOWER CENTER). This 70mm frame was taken during a battery of documentary photographs of the recently-recaptured Long Duration Exposure Facility (LEDF). The Atlantic Coast of Namibia serves as a backdrop for the colorful scene. After five-and-one half years orbiting Earth, LDEF was retrieved by STS-32 crewmembers and brought back home at the end of the eleven-day mission for scientific observation. The bus-sized spacecraft was held in the grasp of Columbia's remote manipulator system (RMS) end effector during the survey.

  17. An active thermal control surfaces experiment. [spacecraft temperature determination

    NASA Technical Reports Server (NTRS)

    Wilkes, D. R.; Brown, M. J.

    1979-01-01

    An active flight experiment is described that has the objectives to determine the effects of the low earth natural environment and the Shuttle induced environment on selected thermal control and optical surfaces. The optical and thermal properties of test samples will be measured in-situ using an integrating sphere reflectrometer and using calorimetric methods. This experiment has been selected for the Long Duration Exposure Facility (LDEF) flight which will be carried to orbit by the NASA Space Shuttle. The LDEF will remain in orbit to be picked up by a later Shuttle mission and returned for postflight evaluation.

  18. Long duration exposure facility post-flight thermal analysis, part 1

    NASA Technical Reports Server (NTRS)

    Berrios, William M.; Sampair, Thomas R.

    1992-01-01

    Results of the post-flight thermal analysis of the Long Duration Exposure Facility (LDEF) mission are presented. The LDEF mission thermal analysis was verified by comparing the thermal model results to flight data from the LDEF Thermal Measurements System (THERM). Post-flight calculated temperature uncertainties have been reduced to under +/- 18 F from the pre-flight uncertainties of +/- 40 F. The THERM consisted of eight temperature sensors, a shared tape recorder, a standard LDEF flight battery, and an electronics control box. The temperatures were measured at selected locations on the LDEF structure interior during the first 390 days of flight and recorded for post-flight analysis. After the LDEF retrieval from Space on 12 Jan. 1990, the tape recorder was recovered from the spacecraft and the data reduced for comparison to the LDEF predicted temperatures. The LDEF mission temperatures were calculated prior to the LDEF deployment on 7 Apr. 1980, and updated after the LDEF retrieval with the following actual flight parameter data: including thermal fluxes, spacecraft attitudes, thermal coatings degradation, and contamination effects. All updated data used for the calculation of post-flight temperatures is also presented in this document.

  19. Changes in chemical and optical properties of thin film metal mirrors on LDEF

    NASA Technical Reports Server (NTRS)

    Peters, Palmer N.; Zwiener, James M.; Gregory, John C.; Raikar, Ganesh N.; Christl, Ligia C.; Wilkes, Donald R.

    1995-01-01

    Thin films of the metals Cu, Ni, Pt, Au, Sn, Mo, and W deposited on fused silica flats were exposed at ambient temperature on the leading and trailing faces of the LDEF. Reflectances of these films were measured from 250 to 2500 nm and compared with controls. The exposed films were subjected to the LDEF external environment including atomic oxygen, molecular contamination, and solar ultraviolet. Major changes in optical and infrared reflectance were seen for Cu, Mo, Ni, and W films on the leading face of LDEF and are attributed to partial conversion of metal to metal oxide. Smaller changes in optical properties are seen on all films and are probably caused by thin contaminant films deposited on top of the metal. The optical measurements are correlated with film thickness measurements, x-ray photoelectron spectroscopy, optical calculations, and, in the case of Cu, with x-ray diffraction measurements. In a few cases, comparisons with results from a similar UAH experiment on STS-8 have been drawn.

  20. Contaminant Interferences with SIMS Analyses of Microparticle Impactor Residues on LDEF Surfaces

    NASA Technical Reports Server (NTRS)

    Simon, C. G.; Batchelor, D.; Griffis, D. P.; Hunter, J. L.; Misra, V.; Ricks, D. A.; Wortman, J. J.

    1992-01-01

    Elemental analyses of impactor residues on high purity surface exposed to the low earth orbit (LEO) environment for 5.8 years on Long Duration Exposure Facility (LDEF) has revealed several probable sources for microparticles at this altitude, including natural micrometeorites and manmade debris ranging from paint pigments to bits of stainless steel. A myriad of contamination interferences were identified and their effects on impactor debris identification mitigated during the course of this study. These interferences included pre-, post-, and in-flight deposited particulate surface contaminants, as well as indigenous heterogeneous material contaminants. Non-flight contaminants traced to human origins, including spittle and skin oils, contributed significant levels of alkali-rich carbonaceous interferences. A ubiquitous layer of in-flight deposited silicaceous contamination varied in thickness with location on LDEF and proximity to active electrical fields. In-flight deposited (low velocity) contaminants included urine droplets and bits of metal film from eroded thermal blankets.

  1. Degradation of electro-optic components aboard LDEF

    NASA Technical Reports Server (NTRS)

    Blue, M. D.

    1993-01-01

    Remeasurement of the properties of a set of electro-optic components exposed to the low-earth environment aboard the Long Duration Exposure Facility (LDEF) indicates that most components survived quite well. Typical components showed some effects related to the space environment unless well protected. The effects were often small but significant. Results for semiconductor infrared detectors, lasers, and LED's, as well as filters, mirrors, and black paints are described. Semiconductor detectors and emitters were scarred but reproduced their original characteristics. Spectral characteristics of multi-layer dielectric filters and mirrors were found to be altered and degraded. Increased absorption in black paints indicates an increase in absorption sites, giving rise to enhanced performance as coatings for baffles and sunscreens.

  2. Analysis of impactor residues in tray clamps from the Long Duration Exposure Facility. Part 2: Clamps from Bay B of the satellite

    NASA Technical Reports Server (NTRS)

    Bernhard, Ronald P.; Zolensky, Michael E.

    1994-01-01

    The Long Duration Exposure Facility (LDEF) was placed in low-Earth orbit (LEO) in 1984 and recovered 5.7 years later. The LDEF was host to several individual experiments specifically designed to characterize critical aspects of meteoroid and debris environment in LEO. However, it was realized from the beginning that the most efficient use of the satellite would be to examine the entire surface for impact features. In this regard, particular interest centered on common exposed materials that faced in all LDEF pointing directions. Among the most important of these materials was the tray clamps. Therefore, in an effort to better understand the nature of particulates in LEO and their effects on spacecraft hardware, residues found in impact features on LDEF tray clamp surfaces are being analyzed. This catalog presents all data from clamps from Bay B of the LDEF. NASA Technical Memorandum 104759 has cataloged impacts that occurred on Bay B (published March 1993). Subsequent catalogs will include clamps from succeeding bays of the satellite.

  3. Predicted and observed directional dependence of meteoroid/debris impacts on LDEF thermal blankets

    NASA Technical Reports Server (NTRS)

    Drolshagen, Gerhard

    1993-01-01

    The number of impacts from meteoroids and space debris particles to the various LDEF rows is calculated using ESABASE/DEBRIS, a 3-D numerical analysis tool. It is based on recent reference environment flux models and includes geometrical and directional effects. A comparison of model predictions and actual observations is made for penetrations of the thermal blankets which covered the UHCR experiment. The thermal blankets were located on all LDEF rows, except 3, 9, and 12. Because of their uniform composition and thickness, these blankets allow a direct analysis of the directional dependence of impacts and provide a test case for the latest meteoroid and debris flux models.

  4. Changes in oxidation state of chromium during LDEF exposure

    NASA Technical Reports Server (NTRS)

    Golden, Johnny L.

    1992-01-01

    The solar collector used for the McDonnell-Douglas Cascade Variable Heat Pipe, Experiment A0076 (Michael Grote - Principal Investigator) was finished with black chromium plating as a thermal control coating. The coating is metallic for low emittance, and is finely microcrystalline to a dimension which yields its high absorptivity. An underplate of nickel was applied to the aluminum absorber plate in order to achieve optimal absorptance characteristics from the black chromium plate surface. Experiment A0076 was located at tray position F9, receiving a projected 8.7 x 10 exp 21 atomic oxygen atoms/sq cm and 11,200 ESH solar radiation. During retrieval, it was observed that the aluminized kapton thermal blankets covering most of the tray were severely eroded by atomic oxygen, and that a 'flap' of aluminum foil was overlaying a roughly triangular shaped portion of the absorber panel. The aluminum foil 'flap' was lost sometime between the Long Duration Exposure Facility (LDEF) retrieval and deintegration. At deintegration, the black chromium was observed to have discolored where it had been covered by the foil 'flap'. A summary of the investigation into the cause of the discoloration is presented.

  5. Analysis of Interplanetary Dust Experiment Detectors and Other Witness Plates

    NASA Technical Reports Server (NTRS)

    Griffis, D. P.; Wortman, J. J.

    1992-01-01

    The development of analytical procedures for identifying the chemical composition of residue from impacts that occurred on the Interplanetary Dust Experiment (IDE) detectors during the flight of Long Duration Exposure Facility (LDEF) and the carrying out of actual analysis on IDE detectors and other witness plates are discussed. Two papers on the following topics are presented: (1) experimental analysis of hypervelocity microparticle impact sites on IDE sensor surfaces; and (2) contaminant interfaces with secondary Ion Mass Spectrometer (SIMS) analysis of microparticle impactor residues on LDEF surfaces.

  6. Applicability of Long Duration Exposure Facility environmental effects data to the design of Space Station Freedom electrical power system

    NASA Technical Reports Server (NTRS)

    Christie, Robert J.; Lu, Cheng-Yi; Aronoff, Irene

    1992-01-01

    Data defining space environmental effects on the Long Duration Exposure Facility (LDEF) are examined in terms of the design of the electrical power system (EPS) of the Space Station Freedom (SSF). The significant effects of long-term exposure to space are identified with respect to the performance of the LDEF's materials, components, and systems. A total of 57 experiments were conducted on the LDEF yielding information regarding coatings, thermal systems, electronics, optics, and power systems. The resulting database is analyzed in terms of the specifications of the SSF EPS materials and subsystems and is found to be valuable in the design of control and protection features. Specific applications are listed for findings regarding the thermal environment, atomic oxygen, UV and ionizing radiation, debris, and contamination. The LDEF data are shown to have a considerable number of applications to the design and planning of the SSF and its EPS.

  7. LDEF polymeric materials: A summary of Langley characterization

    NASA Technical Reports Server (NTRS)

    Young, Philip R.; Slemp, Wayne S.; Whitley, Karen S.; Kalil, Carol R.; Siochi, Emilie J.; Shen, James Y.; Chang, A. C.

    1995-01-01

    The NASA Long Duration Exposure Facility (LDEF) enabled the exposure of a wide variety of materials to the low earth orbit (LEO) environment. This paper provides a summary of research conducted at the Langley Research Center into the response of selected LDEF polymers to this environment. Materials examined include graphite fiber reinforced epoxy, polysulfone, and additional polyimide matrix composites, films of FEP Teflon, Kapton, several experimental high performance polyimides, and films of more traditional polymers such as poly(vinyl toluene) and polystyrene. Exposure duration was either 10 months or 5.8 years. Flight and control specimens were characterized by a number of analytical techniques including ultraviolet-visible and infrared spectroscopy, thermal analysis, scanning electron and scanning tunneling microscopy, x-ray photoelectron spectroscopy, and, in some instances, selected solution property measurements. Characterized effects were found to be primarily surface phenomena. These effects included atomic oxygen-induced erosion of unprotected surfaces and ultraviolet-induced discoloration and changes in selected molecular level parameters. No gross changes in molecular structure or glass transition temperature were noted. The intent of this characterization is to increase our fundamental knowledge of space environmental effects as an aid in developing new and improved polymers for space application. A secondary objective is to develop benchmarks to enhance our methodology for the ground-based simulation of environmental effects so that polymer performance in space can be more reliably predicted.

  8. Observation of fullerenes (C60-C70) associated with LDEF crater number 31

    NASA Technical Reports Server (NTRS)

    Radicatidibrozolo, Filippo; Fleming, R. H.; Bunch, T. E.

    1992-01-01

    The presence of fullerenes in and around the LDEF crater number 31 is reported. This crater has a high C level associated with it, and is interpreted as having been produced by the impact of a C-rich micrometeoroid. Fullerenes are large 3-D C structures, among which the species C sub 60 (MW 720) and C sub 70 (MW 840) are preeminent. Fullerenes have several UV absorption bands, hence fullerenes should be detectable using UV laser ionization time-of-flight mass spectrometry. We use a LIMA-2A instrument with pulsed UV laser (266 nm) to search for high mass C species associated with LDEF crater number 31. The mass range was 0 to 1200 amu. Low ablating laser power levels were used (less than or = 5 x 10 exp 7 W/sq. cm); 200 mass spectra were acquired and summed. We observed high mass signals near m/z 720, exhibiting 24 amu separation, which is characteristic of fullerenes. Alkali ion signals were also observed. Little or no C clusters of intermediate mass were observed. We interpret the signals around m/z 720 as fullerenes, mainly C sub 60+ with lower levels of C sub 70+. We propose that the mechanism that produces these signals is resonant multiphoton ionization (REMPI). This selective mechanism explains why low mass C cluster ions are not observed along with the fullerenes, since they have much higher ionization potentials. This finding is unexpected, since up to now the search for fullerenes in extraterrestrial materials has not been successful. We conclude that the fullerenes became associated with crater number 31 in space. Two alternative (and exciting) scenarios are being considered at this time: either the fullerenes were carried by the C-rich projectile that formed crater number 31, or the fullerenes formed upon impact with the LDEF. We show the results of experiments at the ARC Vertical Gun Facility, which may establish some constraints on the origin of the fullerenes.

  9. Large craters on the meteoroid and space debris impact experiment

    NASA Technical Reports Server (NTRS)

    Humes, Donald H.

    1991-01-01

    The distribution around the Long Duration Exposure Facility (LDEF) of 532 large craters in the Al plates from the Meteoroid and Space Debris Impact Experiment (S0001) is discussed along with 74 additional large craters in Al plates donated to the Meteoroid and Debris Special Investigation Group by other LDEF experimenters. The craters are 0.5 mm in diameter and larger. Crater shape is discussed. The number of craters and their distribution around the spacecraft are compared with values predicted with models of the meteoroid environment and the manmade orbital debris environment.

  10. Micro-abrasion package capture cell experiment on the trailing edge of LDEF: Impactor chemistry and whipple bumper shield efficiencies

    NASA Technical Reports Server (NTRS)

    Fitzgerald, Howard J.; Yano, Hajime

    1995-01-01

    Four of the eight available double layer microparticle capture cells, flown as the experiment A0023 on the trailing (West) face of LDEF, have been extensively studied. An investigation of the chemistry of impactors has been made using SEM/EDX techniques and the effectiveness of the capture cells as bumper shields has also been examined. Studies of these capture cells gave positive EDX results, with 53 percent of impact sites indicating the presence of some chemical residues, the predominant residue identified as being silicon in varying quantities.

  11. An LDEF 2 dust instrument for discrimination between orbital debris and natural particles in near-Earth space

    NASA Technical Reports Server (NTRS)

    Tuzzolino, A. J.; Simpson, J. A.; Mckibben, R. B.; Voss, H. D.; Gursky, H.

    1993-01-01

    The characteristics of a space dust instrument which would be ideally suited to carry out near-Earth dust measurements on a possible Long Duraction Exposure Facility reflight mission (LDEF 2) is discussed. As a model for the trajectory portion of the instrument proposed for LDEF 2, the characteristics of a SPAce DUSt instrument (SPADUS) currently under development for flight on the USA ARGOS mission to measure the flux, mass, velocity, and trajectory of near-Earth dust is summarized. Since natural (cosmic) dust and man-made dust particles (orbital debris) have different velocity and trajectory distributions, they are distinguished by means of the SPADUS velocity/trajectory information. The SPADUS measurements will cover the dust mass range approximately 5 x 10(exp -12) g (2 microns diameter) to approximately 1 x 10(exp -5) g (200 microns diameter), with an expected mean error in particle trajectory of approximately 7 deg (isotropic flux). Arrays of capture cell devices positioned behind the trajectory instrumentation would provide for Earth-based chemical and isotopic analysis of captured dust. The SPADUS measurement principles, characteristics, its role in the ARGOS mission, and its application to an LDEF 2 mission are summarized.

  12. Four space application material coatings on the Long-Duration Exposure Facility (LDEF)

    NASA Technical Reports Server (NTRS)

    Scialdone, John J.; Clatterbuck, Carroll

    1995-01-01

    Four material coatings of different thicknesses were flown on the LDEF to determine their ability to perform in the harsh space environment. The coatings, located in the ram direction of the spacecraft, were exposed for 10 months to the low-Earth orbit (LEO) environments experienced by the LDEF at an orbit of 260 nautical miles. They consisted of indium oxide (In2O3), silicon oxide (SiO(x)), clear RTV silicone, and silicone with silicate-treated zinc oxide (ZnO). These coatings were flown to assess their behavior when exposed to atomic oxygen and to confirm their good radiative properties, stability, electrical conductivity, and resistance to UV exposure. The flown samples were checked and compared with the reference unflown samples using high-magnification optical inspection, ESCA analysis, weight changes, and dimensional changes. These comparisons indicated the following. The 1000 A SiO(x) coating eroded uniformly, with minor changes in its radiative properties. The 100 A In2O3 coating eroded completely down to the Kapton backing, with resultant losses of reflectance. The RTV-615 showed erosion, with carbon (C) content losses, while the Si remained constant, with a doubling of the oxygen (O) concentration. The RTV-615 silicone with K2SiO3-treated ZnO changed from flat to glossy white in appearance. It lost C, was etched, and increased its O content. The upper layers showed no remaining Zn or K. Losses of reflectance occurred within certain wavelength bands. It was not possible to evaluate the experimental oxygen reaction rate using the calculated atomic oxygen fluence of 2.6 x 10(exp 20) atoms/cm(exp 2) for the exposure of these coatings during the flight. The bakeout of the coatings was not carried out prior to the flight. Hence, the coating weight and dimensional losses included losses by outgassing products.

  13. LDEF microenvironments, observed and predicted

    NASA Astrophysics Data System (ADS)

    Bourassa, R. J.; Pippin, H. G.; Gillis, J. R.

    1993-04-01

    A computer model for prediction of atomic oxygen exposure of spacecraft in low earth orbit, referred to as the primary atomic oxygen model, was originally described at the First Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium. The primary atomic oxygen model accounts for variations in orbit parameters, the condition of the atmosphere, and for the orientation of exposed surfaces relative to the direction of spacecraft motion. The use of the primary atomic oxygen model to define average atomic oxygen exposure conditions for a spacecraft is discussed and a second microenvironments computer model is described that accounts for shadowing and scattering of atomic oxygen by complex surface protrusions and indentations. Comparisons of observed and predicted erosion of fluorinated ethylene propylene (FEP) thermal control blankets using the models are presented. Experimental and theoretical results are in excellent agreement. Work is in progress to expand modeling capability to include ultraviolet radiation exposure and to obtain more detailed information on reflecting and scattering characteristics of material surfaces.

  14. LDEF microenvironments, observed and predicted

    NASA Technical Reports Server (NTRS)

    Bourassa, R. J.; Pippin, H. G.; Gillis, J. R.

    1993-01-01

    A computer model for prediction of atomic oxygen exposure of spacecraft in low earth orbit, referred to as the primary atomic oxygen model, was originally described at the First Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium. The primary atomic oxygen model accounts for variations in orbit parameters, the condition of the atmosphere, and for the orientation of exposed surfaces relative to the direction of spacecraft motion. The use of the primary atomic oxygen model to define average atomic oxygen exposure conditions for a spacecraft is discussed and a second microenvironments computer model is described that accounts for shadowing and scattering of atomic oxygen by complex surface protrusions and indentations. Comparisons of observed and predicted erosion of fluorinated ethylene propylene (FEP) thermal control blankets using the models are presented. Experimental and theoretical results are in excellent agreement. Work is in progress to expand modeling capability to include ultraviolet radiation exposure and to obtain more detailed information on reflecting and scattering characteristics of material surfaces.

  15. Surface analyses of composites exposed to the space environment on LDEF

    NASA Technical Reports Server (NTRS)

    Mallon, Joseph J.; Uht, Joseph C.; Hemminger, Carol S.

    1993-01-01

    A series of surface analyses on carbon fiber/poly(arylacetylene) (PAA) matrix composites that were exposed to the space environment on the Long Duration Exposure Facility (LDEF) satellite were conducted. These composite panels were arranged in pairs on both the leading edge and trailing edge of LDEF. None of the composites were catastrophically damaged by nearly six years of exposure to the space environment. Composites on the leading edge exhibited from 25 to 125 microns of surface erosion, but trailing edge panels exhibited no physical appearance changes due to exposure. Scanning electron microscopy (SEM) was used to show that the erosion morphology on the leading edge samples was dominated by crevasses parallel to the fibers with triangular cross sections 10 to 100 microns in depth. The edges of the crevasses were well defined and penetrated through both matrix and fiber. The data suggest that the carbon fibers are playing an important role in crevasse initiation and/or enlargement, and in the overall erosion rate of the composite. X-ray photoelectron spectroscopy (XPS) and energy dispersive x-ray spectroscopy (EDS) results showed contamination from in-flight sources of silicone.

  16. Secondary ion mass spectrometry (SIMS) analysis of hypervelocity microparticle impact sites on LDEF surfaces

    NASA Technical Reports Server (NTRS)

    Simon, C. G.; Buonaquisti, A. J.; Batchelor, D. A.; Hunter, J. L.; Griffis, D. P.; Misra, V.; Ricks, D. R.; Wortman, J. J.; Brownlee, D. E.; Best, S. R.

    1995-01-01

    Two dimensional elemental ion maps have been recorded for hundreds of microparticle impact sites and contamination features on LDEF surfaces. Since the majority of the analyzed surfaces were metal-oxide-silicon (MOS) impact detectors from the Interplanetary Dust Experiment, a series of 'standard' and 'blank' analyses of these surfaces are included. Hypervelocity impacts of forsterite olivine microparticles on activated flight sensors served as standards while stylus and pulsed laser simulated 'impacts' served as analytical blanks. Results showed that despite serious contamination issues, impactor residues can be identified in greater than 1/3 of the impact sites. While aluminum oxide particles could not be detected on aluminum surfaces, they were detected on germanium surfaces from row 12. Remnants of manmade debris impactors consisting of paint chips and bits of metal were identified on surfaces from LDEF Rows 3 (west or trailing side), 6 (south), 9 (ram or leading side), 12 (north) and the space end. Higher than expected ratios of manmade microparticle impacts to total microparticle impacts were found on the space end and the trailing side. These results were consistent with time-tagged and time-segregated microparticle impact data from the IDE and other LDEF experiments. A myriad of contamination interferences were identified and their effects on impactor debris identification mitigated during the course of this study. These interferences include pre-, post and inflight deposited surface contaminants as well as indigenous heterogeneous material contaminants. Non-flight contaminations traced to human origins, including spittle and skin oils, contributed significant levels of alkali-rich carbonaceous interferences. A ubiquitous layer of in-flight deposited silicaceous contamination varied in thickness with location on LDEF, even on a micro scale. In-flight deposited (low velocity) contaminants include urine droplets and bits of metal film from eroded thermal

  17. Long Duration Exposure Facility M0003-5 thermal control coatings on DoD flight experiment

    NASA Technical Reports Server (NTRS)

    Hurley, Charles J.; Lehn, William L.

    1992-01-01

    The M0003-5 thermal control coatings and materials orbited on the LDEF M0003 Space Environment Effects on Spacecraft Materials were a part of a Wright Laboratories Materials Directorate larger experiment. They were selected from new materials which emerged from development programs during the 1978-1982 time frame. Included were materials described in the technical literature which were being considered or had been applied to satellites. Materials that had been exposed on previous satellite materials experiments were also included to provide data correlation with earlier space flight experiments. The objective was to determine the effect of the LDEF environment on the physical and optical properties of thermal control coatings and materials. One hundred and two specimens of various pigmented organic and inorganic coatings, metallized polymer thin films, optical solar reflectors, and mirrors were orbited on LDEF. The materials were exposed in four separate locations on the vehicle. The first set was exposed on the direct leading edge of the satellite. The second set was exposed on the direct trailing edge of the vehicle. The third and fourth sets were exposed in environmental exposure control canisters (EECC) located 30 degrees off normal to the leading and trailing edges. The purpose of the experiment was to understand the changes in the properties of materials before and after exposure to the space environment and to compare the changes with predictions based on laboratory experiments. The basic approach was to measure the optical and physical properties of materials before and after long-term exposure to a low earth orbital environment comprised of UV, VUV, electrons, protons, atomic oxygen, thermal cycling, vacuum, debris, and micrometeoroids. Due to the unanticipated extended orbital flight of LDEF, the thermal control coatings and materials in the direct leading and trailing edge were exposed for a full five years and ten months to the space environment and the

  18. Origin of orbital debris impacts on LDEF's trailing surfaces

    NASA Technical Reports Server (NTRS)

    Kessler, Donald J.

    1993-01-01

    A model was developed to determine the origin of orbital impacts measured on the training surfaces of LDEF. The model calculates the expected debris impact crater distribution around LDEF as a function of debris orbital parameters. The results show that only highly elliptical, low inclination orbits could be responsible for these impacts. The most common objects left in this type of orbit are orbital transfer stages used by the U.S. and ESA to place payloads into geosynchronous orbit. Objects in this type of orbit are difficult to catalog by the U.S. Space Command; consequently there are independent reasons to believe that the catalog does not adequately represent this population. This analysis concludes that the relative number of cataloged objects with highly elliptical, low inclination orbits must be increased by a factor of 20 to be consistent with the LDEF data.

  19. A final look at LDEF electro-optic systems components

    NASA Technical Reports Server (NTRS)

    Blue, M. D.

    1995-01-01

    Postrecovery characteristics of LDEF electro-optic components from the GTRI tray are compared with their prelaunch characteristics and with the characteristics of similar components from related experiments. Components considered here include lasers, light-emitting diodes, semiconducting radiation detectors and arrays, optical substrates, filters, and mirrors, and specialized coatings. Our understanding of the physical effects resulting from low earth orbit are described, and guidelines and recommendations for component and materials choices are presented.

  20. LDEF Materials Workshop 1991, part 1

    NASA Technical Reports Server (NTRS)

    Stein, Bland A. (Compiler); Young, Philip R. (Compiler)

    1992-01-01

    The workshop comprised a series of technical sessions on materials themes, followed by theme panel meetings. Themes included materials, environmental parameters, and data bases; contamination; thermal control and protective coatings and surface treatments; polymers and films; polymer matrix composites; metals, ceramics, and optical materials; lubricants adhesives, seals, fasteners, solar cells, and batteries. This report contains most of the papers presented at the technical sessions. It also contains theme panel reports and visual aids. This document continues the LDEF Space Environmental Effects on Materials Special Investigation Group (MSIG) pursuit of its charter to investigate the effects of LEO exposure on materials which where not originally planned to be test specimens and to integrate this information with data generated by principal investigators into an LDEF materials data base.

  1. Summary of ionizing radiation analysis on the Long Duration Exposure Facility

    NASA Technical Reports Server (NTRS)

    Parnell, T. A.

    1992-01-01

    The ionizing radiation measurements flown on the Long Duration Exposure Facility (LDEF) were contained in 15 experiments which utilized passive detectors to pursue objectives in astrophysics and to measure the radiation environment and dosimetric quantities. The spacecraft structure became sufficiently radioactive to permit additional important studies. The induced activity allows extensive radiation mapping in the structure, and independent comparison with experiment dosimetric techniques, and significant studies of secondary effects. The long exposure time, attitude stability, and number and types of measurements produced a unique and critical set of data for low Earth orbit that will not be duplicated for more than a decade. The data allow an unprecedented test, and improvement if required, of models of the radiation environment and the radiation transport methods that are used to calculate the internal radiation and its effects in spacecraft. Results of measurements in the experiments, as well as from radioactivity in the structure, have clearly shown effects from the directional properties of the radiation environment, and progress was made in the dosimetric mapping of LDEF. These measurements have already influenced some Space Station Freedom design requirements. Preliminary results from experiments, reported at this symposium and in earlier papers, show that the 5.8 years exposure considerably enhanced the scientific return of the radiation measurements. The early results give confidence that the experiments will make significant advances in the knowledge of ultra heavy cosmic rays, anomalous cosmic rays, and heavy ions trapped in the radiation belts. Unexpected phenomena were observed, which require explanation. These include stopping iron group ions between the energy ranges anticipated for anomalous and galactic cosmic rays in the LDEF orbit. A surprising concentration of the Be-7 nuclide was discovered on the 'front' surface of LDEF, apparently

  2. Property changes induced by the space environment in composite materials on LDEF: Solar array materials passive LDEF experiment A0171 (SAMPLE)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Surface modifications to composite materials induced by long term exposure in low earth orbit (LEO) were dominated by atomic oxygen erosion and micrometeoroid and space debris impacts. As expected, calculated erosion rates were peculiar to material type and within the predicted order of magnitude. Generally, about one ply of the carbon fiber composites was eroded during the 70 month LDEF experiment. Matrix erosion was greater than fiber erosion and was more evident for a polysulfone matrix than for epoxy matrices. Micrometeoroid and space debris impacts resulted in small (less than 1mm) craters and splattered contaminants on all samples. Surfaces became more diffuse and darker with small increases in emissivity and absorption. Tensile strength decreased roughly with thickness loss, and epoxy matrices apparently became slightly embrittled, probably as a result of continued curing under UV and/or electron bombardment. However, changes in the ultimate yield stress of the carbon reinforced epoxy composites correlate neither with weave direction nor fiber type. Unexpected developments were the discovery of new synergistic effects of the space environment in the interaction of atomic oxygen and copious amounts of contamination and in the induced luminescence of many materials.

  3. Long-term microparticle flux variability indicated by comparison of Interplanetary Dust Experiment (IDE) timed impacts for LDEF's first year in orbit with impact data for the entire 5.77-year orbital lifetime

    NASA Technical Reports Server (NTRS)

    Simon, Charles G.; Mulholland, J. Derral; Oliver, John P.; Cooke, William J.; Kassel, Philip C., Jr.

    1993-01-01

    The electronic sensors of the Interplanetary Dust Experiment (IDE) recorded precise impact times and approximate directions for submicron to approximately 100 micron size particles on all six primary sides of the spacecraft for the first 346 days of the LDEF orbital mission. Previously-reported analyses of the timed impact data have established their spatio-temporal features, including the demonstration that a preponderance of the particles in this regime are orbital debris and that a large fraction of the debris particles are encountered in megameter-size clouds. Short-term fluxes within such clouds can rise several orders of magnitude above the long-term average. These unexpectedly large short-term variations in debris flux raise the question of how representative an indication of the multi-year average flux is given by the nearly one year of timed data. One of the goals of the IDE was to conduct an optical survey of impact sites on detectors that remained active during the entire LDEF mission, to obtain full-mission fluxes. We present here the comparisons and contrasts among the new IDE optical survey impact data, the IDE first-year timed impact data, and impact data from other LDEF micrometeoroid and debris experiments. The following observations are reported: (1) the 5.77 year long-term integrated microparticle impact fluxes recorded by IDE detectors matched the integrated impact fluxes measured by other LDEF investigators for the same period; (2) IDE integrated microparticle impact fluxes varied by factors from 0.5 to 8.3 for LDEF days 1-346, 347-2106 and 1-2106 (5.77 years) on rows 3 (trailing edge, or West), 6 (South side), 12 (North side), and the Earth and Space ends; and (3) IDE integrated microparticle impact fluxes varied less than 3 percent for LDEF days 1-346, 347-2106 and 1-2106 (5.77 years) on row 9 (leading edge, or East). These results give further evidence of the accuracy and internal consistency of the recorded IDE impact data. This leads to

  4. Morphology of meteoroid and space debris craters on LDEF metal targets

    NASA Technical Reports Server (NTRS)

    Love, S. G.; Brownlee, D. E.; King, N. L.; Hoerz, F.

    1994-01-01

    We measured the depths, average diameters, and circularity indices of over 600 micrometeoroid and space debris craters on various metal surfaces exposed to space on the Long Duration Exposure Facility (LDEF) satellite, as a test of some of the formalisms used to convert the diameters of craters on space-exposed surfaces into penetration depths for the purpose of calculating impactor sizes or masses. The topics covered include the following: targe materials orientation; crater measurements and sample populations; effects of oblique impacts; effects of projectile velocity; effects of crater size; effects of target hardness; effects of target density; and effects of projectile properties.

  5. Surface analysis of anodized aluminum clamps from NASA-LDEF satellite

    NASA Technical Reports Server (NTRS)

    Grammer, H. L.; Wightman, J. P.; Young, Philip R.

    1992-01-01

    Surface analysis results of selected anodized aluminum clamps containing black (Z306) and white (A276) paints which received nearly six years of Low Earth Orbit (LEO) exposure on the Long Duration Exposure Facility are reported. Surface analytical techniques, including x-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), and scanning electron microscopy/energy dispersive analysis by x-ray (SEM/EDAX), showed significant differences in the surface composition of these materials depending upon the position on the LDEF. Differences in the surface composition are attributed to varying amounts of atomic oxygen and vacuum ultraviolet radiation (VUV). Silicon containing compounds were the primary contaminant detected on the materials.

  6. The magnitude of impact damage on LDEF materials

    NASA Technical Reports Server (NTRS)

    Allbrooks, Martha; Atkinson, Dale

    1992-01-01

    The purpose of this report is to document the magnitude and types of impact damage to materials and systems on the LDEF. This report will provide insights which permit NASA and industry space-systems designers to more rapidly identify potential problems and hazards in placing a spacecraft in low-Earth orbit (LEO). This report is structured to provide (1) a background on LDEF, (2) an introduction to the LEO meteoroid and debris environments, and (3) descriptions of the types of damage caused by impacts into structural materials, and contamination caused by spallation and ejecta from impact events.

  7. SIMS chemical and isotopic analysis of impact features from LDEF experiments AO187-1 and AO187-2

    NASA Technical Reports Server (NTRS)

    Stadermann, Frank J.; Amari, Sachiko; Foote, John; Swan, Pat; Walker, Robert M.; Zinner, Ernst

    1995-01-01

    Previous secondary ion mass spectrometry (SIMS) studies of extended impact features from LDEF capture cell experiment AO187-2 showed that it is possible to distinguish natural and man-made particle impacts based on the chemical composition of projectile residues. The same measurement technique has now been applied to specially prepared gold target impacts from experiment AO187-1 in order to identify the origins of projectiles that left deposits too thin to be analyzed by conventional energy-dispersive x-ray (EDX) spectroscopy. The results indicate that SIMS may be the method of choice for the analysis of impact deposits on a variety of sample surfaces. SIMS was also used to determine the isotopic compositions of impact residues from several natural projectiles. Within the precision of the measurements all analyzed residues show isotopically normal compositions.

  8. Asteroidal versus cometary meteoroid impacts on the Long Duration Exposure Facility (LDEF)

    NASA Technical Reports Server (NTRS)

    Zook, Herbert A.

    1993-01-01

    Meteoroids that enter the Earth's atmosphere at low velocities will tend to impact the apex side (that surface facing the spacecraft direction of motion) of a spacecraft at a very high rate compared to the rate with which they will impact an antapex-facing surface. This ratio--apex to antapex impact rates--will become less as meteoroid entry velocities increase. The measured ration, apex to antapex, for 500 micron diameter impact craters in 6061-T6 aluminum on LDEF seems to be about 20 from the work of the meteoroid SIG group and others, that was presented at the first LDEF symposium. Such a ratio is more consistent with the meteoroid velocity distributions derived by Erickson and by Kessler, than it is with others that have been tested. These meteoroid velocity distributions have mean entry velocities into the Earth's atmosphere of 16.5 to 16.9 km/s. Others have numerically simulated the orbital evolution of small dust grains emitted from asteroids and comets. For those asteroidal grains small enough (below about 100 microns diameter) to drift from the asteroid belt to the orbit of the Earth, under P-R and solar wind drag, without suffering collisional destruction, the following results are found: as the ascending or descending nodes cross the Earth's orbit, their orbital eccentricities and inclinations are quite low (e less than 0.3, i less than 20 deg), and their mean velocity with respect to the Earth is about 5 or 6 km/s. When gravitational acceleration of the Earth is taken into account, the corresponding mean velocities relative to the top of the Earth's atmosphere are 12 to 13 km/s. This means that, at best, these small asteroidal particles cannot comprise more than 50 percent of the particles entering the Earth's atmosphere. When gravitational focusing is considered, they cannot comprise more than a few percent of those in heliocentric orbit at 1 AU. The rest are presumably of cometary origin.

  9. Anodized aluminum on LDEF: A current status of measurements on chromic acid anodized aluminum

    NASA Technical Reports Server (NTRS)

    Golden, Johnny L.

    1992-01-01

    Chromic acid anodize was used as the exterior coating for aluminum surfaces on LDEF to provide passive thermal control. Chromic acid anodized aluminum was also used as test specimens in thermal control coatings experiments. The following is a compilation and analysis of the data obtained thus far.

  10. Resolving LDEF's flux distribution: Orbital (debris?) and natural meteoroid populations

    NASA Technical Reports Server (NTRS)

    Mcdonnell, J. A. M.

    1993-01-01

    A consistent methodology for the collation of data from both penetration and perforation experiments and from data in the Meteoroid and Debris Special Investigator Group (M-D SIG) data-base has led to the derivation of the average impact flux over LDEF's exposure history 1984-1990. Data are first presented for LDEF's N,S,E,W and Space faces ('offset' by 8 deg and 'tilted' by 1 deg respectively). A model fit is derived for ballistic limits of penetration from 1 micron to 1mm of aluminium target, corresponding to impactor masses from 10(exp -18) kg (for rho sub p = 2g/cu cm) to 10(exp -10) kg (for rho sub p = 1g/cu cm). A second order harmonic function is fitted to the N,S,E, and W fluxes to establish the angular distribution at regular size intervals; this fit is then used to provide 'corrected' data corresponding to fluxes applicable to true N,S,E,W and Space directions for a LEO 28.5 degree inclination orbit at a mean altitude of 465 km.

  11. Evaluation of seals and lubricants used on the Long Duration Exposure Facility

    NASA Technical Reports Server (NTRS)

    Dursch, H. W.; Keough, B. K.; Pippin, H. G.

    1994-01-01

    This report described results from testing and analysis of seals and lubricants subsequent to the 69-month low-earth-orbit (LEO) exposure on the Long Duration Exposure Facility (LDEF). Results show that if the materials were shielded from exposure to LDEF's external environment, the 69-month exposure to LEO resulted in minimal changes to material properties. However, if the materials were exposed to LDEF's exterior environments (atomic oxygen, solar radiation, meteoroids, and/or space debris), a variety of events occurred, ranging from no material change, to changes in properties, to significant erosion of the material.

  12. Meteoroid and Debris Impact Features Documented on the Long Duration Exposure Facility: A Preliminary Report

    NASA Technical Reports Server (NTRS)

    See, T. (Compiler); Allbrooks, M. (Compiler); Atkinson, D. (Compiler); Simon, C. (Compiler); Zolensky, M. (Compiler)

    1990-01-01

    The Long Duration Exposure Facility (LDEF) was host to several individual experiments designed to characterize aspects of the meteoroid and space-debris environment in low-Earth orbit. It was realized from the very start, however, that the most complete way to accomplish this goal was to exploit the meteoroid and debris record of the entire LDEF. The Meteoroid and Debris Special Investigation Group (M&D SIG) was organized to achieve this end. Two dominant goals of the M&D SIG are the documentation of the impact record of the entire LDEF, and the dissemination of this information to all interested workers. As a major step towards the accomplishment of these goals, we have prepared this publication describing the M&D SIG observations of impact features made during LDEF deintegration activities at KSC in the spring of 1990. It is hoped that this report will serve as a useful guide for spacecraft designers as well as for meteoroid and space-debris workers, and that it will spur further work on the LDEF impact-laden surfaces collected by the M&D SIG and now available for allocation to qualified investigators. An important aim is to present all data and descriptions of impact features in a form which, though terse, remains comprehensible to the wider community. There is a deliberate minimum of interpretations. Thus, this catalog is intended to serve as a guide to the impact features found on LDEF and is not intended to stand as a definitive interpretive work.

  13. Effects of the LDEF orbital environment on the reflectance of optical mirror materials

    NASA Technical Reports Server (NTRS)

    Herzig, Howard; Fleetwood, Charles, Jr.

    1995-01-01

    Specimens of eight different optical mirror materials were flown in low earth orbit as part of the Long Duration Exposure Facility (LDEF) manifest to determine their ability to withstand exposure to the residual atomic oxygen and other environmental effects at those altitudes. Optical thin films of aluminum, gold, iridium, osmium, platinum, magnesium fluoride-overcoated aluminum and reactively deposited, silicon monoxide-protected aluminum, all of which were vacuum deposited on polished fused silica substrates, were included as part of Experiment S0010, Exposure of Spacecraft Coatings. Two specimens of polished, chemical vapor deposited (CVD) silicon carbide were installed in sites available in Experiment A0114, Interaction of Atomic Oxygen with Solid Surfaces at Orbital Altitudes, which included trays in two of the spacecraft bays, one on the leading edge and the other on the trailing edge. One of the silicon carbide samples was located in each of these trays. This paper will compare specular reflectance data from the preflight and postflight measurements made on each of these samples and attempt to explain the changes in light of the specific environments to which the experiments were exposed.

  14. Elastic modulus measurements of LDEF glasses and glass-ceramics using a speckle technique

    NASA Technical Reports Server (NTRS)

    Wiedlocher, D. E.; Kinser, D. L.

    1992-01-01

    Elastic moduli of five glass types and the glass-ceramic Zerodur, exposed to a near-earth orbit environment on the Long Duration Exposure Facility (LDEF), were compared to that of unexposed samples. A double exposure speckle photography technique utilizing 633 nm laser light was used in the production of the speckle pattern. Subsequent illumination of a double exposed negative using the same wavelength radiation produces Young's fringes from which the in-plane displacements are measured. Stresses imposed by compressive loading produced measurable strains in the glasses and glass-ceramic.

  15. Effects of space exposure on metals flown on the Long Duration Exposure Facility

    NASA Technical Reports Server (NTRS)

    Pippin, H. Gary; Bourassa, R. J.

    1995-01-01

    This report includes measurements on copper, aluminum, and stainless steel from the Long Duration Exposure Facility (LDEF). Summaries of the performance of a variety of metals flown on LDEF are presented. An extensive list of references directs the reader to other detailed investigations. The influence of contamination on a number of measurements is documented.

  16. Current activities and results of the Long Duration Exposure Facility Meteoroid and Debris Special Investigation Group

    NASA Astrophysics Data System (ADS)

    See, Thomas H.; Leago, Kimberly S.; Warren, Jack L.; Bernhard, Ronald P.; Zolensky, Michael E.

    1994-03-01

    Fiscal Year 1994 will bring to a close the initial investigative activities associated with the Long Duration Exposure Facility (LDEF). LDEF was a 14-faced spacecraft (i.e., 12-sided cylinder and two ends) which housed 54 different experimental packages in low-Earth orbit (LEO) from Apr. 1984 to Jan. 1990 (i.e., for approx. 5.75 years). Since LDEF's return, the Meteoroid & Debris Special Investigation Group (M&D SIG) has been examining various LDEF components in order to better understand and define the LEO particulate environment. Members of the M&D SIG at JSC in Houston, TX have been contributing to these studies by carefully examining and documenting all impact events found on LDEF's 6061-T6 aluminum Intercostals (i.e., one of the spacecraft's structural frame components). Unlike all other hardware on LDEF, the frame exposed significantly large surface areas of a single homogeneous material in all (i.e., 26) possible LDEF pointing directions. To date, 28 of the 68 Intercostals in the possession of the M&D SIG have been documented. This data, as well as similar information from various LDEF investigators, can be accessed through the M&D SIG Database which is maintained at JSC.

  17. Current activities and results of the Long Duration Exposure Facility Meteoroid and Debris Special Investigation Group

    NASA Technical Reports Server (NTRS)

    See, Thomas H.; Leago, Kimberly S.; Warren, Jack L.; Bernhard, Ronald P.; Zolensky, Michael E.

    1994-01-01

    Fiscal Year 1994 will bring to a close the initial investigative activities associated with the Long Duration Exposure Facility (LDEF). LDEF was a 14-faced spacecraft (i.e., 12-sided cylinder and two ends) which housed 54 different experimental packages in low-Earth orbit (LEO) from Apr. 1984 to Jan. 1990 (i.e., for approx. 5.75 years). Since LDEF's return, the Meteoroid & Debris Special Investigation Group (M&D SIG) has been examining various LDEF components in order to better understand and define the LEO particulate environment. Members of the M&D SIG at JSC in Houston, TX have been contributing to these studies by carefully examining and documenting all impact events found on LDEF's 6061-T6 aluminum Intercostals (i.e., one of the spacecraft's structural frame components). Unlike all other hardware on LDEF, the frame exposed significantly large surface areas of a single homogeneous material in all (i.e., 26) possible LDEF pointing directions. To date, 28 of the 68 Intercostals in the possession of the M&D SIG have been documented. This data, as well as similar information from various LDEF investigators, can be accessed through the M&D SIG Database which is maintained at JSC.

  18. An investigation of the degradation of Fluorinated Ethylene Propylene (FEP) copolymer thermal blanketing materials aboard LDEF in the laboratory

    NASA Technical Reports Server (NTRS)

    Stiegman, A. E.; Brinza, David E.; Anderson, Mark S.; Minton, Timothy K.; Laue, Eric G.; Liang, Ranty H.

    1991-01-01

    Samples of fluorinated ethylene propylene copolymer thermal blanketing material, recovered from the Long Duration Exposure Facility (LDEF), were investigated to determine the nature and the extent of degradation due to exposure to the low-Earth-orbit environment. Samples recovered from the ram-facing direction of LDEF, which received vacuum-ultraviolet (VUV) radiation and atomic-oxygen impingement, and samples from the trailing edge, which received almost exclusively VUV exposure, were investigated by scanning electron microscopy and atomic force microscopy. The most significant result of this investigation was found on samples that received only VUV exposure. These samples possessed a hard, embrittled surface layer that was absent from the atomic-oxygen exposed sample and from unexposed control samples. This surface layer is believed to be responsible for the 'synergistic' effect between VUV and atomic oxygen. Overall, the investigation revealed dramatically different morphologies for the two samples. The sample receiving both atomic-oxygen and VUV exposure was deeply eroded and had a characteristic 'rolling' surface morphology, while the sample that received only VUV exposure showed mild erosion and a surface morphology characterized by sharp high-frequency peaks. The morphologies observed in the LDEF samples, including the embrittled surface layer, were successfully duplicated in the laboratory.

  19. Results of the TTF-TCNQ- and the calcium carbonate-crystallization on the Long Duration Exposure Facility

    NASA Technical Reports Server (NTRS)

    Nielsen, Kjeld Flemming; Lind, M. David

    1991-01-01

    Experiment AO139A on the Long Duration Exposure Facility (LDEF) carried four large containers into orbit for five years with crystal growth solutions for lead sulfide, calcium carbonate, and tetra thiafulvalene- tetra cyanoquino methane (TTF-TCNQ). The LDEF was in excellent condition after the long orbital stay, and although the temperature data was lost, the experiment program had been working since the valves in all containers were opened. All four experiments produced crystals; however, they were of varying quality. The calcium carbonate crystals had the best appearance. The TTF-TCNQ crystals were packed together near the valve openings of the container. When taken apart, the single crystals showed some unusual morphological properties. X-ray investigations as well as conductivity measurements on the long duration space grown TTF-TCNQ crystals are presented, and pictures of the calcium carbonate are shown. Comparisons are made with previous space solution growth experiments on the European Spacelab Mission and the Apollo-Soyuz Test Project.

  20. Asteroidal versus cometary meteoroid impacts on the Long Duration Exposure Facility (LDEF)

    NASA Technical Reports Server (NTRS)

    Zook, Herbert A.

    1992-01-01

    Meteoroids that enter the Earth's atmosphere at low velocities will tend to impact the apex side (that surface facing the spacecraft direction of motion) of a spacecraft at a very high rate compared to the rate with which they will impact an antapex-facing surface. This ratio -- apex to antapex impact rates -- will become less as meteoroid entry velocities increase. The measured ratio, apex to antapex, for 500 micron diameter impact craters in 6061-T6 aluminum on LDEF seems to be about 20 from the work of the meteoroid SIG group and from the work of Humes that was presented at the first LDEF symposium. Such a ratio is more consistent with the meteoroid velocity distributions derived by Erickson and by Kessler, than it is with others that have been tested. These meteoroid velocity distributions have mean entry velocities into the Earth's atmosphere of 16.5 to 16.9 km/s. Jackson and Zook (in a paper submitted to Icarus) have numerically simulated the orbital evolution of small dust grains emitted from asteroids and comets. For those asteroidal grains small enough (below about 100 microns diameter) to drift from the asteroid belt to the orbit of the Earth, under P-R and solar wind drag, without suffering collisional destruction, the following results are found: as their ascending or descending nodes cross the Earth's orbit (and when they might collide with the Earth), their orbital eccentricities and inclinations are quite low (e less than 0.3, i less than 20 degrees), and their mean velocity with respect to the Earth is about 5 or 6 km/s. When gravitational acceleration of the Earth is taken into account, the corresponding mean velocities relative to the top of the Earth's atmosphere are 12 to 13 km/s. This means that, at best, these small asteroidal particles can not comprise more than 50 percent of the particles entering the Earth's atmosphere. And when gravitational focusing is considered, they cannot comprise more than a few percent of those in heliocentric orbit

  1. Transmittance measurements of ultra violet and visible wavelength interference filters flown aboard LDEF

    NASA Technical Reports Server (NTRS)

    Mooney, Thomas A.; Smajkiewicz, Ali

    1991-01-01

    A set of ten interference filters for the UV and VIS spectral region were flown on the surface of the Long Duration Exposure Facility (LDEF) Tray B-8 along with earth radiation budget (ERB) components from the Eppley Laboratory. Transmittance changes and other degradation observed after the return of the filters to Barr are reported. Substrates, coatings, and (where applicable) cement materials are identified. In general, all filters except those containing lead compounds survived well. Metal dielectric filters for the UV developed large numbers of pinholes which caused an increase in transmittance. Band shapes and spectral positioning, however, did not change.

  2. Hypervelocity impact microfoil perforations in the LEO space environment (LDEF, MAP AO-023 experiment)

    NASA Technical Reports Server (NTRS)

    Mcdonnell, J. A. M.; Stevenson, T. J.

    1992-01-01

    The Microabrasion Foil Experiment comprises arrays of frames, each supporting two layers of closely spaced metallic foils and a back-stop plate. The arrays, deploying aluminum and brass foil ranging from 1.5 to some 30 microns were exposed for 5.78 years on NASA's LDEF at a mean altitude of 458 km. They were deployed on the North, South, East, West, and Space pointing faces; results presented comprise the perforation rates for each location as a function of foil thickness. Initial results refer primarily to aluminum of 5 microns thickness or greater. This penetration distribution, comprising 2,342 perforations in total, shows significantly differing characteristics for each detector face. The anisotropy confirms, incorporating the dynamics of particulate orbital mechanics, the dominance of incorporating extraterrestrial particulates penetrating thicknesses greater than 20 microns in Al foil, yielding fluxes compatible with hyperbolic geocentric velocities. For thinner foils, a disproportionate increase in flux of particles on the East, North, and South faces shows the presence of orbital particulates which exceed the extraterrestrial component perforation rate at 5 micron foil thickness by a factor of approx. 4.

  3. EnviroNET: On-line information for LDEF

    NASA Technical Reports Server (NTRS)

    Lauriente, Michael

    1993-01-01

    EnviroNET is an on-line, free-form database intended to provide a centralized repository for a wide range of technical information on environmentally induced interactions of use to Space Shuttle customers and spacecraft designers. It provides a user-friendly, menu-driven format on networks that are connected globally and is available twenty-four hours a day - every day. The information, updated regularly, includes expository text, tabular numerical data, charts and graphs, and models. The system pools space data collected over the years by NASA, USAF, other government research facilities, industry, universities, and the European Space Agency. The models accept parameter input from the user, then calculate and display the derived values corresponding to that input. In addition to the archive, interactive graphics programs are also available on space debris, the neutral atmosphere, radiation, magnetic fields, and the ionosphere. A user-friendly, informative interface is standard for all the models and includes a pop-up help window with information on inputs, outputs, and caveats. The system will eventually simplify mission analysis with analytical tools and deliver solutions for computationally intense graphical applications to do 'What if...' scenarios. A proposed plan for developing a repository of information from the Long Duration Exposure Facility (LDEF) for a user group is presented.

  4. New meteoroid model predictions for directional impacts on LDEF

    NASA Technical Reports Server (NTRS)

    Divine, Neil; Aguero, Rene C.

    1992-01-01

    An extensive body of data, from meteors, zodiacal light, spacecraft-borne impact detectors (helios, Pioneer, Galileo, and Ulysses), and other sources, forms the basis of a new numerical model for the distributions of interplanetary meteoroids. For each of the five populations in this model it is possible to evaluate meteoroid concentration and flux for oriented surfaces or detectors having arbitrary position and velocity in interplanetary space (Divine, 1992, in preparation). For a spacecraft in geocentric orbit, the effects of gravitational focusing and shielding by the Earth were derived with full attention to the directionality of the particles, both on approach (i.e., relative to a massless Earth) and at the target. This modeling approach was exercised to provide an estimate of meteoroid fluence for each of several oriented surfaces on the Long Duration Exposure Facility (LDEF).

  5. Long Duration Exposure Facility post-flight data as it influences the Tropical Rainfall Measuring Mission

    NASA Technical Reports Server (NTRS)

    Straka, Sharon A.

    1995-01-01

    The Tropical Rainfall Measuring Mission (TRMM) is an earth observing satellite that will be in a low earth orbit (350 kilometers) during the next period of maximum solar activity. The TRMM observatory is expected to experience an atomic oxygen fluence of 8.9 x 10(exp 22) atoms per square centimeter. This fluence is ten times higher than the atomic oxygen impingement incident to the Long Duration Exposure Facility (LDEF). Other environmental concerns on TRMM include: spacecraft glow, silicon oxide contaminant build-up, severe spacecraft material degradation, and contamination deposition resulting from molecular interactions with the dense ambient atmosphere. Because of TRMM's predicted harsh environment, TRMM faces many unique material concerns and subsystem design issues. The LDEF data has influenced the design of TRMM and the TRMM material selection process.

  6. Continued results of the seeds in space experiment

    NASA Technical Reports Server (NTRS)

    Alston, Jim A.

    1993-01-01

    Two million seeds of 120 different varieties representing 106 species, 97 genera, and 55 plant families were flown aboard the Long Duration Exposure Facility (LDEF). The seed were housed on the Space Exposed Experiment Developed for Students (SEEDS) tray in the sealed canister number 6 and in two small vented canisters. The tray was in the F-2 position. The seed were germinated and the germination rates and the development of the resulting plants were compared to the performance of the control seed that stayed in Park Seed's seed storage facility. The initial results were presented in a paper at the First LDEF Post-Retrieval Symposium. There was a better survival rate of the seed in the sealed canister in space than in the storage facility at Park Seed. At least some of the seed in each of the vented canisters survived the exposure to vacuum for almost six years. The number of observed apparent mutations was very low. In the initial testing, the small seeded crops were not grown to maturity to check for mutations and obtain second generation seed. These small seeded crops have now been grown for evaluation and second generation seed collected.

  7. Germination, growth rates, and electron microscope analysis of tomato seeds flown on the LDEF

    NASA Technical Reports Server (NTRS)

    Hammond, Ernest C., Jr.; Bridgers, Kevin; Brown, Cecelia Wright

    1995-01-01

    The tomato seeds were flown in orbit aboard the Long Duration Exposure Facility (LDEF) for nearly six years. During this time, the tomato seeds received an abundant exposure to cosmic radiation and solar wind. Upon the return of the LDEF to earth, the seeds were distributed throughout the United States and 30 foreign countries for analysis. The purpose of the experiment was to determine the long term effect of cosmic rays on living tissue. Our university analysis included germination and growth rates as well as Scanning Electron Microscopy and X-ray analysis of the control as well as Space-exposed tomato seeds. In analyzing the seeds under the Electron Microscope, usual observations were performed on the nutritional and epidermis layer of the seed. These layers appeared to be more porous in the Space-exposed seeds than on the Earth-based control seeds. This unusual characteristic may explain the increases in the space seeds growth pattern. (Several test results show that the Space-exposed seeds germinate sooner than the Earth-Based seeds. Also, the Space-exposed seeds grew at a faster rate). The porous nutritional region may allow the seeds to receive necessary nutrients and liquids more readily, thus enabling the plant to grow at a faster rate. Roots, leaves and stems were cut into small sections and mounted. After sputter coating the specimens with Argon/Gold Palladium Plasma, they were ready to be viewed under the Electron Microscope. Many micrographs were taken. The X-ray analysis displayed possible identifications of calcium, potassium, chlorine, copper, aluminum, silicon, phosphate, carbon, and sometimes sulfur and iron. The highest concentrations were shown in potassium and calcium. The Space-exposed specimens displayed a high concentration of copper and calcium in the two specimens. There was a significantly high concentration of copper in the Earth-based specimens, whereas there was no copper in the Space-exposed specimens.

  8. Analysis, review, and documentation of the activation data from LDEF material

    NASA Technical Reports Server (NTRS)

    Laird, C. E.

    1992-01-01

    Samples removed from Long Duration Exposure Facility (LDEF-1) are being studied at various laboratories to determine the specific activity(pCi/kg) produced in orbit by exposure to protons and neutrons in near-Earth orbit. These activities are being corrected for efficiency, self-attenuation, and background. The activities and associated gamma-ray spectra are being collected, analyzed, documented and reviewed by faculty and graduate students at Eastern Kentucky University. The currently available activation results have been tabulated and reviewed in this report. Approximately 500 spectra have been accumulated for future archival and analysis. The effect of the changing satellite orbit on the activation is reported herein and was calculated using more recent estimates of the flux of Van Allen belt protons.

  9. Development and application of a 3-D geometry/mass model for LDEF satellite ionizing radiation assessments

    NASA Technical Reports Server (NTRS)

    Colborn, B. L.; Armstrong, T. W.

    1992-01-01

    A computer model of the three dimensional geometry and material distributions for the LDEF spacecraft, experiment trays, and, for selected trays, the components of experiments within a tray was developed for use in ionizing radiation assessments. The model is being applied to provide 3-D shielding distributions around radiation dosimeters to aid in data interpretation, particularly in assessing the directional properties of the radiation exposure. Also, the model has been interfaced with radiation transport codes for 3-D dosimetry response predictions and for calculations related to determining the accuracy of trapped proton and cosmic ray environment models. The methodology is described used in developing the 3-D LDEF model and the level of detail incorporated. Currently, the trays modeled in detail are F2, F8, and H12 and H3. Applications of the model which are discussed include the 3-D shielding distributions around various dosimeters, the influence of shielding on dosimetry responses, and comparisons of dose predictions based on the present 3-D model vs those from 1-D geometry model approximations used in initial estimates.

  10. Analysis of Silverized Teflon Thermal Control Material Flown on the Long Duration Exposure Facility

    NASA Technical Reports Server (NTRS)

    Pippin, H. Gary

    1995-01-01

    Silver backed teflon (Ag/FEP) material used for thermal control on the Long Duration Exposure Facility (LDEF) has been examined in detail. Optical, mechanical, and chemical properties were characterized for specimens exposed to a variety of space environmental conditions. Recession rates were determined for this material. Samples were obtained from virtually every LDEF location except the Earth-end. Atomic oxygen exposed regions changed from specular to diffusely reflective.

  11. Silver Teflon blanket: LDEF tray C-08

    NASA Technical Reports Server (NTRS)

    Crutcher, E. Russ; Nishimura, L. S.; Warner, K. J.; Wascher, W. W.

    1992-01-01

    A study of the Teflon blanket surface at the edge of tray C-08 illustrates the complexity of the microenvironments on the Long Duration Exposure Facility (LDEF). The distribution of particulate contaminants varied dramatically over a distance of half a centimeter (quarter of an inch) near the edge of the blanket. The geometry and optical effects of the atomic oxygen erosion varied significantly over the few centimeters where the blanket folded over the edge of the tray resulting in a variety of orientations to the atomic oxygen flux. A very complex region of combined mechanical and atomic oxygen damage occurred where the blanket contacted the edge of the tray. A brown film deposit apparently fixed by ultraviolet light traveling by reflection through the Teflon film was conspicuous beyond the tray contract zone. Chemical and structural analysis of the surface of the brown film and beyond toward the protected edge of the blanket indicated some penetration of energetic atomic oxygen at least five millimeters past the blanket-tray contact interface.

  12. The heavy ions in space experiment

    NASA Technical Reports Server (NTRS)

    Adams, J. H., Jr.; Beahm, L. P.; Stiller, B.

    1985-01-01

    The Heavy Ions in Space (HIIS) experiment was developed and is currently in orbit onboard the long duration facility (LDEF). The HIIS will record relativistic cosmic ray nuclei heavier than magnesium and stopping nuclei down to helium. The experiment uses plastic track detectors that have a charge resolution of 0.15 charge units at krypton and 0.10 charge units, or better, for nuclei lighter than cobalt. The HIIS has a collecting power of 2 square meter steradians and it has already collected more than a year's data.

  13. Materials And Processes Technical Information System (MAPTIS) LDEF materials database

    NASA Technical Reports Server (NTRS)

    Davis, John M.; Strickland, John W.

    1992-01-01

    The Materials and Processes Technical Information System (MAPTIS) is a collection of materials data which was computerized and is available to engineers in the aerospace community involved in the design and development of spacecraft and related hardware. Consisting of various database segments, MAPTIS provides the user with information such as material properties, test data derived from tests specifically conducted for qualification of materials for use in space, verification and control, project management, material information, and various administrative requirements. A recent addition to the project management segment consists of materials data derived from the LDEF flight. This tremendous quantity of data consists of both pre-flight and post-flight data in such diverse areas as optical/thermal, mechanical and electrical properties, atomic concentration surface analysis data, as well as general data such as sample placement on the satellite, A-O flux, equivalent sun hours, etc. Each data point is referenced to the primary investigator(s) and the published paper from which the data was taken. The MAPTIS system is envisioned to become the central location for all LDEF materials data. This paper consists of multiple parts, comprising a general overview of the MAPTIS System and the types of data contained within, and the specific LDEF data element and the data contained in that segment.

  14. Analysis of LDEF experiment AO187-2: Chemically and isotopic measurements of micrometeoroids by secondary ion mass spectrometry

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Numerous 'extended impacts' found in both leading and trailing edge capture cells have been successfully analyzed for the chemical composition of projectile residues by secondary ion mass spectrometry (SIMS). Most data have been obtained from the trailing edge cells where 45 of 58 impacts have been classified as 'probably natural' and the remainder as 'possibly man-made debris.' This is in striking contrast to leading edge cells where 9 of 11 impacts so far measured are definitely classified as orbital debris. Although all the leading edge cells had lost their plastic entrance foils during flight, the rate of foil failure was similar to that of the trailing edge cells, 10 percent of which were recovered intact. Ultra-violet embrittlement is suspected as the major cause of failure on both leading and trailing edges. The major impediment to the accurate determination of projectile chemistry is the fractionation of volatile and refractory elements in the hypervelocity impact and redeposition processes. This effect had been noticed in simulation experiment but is more pronounced in the Long Duration Exposure Facility (LDEF) capture cells, probably due to the higher average velocities of the space impacts. Surface contamination of the pure Ge surfaces with a substance rich in Si but also containing Mg and Al provides an additional problem for the accurate determination of impactor chemistry. The effect is variable, being much larger on surfaces that were exposed to space than in those cells that remained intact. Future work will concentrate on the analyses of more leading edge impacts and the development of new SIMS techniques for the measurement of elemental abundances in extended impacts.

  15. Future radiation measurements in low Earth orbit

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.

    1993-01-01

    The first Long Duration Exposure Facility (LDEF) mission has demonstrated the value of the LDEF concept for deep surveys of the space radiation environment. The kinds of measurements that could be done on a second LDEF mission are discussed. Ideas are discussed for experiments which: (1) capitalize on the discoveries from LDEF 1; (2) take advantage of LDEF's unique capabilities; and (3) extend the investigations begun on LDEF 1. These ideas have been gleaned from investigators on LDEF 1 and others interested in the space radiation environment. They include new approaches to the investigation of Be-7 that was discovered on LDEF 1, concepts to obtain further information on the ionic charge state of cosmic rays and other energetic particles in space and other ideas to extend the investigations begun on LDEF 1.

  16. Prediction of LDEF exposure to the ionizing radiation environment

    NASA Technical Reports Server (NTRS)

    Watts, J. W.; Armstrong, T. W.; Colborn, B. L.

    1996-01-01

    Predictions of the LDEF mission's trapped proton and electron and galactic cosmic ray proton exposures have been made using the currently accepted models with improved resolution near mission end and better modeling of solar cycle effects. An extension of previous calculations, to provide a more definitive description of the LDEF exposure to ionizing radiation, is represented by trapped proton and electron flux as a function of mission time, presented considering altitude and solar activity variation during the mission and the change in galactic cosmic ray proton flux over the mission. Modifications of the AP8MAX and AP8MIN fluence led to a reduction of fluence by 20%. A modified interpolation model developed by Daly and Evans resulted in 30% higher dose and activation levels, which better agreed with measured values than results predicted using the Vette model.

  17. Thermoluminescent dosimetry for LDEF experiment M0006

    NASA Technical Reports Server (NTRS)

    Chang, J. Y.; Giangano, D.; Kantorcik, T.; Stauber, M.; Snead, L.

    1992-01-01

    Experiment M0006 on the Long Duration Exposure Facility had as its objective the investigation of space radiation effects on various electronic and optical components, as well as on seed germination. The Grumman Corporate Research Center provided the radiation dosimetric measurements for M0006, comprising the preparation of thermoluminescent dosimeters (TLD) and the subsequent measurement and analysis of flight exposed and control samples. In addition, various laboratory exposures of TLD's with gamma rays and protons were performed to obtain a better understanding of the flight exposures.

  18. Effects of orbital exposure on Halar during the LDEF mission

    NASA Technical Reports Server (NTRS)

    Brower, William E., Jr.; Holla, Harish; Bauer, Robert A.

    1992-01-01

    Thermomechanical Analysis (TMA), Differential Scanning Calorimetry (DSC), and Thermogravimetric Analysis (TGA) were performed on samples of Halar exposed on the LDEF Mission for 6 years in orbit and unexposed Halar control samples. Sections 10-100 microns thick were removed from the exposed surface down to a depth of 1,000 microns through the 3 mm thick samples. The TMA and DSC results, which arise from the entire slice and not just its surface, showed no differences between the LDEF and the control samples. TMA scans were run from ambient to 300 C; results were compared by a tabulation of the glass transition temperatures. DSC scans were run from ambient to 700 C; the enthalpy of melting was compared for the samples as a function of section depth with the sample. The TGA results, which arise from the surface of the sample initially, showed a sharp increase in the topmost 50 micron section (the exposed, discolored side) in the weight loss of 170 C in oxygen. This weight loss dropped to bulk values in the range of depth of 50-200 microns. The control sample showed only a slight increase in weight loss as the top surface was approached. The LDEF Halar sample appears to be mechanically undamaged, with a surface layer which oxidizes faster as a result of orbital exposure.

  19. Overview of the Systems Special Investigation Group investigation

    NASA Technical Reports Server (NTRS)

    Mason, James B.; Dursch, Harry; Edelman, Joel

    1993-01-01

    The Long Duration Exposure Facility (LDEF) carried a remarkable variety of electrical, mechanical, thermal, and optical systems, subsystems, and components. Nineteen of the fifty-seven experiments flown on LDEF contained functional systems that were active on-orbit. Almost all of the other experiments possessed at least a few specific components of interest to the Systems Special Investigation Group (Systems SIG), such as adhesives, seals, fasteners, optical components, and thermal blankets. Almost all top level functional testing of the active LDEF and experiment systems has been completed. Failure analysis of both LDEF hardware and individual experiments that failed to perform as designed has also been completed. Testing of system components and experimenter hardware of interest to the Systems SIG is ongoing. All available testing and analysis results were collected and integrated by the Systems SIG. An overview of our findings is provided. An LDEF Optical Experiment Database containing information for all 29 optical related experiments is also discussed.

  20. Solidification under zero gravity: A Long Duration Exposure Facility (LDEF) experiment for an early space shuttle mission. [project planning

    NASA Technical Reports Server (NTRS)

    Bailey, J. A.

    1976-01-01

    Project planning for two series of simple experiments on the effect of zero gravity on the melting and freezing of metals and nonmetals is described. The experiments will be performed in the Long Duration Exposure Facility, and their purpose will be to study: (1) the general morphology of metals and nonmetals during solidification, (2) the location of ullage space (liquid-vapor interfaces), and (3) the magnitude of surface tension driven convection during solidification of metals and nonmetals. The preliminary design of the experiments is presented. Details of the investigative approach, experimental procedure, experimental hardware, data reduction and analysis, and anticipated results are given. In addition a work plan and cost analysis are provided.

  1. The impact of LDEF results on the space application of metal matrix composites

    NASA Technical Reports Server (NTRS)

    Steckel, Gary L.; Le, Tuyen D.

    1993-01-01

    Over 200 graphite/aluminum and graphite/magnesium composites were flown on the leading and trailing edges of LDEF on the Advanced Composites Experiment. The performance of these composites was evaluated by performing scanning electron microscopy and x-ray photoelectron spectroscopy of exposed surfaces, optical microscopy of cross sections, and on-orbit and postflight thermal expansion measurements. Graphite/aluminum and graphite/magnesium were found to be superior to graphite/polymer matrix composites in that they are inherently resistant to atomic oxygen and are less susceptible to thermal cycling induced microcracking. The surface foils on graphite/aluminum and graphite/magnesium protect the graphite fibers from atomic oxygen and from impact damage from small micrometeoroid or space debris particles. However, the surface foils were found to be susceptible to thermal fatigue cracking arising from contamination embrittlement, surface oxidation, or stress risers. Thus, the experiment reinforced requirements for carefully protecting these composites from prelaunch oxidation or corrosion, avoiding spacecraft contamination, and designing composite structures to minimize stress concentrations. On-orbit strain measurements demonstrated the importance of through-thickness thermal conductivity in composites to minimize thermal distortions arising from thermal gradients. Because of the high thermal conductivity of aluminum, thermal distortions were greatly reduced in the LDEF thermal environment for graphite/aluminum as compared to graphite/magnesium and graphite/polymer composites. The thermal expansion behavior of graphite/aluminum and graphite/magnesium was stabilized by on-orbit thermal cycling in the same manner as observed in laboratory tests.

  2. Analysis of Systems Hardware Flown on LDEF-Results of the Systems Special Investigation Group

    DTIC Science & Technology

    1992-04-01

    applied, should bring calculations and data into closer agreement. A few dosimeters were placed on LDEF at shallow enough shielding locations to...SHIELDING THICKNESS (g/cm2) Radiation absorbed dose (RAD) measurements with thermoluminescent dosimeters (TLD) from leading and trailing sides of LDEF...oxide In^ OsL aluminum oxide, Au plated Al [2024-T351], Au plated Al [6003] Au on Si02, Ir on Si02, Nb on Si02, Os on Si02, Pt on Si02, Cu on Si02, Ag

  3. Long Duration Exposure Facility M0003-5 recent results on polymeric films

    NASA Technical Reports Server (NTRS)

    Hurley, Charles J.; Jones, Michele D.

    1992-01-01

    The M0003-5 polymeric film specimens orbited on the LDEF M0003 Space Environment Effects on Spacecraft Materials were a part of a Wright Laboratories Materials Directorate larger thermal control materials experiment. They were selected from new materials which emerged from development programs during the 1978-1982 time frame. Included were materials described in the technical literature which were being considered or had been applied to satellites. Materials that had been exposed on previous satellite materials experiments were also included to provide data correlation with earlier space flight experiments. The objective was to determine the effects of the LDEF environment on the physical and optical properties of polymeric thin film thermal control materials, the interaction of the LDEF environment with silvered spacecraft surfaces, and the performance of low outgassing adhesives. Sixteen combinations of various polymeric films, metallized and unmetallized, adhesively bonded and unbonded films were orbited on LDEF in the M0003-5 experiment. The films were exposed in two separate locations on the vehicle. One set was exposed on the direct leading edge of the satellite. The other set was exposed on the direct trailing edge of the vehicle. The purpose of the experiment was to understand the changes in the properties of materials before and after exposure to the space environment and to compare the changes with predictions based on laboratory experiments. The basic approach was to measure the optical and physical properties of materials before and after long-term exposure to a low earth orbital environment comprised of UV, VUV, electrons, protons, atomic oxygen, thermal cycling, vacuum, debris and micrometeoroids. Due to the unanticipated extended orbital flight of LDEF, the polymeric film materials were exposed for a full five years and ten months to the space environment.

  4. Long Duration Exposure Facility Mini-Data Base User`s Guide: Macintosh version. (Diskette)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohnhoff-Hlavacek, G.; Pippin, H.G.; Dursch, H.W.

    1995-04-01

    One of the objectives of the LDEF Special Investigation Group (SIG) was to develop a LDEF data base that identifies the experiment objectives and hardware flown, summarizes results and conclusions, and provides a system analysis overview, including spacecraft design guidelines and space environmental effects. Compiling the information into an easily accessible data base format, and making it available to the space community was a major task accomplished by the System and Materials SIG effort beginning in 1981. Included in this document is a short user`s manual for the LDEF Mini-Data Bases. The user`s manual contains pertinent examples from the datamore » base on specifically how to access and work with the LDEF information. Accompanying this document are the mini-data bases on disk.« less

  5. Retrievable payload carrier, next generation Long Duration Exposure Facility: Update 1992

    NASA Technical Reports Server (NTRS)

    Perry, A. T.; Cagle, J. A.; Newman, S. C.

    1993-01-01

    Access to space and cost have been two major inhibitors of low Earth orbit research. The Retrievable Payload Carrier (RPC) Program is a commercial space program which strives to overcome these two barriers to space experimentation. The RPC Program's fleet of spacecraft, ground communications station, payload processing facility, and experienced integration and operations team will provide a convenient 'one-stop shop' for investigators seeking to use the unique vantage point and environment of low Earth orbit for research. The RPC is a regularly launched and retrieved, free-flying spacecraft providing resources adequate to meet modest payload/experiment requirements, and presenting ample surface area, volume, mass, and growth capacity for investigator usage. Enhanced capabilities of ground communications, solar-array-supplied electrical power, central computing, and on-board data storage pick up on the path where NASA's Long Duration Exposure Facility (LDEF) blazed the original technology trail. Mission lengths of 6-18 months, or longer, are envisioned. The year 1992 was designated as the 'International Space Year' and coincides with the 500th anniversary of Christopher Columbus's voyage to the New World. This is a fitting year in which to launch the full scale development of our unique shop of discovery whose intent is to facilitate retrieving technological rewards from another new world: space. Presented is an update on progress made on the RPC Program's development since the November 1991 LDEF Materials Workshop.

  6. FNAS/LDEF Radiation Data Analysis

    NASA Technical Reports Server (NTRS)

    Gregory, John

    1998-01-01

    The radioactive isotope Be-7 was discovered on the forward-facing side of the LDEF satellite in amounts far exceeding that expected from direct cosmic ray activation of the spacecraft material. This prompted an examination of the production of cosmogenic isotopes in the atmosphere and of the processes by which they may be transported to orbital altitudes and absorbed by a spacecraft. Be-7 is only one of several atmospheric cosmogenic isotopes which might be detectable at orbital altitudes and which might prove to be as useful as tracers of atmospheric circulation processes in the mesosphere and thermosphere, as they have been in the lower layers of the atmosphere.

  7. Seeds in space experiment results

    NASA Technical Reports Server (NTRS)

    Alston, Jim A.

    1991-01-01

    Two million seeds of 120 different varieties representing 106 species, 97 genera, and 55 plant families were flown aboard the Long Duration Exposure Facility (LDEF). The seeds were housed on the space exposed experiment developed for students (SEEDS) tray in sealed canister number six and in two small vented canisters. The tray was in the F-2 position. The seeds were germinated and the germination rates and development of the resulting plants compared to the control seed that stayed in Park Seed's seed storage facility. The initial results are presented. There was a better survival rate in the sealed canister in space than in the storage facility at Park Seed. At least some of the seeds in each of the vented canisters survived the exposure to vacuum for almost six years. The number of observed apparent mutations was very low.

  8. Definition study for an advanced cosmic ray experiment utilizing the long duration exposure facility

    NASA Technical Reports Server (NTRS)

    Price, P. B.

    1982-01-01

    To achieve the goals of cosmic ray astrophysics, an ultraheavy cosmic ray experiment on an LDEF reflight should be in an orbit with high inclination (approximately 57 deg) at approximately 230 nm for approximately 2 years near solar minimum (approximately 1986). It should fill 61 trays. Each tray should contain 4 modules of total active area 0.7 sq m, with a thermal blanket, thermal labyrinth mounts, aluminum honeycomb mechanical support, and total weight approximately 100 kg. Each module should contain interleaved CR39, Lexan, and thin copper sheets plus one event-thermometer canned in a thin metal cannister sealed with approximately 0.2 atm dry O2. The CR39 and Lexan should be manufactured to specifications and the sheet copper rolled to specifications. The event-thermometer should be a stiffened CR39 sheet that slides via bimetal strips relative to fixed CR39 sheet so that stack temperature can be read out for each event. The metal cannister can be collapsed at launch and landing, capturing the sliding assembly to prevent damage. An engineering study should be made of a prototype LDEF tray; this will include thermal and mechanical tests of detectors and the event thermometer.

  9. Definition study for an advanced cosmic ray experiment utilizing the long duration exposure facility

    NASA Astrophysics Data System (ADS)

    Price, P. B.

    1982-06-01

    To achieve the goals of cosmic ray astrophysics, an ultraheavy cosmic ray experiment on an LDEF reflight should be in an orbit with high inclination (approximately 57 deg) at approximately 230 nm for approximately 2 years near solar minimum (approximately 1986). It should fill 61 trays. Each tray should contain 4 modules of total active area 0.7 sq m, with a thermal blanket, thermal labyrinth mounts, aluminum honeycomb mechanical support, and total weight approximately 100 kg. Each module should contain interleaved CR39, Lexan, and thin copper sheets plus one event-thermometer canned in a thin metal cannister sealed with approximately 0.2 atm dry O2. The CR39 and Lexan should be manufactured to specifications and the sheet copper rolled to specifications. The event-thermometer should be a stiffened CR39 sheet that slides via bimetal strips relative to fixed CR39 sheet so that stack temperature can be read out for each event. The metal cannister can be collapsed at launch and landing, capturing the sliding assembly to prevent damage. An engineering study should be made of a prototype LDEF tray; this will include thermal and mechanical tests of detectors and the event thermometer.

  10. Impact penetration experiments in teflon targets of variable thickness

    NASA Astrophysics Data System (ADS)

    Hoerz, F.; Cintala, M. J.; Bernhard, R. P.; See, T. H.

    1993-03-01

    Approximately 20.4 sq m of Teflon thermal blankets on the nonspinning Long Duration Exposure Facility (LDEF) were exposed to the orbital debris and micrometeoroid environment in low-Earth orbit (LEO) for approximately 5.7 years. Each blanket consisted of an outer layer (approximately 125 micron thick) of FEP Teflon that was backed by a vapor-deposited metal mirror (Inconel; less than 1 micron thick). The inner surface consisted of organic binders and Chemglaze thermal protective paint (approximately 50 micron thick) resulting in a somewhat variable, total blanket thickness of approximately 180 to 200 microns. There was at least one of these blankets, each exposing approximately 1.2 sq m of surface area, on nine of LDEF's 12 principal pointing directions, the exceptions being Rows 3, 9, and 12. As a consequence, these blankets represent a significant opportunity for micrometeoroid and debris studies, in general, and specifically they provide an opportunity to address those issues that require information about pointing direction (i.e., spatial density of impact events as a function of instrument orientation). During deintegration of the LDEF spacecraft at KSC, all penetration holes greater than or equal to 300 micron in diameter were documented and were recently synthesized in terms of spatial density as a function of LDEF viewing direction by. The present report describes ongoing cratering and penetration experiments in pure Teflon targets, which are intended to establish the relationships between crater or penetration-hole diameters and the associated projectile dimensions at laboratory velocities (i.e., 6 km/s). The ultimate objective of these efforts is to extract reliable mass-frequencies and associated fluxes of hypervelocity particles in LEO.

  11. Be-10 in terrestrial bauxite and industrial aluminum: An LDEF fallout

    NASA Technical Reports Server (NTRS)

    Gregory, J. C.; Albrecht, A.; Herzog, G.; Klein, J.; Middleton, R.; Harmon, B. A.; Parnell, T. A.

    1995-01-01

    Work has continued on the search for Be-10 on metals other than aluminum flown on LDEF. Much time-consuming extractive chemistry has been performed at Rutgers University on turnings obtained from the ends of two stainless steel trunnions from LDEF and the prepared samples will be run on the University of Pennsylvania accelerator mass spectrometer. We have continued to investigate our discovery of naturally-occurring Be-10 contamination in bauxite and industrial aluminums from different sources. Measurements of Be-10 in ores from three different sites, and from four different samples of commercial aluminum have been made. Our investigators indicate that the contamination in commercial aluminum metal originates in its principal ore, bauxite. The levels in some bauxite samples were much greater than the maximum possible for in situ production by cosmic ray secondaries. Absorption of atmospheric Be-10 by surface ores exposed to rainfall is a reasonable explanation.

  12. Ellipsometric study of oxide films formed on LDEF metal samples

    NASA Technical Reports Server (NTRS)

    Franzen, W.; Brodkin, J. S.; Sengupta, L. C.; Sagalyn, P. L.

    1992-01-01

    The optical constants of samples of six different metals (Al, Cu, Ni, Ta, W, and Zr) exposed to space on the Long Duration Exposure Facility (LDEF) were studied by variable angle spectroscopic ellipsometry. Measurements were also carried out on portions of each sample which were shielded from direct exposure by a metal bar. A least-squares fit of the data using an effective medium approximation was then carried out, with thickness and composition of surface films formed on the metal substrates as variable parameters. The analysis revealed that exposed portions of the Cu, Ni, Ta, and Zr samples are covered with porous oxide films ranging in thickness from 500 to 1000 A. The 410 A thick film of Al2O3 on the exposed Al sample is practically free of voids. Except for Cu, the shielded portions of these metals are covered by thin non-porous oxide films characteristic of exposure to air. The shielded part of the Cu sample has a much thicker porous coating of Cu2O. The tungsten data could not be analyzed.

  13. Long Duration Exposure Facility mini-data base user`s guide: IBM-compatible PC computer version. (Diskette)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohnhoff-Hlavacek, G.; Pippin, G.; Dursch, H.

    1995-04-01

    One of the objectives of the LDEF Special Investigation Group (SIG) was to develop a LDEF data base that identifies the experiment objectives and hardware flown, summarizes results and conclusions, and provides a system analysis overview which would include spacecraft design guidelines and space environmental effects. Compiling this information into an easily accessible data base format and making it available to the space community was a major task accomplished by the System and Materials SIG effort beginning in 1991. Included in this document is a short user`s manual for the LDEF Mini-Data Bases. The user`s manual contains pertinent examples frommore » the data base on specifically how to access and work with the LDEF information. Accompanying this document are the mini-data bases on disk.« less

  14. First radiobiological results of LDEF-1 experiment A0015 with Arabidopsis seed embryos and Sordaria fungus spores

    NASA Astrophysics Data System (ADS)

    Zimmermann, M. W.; Gartenbach, K. E.; Kranz, A. R.

    1994-10-01

    This article highlights the first results of investigations on the general vitality and damage endpoints caused by cosmic ionizing radiation in dry, dormant plant seeds of the crucifer plant Arabidopsis thaliana (L.) Hennh. and the ascomycete Sordaria fimicola after 69 month stay in space. Wild-type and mutant gene marker lines were included in Free Flyer Biostack containers and exposed on earth and side tray of the LDEF-1 satellite. The damage in biological endpoints observed in the seeds increased in the side tray sample compared to the earth tray sample. For the ascospores we found different effects depending on the biological endpoints investigated for both expositions.

  15. First radiobiological results of LDEF-1 experiment A0015 with Arabidopsis seed embryos and Sordaria fungus spores.

    PubMed

    Zimmermann, M W; Gartenbach, K E; Kranz, A R

    1994-10-01

    This article highlights the first results of investigations on the general vitality and damage endpoints caused by cosmic ionizing radiation in dry, dormant plant seeds of the crucifer plant Arabidopsis thaliana (L.) Heynh. and the ascomycete Sordaria fimicola after 69 month stay in space. Wild-type and mutant gene marker lines were included in Free Flyer Biostack containers and exposed on earth and side tray of the LDEF-1 satellite. The damage in biological endpoints observed in the seeds increased in the side tray sample compared to the earth tray sample. For the ascospores we found different effects depending on the biological endpoints investigated for both expositions.

  16. Ground-based simulation of LEO environment: Investigations of a select LDEF material: FEP Teflon (trademark)

    NASA Technical Reports Server (NTRS)

    Cross, Jon B.; Koontz, Steven L.

    1993-01-01

    The Long Duration Exposure Facility (LDEF) has produced a wealth of data on materials degradation in the low earth orbit (LEO) space environment and has conclusively shown that surface chemistry (as opposed to surface physics-sputtering) is the key to understanding and predicting the degradation of materials in the LEO environment. It is also clear that materials degradation and spacecraft contamination are closely linked and that the fundamental mechanisms responsible for this linking are in general not well understood especially in the area of synergistic effects. The study of the fundamental mechanisms underlying materials degradation in LEO is hampered by the fact that the degradation process itself is not observed during the actual exposure to the environment. Rather the aftermath of the degradation process is studied, i.e., the material that remains after exposure is observed and mechanisms are proposed to explain the observed results. The EOIM-3 flight experiment is an attempt to bring sophisticated diagnostic equipment into the space environment and monitor the degradation process in real time through the use of mass spectrometry. More experiments of this nature which would include surface sensitive diagnostics (Auger and photoelectron spectroscopes) are needed to truly unravel the basic chemical mechanisms involved in the materials degradation process. Since these in-space capabilities will most likely not be available in the near future, ground-based LEO simulation facilities employing sophisticated diagnostics are needed to further advance the basic understanding of the materials degradation mechanisms. The LEO simulation facility developed at Los Alamos National Laboratory has been used to investigate the atomic oxygen/vacuum ultraviolet (AO/VUV) enhanced degradation of FEP Teflon. The results show that photo-ejection of polymer fragments occur at elevated temperature (200 C), that VUV synergistic rare gas sputtering of polymer fragments occur even at

  17. Further investigations of experiment A0034 atomic oxygen stimulated outgassing

    NASA Technical Reports Server (NTRS)

    Linton, Roger C.; Finckenor, Miria M.; Kamenetzky, Rachel R.

    1995-01-01

    Thermal control coatings within the recessed compartments of LDEF Experiment A0034 experienced the maximum leading edge fluence of atomic oxygen with considerably less solar UV radiation exposure than top-surface mounted materials of other LDEF experiments on either the leading or the trailing edge. This combination of exposure within A0034 resulted in generally lower levels of darkening attributable to solar UV radiation than for similar materials on other LDEF experiments exposed to greater cumulative solar UV radiation levels. Changes in solar absorptance and infrared thermal emittance of the exposed coatings are thus unique to this exposure. Analytical results for other applications have been found for environmentally induced changes in fluorescence, surface morphology, light scattering, and the effects of coating outgassing products on adjacent mirrors and windows of the A0034 experiment. Some atmospheric bleaching of the thermal control coatings, in addition to that presumably experience during reentry and recovery operations, has been found since initial post-flight observations and measurements.

  18. Atomic oxygen interaction at defect sights in protective coatings on polymers flown on LDEF

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Degroh, Kim K.; Auer, Bruce M.; Gebauer, Linda; Lamoreaux, Cynthia

    1993-01-01

    Although the Long Duration Exposure Facility (LDEF) has exposed materials with a fixed orientation relative to the ambient low-Earth-orbital environment, arrival of atomic oxygen is angularly distributed as a result of the atomic oxygen's high temperature Maxwellian velocity distribution and the LDEF's orbital inclination. Thus, atomic oxygen entering defects in protective coatings on polymeric surfaces can cause wider undercut cavities than the size of the defect in the protective coating. Because only a small fraction of atomic oxygen reacts upon first impact with most polymeric materials, secondary reactions with lower energy thermally accommodated atomic oxygen can occur. The secondary reactions of scattered and/or thermally accommodated atomic oxygen also contribute to widening the undercut cavity beneath the protective coating defect. As the undercut cavity enlarges, exposing more polymer, the probability of atomic oxygen reacting with underlying polymeric material increases because of multiple opportunities for reaction. Thus, the effective atomic oxygen erosion yield for atoms entering defects increases above that of the unprotected material. Based on the results of analytical modeling and computational modeling, aluminized Kapton multilayer insulation exposed to atomic oxygen on row 9 lost the entire externally exposed layer of polyimide Kapton, yet based on the results of this investigation, the bottom surface aluminum film must have remained in place, but crazed. Atomic oxygen undercutting at defect sites in protective coatings on graphite epoxy composites indicates that between 40 to 100 percent of the atomic oxygen thermally accommodates upon impact, and that the reaction probability of thermally accommodated atomic oxygen may range from 7.7 x 10(exp -6) to 2.1 x 10(exp -3), depending upon the degree of thermal accommodation upon each impact.

  19. Early results from the ultra heavy cosmic ray experiment

    NASA Technical Reports Server (NTRS)

    Osullivan, D.; Thompson, A.; Bosch, J.; Keegan, R.; Wenzel, K.-P.; Jansen, F.; Domingo, C.

    1995-01-01

    Data extraction and analysis of the LDEF Ultra Heavy Cosmic Ray Experiment is continuing. Almost twice the pre LDEF world sample has been investigated and some details of the charge spectrum in the region from Z approximately 70 up to and including the actinides are presented. The early results indicate r process enhancement over solar system source abundances.

  20. Capabilities of the LDEF-2 heavy nuclei collection

    NASA Technical Reports Server (NTRS)

    Drach, J.; Price, P. B.; Salamon, M. H.; Tarle, G.; Ahlen, S. P.

    1985-01-01

    To take the next big step beyond High Energy Astronomy Observatory (HEAO-3) the Heavy Nuclei Collector (HNC), to be carried on an LDEF reflight, has the goals of greatly increased collecting power ( 30 actinides) and charge resolution sigma sub Z or = 0.25 E for Z up to approximately 100, which will provide abundances of all the charges 40 or Z or = 96 and permit sensitive searches for hypothetical particles such as monopoles, superheavy elements, and quark nuggets.

  1. Molecular films associated with LDEF

    NASA Technical Reports Server (NTRS)

    Crutcher, E. R.; Warner, K. J.

    1992-01-01

    The molecular films deposited on the surface of the Long Duration Exposure Facility (LDEF) originated from the paints and room-temperature-vulcanized (RTV) silicone materials intentionally used on the satellite and not from residual contaminants. The high silicone content of most of the films and the uniformity of the films indicates a homogenization process in the molecular deposition and suggests a chemically most favored composition for the final film. The deposition on interior surfaces and vents indicated multiple bounce trajectories or repeated deposition-reemission cycles. Exterior surface deposits indicated a significant return flux. Ultraviolet light exposure was required to fix the deposited film as is indicated by the distribution of the films on interior surfaces and the thickness of films at the vent locations. Thermal conditions at the time of exposure to ultraviolet light seems to be an important factor in the thickness of the deposit. Sunrise facing (ram direction) surfaces always had the thicker film. These were the coldest surfaces at the time of their exposure to ultraviolet light. The films have a layered structure suggesting cyclic deposition. As many as 34 distinct layers were seen in the films. The cyclic nature of the deposition and the chemical uniformity of the film one layer to the next suggest an early deposition of the films though there is evidence for the deposition of molecular films throughout the nearly six year exposure of the satellite. A final 'spray' of an organic material associated with water soluble salts occurred very late in the mission. This may have been the result of one of the shuttle dump activities.

  2. Proposed test program and data base for LDEF polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Tennyson, R. C.; George, Pete; Steckel, Gary L.; Zimcik, D. G.

    1992-01-01

    A survey of the polymer matrix composite materials that were flown on Long Duration Exposure Facility (LDEF) is presented with particular attention to the effect of circumferential location (alpha) on the measured degradation and property changes. Specifically, it is known that atomic oxygen fluence (AO), VUV radiation dose, and number of impacts by micrometeoroids/debris vary with alpha. Thus, it is possible to assess material degradation and property damage changes with alpha for those materials that are common to three or more locations. Once the alpha-dependence functions were defined, other material samples will provide data that can readily be used to predict damage and property changes as a function of alpha as well. What data can be realistically obtained from these materials, how this data can be obtained, and the scientific/design value of the data to the user community is summarized. Finally, a proposed test plan is presented with recommended characterization methodologies that should be employed by all investigators to ensure consistency in the data base that will result from this exercise.

  3. Hypervelocity impact facility for simulating materials exposure to impact by space debris

    NASA Technical Reports Server (NTRS)

    Rose, M. F.; Best, S.; Chaloupka, T.; Stephens, B.; Crawford, G.

    1993-01-01

    As a result of man's venturing into space, the local debris contributed by his presence exceeds, at some orbital altitudes, that of the natural component. Man's contribution ranges from fuel residue to large derelect satellites that weigh many kilograms. Current debris models are able to predict the growth of the problem and suggest that spacecraft must employ armor or bumper shields for some orbital altitudes now, and that, the problem will become worse as a function of time. The practical upper limit to the velocity distribution is on the order of 40 km/s and is associated with the natural environment. The maximum velocity of the man-made component is in the 14-16 km/s range. The Long Duration Exposure Facility (LDEF) has verified that the 'high probability of impact' particles are in the microgram to milligram range. These particles can have significant effects on coatings, insulators, and thin metallic layers. The surface of thick materials becomes pitted and the local debris component is enhanced by ejecta from the debris spectrum in a controlled environment. The facility capability is discussed in terms of drive geometry, energetics, velocity distribution, diagnostics, and projectile/debris loading. The facility is currently being used to study impact phenomena on Space Station Freedom's solar array structure, other solar array materials, potential structural materials for use in the station, electrical breakdown in the space environment, and as a means of clarifying or duplicating the impact phenomena on the LDEF surfaces. The results of these experiments are described in terms of the mass/velocity distribution incident on selected samples, crater dynamics, and sample geometry.

  4. Partial analysis of experiment LDEF A-0114

    NASA Technical Reports Server (NTRS)

    Gregory, J. C.

    1986-01-01

    Due to delays in manifesting the return of the Long Duration Exposure Facility from space, attention was concentrated on extracting the maximum information from the EIOM-2 (oxygen interaction with materials experiment) flown on STS-8 in September 1983. An analysis was made of the optical surfaces exposed during that flight and an assessment made of the effect of the 5 eV atomic oxygen upon their physical and chemical properties. The surfaces studied were of two types: high-purity thin films sputtered or evaporated onto 2.54-cm diam lambda/20 fused silica optical flats, and highly polished bulk samples. Rapid etching of carbon and carbonaceous surfaces was observed with polycarbonate CR-39 showing the largest etch of any substrate flown and measured. Of the metals tested, only osmium and silver showed large effects, the former being heavily etched and the later forming a very thick layer of oxide. The first measurable effects on iridium, aluminum, nickel, tungsten and niobium thin films are reported.

  5. Patterns of discoloration and oxidation by direct and scattered fluxes on LDEF, including oxygen on silicon

    NASA Technical Reports Server (NTRS)

    Frederickson, A. R.; Filz, R. C.; Rich, F. J.; Sagalyn, P. L.

    1992-01-01

    A number of interesting discoloration patterns are clearly evident on MOOO2-1 which resides on the three faces of the Long Duration Exposure Facility (LDEF). Most interesting is the pattern of blue oxidation on polished single crystal silicon apparently produced by scattered or direct ram oxygen atoms along the earth face. A complete explanation for the patterns has not yet been obtained. All honeycomb outgassing holes have a small discoloration ring around them that varies in color. The shadow cast by a suspended wire on the earth face surface is not easily explained by either solar photons or by ram flux. The shadows and the dark/light regions cannot be explained consistently by the process of solar ultraviolet paint-darkening modulated by ram flux oxygen bleaching of the paint.

  6. Fluorescence observations of LDEF exposed materials as an indicator of induced material reactions

    NASA Technical Reports Server (NTRS)

    Linton, Roger C.; Whitaker, Ann F.; Kamenetzky, Rachel R.

    1993-01-01

    Observations and measurements of induced changes in the fluorescent emission of materials exposed to the space environment on the Long Duration Exposure Facility (LDEF) have revealed systematic patterns of material-dependent behavior. These results have been supplemented by inspection of similar materials exposed on previous Space Shuttle Missions and in laboratory testing. The space environmental factors affecting the fluorescence of exposed materials have been found to include (but are not necessarily limited to) solar ultraviolet (UV) radiation, atomic oxygen (AO), thermal vacuum exposure, and synergistic combinations of these factors. Observed changes in material fluorescent behavior include stimulation, quenching, and spectral band shifts of emission. For example, the intrinsic yellow fluorescence of zinc oxide pigmented thermal control coatings undergoes quenching as a result of exposure, while coloration is stimulated in the fluorescent emission of several polyurethane coating materials. The changes in fluorescent behavior of these materials are shown to be a revealing indicator of induced material reactions as a result of space environmental exposure.

  7. Atomic oxygen erosion considerations for spacecraft materials selection

    NASA Technical Reports Server (NTRS)

    Whitaker, Ann F.; Kamenetzky, Rachel R.

    1993-01-01

    The Long Duration Exposure Facility (LDEF) satellite carried 57 experiments that were designed to define the low-Earth orbit (LEO) space environment and to evaluate the impact of this environment on potential engineering materials and material processes. Deployed by the Shuttle Challenger in April of 1984, LDEF made over 32,000 orbits before being retrieved nearly 6 years later by the Shuttle Columbia in January of 1990. The Solar Array Passive LDEF Experiment (SAMPLE) AO171 contained approximately 300 specimens, representing numerous material classes and material processes. AO171 was located on LDEF in position A8 at a yaw of 38.1 degrees from the ram direction and was subjected to an atomic oxygen (AO) fluence of 6.93 x 10(exp 21) atoms/sq cm. LDEF AO171 data, as well as short-term shuttle data, will be discussed in this paper as it applies to engineering design applications of composites, bulk and thin film polymers, glassy ceramics, thermal control paints, and metals subjected to AO erosion.

  8. Effects of the LDEF environment on the Ag/FEP thermal blankets

    NASA Technical Reports Server (NTRS)

    Levadou, Francois; Pippin, H. Gary

    1992-01-01

    This presentation was made by Francois Levadou at the NASA Langley Research Center LDEF materials workshop, November 19-22, 1991. It represents the results to date on the examination of silvered teflon thermal blankets primarily from the Ultra-heavy Cosmic Ray Experiment and also from the blanket from the Park Seed Company experiment. ESA/ESTEC and Boeing conducted a number of independent measurements on the blankets and in particular on the exposed fluorinated ethylene-propylene (FEP) layer of the blankets. Mass loss, thickness, and thickness profile measurements have been used by ESA, Boeing, and NASA LeRC to determine recession and average erosion yield under atomic oxygen exposure. Tensile strength and percent elongation to failure data, surface characterization by ESCA, and SEM images are presented. The Jet Propulsion Laboratory analysis of vacuum radiation effects is also presented. The results obtained by the laboratories mentioned and additional results from the Aerospace Corporation on samples provided by Boeing are quite similar and give confidence in the validity of the data.

  9. Experiment facilities for life science experiments in space.

    PubMed

    Uchida, Satoko

    2004-11-01

    To perform experiments in microgravity environment, there should be many difficulties compared with the experiments on ground. JAXA (Japan Aerospace Exploration Agency) has developed various experiment facilities to perform life science experiments in space, such as Cell Culture Kit, Thermo Electric Incubator, Free Flow Electrophoresis Unit, Aquatic Animal Experiment Unit, and so on. The first experiment facilities were flown on Spacelab-J mission in 1992, and they were improved and modified for the 2nd International Microgravity Laboratory (IML-2) mission in 1994. Based on these experiences, some of them were further improved and flown on another missions. These facilities are continuously being improved for the International Space Station use, where high level functions and automatic operations will be required.

  10. Long-term exposure of bacterial spores to space

    NASA Technical Reports Server (NTRS)

    Horneck, G.; Buecker, H.; Reitz, G.

    1992-01-01

    With the NASA mission of the Long Duration Exposure Facility (LDEF), the authors have obtained the opportunity to expose Bacillus subtilis spores for nearly six years to the space environment and to analyze their responses after retrieval. The experiment was mounted onto a side tray of LDEF facing space. Data shows that the chances of microorganisms surviving in free space will be greatly increased by adequate shielding against solar ultraviolet light.

  11. Modelling the near-Earth space environment using LDEF data

    NASA Technical Reports Server (NTRS)

    Atkinson, Dale R.; Coombs, Cassandra R.; Crowell, Lawrence B.; Watts, Alan J.

    1992-01-01

    Near-Earth space is a dynamic environment, that is currently not well understood. In an effort to better characterize the near-Earth space environment, this study compares the results of actual impact crater measurement data and the Space Environment (SPENV) Program developed in-house at POD, to theoretical models established by Kessler (NASA TM-100471, 1987) and Cour-Palais (NASA SP-8013, 1969). With the continuing escalation of debris there will exist a definite hazard to unmanned satellites as well as manned operations. Since the smaller non-trackable debris has the highest impact rate, it is clearly necessary to establish the true debris environment for all particle sizes. Proper comprehension of the near-Earth space environment and its origin will permit improvement in spacecraft design and mission planning, thereby reducing potential disasters and extreme costs. Results of this study directly relate to the survivability of future spacecraft and satellites that are to travel through and/or reside in low Earth orbit (LEO). More specifically, these data are being used to: (1) characterize the effects of the LEO micrometeoroid an debris environment on satellite designs and components; (2) update the current theoretical micrometeoroid and debris models for LEO; (3) help assess the survivability of spacecraft and satellites that must travel through or reside in LEO, and the probability of their collision with already resident debris; and (4) help define and evaluate future debris mitigation and disposal methods. Combined model predictions match relatively well with the LDEF data for impact craters larger than approximately 0.05 cm, diameter; however, for smaller impact craters, the combined predictions diverge and do not reflect the sporadic clouds identified by the Interplanetary Dust Experiment (IDE) aboard LDEF. The divergences cannot currently be explained by the authors or model developers. The mean flux of small craters (approximately 0.05 cm diameter) is

  12. Continued results of the seeds in space experiment

    NASA Technical Reports Server (NTRS)

    Alston, Jim A.

    1992-01-01

    Two million seeds of 120 different varieties representing 106 species, 97 genera, and 55 plant families were flown aboard the Long Duration Exposure Facility (LDEF). The seeds were housed on the Space Exposed Experiment Developed for Students (SEEDS) tray in the sealed canister number 6 and in two small vented canisters. The seeds were germinated and the germination rates and development of the resulting plants compared to the control seed that stayed in the storage facility. There was a better survival rate in the sealed canister in space than in the storage facility. At least some of the seed in the vented canisters survived the exposure to vacuum for almost six years. The number of observed mutations was very low. In the initial testing, the small seeded crops were not grown to maturity to check for mutation and obtain a second generation seed. These small seeded crops are now being grown for evaluation.

  13. Orbital debris and meteoroid population as estimated from LDEF impact data

    NASA Technical Reports Server (NTRS)

    Zhang, Jingchang; Kessler, Donald J.

    1995-01-01

    Examination of LDEF's various surfaces shows numerous craters and holes due to hypervelocity impacts of meteoroids and man-made orbital debris. In this paper, the crater numbers as reported by Humes have been analyzed in an effort to understand the orbital debris and natural meteoroid environment in LEO. To determine the fraction of man-made to natural impacts, the side to top ratio of impacts and results of the Chemistry of Micrometeoroids Experiment are used. For craters in the 100 micron to 500 micron size range, about 25 percent to 30 percent of the impacts on the forward-facing surfaces and about 10 percent of the impacts on the trailing surfaces were estimated due to man-made orbital debris. A technique has been developed to convert crater numbers to particle fluxes, taking the fact into account that the distributions of impact velocity and incidence angle vary over the different surfaces of LDEF, as well as the ratio of the surface area flux to the cross-sectional area flux. Applying this technique, Humes' data concerning craters with limiting lip diameters of 100 micron, 200 micron and 500 micron have been converted into orbital debris and meteoroid fluxes ranging from about 20 micron to 200 micron particle diameter. The results exhibit good agreement with orbital debris model and meteoroid model. The converted meteoroid flux is slightly larger than Grun's model (by 40 to 70 percent). The converted orbital debris flux is slightly lower than Kessler's model for particle diameter smaller than about 30 micron and slightly larger than the model for particle diameter larger than about 40 micron. Taking also into account the IDE data point at about 0.8 micron particle diameter, it suggests to change the slope log (flux) versus log (diameter) of orbital debris flux in the 1 micron to 100 micron particle diameter range from 2.5 to 1.9.

  14. Long-term particle flux variability indicated by comparison of Interplanetary Dust Experiment (IDE) timed impacts for LDEF's first year in orbit with impact data for the entire 5.75-year orbital lifetime

    NASA Technical Reports Server (NTRS)

    Mulholland, J. Derral; Simon, Charles G.; Cooke, William J.; Oliver, John P.; Misra, V.

    1992-01-01

    The electronic sensors of the Interplanetary Dust Experiment (IDE) recorded precise impact times and approximate directions for submicron to approximately 100-micron size particles on all six primary sides of the spacecraft for the first 346 days of the Long Duration Exposure Facility (LDEF) orbital mission. Previously-reported analyses of the timed impact data have established their spatio-temporal features, including the demonstration that a preponderance of the particles in this regime are orbital debris and that a large fraction of the debris particles are encountered as megameter-size clouds, some of which persist for long times. Short-term fluxes within such clouds can rise several orders of magnitude above the long-term average. These finding are consistent with the results of the first catastrophic hypervelocity laboratory impacts on a real satellite, recently reported in the press. Analysis continues on the geometric and evolutionary characteristics of these clouds, as well as on the isolation and characterization of the natural micrometeoroid component in the IDE data, but the unexpectedly large short-term variations in debris flux raises the question of how representative an indication of the multi-year average flux is given by the nearly one year of timed data. It has, therefore, always been one of the goals of IDE to conduct an optical survey of the craters on the IDE detectors, to obtain full-mission fluxes for comparisons with the timed data. This work is underway, and the results presently in hand are significant. Optical scanning of the ram and wake (East and West) panels is complete, and it is clear that the first year was in some respects not representative of the subsequent years. The 5.75-year average flux on East panel was 90 percent of the value predicted by the average flux recorded during the first year, while it was only 34 percent on West panel. This suggests that western hemisphere spacecraft launches are a major contributor to the long

  15. EnviroNET: An on-line environment data base for LDEF data

    NASA Technical Reports Server (NTRS)

    Lauriente, Michael

    1992-01-01

    EnviroNET is an on-line, free form data base intended to provide a centralized depository for a wide range of technical information on environmentally induced interactions of use to Space Shuttle customers and spacecraft designers. It provides a user friendly, menu driven format on networks that are connected globally and is available twenty-four hours a day, every day. The information updated regularly, includes expository text, tabular numerical data, charts and graphs, and models. The system pools space data collected over the years by NASA, USAF, other government facilities, industry, universities, and ESA. The models accept parameter input from the user and calculate and display the derived values corresponding to that input. In addition to the archive, interactive graphics programs are also available on space debris, the neutral atmosphere, radiation, magnetic field, and ionosphere. A user friendly informative interface is standard for all the models with a pop-up window, help window with information on inputs, outputs, and caveats. The system will eventually simplify mission analysis with analytical tools and deliver solution for computational intense graphical applications to do 'What if' scenarios. A proposed plan for developing a repository of LDEF information for a user group concludes the presentation.

  16. Long duration exposure facility solar illumination data package

    NASA Technical Reports Server (NTRS)

    Berrios, William M.; Sampair, Thomas

    1990-01-01

    A post flight solar illumination data package was created by the LDEF thermal analysis data group in support of the LDEF science office data group. The data presented was prepared with the Thermal Radiation Analysis System (TRASYS) program. Ground tracking data was used to calculate daily orbital beta angles for the calculation of resultant fluxes. This data package will be useful in calculation of solar illumination fluent for a variety of beta angle orbital conditions encountered during the LDEF mission.

  17. Final results of the Space Exposed Experiment Developed for Students (SEEDS) P-0004-2

    NASA Technical Reports Server (NTRS)

    Grigsby, Doris K.

    1992-01-01

    Space Exposed Experiment Developed for Students (SEEDS), resulted in the distribution of over 132,000 SEED kits in 1990. The kits contained Rutger's tomato seeds that had flown on the Long Duration Exposure Facility (LDEF) as well as seeds that had been stored in a climate controlled warehouse for the same period of time. Students compared germination and growth rate characteristics of the two seeds groups and returned data to NASA for analysis. The scientific information gained was valuable as students shared the excitement of taking part in a national project. Of greater importance was the subsequent interest generated in science education.

  18. Thermal control surfaces experiment flight system performance

    NASA Technical Reports Server (NTRS)

    Wilkes, Donald R.; Hummer, Leigh L.; Zwiener, James M.

    1991-01-01

    The Thermal Control Surfaces Experiment (TCSE) is the most complex system, other than the LDEF, retrieved after long term space exposure. The TCSE is a microcosm of complex electro-optical payloads being developed and flow by NASA and the DoD including SDI. The objective of TCSE was to determine the effects of the near-Earth orbital environment and the LDEF induced environment on spacecraft thermal control surfaces. The TCSE was a comprehensive experiment that combined in-space measurements with extensive post flight analyses of thermal control surfaces to determine the effects of exposure to the low earth orbit space environment. The TCSE was the first space experiment to measure the optical properties of thermal control surfaces the way they are routinely measured in a lab. The performance of the TCSE confirms that low cost, complex experiment packages can be developed that perform well in space.

  19. Preliminary analysis of WL experiment number 701: Space environment effects on operating fiber optic systems

    NASA Technical Reports Server (NTRS)

    Taylor, E. W.; Padden, R. J.; Berry, J. N.; Sanchez, A. D.; Chapman, S. P.

    1991-01-01

    A brief overview of the analysis performed on WL Experiment number 701 is presented, highlighting the successful operation of the first know active fiber optic links orbited in space. Four operating fiber optic links were exposed to the space environment for a period exceeding five years, situated aboard and external to the Long Duration Exposure Facility (LDEF). Despite the prolonged space exposure to radiation, wide temperature extremums, atomic oxygen interactions, and micrometeorite and debris impacts, the optical data links performed well within specification limits. Early Phillips Laboratory tests and analyses performed on the experiment and its recovered magnetic tape data strongly indicate that fiber optic application in space will have a high success rate.

  20. Thermal expansion behavior of LDEF metal matrix composites

    NASA Technical Reports Server (NTRS)

    Le, T. D.; Steckel, G. L.

    1992-01-01

    The effects of the space environment on the thermal expansion stability of metal matrix composites (graphite/Al and graphite/Mg) will be presented. A sample from each category of metal matrix composites mounted on the leading and trailing edge was chosen for analysis of the temperature-time-thermal strain histories. Typical thermal expansion curves over the same range of temperature were selected at the beginning, mid, and end of the recording duration. The thermal expansion of selected post-flight LDEF samples were measured over the same range of temperature in the laboratory using a Michelson laser interferometer. The thermal strains were monitored concurrently with a laser interferometer and a mounted strain gage.

  1. Results of the TTF-TCNQ and the calcium carbonate crystallization on the Long Duration Exposure Facility

    NASA Technical Reports Server (NTRS)

    Nielsen, Kjeld Flemming; Lind, M. David

    1992-01-01

    Experiment A0139A on the Long Duration Exposure Facility (LDEF) carried four large containers into orbit five years with crystal growth solutions for lead sulfide, calcium carbonate, and TTF-TCNQ. Although temperature data was lost, the experimental program had been working since the valves in all containers had been opened. All four experiments produced crystals of varying quality. The calcium carbonate crystals had the best appearance. The TTF-TCNQ crystals were packed together near the valve openings of the container. When taken apart, the single crystals showed some unusual morphological properties. X ray investigations as well as conductivity measurements on long duration space grown TTF-TCNQ crystals will be presented. Comparisons will be made with our previous space solution growth experiments. The TTF-TCNQ crystals are no longer of the highest interest, so this activity has been terminated in favor of calcium carbonate and calcium phosphate crystallizations.

  2. Thermal Control Surfaces Experiment

    NASA Technical Reports Server (NTRS)

    Wilkes, D. R.

    1999-01-01

    This report is the final experiment report for the TCSE and summarizes many years of hardware development and analyses. Also included are analyses presented in a number of TCSE papers that were prepared and given at scientific conferences including three LDEF Post-Retrieval Symposiums.

  3. Spectral infrared hemispherical reflectance measurements for LDEF tray clamps

    NASA Technical Reports Server (NTRS)

    Cromwell, B. K.; Shepherd, S. D.; Pender, C. W.; Wood, B. E.

    1993-01-01

    Infrared hemispherical reflectance measurements that were made on 58 chromic acid anodized tray clamps from LDEF are described. The measurements were made using a hemiellipsoidal mirror reflectometer with interferometer for wavelengths between 2-15 microns. The tray clamps investigated were from locations about the entire spacecraft and provided the opportunity for comparing the effects of atomic oxygen at each location. Results indicate there was essentially no dependence on atomic oxygen fluence for the surfaces studied, but there did appear to be a slight dependence on solar radiation exposure. The reflectances of the front sides of the tray clamps consistently were slightly higher than for the protected rear tray clamp surfaces.

  4. Hypervelocity impact facility for simulating materials exposure to impact by space debris

    NASA Technical Reports Server (NTRS)

    Rose, M. Frank; Best, S. G.; Chaloupka, T.; Stephens, B.

    1992-01-01

    The Space Power Institute at Auburn University has constructed an electromagnetically driven particle accelerator for simulating the effects of space debris on the materials for use in advanced spacecraft. The facility consists of a capacitively driven accelerator section, a drift tube and a specimen impact chamber. The drift tube is sufficiently long that all electrical activity has ceased prior to impact in the specimen chamber. The impact chamber is large enough to allow a wide range of specimen geometries, ranging from small coupons to active portions of advanced spacecraft. The electric drive for the accelerator consists of a 67 kJ, 50 k capacitor bank arranged in a low inductance configuration. The bank is discharged through an aluminum armature/plastic ablator plate/projectile load in roughly 1.2 microsec. The evaporation of the ablaitor plate produces an expanding gas slug, mostly H2, traveling at a velocity of some 60 km/sec. Because of the pressure and local density, the expanding gas cloud accelerates projectiles due to plasma drag. To date, we have utilized projectiles consisting of 100 micron SiC, 100 and 400 micron Al2O3, 100 and 145 micron olivines. Since many particles are accelerated in a given experiment, there is a range of velocities for each shot as well as some particle breakup. Advanced diagnostics techniques allow determination of impact coordinates, velocity, and approximate size for as many as 50 individual impacts in a given experiment. We routinely measure velocities in the range 1-15 km/sec. We have used this facility to study a variety of impact generated phenomena on coated surfaces, both paint and plastic, thermal blanket material, solar cell arrays, and optical materials such as glass and quartz lenses. The operating characteristics of the gun, the advanced diagnostic scheme, and the results of studies of crater morphology are described in detail. Projectile residue analysis, as a function of impact velocity for the materials listed

  5. Hypervelocity impact facility for simulating materials exposure to impact by space debris

    NASA Astrophysics Data System (ADS)

    Rose, M. Frank; Best, S. G.; Chaloupka, T.; Stephens, B.

    1992-06-01

    The Space Power Institute at Auburn University has constructed an electromagnetically driven particle accelerator for simulating the effects of space debris on the materials for use in advanced spacecraft. The facility consists of a capacitively driven accelerator section, a drift tube and a specimen impact chamber. The drift tube is sufficiently long that all electrical activity has ceased prior to impact in the specimen chamber. The impact chamber is large enough to allow a wide range of specimen geometries, ranging from small coupons to active portions of advanced spacecraft. The electric drive for the accelerator consists of a 67 kJ, 50 k capacitor bank arranged in a low inductance configuration. The bank is discharged through an aluminum armature/plastic ablator plate/projectile load in roughly 1.2 microsec. The evaporation of the ablaitor plate produces an expanding gas slug, mostly H2, traveling at a velocity of some 60 km/sec. Because of the pressure and local density, the expanding gas cloud accelerates projectiles due to plasma drag. To date, we have utilized projectiles consisting of 100 micron SiC, 100 and 400 micron Al2O3, 100 and 145 micron olivines. Since many particles are accelerated in a given experiment, there is a range of velocities for each shot as well as some particle breakup. Advanced diagnostics techniques allow determination of impact coordinates, velocity, and approximate size for as many as 50 individual impacts in a given experiment. We routinely measure velocities in the range 1-15 km/sec. We have used this facility to study a variety of impact generated phenomena on coated surfaces, both paint and plastic, thermal blanket material, solar cell arrays, and optical materials such as glass and quartz lenses. The operating characteristics of the gun, the advanced diagnostic scheme, and the results of studies of crater morphology are described in detail. Projectile residue analysis, as a function of impact velocity for the materials listed

  6. Skylab materials processing facility experiment developer's report

    NASA Technical Reports Server (NTRS)

    Parks, P. G.

    1975-01-01

    The development of the Skylab M512 Materials Processing Facility is traced from the design of a portable, self-contained electron beam welding system for terrestrial applications to the highly complex experiment system ultimately developed for three Skylab missions. The M512 experiment facility was designed to support six in-space experiments intended to explore the advantages of manufacturing materials in the near-zero-gravity environment of Earth orbit. Detailed descriptions of the M512 facility and related experiment hardware are provided, with discussions of hardware verification and man-machine interfaces included. An analysis of the operation of the facility and experiments during the three Skylab missions is presented, including discussions of the hardware performance, anomalies, and data returned to earth.

  7. On-orbit technology experiment facility definition

    NASA Technical Reports Server (NTRS)

    Russell, Richard A.; Buchan, Robert W.; Gates, Richard M.

    1988-01-01

    A study was conducted to identify on-orbit integrated facility needs to support in-space technology experiments on the Space Station and associated free flyers. In particular, the first task was to examine the proposed technology development missions (TDMX's) from the model mission set and other proposed experimental facilities, both individually and by theme, to determine how and if the experiments might be combined, what equipment might be shared, what equipment might be used as generic equipment for continued experimentation, and what experiments will conflict with the conduct of other experiments or Space Station operations. Then using these results, to determine on-orbit facility needs to optimize the implementation of technology payloads. Finally, to develop one or more scenarios, design concepts, and outfitting requirements for implementation of onboard technology experiments.

  8. SIMS chemical analysis of extended impacts on the leading and trailing edges of LDEF experiment AO187-2

    NASA Technical Reports Server (NTRS)

    Amari, S.; Foote, J.; Swan, P.; Walker, R. M.; Zinner, E.; Lange, G.

    1993-01-01

    Numerous 'extended impacts' found in both leading and trailing edge capture cells were successfully analyzed for the chemical composition of projectile residues by secondary ion mass spectrometry (SIMS). Most data were obtained from the trailing edge cells where 45 of 58 impacts were classified as 'probably natural' and the remainder as 'possibly man-made debris.' This is in striking contrast to leading edge cells where 9 of 11 impacts so far measured are definitely classified as orbital debris. Although all the leading edge cells had lost their plastic entrance foils during flight, the rate of foil failure was similar to that of the trailing edge cells, 10 percent of which were recovered intact. Ultraviolet embrittlement is suspected as the major cause of failure on both leading and trailing edges. The major impediment to the accurate determination of projectile chemistry is the fractionation of volatile and refractory elements in the hypervelocity impact and redeposition processes. This effect had been noted in a simulation experiment but is more pronounced in the LDEF capture cells, probably due to the higher average velocities of the space impacts. Surface contamination of the pure Ge surfaces with a substance rich in Si, but also containing Mg and Al, provides an additional problem for the accurate determination of impactor chemistry. The effect is variable, being much larger on surfaces that were exposed to space than in those cells that remained intact. Future work will concentrate on the analyses of more leading edge impacts and the development of new SIMS techniques for the measurement of elemental abundances in extended impacts.

  9. Space Shuttle Projects

    NASA Image and Video Library

    1984-04-01

    The Long Duration Exposure Facility (LDEF) was designed by the Marshall Space Flight Center (MSFC) to test the performance of spacecraft materials, components, and systems that have been exposed to the environment of micrometeoroids and space debris for an extended period of time. The LDEF proved invaluable to the development of future spacecraft and the International Space Station (ISS). The LDEF carried 57 science and technology experiments, the work of more than 200 investigators. MSFC`s experiments included: Trapped Proton Energy Determination to determine protons trapped in the Earth's magnetic field and the impact of radiation particles; Linear Energy Transfer Spectrum Measurement Experiment which measures the linear energy transfer spectrum behind different shielding configurations; Atomic oxygen-Simulated Out-gassing, an experiment that exposes thermal control surfaces to atomic oxygen to measure the damaging out-gassed products; Thermal Control Surfaces Experiment to determine the effects of the near-Earth orbital environment and the shuttle induced environment on spacecraft thermal control surfaces; Transverse Flat-Plate Heat Pipe Experiment, to evaluate the zero-gravity performance of a number of transverse flat plate heat pipe modules and their ability to transport large quantities of heat; Solar Array Materials Passive LDEF Experiment to examine the effects of space on mechanical, electrical, and optical properties of lightweight solar array materials; and the Effects of Solar Radiation on Glasses. Launched aboard the Space Shuttle Orbiter Challenger's STS-41C mission April 6, 1984, the LDEF remained in orbit for five years until January 1990 when it was retrieved by the Space Shuttle Orbiter Columbia STS-32 mission and brought back to Earth for close examination and analysis.

  10. Evaluation of adhesive materials used on the Long Duration Exposure Facility. Report, October 1989-January 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dursch, H.W.; Keough, B.K.; Pippin, H.G.

    1995-03-01

    The adhesive and adhesive-like materials flown on LDEF included epoxies and silicones (including lap shear specimens), conformal coatings, potting compounds, and several tapes and transfer films. With the exception of the lap shear specimens, these materials were used in the fabrication and assembly of the experiments such as bonding thermal control surfaces to other hardware and holding individual specimens in place, similar to applications on other spacecraft. Typically, the adhesives were not exposed to solar radiation or atomic oxygen. Only one adhesive system was used in a structural application. This report documents all results of the Materials and Systems SIGmore » investigation into the effect of long term low Earth orbit (LEO) exposure of these materials. Results of this investigation show that if the material was shielded from exposure to LDEF`s external environment, the 69 month exposure to LEO had, in most cases, minimal effect on the material.« less

  11. LDEF positioned by RMS over OV-102's payload during STS-32 retrieval

    NASA Image and Video Library

    1990-01-20

    STS032-541-018 (12 Jan 1990) --- One of a number of frames photographed by the STS-32 crew as part of a detailed supplementary objective on documentary still photography. The DSO was monitored by Astronaut Marsha S. Ivins, mission specialist. STS032-541-018 Kodak Ektar 25 negative film. 35mm frame of LDEF suspended just over its resting place in cargo bay. White clouds and blue ocean in foreground.

  12. Long Duration Exposure Facility (LDEF) low-temperature Heat Pipe Experiment Package (HEPP) flight results

    NASA Technical Reports Server (NTRS)

    Mcintosh, Roy; Mccreight, Craig; Brennan, Patrick J.

    1992-01-01

    The Low Temperature Heat Pipe Flight Experiment (HEPP) is a fairly complicated thermal control experiment that was designed to evaluate the performance of two different low temperature ethane heat pipes and a n-Heptane Phase Change Material (PCM) canister. A total of 388 days of continuous operation with an axially grooved aluminum fixed conductance heat pipe of axially grooved stainless steel heat pipe diode was demonstrated before the EDS batteries lost power. The inability of the HEPP's radiator to cool below 190 K in flight prevented freezing of the PCM and the opportunity to conduct transport tests with the heat pipes. Post flight tests showed that the heat pipes and the PCM are still functioning. This paper presents a summary of the flight data analysis for the HEPP and its related support systems. Pre and post-flight thermal vacuum tests results are presented for the HEPP thermal control system along with individual heat pipe performance and PCM behavior. Appropriate SIG related systems data will also be included along with a 'lessons learned' summary.

  13. Surface analyses of composites exposed to the space environment on LDEF

    NASA Technical Reports Server (NTRS)

    Mallon, Joseph J.; Uht, Joseph C.; Hemminger, Carol S.

    1992-01-01

    We have conducted a series of surface analyses on carbon fiber/polyarylacetylene matrix composites that were exposed to the space environment on the LDEF satellite. None of the composites were catastrophically damaged by nearly six years of exposure to the space environment. Composites on the leading edge exhibited about 5 mils of surface erosion, but trailing edge panels exhibited no physical appearance changes due to exposure. Scanning electron microscopy (SEM) was used to show that the erosion morphology on the leading edge samples was dominated by crevasses parallel to the fibers with triangular cross sections 10 to 100 microns in depth. The edges of the crevasses were well defined and penetrated through both matrix and fiber. The data suggest that the carbon fibers are playing a significant role in crevasse initiation and/or enlargement, and in the overall erosion rate of the composite. X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDS) results showed the presence of silicone and hydrocarbon contamination from in-flight sources. The role of contamination in crevasse initiation and enlargement is unknown at this time. These LDEF results demonstrate that the prediction of long term atomic oxygen erosion morphology for composite materials from erosion data obtained on short Space Shuttle missions is difficult. A better understanding of other factors such as thermal cycling and UV exposure which may influence erosion is necessary to improve the accuracy of the predictions.

  14. LDEF - 69 Months in Space. First Post-Retrieval Symposium. Proceeding of a symposium held in Kissimmee, Florida, 2-8 June 1991.

    DTIC Science & Technology

    1992-01-01

    Gregory, Ligia C. Christi and Ganesh N. Raikar vin LDEF EXPERIMENT AO034: ATOMIC OXYGEN STIMULATED OUTGAS SING 763 Roger C. Linton, Rachel R. Kamenetzky...A 8/27/90 1 Micron Stylus Radius 1 Mg Stylus Loading rW^wV^WvANw/VW^ W ,’"’’M’*****W^^ 150 SCRN LENGTH (microns) 350 4E 450^ e £00...4-^ 4-5 rt3-t- CL S-4-J «J ~CJ +J U ^’ CO V> 3 ! T3 XS -O <: c: 3 c o O 00 o 5* CO <JS ?*ssasssBsss;;>s!ss

  15. Space Shuttle Projects

    NASA Image and Video Library

    1984-04-07

    This is an onboard photo of the deployment of the Long Duration Exposure Facility (LDEF) from the cargo bay of the Space Shuttle Orbiter Challenger STS-41C mission, April 7, 1984. After a five year stay in space, the LDEF was retrieved during the STS-32 mission by the Space Shuttle Orbiter Columbia in January 1990 and was returned to Earth for close examination and analysis. The LDEF was designed by the Marshall Space Flight Center (MSFC) to test the performance of spacecraft materials, components, and systems that have been exposed to the environment of micrometeoroids, space debris, radiation particles, atomic oxygen, and solar radiation for an extended period of time. Proving invaluable to the development of both future spacecraft and the International Space Station (ISS), the LDEF carried 57 science and technology experiments, the work of more than 200 investigators, 33 private companies, 21 universities, 7 NASA centers, 9 Department of Defense laboratories, and 8 forein countries.

  16. Spectral infrared hemispherical reflectance measurements for LDEF tray clamps

    NASA Technical Reports Server (NTRS)

    Wood, Bobby E.; Cromwell, Brian K.; Pender, Charles W.; Shepherd, Seth D.

    1992-01-01

    This paper describes infrared hemispherical reflectance measurements (2-15 microns) that were made on 58 chromic acid anodized tray clamps retrieved from the LDEF spacecraft. These clamps were used for maintaining the experiments in place and were located at various locations about the spacecraft. Changes in reflectance of the tray clamps at these locations were compared with atomic oxygen fluxes at the same locations. A decrease in absorption band depth was seen for the surfaces exposed to space indicating that there was some surface layer erosion. In all of the surfaces measured, little evidence of contamination was observed and none of the samples showed evidence of the brown nicotine stain that was so prominent in other experiments. Total emissivity values were calculated for both exposed and unexposed tray clamp surfaces. Only small differences, usually less than 1 percent, were observed. The spectral reflectances were measured using a hemi-ellipsoidal mirror reflectometer matched with an interferometer spectrometer. The rapid scanning capability of the interferometer allowed the reflectance measurements to be made in a timely fashion. The ellipsoidal mirror has its two foci separated by 2 inches and located on the major axis. A blackbody source was located at one focus while the tray clamp samples were located at the conjugate focus. The blackbody radiation was modulated and then focused by the ellipsoid onto the tray clamps. Radiation reflected from the tray clamp was sampled by the interferometer by viewing through a hole in the ellipsoid. A gold mirror (reflectance approximately 98 percent) was used as the reference surface.

  17. Long Duration Exposure Facility (LDEF) low temperature Heat Pipe Experiment Package (HEPP) flight results

    NASA Technical Reports Server (NTRS)

    Mcintosh, Roy; Mccreight, Craig; Brennan, Patrick J.

    1993-01-01

    The Low Temperature Heat Pipe Flight Experiment (HEPP) is a fairly complicated thermal control experiment that was designed to evaluate the performance of two different low temperature ethane heat pipes and a low-temperature (182 K) phase change material. A total of 390 days of continuous operation with an axially grooved aluminum fixed conductance heat pipe and an axially grooved stainless steel heat pipe diode was demonstrated before the data acquisition system's batteries lost power. Each heat pipe had approximately 1 watt applied throughout this period. The HEPP was not able to cool below 188.6 K during the mission. As a result, the preprogrammed transport test sequence which initiates when the PCM temperature drops below 180 K was never exercised, and transport tests with both pipes and the diode reverse mode test could not be run in flight. Also, because the melt temperature of the n-heptane PCM is 182 K, its freeze/thaw behavior could not be tested. Post-flight thermal vacuum tests and thermal analyses have indicated that there was an apparent error in the original thermal analyses that led to this unfortunate result. Post-flight tests have demonstrated that the performance of both heat pipes and the PCM has not changed since being fabricated more than 14 years ago. A summary of HEPP's flight data and post-flight test results are presented.

  18. Organic matrix composite protective coatings for space applications

    NASA Technical Reports Server (NTRS)

    Dursch, Harry W.; George, Pete

    1995-01-01

    Successful use of composites in low earth orbit (LEO) depends on their ability to survive long-term exposure to atomic oxygen (AO), ultraviolet radiation, charged particle radiation, thermal cycling, and micrometeoroid and space debris. The AO environment is especially severe for unprotected organic matrix composites surfaces in LEO. Ram facing unprotected graphite/epoxy flown on the 69-month Long Duration Exposure Facility (LDEF) mission lost up to one ply of thickness (5 mils) resulting in decreased mechanical properties. The expected AO fluence of the 30 year Space Station Alpha mission is approximately 20 times that seen on LDEF. This exposure would result in significant material loss of unprotected ram facing organic matrix composites. Several protective coatings for composites were flown on LDEF including anodized aluminum, vacuum deposited coatings, a variety of thermal control coatings, metalized Teflon, and leafing aluminum. Results from the testing and analysis of the coated and uncoated composite specimens flown on LDEF's leading and trailing edges provide the baseline for determining the effectiveness of protectively coated composites in LEO. In addition to LDEF results, results from shuttle flight experiments and ground based testing will be discussed.

  19. Natural and orbital debris particles on LDEF's trailing and forward-facing surfaces

    NASA Technical Reports Server (NTRS)

    Hoerz, Friedrich; See, Thomas H.; Bernhard, Ronald P.; Brownlee, Donald E.

    1995-01-01

    Approximately 1000 impact craters on the Chemistry of Meteoroid Experiment (CME) have been analyzed by means of Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Analysis (EDXA) to determine the compositional make-up of projectile residues. This report completes our systematic survey of gold and aluminum surfaces exposed at the trailing-edge (A03) and forward-facing (A11) LDEF sites, respectively. The major categories for the projectile residues were (1) natural, with diverse subgroups such as chondritic, monomineralic silicates, and sulfides, and (2) man made, that were classified into aluminum (metallic or oxide) and miscellaneous materials (such as stainless steel, paint flakes, etc). On CME gold collectors on LDEF's trailing edge approximately 11 percent of all craters greater than 100 micron in diameter were due to man-made debris, the majority (8.6 percent) caused by pure aluminum, approximately 31.4 percent were due to cosmic dust, while the remaining 58 percent were indeterminate via the analytical techniques utilized in this study. The aluminum surfaces located at the A11 forward-facing site did not permit analysis of aluminum impactors, but approximately 9.4 percent of all craters were demonstratably caused by miscellaneous debris materials and approximately 39.2 percent were the result of natural particles, leaving approximately 50 percent which were indeterminate. Model considerations and calculations are presented that focus on the crater-production rates for features greater than 100 micron in diameter, and on assigning the intermediate crater population to man-made or natural particles. An enhancement factor of 6 in the crater-production rate of natural impactors for the 'forward-facing' versus the 'trailing-edge' CME collectors was found to best explain all observations (i.e., total crater number(s), as well as their computational characteristics). Enhancement factors of 10 and 4 are either too high or too low. It is also suggested that

  20. Effects of LDEF flight exposure on selected polymer matrix resin composite materials

    NASA Technical Reports Server (NTRS)

    Slemp, Wayne S.; Young, Philip R.; Witte, William G., Jr.; Shen, James Y.

    1991-01-01

    The characterization of selected graphite fiber reinforced epoxy and polysulfone matrix resin composites which received exposure to the LEO environment on the LDEF is reported. The changes in mechanical properties of ultimate tensile strength and tensile modulus for exposed flight specimens are compared to the three sets of control specimens. Marked changes in surface appearance are discussed, and resin loss is reported. The chemical characterization including IR, thermal, and selected solution property measurements showed that the molecular structure of the polymeric matrix had not changed significantly in response to this exposure.

  1. Composite materials flown on the Long Duration Exposure Facility

    NASA Technical Reports Server (NTRS)

    George, Pete E.; Dursch, Harry W.; Pippin, H. Gary

    1995-01-01

    Organic composite test specimens were flown on several LDEF experiments. Both bare and coated composites were flown. Atomic oxygen eroded bare composite material, with the resins being recessed at a greater rate than the fibers. Selected coating techniques protected the composite substrate in each case. Tensile and optical properties are reported for numerous specimens. Fiberglass and metal matrix composites were also flown.

  2. Whisker/Cone growth on the thermal control surfaces experiment no. S0069

    NASA Technical Reports Server (NTRS)

    Zwiener, James M.; Coston, James E., Jr.; Miller, Edgar R.; Mell, Richard J.; Wilkes, Donald R.

    1995-01-01

    An unusual surface 'growth' was found during scanning electron microscope (SEM) investigations of the Thermal Control Surface Experiment (TCSE) S0069 front thermal cover. This 'growth' is similar to the cone type whisker growth phenomena as studied by G. K. Wehner beginning in the 1960's. Extensive analysis has identified the most probable composition of the whiskers to be a silicate type glass. Sources of the growth material are outgassing products from the experiment and orbital atomic oxygen, which occurs naturally at the orbital altitudes of the LDEF mission in the form of neutral atomic oxygen. The highly ordered symmetry and directionality of the whiskers are attributed to the long term (5.8 year) stable flight orientation of the LDEF.

  3. New meteoroid model predictions for directional impacts on LDEF

    NASA Technical Reports Server (NTRS)

    Divine, Neil; Agueero, Rene C.

    1993-01-01

    An extensive body of data, from meteors, zodiacal light, spacecraft-borne impact detectors (Helios, Pioneer, Galileo, Ulysses), and other sources, forms the basis of a new numerical model for the distributions of interplanetary meteoroids. For each of the five populations in this model it is possible to evaluate meteoroid concentration and flux for oriented surfaces or detectors having arbitrary position and velocity in interplanetary space. For a spacecraft in geocentric orbit the effects of gravitational focussing and shielding by the Earth have been newly derived with full attention to the directionality of the particles, both on approach (i.e., relative to a massless Earth) and at the target. This modeling approach was exercised to provide an estimate of meteoroid fluence for each of several oriented surfaces on LDEF.

  4. Characteristics of hypervelocity impact craters on LDEF experiment S1003 and implications of small particle impacts on reflective surfaces

    NASA Technical Reports Server (NTRS)

    Mirtich, Michael J.; Rutledge, Sharon K.; Banks, Bruce A.; Devries, Christopher; Merrow, James E.

    1993-01-01

    The Ion Beam textured and coated surfaces EXperiment (IBEX), designated S1003, was flown on LDEF at a location 98 deg in a north facing direction relative to the ram direction. Thirty-six diverse materials were exposed to the micrometeoroid (and some debris) environment for 5.8 years. Optical property measurements indicated no changes for almost all of the materials except S-13G, Kapton, and Kapton-coated surfaces, and these changes can be explained by other environmental effects. From the predicted micrometeoroid flux of NASA SP-8013, no significant changes in optical properties of the surfaces due to micrometeoroids were expected. There were hypervelocity impacts on the various diverse materials flown on IBEX, and the characteristics of these craters were documented using scanning electron microscopy (SEM). The S1003 alumigold-coated aluminum cover tray was sectioned into 2 cm x 2 cm pieces for crater documentation. The flux curve generated from this crater data fits well between the 1969 micrometeoroid model and the Kessler debris model for particles less than 10(exp -9) gm which were corrected for the S1003 positions (98 deg to ram). As the particle mass increases, the S1003 impact data is greater than that predicted by even the debris model. This, however, is consistent with data taken on intercostal F07 by the Micrometeoroid/Debris Special Investigating Group (M/D SIG). The mirrored surface micrometeoroid detector flown on IBEX showed no change in solar reflectance and corroborated the S1003 flux curve, as well as results of this surface flown on SERT 2 and OSO 3 for as long as 21 years.

  5. Image and compositional characteristics of the LDEF Big Guy impact crater

    NASA Technical Reports Server (NTRS)

    Bunch, T. E.; Paque, Julie M.; Zolensky, Michael

    1995-01-01

    A 5.2 mm crater in Al-metal represents the largest found on LDEF. We have examined this crater by field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS) and time-of-flight/secondary ion mass spectroscopy (TOF-SIMS) in order to determine if there is any evidence of impactor residue. Droplet and dome-shaped columns, along with flow features, are evidence of melting. EDS from the crater cavity and rim show Mg, C, O and variable amounts of Si, in addition to Al. No evidence for a chondritic impactor was found, and it hypothesized that the crater may be the result of impact with space debris.

  6. Detailed examination of LDEF's frame and the A0178 thermal blankets by the meteoroid and debris special investigations group

    NASA Astrophysics Data System (ADS)

    See, Thomas H.; Warren, Jack L.; Mack, Kimberly S.; Zolensky, Michael E.

    1992-06-01

    A responsibility of the group is to define the hypervelocity particle environment encountered by LDEF during its stay in low Earth orbit. LDEF's 6061-T6 aluminum frame and the 'Teflon silver-inconel paint' thermal blankets represent large surface areas that were widely distributed around the spacecraft. The results are reported of high resolution scans of approx. 0.36 and approx. 0.31 sq m for the intercostals and thermal blankets, respectively. The findings are in qualitative agreement with existing model predictions that suggest high differential bombardment histories for surfaces pointing into specific directions relative to the velocity vector of a non-spinning platform in LEO. The production rate for craters greater than or = 50 microns in diameter in aluminum and penetration holes greater than or = 100 microns in diameter in thin foil materials differ by more than a factor of 10 between forward and rearward facing surfaces. These are substantial differences that must be considered during the design of future long duration space platforms in LEO.

  7. Detailed examination of LDEF's frame and the A0178 thermal blankets by the meteoroid and debris special investigations group

    NASA Technical Reports Server (NTRS)

    See, Thomas H.; Warren, Jack L.; Mack, Kimberly S.; Zolensky, Michael E.

    1992-01-01

    A responsibility of the group is to define the hypervelocity particle environment encountered by LDEF during its stay in low Earth orbit. LDEF's 6061-T6 aluminum frame and the 'Teflon silver-inconel paint' thermal blankets represent large surface areas that were widely distributed around the spacecraft. The results are reported of high resolution scans of approx. 0.36 and approx. 0.31 sq m for the intercostals and thermal blankets, respectively. The findings are in qualitative agreement with existing model predictions that suggest high differential bombardment histories for surfaces pointing into specific directions relative to the velocity vector of a non-spinning platform in LEO. The production rate for craters greater than or = 50 microns in diameter in aluminum and penetration holes greater than or = 100 microns in diameter in thin foil materials differ by more than a factor of 10 between forward and rearward facing surfaces. These are substantial differences that must be considered during the design of future long duration space platforms in LEO.

  8. Skylab D024 thermal control coatings and polymeric films experiment

    NASA Technical Reports Server (NTRS)

    Lehn, William L.; Hurley, Charles J.

    1992-01-01

    The Skylab D024 Thermal Control Coatings and Polymeric Films Experiment was designed to determine the effects of the external Skylab space environment on the performance and properties of a wide variety of selected thermal control coatings and polymeric films. Three duplicate sets of thermal control coatings and polymeric films were exposed to the Skylab space environment for varying periods of time during the mission. The specimens were retrieved by the astronauts during extravehicular activities (EVA) and placed in hermetically sealed return containers, recovered, and returned to the Wright Laboratory/Materials Laboratory/WPAFB, Ohio for analysis and evaluation. Postflight analysis of the three sets of recovered thermal control coatings indicated that measured changes in specimen thermo-optical properties were due to a combination of excessive contamination and solar degradation of the contaminant layer. The degree of degradation experienced over-rode, obscured, and compromised the measurement of the degradation of the substrate coatings themselves. Results of the analysis of the effects of exposure on the polymeric films and the contamination observed are also presented. The D024 results were used in the design of the LDEF M0003-5 Thermal Control Materials Experiment. The results are presented here to call to the attention of the many other LDEF experimenters the wealth of directly related, low earth orbit, space environmental exposure data that is available from the ten or more separate experiments that were conducted during the Skylab mission. Results of these experiments offer data on the results of low altitude space exposure on materials recovered from space with exposure longer than typical STS experiments for comparison with the LDEF results.

  9. LDEF active optical system components experiment

    NASA Technical Reports Server (NTRS)

    Blue, M. D.

    1992-01-01

    A preliminary report on the Active Optical System Components Experiment is presented. This experiment contained 136 components in a six inch deep tray including lasers, infrared detectors and arrays, ultraviolet light detectors, light-emitting diodes, a light modulator, flash lamps, optical filters, glasses, and samples of surface finishes. Thermal, mechanical, and structural considerations leading to the design of the tray hardware are discussed. In general, changes in the retested component characteristics appear as much related to the passage of time as to the effects of the space environment, but organic materials, multilayer optical interference filters, and extreme-infrared reflectivity of black paints show unexpected changes.

  10. The role of the Long Duration Exposure Facility in the development of space systems

    NASA Technical Reports Server (NTRS)

    Little, Sally A.

    1992-01-01

    The Long Duration Exposure Facility (LDEF) presents the international, aerospace community with an unprecedented opportunity to examine the synergistic, long term, space environmental effects on systems and materials. The analysis of the data within appropriate environmental contexts is essential to the overall process of advancing the understanding of space environmental effects needed for the continuing development of strategies to improve the reliability and durability of space systems and to effectively deal with the future challenges that new space initiatives will likely present.

  11. Evaluation of adhesive materials used on the Long Duration Exposure Facility

    NASA Technical Reports Server (NTRS)

    Dursch, H. W.; Keough, B. K.; Pippin, H. G.

    1995-01-01

    The adhesive and adhesive-like materials flown on LDEF included epoxies and silicones (including lap shear specimens), conformal coatings, potting compounds, and several tapes and transfer films. With the exception of the lap shear specimens, these materials were used in the fabrication and assembly of the experiments such as bonding thermal control surfaces to other hardware and holding individual specimens in place, similar to applications on other spacecraft. Typically, the adhesives were not exposed to solar radiation or atomic oxygen. Only one adhesive system was used in a structural application. This report documents all results of the Materials and Systems SIG investigation into the effect of long term low Earth orbit (LEO) exposure of these materials. Results of this investigation show that if the material was shielded from exposure to LDEF's external environment, the 69 month exposure to LEO had, in most cases, minimal effect on the material.

  12. Further analysis of LDEF FRECOPA micrometeroid remnants

    NASA Technical Reports Server (NTRS)

    Borg, J.; Bunch, T. E.; Radicatidibrozolo, Filippo

    1992-01-01

    Experiments dedicated to the detection of interplanetary dust particles (IDP's) were exposed within the FRECOPA payload, installed on the face of the LDEF directly opposed to the velocity vector (west facing direction, location B3). We were mainly interested in the analysis of hypervelocity impact features of sizes less than or = 10 microns, found in thick Al targets devoted to the research of impact features. In the 15 craters found in the scanned area (approximately 4 sq. cm), the chemical analysis suggests an extraterrestrial origin for the impacting particles. The main elements we identified are usually refered to as chondrite elements: Na, Mg, Si, S, Ca, and Fe are found in various proportions, intrinsic Al being masked by the Al target; we notice a strong depletion in Ni, never observed in our samples. Furthermore, C and O are present in 90 percent of the cases; the C/O peak height ratio varies from 0.1 to 3. Impactor simulations by light gas gun hypervelocity impact experiments have shown that meaningful biogenic element and compound information maybe obtained from IDP residues below impacts of critical velocities, that are less than or = 4 km/sec for particles larger than 100 microns in diameter. Our results obtained for the smaller size fraction IDP's suggest that at such sizes, the critical velocity could be higher by a factor of 2 or 3, as chemical analysis of the remnants were possible in all the identified impact craters, performed on targets possibly hit at velocities greater than or = 7.5 km/s, which is the spacecraft velocity. These samples are now subjected to an imagery and analytical protocol that includes FESEM (field emission scanning electron microscopy) and LIMS (laser ionization mass spectrometry). The LIMS analyses were performed using the LIMA-ZA instrument. Results are presented, clearly indicating that such small events show crater features analogous to what is observed at larger sizes; our first analytical results, obtained for 2 events

  13. Analysis of selected specimens from the STS-46 Energetic Oxygen Interaction with Materials-3 experiment

    NASA Technical Reports Server (NTRS)

    Golden, Johnny L.; Bourassa, Roger J.; Dursch, Harry W.; Pippin, H. Gary

    1995-01-01

    The Energetic Oxygen Interaction with Materials 3 (EOIM-3) experiment was flown on the STS-46 mission, which was launched on 31 Jul. 1992 and returned 8 Aug. 1992. Boeing specimens were located on both the NASA Marshall Space Flight Center (MSFC) tray and the Ballistic Missile Defense Organization (BMDO) tray integrated by the Jet Propulsion Laboratory (JPL). The EOIM-3 pallet was mounted in the Space Shuttle payload bay near the aft bulkhead. During the mission, the atomic oxygen (AO) exposure levels of specimens in these passive sample trays was about 2.3 x 10(exp 20) atoms/sq cm. The specimens also received an estimated 22 equivalent sun hours of solar exposure. In addition, it appears that the EOIM-3 pallet was exposed to a silicone contamination source and many specimens had a thin layer of silicon based deposit on their surfaces after the flight. The specimens on the MSFC tray included seven solid film lubricants, a selection of butyl rubber (B612) and silicone (S383) o-rings, three indirect scatter surfaces, and Silver/Fluorinated Ethylene Propylene (Ag/FEP) and Chemglaze A276 specimens which had previously flown on trailing edge locations of the Long Duration Exposure Facility (LDEF). The specimens on the JPL tray included composites previously flown on LDEF and two indirect scattering surfaces.

  14. The effect of the low Earth orbit environment on space solar cells: Results of the advanced photovoltaic experiment (S0014)

    NASA Technical Reports Server (NTRS)

    Brinker, David J.; Hickey, John R.

    1992-01-01

    The Advanced Photovoltaic Experiment (APEX), containing over 150 solar cells and sensors, was designed to generate laboratory reference standards as well as to explore the durability of a wide variety of space solar cells. Located on the leading edge of the Long Duration Exposure Facility (LDEF), APEX received the maximum possible dosage of atomic oxygen and ultraviolet radiation, as well as enormous numbers of impacts from micrometeoroids and debris. The effect of the low earth orbital (LEO) environment on the solar cells and materials of APEX will be discussed in this paper. The on-orbit performance of the solar cells, as well as a comparison of pre- and postflight laboratory performance measurements, will be presented.

  15. Small craters on the meteoroid and space debris impact experiment

    NASA Technical Reports Server (NTRS)

    Humes, Donald H.

    1995-01-01

    Examination of 9.34 m(exp 2) of thick aluminum plates from the Long Duration Exposure Facility (LDEF) using a 25X microscope revealed 4341 craters that were 0.1 mm in diameter or larger. The largest was 3 mm in diameter. Most were roughly hemispherical with lips that were raised above the original plate surface. The crater diameter measured was the diameter at the top of the raised lips. There was a large variation in the number density of craters around the three-axis gravity-gradient stabilized spacecraft. A model of the near-Earth meteoroid environment is presented which uses a meteoroid size distribution based on the crater size distribution on the space end of the LDEF. An argument is made that nearly all the craters on the space end must have been caused by meteoroids and that very few could have been caused by man-made orbital debris. However, no chemical analysis of impactor residue that will distinguish between meteoroids and man-made debris is yet available. A small area (0.0447 m(exp 2)) of one of the plates on the space end was scanned with a 200X microscope revealing 155 craters between 10 micron and 100 micron in diameter and 3 craters smaller than 10 micron. This data was used to extend the size distribution of meteoroids down to approximately 1 micron. New penetration equations developed by Alan Watts were used to relate crater dimensions to meteoroid size. The equations suggest that meteoroids must have a density near 2.5 g/cm(exp 3) to produce craters of the shape found on the LDEF. The near-Earth meteoroid model suggests that about 80 to 85 percent of the 100 micron to 1 mm diameter craters on the twelve peripheral rows of the LDEF were caused by meteoroids, leaving 15 to 20 percent to be caused by man-made orbital debris.

  16. Total Dose Effects (TDE) of heavy ionizing radiation in fungus spores and plant seeds: Preliminary investigations

    NASA Technical Reports Server (NTRS)

    Kranz, A. R.; Zimmermann, M. W.; Stadler, R.; Gartenbach, K. E.; Pickert, M.

    1992-01-01

    The opportunity to compare cosmic radiation effects caused during long and short duration exposure flights in biological objects are limited until now, and data obtained so far are very rare and insufficient. Because of the very long exposure of the experiment during the Long Duration Exposure Facility (LDEF) mission (approximately 2000 days) structural changes of the hardware material can be expected which will influence its biocompatibility and, thus, will interact with the radiobiological effects. The aim of the experiment flown on LDEF was a detailed investigation of biological effects caused by cosmic radiation especially of particles of high atomic number Z and high energy. The flight hardware consisted of standard BIOSTACK containers; in these containers a special sandwich construction consisted of visual plastic detectors with seed rsp. spore layers interlocked.

  17. Radioactivities induced in some LDEF samples

    NASA Technical Reports Server (NTRS)

    Reedy, Robert C.; Moss, Calvin E.

    1992-01-01

    Final activities are reported for gamma ray emitting isotopes measured in 35 samples from LDEF. In 26 steel trunnion samples, activities of Mn-54 and Co-57 were measured and limits set on other isotopes. In five Al end support retainer plates and two Al keel plate samples, Na-22 was measured. In two Ti clip samples, Na-22 was measured, limits for Sc-46 were obtained, and high activities for impurity Uranium and daughter isotopes were observed. Four sets of depth vs activity profiles were measured for the D sections of the trunnion. For all 4 profiles, the activities first decreased with increasing distance from the surface of the trunnion but were fairly flat near the center. These profiles are consistent with production by both the lower energy (approx. 100 MeV) trapped particles and high energy (approx. 10 GeV) galactic-cosmic ray particles. For the near surface samples, the earth quadrant had more Mn-54 than the space quadrant. For the D sections, there was less Mn-54 in the east trunnion than in the west trunnion. Comparisons are made among the samples and with activities measured by others. The limit for Sc-46 in the Ti clips is compared with the activities of Mn-54 produced in the steel pieces by similar reactions. Activities predicted by several models are compared with the measured activities.

  18. Instellar Gas Experiment (IGE): Testing interstellar gas particles to provide information on the processes of nucleosynthesis in the big bang stars and supernova

    NASA Technical Reports Server (NTRS)

    Lind, Don

    1985-01-01

    The Interstellar Gas Experiment (IGE) is designed to collect particles of the interstellar gas - a wind of interstellar media particles moving in the vicinity of the solar system. These particles will be returned to earth where the isotopic ratios of the noble gases among these particles will be measured. IGE was designed and programmed to expose 7 sets of six copper-beryllium metallic collecting foils to the flux of neutral interstellar gas particles which penetrate the heliosphere to the vicinity of the earth's orbit. These particles are trapped in the collecting foils and will be returned to earth for mass-spectrographic analysis when Long Duration Exposure Facility (LDEF) on which IGE was launched, is recovered.

  19. Material Processing Facility - Skylab Experiment M512

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This chart details Skylab's Materials Processing Facility experiment (M512). This facility, located in the Multiple Docking Adapter, was developed for Skylab and accommodated 14 different experiments that were carried out during the three marned missions. The abilities to melt and mix without the contaminating effects of containers, to suppress thermal convection and buoyancy in fluids, and to take advantage of electrostatic and magnetic forces and otherwise masked by gravitation opened the way to new knowledge of material properties and processes. This beginning would ultimately lead to the production of valuable new materials for use on Earth.

  20. Photo from Space Shuttle Mission 41-C of the Long Duration Exposure

    NASA Image and Video Library

    1989-12-06

    Photo from Space Shuttle Mission 41-C of the Long Duration Exposure Facility (LDEF) deploy by CHALLENGER and a Langley Research Center (LRC) supplied art concept of the LDEF recovery by COLUMBIA during Space Shuttle Mission STS-32. LRC # L-89-11-720 for JSC # S89-50779

  1. Damage areas on selected LDEF aluminum surfaces

    NASA Technical Reports Server (NTRS)

    Coombs, Cassandra R.; Atkinson, Dale R.; Allbrooks, Martha K.; Watts, Alan J.; Hennessy, Corey J.; Wagner, John D.

    1993-01-01

    With the U.S. about to embark on a new space age, the effects of the space environment on a spacecraft during its mission lifetime become more relevant. Included among these potential effects are degradation and erosion due to micrometeoroid and debris impacts, atomic oxygen and ultraviolet light exposure as well as material alteration from thermal cycling, and electron and proton exposure. This paper focuses on the effects caused by micrometeoroid and debris impacts on several LDEF aluminum plates from four different bay locations: C-12, C-10, C-01, and E-09. Each plate was coated with either a white, black, or gray thermal paint. Since the plates were located at different orientations on the satellite, their responses to the hypervelocity impacts varied. Crater morphologies range from a series of craters, spall zones, domes, spaces, and rings to simple craters with little or no spall zones. In addition, each of these crater morphologies is associated with varying damage areas, which appear to be related to their respective bay locations and thus exposure angles. More than 5% of the exposed surface area examined was damaged by impact cratering and its coincident effects (i.e., spallation, delamination and blow-off). Thus, results from this analysis may be significant for mission and spacecraft planners and designers.

  2. Shuttle Laser Technology Experiment Facility (LTEF)-to-airplane lasercom experiment: Airplane considerations

    NASA Technical Reports Server (NTRS)

    Kalil, Ford

    1990-01-01

    NASA is considering the use of various airplanes for a Shuttle Laser Technology Experiment Facility (LTEF)-to-Airplane laser communications experiment. As supporting documentation, pertinent technical details are included about the potential use of airplanes located at Ames Research Center and Wallops Flight Facility. The effects and application of orbital mechanics considerations are also presented, including slant range, azimuth, elevation, and time. The pros and cons of an airplane equipped with a side port with a bubble window versus a top port with a dome are discussed.

  3. LOH- RadGene experiment at Cell Biology Experiment Facility (CBEF)

    NASA Image and Video Library

    2009-02-20

    ISS018-E-034074 (20 Feb. 2009) --- Astronaut Sandra Magnus, Expedition 18 flight engineer, works with the LOH- RadGene experiment near the Cell Biology Experiment Facility (CBEF) in the Kibo laboratory of the International Space Station. This experiment investigates alterations in immature immune cells that have been exposed to cosmic radiation. The samples were placed in culture bags and launched to the ISS on the STS-126 mission. After the experiment, frozen samples will be returned to the ground on the STS-119 mission.

  4. Post flight system analysis of FRECOPA (AO 138)

    NASA Technical Reports Server (NTRS)

    Durin, Christian

    1991-01-01

    The unexpected duration for the flight of the Long Duration Exposure Facility (LDEF) conducted CNES to create a special investigation group in order to analyze all the materials and systems which compose the French Cooperative Payload (FRECOPA) except the experiments especially prepared for the flight. The FRECOPA tray was on the trailing face (V-) of the LDEF and protected from the atomic oxygen flux during all the flight. However, the solar irradiation was very important with solar flux quite perpendicular to the experiment once an orbit. There was also a good vacuum environment. The objectives are to test the effects of the combined space environment on materials and components like: structure, thermal control coatings and blankets, electronic unit, motors, and mechanical fixtures. When the LDEF returned to Kennedy Space Center, a visual inspection showed the very good behavior of the materials used and it was noted that the three mechanisms to open and close the experiment canisters worked completely. Many impacts of micrometeoroids or space debris on the structure and on the thermal protections were observed. After FRECOPA was brought back to Toulouse, many tests were performed and include: working order tests, mechanical tests (tension), optical and electronic microscopy (SEM), surface analysis (ESCA, SIMS, RBS, AUGER, etc.), thermal analysis, pressure measurements, and gas analysis (outgassing tests). The results of these experiments are discussed.

  5. LOH- RadGene experiment at Cell Biology Experiment Facility (CBEF)

    NASA Image and Video Library

    2009-02-20

    ISS018-E-034555 (20 Feb. 2009) --- Astronaut Sandra Magnus, Expedition 18 flight engineer, takes a moment for a photo while working with the LOH- RadGene experiment at the Cell Biology Experiment Facility (CBEF) in the Kibo laboratory of the International Space Station. This experiment investigates genetic alterations in immature immune cells that have been exposed to cosmic radiation. The samples were placed in culture bags and launched to the ISS on the STS-126 mission. After the experiment, frozen samples will be returned to the ground on the STS-119 mission.

  6. LOH- RadGene experiment at Cell Biology Experiment Facility (CBEF)

    NASA Image and Video Library

    2009-02-20

    ISS018-E-034090 (20 Feb. 2009) --- Astronaut Sandra Magnus, Expedition 18 flight engineer, uses a communication system near the Cell Biology Experiment Facility (CBEF) in the Kibo laboratory of the International Space Station.

  7. The LDCE Particle Impact Experiment as flown on STS-46. [limited duration space environment candidate materials exposure (LDCE)

    NASA Technical Reports Server (NTRS)

    Maag, Carl R.; Tanner, William G.; Borg, Janet; Bibring, Jean-Pierre; Alexander, W. Merle; Maag, Andrew J.

    1992-01-01

    Many materials and techniques have been developed by the authors to sample the flux of particles in Low Earth Orbit (LEO). Though regular in-site sampling of the flux in LEO the materials and techniques have produced data which compliment the data now being amassed by the Long Duration Exposure Facility (LDEF) research activities. Orbital debris models have not been able to describe the flux of particles with d sub p less than or = 0.05 cm, because of the lack of data. Even though LDEF will provide a much needed baseline flux measurement, the continuous monitoring of micron and sub-micron size particles must be carried out. A flight experiment was conducted on the Space Shuttle as part of the LDCE payload to develop an understanding of the Spatial Density (concentration) as a function of size (mass) for particle sizes 1 x 10(exp 6) cm and larger. In addition to the enumeration of particle impacts, it is the intent of the experiment that hypervelocity particles be captured and returned intact. Measurements will be performed post flight to determine the flux density, diameters, and subsequent effects on various optical, thermal control and structural materials. In addition to these principal measurements, the Particle Impact Experiment (PIE) also provides a structure and sample holders for the exposure of passive material samples to the space environment, e.g., thermal cycling, and atomic oxygen, etc. The experiment will measure the optical property changes of mirrors and will provide the fluence of the ambient atomic oxygen environment to other payload experimenters. In order to augment the amount of material returned in a form which can be analyzed, the survivability of the experiment as well as the captured particles will be assessed. Using Sandia National Laboratory's hydrodynamic computer code CTH, hypervelocity impacts on the materials which comprise the experiments have been investigated and the progress of these studies are reported.

  8. FPEF (Fluid Physics Experiment Facility) for the planned MS (Marangoni Surface) experiment

    NASA Image and Video Library

    2009-07-01

    ISS020-E-016214 (1 July 2009) --- Canadian Space Agency astronaut Robert Thirsk, Expedition 20 flight engineer, prepares the Fluid Physics Experiment Facility (FPEF) for the planned Marangoni Surface experiment in the Kibo laboratory of the International Space Station.

  9. The ISS Fluids and Combustion Facility: Experiment Accommodations Summary

    NASA Technical Reports Server (NTRS)

    Corban, Robert R.; Simons, Stephen N. (Technical Monitor)

    2001-01-01

    The International Space Station's (ISS's) Fluids and Combustion Facility (FCF) is in the process of final design and development activities to accommodate a wide range of experiments in the fields of combustion science and fluid physics. The FCF is being designed to provide potential experiments with well defined interfaces that can meet the experimenters requirements, provide the flexibility for on-orbit reconfiguration, and provide the maximum capability within the ISS resources and constraints. As a multi-disciplined facility, the FCF supports various experiments and scientific objectives, which will be developed in the future and are not completely defined at this time. Since developing experiments to be performed within FCF is a continuous process throughout the FCF's operational lifetime, each individual experiment must determine the best configuration of utilizing facility capabilities and resources with augmentation of specific experiment hardware. Configurations of potential experiments in the FCF has been on-going to better define the FCF interfaces and provide assurances that the FCF design will meet its design requirements. This paper provides a summary of ISS resources and FCF capabilities, which are available for potential ISS FCF users. Also, to better understand the utilization of the FCF a description of a various experiment layouts and associated operations in the FCF are provided.

  10. NASDA aquatic animal experiment facilities for Space Shuttle and ISS.

    PubMed

    Uchida, Satoko; Masukawa, Mitsuyo; Kamigaichi, Shigeki

    2002-01-01

    National Space Development Agency of Japan (NASDA) has developed aquatic animal experiment facilities for NASA Space Shuttle use. Vestibular Function Experiment Unit (VFEU) was firstly designed and developed for physiological research using carp in Spacelab-J (SL-J, STS-47) mission. It was modified as Aquatic Animal Experiment Unit (AAEU) to accommodate small aquatic animals, such as medaka and newt, for second International Microgravity Laboratory (IML-2, STS-65) mission. Then, VFEU was improved to accommodate marine fish and to perform neurobiological experiment for Neurolab (STS-90) and STS-95 missions. We have also developed and used water purification system which was adapted to each facility. Based on these experiences of Space Shuttle missions, we are studying to develop advanced aquatic animal experiment facility for both Space Shuttle and International Space Station (ISS). c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  11. Model of spacecraft atomic oxygen and solar exposure microenvironments

    NASA Technical Reports Server (NTRS)

    Bourassa, R. J.; Pippin, H. G.

    1993-01-01

    Computer models of environmental conditions in Earth orbit are needed for the following reasons: (1) derivation of material performance parameters from orbital test data, (2) evaluation of spacecraft hardware designs, (3) prediction of material service life, and (4) scheduling spacecraft maintenance. To meet these needs, Boeing has developed programs for modeling atomic oxygen (AO) and solar radiation exposures. The model allows determination of AO and solar ultraviolet (UV) radiation exposures for spacecraft surfaces (1) in arbitrary orientations with respect to the direction of spacecraft motion, (2) overall ranges of solar conditions, and (3) for any mission duration. The models have been successfully applied to prediction of experiment environments on the Long Duration Exposure Facility (LDEF) and for analysis of selected hardware designs for deployment on other spacecraft. The work on these models has been reported at previous LDEF conferences. Since publication of these reports, a revision has been made to the AO calculation for LDEF, and further work has been done on the microenvironments model for solar exposure.

  12. Progress report on the ultra heavy cosmic ray experiment (AO178)

    NASA Technical Reports Server (NTRS)

    Thompson, A.; Osullivan, D.; Bosch, J.; Keegan, R.; Wenzel, K.-P.; Jansen, F.; Domingo, C.

    1993-01-01

    The Ultra Heavy Cosmic Ray Experiment (UHCRE) is based on a modular array of 192 side-viewing solid state nuclear track detector stacks. These stacks were mounted in sets of four in 48 pressure vessels employing sixteen peripheral Long Duration Exposure Facility (LDEF) trays. The extended duration of the LDEF mission has resulted in a greatly enhanced scientific yield from the UHCRE. The geometry factor for high energy cosmic ray nuclei, allowing for Earth shadowing, was 30 sq m-sr, giving a total exposure factor of 170 sq m-sr-y at an orbital inclination of 28.4 degrees. Scanning results indicate that about 3000 cosmic ray nuclei in the charge region with Z greater than 65 were collected. This sample is more than ten times the current world data in the field (taken to be the data set from the HEAO-3 mission plus that from the Ariel-6 mission) and is sufficient to provide the world's first statistically significant sample of actinide (Z greater than 88) cosmic rays. Results to date are presented including details of ultra-heavy cosmic ray nuclei, analysis of pre-flight and post-flight calibration events and details of track response in the context of detector temperature history. The integrated effect of all temperature and age related latent track variations cause a maximum charge shift of +/- 0.8 e for uranium and +/- 0.6 e for the platinum-lead group. The precision of charge assignment as a function of energy is derived and evidence for remarkably good charge resolution achieved in the UHCRE is considered. Astrophysical implications of the UHCRE charge spectrum are discussed.

  13. First biological and dosimetric results of the free flyer biostack experiment AO015 on LDEF

    NASA Technical Reports Server (NTRS)

    Reitz, G.; Buecker, H.; Facius, R.; Horneck, G.; Schaeffer, M.; Schott, J. U.; Bayonove, J.; Beaujean, R.; Benton, E. V.; Delpoux, M.

    1991-01-01

    The main objectives of the Biostack Experiment are to study the effectiveness of the structured components of the cosmic radiation to bacterial spores, plant seeds, and animal cysts for a long duration spaceflight and to get dosimetric data such as particle fluences and spectra and total doses for the Long Duration Exposure Facility orbit. The configuration of the experiment packages allows the localization of the trajectory of the particles in each biological layer and to correlate the potential biological impairment or injury with the physical characteristics of the responsible particle. Although the Biostack Experiment was designed for a long duration flight of only nine months, most of the biological systems show a high hatching or germination rate. Some of the first observations are an increase of the mutation rate of embryonic lethals in the second generation of Arabidopsis seeds, somatic mutations, and a reduction of growth rates of corn plants and a reduction of life span of Artemia salina shrimps. The different passive detector systems are also in a good shape and give access to a proper dosimetric analysis. The results are summarized, and some aspects of future analysis are shown.

  14. Analysis of selected materials flown on interior locations of the Long Duration Exposure Facility

    NASA Technical Reports Server (NTRS)

    Smith, H. A.; Nelson, K. M.; Eash, D.; Pippin, H. G.

    1994-01-01

    This report documents the post-flight condition of selected hardware taken from interior locations on the Long Duration Exposure Facility (LDEF). This hardware was generally in excellent condition. Outgassing data is presented for heat shrink tubing and fiberglass composite shims. Variation in total mass loss (TML) values for heat shrink tubing were correlated with location. Nylon grommets were evaluated for mechanical integrity; slight embrittlement was observed for flight specimens. Multi-layer insulation blankets, wire bundles, and paints in non-exposed interior locations were all in visibly good condition. Silicon-containing contaminant films were observed on silver-coated hex nuts at the space- and Earth-end interior locations.

  15. Space Station Furnace Facility. Experiment/Facility Requirements Document (E/FRD), volume 2, appendix 5

    NASA Technical Reports Server (NTRS)

    Kephart, Nancy

    1992-01-01

    The function of the Space Station Furnace Facility (SSFF) is to support materials research into the crystal growth and solidification processes of electronic and photonic materials, metals and alloys, and glasses and ceramics. To support this broad base of research requirements, the SSFF will employ a variety of furnace modules operated, regulated, and supported by a core of common subsystems. Furnace modules may be reconfigured or specifically developed to provide unique solidifcation conditions for each set of experiments. The SSFF modular approach permits the addition of new or scaled-up furnace modules to support the evolution of the facility as new science requirements are identified. The SSFF Core is of modular design to permit augmentation for enhanced capabilities. The fully integrated configuration of the SSFF will consist of three racks with the capability of supporting up to two furnace modules per rack. The initial configuration of the SSFF will consist of two of the three racks and one furnace module. This Experiment/Facility Requirements Document (E/FRD) describes the integrated facility requirements for the Space Station Freedom (SSF) Integrated Configuration-1 (IC1) mission. The IC1 SSFF will consist of two racks: the Core Rack, with the centralized subsystem equipment, and the Experiment Rack-1, with Furnace Module-1 and the distributed subsystem equipment to support the furnace.

  16. Preliminary results of radiation measurements on EURECA

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Frank, A. L.

    1995-01-01

    The eleven-month duration of the EURECA mission allows long-term radiation effects to be studied similarly to those of the Long Duration Exposure Facility (LDEF). Basic data can be generated for projections to crew doses and electronic and computer reliability on spacecraft missions. A radiation experiment has been designed for EURECA which uses passive integrating detectors to measure average radiation levels. The components include a Trackoscope, which employs fourteen plastic nuclear track detector (PNTD) stacks to measure the angular dependence of high LET (greater than or equal to 6 keV/micro m) radiation. Also included are TLD's for total absorbed doses, thermal/resonance neutron detectors (TRND's) for low energy neutron fluences and a thick PNTD stack for depth dependence measurements. LET spectra are derived from the PNTD measurements. Preliminary TLD results from seven levels within the detector array show that integrated does inside the flight canister varied from 18.8 +/- 0.6 cGy to 38.9 +/- 1.2 cGy. The TLD's oriented toward the least shielded direction averaged 53% higher in dose than those oriented away from the least shielded direction (minimum shielding toward the least shielded direction varied from 1.13 to 7.9 g/cm(exp 2), Al equivalent). The maximum dose rate on EURECA (1.16 mGy/day) was 37% of the maximum measured on LDEF and dose rates at all depths were less than measured on LDEF. The shielding external to the flight canister covered a greater solid angle about the canister than the LDEF experiments.

  17. Description of the Spacecraft Control Laboratory Experiment (SCOLE) facility

    NASA Technical Reports Server (NTRS)

    Williams, Jeffrey P.; Rallo, Rosemary A.

    1987-01-01

    A laboratory facility for the study of control laws for large flexible spacecraft is described. The facility fulfills the requirements of the Spacecraft Control Laboratory Experiment (SCOLE) design challenge for a laboratory experiment, which will allow slew maneuvers and pointing operations. The structural apparatus is described in detail sufficient for modelling purposes. The sensor and actuator types and characteristics are described so that identification and control algorithms may be designed. The control implementation computer and real-time subroutines are also described.

  18. Description of the Spacecraft Control Laboratory Experiment (SCOLE) facility

    NASA Technical Reports Server (NTRS)

    Williams, Jeffrey P.; Rallo, Rosemary A.

    1987-01-01

    A laboratory facility for the study of control laws for large flexible spacecraft is described. The facility fulfills the requirements of the Spacecraft Control Laboratory Experiment (SCOLE) design challenge for laboratory experiments, which will allow slew maneuvers and pointing operations. The structural apparatus is described in detail sufficient for modelling purposes. The sensor and actuator types and characteristics are described so that identification and control algorithms may be designed. The control implementation computer and real-time subroutines are also described.

  19. 14 CFR 135.97 - Aircraft and facilities for recent flight experience.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Aircraft and facilities for recent flight experience. 135.97 Section 135.97 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Flight Operations § 135.97 Aircraft and facilities for recent flight experience. Each certificate holder...

  20. 14 CFR 135.97 - Aircraft and facilities for recent flight experience.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Aircraft and facilities for recent flight experience. 135.97 Section 135.97 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Flight Operations § 135.97 Aircraft and facilities for recent flight experience. Each certificate holder...

  1. 14 CFR 135.97 - Aircraft and facilities for recent flight experience.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Aircraft and facilities for recent flight experience. 135.97 Section 135.97 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Flight Operations § 135.97 Aircraft and facilities for recent flight experience. Each certificate holder...

  2. 14 CFR 135.97 - Aircraft and facilities for recent flight experience.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Aircraft and facilities for recent flight experience. 135.97 Section 135.97 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Flight Operations § 135.97 Aircraft and facilities for recent flight experience. Each certificate holder...

  3. 14 CFR 135.97 - Aircraft and facilities for recent flight experience.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Aircraft and facilities for recent flight experience. 135.97 Section 135.97 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Flight Operations § 135.97 Aircraft and facilities for recent flight experience. Each certificate holder...

  4. NASDA life science experiment facilities for ISS

    NASA Astrophysics Data System (ADS)

    Tanigaki, F.; Masuda, D.; Yano, S.; Fujimoto, N.; Kamigaichi, S.

    National Space Development Agency of Japan (NASDA) has been developing various experiment facilities to conduct space biology researches in KIBO (JEM). The Cell Biology Experiment Facility (CBEF) and the Clean Bench (CB) are installed into JEM Life Science Rack. The Biological Experiment Units (BEU) are operated in the CBEF and the CB for many kinds of experiments on cells, tissues, plants, microorganisms, or small animals. It is possible for all researchers to use these facilities under the system of the International Announcement of Opportunity. The CBEF is a CO2 incubator to provide a controlled environment (temperature, humidity, and CO2 concentration), in which a rotating table is equipped to make variable gravity (0-2g) for reference experiments. The containers called "Canisters" can be used to install the BEU in the CBEF. The CBEF supplies power, command, sensor, and video interfaces for the BEU through the utility connectors of Canisters. The BEU is a multiuser system consisting of chambers and control segments. It is operated by pre-set programs and by commands from the ground. NASDA is currently developing three types of the BEU: the Plant Experiment Unit (PEU) for plant life cycle observations and the Cell Experiment Unit (CEU1&2) for cell culture experiments. The PEU has an automated watering system with a water sensor, an LED matrix as a light source, and a CCD camera to observe the plant growth. The CEUs have culture chambers and an automated cultural medium exchange system. Engineering models of the PEU and CEU1 have been accomplished. The preliminary design of CEU2 is in progress. The design of the BEU will be modified to meet science requirements of each experiment. The CB provides a closed aseptic work-space (Operation Chamber) with gloves for experiment operations. Samples and the BEU can be manually handled in the CB. The CB has an air lock (Disinfection Chamber) to prevent contamination, and HEPA filters to make class-100-equivalent clean air

  5. Exposure to space radiation of high-performance infrared multilayer filters

    NASA Technical Reports Server (NTRS)

    Seeley, J. S.; Hawkins, G. J.; Hunneman, R.

    1991-01-01

    The University of Reading experiment exposed IR interference filters and crystal substrates on identical earth facing and leading-edge sites of the Long Duration Exposure Facility (LDEF). Filters mostly comprised multilayer coatings of lead telluride (PbTe)/II-IV on germanium (Ge) and other substrates: crystals comprised CdTe, MgF2, sapphire, quartz, silicon, and some softer materials. Identical control samples were maintained in the laboratory throughout the experiment. The filters were novel in their design, construction and manufacture, and categorized high-performance because of their ability to resolve emission spectra of the important atmospheric gases for various purposes in remote sensing. No significant changes were found in the spectra of the hard-coated filters or in the harder crystals (the softer materials were degraded to an extent). By virtue of this well-documented and long exposure in LDEF, the qualification of the filter type is significantly improved for its future requirements.

  6. Experiment/facility requirements document for the Space Station Furnace Facility. Section 1: Integrated configuration

    NASA Astrophysics Data System (ADS)

    1992-05-01

    The function of the Space Station Furnace Facility (SSFF) is to support materials research into the crystal growth and solidification processes of electronic and photonic materials, metals and alloys, and glasses and ceramics. To support this broad base of research requirements, the SSFF will employ a variety of furnace modules which will be operated, regulated, and supported by a core of common subsystems. Furnace modules may be reconfigured or specifically developed to provide unique solidification conditions for each set of experiments. The SSFF modular approach permits the addition of new or scaled-up furnace modules to support the evolution of the facility as new science requirements are identified. The SSFF Core is of modular design to permit augmentation for enhanced capabilities. The fully integrated configuration of the SSFF will consist of three racks with the capability of supporting up to two furnace modules per rack. The initial configuration of the SSFF will consist of two of the three racks and one furnace module. This Experiment/Facility Requirements Document (E/FRD) describes the integrated facility requirements for the Space Station Freedom (SSF) Integrated Configuration-1 (IC1) mission. The IC1 SSFF will consist of two racks: the Core Rack, with the centralized subsystem equipment; and the Experiment Rack-1, with Furnace Module-1 and the distributed subsystem equipment to support the furnace. The SSFF support functions are provided by the following Core subsystems: power conditioning and distribution subsystem (SSFF PCDS); data management subsystem (SSFF DMS); thermal control Subsystem (SSFF TCS); gas distribution subsystem (SSFF GDS); and mechanical structures subsystem (SSFF MSS).

  7. Experiment/facility requirements document for the Space Station Furnace Facility. Section 1: Integrated configuration

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The function of the Space Station Furnace Facility (SSFF) is to support materials research into the crystal growth and solidification processes of electronic and photonic materials, metals and alloys, and glasses and ceramics. To support this broad base of research requirements, the SSFF will employ a variety of furnace modules which will be operated, regulated, and supported by a core of common subsystems. Furnace modules may be reconfigured or specifically developed to provide unique solidification conditions for each set of experiments. The SSFF modular approach permits the addition of new or scaled-up furnace modules to support the evolution of the facility as new science requirements are identified. The SSFF Core is of modular design to permit augmentation for enhanced capabilities. The fully integrated configuration of the SSFF will consist of three racks with the capability of supporting up to two furnace modules per rack. The initial configuration of the SSFF will consist of two of the three racks and one furnace module. This Experiment/Facility Requirements Document (E/FRD) describes the integrated facility requirements for the Space Station Freedom (SSF) Integrated Configuration-1 (IC1) mission. The IC1 SSFF will consist of two racks: the Core Rack, with the centralized subsystem equipment; and the Experiment Rack-1, with Furnace Module-1 and the distributed subsystem equipment to support the furnace. The SSFF support functions are provided by the following Core subsystems: power conditioning and distribution subsystem (SSFF PCDS); data management subsystem (SSFF DMS); thermal control Subsystem (SSFF TCS); gas distribution subsystem (SSFF GDS); and mechanical structures subsystem (SSFF MSS).

  8. Posttest examination of Sodium Loop Safety Facility experiments. [LMFBR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holland, J.W.

    In-reactor, safety experiments performed in the Sodium Loop Safety Facility (SLSF) rely on comprehensive posttest examinations (PTE) to characterize the postirradiation condition of the cladding, fuel, and other test-subassembly components. PTE information and on-line instrumentation data, are analyzed to identify the sequence of events and the severity of the accident for each experiment. Following in-reactor experimentation, the SLSF loop and test assembly are transported to the Hot Fuel Examination Facility (HFEF) for initial disassembly. Goals of the HFEF-phase of the PTE are to retrieve the fuel bundle by dismantling the loop and withdrawing the test assembly, to assess the macro-conditionmore » of the fuel bundle by nondestructive examination techniques, and to prepare the fuel bundle for shipment to the Alpha-Gamma Hot Cell Facility (AGHCF) at Argonne National Laboratory.« less

  9. A survey of experiments and experimental facilities for active control of flexible structures

    NASA Technical Reports Server (NTRS)

    Sparks, Dean W., Jr.; Horner, Garnett C.; Juang, Jer-Nan; Klose, Gerhard

    1989-01-01

    A brief survey of large space structure control related experiments and facilities was presented. This survey covered experiments performed before and up to 1982, and those of the present period (1982-...). Finally, the future planned experiments and facilities in support of the control-structure interaction (CSI) program were reported. It was stated that new, improved ground test facilities are needed to verify the new CSI design techniques that will allow future space structures to perform planned NASA missions.

  10. Analysis of the passive stabilization of the long duration exposure facility

    NASA Technical Reports Server (NTRS)

    Siegel, S. H.; Vishwanath, N. S.

    1977-01-01

    The nominal Long Duration Exposure Facility (LDEF) configurations and the anticipated orbit parameters are presented. A linear steady state analysis was performed using these parameters. The effects of orbit eccentricity, solar pressure, aerodynamic pressure, magnetic dipole, and the magnetically anchored rate damper were evaluated to determine the configuration sensitivity to variations in these parameters. The worst case conditions for steady state errors were identified, and the performance capability calculated. Garber instability bounds were evaluated for the range of configuration and damping coefficients under consideration. The transient damping capabilities of the damper were examined, and the time constant as a function of damping coefficient and spacecraft moment of inertia determined. The capture capabilities of the damper were calculated, and the results combined with steady state, transient, and Garber instability analyses to select damper design parameters.

  11. 76 FR 40945 - Rensselaer Polytechnic Institute Critical Experiments Facility; Notice of Issuance of Renewed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-12

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-225; NRC-2008-0277] Rensselaer Polytechnic Institute Critical Experiments Facility; Notice of Issuance of Renewed Facility Operating License No. CX-22 The U.S... of the Rensselaer Polytechnic Institute Critical Experiments Facility (RCF), located in Schenectady...

  12. Integration and use of Microgravity Research Facility: Lessons learned by the crystals by vapor transport experiment and Space Experiments Facility programs

    NASA Technical Reports Server (NTRS)

    Heizer, Barbara L.

    1992-01-01

    The Crystals by Vapor Transport Experiment (CVTE) and Space Experiments Facility (SEF) are materials processing facilities designed and built for use on the Space Shuttle mid deck. The CVTE was built as a commercial facility owned by the Boeing Company. The SEF was built under contract to the UAH Center for Commercial Development of Space (CCDS). Both facilities include up to three furnaces capable of reaching 850 C minimum, stand-alone electronics and software, and independent cooling control. In addition, the CVTE includes a dedicated stowage locker for cameras, a laptop computer, and other ancillary equipment. Both systems are designed to fly in a Middeck Accommodations Rack (MAR), though the SEF is currently being integrated into a Spacehab rack. The CVTE hardware includes two transparent furnaces capable of achieving temperatures in the 850 to 870 C range. The transparent feature allows scientists/astronauts to directly observe and affect crystal growth both on the ground and in space. Cameras mounted to the rack provide photodocumentation of the crystal growth. The basic design of the furnace allows for modification to accommodate techniques other than vapor crystal growth. Early in the CVTE program, the decision was made to assign a principal scientist to develop the experiment plan, affect the hardware/software design, run the ground and flight research effort, and interface with the scientific community. The principal scientist is responsible to the program manager and is a critical member of the engineering development team. As a result of this decision, the hardware/experiment requirements were established in such a way as to balance the engineering and science demands on the equipment. Program schedules for hardware development, experiment definition and material selection, flight operations development and crew training, both ground support and astronauts, were all planned and carried out with the understanding that the success of the program science

  13. Boiling Experiment Facility for Heat Transfer Studies in Microgravity

    NASA Technical Reports Server (NTRS)

    Delombard, Richard; McQuillen, John; Chao, David

    2008-01-01

    Pool boiling in microgravity is an area of both scientific and practical interest. By conducting tests in microgravity, it is possible to assess the effect of buoyancy on the overall boiling process and assess the relative magnitude of effects with regards to other "forces" and phenomena such as Marangoni forces, liquid momentum forces, and microlayer evaporation. The Boiling eXperiment Facility is now being built for the Microgravity Science Glovebox that will use normal perfluorohexane as a test fluid to extend the range of test conditions to include longer test durations and less liquid subcooling. Two experiments, the Microheater Array Boiling Experiment and the Nucleate Pool Boiling eXperiment will use the Boiling eXperiment Facility. The objectives of these studies are to determine the differences in local boiling heat transfer mechanisms in microgravity and normal gravity from nucleate boiling, through critical heat flux and into the transition boiling regime and to examine the bubble nucleation, growth, departure and coalescence processes. Custom-designed heaters will be utilized to achieve these objectives.

  14. A ``Cyber Wind Facility'' for HPC Wind Turbine Field Experiments

    NASA Astrophysics Data System (ADS)

    Brasseur, James; Paterson, Eric; Schmitz, Sven; Campbell, Robert; Vijayakumar, Ganesh; Lavely, Adam; Jayaraman, Balaji; Nandi, Tarak; Jha, Pankaj; Dunbar, Alex; Motta-Mena, Javier; Craven, Brent; Haupt, Sue

    2013-03-01

    The Penn State ``Cyber Wind Facility'' (CWF) is a high-fidelity multi-scale high performance computing (HPC) environment in which ``cyber field experiments'' are designed and ``cyber data'' collected from wind turbines operating within the atmospheric boundary layer (ABL) environment. Conceptually the ``facility'' is akin to a high-tech wind tunnel with controlled physical environment, but unlike a wind tunnel it replicates commercial-scale wind turbines operating in the field and forced by true atmospheric turbulence with controlled stability state. The CWF is created from state-of-the-art high-accuracy technology geometry and grid design and numerical methods, and with high-resolution simulation strategies that blend unsteady RANS near the surface with high fidelity large-eddy simulation (LES) in separated boundary layer, blade and rotor wake regions, embedded within high-resolution LES of the ABL. CWF experiments complement physical field facility experiments that can capture wider ranges of meteorological events, but with minimal control over the environment and with very small numbers of sensors at low spatial resolution. I shall report on the first CWF experiments aimed at dynamical interactions between ABL turbulence and space-time wind turbine loadings. Supported by DOE and NSF.

  15. Characteristics of low energy ions in the Heavy Ions In Space (HIIS) experiment

    NASA Technical Reports Server (NTRS)

    Kleis, Thomas; Tylka, Allan J.; Boberg, Paul R.; Adams, James H., Jr.; Beahm, Lorraine P.

    1995-01-01

    We present preliminary data on heavy ions (Z greater than or equal to 10) detected in the topmost Lexan sheets of the track detector stacks of the Heavy Ions in space (HIIS) experiment (M0001) on LDEF. The energy interval covered by these observations varies with the element, with (for example) Ne observable at 18-100 MeV nuc and Fe at 45-200 MeV/nuc. All of the observed ions are at energies far below the geomagnetic cutoff for fully-ionized particles at the LDEF orbit. Above 50 MeV/nuc (where most of our observed particles are Fe), the ions arrive primarily from the direction of lowest geomagnetic cutoff. This suggests that these particles originate outside the magnetosphere from a source with a steeply-falling spectrum and may therefore be associated with solar energetic particle (SEP) events. Below 50 MeV/nuc, the distribution of arrival directions suggests that most of the observed heavy ions are trapped in the Earth's magnetic field. Preliminary analysis, however, shows that these trapped heavy ions have a very surprising composition: they include not only Ne and Ar, which are expected from the trapping of anomalous cosmic rays (ACR's), but also Mg and Si, which are not part of the anomalous component. Our preliminary analysis shows that trapped heavy ions at 12 less than or equal to Zeta less than or equal to 14 have a steeply-falling spectrum, similar to that reported by the Kiel experiment (exp 1,2,3) on LDEF (M0002) for trapped Ar and Fe at E less than 50 MeV/nuc. The trapped Mg, Si, and Fe may also be associated with SEP events, but the mechanism by which they have appeared to deep in the inner magnetosphere requires further theoretical investigation.

  16. FEANICS: A Multi-User Facility For Conducting Solid Fuel Combustion Experiments On ISS

    NASA Technical Reports Server (NTRS)

    Frate, David T.; Tofil, Todd A.

    2001-01-01

    The Destiny Module on the International Space Station (ISS) will soon be home for the Fluids and Combustion Facility's (FCF) Combustion Integrated Rack (CIR), which is being developed at the NASA Glenn Research Center in Cleveland, Ohio. The CIR will be the platform for future microgravity combustion experiments. A multi-user mini-facility called FEANICS (Flow Enclosure Accommodating Novel Investigations in Combustion of Solids) will also be built at NASA Glenn. This mini-facility will be the primary means for conducting solid fuel combustion experiments in the CIR on ISS. The main focus of many of these solid combustion experiments will be to conduct basic and applied scientific investigations in fire-safety to support NASA's Bioastronautics Initiative. The FEANICS project team will work in conjunction with the CIR project team to develop upgradeable and reusable hardware to meet the science requirements of current and future investigators. Currently, there are six experiments that are candidates to use the FEANICS mini-facility. This paper will describe the capabilities of this mini-facility and the type of solid combustion testing and diagnostics that can be performed.

  17. Progress report on the Heavy Ions in Space (HIIS) experiment

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.; Beahm, Lorraine P.; Boberg, Paul R.; Tylka, Allan J.

    1993-01-01

    One of the objectives of the Heavy Ions In Space (HIIS) experiment is to investigate heavy ions which appear at Long Duration Exposure Facility (LDEF) below the geomagnetic cutoff for fully-ionized galactic cosmic rays. Possible sources of such 'below-cutoff' particles are partially-ionized solar energetic particles, the anomalous component of cosmic rays, and magnetospherically-trapped particles. In recent years, there have also been reports of below-cutoff ions which do not appear to be from any known source. Although most of these observations are based on only a handful of ions, they have led to speculation about 'partially-ionized galactic cosmic rays' and 'near-by cosmic ray sources'. The collecting power of HIIS is order of magnitude larger than that of the instruments which reported these results, so HIIS should be able to confirm these observations and perhaps discover the source of these particles. Preliminary results on below-cutoff heavy-ions are reported. Observations to possible known sources of such ions are compared. A second objective of the HIIS experiment is to measure the elemental composition of ultraheavy galactic cosmic rays, beginning in the tin-barium region of the periodic table. A report on the status of this analysis is presented.

  18. The first experiments on the national ignition facility

    NASA Astrophysics Data System (ADS)

    Landen, O. L.; Glenzer, S.; Froula, D.; Dewald, E.; Suter, L. J.; Schneider, M.; Hinkel, D.; Fernandez, J.; Kline, J.; Goldman, S.; Braun, D.; Celliers, P.; Moon, S.; Robey, H.; Lanier, N.; Glendinning, G.; Blue, B.; Wilde, B.; Jones, O.; Schein, J.; Divol, L.; Kalantar, D.; Campbell, K.; Holder, J.; McDonald, J.; Niemann, C.; MacKinnon, A.; Collins, R.; Bradley, D.; Eggert, J.; Hicks, D.; Gregori, G.; Kirkwood, R.; Niemann, C.; Young, B.; Foster, J.; Hansen, F.; Perry, T.; Munro, D.; Baldis, H.; Grim, G.; Heeter, R.; Hegelich, B.; Montgomery, D.; Rochau, G.; Olson, R.; Turner, R.; Workman, J.; Berger, R.; Cohen, B.; Kruer, W.; Langdon, B.; Langer, S.; Meezan, N.; Rose, H.; Still, B.; Williams, E.; Dodd, E.; Edwards, J.; Monteil, M.-C.; Stevenson, M.; Thomas, B.; Coker, R.; Magelssen, G.; Rosen, P.; Stry, P.; Woods, D.; Weber, S.; Alvarez, S.; Armstrong, G.; Bahr, R.; Bourgade, J.-L.; Bower, D.; Celeste, J.; Chrisp, M.; Compton, S.; Cox, J.; Constantin, C.; Costa, R.; Duncan, J.; Ellis, A.; Emig, J.; Gautier, C.; Greenwood, A.; Griffith, R.; Holdner, F.; Holtmeier, G.; Hargrove, D.; James, T.; Kamperschroer, J.; Kimbrough, J.; Landon, M.; Lee, D.; Malone, R.; May, M.; Montelongo, S.; Moody, J.; Ng, E.; Nikitin, A.; Pellinen, D.; Piston, K.; Poole, M.; Rekow, V.; Rhodes, M.; Shepherd, R.; Shiromizu, S.; Voloshin, D.; Warrick, A.; Watts, P.; Weber, F.; Young, P.; Arnold, P.; Atherton, L.; Bardsley, G.; Bonanno, R.; Borger, T.; Bowers, M.; Bryant, R.; Buckman, S.; Burkhart, S.; Cooper, F.; Dixit, S.; Erbert, G.; Eder, D.; Ehrlich, B.; Felker, B.; Fornes, J.; Frieders, G.; Gardner, S.; Gates, C.; Gonzalez, M.; Grace, S.; Hall, T.; Haynam, C.; Heestand, G.; Henesian, M.; Hermann, M.; Hermes, G.; Huber, S.; Jancaitis, K.; Johnson, S.; Kauffman, B.; Kelleher, T.; Kohut, T.; Koniges, A. E.; Labiak, T.; Latray, D.; Lee, A.; Lund, D.; Mahavandi, S.; Manes, K. R.; Marshall, C.; McBride, J.; McCarville, T.; McGrew, L.; Menapace, J.; Mertens, E.; Munro, D.; Murray, J.; Neumann, J.; Newton, M.; Opsahl, P.; Padilla, E.; Parham, T.; Parrish, G.; Petty, C.; Polk, M.; Powell, C.; Reinbachs, I.; Rinnert, R.; Riordan, B.; Ross, G.; Robert, V.; Tobin, M.; Sailors, S.; Saunders, R.; Schmitt, M.; Shaw, M.; Singh, M.; Spaeth, M.; Stephens, A.; Tietbohl, G.; Tuck, J.; van Wonterghem, B.; Vidal, R.; Wegner, P.; Whitman, P.; Williams, K.; Winward, K.; Work, K.; Wallace, R.; Nobile, A.; Bono, M.; Day, B.; Elliott, J.; Hatch, D.; Louis, H.; Manzenares, R.; O'Brien, D.; Papin, P.; Pierce, T.; Rivera, G.; Ruppe, J.; Sandoval, D.; Schmidt, D.; Valdez, L.; Zapata, K.; MacGowan, B.; Eckart, M.; Hsing, W.; Springer, P.; Hammel, B.; Moses, E.; Miller, G.

    2006-06-01

    A first set of shock propagation, laser-plasma interaction, hohlraum energetics and hydrodynamic experiments have been performed using the first 4 beams of the National Ignition Facility (NIF), in support of indirect drive Inertial Confinement Fusion (ICF) and High Energy Density Physics.

  19. The geocentric particulate distribution: Cometary, asteroidal, or space debris?

    NASA Technical Reports Server (NTRS)

    Mcdonnell, J. A. M.; Ratcliff, P. R.

    1992-01-01

    Definition of the Low Earth Orbit (LEO) particulate environment has been refined considerably with the analysis of data from NASA's Long Duration Exposure Facility (LDEF). Measurements of the impact rates from particulates ranging from sub-micron to millimetres in dimension and, especially, information on their directionality has permitted new scrunity of the sources of the particulates. Modelling of the dynamics of both bound (Earth orbital) and unbound (hyperbolic interplanetary) particulates intercepting LDEF's faces leads to the conclusion that the source is dominantly interplanetary for particle dimensions of greater than some 5 microns diameter; however the anisotropy below this dimension demands lower velocities and is compatible with an orbital component. Characteristics of the LDEF interplanetary component are compatible with familiar meteoroid sources and deep space measurements. Understanding of the orbital component which exceeds the interplanetary flux by a factor of 4 is less clear; although the very small particulates in orbit have been associated with space debris (Lawrance and Brownlee, 1986) this data conflicts with other measurements (McDonnell, Carey and Dixon, 1984) at the same epoch. By analysis of trajectories approaching the Earth and its atmosphere, we have shown that a significant contribution could be captured by aerocapture, i.e., atmospheric drag, from either asteroidal or cometary sources; such enhancement is unlikely however to provide the temporal and spatial fluctuations observed by the LDEF Interplanetary Dust Experiment (Mullholland et al. 1992). A further new mechanism is also examined, that of aerofragmentation capture, where an atmospheric grazing trajectory, which would not normally lead to capture, leads to fragmentation by thermal or mechanical shock; the microparticulates thus created can be injected in large numbers, but only into short-lifetime orbits. The concentration in one particular orbit plane, could explain the

  20. Gradient Heating Facility. Experiment cartridges. Description and general specifications

    NASA Technical Reports Server (NTRS)

    Breton, J.

    1982-01-01

    Specifications that define experiment cartridges that are compatible with the furnace of the gradient heating facility on board the Spacelab are presented. They establish a standard cartridge design independent of the type of experiment to be conducted. By using them, experimenters can design, construct, and test the hot section of the cartridge, known as the high temperature nacelle.

  1. Microscope-Based Fluid Physics Experiments in the Fluids and Combustion Facility on ISS

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Motil, Susan M.; Snead, John H.; Malarik, Diane C.

    2000-01-01

    At the NASA Glenn Research Center, the Microgravity Science Program is planning to conduct a large number of experiments on the International Space Station in both the Fluid Physics and Combustion Science disciplines, and is developing flight experiment hardware for use within the International Space Station's Fluids and Combustion Facility. Four fluids physics experiments that require an optical microscope will be sequentially conducted within a subrack payload to the Fluids Integrated Rack of the Fluids and Combustion Facility called the Light Microscopy Module, which will provide the containment, changeout, and diagnostic capabilities to perform the experiments. The Light Microscopy Module is planned as a fully remotely controllable on-orbit microscope facility, allowing flexible scheduling and control of experiments within International Space Station resources. This paper will focus on the four microscope-based experiments, specifically, their objectives and the sample cell and instrument hardware to accommodate their requirements.

  2. The first target experiments on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Landen, O. L.; Glenzer, S. H.; Froula, D. H.; Dewald, E. L.; Suter, L. J.; Schneider, M. B.; Hinkel, D. E.; Fernandez, J. C.; Kline, J. L.; Goldman, S. R.; Braun, D. G.; Celliers, P. M.; Moon, S. J.; Robey, H. S.; Lanier, N. E.; Glendinning, S. G.; Blue, B. E.; Wilde, B. H.; Jones, O. S.; Schein, J.; Divol, L.; Kalantar, D. H.; Campbell, K. M.; Holder, J. P.; McDonald, J. W.; Niemann, C.; MacKinnon, A. J.; Collins, G. W.; Bradley, D. K.; Eggert, J. H.; Hicks, D. G.; Gregori, G.; Kirkwood, R. K.; Young, B. K.; Foster, J. M.; Hansen, J. F.; Perry, T. S.; Munro, D. H.; Baldis, H. A.; Grim, G. P.; Heeter, R. F.; Hegelich, M. B.; Montgomery, D. S.; Rochau, G. A.; Olson, R. E.; Turner, R. E.; Workman, J. B.; Berger, R. L.; Cohen, B. I.; Kruer, W. L.; Langdon, A. B.; Langer, S. H.; Meezan, N. B.; Rose, H. A.; Still, C. H.; Williams, E. A.; Dodd, E. S.; Edwards, M. J.; Monteil, M.-C.; Stevenson, R. M.; Thomas, B. R.; Coker, R. F.; Magelssen, G. R.; Rosen, P. A.; Stry, P. E.; Woods, D.; Weber, S. V.; Young, P. E.; Alvarez, S.; Armstrong, G.; Bahr, R.; Bourgade, J.-L.; Bower, D.; Celeste, J.; Chrisp, M.; Compton, S.; Cox, J.; Constantin, C.; Costa, R.; Duncan, J.; Ellis, A.; Emig, J.; Gautier, C.; Greenwood, A.; Griffith, R.; Holdner, F.; Holtmeier, G.; Hargrove, D.; James, T.; Kamperschroer, J.; Kimbrough, J.; Landon, M.; Lee, F. D.; Malone, R.; May, M.; Montelongo, S.; Moody, J.; Ng, E.; Nikitin, A.; Pellinen, D.; Piston, K.; Poole, M.; Rekow, V.; Rhodes, M.; Shepherd, R.; Shiromizu, S.; Voloshin, D.; Warrick, A.; Watts, P.; Weber, F.; Young, P.; Arnold, P.; Atherton, L.; Bardsley, G.; Bonanno, R.; Borger, T.; Bowers, M.; Bryant, R.; Buckman, S.; Burkhart, S.; Cooper, F.; Dixit, S. N.; Erbert, G.; Eder, D. C.; Ehrlich, R. E.; Felker, B.; Fornes, J.; Frieders, G.; Gardner, S.; Gates, C.; Gonzalez, M.; Grace, S.; Hall, T.; Haynam, C. A.; Heestand, G.; Henesian, M. A.; Hermann, M.; Hermes, G.; Huber, S.; Jancaitis, K.; Johnson, S.; Kauffman, B.; Kelleher, T.; Kohut, T.; Koniges, A. E.; Labiak, T.; Latray, D.; Lee, A.; Lund, D.; Mahavandi, S.; Manes, K. R.; Marshall, C.; McBride, J.; McCarville, T.; McGrew, L.; Menapace, J.; Mertens, E.; Murray, J.; Neumann, J.; Newton, M.; Opsahl, P.; Padilla, E.; Parham, T.; Parrish, G.; Petty, C.; Polk, M.; Powell, C.; Reinbachs, I.; Rinnert, R.; Riordan, B.; Ross, G.; Robert, V.; Tobin, M.; Sailors, S.; Saunders, R.; Schmitt, M.; Shaw, M.; Singh, M.; Spaeth, M.; Stephens, A.; Tietbohl, G.; Tuck, J.; van Wonterghem, B. M.; Vidal, R.; Wegner, P. J.; Whitman, P.; Williams, K.; Winward, K.; Work, K.; Wallace, R.; Nobile, A.; Bono, M.; Day, B.; Elliott, J.; Hatch, D.; Louis, H.; Manzenares, R.; O'Brien, D.; Papin, P.; Pierce, T.; Rivera, G.; Ruppe, J.; Sandoval, D.; Schmidt, D.; Valdez, L.; Zapata, K.; MacGowan, B. J.; Eckart, M. J.; Hsing, W. W.; Springer, P. T.; Hammel, B. A.; Moses, E. I.; Miller, G. H.

    2007-08-01

    A first set of shock timing, laser-plasma interaction, hohlraum energetics and hydrodynamic experiments have been performed using the first 4 beams of the National Ignition Facility (NIF), in support of indirect drive Inertial Confinement Fusion (ICF) and High Energy Density Physics (HEDP). In parallel, a robust set of optical and X-ray spectrometers, interferometer, calorimeters and imagers have been activated. The experiments have been undertaken with laser powers and energies of up to 8 TW and 17 kJ in flattop and shaped 1 9 ns pulses focused with various beam smoothing options. The experiments have demonstrated excellent agreement between measured and predicted laser-target coupling in foils and hohlraums, even when extended to a longer pulse regime unattainable at previous laser facilities, validated the predicted effects of beam smoothing on intense laser beam propagation in long scale-length plasmas and begun to test 3D codes by extending the study of laser driven hydrodynamic jets to 3D geometries.

  3. From LDEF to a national Space Environment and Effects (SEE) program: A natural progression

    NASA Technical Reports Server (NTRS)

    Bowles, David E.; Calloway, Robert L.; Funk, Joan G.; Kinard, William H.; Levine, Arlene S.

    1995-01-01

    As the LDEF program draws to a close, it leaves in place the fundamental building blocks for a Space Environment and Effects (SEE) program. Results from LDEF data analyses and investigations now form a substantial core of knowledge on the long term effects of the space environment on materials, system and structures. In addition, these investigations form the basic structure of a critically-needed SEE archive and database system. An agency-wide effort is required to capture all elements of a SEE program to provide a more comprehensive and focused approach to understanding the space environment, determining the best techniques for both flight and ground-based experimentation, updating the models which predict both the environments and those effects on subsystems and spacecraft, and, finally, ensuring that this multitudinous information is properly maintained, and inserted into spacecraft design programs. Many parts and pieces of a SEE program already exist at various locations to fulfill specific needs. The primary purpose of this program, under the direction of the Office of Advanced Concepts and Technology (OACT) in NASA Headquarters, is to take advantage of these parts; apply synergisms where possible; identify and when possible fill-in gaps; coordinate and advocate a comprehensive SEE program. The SEE program must coordinate and support the efforts of well-established technical communities wherein the bulk of the work will continue to be done. The SEE program will consist of a NASA-led SEE Steering Committee, consisting of government and industry users, with the responsibility for coordination between technology developers and NASA customers; and Technical Working Groups with primary responsibility for program technical content in response to user needs. The Technical Working Groups are as follows: Materials and Processes; Plasma and Fields; Ionizing Radiation; Meteoroids and Orbital Debris; Neutral External Contamination; Thermosphere, Thermal, and Solar

  4. From LDEF to a national Space Environment and Effects (SEE) program: A natural progression

    NASA Astrophysics Data System (ADS)

    Bowles, David E.; Calloway, Robert L.; Funk, Joan G.; Kinard, William H.; Levine, Arlene S.

    1995-02-01

    As the LDEF program draws to a close, it leaves in place the fundamental building blocks for a Space Environment and Effects (SEE) program. Results from LDEF data analyses and investigations now form a substantial core of knowledge on the long term effects of the space environment on materials, system and structures. In addition, these investigations form the basic structure of a critically-needed SEE archive and database system. An agency-wide effort is required to capture all elements of a SEE program to provide a more comprehensive and focused approach to understanding the space environment, determining the best techniques for both flight and ground-based experimentation, updating the models which predict both the environments and those effects on subsystems and spacecraft, and, finally, ensuring that this multitudinous information is properly maintained, and inserted into spacecraft design programs. Many parts and pieces of a SEE program already exist at various locations to fulfill specific needs. The primary purpose of this program, under the direction of the Office of Advanced Concepts and Technology (OACT) in NASA Headquarters, is to take advantage of these parts; apply synergisms where possible; identify and when possible fill-in gaps; coordinate and advocate a comprehensive SEE program. The SEE program must coordinate and support the efforts of well-established technical communities wherein the bulk of the work will continue to be done. The SEE program will consist of a NASA-led SEE Steering Committee, consisting of government and industry users, with the responsibility for coordination between technology developers and NASA customers; and Technical Working Groups with primary responsibility for program technical content in response to user needs. The Technical Working Groups are as follows: Materials and Processes; Plasma and Fields; Ionizing Radiation; Meteoroids and Orbital Debris; Neutral External Contamination; Thermosphere, Thermal, and Solar

  5. Meteoroid/space debris impacts on MSFC LDEF experiments

    NASA Technical Reports Server (NTRS)

    Finckenor, Miria

    1992-01-01

    The many meteoroid and space debris impacts found on A0171, A0034, S1005, and other MSFC experiments are considered. In addition to those impacts found by the meteoroid and debris studies, numerous impacts less than 0.5 mm were found and photographed. The flux and size distribution of impacts is presented as well as EDS analysis of impact residue. Emphasis is on morphology of impacts in the various materials, including graphite/epoxy composites, polymeric materials, optical coatings, thin films, and solar cells.

  6. Meteoroid/space debris impacts on MSFC LDEF experiments

    NASA Technical Reports Server (NTRS)

    Finckenor, Miria

    1991-01-01

    The numerous meteoroid and space debris impacts found on AO171, AO034, S0069, and other MSFC experiments are examined. Besides those impacts found by the Meteoroid and Debris Special Investigative Group at KSC, numerous impacts of less than 0.5 mm were found and photographed. The flux and size distribution of impacts are presented as well as EDS analysis of impact residue. Emphasis is on morphology of impacts in the various materials, including graphite/epoxy composites, polymeric materials, optical coatings, thin films, and solar cells.

  7. A survey of experiments and experimental facilities for control of flexible structures

    NASA Technical Reports Server (NTRS)

    Sparks, Dean W., Jr.; Juang, Jer-Nan; Klose, Gerhard J.

    1989-01-01

    This paper presents a survey of U.S. ground experiments and facilities dedicated to the study of active control of flexible structures. The facilities will be briefly described in terms of capability, configuration, size and instrumentation. Topics on the experiments include vibration suppression, slewing and system identification. Future research directions, particularly of the NASA Langley Research Center's Controls/Structures Interaction (CSI) ground test program, will be discussed.

  8. What makes or mars the facility-based childbirth experience: thematic analysis of women's childbirth experiences in western Kenya.

    PubMed

    Afulani, Patience A; Kirumbi, Leah; Lyndon, Audrey

    2017-12-29

    Sub-Saharan Africa accounts for approximately 66% of global maternal deaths. Poor person-centered maternity care, which emphasizes the quality of patient experience, contributes both directly and indirectly to these poor outcomes. Yet, few studies in low resource settings have examined what is important to women during childbirth from their perspective. The aim of this study is to examine women's facility-based childbirth experiences in a rural county in Kenya, to identify aspects of care that contribute to a positive or negative birth experience. Data are from eight focus group discussions conducted in a rural county in western Kenya in October and November 2016, with 58 mothers aged 15 to 49 years who gave birth in the preceding nine weeks. We recorded and transcribed the discussions and used a thematic approach for data analysis. The findings suggest four factors influence women's perceptions of quality of care: responsiveness, supportive care, dignified care, and effective communication. Women had a positive experience when they were received well at the health facility, treated with kindness and respect, and given sufficient information about their care. The reverse led to a negative experience. These experiences were influenced by the behavior of both clinical and support staff and the facility environment. This study extends the literature on person-centered maternity care in low resource settings. To improve person-centered maternity care, interventions need to address the responsiveness of health facilities, ensure women receive supportive and dignified care, and promote effective patient-provider communication.

  9. Performance of silvered Teflon (trademark) thermal control blankets on spacecraft

    NASA Technical Reports Server (NTRS)

    Pippin, Gary; Stuckey, Wayne; Hemminger, Carol

    1993-01-01

    Silverized Teflon (Ag/FEP) is a widely used passive thermal control material for space applications. The material has a very low alpha/e ratio (less than 0.1) for low operating temperatures and is fabricated with various FEP thicknesses (as the Teflon thickness increases, the emittance increases). It is low outgassing and, because of its flexibility, can be applied around complex, curved shapes. Ag/FEP has achieved multiyear lifetimes under a variety of exposure conditions. This has been demonstrated by the Long Duration Exposure Facility (LDEF), Solar Max, Spacecraft Charging at High Altitudes (SCATHA), and other flight experiments. Ag/FEP material has been held in place on spacecraft by a variety of methods: mechanical clamping, direct adhesive bonding of tapes and sheets, and by Velcro(TM) tape adhesively bonded to back surfaces. On LDEF, for example, 5-mil blankets held by Velcro(TM) and clamping were used for thermal control over 3- by 4-ft areas on each of 17 trays. Adhesively bonded 2- and 5-mil sheets were used on other LDEF experiments, both for thermal control and as tape to hold other thermal control blankets in place. Performance data over extended time periods are available from a number of flights. The observed effects on optical properties, mechanical properties, and surface chemistry will be summarized in this paper. This leads to a discussion of performance life estimates and other design lessons for Ag/FEP thermal control material.

  10. The Wake Shield Facility: A space experiment platform

    NASA Technical Reports Server (NTRS)

    Allen, Joseph P.

    1991-01-01

    Information is given in viewgraph form on Wakeshield, a space experiment platform. The Wake Shield Facility (WSF) flight program objectives, product applications, commercial development approach, and cooperative experiments are listed. The program objectives are to produce new industry-driven electronic, magnetic, and superconducting thin-film materials and devices both in terrestrial laboratories and in space; utilize the ultra-vacuum of space for thin film epitaxial growth and materials processing; and develop commercial space hardware for research and development and enhanced access to space.

  11. Measurements of the radiation dose to LDEF by means of passive dosimetry

    NASA Astrophysics Data System (ADS)

    Blake, J. B.; Imamoto, S. S.

    1992-06-01

    A very simple experiment was fielded on LDEF to measure the energetic radiation dose by means of passive dosimetry. It consisted of two identical packets of 16 LiF thermoluminescent dosimeters (TLD) arranged in planar arrays. One array was placed on the leading edge of the spacecraft, the other on the trailing edge. These arrays were installed in opaque packets of 1 mil Al foil and Kapton tape mounted behind an Al plate of 30 mils thickness. The nominal energy thresholds were 14 MeV for protons and 650 keV for electrons. In addition to the flight arrays, two control arrays were prepared which were kept with the flight arrays as long as possible during experimental integration and then stored in the lab. The flight and control arrays were read out alternating in groups of four; it was found that the control dose was negligible. The flight and control detectors were exposed to a 55 MeV proton beam in order to provide a recalibration of the detectors. It was found that the post-flight and pre-flight calibrations were in good agreement. A comparison of results with the prediction shows that the measured dose was a factor of 4 to 5 low. It is possible that there was in-flight annealing of the TLDs as a result of the long mission and perhaps temperature excursions of the sensors. The East-West effect was larger than expected. The ratio of 1.65 is approximately what was expected for the protons alone. Electrons should reduce the dose ratio since electrons add equally to the leading and trailing edge dose. A possible explanation is that the electron dose was negligible compared to the proton dose.

  12. Measurements of the radiation dose to LDEF by means of passive dosimetry

    NASA Technical Reports Server (NTRS)

    Blake, J. B.; Imamoto, S. S.

    1992-01-01

    A very simple experiment was fielded on LDEF to measure the energetic radiation dose by means of passive dosimetry. It consisted of two identical packets of 16 LiF thermoluminescent dosimeters (TLD) arranged in planar arrays. One array was placed on the leading edge of the spacecraft, the other on the trailing edge. These arrays were installed in opaque packets of 1 mil Al foil and Kapton tape mounted behind an Al plate of 30 mils thickness. The nominal energy thresholds were 14 MeV for protons and 650 keV for electrons. In addition to the flight arrays, two control arrays were prepared which were kept with the flight arrays as long as possible during experimental integration and then stored in the lab. The flight and control arrays were read out alternating in groups of four; it was found that the control dose was negligible. The flight and control detectors were exposed to a 55 MeV proton beam in order to provide a recalibration of the detectors. It was found that the post-flight and pre-flight calibrations were in good agreement. A comparison of results with the prediction shows that the measured dose was a factor of 4 to 5 low. It is possible that there was in-flight annealing of the TLDs as a result of the long mission and perhaps temperature excursions of the sensors. The East-West effect was larger than expected. The ratio of 1.65 is approximately what was expected for the protons alone. Electrons should reduce the dose ratio since electrons add equally to the leading and trailing edge dose. A possible explanation is that the electron dose was negligible compared to the proton dose.

  13. Exposure to space radiation of high-performance infrared multilayer filters and materials technology experiments (A0056)

    NASA Technical Reports Server (NTRS)

    Seeley, J. S.; Hunneman, R.; Whatley, A.; Lipscombe, D. R.

    1984-01-01

    Infrared multilayer interface filter which were used in satellite radiometers were examined. The ability of the filters to withstand the space environment in these applications is critical. An experiment on the LDEF subjects the filters to authoritative spectral measurements following space exposure to ascertain their suitability for spacecraft use and to permit an understanding of degradation mechanisms. The understanding of the effects of prolonged space exposure on spacecraft materials, surface finishes, and adhesive systems is important to the spacecraft designer. Materials technology experiments and experiment on infrared multilayer filters are discussed.

  14. Baseline tensile tests of composite materials for LDEF (Long Duration Exposure Facility) exposure

    NASA Technical Reports Server (NTRS)

    Witte, William G.

    1987-01-01

    Tensile specimens of five graphite fiber reinforced composite materials were tested at room temperature to provide baseline data for similar specimens exposed to the space environment in low-Earth orbit on the NASA Long Duration Exposure Facility. All specimens were 4-ply (+ or - 45 deg)s layups; at least five replicate specimens were tested for each parameter evaluated. Three epoxy-matrix materials and two polysulfone-matrix materials, several fiber volume fractions, and two sizes of specimen were evaluated. Stress-strain and Poisson's ratio-stress curves, ultimate stress, strain at failure, secant modulus at 0.004 strain, inplane shear stress-strain curves, and unidirectional shear modulus at .004 shear strain are presented.

  15. Investigation of Teflon FEP Embrittlement on Spacecraft in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Smith, Daniela C.

    1997-01-01

    Teflon(registered trademark) FEP (fluorinated ethylene-propylene) is commonly used on exterior spacecraft surfaces in the low Earth orbit (LEO) environment for thermal control. Silverized or aluminized FEP is used for the outer layer of thermal control blankets because of its low solar absorptance and high thermal emittance. FEP is also preferred over other spacecraft polymers because of its relatively high resistance to atomic oxygen erosion. Because of its low atomic oxygen erosion yield, FEP has not been protected in the space environment. Recent, long term space exposures such as on the Long Duration Exposure Facility (LDEF, 5.8 years in space), and the Hubble Space Telescope (HST, after 3.6 years in space) have provided evidence of LEO environmental degradation of FEP. These exposures provide unique opportunities for studying environmental degradation because of the long durations and the different conditions (such as differences in altitude) of the exposures. Samples of FEP from LDEF and from HST (retrieved during its first servicing mission) have been evaluated for solar induced embrittlement and for synergistic effects of solar degradation and atomic oxygen. Micro-indenter results indicate that the surface hardness increased as the ratio of atomic oxygen fluence to solar fluence decreased for the LDEF samples. FEP multilayer insulation (MLI) retrieved from HST provided evidence of severe embrittlement on solar facing surfaces. Micro-indenter measurements indicated higher surface hardness values for these samples than LDEF samples, but the solar exposures were higher. Cracks induced during bend testing were significantly deeper for the HST samples with the highest solar exposure than for LDEF samples with similar atomic oxygen fluence to solar fluence ratios. If solar fluences are compared, the LDEF samples appear as damaged as HST samples, except that HST had deeper induced cracks. The results illustrate difficulties in comparing LEO exposed materials from

  16. Rugby and elliptical-shaped hohlraums experiments on the OMEGA laser facility

    NASA Astrophysics Data System (ADS)

    Tassin, Veronique; Monteil, Marie-Christine; Depierreux, Sylvie; Masson-Laborde, Paul-Edouard; Philippe, Franck; Seytor, Patricia; Fremerye, Pascale; Villette, Bruno

    2017-10-01

    We are pursuing on the OMEGA laser facility indirect drive implosions experiments in gas-filled rugby-shaped hohlraums in preparation for implosion plateforms on LMJ. The question of the precise wall shape of rugby hohlraum has been addressed as part of future megajoule-scale ignition designs. Calculations show that elliptical-shaped holhraum is more efficient than spherical-shaped hohlraum. There is less wall hydrodynamics and less absorption for the inner cone, provided a better control of time-dependent symmetry swings. In this context, we have conducted a series of experiments on the OMEGA laser facility. The goal of these experiments was therefore to characterize energetics with a complete set of laser-plasma interaction measurements and capsule implosion in gas-filled elliptical-shaped hohlraum with comparison with spherical-shaped hohlraum. Experiments results are discussed and compared to FCI2 radiation hydrodynamics simulations.

  17. Elemental analyses of hypervelocity microparticle impact sites on Interplanetary Dust Experiment sensor surfaces

    NASA Technical Reports Server (NTRS)

    Simon, Charles G.; Hunter, J. L.; Griffis, D. P.; Misra, V.; Ricks, D. A.; Wortman, Jim J.; Brownlee, D. E.

    1993-01-01

    The Interplanetary Dust Experiment (IDE) had over 450 electrically active ultra-high purity metal-oxide-silicon impact detectors located on the six primary sides of the Long Duration Exposure Facility (LDEF). Hypervelocity microparticles (approximately 0.2 to approximately 100 micron diameter) that struck the active sensors with enough energy to break down the 0.4 or 1.0 micron thick SIO2 insulator layer separating the silicon base (the negative electrode), and the 1000 A thick surface layer of aluminum (the positive electrode) caused electrical discharges that were recorded for the first year of orbit. The high purity Al-SiO2-Si substrates allowed detection of trace (ppm) amounts of hypervelocity impactor residues. After sputtering through a layer of surface contamination, secondary ion mass spectrometry (SIMS) was used to create two-dimensional elemental ion intensity maps of microparticle impact sites on the IDE sensors. The element intensities in the central craters of the impacts were corrected for relative ion yields and instrumental conditions and then normalized to silicon. The results were used to classify the particles' origins as 'manmade,' 'natural,' or 'indeterminate.' The last classification resulted from the presence of too little impactor residue, analytical interference from high background contamination, the lack of information on silicon and aluminum residues, or a combination of these circumstances. Several analytical 'blank' discharges were induced on flight sensors by pressing down on the sensor surface with a pure silicon shard. Analyses of these blank discharges showed that the discharge energy blasts away the layer of surface contamination. Only Si and Al were detected inside the discharge zones, including the central craters of these features. Thus far a total of 79 randomly selected microparticle impact sites from the six primary sides of the LDEF have been analyzed: 36 from tray C-9 (Leading (ram), or East, side), 18 from tray C-3

  18. Elemental Analyses of Hypervelocity Microparticle Impact Sites on Interplanetary Dust Experiment Sensor Surfaces

    NASA Technical Reports Server (NTRS)

    Simon, C. G.; Hunter, J. L.; Griffis, D. P.; Misra, V.; Ricks, D. A.; Wortman, J. J.; Brownlee, D. E.

    1992-01-01

    The Interplanetary Dust Experiment (IDE) had over 450 electrically active ultra-high purity metal-oxide-silicon impact detectors located on the six primary sides of the Long Duration Exposure Facility (LDEF). Hypervelocity microparticles (approximately 0.2 to approximately 100 micron diameter) that struck the active sensors with enough energy to breakdown the 0.4 or 1.0 micron thick SiO2 insulator layer separating the silicon base (the negative electrode), and the 1000 A thick surface layer of aluminum (the positive electrode) caused electrical discharges that were recorded for the first year of orbit. The high purity Al-SiO2-Si substrates allowed detection of trace (ppm) amounts of hypervelocity impactor residues. After sputtering through a layer of surface contamination, secondary ion mass spectrometry (SIMS) was used to create two-dimensional elemental ion intensity maps of microparticle sites on the IDE sensors. The element intensities in the central craters of the impacts were corrected for relative ion yields and instrumental conditions and then normalized to silicon. The results classification resulted from the particles' origins as 'manmade', 'natural', or 'indeterminate'. The last classification resulted from the presence of too little impactor residue, analytical interference from high background contamination, the lack of information on silicon and aluminum residues, or a combination of these circumstances. Several analytical 'blank' discharges were induced on flight sensors by pressing down on the sensor surface with a pure silicon shard. Analyses of these blank discharges showed that the discharge energy blasts away the layer of surface contamination. Only Si and Al were detected inside the discharge zones, including the central craters, of these features. Thus far, a total of 79 randomly selected microparticle impact sites from the six primary sides of the LDEF were analyzed: 36 from tray C-9 (Leading (ram), or east, side), 18 from tray C-3 (Trailing

  19. Durability of reflector materials in the space environment

    NASA Technical Reports Server (NTRS)

    Whitaker, Ann F.; Finckenor, Miria M.; Edwards, David; Kamenetzky, Rachel R.; Linton, Roger C.

    1995-01-01

    Various reflector configurations were flown as part of the Long Duration Exposure Facility (LDEF) A0171 experiment. These reflectors consisted of nickel substrates with aluminum, enhanced aluminum (multiple layers of aluminum and silver), silver, and silver alloy coatings with glassy ceramic overcoatings. These samples have been evaluated for changes in reflectance due to 5.8 years in the space environment. The reflector materials have also been evaluated using angstrometer, Rutherford backscattering (RBS), and electron spectroscopy for chemical analysis (ESCA) techniques.

  20. Comparison of Spacecraft Contamination Models with Well-Defined Flight Experiment

    NASA Technical Reports Server (NTRS)

    Pippin, G. H.

    1998-01-01

    The report presents analyzed surface areas on particular experiment trays from the Long Duration Exposure Facility (LDEF) for silicone-based molecular contamination. The trays for examination were part of the Ultra-Heavy Cosmic Ray Experiment (UHCRE). These particular trays were chosen because each tray was identical to the others in construction, and the materials on each tray were well known, documented, and characterized. In particular, a known specific source of silicone contamination was present on each tray. Only the exposure conditions varied from tray to tray. The results of post-flight analyses of surfaces of three trays were compared with the predictions of the three different spacecraft molecular contamination models. Phase one tasks included: 1) documenting the detailed geometry of the hardware; 2) determining essential properties of the anodized aluminum, Velcro(Tm), silverized Teflon(Tm), silicone gaskets, and DC6-1104(Tm) silicone adhesive materials used to make the trays, tray covers, and thermal control blankets; 3) selecting and removing areas from each tray; and 4) beginning surface analysis of the selected tray walls. Phase two tasks included: 1) completion of surface analysis measurements of the selected tray surface, 2) obtaining auger depth profiles at selected locations, and 3) running versions of the ISEM, MOFLUX, and PLIMP (Plume Impingement) contamination prediction models and making comparisons with experimental results.

  1. Systems special investigation group overview

    NASA Technical Reports Server (NTRS)

    Mason, James B.; Dursch, Harry; Edelman, Joel

    1992-01-01

    The Systems Special Investigation Group (SIG) has undertaken investigations in the four major engineering disciplines represented by LDEF hardware: electrical, mechanical, thermal, and optical systems. Testing was planned for the highest possible level of assembly, and top level system tests for nearly all systems were performed at this time. Testing to date was performed on a mix of LDEF and individual experimenter systems. No electrical or mechanical system level failures attributed to the spaceflight environment were detected by the Systems SIG. Some low cost electrical components were used successfully, although relays were a continuing problem. Extensive mechanical galling was observed, but no evidence of coldwelding was identified. A working index of observed systems anomalies was created and will be used to support the tracking and resolution of these effects. LDEF hardware currently available to the Systems SIG includes most of the LDEF facility systems hardware, and some significant experimenter hardware as well. A series of work packages was developed for each of several subsystem types where further testing is of critical interest. The Systems SIG is distributing a regular newsletter to the greater LDEF community in order to maintain coherence in an investigation which is widely scattered both in subject matter and in geography. Circulation of this informal document has quadrupled in its first year.

  2. Discriminative facility and its role in the perceived quality of interactional experiences.

    PubMed

    Cheng, C; Chiu, C Y; Hong, Y Y; Cheung, J S

    2001-10-01

    Discriminative facility refers to an individual's sensitivity to subtle cues about the psychological meaning of a situation. This research aimed at examining (a) the conceptual distinctiveness of discriminative facility, (b) the situation-appropriate aspect of this construct, and (c) the relationship between discriminative facility and interpersonal experiences. Discriminative facility was assessed by a new measure of situation-appropriate behaviors across a variety of novel stressful situations. Results from study 1 showed that discriminative facility had weak positive relationships with cognitive complexity and nonsignificant relationships with self-monitoring and social desirability, indicating that discriminative facility is a unique construct. Results from Study 2 revealed that higher levels of discriminative facility were associated with higher levels of perceived social support and a greater number of pleasant interpersonal events experienced, thus providing support for the theoretical proposition that discriminative facility is an aspect of social intelligence.

  3. Low-gravity impact experiments: Progress toward a facility definition

    NASA Technical Reports Server (NTRS)

    Cintala, M. J.

    1986-01-01

    Innumerable efforts were made to understand the cratering process and its ramifications in terms of planetary observations, during which the role of gravity has often come into question. Well known facilities and experiments both were devoted in many cases to unraveling the contribution of gravitational acceleration to cratering mechanisms. Included among these are the explosion experiments in low gravity aircraft, the drop platform experiments, and the high gravity centrifuge experiments. Considerable insight into the effects of gravity was gained. Most investigations were confined to terrestrial laboratories. It is in this light that the Space Station is being examined as a vehicle with the potential to support otherwise impractical impact experiments. The results of studies performed by members of the planetary cratering community are summarized.

  4. Preservice Teachers' Experiences Facilitating Writing Instruction in a Juvenile Detention Facility

    ERIC Educational Resources Information Center

    Pytash, Kristine E.

    2017-01-01

    A myriad of personal and contextual factors are important in understanding how preservice teachers learn to teach and why they adopt or reject certain teaching practices. Activity theory was used a framework in understand preservice teachers' experiences teaching writing during a field experience at a juvenile detention facility. The purposes of…

  5. Preliminary analyses of WL experiment No. 701, space environment effects on operating fiber optic systems

    NASA Technical Reports Server (NTRS)

    Taylor, E. W.; Berry, J. N.; Sanchez, A. D.; Padden, R. J.; Chapman, S. P.

    1992-01-01

    A brief overview of the analyses performed to date on WL Experiment-701 is presented. Four active digital fiber optic links were directly exposed to the space environment for a period of 2114 days. The links were situated aboard the Long Duration Exposure Facility (LDEF) with the cabled, single fiber windings atop an experimental tray containing instrumentation for exercising the experiment in orbit. Despite the unplanned and prolonged exposure to trapped and galactic radiation, wide temperature extremes, atomic oxygen interactions, and micro-meteorite and debris impacts, in most instances the optical data links performed well within the experimental limits. Analysis of the recorded orbital data clearly indicates that fiber optic applications in space will meet with success. Ongoing tests and analysis of the experiment at the Phillips Laboratory's Optoelectronics Laboratory will expand this premise, and establish the first known and extensive database of active fiber optic link performance during prolonged space exposure. WL Exp-701 was designed as a feasibility demonstration for fiber optic technology in space applications, and to study the performance of operating fiber systems exposed to space environmental factors such as galactic radiation, and wide temperature cycling. WL Exp-701 is widely acknowledged as a benchmark accomplishment that clearly demonstrates, for the first time, that fiber optic technology can be successfully used in a variety of space applications.

  6. Interplanetary meteoroid debris in LDEF metal craters

    NASA Technical Reports Server (NTRS)

    Brownlee, D. E.; Joswiak, D.; Bradley, J.; Hoerz, Friedrich

    1993-01-01

    We have examined craters in Al and Au LDEF surfaces to determine the nature of meteoroid residue in the rare cases where projectile material is abundantly preserved in the crater floor. Typical craters contain only small amounts of residue and we find that less than 10 percent of the craters in Al have retained abundant residue consistent with survival of a significant fraction (greater than 20 percent) of the projectile mass. The residue-rich craters can usually be distinguished optically because their interiors are darker than ones with little or no apparent projectile debris. The character of the meteoroid debris in these craters ranges from thin glass liners, to thick vesicular glass containing unmelted mineral fragments, to debris dominated by unmelted mineral fragments. In the best cases of meteoroid survival, unmelted mineral fragments preserve both information on projectile mineralogy as well as other properties such as nuclear tracks caused by solar flare irradiation. The wide range of the observed abundance and alteration state of projectile residue is most probably due to differences in impact velocity. The crater liners are being studied to determine the composition of meteoroids reaching the Earth. The compositional types most commonly seen in the craters are: (1) chondritic (Mg, Si, S, Fe in approximately solar proportions), (2) Mg silicate. amd (3) iron sulfide. These are also the most common compositional types of extraterrestrial particle types collected in the stratosphere. The correlation between these compositions indicates that vapor fractionation was not a major process influencing residue composition in these craters. Although the biases involved with finding analyzable meteoroid debris in metal craters differ from those for extraterrestrial particles collected in and below the atmosphere, there is a common bias favoring particles with low entry velocity. For craters this is very strong and probably all of the metal craters with abundant

  7. System related testing and analysis of FRECOPA

    NASA Technical Reports Server (NTRS)

    Durin, Christian

    1992-01-01

    Results from the French Cooperative Payload (FRECOPA) system analysis are presented. It was one of the numerous experiments which were flown on the Long Duration Exposure Facility (LDEF) satellite. In our flight configuration (LEO orbit, trailing edge), the environment was a better vacuum than the leading edge, with many thermal cycles (32000) and a large amount of UV radiation (11100 equivalent sun hours). Also, the satellite was mainly bombarded by micro-particles. It saw a low atomic flux and minor doses of protons and electrons.

  8. European Microgravity Facilities for ZEOLITE Experiments on the International Space Station

    NASA Astrophysics Data System (ADS)

    Pletser, V.; Minster, O.; Kremer, S.; Kirschhock, C.; Martens, J.; Jacobs, P.

    2002-01-01

    Synthetic zeolites are complex porous silicates. Zeolites are applied as catalysts, adsorbents and sensors. Whereas the traditional applications are situated in the petrochemical area, zeolite catalysis and related zeolite-based technologies have a growing impact on the economics and sustainability of products and processes in a growing number of industrial sectors, including environmental protection and nanotechnology. A Sounding Rocket microgravity experiment led to significant insight in the physical aggregation patterns of zeolitic nanoscopic particles and the occurrence of self-organisation phenomena when undisturbed by convection. The opportunity of performing longer microgravity duration experiments on zeolite structures was recently offered in the frame of a Taxi-Flight to the ISS in November 2002 organized by Belgium and ESA. Two facilities are currently under development for this flight. One of them will use the Microgravity Science Glovebox (MSG) in the US Lab. Destiny to achieve thermal induced self-organization of different types of Zeosil nanoslabs by heating and cooling. The other facility will be flown on the ISS Russian segment and will allow to form Zeogrids at ambient temperature. On the other hand, the European Space Agency (ESA) is studying the possibility of developing a dedicated insert for zeolite experiments to be used with the optical and diagnostic platform of the Protein Crystallisation Diagnostic Facility (PCDF), that will fly integrated in the European Drawer Rack on the Columbus Laboratory starting in 2004. This paper will present the approach followed by ESA to prepare and support zeolite investigations in microgravity and will present the design concept of these three facilities.

  9. Extension of drop experiments with the MIKROBA balloon drop facility

    NASA Astrophysics Data System (ADS)

    Sommer, K.; Kretzschmar, K.; Dorn, C.

    1992-12-01

    The German balloon drop facility MIKROBA extends the worldwide available drop experiment opportunities to the presently highest usable experimentation time span of 55 s at microgravity conditions better than 0.001 g. The microgravity period is started with the typical quasi-deal step function from 1 to 0 g. MIKROBA allows flexible experiment design, short access time, and easy hands-on payload integration. The transport to the operational height is realized by soft energies and technologies compatible with the earth's environment. Balloon campaigns are not restricted to a certain test range, i.e., several suitable sites are available all over the world. MIKROBA combines negligible mechanical loads at the mission start, typical of all drop facilities, with extremely low drop deceleration loads (less than g), due to the implemented three-stage parachute and airbag recovery subsystem.

  10. First Iron Opacity Experiments on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Perry, Theodore; Dodd, Evan; Cardenas, Tana; Devolder, Barbara; Flippo, Kirk; Johns, Heather; Kline, John; Sherrill, Manolo; Urbatsch, Todd; Heeter, Robert; Ahmed, Maryum; Emig, James; Iglesias, Carlos; Liedahl, Duane; London, Richard; Martin, Madison; Schneider, Marilyn; Thompson, Nathaniel; Wilson, Brian; Opachich, Yekaterina; King, James; Huffman, Eric; Knight, Russel; Bailey, James; Rochau, Gregory

    2017-10-01

    Iron opacity experiments on the Sandia National Laboratories Z machine have shown up to factors of two discrepancies between theory and experiment. To help resolve these discrepancies an experimental platform for doing comparable opacity experiments is being developed on the National Ignition Facility (NIF). Initial iron data has been taken at a temperature of 150 eV and an electron density of 6x1021/cm3, but higher temperatures and densities will be required to address the discrepancies that have been observed in the Z experiments. The plans to go to higher temperatures and densities and how to deal with current issues with instrumental backgrounds will be discussed. Performed under the auspices of USDOE LANL Contract DE-AC52-06NA25396.

  11. Microwelding of various metallic materials under ultravacuum (AO 138-10)

    NASA Technical Reports Server (NTRS)

    Assie, Jean Pierre; Conde, Eric

    1991-01-01

    The first finding from the AO 138-10 is that cold welding never occurred, and that microwelds didn't even affect the reference (presumably microweld prone) pairs of metals consisting of gold, silver, and chromium. The scientific disappointment from these results must be tempered by the notion of a static AO 138-10 experiment, reflecting the passive character of the global Long Duration Exposure Facility (LDEF) flight. Thus far, it has been theorized that cold welding results from the peeling of the oxide layer, that is formed in an earth environment, by the space environment since such a layer no longer grows in space. In fact, such stripping of the oxide layer supposes relative motion of the contacting materials. In the absence of such motion, as in this experiment, oxidation will preserve its integrity and continue to prevent microwelding. More bewildering is that there was no microwelding of the reference pairs. Even though AO 138-10 failed scientific expectations, as did the LDEF structure with cold welding, the positive, functional aspect to keep in mind is the safe operation of single-shot (appendage releasing and/or latching) mechanisms, unhindered by microwelding in a space vacuum, as now demonstrated by the statically representative pairs of materials. Other aspects of the experiment are discussed.

  12. Measurement of trapped proton fluences in main stack of P0006 experiment

    NASA Technical Reports Server (NTRS)

    Nefedov, N.; Csige, I.; Benton, E. V.; Henke, R. P.; Benton, E. R.; Frigo, L. A.

    1995-01-01

    We have measured directional distribution and Eastward directed mission fluence of trapped protons at two different energies with plastic nuclear track detectors (CR-39 with DOP) in the main stack of the P0006 experiment on LDEF. Results show arriving directions of trapped protons have very high anisotropy with most protons arriving from the West direction. Selecting these particles we have determined the mission fluence of Eastward directed trapped protons. We found experimental fluences are slightly higher than results of the model calculations of Armstrong and Colborn.

  13. Information on the Advanced Plant Experiment (APEX) Test Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Curtis Lee

    The purpose of this report provides information related to the design of the Oregon State University Advanced Plant Experiment (APEX) test facility. Information provided in this report have been pulled from the following information sources: Reference 1: R. Nourgaliev and et.al, "Summary Report on NGSAC (Next-Generation Safety Analysis Code) Development and Testing," Idaho National Laboratory, 2011. Note that this is report has not been released as an external report. Reference 2: O. Stevens, Characterization of the Advanced Plant Experiment (APEX) Passive Residual Heat Removal System Heat Exchanger, Master Thesis, June 1996. Reference 3: J. Reyes, Jr., Q. Wu, and J.more » King, Jr., Scaling Assessment for the Design of the OSU APEX-1000 Test Facility, OSU-APEX-03001 (Rev. 0), May 2003. Reference 4: J. Reyes et al, Final Report of the NRC AP600 Research Conducted at Oregon State University, NUREG/CR-6641, July 1999. Reference 5: K. Welter et al, APEX-1000 Confirmatory Testing to Support AP1000 Design Certification (non-proprietary), NUREG-1826, August 2005.« less

  14. Systems special investigation group overview

    NASA Technical Reports Server (NTRS)

    Mason, James B.; Dursch, Harry; Edelman, Joel

    1991-01-01

    The Systems Special Investigation Group (SIG) has undertaken investigations in the four major engineering disciplines represented in the Long Duration Exposure Facility (LDEF) hardware: electrical, mechanical, thermal, and optical systems. Testing was planned for the highest possible level of assembly, and top level system tests for nearly all systems were performed at this time. To date, testing was performed on a mix of LDEF and individual experimenter systems. No electrical or mechanical system level failures attributed to the spaceflight environment have yet been detected. Some low cost electrical components were used successfully, although relays were a continuing problem. Mechanical galling was observed unexpectedly, but no evidence of cold welding was identified yet. A working index of observed systems anomalies was created and will be used to support the tracking and resolution of these effects. The LDEF hardware currently available to the Systems SIG includes most of the LDEF systems hardware, and some significant experimenter hardware as well. A series of work packages was developed for each of several subsystem types where further testing is of critical interest. The System SIG is distributing a regular newsletter to the greater LDEF community in order to maintain coherence in an investigation which is widely scattered both in subject matter and in geography. Circulation of this informal document has quadrupled in its first year.

  15. Experiment Needs and Facilities Study Appendix A Transient Reactor Test Facility (TREAT) Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The TREAT Upgrade effort is designed to provide significant new capabilities to satisfy experiment requirements associated with key LMFBR Safety Issues. The upgrade consists of reactor-core modifications to supply the physics performance needed for the new experiments, an Advanced TREAT loop with size and thermal-hydraulics capabilities needed for the experiments, associated interface equipment for loop operations and handling, and facility modifications necessary to accommodate operations with the Loop. The costs and schedules of the tasks to be accomplished under the TREAT Upgrade project are summarized. Cost, including contingency, is about 10 million dollars (1976 dollars). A schedule for execution ofmore » 36 months has been established to provide the new capabilities in order to provide timely support of the LMFBR national effort. A key requirement for the facility modifications is that the reactor availability will not be interrupted for more than 12 weeks during the upgrade. The Advanced TREAT loop is the prototype for the STF small-bundle package loop. Modified TREAT fuel elements contain segments of graphite-matrix fuel with graded uranium loadings similar to those of STF. In addition, the TREAT upgrade provides for use of STF-like stainless steel-UO{sub 2} TREAT fuel for tests of fully enriched fuel bundles. This report will introduce the Upgrade study by presenting a brief description of the scope, performance capability, safety considerations, cost schedule, and development requirements. This work is followed by a "Design Description". Because greatly upgraded loop performance is central to the upgrade, a description is given of Advanced TREAT loop requirements prior to description of the loop concept. Performance requirements of the upgraded reactor system are given. An extensive discussion of the reactor physics calculations performed for the Upgrade concept study is provided. Adequate physics performance is essential for performance of experiments

  16. Test Facilities and Experience on Space Nuclear System Developments at the Kurchatov Institute

    NASA Astrophysics Data System (ADS)

    Ponomarev-Stepnoi, Nikolai N.; Garin, Vladimir P.; Glushkov, Evgeny S.; Kompaniets, George V.; Kukharkin, Nikolai E.; Madeev, Vicktor G.; Papin, Vladimir K.; Polyakov, Dmitry N.; Stepennov, Boris S.; Tchuniyaev, Yevgeny I.; Tikhonov, Lev Ya.; Uksusov, Yevgeny I.

    2004-02-01

    The complexity of space fission systems and rigidity of requirement on minimization of weight and dimension characteristics along with the wish to decrease expenditures on their development demand implementation of experimental works which results shall be used in designing, safety substantiation, and licensing procedures. Experimental facilities are intended to solve the following tasks: obtainment of benchmark data for computer code validations, substantiation of design solutions when computational efforts are too expensive, quality control in a production process, and ``iron'' substantiation of criticality safety design solutions for licensing and public relations. The NARCISS and ISKRA critical facilities and unique ORM facility on shielding investigations at the operating OR nuclear research reactor were created in the Kurchatov Institute to solve the mentioned tasks. The range of activities performed at these facilities within the implementation of the previous Russian nuclear power system programs is briefly described in the paper. This experience shall be analyzed in terms of methodological approach to development of future space nuclear systems (this analysis is beyond this paper). Because of the availability of these facilities for experiments, the brief description of their critical assemblies and characteristics is given in this paper.

  17. Hohlraum modeling for opacity experiments on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Dodd, E. S.; DeVolder, B. G.; Martin, M. E.; Krasheninnikova, N. S.; Tregillis, I. L.; Perry, T. S.; Heeter, R. F.; Opachich, Y. P.; Moore, A. S.; Kline, J. L.; Johns, H. M.; Liedahl, D. A.; Cardenas, T.; Olson, R. E.; Wilde, B. H.; Urbatsch, T. J.

    2018-06-01

    This paper discusses the modeling of experiments that measure iron opacity in local thermodynamic equilibrium (LTE) using laser-driven hohlraums at the National Ignition Facility (NIF). A previous set of experiments fielded at Sandia's Z facility [Bailey et al., Nature 517, 56 (2015)] have shown up to factors of two discrepancies between the theory and experiment, casting doubt on the validity of the opacity models. The purpose of the new experiments is to make corroborating measurements at the same densities and temperatures, with the initial measurements made at a temperature of 160 eV and an electron density of 0.7 × 1022 cm-3. The X-ray hot spots of a laser-driven hohlraum are not in LTE, and the iron must be shielded from a direct line-of-sight to obtain the data [Perry et al., Phys. Rev. B 54, 5617 (1996)]. This shielding is provided either with the internal structure (e.g., baffles) or external wall shapes that divide the hohlraum into a laser-heated portion and an LTE portion. In contrast, most inertial confinement fusion hohlraums are simple cylinders lacking complex gold walls, and the design codes are not typically applied to targets like those for the opacity experiments. We will discuss the initial basis for the modeling using LASNEX, and the subsequent modeling of five different hohlraum geometries that have been fielded on the NIF to date. This includes a comparison of calculated and measured radiation temperatures.

  18. Investigation of the effects of long duration space exposure on active optical system components

    NASA Technical Reports Server (NTRS)

    Blue, M. D.

    1994-01-01

    This experiment was exposed to the space environment for 6 years on the Long Duration Exposure Facility (LDEF). It investigated quantitatively the effects of the long-duration space exposure on the relevant performance parameters of a representative set of electron-optic system components, including lasers, radiation detectors, filters, modulators, windows, and other related components. It evaluated the results and implications of the measurements indicating real or suspected degradation mechanisms. This information will be used to establish guidelines for the selection and use of components for space-based, electro-optic systems.

  19. Characterization of a space orbited incoherent fiber optic bundle

    NASA Technical Reports Server (NTRS)

    Dewalt, Stephen A.; Taylor, Edward W.

    1993-01-01

    The results of a study performed to determine the effects of adverse space environments on a bundle of over 1800 optical fibers orbited for 69 months are reported. Experimental results are presented on an incoherent fiber optic bundle oriented in low Earth orbit aboard the Long Duration Exposure Facility (LDEF) satellite as part of the Space Environment Effects Experiment (M0006). Measurements were performed to determine if space induced radiation effects changed the fiber bundle characteristics. Data demonstrating the success of light transmitting fibers to withstand the adverse space environment are presented.

  20. Gas-Grain Simulation Facility: Fundamental studies of particle formation and interactions. Volume 2: Abstracts, candidate experiments and feasibility study

    NASA Technical Reports Server (NTRS)

    Fogleman, Guy (Editor); Huntington, Judith L. (Editor); Schwartz, Deborah E. (Editor); Fonda, Mark L. (Editor)

    1989-01-01

    An overview of the Gas-Grain Simulation Facility (GGSF) project and its current status is provided. The proceedings of the Gas-Grain Simulation Facility Experiments Workshop are recorded. The goal of the workshop was to define experiments for the GGSF--a small particle microgravity research facility. The workshop addressed the opportunity for performing, in Earth orbit, a wide variety of experiments that involve single small particles (grains) or clouds of particles. Twenty experiments from the fields of exobiology, planetary science, astrophysics, atmospheric science, biology, physics, and chemistry were described at the workshop and are outlined in Volume 2. Each experiment description included specific scientific objectives, an outline of the experimental procedure, and the anticipated GGSF performance requirements. Since these experiments represent the types of studies that will ultimately be proposed for the facility, they will be used to define the general science requirements of the GGSF. Also included in the second volume is a physics feasibility study and abstracts of example Gas-Grain Simulation Facility experiments and related experiments in progress.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, A.R.; Hurley, D.L.

    A year ago at the First LDEF Post-Retrieval Symposium, we reported detailed measurements on trunnion sections, as well as results from intentional'' samples (Co, Ni, In, Ta, and V) and spacecraft parts. For this year's Symposium we re-evaluate some of these findings in combination with more recent results, to cast a longer perspective on the LDEF experience, and to sketch some promising avenues toward more effective participation in future missions. The LDEF analysis effort has been a superb training exercise, from which lessons learned needs be applied to future missions -- right back to the early phases of mission planning.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, A.R.; Hurley, D.L.

    A year ago at the First LDEF Post-Retrieval Symposium, we reported detailed measurements on trunnion sections, as well as results from ``intentional`` samples (Co, Ni, In, Ta, and V) and spacecraft parts. For this year`s Symposium we re-evaluate some of these findings in combination with more recent results, to cast a longer perspective on the LDEF experience, and to sketch some promising avenues toward more effective participation in future missions. The LDEF analysis effort has been a superb training exercise, from which lessons learned needs be applied to future missions -- right back to the early phases of mission planning.

  3. Differences in Experiences With Care Between Homeless and Nonhomeless Patients in Veterans Affairs Facilities With Tailored and Nontailored Primary Care Teams.

    PubMed

    Jones, Audrey L; Hausmann, Leslie R M; Kertesz, Stefan; Suo, Ying; Cashy, John P; Mor, Maria K; Schaefer, James H; Gundlapalli, Adi V; Gordon, Adam J

    2018-05-12

    Homeless patients describe poor experiences with primary care. In 2012, the Veterans Health Administration (VHA) implemented homeless-tailored primary care teams (Homeless Patient Aligned Care Team, HPACTs) that could improve the primary care experience for homeless patients. To assess differences in primary care experiences between homeless and nonhomeless Veterans receiving care in VHA facilities that had HPACTs available (HPACT facilities) and in VHA facilities lacking HPACTs (non-HPACT facilities). We used multivariable multinomial regressions to estimate homeless versus nonhomeless patient differences in primary care experiences (categorized as negative/moderate/positive) reported on a national VHA survey. We compared the homeless versus nonhomeless risk differences (RDs) in reporting negative or positive experiences in 25 HPACT facilities versus 485 non-HPACT facilities. Survey respondents from non-HPACT facilities (homeless: n=10,148; nonhomeless: n=309,779) and HPACT facilities (homeless: n=2022; nonhomeless: n=20,941). Negative and positive experiences with access, communication, office staff, provider rating, comprehensiveness, coordination, shared decision-making, and self-management support. In non-HPACT facilities, homeless patients reported more negative and fewer positive experiences than nonhomeless patients. However, these patterns of homeless versus nonhomeless differences were reversed in HPACT facilities for the domains of communication (positive experience RDs in non-HPACT versus HPACT facilities=-2.0 and 2.0, respectively); comprehensiveness (negative RDs=2.1 and -2.3), shared decision-making (negative RDs=1.2 and -1.8), and self-management support (negative RDs=0.1 and -4.5; positive RDs=0.5 and 8.0). VHA facilities with HPACT programs appear to offer a better primary care experience for homeless versus nonhomeless Veterans, reversing the pattern of relatively poor primary care experiences often associated with homelessness.

  4. Materials Science Experiments Under Microgravity - A Review of History, Facilities, and Future Opportunities

    NASA Technical Reports Server (NTRS)

    Stenzel, Ch.

    2012-01-01

    Materials science experiments have been a key issue already since the early days of research under microgravity conditions. A microgravity environment facilitates processing of metallic and semiconductor melts without buoyancy driven convection and sedimentation. Hence, crystal growth of semiconductors, solidification of metallic alloys, and the measurement of thermo-physical parameters are the major applications in the field of materials science making use of these dedicated conditions in space. In the last three decades a large number of successful experiments have been performed, mainly in international collaborations. In parallel, the development of high-performance research facilities and the technological upgrade of diagnostic and stimuli elements have also contributed to providing optimum conditions to perform such experiments. A review of the history of materials science experiments in space focussing on the development of research facilities is given. Furthermore, current opportunities to perform such experiments onboard ISS are described and potential future options are outlined.

  5. Onboard experiment data support facility, task 1 report. [space shuttles

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The conceptual design and specifications are developed for an onboard experiment data support facility (OEDSF) to provide end to end processing of data from various payloads on board space shuttles. Classical data processing requirements are defined and modeled. Onboard processing requirements are analyzed. Specifications are included for an onboard processor.

  6. The Boiling eXperiment Facility (BXF) for the Microgravity Science Glovebox (MSG)

    NASA Technical Reports Server (NTRS)

    McQuillen, John; Chao, David; Vergilii, Frank

    2006-01-01

    Boiling is an effective means of cooling by removing heat from surfaces through vaporization of a working fluid. It is also affected by both the magnitude and direction of gravity. By conducting pool boiling tests in microgravity, the effect of buoyancy n the overall boiling process and the relative magnitude of other phenomena can be assessed. The Boiling eXperiment Facility (BXF) is being built for the Microgravity Science Glovebox. This facility will conduct two pool boiling studies. The first study the Microheater Array Boiling Experiment (MABE) uses two 96 element microheater arrays, 2.7 mm and 7.0 mm in size, to measure localized hear fluxes while operating at a constant temperature. The other experiment, the Nucleate Pool Boiling eXperiment (NPBX) uses a 85 mm diameter heater wafer that has been "seeded" with five individually-controlled nucleation sites to study bubble nucleation, growth, coalescence and departure. The BXF uses normal-perfluorohexane as the test fluid and will operate between pressures of 60 to 244 Pa. and temperatures of 35 to 60 C. Both sets of experimental heaters are highly instrumented. Pressure and bulk fluid temperature measurements will be made with standard rate video. A high speed video system will be used to visualize the boiling process through the bottom of the MABE heater arrays. The BXF is currently scheduled to fly on Utilization Flight-13A.1 to the ISS with facility integration into the MSG and operation during Increment 15

  7. Glovebox in orbit - ESA/NASA Glovebox: A versatile USML-1 experiment facility

    NASA Technical Reports Server (NTRS)

    Sutherland, Ian A.; Wolff, Heinz; Helmke, Hartmut; Riesselmann, Werner; Nagy, Mike; Voeten, Eduard; Chassay, Roger

    1993-01-01

    The general purpose experiment facility flown aboard Space Shuttle USML-1 and known as the Glovebox is briefly discussed. Glovebox enabled scientists to perform materials science, fluids, and combustion experiments safely without contaminating the closed environment of Spacelab and endangering the crew. The evolution of Glovebox, its special features, and its hardware are described. The Glovebox experiments are summarized along with postmission and crew debriefing. Future uses of Glovebox are discussed.

  8. Follow-up on the effects of the space environment on UHCRE thermal blankets

    NASA Technical Reports Server (NTRS)

    Levadou, Francois; Vaneesbeek, Marc

    1993-01-01

    An overview of the effects of the space environment on the thermal blanket of the UHCRE experiment is presented with an emphasis on atomic oxygen (AO) erosion. A more accurate value for FEP Teflon reaction efficiency is given and corresponds, at normal incidence, to 3.24 10(exp -25) cu cm/atomic, therefore, the FEP Teflon erosion corresponding to the Long Duration Exposure Facility (LDEF) total mission is 29.5 microns. A power 1.44 of the cosine of the incident angle of the oxygen atoms is found. It is shown that this value is not far from the power found using Fergusson's relationship between efficiency and energy of the O-atoms. An hypothesis concerning the effect of oxygen ions (O(+)) is also presented. The presence of oxygen ions may explain the different results obtained from different flights and from laboratory tests. Finally an XPS analysis of Chemglaze Z306(tm) black paint demonstrates the presence of silicone in the paint which may explain part of the contamination found on LDEF.

  9. Orbital debris and meteoroids: Results from retrieved spacecraft surfaces

    NASA Astrophysics Data System (ADS)

    Mandeville, J. C.

    1993-08-01

    Near-Earth space contains natural and man-made particles, whose size distribution ranges from submicron sized particles to cm sized objects. This environment causes a grave threat to space missions, mainly for future manned or long duration missions. Several experiments devoted to the study of this environment have been recently retrieved from space. Among them several were located on the NASA Long Duration Exposure Facility (LDEF) and on the Russian MIR Space Station. Evaluation of hypervelocity impact features gives valuable information on size distribution of small dust particles present in low Earth orbit. Chemical identification of projectile remnants is possible in many instances, thus allowing a discrimination between extraterrestrial particles and man-made orbital debris. A preliminary comparison of flight data with current modeling of meteoroids and space debris shows a fair agreement. However impact of particles identified as space debris on the trailing side of LDEF, not predicted by the models, could be the result of space debris in highly excentric orbits, probably associated with GTO objects.

  10. Numerical simulation of experiments in the Giant Planet Facility

    NASA Technical Reports Server (NTRS)

    Green, M. J.; Davy, W. C.

    1979-01-01

    Utilizing a series of existing computer codes, ablation experiments in the Giant Planet Facility are numerically simulated. Of primary importance is the simulation of the low Mach number shock layer that envelops the test model. The RASLE shock-layer code, used in the Jupiter entry probe heat-shield design, is adapted to the experimental conditions. RASLE predictions for radiative and convective heat fluxes are in good agreement with calorimeter measurements. In simulating carbonaceous ablation experiments, the RASLE code is coupled directly with the CMA material response code. For the graphite models, predicted and measured recessions agree very well. Predicted recession for the carbon phenolic models is 50% higher than that measured. This is the first time codes used for the Jupiter probe design have been compared with experiments.

  11. Ion traps for precision experiments at rare-isotope-beam facilities

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, Anna

    2016-09-01

    Ion traps first entered experimental nuclear physics when the ISOLTRAP team demonstrated Penning trap mass spectrometry of radionuclides. From then on, the demand for ion traps has grown at radioactive-ion-beam (RIB) facilities since beams can be tailored for the desired experiment. Ion traps have been deployed for beam preparation, from bunching (thereby allowing time coincidences) to beam purification. Isomerically pure beams needed for nuclear-structure investigations can be prepared for trap-assisted or in-trap decay spectroscopy. The latter permits studies of highly charged ions for stellar evolution, which would be impossible with traditional experimental nuclear-physics methods. Moreover, the textbook-like conditions and advanced ion manipulation - even of a single ion - permit high-precision experiments. Consequently, the most accurate and precise mass measurements are now performed in Penning traps. After a brief introduction to ion trapping, I will focus on examples which showcase the versatility and utility of the technique at RIB facilities. I will demonstrate how this atomic-physics technique has been integrated into nuclear science, accelerator physics, and chemistry. DOE.

  12. Continued investigation of LDEF's structural frame and thermal blankets by the Meteoroid and Debris Special Investigation Group

    NASA Technical Reports Server (NTRS)

    See, Thomas H.; Mack, Kimberly S.; Warren, Jack L.; Zolensky, Michael E.; Zook, Herbert A.

    1993-01-01

    This report focuses on the data acquired by detailed examination of LDEF intercostals, 68 of which are now in possession of the Meteoroid and Debris Special Investigation Group (M&D SIG) at JSC. In addition, limited data will be presented for several small sections from the A0178 thermal control blankets that were examined/counted prior to being shipped to Principal Investigators (PI's) for scientific study. The data presented here are limited to measurements of crater and penetration-hole diameters and their frequency of occurrence which permits, yet also constrains, more model-dependent, interpretative efforts. Such efforts will focus on the conversion of crater and penetration-hole sizes to projectile diameters (and masses), on absolute particle fluxes, and on the distribution of particle-encounter velocities. These are all complex issues that presently cannot be pursued without making various assumptions which relate, in part, to crater-scaling relationships, and to assumed trajectories of natural and man-made particle populations in LEO that control the initial impact conditions.

  13. First experiment on LMJ facility: pointing and synchronisation qualification

    NASA Astrophysics Data System (ADS)

    Henry, Olivier; Raffestin, Didier; Bretheau, Dominique; Luttmann, Michel; Graillot, Herve; Ferri, Michel; Seguineau, Frederic; Bar, Emmanuel; Patissou, Loic; Canal, Philippe; Sautarel, Franöise; Tranquille-Marques, Yves

    2017-10-01

    The LMJ (Laser mega Joule) facility at the CESTA site (Aquitaine, France) is a tool designed to deliver up to 1.2 MJ at 351 nm for plasma experiments. The experiment system will include 11 diagnostics: UV and X energy balances, imagers (Streak and stripe camera, CCD), spectrometers, and a Visar/pyrometer. The facility must be able to deliver, within the hour following the shot, all the results of the plasma diagnostics, alignment images and laser diagnostic measurements. These results have to be guaranteed in terms of conformity to the request and quality of measurement. The end of 2016 was devoted to the qualification of system pointing on target and synchronization within and between beams. The shots made with two chains (divided in 4 quads - 8 laser beams) have achieved 50 µm of misalignment accuracy (chain and quad channel) and a synchronization accuracy in the order of 50 ps . The performances achieved for plasma diagnostic (in the order of less 100 µm of alignment and timing accuracy less than 150 ps) comply with expectations. At the same time the first automatic sequences were tested. They allowed a shot on target every 6h:30 and in some case twice a day by reducing preparation actions, leading to a sequence of 4h:00.

  14. Performance of silvered Teflon thermal control blankets on spacecraft

    NASA Astrophysics Data System (ADS)

    Pippin, G.; Stuckey, W. K.; Hemminger, C. S.

    1993-03-01

    Silver-backed fluorinated ethylene propylene Teflon (Ag/FEP) thin film material was used for thermal control in many locations on the Long Duration Exposure Facility (LDEF). The Ag/FEP registered the effects of atomic oxygen, solar ultraviolet radiation, meteoroid and debris impacts, thermal cycling, and contamination. This report summarizes the post-flight condition of the Ag/FEP, compares the results with performance on other spacecraft, and presents lifetime estimates for use under a variety of environmental exposures. Measurements of optical property and mechanical property and surface chemistry changes with exposure conditions, and their significance for design considerations and expected performance lifetimes, are reported for material flown on LDEF. The LDEF based data provides detailed information performance of Ag/FEP under relatively long term exposure in low Earth orbit. Comparison of this data with results from short term shuttle flights, Solar Max, SCATHA, other satellites, and ground based measurements is made to present a comprehensive summary of the use of this material for spacecraft applications.

  15. Texturing Carbon-carbon Composite Radiator Surfaces Utilizing Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Raack, Taylor

    2004-01-01

    Future space nuclear power systems will require radiator technology to dissipate excess heat created by a nuclear reactor. Large radiator fins with circulating coolant are in development for this purpose and an investigation of how to make them most efficient is underway. Maximizing the surface area while minimizing the mass of such radiator fins is critical for obtaining the highest efficiency in dissipating heat. Processes to develop surface roughness are under investigation to maximize the effective surface area of a radiator fin. Surface roughness is created through several methods including oxidation and texturing. The effects of atomic oxygen impingement on carbon-carbon surfaces are currently being investigated for texturing a radiator surface. Early studies of atomic oxygen impingement in low Earth orbit indicate significant texturing due to ram atomic oxygen. The surface morphology of the affected surfaces shows many microscopic cones and valleys which have been experimentally shown to increase radiation emittance. Further study of this morphology proceeded in the Long Duration Exposure Facility (LDEF). Atomic oxygen experiments on the LDEF successfully duplicated the results obtained from materials in spaceflight by subjecting samples to 4.5 eV atomic oxygen from a fixed ram angle. These experiments replicated the conical valley morphology that was seen on samples subjected to low Earth orbit.

  16. Experience with a UNIX based batch computing facility for H1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerhards, R.; Kruener-Marquis, U.; Szkutnik, Z.

    1994-12-31

    A UNIX based batch computing facility for the H1 experiment at DESY is described. The ultimate goal is to replace the DESY IBM mainframe by a multiprocessor SGI Challenge series computer, using the UNIX operating system, for most of the computing tasks in H1.

  17. Effect of space exposure on pyroelectric infrared detectors

    NASA Technical Reports Server (NTRS)

    Robertson, James B.; Clark, Ivan O.

    1991-01-01

    Twenty pyroelectric type infrared detectors were flown onboard the Long Duration Exposure Facility (LDEF). The detector chips were of three different pyroelectric materials: lithium-tantalate, strontium-barium-niobate, and triglycine-sulfide. The experiment was passive; no measurements were taken during the flight. Performance of the detectors was measured before and after flight. Postflight measurements revealed that detectors made of lithium-tantalate and strontium-barium-niobate suffered no measureable loss in performance. Detectors made of triglycine-sulfide suffered complete loss of performance, but so did the control samples of the same material. Repoling of the triglycine-sulfide failed to revive the detectors.

  18. New synchrotron powder diffraction facility for long-duration experiments

    PubMed Central

    Murray, Claire A.; Potter, Jonathan; Day, Sarah J.; Baker, Annabelle R.; Thompson, Stephen P.; Kelly, Jon; Morris, Christopher G.; Tang, Chiu C.

    2017-01-01

    A new synchrotron X-ray powder diffraction instrument has been built and commissioned for long-duration experiments on beamline I11 at Diamond Light Source. The concept is unique, with design features to house multiple experiments running in parallel, in particular with specific stages for sample environments to study slow kinetic systems or processes. The instrument benefits from a high-brightness X-ray beam and a large area detector. Diffraction data from the commissioning work have shown that the objectives and criteria are met. Supported by two case studies, the results from months of measurements have demonstrated the viability of this large-scale instrument, which is the world’s first dedicated facility for long-term studies (weeks to years) using synchrotron radiation. PMID:28190992

  19. NASA Wallops Flight Facility Air-Sea Interaction Research Facility

    NASA Technical Reports Server (NTRS)

    Long, Steven R.

    1992-01-01

    This publication serves as an introduction to the Air-Sea Interaction Research Facility at NASA/GSFC/Wallops Flight Facility. The purpose of this publication is to provide background information on the research facility itself, including capabilities, available instrumentation, the types of experiments already done, ongoing experiments, and future plans.

  20. Large craters on the meteoroid and space debris impact experiment

    NASA Technical Reports Server (NTRS)

    Humes, Donald H.

    1992-01-01

    Examination of 29.37 sq m of thick aluminum plates from the LDEF, which were exposed to the meteoroid and man-made orbital debris environments for 5.8 years, revealed 606 craters that were 0.5 mm in diameter or larger. Most were nearly hemispherical. There was a large variation in the number density of craters around the three axis gravity gradient stabilized spacecraft. A new model of the near-Earth meteoroid environment gives good agreement with the crater fluxes measured on the fourteen faces of the LDEF. The man-made orbital debris model of Kessler, which predicts that 16 pct. of the craters would be caused by man-made debris, is plausible. No chemical analyses of impactor residue that will distinguish between meteoroids and man-made debris is yet available.

  1. Penetration experiments in aluminum and Teflon targets of widely variable thickness

    NASA Technical Reports Server (NTRS)

    Hoerz, F.; Cintala, Mark J.; Bernhard, R. P.; See, T. H.

    1994-01-01

    The morphologies and detailed dimensions of hypervelocity craters and penetration holes on space-exposed surfaces faithfully reflect the initial impact conditions. However, current understanding of this postmortem evidence and its relation to such first-order parameters as impact velocity or projectile size and mass is incomplete. While considerable progress is being made in the numerical simulation of impact events, continued impact simulations in the laboratory are needed to obtain empirical constraints and insights. This contribution summarizes such experiments with Al and Teflon targets that were carried out in order to provide a better understanding of the crater and penetration holes reported from the Solar Maximum Mission (SMM) and the Long Duration Exposure Facility (LDEF) satellites. A 5-mm light gas gun was used to fire spherical soda-lime glass projectiles from 50 to 3175 microns in diameter (D(sub P)), at a nominal 6 km/s, into Al (1100 series; annealed) and Teflon (Teflon(sup TFE)) targets. Targets ranged in thickness (T) from infinite halfspace targets (T approx. equals cm) to ultrathin foils (T approx. equals micron), yielding up to 3 degrees of magnitude variation in absolute and relative (D(sub P)/T) target thickness. This experimental matrix simulates the wide range in D(sub P)/T experienced by a space-exposed membrane of constant T that is being impacted by projectiles of widely varying sizes.

  2. Status and Planned Experiments of the Hiradmat Pulsed Beam Material Test Facility at CERN SPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charitonidis, Nikolaos; Efthymiopoulos, Ilias; Fabich, Adrian

    2015-06-01

    HiRadMat (High Irradiation to Materials) is a facility at CERN designed to provide high-intensity pulsed beams to an irradiation area where material samples as well as accelerator component assemblies (e.g. vacuum windows, shock tests on high power targets, collimators) can be tested. The beam parameters (SPS 440 GeV protons with a pulse energy of up to 3.4 MJ, or alternatively lead/argon ions at the proton equivalent energy) can be tuned to match the needs of each experiment. It is a test area designed to perform single pulse experiments to evaluate the effect of high-intensity pulsed beams on materials in amore » dedicated environment, excluding long-time irradiation studies. The facility is designed for a maximum number of 1016 protons per year, in order to limit the activation of the irradiated samples to acceptable levels for human intervention. This paper will demonstrate the possibilities for research using this facility and go through examples of upcoming experiments scheduled in the beam period 2015/2016.« less

  3. Status of power generation experiments in the NASA Lewis closed cycle MHD facility

    NASA Technical Reports Server (NTRS)

    Sovie, R. J.; Nichols, L. D.

    1971-01-01

    The design and operation of the closed cycle MHD facility is discussed and results obtained in recent experiments are presented. The main components of the facility are a compressor, recuperative heat exchanger, heater, nozzle, MHD channel with 28 pairs of thoriated tungsten electrodes, cesium condenser, and an argon cooler. The facility has been operated at temperatures up to 2100 K with a cesium-seeded argon working fluid. At low magnetic field strengths, the open circuit voltage, Hall voltage and short circuit current obtained are 90, 69, and 47 percent of the theoretical equilibrium values, respectively. Comparison of this data with a wall and boundary layer leakage theory indicates that the generator has shorting paths in the Hall direction.

  4. Experiment Definition Using the Space Laboratory, Long Duration Exposure Facility, and Space Transportation System Shuttle

    NASA Technical Reports Server (NTRS)

    Sheppard, Albert P.; Wood, Joan M.

    1976-01-01

    Candidate experiments designed for the space shuttle transportation system and the long duration exposure facility are summarized. The data format covers: experiment title, Experimenter, technical abstract, benefits/justification, technical discussion of experiment approach and objectives, related work and experience, experiment facts space properties used, environmental constraints, shielding requirements, if any, physical description, and sketch of major elements. Information was also included on experiment hardware, research required to develop experiment, special requirements, cost estimate, safety considerations, and interactions with spacecraft and other experiments.

  5. Polar-Drive Experiments at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Hohenberger, M.

    2014-10-01

    To support direct-drive inertial confinement fusion (ICF) experiments at the National Ignition Facility (NIF) in its indirect-drive beam configuration, the polar-drive (PD) concept has been proposed. It requires direct-drive-specific beam smoothing, phase plates, and repointing the NIF beams toward the equator to ensure symmetric target irradiation. First experiments testing the performance of ignition-relevant PD implosions at the NIF have been performed. The goal of these early experiments was to develop a stable, warm implosion platform to investigate laser deposition and laser-plasma instabilities at ignition-relevant plasma conditions, and to develop and validate ignition-relevant models of laser deposition and heat conduction. These experiments utilize the NIF in its current configuration, including beam geometry, phase plates, and beam smoothing. Warm, 2.2-mm-diam plastic shells were imploded with total drive energies ranging from ~ 350 to 750 kJ with peak powers of 60 to 180 TW and peak on-target intensities from 4 ×1014 to 1 . 2 ×1015 W/cm2. Results from these initial experiments are presented, including the level of hot-electron preheat, and implosion symmetry and shell trajectory inferred via self-emission imaging and backlighting. Experiments are simulated with the 2-D hydrodynamics code DRACO including a full 3-D ray trace to model oblique beams, and a model for cross-beam energy transfer (CBET). These simulations indicate that CBET affects the shell symmetry and leads to a loss of energy imparted onto the shell, consistent with the experimental data. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  6. Proton therapy detector studies under the experience gained at the CATANA facility

    NASA Astrophysics Data System (ADS)

    Cuttone, G.; Cirrone, G. A. P.; Di Rosa, F.; Lojacono, P. A.; Lo Nigro, S.; Marino, C.; Mongelli, V.; Patti, I. V.; Pittera, S.; Raffaele, L.; Russo, G.; Sabini, M. G.; Salamone, V.; Valastro, L. M.

    2007-10-01

    Proton therapy represents the most promising radiotherapy technique for external tumor treatments. At Laboratori Nazionali del Sud of the Istituto Nazionale di Fisica Nucleare (INFN-LNS), Catania (I), a proton therapy facility is active since March 2002 and 140 patients, mainly affected by choroidal and iris melanoma, have been successfully treated. Proton beams are characterized by higher dose gradients and linear energy transfer with respect to the conventional photon and electron beams, commonly used in medical centers for radiotherapy.In this paper, we report the experience gained in the characterization of different dosimetric systems, studied and/or developed during the last ten years in our proton therapy facility.

  7. High-density carbon capsule experiments on the national ignition facility

    DOE PAGES

    Ross, J. S.; Ho, D.; Milovich, J.; ...

    2015-02-25

    Indirect-drive implosions with a high-density carbon (HDC) capsule were conducted on the National Ignition Facility (NIF) to test HDC properties as an ablator material for inertial confinement fusion. In this study, a series of five experiments were completed with 76-μm-thick HDC capsules using a four-shock laser pulse optimized for HDC. The pulse delivered a total energy of 1.3 MJ with a peak power of 360 TW. The experiment demonstrated good laser to target coupling (~90 %) and excellent nuclear performance. Lastly, a deuterium and tritium gas-filled HDC capsule implosion produced a neutron yield of 1.6×10 15 ± 3×10 13, amore » yield over simulated in one dimension of 70%.« less

  8. Conceptual design of initial opacity experiments on the national ignition facility

    NASA Astrophysics Data System (ADS)

    Heeter, R. F.; Bailey, J. E.; Craxton, R. S.; Devolder, B. G.; Dodd, E. S.; Garcia, E. M.; Huffman, E. J.; Iglesias, C. A.; King, J. A.; Kline, J. L.; Liedahl, D. A.; McKenty, P. W.; Opachich, Y. P.; Rochau, G. A.; Ross, P. W.; Schneider, M. B.; Sherrill, M. E.; Wilson, B. G.; Zhang, R.; Perry, T. S.

    2017-02-01

    Accurate models of X-ray absorption and re-emission in partly stripped ions are necessary to calculate the structure of stars, the performance of hohlraums for inertial confinement fusion and many other systems in high-energy-density plasma physics. Despite theoretical progress, a persistent discrepancy exists with recent experiments at the Sandia Z facility studying iron in conditions characteristic of the solar radiative-convective transition region. The increased iron opacity measured at Z could help resolve a longstanding issue with the standard solar model, but requires a radical departure for opacity theory. To replicate the Z measurements, an opacity experiment has been designed for the National Facility (NIF). The design uses established techniques scaled to NIF. A laser-heated hohlraum will produce X-ray-heated uniform iron plasmas in local thermodynamic equilibrium (LTE) at temperatures eV and electron densities 21~\\text{cm}-3$ . The iron will be probed using continuum X-rays emitted in a ps, diameter source from a 2 mm diameter polystyrene (CH) capsule implosion. In this design, of the NIF beams deliver 500 kJ to the mm diameter hohlraum, and the remaining directly drive the CH capsule with 200 kJ. Calculations indicate this capsule backlighter should outshine the iron sample, delivering a point-projection transmission opacity measurement to a time-integrated X-ray spectrometer viewing down the hohlraum axis. Preliminary experiments to develop the backlighter and hohlraum are underway, informing simulated measurements to guide the final design.

  9. Global meteorological data facility for real-time field experiments support and guidance

    NASA Technical Reports Server (NTRS)

    Shipham, Mark C.; Shipley, Scott T.; Trepte, Charles R.

    1988-01-01

    A Global Meteorological Data Facility (GMDF) has been constructed to provide economical real-time meteorological support to atmospheric field experiments. After collection and analysis of meteorological data sets at a central station, tailored meteorological products are transmitted to experiment field sites using conventional ground link or satellite communication techniques. The GMDF supported the Global Tropospheric Experiment Amazon Boundary Layer Experiment (GTE-ABLE II) based in Manaus, Brazil, during July and August 1985; an arctic airborne lidar survey mission for the Polar Stratospheric Clouds (PSC) experiment during January 1986; and the Genesis of Atlantic Lows Experiment (GALE) during January, February and March 1986. GMDF structure is similar to the UNIDATA concept, including meteorological data from the Zephyr Weather Transmission Service, a mode AAA GOES downlink, and dedicated processors for image manipulation, transmission and display. The GMDF improved field experiment operations in general, with the greatest benefits arising from the ability to communicate with field personnel in real time.

  10. HITRAP: A Facility for Experiments with Trapped Highly Charged Ions

    NASA Astrophysics Data System (ADS)

    Quint, W.; Dilling, J.; Djekic, S.; Häffner, H.; Hermanspahn, N.; Kluge, H.-J.; Marx, G.; Moore, R.; Rodriguez, D.; Schönfelder, J.; Sikler, G.; Valenzuela, T.; Verdú, J.; Weber, C.; Werth, G.

    2001-01-01

    HITRAP is a planned ion trap facility for capturing and cooling of highly charged ions produced at GSI in the heavy-ion complex of the UNILAC-SIS accelerators and the ESR storage ring. In this facility heavy highly charged ions up to uranium will be available as bare nuclei, hydrogen-like ions or few-electron systems at low temperatures. The trap for receiving and studying these ions is designed for operation at extremely high vacuum by cooling to cryogenic temperatures. The stored highly charged ions can be investigated in the trap itself or can be extracted from the trap at energies up to about 10 keV/q. The proposed physics experiments are collision studies with highly charged ions at well-defined low energies (eV/u), high-accuracy measurements to determine the g-factor of the electron bound in a hydrogen-like heavy ion and the atomic binding energies of few-electron systems, laser spectroscopy of HFS transitions and X-ray spectroscopy.

  11. Using a qualitative approach for understanding hospital-affiliated integrated clinical and fitness facilities: characteristics and members' experiences.

    PubMed

    Yang, Jingzhen; Kingsbury, Diana; Nichols, Matthew; Grimm, Kristin; Ding, Kele; Hallam, Jeffrey

    2015-06-19

    With health care shifting away from the traditional sick care model, many hospitals are integrating fitness facilities and programs into their clinical services in order to support health promotion and disease prevention at the community level. Through a series of focus groups, the present study assessed characteristics of hospital-affiliated integrated facilities located in Northeast Ohio, United States and members' experiences with respect to these facilities. Adult members were invited to participate in a focus group using a recruitment flyer. A total of 6 focus groups were conducted in 2013, each lasting one hour, ranging from 5 to 12 participants per group. The responses and discussions were recorded and transcribed verbatim, then analyzed independently by research team members. Major themes were identified after consensus was reached. The participants' average age was 57, with 56.8% currently under a doctor's care. Four major themes associated with integrated facilities and members' experiences emerged across the six focus groups: 1) facility/program, 2) social atmosphere, 3) provider, and 4) member. Within each theme, several sub-themes were also identified. A key feature of integrated facilities is the availability of clinical and fitness services "under one roof". Many participants remarked that they initially attended physical therapy, becoming members of the fitness facility afterwards, or vice versa. The participants had favorable views of and experiences with the superior physical environment and atmosphere, personal attention, tailored programs, and knowledgeable, friendly, and attentive staff. In particular, participants favored the emphasis on preventive care and the promotion of holistic health and wellness. These results support the integration of wellness promotion and programming with traditional medical care and call for the further evaluation of such a model with regard to participants' health outcomes.

  12. Direct Reactions at the Facility for Experiments on Nuclear Reactions in Stars (FENRIS)

    NASA Astrophysics Data System (ADS)

    Longland, Richard; Kelley, John; Marshall, Caleb; Portillo, Federico; Setoodehnia, Kiana

    2017-09-01

    Nuclear cross sections are a key ingredient in stellar models designed to understand how stars evolve. Determining these cross sections, therefore, is critical for obtaining reliable predictions from stellar models. While many charged-particle reaction cross sections can be measured in the laboratory, the Coulomb barrier means that they cannot always be measured at the low energies relevant to astrophysics. In other cases, radioactive targets make the measurements unfeasible. Radioactive ion beam experiments in inverse kinematics are one solution, but low beam intensities mean that cross sections plague these attempts further. Direct measurements, particularly particle transfer experiments, are one tool in our inventory that provides us with the necessary information to infer reaction cross sections at stellar energies. I will present an overview of one facility: the Facility for Experiments on Nuclear Reactions in Stars (FENRIS), which is dedicated to performing particle transfer measurements for astrophysical cross sections. Over the past few years, FENRIS has been fully upgraded and characterized. I will show highlights of our upgrade activities and current capabilities. I will also highlight our recent experimental results and discuss current upgrade efforts.

  13. Outgassing and dimensional changes of polymer matrix composites in space

    NASA Technical Reports Server (NTRS)

    Tennyson, R. C.; Matthews, R.

    1993-01-01

    A thermal-vacuum outgassing model and test protocol for predicting outgassing times and dimensional changes for polymer matrix composites is described. Experimental results derived from a 'control' sample are used to provide the basis for analytical predictions to compare with the outgassing response of Long Duration Exposure Facility (LDEF) flight samples.

  14. Experiments, conceptual design, preliminary cost estimates and schedules for an underground research facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korbin, G.; Wollenberg, H.; Wilson, C.

    Plans for an underground research facility are presented, incorporating techniques to assess the hydrological and thermomechanical response of a rock mass to the introduction and long-term isolation of radioactive waste, and to assess the effects of excavation on the hydrologic integrity of a repository and its subsequent backfill, plugging, and sealing. The project is designed to utilize existing mine or civil works for access to experimental areas and is estimated to last 8 years at a total cost for contruction and operation of $39.0 million (1981 dollars). Performing the same experiments in an existing underground research facility would reduce themore » duration to 7-1/2 years and cost $27.7 million as a lower-bound estimate. These preliminary plans and estimates should be revised after specific sites are identified which would accommodate the facility.« less

  15. Atomic research

    NASA Technical Reports Server (NTRS)

    Hadaway, James B.; Connatser, Robert; Cothren, Bobby; Johnson, R. B.

    1993-01-01

    Work performed by the University of Alabama in Huntsville's (UAH) Center for Applied Optics (CAO) entitled Atomic Research is documented. Atomic oxygen (AO) effects on materials have long been a critical concern in designing spacecraft to withstand exposure to the Low Earth Orbit (LEO) environment. The objective of this research effort was to provide technical expertise in the design of instrumentation and experimental techniques for analyzing materials exposed to atomic oxygen in accelerated testing at NASA/MSFC. Such testing was required to answer fundamental questions concerning Space Station Freedom (SSF) candidate materials and materials exposed to atomic oxygen aboard the Long-Duration Exposure Facility (LDEF). The primary UAH task was to provide technical design, review, and analysis to MSFC in the development of a state-of-the-art 5eV atomic oxygen beam facility required to simulate the RAM-induced low earth orbit (LEO) AO environment. This development was to be accomplished primarily at NASA/MSFC. In support of this task, contamination effects and ultraviolet (UV) simulation testing was also to be carried out using NASA/MSFC facilities. Any materials analysis of LDEF samples was to be accomplished at UAH.

  16. Advances in shock timing experiments on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Robey, H. F.; Celliers, P. M.; Moody, J. D.; Sater, J.; Parham, T.; Kozioziemski, B.; Dylla-Spears, R.; Ross, J. S.; LePape, S.; Ralph, J. E.; Hohenberger, M.; Dewald, E. L.; Berzak Hopkins, L.; Kroll, J. J.; Yoxall, B. E.; Hamza, A. V.; Boehly, T. R.; Nikroo, A.; Landen, O. L.; Edwards, M. J.

    2016-03-01

    Recent advances in shock timing experiments and analysis techniques now enable shock measurements to be performed in cryogenic deuterium-tritium (DT) ice layered capsule implosions on the National Ignition Facility (NIF). Previous measurements of shock timing in inertial confinement fusion (ICF) implosions were performed in surrogate targets, where the solid DT ice shell and central DT gas were replaced with a continuous liquid deuterium (D2) fill. These previous experiments pose two surrogacy issues: a material surrogacy due to the difference of species (D2 vs. DT) and densities of the materials used and a geometric surrogacy due to presence of an additional interface (ice/gas) previously absent in the liquid-filled targets. This report presents experimental data and a new analysis method for validating the assumptions underlying this surrogate technique.

  17. Space environmental effects on silvered Teflon thermal control surfaces

    NASA Technical Reports Server (NTRS)

    Hemminger, C. S.; Stuckey, W. K.; Uht, J. C.

    1991-01-01

    Cumulative space environment effects on Ag/fluorinated ethylene propylene (FEP) were a function of exposure orientation. Samples from nineteen silvered Teflon (Ag/FEP) thermal control surfaces recovered from the Long Duration Exposure Facility (LDEF) were analyzed to determine changes in this material as a function of position on the spacecraft. Although solar absorptance and infrared emittance of measured thermal blanket specimens are relatively unchanged from control specimen values, significant changes in surface morphology, composition and chemistry were observed. Researchers hypothesize that the FEP surfaces on LDEF were degraded by ultraviolet radiation exposure at all orientations, but that the damaged material had been removed by erosion from the blankets exposed to atomic oxygen flux and that contamination is masking the damage on trays flanking the trailing edge.

  18. Onboard experiment data support facility. Task 2 report: Definition of onboard processing requirements

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The onboard experiment data support facility (OEDSF) will provide data processing support to various experiment payloads on board the space shuttle. The OEDSF study will define the conceptual design and generate specifications for an OEDSF which will meet the following objectives: (1) provide a cost-effective approach to end-to-end processing requirements, (2) service multiple disciplines (3) satisfy user needs, (4) reduce the amount and improve the quality of data collected, stored and processed, and (5) embody growth capacity.

  19. Skylab Medical Experiments Altitude Test /SMEAT/ facility design and operation.

    NASA Technical Reports Server (NTRS)

    Hinners, A. H., Jr.; Correale, J. V.

    1973-01-01

    This paper presents the design approaches and test facility operation methods used to successfully accomplish a 56-day test for Skylab to permit evaluation of selected Skylab medical experiments in a ground test simulation of the Skylab environment with an astronaut crew. The systems designed for this test include the two-gas environmental control system, the fire suppression and detection system, equipment transfer lock, ground support equipment, safety systems, potable water system, waste management system, lighting and power system, television monitoring, communications and recreation systems, and food freezer.

  20. Calibration of the SphinX experiment at the XACT facility in Palermo

    NASA Astrophysics Data System (ADS)

    Collura, A.; Barbera, M.; Varisco, S.; Calderone, G.; Reale, F.; Gburek, S.; Kowalinski, M.; Sylwester, J.; Siarkowski, M.; Bakala, J.; Podgorski, P.; Trzebinski, W.; Plocieniak, S.; Kordylewski, Z.

    2008-07-01

    Three of the four detectors of the SphinX experiment to be flown on the Russian mission Coronas-Photon have been measured at the XACT Facility of the Palermo Observatory at several wavelengths in the soft X-ray band. We describe the instrumental set-up and report some measurements. The analysis work to obtain the final calibration is still in progress.

  1. Laser shock compression experiments on precompressed water in ``SG-II'' laser facility

    NASA Astrophysics Data System (ADS)

    Shu, Hua; Huang, Xiuguang; Ye, Junjian; Fu, Sizu

    2017-06-01

    Laser shock compression experiments on precompressed samples offer the possibility to obtain new hugoniot data over a significantly broader range of density-temperature phase than was previously achievable. This technique was developed in ``SG-II'' laser facility. Hugoniot data were obtained for water in 300 GPa pressure range by laser-driven shock compression of samples statically precompressed in diamond-anvil cells.

  2. A new gun facility dedicated to performing shock physics and terminal ballistics experiments

    NASA Astrophysics Data System (ADS)

    Zakraysek, Alan J.; Sutherland, Gerrit T.; Sandusky, Harold D.; Strange, David

    2000-04-01

    A new building has been constructed to house various powder and single-stage and two-stage gas guns at the Naval Surface Warfare Center, Indian Head Division. Guns previously located at the Naval Research Laboratory and the former White Oak Site of the Naval Surface Warfare Center have been relocated here. Most of the guns are mounted on moveable pedestals to allow them to be shot into various chambers. The facility includes a concrete blast chamber, a target chamber/catch tank for flyer plate experiments, and a target chamber outfitted for terminal ballistics measurements. This paper will discuss the capabilities of this new facility.

  3. Microgravity Combustion Science and Fluid Physics Experiments and Facilities for the ISS

    NASA Technical Reports Server (NTRS)

    Lauver, Richard W.; Kohl, Fred J.; Weiland, Karen J.; Zurawski, Robert L.; Hill, Myron E.; Corban, Robert R.

    2001-01-01

    At the NASA Glenn Research Center, the Microgravity Science Program supports both ground-based and flight experiment research in the disciplines of Combustion Science and Fluid Physics. Combustion Science research includes the areas of gas jet diffusion flames, laminar flames, burning of droplets and misting fuels, solids and materials flammability, fire and fire suppressants, turbulent combustion, reaction kinetics, materials synthesis, and other combustion systems. The Fluid Physics discipline includes the areas of complex fluids (colloids, gels, foams, magneto-rheological fluids, non-Newtonian fluids, suspensions, granular materials), dynamics and instabilities (bubble and drop dynamics, magneto/electrohydrodynamics, electrochemical transport, geophysical flows), interfacial phenomena (wetting, capillarity, contact line hydrodynamics), and multiphase flows and phase changes (boiling and condensation, heat transfer, flow instabilities). A specialized International Space Station (ISS) facility that provides sophisticated research capabilities for these disciplines is the Fluids and Combustion Facility (FCF). The FCF consists of the Combustion Integrated Rack (CIR), the Fluids Integrated Rack (FIR) and the Shared Accommodations Rack and is designed to accomplish a large number of science investigations over the life of the ISS. The modular, multiuser facility is designed to optimize the science return within the available resources of on-orbit power, uplink/downlink capacity, crew time, upmass/downmass, volume, etc. A suite of diagnostics capabilities, with emphasis on optical techniques, will be provided to complement the capabilities of the subsystem multiuser or principal investigator-specific experiment modules. The paper will discuss the systems concept, technical capabilities, functionality, and the initial science investigations in each discipline.

  4. First radioactive beams at ACCULINNA-2 facility and first proposed experiment

    NASA Astrophysics Data System (ADS)

    Bezbakh, A. A.; Beekman, W.; Chudoba, V.; Fomichev, A. S.; Golovkov, M. S.; Gorshkov, A. V.; Grigorenko, L. V.; Kaminski, G.; Krupko, S. A.; Mentel, M.; Nikolskii, E. Yu.; Parfenova, Yu. L.; Plucinski, P.; Sidorchuk, S. I.; Slepnev, R. S.; Sharov, P. G.; Ter-Akopian, G. M.; Zalewski, B.

    2018-04-01

    New fragment separator ACCULINNA-2 was installed at the primary beam line of the U-400M cyclotron in 2016. Recently, first radioactive ion beams were obtained. The design parameters of new facility were experimentally confirmed. Intensity, purity and transverse profile of several secondary beams at the final focal plane were studied. The intensities obtained for the secondary beams of 14B, 12Be, 9;11Li, 6;8He in the fragmentation reaction 15N (49.7 AMeV) + Be (2 mm) are in average 15 times higher in comparison to the ones produced at its forerunner ACCULINNA separator. The ACCULINNA-2 separator will become a backbone facility at the FLNR for the research in the field of light exotic nuclei in the vicinity of the nuclear drip lines. The planned first experiment, aimed for the observation of the 7H nucleus at ACCULINNA-2, is outlined.

  5. Polar-direct-drive experiments on the National Ignition Facility

    DOE PAGES

    Hohenberger, M.; Radha, P. B.; Myatt, J. F.; ...

    2015-05-11

    To support direct-drive inertial confinement fusion experiments at the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)] in its indirect-drive beam configuration, the polar-direct-drive (PDD) concept [S. Skupsky et al., Phys. Plasmas 11, 2763 (2004)] has been proposed. Ignition in PDD geometry requires direct-drive–specific beam smoothing, phase plates, and repointing the NIF beams toward the equator to ensure symmetric target irradiation. First experiments to study the energetics and preheat in PDD implosions at the NIF have been performed. These experiments utilize the NIF in its current configuration, including beammore » geometry, phase plates, and beam smoothing. Room-temperature, 2.2-mm-diam plastic shells filled with D₂ gas were imploded with total drive energies ranging from ~500 to 750 kJ with peak powers of 120 to 180 TW and peak on-target irradiances at the initial target radius from 8 10¹⁴ to 1.2 10¹⁵W/cm². Results from these initial experiments are presented, including measurements of shell trajectory, implosion symmetry, and the level of hot-electron preheat in plastic and Si ablators. Experiments are simulated with the 2-D hydrodynamics code DRACO including a full 3-D ray-trace to model oblique beams, and models for nonlocal electron transport and cross-beam energy transport (CBET). These simulations indicate that CBET affects the shell symmetry and leads to a loss of energy imparted onto the shell, consistent with the experimental data.« less

  6. Apollo experience report: Real-time auxiliary computing facility development

    NASA Technical Reports Server (NTRS)

    Allday, C. E.

    1972-01-01

    The Apollo real time auxiliary computing function and facility were an extension of the facility used during the Gemini Program. The facility was expanded to include support of all areas of flight control, and computer programs were developed for mission and mission-simulation support. The scope of the function was expanded to include prime mission support functions in addition to engineering evaluations, and the facility became a mandatory mission support facility. The facility functioned as a full scale mission support activity until after the first manned lunar landing mission. After the Apollo 11 mission, the function and facility gradually reverted to a nonmandatory, offline, on-call operation because the real time program flexibility was increased and verified sufficiently to eliminate the need for redundant computations. The evaluation of the facility and function and recommendations for future programs are discussed in this report.

  7. The interaction of atomic oxygen with copper: An XPS, AES, XRD, optical transmission, and stylus profilometry study

    NASA Technical Reports Server (NTRS)

    Raikar, Ganesh N.; Gregory, John C.; Christl, Ligia C.; Peters, Palmer N.

    1993-01-01

    The University of Alabama in Huntsville (UAH) experiment A-0114 was designed to study the reaction of material surfaces with low earth orbits (LEO) atmospheric oxygen. The experiment contained 128 one-inch circular samples; metals, polymers, carbons, and semiconductors. Half of these samples were exposed on the front of the Long Duration Exposure Facility (LDEF) and remaining on the rear. Among metal samples, copper has shown some interesting new results. There were two forms of copper samples: a thin film sputter-coated on fused silica and a solid piece of OFHC copper. They were characterized by x-ray and Auger electron spectroscopies, x-ray diffraction, and high resolution profilometry. Cu 2p core level spectra were used to demonstrate the presence of Cu2O and CuO and to determine the oxidation states.

  8. Conceptual design of initial opacity experiments on the national ignition facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heeter, R.  F.; Bailey, J.  E.; Craxton, R.  S.

    Accurate models of X-ray absorption and re-emission in partly stripped ions are necessary to calculate the structure of stars, the performance of hohlraums for inertial confinement fusion and many other systems in high-energy-density plasma physics. Despite theoretical progress, a persistent discrepancy exists with recent experiments at the Sandia Z facility studying iron in conditions characteristic of the solar radiative–convective transition region. The increased iron opacity measured at Z could help resolve a longstanding issue with the standard solar model, but requires a radical departure for opacity theory. To replicate the Z measurements, an opacity experiment has been designed for the National Facility (NIF). The design uses established techniques scaled to NIF. A laser-heated hohlraum will produce X-ray-heated uniform iron plasmas in local thermodynamic equilibrium (LTE) at temperaturesmore » $${\\geqslant}150$$ eV and electron densities$${\\geqslant}7\\times 10^{21}~\\text{cm}^{-3}$$. The iron will be probed using continuum X-rays emitted in a$${\\sim}200$$ ps,$${\\sim}200~\\unicode[STIX]{x03BC}\\text{m}$$diameter source from a 2 mm diameter polystyrene (CH) capsule implosion. In this design,$2/3$$of the NIF beams deliver 500 kJ to the$${\\sim}6$$ mm diameter hohlraum, and the remaining$$1/3$directly drive the CH capsule with 200 kJ. Calculations indicate this capsule backlighter should outshine the iron sample, delivering a point-projection transmission opacity measurement to a time-integrated X-ray spectrometer viewing down the hohlraum axis. Preliminary experiments to develop the backlighter and hohlraum are underway, informing simulated measurements to guide the final design.« less

  9. Experiments and appropriate facilities for plant physiology research in space

    NASA Astrophysics Data System (ADS)

    Lork, W.

    Light is a very essential parameter in a plant's life. Changing the quality and/or quantity of illumination will not only determine the further development (photomorphogenesis), but also effect spontaneous responses like curvatures (phototropism). But there are several still unknown links in the signal transduction chain from the perception of the light signals to the terminal response. It is known from ground-based experiments, that part of this signal transduction path is congruous with that of gravitational signals. Biosample is a technology development programme, which enables sophisticated experiments with whole plants in a microgravity environment. It allows complex sequences of gravitational- and light-stimuli with simultaneous recording of the plant's response (e.g. curvature of the stem) by video. This facility in union with new genetic mutants, which are less- or insensitive to light, gravity or both, are convenient tools for progress in plant physiology research.

  10. The National Ignition Facility (NIF) as a User Facility

    NASA Astrophysics Data System (ADS)

    Keane, Christopher; NIF Team

    2013-10-01

    The National Ignition Facility (NIF) has made significant progress towards operation as a user facility. Through June 2013, NIF conducted over 1200 experiments in support of ICF, HED science, and development of facility capabilities. The NIF laser has met or achieved all specifications and a wide variety of diagnostic and target fabrication capabilities are in place. A NIF User Group and associated Executive Board have been formed. Two User Group meetings have been conducted since formation of the User Group. NIF experiments in fundamental science have provided important new results. NIF ramp compression experiments have been conducted using diamond and iron, with EOS results obtained at pressures up to approximately 50 Mbar and 8 Mbar, respectively. Initial experiments in supernova hydrodynamics, the fundamental physics of the Rayleigh-Taylor instability, and equation of state in the Gbar pressure regime have also been conducted. This presentation will discuss the fundamental science program at NIF, including the proposal solicitation and scientific review processes and other aspects of user facility operation. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  11. The National Ignition Facility: Transition to a User Facility

    NASA Astrophysics Data System (ADS)

    Moses, E. I.; Atherton, J.; Lagin, L.; Larson, D.; Keane, C.; MacGowan, B.; Patterson, R.; Spaeth, M.; Van Wonterghem, B.; Wegner, P.; Kauffman, R.

    2016-03-01

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) has been operational since March 2009 and has been transitioning to a user facility supporting ignition science, high energy density science (HEDS), national security applications, and fundamental science. The facility has achieved its design goal of 1.8 MJ and 500 TW of 3ω light on target, and has performed target experiments with 1.9 MJ at peak powers of 410 TW. The facility is on track to perform over 200 target shots this year in support of all of its user communities. The facility has nearly 60 diagnostic systems operational and has shown flexibility in laser pulse shape and performance to meet the requirements of its multiple users. Progress continues on its goal of demonstrating thermonuclear burn in the laboratory. It has performed over 40 indirect-drive experiments with cryogenic-layered capsules. New platforms are being developed for HEDS and fundamental science. Equation-of-state and material strength experiments have been done on a number of materials with pressures of over 50 MBars obtained in diamond, conditions never previously encountered in the laboratory and similar to those found in planetary interiors. Experiments are also in progress investigating radiation transport, hydrodynamic instabilities, and direct drive implosions. NIF continues to develop as an experimental facility. Advanced Radiographic Capability (ARC) is now being installed on NIF for producing high-energy radiographs of the imploded cores of ignition targets and for short pulse laser-plasma interaction experiments. One NIF beam is planned for conversion to two picosecond beams in 2014. Other new diagnostics such as x-ray Thomson scattering, low energy neutron spectrometer, and multi-layer reflecting x-ray optics are also planned. Incremental improvements in laser performance such as improved optics damage performance, beam balance, and back reflection control are being pursued.

  12. Space Exposed Experiment Developed for Students (SEEDS) (P0004-2)

    NASA Technical Reports Server (NTRS)

    Grigsby, Doris K.; Ehrlich, Nelson J.

    1992-01-01

    SEEDS, a cooperative endeavor of NASA Headquarters, the NASA Langley Research Center, and the George W. Park Seed Company, resulted in the distribution of approximately 132,000 SEEDS kits to 3.3 million students. Kits contained Rutger's tomato seeds that had flown on the Long Duration Exposure Facility (LDEF), as well as seeds that had been stored in a climate controlled warehouse for the same time period. Preliminary data indicates the germination rate for space exposed seeds was 73.8 percent while Earth based seeds germinated at a rate of 70.3 percent. Tests conducted within the first six months after retrieval indicated space exposed seeds germinated in an average of 8.0 days, while Earth based seeds' average germination time was 8.3 days. Some mutations (assumed to be radiation induced) include plants that added a leaf instead of the usual flower at the end of the flower frond. Also, fruit produced from a flower with a variegated calyx bore seeds producing albino plants, while fruit from a flower with a green calyx from the same plant bore seeds producing green plants.

  13. Space environmental effects on silvered Teflon thermal control surfaces

    NASA Technical Reports Server (NTRS)

    Hemminger, C. S.; Stuckey, W. K.; Uht, J. C.

    1992-01-01

    Cumulative space environmental effects on silver/fluorinated ethylene propylene (Ag/FEP) were a function of exposure orientation. Samples from nineteen silvered Teflon (Ag/FEP) thermal control surfaces recovered from the Long Duration Exposure Facility (LDEF) were analyzed to determine changes in this material as a function of position on the spacecraft. Although solar absorptance and infrared emittance of measured thermal blanket specimens are relatively unchanged from control specimen values, significant changes in surface morphology, composition, and chemistry were observed. We hypothesize that the FEP surfaces on the LDEF are degraded by UV radiation at all orientations, but that the damaged material has been removed by erosion from the blankets exposed to atomic oxygen flux and that contamination is masking the damage in some areas on the trays flanking the trailing edge.

  14. Gas-Grain Simulation Facility (GGSF). Volume 1: Stage 1 facility definition studies

    NASA Technical Reports Server (NTRS)

    Gat, Nahum

    1993-01-01

    The Gas-Grain Simulation Facility (GGSF) is a facility-type payload to be included in the Space Station Freedom (SSF). The GGSF is a multidisciplinary facility that will accommodate several classes of experiments, including exobiology, planetary science, atmospheric science, and astrophysics. The physical mechanisms envisioned to be investigated include crystal growth, aggregation, nucleation, coagulation, condensation, collisions, fractal growth, cycles of freezing and evaporation, scavenging, longevity of bacteria, and more. TRW performed a Phase A study that included analyses of the science and technical (S&T) requirements, the development of facility functional requirements, and a conceptual design of the facility. The work that was performed under Stage 1 of the Phase A study and the results to date are summarized. In this stage, facility definition studies were conducted in sufficient detail to establish the technical feasibility of the candidate strawman experiments. The studies identified technical difficulties, identified required facility subsystems, surveyed existing technology studies and established preliminary facility weight, volume, power consumption, data systems, interface definition, and crew time requirements. The results of this study served as the basis for Stage 2 of the Phase A study in which a conceptual design and a reference design were performed. The results also served as a basis for a related study for a Gas-Grain Simulation Experiment Module (GGSEM), which is an apparatus intended to perform a subset of the GGSF experiments on board a low-Earth-orbiting platform.

  15. Reliable Facility Location Problem with Facility Protection

    PubMed Central

    Tang, Luohao; Zhu, Cheng; Lin, Zaili; Shi, Jianmai; Zhang, Weiming

    2016-01-01

    This paper studies a reliable facility location problem with facility protection that aims to hedge against random facility disruptions by both strategically protecting some facilities and using backup facilities for the demands. An Integer Programming model is proposed for this problem, in which the failure probabilities of facilities are site-specific. A solution approach combining Lagrangian Relaxation and local search is proposed and is demonstrated to be both effective and efficient based on computational experiments on random numerical examples with 49, 88, 150 and 263 nodes in the network. A real case study for a 100-city network in Hunan province, China, is presented, based on which the properties of the model are discussed and some managerial insights are analyzed. PMID:27583542

  16. New results from FRECOPA analysis

    NASA Technical Reports Server (NTRS)

    Durin, Christian

    1993-01-01

    New results from the ongoing analysis of the FRECOPA's (FREnch COoperative PAssive payload) system hardware are discussed. FRECOPA (AO138) was one of the 57 experiments flown on the LDEF satellite. The experiment was located on the trailing edge (Tray B3) and was exposed to UV radiation (11,100 equivalent sun hours), approximately equal to 34,000 thermal cycles, higher vacuum levels than the leading edge, a low atomic oxygen flux, and minor doses of protons and electrons. Due to LDEF's extended mission (5.8 years), CNES decided to set up a team to analyze the FRECOPA system. Initial results were presented at the First Post-Retrieval Conference, June, 1991. The results obtained since then are summarized.

  17. Summary of 2016 Light Microscopy Module (LMM) Physical Science Experiments on ISS. Update of LMM Science Experiments and Facility Capabilities

    NASA Technical Reports Server (NTRS)

    Sicker, Ronald J.; Meyer, William V.; Foster, William M.; Fletcher, William A.; Williams, Stuart J.; Lee, Chang-Soo

    2016-01-01

    This presentation will feature a series of short, entertaining, and informative videos that describe the current status and science support for the Light Microscopy Module (LMM) facility on the International Space Station. These interviews will focus on current experiments and provide an overview of future capabilities. The recently completed experiments include nano-particle haloing, 3-D self-assembly with Janus particles and a model system for nano-particle drug delivery. The videos will share perspectives from the scientists, engineers, and managers working with the NASA Light Microscopy program.

  18. Biotechnology Facility: An ISS Microgravity Research Facility

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Tsao, Yow-Min

    2000-01-01

    The International Space Station (ISS) will support several facilities dedicated to scientific research. One such facility, the Biotechnology Facility (BTF), is sponsored by the Microgravity Sciences and Applications Division (MSAD) and developed at NASA's Johnson Space Center. The BTF is scheduled for delivery to the ISS via Space Shuttle in April 2005. The purpose of the BTF is to provide: (1) the support structure and integration capabilities for the individual modules in which biotechnology experiments will be performed, (2) the capability for human-tended, repetitive, long-duration biotechnology experiments, and (3) opportunities to perform repetitive experiments in a short period by allowing continuous access to microgravity. The MSAD has identified cell culture and tissue engineering, protein crystal growth, and fundamentals of biotechnology as areas that contain promising opportunities for significant advancements through low-gravity experiments. The focus of this coordinated ground- and space-based research program is the use of the low-gravity environment of space to conduct fundamental investigations leading to major advances in the understanding of basic and applied biotechnology. Results from planned investigations can be used in applications ranging from rational drug design and testing, cancer diagnosis and treatments and tissue engineering leading to replacement tissues.

  19. A fault injection experiment using the AIRLAB Diagnostic Emulation Facility

    NASA Technical Reports Server (NTRS)

    Baker, Robert; Mangum, Scott; Scheper, Charlotte

    1988-01-01

    The preparation for, conduct of, and results of a simulation based fault injection experiment conducted using the AIRLAB Diagnostic Emulation facilities is described. An objective of this experiment was to determine the effectiveness of the diagnostic self-test sequences used to uncover latent faults in a logic network providing the key fault tolerance features for a flight control computer. Another objective was to develop methods, tools, and techniques for conducting the experiment. More than 1600 faults were injected into a logic gate level model of the Data Communicator/Interstage (C/I). For each fault injected, diagnostic self-test sequences consisting of over 300 test vectors were supplied to the C/I model as inputs. For each test vector within a test sequence, the outputs from the C/I model were compared to the outputs of a fault free C/I. If the outputs differed, the fault was considered detectable for the given test vector. These results were then analyzed to determine the effectiveness of some test sequences. The results established coverage of selt-test diagnostics, identified areas in the C/I logic where the tests did not locate faults, and suggest fault latency reduction opportunities.

  20. First experiment on LMJ facility: pointing and synchronisation qualification, sequences qualification

    NASA Astrophysics Data System (ADS)

    Henry, Olivier; Bretheau, Dominique; Luttmann, Michel; Graillot, Herve; Ferri, Michel; Seguineau, Frederic; Bar, Emmanuel; Patissou, Loic; Canal, Phillipe; Sautarel, Françoise; Tranquille Marques, Yves; Raffestin, Didier

    2016-10-01

    The LMJ (Laser mega Joule) facility at the CESTA site (Aquitaine, France) is a tool designed to deliver up to 1.2 MJ at 351 nm for plasma experiments. The experiment system will include 11 diagnostics: UV and X energy balances, imagers (Streak and stripe camera, CCD), spectrometers, and a Visar/pyrometer. The facility must be able to deliver, within the hour following the shot, all the results of the plasma diagnostics, alignment images and laser diagnostic measurements. These results have to be guaranteed in terms of conformity to the request and quality of measurement. The end of 2014 was devoted to the qualification of system pointing on target and synchronization within and between beams. The shots made with one chain (divided in 2 quads - 8 laser beams) have achieved 50 µm of misalignment accuracy (chain and quad channel) and a synchronization accuracy in the order of 50 ps. The performances achieved for plasma diagnostic (in the order of less 100 µm of alignment and timing accuracy less than 150 ps) comply with expectations. At the same time the first automatic sequences were tested. They allowed a shot on target every 6h:30 and in some case twice a day by reducing preparation actions, leading to a sequence of 4h:00. These shooting sequences are managed by an operating team of 7 people helped by 3 people for security aspects.

  1. Preliminary results of the Artemia salina experiments in biostack on LDEF

    NASA Technical Reports Server (NTRS)

    Graul, E. H.; Ruether, W.; Hiendl, C. O.

    1992-01-01

    The mosaic egg of the brine shrimp, Artemia salina, resting in blastula or gastrula state represents a system that during further development, proceeds without any further development to the larval stage, the free swimming nauplius. Therefore, injury to a single cell of the egg will be manifest in the larvae. In several experiments, it was shown that the passage of a single heavy ion through the shrimp egg damaged a cellular area large enough to disturb either embryogenesis or further development of the larvae, or the integrity of the adult individual. Emergence from the egg shell was heavily disturbed by the heavy ions as was hatching. Additional late effects, due to a hit by a heavy ion, are delayed of growth and of sexual maturity, and reduced fertility. Anomalies in the body and the extremities could be observed more frequently for the nauplii which had developed from eggs hit by heavy ions.

  2. Heavy Nucleus Collector (HNC) project for the NASA Long Duration Exposure Facility (LDEF)

    NASA Technical Reports Server (NTRS)

    Tarle, Gregory

    1990-01-01

    The primary goal of the heavy nucleus collector (HNC) experiment was to obtain high resolution composition measurements for cosmic ray nuclei in the platinum-lead and actinide region of the periodic table. Secondary objectives include studies of selected groups of elements of lower charge. These goals were to be realized by orbiting a large area array of dielectric nuclear track detectors in space for several years. In this time sufficient actinide nuclei would be collected to determine the nucleosynthetic age of the cosmic radiation and the relative mix of r- and s-process elements in the cosmic ray source. The detector consists of approximately 50 trays assembled in pressurized canisters. Each tray would contain 8 half-stacks (4 stacks total) and an event thermometer which would record the temperature of each event at the time of exposure. Each stack would contain 7 layers of Rodyne-P, CR-39 and Cronar plastic track detectors interleaved with copper stripping foils. Upon return to Earth, detectors would be removed for analysis. Ultraheavy nuclei would have left tracks through the detector sheets that would be made visible after etching in a hot sodium hydroxide solution.

  3. Life science experiments performed in space in the ISS/Kibo facility and future research plans

    PubMed Central

    Ohnishi, Takeo

    2016-01-01

    Over the past several years, current techniques in molecular biology have been used to perform experiments in space, focusing on the nature and effects of space radiation. In the Japanese ‘Kibo’ facility in the International Space Station (ISS), the Japan Aerospace Exploration Agency (JAXA) has performed five life science experiments since 2009, and two additional experiments are currently in progress. The first life science experiment in space was the ‘Rad Gene’ project, which utilized two human cultured lymphoblastoid cell lines containing a mutated p53 gene (mp53) and a parental wild-type p53 gene (wtp53) respectively. Four parameters were examined: (i) detecting space radiation–induced DSBs by observing γH2AX foci; (ii) observing p53-dependent gene expression during space flight; (iii) observing p53-dependent gene expression after space flight; and (iv) observing the adaptive response in the two cell lines containing the mutated and wild type p53 genes after exposure to space radiation. These observations were completed and have been reported, and this paper is a review of these experiments. In addition, recent new information from space-based experiments involving radiation biology is presented here. These experiments involve human cultured cells, silkworm eggs, mouse embryonic stem cells and mouse eggs in various experiments designed by other principal investigators in the ISS/Kibo. The progress of Japanese science groups involved in these space experiments together with JAXA are also discussed here. The Japanese Society for Biological Sciences in Space (JSBSS), the Utilization Committee of Space Environment Science (UCSES) and the Science Council of Japan (ACJ) have supported these new projects and new experimental facilities in ISS/Kibo. Currently, these organizations are proposing new experiments for the ISS through 2024. PMID:27130692

  4. Life science experiments performed in space in the ISS/Kibo facility and future research plans.

    PubMed

    Ohnishi, Takeo

    2016-08-01

    Over the past several years, current techniques in molecular biology have been used to perform experiments in space, focusing on the nature and effects of space radiation. In the Japanese 'Kibo' facility in the International Space Station (ISS), the Japan Aerospace Exploration Agency (JAXA) has performed five life science experiments since 2009, and two additional experiments are currently in progress. The first life science experiment in space was the 'Rad Gene' project, which utilized two human cultured lymphoblastoid cell lines containing a mutated P53 : gene (m P53 : ) and a parental wild-type P53 : gene (wt P53 : ) respectively. Four parameters were examined: (i) detecting space radiation-induced DSBs by observing γH2AX foci; (ii) observing P53 : -dependent gene expression during space flight; (iii) observing P53 : -dependent gene expression after space flight; and (iv) observing the adaptive response in the two cell lines containing the mutated and wild type P53 : genes after exposure to space radiation. These observations were completed and have been reported, and this paper is a review of these experiments. In addition, recent new information from space-based experiments involving radiation biology is presented here. These experiments involve human cultured cells, silkworm eggs, mouse embryonic stem cells and mouse eggs in various experiments designed by other principal investigators in the ISS/Kibo. The progress of Japanese science groups involved in these space experiments together with JAXA are also discussed here. The Japanese Society for Biological Sciences in Space (JSBSS), the Utilization Committee of Space Environment Science (UCSES) and the Science Council of Japan (ACJ) have supported these new projects and new experimental facilities in ISS/Kibo. Currently, these organizations are proposing new experiments for the ISS through 2024. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and

  5. Benchmark experiments at ASTRA facility on definition of space distribution of {sup 235}U fission reaction rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bobrov, A. A.; Boyarinov, V. F.; Glushkov, A. E.

    2012-07-01

    Results of critical experiments performed at five ASTRA facility configurations modeling the high-temperature helium-cooled graphite-moderated reactors are presented. Results of experiments on definition of space distribution of {sup 235}U fission reaction rate performed at four from these five configurations are presented more detail. Analysis of available information showed that all experiments on criticality at these five configurations are acceptable for use them as critical benchmark experiments. All experiments on definition of space distribution of {sup 235}U fission reaction rate are acceptable for use them as physical benchmark experiments. (authors)

  6. Soil and crop management experiments in the Laboratory Biosphere: an analogue system for the Mars on Earth(R) facility.

    PubMed

    Silverstone, S; Nelson, M; Alling, A; Allen, J P

    2005-01-01

    During the years 2002 and 2003, three closed system experiments were carried out in the "Laboratory Biosphere" facility located in Santa Fe, New Mexico. The program involved experimentation of "Hoyt" Soy Beans, (experiment #1) USU Apogee Wheat (experiment #2) and TU-82-155 sweet potato (experiment #3) using a 5.37 m2 soil planting bed which was 30 cm deep. The soil texture, 40% clay, 31% sand and 28% silt (a clay loam), was collected from an organic farm in New Mexico to avoid chemical residues. Soil management practices involved minimal tillage, mulching, returning crop residues to the soil after each experiment and increasing soil biota by introducing worms, soil bacteria and mycorrhizae fungi. High soil pH of the original soil appeared to be a factor affecting the first two experiments. Hence, between experiments #2 and #3, the top 15 cm of the soil was amended using a mix of peat moss, green sand, humates and pumice to improve soil texture, lower soil pH and increase nutrient availability. This resulted in lowering the initial pH of 8.0-6.7 at the start of experiment #3. At the end of the experiment, the pH was 7.6. Soil nitrogen and phosphorus has been adequate, but some chlorosis was evident in the first two experiments. Aphid infestation was the only crop pest problem during the three experiments and was handled using an introduction of Hyppodamia convergens. Experimentation showed there were environmental differences even in this 1200 cubic foot ecological system facility, such as temperature and humidity gradients because of ventilation and airflow patterns which resulted in consequent variations in plant growth and yield. Additional humidifiers were added to counteract low humidity and helped optimize conditions for the sweet potato experiment. The experience and information gained from these experiments are being applied to the future design of the Mars On Earth(R) facility (Silverstone et al., Development and research program for a soil

  7. Soil and crop management experiments in the Laboratory Biosphere: An analogue system for the Mars on Earth ® facility

    NASA Astrophysics Data System (ADS)

    Silverstone, S.; Nelson, M.; Alling, A.; Allen, J. P.

    During the years 2002 and 2003, three closed system experiments were carried out in the "Laboratory Biosphere" facility located in Santa Fe, New Mexico. The program involved experimentation of "Hoyt" Soy Beans, (experiment #1) USU Apogee Wheat (experiment #2) and TU-82-155 sweet potato (experiment #3) using a 5.37 m 2 soil planting bed which was 30 cm deep. The soil texture, 40% clay, 31% sand and 28% silt (a clay loam), was collected from an organic farm in New Mexico to avoid chemical residues. Soil management practices involved minimal tillage, mulching, returning crop residues to the soil after each experiment and increasing soil biota by introducing worms, soil bacteria and mycorrhizae fungi. High soil pH of the original soil appeared to be a factor affecting the first two experiments. Hence, between experiments #2 and #3, the top 15 cm of the soil was amended using a mix of peat moss, green sand, humates and pumice to improve soil texture, lower soil pH and increase nutrient availability. This resulted in lowering the initial pH of 8.0-6.7 at the start of experiment #3. At the end of the experiment, the pH was 7.6. Soil nitrogen and phosphorus has been adequate, but some chlorosis was evident in the first two experiments. Aphid infestation was the only crop pest problem during the three experiments and was handled using an introduction of Hyppodamia convergens. Experimentation showed there were environmental differences even in this 1200 cubic foot ecological system facility, such as temperature and humidity gradients because of ventilation and airflow patterns which resulted in consequent variations in plant growth and yield. Additional humidifiers were added to counteract low humidity and helped optimize conditions for the sweet potato experiment. The experience and information gained from these experiments are being applied to the future design of the Mars On Earth ® facility (Silverstone et al., Development and research program for a soil

  8. Does identity shape leadership and management practice? Experiences of PHC facility managers in Cape Town, South Africa

    PubMed Central

    Daire, Judith; Gilson, Lucy

    2014-01-01

    In South Africa, as elsewhere, Primary Health Care (PHC) facilities are managed by professional nurses. Little is known about the dimensions and challenges of their job, or what influences their managerial practice. Drawing on leadership and organizational theory, this study explored what the job of being a PHC manager entails, and what factors influence their managerial practice. We specifically considered whether the appointment of professional nurses as facility managers leads to an identity transition, from nurse to manager. The overall intention was to generate ideas about how to support leadership development among PHC facility managers. Adopting case study methodology, the primary researcher facilitated in-depth discussions (about their personal history and managerial experiences) with eight participating facility managers from one geographical area. Other data were collected through in-depth interviews with key informants, document review and researcher field notes/journaling. Analysis involved data triangulation, respondent and peer review and cross-case analysis. The experiences show that the PHC facility manager’s job is dominated by a range of tasks and procedures focused on clinical service management, but is expected to encompass action to address the population and public health needs of the surrounding community. Managing with and through others, and in a complex system, requiring self-management, are critical aspects of the job. A range of personal, professional and contextual factors influence managerial practice, including professional identity. The current largely facility-focused management practice reflects the strong nursing identity of managers and broader organizational influences. However, three of the eight managers appear to self-identify an emerging leadership identity and demonstrate related managerial practices. Nonetheless, there is currently limited support for an identity transition towards leadership in this context. Better

  9. Exposure to space radiation of high-performance infrared multilayer filters and materials technology experiment (A0056)

    NASA Technical Reports Server (NTRS)

    Hawkins, Gary J.; Seeley, John S.; Hunneman, Roger

    1992-01-01

    Infrared optical multilayer filters and materials were exposed to the space environment of low Earth orbit on LDEF. The effects are summarized of that environment on the physical and optical properties of the filters and materials flown.

  10. Two U.S. Experiments to Fly Aboard European Spacelab Facility in 1996

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Space provides researchers a way to study the behavior of fluids when the forces of gravity are removed. The studies described here involve international cooperative research projects to study various aspects of fluid behavior in a microgravity environment. These projects utilize the Bubble Droplet Particle Unit (BDPU), which was built by the European Space Agency's (ESA) Technology Center in Noordwijk, The Netherlands. This Spacelab-based multiuser facility flew for the first time in July 1994 on the second International Microgravity Laboratory (IML-2). It is scheduled for reflight on the Life and Microgravity Sciences (LMS) mission in June 1996. This experiment hardware was designed primarily to conduct fluid physics experiments with transparent fluids. LMS will fly both European and U.S. investigations including experiments defined by Professor R.S. Subramanian of Clarkson University in Potsdam, New York, and Professor S.A. Saville of Princeton University, Princeton, New Jersey.

  11. Science requirements for Heavy Nuclei Collection (HNC) experiment on NASA Long Duration Exposure Facility (LDEF) Mission 2

    NASA Technical Reports Server (NTRS)

    Price, P. Buford

    1991-01-01

    The Heavy Nuclei Collection (HNC) is a passive array of stacks of a special glass, 14 sheets thick, that record tracks of ultraheavy cosmic rays for later readout by automated systems on Earth. The primary goal is to determine the relative abundances of both the odd- and even-Z cosmic rays with Z equal to or greater than 50 with statistics a factor at least 60 greater than obtained in HEAO-3 and to obtain charge resolution at least as good as 0.25 charge unit. The secondary goal is to search for hypothetical particles such as superheavy elements. The HNC detector array will have a cumulative collection power equivalent to flying 32 sq m of detectors in space for 4 years. The array will be flown as a free-flight spacecraft and/or attached to Space Station Freedom.

  12. Facilities, breed and experience affect ease of sheep handling: the livestock transporter's perspective.

    PubMed

    Burnard, C L; Pitchford, W S; Hocking Edwards, J E; Hazel, S J

    2015-08-01

    An understanding of the perceived importance of a variety of factors affecting the ease of handling of sheep and the interactions between these factors is valuable in improving profitability and welfare of the livestock. Many factors may contribute to animal behaviour during handling, and traditionally these factors have been assessed in isolation under experimental conditions. A human social component to this phenomenon also exists. The aim of this study was to gain a deeper understanding of the importance of a variety of factors affecting ease of handling, and the interactions between these from the perspective of the livestock transporter. Qualitative interviews were used to investigate the factors affecting sheep behaviour during handling. Interview transcripts underwent thematic analysis. Livestock transporters discussed the effects of attitudes and behaviours towards sheep, helpers, facilities, distractions, environment, dogs and a variety of sheep factors including breed, preparation, experience and sex on sheep behaviour during handling. Transporters demonstrated care and empathy and stated that patience and experience were key factors determining how a person might deal with difficult sheep. Livestock transporters strongly believed facilities (ramps and yards) had the greatest impact, followed by sheep experience (naivety of the sheep to handling and transport) and breed. Transporters also discussed the effects of distractions, time of day, weather, dogs, other people, sheep preparation, body condition and sheep sex on ease of handling. The concept of individual sheep temperament was indirectly expressed.

  13. Establishing a cGMP pancreatic islet processing facility: the first experience in Iran.

    PubMed

    Larijani, Bagher; Arjmand, Babak; Amoli, Mahsa M; Ao, Ziliang; Jafarian, Ali; Mahdavi-Mazdah, Mitra; Ghanaati, Hossein; Baradar-Jalili, Reza; Sharghi, Sasan; Norouzi-Javidan, Abbas; Aghayan, Hamid Reza

    2012-12-01

    It has been predicted that one of the greatest increase in prevalence of diabetes will happen in the Middle East bear in the next decades. The aim of standard therapeutic strategies for diabetes is better control of complications. In contrast, some new strategies like cell and gene therapy have aimed to cure the disease. In recent years, significant progress has occurred in beta-cell replacement therapies with a progressive improvement of short-term and long term outcomes. In year 2005, considering the impact of the disease in Iran and the promising results of the Edmonton protocol, the funding for establishing a current Good Manufacturing Practice (cGMP) islet processing facility by Endocrinology and Metabolism Research Center was approved by Tehran University of Medical Sciences. Several islet isolations were performed following establishment of cGMP facility and recruitment of all required equipments for process validation and experimental purpose. Finally the first successful clinical islet isolation and transplantation was performed in September 2010. In spite of a high cost of the procedure it is considered beneficial and may prevent long term complications and the costs associated with secondary cares. In this article we will briefly describe our experience in setting up a cGMP islet processing facility which can provide valuable information for regional countries interested to establish similar facilities.

  14. Conceptual Design of Tail-Research EXperiment (T-REX) on Space Plasma Environment Research Facility

    NASA Astrophysics Data System (ADS)

    Xiao, Qingmei; Wang, Xiaogang; E, Peng; Shen, Chao; Wang, Zhibin; Mao, Aohua; Xiao, Chijie; Ding, Weixing; Ji, Hantao; Ren, Yang

    2016-10-01

    Space Environment Simulation Research Infrastructure (SESRI), a scientific project for a major national facility of fundamental researches, has recently been launched at Harbin Institute of Technology (HIT). The Space Plasma Environment Research Facility (SPERF) for simulation of space plasma environment is one of the components of SESRI. It is designed to investigate fundamental issues in space plasma environment, such as energetic particles transportation and the interaction with waves in magnetosphere, magnetic reconnection at magnetopause and magnetotail, etc. Tail-Research Experiment (T-REX) is part of the SPERF for laboratory studies of space physics relevant to tail reconnection and dipolarization process. T-REX is designed to carry out two kinds of experiments: the tail plasmamoid for magnetic reconnection and magnetohydrodynamic waves excited by high speed plasma jet. In this presentation, the scientific goals and experimental plans for T-REX together with the means applied to generate the plasma with desired parameters are reviewed. Two typical scenarios of T-REX with operations of plasma sources and various magnetic configurations to study specific physical processes in space plasmas will also be presented.

  15. IDE spatio-temporal impact fluxes and high time-resolution studies of multi-impact events and long-lived debris clouds

    NASA Technical Reports Server (NTRS)

    Mulholland, J. Derral; Singer, S. Fred; Oliver, John P.; Weinberg, Jerry L.; Cooke, William J.; Montague, Nancy L.; Wortman, Jim J.; Kassel, Phillip C.; Kinard, William H.

    1992-01-01

    The purpose of the Interplanetary Dust Experiment (IDE) on the Long Duration Exposure Facility (LDEF) was to sample the cosmic dust environment and to use the spatio-temporal aspect of the experiment to distinguish between the various components of the environment: zodiacal cloud, beta meteoroids, meteor streams, interstellar dust, and orbital debris. It was found that the introduction of precise time and even rudimentary directionality as co-lateral observables in sampling the particulate environment in near-Earth space produces an enormous qualitative improvement in the information content of the impact data. The orbital debris population is extremely clumpy, being dominated by persistent clouds in which the fluxes may rise orders of magnitude above the background. The IDE data suggest a strategy to minimize the damage to sensitive spacecraft components, using the observed characteristics of cloud encounters.

  16. Critical experiments at Sandia National Laboratories : technical meeting on low-power critical facilities and small reactors.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harms, Gary A.; Ford, John T.; Barber, Allison Delo

    2010-11-01

    Sandia National Laboratories (SNL) has conducted radiation effects testing for the Department of Energy (DOE) and other contractors supporting the DOE since the 1960's. Over this period, the research reactor facilities at Sandia have had a primary mission to provide appropriate nuclear radiation environments for radiation testing and qualification of electronic components and other devices. The current generation of reactors includes the Annular Core Research Reactor (ACRR), a water-moderated pool-type reactor, fueled by elements constructed from UO2-BeO ceramic fuel pellets, and the Sandia Pulse Reactor III (SPR-III), a bare metal fast burst reactor utilizing a uranium-molybdenum alloy fuel. The SPR-IIImore » is currently defueled. The SPR Facility (SPRF) has hosted a series of critical experiments. A purpose-built critical experiment was first operated at the SPRF in the late 1980's. This experiment, called the Space Nuclear Thermal Propulsion Critical Experiment (CX), was designed to explore the reactor physics of a nuclear thermal rocket motor. This experiment was fueled with highly-enriched uranium carbide fuel in annular water-moderated fuel elements. The experiment program was completed and the fuel for the experiment was moved off-site. A second critical experiment, the Burnup Credit Critical Experiment (BUCCX) was operated at Sandia in 2002. The critical assembly for this experiment was based on the assembly used in the CX modified to accommodate low-enriched pin-type fuel in water moderator. This experiment was designed as a platform in which the reactivity effects of specific fission product poisons could be measured. Experiments were carried out on rhodium, an important fission product poison. The fuel and assembly hardware for the BUCCX remains at Sandia and is available for future experimentation. The critical experiment currently in operation at the SPRF is the Seven Percent Critical Experiment (7uPCX). This experiment is designed to provide

  17. Report on Beryllium Strength Experiments Conducted at the TA-55 40 mm Impact Test Facility, Fiscal Year 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, William Wyatt; Hollowell, Benjamin Charles; Martinez, Todd P.

    A series of experiments is currently in progress at eth 40 mm Impact Test Facility (ITF), located at TA-55, to understand the strength behavior of Beryllium metal at elevated temperature and pressure. In FY 2017, three experiments were conducted as a part of this project.

  18. The Underground Laboratory in South Korea : facilities and experiments

    NASA Astrophysics Data System (ADS)

    Kim, Yeongduk

    2017-01-01

    We have developed underground physics programs for last 15 years in South Korea. The scientific and technical motivation for this initiative was the lack of local facility of a large accelerator in Korea. Thanks to the large underground electric power generator in Yangyang area, we could construct a deep underground laboratory (Yangyang Laboratory, Y2L) and has performed some pioneering experiments for dark matter search and double beta decay experiments. Since year of 2013, a new research center in the Institute for Basic Science (IBS), Center for Underground Physics (CUP), is approved by the government and Y2L laboratory is managed by CUP. Due to the limited space in Y2L, we are proposing to construct a new deep underground laboratory where we can host larger scale experiments of next generation. The site is in an active iron mine, and will be made in 1100 meter underground with a space of about 2000 m2 by the end of 2019. I will describe the status and future plan for this underground laboratory. CUP has two main experimental programs. (1) Identification of dark matter : The annual modulation signal of DAMA/LIBRA experiment has been contradictory to many other experiments such as XENON100, LUX, and Super CDMS. Yale University and CUP (COSINE-100) experimentalists agreed to do an experiment together at the Y2L and recently commissioned a 100kg scale low background NaI(Tl) crystal experiment. In future, we will develop NaI(Tl) crystals with lower internal backgrounds and try to run identical detectors at both north and south hemisphere. Low mass WIMP search is also planned with a development of low temperature sensors coupled with highly scintillating crystals. (2) Neutrinoless double beta decay search : The mass of the lightest neutrino and the Majorana nature of the neutrinos are not determined yet. Neutrinoless double beta decay experiment can answer both of the questions directly, and ultra-low backgrounds and excellent energy resolution are critical to

  19. Vacuum ultraviolet radiation/atomic oxygen synergism in fluorinated ethylene propylene Teflon erosion

    NASA Technical Reports Server (NTRS)

    Stiegman, A. E.; Brinza, David E.; Laue, Eric G.; Anderson, Mark S.; Liang, Ranty H.

    1992-01-01

    A micrographic investigation is reported of samples of the fluorinated ethylene propylene (FEP) Teflon thermal-blanketing materials recovered from the Long-Duration Exposure Facility (LDEF) satellite. The samples are taken from the trailing edge and row 8 which correspond to exposures to vacuum UV (VUV) and VUV + atomic O, respectively. Data are taken from SEM and IR-spectra observations, and the LDEF leading-edge FEP shows a high degree of erosion, roughening, and sharp peaks angled in the direction of the flow of atomic O. The trailing edge sample influenced primarily by VUV shows a hard brittle layer and some cracked mosaic patterns. Comparisons to a reference sample suggest that the brittle layer is related to exposure to VUV and is removed by atomic-O impingement. Polymers that are stable to VUV radiation appear to be more stable in terms of atomic oxygen.

  20. Transitioning from caregiver to visitor in a long-term care facility: the experience of caregivers of people with dementia.

    PubMed

    Crawford, K; Digby, R; Bloomer, M; Tan, H; Williams, A

    2015-01-01

    Transitioning from the primary caregiver to the visitor in a long-term care facility may be challenging for the caregiver; they are required to surrender their caring duties to the medical and nursing staff. The aim of this study was to explore the experiences of caregivers during their transition from day-to-day caregiver of a person with dementia to a visitor in a long-term care facility. This study utilised a qualitative descriptive design. Twenty caregivers of people with dementia were recruited from the one Aged Rehabilitation and Geriatric Evaluation and Management facility, located in Victoria, Australia. Semi-structured interviews were used to explore the caregiver's experiences. Interviews were analysed using thematic analysis. The interview data revealed that the participants were undergoing similar experiences. The findings revealed that it was difficult for the caregiver to transition to their new role of visitor; negative reactions of grief, loss of motivation and loneliness were also coupled with positive feelings of relief and the reassurance that their relative or friend would be well cared for and safe within the long-term care facility. The findings offer insight into the experiences felt by caregivers when their relative or friend with dementia is admitted to hospital. Implications of this study include the need to improve the transition process for the caregiver by allowing them to be involved in the decision-making process, keeping them informed of care decisions, and importantly, providing emotional support to help the caregiver positively adapt to this transition.